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ABSTRACT 
 

UK Households’ Carbon Footprint: A Comparison of the 
Association between Household Characteristics and Emissions 
from Home Energy, Transport and Other Goods and Services1 

 
Does the association between household characteristics and household CO2 emissions differ 
for different areas such as home energy, transport, indirect and total emissions in the UK? 
Specific types of households might be more likely to have high emissions in some areas than 
in others and thus be affected differently by climate mitigation policies that target these areas. 
Using the Living Costs and Food Survey and Expenditure and Food Survey for the years 
2006 to 2009, this paper compares how household characteristics like income, household 
size, rural/urban location and education level differ in their association with home energy, 
transport, indirect and total emissions. We find that the association between household 
characteristics and emissions differs considerably across these areas, particularly for income, 
education, the presence of children, female headed, workless and rural households. We also 
test the implicit assumption in the literature that the association between household 
characteristics and CO2 emission is constant across the CO2 emission distribution using 
quantile regressions and compare results for poor and rich households. The analysis 
considers policy implications of these findings throughout. 
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1 Introduction 

There is a general consensus in the scientific community that further policy measures need to be 

adopted to mitigate climate change and meet UK CO2 emission reduction targets. One commonly 

perceived problem of carbon reduction policies such as carbon taxes is that they have regressive 

effects as low income households are likely to bear a higher financial burden as a proportion of their 

income than high income households. It is therefore an important task to establish how potentially 

regressive effects of carbon reduction policies can be minimised. For doing so we do need to know in 

detail which role household characteristics play for emissions in each of these areas. Most policies 

rely on financial incentives to encourage emission reductions. Therefore, household income, 

expenditure and household size have been among the most important factors for examining unequal 

distributions of emissions as well as distributional implications of abatement policies. However, 

household characteristics other than income might well contribute to higher or lower emissions 

independently from income. If this is the case, these characteristics would also matter for the 

distributional implications of mitigation policies independently from household income and size. To 

examine whether household characteristics other than income and household size matter for 

emissions, we need to examine the effects of household characteristics conditional on all other 

factors by applying regression analysis.  

In recent years, several studies have been published on the distribution of household 

emissions2 and the role of socio-economic factors for the UK (e.g. Baiocchi et al., 2010; Brand and 

Boardman, 2008; Brand and Preston, 2010; DEFRA, 2008; Dresner and Ekins, 2006; Druckman and 

Jackson, 2008; Druckman and Jackson, 2009; Fahmy et al., 2011; Gough et al., 2011) and for other 

countries (see Girod and De Haan, 2010; Kerkhof et al., 2009; Weber and Matthews, 2008; Wier et 

al., 2001). Of these studies for the non-UK context, Kerkhof (2009) and Weber and Matthews (2008) 

compare unconditional associations for different types of emissions and only Weber and Matthew’s 

study (ibid.) examines conditional associations between household characteristics and emissions. 

However, they only do that for total CO2 emissions and do not compare differences between 

emission domains. 

For the UK, there are several studies that examine unconditional or conditional associations 

between household characteristics and emissions but none of them compares regression results 

across different domains of CO2 emissions. For example, Baiocchi et al. (2010) conduct OLS 

                                                           
2
 Here, we only list studies on household emissions. Whilst some studies have conducted distributional analysis 

of household energy (rather than emissions) (e.g. Burney, 1995; Cohen et al., 2005; Herendeen and Tanaka, 
1976; Herendeen et al., 1981; Larivière and Lafrance, 1999; Lenzen et al., 2006; O'Neill and Chen, 2002; 
Pachauri, 2004; Reinders et al., 2003; Vringer and Blok, 1995), none of them compares associations between 
emissions/energy and household characteristics using multivariate analysis, comparing different areas of 
emissions. 
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regression to examine determinants of total CO2 emissions using the census-based ACORN database. 

The studies by Brand and Boardman (2008) and Brand and Preston (2010) focus on the role of 

household characteristics for transport CO2 emissions, based on their own survey from a sample in 

Oxfordshire. Studies by DEFRA (2008) and Fahmy et al. (2011) focus on the role of household 

characteristics for the total of home energy and motor fuel/transport CO2 emissions and Dresner 

and Ekins (2006) cover home energy only. Druckman and Jackson analyse home energy (2008) and 

total emissions (2009) at the small area level and for seven household types based on output area 

classification super groups and do not examine conditional associations. Gough et al. (2011) do apply 

OLS regression to compare different areas of emissions, but the study focuses on greenhouse gases 

rather than CO2. It also does not include factors such as education, rural and urban location or 

gender (variables central for our analysis). 

This paper contributes to the literature by comparing the role of household characteristics 

for different areas of CO2 emissions in the UK. We analyse and compare the association of household 

size, age, socio-economic background and housing characteristics with home energy (gas, electricity, 

oil, coal and other heating fuels), transport (motor fuels, public transport and flights) and indirect 

(food and other goods and services) household CO2 emissions.3 Emissions in these three areas will 

also be compared to households’ total emissions summarising emissions of the three areas.  

Existing studies (e.g. Baiocchi et al., 2010; DEFRA, 2008; Gough et al., 2011) that use least 

square regressions implicitly assume that the impact of household characteristics on emissions is 

constant across the emission distribution. An additional value added of this paper is the examination 

of whether this assumption holds using quantile regressions. Furthermore, we compare OLS 

regression results for poor and rich households separately to examine in more detail which 

characteristics make poorer households more likely to bear larger burdens from mitigation policies.  

Our analysis is based on representative expenditure surveys in the UK, the Living Costs and 

Food Survey (LCF) and its predecessor the Expenditure and Food Survey (EFS), merged over the years 

2006 to 2009 and combined with different data sources to estimate household CO2 emissions based 

on expenditure data.  

Our analysis follows three steps. First, we examine the association between household 

characteristics and CO2 emissions. This enables us to answer questions such as: how are household 

characteristics like household size and composition, income, age, education, ethnicity and gender of 

the household reference person (defined as the person paying the rent or mortgage or, if this is 

shared, the person with the higher income) related to emissions in the three areas? Does rural 

location matter equally for home energy and transport emissions? 

                                                           
3
 Even though emissions from electricity are “indirect” emissions, we allocate them to home energy emissions 

as this is more meaningful from a policy perspective. 
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Given that many characteristics are highly correlated (i.e. income and education), we 

examine in a second step whether characteristics like education or rural location still matter for 

explaining CO2 emissions once income is controlled for applying OLS regressions.  

The use of OLS regressions assumes that the impact of household characteristics is similar 

across the distribution of CO2 emissions. In a third step, we demonstrate that while this assumption 

is generally true for many variables, some household characteristics like education and rural location 

differ in their importance for explaining CO2 emissions at the top and the bottom of the emission 

distribution.  

For all three steps, we will compare results across the three emission areas and for total 

emissions so that we can identify which households might be hardest hit by carbon reduction 

policies targeting these areas. 

The paper first describes the data and limitations on which the analysis is based (section 2). This 

is followed by quantifying CO2 emissions in the three areas and relating those to household 

characteristics in section 3. Regression results will be presented in section 4. Section 5 concludes.  

 

2 Data and limitations 

2.1 Data 

For the UK there is currently no representative CO2 emissions dataset at the household level 

available. Research on the distribution of emissions across households thus relies on other data 

sources to estimate household emissions. In this paper, we convert rich information on households’ 

expenditure into CO2 estimates. Our household expenditure data derive from the merged UK Living 

Costs and Food Survey (LCF) for the years 2008 and 2009 and its predecessor, the Expenditure and 

Food Survey (EFS), for the years 2006 and 2007 which provides us with a total household sample size 

of 24,446. The LCF/EFS is an annual survey, covering detailed information on expenditure for a large 

number of consumer items and services according to the Classification of Individual Consumption 

According to Purpose (COICOP) and a range of socio-economic variables. We convert households’ 

expenditure into CO2 emission estimates using the following methods.  

For home energy we use Tables 2.2.3 and 2.3.3 of the Quarterly Energy Prices statistics by 

the Department for Energy and Climate Change (DECC, 2011a, b) providing us with information on 

annual domestic electricity and gas prices per kWh, including standing charge and VAT, for three 

payment methods and each electricity/gas region. Since the LCF/EFS includes variables on payment 

method and region, we can link this information to estimate units of energy consumption for piped 

gas and electricity. In addition, our home energy CO2 estimates include emissions from heating oil, 

bottled gas, coal and wood which comprise 10.4 per cent of the UK households’ CO2 home energy 
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emissions estimate. Here we use DECC price statistics on petroleum products and Sutherland (2012) 

tables to convert expenditure into units of consumption. 

For transport CO2 emissions we estimate litres of motor fuel (petrol and diesel) consumed 

using AA statistics (AA, 2006-2009) of monthly motor fuel prices for each government region. For 

public transport we estimate kilometres travelled employing information on average annual 

passenger miles for train, tube, bus and coach journeys from the National Travel Survey for Great 

Britain (DfT, 2011: table NTS0305) and the Northern Ireland Travel Survey for Northern Ireland 

(DRDNI, 2011: table 3.1). Flight emissions are estimated by approximating flight kilometres merging 

information from the LCF/EFS survey on the number of person flights per household within the UK, 

Europe and outside Europe with average distance for flights to these destinations calculated using 

the NTS and the International Passenger Survey. DECC CO2 conversion factors (DECC and DEFRA, 

2011) provided for different fuels and modes of transport are then applied to units of consumption 

of home energy, litres of motor fuels and kilometres travelled by mode of transport to estimate CO2 

emissions.  

To estimate indirect emissions we use the Resources and Energy Analysis Programme (REAP) 

database which provides estimates of total CO2 emissions arising from consumption by UK 

households of 57 COICOP categories in 2006 (Paul et al., 2010). These data are employed to 

generate CO2 per pound expenditure factors for 49 consumption categories which we apply to 

household expenditure (inflation corrected for 2007-2009) to estimate emissions (using the methods 

described above for the remaining categories). 

