
Karl-Heinz Frommolt, Rolf Bardeli and Michael Clausen (Eds.) 

 
Computational bioacoustics for 

assessing biodiversity 
 
 
 
 

 
 
 
 
 
 
 

 
 

  BfN - Skripten 234 
 
 

  2008 
 

 



 
Computational bioacoustics for assessing 

biodiversity 
 

Proceedings of the International Expert meeting on  
IT-based detection of bioacoustical patterns,  
December 7th until December 10th, 2007 at the 

International Academy for Nature Conservation (INA)  
Isle of Vilm, Germany 

 
 

Editors: 
Karl-Heinz Frommolt 

Rolf Bardeli 
Michael Clausen  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Cover picture: Northern part of the lake Parstein – a study site for bioacoustic monitoring (K.-H. Frommolt). 
The graphics in the left depict a set of features used in bioacoustic pattern recognition algorithms: spectrogram, 
periodicity features and a resulting automatic segmentation are plotted for the example of a Chaffinch's song 
(D. Wolff). 
 
Editors’ addresses: 
Dr. Karl-Heinz Frommolt 
Museum für Naturkunde 
der Humboldt-Universität zu Berlin 
Invalidenstraße 43 
10115 Berlin, Germany 
E-Mail: karl-heinz.frommolt@rz.hu-berlin.de 
 

Rolf Bardeli and Prof. Michael Clausen 
Institut für Informatik III 
Rheinische Friedrich-Wilhelms-Universität Bonn 
Römerstraße 164 
53117 Bonn, Germany 
E-Mail: clausen@iai.uni-bonn.de 

 
Project coordinator BfN: 
Dr. Horst Freiberg, Federal Agency for Nature Conservation (BfN) 

Department Z 2.1 ”Nature Conservation Information and Geographical Information” 
National Focal Point CHM 
E-Mail: Horst.Freiberg@bfn.de 

 
 
 
 
BfN-Skripten are not available in book trade but can be downloaded in a pdf version from the internet 
at: http://www.bfn.de/0502_skripten.html 
 
 
 
 
 
 
 
 
 
This publication is included in the literature database “DNL-online” (www.dnl-online.de) 
 
 
Publisher:  Bundesamt für Naturschutz (BfN) 
  Federal Agency for Nature Conservation 
  Konstantinstrasse 110 
  53179 Bonn, Germany 
  URL: http://www.bfn.de 
 
All rights reserved by BfN 
 
The publisher takes no guarantee for correctness, details and completeness of statements and views in this 
report as well as no guarantee for respecting private rights of third parties. 
Views expressed in the papers published in this issue of BfN-Skripten are those of the authors and do not 
necessarily represent those of the publisher. 
 
No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any 
means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval 
system without written permission from the copyright owner. 

 
Printed by the printing office of the Federal Ministry of Environment, Nature Conservation and Nuclear Safety. 
 
Printed on 100% recycled paper. 
 
 
Bonn, Germany 2008 



Contents 
 
Introduction 5
 

Short term and long term bioacoustic monitoring of the marine environment. 
Results from NEMO ONDE experiment and way ahead 7

Pavan, G., La Manna, G. , Zardin, F. , Internullo, E., Kloeti, S., Cosentino, G., Speziale. F., 
Riccobene, G. & the NEMO Collaboration 

 

A perennial acoustic observatory in the Antarctic Ocean 15
Kindermann, L., Boebel, O., Bornemann, H., Burkhardt, E., Klinck, H., van Opzeeland, I., 
Plötz, J. & A.-M. Seibert 

 

Probabilistic evaluation of synergetic ultrasound pattern recognition for large 
scale bat surveys 29

Obrist, M.K., Boesch, R. & P. Flückiger 
 

Anurans, the group of terrestrial vertebrates most vulnerable to climate change: 
a case study with acoustic monitoring in the Iberian Peninsula 43

Márquez, R., Llusia, D., Beltrán, J.F., do Amaral, J.P. & R.G. Bowkers 
 

A decade of monitoring frog communities in Northern Australia 53
Grigg, G., McCallum, H. & A. Taylor 

 

Automated bioacoustic identification of insects for phytosanitary and ecological 
applications 59

Chesmore, D. 
 

From bird species to individual songs recognition: automated methods for 
localization and recognition in real habitats using wireless sensor networks 73

Trifa, V. M., Kirschel, A., Yao, Y., Taylor, C.  & L. Girod 
 

Advantages and disadvantages of acoustic monitoring of birds – realistic 
scenarios for automated bioacoustic monitoring in a densely populated region 83

Frommolt, K.-H., Tauchert, K.-H. & M. Koch 

 

Bird song recognition in complex audio scenes 93
Bardeli, R., Wolff, D. & M.Clausen 

 

Techniques for bioacoustic signal detection using image processing 103
Brandes, T.S. 

 

Bioacoustic classifier system design as a knowledge engineering problem 111
Huebner, S. 

 

Computational methods in analysis of bird song complexity 125
Tanttu, J. T. & J. Turunen 

 

Automated monitoring of avian flight calls during nocturnal migration 131
Schrama, T., Poot, M., Robb, M. & H. Slabbekoorn 

 

Birds and bats: automatic recording of flight calls and their value for the study 
of migration 135

Hill, R. & O. Hüppop 
 

XBAT: an open-source extensible platform for bioacoustic research and 
monitoring 143

Figueroa, H. & M. Robbins 
 
Agenda of the meeting 
 

List of participants 
 

 3



 

 4



Introduction 
 
From December 7 through 10, 2007, an international expert meeting on IT-based detection 
of bioacoustic patterns was held at the facilities of the International Academy for Nature 
Conservation on the Isle of Vilm in the Baltic Sea. The meeting was held under the 
patronage of the German Federal Agency for Nature Conservation (Bundesamt für 
Naturschutz, BfN) in the context of a research project on bioacoustic pattern recognition. 

The progress in information technology during the last years, especially in the field of pattern 
recognition, opens up important new perspectives for the automated bioacoustic monitoring 
of a multitude of animal species. The idea of the meeting was to bring together specialists 
from all over the world, to discuss the potential of IT-based detection of bioacoustic patterns. 
The topics of the meeting covered both the current knowledge on acoustic pattern 
recognition in bioacoustic signals and the application of bioacoustic methods for purposes of 
the monitoring of wild animals.  

This publication contains expanded versions of the talks given during the meeting, giving an 
impression of the problems and methods in the field of algorithmic bioacoustics from 
scientists from Australia, the USA, Italy, Spain, Finland, Switzerland, the UK, the Netherlands 
and Germany. The articles cover a wide variety of animal species from insects and frogs to 
birds, from whales to bats. Monitoring locations reach from the densely populated centre of 
Europe to the out-backs of Australia, from the Mediterranean Sea to Antarctica. 

In the first presentation, Mapping bioacoustic phenomena over ecologically meaningful 
spatio-temporal scales, Christopher Clark gave a good overview of the perspective of 
bioacoustic monitoring for a variety of species from elephants to whales. 

The following presentations are all focused on different aspects of this general theme. They 
are  characterised by either a certain species or group of species, a special study area, or 
are dedicated mainly to software systems or algorithms. 

Gianni Pavan et al. report on Short term and long term bioacoustic monitoring of the 
marine environment. Recording from an underwater test site for neutrino detection, 
investigations into the presence and migration of marine animals in the 
Mediterranean revealed a more frequent and consistent presence of sperm whales 
than previously believed. 

• 

• 

• 

• 

• 

• 

Lars Kindermann et al. describe a bioacoustics project in a truely adverse 
environment. A perennial acoustic observatory in the Antarctic Ocean consisting of 
hydrophones deployed under the ice shelf allows to study the acoustic repertoire of 
whales and seals.  
Martin Obrist et al. give a Probabilistic evaluation of synergetic ultrasound pattern 
recognition for large scale bat surveys. Residing in the realm of ultrasound, 
echolocation calls show strong interspecies overlap in their signal characteristics but 
nevertheless species recognition is often possible on the basis of these signals. 
Rafael Márquez et al. investigate the automated recording of Anurans, the group of 
terrestrial vertebrates most vulnerable to climate change. In a case study in the 
Iberian Peninsula, they compare results of an automated sound recording system 
with those of human listeners as tools in the study of the effect of temperature to 
Anuran vocalisations. 
Andrew Taylor et al. look back at A decade of monitoring frog communities in 
northern Australia. Their focus is on both, the pattern recognition problem and the 
design of autonomous recording stations. The latter are designed to operate 
unattended in remote areas and have to be highly robust to retain operability in 
adverse situations such as fires and flooding. 
David Chesmore discusses Automated bioacoustic identification of insects for 
phytosanitary and ecological applications. In particular, he uses time domain signal 
processing and artificial neural networks for the robust identification of taxa, 
concentrating on insects. He introduces the concept of time domain signal coding. 

 5



Among his results, he describes phytosanitary applications for quarantine insect 
larvae in timber.  
In bioacoustics research, and especially in bioacoustical pattern recognition, 
everybody needs a good software infrastructure. All investigation of bioacoustic 
signals starts from signal processing tools such as filtering, spectrogram computation 
and visualisation. Harold Figueroa introduces XBAT, an open-source extensible 
platform for bioacoustic research and monitoring. Here, in addition to the basic tools 
needed by every practitioner, new tools for feature extraction, classification and 
visualisation can easily be implemented based on existing algorithms. Sebastian 
Huebner investigates Bioacoustic classifier system design as a knowledge 
engineering problem. His system has a special focus on methods for classifier design 
for non-specialists in pattern recognition algorithms. 

• 

• 

• 

• 

• 

• 

Vlad Trifa et al. investigate Automated methods for localization and recognition in real 
habitats using wireless sensor networks. Building on recent advances in wireless 
networked sensing systems they use embedded systems to perform tasks such as 
species recognition and sound source localisation directly in the field. 
As remarked above, the meeting was organised in the context of a project on 
bioacoustic pattern recognition. Two articles survey results from this project. First, 
Karl-Heinz Frommolt et al. discuss Advantages and disadvantages of acoustic 
monitoring of birds. Their main focus is on the comparison of bioacoustic monitoring 
with other techniques. Based on studies in several acoustic situations, they show 
where acoustic monitoring can complement existing methods favourably. Second, 
Rolf Bardeli et al. present algorithms for Bird song recognition in complex audio 
scenes. They propose algorithms based on concepts for dealing with the noise and 
complexity encountered in real world monitoring scenarios. 
One of the most important tools in bioacoustics is the spectrogram. Researchers 
usually interpret the spectrogram as an image. Therefore, it is a natural idea to use 
algorithms from image analysis in this context. Scott Brandes uses Techniques for 
bioacoustic signal detection using image processing for filtering and feature extraction 
from the spectrogram. 
Juha Tanttu et al. use Computational methods in analysis of bird song complexity. 
They present methods for automatically assessing the song and syllable repertoire of 
individuals of the male Pied Flycatcher in order to study the influence of song 
complexity on breeding success. Environmental influences on signal-to-noise ratios 
make this an extremely challenging task.  
The last two presentations are dedicated to the monitoring of flight calls of migrating 
birds and bats. Thijs Schrama et al. investigate the Automated monitoring of avian 
flight calls during nocturnal migration. As a part of a project investigating bird 
migration in areas of offshore wind parks, they introduce an automated monitoring 
system and pattern recognition algorithms based on dynamic time warping and 
Euclidean distance measures. In a similar setting, Reinhold Hill et al. report on Birds 
and bats: automatic recording of flight calls and their value for the study of migration. 
Their automated registration revealed seasonal and daily time patterns of migration 
and relations of call intensity to weather parameters. 

In addition to the talks, a lively discussion on the perspective of the application of technical 
means and pattern recognition algorithms for animal monitoring, especially in the context of 
conservation questions, has taken place. As a first step, the participants have agreed to form 
an international expert group. A mailing list is available for those interested in the topic and 
it allows to continue the exchange of ideas and algorithms. Subscription is possible at: 
https://mailbox.informatik.uni-bonn.de/mailman/listinfo.cgi/bioacoustic-monitoring. 
 
March 12, 2008 

K.-H. Frommolt 
R. Bardeli 

M. Clausen 
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Short Term and Long Term Bioacoustic Monitoring of the Marine Environment.  
Results from NEMO ONDE Experiment and Way Ahead 

 
PAVAN G.1, LA MANNA G. 1, ZARDIN F.1, , INTERNULLO E.1, KLOETI S.1, COSENTINO G.2, 

SPEZIALE F.2, RICCOBENE G. 2 & THE NEMO COLLABORATION 2 

 
1 CIBRA – Centro Interdisciplinare di Bioacustica e Ricerche Ambientali, University of Pavia, Via Taramelli 24, 

27100 Pavia, Italy, E-mail: gpavan@cibra.unipv.it 
2 INFN LNS - Laboratori Nazionali del Sud, Via S.Sofia 62, 95123 Catania, Italy, E-mail: riccobene@lns.inf.it 

 
 
 

Abstract. The INFN NEMO-OνDE (Ocean Noise Detection Experiment) station, deployed on the seafloor 
at 2000 m depth 25 km offshore Catania (Sicily, Italy) in year 2005, was designed to continuously transmit 
broad-band acoustic data through optical cables to the INFN lab located in the port of Catania. It was 
operational until November 2006, when it was replaced by other experimental equipment. During the 
operational period, 5 minutes of recording (4 hydrophones, 45 kHz bandwidth, 96 kHz sampling rate at 
24 bits resolution) were taken every hour. The experiment provided long-term data on the underwater 
noise and an unique opportunity to study the acoustic emissions of marine mammals living in, or transiting 
through the area east of Sicily. The recordings revealed a more frequent and consistent presence of sperm 
whales than previously believed.  

 
 
Acoustic monitoring of the underwater environment is a key component in the study of 
marine mammals and in the management of the anthropogenic noise issue. Technologies 
now available allow to extend monitoring capabilities into the deep ocean to monitor the 
presence and behaviour of marine mammals as well as to long-term monitor both the local 
and the ambient noise background due to human activities. 

 
Figure 1: Location of the OνDE platform. 

The goal of NEMO is the implementation of an innovative underwater telescope to search for 
astrophysical neutrinos (MIGNECO et al., 2006). The telescope will be deployed 100 km 
offshore Capo Passero (Sicily, Italy) at a depth of 3500 m. In this framework a deep sea test 
site at 2000 m depth has been deployed 21 km offshore Catania, connected to the shore 
labs through electro-optical cables to provide real-time data transfer. 

The test site hosts an experimental deep station, named OνDE (Ocean Noise Detection 
Experiment) dedicated to the study of the underwater acoustic noise (Fig. 1). OνDE was 
deployed in January 2005 and was sending data since the end of March 2005 until 
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November 2006 when the acoustic module was replaced by other instrumentation. The 
acoustic experiment was concerned with the study of the underwater acoustic environment to 
develop strategies required for the detection of acoustic pulses that are generated by high 
energy neutrino interacting with water. The experiment was highly interdisciplinary and in 
addition to generating long term data on the underwater noise, it also provided a unique 
opportunity to study the acoustic emissions of marine mammals living in the area or transiting 
there during their movements within the Mediterranean basin. Bioacoustic research in the 
Mediterranean Sea dates back to 1958 (PAVAN ET AL., 1997); whereby research was mainly 
based on sporadic acoustic and visual surveys to monitor the presence of marine mammals 
in small areas. Bioacoustic research efforts have increased in the last 10 years and this is 
the first long term monitoring project in the Mediterranean Sea for both noise measures and 
marine mammals’ sounds. 
 
Experimental Setup and Methods 
 
The hydrophones on the OνDE acoustic module, a special series produced by Reson, are 
hooked on the upper part of the platform frame, forming a tetrahedral array of about 1 m side 
(Fig. 2). Hydrophones H1, H2, H4 lie in the same plane at about 2.5 m from the seabed, H3 
is placed on the top vertex at about 3.2 m from the seabed. The broad band hydrophones 
(30Hz-45kHz) have –175 dB peak ref 1V/µPa sensitivity (including a 20 dB gain preamplifier) 
and are connected to a four channels 24 bit AD board with full scale level of ± 2V; the system 
allows recording sound pressure levels up to 181 dB peak. The hydrophones were sampled 
at 96 kHz and send continuously to the shore lab; as the continuous archiving was not 
possible due to storage space constraints (uncompressed recording would require 
124GB/day), continuous recordings were made only for the testing period and then 
scheduled for periods of 5 minutes every hour. For additional technical details see 
RICCOBENE ET AL. 2007. Data recording, totalling 2.5TB of scheduled recordings, and 1TB of 
continuous recordings, was made with SeaRecorder, a 4 channels software recorder 
developed at CIBRA that reads and synchronizes the two stereo digital streams coming from 
the underwater station (Fig. 3). Digital data arrives with 24 bit resolution and can be saved as 
standard Microsoft .wav files either in integer (16 or 32 bit/sample) or 32 bit float format. Data 
for noise analysis at INFN was saved in 32 bit float format; copies for bioacoustic analysis at 
CIBRA (PRIANO ET AL. 1997) were reduced to 16 bit to save disk space. Bioacoustic analysis 
was performed with SeaPro, the sound analysis software developed at CIBRA. The first 
phase was the classification of recorded sounds into known categories. The results have 
been arranged in excel tables to show, hour by hour, the occurrence of biological sounds and 
other relevant acoustic events such as sonar, echo sounders, sparkers or other sound. 
 

 

Figure 2: The titanium frame of the OνDE platform. The frontal plate hosts the connectors for the 
optical cables that connect the platform to the inland lab. 
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Figure 3: The SeaRecorder main panel. 
 
 

 
 

Figure 4: Two channel spectrographic display of a series of sperm whales’ clicks. 
 
 
Sperm Whale Detections 
 
The most common sounds recorded are those produced by sperm whales (TELONI 2005): 
impulsive sounds extending in frequency to more than 30 kHz, named click (Fig. 4), arranged 
in regular sequences (interclick interval in the range 0.5s to 2s), or in special patterned 
sequences (chirrups, codas, creaks – Fig. 5 & 6). According to studies in the Mediterranean 
Sea, sperm whales may dive to more than 1000 meters depth, but normally travel and forage 
at 800-1000 meters depth. Their source level may be greater than 230 dB at 1m and on axis; 
with OνDE the loudest clicks were received with sound pressure levels up to 170 dB. Clicks 
were often recorded with high SNR; by using a high-pass filter, the SNR can be further 
increased to improve the detection, count and analysis of the weakest click series. 

Detections indicate a presence of sperm whales more consistent and frequent than 
previously believed. Although the transiting of sperm whales is known since the end of XIX 
century (BOLOGNARI 1949), little literature is available for the area. IFAW (2004) reports a low 
sperm whale density in the Ionian basin with an encounter rate of 5.8 whale groups for 1000 
km of transect. Lewis (2006), based on the IFAW surveys, reports a total of 16 whales 
detected within the truncation distance of 20 km, along 3846 km of survey transects in the 
Ionian Sea. PANIGADA ET AL. (2007) published a report about marine mammal presence in 
the area of the Strait of Messina and extending to south to 50km north of the OνDE Station. 
In the period from June 2005 to May 2006 they conducted 125 days of survey and sighted 80 
marine mammals, of which 13.8% sperm whales and 1.2% Cuvier’s beaked whales. 
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Figure 5: Spectrographic display of chirrup. 
 

 
 

Figure 6: Spectrographic display of two codas with the typical Mediterranean pattern 3+1. A weak 
dolphin whistle is also shown on the first coda. 
 
With the OνDE station, in year 2005 (Fig. 7), sperm whales have been detected in 117 of the 
231 (50.6%) recorded days (1186 out of 5147 recorded hours, 11.5%). In 2006 sperm 
whales have been recorded in 31 of 83 recorded days (37%). Although several periods of 
consecutive days were characterized by the presence of sperm whales, solitary whales or 
groups of several individuals were often detected for few hours only and this may indicate 
that they were in transit. In few cases whales were present for more than one day and in 
some occasions, other sounds than clicks and creaks were recorded, in particular chirrups 
and codas indicating socializing behaviours. The coda pattern that was more frequently 
recorded followed the 3+1 type (PAVAN ET AL. 2000), however, the number of codas of the 
2+1 type was greater than previously reported for this area. 
 
Work in Progress 
 
New analysis algorithms are being developed to maximize the SNR ratio and to track the 
movements of impulsive acoustic sources to reveal the movement of sperm whales whilst in 
the detection range. Estimating the TDOAs (Time Difference Of Arrivals) between the four 
hydrophones allows the separation of the sound arrival directions and the tracking of the 
sources’ movements. In some cases, when surface reflections are clearly associated to 
individual clicks it is possible to exactly locate the animal, i.e. to know range and depth, 
instead of having only azimuth and elevation information. Such direct ranging will be 
important to assess the real detection range of the OνDE station and to improve the tracking 
of the animals. At the same time click details are examined to measure the Inter Pulse 
Interval, i.e. the intervals among the pulses that constitute the sperm whale click (PAVAN ET 
AL. 1997; ZIMMER ET AL. 2005). According to the latest models on sound production (ZIMMER 
ET AL., 2005) reliable IPI measures can be taken if on axis, either frontal or caudal, when a 
clean (P0)-P1-P2 structure is available (Fig. 8). By measuring the IPI it is possible to assess 
the whale size and, if the size is greater than 13m, the sex (females’ length is up to 13m, 
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males may grow up to 18m). By combining TDOA and IPIs it should be possible to assess 
the number of transiting animals and the groups’ composition allowing a better estimate of 
population size and structure. The tracking of their movements will possibly reveal if their 
directions are seasonal and directed to/from the Strait of Messina, as already suggested by 
BOLOGNARI (1949), or if they follow other rules, if any. 
 

 

 
 

Figure 7: Sperm whales’ detections in year 2005. Vertical bars indicate how many hours sperm 
whales have been detected each day. The stacked bars indicate how many animals were detected 
each hour: █ 1 animal detected; █ 2 animals detected; █ 3 animals detected; █ 3 or more animals 
detected. Horizontal grey bars indicate periods of recording inactivity. The longest one was due to a 
cable break. 
 

 
 
Figure 8: Sperm whale click with visible multi-pulse structure: P0-P1-P2. Based on the IPI, the size 
has been estimated 9.94-10.27 meters, matching a young male or a female. X-axis shows 64ms. 
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Cuvier’s Beaked Whales 
 
Sperm whale clicks are often loud as the animals dive at great depth, close to the receiving 
hydrophones; on the contrary, whistles and clicks from dolphins, which stay within few 
hundred meters from the surface, are recorded with much lower amplitude. Clicks similar to 
those emitted by Cuvier’s beaked whales (JOHNSON ET AL., 2004; ZIMMER ET AL., 2005) have 
been detected with amplitude much greater than that of dolphins indicating a deep source 
that match well with the known dive depths of beaked whales. Cuvier’s beaked whales have 
been recorded to dive to more than 1800m (JOHNSON ET AL., 2004). The habitat of this 
species appears to be associated to sharp continental slopes, but it was never reported for 
the OνDE area; few strandings have been recorded on the Calabria coasts and, recently, 10 
km South of Messina (PODESTÀ ET AL. 2006, PAVAN ET AL. 2008). PANIGADA ET AL. (2007) 
reported few encounters in the Messina Strait area in 2005. 

Received clicks match well descriptions given by the WHOI team with the D-TAG (ZIMMER ET 
AL. 2005) but show larger ICI (Inter Click Interval), 460-480 msec rather than 400 msec 
(Fig. 9 & 10). It may be worth to note that the amplitude of the received clicks is not constant 
but oscillating, as it can be expected by a directional source swimming and scanning the 
environment with left-right movements of the head. The hydrophones get the maximum 
amplitude when it is in the beam axis.  

These detections indicate that deep acoustic sensors can be used to reveal and to monitor 
the presence of this species that seems sensitive to anthropogenic sound and but is difficult 
to detect. 
 
 

 
 

Figure 9: Series of clicks spaced 460-480 ms, much louder than clicks from shallow dolphins, with 
oscillating amplitude. X-axis shows 4.0 seconds. 
 

 
 
Figure 10: A click received on the 4 hydrophones. Waveform display (x-axis 9.6msec) shows a time 
length of 300microsec matching well with Cuvier’s beaked whales’ click sructure. 
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Other Detections 
 

Other than recognizable biological sounds, many man-made sounds have been recorded 
and identified, including ship noise, sonar, echo sounders, airguns (or maybe sparkers), and 
explosions. Acoustic events of unknown origin have been also recorded. 
 
 
Way Ahead 
 

Based on the success of OνDE a new EEC funded project named LIDO (Listening Into the 
Deep Ocean) was set up with the collaboration of INGV (National Institute of Geophysics and 
Vulcanology) and other international partners to renew the OνDE platform and to create a 
Mediterranean wide acoustic monitoring network by upgrading existing underwater seismic 
detectors with broadband acoustic sensors.  

The implementation of a number of “whale gates” to monitor the presence and movements of 
marine mammals in critical areas, will allow to better understand their populations dynamics 
and the long term changes that are possibly driven by direct or indirect human impact, 
including climate changes. 

Following the increasing interest in autonomous underwater acoustic monitoring, a new low 
cost bottom recorder was developed in cooperation with Nauta-rcs, a company specializing 
in underwater equipment. Based on a modified commercial M-Audio Microtrack 24/96 digital 
audio Compact Flash recorder, custom electronics that add scheduled recording features, 
additional power supply with NiMH rechargeable batteries, and a customized Sensor 
Technology hydrophone, this system is installed into a 50cm x 9cm aluminium canister 
designed to operate down to -500m. In the present configuration, it allows an operating life of 
up to a week (depending on the recording schedule and available storage capacity); the unit 
can be pre-programmed from a PC to follow an extremely flexible recording scheme. Within 
the LIDO project, it will be used to monitor and select locations suited for a permanent 
monitoring platform. 

Long-term acoustic monitoring programs that are made possible by present technologies 
generate huge amounts of recorded data, the analysis of which is a serious issue that 
presses for the development of reliable automatic sound recognition software. LIDO includes 
a project to develop and test semi-automatic and automatic classification software able to 
make browsing of huge amount of acoustic data easier and also to perform in real-time 
providing immediate feedback. 

Technologies developed for the underwater environment could be easily adapted to monitor 
both the acoustic biodiversity and the anthropogenic noise contamination of terrestrial 
habitats. 
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Abstract. In December 2005 the Perennial Acoustic Observatory in the Antarctic Ocean (PALAOA, 
Hawaiian word for “whale”) was set up on the Ekström ice shelf, Antarctica near the German Neumayer 
Station (Boebel et al., 2006). Since then, it almost continuously records the underwater soundscape in the 
vicinity of the ice shelf edge and is intended to do so over the duration of several years. These long-term 
recordings allow studying the acoustic repertoire of whales and seals in an environment almost 
undisturbed by humans. The data is analyzed to detect species specific vocalizations, infer the 
approximate number of animals inside the measuring range, calculate their movements relative to the 
observatory, and examine possible effects of the sporadic shipping traffic on the acoustic and locomotive 
behaviour of marine mammals. Underwater sound is recorded by means of four hydrophones located 
through boreholes below the 100 m thick floating ice sheet. They are attached to an autonomous, wind 
and solar powered station, which can record at 192 kHz / 24 Bit. A compressed data stream is transmitted 
in real time via wireless LAN from PALAOA to the German Neumayer Base at 15 km distance. From there, 
a permanent satellite link transmits an even more compressed stream to the AWI in Germany. It can be 
accessed live from our webpage at http://www.awi.de/acoustics. So far, Weddell seals, crabeater seals, 
Ross seals, leopard seals, killer whales, blue whales, fin whales and minke whales have been identified in 
the recordings along with several vocalizations which could not be assigned with certainty to species level 
yet. Additionally, many non-biological sounds were recorded, mostly generated by ice and some 
anthropogenic events like ships passing by and human activities on the ice. Difficulties have arisen from 
the sheer size of this constantly growing dataset, which consists of more than 10.000 hours so far. We 
develop interfaces and setups to process this stream in real time and analyze it both interactively and by 
means of batch processes running in parallel on a workstation cluster, for example applying detectors 
specific to single species, based on hidden Markov models. These recordings, which are largely free of 
anthropogenic noise, provide also a base to set up passive acoustic mitigation systems used on research 
vessels by developing automatic pattern recognition procedures to be used in the presence of interfering 
sounds, e.g. propeller noise. 

 
 
Antarctica is one of the last areas on earth which is to a large extent untouched by human 
activities and it is granted a special protection status. The continent is by international 
agreements dedicated to nature and science. The Madrid Protocol of the Antarctic Treaty 
System requires a permit for all operations in the Antarctic territory beyond 60° South, to be 
issued by an authority of one of the respective contracting states. Applications for research 
permits do require a proof of the environmental soundness of the planned activities. Potential 
risks of the field work to marine mammals in particular must be evaluated in terms of the 
possible impact on species or population level. Therefore it is necessary to take into account 
the presence of the respective species at the proposed time and location of the operation. 
However, little is known about the abundances and migration patterns of many species due 
to the inaccessibility of this remote area which can only be assessed by ice-strengthened 
vessels during the austral summer months. Knowledge about the total number of animals 
and their spatio-temporal distribution is usually gained on ship surveys where observers 
count the sightings of animals and extrapolate abundance estimates from these numbers. 
However, marine mammals spend most of their lifetime submerged, and the probability of 
spotting them in the open ocean is influenced by factors such as light conditions, weather, 
sea state and the observer himself. Hence the results strongly depend on assumptions on 
detectability and behaviour. Reliable data exist only for areas which are visited by ships 
frequently enough to provide sufficient statistics. Recently, satellite transmitters attached to 
individual animals allow following their migration paths for substantial periods of time, 
extending the knowledge to locations and seasons where direct observation is not possible. 
But in general, estimations of the number of animals in a given area at a given time still suffer 
from a high degree of uncertainty.  
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As most marine mammals are vocal under water, the methods for passive acoustic 
monitoring which have been developed in the recent years provide a convenient and efficient 
way to detect marine mammals. Autonomous systems allow to record for extended periods 
of time without the necessity of human presence and can be deployed at sites of interest. 
However, the Antarctic environment imposes extraordinary demands on material and 
operations, so special equipment and procedures are needed here. Germany operates the 
year-round manned Neumayer research base on the Ekström Ice Shelf, at 70°39'S, 
008°15'E, close to the shelf ice edge at the north-eastern entrance of Weddell Sea. Many 
species of seals and whales have been observed to inhabit this area. As this is a focal point 
of Germany’s Antarctic activities, it is of great interest to study the influence of human 
operations to the marine environment at this location. Lastly, the base also provides the 
necessary logistics to set up and maintain a hydroacoustic observatory, that otherwise would 
go far beyond the operational and financial scope of such a project. In 2005 we deployed a 
hydrophone array near Neumayer Base, which since then provides continuous online access 
to the underwater soundscape of Antarctic waters. 
 
