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subjects. Results suggest that learning is a composite process, in which different 
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1. Introduction

What happens when the information required to �nd out and adopt the

equilibrium behavior is concealed, and its acquisition and processing is dif-

�cult or costly? The present study aims at contributing to the quest for an

answer to this long debated question, by tackling this problem through an

experiment on a repeated Cournot oligopoly game with strict informational

constraints. We investigate how subjects learn to play, by monitoring at the

same time what they do and what information they look for.

The debate on learning in oligopoly was opened by Vega-Redondo (1997),

who developed an original idea by Scha�er (1989) and proposed a theoretical

model of behavior of Cournot oligopolists. His model shows that Walrasian

behavior can emerge in the long run within any Cournot oligopoly with ho-

mogeneous goods, if �rms tend to imitate the behavior that in the previous

period proved most successful among their competitors (that is, they produce

the level of output that yielded the highest pro�t) but with positive prob-

ability experiment with other strategies. In a number of subsequent works

Vega Redondo's theory has been experimentally tested and compared with

other learning models that make di�erent assumptions about players' infor-

mation and lead to di�erent behaviors and market equilibria.1 The results

of these studies, however, are not completely unanimous, nor fully decisive.

1See for example Huck et al. (1999), Rassenti et al. (2000), O�erman et al. (2002)
and Bosch-Domènech and Vriend (2003). More recently, further experiments on Vega-
Redondo's imitation model have been conducted by Apesteguia et al. (2007, 2010), but
these experiments were not framed as oligopolies.
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The question of how learning works in this and similar settings is still open

and deserves further investigation.

The main purpose of the present work is to tackle the problem of learning

in experimental oligopolies with a novel approach, which consists of combin-

ing the study of how subjects actually play the game with an analysis of

how they select the information they need when choosing their strategy. In-

stead of comparing subjects market behavior under di�erent informational

frameworks � which is the approach adopted in all the previous experiments

about this topic � we provide players with a broad range of information,

but force them to choose only some pieces of it. Subjects' process of infor-

mation gathering is strictly (but not obtrusively) controlled, by means of a

special software, originally called MouseLab and developed by Johnson et al.

(1988). By paying attention not only to what players do but also to what

they know, it is possible to better understand the mental mechanisms which

guide their choices and consequently the impact of the informational frame-

work on their behavior. The data about subjects' information search pattern

are then integrated in the econometric analysis, via a comprehensive model

of learning built upon the Experience Weighted Attraction (EWA) learning

model developed by Camerer and Ho (1998, 1999).

Our main result is that learning is a complex and faceted process in

which di�erent elements coexist. More speci�cally: the tendency to best

reply to the strategies adopted by the opponents in previous periods seems

to be the principal driver of players' behavior. Yet, players also display a

tendency to follow the strategies adopted by the most successful among their

opponents, and this form of �imitation� � or maybe simply learning from
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peers' experience � plays a non negligible role, driving players' choices away

from the best reply towards a more competitive behavior. Finally, a subject's

own experience of the outcomes stemming from the di�erent strategies is

relevant too, and exerts on his/her future actions an in�uence which is at

least as strong as the pull of imitation.

The paper is structured in the following way: an overview of the theoret-

ical learning models that inform the analysis is presented in Section 2, where

we also brie�y survey the experimental literature on learning in oligopoly

games, and on the study of cognition through information search. Section

3 presents the experimental design. Section 4 contains the results of the

experiment and Section 5 concludes.

2. Related Literature

In this Section we review the theoretical and experimental literature on

learning. We �rst draw a taxonomy of di�erent theoretical models of learn-

ing, which represents the reference framework for our design and for the

empirical analysis. Then, we discuss previous experimental evidence from

studies aimed at testing the relative importance of di�erent learning mod-

els. In this second part, we limit our attention to the papers whose design

is most closely related to ours. This paper focuses on learning in a set-up

where information on the strategic environment is scarce. For this reason, we

do not consider here the growing literature on learning across supergames,

where the goal is to study how behavior stabilizes when subjects have had

4



the time to understand all the main details of the strategic situation.2

2.1. Theoretical background

We draw a taxonomy of theoretical learning models, grouping them into

three main categories: experiential learning, adaptive learning, and models

based on imitation. Experiential learning models are characterized by the

general assumption that agents learn exclusively from their own experience.

Agents' beliefs about other players' strategies, as well as information about

opponents' past actions or payo�s, do not play any role here. Conversely,

all those models in which these elements are important can be classi�ed

as �observational�. In contrast with experiential learning, adaptive learning

presumes that agents are able to observe their rivals' past play and that

their computational capabilities and their knowledge of the game structure

are su�cient for them to compute a best response, given the strategy pro�le

adopted by their opponents. Finally, models based on imitation prescribe

that, in every period after the �rst one, each individual chooses an action

among those which were actually taken by some player in the previous round.

The main di�erence among the various imitation-based models consists in

whom is to be imitated.

We now describe each class of models in more detail. This survey will

show that di�erent learning rules determine simultaneously (i) the amount

and quality of information agents need in order to make a choice, and (ii)

their actual behavior as a response to the information they may acquire. The

2See for example Dal Bó 2005; Engle-Warnick and Slonim 2006; Camera and Casari
2009; Dal Bó and Fréchette 2011; Fudenberg et al. 2012; Friedman et al. 2012.
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main idea underlying the present work is that observing subjects' informa-

tion search pattern should provide a clue about the learning process they

(consciously or unconsciously) adopt. Comparing information search pat-

terns with actual choices may support some existing learning theories and

suggest the rejection of others.

Experiential Learning. We consider here two approaches to experiential learn-

ing: reinforcement learning, and learning based on trial-and-error. Rein-

forcement learning (Roth and Erev, 1995) rests on the basic hypothesis that

players increase the probability of playing pure strategies that have met with

success in previous periods.3 Theoretical results on the convergence proper-

ties of reinforcement learning in games with a large action space and more

than two players are scarce. By means of a simulation-based analysis, Walt-

man and Kaymak (2008) show that on average the sum of the quantities

produced in a market is signi�cantly lower than that predicted by the Nash

equilibrium, yet higher than the joint pro�t maximizing quantity. However,

it is not clear whether the quantities individually produced by each player

converge in the long run.

Learning by trial-and-error (Huck et al., 2000, 2004) simply prescribes

that subjects move in the direction that was, or would have been, more

successful in the previous period. In a standard symmetric Cournot oligopoly

with n �rms, Huck et al. (2000) show that � by making a few assumptions

on cost functions and market structure � this process converges to the joint

3A variation of the reinforcement learning model has been proposed by Stahl (1996).
However, in his paper reinforcement learning is not applied to single strategies, but to
�rules of thumb� that �map from a player's information to the set of feasible actions.�
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pro�t maximizing equilibrium.

Adaptive learning. According to Milgrom and Roberts (1991), a player's se-

quence of choices is consistent with adaptive learning if the player eventually

chooses only strategies that can be justi�ed in terms of the competitors'

past play. This justi�cation is based on choosing strategies that are un-

dominated if rivals' strategies are restricted to the most recently observed

strategies. Best response dynamic and �ctitious play are two examples of

adaptive learning processes.

Originally suggested by Cournot (1838), best response dynamics assume

that in every period each subject sets his current output equal to the best

(i.e., current period payo� maximizing) response to the last period outputs

of his rivals. Cournot (1838) demonstrates that this adjustment process is

stable and converges to the unique Nash equilibrium for a duopoly with linear

demand and constant marginal cost. This result is not general: Theocharis

(1960) shows that best reply dynamics does not converge in oligopolies with

a linear setup and three or more �rms. Huck et al. (1999), however, prove

convergence in �nite time if some inertia is introduced, namely, if it is as-

sumed that with some positive probability in every period each player sticks

to the strategy he chose in the previous period.

Fictitious play (Brown, 1951) assumes that each subject would take the

empirical distribution of the actions chosen in past periods by each of his

opponents to be his belief about that opponent's mixed strategy, and in

every period he would play a best response to this belief when choosing

his current strategy. Shapley (1964) proves that �ctitious play does not

necessarily converge to the equilibrium, yet Monderer and Shapley (1996)
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show that for ��nite weighted potential games� � a class of games that

includes the Cournot game adopted in our paper � every �ctitious play

process converges in beliefs to equilibrium.

Models based on imitation. Imitation-based models all rely on the theory of

perturbed Markov processes, but di�er in whom is to be imitated.

Vega-Redondo (1997)'s model prescribes to �imitate the best�, that is, to

choose, in each period, the quantity produced in the previous period by the

�rm that obtained the highest pro�t. The paper considers a set-up in which

all �rms conform to this rule, but with some small probability, in every period

each �rm �mutates�, and adopts a di�erent strategy. The author shows that,

as the probability of mutation tends to 0, in the limit all �rms produce the

Walrasian quantity.4

An alternative mode, based on imitation of the average, is proposed by

Huck et al. (1999). They assume that subjects who are uncertain about what

to do and observe that the quantity produced on average by the other �rms

di�ers from their own, imitate this average quantity � thinking along the

lines of `everyone else can't be wrong'. Without inertia the process converges

to the average of all the starting values. With inertia the process depends

on the realizations of the randomization device, hence it is path dependent.

O�erman et al. (2002) propose another model based on imitation of the

exemplary �rm. They assume that there is a tendency to follow the �rm

that sets the good example from the perspective of industry pro�ts, i.e. the

4Alós-Ferrer (2004) expands Vega-Redondo's model by assuming that �rms have longer
memory, and shows that in this case all monomorphic states where �rms produce a quantity
between the Cournot and the Walrasian outcome are stochastically stable.
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�rm (or one of the �rms) that has chosen the level of output that would

have maximized joint pro�ts in the market, had it been followed by all �rms.

The paper shows that if all �rms follow the exemplary one(s), the unique

stochastically stable state of the process is the collusive outcome.

Broadly speaking, models based on imitation could be classi�ed as ob-

servational learning models. Note, though, that the amount of information

at �rms' disposal varies across them.5 To imitate the best, �rms must have

the opportunity to observe or at least to infer the individual pro�ts of each

of the opponents, while to imitate the average they only need to know the

average output. On the other hand, to imitate the �exemplary �rm�, they

must have a wider knowledge of the market because the �rms should be able

to evaluate what would be the sum of pro�ts if all the �rms were producing

a given level of output. Indeed, the informational requirement for this model

overlaps the one assumed by models of adaptive learning.