Based on these conversions of expenditure to carbon dioxide estimates, our mean annual 

total estimate of household CO2 emissions across the 4 years is 513 million tonnes compared to 527 

million tonnes according to DECC’s (production based) estimate for the same period (DECC, 2012: 

table 1). Baiocchi et al. (2010: 57) arrive at an estimate of 505 million tonnes of CO2 for UK 

household emissions in 2000 and Druckman and Jackson (2009: 2072) estimate 560 million tonnes 

CO2 in 2004 (neither these nor our study take government and capital investment emissions into 

account). Our per household CO2 estimates of 20.2 tonnes (standard error 0.13) compares to 20.8 

tonnes derived from DECC (2012: table 1) for 2006 to 2009 and to 21.5 tonnes for 2004 by Druckman 

and Jackson (2009: 2072) who use previous rounds of the EFS but slightly different methods for 

estimating emissions. Discrepancies of estimates are likely to stem from different data sources, 

coverage and methods of conversion. For a detailed discussion of how we converted household 

expenditure data to CO2 emission for different areas and how different estimates compare see 

(Buchs and Schnepf, 2013) .  
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2.2 Limitations 

Estimating emissions based on household expenditure is limited in several ways. The first problem is 

that we would need to know more precisely how much and what people consume to estimate 

emissions whilst the LCF/EFS only records expenditure. For example, for home energy the LCF/EFS 

does not record the energy provider or tariff which would be required to match prices more 

precisely (even though as discussed before it provides the payment method and area which reflect 

important differences in prices); for public transport tickets and flights it does not record the exact 

destinations and type of ticket (first or second class or reductions for pre-booking or railcards). The 

LCF/EFS also only records expenditure for relatively broad consumption categories but not the brand 

or origin which could tell us more about a product’s potential carbon content. However, even if 

more detailed information on consumption were available, we would not be able to match it with 

more precise emission factors due to a lack of data.  

This relates to a second problem that we call the ‘product quality problem’. This is important 

for our analysis because different types of households may differ in their choice of product in ways 

that we cannot observe even though it is relevant for estimating emissions. For example, £10 spent 

by one household on a high quality product, for example organic local cheese, might relate to lower 

CO2 emissions than £10 spent by another household on a low quality, mass produced cheese 

imported from another country. Since high income households tend to spend more on high quality 

products than low income households, this could lead to an overestimation of emissions from high 

income households if higher spending does not translate into proportionally higher emissions (Girod 

and De Haan, 2010). This might be especially the case for flight and public transport emissions 

(higher income households might be less inclined to choose budget airlines and pre-booked tickets 

but more first class tickets). Recently, Girod and Haan (2010: 43) found that the elasticity of 

household emissions in Switzerland and expenditure was reduced from 1.06 to 0.53 when they 

compared an expenditure-based to a units of consumption-based model for emissions. However, 

they concede that this estimate might be ‘optimistic, because higher quality goods might also lead to 

higher impact’ (ibid.). This links to research by Hurth (2010) who found that high-end supermarket 

food products targeting affluent consumers consistently had higher carbon packaging and cites 

evidence that wealthy consumers find it difficult to choose lower-carbon options if these products 

conflict with their identities. As a consequence, given the lack of literature examining the association 

between higher spending and CO2 emission content of products by household characteristics, we 

currently cannot clearly state whether our CO2 estimates are systematically biased for households 

with different socio-economic characteristics.  
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A third limitation results from the ‘infrequency of purchase problem’. The LCF/EFS collects 

expenditure data through a survey for more infrequent purchases such as electricity and gas bills, 

cars, season tickets and package holidays. In general, the period that the survey covers for these 

items refers to the last payment period, quarterly or annual expenditure. However, some more 

frequent expenditure items are only collected through two-week diaries kept by each household 

member. For all these purchases, expenditure estimates might be affected by the infrequency of 

purchase problem. This is a very common problem that studies on household expenditure are 

confronted with (Tiffin and Arnoult, 2010) but so far it has not been discussed in detail in the 

literature on expenditure based emission estimates.  

In our case, the infrequency of purchase problem reflects two important issues. First, we aim 

at examining annual CO2 emissions, but have measurement of expenditure for many items only for a 

two week time period. Hence, some people who did not consume an item in a two week period 

might have had expenditure of this item during the last year. We can demonstrate this problem in 

relation to private flights as the LCF/EFS collects both expenditure on flights from the diary and the 

number of flights in the last year through the survey. Only 1.3 per cent of all households have an 

expenditure on flights within two weeks but 41.0 per cent of households record at least one flight 

during the last year. Since flight emissions are an important source of CO2 emissions and we 

estimate annual CO2 emissions we use the number of flights instead of expenditure data to estimate 

flight emissions.  

Second, while people might not have an expenditure on an item during two weeks, they may 

still have consumed this item from stocks during the diary window. We can demonstrate this 

problem by comparing our data on motor fuels to data from the National Travel Survey (NTS) which 

records both expenditure on motor fuels from a diary and an estimate of annual mileage driven by 

car based on a household survey. 18.2 per cent of LCF/EFS households who own or use a vehicle did 

not purchase any motor fuel during the two-week period. According to the NTS, 39 per cent of 

households who have or use a vehicle did not purchase any fuel during the one-week diary period 

but only 1% of all households said they did not travel by car during the last year according to the 

survey. While the NTS estimate of 39 per cent of ‘zero’ spending for a one week period comes close 

to our LCF estimate of 18 per cent for a two week period, the NTS results also suggest that a 

considerable part of these zero expenditures might be ‘false’ as the vast majority of the households 

with access to vehicles used them throughout the year. An expenditure-based estimate would thus 

incorrectly assume zero annual emissions.  

The infrequency of purchase problem affects those expenditures covered by the two week-

diaries. For our CO2 transport estimate this regards motor fuels and public transport which 
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contribute 74.3 per cent of our total transport CO2 estimate (the rest deriving from flights) and 16.2 

per cent of our total CO2 UK estimate. As a consequence, our transport CO2 emission estimate is 

likely to be affected by the infrequency of purchase problem. On the other hand, for home energy 

the problem is less relevant with heating fuels collected through the diary such as bottled gas, coal, 

wood and peat contributing only 0.8 per cent to total emissions while prepayment electricity is only 

used by 15.0 and gas pre-payments by 12.2 per cent of households with access to mains gas (mains 

gas, electricity and heating oil purchases are recorded through the household survey). All indirect 

CO2 emission estimates are based on diary data. Depending on the product focused on, frequencies 

for expenditure differ largely with ‘only’ 0.7 per cent of households not having had any expenditure 

on food during two weeks but 32.6 per cent of households without expenditure on clothing (see 

Table 1). 

Does the infrequency of purchase problem affect our analysis? All previous studies using 

expenditure data for estimating CO2 emissions implicitly or explicitly (DEFRA, 2008: 13) assume that 

CO2 estimates based on diary data provide correct mean values as zero expenditure from 

infrequently purchased items should be compensated by expenditures higher than the actual 

consumption rate of those households who stock up during the diary period. However, measures of 

dispersion such as standard deviation and variance are likely to be overestimated. Given that we 

conduct OLS regressions and experience the measurement error in the dependent variable, we need 

to be aware that standard errors of coefficients are likely to be inflated.  

There is no obvious reason to assume that the assumption of error cancelling out does not 

hold for our data. We examined this issue further and could not find a consistent relationship 

between infrequency of purchase and household characteristics like household income. In the 

econometric literature focusing on the examination of expenditure patterns, models have been 

developed that recover artificially censored data due to infrequency of purchase. In particular, the p-

Tobit model (Deaton and Irish, 1984) is based on a two-equation structure with a binary estimate of 

the likelihood of spending, followed by a tobit of the spending level that includes zero spending. 

However, more recent literature questions the reliability of such models (Gibson and Kim, 2012). 

In the following, we therefore assume – in line with existing literature – that measurement 

errors cancel out for means, totals and regression coefficients. Once focusing on the area of 

transport emissions – which is the only one where we expect bigger problems of zero-spending – we 

analyse the probability of having transport CO2 emissions and the determinants of CO2 emissions for 

households with transport expenditure separately.  
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3 Home energy, transport and indirect CO2 emissions and their association with 

household characteristics – unconditional results 

3.1 CO2 emissions in the UK by emission area 

Table 1 shows mean and median household CO2 emissions in our pooled sample, together with the 

per cent of an area’s or item’s contribution to overall CO2 emissions and the per cent of households 

without emissions. The distribution of CO2 emissions for all three areas shows a strong positive skew 

given that the mean is considerably higher than the median. In order to interpret the size of skew, 

the most obvious comparator is household income. The ratio of the UK weekly income mean to the 

median is 1.25 for 2009/10 (DWP, 2011: 28). This is relatively similar to the skew we see for home 

energy (1.14), indirect emissions (1.23) and CO2 emissions in total (1.18). However, the skew of 

transport emissions is considerably higher (1.48) as well as that for single categories of indirect 

emissions (like for example clothing, recreation, furniture and personal care). To a certain extent, 

the high skew for transport might be explained by the infrequency of purchase problem discussed 

above: first, more than half of transport emissions derive from two week data which are converted 

into annual data; second, transport expenditures are relatively infrequent, reflected by the per cent 

of households without expenditure.  

According to our study, median UK household emissions are 17.1 tonnes of CO2 emission per 

year whilst the mean is as high as 20.2 tonnes. 5.1 tonnes or 25.3 per cent of total emissions derive 

from home energy whereby piped gas contributes 12.3 per cent and electricity 10.4 per cent of an 

average household’s emissions. 4.4 tonnes or 21.8 per cent of total household emissions originate 

from transport, consisting of flights that contribute 5.6 per cent on average to a household’s total 

emissions. This figure is high given that it relates to an annual mean of 0.6 private flights per person 

or 1.3 per household. The remainder of total emissions, 10.7 tonnes or 52.9 per cent are indirect 

emissions incorporated in other goods and services consumed. This category also includes emissions 

arising in the production of heating and motor fuels (12.9 per cent) as well as ‘other’ indirect 

categories (12.6 per cent) such as medical care and hospital services, telephone and postal services 

and cosmetics.  

These results compare well with Druckman and Jackson’s (2009: 2075) study who find that 

heating and other home energy fuels together contribute 27 per cent and commuting (similar to our 

“motor fuel” category) 9 per cent to households’ carbon footprint in 2004. Baiocchi et al. (2010: 57) 

also find that private vehicle emissions contribute 12.8 per cent to households’ CO2 emissions in 

2000 whilst ‘direct home energy’ only contributes 17 per cent. Here it is unclear whether they count 

electricity as direct or indirect emissions. Our result also differs from Gough et al. (2011: 8) who find 

that direct emissions (here defined as household fuels, electricity and motor fuels (ibid: 4)) only 
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contribute 20 per cent to households’ total emissions. However, their indirect emissions might be 

higher because they include other greenhouse gases and modes of transport other than private car 

travel in this category.  

 

3.2 CO2 emissions and household size 

Carbon reduction policies can target households or individuals. Household size and composition is 

thus important for potential distributional implications. For example, studies on Personal Carbon 

Allowances or similar policies have to make assumptions about the allocation per person in each 

household (DEFRA, 2008: 66f.; Gough et al., 2011: 34ff.; Starkey, 2012). Previous literature has 

shown that household size is an important factor for household emissions and that there are 

economies of scale once individuals share household resources (DEFRA, 2008: 5; Druckman and 

Jackson, 2008: 3184; Gough et al., 2011: 13f.). However, the extent of economies of scale has not yet 

been compared in detail for different areas of emissions. On the role of children, Baiocchi et al. 