 

Figure 1: Proposed distribution of the Arnoux beaked whale, as given in the United Nations FAO 
species identification guide. 

 
Ice Shelf Edge Habitat 
Antarctica is almost completely covered by ice which can reach heights of up to 4000 metres 
in the inland of the continent. From this ice mass, glaciers and ice streams form which slowly 
move towards the coast. Reaching the ocean, the glaciers and ice streams float on top of the 
water and can extend hundreds of kilometres to the north, forming large ice shelves. At the 
edge, ice breaks off, either by calving or releasing giant table icebergs which can reach a 
size of hundreds of square kilometres. In austral winter the ocean is covered by sea ice, 
either drifting pack ice or fast ice attached to the ice shelf. However, the predominant 
katabatic winds drive this ice mass northwards and frequently create a stripe of open water, 
the coastal polynia. In summer, the sea ice disappears mostly and leaves an open ocean. 
This area is habitat to several species of penguins, whales and seals, year-round or 
seasonal (Fig 1, 2). Only the Weddell seals stay in the coastal shelf waters all the year, while 
Ross, leopard and crabeater seals are summer guests only. It is unclear, which whale 
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species are present here in wintertime, taking advantage of the open waters provided by the 
polynia. 
 
 

   

  

Figure 2: Ice shelf edge with crabeater seals on sea ice floes and penguins on an iceberg  
(top left), Weddell seals on fast ice (top right), a group of minke whales (bottom).  

 
Station Location  
 
Traditionally, hydrophones are deployed in the ocean either on anchored or drifting buoys or 
sea bottom moorings. In the Antarctic Ocean, buoys will be destroyed by drifting ice floes. In 
shallow, coastal waters moorings will be destroyed by big icebergs ploughing the seafloor. 
There is no way to route a cable safely from an underwater station towards the shore, like in 
hydrophone stations deployed at many places elsewhere in the world. The only safe place is 
provided by the ice itself. The massive floating ice shelf, with a thickness of up to hundreds of 
meters provides a perfect shelter. 15 km north of Neumayer Base, west of Atka Bay the 
Eckström Ice Shelf spreads to a typical, finger like structure. Under the most prominent of 
these ice fingers, called the North Pier, surrounded by the ocean on the north-west, north 
and east side, we were expecting to have excellent acoustic reception from the surrounding 
ocean (Fig 3, 4). In general it is extremely dangerous to move on the ice due to crevasses 
pervading the glacier, but this area is safe to access on a secured way, marked with flags. It 
leads to the base because ships use this site as a pier to unload the Neumayer supplies.  
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Figure 3: The PALAOA site , photographed from a helicopter (left) and from the spot marked  
(right).  
 
 

 

Figure 4: Location of PALAOA with an IKONOS satellite image underlay and a radar interferometer 
picture, showing the physiograpy of the area. 

 
Hydrophone Deployment 
Holes were drilled through the 100 m thick ice shelf to get access to the water body 
underneath (Fig. 5). This was achieved by a hot water drilling system developed by AWI, 
which is capable to melt through the ice in about 12 hours per hole. Energy consumption is 
enormous, requiring about 750kW to melt the ice and heat the water to 95°C. 
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Figure 5: Hot Water drilling equipment and hydrophone array layout. 

 
Energy and Networking 
Energy is crucial for any autonomous system. PALAOA is equipped with solar cells, a wind 
generator, a large battery bank and a methanol fuel cell (Fig. 6). Energy consumption can be 
tuned according to the available supply by switching devices on or off on demand. This 
energy management is implemented as a BASIC program on a BARIX Barionet PLC, 
equipped with relays and I/O modules. Almost all devices in the observatory are switchable 
via a relay. 
 

WLAN-Antenna

Webcam

Iridium & GPS-Antenna

Wind Generator
Air Intake for Fuel Cell

Radio Officer

Hydrophone Cables

Sledge

WLAN-Booster

Solar Cells

  

Figure 6: The PALAOA container and the electronics inside. 

Hydrophone amplifiers have a very high input impedance, about 100 MOhm. This implies 
that they pick up interference easily which induces noise and artefacts in the audio 
recordings. Charge controllers, on the other hand, and DC-DC converters emit a lot of 
electronic noise. Attempting to power the hydrophones directly from a circuit connected to 
the charge controllers, results in horrible sound quality. We set up a power bus system with a 
main energy circuit and two audio circuits for the hydrophones. Each of 6 battery packs can 
be attached either to the main, charging bus or one of the audio busses. In this way it is 
possible to separate the audio system galvanically which reduces interference drastically. In 
addition, all hydrophones were also completely separated from each other. After deployment 
of the first hydrophone through its borehole, we received a very good signal quality. 
However, after attaching the second hydrophone, the signal of both channels was disturbed 
by spikes with higher amplitude than the audio signal. The spikes appeared immediately 
when any connection between the hydrophones was made. Connecting the ground of 
another hydrophone cable was enough. After a lot of investigations and tests we are 
confident now, that we accidently built an extremely large and powerful antenna. The 
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hydrophone cables form 3 legs of a 600 x 180 m rectangle and the seawater closes the loop. 
Such a giant closed loop is the ideal geometry for a VLF ring antenna which picks up 
electromagnetic frequencies in the audible range. Lightning strikes are known to produce 
such signals, known as sferics or whistlers, which can travel around earth. We were listening 
to all the thunderstorms in the world at once. Especially during noon in Amazonas and 
Congo areas the spikes increased. The only solution was to completely separate every 
hydrophone channel galvanically from each other. However, during the built-up period we did 
not have the necessary equipment with us at that time and we decided to connect only one 
hydrophone and bring the necessary equipment to connect the other hydrophones one year 
later. It is not a trivial task to set up a multi-channel audio system without any wires between 
the components. Also each hydrophone had to be powered separately which increased the 
complexity of the energy system enormously. We developed an audio system with separate 
AD converters for each hydrophone channel which were connected via optical fibre to a 
digital sound card, in the PC. However when we returned one year later we discovered that 
two of the four hydrophones were defect. Only the central and the north eastern 
hydrophones were still operational. There is no chance to find out what caused this defect, 
as the boreholes had frozen again. With only two channels left, is was much easier to 
achieve galvanic separation. Standard studio DI boxes did the job for the audio signals and 
the power wiring could be modified to have two separate battery packs and two power 
busses for the hydrophone amplifiers. In minimal mode, only sending a stream it consumes 
20 watts, mainly for the wireless LAN bridge, which connects the container to the local 
network at Neumayer Base. Data rate on this 15 km wireless link is about two MBits/s. This 
set up has worked flawlessly in any weather condition so far, allowing permanent access to 
the acoustic data and station control via the internet.  
 
 
Satellite Stations 
 

In January 2007 when the sea ice was still accessible, we set up another mobile recording 
station, PALAOA-S. A RESON 4032 hydrophone was deployed through a hole in the sea ice 
which was about two meters thick at this location (Fig. 7). This hole was excavated with a 
chainsaw until the seawater flooded in and finished with a core drill. Because the sea ice was 
already receding and it was unpredictable when this ice floe would drift away, we decided to 
install the electronic box on top of the ice shelf, about 200 meters away and tied it securely. It 
contained a portable Microtrack 2496 (24 Bit, 96 kHz) recorder, powered by external 
batteries. It recorded the hydrophone along with GPS signals on the second channel. The 
1pps signal, a better than microsecond precise pulse once every second was mixed by a 
small self made circuit with the serial NMEA data, containing ASCII timestamps and 
positions. As the main PALAOA station has the same capability, it is possible to synchronize 
the recordings later at sample precision for long baseline sound source localisation. In this 
way we could compensate temporarily for the lost hydrophones of PALAOA. 

    

Figure 7: Single hydrophone deployment through sea ice. 
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Data Handling 
 

PALAOA can generate data at an enormous rate. Two audio channels and the 
synchronization signal at 24 Bit and 192 kHz will produce 140 GB per day. We are not able 
to stream this amount continuously through the wireless link to Neumayer, instead there is a 
portable 500 GB USB disk attached locally, which has to be replaced by the radio officer 
periodically. However, single files of interest can be downloaded by FTP at any time. We 
record only sporadically at this quality, particularly when PALAOA-S is active too and the 
GPS channel is required at high precision. This mode is quite energy consuming as PC, 
MOTU sound interface, external hard disk and GPS consume together about 25 W. If such 
data needs to be transmitted online to Neumayer at a reasonable rate, a WLAN booster is 
required (Fig. 8). This increases the effective data rate of the wireless link from 500 kBit/s to 
2 MBit/s, but requires additional 25 W. This setup can only be activated during austral 
summer when the solar cells are 24 hours operational. For the continuous streaming of audio 
we use a BARIX Instreamer device. It only requires 7 W and generates a stereo 16 Bit, 
32 kHz MP3 stream at 192 kBit/s, which can be transferred via the WLAN without booster. 
Time stamping of the data happens at Neumayer Base, which allows only for about one 
second accuracy - which is not a problem as long as synchronizing with other audio sources 
is not required. An improved version of this device is announced and will allow to mark up the 
audio stream via a serial input with GPS data. It will have 24 Bit / 96 kHz capabilities and can 
buffer locally on an USB device in case of network congestion. We hope to deploy the 
improved device in January 2009. On a workstation within the Neumayer Base the audio 
stream is stored locally, cut down into one minute MP3 files. Thus there are 1440 files 
generated per day, each has a size of about 1.25 MB. Every day 1.7 gigabytes accumulate, 
per year up to 620 GB in half a million files. The autonomous webcam on top of the mast 
takes one 1280 x 960 Jpeg picture every minute, size ~300 kB, and transfers it via FTP to 
the Neumayer PC where it is stored along with the audio files, adding another 150 GB. In 
addition, we continuously collect oceanographic data from the CTD probe, temperatures and 
technical operating data of the meteorological readings from the Neumayer observatory, and 
network statistics from the satellite link. This is only 1 MB per day which is sent and logged 
via the standardized syslog protocol and online available at PALAOA, Neumayer, and in the 
Alfred Wegener Institute in Bremerhaven. Data is regularly backed-up on 200 GB LTO2 
tapes which are shipped twice a year to Bremerhaven, in November when the first transport 
after the 8 month overwintering period is available and in February or March when the last 
ship leaves Neumayer just before access to the base is cut off from the rest of the world 
again. During the rest of the year, Neumayer is accessible only via a 128 kBit/s IntelSat link 
to the AWI in Bremerhaven, of which 24 kBit/s are assigned to the PALAOA project. We 
transmit a continuous OGG-Vorbis recompressed audio stream using the open source 
IceCast system and a small webcam picture every ten minutes. The data is presented and 
analyzed online in our lab and kept until the high quality from the tapes arrives.  In total, we 
collected about 4 TB during the first two years of operation which are kept in our data silo in 
Bremerhaven with one petabyte capacity. There the data is held on LTO2 tapes in two 
redundant copies which are automatically loaded on demand by tape robots. To the network 
the system transparently appears as a simple network drive. It conforms to the requirements 
for reliable scientific data storage. The online audio stream and webcam pictures are publicly 
accessible via the internet (icecast.awi.de). Datasets are published with an open access 
license through the PANGAEA database (www.pangaea.de), and the World Data Centre for 
Marine Environmental Data, hosted by AWI. This satisfies the conditions of the Berlin 
Declaration on "Open Access to Knowledge in the Sciences and Humanities" as required by 
the AWI data policies. 
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Figure 8: Audio data streams, from the water to long term archival and web broadcasting 

 
Data Processing 
 

All the PALAOA recordings consist of standard multimedia files (Wav, Flac, Mp3, Ogg, and 
Jpeg) and the additional metadata is stored in text files. As they are kept transparent on a 
network drive, it is possible to use standard software to easily access the dataset. However, 
the sheer amount of files makes it hard to analyze longer periods; no software can load a 
million sound files at once. We assembled an application in MATLAB, “PALAOAdb” to allow 
easy access to the dataset from a timeline or event oriented view. It periodically updates its 
database, by analyzing the recent online recordings to provide an up to date display. The 
initial view is a plot of several selectable parameters for the whole recording period, which is 
currently 2 years. Available are sound specific measures like RMS or peak sound level, 
external observations like air and water temperature or tidal current. Also the results of 
analyses like pattern recognition algorithms can be selected. One can zoom in and click to 
open single files, either with a built in player and spectrogram view or any external program 
or media player like XBAT, Ishmael, Audacity or Adobe Audition. PALAOAdb provides 
displays to visualize parameters and results from the whole data set (Fig. 9). 
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Figure 9: PALAOAdb software tool to handle long audio time series. 

 
It takes about one second to load and process a single mp3 file with the basic procedures, 
additional modules will add to this. So an offline analysis can be done in up to 60 times real 
time speed. New algorithms have to be implemented as MATLAB functions that take a one-
minute waveform array and a file information structure as arguments and deliver a structure 
containing the result. PALAOAdb will create timeline views from the results. To speed up 
processing of long-term periods like a whole year of recordings, we implemented a 
distributed computing system that allows sharing this task between multiple computers. 
PALAOAdb will compile a “worker” executable (no MATLAB licenses needed for the 
workers!) split the whole task into smaller jobs (defined by m-files) and just place everything 
into a network directory. All communication occurs via the file system: any computer in our 
institute network only needs to start the worker program and the computer will start to 
operate on a selection of the sound files. Finally, PALAOAdb collects all the results and 
generates a single structure array that can be accessed easily in the same way as 
performing all analyses on a single machine. As there is no interprocess communication 
between the workers, the speed scales linearly with the number of nodes as long as the 
network and the file server are not saturated by fetching the audio files. With a size of 1.35 
MB per one-minute mp3 file, a 100 MBit network can handle up to 10 files per second, thus 
500 times real time should be possible employing 10 PCs, scanning a year in less than a 
day. If the algorithm needs much longer than a second to analyze 60 seconds of data it will 
take proportionally more time. 
 
 
First Results 
 

Currently we host two years of recordings in the database, from December 2005 to 
December 2007 high quality files (192 kBit/s MP3 and/or 192 kHz, 24 Bit WAV), and since 
then compressed 24 kBit/s Ogg-Vorbis files. While we are presently developing automated 
pattern recognition modules for the PALAOAdb system, a first analysis of the data was done 
by hand, which is a necessary preparatory work also for evaluating the pattern recognition 
algorithms. We concentrated on seals in this phase as their vocalizations are within the 
human hearing range and can be analysed without further transformation of the recordings. 
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Figure 10: Spectrograms of different seal vocalizations 
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Seal Presence 
 
Four species of seals are present in the vicinity of PALAOA, Weddell, Ross, leopard and 
crabeater seals. They can be distinguished by their underwater calls (Fig 10). Each of the 
species uses different sounds. A first manual scan through the recordings of 2006 shows the 
cycle of the presence of Weddell, Ross, crabeater and leopard seals (Fig. 11). 
 

 
Figure 11: Seal calling activity during the year. Dotted lines bridge data gaps.  

 
All four species show very different patterns in their acoustic presence. While it is not a priori 
clear that calling activity corresponds directly to the number of animals, at least recent data 
on the migratory behaviour of Ross seals, satellite tagged at a coastal site south-west of Atka 
Bay show, that their seasonal presence in this area coincides exactly with the detection of 
their calls.  
 
 
Bioacoustics of Ross seals 
 

The vocalizations of Ross seals, the rarest of all Antarctic pinnipeds, were analyzed for the 
first time in detail using the PALAOA recordings, revealing that their repertoire consists of 
three distinct siren like calls and a whoosh like sound. The four call types are clearly distinct 
from each other (Fig 12). However, the function of the different sounds remains unclear. 

 

  

Figure 12: Spectrogram and waveform of the Ross seal high siren call (left), scatterplot of the 
frequency limits of all four calltypes (right). 
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Localization techniques allow to separate single animals from the recordings, a two- 
hydrophone system can reveal the bearing of an incoming sound while more hydrophones 
allow to detect the distance and position too (Fig. 13). By this method we are able to count 
the animals in acoustic range of PALAOA. In addition, individual movements of calling 
animals can be tracked, which enables investigation of spatial distribution of callers in 
relation to their vocal characteristics. 
 

  

 

Figure 13: Localizing animals. Sounds arrive at different times at the two hydrophones (left). At least 6 
or 7 individuals are vocalizing from different directions (right). The temporal structure of their 
“conversation” (bottom right). 

 

Natural Sound Background 
 
The loudest event we recorded with PALAOA so far occurred on March, 19th 2006 at 8:15. 
For more than 10 minutes the hydrophone input was completely overdriven, and we had to 
estimate the peak amplitudes from the steepness of the signal at zero crossing. From 
ENVISAT-ASAR satellite pictures we determined that two icebergs had collided about 20 km 
offshore. One of them stuck on the ground for some days while the other was approaching 
with the speed of the ocean current. The estimated source level of this event were well 
above 200 dB re 1 µPa @ 1 m  and, with 10 minutes continuous duration, a sound exposure 
level of 228 dB SEL, this marks an iceberg collision as one of the loudest events in the 
oceans (Fig. 14).  
 

 
Figure 14: ENVISAT-ASAR images of an iceberg collision, provided by ESA. The large iceberg has a 
length of about 20 kilometers. 
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Perspectives 
 

PALAOA is intended to work for several years to provide a long time series of acoustic data 
to look out for long term trends eventually induced by climate change. Also Atka Bay is an 
interesting place for studying the biology of marine endotherms. There is a local Weddell seal 
population of around 300 animals and an emperor penguin colony with 8000 breeding pairs, 
attracting predators like leopard seals and killer whales. Biologists from AWI plan to combine 
acoustic recordings from PALAOA with on site observations and satellite tagging programs to 
study the behaviour and ecology of these animals. To infer from passive acoustic recordings 
to real abundances of a species is a difficult task that also requires additional field work for 
gauging. We plan to deploy seals with acoustic tags to derive the vocal behaviour of diving 
individuals. Information on individual at-sea and haul-out activities, depending on time and 
weather and ice conditions is necessary to estimate the percentage of animals which are and 
which are not in the water at a given time. Then, from the calls recorded by PALAOA in a 
period, together with the calling rate of an individual and the percentage of animals that are 
in the water it will be possible to get estimates of the total number of animals in the PALAOA 
vicinity. 

A problem in generalising the data is the question whether the location is typical for the ice 
shelf edge, or even for other parts of the Southern Ocean. In order to investigate this we are 
preparing to set up additional, smaller autonomous recorders at other locations for shorter 
periods to obtain acoustic recordings from other sites. 

The future of PALAOA is thrilling. We intend to run the observatory for as long as possible to 
obtain the long time series which is necessary to detect changes and trends, both in the 
physical noise background and in the marine mammal presence which might be induced by 
changes in the Antarctic environment. However, while PALAOA is not standing on thin ice, its 
fate might well lie in the depth of the ocean. The break-off of the ice shelf is not predictable, 
and a journey on an iceberg around Antarctica might start any day. We took precautions to 
recover the PALAOA container in this case by equipping it with a GPS/Iridium phone, 
however, the chances of such a rescue operation are in the air. 
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Abstract. Vocalizations of bats have coevolved with their hearing and flight abilities to serve an 
orientational, autocommunicative purpose. Thus, echolocation is governed by physical rather than socio-
behavioural constraints. Signal characteristics therefore show marginal communicative value and they can 
heavily overlap between species exploiting similar environmental niches for foraging. Nevertheless, 
recognition of species by their calls is possible to a large extent, even in species-rich environments as in 
Switzerland. Aware of the inter- and intra-specific variability of echolocation, we employ a multi-feature 
approach to acoustic species identification, combining repeated synergetic pattern recognition with 
parametric comparisons, to achieve a robust proposal of species identity to a supervising expert. We 
present applications on a landscape scale, results of the method in a case study, and an implementation 
on a national scale for the revision of the Swiss Red List of bats. 

 
 
Introduction 
 
Function and Limitations of Echolocation 
 

Descending from nocturnal gliding insectivores (FENTON ET AL. 1995), bats have evolved an 
active mode of orientation, that allows them to orient, navigate and forage in the darkness of 
the night. During their 50 Mio years of evolution, types of vocalizations, hearing abilities, and 
flight characteristics have co-evolved to form in each species a unique adaptation to 
nocturnal feeding behaviour on the wing in a variety of habitats, and on different food types 
(NEUWEILER 1984). 

Echolocation enables bats to accomplish tasks with comparable perfection as visually 
oriented animals, ranging from long-range target detection (HOLDERIED & VON HELVERSEN 
2003) over the detection of water-waves indicative of fishes below the surface (SCHNITZLER 
ET AL. 1994) to the selective detection of an insects flutter (EMDE & SCHNITZLER 1990). 
Passive prey detection by their rustling or wing-beating adds to the variety of acoustic tasks 
performed by bats (RUSSO ET AL. 2007). 

However, active acoustic orientation at ultrasound frequencies is hampered by a variety of 
physical constraints: quadratic spreading loss rapidly reduces available signal energy for 
echo generation. Adding to this, atmospheric attenuation affects signal energy progressively 
with higher signal frequencies (LAWRENCE & SIMMONS 1982), making echolocation in air 
basically a short-distance operation. As an active orientation, echolocating animals are 
vulnerable to eavesdropping, be it by their targeted prey or by potential predators (FENTON & 
RATCLIFFE 2004). The active mode can be prone to jamming (FULLARD ET AL. 1979; 
ULANOVSKY ET AL. 2004), and furthermore, it conveys information to conspecifics and 
foraging competitors (BALCOMBE & FENTON 1988). 
 
 
Consequences for Recognition 
 

Echolocation is not a fixed signal type of operation. Depending on orientational situation, bats 
can drastically adapt their calls: while foraging with long constant-frequency (CF) signal in 
open air on long ranges, the orientation along a cluttered forest edge necessitates the 
adoption of more broadband, shallowly frequency-modulated (FM-CF) signals, while during 
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insect interception very short FM signals are used (GRIFFIN 1958). The active mode of 
orientation is a mayor clue to bat detection, and its communicative characteristics potentiates 
species recognition (AHLÉN 1980; FENTON & BELL 1981), but comparable niche occupation in 
different species, and behavioural variation (OBRIST 1995) in echolocation can seriously 
complicate this task. 

Traditional acoustic field-identification of bats by their echolocation calls makes use of either 
heterodyning ultrasound detectors or countdown detectors. More recently, for offline-
analysis, digital time-expansion detectors replace bulky and very expensive high-speed tape 
recorders (Parsons & Obrist 2004). Storage of recorded signals is a prerequisite for accurate 
species determination and the thorough evaluation of ambiguous signals. The step to digital 
signal management greatly helps in efficiently dealing with this kind of data. It speeds up 
data screening and extraction of temporal and spectral signal parameters, which later can be 
processed in statistical frameworks, artificial neural networks or similar decision finding 
algorithms, that identify echolocation calls to species (HERR ET AL. 1997; JONES ET AL. 2000; 
PARSONS & JONES 2000; PREATONI ET AL. 2005). 
 
 
Aim 
 
Echolocation studies that target temporal and spatial habitat use of bats quickly deal with a 
large amount of data: 1 s sampled at 500 kHz with 16 Bit translates to 1 MB/s of data; a 
single DVD is almost filled in one hour. Analysis of such amounts of data asks for 
automatisms, be it at the recording side, the analysing side, or both. We aimed at developing 
an efficient combination of hardware and software to sample echolocation signals for 
extended periods of time, preferably all night, and at multiple sites concurrently. Furthermore, 
ideally the data should be analysed to the species level in an automatic and unsupervised 
process and be applicable at the Swiss bat fauna, which comprises 30 species, covering a 
wide range of signal types (OBRIST ET AL. 2004a). 
 
 
Material and Methods 
 
Detectors and Recording 
 

For automated acoustic bat monitoring, sophisticated bat detectors are not required for 
recording purposes. However, high sensitivity and linear frequency response curves of 
acoustic transducers are mandatory. We use condenser microphone capsules from 
Ultrasound Advice (London, UK), connected to an amplifier stage custom-built by the same 
company. The amplifier is able to drive the signals through more than 200 m of coaxial cable 
and holds two lead-acid gel cells for prolonged continuous operation. 

Recording was initially performed with a PCMCIA data acquisition card (PCCARD-
DAS16/330, Measurement Computing Corporation, Middleboro, MA, USA) in an Apple 
Macintosh PowerBook G3 laptop computer. Present developments of a ultrasound data 
logger allow for autonomous intelligent (self-triggering) recording stations, which are 
equipped with electret microphones (Knowles, Itasca, Ill, USA) and digitally store the data on 
SD memory cards. 
 
 
Preprocessing 
 
The recordings consist of continuous echolocation sequences of 5 to 20 sec duration in 
binary format, sampled at 312.5 kHz with 12 bit. Prior to analysis, the sequences are high-
pass filtered at 7.5 kHz. Thus conditioned, a peak detection and centering routine extracts 
single echolocation call cut-outs, each of 8192 data points in length (26.21 ms duration). Of 
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these, spectrograms are calculated, consisting of 159 spectra (0.17 ms resolution), which 
contain 128 spectral points (1.22 kHz resolution) and 81% overlap in data points (OBRIST ET 
AL. 2004b). All subsequent analyses are performed on these 20352-point spectrograms 
(Fig. 1). 
 

 
 
Figure 1: Cutting-out of single echolocation calls and subsequent spectrogram formation. 
 
 
Synergetic Pattern Recognition 
 

Synergetics is an interdisciplinary field which deals with self-organizational phenomena in 
nature (HAKEN 1978; KOHONEN 1984). These phenomena have in common that many 
microscopic parts in an unsorted order (chaos) transform themselves in a sorted order. The 
importance of each part is minor; only the properties of the whole system are relevant and 
can be described through synergetic differential equations.  

The new set of algorithms emanating from this interdisciplinary field has only recently been 
used for classification tasks (HAKEN 1988, 1996; WAGNER ET AL. 1993; WAGNER ET AL. 1995). 
For the classification of bat calls we used an algorithm termed SC-MELT (DIECKMANN 1997). 
This algorithm combines several training patterns per class into one feature vector without 
losing any information about the training patterns. The training patterns are melted into one 
prototype. The prototype has the same dimension as the training vectors and is normalized 
to length 1. Because of this ability the algorithm can handle big dimensions in contrast to 
artificial neural networks (ANN). ANN also can handle big dimension, but the computational 
power needed to train an ANN with input vector of 16384 features is prohibitive. The 
employed algorithm is termed ‚synergetic computer using adjoint prototypes’ (SCAP, HOGG & 
TALHAMI 1996; WAGNER ET AL. 1993). A most interesting property of the algorithm is its ability 
to emphasize pattern content that is unique among all others, at the same time neglecting 
pattern content common to all others. The learning time of the algorithm is very fast, taking 
only seconds on a 2.6 GHz Intel-Mac. The classification is even faster because it is simply a 
scalar or dot product. 

Training and classifying can be described as follows: assume we train the algorithm with 
learn 4 calls of each of 3 classes (species), resulting in 3 prototype feature vectors. We now 
test 3 echolocation calls of species unknown, but contained in the training base. The 
algorithm computes the scalar product of each test call with each class prototype, resulting in 
3 values per call, varying between 1 (identical call as in training base) and 0 (no resemblance 
to any of the training calls). The training class with the highest scalar product identifies the 
species where the calls most likely came from (circled in Fig. 2). 
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Figure 2: Learning and classifying echolocation calls with the synergetic algorithm. 
 
Parameter Extraction 
 
To also achieve parametric values for each extracted echolocation call, we calculate the 
summations of the spectrogram over the temporal and spectral dimensions, thus obtaining a 
power spectrum and an amplitude representation respectively. In these arrays, we search for 
peaks (frequency of peak energy Fpeak, time of peak amplitude Tpeak) and spectral and 
temporal values at -6, -12 and -18 dB below the peak, thus achieving corresponding values 
for maximum frequency (Fmax), minimum frequency (Fmin), start time (Tstart) and end time 
(Tend). From these we finally derive bandwidth (Fmax - Fmin) and duration (Tend - Tstart) of 
the signal at corresponding intensities below the peak (Fig. 3). 
 
 

 
 

Figure 3: Calculation of spectral and temporal parameters from the spectrogram (see Fig. 1). 
 