2.2. Experimental Studies

Several experiments investigate the role of information and learning in a

Cournot oligopoly setting. The commonly adopted approach is to vary the

quality and quantity of information provided to the subjects across treat-

ments. The impact of the various informational frameworks on players'

choices is then studied by comparing the subjects' behavior across treat-

5An extended taxonomy of models based on imitation is presented by Apesteguia et al.
(2007), who consider the broader case in which players might observe not only the actions
taken and the payo� realized by their opponents, but also the strategies and payo� of
other agents playing the same game in di�erent groups. We chose to restrict information
to the outcome realized within a subject's group, to limit the degree of complexity of our
experimental design.
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ments. Results from those studies are not completely consistent; this can

be due to the some relevant di�erences in the experimental design. Indeed,

while the experiments performed by Huck et al. (1999) and by O�erman

et al. (2002) provide a rather strong support for the theory proposed by

Vega Redondo, other works � such as Bosch-Domènech and Vriend (2003)

and Rassenti et al. (2000) � evidence no general trend towards the Wal-

rasian equilibrium and do not �nd any strong indication that players tend to

imitate the one who got the best performance in the previous period.

Huck et al. (1999) study a Cournot oligopoly with linear demand and cost,

in which four symmetric �rms produce a homogeneous good. The treatment

variable is the information provided to the subjects, about the market and

about other players' choices and pro�ts. They �nd that increasing informa-

tion about the market decreases total quantity and harshens competition,

while providing additional information about individual quantities and prof-

its increases total quantity. In a similar set-up, O�erman et al. (2002) study

how players' behavior changes across three treatments, which di�er with re-

spect to the amount of information provided to the subjects about individual

quantities and revenues of the other two competitors in their market. The

Walrasian outcome tends only to be reached when players are informed about

their opponents' pro�ts, while the collusive outcome is a stable rest point only

when players get information about the quantities individually produced by

their opponents. On the contrary, when no information about others' indi-

vidual quantities and pro�ts is provided, the only rest-point is represented

by the Cournot-Nash equilibrium.

10



Bosch-Domènech and Vriend (2003) investigate whether people are more

inclined to imitate successful behavior in a cognitively demanding environ-

ment. They study Cournot duopolies and triopolies, and vary the way infor-

mation is provided and the time pressure put on the players. The data show

that as the learning-about-the-environment task becomes more complex, av-

erage output increases, but remains far from the Walrasian output level.

In duopolies, imitation of successful behavior tends to decrease rather than

increase when moving to environments where less information is provided;

only for triopolies, when subjects receive very limited information about the

market structure, a weak trend towards the competitive outcome emerges.

Rassenti et al. (2000) study a repeated oligopoly game with homogeneous

products, where cost functions are private information and di�er across the

�rms. The demand function is linear, and is public information among the

players. In one treatment, subjects were able to observe past output choices

of each one of their rivals, in the other they were informed only about the past

total output of rivals. The trend of total output over time is not consistent

both with best response dynamic and with �ctitious play. In addition, their

experimental evidence supports neither learning models based on imitation,

nor the more traditional hypothesis that information about competitors en-

hances the potential for collusion. The cost asymmetries introduced in this

experiment, however, may partially explain the limited tendency to imitate.

The present work innovates the experimental approach adopted in the

four papers described above, as it introduces the monitoring of the informa-

tion acquisition process through a computer interface. To this purpose, we

adopt a software � originally named MouseLab and developed by Johnson
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et al. (1988) � whose main feature consists in hiding relevant pieces of in-

formation behind a number of boxes on the screen so that to access them

the decision maker has to open the boxes and look at their content, with

the restriction that he can open just one box at a time. To open a box,

the player has to place his mouse cursor over it. By recording the number

and the duration of the look-ups the program provides information about

the decision makers' learning process. MouseLab has been used in several

other studies (Johnson et al., 2002; Costa-Gomes et al., 2001; Costa-Gomes

and Crawford, 2006; Gabaix et al., 2006), but to our knowledge, ours is the

�rst experiment applying this technique to the analysis of learning processes

in repeated strategic games.6 In a companion paper, Bigoni (2010) adopts

the same technique to study whether subjects' information acquisition pro-

cess and behavior is a�ected by the learning rule adopted by the opponents,

by letting participants play against computerized automata programmed to

follow a speci�c rule. Results indicate that the learning rule followed by

the opponents does not have a strong impact on the model of information

acquisition and processing adopted by the subjects. With respect to Bigoni

(2010), the present paper also presents a more in-depth analysis of subjects'

learning beahvior, based on the EWA approach, as described in Section 4.4.

3. Experimental Design

The market environment of our experiment is similar to the one proposed

in Huck et al. (1999). Four identical �rms compete à la Cournot in the same

6A survey on the experimental study of cognition via information search can be found
in Crawford (2008).
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market for 40 consecutive periods. Their product is perfectly homogeneous.

In every period t each �rm i chooses its own output qti from the discrete set

Γ = {0, 1, ..., 30}, which is the same for every �rm. The choice is simultane-

ous. Price pt in period t is determined by the inverse demand function:

pt = max(0, 81−
∑
i

qti)

Let Ci(qti) = qti be the cost function for every �rm i ; �rm i 's pro�t in period

t will be denoted by

πti = ptqti − Ci(qti).

The shape of these functions has been chosen so that the three main the-

oretical outcomes � namely collusive, Cournot and Walrasian outcomes

� are well separated one from the other and belong to the choice set Γ.

More precisely, collusive equilibrium is denoted by ωM = (10, 10, 10, 10),

Cournot-Nash equilibrium is ωN = (16, 16, 16, 16) and Walrasian equilibrium

is ωW = (20, 20, 20, 20).

A time limit of 30 seconds per round was introduced. If a subject failed

to make his choice within the time limit, his quantity was automatically set

equal to 0, granting him a pro�t of 0 for that period.7 The aim of this

constraint was to force subjects to choose the information they are really

7This happened 22 times (out of 1920), mostly in the �rst four periods. In Bigoni
(2010), no time limit was imposed. Results indicate that the average response time in the
�rst 5 periods ranges between 70 and 85 seconds, while it decreases to about 30-40 seconds
after the tenth period. In light of these previous results, a time limit of 30 seconds appears
to be a lapse long enough to let players take a reasoned decision, while still representing
a binding constraint.
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interested in, and � even more importantly � to reproduce an environment

in which rationality is bounded because of external factors.

3.1. Information provided to the subjects

Participants knew how many competitors they had (anonymity was none-

theless guaranteed). Instructions explained in plain words that there is an

inverse relation between the overall quantity produced by the four �rms and

the market price and that a �rm's production costs increase with the num-

ber of goods it sells. Besides, players were told that per-period pro�t is

given by the market price times the number of goods sold by the �rm, minus

production costs (see the instructions in Appendix B).

Subjects were also provided with a calculator similar to the one proposed

by Huck et al. (1999). This device had two functions. First, it could be

used as a Best Reply Calculator, that computes the highest possible pro�t a

subject could get, and the quantity that would yield him this pro�t, given

an arbitrary quantity produced on the whole by the three competitors. Sec-

ond, it could be used as a Pro�t Calculator to reckon the pro�t given both

the quantity produced by the player himself and some arbitrary quantity

produced by his competitors. The software recorded how many times each

subject used the pro�t calculator and every trial he made.

We did not provide subjects with a complete payo� table, nor did we

inform them about the details of the demand function. This feature of the

design is crucial, as it allows us to investigate how subjects learn to play

when in an environment where ex ante they have no means to adopt a fully

rational pro�t maximizing behavior.
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The number of rounds was common knowledge among subjects. Accord-

ing to game-theoretic predictions, cooperation should be sustainable only if

our stage game were repeated in(de)�nitely many times. However, Selten

et al. (1997) point out that in�nite supergames cannot be credibly replicated

in the laboratory, because �a play cannot be continued beyond the maxi-

mum time available. The stopping probability cannot remain �xed but must

become one eventually.� In addition, Normann and Wallace (2012) show

that the termination rule does not a�ect the aggregate subjects' behavior,

except for inducing an end-game e�ect. In light of these considerations, a

commonly known �nite horizon was introduced, for sake of transparency and

practicality.

In every period after the �rst one, the pro�ts earned in the previous period

by the player himself and by each of his opponents were displayed. Three

distinct buttons � each corresponding to one of the player's competitors �

allowed players to look at the strategy opponents employed in the previous

period. Another button allowed the subject to open a window displaying, by

means of a table and a couple of plots, the quantity chosen and the pro�ts

earned by the player himself in every previous period. It was also possible for

the player to look at the aggregate quantity produced in each of the previous

periods by his competitors. This information was conveyed through a table

and a plot, if the subject pushed the corresponding button. A sixth button

gave access to the calculator. Information was arranged so that there is a

clear correspondence between each of the learning rules described in section

2.1 and subjects' potential choices, as displayed in Table 1.

It was not possible to access more than one piece of information at a
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time, since opening a new window automatically closed the previous one. As

subjects were asked to push a button in order to open a box and obtain the

information hidden behind it, unintentional look-ups are avoided, ensuring a

high level of control over players' information search pattern.

On the computer screen there was a counter showing the running cumula-

tive pro�ts earned by the player since the game began, and a timer displaying

how many seconds remained before the end of the current period. Figure C.1

in Appendix C shows what subjects' computer screen looked like.

3.2. Experimental Procedures

The experiment was run on November 29 and 30, 2007, in the computer

lab of the faculty of Economics, at the University of Bologna, in Italy. It

involved 48 undergraduate students in Business Administration, Law and

Economics, Commercial Studies, Economics, Marketing and Finance. Three

identical sessions were organized, with 16 participants each. The length of

the sessions ranged from one hour to one hour and �fteen minutes, includ-

ing instructions and payment. The average payment was 13 Euro with a

maximum of 17 and a minimum of 9, including a show-up fee of 4 Euro.