(2010: 64) find that households with children have lower CO2 emissions than those without, holding 

other factors constant, a finding not confirmed by our data (see section 4). DEFRA (2008: 20f.) found 

that per adult emissions rise with the number of children whilst the increase of emissions was found 

to be modest and not significant for more than two children. Gough et al. (2011: 13, 26) found that 

households with children have lower per capita emissions both conditional and unconditional, which 

is to be expected because children are likely to consume less than adults.  

 Table 2 presents average CO2 emissions for different household types: the first four rows 

present results for single, two, three and four adult households (all without children and adults 

defined to be 18 years or older). The last three rows refer to two adult households with one, two or 

three children. Most interestingly, on average, two adult households have almost three times higher 

CO2 emissions on transport than single adult households (4.9 compared to 1.8 tonnes CO2). One 

reason for this sharp increase is that 33 per cent of single adult households (of which 50 per cent are 

62 year old or older) do not have any transport emissions compared to just 9 per cent of two, 4 per 

cent of three and 1 per cent of four adult households (all without children). Also indirect emissions 

double for a two adult household, which might not be very surprising given that goods for which we 

would assume economies of scale due to sharing (e.g. furniture and appliances) only represent a 

small share of the total indirect CO2 emissions (see Table 1). In contrast to transport and indirect 

emissions, CO2 emissions for home energy increase by less than 50 per cent when we compare one 

to two-adult households. This indicates that economies of scale mainly exist for this area of 

emissions. Focusing on total CO2 emissions, each individual in a two-adult household has on average 

per capita CO2 emissions equal to that of a one adult household, which is quite a different pattern to 
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what income equivalence scales would suggest: for instance, the modified OECD scale widely used 

for poverty research weights the second adult by 0.5 instead of a value of 1 which our analysis would 

suggest for emissions. However, per capita emissions decrease considerably compared to that of a 

single adult household once adult household size rises beyond two. On average, a three adult 

household has only about a 28 per cent higher CO2 emission than a two adult household, and also 

transport and indirect emissions increase by 35 and 30 per cent respectively. This picture is similar 

when we compare a four with a three adult household.  

 Surprisingly, however, the additional contribution to CO2 emissions by children in the 

household is much smaller than any equivalence scale from poverty research would suggest. Whilst 

two adult households with one child have significantly higher emissions (at least at the 5% level) 

than two adult households without a child, the increase is relatively small with 15 per cent for total, 

20 for indirect, 7 for home energy and 11 per cent for transport.  

These results indicate that any equal per adult emissions trading scheme that assumes an 

allocation to children of 50 (Gough et al., 2011: 36) or 30 (DEFRA, 2008) per cent of a full adult 

permit would be beneficial for households with more than two adults as well as households with 

children since CO2 emissions increase by much less with additional household members than the 

scheme suggests, especially for home energy.  

 

3.3 CO2 emissions and income 

Income is a well-known determinant of CO2 emissions (e.g. Baiocchi et al., 2010; Brand and 

Boardman, 2008; DEFRA, 2008; Gough et al., 2011; Weber and Matthews, 2008). This is not 

surprising: CO2 emissions arise from household consumption and are correlated with disposable 

income (in the LCF/EFS with r = 0.7 (excluding the 1st and 99th percentile of the emissions and income 

distribution). The more income you have the more likely you are to spend. However, expenditure 

translates quite differently into CO2 emissions for varying consumption categories: one pound of 

expenditure translates into a lower value for CO2 emission for indirect emission than for home 

energy or transport (see Buchs and Schnepf, 2013).  

 All studies that investigate income conclude that emissions rise with income (Baiocchi et al., 

2010; Brand and Boardman, 2008; DEFRA, 2008; Druckman and Jackson, 2008; Fahmy et al., 2011; 

Gough et al., 2011; Weber and Matthews, 2008). However, not much is currently known about the 

way in which the association between income and emissions differs for individual areas of emissions 

as these studies investigate specific areas of emissions in separation. For example, Druckman and 

Jackson (2008: 3183f.) and Dresner and Ekins (2006: 52) found a positive correlation between 

income and home energy emissions; DEFRA (2008: 19f.) and Fahmy et al. (2011: 17f.) find an 
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increase of home energy and transport emissions combined with rising income; Brand et al. (2008: 

232f.; 2010: 15) report a high correlation between income and transport emissions. However, when 

controlling for other variables, Brand and Preston (2010: 16) only find a significant relationship 

between income and flight emissions, but not for emissions from car travel. Baiocchi et al. (2010: 62) 

confirm significant positive relationship between income and total household CO2 emissions and 

Gough et al. (2011: 11) for total and individual areas of greenhouse gas emissions. 

 Our data enable us to compare the association between income and CO2 emissions in the 

areas of home energy, indirect, transport and total emissions. This is relevant if we want to know 

more about potential distributional implications of carbon reduction policies that target different 

areas of emissions. For example, do emissions rise evenly with income in the different areas or not? 

If not, are emissions progressively distributed over income in any of these areas (as, for example, 

Dresner and Ekins (2004: 25) found for motor fuel)? 

Figure 1 plots the mean household carbon dioxide emissions against equivalised household 

income (using the modified OECD scale) by emission area (all households are included whether or 

not they had CO2 emissions in that area). Given the high variation of CO2 emissions across 24,446 

households, we calculate mean emissions for mean equalised income for 10 income deciles. The 10 

data points are then connected with a line for each emission area. The data are plotted on log scales. 

This makes it easier to compare the proportional change for CO2 emissions and hence to judge 

whether emissions in different areas are more or less responsive to changes in income. The 

proportional changes are also the basis for the classification of policy impact as regressive and 

progressive. The slashed line on the diagram represents a 1 per cent increase in CO2 emissions for a 

1 per cent increase in income. Any parallel line would reflect this 1 per cent increase. If the data 

points rise more steeply than the 1 per cent line, emission are classified to be progressive in 

economic terms, if the line rises less steeply they are regressive.  

 If we disregard the 10 per cent of households with annual equivalised household income 

below £6,200 and the 20 per cent of households with highest equivalised annual income (above 

£19,800), the transport data series is roughly parallel to the 1 per cent share line, indicating that 

transport CO2 emissions are almost proportional to income. In contrast, the line is much flatter for 

home energy, indicating that CO2 emissions are most regressively distributed compared to other 

areas. Indirect emissions also show a regressive increase with income but less so than home energy 

emissions.  

 We conduct OLS regression in order to quantify the steepness of the lines presented in 

Figure 1 using log of CO2 emissions as dependent and log of annual equivalised household income as 

only explanatory variable. Using this regression design, the coefficient of the income variable 
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provides the income elasticity. If the coefficient equals 1, a one per cent increase in equivalised 

income relates to a 1 per cent CO2 emissions increase, reflecting exactly the relationship given by the 

elasticity line in Figure 1. Regression results show that a 1 per cent increase in equivalised income 

increase of CO2 emissions for home energy by 0.28, indirect emissions by 0.69 and transport 

emissions by 0.88 per cent. (For transport, households without emissions are excluded from the 

regression model, while they are included in Figure 1. This is one explanation why we do not find a 

coefficient closer to 1.) This indicates that whatever emission area a policy would focus on, the 

policy is likely to disadvantage low income households more than high income households in relative 

terms. However, if carbon reduction policies were to focus on transport CO2 emissions, low income 

households would be hit less than if the policies included other types of emissions.  

 Up to now, we argued that the association between income and CO2 emissions is important 

given the possible implications of carbon reduction policies for poor and rich households. This links 

to another widely discussed topic in the literature on carbon emissions: that of justice and equality. 

For example, it is often considered unfair (e.g. Baer et al., 2008) to demand from developing 

countries to restrict their carbon emissions since it is developed countries who are responsible for 

the bulk of existing emissions up to date (which is why developing countries have not been part of 

the Kyoto agreement and might not be part of any binding future agreements to come). A similar 

argument can be applied to the CO2 emission distribution within a country. For example, our data 

show that 25 per cent of the poorest households (with equivalised household income at or below 

the 25th percentile) emit only 15 per cent of the UK’s total household CO2 emissions, while the 25 per 

cent richest households (with equivalised household incomes at or above the 75th percentile) emit as 

much as 37 per cent of the UK total. If households restricted themselves to CO2 emissions equal to 

that of poor households, average UK household emissions would decrease from 20.2 to about 12.1 

tonnes and total annual UK household emissions from 513 to 306 million tonnes. If achieved by 2020 

and compared to a baseline of 586 million tonnes in 1990 (DECC, 2012), this would equate to a 

reduction by 48 per cent to the 1990 baseline - much more drastic than the currently envisaged 

reduction of 20 per cent by 2020 that the European Union subscribed to. Again, this relates back to 

policy implications of carbon reduction policies, highlighting issues around fairness if low income 

households are penalised.  

 Of great interest are the high discrepancies of emission inequalities by income for different 

areas. For home energy, the poorest 25 per cent emit 20 per cent of total home energy emissions 

and are therefore closer to the 25 per cent of emissions we would expect. Rich households emit 30 

per cent. For indirect emissions, the differences in the shares of emissions between poor and rich 
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households are much larger (14 to 38 per cent), and they are highest for transport emissions (11 per 

cent compared to 42 per cent).  

We also calculated the tax burden from a hypothetical tax of £100 per one tonne of carbon 

dioxide emission. We expressed this tax burden as proportion of equivalised household income. As 

expected, results confirmed the regressiveness of carbon taxes, showing that households in the 

lowest equivalised income decile would lose 5.6 per cent of their income from taxes on home energy, 

7.6 for indirect, 2.0 for transport and 15.3 per cent for taxes on total emissions. This compares to 1.1 

per cent, 2.9 per cent, 1.4 per cent and 5.3 per cent respectively for households in the highest 

equivalised income decile. 

 So far, our discussion of the association between income and CO2 emissions focused on 

average household emissions by income. However, this view disguises that emissions can 

considerably vary between households within the same income range. This means that a 

considerable proportion of low income households may still have high emissions. Even if emissions 

were progressively distributed, these households would bear a high financial burden by policies that 

put a price on carbon. 

 Table 3 sheds light on this by providing the percentage of households within different groups 

having low (equal or below the 25th percentile of emissions) or high CO2 emissions (equal or above 

the 75th percentile of emission) by emission area. (We include 0 emissions for the calculation of 

quartiles.) If household characteristics were not related to CO2 emissions, all cells in Table 3 would 

show a percentage of 25. First, we just focus on the first two rows providing information for poor 

and rich households (defined as households in the lowest and highest equivalised income quartile). 