Field Recording 
 

Field recording and analysis initially was restricted by processor speed (PPC G3) and hard 
disk capacities. Thus, analysis was shifted to offline processing. During monitoring 10 s 
blocks were recorded, saved, filtered and preprocessed in terms of peak detection. If four or 
more peaks where detected in the 10 s sequence, the file was kept otherwise erased and in 
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either case correspondingly noted in a log-file. Subsequent recordings happened 
sequentially and circularly from additional microphones connected to the computers data 
acquisition card. Thus storage space could be saved for retaining the raw-data, at the cost of 
duty-cycle, as the processing used about 20 s per file, resulting in a stations duty-cycle of 
30% divided by the number of connected channels. 

In later inventories, data loggers were employed. To save memory space on the 2 GB SD-
cards, small sound sequences of 5 s duration are only recorded real-time, after a trigger 
event occurred. In a first stage, a real-time amplitude peak detector triggers a more time 
consuming (40 ms) second stage, an FFT and spectral peak detection. Only these then 
triggered the recording, thus increasing the duty-cycle to >99% but incorporating a slight 
delay in recording start, which equals roughly to one missed echolocation call. 
 
 
Optimization of Classification Methodology 
 
Signal preprocessing and synergetic pattern recognition as outlined in the previous sections 
was carried out offline in the lab. 

In a pilot study, classification of bats from a training set of 12 known species resulted in a 
high correct classification rate of the synergetic algorithms alone. For training purposes 
varying sets of training calls per species were used. In average we reached 45% correct 
classifications when including 5 training calls per species (Figure 4). Increasing the number 
of training calls to 9 improved this value considerably. As a classification always consists of a 
frequency distribution of a calls matches (scalar product S) to all prototypes (classes) 
included in the training base, we could further select only those classifications, that reached 
in those histograms a critical value of Smin > 0.5 and exhibited a good separation from other 
species ∂S > 0.2. Thus we finally rejected 33% of signals to be classified as unqualified, at 
the same time increasing average classification rates to 80% (see Table 64.2 in OBRIST ET 
AL. 2004b). 
 

 
 
Figure 4: Classification rates with 12 species in training set, 5 training calls of each. Misclassifications 
become obvious e.g. in the genus Myotis or between Eptesicus serotinus and Vespertilio murinus. 
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To be able to recognize all Swiss bat species, we performed an extensive collection of 
reference signals from animals of known species affiliation, recording 26 species from 
Southern Germany to Northern Italy between 1999 and 2000. Thus the only recently 
described species Plecotus macrobullaris (KIEFER & VEITH 2001; SPITZENBERGER ET AL. 
2003) and Myothis alcathoe (VON HELVERSEN ET AL. 2001) are not included. The same holds 
true for Nyctalus lasiopterus, which is extremely rare in Switzerland. 

When including calls of all 26 species in the training of the synergetic algorithm, rates of 
correct classification dropped considerably to 55%. Increasing the number of training signals 
lead to mixed success: above 10 training calls per species the classification rates only 
marginally increase and start to drop again beyond 30 training calls. Furthermore, the 
previously evaluated delimiting values for ∂S and Smin showed negative effects on the 
classification rates. After numerous iterations we settled on a very conservative delimiting 
quality measure of ∂S > 0.05 and dropped Smin as a condition altogether. 

Bat species show a considerable variability in their echolocation calls: depending on 
environment and behavioural situation, calls may change in duration, frequency content and 
emphasis (OBRIST 1995). To decrease variation and thus accuracy of matching in our training 
classes, we divided echolocation calls types of every species in sub-classes depending on 
duration and frequency structure, thus achieving more homogeneous training patterns 
(Fig. 5), but increasing their number from 26 to 85. 
 

 
 
Figure 5: Dividing echolocation calls of Pipistrellus pipistrellus into four distinct type classes; 
frequency modulated (FM), frequency modulated – quasi constant frequency (FM-QCF), frequency 
modulated – constant frequency (FM-CF), and constant frequency (CF) type. 
 
 
Probabilistic Evaluation 
 

To train a synergetic algorithm well balanced, the number of patterns per class have to be 
identical. As we have between 20 and 1393 calls per type class, we randomly selected N 
calls per type class to calculate a training base. We then repeated each random selection 99 
times for every N from 2 to 15, achieving 1386 training bases. We tested each of these 
against all remaining calls not considered in the respective training. The 5 training bases 
performing best where finally chosen as reference for further species identification. 
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Comparing species assignment between the 5 best training bases still revealed differences. 
Thus, we decided to test every signal of unknown provenance five times, and focus on the 
joint outcome. At least 4 of the 5 classifications had to result in a ∂S > 0.05, and at least 3 of 
the 5 classifications had to point to the same species. Subdividing species’ calls in sub-types 
combined with the multi-classification and the prerequisites increased average classification 
rates but still proved dissatisfactory. 

When plotting temporal and spectral parameters of correctly and erroneously classified 
signals, parameter ranges could be identified, which separated the two classes (Fig. 6). 

 

 
Figure 6: Call type specific restriction of temporal and spectral parameters. Correctly classified call 
types (green), erroneously classified call types (red) and parameter ranges for rejection (blue) are 
illustrated for calls of Pipistrellus pipistrellus and two arbitrary parameter combinations (see also 
Fig. 3). 
 

Rejecting the parameter ranges underlined blue (Figure 6) drastically decreased the number 
of erroneously classified call types (red) as it disproportionately favors correctly classified call 
types (green). In a ultimate refinement step, we can confidently judge species when 
considering the many calls classified to species, that occur in each recorded echolocation 
sequence. Species of the genus Myotis are correctly identified in 74% of the cases, other 
species in 92% of the cases (Average 86%, see Table 3 in OBRIST ET AL. 2004a). 

Still the recognition process is not fully automated and asks for expert interaction after the 
calculations, mainly to screen existing ambiguous sequences visually. Few identified calls or 
many different species per sequence are indicative of such cases and advise a check for 
plausibility. 
 
 
Applications and Results 
 
Cross-Validation 
 
After development of the recognition method, its applicability was tested with cross-validating 
studies, prior to implementing it in large scale inventories. During 9 nights a total of 17 
locations were sampled with mist nets, our computers and with bat detectors to compare the 
monitoring outcome of the different methods (Fig. 7). 
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Figure 7: Species registrations with different methods and different habitat types during cross-
validation of automated recognition method. 
 
The computer recordings clearly detected most evidences of species occurrences in the 
diverse habitat types. Plecotus sp. and some Myotis species where the only ones, for which 
mist nets proved adequate too. Due to their rarity and especially low intensity echolocation 
calls (Plecotus sp.) the acoustic methods may be less superior for these species. Overall the 
computer detected 14 out of 17 registered species, mist nets 13 and the acoustic monitoring 
7. The outcome encouraged us to focus in future monitoring projects on the automated 
recording and analysing with computers, all the more as running mist nets necessitates 
costly constant human attendance. 
 
 
Habitat Requirements of Bat Species Assemblages 
 

To assess the habitat requirements of bats, we designed a survey of bat activity in habitat 
types of value to nature conservation, as lakeshores, riverbanks, floodplains, forests, forest 
edges and old orchards but contrasted them to agricultural areas and settlements. The 
inventory design encompassed simultaneous sampling with to 2 computers, each connected 
to 5 microphones positioned in different habitat types. Thus we aimed at the ability to 
concurrently compare activity e.g. on a transect from a riverbank through a floodplain into a 
forest and its edge. In nine regions of Northern Switzerland, the recordings where repeated 
two to three times at the same microphone locations during different seasons of the year, 
totalling to 55 microphone locations with 150 microphone nights recorded.  

Bats predominantly used two types of habitat, water related and settlements (Fig. 8). 
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Figure 8: Species specific habitat use. Activity is standardized in number of detections per 10 hours of 
observation. Species names are abbreviated. 
 

Some species clearly segregate in favored environment like Myotis daubentonii, which 
almost exclusively is found in water related sites, Nyctalus noctula mainly over water. While 
Pipistrellus pygmaeus is found preliminary in wetlands, P. pipistrellus shows a preference for 
water related sites and settlements, but it is found troughout and proved to be the most 
common species registered in almost all microphone sites. 

The sampling design of this study, which included repeated sampling of the same locations, 
allowed to calculate occupancy rates of sites and the detection probabilities of species. Only 
recently new models where developed to account for imperfect detection probability in site 
occupancy models (MACKENZIE ET AL. 2002, 2003, 2004; DORAZIO & ROYLE 2005; 
MACKENZIE & ROYLE 2005). Once these values are known for a given species, different 
occupancy study designs can be evaluated re. their power and error rates depending on the 
number of repetitions and/or sites (MACKENZIE & ROYLE 2005). We calculated the necessary 
values with the help of the software PRESENCE (http://www.mbr-
pwrc.usgs.gov/software/presence.html) and evaluated several survey designs with the 
software GENPRES (http://www.mbr-pwrc.usgs.gov/software/presence.html) to propose a 
design for the revision of the Red List of bats in Switzerland (OBRIST & BONTADINA in prep). 
See below. 
 
 
Response of Bat Diversity to Change in Forest Management 
 

In the recent past in Switzerland, intensification of agricultural and forestry practices coupled 
with human depopulation of rural areas lead to abandonment of traditional pastoral and 
forestry practices. In this context, we designed a study in Southern Switzerland which aimed 
at assessing the effect of the abandonment of chestnut orchards (Castanea sativa) on bat 
species richness and foraging activities to find practical recommendations for bat 
conservation (RATHEY ET AL. in prep).  

We sampled bats in traditionally managed and unmanaged chestnut orchards with acoustic 
surveys, thereby testing the hypothesis, that management would open up access to more, 
and less clutter resistant bat species. The study took place in 32 pairs of managed and 
unmanaged chestnut orchards (64 sites in total) on the Southern slope of the Swiss Alps. 
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Comparable to the study mentioned before, we surveyed bats by ultrasound registrations 
during 32 nights with two computer sets, each with 4 microphones connected, recording 
simultaneously in a pair of managed and unmanaged orchards of close proximity. Vegetation 
structure (Fig. 9) was characterized at the places where microphones were installed, and 
food availability (nocturnal aerial insects) was assessed during recording nights using non-
directional light traps.  

We found twice the number of bat species (12 species) and a fourfold foraging activity (530 
ultrasound sequences) in the managed chestnut orchards compared to the unmanaged ones 
(6 species, and 132 sequences). Within the managed habitat, bats visited only the most open 
orchards, free of undergrowth. Bat species of low flight manoeuvrability, although rarely 
detected at all, were 14 times more common in managed than unmanaged orchards. Bats of 
medium to high manoeuvrability resisted clutter better and preferred managed only 5 times 
over the unmanaged orchards. The stand structure in the managed orchards was 
significantly different from that in unmanaged ones, the latter being denser and closer grown 
over with young shoots (≈ 4 cm) than the former. 

 
 

 
 
Figure 9: Illustration of the difference in overgrowth of the understory in managed (top) and 
abandoned (bottom) traditional chestnut orchards. 
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Management showed no affect on food availability (i.e. aerial insect number and biomass).  
The study demonstrates that the abandonment of chestnut orchards leads to a decline in bat 
species richness and foraging activities, due to restricted access into the overgrown forests. 
Restoring and keeping chestnut orchards open thus maintains endangered bat species in the 
Southern Alps. 
 
 
Red List Inventory 
 

The pending update of the Swiss red list of endangered species for the group Chiroptera 
(SCHWEIZERISCHE KOORDINATIONSSTELLEN FÜR FLEDERMAUSSCHUTZ OST UND WEST ET AL. 
1994) required a scientific based and sound procedure to collect reliable data on species 
occurrence. It is obvious that a nation-wide evaluation of a large group of elusive and secret 
mammals as bats will need a huge effort, and because the resources are limited, an 
optimization of sampling design is needed. Thus, we could profit from the habitat assessment 
study presented above, to evaluate a sampling layout, that promised a required accuracy, 
and was temporally and economically realistic (OBRIST & BONTADINA in prep). 

Presently our proposed sampling design is implemented in the field: 100 squares of 1 km2 
each are surveyed four times between 2007 and 2009, twice in early, twice in late summer. 
In each square the observers identify and describe (botanically and structurally) 10 locations, 
which they monitor for 15 min in every survey. Observers are equipped with digital bat 
detectors, that allow them to protocol acoustically identified species on the spot, or store 
short sequences of doubtful origin in slowed down mode to a digital recorder. Additionally, 
each observer is equipped with a second ultrasound microphone and a digital ultrasound 
data-logger, which autonomously triggers on and stores ultrasound signals. A GPS-logger 
completes the apparatus for the field operators. Catching bats with mist-nets complements 
the acoustic methods. 

Results from the first year are ready for analysis and prove the feasibility of the ambitious 
approach. We are confident to be able to calculate the proportion of area occupied (PAO 
according to MACKENZIE ET AL. 2002) for most species. The PAO can then be used to 
calculate a valid Red List criterion, the change in the area of occupancy (IUCN criteria for red 
lists B, IUCN 2001) according to the procedure applied in Amphibians (MACKENZIE ET AL. 
2002; PELLET & SCHMIDT 2005). 
 
 
Discussion 
 
Quality and Taxonomy 
 

Several recent publications tackle acoustic bat species recognition with a variety of methods, 
statistics, artificial neural networks or decision trees (HERR ET AL. 1997; OBRIST ET AL. 2004b; 
PARSONS & JONES 2000; RUSSO & JONES 2002), all presenting good performance but on 
incomparable data sets. However, some species’ groups invariably prove very difficult to 
identify by their calls, e.g. the genus Myotis emits very similar signals, Pipistrellus nathusii 
and Pipistrellus kuhlii often overlap in their signal types and worse still, with Eptesicus 
serotinus, Nyctalus leisleri, and Vespertilio murinus three genera may be mixed. For 
conservation purposes, the quality of the recognition must not be measured in terms of % 
accuracy but with 100% accuracy and in variable terms of species or species groups 
assignment. Thus, in such cases high classification accuracy may only be reached with a 
coarser taxonomic level, e.g. a species or even a genus complex. After extensive work with 
bat species identification by their calls, we come to the conclusion, that acoustic identification 
of all species in species-rich bat assemblages likely can not be achieved with a single 
method whatsoever, but it will gain from a probabilistic approach, which combines candidate 
methods as exemplified in this paper. 
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Merits and Pitfalls of Automated Methods 
 

Present digital recording techniques allow for an autonomous acoustic monitoring in large 
scale bat surveys. Automated recording of bats features many advantages over acoustic 
monitoring in the field with bat-detectors: recordings are far less personel-intensive, potential 
disturbance of foraging bats by observers becomes negligible, ideally a duty-cycle of close to 
100% can be achieved, data are immediately stored digitally, and archiving and later offline-
analysis with a variety of methods becomes available. Thus they better account for the 
scientific requirement of reproducibility. Synergetic pattern recognition is one of these 
analysis methods, which we apply successfully to large data-sets. In combination with 
supplementary methods it allows for the recognition of the majority of the Swiss bat species. 
However, expert knowledge and experience is still highly advisable to omit mistaking 
interpretations, when checking species identities proposed by automatic algorithms. 
Furthermore, at the recording end, pitfalls linger, like inadvertent recording of insects or 
setting of automatic trigger conditions inappropriate to the species in focus. 

To conserve the value of long term collections of digital recordings of ultrasound signals from 
bats, it is also necessary to demand standards for the journaling of meta-information of 
recordings, which surpass self-evident parameters like time, location and observer. Values 
like type of microphones used, filter settings, noise-levels, possibly frequency response and if 
not already contained e.g. in AIFF-data, sampling rate and bit depths among others. 
Correspondingly stored acoustic data will become more universally explorable and will 
increasingly gain value for biodiversity conservation. 
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Abstract. We report preliminary analyses from an ongoing sound monitoring project that involves five 
species of anurans: two species of tree frogs in the genus Hyla (Hylidae) and three species of midwife 
toads in the genus Alytes (Discoglossidae) in the Iberian Peninsula. Each station was monitored with an 
automated recording system based on solid state recorders, coupled with programmable temperature and 
relative humidity probes. We present comparative data of vocal activity of two populations of Alytes 
cisternasii from thermal extremes of the species range using human detection and commercial automated 
sound recognition software. Parameters such as duration of reproductive season, preferred temperatures 
for calling activity and relation with relative humidity are discussed. We compare the performance of 
analysing the recordings between an automated system of detecting the presence of Alytes cisternasii 
calls and listening of the recordings by non-expert personnel. 

 
 

The most recent reviews of world wide anuran species conservation indicate that anurans 
are among the most threatened groups, even moreso than mammals or birds (STUART ET AL., 
2004). Among the many factors that are related to that threat, global climatic change appears 
to be related to the declining populations. Temperature influences the physiology, ecology 
and behavior of anurans. These ectothermal vertebrates can select their body temperature 
from a mosaic of temperatures in their environment. Furthermore, temperature indirectly 
determines the availability of surface water, an element essential for the development of their 
larvae and for the survival of the adults. Therefore, an increase in temperature related to 
global climatic change is likely to impact the biology and conservation of anurans. 

The geographic location of the Iberian Peninsula makes it particularly vulnerable to these 
changes. The different predictions of climatic change indicate a general increase in 
temperatures as well as long term changes in water availability, resulting from a decrease in 
rainfall for a number of regions (MMA, 2005). 

TEMPURA is the acronym for the project “Adaptations of anurans to climate change:  
comparative study of population in thermal extremes”, funded by the Ministerio de Educación 
y Ciencia, Spain (Programa Nacional I+D+i), and involves researchers of 4 institutions: 
Western Kentucky University (USA), Universidade de Lisboa (Portugal), Universidad de 
Sevilla (Spain) and the Museo Nacional de Ciencias Naturales-CSIC, (Spain). 

Within the project TEMPURA we investigate what will be the response of some anuran 
species to variations in the temperature and water availability of their habitats, among other 
parameters, we investigate the relationship between acoustical activity of anurans and 
weather variables in 10 populations of 5 species of anurans. Two sites were selected per 
species, one of them in the coldest area of their range, and another one in the hottest area of 
their range. The species selected for the study were three continental species of midwife 
toads in the genus Alytes (A. obstetricans, A. cisternasii & A. dickhilleni), and two species of 
treefrogs in the genus Hyla (H. arborea & H. Meridionalis; Fig. 1). The main goals of this 
project are 1) to determine the reproductive phenology of the species using male calling 
activity as the indicator; 2) compare the relationship between temperature and humidity and 
phenology between the populations occuring in warm (xeric) and the cold (mesic) habitat 
extremes (determining whether any between populations differences respond to phenotypic 
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plasticity or to adaptation), and to complete the comparison comparing the results between 
species within genera, and between genera, to get an indication of the evolutionary history of 
the adaptations. In this paper we particularly consider the problem of the analysis of the 
arrays of recordings to detect acoustical activity of a focal species, and we compare the 
performance of an automated software-based system and listening of the recordings by non-
expert personnel. 
 
 

 
 
Figure 1: Location of monitoring stations. 
 
 
Call Characteristics 
 
The spectral and temporal characteristics of the species involved in this study are shown in 
Fig. 2, (sounds from MÁRQUEZ & MATHEU, 2004). While the two hylid calls are mainly pulsed 
sounds with wide frequency spectra, the three discoglossids have short and tonal sounds 
with no frequency modulation and extremely simple harmonic structure (pure tones, 
MÁRQUEZ & BOSCH, 1995). Consequently the choice of genera allows interspecific and 
intergeneric comparisons, it also allows exploration of environmental effects on very different 
sound types.  
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Figure 2A: Audiospectrogram of one advertisement call of A. cisternasii, one of A. dickhilleni, and one 
of A. obstetricans  (FFT window size, 1024 points; total duration 900  milliseconds). 
 
 

 
 
Figure 2B:  Audiospectrogram of one advertisement call of H. arborea and one of H. meridionalis 
(FFT window size, 1024 points; total duration 9.9 secs). 
 
 
Methods: Automated Monitoring System  
 

The recording system includes four main elements (Fig. 3): 1) An omnidirectional condenser 
microphone Fonestar FCM-62 (powered by a AA alkaline battery); 2) a digital recorder 
Marantz MPD-660 controlled by; 3) an “Amphibulator”, a custom made programmable timer 
developed by the Department of Biology and the Department of Engineering of Western 
Kentucky University, and 4) a 12v battery (40 Ah or more). The recording protocol was 
record 3 min per hour, 24 hours per day. 

Maximizing the time of autonomous functioning of the recording system is crucial to diminish 
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maintenance costs, and this is an important issue if you consider that the 10 stations are 
located in distant points of the Iberian Peninsula. This requirement justified the choice of 
MP3 compression in the sound recording format. With the largest Compact Flash cards 
available at the beginning of the project (2GB) MP3 compresses sound in MONO 
theoretically allows for more than 72 hours of recordings (more than 60 days, recording 3 
minutes per hour every hour). The Marantz PMD-660, however, has a lower maximum 
recording limit, which is determined by the three digits that encode the recordings which limit 
the number of recorded tracks to 999 or 41 days. 

Each recording station is also equipped with environmental dataloggers that monitor 
periodically the air temperature and RH (Onset Hobo H08) as well as the soil temperature at 
5-10 cm depth, and water temperature (Onset Pendant). Data are stored every five minutes 
during the calling activity of the monitored species and every 30 minutes during the rest of 
the year. 

 
Figure 3: Diagram of the automated recording system. 
 
 
Protection of the recording stations. - In order to prevent the theft or destruction of the 
recording stations in sites with public access, the units were housed in iron boxes which were 
attached to solid elements of the landscape or inserted in a concrete bed. The microphones 
were housed in an opening on the box or were placed nearby (Fig. 4). 
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Figure 4: Examples of location and protection of recording systems. 
 
 
Calibration. - The calibration of the recording system including the methodology for setting 
similar recording levels in all the units, determining the shape and extension of the area 
covered by the station, and ultimately determining what percentage of the total population 
and the corresponding number of adults have been recently described (MÁRQUEZ ET AL., 
2008). 
 
 
Results 
 
The first results regarding two populations of A. cisternasii were recently published (TEJEDO 
ET AL., 2008; MARQUEZ ET AL., 2008,). During 2006 these populations, which are located 400 
kms apart in the Iberian Peninsula showed a remarkable degree of synchrony in the 
beginning of their reproductive season. In both cases acoustical activity started in the second 
week of September, coinciding with the first rainfalls of fall after the summer drought (this 
observation is in agreement with previous reports, CRESPO, 1982; RODRÍGUEZ-JIMÉNEZ, 
1984, 1988; MÁRQUEZ, 1992; GARCÍA-PARÍS ET AL., 2004). However, there are important 
differences in the temperature and relative humidity between the periods of acoustical activity 
of the two populations. In the first weeks of activity air temperature was between 13-20ºC in 
the warm population during acoustical activity, whereas in the northern population males 
called at air temperatures of 8-15ºC. Regarding relative humidity, the maximae were similar 
in both populations reaching 100%, contrasting with the minimae which showed substantial 
differences between populations reaching below 50% in the southern population while 
always being above 74% in the northern population (Fig. 5). 

Even the soil temperatures measured 5 cm deep were significantly different (Fig. 6) (t-
Student=-4.79; p=0.000; n=48). 

These preliminary results suggest that the toads are active at different temperatures 
although, in order to discriminate to what extent the differences result from a process of 
adaptation or simply reflect phenotypic plasticity, further studies are necessary. 
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Figure 5: Air temperature and relative humidity during the hours of acoustical activity of the Iberian 
midwife toad (Alytes cisternasii) in the two study sites (fall 2006). Blue: Sierra de Guadarrama, Madrid 
(cold habitat). Red: Sierra Norte, Sevilla (warm habitat). 
 

 
 
Figure 6: Mean soil temperature during the hours of acoustical activity of the Iberian midwife toad 
(Alytes cisternasii) in the two study sites (fall 2006). Blue: Sierra de Guadarrama, Madrid (cold 
habitat). Red: Sierra Norte, Sevilla (warm habitat). 
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Comparative Results of an Automated Sound Recognition System and Human 
Listening 
 

We used the data from the first season of the two study populations of Alytes cisternasii to 
compare the effectiveness of an automated system when compared to the inspection of the 
files by students. The automated software used was Song Scope Bioacoustics Monitoring 
Software, a commercial program made by WildLife Acoustics. According to the developper of 
this software this program operates as follows “Song Scope builds Hidden Markov Models 
using algorithms specially designed to consider both the spectral/temporal components of 
individual syllables, but also how these syllables are arranged into songs for more complex 
avian vocalizations (frogs are generally single-syllable songs). A "recognizer" is really an 
HMM -- for the layman, a statistical model with "states" representing spectral fingerprints and 
probabilities of transitioning between states. Plus a little more...” (Ian Agranat, pers. com.). 
Again, the populations of Alytes cisternasii followed were: cold habitat (Sierra de 
Guadarrama, Madrid) and warm habitat (Sierra Norte, Sevilla). 

The software used required first the construction of models of recognition. Three different 
sound files were analyzed to build a recognizer, one of them included high quality recordings 
from a sound guide (MÁRQUEZ & MATHEU, 2004) whereas the other two files were recordings 
from the automated recording system where Alytes sounds were confirmed to exist. More 
than 8000 recordings were scanned corresponding to daytime and night recordings from fall 
2006 to early summer 2007. SongScope yielded 200 positive recordings (presence of at 
least one call) with the sensitivity level that was selected (9 in a scale of 10). 

Also, a subsample of the recordings were listened by two students with no prior experience 
in call detection, the subsample selected was the first three hours after dusk during the 
months of the reproductive season (the recordings made at the times with a maximum 
probability of midwife toads calls). More than 1000 3-min recordings were listened by the 
students and 96 of the recordings scored positive (presence of at least one call). 

All the files that scored positive were listened again by experienced researchers to confirm 
the presence of the species call (Table 1). Only 3.6 % y 7.1% of the recordings that scored 
positives in the human listening process were confirmed to have Alytes calls in them. Song 
Scope was more effective since 15.3 % and 19.7% of the positive files were confirmed by 
subsequent expert screening of the recordings. However, the large percentage of false 
positives (Type II error) with both methodologies is remarkable, and only partially explainable  
by the simplicity of the call. The presence of “acoustical mirages” or of “oversensitive 
acoustical search image” have been noted previously by the authors as a psycho-acoustic 
phenomenon which is triggered in sound environments which are far away from the midwife 
toads breeding grounds and results in the sensation of detecting midwife toad calls 
erroneously, presumably when a burst of energy occurs within the frequency range of these 
species. 

Another important measure of the efficiency of the sound recognition system is the number of 
recordings that included midwife toad calls that did not score positively in the automated test 
(Type I error, Table 2). In order to determine the importance of that type of error we had 
expert ears listen to 86 tracks selected from the dates and hours of maximum probability of 
calling. The software used fail to detect 35% of the files that actually contained A. cisternasii 
calls (24% in the hot habitat and 50% in the cold habitat). These figures are somewhat 
disappointing and may be related to the limit of 10 dB sensitivity (sound/noise) of the 
software or to the variability of the frequency of the call within the population that may exceed 
the range established for the software scanning (if this is the case, the problem would 
probably be solved by further improving the recognizer model). 
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Detection system Population Nº tracks 
analyzed

Total tracks 
with positive 

scores

Confirmed 
positive

False 
positive

% Type II 
Error % Accurate 

Non-expert 
human listener Hot 563 42 3 39 92.9 7.1

Automatic Hot 2364 124 19 105 84.7 15.3

Non-expert 
human listener Cold 532 55 2 53 96.4 3.6

Automatic Cold 6597 76 15 61 80.3 19.7

Table 1: Type II error (call detected in track not containing the call). Comparative results between non-expert
human listener and automatic detection system (Song Scope) for mating calls of Alytes cisternasii . Pooled
recordings of hot and cold populations.

 
 
 

Detection system Population Nº tracks 
analyzed

Total tracks 
with positive 

scores

Tracks with 
calls detected

Tracks with 
calls not 
detected

% Type I 
Error % Accurate

Automatic Cold 34 34 8 26 50.0 50.0

Automatic Hot 52 52 16 36 23.8 76.2

Automatic Total 86 86 24 62 35.1 64.9

Table 2: Type I error (call not detected in a track that included a call). Results of automatic detection system
(Song Scope) for mating calls of Alytes cisternasii . Pooled recordings of hot and cold populations.

 
 
Conclusions 
 
Of all of the species studied in TEMPURA, A. cisternasii is the species that occurs 
throughout a more homogeneous habitat and has the least fragmented distribution. It was 
therefore, a priori, the species that was less likely to show substantial thermal differences 
between populations at thermal extremes of its distribution. However, the siginificant 
differences of activity temperatures observed in this preliminary study, together with the old 
evolutionary age of the lineage (the differenciation of A. obstetricans and A. cisternasii has 
been estimated to have occurred 16 m. y. ago with the formation of the Betic Strait, Arntzen 
& García-París, 1996; Martínez-Solano et al. 2004) indicate that there may have been a 
substantial selective pressure related to thermal conditions, and ample opportunity for 
adaptations to evolve. Further insight on these processes may be produced by ulterior 
progress in TEMPURA research. 
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Abstract. We have bioacoustically monitored frog populations at 16 sites in tropical Australia for over a 
decade using autonomous solar-powered computers. System software, in real-time, identifies the calls of 
over 20 species of frog.  Call frequency statistics for each species are logged at 10 minute intervals. These 
systems operate year-around unattended with only annual visits for data retrieval and maintenance. We 
discuss the techological success and failures during the development and deployment of these systems 
which can reliably operate in a remote and difficult environment with high humidity, extreme temperatures, 
dry season fires, wet season flooding and occasional cyclones. 