At the beginning of each session, subjects were welcomed into the com-

puter room and sat in front of personal computers, and they were instructed

not to communicate in any way with other players during the whole exper-

iment. They received a printed copy of the instructions, which were read

aloud so as to make them common knowledge.8 Thereafter, they had the

opportunity to ask questions, which were answered privately. Before starting

8A translation of the instructions can be found in Appendix B.
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the experiment, subjects were also asked to complete a test on their com-

puter, aimed at checking their understanding of the graphical interface they

would have to use during the game. Only when all the players managed to

answer correctly all the questions in the test, did the experiment begin. Each

subject was randomly and anonymously matched with three other partici-

pants, who were to be his �opponents� throughout the whole game. At the

end of the session, subjects were paid in cash, privately, in proportion to the

pro�ts they scored during the game. The experiment was programmed and

conducted with the software z-Tree (Fischbacher, 2007).

4. Results

In this Section, we �rst present some qualitative results about the output

choices made by the subjects, and about their information search pattern.

By means of a non-parametric approach, we then classify subjects according

to the model of learning that best accounts for their information acquisition

behavior, and we study whether subjects who display di�erent information

acquisition patterns also di�er in terms of their approach to learning. We

also consider how learning evolves as subjects gain experience, using this

classi�catory approach. To assess the prevalence of di�erent approaches to

learning in the population in a more general way, we consider an extension of

the Camerer and Ho (1998)'s Experience Weighted Attraction (EWA) learn-

ing model.9 We show how reduced form parameters of this generalized EWA

model can be used to assess the relative weight of each learning approach on

9Appendix A discusses the identi�cation of the structural parameters of this generalized
EWA model.
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the level of attraction that players attach to available strategies.

4.1. Overview of the results

Figure 1 and Table 2 present information about individual output.10

First, we observe that the average output across all periods (17.6) is higher

than the Cournot output (16), but lower than the Walrasian one (20) which,

however, is the modal output in the �rst 10, and in the last 20 periods.11

The Pareto-dominant collusive outcome of 10 is chosen only in 5.4% of the

cases.

Table 2 shows an increase in the average output as the game proceeds. A

non parametric Wilcoxon signed-rank test indicates that the quantity pro-

duced on average by each group of four players from period 1 to 20 is sig-

ni�cantly lower than the quantity produced from period 21 to 40 (N=12,

p-value: 0.0196).12 Consequently, individual pro�ts decrease across periods,

and on average they remain substantially below the Cournot pro�t (512)

throughout the whole game.

Table 2 also reports the standard deviation of the individual output,

both within groups and across groups. The variability of individual output

within groups does not decrease as subjects gain experience, as it would if all

subjects adopted one of the four simple learning rules described in Section 2.1,

10In Figure 1 and in Table 2, the average is evaluated dropping the 22 observations (out
of 1920) in which the outcome was zero because one of the subjects did not answer in
time.

11We also observe peaks corresponding to multiples of �ve, revealing a tendency to
simplify the game focusing only on some of the available strategies, which can probably
explain why 15 is chosen more often than 16, representing the Nash equilibrium in the
stage game.

12Two-sided test, groups of four subjects are taken as units of observation.
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hence converging on the same output level. For this reason, it is di�cult to

draw conclusions on the learning rule adopted by the subjects, by considering

only their actual behavior: observing how subjects distributed their attention

among the di�erent pieces of information gains even more interest. For this

reason, we now turn to a more in depth analysis of subjects' information

acquisition process. Our data suggest the following result:

Result 1. The majority of subjects adopt an information acquisition pattern

compatible with Adaptive Learning.

A �rst piece of evidence in support of Result 1 comes from Table 3,

which reports information on the fraction of subjects who accessed each piece

of information, and on the average look-up times. It reveals that the vast

majority of subjects look at least at one piece of information before making a

choice. Only about one third of the subjects paid attention to their own past

records, which suggests that experiential learning models �nd weak support

in our data.13 By contrast, aggregate competitors' output in past periods is

an element that most subjects consult, throughout the whole game.

Another noticeable fact emerges from Table 3: the fraction of subjects

looking at the output individually chosen by their competitors in the previ-

ous period increases from the �rst to the second half of the session, by about

10 percentage points. This shift in subjects' attention together with the pre-

viously observed increase in the average output level seems to be in line with

13Subjects who adopt such models should pay attention only to their own past actions
and pro�ts, and not to those of the others. Yet, it could well be that subjects do not look
at these pieces of information because they remember it, and they prefer to acquire new
elements rather than refreshing their memory of something they in fact already know.

19



Vega-Redondo's model. Notice also that on average, subjects do not only

devote attention to the output chosen in the previous period by their best

performing competitor, but also look at the output individually produced by

other competitors, which is in partial contradiction with what is suggested by

Vega-Redondo's theory of imitation. Subjects in this experiment seem to be

concerned not only with the choice made by the competitor who performed

best in the previous period, but also with the output chosen by each of the

others.

Throughout the whole session, on average subjects spend about 20 sec-

onds browsing the available information, before making a choice; no relevant

trend across periods emerges under this respect. The �gures on the average

look-up times also reveal that using the Pro�t and Best Reply calculator

takes longer than accessing the other pieces of information. About half of

the subjects use of the calculator in this game. In particular, this device is

mostly used to evaluate the myopic best reply to some aggregate quantity

hypothetically produced by the player's opponents (see Table 4).

If a subject adopted some kind of adaptive learning, before using the

calculator he should have gathered information about his competitors aggre-

gate output in previous periods, by opening the appropriate boxes.14 When

this happens, we argue that the look-up sequence is consistent with adaptive

learning (AL), and it turns out that this is the case in more than 90% of the

times the calculator is used (Table 4).

14We consider a look-up sequence to be consistent with a best reply when � before using
the pro�t calculator � the subject looks at the aggregate competitors' output, or at the
individual output of each of the other three competitors.
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When using the calculator, subjects have to enter a number corresponding

to the hypothetical aggregate quantity produced by their opponents. This

quantity can be seen as a proxy for their expectations about their competi-

tors' future strategies. Table 5 displays the results obtained regressing this

variable on the sum of the quantities produced by the player's opponents in

the previous six periods.15 According to these results, players' expectations

are explained to a large extent by opponents' output observed in the previous

two periods, in line with models of adaptive learning with short memory.16

4.2. Learning

The novel aspect of our dataset as compared to the previous experiments

on learning in oligopolistic settings is that it allows to verify whether the

learning model adopted by a subject drives both his information acquisition

process, and his actual choices in the Cournot game. To test this hypothesis,

here we consider the four broad categories of learning summarized in Table

1 (Experiential Learning, Adaptive Learning, Imitate the Best and Imitate

the Average), and classify each subject according to the category that better

predicts his information acquisition process. If our hypothesis is correct, we

should observe that a speci�c learning model better predicts the choices of

those subjects whose information acquisition process is compatible with that

learning approach. We �nd the following result.

15The model includes individual �xed e�ects, and standard errors are clustered at the
group level.

16In 44.14% of cases, the quantity used in the calculator is exactly identical to the
quantity produced by competitors in the previous period.
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Result 2. A relation emerges between subjects' information acquisition pro-

cess and their actual behavior: those who focus their attention on the pieces

of information that are crucial for a speci�c learning rule also adjust their

choices consistently with that learning rule.

Our empirical evidence is based on an approach similar to the one pro-

posed by Huck et al. (1999), which we apply �rst over the whole sample, and

then separately for each of the categories of subjects identi�ed on the basis

of their information acquisition process. To classify subjects into the four

learning categories, we consider the total look-up time spent collecting the

information necessary to apply each of the four learning approaches.17 Based

on this measure, for each subject and each period we identify the category of

learning that captures the longest look-up time. We also consider a residual

category, which includes all the cases in which most of the look-up time is

spent looking at pieces of information that are not compatible with any of the

four categories we consider, so that the classi�cation represents a complete

partition. Subjects are then classi�ed into the category, or the categories,

that capture their information acquisition behavior in most of the periods. If

all the four categories perform equally well, the subject is not classi�ed. To

compare the explanatory power of each category of models of learning, sub-

ject by subject, we perform pairwise comparisons between categories, using

17We exclude the look-up time dedicated to the Pro�t and Best-Reply Calculator, be-
cause it is disproportionately longer than the look-up time necessary to acquire the other
pieces of information (see Table 3). Whenever a subject acquires the information necessary
either to Imitate the Average, or to adopt some form of Adaptive Learning, to discriminate
between the two we consider whether the look-up sequence is consistent with a Best-Reply
process.
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a z-test (Suissa and Shuster, 1985).18

This procedure classi�es all subjects but three, and no subjects is clas-

si�ed under more than one category. It yields the following classi�cation:

Adaptive Learning includes 29 subjects, Imitate the Average includes 14

subjects, and Reinforcement Learning includes 2 subjects. The category

of Imitate the Best does not include any subject. Table 6 reports the aver-

age output and the average pro�t, by category of subjects. It reveals that

subjects classi�ed under �Adaptive Learning� on average choose output lev-

els that are signi�cantly lower than those chosen by subjects classi�ed under

�Imitate the Average�. Di�erences in Pro�ts are not statistically signi�cant.19

To explore whether subjects who di�er in terms of their information ac-

quisition process in fact also adopt di�erent learning models, we follow the

approach adopted in Huck et al. (1999), and estimate the following equation:

qti − qt−1i = β0 + βBR(qt−1BR − q
t−1
i ) + βImitB(qt−1ImitB − q

t−1
i )+

+ βImitA(qt−1ImitA − q
t−1
i ) + βT&E(qt−1T&E − q

t−1
i ) (1)

where qt−1BR denotes subject i's best reply to the opponents' aggregate output

in period t − 1, qImitB denotes the output chosen by the most successful

subject(s) in the group, in period t− 1,20 qImitA denotes the average output

chosen by the three opponents in period t − 1, and qT&E denotes the sign

18The R routines used for this part of the analysis have been kindly provided by Karl
Schlag, whom we gratefully thank for suggesting this approach.

19Signi�cance levels are obtained by means of regressions with standard errors clustered
at the group level, which are available from the authors upon request.

20Here and throughout the whole paper, the most successful player may be the subject
himself. In this case qt−1

ImitB = qt−1
i .
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of the variation in the output predicted by a Trial and Error learning model

(Huck et al., 2000, 2004). This last element is not included in the version of

this regression adopted by Huck et al. (1999). We chose to add it in order

to incorporate exactly one model for each of the categories of learning we

consider.