For example, 7 per cent of low income households are in the upper quartile of indirect CO2 emissions, 

while 53 per cent are situated in the lowest quartile (the remaining 40 per cent of households have 

emissions above the 25th and below the 75th percentile). These figures are similar for transport 

emissions. However, as many as 17 per cent of low income households have high home energy CO2 

emissions, highlighting again that taxes on home energy are likely to be much more regressive than 

those on transport. Whilst there are some low income households with very high emissions, there is 

also a small share of high income households with low emissions. Around 5-7 per cent of high 

income households have low indirect and transport emissions, but 15 per cent have low home 

energy emissions. On the other hand, around half of high income households have high transport 

and indirect emissions.  

 In addition, we can analyse the variation of emissions within income deciles. For example, 

home energy emissions at the 80th emissions percentile within the lowest equivalised income decile 

are 1.7 times higher than those at the 20th emissions percentile in the highest income decile. For 
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home energy, the 20/80 ratio of emissions is also much wider within the lowest income decile 

compared to that for all households: 6.5 compared to 2.9. Even though this pattern is less 

pronounced for transport, indirect and total emissions, households equal to or above the 80th 

emissions percentile in the lowest income decile only have modestly lower emissions than 

households equal to or below the 20th emissions percentile in the highest income decile for these 

categories – around 17 per cent less for total and indirect and 16 per cent less for transport 

emissions. This provides further evidence that taxes on home energy are likely to cause higher 

financial burdens for some low income than some high income households not only in relative but 

also in absolute terms whilst this is not the case for policies that put a price on transport or total 

emissions.  

 

3.4 CO2 emissions and other household characteristics 

The fact that emissions vary considerably within income deciles suggests that a range of other 

household characteristics are also important for household emissions. This section investigates 

which other factors are associated with CO2 emissions besides income. Table 3 shows that education 

plays an important role for high emissions. Only 14 per cent of households in which none of the 

members attended full time education for more than 11 years (education<11) are in the highest 

emissions quartile, compared to 44 per cent of households in which at least one member 

participated in full time education for 16 or more years (education16+). The results also show that 

rural households and households with children are more likely than urban households and 

households without children to belong to the highest emissions quartile. Conversely, households 

with younger or older reference persons, workless households (defined as households without a 

working age adult being in employment), households with female reference persons (39 per cent of 

our sample) and ethnic minority households (defined not to be ‘white’) are less likely to be in the 

highest emissions quartile.  

The results in this table also illustrate that the high likelihood to have high emissions for 

households with high incomes, high education and with children is mainly driven by high indirect and 

high transport emissions. Conversely, households with older reference persons, workless households 

and female headed households are much more likely to have high home energy emissions relative to 

other types of emissions, demonstrating their potential vulnerability to home energy taxes.  

The last five rows of Table 3 provide information on the type of dwelling. We would assume 

that home energy emissions are highest for detached houses compared to purpose built flats as 

shown in previous research (DEFRA, 2008: 22). Indeed, 54 per cent of households residing in purpose 

built flats have low home energy emissions but only 11 per cent of households in detached houses. 
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Most of the variables focused on in this table are highly correlated with each other. For 

example, type of dwelling, education and employment status are all highly related to income. Once 

the income effect is taken into account, the association of these variables with CO2 emissions might 

differ considerably depending on which emission area we focus on. This will be examined in greater 

detail in section 4 using OLS regression.  

 

3.5 Who has transport emissions? 

Up to now, transport emissions stood out with a highly positive skew, a high percentage of 

households not having any transport emissions and highest income elasticities. In addition, two of 

our three transport components – motor fuels and public transport – derive from diary data, making 

transport estimates more susceptible to potential problems of infrequency of purchase which 

cannot be quantified as discussed above. So far, none of the papers using the LCF/EFS examine the 

role of household or individual characteristics for transport emissions in greater detail (but see the 

papers by Brand et al. (2008; 2010) who have used their own survey covering Oxfordshire).  

Figures reported so far focused on total transport emissions. In this section, we examine 

participation in the three subcategories of transport, based on household expenditure on motor 

fuels and public transport (both collected over a two week diary) and expenditure on flights in the 

last 12 months (collected over the survey).  

Even though the collection period for data regarding the three transport categories differs, 

we do find that different means of transport are highly clustered. In total, 15 per cent of households 

do not have any expenditure on transport and 21 per cent participated in all three modes of 

transport. About 43 per cent of households that have an expenditure for public transport and motor 

fuels did not fly during the past 12 months. This compares to almost 60 per cent of all households 

that did not have a flight (see Table 1). Conversely, 26 per cent of households who had a flight in the 

last year did not purchase any motor fuel and 39 per cent did not use public transport. This 

compares to 36 per cent and 50 per cent for all households. As a consequence, households using one 

mode of transport have a higher probability of using another mode in addition. This is an 

encouraging result in terms of the methodological problem of merging two week diary data with 

annual flight data. Since participation in different modes of transport is clustered, we are more likely 

to include most of the people who had some form of transport in our overall transport emission 

variable. In addition, it could indicate that household characteristics play a similar role for choosing 

different modes of transport. 

Table 4 examines this issue in greater detail fitting a logistic regression model. A logistic 

regression model for p, the probability of having transport emissions, may be written as 
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p(y)=1/{1+exp(−βX)} where X is a vector of observable household characteristics. Estimates of the 

parameters β were obtained by maximum likelihood. When a variable Xj is continuous, the partial 

derivative of p with respect to Xj is (p(1−p))βj. This may be interpreted as a marginal effect on the 

response probability of small changes in Xj but is a function of p which in turn depends on particular 

values of Xj. As a suitable overall summary measure, we report below calculations of this expression 

when p is set to the sample proportion of individuals who have transport emissions (see Table 1). 

For a binary variable, Xj is an approximation to summarizing discrete changes in probability in 

moving from Xj =0 to Xj =1, which again would strictly depend on all variables in X.  

We examine the impact of household size using dummy variables for the number of adults 

(adult5 representing households with 5 or more adults) and children (child3 for households with 3 or 

more children) in the household. The coefficient measures the additional effect of an adult in the 

household, i.e. adult2 is set to 1 for all households with at least two adults. Additional adults 

increase the household’s probability of having motor fuel and public transport expenditure 

compared to a single adult household. The marginal effect of the second adult compared to one-

adult households on the probability of purchasing motor fuels is quite high with about 20 per cent (p 

set to 0.64) (whilst it is only 5 percentage points for public transport with p set to 0.50). However, if 

anything, household size decreases rather than increases the probability of flying (by 3 percentage 

points, but only significant at the 5% level, p set to 0.41). Income seems to have the highest ‘impact’ 

on flight probability, compared to motor fuel and public transport which reflects that flights are 

more expensive and likely to be a ‘luxury’ good. For examining the relationship between age and the 

probability to participate in transport, we used the variable ‘age’ giving the household reference 

person’s age, the square age divided by 100 and a dummy variable indicating whether the age is 

above 80 (the latter is necessary since the age variable was top coded to 80). Age seems most 

relevant for motor fuel expenditure, but less for flights, and is insignificant for public transport. 

Interestingly, conditional on income, education does still matter for explaining participation in all 

three modes of transport, particularly for air travel and overall transport. A household where at least 

one member participated in full-time education for 16 or more years has a 17 percentage point 

higher probability of flying than a household in which no member has attended full time education 

for more than 11 years even if income is controlled for (p set to 0.41). Workless households are 

more likely to choose public transport and less likely to use private vehicles or flights than other 

households. And finally, the probability of using motor fuels for households living in rural areas 

(defined as settlements with a population of less than 10,000) is 14 percentage points higher than 

that of an urban household conditional on all other factors (with p at 0.64). This is likely to reflect a 

dependence on private vehicles for mobility in rural areas, especially since those households are also 
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less likely to participate in public transport. In addition, their probability of air travel is about 4 

percentage points lower compared to urban households (p set to 0.41).  

In summary, we find that some household characteristics play a similar role for the 

probability to participate in all three modes of transport: with increasing education and income the 

probability of using any of the three transport modes increases. Hence, similar to unconditional 

results presented above, these households are more likely to have higher transport CO2 emissions. 

Other characteristics relate differently to transport modes: i.e. rural location and household size 

seem mostly relevant for private vehicle use but not for air travel. This might indicate that rural 

households only have limited choice over their motor fuel emissions, which on average contribute 

14 per cent to rural households’ total CO2 emissions (not shown in Table).  

These results are also important for the next section which examines the conditional 

association between household characteristics and different types of emissions because households 

without any expenditure and thus ‘zero’ emissions are excluded from the analysis. The last column 

of Table 1 shows us that 15.2 per cent of households have not participated in any mode of travel. As 

a consequence, by excluding households without emissions, our sample for total transport emissions 

will include fewer households with single adults, lower income, higher age, lower education and 

urban households compared to the full sample. 

 

4 Conditional associations between household characteristics and CO2 emissions 

4.1 OLS regression 

Results in section 3 demonstrated that income plays an important role for carbon dioxide emissions 

for all emission areas. In addition, we found that households with highly educated, ‘middle aged’, 

employed and male reference persons and those located in rural areas all have a higher likelihood to 

have high CO2 emissions for one or several emission areas. But many of these characteristics are 

highly correlated with income which raises the question whether they still play a significant role for 

emissions once income is controlled for. This is also relevant from a policy perspective: since many 

carbon reduction policies are likely to increase financial incentives for emissions reduction, we need 

to ask whether these monetary effects might significantly affect specific groups in society after we 

control for income. For example, whilst less regressive carbon taxes such as those on transport may 

seem attractive from a fairness perspective, they may still be problematic if transport emissions are 

not only driven by income but also by other characteristics. If rural location still matters after 

controlling for income, this may indicate limited opportunities for rural households to reduce their 

motor fuel emissions, likely to decrease the effectiveness of motor fuel taxes unless public transport 

becomes more available in those areas.  
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In Table 5, we present OLS regression results examining the significance of household 

characteristics in determining households’ CO2 emissions conditional on income. In section 3, we 

already reported the regression coefficient for the natural logarithm of equivalised income if this is 

used as the only independent variable for explaining CO2 emissions. Since we now control for 

household size, we use non-equivalised disposable household income together with various 

household characteristics and relate them to the dependent variables – the natural logarithm of 

different types of CO2 emissions. The regression model excludes households with the highest and 

lowest percentile of emissions and income to minimise influence from outliers. We also exclude 

around 6 per cent of households with zero or negative home energy expenditure in all models to be 

able to compare the same sample of households (sample size 21,892). For transport emissions, we 

exclude all households without emissions (sample size 18,729) (see discussion in section 3.5).  

As expected, income continues to play an important role for emissions in the full model, 

particularly again for transport emissions: a 1 per cent increase in income relates to a 0.60 per cent 

increase of transport emissions, 0.48 per cent of indirect but only 0.19 per cent of home energy 

emissions. Taking all three emission areas together, we find an income elasticity of 0.43 per cent.  