 
 

The Cane Toad (Bufo marinus) is a large toxic opportunistic predator native to a wide variety 
of habitats extending through the Americas from northern Argentina to southern Texas 
(LEVER 2001). It has been introduced to over 40 countries outside its native range largely 
motived by a belief its consumption of insects would benefit agriculture. Its release in 1935 
near Gordonvale in Australia began a spectacular an invasion which has seen Cane Toad 
occupy a vast area of northern Australia. Before its release there was public concern at the 
impact the Cane Toad might have on Australia's native fauna (FROGGATT 1936) and this 
concerns remains seven decades later. In the 1990s the possibility of biological controls 
becoming feasible led the Australian federal government to fund research systematically 
examining for the first time the impact Cane Toads might have on native fauna as they 
invaded the Northern Territory (GRIGG 2000). 

Anecdotal reports (COVACEVICH & ARCHER 1975) suggested adverse impacts on a number of 
taxa including goannas, quolls, snakes and frogs. None of these groups are easy to census 
in the wet tropics but the conspicuous advertisement calls of male frogs accompanying their 
wet season breeding suggested bioacoustic monitoring might be feasible, although not 
without major obstacles. Flooding from storms and cyclones may prevent access during 
precisely those parts of the wet season when frog breeding occurs. The calling activity of 
some species is associated with the inundation produced by the first wet season storms 
(TYLER ET AL. 1983) but the time of arrival of these storms varies between years and is too 
unpredictable to allow scheduling of field surveys. It is also necessary to capture sufficient 
data so that the natural variability of frog populations does not camouflage any changes due 
to the arrival of Cane Toads. 

We overcame these obstacles by building and deploying a series of 16 solar-powered 
computer systems to perform the bioacoustic monitoring. For the last decade these systems 
have operated unattended through the wet season monitoring frog. System software 
analyses sound from a microphone and identifies 22 Top End frog species by their call. 
Calling statistics for each species are stored for retrieval after the wet season. As this is the 
first and to date the most extensive deployment of automated recognition systems for 
biological monitoring, we are describing our experience and some of the pragmatics of this 
type of field work. 
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Automatic Recognition Software 

The automatic recognition software is built using the C4.5 machine learning system (QUINLAN 
1993) from manually prepared positive and negative training sets. Spectral and a few time 
domain (waveform) attributes are used to classify every spectral peak. These unreliable 
classifications are aggregated using a manually-constructed per-species hierarchical voting 
system to produce reliable identification. The structure of the voting system for each species 
is chosen to be similar to its typical vocalization patterns. A fuller description of the 
recognition software can be found in (TAYLOR ET AL. 1996). 

 

Study Locations 

In 1997-1998 we deployed 10 monitoring systems in savannah woodland in the Northern 
territory's Roper valley along a 125 km transect roughly perpendicular to the arriving toad 
front. The experimental design placed sites in pairs 1-2 km apart with approximately 25 km 
between pairs. Figure 1 shows habitat typical of our Roper sites. In 1999-2000 we deployed 
6 sites further north in Kakadu National Park, 2 sites each in savannah woodland, rocky 
stream and floodplain habitats. In 2005 we deployed 3 sites further west on the Northern 
Territory/Western Australian border, ahead of the current invasion front. 

 
 

 
   Figure 1: a frog monitoring system in the Roper valley. 
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Mark I Hardware  

The wet tropics are a difficult environment for long-term deployment of electronics. Major 
concerns in the design of our system enclosures included vandalism, dry season fires, wet 
season flooding (Fig. 2), extreme heat and humidity, lightning, violent thunderstorms and 
even cyclones. Our enclosures utilize recycled 5-6m high hollow steel poles formerly used for 
street lighting. A 30 watt solar panel, balanced dynamic microphone (Shure SM58 clone), 
rain gauge and temperature sensors are installed on top of the poles. System electronics, a 
solar charge regulator and four 12V 7Ah sealed-lead-acid batteries are raised by a pulley 
system into the centre of the pole, lifting them several metres above ground level. This 
(hopefully!) provides protection against both flood, fire, vandalism and damage by animals. 
Data is downloaded by removing a steel plate at the base of the pole, lowering the 
electronics using the pulley system and attaching a serial cable to an environmentally-sealed 
connector (Fig. 3). 
 

 
Figure 2: checking on a system during the wet season. 

 

Computer hardware needs to be carefully chosen to operate in this type of field environment. 
Our first generation of systems were based on the AT304 industrial single board computer 
built by JED Microprocessors . It has a 25 MHz Cyrix 486SLC processor, 1 MB of RAM and 
2 MB of flash memory. As this board consumes 10 watts it could not be operated 
continuously and was instead powered on 4 hours per day (8pm-midnight). A smaller CPU 
operated continuously saving data from temperature & rain gauges and powering the main 
board on when needed for frog monitoring. This smaller board used a 2 MHz 8-bit 68HC11 
CPU, 256 bytes of ram, 2 kilobytes of EEPROM and consumed 1 watt, Other electronics 
included a microphone preamp, a Soundblaster16 card on a passive backplane to digitize 
the sound and a DC-DC convert to provide the +12 V, +5 V and –12 V supply required by the 
AT302 board. The electronics are enclosed in 1 metre of 150 mm diameter PVC (sewer) pipe 
sealed at both ends with 3 Bulgin environmental-sealed sockets for power, sensor and data 
download. 
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                                Figure 3: downloading data during the dry. 

Mark II Hardware  

The Mark I hardware was serviceable but less than ideal and after 4 years we changed to a 
new hardware platform based on the Pleb single board computer developed at UNSW 
(WIGGINS 2001). It has a 200 MHz StrongArm SA-1100 processor, 32 MB of RAM and 4 MB 
of flash memory. A daughter board with an ATMEL AT90LS8535 AVR processor interfaces 
to an LCD display, temperature and rainfall sensors. Also on the daughter board is a 
MAX146 ADC used to digitize the incoming sound at 16 kHz and 12 bits. The only ancillary 
electronics required is a small PCB containing a microphone preamp (SSM2017) and voltage 
regulator (LP2951). The power consumption of these systems is just over 1 watt, an order of 
magnitude less than our Mark I platform. 

Mark III Hardware  

In 2004 off-the-shelf hardware became available with similar to our custom-built mark II 
hardware and in 2005 we deployed 3 systems based on Technologic System TS-7260 single 
board computer. It has 200 MHz Arm-9 system-on-a chip CPU, 64 MB of RAM, 128 MB of 
flash memory and consumes 2 watts. It has a USB host interface which we have used to 
attach a 2.5" 80 GB disk allowing a large amount of sound to be captured, in addition to frog 
calling statistics (stored in flash). These systems use 2 Knowles waterproof microphones 
(MR-8406) and sound is digitized by a USB-attached Griffin iMic. The Mark III systems were 
deployed at short notice using a simpler mounting system, a 2.5 metre galvanized steel pole 
on a pegged base plate and guyed to star pickets (Fig. 4). 
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Figure 4: A Mark III monitoring system. 

 

Reliability  

We have now well over 100 system years deployment. The overall failure rate has been 
approximately 20% per year. This failure rate is better than expected at the commencement 
of the study but still creates difficulties when analysing the data. The Mark II systems have 
been below a 10% failure rate per year for most of their deployment but their failure rate 
increased after the 5 years of deployment. Failures come from different sources than we 
expected when planning the project.  

System power supply is the most common area for failures. The solar panels themselves 
which have not been the source of any failures. We discovered that sealed-lead-acid 
batteries suffer rapid degradation in performance after three years in the tropical 
environment, necessitating a 3 year battery replacement cycle. The solar charge regulators 
have an ongoing source of problems and in future system we will consider including 
redundant power supplies. 

Sensors are another source of system failure. Their function limits the degree they can be 
protected from the environment. The dynamic microphones have been amazingly robust and 
have not failed directly but they are behind cloth screens which degrade eventually with 
extended UV exposure. On a number of occasions the failure of these screens has allowed 
insect penetration and microphone function has been lost as it filled with frass. The rainfall 
and temperature sensors have a high failure rate after several years of deployment. 

Generally electronics have not been a significant source of failure except for vibration during 
transport causing pre-deployment problems. The Mark II electronics have been particularly 
reliable. Heat and humidity were both sources of much concern during system development. 
Internal temperatures peak at ~60C but this has not caused problems for the electronics. 
Humidity has also not been an issue. Systems are deployed with silica gel to remove initial 
moisture and heat from electronics apparently keeps canisters very dry. 
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Software bugs are obviously a risk when expecting a computer to operate untended for 
months. Despite defensive programming and extensive lab testing some software problems 
were not found until the first year software was fielded. The operating system (DOS) on the 
Mark I hardware had a Y2K bug not found in testing (because it occurred several weeks after 
the clock roll-over) which caused a number of failures. Linux, the operating system on the 
Mark II & III hardware, has been very reliable. 

A dry season fire passes through each of our site roughly every two years. In these over fifty 
fires only one systems as suffered damage, a Mark III system (on a 2.5 m pole) was disabled 
by wiring from the solar panel being burnt. Flooding affects our sites probably with a similar 
frequency as fire. Two systems have been disabled by the electronics being submerged by 
flooding after extreme, in one case unprecedented, rainfall. In both cases the data collected 
prior to the flooding was recovered from the flash. Two cyclones have passed directly over 
our study sites. Neither affected the operation of any monitoring system. 
 
 
Conclusions  

We have deployed bioacoustic monitoring systems in a hostile environment and they have 
operated untended successfully between our yearly visits. It is already feasible to use 
automated recognition for long-term monitoring and the increasing availability of new 
technologies such as wireless broadband promises a bright future 
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Abstract. Many insect, animal and bird species produce sounds that can be used to detect their 
presence, and in many cases identify them. In recent years, there has been an increasing interest in the 
development of automated detection and identification systems for a variety of applications including 
species counting, biodiversity studies and pest detection. The rapid development of hand-held computers 
is leading to potentially commercially viable biodiversity assessment tools and pest identifiers. This paper 
discusses one particular approach applied to insects using time domain signal processing and artificial 
neural networks for the robust identification of taxa, concentrating on insects. The paper introduces the 
concept of time domain signal coding and then describes results for phytosanitary (plant health) 
applications for quarantine insect larvae in timber, identification of three species of Japanese cicada and 
species of British grasshopper. It concludes with a discussion on future directions and applications of 
automated bioacoustic identification systems. 
 

 
 
Introduction 
 
Automated Identification and Computer-aided Taxonomy 
 

Species identification using acoustics has been employed for many years for species 
surveying and species counting, particularly for birds and mammals. However, this can be 
very time consuming, expensive and requires a high degree of skill. Surveys of this kind can 
only provide “snapshots” in time, often only a few hours in length and possibly one or two 
times per year (FISCHER ET AL. 1997). The availability of systems that can automatically 
identify species or taxonomic groups will be of great benefit, especially if they are capable of 
monitoring on a continuous basis (GARDINER ET AL. 2005, CHESMORE 2007a, CHESMORE 
2007b). 

Sound production in animals can be divided into deliberate (non-incidental) communication 
sounds and those produced as a by-product of activity such as flying and eating; these are 
known as incidental sounds. It is possible to use both types of sounds for automatically 
detecting and identifying taxa. 

This paper discusses two application areas applied specifically to insects although the 
techniques described are applicable to any band limited signal and have been successfully 
demonstrated for heart sounds, faults in gearboxes, acoustic identification of vehicles and 
ECG monitoring. 

The concept of automated species identification is not restricted to bioacoustics but can 
encompass image processing, radar and sonar systems as described in (CHESMORE 2007b). 
The other major work of automated species identification is in image processing as 
exemplified by Daisy (GASTON & O’NEILL 2004). Automated species identification is one part 
of computer aided taxonomy (CAT), and the other aspects being computer-based key 
systems, education and mathematical methods for, for example, genomics. The first serious 
consideration of all aspects of CAT was at the inaugural meeting of the Bionet-International 
group for computer aided taxonomy held at the University of Cardiff in July 1997 (CHESMORE 
2000). This meeting was pioneering and brought together more than 30 researchers in the 
disciplines of biology, mycology, entomology, computing, film making and engineering. 
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Basic Structure of an Automated Identification System 
 
An automated identification system is basically a form of pattern recognition and consists of 
the following four functional blocks as given in Figure 1 (CHESMORE 2004, CHESMORE 
2007b): 

a) Sensor. There are a variety of sensors depending on the application. For acoustic 
applications the sensors can be microphones (including ultrasonic microphones) or 
vibration detectors such as piezoelectric devices or accelerometers. For non-acoustic 
applications sensors include cameras, radar, sonar, SEM and it is possible to combine 
multiple sensor types in certain applications. 

b) Preprocessor. In acoustic systems, signals are usually amplified and then filtered to 
remove unwanted signals by the preprocessor. 

c)  Feature Extractor. The extraction of features is the most important part of the 
identification system since any overlapping feature space between different taxa will 
cause reduced identification accuracy or misidentification. A large number of feature 
extractors exist and can be divided into frequency domain and time domain. For 
example, in the frequency domain the fast Fourier transform is very common with 
wavelet transforms becoming increasingly common. In the time domain, the time 
domain signal coding, autocorrelation, short time energy, etc are often used. 

d) Classifier. The output of the feature extractor is fed into a classification system which 
may be one of a variety including artificial neural networks, expert systems, linear 
classifiers, etc. 

 
 
 
 

Sensor Preprocessor
Feature 

Extractor Classifier 
 

Unknown 
Taxon 

Taxon N 

 
 
Figure 1: Schematic diagram of a typical automated taxon identification system. 
 
 
The success of an identification system depends very strongly on the signals from each 
taxon being completely separable in the feature space. Overlapping features may cause 
misidentification. The term recognizable taxonomic unit (RTU) is commonly used to place 
taxa into similar groups in terms of morphology (RIEDE 1993). In an identification system, a 
RTU not likely to bear any resemblance to the features extracted, nor will the taxonomic 
grouping based on feature space be equivalent to that based on RTU. The author has coined 
the term “recognizable feature space unit” (RFSU) as illustrated in Figure 2. Here, the 
taxonomic space shown in a) is populated by a number of taxa which are then grouped in b) 
into four RTUs according to morphological features. Applying different feature extraction 
methods will cause the taxa to be grouped in a different way; for example, c) in Figure 2 
shows them being grouped into two RFSUs (RFSU1 and RFSU2) whereas d) shows them 
being grouped into seven RFSUs, some of which correspond to individual taxa. It is evident 
that the latter feature extraction method provides a higher identification accuracy. 
 
 
 
 
 

 60



 a) b)

c) d)

taxonomic
space 

RTU1 
        RTU2 

RTU4 

RTU3 

RFSU1        RFSU2 RFSU1-7 

Taxon 

 
 
Figure 2:  Representation of the relationship between Recognisable Taxonomic Unit (RTU), 
Recognizable Feature Space Unit (RFSU) and taxon. a) shows the taxonomic space populated by 
individual taxa; b) shows the taxa grouped into RTUs according to some morphological features; c) 
shows them grouped according to one set of features (RFSU1-2) and d) grouped according to 
different set of features (RFSU1-7). 
 
 
Intelligent Bioacoustic Identification System (IBIS) 
 

Over the past 10 years or so, work at York and previously at Hull University has been 
progressing towards the development of handheld devices for automated identification. The 
so-called intelligent bioacoustic identification system (IBIS) is still under development and is 
expected to be modular in that it can be used for different taxonomic groups. 

IBIS uses a purely time domain approach to extract features for classification using one of a 
variety of artificial neural networks. The time domain approach, known as time domain signal 
coding (TDSC) is a computationally simple method. The technique has been tested on 25 
species of British Orthoptera with 99% recognition accuracy (CHESMORE ET AL. 1997, 
CHESMORE 2000, Chesmore 2001, CHESMORE & NELLENBACH 2001) and 10 species of 
Japanese bird with 100% accuracy (CHESMORE 1999, CHESMORE 2001). These results were 
for high signal to noise ratio (SNR) and high quality signals and were somewhat unrealistic 
for " real" sounds. More recently, results for a smaller number of British Orthoptera recorded 
under field conditions indicate that the system is capable of accurate identification with lower 
signal to noise ratio and interfering signals as described in section 5.2. In all of the work 
described here, sounds have been recorded in .WAV format at 44.1kHz sampling rate (16 
bit) on a variety of recording equipment including the use of external PC sound cards and 
hard disc recorders. It is important to note that PCs with internal sound cards generate 
significant electrical noise, especially disc drives, which can be a problem. 
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Time Domain Signal Coding 
 

Time domain signal coding (TDSC) is a computationally simple method for describing the 
shape of a waveform between successive zero-crossings. The original concept was 
developed for low data rate speech communication and was called Time Encoded Speech 
(TES) (KING & GOSLING 1978). TDSC is a modified form of TES and is more generic. The 
basic concept of TDSC is illustrated in Figure 3 which shows two epochs (interval between 
successive zero-crossings) of duration 25 and 30 samples respectively. The shape of the 
waveform in each epoch can be defined in a number of ways, the simplest being the number 
of positive minima or negative maxima. Each epoch is therefore defined as a couplet 
(duration, shape) or (D, S); the example in Figure 1 has couplets (25, 1) and (30, 2). The 
range of values of (D, S) can be very large and is a function of the signal bandwidth and 
complexity. Reduction of the range of (D, S) can be achieved using a non-linear mapping into 
a codeword C using a codebook; however, a codebook has to be manually developed for 
each signal type by observation of (D, S). 
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Figure 3: Time Domain Signal Coding of a Waveform. 

 

The signal is further analysed by determining two matrices – the S-matrix and the A-matrix. 
The S-matrix is simply the frequency of occurrence of each codeword in the signal. The A-
matrix is formed as the conditional probability of pairs of codewords and has been most often 
used as the feature space for classification. 

TDSC in this form has a major drawback in that a codebook has to be produced for each 
application; generalised codebooks can be used but are sub-optimal. The author is 
investigating extensions to TDSC that do not involve a codebook. The most direct approach 
is to use (D, S) directly as inputs to an artificial neural network and this is currently being 
investigated. An alternative is to create a one dimensional vector, the D-matrix, by scaling 
duration by shape as follows (FARR 2007, FARR & CHESMORE 2007): 
 

 ( )( )DSSC F +×=  
 
where  S = shape 
 D = duration 
 SF = scaling factor 

 
The scaling factor is determined by the maximum possible duration in the signal and SF must 
be sufficiently large to avoid any overlaps. The use of D-matrices will be given in Section 4 
where they have been successfully used for insect larva identification. 

 62



Pattern Classification 
 

In this work, the majority of pattern classification has been carried out using a variety of 
artificial neural networks including multilayer perceptron (MLP), self organising map (SOM) 
and learning vector quantisation (LVQ). Early research used MLPs which have been 
successful for A-matrix-based identification as illustrated in the cicada and grasshopper 
identification system described in section 5. It has been shown that identification of insect 
larvae using their bites is improved by the use of LVQ as described in section 4. 

Figure 4 shows the schematic diagram of the system known as Intelligent Bioacoustic 
Identification System (IBIS) in which pattern classification is carried out using an artificial 
neural network. 

The research group at York is now investigating the use of syntactic pattern recognition for 
identifying temporally complex signals such as bird song. This work is in its early stages and 
there are no specific results to report. One problem that must be overcome is the lack of 
ability of most neural networks to be adapted to allow for retraining or addition of new taxa. 
Newer forms of artificial neural networks such as plastic self organising maps (PSOM) which 
adapt in real-time are worth consideration. 
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Figure 4: Schematic digaram of the Intelligent Bioacoustic Identification System (IBIS). 
 
 
Identification of Insect Pests for Phytosanitary Applications 
 

The acoustic detection of insects, particularly insect larvae within timber, is not new. For 
example, COLEBROOK described the design and construction of a device for the detection of 
destructive insects in timber in 1937 (COLEBROOK 1937). In recent years, the cost and 
availability of both suitable sensors and high-speed, low power processing is leading to the 
increased use of acoustic detection systems for a variety of applications including species 
counting, detection of pests (HAACK ET AL. 1997; HAGSTRUM ET AL. 1990; HICKLING ET AL. 
2000; MANKIN ET AL. 2000; MANKIN & WEAVER 2000; SHUMAN ET AL. 1993, 1997) and 
education (OBA 2004). However, it must be stated that the majority of research is in detection 
only and not identification. 

The number of imports and exports to many countries has increased rapidly in recent years 
leading to increased concerns about the potential import of serious of insect pests. For 
example, in the UK, thousands of tonnes of timber, plants and plant products are imported. 
The main problem with many insect species particularly beetles is that their larvae feed 
within wood and remain undetectable until they hatch of adults which may be several years. 
One example is the Asian Longhorn beetle (Anoplophora glabripennis) which is causing 
considerable damage to trees in the USA (MACLEOD ET AL. 2002) and is an EC A1 
quarantine listed pest. In the UK it is the responsibility of the Department for Environment, 
Food and Rural Affairs (Defra) to maintain pest free status through the Plant Health and 
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Seed Inspectorate (PHSI). Despite the measures taken by PHSI there still remains the 
possibility of undetected larvae. The application described here aims to create a system that 
the PHSI inspectors can use for the detection and, more importantly, the identification of the 
larvae of wood-boring beetle species. Table 1 give a list of species recorded during the first 
Defra-funded project resulting in more than 80Gbytes of recordings. Two plant groups were 
investigated – soft plants and woody plants. Problems with poor acoustic coupling of sensors 
to the substrate in soft plants resulted in the project concentrating on woody material 
including live trees, wooden packing material and dunnage. Therefore only beetle larvae 
were extensively investigated. 
 
Table 1:  List of insect species recorded. 
 

Insect Order Insect Species 
Lepidoptera (Moths) Acherontia atropos (Death’s-Head Hawkmoth) 
Coleoptera (Beetles) Anoplophora chinensis (Citrus longhorn) 
Coleoptera (Beetles) Anobium punctatum (Furniture Beetle) 
Coleoptera (Beetles) Dorcus parallelopipedus (Lesser Stag Beetle) 
Coleoptera (Beetles) Hylobius abietis (Pine Weevil) 
Coleoptera (Beetles) Hylotrupes bajulus (House Longhorn) 
Coleoptera (Beetles) Leptinotarsa decemlineata (Colorado Beetle) 
Coleoptera (Beetles) Lucanus cervus (Stag Beetles) 
Coleoptera (Beetles) Prionus coriarius 
Coleoptera (Beetles) Rhagium bifasciatum 
Lepidoptera (Moths) Spodoptera exigua 
Lepidoptera (Moths) Spodoptera littoralis 
Coleoptera (Beetles) Trichoferus griseus 
Coleoptera (Beetles) Agrilus planipennis (Emerald Ash Borer) 

The main type signal generated by an insect larva is caused by biting of the wood fibres and 
is of short duration and impulsive nature as indicated in Figure 5. Different species will have 
characteristic bites that are a function of the jaw structure and the plant fibre structure. Some 
species such as the stag beetle (Lucanus cervus) produce a deliberate stridulating sound 
which is species-specific in character. It is not yet known why larvae produce this sound. 
Both types of sound can be used for identification purposes. 

 

 
 
Figure 5: Example bite waveforms for Hylotrupes bajulus. Lower trace is a single bite in more detail.  
Horizontal axis is time in seconds. Signal amplitude is normalised. 
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Various types of sensors have been investigated optimal detection of biting sounds including 
microphones, bimorphs and piezoelectric sensors. Microphones do not couple well with 
would; bimorphs are very fragile and piezoelectric sensors whilst narrowband and resonant 
appear to be the most sensitive. A 5mm larva can easily be detected more than 2m away in 
pine timber using a low-cost piezoelectric sensor. An example of a waterproof piezoelectric 
sensor is shown in Figure 6 and Figure 7 shows a recent implementation using an ultra-
portable PC and USB-based external sound card to reduce system noise. 
 
 

 
 
Figure 6: Sensor attached to branch. 
 
 

 
 
Figure 7: Latest implementation of IBIS using Samsung Q1 ultra-portable PC and external sound 
card. 
 
As noted in Section 3.2 the D-matrix is the feature set for input to the classification stage. 
Two types of artificial neural network were tested – a multilayer perceptron (MLP) and 
learning vector quantisation (LVQ) network. Each network was trained with a representative 
set of D-matrices from known species and then tested with unseen D-matrices from the 
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species used in the training sets. LVQ outperforms MLP in most cases when the D-matrix is 
used; table 2 shows the misclassification identification matrix for two species using LVQ and 
a D-matrix. Results indicate that the species are unambiguously identified with accuracy no 
less than 97% (FARR & CHESMORE 2007). Table 3 is a similar matrix for three species using 
A-matrix features and MLP; here, identification is unambiguous and the accuracy approach 
100%. Current work is under way to expand the species identification list.  
 
 
 
Table 2: Mis-classification matrix for two species of beetle larvae using LVQ network and D-matrix. 
 

 Hylotrupes bajulus Prionius coriarius  
Hylotrupes bajulus 98.70% 1.30% 
Prionius coriarius 3.03% 96.97% 

 
 
 
Table 3:  Mis-classification matrix for three species of beetle larvae using MLP network and A-matrix. 
 
 Hylotrupes bajulus Prionius coriarius Rhagium bifasciatum 
Hylotrupes bajulus 0.86 0.0 0.14 
Prionius coriarius 0.0 0.8 0.2 
Rhagium bifasciatum 0.0 0.0 1.0 

 
 
 
 
 
Applications in Ecology 
 
Japanese Tibicen spp Cicadas 
 
This section describes work carried out in collaboration with Dr Ohya of the biodiversity 
research group at the forestry and forest products research Institute in Morioka, Japan on the 
identification of three species of cicada of the Tibicen genus (T. japonicus, T. bihamatus and 
T. flammatus). The three species occur in the north of the Japanese main island of Honshu 
and are being used as indicators of diversity. The insects are usually seen high in the trees, 
making the capture difficult and therefore identification problematic. Dr Ohya’s approach is to 
used principal component analysis using the peak and mean frequencies and the pulse rate 
of the songs. This work is described in (OHYA 2004) and Figure 8 is reproduced here with 
permission of Dr Ohya. The principal component analysis shows that of the 12 specimens 
recorded, 11 T. bihamatus and one closest to T. japonicus. 

The same recordings were used in a TDSC system using a back propagation multilayer 
perceptron with inputs from an a matrix and with 10 neurons in the hidden layer. The results 
are shown in table 4 and are identical to the PCA analysis results. Results from a second 
series of recordings shown in table 5 indicate that T. bihamatus is accurately identified. 
Clearly more work needs to be done and more recordings analysed. 
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Figure 8: Results for PCA analysis of Tibicen spp. Adapted from (OHYA 2004). Sound file numbers 
correspond to those in table 4. 
 
 
Table 4: TDSC identification of Tibicen spp. Sound file corresponds to the number in Fig. 8. 
 

 Neuron Output (0.0 – 1.0) 
Sound File T. bihamatus T. japonicus T. flammatus 

1  0.98  
2 0.99   
3 0.99   
4 0.99   
5 0.99   
6 0.99   
7 0.99   
8 0.99   
9 0.99   
10 0.99   
11 0.99   

 
 
Table 5: Confusion matrix for the three Tibicen Species. The table should be read horizontally the 
species in the row being identified as a species in the column, e.g. T. japonicus is identified 50% of the 
time as flammatus and 50% of the time correctly. 
 
 T. bihamatus T. flammatus T. japonicus 
T. bihamatus 1.0 0.0  
T. flammatus 0.0 1.0 0.0 
T. japonicus 0.0 0.5 0.5 

 
 
British Grasshoppers 
 

Work in the late 1990s show that it is possible to correctly identify 25 British species 
Orthoptera with up to 99% recognition accuracy (CHESMORE ET AL. 1997, CHESMORE, 2000, 
2001; CHESMORE & NELLENBACH, 2001). However these were for high-quality signals with 
high signal to noise ratio and no interfering signals. In order to test the identification system 
under field conditions, recordings were made with Dr Ohya at local nature reserves in 
Yorkshire in 2002 using low-cost equipment (MiniDisc recorder and a stereo microphone). It 
was discovered that in addition to four species of grasshopper, there were many other 
interfering signals including birds vehicles and light aircraft. It was therefore decided to train 
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the system using exemplars of the four grasshopper species plus one blowfly sound, four 
bird sounds (alarm calls of three unknown species and the Chiffchaff), two vehicle sounds, 
one single engine light aircraft sound and one general background sound, making 13 sounds 
in total. 
Analysis of the system’s performance was carried out in two ways-performance for individual 
echemes and performance for whole song. Results for single echemes for each of the four 
grasshopper species are given in table 6, showing that Omocestus viridulus has 100% 
accuracy, Chorthippus parallelus 81%, Myrmeleotettix maculatus 90% and Chorthippus 
albomarginatus 85.7% for a threshold of 0.9. The output of each neuron has a range of 0.0 to 
1.0 and a threshold can be applied to reject low neural output values. This has the effect of 
eliminating uncertain results and improving overall identification accuracy. 
 
 
Table 6: Identification accuracy for single echeme for 4 species of grasshopper.  The threshold is a 
value for the output neuron below which sounds are rejected. 
 

Threshold  O. viridulus M. maculatus C. parallelus C. 
albomarginatus 

 sample 
size 

34 17 14 16 

0.5 rejected 2 4 1 1 
 accuracy 100%  76.9%  (10/13) 69.2%  (9/13) 86.7%  (13/15) 

0.6 rejected 2 5 2 1 
 accuracy 100% 75%  (9/12) 75%  (9/12) 86.7%  (13/15) 

0.7 rejected 3 5 2 1 
 accuracy 100% 75%  (9/12) 75%  (9/12) 86.7%  (13/15) 

0.8 rejected 4 5 3 2 
 accuracy 100% 75%  (9/12) 81.8%  (9/11) 85.7% (12/14) 

0.9 rejected 4 7 3 2 
 accuracy 100%  (30/30) 90%  (9/10) 81.8%  (9/11) 85.7% (12/14) 

None accuracy 97%  (33/34) 41.2%  (7/17) 64.3%  (9/14) 87.5%  (14/16) 
 

 

Figure 9 shows the results for recognition of a complete song, again using a threshold value. 
Best identification is again achieved with a threshold of 0.9, with identification accuracy 
between 80% and 100% for the four species. It must be remembered that the classifier has 
13 outputs. 