Regression results are reported in Table 7. We �rst estimate the model

over the full sample, then we distinguish between subjects classi�ed under

�Adaptive learning� and all the others, and �nally we isolate those classi�ed

under �Imitate the Average�.21 In line with what already found by Huck

et al. (1999), all coe�cients have the expected sign, but adjustment is only

partial, as all coe�cients are far away from 1. Among all subjects, the

learning rules based on the Best Response Dynamics and on Imitation of the

Average seem to play a substantial role. However, consistently with �ndings

from a related experiment in Bigoni (2010), a strong link emerges between the

information acquisition pattern adopted by the subjects, and their learning

approach. Among subjects classi�ed under �Adaptive Learning�, the learning

rule based on Best-Response Dynamics is the most important factor, even if

the estimated coe�cients βBR and βImitA are not signi�cantly di�erent. By

contrast, the relative weight of the two learning rules based on imitation is

markedly higher for subjects classi�ed under �Imitate the Average�. Finally,

the learning rule based on Trial-and-Error does not �nd strong support in our

data: the coe�cient is not signi�cant for any of the categories of subjects we

21In principle, one would like to estimate the model separately also for subjects classi�ed
under �Reinforcement learning�, but in our case the sample size would be too small for
meaningful elaborations.
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identi�ed. This con�rms what already suggested by data in Table 3, which

shows that on average subjects paid little attention to their own past records.

4.3. Learning to learn

To check whether subjects' approach to learning evolves with experience,

we repeated the classi�catory procedure presented in section 4.2 separately

for the �rst 20 and the last 20 periods of play. Results are reported in Table

8. Most of the subjects (69%) are classi�ed under the same category in the

�rst and second half of the session. Of the remaining subjects, 3 are never

classi�ed, 5 switch from Adaptive Learning to Imitate the Average, 4 switch

to Adaptive Learning from other categories, and 3 are multiply classi�ed in

the last 20 periods.

To the same end, we also estimate equation (1) separately for the �rst and

the second half of the session, using the classi�cation of subjects obtained

separately for these two blocks of periods. Results are reported in Tables 9

and 10.

Two relevant �ndings emerge from Tables 9 and 10. First, in the �rst

20 periods of play, the learning model based on Trial and Error plays a

non negligible role, especially among the subjects classi�ed under Adaptive

Learning; in the last 20 periods instead, the weight of this model becomes

negligible. Second, for all subjects, the relative importance of models based

on imitation increases over time.

4.4. Experience Weighted Attraction learning model.

As the purpose of this study is not to test one or more speci�c models of

learning, but rather to explore how subjects choose between di�erent pieces
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of information available, and how they react to these elements intentionally

collected, we develop an approach �exible enough to incorporate a broader

spectrum of models, and appropriate for assessing which among these is

more suitable to represent agents' behavior. To this aim, we start from the

Experience-Weighted Attraction (EWA) learning model.

The EWA model was �rst proposed by Camerer and Ho (1998) and Ho

et al. (2008).22 It is a model that hybridizes features of other well known

learning rules, such as reinforcement learning and adaptive learning, and

that thanks to its �exibility has proven to �t data better than other models.

This model is based on the idea that every player assigns to each strategy a

given level of attraction, which can be represented by a number. Attractions

are updated after every period, according to the players' experiences, and

determine every player's probability distribution over his or her choice set.

In the original EWA model, attractions are updated using the payo� that

a strategy yielded in a period, and also the foregone pro�ts a player would

have earned had he chosen a di�erent strategy. In the experiment presented

here, foregone payo�s from unused strategies are not known to the players.

Subjects, though, can use the calculator to discover the pro�t a particular

strategy would yield, given the strategies chosen by the other players. As

explained in section 3.1, the calculator has two functions: (i) it can be used

by a player for evaluating the quantity that would yield him the highest pro�t

given the aggregate quantity produced by his competitors, and for calculating

22The version of EWA learning we adopt as the basis of our analysis is a simpler and in
many cases more workable version of the model � named �self tuning EWA learning� �
developed by Ho et al. (2007).
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the pro�t he would earn in the event that he produced the suggested amount

of good (Best Reply calculator); (ii) it can also be used to determine the

pro�t given both the quantity produced by the player and the sum of the

quantities produced by his opponents (Pro�t calculator). By checking how

a player used the calculator, we know precisely which information he uses to

evaluate each strategy in every period.

If they wish, players can also access information about the strategies

individually adopted in the previous period by their competitors. If they

wanted to imitate the strategy chosen by the player who got the highest pro�t

in the previous period � as suggested by Vega-Redondo � they would attach

a higher attraction to that strategy, while virtually no relevance should be

attributed to other elements.

Keeping these peculiar characteristics of the design in mind, we modify

the attraction updating rule, so that in every period t attractions evolve

depending on three elements: (i) the pro�t πi(s
j
i , s−i(t−1)) actually obtained

by the player in period t − 1; (ii) the pro�ts πji,imit(t − 1) obtained by each

of the player's opponents playing strategy sj in the previous period; (iii) the

pro�ts πji,BRC(t) and πji,PC(t) evaluated by the player using the Best Reply

and the Pro�t calculator respectively, given his or her expectations about

the competitors' choices.23

While the player always knows the strategy he played in the previous

round and the pro�t he obtained, πimit, πBRC and πPC may be known or

23If the Pro�t calculator is used more than once by player i in period t for the same
strategy j, the pro�t πj

i,PC(t) is calculated as an average of the various pro�ts associated

to strategy sji by the device (di�erent pro�ts correspond to di�erent hypotheses about the
other players' behavior).

27



unknown to the player, depending on the pieces of information he or she

looks up. To control for the information the subject is aware of, we de�ne

four dummy variables. dji,BRC(t) takes value 1 if in period t player i uses the

Best Reply calculator, and this device indicates strategy sj as the best reply

given the strategies played by the three opponents; it takes value 0 otherwise.

dji,PC(t) takes value 1 if in period t player i uses the Pro�t calculator to check

the pro�t that strategy sj would yield, given the opponents' strategies; it

takes value 0 otherwise. dji,h(t) takes value 1 if player i in period t knows that

his opponent h played strategy sj in the previous period, and 0 otherwise.

bi,h(t − 1) takes value 1 if player h had the highest pro�t in period t − 1

among the opponents of player i, and 0 otherwise.

As a result, the updating rule for attractions is:

Aji (t) =
φi(t)N(t− 1)Aji (t− 1) + απi(s

j
i , s−i(t− 1))I(sji , si(t− 1))

N(t)
+

+
βdji,BRC(t)πji,BRC(t) + γdji,PC(t)πji,PC(t)

N(t)
+

+
ε
∑

h6=i d
j
i,h(t)bi,h(t− 1)πji,imit(t− 1)

N(t)

+
ζ
∑

h6=i d
j
i,h(t)(1− bi,h(t− 1))πji,imit(t− 1)

N(t)

(2)

where sji denotes strategy j of player i, s−i(t) the strategy vector played

by player i's opponents in period t. I(x, y) is an indicator function which

takes value 1 if x = y and value 0 otherwise, and πi(s
j
i , s−i(t)) is the payo� i

choosing strategy j when his or her opponents play s−i(t).

The parameter α measures the impact of reinforcement learning on at-
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tractions; parameters β and γ capture the e�ect of the information obtained

through the pro�t calculator, hence the role of di�erent forms of adaptive

learning; �nally, parameters ε and ζ allow to assess the importance of alterna-

tive models of learning through imitation, of the best and of other opponents,

respectively.

N(t) is a measure of the weight players put on past attractions relative

to present ones, and is de�ned as: N(t) = φi(t)N(t − 1) + 1 t ≥ 1. It can

be interpreted as the number of �observation-equivalents� of past experience

relative to one period of current experience. The initial valueN(0) is set equal

to 1. Function φi(t) has the role of a discount factor, that depreciates previous

attractions. The hypothesis made in Ho et al. (2007) is that the weight put

on previous experiences should be lower when the player senses that the

environment is unstable or that the strategies adopted by her opponents

are changing. The authors then build a �surprise index� Si(t) measuring

the di�erence between opponents' most recently chosen strategies and the

strategies they adopted in all previous periods, and let φi(t) = 1 − 1
2
Si(t).

The surprise index is made up of two main elements: a cumulative history

vector hi(t) and a recent history vector ri(t). The vector element hji (t) =∑t
τ=1 I(s

j
−i,s−i(τ))

t
measures the frequency with which strategy sj−i was adopted

by player i's opponents in period t and in all previous ones. Vector ri(t)

has the k-th element equal to 1 and all other elements equal to 0, where

sk−i = s−i(t). The surprise index Si(t) simply sums up the squared deviations

between the cumulative history vector hi(t) and the immediate history vector

ri(t):

Si(t) =
∑
j

(hji (t)− r
j
i (t))

2.
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Since in the game considered here the strategy space is rather big, we use

the sum of the quantities produced by player's opponents instead of s−i(t) �

representing the strategy adopted by the three opponents in period t � when

calculating the surprise index Si(t).24

Attractions determine probabilities. More speci�cally: the probability

Pijt that player i chooses strategy j in period t is assumed to be monotonically

increasing in Aji (t) and decreasing in Aκi (t), κ 6= j. The relation between

attractions and choice probabilities is represented by a logistic stochastic

response function:

Pijt =
eλA

j
i (t)∑

k e
λAki (t)

(3)

where the parameter λ measures sensitivity of players to attractions.25

Appendix A discusses the identi�cation of the model parameters and pro-

vides information about the variables initialization. The Generalized EWA

model can be written as a conditional logit model with reduced form param-

eters τ1 ≡ λα, τ2 ≡ λβ, τ3 ≡ λγ, τ4 ≡ λε , τ5 ≡ λζ that completely charac-

terize it. While the scale factor λ is not identi�ed, provided that λ 6= 0,26 the

reduced form parameters τk, allow us to assess the relative strength of each

factor on the attractions Aji (t).
27 Therefore, in what follows we will focus on

24By de�nition, Si(t) is bounded between 0 and 2, and as a consequence, φi(t) is bounded
between 0 and 1. Since N(0) = 1, it also follows that N(t) ≥ 1 ∀t.

25Probabilities are monotonically increasing in attractions under the assumption that
λ > 0.

26Note that if λ = 0, all reduced form parameters should also be zero. One can check
whether the assumption is plausible in each speci�c empirical application.