For education we receive surprising results: high education remains to be positively and 

significantly related to emissions conditional on income. For transport, the education coefficient has 

the highest size: households in which at least one person has been in full time education for 16 years 

or more have on average 16.6 per cent higher emissions (exp(0.154)) than households where none 

of the members participated in full-time education for more than 11 years. This compares to an 

increase by 11 per cent for indirect and 10 per cent for total but just 2 per cent for home energy. 

Therefore, our results do not confirm findings by Baiocchi et al. (2010: 62f.) who report a negative 

relationship between high education and total CO2 household emissions in the UK after controlling 

for income and other household characteristics.  

Another interesting factor to examine is rural location. We have seen above that households 

in rural places are more likely to be in the highest emissions quartile – but might this simply be 

because people living in the countryside are richer on average than those living in cities? And if not, 

does living in a rural place contribute more to higher home energy emissions (detached and poorly 

insulated homes) or more to transport emissions? Our results show that living in a rural place is still 

significantly associated with higher emissions even after controlling for income for all three emission 

areas. The effect is strongest for transport emissions which are 16 per cent higher for rural than for 

urban households. Table A1 in the appendix shows the three transport mean emissions in separation, 

indicating that the ‘effect’ of rural location on transport emissions derives almost solely from motor 

fuel emissions: rural households have on average as much as a 22 per cent higher motor fuel 
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emissions than urban households. This is surprisingly high given that we control for income and 

many other household characteristics. In contrast, rural location does not matter in terms of public 

transport emissions and for flight emissions we find a significant 5 per cent negative ‘effect’. These 

results suggest that rural households would be particularly penalised from taxes on motor fuels, but 

less so from taxes on flights.  

For indirect and home energy emissions, rural households have about 6 to 7 per cent higher 

emissions than those in urban areas. The ‘impact’ on indirect emissions might be related to other 

factors that we cannot investigate here, for instance, prices for goods and services might be higher 

in rural areas. However, in Table A2 in the appendix we also controlled for the type of dwelling given 

that they are likely to differ between urban and rural areas. Households living in detached houses 

have on average 28 per cent higher home energy emissions than households living in purpose built 

flats (this result is conditional on the number of bedrooms per dwelling). Once controlled for type of 

dwelling, rural households’ home energy emissions are no longer significantly different to those in 

urban areas. This indicates that the higher proportion of detached houses in rural areas accounts for 

a significant part of the difference in rural and urban home energy emissions. Nevertheless, as will 

be discussed later using quantile regressions, the association between rural location and home 

energy emissions is more complicated than OLS regression results suggest. 

While female headed households have lower transport emissions (the latter being due to 

lower motor fuel emissions, see Table A1 in the appendix), they have slightly higher home and 

indirect CO2 emissions than male headed households. This might be quite surprising. We used an 

interaction term for female household heads and income, which demonstrated that CO2 emissions 

rise significantly with rising income but less so for female than for male headed households. 

Conditional on other characteristics and as we would expect (since they are likely to spend 

more time at home), workless households have higher home energy but lower transport emissions 

than other households. If they use transport, they have higher emissions due to public transport 

rather than private vehicle use (Table A1).  

The results for the role of age are more complex to interpret because we use three age 

variables in the model (the same as introduced in section 3.5 for the logistic regression). Turning 

points and slope of increase differ for the three emission areas. The conditional transport and 

indirect emission curves are inversed u-shaped whilst the home energy curve has a near linear 

upwards shape, i.e. emissions are rising with age once all other factors are controlled for. In contrast, 

a decrease of indirect emissions is estimated to start at around 51 and for transport at around 50 

years of age. This indicates that older people are generally less likely to have high total and transport 

emissions (given the early turning point), whilst their home energy demand stays high up to old age. 
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This was also confirmed when we plotted the relationship between age and emissions, controlling 

for other variables (not shown). Whilst the curves for transport, indirect and total emissions were 

almost flat for age groups 30-70 and decreased slightly for those aged 80 and above, they increased 

slightly for those aged 80 and above for home energy emissions. Interestingly, once we included an 

interaction term between age groups and log income (instead of using the three age variables in 

Table 5, we compared people aged 40-59, 60-79 and 80+ with younger adults), we found that 

indirect, and even more so, home energy emissions increased more steeply for the age groups 40 to 

59 and 60 to 79, compared to reference persons below the age of 40. As for higher rural indirect 

emissions discussed above, we could speculate that higher indirect emissions with rising income for 

households with older reference persons might result from older people’s restricted opportunities to 

purchase cheaper products due to more limited mobility compared to younger households. 

Alternatively, as they are more likely to have paid off their mortgage and may have fewer other 

family members to support, they may have more spare ‘capacity’ for consumption. The interaction 

‘effect’ is quite high for home energy emissions, increasing by an additional 0.11 per cent for a one 

per cent income increase for people aged 60 to 79. This underlines the importance of home energy 

for elderly people. For transport, the age-income interaction was only significant for people aged 80 

and above for whom transport emissions increased considerably less with income than for other age 

groups.  

The LCF / EFS also includes information on social class measured by occupation status. 

However, this variable is missing for about one third of household reference persons. We did include 

this variable accepting a smaller sample size and found education still to be significant even 

conditional on social class.  

 

4.2  Who emits most? Quantile regression analysis 

So far, the analysis assumes that covariates like income, education and rural location relate equally 

to CO2 emissions across the CO2 distribution. For example, it is assumed that income has the same 

‘impact’ on emissions for high and low emission households. However, it is important to check 

whether this really is the case or whether the association between some household characteristics 

and emissions becomes stronger (or weaker) when we focus on high rather than average emissions. 

This would tell us which household characteristics are particularly important for high emissions – 

crucial if we are interested which types of households might bear especially high burdens of carbon 

taxes. Up to now, the literature has not examined whether the association between household 

characteristics and emissions differs for high, low and average emissions.  

We therefore use quantile regression to explore separate parts of the emission distribution 

independently. Quantile regression optimise according to the specified emission quantile, such as 
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the median, while the OLS regressions discussed before optimise the model according to the mean. 

Koenker and Hallock (2001) provide a detailed discussion of quantile regressions.  

For each emissions area, we run nine quantile regressions focusing on the 10th, the 20th up to 

the 90th percentile of the household emission distribution. The sample size and the dependent and 

explanatory variables included were exactly the same as those used for the OLS regression 

presented in Table 5, making the OLS and quantile regression results comparable. In general, 

quantile regression results indicate that while the size of coefficients significantly changes for some 

variables across the emission distribution, the actual difference in size is often relatively small. This 

indicates that the choice of OLS regression is mostly a reasonable one, especially if the emphasis lies 

on total CO2 emissions. If we find significant changes of coefficients across the emissions distribution, 

they are generally most sizable for transport emissions, indicating that it does matter where 

households are situated within the transport emissions distribution to quantify the ‘effect’ of some 

factors.  

In detail, age and belonging to a workless or ethnic minority household impacts relatively 

evenly across the emissions distribution. The role of gender decreases significantly, but in terms of 

size only marginally, the more we move to higher emission households for all three emission areas. 

We find the same pattern for the second adult dummy (but no clear and sizable pattern for all other 

household size dummies). OLS regression results showed that the second adult increases home 

energy by about 23 per cent compared to a single adult household conditional on other household 

characteristics. However, home energy emissions increase by 29 per cent with the second adult if we 

focus on the 10th percentile of the emissions distribution but only by 17 per cent for households at 

the 90th percentile. The change of coefficient size is similar for indirect and even stronger for 

transport emissions. Single adults in low emission households might engage in different behaviours 

compared to those in high emission households conditional on other characteristics: on average they 

might live in smaller accommodations or use less heating in contrast to two adult households at the 

low end of emissions whilst single adult households at the high end of emissions may live in larger 

properties or heat more, to the extent that they are more similar to two adult high emitters.  

A similar explanation might hold for the steady decrease of the impact of income on 

emissions the further we move to high emission households for all three emission areas, particularly 

for transport. Figure 2 (a) presents on the x-axis the transport emission quantile at which the 

quantile regression was run (from the 10th to the 90th percentile of the log transport CO2 

distribution) and on the y-axis the regression coefficient of the natural log of income. In addition, it 

provides the OLS estimate given in Table 5 (straight line). Dashed lines represent the 95 per cent 

confidence interval of the estimates. Results show clearly that the income elasticities are variable 
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across the transport emission distribution: while OLS regressions show that a one per cent increase 

in income leads to a 0.60 per cent increase for mean transport emissions, this figure is significantly 

higher for households at the 10th emissions percentile (1.13 per cent) compared to high emission 

households at the 90th percentile (0.54).  

High education also seems to make a greater relative difference to transport emissions at 

the low end of the emission distribution than at the high end of emissions: highly educated 

households are estimated to have 27 per cent higher transport emissions than low educated 

households at the 10th percentile, but only 9 per cent higher emissions at the 90th percentile. The 

latter is presented in Figure 2 (b). In contrast, ‘increases’ of total emissions related to high education 

are much more similar at the low and high end of the emission distribution, with 9.4 per cent at the 

10th and 12.0 per cent at the 90th percentile. 

Similarly, OLS regression cannot sufficiently capture the association between rural location 

and home energy emissions. When we focus on low home energy emission households (up to 

around the 30th percentile), rural households have similar or even significantly lower emissions than 

urban households conditional on other controlling factors. However, at the top of the distribution, 

rural households have significantly higher home energy emissions than urban ones (see Figure 2 c). 

Furthermore, the conditional coefficient for rural location is higher for home energy than that for 

transport emissions at the high end of the emission distribution with a 15 per cent increase for home 

energy and 8 per cent for transport at the 80th percentile respectively – contrary to what we find 

using OLS (see table 5). However, once we control in addition for dwelling and heating type (see 

discussion above), rural location becomes insignificant for home energy emissions. The association 

between oil central heating and home energy emissions becomes much stronger for high than for 

mean emissions (the coefficients differ significantly at the 1 per cent level) and detached and semi-

detached houses also remain strongly associated (but the coefficient size is similar to that from OLS 

regression). This indicates that the stronger association between rural location and home energy 

emissions at the high end of emissions mainly results from greater occurrence of oil central heating 

in rural places whereas detached houses account for more of the variation at the mean of emissions 

as discussed above (table A2). As a consequence, quantile regressions reveal the much more 

complicated relationship between rural/urban location and emissions.  
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4.3 Emissions by poor and rich households 

In a final step of the analysis we examined whether the association between household 

characteristics and emissions differs for rich and poor households because we were interested to 

know which characteristics make poor households particularly vulnerable to carbon taxes and which 

groups amongst the rich are particularly responsible for emissions. For this purpose, we ran OLS 

regressions separately for these two groups, defining rich households as those with incomes at or 

above the 75th percentile of equivalised income and poor households as those with incomes at or 

below the 25th income percentile. Mean total emissions for poor households are 12.0 tonnes and 

29.8 tonnes for rich households (see table A3).  