It is also possible to use the system in a different way by classifying sounds in a given period 
of time as illustrated in Figure 10 which shows 18 second sequence divided into two second 
blocks. The sound within each two second block is identified showing that, in this example, 
Omocestus viridulus is correctly identified in three blocks together with an aircraft sound and 
bird alarm calls. This approach leads to the possibility of identification on a continuous basis 
and has potential for more generalised sound mapping and identification. Full details of the 
results of the grasshopper identification work are given in (CHESMORE & OHYA 2004, 
CHESMORE 2007a). 
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Figure 9: Identification accuracy for single echemes of four grasshoppers. The recognition accuracies 
are for four sounds out of a possible 13. 
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Figure 10: Sounds correctly recognised by system: three short songs by Omocestus viridulus (Ov), a 
light aircraft (PL) and a bird alarm call (B11) (unknown species). The sound is an 18s sequence 
analysed on a 2s interval, recorded at Allerthorpe Common on 15 July 2002. 
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Conclusions and Future Directions 
 

This paper has discussed the successful use of TDSC and artificial neural networks for the 
automated identification of a range of taxonomic groups. It is shown that TDSC is 
computationally efficient and provides a good feature set for  signal classification. The range 
of applications of TDSC is not limited to bioacoustics but can be applied to any bandlimited 
signal. The research described here falls into two application areas-detection and 
identification of insect pests and ecological studies such as biodiversity assessment. 

The future direction of this work lies primarily in five areas: 

a) Improving the reliability of identification of individual taxa through the automated 
detection and identification of interfering signals. Progress towards this has been 
shown in the grasshopper research detailed in Section 5.2. More work on this is being 
carried out through an EPSRC research grant in collaboration with the Universities of 
Southampton and Newcastle to develop a real-time instrument for identification of 
sounds within a soundscape. The instrument uses a sound field microphone and will be 
capable of locating the source in three dimensions, leading to the possibility of active 
removal of interfering signals from other directions. Whilst this is at present focused on 
man-made sounds, natural sounds are included and it is will be feasible to train the 
system for specific taxonomic groups. 

b) The development of real-time handheld species identification systems that can be 
reconfigured for different taxonomic groups. The trend towards lower cost tablet PCs 
with enhanced functionality (WiFi, cameras, etc) will make such systems more feasible 
and cost effective. 

c) Increasing the size of the identification space. The author has several target taxonomic 
groups in mind and is currently writing a research proposal for the identification of all 
European bat species using echolocation calls. Preliminary work carried out at York 
university through an undergraduate project has indicated that at least 10 of 14 so 
British species can be identified (unpublished work). Identification of the Myotis species 
group is still problematical and will be the focus of the proposed research. Work is also 
underway to develop an identification system for all Japanese Orthoptera. Increased 
taxonomic group size is likely to lead to an increase in overlap in the feature space and 
work is under way to improve TDSC to overcome this and to also include other  
features. 

d) Investigating methods for overcoming the problem of simultaneous singing taxa. This is 
a nontrivial problem and is likely to be the cause of the failure of most automated 
identification systems. Possible ways forward include 3-D sound localisation as 
mentioned in a) above and utilising knowledge of acoustic niche theory to provide 
partitioning of the frequency spectrum and therefore separation of some groups. 
However, this does not solve the problem of  simultaneously singing taxa of the same 
species or those with significant overlap in frequency. 

e)  The development of sensor networks for, for example, the instrumentation of large 
areas such as forests or for “ ring fencing” of protected areas against the intrusion of 
pests. 

In summary, the author believes that bioacoustic identification is now becoming a practical 
solution for many application areas, and is likely to make significant progress in the next few 
years.  

One major issue that has been problematic over many years particularly in the UK is that of 
lack of funding. This type of research is considered to be multidisciplinary and until recently 
has been difficult to obtain funding from any of the research councils. Even though the 
funding situation is slowly  changing, it is important to be able to access funding possibly on 
a European level in order to be able to develop demonstrators. 
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Abstract. The recent advances in wireless networked sensing systems, combined with the ever increasing 
computational power of embedded systems has brought field biologists a large palette of opportunities for 
automated analysis of ecosystems. Now phenomena can be observed in real time and at their heart, 
where they happen. Our work presents such an attempt at combining wireless sensors with automated 
detection, localization, and classification of bird songs and we have successfully used Hidden Markov 
Models to identify tropical bird species in noisy environments with high success rates. In the context of 
behavioural studies, when social interactions between different birds are to be tracked, a very challenging 
goal is to be able to identify the individuals of the same species. We will give several examples from our 
recent progress, and discuss the difficulties that arise with such delicate processes. Additionally, we will 
provide some suggestions that could help increase the correct classification rates when using distributed 
sensor nodes. 

 
 
 
For several decades, field biologists have attempted to design methods and tools that would 
help them collect data in real environments. More particularly, along with the growing 
computational power in computers, it became realistic to attempt automated detection and 
classification of bioacoustic signals. In many cases, the natural environments can be 
extremely noisy and many other sounds other than the target animals can be present at the 
same time. 

Language is thought to be the key element in the development of the human intellectual 
properties. Throughout history, scientists and philosophers have always been interested in 
deciphering the mysteries of communication, and especially understanding how new 
languages emerge and evolve, while other disappear. Even if language per se is an 
exclusive characteristic of humans, many animals rely on communication for survival 
(CATCHPOLE & SLATER 1995). Countless examples support the hypothesis that animal 
communication is shaped by evolution (LEE ET AL. 2005), where only individuals that find an 
optimal communication strategy for a given environment are able to survive.  For example, 
social interactions are detrimental in the bird song learning process (BEECHER & BURT 2004). 
Identification of the factors that influence the evolutionary process of communication, such as 
sexual and natural selection, could provide significant insights about the neural mechanisms 
underlying social behaviours, making this field of research very interesting for scientists in 
many domains including biology, linguistics, and neuroscience. 

In particular, when the interest of biologists is focused on social behaviour of birds, it is not 
limited to the automation of detection and recognition of individual acoustic signals:  real-time 
motion tracking provides important information about behaviour. Many methods for 
automated bird song analysis have been proposed (HÄRMA 2003, SOMERVUO & HÄRMA 
2004). Unfortunately, few of them were able to cope with the unpredictability of real 
environments. For this purpose, we need new methods to acquire a more accurate 
representation of phenomena that is simply not possible using traditional recording 
techniques, such as manual recording and complex microphone arrays. 

The National Science Foundation (NSF) sponsors an interdisciplinary project centered at 
UCLA that aims to create novel methodologies to help scientists study animal behaviour and 
communication, and to understand how communication evolves in correlation with factors 

 73



such as environmental and social interactions. This project focuses mainly on birds, as they 
have been extensively studied and are relatively well known, so they provide an excellent 
test bed to analyze the transmission and perception of acoustic signals in noisy 
environments. Also, as a long-term goal it will be interesting to study how the structure of 
birds vocalizations could be used to design methods optimized to achieve these goals. 
Contrary to common belief that bird songs are frivolous, avian communication is the result of 
an impressive evolutionary process, where natural selection directly operates on the quality 
of males, and where only the most talented sopranos and the healthiest individuals will be 
selected by females for mating. 

The goal of our project is to create a palette of tools that support field biologists in the study 
of birds’ communication and behaviour in their natural habitats (TRIFA ET AL. 2007). Since 
human presence in the field introduces biases, non-intrusive techniques are critical for 
acquiring clean data. The reduced form factor and power consumption and enhanced 
capabilities of embedded sensor networks are opening a new world of possibilities for 
revolutionary environmental monitoring methods. However, many challenges remain in 
improving the robustness and adaptability of these devices and thus reducing human 
intervention and operational costs. 
 
 
Tools and Methods  
 
Because our focus is to provide field biologists a platform that can be used for the analysis of 
social interactions in birds, our tools must be placed at the heart of the phenomenon to 
observe, with minimal influence on the ecosystem to avoid biased results. For this type of 
application we require a tiny embedded computer that can sample and process data locally 
and exchange results wirelessly. To support high-quality audio sampling these systems need 
a sufficient amount of storage and processing power in order to buffer the data, process it on 
the fly, and either process it completely, forward it to a storage server, or archive it locally.  
 
 
Acoustic EnsBox 
 

The Center for Embedded Networked Sensing at UCLA has developed such a platform 
called Acoustic EnsBox. This platform is based on the Stargate processing module and a 
high-quality multichannel sound card with an external microphone array. The Stargate is a 
computational platform similar to a PDA, based on the 400 MHz PXA255 XScale processor 
with 64 MB of SDRAM, 32MB of flash memory. Audio sampling is done with a VXpocket 440 
PCMCIA sound card, and a Compact Flash 802.11 card is used to support a wireless 
network. The VXpocket has 4 balanced mic/line analog inputs, provides 16-bit audio 
measurement at sampling frequencies ranging from 8kHz to 48 kHz in 100 Hz steps. We 
chose the LinearX M53 for our low noise, low distortion measurement microphone. Each 
M53 microphone is calibrated using a free-field comparison procedure with a laboratory 
grade reference microphone. The calibration produces a precision error response curve 
which can be used for correcting the response.  

The Stargate runs a Linux 2.6 kernel with ALSA driver support for the VXPocket440.  By 
layering our own user-space audio service over the ALSA API, our software provides a 
sampling interface that is accurately time-synchronized across several wirelessly connected 
nodes.  On each node we achieve tight synchronization of the 4 local channels, and across 
nodes we achieve a synchronization accuracy of approximately 10 µs. 

Development has continued on the ENSBox (GIROD ET AL. 2006), including a number of 
recent improvements to the packaging, the results of which are currently under review. 
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Emstar 
 
Emstar is a comprehensive software environment for developing heterogeneous, distributed 
applications (GIROD ET AL. 2004, 2007). Emstar provides tools for simulation, emulation, and 
visualization of Emstar based distributed systems. It also provides many services such as 
networking and time synchronization across nodes. The strengths of Emstar lie in its 
message passing inter process communication (IPC) primitives. Each Emstar based system 
consists of multiple logically separable modules implemented as individual processes which 
enhances system robustness by allowing modules to independently fail and restart. Modules 
communicate with one another using message passing.  
 
 
Full System Architecture 
 
The whole project briefly presented here is based on the work of countless researchers and 
projects, however the initial attempt towards a unified system architecture has been 
developed during a master thesis and technical details can be found in TRIFA (2006). The 
general idea is to automate and chain the different processing stages involved in logging of 
individual bird songs in a single software workflow. 
 
 

 
 
Figure 1: The workflow of the whole architecture developed during this project. The Audio Server task 
is to store all the incoming audio data (the data source is chosen when the server is started) into an 
indexed ring buffer. Then the incoming signals are processed to detection eventual bird songs. Every 
time a song is detected, it will be localized and beamformed, and each resulting sound file will be 
processed with HMM to recognize the species, and finally stored along with other metadata. 
 
 
Experiments and Properties 
 
In this section we describe two central aspects of this project. First, we briefly describe the 
collaborative localization algorithm to give an insight on how birds can be localized with 
improved accuracy when several sensor nodes are used to localize animals. Second, we 
give some results in the differences when HMMs are used to recognize species vs. 
individuals. 
 
Collaborative Localization 
 
Given that localization of sound sources is essential for fine-grained analysis of social 
interactions between birds, accurate localization has been of great interest for our project 
(WANG ET AL. 2004). The department of Electrical Engineering at UCLA has developed an 
efficient method that to cope with the localization of wide-band signals, even when they 
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overlap in time and frequency (CHEN ET AL. 2006). The so-called Approximate Maximum 
Likelihood (AML) is a sound localization technique found to be very effective when it comes 
to separate each individual song from the many sources of noise in recordings from tropical 
rain forests. Furthermore, AML can be also used to perform beamforming (i.e. amplify all 
sound signals emanating from a particular spatial direction, while attenuating noise coming 
from other directions). Beamforming can greatly improve the quality and signal-to-noise ratio 
of recorded vocalizations. 
 

 
Figure 2: Results of the collaborative localization algorithm, presented as a 2D pseudo-likelihood 
map. One can see that the individual estimations of the angle of arrival (AOA) for each node (black 
lobes represent the likelihood for source AOA) are combined using their location as estimated by the 
self-calibration process.  

 
The EnsBox has another very useful property that makes the whole system easy to deploy: 
the nodes are able to automatically localize each other (details of this process are to be 
found in GIROD ET AL. (2006)) to map the relative location of each node. Once each individual 
node has estimated the local Angle of Arrival (AOA) of an incoming sound signal, these 
estimates are recombined on the geographic map to derive the most likely actual location of 
the sound source relative to the nodes (ALI ET AL. 07). 
 
Recognition of Bird Songs 
 
We have run many recognition tests, with many types of songs, and in particular we have 
investigated the performance of hidden Markov models (HMM) with various parameters and 
data. The HMM were implemented using the free HTK toolkit from Cambridge University, an 
easy to install, yet powerful implementation of hidden markov models (YOUNG ET AL. 2002). 
We have focused on mainly two types of experiments. In the first case we were interested 
only in recognizing the species of different songs. For that we have used several recordings 
of six types of tropical antbirds (Great Antshrike, Barred Antshrike, Dusky Antbird, Dot-
winged Antwren, and the Mexican Antthrush), which were recorded in the Biosfera Monte 
Azules Natural Reservation in Chiapas, Mexico, during June 2005 and February 2006. For 
more information about the use of HMMs for species recognition, recent results are currently 
in revision (TRIFA ET AL. 2008). 
The second type of experiment focuses on the recognition of the different individuals within 
the same social group of Acorn Woodpeckers (ACW). The acorn woodpeckers are found in 
California and the recordings were made in the Hastings Reserve, near Monterrey, CA. 
Results for the application of HMM for individual recognition are currently in preparation (YAO 
ET AL. in prep.). It is worth pointing out that the birds themselves are able to recognize the 
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identity of each caller based on different features contained in their songs (BLUMSTEIN & 
MUNOS 2005, NELSON 1989). 
The challenges involved in these two types of experiment are actually quite different. Since 
we want to provide only a high-level overview in this article, the interested reader is invited to 
consult TRIFA ET AL. (2008) and YAO ET AL. (in prep.) for the technical details and detailed 
analysis. We also assume the reader to be familiar with the basics of HMMs; if not RABINER 
(1989) provides a very good introduction. 
  

 
Figure 3: Comparison of recognition performance for different prefiltering methods. On the horizontal 
axis the overlapping between two consecutives frames used for feature extractionl. Left: average 
species recognition (% of correct classification). Right: the same but for several individuals. (Image: 
courtesy of Vlad Trifa, reprinted from TRIFA (2006)). 

 

We have found that the in the case where only the species is to be recognized, the difference 
between different feature extraction methods is hardly noticeable, and is rather stable 
between 92% and 95% over a wide range of parameters. This result is especially impressive, 
considering that only 10 samples were used to train the models. The success of these 
techniques can be attributed to the many structural differences in the songs across species.  
The samples from each species are tightly clustered around different positions in the feature 
space, with a high separability between the clusters even when the parameters are 
estimated very roughly. Thus, changing the value of single parameter is not likely to have a 
large impact on the separability between these clusters. Also, adding other features such as 
the delta and the acceleration to the classification will not add discrimative power, as these 
features are likely to differ greatly between species, and does not bring much information to 
the classifier, but only increase the probability of correct classification. This hypothesis is 
partially supported by a quasi-perfect recognition of species, which shows the great 
separability between classes. Manual checking of the misclassified songs revealed that their 
SNR is very low and the bird songs in these recordings were barely perceptible to the human 
ear. 

However, in the case of individuals of the same species, the structure of calls is very similar, 
and the separability between clusters is very small. In this case, slight changes to the value 
of a parameter can yield a great impact on the separability between different classes, and 
adding additional features can increase the discriminative power and thus the separability 
between the classes. It interesting to point out that adding the deltas improves the 
performance in the case of ACW, and the acceleration improves it even slightly more, while 
the energy does not seem to have an influence. This might give us some insight about what 
the way individuality is encoded in ACW calls. When the separability between classes is 
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smaller, more training examples are required in order to correctly estimate the parameters of 
the HMMs and achieve accurate classification. 

An analysis of instances of the misclassifications revealed some cases that a human expert 
could hardly distinguish on basis of their songs. The reason is that one bird was the parent of 
the other, and thus the similarity could be explained by the fact that children learn their songs 
by imitating the songs of their parents, though evidence that support this hypothesis is not 
given here. 

The vertiginous drop of performance that can be seen for low values of target rate shows one 
of the main weakness of HMMs. Decreasing this parameter for a constant window size will 
increase the overlap between consecutive observations, thus also increasing the correlation 
between them. But, the Markov models are based on the Markov assumption where each 
observation is statistically independent from the previous one. Unfortunately, this assumption 
does not generally hold with real signals such as as human speech or bird songs, even 
without overlapping between the samples used to extract the observation vectors. However, 
we have shown that even when the Markov assumption is violated, classification with HMMs 
can be successful as long as the separability is sufficiently high. 

We also ran tests with LPC methods and found out that these methods yield much lower 
performance than MFCC method, although these results have been omitted for brevity. LPC 
is less appropriate for bird song modelling, as it is based on more complex information as 
opposed to energy in different frequency ranges. By no means is MFCC a biologically 
relevant and accurate model of the animal auditory system, but several studies have shown 
that dominant frequency might be one of the most efficient acoustic cues used by animals in 
individual identification, and this could explain the impressive results we have achieved so 
far.  There is also reason to believe that mechanisms to extract frequency information from 
signals are easier to implement biologically than those based on linear prediction 
coefficients, since neural pathways can act as natural delay lines to build frequency selective 
filters. 

In summary, we have found that very good species recognition performance - over 95% of 
correct classification when 6 species are considered - can be obtained with HMMs, even 
when very few samples (15 songs) are used to train the models. This technique works well 
even when many of the samples used have a low SNR, and the bird song can hardly be 
distinguished from the background noise. However, we noticed that some conditions, such 
as incomplete songs, complicate the species recognition task.  These promising results are 
most likely due to the structural differences in vocalizations across species, and thus 
effective clustering in the feature space. 

It should be noted that the results presented here are only an initial indication of how 
recognition might be affected by several factors. The amount of data used to test species 
recognition (25 samples per species) is very small and statistically irrelevant of the real 
influence of these parameters upon global performance. To have a more precise idea of the 
performances of our system in real field experiments, more tests should be performed using 
a larger audio database with greater variation in the amount and nature of background noise. 
 
 
Discussion 
 
Research on embedded systems for signal processing is not a new research topic. Over the 
years, many powerful frameworks and tools have been invented for specification, modeling, 
simulation, verification, and code generation of signal processing embedded system. There 
are also many specially designed high-level programming languages to simplify digital signal 
processing. Space limitations preclude a thorough discussion of the other important work in 
embedded systems. 

Nonetheless, many significant differences between the traditional embedded system for 
signal processing and our work on collaborative processing in sensor networks. Many such 
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traditional design methodologies and tools often use specially designed platforms, while 
Emstar targets general purpose PDA-class platforms running Linux. The software used in 
this study ran in MATLAB, and thus was strictly for use in off-line processing. However, by 
porting the algorithms to C it could be possible to perform classification and recognition on 
nodes running in the field. This might yield advantages if it allowed the system to run for 
longer durations, or enabled additional sensing modalities to be engaged in the event that 
certain species or individuals were recognized.  Integration of a DSP pre-processor to 
perform the signal processing, as is filtering, as well as other hardware improvements, would 
allow the main CPU to be used for more critical tasks and would greatly improve power 
efficiency, leading to a longer system lifetime. 

We found out that individual recognition is by far a more delicate process than species 
recognition. In the best cases, no more than 90% of correct classification was obtained. This 
is due to the fact the structure of the calls among individuals are very similar, and the 
features extracted from the signals might not be the ones that convey individual identity. In 
contrast, even with only 10 samples to train the HMMs with the AB, we had over 97% of 
correct species classification. Also, we noticed that many more examples are needed to train 
the models in the case of individual recognition.  Because the differences between songs are 
more subtle, more data is required to correctly estimate these slight differences. Increasing 
the overlap between consecutive blocks of data over which features are extracted might help 
to reduce the variability encountered in the experimental results. Increased overlap will 
increase the correlation among states and will reduce sensitivity to noise, which is the main 
source of error in automated recognition methods. 

Further perspectives on this project include improvement of the performance of the different 
algorithms used, and a better interaction between the different processing stages, helped by 
a modular approach. Performance could be further improved using an appropriate design of 
the microphone array that would take into account the characteristics of bird songs. 

We suggest that the standard feature extraction proposed by HTK (MFCC) is a very generic 
method and does not reflect at all the features that are actually used by birds to identify 
songs of callers. If one could design a feature extraction module based only on those 
relevant features that are used to encode individuality, performance could be significantly 
improved. Data mining techniques could give us information about what these relevant 
features are, and based on this information much more appropriate feature extraction 
methods that look only for the cues that differ significantly across individuals could be 
devised.  
 
 
Conclusion 
 
We have briefly described an architecture for automated detection, localization, and 
recognition of bird songs that can be used both with traditional recording systems (single 
directional microphone, microphone array, etc.) and also with distributed sensor networks. 
We have described how such novel computing paradigms can help to improve the accuracy 
and ease of use of existing technologies for environmental monitoring. 

In the long run, to unlock the amazing potentials of embedded systems, one could focus on 
the development of swarm-intelligent algorithms that can take full advantage on the 
distributed nature of sensor networks in order to provide unmatched robustness and 
scalability to the system, while reducing the complexity of the algorithms used (TRIFA 2004). 

Also, one could also investigate adaptive communication protocols that grounds sensor data 
into concepts that are shared via a symbolic adaptive language, which minimizes the data to 
transmit according to changes in the environment, exactly as birds do! But we need first to 
know how they do it. Therefore, understanding the neural mechanisms involved in human 
and animal language acquisition, production, and recognition would be a considerable 
milestone for the whole scientific community. 
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Abstract. A wide variety of methods have been developed to evaluate breeding bird populations (territory 
mapping, point stop counts, line transects, etc.). These methods allow a good evaluation of changes in 
population density across a large number of species. However, these methods are often very time-
consuming, and sometimes they still fail to yield reliable results. The application of acoustic monitoring 
methods can overcome some of these difficulties. 
Specific advantages of bioacoustic monitoring (BM) are listed below: 
- BM allows long-term recording in absence of an observer 
- BM can be used in areas that are difficult to access (e.g., large reed habitats) 
- BM observation data could be verified even after years 
- BM ensures minimal subjectivity, due to independence from the skills of the observer 
- BM tasks could be automated using pattern recognition software in the future  
Based on our experience with bioacoustic monitoring, we describe some situations to highlight why this 
approach represents a powerful addition to the traditional methods. Specifically, we recommend using this 
methodology for counting owls and birds living in reed belts. 

 
 

We live in a world where the impact of human activity on natural resources and climate is 
almost unavoidable. It’s all but impossible to imagine a modern lifestyle that does not have 
detrimental effects on the natural environment. Urban development, industrial areas, 
widening of road networks – all these processes lead to loss of habitat suitable for wildlife, 
which has a huge impact on populations of wild animals. 

In order to evaluate the impact of human activities on populations of wild animals and to 
decide on the most effective actions for nature conservation, we need fundamental 
information on the extent of changes in the living environment. Are populations of animals 
declining or increasing? Can we detect any trends in the changes in population size? Can we 
detect the fundamental causes for changes in population size? 

To answer the questions mentioned above, we need an effective system for monitoring 
animal populations. According to HELLAWELL (1991), monitoring is defined as "intermittent 
(regular or irregular) surveillance carried out in order to ascertain the extent of compliance 
with a predetermined standard or the degree of deviation from an expected norm." For the 
purposes of nature conservation, we need standardized methods for periodic counting of 
animals in a specific region. 

The progress in information technology in recent years, especially in the field of pattern 
recognition software, opens up important new perspectives for the automated bioacoustic 
monitoring of a multitude of animal species. In our paper, we will reconsider the application of 
acoustic pattern recognition algorithms for purposes of monitoring birds under realistic 
conditions in populated areas. 

Using acoustic methods in densely populated areas, we have to deal with a wide range of 
different anthropogenic sound sources such as highways, railways, aircraft or construction 
sites. On the other hand, we already have a well-organised network of birdwatchers 
participating in different programs for monitoring bird populations in many countries. 

In Germany, monitoring is conducted by amateur ornithologists coordinated by the 
Association of German Avifaunists (DDA). From 1989 to 2003, two main methods were used 
to monitor common bird species: stop counts and mapping of breeding territories. These 
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methods were replaced by line mapping in 2004 (MITSCHKE ET AL. 2005). Line mapping is 
carried out during four surveys distributed over four time periods from March to June on 
study plots of 1 km². The observer slowly walks along a transect of 3 km length and maps all 
indications of breeding birds (singing males, visual observation of birds, bird’s nests, etc.). 
The study plots for line mapping are randomly distributed over the entire country in 
consideration of  the distribution of main habitats. In Germany, 1000 sites are planned. 
Currently 700 sites have been established. For monitoring purposes, results of line mapping 
were considered only when the same observer was mapping the plot for at least two 
consecutive years. At the end of each breeding season, species-specific maps of virtual 
breeding territories are created (Fig. 1.). For the determination of the virtual territories, only 
observation within the species-specific census periods were considered to minimize counting 
of migrating birds. 

 

2+
1+

4+

2+1+

1+
1+

2+

3+
2+
1+

4+3+

4+

4+
2+
1+

4+

2+1+

1+
1+

2+

3+
2+
1+

4+3+

4+

4+

 
 
Figure 1: Estimation of virtual territories of woodlark (Lullula arborea) determined by line mapping in a 
study plot in the federal state Brandenburg. The numbers indicate the observation of an individual at a 
certain survey. The virtual territories were surrounded. The dashed line indicates the transect. For the 
creation of virtual territories for the woodlark, only observations concerning the periods 2 to 4 were 
considered. 
 

In consideration of this very successful approach to monitoring breeding birds, we have to 
decide where bioacoustic methods should be used in addition to direct observations. The 
main advantage of a bioacoustic approach lies in the long-term recording in the absence of 
an observer. A recording device can be installed even in ecologically sensitive areas (e.g., 
nature reserves). Autonomous recording makes it possible to nocturnal animals and animals 
with low vocal activity. The method can be applied in areas that are difficult to access (e.g., 
large reed habitats). Another important advantage is keeping subjectivity to a minimum 
through independence from the skills of the observer. The raw material can be archived, and 
even years later the presence of species could be verified. Depending on the development of 
acoustic pattern recognition software, some tasks could be done automatically. 
In the following section, we describe situations where bioacoustic monitoring could be a 
powerful tool in addition to direct observation.  Places of realistic scenarios for an automated 
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bioacoustic monitoring of birds can be seen in reed zones of lakeshore, under low ambient 
noise conditions, in open landscapes and in GPS-supported mapping. 
 
 
Acoustic Recording of Birds in Reed Zones of Lakeshore 
 
Reed zones of lakeshores are very sensitive habitats and not easy to access. Thus, mapping 
of birds in reed habitats mostly occurs from the shore. In 2006 and 2007, we conducted a 
bioacoustic monitoring pilot study at Lake Parstein in North Eastern Brandenburg. We 
intended to verify the application of acoustic pattern recognition algorithms to real scenario 
acoustic recordings. Certain pattern recognition software was successfully evaluated on 
recordings held in sound archives. However, most of these recordings were done with 
directional microphones directed towards the caller. Most of the recordings have a good 
signal-to-noise ratio where the call or the song of the animal is prominent in relation to the 
acoustic environment. Our approach was to record with a four-channel stationary 
microphone array of cardioic microphones. The microphones were arranged in a cross 
configuration (Fig. 2). Our study was focused on nocturnal birds living in reed zones such as 
rails and bitterns. The following questions were raised:  

- Where is the best place for data acquisition? Where should the microphones be 
placed? 

- How far is the recording distance for certain signals? 

- Which distortions occur during sound propagation? 

- How good should the recordings be to meet the requirements for pattern recognition 
and sound localization? 

 

 
 
Figure 2: Microphone array for acoustic monitoring. Four cardioic microphones (Sennheiser ME 64 or 
Beyerdynamic MC 930) were placed in cross configuration. 
 

We took continuous recordings during nighttime from several positions on the lakeshore, 
from the lookout (Fig. 3) and from a boat. Two species of bitterns were found at the study 
site, the Great Bittern (Botaurus stellaris) and the Little Bittern (Ixobrychus minutus). Our first 
experiences with monitoring of nocturnal birds in reed zones have shown that noise level in 
the vicinity of lakes is very high during the night and in springtime. This is mainly due to 
calling amphibians, especially tree frogs (Hyla arborea). Calls of the Great Bittern could be 
recorded over distances of more than 1 km. The calls of the Little Bittern could be recorded 
over a distance of nearly 1 km. The latter finding was surprising since bibliographical 
references state that the Little Bittern has a very soft call, ranging over distances of no more 
than 50 m, or in rare cases up to 200 – 300 m (SÜDBECK ET AL. 2005). 
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Figure 3: Bird observation spot at Lake Parstein. The lookout was used for nocturnal registration of 
the soundscape. 