27Properties of the maximum likelihood estimator for the conditional logit parameters
τk, k = 1, 2, . . . , 5 follow from McFadden (1974) who presents necessary and su�cient
conditions for the existence of a maximum and its uniqueness.
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the ratios between structural parameters (α/β, α/γ, α/ε, α/ζ, . . ., ε/ζ).

We estimate the reduced form conditional logit model by maximum like-

lihood on four samples: �rst, we estimate the model on the full sample, in-

cluding all individuals and all periods. Then we split the sample into groups

of individuals following the classi�cation introduced in Section 4.2 and es-

timate the model in each subsample, as in Table 7. We expect that the

relative weight of each factor in determining the attraction changes across

subsamples: information coming from the pro�t calculator (parameters β

and γ) should have the strongest impact on attractions for subjects classi�ed

under �Adaptive learning�; conversely, attractions should be mainly driven

by information about the opponents' pro�ts (parameters ε and ζ) for sub-

jects classi�ed under �Imitate the Average�. We can summarize our results

as follows:

Result 3. Adaptive learning is the main driving force for all types of subjects.

Imitation is also an important factor, especially for subjects who pay relatively

more attention to their opponents' individual choices.

Support for Result 3 comes from Table 11 and Table 12. Reduced form

parameters (in Table 11) are precisely estimated in all cases, and they are

signi�cantly di�erent from zero.28 Based on these results, we can rule out

28The estimated information matrix is non-singular supporting empirical identi�cation
of the model (Skrondal and Rabe-Hesketh, 2004, chpt. 5). The condition numbers �
de�ned as the square root of the ratio of the largest to the smallest eigenvalue of the
empirical information matrix at the maximum likelihood solution � associated to the es-
timated models reported in Table 11 range between 1.6 and 3.2, i.e. are small. The
estimated correlation between parameters is also small (not exceeding 0.00001 in all cases,
for all subsamples) further supporting the fact that in our sample we observe enough
variability to identify all the reduced form parameters.
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that λ is zero in all subsamples; as a consequence, all the relative weights

of the di�erent pieces of information on attractions are well de�ned. Their

estimates are presented in Table 12. Standard errors and con�dence intervals

are computed via delta method.

Results indicate that Adaptive learning is the main driving force, over the

full sample, and in the three speci�c subsamples: in most cases, parameters β

and γ are signi�cantly larger than α, ε and ζ.29 Estimates in Table 11 suggest

that Reinforcement learning and Imitation also play a role, as the coe�cients

for λα, λε, and λζ are all signi�cantly di�erent from zero. However, one can

hardly detect any di�erence about the magnitude of role of the two (Table

12, 95% C.I. for α/ε and α/ζ include 1 in almost all samples). In addition,

the evidence supports the idea that subjects, when evaluating a strategy, do

take into account the pro�ts realized by other players choosing that strategy,

but do not attach more weight to the pro�t realized by the best among their

competitors. Indeed, the 95% con�dence interval for ε/ζ always includes 1.

The comparison of results between subjects classi�ed under �Imitate the

average� and under �Adaptive learning� con�rms that, for the �rst subsample,

Imitation becomes relatively more important than Adaptive and Reinforce-

ment learning, consistently with what we �nd in Table 7. The di�erence

across sub-samples, however, is not statistically signi�cant.30 Finally we ob-

serve that, according to our estimates, subjects tend to attribute similar

29To see this, note that the bounds of the 95% con�dence intervals are both below 1 for
the ratios α/β and α/γ, while for the ratios β/ε, β/ζ, γ/ε, and γ/ζ they are both above
1, in all samples but the one where we group together all subjects that are not classi�ed
under �Adaptive learning�.

30We tested this by estimating the fully interacted model. Results are available from
the authors upon request.
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importance to the results from the Best Reply calculator and from the Pro�t

Calculator: the 95% con�dence interval for β/γ includes 1, in the full sample

(however, it does not include it for the sub-sample of subjects classi�ed as

�Adaptive learning�, where β < γ at 5% level, since the extremes of 95%

con�dence interval for the parameter β/γ are both below 1).

5. Conclusion

In this paper we presented an experiment in which subjects were asked to

play a repeated Cournot game with incomplete information. The �rst aim of

the experiment was to check what feedback information subjects are really

interested in, and to test how information is linked to the learning model

adopted and in turn to the market outcome.

According to our data, learning appears to be a composite process, in

which di�erent components coexist. Adaptive learning seems to be the lead-

ing element, as subjects form expectations about their opponents' future

actions and try to best reply to them. It is also noticeable that in most of

the cases the opponents' output inputted in the pro�t calculator � a proxy

for players' expectations � is explained to a large extent by opponents' out-

put observed in the previous two periods. This means that either subjects

expected their opponents not to change their strategy much or that they

decided to use the pro�t calculator only when the opponents' strategy was

stable enough to let them make predictions about the future. A considerable

amount of look-up time is dedicated to the strategies individually adopted

by competitors. This could be compatible with imitation of the best, as in

Vega-Redondo's theory. Yet, our results suggest that players are not only
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interested in output produced by the most successful competitor, but by all

of their opponents. These results are con�rmed by the estimates obtained via

our generalized version of Experience Weighted Attraction learning model,

suggesting that there is no di�erence between the weight attached to the

pro�ts collected by the most successful opponent and by the other competi-

tors and that imitation is not the main driving force in the observed learning

process.

The results we obtain via our generalized EWA model stress the impor-

tance played by reinforcement learning in this setting: even though subjects

do not pay much attention to information concerning their own past history

of play, when assessing the strength of a strategy they seem to take into

greater consideration their own experience than what they know about other

players' results. This lead us to think that probably they do not need to look

at the relative information, because they have a clear memory at least of the

most recent periods.

This experiment aims at contributing to the understanding of learning

mechanisms in game-like situations. It adopts a new experimental approach,

based on the �Mouselab� technique, which allows us to complement the ob-

servation of the choices actually made by subjects with detailed data on their

information acquisition patterns. Our results suggest that this tool could be

usefully adopted in other experiments on learning and to investigate other

interesting situations in which imperfect information of some of the agents

plays a crucial role, or in which reputation is an asset. Examples might

be auctions and �nancial markets, but also markets where hiding some at-

tributes of the good being sold or the price of its add-ons may enable the
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sellers to get pro�ts well above the competitive level. In experiments on these

issues, it could be useful to have a strict control on the pieces of information

subjects focus their attention on. Indeed, a better understanding of the rela-

tion between the inputs provided to economic agents and their choices could

lead to improvements in the regulation of information disclosure, bringing

the market outcome toward a more e�cient equilibrium.
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6. Tables & Figures

Figure 1: Frequency distributions of individual output levels, across periods.
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Table 1: information required by di�erent models of learning.

piece of information E
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aggregate competitors' quantity in previous rounds x x
player's own pro�ts and quantities in previous rounds x
last round individual pro�t and quantity of all com-
petitors

x

last round individual pro�t and quantity of the best
competitor

x

pro�t/best reply calculator x x∗
∗ Only at the beginning of the game, when players do not know the structure of the

market.

Table 2: Individual output and pro�ts.

Output
Average s.d. across groups s.d. within groups Pro�t

Periods 1-10 16.7 2.7 5.1 220.9
Periods 11-20 17.3 2.0 5.1 184.4
Periods 21-30 18.2 2.6 5.9 142.8
Periods 31-40 18.1 2.6 5.4 149.8

Total 17.6 2.5 5.4 174.4
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Table 3: Pattern of information acquisition.

Periods

Total 1-20 21-40

Pro�t and best-reply calculator 49.9%(13.7) 51.8%(14.3) 48.1%(13.0)

Aggregate competitors' output 68.1% (6.1) 66.8% (6.2) 69.5% (6.0)

Player's past pro�ts and output 34.4% (6.5) 34.6% (6.3) 34.3% (6.8)

Output of the best performer 41.3% (4.3) 36.8% (4.2) 45.7% (4.4)

Output of other competitors 45.3% (6.2) 39.8% (6.4) 50.8% (6.1)

Total information 93.6%(19.6) 92.7%(19.9) 94.5%(19.3)

Note: Average look-up times, in seconds, are reported in parentheses. Averages are
computed considering only subjects who accessed each speci�c piece of information.

Table 4: Use of the two functions of the calculator, and percentage of observations
in which the look-up sequence is consistent with a best reply to the aggregate quantity
observed in the previous period.

N. obs (%) % of Look-up sequences
consistent with

Adaptive Learning
both functions 130 (13.56%) 96.92%
1st function (best reply) only 584 (60.90%) 93.84%
2nd function only 245 (25.55%) 87.76%
total 959 92.70%

Pro�t calculator not used 961 �
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Table 5: Quantity input into the Pro�t Calculator

1st function (best reply) 2nd function
Competitors' aggregate
output in period:
t− 1 0.466*** 0.541***

(0.06) (0.06)
t− 2 0.149*** 0.192**

(0.03) (0.06)
t− 3 0.031 -0.053

(0.03) (0.07)
t− 4 0.072 0.134*

(0.04) (0.07)
t− 5 0.024 -0.086

(0.03) (0.10)
t− 6 -0.017 0.029

(0.03) (0.05)
Constant 14.184** 12.411

(4.59) (7.93)

Sample size 649 330
The symbols ∗∗∗, ∗∗ and ∗ indicate signi�cance at the 1%, 5% and 10% level, respectively.

Table 6: Classi�cation of subjects into categories of learning models.

Category N. Output Pro�t

Mean [C. I.] Mean [C. I.]

Others 5 18.8 [14.9,22.8] 170.0 [94.0,246.0]
∼ ∼

Imitate the Average 14 18.7 [17.2,20.1] 187.6 [155.6,219.6]
∨∗∗ ∼

Adaptive Learning 29 16.9 [16.2,17.5] 164.9 [139.2,190.7]

39



Table 7: Regression results from equation (1).

Parameter Samples

Full Adaptive Others Imitate the
Sample Learning Average

Period 0.049*** 0.044** 0.062** 0.051**
(0.016) (0.019) (0.029) (0.022)

βBR 0.401*** 0.443*** 0.322*** 0.277***
(0.024) (0.018) (0.049) (0.086)

βImitB 0.058** 0.024 0.120*** 0.154***
(0.023) (0.030) (0.042) (0.038)

βImitA 0.378*** 0.330*** 0.464*** 0.471***
(0.067) (0.070) (0.103) (0.079)

βT&E 0.104 0.154 0.048 0.193
(0.135) (0.192) (0.264) (0.299)

β0 0.301 0.122 0.607 0.530
(0.344) (0.468) (0.487) (0.658)

Sample size 1809 1093 716 528
Log-likelihood -5504.5 -3304.3 -2184.4 -1565.5

Wald tests on the estimated coe�cients (p-values).