Emissions in all domains rise more steeply with income for rich than for poor households 

whilst many other household characteristics are more important for poorer than for richer 

households’ emissions. To illustrate, a one per cent increase of income increases total emissions by 

0.46 per cent amongst rich, but only 0.30 per cent amongst the poor, controlling for all other 

household characteristics. The income coefficients are significantly different at the 1% level when we 

compare rich and poor households for all types of emissions apart from transport. This indicates that 

additional income is more likely to translate into higher consumption – and therefore emissions – for 

rich than for poor households (see table A4).  

In contrast, the coefficients for household size, age, presence of children, education level, 

worklessness and gender are significantly higher for poorer than for richer households for some 

emissions domains. For example, a second adult increases indirect emissions by 41 per cent 

((exp(0.35)) amongst the poor but only by 31 per cent amongst the rich (see table A4). Children also 

contribute more to a household’s emissions for poor than for rich households, particularly when we 

focus on the role of the second child: conditional on all other factors, poor households with at least 

two children have around 16 per cent higher total and indirect emissions than those with only one 

child, whilst the second child only “increases” emissions by 7 and 5 per cent respectively for rich 

households (for both types of emissions, the coefficients for rich and poor are significantly different 

at the 5% level).  

High education also has a significantly higher positive “effect” on emissions for poorer than 

for richer households: for poor households, total emissions of those with high education are 19 per 

cent higher than for those with lower levels of education, compared to just 5 per cent among rich 

households (the coefficients for the rich and poor are significantly different at the 1% level). For 

indirect and transport emissions, the difference is also significant and even higher with a 24 or 42 

per cent increase amongst the poor and a 5 or 4 per cent increase amongst the rich respectively. 
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This indicates that high education makes a greater difference to consumption and travel patterns 

amongst the poor than amongst the rich.  

We need to add a cautionary note when comparing these results because we need to bear in 

mind that rich households’ emissions are, on average, higher than poor households’ emissions. This 

means that even though high education ‘adds’ more in relative terms to poor households’ emissions 

compared to those of rich households, highly educated rich households still emit more than highly 

educated poor households. If we predict total CO2 emissions for poor households with high and low 

education, setting all other characteristics to the mean, the poor highly educated emit on average 

12.4 tonnes CO2 per year and the poor low educated 10.4. This reflects an increase of 19 per cent. If 

we do the same for rich households, we receive 25.8 tonnes for the highly and 24.5 tonnes for the 

less educated, which reflects a 5 per cent increase – but from a much higher level than for poor 

households. 

 Female headed poorer households have around 20 per cent lower transport emissions than 

male headed households, compared to only 1 per cent for the rich (coefficient are significantly 

different at the 1% level). This suggests that female headed households might be less affected by 

carbon taxes on transport, especially so if they are poor. 

We also find an interesting difference for old age (defined as households with heads aged 80 

and over) which has a greater “negative effect” for richer than for poorer households: high old age 

decreases transport emissions by around 46 per cent and total emissions by 14 amongst the rich, but 

only by 16 and close to 0 per cent respectively amongst the poor (coefficients significantly different 

at the 1 and 5% level respectively). This might indicate that old age puts larger relative restrictions 

on rich than on poor households’ emissions, for example due to decreased mobility. This makes 

sense because poor households are already emitting much less than their rich counterparts at a 

younger age so that old age decreases emissions less for poor than for rich households.  

Finally, we tested whether the associations between emissions and household 

characteristics for poorer and richer households differ at the mean (OLS) and higher emissions (75th 

percentile). This would have provided further information on the types of poor households that are 

particularly “vulnerable” to carbon taxes because of high emissions. Generally, the differences in 

coefficient sizes between poor and rich people that we reported above for mean emissions are 

similar for high emissions. The only significant differences (at the 1% level) that we found between 

coefficients at the mean and at the 75th percentile of emissions relate to the role of income for poor 

households: at the high end of emissions amongst the poor, a one per cent increase of income only 

contributes to a 0.26 per cent increase in indirect emissions, compared to 0.36 at the mean. 

However, the effect sizes for the number of adults and children, high education and rural location 
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for the rich and poor were not significantly different at the 75th percentile of emissions compared to 

the mean. This means that when we focus at poor households, we can confine ourselves to analysing 

associations between household characteristics and emissions at the mean to identify characteristics 

that particularly contribute to their emissions.  

 

5 Conclusion 

The value added of this paper was to compare the association between household characteristics 

and carbon dioxide emission across four emission areas: home energy, indirect, transport and total 

emissions. Indeed, household characteristics are differently related to emissions in these areas, a 

topic highly relevant from a policy perspective: policies targeting a specific emission domain will 

affect different households in different ways. 

First, low income households will be relatively less affected if policies lead to an increase of 

prices for different modes of transport compared to policies that tax home or indirect emissions. 

Nevertheless, emissions are regressively distributed across income in all three areas (for those who 

have expenditures/emissions in these areas).  

Second, we find that household size is very differently related to home energy, indirect and 

transport emissions. Transport and indirect emissions double to triple for two adult households 

compared to single adult households (without children). Home energy emissions increase only by 

about half, indicating higher economies of scales in this area. Surprisingly, children add less to a 

household’s CO2 emissions than expected for all areas we looked at. This is important for policies 

that involve emission permits or rebates since their implications will depend on the way in which 

they take household composition and its association with emissions into account.  

Third, many emission reduction policies discussed include financial disincentives and hence try 

to instigate behavioural change by impacting on disposable household income. However, our 

regression results show that depending on different emission areas, household characteristics still 

remain significant once income is controlled for. This means that monetary policies, besides 

impacting differently on high and low income households, are likely to simultaneously affect 

households with specific characteristics depending on which emission area is targeted.  

Conditional on income, female headed, workless and rural households have significantly higher 

home energy emissions than comparator households. For rural households, this is mainly due to a 

larger proportion of detached houses. Results also indicate that the elderly are likely to be hardest 

hit by policies taxing home energy (independent of the income effect of such policies discussed 

above) whilst they have significantly lower travel emissions, particularly at the high end of the 

emissions distribution.  
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Policies that put a price on indirect emissions would mostly penalise larger households (if 

households size were not taken into account outright), as well as rural households. Higher educated 

households would also be affected as they tend to have about 17 per cent higher emissions in this 

area than less educated households, conditional on income. These characteristics are also 

particularly relevant for low income households, whilst they matter less for high income households.  

Transport emissions were separated into motor fuel, public transport and flight emissions for 

our analysis. The results show that any policies increasing the cost of motor fuel emissions would hit 

rural households hardest who, even conditional on household income, have 22 per cent higher 

motor fuel emissions than urban households, at least when we focus on mean emissions. Any 

policies increasing the price of public transport emissions are likely to penalise workless households 

and households with non-white reference persons most. We showed that richer and more educated 

households have a higher probability of using air travel than low income, low educated, workless 

and rural households. The latter are therefore less likely to be affected by policies that tax flight 

emissions.  

In addition, we used quantile regressions to examine whether household characteristics 

influence emissions differently if we compare high, average and low emission households. Results 

indicate that effect sizes can differ significantly for these different points of the emissions 

distribution where household size and income generally contribute less to higher than to average or 

lower emissions, whilst effect sizes for high education, rural location and worklessness generally 

increase when we focus on high emissions. Interestingly, rural location increases home energy 

emissions more than transport emissions at the high end of the emissions distribution, whilst the 

opposite is true when we focus at the mean, indicating that rural households may in fact be at least 

as affected by taxes on home energy emissions than by those on travel emissions. This shows that 

more detailed analysis at different ends of the emissions distribution can uncover different patterns 

of vulnerability to CO2 taxes as well as capacities for emissions reduction than normal OLS regression.  

Finally, comparing results for poor and rich households showed that income increases and old 

age decreases household emissions significantly more for rich than for poor households whilst most 

other characteristics such as high education, old age, worklessness, household size and the presence 

of children mattered more for poorer than for richer households for total, indirect and transport 

emissions, indicating that these characteristics can play an important role for increasing or 

decreasing financial implications for poor households resulting from mitigation policies.  
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Tables and Figures  

 

Table 1: Mean and median annual household CO2 emissions in tonnes, per cent of total emission and per 

cent of households not having emissions by emission area 

  
Median 

tonne 

Mean 

tonne 

Standard 

error 

mean 

tonne 

Per cent 

of total 

mean 

CO2 

emissions 

Per cent of 

households 

without 

emissions 

Home energy total of which 4.48 5.11 0.03 25.3 5.7 

Gas 2.35 2.49 0.02 12.3 22.8 

Electricity 1.84 2.09 0.01 10.4 8.1 

Other home energy 0.00 0.53 0.03 2.6 93.2 

            

Transport total of which 2.97 4.40 0.04 21.8 15.2 

Motor fuels 1.6 2.38 0.03 11.8 36.4 

Flights 0.00 1.13 0.02 5.6 59.0 

Public transport 0.00 0.89 0.02 4.4 50.2 

            

Indirect total of which 8.69 10.67 0.08 52.9 0.0 

Indirect home energy and 

motor fuel emissions 
2.23 2.60 0.02 12.9 9.0 

Food 1.33 1.53 0.01 7.6 0.7 

Catering/hotels 0.69 1.11 0.01 5.5 11.6 

Cars & repairs 0.05 0.40 0.01 2.0 39.5 

Recreation 0.33 0.77 0.03 3.8 3.7 

Clothing 0.23 0.66 0.01 3.3 32.6 

Furniture, appliances, tools 0.13 0.67 0.01 3.3 32.1 

Personal care 0.17 0.38 0.01 1.9 12.3 

Other indirect 1.53 2.54 0.03 12.6 0.0 

            

Total 17.13 20.18 0.13 100.0  0.0 

Note: For all emission areas households without emissions are included in the calculation. Standard error for 

mean tonne takes complex survey design (weighting and clustering) into account. Sample size is 24,446 

households. 
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Table 2: Households’ annual mean CO2 emission by household size and emission area 

    Total CO2 
Home 
energy 

Indirect 
emissions 

Transport 

Households without 
children only 

1 adult 10.9 (0.11) 3.6 (0.04) 5.5 (0.07) 1.8 (0.03)  

2 adults 21.4 (0.18) 5.3 (0.05) 11.2 (0.12) 4.9 (0.06) 

3
 
adults 27.3 (0.42) 6.2 (0.12) 14.5 (0.25) 6.6 (0.16)  

4
 
adults 33.9 (0.84) 6.9 (0.20) 18.1 (0.51) 8.9 (0.34) 

Two adult households only 

1 child 24.5 (0.36) 5.7 (0.10) 13.4 (0.22) 5.5 (0.13) 

2 children 28.0 (0.36) 6.3 (0.09) 15.3 (0.22) 6.3 (0.13) 

3
 
children 29.0 (0.87) 6.7 (0.19) 15.8 (0.56) 6.4 (0.30)  