 

We have seen that the best place to record birds in reed zones is from the lakeside (from a 
boat or from a platform). Good conditions for sound propagation (no obstacles, low 
transmission losses for sound propagating over a quite water surface) allow a large detection 
range. Consequently, in a second step we have arranged a continuous acoustic registration 
from a deep-seated boat using a solar driven recording device (Fig. 4). Two times per day, 
around sunset and sunrise, we recorded for four hours. Four-channel-recording at 48 kHz 
sampling rate and 16-bit data depth were done with four Sennheiser ME 64 cardioic 
microphones and an external audio interface (MOTU Traveller) using Avisoft Recorder 
software for triggering the recordings. The sound files were stored on an external hard disc of 
a notebook computer (JVC MP-XP 731). 
 

 
 
Figure 4: Autonomous acoustic long-term recording at Lake Parstein (North Eastern Brandenburg). A 
solar driven recording device consisting of a notebook computer (JVC MP-XP731), a FireWire Audio-
Interface (MOTU Traveller) and four cardioic microphones (Sennheiser ME 64). 
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The stereotyped calls of the Great Bittern were a good subject for testing (see also BARDELI 
ET AL. in this issue) pattern recognition software (Fig. 5). Applying a relative simple 
procedure, the booms of the Great Bittern could be visualised very well even in the presence 
of relatively loud anthropogenic noise (Fig. 6). 
 
 

2 4 6 8 10 12
Time (sec)

0.1

0.2

kHz

 
 
Figure 5: Spectrogram of a Great Bittern (Botaurus stellaris) booming. The call consists of a series of 
repeated elements at a low frequency near 150 Hz. The spectrogram was created using Avisoft 
SASLab Pro software. 
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Figure 6: Temporal distribution of energy in two closely related narrow frequency bands (141 Hz and 
164 Hz). The peaks in the curve indicate elements of bittern booming. The typical temporal structure of 
bittern booming is visible even in presence of very strong traffic noise (noise from a train).  
 
 
Acoustic Survey of Birds Under Low Ambient Noise Conditions 
 

As we have seen, simple structured signals can be detected even in the presence of strong 
background noise. Acoustic methods should have advantages for monitoring tasks where the 
surrounding noise level is low. This is due to the mating calls of owls. Most of the owl species 
in the temperate zone mate in late winter or early spring, and most of them are nocturnal. At 
this time of the year, we would hear almost no other animal sounds at night except the 
territorial calls of red foxes and calls of birds migrating at night. 

We evaluated the use of bioacoustic approaches for the monitoring of owls in the Nature 
Reserve “Rochauer Heide” in the Southern part of the federal state Brandenburg. Three 
species of owls were detected at our study site, the boreal owl (Aegolius funereus), the 
tawny owl (Strix aluco) and the Pygmy Owl (Glaucidium passerinum). We conducted two- 
and four-channel sound recordings at stationary points as we did at Lake Parstein. Several 
observers simultaneously mapped the occurrence of owls in the Nature Reserve. Since owls 
call only sporadically, the mapping of owls is very time consuming. The goal of our study was 
to evaluate whether information obtained by sound recordings was as effective as the data 
obtained by listening at the site. Using a set of recorders placed at distances of 
approximately 300 to 500 m from each other, we could estimate that the calls of boreal and 
tawny owls could be recorded in coniferous forest over distances of at least 300 m. During 
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parallel observations in the same spot, more sounds were recorded in general by the 
equipment than were heard by the observer. 

By listening to the multi-channel recordings, the direction from which the owl calls came 
could be assessed. For all three species, we had indications of pair vocalizations (duetting, 
typical vocalizations during mating). This is clear evidence of breeding in contrast to high 
vocal activity of non-paired males. Therefore, by using an array of multi-channel recorders, 
owls could be mapped very effectively on the basis of their vocalizations. An example for 
mapping based on bioacoustic data is given in Fig. 7. By developing appropriate pattern 
recognition algorithms, the acoustic approach would be even more effective than nocturnal 
observations, which consist of listening to owls at the site.  
 

 
 
Figure 7: Territories of breeding boreal (Aegolius funereus) and tawny owls (Strix aluco) in the 
southern part of the nature reserve “Rochauer Heide” estimated by bioacoustic survey. The analysis of 
the sound recordings revealed in at least three cases clear indications of pair bonding (duetting). It is 
likely that the observations outside the marked territories are calls of unpaired males. 
 
 
GPS-Supported Mapping of Birds 
 

During our fieldwork on acoustic monitoring of birds in reed zones, we developed a method 
of GPS-supported acoustic mapping. As we have seen, the best place to record birds in reed 
zones is from the lakeside. In addition, large reed beds are often difficult to access. Applying 
the methodology of line mapping to an aquatic habitat, we recorded the Savi’s warbler 
(Locustella luscinoides), a typical songbird inhabiting large reed beds, from a boat. A small 
boat equipped with an electromotor was driven at slow constant speed (approximately 30 
m/min) along the reed belt, keeping a distance of ca. 20 m from the vegetation. During the 
boat trip, continuous sound recordings were taken using two directional microphones 
(Sennheiser MKH 70) arranged at a 90° angle (Fig. 8). The position of the boat was acquired 
continuously by a GPS device (Garmin Geko). In addition to the sound recordings, the song 
posts of Savi’s warblers were mapped during the boat trip by an experienced observer. We 
carried out repeated mapping of Savi’s warblers at two reed areas of the lake. 

We evaluated the sound recordings using two approaches. In the first case, an experienced 
observer listened to the stereo recordings and marked the position of songs in the sound 
files. The stereo recording gave a spatial impression which allowed determination of the 
direction from which the song was heard, and allowed us to distinguish between 
neighbouring males. The localization of the song post was assessed using the GPS data. In 
the second approach, songs of Savi’s warblers were detected by a pattern-recognition 
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algorithm (see BARDELI ET AL. in this issue). Only pure songs were considered. The position 
of song posts was determined in analogue to the previous approach. We provided the 
determination of Savi’s warblers territories in accordance with the criteria applied for line 
mapping. Comparing the three approaches, we found almost similar results (Fig. 9, Tab. 1). 

Consequently, acoustic mapping could be successfully applied to the survey of the selected 
species. Since the combination of sound recordings and GPS tracks allows highly 
standardized data acquisition, this methodology could be used in the future even by 
inexperienced observers. However, the algorithms of pattern recognition need to be 
improved to allow discrimination of different birds by voice and not only by localization. In 
general, this approach could be used for other birds living in reed belts, too, particularly in 
warblers of the genus Acrocephalus. 
 

    
 
Figure 8: Equipment for GPS-supported acoustic monitoring of Savi’s warblers. A small boat equipped 
with an electromotor was driven at low speed along the border of the reed belt. During the movement, 
continuous acoustic recordings were taken by two directional microphones arranged at a 90 degree 
angle. The position of the boat was determined simultaneously by GPS. 
 

 
 
Figure 9: Estimation of breeding territories of Savi’s warblers at Lake Parstein according to the criteria 
of line mapping (SÜDBECK ET AL. 2005). The position of the song posts were determined by A – 
mapping by an observer during the boat trip, B – listening to the recordings and determining the 
position of the boat on the base of the GPS track, C – recognizing songs of Savi’s warblers on the 
recordings using pattern recognition software and determining the position by GPS data. 
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Table 1: Estimation of the number of breeding Savi’s warblers at two reed belt areas at Lake Parstein, 
North Eastern Brandenburg 
 
Method Number of Territories in the 

Northeastern Part of Lake 
Parstein 

Number of Territories in the 
Northwestern Part of Lake 

Parstein 
„Mapping of territories“ by the 
observer in the boat (9 surveys) 

17 33 

Line mapping by the observer in the 
boat (3 surveys) 

17 30 

GPS-supported line mapping 
evaluated by listening to the records 

17 25 

GPS-supported line mapping 
evaluated by pattern recognition 
algorithms 

19 24 

 
 
Evaluation of Bioacoustic Survey by Line Mapping 
 

One of the most crucial problems when applying bioacoustic approaches to bird censusing is 
the question of whether the estimation of numbers of species and specimens could be 
obtained from recordings. Therefore, we provided sound recordings in parallel with line 
mapping accomplished within the scope of monitoring of breeding birds of normal 
landscapes in Germany. We selected the northern part of a regular study plot with a size of 
approximately 500 m x 1000 m (Fig. 10). By line mapping, bird territories were estimated 
along a transect of almost 1.5 km. The recording device, consisting of four cardioic 
microphones in cross configuration and a four-channel recorder, were placed in an area of 
landscape (swampland) surrounded by deciduous and partly coniferous forest. The sound 
recordings were conducted at the same time as the observer was walking slowly along the 
selected transect. Applying species-specific criteria, the observer estimated the territories of 
breeding birds. For comparison with the acoustic survey, we included either all birds out of 
the northern side of the plot, or we restricted the data to the central region surrounded by the 
transect. We expected that the latter area should be adequate to the detection range of our 
acoustic equipment. The sound recordings were analysed by an expert. The multi-channel 
recordings allowed assessment of the number of specimens within certain accuracy. 

In total, we detected 50 species, with 32 species registered both by line mapping and 
acoustic survey (Tab. 2). Five species were detected by line mapping only, where most of 
the locations were outside the range of the microphones. In contrast, 13 species were found 
only by listening to the recordings. Allowing for the estimation of the species composition, an 
acoustic approach is as accurate as line mapping. However, up to the time when we should 
have useful pattern-recognition software dealing with sounds in a very complex acoustic 
environment, estimation of species inventory would more effectively be provided by an skilled 
observer. We would recommend bioacoustic surveys in a complex acoustic environment only 
in areas with restricted access, such as core zones in nature reserves. 
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Woodland
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Moorland
Road

Acoustic 
observation point
Transect

Woodland
Swampland
Moorland
Road  

 
Figure 10: Evaluation of bioacoustic survey by means of line mapping. For four days during spring, 
birds were counted along a transect (line mapping). At the same time, acoustic recordings were 
provided from a central place in the line mapping area. 
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Table 2: Comparison of census data obtained by acoustic survey and by line mapping. 
 
    I    II    III    IV   
Species AS LM1 LM2 AS LM1 LM2 AS LM1 LM2 AS LM1 LM2 
Aegithalos caudatus 2     2 1 1 1     1     
Alauda arvensis 1         1     1 1   1 
Anthus trivialis           1 1 1 3 1 1 2 
Certhia familiaris   1 2 1           1     
Coccothraustes coccothraustes 2     2   1 2     2     
Columba palumbus 2 1 2 2   3 3 3 4 3 2 3 
Corvus corone 2 1 1 3 1 1 2     2     
Cuculus canorus 1           3   1 1     
Cyanistes caeruleus 1 1 1 2 1 2 2 2   2   1 
Dendrocopos major 4 2 4 3 2 4 3         1 
Emberiza citrinella 1   4 1   3       1   1 
Erithacus rubecula 2 1 3 2 1 8 1   1       
Fringilla coelebs 2 2 6 2 1 3 1 2 6 1 1 4 
Garrulus glandarius 2     1 1 1 1     2 1 1 
Locustella fluviatilis             1 1 1 2 2 2 
Lullula arborea 1   2 3   3 1   2 2   3 
Luscinia megarhynchos             3 4 9 3 1 4 
Oriolus oriolus       (1)     2   1 2 1 2 
Parus major 2 2 12 2 2 10 3 1 6 3   2 
Phasianus colchicus 2 2 3 3 1 2 4   1 1     
Phylloscopus collybita 1     2 2 3 2 1 2 2 1 4 
Phylloscopus trochilus       2 1 2 2 1 1 1 1 1 
Poecile montana 2 1 2 1         2 1     
Poecile palustris     2 1   1 (2)           
Streptopelia picturata       (1)           1 1 1 
Sylvia atricapilla       3 4 9 3 3 9 3 2 8 
Sylvia borin       1         1   1 5 
Sylvia communis       1               3 
Sylvia nisoria                   1   1 
Troglodytes troglodytes       (1)     1 1 2 1   1 
Turdus merula 2     3 2 2 3 3 7 3   3 
Turdus philomelos 3 2 7 2   1 1     2   1 
Jynx torquilla                 2       
Lophophanes cristatus                 1       
Phylloscopus sibilatrix                 1       
Sitta europaea           1       1     
Sturnus vulgaris   1 3     3     2       
Anas platyrhynchos 1     1     1           
Carduelis carduelis 1     1           1     
Carduelis chloris       1     2     2     
Corvus corax 1     2     1     2     
Cygnus olor 2     2                 
Dryocopus martius             1     1     
Fulica atra       1                 
Grus grus       1 (2)     1           
Hirundo rustica       1     1     1     
Lanius collurio       (1)     1 (2)     1     
Locustella naevia             1     (1)     
Scolopax rusticola 1     (1)           (1)     
Upupa epops       2           1     

I -IV - Days for data acquisition
I - March 23
II - April 15
III - May 13
IV - June 3

- species specific census period

AS - Data obtained by acoustic survey
LM1 - Data obtained by line mapping from the surrounding of the microphones
LM2 - Data obtained by line mapping from the whole Northern part of the plot

- Species detected both by acoustic survey and line mapping

- Species detected by line mapping only

- Species detected by acoustic survey only
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In the above mentioned deliberations, we have given some examples of when a bioacoustic 
approach could be applied to monitoring tasks. We have seen that even given the current 
stage of development of pattern-recognition software, bioacoustic methods could be a 
powerful addition to conventional census approaches. The advantages of the method are 
obvious for detecting nocturnal birds and for assessing species inventories in areas where 
the presence of human observers is undesirable. The census of vocalizing animals could be 
carried out without any disturbance of breeding birds. However, at the current stage, the 
development of soft- and hardware would provide solutions for only a few species. More 
efforts in this direction are needed.  
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Abstract. Unsupervised recordings of birds for wildlife monitoring usually contain a high number of 
sources and thus tend to be very complex. This makes automated recognition of bird species much more 
difficult than from dedicated recordings of individual birds using highly directed microphones. We present 
studies of bird song recognition algorithms for this case. On the one hand, we focus on features that can 
be detected reliably even from strongly distorted recordings. As a starting point, we examine bird songs of 
low complexity and variability. On the other hand, we study opportunities arising from multi-microphone 
recordings. In particular, we examine a method for source separation into less complex components.  

 
 

The question whether computers can be used for the automated detection of animal 
presence in a given region by means of recognising their vocalisations is a strong stimulation 
for research in audio pattern recognition. But it is not merely interesting as a scientific 
stimulation. Monitoring the presence of animals is an invaluable tool for nature conservation. 
But it is also highly time-consuming when done by human listeners. In order to assess the 
animal population of larger areas, a great number of people are necessary, all well trained in 
the recognition of animals and their sounds. Thus, it would be of great help if they could be 
assisted by technical means.  

During the year 2007, a project funded by the German Federal Agency for Nature 
Conservation (Bundesamt für Naturschutz) set off to investigate whether automated 
recognition of animal vocalisations might become a supporting tool for real world monitoring 
problems. An overview of the project from a biological perspective is given in the article 
FROMMOLT ET AL. in these proceedings. In the following, we describe its computer science 
and pattern recognition aspects. 

First, we investigate methods for the automatic recognition of highly structured vocalisations 
characterised by blocks of repeated simple song elements. These can be found in the songs 
of many birds. Second, we show how less complex vocalisations of nocturnal birds can be 
detected, which is of great use for the monitoring of areas or times which are hard to cover 
by human listeners. Finally, we show that employing multiple microphones can help to 
extract simpler components from an audio scene which promise to be easier to analyse. 
 
 
From Complex Audio Scenes to Structural Similarity  
 

Audio recordings made for the purpose of monitoring an area for the presence of certain 
target species are strongly different from those dedicated to the recording of a single 
species, where highly directed microphones can be used and recordings can be made very 
close to the target. Figure 1 gives an example of how much these two settings differ. 

Another source of complexity in the problem of recognising bird songs by pattern recognition 
techniques is the fact that most birds show a very high degree of variability in their songs. 

One bird whose song shows high variability is the chaffinch. It is a well-known song bird with 
widespread occurrence. Many people can recognise its song in spite of its variability because 
its song is strongly characterised by its structure.  
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Figure 1: Top: The spectrum of a recording dedicated to capturing the song of the chaffinch. All 
elements of the song are easily discerned and little background noise is present. Bottom: The 
spectrum of a monitoring recording. The chaffinch's song is still discernable but embedded in a highly 
complex mixture of different audio sources. 
 

Figure 2 shows some of the variability found in the songs of chaffinches. Note how the 
composition and form of the song elements varies strongly between songs. The general 
structure of the songs, however, is almost the same and can be used to describe an abstract 
model of the chaffinch song. 

A chaffinch song typically consists of two to four segments in which one element is repeated, 
followed by an end segment. We therefore propose to detect chaffinch songs in three steps. 
First, all positions in a recording are found which are similar to typical end segments. Then, 
element repetition frequencies are estimated in a certain time window before the end 
segment. Finally, each candidate that has a combination of repeated element segments with 
parameters in a range typical of chaffinch songs is reported.  
 
 

 
 
Figure 2: Variability in the chaffinch song. Note how the form and composition of song elements 
differs. The general structure of the song, however, is always the same. 
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Figure 3: Finding the end segments of chaffinch songs by dynamic time warping. 
 

We will now describe the steps of this algorithm in more detail. Starting from a collection of 
20 templates of typical end segments, we first find possible occurrences of the chaffinch 
song by dynamic time warping (see, for example, DELLER, ET AL. 1993). Figure 3 shows a 
recording containing two chaffinch songs on the top and a template of an end segment on 
the left. In order to find potential occurrences of the template in the recording, a cost matrix C 
given by the difference of the template at position i and the recording at position j as matrix 
entry C(i, j) is computed. Paths giving a low sum of matrix entries correspond to potential 
occurrences of the prototype. 

After the detection of potential end segments, each such candidate undergoes a second 
analysis step. In this step, we estimate the repetition rate of elements.  
 

 
 
Figure 4: Autocorrelation based features for the recognition of repeated elements. Top: Spectral 
features in the subband containing the chaffinch song. Middle: Adaptive band periodicity (abp) 
features indicating repetition frequencies. Bottom: Estimates of repetition frequencies (blue) and a 
quality measure for the sharpness of the abp features. 
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Figure 5: The booming call of the Eurasian bittern. 
 

Figure 4 gives an overview of the features extracted from the part of a signal preceding an 
end segment. Computation starts by extracting a so-called novelty curve from five sub-bands 
of the frequency range typical for chaffinch songs. Novelty curves give a measure of change 
in the signal band over time. In particular, novelty curves show peaks where new elements 
begin. An autocorrelation curve is computed for each of these novelty curves. 

At each time step, the autocorrelation curve is chosen from the sub-band giving the sharpest 
peaks in the autocorrelation. The resulting sequence of autocorrelation curves is called the 
adaptive band periodicity (abp) features of the signal. The repetition frequency of elements is 
then indicated by the peaks of the autocorrelation curves. 

Now, grouping these curves by repetition frequency leads to a segmentation of song 
candidates into segments of constant element frequency. The final decision whether a song 
candidate is reported or not is based on the length of these segments and the repetition 
frequency of elements in each segment. 

With this algorithm, chaffinch songs can be detected in fairly challenging signal-to-noise 
ratios. There are however certain cases when false negatives as well as false positives 
occur. By design, the algorithm cannot detect songs without an end segment or songs which 
are very short. The superposition of songs from other birds occasionally leads to false 
positive detections where one bird song resembles an end segment whereas the other 
consists of repeated elements. 
 
 
Low Noise and Low Variability 
 

While the chaffinch is a very useful study object for pattern recognition, its relevance for 
nature conservation is limited. As a starting point for more relevant tasks, the monitoring of 
birds in low noise environments promised to be a manageable problem. Additional 
simplification is found by restricting the task to birds with only one song type and little song 
variability. 

The Eurasian bittern is a rare and threatened bird species living in large reed beds. The 
habitats  are  difficult to  access  and  the  most  obvious  indication  of  the  presence  of  the  
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Figure 6: Removing broadband noise from the features used for the detection of Bittern calls. 
 

Eurasian bittern is the booming vocalisation of the male. Acoustical monitoring allows for 
passive investigation of bittern activity. 

The call of the Eurasian bittern is very simple. It is almost completely characterised by its 
frequency of about 150Hz (see Figure 5). Calls typically occur in call sequences with a 
characteristic repetition frequency. In low noise conditions, this call can be detected by 
finding energy peaks in the characteristic frequency band. 

The main problem in detecting the bittern call, leading to false positive detections, is 
broadband noise overlapping the frequency band of the bittern call. This influence can be 
accounted for by estimating the noise level from a neighbouring frequency band. Figure 6 
shows how broadband noise can be removed from the features by subtracting a low-pass 
filtered noise estimate. 

This method alone still does not sufficiently reduce the number of false positive detections. 
 

 
 
Figure 7: The characteristic song of Savi's Warbler. 
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Therefore, the characteristic repetition rate of the call is used as a second feature. Using this 
combination leads to a fairly reliable detector for bittern calls. 

Another night active bird living in reed beds is Savi's Warbler. It has a very characteristic  

song formed by the continuous repetition of simple song elements at a rate of roughly 50 
repetitions per seconds. An example of its song is given in Figure 7. It is this composition of 
repeated elements which makes the application of the techniques described in Section 1 
successful in this case.  

The recognition of Savi's Warbler relies on the same features which were already used for 
the detection of the chaffinch. Starting from abp features, the repetition frequency of the 
basic elements of the song can be read off the Fourier transform of the features. Similar to 
the strategy followed in the detection of the Eurasian bittern, noise reduction of the abp 
features can be conducted by subtracting the abp features of a flanking frequency band. 

Finally the decision whether a Savi’s Warbler is singing at a given time is found by deciding 
whether its characteristic element repetition frequency is present for a long enough time. This 
is combined with a second criterion, the sharpness of autocorrelation curves in the abp 
feature. 

Evaluation of this algorithm has been performed on monitoring recordings from Lake 
Parstein. They consist of about 30 hours of audio material with frequent occurrence of the 
Savi’s Warbler’s song. The distance from the microphones is highly variable and the 
recordings contain a multitude of noise and background sounds. 

We found that the detection of almost inaudible songs was possible. Moreover, false positive 
detections were very seldom. 
 
 
Opportunities from Multiple Microphones: Source Separation 
 

In Section 1, we gave an example of how complex natural audio scenes typically are. This is 
a very difficult problem for the detection of animal sounds. By combining multiple 
microphones, it is possible to extract simpler components by combining the recorded signals 
in such a way that songs from some directions are attenuated while those from other 
directions are amplified (see HYVÄRINEN ET AL. (2001) and VAN TREES (2002) for different 
approaches to array signal processing). 

The central step in devising a source separation algorithm is the choice of a measure 
describing the complexity of an audio scene. Given such a measure, it is possible to evaluate 
it for several combinations of input sounds and choose the combination that gives the lowest 
complexity score. 

The measure we use in our approach is the spectral flatness measure. It measures how 
much the energy at a given time is spread in the spectrum, giving a high value when the 
energy is equally distributed and a low value when the energy is concentrated in a small 
number of narrow frequency bands. The spectral flatness measure is computed from the 
spectrum as the geometric mean of the Fourier coefficients divided by the arithmetic mean. 

The mixing coefficients of the source signals should be estimated from segments of constant 
mixing conditions. We assume that mixing conditions are locally constant and form a 
windowed spectral flatness measure by convolving short signal windows with a Hann 
window. 
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Figure 8: The recognition of the Savi's Warbler’ song: Autocorrelation curves (second row) are 
extracted from the spectrum (first row). The repetition frequency of song elements can be read off the 
Fourier transform of the autocorrelation curves (third) row. The song is detected wherever the 
repetition frequency is in the expected range and a quality measure of the autocorrelation sharpness 
exceeds a threshold. 
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Figure 9: Left: The spectral flatness measure of a mixture of bird songs. Right: Windowed version of 
the measure which is used as an objective function for source separation. 
 
The extraction of simpler components is achieved by optimising the spectral flatness 
measure for each window. This will lead to a vector of weights for each time window which 
describes how the input signals should be combined at the given time. For each window, a 
fixed number of hypotheses for this vector is generated. Dynamic programming allows 
combining the hypotheses from different windows such that a smooth variation of the mixing 
coefficients for the input signals is achieved wherever possible. 
 
 

 
 
Figure 10: Extraction of a simpler component (bottom) from a mixture of two audio sources (top). 
 
Figure 10 shows the extraction of a simpler component from the mixture of two bird songs. 
For better illustration this example was generated by artificially mixing two sources. 
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While component extraction from more complex natural audio scenes does not give perfect 
separation, it still leads to a strong attenuation of some sources while others are amplified. 
This promises to improve recognition rates. 
 
 
Conclusion 
 

In Sections 1 and 2, we have described tools for the recognition of vocalisations of various 
bird species. They are not restricted to these species but should be applicable to similar 
cases. 

First, the recognition of low complexity songs and calls such as that of the Eurasian bittern 
can be used for the recognition of other simple sounds in silent environments such as the 
songs of owls.  

It can also be the starting point of more complex recognition algorithms in the same way as 
the detection of end segments is a starting point for the detection of the chaffinch song. 

Second, there are a large number of animals whose vocalisations are characterised by the 
repetition of simple elements like in the song of Savi's Warbler. This suggests, that methods 
like those described in Section 2 may not only allow recognising the vocalisations of different 
species of warblers but also of animals such as crickets, frogs and toads. 

Third, many song birds show a highly structured song like that of the chaffinch. Thus, the 
techniques described in Section 1 may be applicable to other birds like the Blue Tit, the Coal 
Tit or the Wood Warbler. 

Finally, while being in an experimental state, source separation techniques promise to 
become a valuable tool in breaking down the complexity of natural audio scenes into simpler 
components. 
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Abstract. The use of spectrograms in sound analysis opens up the realm of sound in a way that provides 
visual detail of sonic nuances. Yet, this tool is underutilized in automatic call recognition (ACR) algorithms 
and is primarily used for manual detection. The use of image processing tools creates a path for 
developing ACR algorithms that can be used with great efficacy to detect a variety of call types. The two 
primary ways in which image processing is used are in filtering and feature extraction. In filtering, 
estimates of sound level in the prominent frequency bands are used to set threshold levels to filter out 
background sound, allowing the resulting spectrogram image to be used directly for the feature extraction 
of signals. This serves as the framework behind two ACR methods that are successful at detecting and 
classifying bioacoustic signals. The first method uses image filters that blur the spectrogram to help 
patterns stand out from background noise and a Bayesian classifier to identify the resulting signals. The 
other method uses a different set of features that result from the processed spectrogram with multi-layer 
hidden Markov models to identify signals. The blur filter method performs better with the honeycomb-
structured calls, such as those made by many crickets, and the HMM approach works better with 
frequency modulated whistles, characteristic of many frogs and birds. Combining both allows additional 
call types to be better detected and classified. 

 
 

The majority of bats, birds, frogs, marine mammals, many insects, and even some species of 
fish are easily detected by the sounds they make. Further, they each produce acoustic 
signatures, revealing not only their presence, but also their species type, and they can be 
recorded without impacting them or their environment. In this way, these sounds serve as an 
ideal way to asses and monitor environments and the ecosystems with which these species 
are a part.  

The efficiency of acoustic surveying lends itself to both rapid assessment programs, which 
quickly assess the biodiversity of specific regions, as well as long term monitoring of 
biodiversity change (RIEDE 1998). This is largely because numerous animals are heard more 
often than seen or trapped. This translates into not only higher species counts, but also 
faster estimations of biodiversity. PARKER (1991) describes how in 7 days he recorded the 
vocalizations of 85% of the 287 species of avifauna his team of 7 ornithologists inventoried 
after 54 days of intensive field work within a 2km2 area in Amazonian Bolivia, which included 
36,804 mist-net hours. If this is representative of the advantages of monitoring birds 
acoustically, then the same is likely true for both stridulating insects and vocalizing anurans, 
particularly since they are even less visually conspicuous. Although no comparative numbers 
are provided, FISCHER ET AL. (1997) and RIEDE (1993, 1996, 1998) found it more fruitful to 
monitor insects acoustically than by physically collecting them. Likewise, PETERSON AND 
DORCAS (1992) as well as CROUCH III AND PATON (2002) strongly advocate acoustic 
monitoring to better study anuran activity and species presence. This trend also holds true 
for the field sampling of bats. O’FARRELL AND GANNON (1999) compared acoustic sampling of 
bats simultaneously with mist nets and double-frame harp traps in 57 locations. They found 
that 86.9% of the combined species present were detected acoustically, whereas only 63.5% 
of the species detected were physically captured.  

There are many ways to monitor bioacoustic sounds. The least technical way is to use 
trained field personnel to perform systematic surveys throughout areas of monitoring interest. 
This is the most wide-spread approach, particularly with avian monitoring, since there are 
many skilled professionals capable of performing acoustic surveys of birds. This type of 
survey, however, is sensitive to observer bias in that the detection rate and accuracy are 
dependent on the skill level of the observer. While this is tolerable for short-term monitoring 
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in areas covered by the same technical staff, it makes long-term monitoring and comparisons 
among sites less meaningful if the personnel making the acoustic identifications are not the 
same for all of the field samples (ANGEHR ET AL. 2002).  

One way to improve performance is to make audio recordings during the acoustic surveys to 
provide a record that can be reviewed or reanalyzed. Acoustic recording is particularly 
important for groups of species, such as orthopteroid insects (crickets, katydids, and 
relatives), that are not well documented, where audio recordings are needed to serve as a 
voucher. A further standardization can be achieved by automating the recordings 
themselves. In doing so, a great deal of work is transferred to the detection and classification 
of the bioacoustic sounds within the recordings.  