βBR = βImitB 0.0000*** 0.0000*** 0.0064*** 0.2817
βBR = βImitA 0.7800 0.1502 0.2416 0.1948
βImitA = βImitB 0.0002*** 0.0010*** 0.0087*** 0.0005***

The symbols ∗∗∗, ∗∗ and ∗ indicate signi�cance at the 1%, 5% and 10% level, respectively.
The model includes random e�ects at the individual level, and standard errors are clustered
at the group level. The regression is run using the Stata GLLAMM package (Skrondal
and Rabe-Hesketh, 2004).
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Table 9: Regression results from equation (1), for periods 1-20.

Parameter Samples

Full Adaptive Others Imitate the
Sample Learning Average

Period 0.039 0.001 0.147*** 0.056
(0.030) (0.050) (0.041) (0.137)

βBR 0.415*** 0.439*** 0.304** 0.451***
(0.038) (0.024) (0.136) (0.093)

βImitB 0.056 -0.031 0.102 0.305***
(0.039) (0.049) (0.102) (0.095)

βImitA 0.370*** 0.340*** 0.564*** 0.273**
(0.087) (0.094) (0.089) (0.130)

βT&E 0.403*** 0.474* 0.174 0.654
(0.152) (0.262) (0.294) (0.444)

β0 0.398 0.813 -0.442 0.241
(0.557) (0.769) (0.525) (2.106)

Sample size 855 499 249 107
Log-likelihood -2604.3 -1505.3 -740.6 -333.9

Wald tests on the estimated coe�cients (p-values).

βBR = βImitB 0.0000*** 0.0000*** 0.3831 0.4051
βBR = βImitA 0.6772 0.2947 0.1967 0.3669
βImitA = βImitB 0.0012*** 0.0053*** 0.0000*** 0.7990

The symbols ∗∗∗, ∗∗ and ∗ indicate signi�cance at the 1%, 5% and 10% level, respectively.
The model includes random e�ects at the individual level, and standard errors are clustered
at the group level. The regression is run using the Stata GLLAMM package (Skrondal
and Rabe-Hesketh, 2004).
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Table 10: Regression results from equation (1), for periods 21-40.

Parameter Samples

Full Adaptive Others Imitate the
Sample Learning Average

Period 0.016 0.024 -0.035 0.173
(0.021) (0.027) (0.029) (0.127)

βBR 0.415*** 0.471*** 0.331*** 0.562**
(0.031) (0.040) (0.062) (0.237)

βImitB 0.067* 0.105*** 0.073 -0.192
(0.039) (0.037) (0.060) (0.305)

βImitA 0.503*** 0.438*** 0.592*** 0.700**
(0.040) (0.053) (0.063) (0.282)

βT&E -0.179 -0.270 0.162 -2.175***
(0.178) (0.221) (0.198) (0.680)

β0 1.349** -0.378 4.253*** 0.416
(0.678) (0.951) (1.129) (3.952)

Sample size 954 537 378 79
Log-likelihood -2866.3 -1549.1 -1153.8 -256.3

Wald tests on the estimated coe�cients (p-values).

βBR = βImitB 0.0000*** 0.0000*** 0.2367 0.0076***
βBR = βImitA 0.0940* 0.4931 0.0142** 0.5040
βImitA = βImitB 0.0000*** 0.0003*** 0.0008*** 0.0000***

The symbols ∗∗∗, ∗∗ and ∗ indicate signi�cance at the 1%, 5% and 10% level, respectively.
The model includes random e�ects at the individual level, and standard errors are clustered
at the group level. The regression is run using the Stata GLLAMM package (Skrondal
and Rabe-Hesketh, 2004).
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Table 11: Conditional logit model estimates. Full sample and subsample by information
acquisition patterns.

Parameter Samples

Full Adaptive Others Imitate the
Sample Learning Average

Reinforcement

Learning

λα 0.009∗∗∗ 0.006∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.001) (0.002) (0.001) (0.001)
Adaptive

Learning

λβ 0.017∗∗∗ 0.017∗∗∗ 0.018∗∗∗ 0.016∗∗∗

(0.001) (0.001) (0.003) (0.003)
λγ 0.020∗∗∗ 0.022∗∗∗ 0.015∗∗∗ 0.017∗∗∗

(0.002) (0.003) (0.005) (0.006)
Imitation

λε 0.006∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.001)
λζ 0.007∗∗∗ 0.006∗∗∗ 0.008∗∗∗ 0.009∗∗∗

(0.001) (0.001) (0.002) (0.002)

Obs 58032 35061 22971 16926
LogL -5673.948 -3332.253 -2326.865 -1700.242
Condition
number+

2.001 1.668 3.250 3.062

N.subjects++ 48 29 19 14

+ The condition number is de�ned as the square root of the ratio of the largest to the

smallest eigenvalue of the empirical information matrix at the maximum likelihood solu-

tion.
++ Each subjects contributes to the estimates with J × (T − 1) = 31× 39 observations. 3

subjects are not classi�ed (see Section 4.2 in the text) but observations for these subjects

are included in the full sample. Standard errors are clustered at the group level and allow

for dependency within clusters.
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Table 12: Maximum likelihood estimates of the relative weight of each factor on attractions
calculated using the reduced form estimates in Table 11. Standard errors obtained by
the delta method in parentheses. Full sample and subsample by information acquisition
patterns.

Structural Samples

Parameters Adaptive Imitate the
Contrast Full Sample Learning Others Average

α/β 0.512∗∗∗ 0.328∗∗∗ 0.624∗∗∗ 0.666∗∗∗

s.e. (0.063) (0.120) (0.057) (0.105)
95% c.i. [0.388,0.637] [0.093,0.562] [0.513,0.735] [0.450,0.872]

α/γ 0.434∗∗∗ 0.255∗∗∗ 0.749∗∗∗ 0.643∗∗∗

(0.046) (0.085) (0.280) (0.264)
95% c.i. [0.343,0.524] [0.088,0.442] [0.201,1.297] [0.125,1.161]

α/ε 1.349∗∗∗ 0.911∗∗∗ 1.638∗∗∗ 1.380∗∗∗

(0.224) (0.357) (0.303) (0.237)
95% c.i. [0.910,1.787] [0.211,1.611] [1.044,2.232] [0.916,1.845]

α/ζ 1.201∗∗∗ 0.880∗∗∗ 1.321∗∗∗ 1.187∗∗∗

(0.208) (0.375) (0.295) (0.198)
95% c.i. [0.794,1.608] [0.145,1.614] [0.743,1.899] [0.799,1.575]

β/γ 0.847∗∗∗ 0.778∗∗∗ 1.201∗∗∗ 0.966∗∗∗

(0.921) (0.097) (0.480) (0.408)
95% c.i. [0.667,1.027] [0.589,0.967] [0.261,2.141] [0.167,1.766]

β/ε 2.633∗∗∗ 2.781∗∗∗ 2.627∗∗∗ 2.074∗∗∗

(0.333) (0.406) (0.352) (0.386)
95% c.i. [1.980,3.287] [1.986,3.576] [1.936,3.318] [1.318,2.830]

β/ζ 2.345∗∗∗ 2.684∗∗∗ 2.118∗∗∗ 1.783∗∗∗

(0.419) (0.512) (0.489) (0.462)
� 95% c.i. [1.525,3.166] [1.682,3.687] [1.162,3.075] [0.878,2.687]

γ/ε 3.109∗∗∗ 3.575 ∗∗∗ 2.187∗∗∗ 2.146∗∗∗

(0.627) (0.818) (0.932) (0.903)
95% c.i. [1.880,4.338] [1.972,5.178] [0.361,4.014] [0.375,3.917]

γ/ζ 2.769∗∗∗ 3.451∗∗∗ 1.764∗∗∗ 1.845∗∗∗

(0.521) (0.853) (0.801) (0.728)
95% c.i. [1.749,3.790] [1.778,5.123] [0.194,3.334] [0.419,3.271]

ε/ζ 0.890 0.967∗∗∗ 0.806∗∗∗ 0.860∗∗∗

(0.158) (0.153) (0.205) (0.195)
95% c.i. [0.582,1.200] [0.665,1.266] [0.404,1.209] [0.477,1.242]
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Appendix A. Identi�cation of the Generalized EWA Model

To show that the model parameters are identi�ed we follow three steps:

we �rst show that the generalized EWA model can be written as a conditional

logit model; then we discuss whether the parameters of the conditional logit

model are identi�ed. The statistical properties of the maximum likelihood

estimator for the parameters of the conditional logit model are discussed in

McFadden (1974) who presents necessary and su�cient conditions for the

existence of a maximum (Lemma 3) and its uniqueness. As in McFadden

(1974), we derive the �rst order conditions (FOC) for maximum likelihood

(ML) estimation and compute the second order derivatives. We discuss what

type of variation in the data is required for the ML-FOC not to be triv-

ially met. Finally we discuss the link between the conditional logit models

parameters and the parameters of the generalized EWA model.

In the main text, we also discuss the empirical identi�cation by checking

non-singularity of the estimated information matrix (Skrondal and Rabe-

Hesketh, 2004, chpt. 5). Empirical identi�cation (EI) is based on properties

of the estimated parameters rather than the theoretical reduced form param-

eters. Skrondal and Rabe-Hesketh (2004) stress that EI has some advantages

compared to the analytical method: i) it can be based on the estimated in-

formation matrix, a natural byproduct of maximum likelihood estimation;

ii) it assesses identi�cation where it matters, i.e. at parameter estimates; iii)

it addresses problems inherent in the sample on which inferences must be

based. In our sample, the estimated information matrix is non-singular in

both the full sample and in all the sub-samples considered.