Note: Standard errors taking complex survey design (weighting and clustering) into account are reported in 

parentheses. For all emission areas households with zero emissions are included in the calculation. 
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Table 3: Percentage of households being a high and low emission household by household characteristics 

and emission area 

  
Low CO2 

High  Low 
indirect  

High 
indirect  

Low 
home 

energy 

High 
home 

energy  

Low 
transport  

High 
transport  CO2 

Low income 53.4 6.7 54.0 6.5 39.6 17.0 51.5 7.2 

High income 4.4 51.0 4.6 51.2 15.3 34.9 7.0 48.6 

Children in hh 12.4 37.3 10.4 38.6 17.2 34.9 16.2 32.6 

No children hh 30.2 19.9 31.0 19.4 28.3 20.9 28.7 21.9 

Age <= 35 22.2 21.1 19.4 23.0 32.9 16.0 21.0 25.8 

Age 36 to 64 17.1 33.8 16.8 33.5 20.9 30.9 17.2 32.3 

Age>=65 43.7 9.5 46.6 8.7 27.6 19.5 44.4 9.0 

Education>=16 9.0 43.9 8.7 43.9 19.0 32.5 8.9 42.9 

Education<11 35.5 13.5 35.8 13.2 30.7 19.1 35.2 15.0 

Rural area 19.2 32.9 20.3 31.5 22.4 32.0 19.9 30.4 

Urban area 26.8 22.4 26.5 22.9 25.6 22.3 26.5 23.5 

Workless hh 50.8 8.1 49.8 8.2 42.2 17.8 48.8 9.1 

In employment 21.4 27.4 21.5 27.4 22.6 26.0 21.6 27.3 

Female head 34.4 16.8 34.3 17.0 28.9 20.8 34.7 17.1 

Male head 19.1 30.2 19.1 30.0 22.5 27.6 18.9 30.0 

Not ‘white’ 26.6 22.8 28.9 19.1 27.3 25.9 22.7 26.8 

‘White’ 24.9 25.2 24.7 25.5 24.8 24.9 25.2 24.8 

Detached  8.7 45.8 10.2 43.9 10.9 43.5 13.6 39.6 

Semi detached 19.7 25.5 20.3 25.1 18.1 26.3 21.4 26.0 

Terraced  27.3 17.8 26.4 19.3 25.8 19.6 28.1 19.6 

Flat converted 44.0 13.5 42.5 14.8 48.0 8.5 32.0 17.3 

Flat purpose  53.3 7.3 51.4 8.0 54.4 7.0 43.3 12.2 

Note: Households with low emissions are those at or below the 25
th

 percentile of the emission distribution, 

while households with emissions above the 75
th

 percentile are called high emission households. Low income 

households have equivalised household income equal or below the 25
th

 percentile, high income households 

are situated at or above the 75
th

 percentile of the equivalised income distribution. For all emission areas 

households with zero emissions are included in the calculation.  
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Table 4: Logistic regression results: probability to have transport emissions by transport emission area 

 Transport Motor fuel Public 
transport 

Air travel 

     

Ln income 0.753*** 0.553*** 0.376*** 0.917*** 
 (0.0455) (0.0365) (0.0295) (0.0398) 
Adult2 0.767*** 0.849*** 0.181*** -0.107** 
 (0.0531) (0.0395) (0.0375) (0.0417) 
Adult3 0.532*** 0.253*** 0.572*** -0.163*** 
 (0.151) (0.0751) (0.0579) (0.0571) 
Adult4 0.350 0.135 0.161 -0.00714 
 (0.354) (0.154) (0.115) (0.110) 
Adult5+ 2.947* 0.0102 0.00820 -0.133 
 (1.579) (0.312) (0.240) (0.245) 
Child1 0.0367 0.0582 0.0391 -0.516*** 
 (0.0824) (0.0557) (0.0466) (0.0473) 
Child2 -0.102 0.139** 0.000118 -0.155*** 
 (0.111) (0.0692) (0.0577) (0.0587) 
Child3+ -0.172 -0.138 0.0659 -0.384*** 
 (0.143) (0.0918) (0.0780) (0.0848) 

Age 0.0749*** 0.103*** 0.00308 0.0395*** 
 (0.00968) (0.00764) (0.00706) (0.00807) 
Age

2
/100 -0.0881*** -0.101*** -0.0135* -0.0447*** 

 (0.00949) (0.00762) (0.00720) (0.00808) 
Age top coded (80+) -0.419*** -0.571*** -0.124 -0.596*** 
 (0.0828) (0.0768) (0.0813) (0.0966) 

Education 12-15 0.393*** 0.260*** 0.182*** 0.356*** 
 (0.0613) (0.0428) (0.0368) (0.0403) 
Education 16+ 0.789*** 0.154*** 0.321*** 0.687*** 
 (0.0915) (0.0521) (0.0427) (0.0482) 
Missing education 0.0250 0.0277 -0.0949 -0.143** 
 (0.0687) (0.0644) (0.0651) (0.0696) 

Workless hh -0.377*** -0.557*** 0.108** -0.299*** 
 (0.0631) (0.0530) (0.0487) (0.0581) 
Not ‘white’ -0.288*** -0.544*** -0.140** -0.0103 
 (0.0962) (0.0668) (0.0625) (0.0702) 
Rural location 0.172*** 0.624*** -0.414*** -0.165*** 
 (0.0590) (0.0459) (0.0387) (0.0420) 
Missing rural 0.0189 0.437*** -0.324*** -0.157** 
 (0.0785) (0.0604) (0.0540) (0.0622) 

Constant -4.286*** -5.684*** -2.268*** -6.532*** 
 (0.323) (0.250) (0.212) (0.272) 
     
Observations 24,389 24,389 24,389 24,389 

Note: The table reports estimates of weighted parameters β of the logistic regression model that is described 
in the text. Standard errors reported in parenthesis take complex survey design with clustering in primary 
sampling units into account. *** p<0.01, ** p<0.05, * p<0.1 
Cases with missing values in the independent variables are excluded. 
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Table 5: OLS regression results with dependent variable being the natural logarithm of CO2 emission in 
tonnes by emission area 

 Total CO2 
emissions 

Home energy 
emissions 

Indirect 
emissions 

Transport 
emissions 

Ln income 0.432*** 0.187*** 0.481*** 0.598*** 
 (0.00733) (0.00869) (0.00792) (0.0163) 
Adult2 0.267*** 0.203*** 0.278*** 0.322*** 
 (0.00849) (0.0109) (0.00898) (0.0198) 
Adult3 0.111*** 0.108*** 0.115*** 0.105*** 
 (0.00999) (0.0135) (0.0111) (0.0216) 
Adult4 0.0736*** 0.0542** 0.0694*** 0.104*** 
 (0.0199) (0.0247) (0.0223) (0.0396) 
Adult5+ 0.110*** 0.168*** 0.113** 0.0423 
 (0.0411) (0.0508) (0.0474) (0.0837) 
Child1 0.0966*** 0.168*** 0.126*** -0.0637*** 
 (0.00905) (0.0122) (0.00982) (0.0198) 
Child2 0.0727*** 0.0867*** 0.0794*** 0.0521** 
 (0.0108) (0.0140) (0.0117) (0.0246) 
Child3+ 0.0605*** 0.110*** 0.0537*** 0.00224 
 (0.0153) (0.0202) (0.0161) (0.0348) 

Age 0.0203*** 0.0216*** 0.0166*** 0.0327*** 
 (0.00153) (0.00199) (0.00168) (0.00371) 
Age

2
/100 -0.0188*** -0.0149*** -0.0160*** -0.0335*** 

 (0.00154) (0.00200) (0.00168) (0.00381) 
Age top coded (80+) -0.0877*** 0.0331 -0.138*** -0.198*** 

(0.0164) (0.0210) (0.0176) (0.0442) 

Female headed 
households 

0.0256*** 0.0524*** 0.0324*** -0.0881*** 

(0.00668) (0.00848) (0.00734) (0.0151) 
Education 12-15 0.0734*** 0.0306*** 0.0825*** 0.0972*** 
 (0.00780) (0.00997) (0.00830) (0.0176) 
Education 16+ 0.0996*** 0.0190* 0.103*** 0.154*** 
 (0.00879) (0.0115) (0.00965) (0.0197) 
Missing education -0.0390*** -0.0217 -0.0427*** -0.0906*** 
 (0.0139) (0.0172) (0.0145) (0.0327) 

Workless household -0.00918 0.0531*** -0.0143 -0.169*** 

(0.0119) (0.0145) (0.0127) (0.0298) 
Not ‘white’ -0.0701*** -0.0104 -0.162*** 0.0720** 
 (0.0140) (0.0165) (0.0152) (0.0294) 
Rural location 0.0880*** 0.0585*** 0.0693*** 0.150*** 
 (0.00804) (0.0110) (0.00884) (0.0149) 
Missing rural 0.178*** 0.207*** 0.158*** 0.0954*** 
 (0.0121) (0.0203) (0.0116) (0.0222) 

Constant -0.578*** -0.575*** -1.468*** -3.472*** 
 (0.0484) (0.0615) (0.0531) (0.112) 
     
Observations 21,892 21,892 21,892 18,729 
R-squared 0.584 0.196 0.592 0.353 

Note: Results are weighted and standard errors presented in parentheses take clustering within primary 
sampling units into account (*** p<0.01, ** p<0.05, * p<0.1). Highest and lowest percentiles of the income and 
emission distribution were excluded from the analysis.  
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Figure 1: Annual equivalised household income and household CO2 emissions by emission area (log – log 
scale)  

 
Note: The graph plots mean household CO2 emissions by mean income at each income decile on log scales. 