Motivated with both the need for standardization and efficiency, a variety of approaches have 
been developed for automatic call recognition (ACR) of bioacoustic sounds. Early methods 
focus on techniques used in human speech recognition such as template matching with 
dynamic time-warping (ANDERSON ET AL. 1996), and modeling changes in ceptral coefficients 
with hidden Markov models (HMM) (KOGAN & MARGOLIASH 1998). These approaches work 
best with bird songs that have a rich harmonic structure recorded in low noise conditions. 
Other approaches have been successful with particular taxonomic groups. Neural networks 
have successfully been used to identify bat species by their echolocation (PARSONS 2001) 
(PARSONS & JONES 2000), as well as orthoptera  and birds by using time-domain signal 
coding (CHESMORE 2001). In the presence of significant background noise, other approaches 
are needed. Successful methods of classifying calls given in high noise environments have 
focused on spectral intensity peaks (TAYLOR ET AL. 1996), (CHEN & MAHER 2006). These 
methods extract useful parameters from the spectral peaks which are used to classify the 
sounds. Focusing on spectral peaks in high noise environments enables the extraction of the 
dominant features of the loudest sounds. Through the use of image processing on 
spectrograms, a wider range of these sounds can be extracted from the background, leading 
to a wider range of sounds that can be identified from field recordings. The techniques to do 
so described here include threshold filtering, blur filtering, contour feature vectors modeled 
with HMMs, and call sequence modeling with HMMs.  
 
 
Techniques 
 
Preprocessing: Threshold Filtering 
 

Spectrograms generated from field recordings often contain a great deal of background 
noise. This is particularly true of recordings made from autonomous recorders placed in 
forest canopies set to record sound at scheduled intervals of time. Recordings made with 
handheld microphones will often have a higher signal to noise ratio when the microphone is 
directly pointed at a singing individual, but even these recordings can have significant 
background noise when there are multiple singing organisms at any one time. We begin our 
approach to automatic call recognition (ACR) by generating spectrograms of the recordings. 
These spectrograms contain background noise that has different intensity levels as a 
function of spectral frequency, that are relatively consistent throughout the duration of the 
recording (usually 10 minutes or less for our recordings). Once the relationship for how the 
background noise levels vary across frequency is determined, a threshold filter is uniformly 
applied throughout the entire sound recording which preserves the signals louder than the 
background noise and drops out the remaining sound from the spectrogram image.  

The process of creating this threshold filtering image has 2 steps: creating the relationship 
between the background noise and the spectral frequency, and applying the threshold level 
across the frequencies in the image. The noise level as a function of frequency is estimated 
by calculating the average intensity of each frequency within the spectrogram for some 
portion of the sound (e.g., the first minute of the recording). Once these averages are 
calculated, a set of frequency bands is created to group frequencies that have similar 

 104



background sound levels. We do this by finding local minima of sound intensity throughout 
the frequency spectrum that bound local maxima of sound intensity, where all the local 
maxima are greater than the local minima that set the frequency bounds for them. In this 
way, we partition the spectrum into 5 or 6 frequency bands with which to apply separate 
threshold filters. By creating separate frequency bands, the threshold filters in bands with 
high noise do not suppress sounds in frequency bands with low noise, and allow us to create 
a spectrogram image of calls that are better separated from background noise (Fig. 1). By 
separating calls from the background noise, the pixel clusters of the calls can be measured 
directly from the spectrogram and classified. 
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Figure 1: Dividing the spectrum into a set of frequency bands. A one minute segment of a recording is 
used. The average sound level as a function of frequency is calculated. The local maxima and minima 
are found. The band limits of the frequency bins are chosen as the local minima that bound local 
maxima, where all the maxima within the band are greater than the local minima bounds. In this figure, 
band 5 is created as a leftover chunk of the spectrum after the afore mentioned process. This 
prepares the spectrogram for threshold filters to be applied in each frequency band, improving the 
ability to extract calls from each frequency band independently of calls in the others. 
 
 
ACR Method 1: Blur filters with a Bayesian classifier 
 

Although the threshold filters work well to separate calls from background noise, additional 
image processing is necessary to detect calls recorded with a wider range of signal 
strengths. The quality of the spectrogram pixel cluster shapes of many calls degrades as 
signal strength declines, and the threshold filter by itself is effective only with singing 
individuals that are relatively close to the microphone. However, this pixel cluster degradation 
often takes the form of signals in the spectrogram developing rough edges and becoming 
fragmented. This is particularly true with cricket stridulations, which often consist of pulse 
trains with components that completely overlap in time when recorded with a high signal 
strength. Spectrogram images of the same calls recorded from a greater distance can 
appear fragmented. One of the most important features to use when classifying calls is their 
duration, and the duration of fragmented calls become difficult to measure. A useful way to 
combat this signal degradation is to apply a blur filter before applying the threshold filter. A 
particularly useful blur filter is an averaging blur filter, designed such that the pixel values on 
each side of every pixel in the image are averaged together with the pixel between them (as 
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a group of 3 pixels) to become the value of that middle pixel for all the pixels in the new 
image. This sort of blurring distorts the image in time, but not in frequency. As such, it 
successfully joins pixel clusters in calls that would otherwise be fragmented. By applying 
such a blur filter, pixel clusters of calls from the same species will have a similar duration 
even when the call is not recorded very loudly (Fig. 2). 
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Figure 2: Applying a blur filter. Call 1 and 2 are from different individuals of the same species. Call 2 
has less signal strength since the individual is further from the microphone. The top image is from the 
unaltered spectrogram. The middle image results from applying the threshold filter to the spectrogram. 
In this image, call 2 becomes a fragmented cluster of pixels. The bottom image results from applying 
the blur filter as well as the threshold filter. In this image, call 2 becomes a contiguous cluster of pixels 
and can be more readily matched to the pixel cluster shape of call 1, improving the detection and 
classification algorithm. 
 
Once the blur filter and threshold filter are applied, pixel clusters from the resulting sounds 
are measured. A great many crickets and some frogs and birds have calls consisting of a 
constant frequency. This can be in the form of a stand-alone call or as a pulse train. Calls of 
this nature are particularly well suited for this sort of detection process. The central 
frequency, duration, and bandwidth of these pixel clusters can be automatically measured 
directly from the spectrogram and classified using a Bayesian classifier when there is little to 
no overlap of the species class boundaries in this feature space. The effectiveness of this 
approach has been shown with constant frequency calls from crickets and frogs. In one site 
in the lowland rainforest in Costa Rica, 20 species of crickets and 2 species of frogs are 
readily detected and classified this way (BRANDES ET AL. 2006). 
 
 
ACR Method 2: Contour feature-vector with hidden Markov models 
 

A much larger variety of bioacoustic sounds can be detected and classified using contour 
feature vectors and hidden Markov models (HMM). This is particularly true with calls that 
consist of frequency modulated whistles and sequences. When trying to determine the 
classification of a call, we want to choose the call classification that maximizes the following 
probability equation. 

  )|()(maxargˆ CAPCPC
C

=

Here, our estimate for call type, , is chosen as the call type, C, that maximizes the 
probability of collecting a set of signal measurements, A, when a particular call is given, 
multiplied with the probability of that call being given. The set of signal measurements is a 
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sequential series in time, A = {a1, a2, …, at}. The acoustic model, P(A|C), is employed with 
the use of HMMs. It is often impractical to calculate this probability for each call type stored, 
so a viterbi search (VITERBI 1967) is used to efficiently find the most likely call type by looking 
for a maximizing state sequence. 

Previous work where HMMs are used to classify particular bird songs rely on ceptral 
coefficients (KOGAN &MARGOLIASH 1998, KWAN ET AL. 2004). This is also true with the vast 
majority of human speech recognition work, which relies heavily on ceptral coefficients, and 
derivative thereof, as the feature vector to use to collect signal measurements. Ceptral 
coefficients are good at capturing the rich harmonic structure of human voice, however, they 
are particularly susceptible to noise (OPENSHAW & MASON 1994). A large number of 
bioacoustic sounds do not have any harmonics and they are often found in noise rich 
environments. A better performing feature vector to use is a contour feature vector that 
measures the peak frequency and bandwidth of a call. While these two parameters are 
important to model, the peak frequency can be susceptible to individual variation, and the 
bandwidth can be variable due to signal strength. For added robustness, it is also important 
to model the change in these parameters from the previous time step. 

An additional level of pattern recognition that is also possible using HMMs is that of call 
sequence recognition. Here, we use a composite HMM, where the first layer consists of the 
HMM mentioned above. In the second layer, we model the sequences of the detected calls 
from the initial layer (Fig. 3). Here, our feature vector consists of the call type designation 
from the first HMM and its duration. The gaps between the calls are included in the sequence 
model as well. Both the single layer HMM and the composite HMM have shown effective at 
detecting frequency modulated whistles from birds, crickets, and frogs (BRANDES 2008). 
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Figure 3: Sequence recognition with composite HMMs. The individual calls are found with the first 
layer HMM, and the sequence of these calls is classified with the second layer HMM. 
 
Combining techniques and future work  
 

A wider range of bioacoustic signal detection is possible by combining these techniques. One 
of the main shortcomings of the blur filter and Bayesian classifier approach is that it does not 
perform sequence modeling. After the threshold filtering, pixel clusters that represent noise 
are likely to be short in duration. This means that misclassification of calls that have a short 
duration are more likely to occur. With crickets in particular, the very short duration calls are 
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likely to occur as elements of a pulse train. These pulse train sequences can easily be 
modeled by the second layer of the composite HMM mentioned previously, where the 
classification of the individual call elements can be found with the blur filter and Bayesian 
classifier method. This allows more confidence in the call type designations for short duration 
calls that are part of a sequence. 

The main shortcoming of the contour feature vector method is encountered with calls that 
have either a honeycomb-shape or rough edges (Fig. 4). Calls in these categories tend to 
have variations in peak frequency and bandwidth that have a larger range of inconsistency 
among individuals of the same species than useful for identification. The contour feature 
vector picks up this high-resolution variation, and the HMM does not make identifications as 
readily. However, if these signals are first smoothed with a blur filter, then the variations are 
smoothed out and the overall trends of the calls are more discernable to the HMM classifier 
(Fig. 5). 
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Figure 4: Improving detection of honeycomb-shaped calls with blur filtering and HMMs. In the top 
image, calls a, b, and c are each from the same species of cricket. Their uneven pixel cluster shapes 
result in poorer performance with the contour feature vector method. By first applying a blur filter, this 
unevenness becomes smoothed, and the calls become more readily classified with the contour feature 
vector method. 
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Figure 5: Improving detection of calls with uneven edges with blur filtering and HMMs. A sequence of 
calls is shown in the top image without applying the blur filter. Their rough edges creates difficulty for 
the contour feature vector. By smoothing the image with a blur filter, these edges become smoother 
and improve the performance of the contour feature vector.  
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The strength of the HMM classifier is in its ability to classify sequences that have a degree of 
stochastic variation among the samples. Their effectiveness is principally dependant on how 
well the feature vectors are chosen to capture the state changes within the sequence. The 
feature vectors described here are by no means exhaustive for bioacoustic signal detection. 
The best performance is achieved by choosing feature vectors appropriate to the patterns 
the model is designed to classify. By adding multiple levels of HMMs, additional levels of 
pattern sequences can be classified. This is a particularly attractive way to classify 
sequences of calls as described earlier. More work is needed in this area. Sequences of bat 
echolocations, for instance, are a good candidate for future work since they often consist of 
frequency modulated or constant frequency type calls. Likewise, calls with a clear harmonic 
structure can be looked at in a new way, by choosing feature vectors appropriate for their 
patterns. Cepstral coefficients, though useful in capturing the rich harmonic structure in 
signal, are susceptible to noise. Features extracted from spectrograms are less so, and 
provide a different way to explore classifying harmonically rich signals with composite HMMs 
that perhaps would improve performance of detection and classification models. Future work 
on additional features used to describe bioacoustic signals will lead to a greater range in 
signals that can be detected and will contribute to the scale and scope of acoustic monitoring 
possible around the world. 
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Abstract. The problem of programming classifier systems for bioacoustic signals is seen as a knowledge 
engineering problem. Advantages and disadvantages of traditional black box approaches are discussed. A 
new knowledge engineering approach for bioacoustic classifier system design is described and 
advantages of the approach are highlighted. The basic architecture of a general purpose knowledge 
engineering environment for the bioacoustics domain is outlined. Emphasis is placed on both expert 
knowledge and on the role of machine learning within the classifier system design process. Several 
examples illustrate how the approach can be used to create classifier systems for bioacoustic patterns. 
Examples include multi scale spectrographic visualization, subsymbolic classifiers for Prunella collaris 
(Alpine Accentor), a hierarchical symbolic classifier system for Prunella collaris, annotated whistle- and 
click-sounds of Tursiops truncatus (Bottlenose dolphin) and automatic extraction of symbolic whistle- and 
whistle type representations. 

 
 

For the end user most systems for bioacoustic pattern recognition are black boxes. Biologists 
and field researchers usually cannot understand how these systems work, why classification 
decisions (annotations) are generated and why false decisions occur. 

This is not surprising. Automated classification of bioacoustic patterns is a difficult 
computational task. Algorithms used in this domain are just as complicated as in other fields 
of pattern recognition, e.g. in natural language- or in picture processing. At least basic 
knowledge in higher mathematics and in computer science is necessary to understand how 
such systems work. 

However, as even the most advanced methods in bioacoustic pattern recognition are far from 
being perfect and as we do not have better classification algorithms to our immediate 
disposition, we can look for a practical alternative that help biologists to use existing 
bioacoustic classification algorithms in a more satisfactory way than up to now. 

Such an alternative can be a knowledge engineering environment for computer aided 
bioacoustic classifier system design. The purpose of such an environment is to facilitate the 
modeling, implementation, test and application of bioacoustic classifier systems and to hide 
from the end user the complexity of all involved digital signal processing and pattern 
recognition algorithms. 

In this article the fundamental architecture of a general purpose knowledge engineering 
environment for bioacoustic classifier system design is described and several examples are 
shown that highlight important aspects of the classifier system design process. In order to 
keep this article concise only the most basic topics are discussed and more advanced 
features, e. g. the resolution of logic classifier systems, are omitted. 

Knowledge Engineering Bioacoustic Classifier Systems 
In order to understand the reasons that speak for a knowledge engineering approach in 
bioacoustic pattern recognition it is best to first have a look at the advantages and 
disadvantages of the traditional or "black box" approach. Afterwards, it will become evident 
that the knowledge engineering approach is superior in this highly knowledge-intensive 
domain. 

The Black Box Approach  
The task of a black box classifier system (Fig. 1) is to process bioacoustic signals and to 
generate annotations (classification decisions) that indicate the presence of certain acoustic 
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event types at certain points of time in the audio data.  

In many cases it is the explicit wish of both the computer scientists (the constructors of the 
black box) and the experts (the biologists and field researchers) that classification is done 
unsupervised by the black box.  

Usually, after the box has been implemented, the job of the computer scientists is done. 
Expert's control on the system is restricted to the input (the audio signals) and possibly to a 
few general parameters that configure algorithms inside the black box. The output (the 
annotations) can neither be influenced nor be understood properly by the experts. This is 
especially awkward if within an unsupervised classification process many false classification 
decisions occur for unknown reasons. Experts do not have the slightest chance to correct 
this type of ill behavior even if the underlying problem actually is trivial. 

 

 

Black boxSignals Annotations

Computer scientists

Experts 

 

      Figure 1: Black box approach. 

It may be said that this approach fails the more often, the more complex the classification 
task is. It may also be said that the more complex the classification task is, the more 
expertise in bioacoustics and biology is needed to build the black box itself. Indeed, to solve 
complex bioacoustic classification problems within a black box approach a close cooperation 
of both computer scientists and biologists is inevitable. 

Furthermore, in many cases experts start understanding the nature of bioacoustic sounds 
only after having intensively worked with them for a while. Expertise grows slowly but is 
needed to build and modify the black-box. Unfortunately, the modification of the box requires 
each time a close cooperation with the computer scientists. In order to take new important 
insights into account, the computer scientists have to be engaged for one more time – if the 
experts still can afford it.  

It should be mentioned that the traditional black box approach has also some advantages. A 
black box can be a very compact solution efficiently implemented by computer specialists. 
Bioacousticians do not have to bother with computational details and may entirely rely on the 
qualifications of the programmers. However, the above mentioned circumstances lead to a 
whole series of severe disadvantages characteristic for this approach: 

z Experts have low influence on how their expertise is implemented. 

z Expertise incorporated in classifier systems is not sharable among experts. 

z The work of the computer scientists is difficult to re-use. 

z Experts can't understand why the system behaves the way it does. 

z Experts have little chance to correct an ill-behaving system. 

z The incorporation of new insights into the nature of bioacoustic signals requires a re-
implementation of parts of the system. 

z General inflexibility and expensiveness. 
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In many other expertise-intensive problem domains the art and science of knowledge 
engineering has proved to be much advantageous compared to black box solutions. 
How this approach can be understood in the bioacoustic classifier system design 
domain is described in the next section. 

The Knowledge Engineering Approach 
Knowledge engineering is the art and science to transfer domain specific expertise into a 
computer system in such a way that the expertise can both be computed by the system in a 
reasonable way and still be understood by experts without to much effort. 

Base layer

Signals Annotations

Computer scientists

Classifier library

Experts

Interface layer

 

Figure 2: Knowledge engineering approach. 

 
The claims of computability and at the same time comprehensibility require an entirely new 
conception of bioacoustic pattern recognition systems. A knowledge engineering 
environment (KEE) for bioacoustic classifier system design (Fig. 2) is very much different 
from the above described black box solutions: 

1. The KEE can annotate audio material only if equipped with a library of appropriate 
knowledge based classifiers systems. A priori this library is not part of the system. 

2. The KEE is designed to give experts (non-technicians) the opportunity to create 
classifier system libraries by making intense use of their individual expertise. Note 
that the creation of such libraries is a programming task comprising all typical steps of 
software engineering: modeling, implementation, test and application. 

3. The KEE is equipped with a special knowledge design interface. This interface 
provides all means to model, test and apply classifier systems for bioacoustic data 
and at the same time hides the complexity of the machinery that carries out all kinds 
of difficult computations. 

4. The KEE guarantees full transparency on all important levels to the experts. Subject 
of computation are not nebulous concepts, obscure networks or sophisticated but 
incomprehensible systems but well defined signatures of acoustic event types, 
comprehensible similarity measures and clear cut decision making algorithms. 

5. The KEE provides immediate visual feedback within all steps of the classifier system 
design process. Visual feedback concerns the structure of signatures of acoustic 
events, the behavior of similarity measuring functions and classifier decisions 
generated by the system. 

It is easy to see, that such an environment must be far more complex than just a black box 
classification engine made to respond to certain patterns in audio signals. Especially the 
interface layer can be a very extensive and complicated piece of software though at first 
glance it appears trivial as it's main purpose is to solve mere pragmatic problems. 

However, given a state of the art knowledge design interface the architecture shown in figure 
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2 opens new possibilities. High performance pattern recognition algorithms may be linked 
into the base layer with ease. Experts may use them interactively and independently in order 
to create and modify classifier systems in accordance with their specific needs. New 
important bioacoustic insights may be taken into account immediately by the experts – 
without having to engage computer scientists for one more time. 

The knowledge engineering approach has also some disadvantages that should not be left 
unmentioned here. The system itself is far more complex than black boxes are and experts 
have to do specific knowledge design work on their own. Also the needs of full transparency 
and comprehensibility within all steps of the classifier system design process may cause 
problems with certain types of existing sophisticated classification algorithms. However, the 
above described architecture leads to a whole series of advantages characteristic for this 
approach: 

z Experts have full control on the flexible and interactive classifier system design 
process. 

z Experts can understand what is computed and why annotations are generated. 

z Expertise incorporated in classifier systems is sharable worldwide. 

z The work of the computer scientists (the KEE) is suitable for a virtually infinite number 
of different tasks. 

z Experts can easily correct an ill-behaving system (even if the underlying problem is 
not trivial). 

z The incorporation of new insights into the nature of bioacoustic signals does not 
necessarily require re-implementations of parts of the system. 

z Knowledge discovery and data mining instruments easily fit into the architecture. 

z General flexibility and cheapness in the long term. 

It can be concluded that the knowledge engineering approach does not only not suffer from 
the disadvantages of the black box approach but that it also has several additional 
advantages. 

General Architecture 
A KEE for bioacoustic classifier system design comprises a large variety of more or less 
independent tools, instruments and controls. The most essential of them may be grouped 
into three modules or layers as depicted in figure 2. In figure 3 these layers are explained in 
more detail. Small helper-tools are not included in the following description though they also 
play an important role in practical classifier system design tasks. 
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Digital signal processing algorithms, 
Pattern recognition algorithms,
Pattern formation algorithms, ...

Visualization tools,
Classifier modeling tools,

General access instruments, ...

classifiers = {classifier1 , classifier2 , ... , classifiern}
classifier = �signature , measure , algorithm�

 

Figure 3: The three layers of a bioacoustic knowledge engineering environment. 

The Classifier System Library 
Transparency and comprehensibility are the two most important features of the classifiers in 
the classifier library. To achieve this, a classifier can be defined as a triple consisting of a 
signature, a similarity measure and an annotation generating algorithm: 

z The signature is a well defined formal descriptor of the class of acoustic events that 
the classifier is supposed to detect in audio signals. Note that expertise is contained 
mainly in the signature - not in the other two constituents of the classifier. Signatures 
may be either subsymbolic or symbolic.  

z The similarity measure is a well defined function that is suitable to compare a 
signature with a piece of audio data of exactly the same duration. By systematically 
applying signature and measure to a longer audio signal it is possible to compute the 
degree of similarity between the signature and the signal for each possible point of 
time. 

z The annotation generating algorithm systematically evaluates an audio signal by 
making use of only signature and similarity measure. The algorithm creates 
annotations if certain constraints are satisfied. An annotation optionally may include a 
set of automatically extracted measurements such as the degree of computed 
similarity at positive classification decision time. 

The above described classifier architecture lies at the heart of a comprehensible KEE for 
bioacoustic classifier system design. Shapeliness of both signature and similarity measure as 
well as purity of the annotation generating algorithm are decisive for scientific quality of both 
design and classification processes. Furthermore, properties and behavior of all three 
classifier constituents may easily be visualized and thus understood immediately by experts. 

The Knowledge Engineering Interface 
Classifiers for the library have to be designed in accordance with the requirements of the 
study or application they are needed for. The knowledge engineering interface gives experts 
the opportunity to model classifier systems independently. Tools in this layer may be grouped 
into data visualization, classifier modeling and general access instruments. 

z Visualization tools serve three main purposes: (1) Visualization of audio data (e.g. in 
form of spectrograms), (2) visualization of classifiers (including signatures, numerical, 
nominal and hierarchical properties) and (3) visualization of classifier decisions and of 
the behavior of similarity functions. Visualization tools need to be intuitive and 
precise. 

z Classifier modeling tools serve all tasks necessary to initialize and modify classifier 
systems and their constituents (e.g.. subsymbolic and symbolic signatures). 
Interactive manual editing tools known from picture editors (e.g. 'rubbers') belong to 
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this group as well as automatic signature extraction, merge and clustering 
instruments necessary for data mining of signatures. 

z General access instruments are necessary to control all data flows within the KEE. 
They serve the access to audio file collections, sets of annotations as well as the 
configuration and conduction of classification tasks. Access instruments often have 
the form of wizards that guide through the configuration of digital signal processing 
and pattern recognition tasks. 

Future knowledge engineering interfaces may with ease include dozens of different such 
tools. For example, simple subsymbolic signature extraction may be based on dozens of 
different time-frequency or time-energy based visualizations and the number of thinkable 
signature modeling tools is limited only by the number of algorithms linked into the base 
layer. 

The Base Layer 
The foundations of a KEE are contained in the base layer. It is invisible to experts and 
implemented by computer scientists. For experts it is a black box but it's algorithms may be 
freely accessed through the knowledge engineering interface. Tools in this layer may be 
grouped into digital signal processing (DSP), pattern recognition and pattern formation 
algorithms. 

z Digital signal processing algorithms are necessary for all kinds of computation typical 
for audio data processing. Included in this group are time-energy, time-frequency an 
wavelet transforms as well as filtering, signal generating and mapping algorithms. 

z Pattern recognition algorithms are used to compute annotations by searching 
patterns in audio signals. Annotation generating algorithms are physically 
represented in this layer, not inside the classifiers which actually contain only a 
symbolic algorithm identifier and a set of related parameters. 

z Pattern formation algorithms are necessary for advanced data mining functionality. 
They are especially useful for inductive programming of signatures either on 
subsymbolic or symbolic levels. Note that inductive programming of signatures is one 
of the most promising applications withing knowledge engineering based classifier 
system design. New and interesting acoustic patterns may be revealed by such 
algorithms. 

Today, we can choose from a wide variety of high performance algorithms for the first two 
subgroups of the base layer. Most advanced are low level DSP standard algorithms like DFT 
or Wavelet-transform computing routines. Selected pattern recognition algorithms may be 
adopted from natural language and picture processing. Suitable pattern formation algorithms, 
however, are rare especially in the field of subsymbolic signature formation. Symbolic data 
mining methods can be used to work with sets of annotations. 

The Classifier System Design Process 
Knowledge engineering simple classifier systems is a straightforward programming task. In 
such cases the classifier system design process fits into the waterfall-scheme known from 
traditional software engineering. This scheme however is applicable only if both the structure 
of the acoustic events to be classified is highly deterministic and all types of events are a 
priori known by the expert who programs the classifiers. 

Knowledge engineering of complex classifier systems is a knowledge discovery task. In such 
cases the classifier system design process should be conducted within the general 
knowledge discovery in databases (KDD) procedure (SHAPIRO & FRAWLEY 1991, FRAWLEY & 
SHAPIRO 1992). This scheme is applicable if either the structure of acoustic events is not 
deterministic or not all types of acoustic events are a priori known by the expert. 
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The conduction of a KDD process on audio file collections can lead not only to better audio 
signal classifier system libraries but also to the discovery of new and interesting acoustic 
patterns. Such patterns can become relevant to scientific discoveries. 
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                   Figure 4: KDD for bioacoustic classifier system design. 

Examples 
It has been mentioned above, that knowledge engineering of bioacoustic classifier systems is 
a dynamic and interactive process. It may resemble computer gaming much more than dry 
source code programming. Unfortunately this dynamics cannot be transferred to two 
dimensional paper. Thus we are limited to provide a few examples of visualizations of 
classifiers and annotations that represent typical results of properly conducted knowledge 
engineering processes. All classifiers and graphics were created with the acoustic knowledge 
engineering environment DSProlog (HUEBNER 2007a, 2007b, 
http://www.sejona.de/dsprolog.php). 
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Alpine Accentor (Prunella collaris) 

Standard Spectrographic Visualization 
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Window: Blackman

 
: Standard spectrogram of a syllable of Prunella collaris. Frequency resolution is fine grained
resolution is poor. 
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Multi scale spectrogram of a syllable of Prunella collaris. Both time- and frequency
 are fine grained. 



Template Based Subsymbolic Signature 

Signature of element:
Local maxima and shape

 
Figure 7: Template based signature in highlight mode. The signature was derived manually from one
single example by applying a template to the spectrogram in figure 3. Green are local maxima of
Fourier coefficients. Red is the shape of the acoustic event. Blue are above threshold coefficients
important for pattern formation algorithms. 

 
Induced Subsymbolic Signature 

 

Signature of element:
Local maxima and shape

 
Figure 8: Induced signature in highlight mode. The signature was induced by merging twelve similar
patterns found by a classifier using the signature in figure 4. Induced signatures usually perform better
than template based signatures though they look similar at first sight. 
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Visual Feedback - Classifier Decisions and Similarity Measures 
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Annotations generated by classifier

Similarity measure computed by algorithm

 
: Visual feedback - classifier decisions and similarity measures. This diagram shows how the

r in figure 5 performs with respect to a short strophe of Prunella collaris. Colored
tions of classifier decisions are mapped onto the black and white background of the
ram. Similarity vectors computed by the annotation generating algorithm are shown on top. 
rchical Classifier 

Symbolic classifier system:

●  1 rough classifier decisions
●  3 high-resolution classifier decisions
●  4 levels
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Level 2

 
0: Symbolic hierarchical classifier system for a sequence of syllables. Hierarchical symbolic

r systems can be quicker and more accurate than simple classifiers. They can be designed to
e entire sequences of elements. Tolerance parameters enable fuzzy pattern recognition. The
 the internal hierarchy are color coded. 
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 Annotated click trains of Tursiops truncatus. Classifiers respond only to clicks with an
rnal time-frequency shape. The clicks in the last train have a different shape and are
 the classifier. Similarity vectors computed by the annotation generating algorithm are
op. 
Annotations

 

 Annotated whistle of Tursiops truncatus. Annotations were generated by a simple classifier
rt sine-like events. The whistle is overlapped by loud click sounds. Classification decisions
ted only between the clicks of the train. The sequence of annotations represents the
pe of the whistle. 
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Automatically Extracted Symbolic Whistle Representations 

Signatures:

 
Figure 13: Scatter plot of 1072 long symbolic whistle signatures. Left: center frequency to bandwidth. 
Right: center frequency to gradient. Below: two automatically extracted symbolic signatures from the 
center of the clusters. 