There are two main di�erences between the standard EWA model and

1



our generalized EWA model: �rst, we use the version of the generalized

EWA model that incorporates self-tuning (Ho et al., 2007); second we use a

di�erent de�nition of the attraction updating rule. As discussed in Section

4.4 in the main text, the updating rule in the generalized EWA is

Aji (t) = N(t)−1[φi(t)N(t− 1)Aji (t− 1) + αI(sji , si(t))πi(s
j
i , s−i(t))+

+ βdji,BRC(t)πji,BRC(t) + γdji,PC(t)πji,PC(t)+

+ ε
∑
h6=i

dji,h(t)bi,h(t− 1)πji,imit(t)+

+ ζ
∑
h6=i

dji,h(t)(1− bi,h(t− 1))πji,imit(t)]

This generalized version of the updating rule di�ers from standard EWA in

the following: i) hypothesized payo�s do not play any role but only observed

forgone payo�s matter; ii) terms associated with the information acquisition

behavior are added.

To discuss the identi�cation of the model parameters it is useful to re-

write the updating rule as function of the initial attractions Aji1. To simplify

notation, consider the re-parametrization below

Aji (t) = x0itA
j
i (t− 1) +

5∑
k=1

θkx
kj
it

where

x0it = φi(t)
N(t−1)
N(t)

x1jit =
I(sji ,si(t))πi(s

j
i ,s−i(t))

N(t)
and θ1 ≡ α using Section 4.4 notation

x2jit =
dji,BRC(t)π

j
i,BRC(t)

N(t)
and θ2 ≡ β using Section 4.4 notation
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x3jit =
dji,PC(t)π

j
i,PC(t)

N(t)
and θ3 ≡ γ using Section 4.4 notation

x4jit =
∑
h 6=i d

j
i,h(t)bi,h(t−1)π

j
i,imit(t)

N(t)
and θ4 ≡ ε using Section 4.4 notation

x5jit =
∑
h 6=i d

j
i,h(t)(1−bi,h(t−1))π

j
i,imit(t)

N(t)
and θ5 = ζ using Section 4.4 notation.

By backward substitution, for t ≥ 2, we get

Aji (t) = Aji (1)
t∏

s=2

x0is +
5∑

k=1

θk(
t−1∑
s=2

(xkjis

t∏
l=s+1

x0il) + xkjit ) (A.1)

where Aji1 is the initial attraction for strategy j for individual i.1

We set N(0) = 1, Si(1) = 1 ∀i; as a consequence, φi(1) = 1
2
, N(1) = 3

2
, as

explained in Section 4.4. We also need to describe the equation for �rst period

attractions Aji (1): since before the experiment starts no participant has any

information on the game and the available strategies, we set Aji (0) = 0. In

period 1, no information on past actions and pro�ts of group members is

available, hence attractions for period one are only determined by how each

subject used the pro�t and best reply calculator. Therefore, �rst period

attractions are described as in equation (A.2) below.

Aji (1) = β
dji,BRC(1)πji,BRC(1)

N(1)
+ γ

dji,PC(1)πji,PC(1)

N(1)
≡ θ2x

2j
i1 + θ3x

3j
i1 (A.2)

1Notice that the factor
∏t

s=2 x
0
is is always strictly smaller than 1. To see this, remember

that N(t) = φi(t)N(t − 1) + 1 � hence x0it can be rewritten as x0it = 1 − 1
N(t) � and

N(t) ≥ 1 ∀t (see footnote 24 in Section 4.4). This implies that the process determining
the attraction is not explosive and initial attractions do not have an increasingly large
in�uence through time even if there is some persistence. Indeed, empirical results from
the generalized EWA model are robust to di�erent choices for the initial attractions, as
the comparison between the results reported in Section 4.4 and those reported in Bigoni
(2009) shows.
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Substituting equation (A.2) in equation (A.1), we get

Aji (t) =θ2x
2j
i1

t∏
s=2

x0is + θ3x
3j
i1

t∏
s=2

x0is +
5∑

k=1

θk(
t−1∑
s=2

(xkjis

t∏
l=s+1

x0il) + xkjit )

=
3∑

k=2

θk(x
kj
i1

t∏
s=2

x0is +
t−1∑
s=2

(xkjis

t∏
l=s+1

x0il) + xkjit )

+
∑

k∈(1,4,5)

θk(
t−1∑
s=2

(xkjis

t∏
l=s+1

x0il) + xkjit ) t ≥ 2

Following Camerer and Ho (1999) and Salmon (2001), the probability Pijt

that individual i chooses strategy j at time t can be generally written as

Pijt =
exp(f(Aji (t))∑
j exp(f(Aji (t))

(A.3)

with f(·) monotone increasing, i.e. each individual chooses the strategy that

has the highest attraction. The formulation typically adopted is

Pijt =
exp(λAji (t))∑30
j=0 exp(λA

j
i (t))

(A.4)

with the restriction λ > 0.

Following the statistical literature on models for categorical responses we

refer to λAji (t) as the index or linear predictor. In our generalized EWA the

index is

f(Aji (t)) = λAji (t) = λAji1

t∏
s=2

x0is+
5∑

k=1

λθk

(
t−1∑
s=2

xkjis (
t∏

l=s+1

x0il) + xkjit

)
t ≥ 2

(A.5)
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and

λAji (1)
t∏

s=2

x0is = λβ
dji,BRC(1)πji,BRC(1)

N(1)

t∏
s=2

x0is + λγ
dji,PC(1)πji,PC(1)

N(1)

t∏
s=2

x0is

= λβx2ji1

t∏
s=2

x0is + λγx3ji1

t∏
s=2

x0is

= λθ2x
2j
i1

t∏
s=2

x0is + λθ3x
3j
i1

t∏
s=2

x0is

(A.6)

The likelihood for sample (yijt)i=1,...,N ;t=2,...,40;j=0,...,30 is:

L(λ, α, β, γ, ε, ζ) ∝
48∏
i=1

40∏
t=2

30∏
j=0

P
yijt
ijt (A.7)

where yijt are binary indicators that take the value 1 if individual i at time

t chooses strategy j and 0 otherwise. A convenient re-parametrization of

the model to discuss parameters identi�cation is τ0 = λ and τk = λθk, k =

1, 2, . . . , 5.2 The log-likelihood corresponding to equation (A.7) becomes

l(τ) = l(τ1, . . . τ5) ∝
48∑
i=1

40∑
t=2

30∑
j=0

yijtlog(Pijt) (A.8)

Incorporating the expression for the probabilities Pijt in equation (A.4), we

2The model log-likelihood function can be written as a function of τk, k = 1, 2, . . . , 5.
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get

l(τ) ∝
48∑
i=1

40∑
t=2

30∑
j=0

yijtlog

(
exp(λAji (t))∑30
l=0 exp(λA

l
i(t))

)

=
48∑
i=1

40∑
t=2

30∑
j=0

yijt

(
λAji (t)− log

( 30∑
l=0

exp
(
λAli(t)

)))

=
48∑
i=1

40∑
t=2

30∑
j=0

yijtλA
j
i (t)−

48∑
i=1

40∑
t=2

(
30∑
j=0

yijt)log
( 30∑
l=0

exp
(
λAli(t)

))
=

48∑
i=1

40∑
t=2

30∑
j=0

yijtλA
j
i (t)−

48∑
i=1

40∑
t=2

1 · log
( 30∑
j=0

exp
(
λAli(t)

))

where the linear predictors λAji (t) are given by equations (A.5) and (A.6).

The statistical properties of the maximum likelihood estimator for the

parameters τk, k = 1, 2, . . . , 5 are discussed in McFadden (1974) who presents

necessary and su�cient conditions for the existence of a maximum (Lemma 3)

and its uniqueness. We now show that di�erentiation of the log-likelihood for

our model yields conditions analogous to equation (19) and (20) in McFadden

(1974).

Substituting the expression of the linear predictors λAji (t) in the log-

likelihood, we get

l(τ) ∝
48∑
i=1

40∑
t=2

30∑
j=0

yijt

(
(τ2x

2j
i1 + τ3x

3j
i1 )

t∏
s=2

x0is +
5∑

k=1

τk

( t−1∑
s=2

xkjis (
t∏

l=s+1

x0il) + xkjit

))

−
48∑
i=1

40∑
t=2

log

(
30∑
j=0

exp

(
(τ2x

2j
i1 + τ3x

3j
i1 )

t∏
s=2

x0is +
5∑

k=1

τk

( t−1∑
s=2

xkjis (
t∏

l=s+1

x0il) + xkjit

)))
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Let

• ∂λAji (t)

∂τk
= (
∑t−1

s=2 x
kj
is

∏t
l=s+1 x

0
il + xkjit ) ≡ wkjit , k = 1, 4, 5

• ∂λAji (t)

∂τk
=
∑t−1

s=1 x
kj
is

∏t
l=s+1 x

0
il + xkjit ≡ zkjit , k = 2, 3

• w̄kit ≡
∑30

j=0 Pijtw
kj
it

• z̄kit ≡
∑30

j=0 Pijtz
kj
it

As a consequence, we can write

• ∂Pijt
∂τk

= Pijt(w
kj
it − w̄kit), k = 1, 4, 5

• ∂Pijt
∂τk

= Pijt(z
kj
it − z̄kit), k = 2, 3

The �rst derivatives of the log-likelihood function are:

∂l(τ)

∂τk
=

48∑
i=1

40∑
t=2

30∑
j=0

yijtz
kj
it −

48∑
i=1

40∑
t=2

1(∑30
j=0 exp

(
(τ2x

2j
i1 + τ3x

3j
i1 )
∏t

s=2 x
0
is +

∑5
k=1 τkw

kj
it

))
·
( 30∑

j=0

exp
(

(τ2x
2j
i1 + τ3x

3j
i1 )

t∏
s=2

x0is +
5∑

k=1

τ5w
kj
it

)
zktij

))

=
48∑
i=1

40∑
t=2

30∑
j=0

yijtz
kj
it −

48∑
i=1

40∑
t=2

30∑
j=0

Pijtz
kj
it =

48∑
i=1

40∑
t=2

30∑
j=0

(
(yijt − Pijt)zkjit

)
k = 2, 3

exploiting the de�nition of Pijt; similarly

∂l(τ)

∂τk
=

48∑
i=1

40∑
t=2

30∑
j=0

(yijt − Pijt)wkjit k = 1, 4, 5

The derivatives above are analogous to those in equation (19) in McFadden

(1974).
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The second order derivatives are

∂2l(τ)

∂τk∂τk
=−

48∑
i=1

40∑
t=2

30∑
j=0

wkjit

(
Pijt
(
wkjit − w̄kit

))
= −

48∑
i=1

40∑
t=2

30∑
j=0

Pijt
(
wkjit − w̄kit

)2
k = 1, 4, 5

where the last equality follows from the fact that
∑

j Pijt(w̄
k
it)

2 =
∑

j Pijtw
kj
it w̄

k
it.