The dashed “elasticity” line shows a 1% increase in household CO2 emissions if income increases by 1%.  
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Figure 2: Ordinary least squares and quantile regression coefficients for some household characteristics and 

by different CO2 emission area 

(a) 

Log transport CO2 emissions regressed on ln income 

(b) 

Log transport emissions regressed on household with at 

least one member having had 16 years of continuous 

education 

 

 

Quantile Quantile 

(c) 

Log CO2 home energy emissions regressed on rural 

area 

(d) 

Log CO2 transport emissions regressed on rural area 

 

 

Quantile Quantile 

Note: The x axis presents the quantiles for that quantile regression were run. The y-axis presents the 

coefficient of the household characteristic given in the title to the graph. The straight line presents the OLS 

regression coefficient estimate given in Table 5. The dashed lines show the 95 per cent confidence interval 

around the estimates. Quantile regression controlled for the same variables as OLS regressions presented in 

Table 5. For calculating the confidence interval of the quantile regression coefficients clustering in primary 

sampling units is not taken into account. 
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Appendix 

Table A1: OLS regression with dependent variable being the natural logarithm of transport emissions by 

transport emission type 

 Motor fuel 
emissions 

Public 
transport 
emissions 

Flight 
emissions 

Ln income 0.308*** 0.525*** 0.308*** 
 (0.0141) (0.0297) (0.0269) 
Adult2 0.150*** 0.170*** 0.411*** 
 (0.0167) (0.0350) (0.0317) 
Adult3 0.136*** -0.0778* -0.0284 
 (0.0213) (0.0440) (0.0409) 
Adult4 0.142*** 0.110 -0.0871 
 (0.0378) (0.0815) (0.0768) 
Adult5+ 0.0937 -0.155 0.149 
 (0.0974) (0.164) (0.151) 
Child1 0.00485 -0.167*** 0.0427 
 (0.0191) (0.0380) (0.0361) 
Child2 0.00853 -0.0164 0.139*** 
 (0.0223) (0.0469) (0.0471) 
Child3 0.0973*** -0.0611 0.0130 
 (0.0301) (0.0687) (0.0699) 

Age 0.0192*** -0.00899 0.0127** 
 (0.00313) (0.00639) (0.00635) 
Age2/100 -0.0231*** 0.0114* -0.0103 
 (0.00317) (0.00654) (0.00648) 
Age top coded (80+) -0.0230 -0.150* -0.216** 

(0.0341) (0.0770) (0.0848) 

Female headed households -0.0701*** 0.0437 -0.0370 

(0.0136) (0.0293) (0.0251) 
Education 12-15 0.0421*** -0.0847** 0.00568 
 (0.0154) (0.0350) (0.0313) 
Education 16+ 0.0645*** -0.0669* 0.109*** 
 (0.0174) (0.0382) (0.0339) 
Missing education -0.0726*** -0.0305 -0.0526 
 (0.0256) (0.0604) (0.0632) 

Workless households -0.0526** 0.150*** 0.158*** 
 (0.0250) (0.0473) (0.0549) 
Not white -0.0612** 0.165*** 0.604*** 
 (0.0298) (0.0487) (0.0408) 
Rural location 0.196*** 0.00976 -0.0515* 
 (0.0141) (0.0356) (0.0292) 
Missing rural 0.195*** -0.0221 -0.448*** 
 (0.0204) (0.0433) (0.0436) 

Constant -1.411*** -3.305*** -2.282*** 
 (0.0957) (0.207) (0.192) 
    
Observations 14,736 10,478 9,028 
R-squared 0.212 0.073 0.130 

Note: Note to table 5 applies in the same way (i.e. exclusions are the same than for the regressions in table 5). 
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Table A2: OLS regression with dependent variable being the natural logarithm of emissions by emission area 

 Total CO2 
emissions 

Home energy 
emissions 

Lnincome  0.358*** 0.103*** 
 (0.00722) (0.00853) 
Female headed 
households 

0.0304*** 0.0539*** 
(0.00633) (0.00809) 

Education 12-15 0.0500*** 0.00792 
 (0.00741) (0.00954) 
Education 16+ 0.0697*** -0.00992 
 (0.00840) (0.0109) 

Missing education -0.0350*** -0.0155 
 (0.0125) (0.0158) 
Workless households -0.00715 0.0474*** 

(0.0112) (0.0142) 
Not white -0.0362*** 0.0328** 
 (0.0128) (0.0151) 
Rural location 0.0435*** 0.00120 
 (0.00778) (0.0103) 
Missing rural 0.0366** 0.0348 
 (0.0177) (0.0304) 

Own outright 0.122*** 0.0498*** 
 (0.00921) (0.0118) 
Own with mortgage 0.0998*** 0.0451*** 
 (0.00835) (0.0112) 
Missing own 0.113*** 0.184*** 
 (0.0234) (0.0315) 

Detached house 0.154*** 0.244*** 
 (0.0134) (0.0169) 
Semi detached house 0.0782*** 0.171*** 

(0.0119) (0.0152) 
Terraced house 0.0365*** 0.132*** 
 (0.0115) (0.0146) 
Converted flat 0.0356 0.0687*** 
 (0.0217) (0.0248) 

Central heating 
electricity 

-0.159*** -0.193*** 

(0.0126) (0.0159) 
Central heating oil 0.109*** 0.120*** 
 (0.0169) (0.0300) 
Other heating -0.116*** -0.133*** 
 (0.0136) (0.0192) 
Number bedroom 0.0670*** 0.108*** 
 (0.00416) (0.00537) 

Constant -0.0943** -0.103* 
 (0.0476) (0.0614) 
   
Observations 21,892 21,892 
R-squared 0.626 0.275 

Note: Note to table 5 applies in the same way. Results presented are conditional on age and household size. 

‘Own outright means that the household owns the property without mortgage, ‘missing own’ denotes that 

information on home ownership is not available, control group are households renting the property. The 

control group regarding dwelling are households in a purpose built flat and the control group for the heating 

variable are households with central gas heating.  
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Table A3: Mean emissions for poor and rich households 

 
Total Indirect Home energy Transport n 

 Mean SE Mean SE Mean SE Mean SE  

Rich 29.8 0.3 16.2 0.2 6.2 0.1 7.4 0.1 5821 

Poor 12.0 0.1 6.1 0.1 4.1 0.1 1.9 0.0 6231 
Note: Rich households are defined as those with equivalised income at or above the 75

th
 percentile of the 

income distribution and poor households with equivalised household income at or below the 25
th

 percentile of 

the income distribution. 
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Table A4: OLS regression on log CO2 emissions comparing poor and rich households 

 Total CO2 Total CO2 Indirect Indirect Home energy Home energy Transport Transport 

VARIABLES Poor Rich Poor Rich Poor Rich Poor Rich 

         
Ln income 0.300*** 0.455*** 0.360*** 0.472*** 0.126*** 0.258*** 0.437*** 0.558*** 
 (0.0292) (0.0215) (0.0318) (0.0252) (0.0324) (0.0287) (0.0715) (0.0434) 
Adult2 0.320*** 0.272*** 0.347*** 0.268*** 0.225*** 0.192*** 0.324*** 0.374*** 
 (0.0216) (0.0171) (0.0222) (0.0194) (0.0268) (0.0230) (0.0555) (0.0352) 
Adult3 0.153*** 0.103*** 0.150*** 0.103*** 0.153*** 0.0892*** 0.0799 0.189*** 
 (0.0332) (0.0168) (0.0341) (0.0198) (0.0416) (0.0251) (0.0782) (0.0343) 
Adult4+ 0.192*** 0.0973*** 0.195*** 0.111*** 0.0808 0.0465 0.428*** 0.107* 
 (0.0689) (0.0271) (0.0714) (0.0308) (0.0737) (0.0425) (0.124) (0.0597) 
Child1 0.119*** 0.104*** 0.131*** 0.164*** 0.159*** 0.161*** -0.0635 -0.0514 
 (0.0283) (0.0160) (0.0299) (0.0180) (0.0341) (0.0226) (0.0699) (0.0330) 
Child2+ 0.144*** 0.0645*** 0.147*** 0.0520** 0.143*** 0.102*** 0.189*** 0.0774* 
 (0.0278) (0.0199) (0.0291) (0.0225) (0.0329) (0.0282) (0.0670) (0.0450) 
Age 0.0243*** 0.0122*** 0.0209*** 0.0119*** 0.0185*** 0.0247*** 0.0519*** 0.00273 
 (0.00319) (0.00340) (0.00339) (0.00381) (0.00398) (0.00443) (0.00798) (0.00716) 
Age

2
/100 -0.0247*** -0.00961*** -0.0224*** -0.0106*** -0.0152*** -0.0138*** -0.0513*** -0.00509 

 (0.00313) (0.00355) (0.00330) (0.00398) (0.00394) (0.00462) (0.00810) (0.00751) 
Age top coded (80+) -0.0165 -0.156** -0.0626** -0.129* 0.0730** 0.0493 -0.179** -0.623*** 
 (0.0286) (0.0618) (0.0298) (0.0670) (0.0354) (0.0743) (0.0831) (0.145) 
Female headed 
households 

0.0296* 0.0230* 0.0336** 0.0267** 0.0883*** 0.0419*** -0.227*** -0.00749 

 (0.0162) (0.0117) (0.0167) (0.0133) (0.0199) (0.0158) (0.0438) (0.0250) 
Education 12-15 0.0597*** 0.0321** 0.0739*** 0.0460*** 0.00767 0.0326* 0.125** -0.0187 
 (0.0186) (0.0158) (0.0196) (0.0176) (0.0226) (0.0197) (0.0493) (0.0344) 
Education 16+ 0.173*** 0.0511*** 0.216*** 0.0524*** 0.00757 0.0233 0.353*** 0.0375 
 (0.0310) (0.0152) (0.0316) (0.0167) (0.0347) (0.0199) (0.0710) (0.0329) 
Missing education -0.00939 -0.00695 -0.0194 0.00556 0.00155 0.0447 -0.0139 -0.178** 
 (0.0242) (0.0410) (0.0249) (0.0457) (0.0293) (0.0527) (0.0642) (0.0887) 
Workless household -0.0969*** 0.131*** -0.0970*** 0.150*** -0.0130 0.0155 -0.307*** 0.181** 
 (0.0178) (0.0465) (0.0186) (0.0578) (0.0217) (0.0576) (0.0465) (0.0790) 
Not white -0.0666*** -0.0522* -0.161*** -0.128*** -0.00448 0.00849 0.0681 0.0248 
 (0.0249) (0.0278) (0.0263) (0.0328) (0.0282) (0.0342) (0.0639) (0.0525) 
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Rural location 0.104*** 0.0779*** 0.0803*** 0.0577*** 0.0585** 0.0637*** 0.203*** 0.132*** 
 (0.0200) (0.0131) (0.0214) (0.0145) (0.0245) (0.0195) (0.0443) (0.0255) 
Missing rural 0.205*** 0.139*** 0.186*** 0.123*** 0.225*** 0.211*** 0.100* 0.0385 
 (0.0262) (0.0221) (0.0250) (0.0222) (0.0354) (0.0446) (0.0566) (0.0383) 
Constant 0.0635 -0.529*** -0.889*** -1.263*** -0.0753 -1.217*** -3.071*** -2.453*** 
 (0.160) (0.149) (0.171) (0.176) (0.178) (0.194) (0.395) (0.306) 
         
Observations 5,037 5,312 5,037 5,312 5,037 5,312 3,485 5,088 
R-squared 0.427 0.408 0.463 0.370 0.146 0.212 0.255 0.203 

Note: “Poor” households are defined as those in the lowest quartile of disposable income, “rich” households as those in the h ighest quartile of equivalised income. Bold 

coefficients are significantly different from those for “rich” households at the 5% level. Results are weighted and standard errors presented in parentheses take clustering 

within primary sampling units into account (*** p<0.01, ** p<0.05, * p<0.1). Highest and lowest percentiles of the income and emission distribution were excluded from 

the analysis.  
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