VC - a method for estimating time-varying coefficients in linear models / Ekkehart Schlicht (University of Munich and IZA) ; IZA Institute of Labor Economics
VerfasserSchlicht, Ekkehart
KörperschaftForschungsinstitut zur Zukunft der Arbeit
ErschienenBonn, Germany : IZA Institute of Labor Economics, January 2020
Elektronische Ressource
Umfang1 Online-Ressource (45 Seiten) : Diagramme
SerieDiscussion paper ; no. 12920
 Das Dokument ist öffentlich zugänglich im Rahmen des deutschen Urheberrechts.
VC - a method for estimating time-varying coefficients in linear models [0.61 mb]
Verfügbarkeit In meiner Bibliothek

This paper describes a moments estimator for a standard state-space model with coefficients generated by a random walk. A penalized least squares estimation is linked to the GLS (Aitken) estimates of the corresponding linear model with time-invariant parameters. The VC estimates are moments estimates. They do not require the disturbances to be Gaussian, but if they are, the estimates are asymptotically equivalent to maximum likelihood estimates. In contrast to Kalman filtering, no specification of an initial state or an initial covariance matrix is required. While the Kalman filter is one sided, the VC filter is two sided and therefore uses more of the available information for estimating intermediate states.. Further, the VC filter has a clear descriptive interpretation.