∂2l(τ)

∂τk∂τk
= −

48∑
i=1

40∑
t=2

30∑
j=0

zkjit

(
Pijt
(
zkjit − z̄kit

))
= −

48∑
i=1

40∑
t=2

30∑
j=0

Pijt
(
zkjit − z̄kit

)2
k = 2, 3

where the last equality follows from the fact that
∑

j Pijt(z̄
k
it)

2 =
∑

j Pijtz
kj
it z̄

k
it.

∂2l(τ)

∂τl∂τk
=

48∑
i=1

40∑
t=2

( 30∑
j=0

wkjit Pijt(z
lj
il − z̄

l
it)
)

= −
48∑
i=1

40∑
t=2

(( 30∑
j=0

zljitPijtw
kj
it

)
− w̄kitz̄lit

)

and

∂2l(τ)

∂τk∂τl
=

48∑
i=1

40∑
t=2

( 30∑
j=0

zljitPijt(w
kj
it − w̄kit)

)
= −

48∑
i=1

40∑
t=2

(( 30∑
j=0

zljitPijtw
kj
it

)
− w̄kitz̄lit

)
.

Hence, the matrix of the second order derivatives is symmetric.
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∂2l(τ)

∂τl∂τk
=
∂2l(τ)

∂τk∂τl

= −
48∑
i=1

40∑
t=2

(( 30∑
j=0

zljitPijtw
kj
it

)
− w̄kitz̄lit

)
= −

48∑
i=1

40∑
t=2

(( 30∑
j=0

zljitPijtw
kj
it

)
−
(( 30∑

j=0

zljitPijt
)( 30∑

j=0

wkjit Pijt
))
· 1

+
( 30∑
j=0

zljitPijt
)( 30∑

j=0

wkjit Pijt
)
−
( 30∑
j=0

zljitPijt
)( 30∑

j=0

wkjit Pijt
))

= −
48∑
i=1

40∑
t=2

(
(

30∑
j=0

zljitPijtw
kj
it )−

(
(

30∑
j=0

zljitPijt)(
30∑
j=0

wkjit Pijt)
)
·

30∑
j=0

Pijt

+
( 30∑
j=0

zljitPijt
)( 30∑

j=0

wkjit Pijt
)
−
( 30∑
j=0

zljitPijt
)( 30∑

j=0

wkjit Pijt
))

= −
48∑
i=1

40∑
t=2

30∑
j=0

Pijt

(
zlji1w

kj
it − z

lj
it w̄

k
it − z̄litw

jk
it + w̄kitz̄

l
it

)
= −

48∑
i=1

40∑
t=2

30∑
j=0

(zljit − z̄lit)Pijt(w
kj
it − w̄kit)

These derivatives are analogous to equation (20) in McFadden (1974). The

matrix of the second order derivatives is the negative of a weighted moment

matrix of the independent variables and thus is negative semide�nite. It

follows that the log-likelihood function is concave in τ . The necessary and

su�cient condition for the matrix of the second order derivatives to be neg-

ative de�nite (Axiom 5 in McFadden, 1974) is expected to hold in our case

because the order condition is satis�ed (i.e. number of observations larger to

the number of parameters) and the data vary across alternative sets and are

9



not collinear.3

The properties of the estimator thus follow from McFadden (1974). More

speci�cally, in our case, existence is guaranteed by the fact that: i) the order

condition is satis�ed; ii) the data vary across alternative sets and are not

collinear; iii) the sample size is large, thus the probability that Axiom 6

(McFadden, 1974) fails approaches zero.

While λ is not identi�ed, provided that there is enough variability in the

data, we can identify all the parameters that appear in the model likelihood,

namely τ1 = λα τ2 = λβ, . . . τ5 = λζ. Under the assumption that λ 6= 0,

the ratio between these parameters is informative on the relative strength of

each component in determining the attraction of strategy j.

3This is con�rmed by the fact that we can show non-singularity of the estimated infor-
mation matrix (Skrondal and Rabe-Hesketh, 2004, chpt. 5). We also changed the initial
conditions for maximum likelihood estimation over the interval [-5,5] for all τ parame-
ters: maximum likelihood estimates are una�ected. Descriptive statistics on the variables
zkjit , w

kj
it suggest that the within-subject, within-period variability is substantial, even if it

decreases between period 2 and period 40.
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Appendix B. Instructions

Welcome to this experiment about decision making in a market. The

experiment is expected to last for about 1 hour and 15 minutes. You will be

paid a minimum of 4 Euro for your participation. In addition to this, you

can earn up to 20 Euro if you make good decisions.

We will �rst read the instructions aloud. Then you will have time to read

them on your own. If you have questions, raise your hand and you will be

helped privately. From now on, you are requested not to communicate with

other participants in any way.

Your task. During this experiment, you will be asked to act as the manager

of a �rm which produces and sells a given product: your task consists of

deciding how many product units to put on the market in every period.

Your �rm has three competitors that sell on the same market a product

which is exactly identical to yours. Your competitors are three from among

the participants in the experiment taking place today in this room, but you

will not have the opportunity to discover who they are, not even at the end

of the game. Your identity will be kept secret as well.

The experiment consists of 40 consecutive periods. In every period, you

will be asked to choose how many units to produce (between 0 and 30), and

the same will be done by your competitors. Your choices a�ect both your

�rm's pro�ts and those of your three competitors.

Every period lasts 30 seconds: if in a period you fail to make your

choice within the time limit, the computer will automatically set the number

of units produced by your �rm in that period equal to 0, and your pro�t in

that period will be equal to 0 too.
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Price, costs and pro�ts. The market price at which you will be able to sell

your product will be the higher, the smaller the total number of product

units your �rm and your competitors put on the market; if the total number

of product units sold on the market is su�ciently high, the price will be equal

to zero.

No product unit remains unsold: all the product units you put on the

market will be purchased by consumers at the market price.

To produce, you will have to bear a production cost which will be the

higher, the more product units you put on the market.

Your pro�t will be equal to the market price times the number of units

you sell, minus production costs.

Earnings and Payment. You will receive an initial endowment of 2000 points.

At the end of each period, your per-period pro�ts or your possible losses will

be added to your total pro�t, which will always be displayed in the top-right

corner of the screen. Notice that your total pro�t cannot become negative.

At the end of the game, your total pro�t will be converted in Euros,

according to the rate:

1000 points = 1 Euro

The corresponding amount of money will be payed to you in cash, privately,

at the end of the session. Remember that, in addition, you will be payed 4

Euros for your participation.

Information at your disposal. At the top of your computer screen you can

read:

1. the number of periods elapsed since the game began (top left corner)
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2. your total pro�t (top right corner)

3. the number of seconds (top, center) you still have at your disposal to

take a decision. Remember that every period lasts 30 seconds, and if

you do not take a decision in time it will be as if you decided to produce

0 units and in that period your pro�t will be equal to 0.

Before choosing how many units to produce, you will have the opportunity

to look at some information on market characteristics and on what happened

in the previous periods.

In particular, in every period following the �rst one, you will be informed

about the pro�ts obtained in the previous period by your �rm and by your

competitors. Moreover, you will be able to get more information about:

1. the quantity produced in the previous period by each of your competi-

tors;

2. the quantities produced and the pro�ts obtained by your �rm in each of

the previous periods: this information will be displayed both by means

of a plot and in a table;

3. the quantity produced on the whole by each of your three competitors

in the previous periods: this information will also be presented both

by means of a plot and in a table.

In addition, you will have the opportunity to use a pro�t calculator, a

device you can use to better understand how the market works. The pro�t

calculator has two functions:

1. to evaluate your pro�t, given the number of units produced by your �rm

and the number of units produced on the whole by your competitors.
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2. to evaluate the maximum pro�t you could earn � and the number of

units your �rm should produce in order to get such pro�t � given the

number of units produced on the whole by your competitors.

Progress of the experiment. When the reading of these instructions is over,

you will have the opportunity to ask for clari�cations about the aspects of

the experiments which are unclear.

When we have answered all possible questions you will be asked to com-

plete a test on your computer, which will allow us to check that you have

fully understood the instructions, and give you the opportunity to get to

grips with the software used in this experiment. The answers you give in this

test will not a�ect your earnings in any way, nor they will in�uence any other

aspect of the experiment. During the test, you will still have the opportunity

to ask questions, as always by raising your hand.

When all the participants have completed their test, the real experiment

will begin. The computer will randomly generate groups of four people; every

participant in the experiment will belong to one and only one group during

the whole experiment. The other three members of the group you belong to

are your competitors, who then remain the same over all the 40 periods of

the game.

Every period lasts at most 30 seconds. The maximum length of the game

therefore is approximately 20 minutes.

At the end of the fortieth period the game will end, and the points scored

by each of the participants will be converted into Euros.

Before being paid privately, you will be asked to answer a short ques-

tionnaire about the experiment, and you will be obliged to hand back the

14



instructions.

THANK YOU VERY MUCH FOR PARTICIPATING IN THIS EXPERI-

MENT AND GOOD LUCK!
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Appendix C. Graphical Interface

Figure C.1: Graphical interface

Translation. From top to button, left to right. [ ] indicate a button.

bar at the top: period 13 out of 40, remaining time [sec.]: 13, total pro�t:

3097

box at the top: how many units do you want to produce in this period?

[OK]

�rst box on the left: Pro�ts in the previous period

your pro�t: 252
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competitor 1: 168

competitor 2: 392

competitor 3: 644

second box on the left: # of units produced in the previous period.

To know the number of units produced in the previous period by one

of your competitors, push the corresponding button. [competitor 1]

[competitor 2] [competitor 3]

center-right box: before taking a decision, you can look at the information

at your disposal and use the pro�t calculator.

bottom-left box: history of play

# of units you produced and pro�ts you obtained in the previous

periods [show]

# of units produced on the whole by your three competitors in the

previous periods [show]

bottom-right box: pro�t calculator

do you want to use the pro�t calculator? [yes]
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