Induced Symbolic Whistle Representations 
 

Signatures:

 

Figure 14: Scatter plot of 52 induced symbolic whistle-type signatures generated from 1072
symbolic signatures. Left: center frequency to bandwidth. Right: center frequency to gradient.
Below: two symbolic signatures from the center of the clusters. Colors indicate the degree of
computed support of single symbolic elements. 
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Conclusions 
 

Knowledge engineering bioacoustic classifier systems is a new approach that has the 
potential to solve many severe problems of traditional black box approaches and to open 
new horizons in bioacoustics: 

z Biologists and field researchers will be given the tools they need to independently 
create classifier systems for their specific needs. It does not matter whether they work 
with birds, fish, frogs, insects or marine mammals. 

z Data mining bioacoustic file collections may lead to the finding of new interesting 
acoustic patterns. From other fields of science (e.g. from genetics) it is known that 
such findings can lead to new scientific discoveries. 

z Classifier libraries are independent from the knowledge engineering environment and 
can be shared worldwide through the Internet. Sharing expertise based classifiers not 
only facilitates day-to-day work but also has the potential to make bioacoustic 
processes tractable on a large scale. 

Today, knowledge engineering bioacoustic classifier systems is at it's very beginning. Much 
theoretical, methodological and practical work still has to be done to create reliable 
knowledge engineering standards valid for the bioacoustic community. However, this work is 
worth to be done and certainly will pay. 
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Abstract. We will present algorithms that  have been developed for the complexity analysis of the male 
Pied Flycatcher territorial songs. The songs were recorded in Ruissalo, Turku, Finland, during May 5th -
17th, 2006, by Dr. Toni Laaksonen from University of Turku with his students. Because of the environment 
and partly because of the inexperience of the students the 14 hours of recordings are extremely noisy and 
contain many unwanted sounds. So the analysis of the recordings has been quite a challenging task.  

 
 

The computational bird sound analysis has been an active research area over several 
decades. Probably the most common tool in use has been the song spectrogram. However, 
usually the use of spectrogram has been combined with human made visual assessment of 
the results. The advancements in signal processing and pattern recognition algorithms and 
constantly increasing computer power offer, at least in principle, possibilities to automate the 
process even further. In this paper we discuss algorithms  for measuring the complexity of 
the song of male Pied Flycatcher (Ficedula hypoleuca) and the lessons learned  during the 
process. Our aim was to reduce the human and manual work as much as possible because 
the amount of data was quite large and our resources were quite limited. 

A widely used measure of the song complexity is the repertoire. There are two types of 
repertoires: a song repertoire where the male sings several different song types but 
individual song types do not vary much and a syllable repertoire where a number of syllables 
are recombined to produce different songs (COLLINS 2004). In both cases it is essential to 
find the basic elements (sometimes called notes) of the song spectrogram. 

LAMPE AND SÆTRE (1995) have shown that high quality male Pied Flycatchers (defined by 
brighter plumage, better condition and more experience) have larger song repertoires.  
LAMPE AND ESPMARK (2003) propose that female Pied Flycatchers use the song to find the 
high quality males and their territories. Also the song similarity seems to predict hybridisation 
of the sympatric species pied and collared (F. albicollis) flycatcher (QVARNSTÖM ET AL. 2006). 
So considerable biological interest for objective measures of similarity and diversity of Pied 
Flycatcher territorial song exists. 

“However, sometimes the research ideas and harsh reality will collide very roughly”. In the 
development of automatic pattern recognition methods large data sets of sounds are needed. 
Our experience has been that the bird species that are interesting for the researchers, are 
usually boring for the professional natural sound recordists. Recording sound samples during 
mating season from several individuals of common bird species is not a fascinating task 
since it is usually the rare species that are the first target for an ambitious recordist. Our 
solution to obtain sufficiently many recordings of songs of Pied Flycatcher males was to use 
student resources with professional biologist / recorder guidance. Since several students 
made the recordings differences in the recording techniques posed an extra challenge for 
sound analyst and especially the normalization of different recordings was quite difficult.  

The question - does the complexity of the song of the male Pied Flycatcher correlate with its 
mating success – is quite complex, because of several uncertainties. How faithful the male 
is? What does the female hear, and especially prefer, from the male song, is it pitch, 
complexity or something else? Are we sure that the male from nestbox number 101, is 
always singing near the nestbox 101? 

Sound analysis can not answer these questions, because the only information is in the 
recording metadata (date, nest, etc), and thus the sound analyst must rely on the recordist’s 
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skills and ability to identify the individual males. Usually these assumptions are correct in our 
case because professional biologist work together with the student recorders. 

Ruissalo island is located in the city of Turku, Finland and has plenty of good habitats for 
Pied Flycatchers and many other bird species as well but it is also a popular recreational 
area for Turku citizens. Thus the recordings from the spring 2006 contain besides many 
overlapping songs of different bird species, wind and sea noise also lot of anthropomorphic 
noise including local ferry traffic, harbour noise, cars and talking and walking people.  
 
 
Methods 
 

The recorded sounds were analyzed in Matlab environment. First the amplitudes of the 
recordings were normalized into the range [-1, 1] and averaged to zero. Typically, the male 
Pied Flycatcher sound frequency is in the range 3500 – 6000 Hz with occasionally drops 
down to 2000 Hz and sometimes up to 10000 Hz. So it is safe to use 1500 Hz highpass 
filtering to remove the low frequency wind noise.  The wideband noise was reduced from the 
recordings by using a filter bank based reduction method. The sound was divided into eight 
frequency regions. The standard deviation of the highest frequency band was multiplied by 
three and this number was selected as noise threshold. This noise threshold was subtracted 
from amplitude values of each frequency band, and values below the threshold were zeroed 
out. The subtracted frequency bands were summed together to produce a ‘cleaned’ sound. 

The segmentation was performed in two phases. A Matlab algorithm sought energy 
concentrations from the recordings, but the human analyst’s task was to confirm whether the 
found sound segment was the song of a male Pied Flycatcher or not. The accepted songs 
were then stored for analysis and the segments containing many simultaneously singing Pied 
Flycatcher individuals, sounds heavily disturbed with background noise or songs from other 
species were discarded. 

The accepted songs were then split manually to elements. The element is the smallest 
continuous unit that can be identified from the spectrogram. In this phase the misidentified or 
too noisy sounds were discarded. After the position of each element in each song was 
determined the data was ready for automated complexity analysis. 

Pied Flycatcher is a tonal singer, and the elements of the male song have a very powerful 
first harmonic component in the spectrogram. This feature is very easy to estimate in time 
domain using for example a high order (20th order in our case) autoregressive model 
(KAILATH ET AL. 2000) . The autoregressive model is computationally easy to estimate directly 
from the waveform and it reduces the effects of remaining background noise (Fig. 1). 
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Figure 1: Fourier spectrum of a part of the song element (blue line) and its 20th order autoregressive 
estimate (black line). Both curves are normalized and the AR estimate is biased for visualization. 
 

The vocabulary building process, i.e. element identification, proceeds as follows: Each new 
element is compared to the earlier labelled elements. If the similarity is below an 
experimental threshold, the element in question is copied to same directory where the similar 
element resides. Otherwise, if none of the elements in current directories show similarity, new 
directory is created and the element in question is copied there. 
 

 
Figure 2.: An example of element diversity in Pied Flycatcher song. 
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The element similarity assessment is also a difficult task, because in the male Pied 
Flycatcher song the element size and shape vary over time (Fig. 2). 

The similarity of the first harmonic components was measured using a modified dynamic time 
warping (DTW) algorithm (KRUSKAL & LIBERMAN 1983). The original DTW searches the 
optimal path through a matrix, that can be used to convert one item to the other. The point-to-
point similarity distance is measured using Euclidian distance measure. However, the path 
information and the cumulative cost based on Euclidian measure may give false results, 
because any item can be forced to be another using the warping path. Instead of the path 
and the cost, we used another metric which measures the warping path distance from the 
diagonal. If the minimum cost warping path goes through the diagonal, the two items are 
identical and thus the distance measure is zero. The amount of computation is also reduced 
by comparing the lengths of the first harmonic components. If the lengths of the first 
harmonics differ more than 20 percent, they probably do not  belong to same class and they 
are not compared. Otherwise the DTW-similarity measure was performed. After the DTW-
similarity measure the element directories and labels are ready for further analysis. 
 
 
Results 
 

A total of  2237 songs, (867 rejected and 1370  accepted) were analyzed. The accepted 1370 
songs were then manually split into elements. The number of elements varies from 2 to 20 
per song with the mode of the distribution being 9 elements per song. The distribution of the 
number of song elements is depicted in Figure 3. 

 
Figure 3: The distribution of the number of elements per song. 
 
 
Discussion 
 

The song structure identification is basically a straightforward task. First build a vocabulary 
and then label every element in each song. But the interpretation of the song structure and 
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whether it affects the attractivity of the song to female are more difficult questions. There are 
several acoustic features that can be used for measuring the sound parameters, but which 
are the right ones?  The only way to clarify this problem is to trace the biological fingerprints 
of the male to the juveniles using for example DNA sequences, number of juveniles per 
female etc. At this moment the DNA sequence identification is currently going on by Dr. 
Laaksonen's research group in University of Turku. 

In signal processing, the Fourier transform based spectrogram is a widely used tool for 
sound analysis. However, there are several other candidates for the analysis of nonlinear 
signals. To mention few, Choi-Williams distribution, Wigner-Ville Distribution, Hilbert-Huang 
Transform and many others are available. Most of these methods can reveal nonlinear 
structures that Fourier transform is unable to reveal (QUATIERI 2002). 

In statistical bird sound analysis there is always the concern about the number and quality of 
the recordings. How many song samples are sufficient to reliably estimate the complexity (or 
attractivity) of the sound? It is obvious that the more sound samples we have the more 
reliable our analysis will be. However, gathering large amounts of sound data requires plenty 
of time or many recordists. Several different recordists will record using several different 
ways. So in order to minimize the variation in the recordings, the recordists should be trained 
to use the equipment as similar ways as possible. 

Large number of recordings will need an organized storage and retrieval system. In other 
words, the  storing and managing the data needs a decent database system. Also the 
manual work that is required in the analysis of the recordings will become more difficult when 
the number of recordings is very large. This basically means that there is a need to automate 
the sound analysis algorithms as much as possible. A fully automated method is usually very 
difficult to develop because of the diversity of the nature recordings. In one record there 
might be several different species singing at the same time, animal sounds, human made 
sounds, wind, noise etc. In most of these cases, an experienced human can easily identify 
bird sounds from the spectrogram, while the fully automated methods will face huge 
problems. Perhaps the specific tools that will minimize the manual work are the best 
approach at the moment. 
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As part of a project involving monitoring bird migration over windmill farms in the North-Sea 
(KRIJGSVELD ET AL. 2003), we initiated the development of an automatic monitoring system 
based on avian flight call detection and identification. Our goal is to develop a computerized 
acoustic monitoring system for assessing number and species of birds passing by on 
nocturnal migration. Such an automated monitoring system has several advantages over 
human observation such as the ability to 1) make observations 24 hours a day, 2) collect 
data in environments which are uncomfortable to human observers, 3) perform objectively 
and consistently over time and 4) accumulate comparable data in multiple units spread out 
over the geographical area of interest. Many bird species give flight calls during nocturnal 
migration, especially waterbirds and songbirds. These calls can be identified to the level of 
species or at least species group by a trained ear and offer a way to quantify migration in the 
lower air layers during hours of darkness (EVANS & ROSENBERG 1999). Using these nocturnal 
flight calls, an automatic bird call recording, detection and identification system for North-
western European species has been developed. First an algorithm was developed to detect 
Acoustic Events on continuous recordings, subsequently a bird species is associated with an 
Acoustic Event by finding a match within a pre-established flight call library based on 
Dynamic Time Warping and a Euclidian Distance Algorithm. 
 
 
Aim and Methods 
 

The principle aim of the current study was to calibrate and compare the automatic flight call 
detection and identification system to a human observer. In October 2005 we made a 12 
hour pilot-recording during nocturnal bird migration on the Oosterscheldekering, in the South-
West of the Netherlands (51°37'48.13"N, 3°42'19.82"E) (Fig. 1). We made both field 
observations as well as automatic recordings of flight calls, using a Sennheiser Shotgun 
microphone ME67 connected to a custom built battery powered preamp and a digital 20 GB 
hard disk recording unit (Creative ® Jukebox III). 
The software program was written on the Matlab® and LabVIEW® platforms to detect so-
called Acoustic Events in continuous recordings. We developed a Maximum Normalized 
Narrowband Amplitude algorithm to detect the faint bird calls in continuous recordings. The 
procedure involves a step of normalizing frequency bands by a low-pass filtered version of 
the same frequency bands. For each instant of time the maximum amplitude from all 
normalized frequency bands is selected. An Acoustic Event will be detected when this 
amplitude exceeds the average Maximum Normalized Narrowband Amplitude. This method 
is simple to code and extremely fast in execution: 30 to 300 times faster then real-time. It has 
been designed to be sensitive to faint bird calls while maintaining a robustness against false 
positives due to environment noise such as car traffic, airplanes, or sea waves. 
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Figure 1: Installation of the continuous sound recording set-up in October 2005 on the 
Oosterscheldekering, in the South-West of the Netherlands for the audio recordings of avian nocturnal 
flight calls. Simultaneously bird migration was studied with radar and auditive observations were made 
by human observers (photo Bureau Waardenburg 2005). 
 
 
 
 
Two Classification Algorithms  
 

Our first classification algorithm was based on a Euclidian Distance Algorithm to associate a 
bird species with the Acoustic Events. The algorithm searches for the optimal match within a 
pre-established flight call library using a set of seven acoustic parameters: call duration, 
highest frequency, lowest frequency, loudest frequency, average bandwidth, maximum 
bandwidth and average frequency slope. The Euclidian distance was based on the similarity 
in these seven parameters between the Acoustic Events and the reference set for 12 species 
in the library (based on a total of 574 calls). 

The second, more advanced algorithm makes use of Dynamic Time Warping (BROWN & 
MILLER 2007). The Dynamic Time Warping algorithm seeks the optimal alignment of  the 
vector, representing the frequency contour, with each of the 12 vectors representing the 
frequency contours of the same 12 library species. Dynamic Time Warping allows for small 
variation within species to be ignored, reducing false negative results. The algorithm 
associates a bird species with the Acoustic Events by finding the best match within the pre-
established flight call library. 
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System Performance 
 
We compared the two automatic identification algorithms, Euclidian Distance and Dynamic 
Time Warping, with the species identification of an experienced observer scoring by ear. 
Actual field recordings of nocturnal migration were played back to both the automated 
identification system and the human observer. Due to the inherent low signal to noise ratio of 
the distant bird call recordings, the more advanced Dynamic Time Warping algorithm does 
not always perform better compared to the Euclidian Distance applied to the same 
recordings (Fig. 2). 
 

 
Figure 2: Performance of the two recognition algorithms as evaluated by an experienced human 
reference listener (MP).  
 
The automated system detects less bird calls than a experienced user (Table 1). This will 
likely depend on the migrating altitude of the Birds. Nevertheless the system is capable of 
giving an objective measure for call density which can be used to infer bird migration 
intensity. 
 
 
Table 1: Performance of the computerized flight call detection and identification system on actual field 
recordings made on the Oosterscheldekering, as evaluated by simultaneous observations by an 
experienced bird observer. 
 

 Human field 
observations 

Automated field 
observations 

ratio auto/human 

redwing 158 35 22% 
song thrush 112 39 35% 
total 270 74 27% 
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Conclusion and Future Work 
 

Due to the high altitude of the migrating birds, the recordings have an inherent low signal to 
noise ratio. Applying a more advanced Dynamic Time Warping classification algorithm did 
not improve the classification of these noisy recordings. Improvement of the classification 
performance is more likely to be obtained by applying a more advanced denoising algorithm, 
not by a applying a more advanced classification algorithm. The comparison of the results of 
an automatic classification system with the species identification by an experienced human 
observer showed that for European species like redwing the automatic identification looks 
promising. The system is capable of giving an objective measure of species-specific call 
density, which will be related to the number of migrating individuals that passed by for the set 
of species involved. However, the automatic detection and identification system detected 
only about 27% of the number of flight calls of low altitude migration detected by a human 
field observer. Here a limitation is set by the capacity of the microphone, likely caused by the 
narrowness of the  sampled air volume in comparison with the wider reach of human ears.  

Aim is to further optimize the system, including optimizing the microphone and adding more 
Northwestern European species to the identification library. The Maximum Normalized 
Narrowband Amplitude method makes the system especially suitable to employ in noisy 
surroundings like offshore recording sites and cities. Currently new recordings are being 
made simultaneously with radar recording at a North-Sea windmill farm to evaluate the 
systems performance in an off-shore situation (Fig. 3).  
 

 
 
Figure 3: The new recording site with windmills in the background in the North Sea along the Dutch 
coast  (photo Bureau Waardenburg 2007). 
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Abstract. Within the framework of a study on potential impacts of offshore wind-farms on migrating birds 
and bats we developed and applied, besides radar and thermal imaging, systems for the automatic 
registration of bird and bat calls at a research platform in the south-eastern North Sea some 45 km off the 
coast. Because of the 'noisy environment' special software had to be developed for the automatic detection 
and registration of calls. For a few species an automatic identification by software was also realized. The 
automatic registration throughout the years 2004 to 2007 revealed clear time patterns of migration for 
many species, both seasonal and daily. Calling intensity can be related to weather parameters, namely 
wind direction and speed. The results also allow conclusions on the collision risk of single species. 

 
 
Many bird species, though by far not all, utter calls while they fly. In the old world namely 
geese, some duck species, many waders, thrushes and several other passerines call 
frequently and can be identified by their flight calls (DIERSCHKE 1989, FARNSWORTH 2005). 
Bats produce species specific ultrasonic calls for echolocation and communication. Within 
the framework of a study on potential impacts of offshore wind-farms on migrating birds and 
bats we developed and applied, besides radar and thermal imaging, systems for the 
automatic registration of bird and bat calls at the research platform FINO 1 (54° 01‘ N, 6° 
35‘ E) in the south-eastern North Sea some 45 km north the Eastfrisian island Borkum. 
Although it is sometimes difficult to distinguish between real changes in migration intensity 
and mere changes in calling activity, e.g. due to bad visibility or light attraction, the 
registration of bird and bat calls can provide reliable data on migration intensity on a species 
level. 
 
 
Methods 
 

Acoustic detection of bird calls has worked satisfactorily for many decades and has been 
recently standardized (FARNSWORTH 2005, KUNZ et al. 2007 a). Recordings at sea are often 
degraded by strong wind noises, but may be automated with certain restrictions (see 
DIERSCHKE 1989). It has to be noted that sole acoustic data collection is not suitable for the 
quantification of bird migration, as some species of birds utter no calls during migration, while 
others increase their call activity during poor visibility conditions or when they are attracted to 
light (ALERSTAM 1990). Because of ‘environmental noises’ like wind, rain and waves, a 
special software had to be developed for the automatic detection and registration of calls. 
Bird calls close to the platform were detected and recorded automatically by a directional 
microphone (Sennheiser ME67) with windshield and a mic muff (Fig. 1). Our self-developed 
capturing software, AROMA (‘Acoustic Recording of Migrating Aves’ based on the audio-
processing-toolkit ‘Snack’ for Tcl/Tk: www.speech.kth.se/snack), automatically recognizes 
birdcalls by their characteristic narrow sound spectrum and filters out wind and rain noises to 
a large extent (see also HILL & HÜPPOP 2006). Fig. 2 shows a screenshot of the software. 
Recordings are stored as WAV-files (16 bit, 22 kHz, mono). 

For a few species, e.g. the Redwing (Turdus iliacus), an automatic identification by software 
was also implemented by analysing formants with Praat 4.6, a free software for speech and 
other acoustic analyses (www.praat.org). A formant is a peak in an acoustic frequency 
spectrum which results from the resonant frequencies of any acoustic system. First a 
bandpass filter (6200 - 8500 Hz) was used to improve the detection probability by reducing 
noise at other frequencies. After that, we searched for formants with a bandwidth of less than 
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50 Hz with a duration of at least 130 ms and linear decrease of the frequency (r < -0.8). The 
detection rate of Redwing calls was around 80% compared to the manual analyzation of the 
sound files and, sometimes calls were detected which had not been recognised by the 
human ear before. 

 

 
Figure 1: Bat detector and microphone with windshield and mic muff on FINO 1. 

 
 

 
Figure 2: Screenshot of the software AROMA. 
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In order to automatically register ultrasounds we use a Pettersson D-230 bat detector (Fig. 1) 
with a heterodyne (frequency mixer, set to 45 kHz) and 1:10 frequency division detector (see 
SKIBA 2003 for details). The detector is connected to a computer (line-in of the sound-card). 
One recording channel is used for the heterodyne, the other one for the divider. After 
threshold detection with the software RecALL 2.4 (www.sagebrush.com) all relevant sounds 
are recorded as WAV-files (16 bit, 44 kHz). Automatic detection of bat calls is realized by 
pitch–analysis with the software Praat 4.6 (see above). All sounds with a maximum pitch-
frequency > 19 kHz are automatically copied for a later manual species identification at a 
desktop computer. Fig. 3 illustrates this analysis procedure. 
 

 

 
 

Figure 3: Only the right channel of the bat detector (divide-by-ten) is used for pitch analyses. The 
screenshot shows oscillogram (top, intensity vs. time) and spectrogram (bottom half) with pitch (blue). 
The dominating frequency of 4125 Hz x 10 ~ 41 kHz identifies this indiviual as a Nathusius's Pipistrelle 
- Pipistrellus nathusii. 
 
 
Results 
 

The call intensities of the most frequently recorded species on the FINO 1 show a very 
characteristic migratory pattern, which largely corresponds to studies of birds captured and 
ringed on the island of Helgoland (HÜPPOP & HÜPPOP 2004). In addition to the already well-
known intensity of migratory movements in spring and autumn, it has become quite clear that 
migration is concentrated to just a few „migratory waves“ per migration period, and that the 
greater part of migration takes place at night. Intensive call activities during the day occur for 
the most part in the summertime (HÜPPOP & HILL 2007). Nights with substantial amounts of 
bird calls or nights with masses of disoriented birds are at the same time potential collision 
nights.The weather-conditioned causes that go along with the latter are not yet entirely 
clarified and thus still hardly predictable. Results of the measurements on FINO 1 are 
described in HÜPPOP et al. (2005, 2006a and 2006b). 

Audio recordings of species-specific migratory calls prove to be especially helpful in 
migration surveys (DIERSCHKE 1989, FARNSWORTH 2005). The three most common thrush 
species (Turdidae) in Northern Germany and over the open North Sea often call during 
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migration. Their calls were mainly recorded at night, with a few calls during the day 
presumably from birds resting on the platform (for the Redwing as an example see figure 4). 
There appears to be a clear temporal differentiation between the three species in terms of 
seasonal phenology, which is supported by migration patterns determined by captures on the 
island of Helgoland, 90 km to the east. This emphasizes the suitability of standardized 
recording of migratory calls for the study of migration phenology in frequently calling birds 
(see also discussion in FARNSWORTH 2005). The vernal migration of the Blackbird (Turdus 
merula) was nevertheless only occasionally observed on the FINO 1, in contrast to the 
trappings on Helgoland. The majority of the migratory calls of thrushes were registered in the 
second half of the night, above all with an observed intensity just before dawn on some 
nights. This information corresponds to various observations of songbirds in North America 
(FARNSWORTH 2005), but contradicts the observations of VLEUGEL (1960) and other authors 
on European thrushes. The differences may be explained by the situation of the platform 
located far out at sea. 

 

 
Figure 4: Daily distribution of Redwing calls throughout the year. Dark areas represent the night, light 
areas the day. The size of circles illustrate the amount of recorded calls (ind./h). 

 

Calls of Common Starlings (Sturnus vulgaris) were recorded both in spring and even more in 
autumn. The Starlings were recorded mainly at night, similar to Common Redshanks (Tringa 
totanus), which were almost exclusively recorded during their autumnal migration at night. In 
contrast, calls of Sandwich Tern (Sterna sandvicensis) and Common Tern (Sterna hirundo) 
were nearly only recorded by day (see figure 5). This was apparent particularly after the 
breeding period, in which intensive migration was registered in the area around the FINO 1 
platform and/or resting birds were observed on the platform itself (terns only rarely swim). In 
individual cases some breeding birds of the East Frisian Islands may also forage in this area 
(see GARTHE & FLORE 2007). The frequent appearance of Sandwich Terns on the FINO 1 
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platform indicates that special attention must be dedicated to the further observation of this 
species during and after the construction of the pilot wind farm. Recent studies show that 
terns are apparently at greater risk of collision with wind turbines (EVERAERT & STIENEN 
2007), even though they are almost exclusively diurnal. As on the research platform terns 
presumably also like to rest on structures in wind farms. Germany carries a high international 
responsibility for the protection and conservation of Sandwich Terns (GARTHE & FLORE 
2007). 

  

 
 

Figure 5: Daily distribution of Sandwich Tern calls throughout the year. Dark areas represent the night, 
light areas the day. The size of circles illustrate the amount of recorded calls (ind./h). 
 

 

The acoustic monitoring system for bat calls on FINO 1 registered eight single bats between 
August 2004 and the end of 2007 (with a break due to technical problems between August 
2006 and February 2007): seven Nathusius' Pipistrelles Pipistrellus nathusii, a species that is 
frequently recorded during migration on the German offshore island Helgoland (HÜPPOP in 
prep.), and one Serotine Bat Eptesicus serotinus (rarely recorded on Helgoland). Additionally, 
on Helgoland Common Pipistrelles Pipistrellus pipistrellus (regularly) and Common Noctules 
Nyctalus noctula (rarely) are recorded during migration with the same type of recording 
system, but there is so far no evidence on FINO 1. The numbers of bats at FINO 1 indicate 
however regular migration of bats over the open North Sea. It has to be noted here that 
migrating bats presumably „switch off“ their ultrasonic echolocation system temporarily 
making them undetectable by our system but susceptible to deadly collisions with stationary 
objects (VAN GELDER 1956, CRAWFORD & BAKER 1981). From the recorded ultrasounds it can 
be concluded that at least some individuals obviously hunted insects on FINO 1, which were 
possibly attracted by the lights for ship and aircraft safety of the platform. This could 
additionally increase the risk of collision for bats. 
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Discussion 
 

The automatic registration throughout the years 2004 to 2007 with 73,506 recorded files of 
bird calls revealed clear time patterns of migration for many species, both seasonal and daily. 
High calling intensity can often be related to weather parameters, namely wind direction and 
speed, rain, cloud cover and visibilty. The results also allow conclusions on the collision risk 
of the single species. A network of acoustic devices at research platforms and later at 
offshore windfarms in the German Bight could provide detailed information of the temporal 
and spatial pattern of migrating birds on a species level. This would provide data for 
modelling and forecasting mass migration events, at least for common species that utter 
flight calls (see also FARNSWORTH & RUSSEL 2007). 

The results of an automatic registration of ultrasound on FINO 1 show that bats migrate 
offshore and are also at risk to collide with wind turbines, as we know from onshore wind 
farms (e.g. KUNZ et al. 2007b). Intensities are unknown due to limited range of the ultrasound 
detectors. Improvements of the hardware and a closer network of monitoring sites would 
enormously extend the knowledge of migrating bats over the open North Sea. 
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Abstract. The Extensible Bioacoustic Tool (XBAT) is a sound analysis application designed for 
extensibility along with a framework and toolbox for the development of sound analysis applications 
focused on the demands of bioacoustic research and monitoring. XBAT was developed in close 
collaboration with experts in the fields of conservation-monitoring and animal-communication under real-
world project pressures to support: human evaluation and annotation of recordings, the development and 
use of automatic techniques for processing recordings, and a seamless integration of these two modalities. 
XBAT development makes use of various software engineering strategies of such as extensible software 
development (WILSON 2004) and domain-driven design (EVANS 2004) to promote the sustainable 
development of a project with this scope. XBAT has been publicly released as free and open-source 
software in the hope of promoting more effective collaboration and faster development in the field of 
algorithmic and software tools for bioacoustic research and monitoring. 

 
 

The Extensible Bioacoustic Tool (XBAT) was initially developed by the first author at the 
Bioacoustics Research Program (BRP) at the Cornell Lab of Ornithology (CLO) in 2002 to 
support algorithm and software developers as well as biologists in a range of conservation-
focused bioacoustic-monitoring projects (Fig. 1). It was and continues to be developed in 
close collaboration with experts in the fields of conservation-monitoring and animal-
communication under real-world project pressures to support: human evaluation and 
annotation of recordings, the development and use of automatic techniques for processing 
recordings, and a seamless integration of these two modalities. Importantly, through the 
seamless integration of human evaluation and automated processing XBAT creates an 
effective and powerful communication channel between signal-processing or pattern-
recognition experts and biological or field experts. This communication is critical as 
technological advancement makes automated processing and sophisticated pattern-
recognition more and more possible, necessary for, and essential to bioacoustic-monitoring. 

Currently, the software supports data management, human evaluation and annotation, and 
the automated processing efforts for most bioacoustic-monitoring projects at BRP, as well as 
a number of animal-communication studies. Further and importantly, it also supports a small 
group of researchers that continue to develop techniques adapted to the varying analysis 
demands and data conditions of each of these projects. Many of these new and adapted 
techniques are implemented as extensions to the XBAT system, and this implementation 
enables their quick integration into the data-processing workflow at BRP as well as their 
reuse in other projects. 

These various BRP projects involved have included monitoring of both terrestrial and marine 
environments with diverse analysis goals including but not limited to: signal detection and 
species identification for presence/absence or abundance censusing, analysis of long-term 
noise conditions, and the interaction of the above. They have also included the localization of 
sound sources using array-processing techniques. 

Starting in 2005 the second author joined in the development of XBAT, in particular to assist 
development that would promote the preparation of a public release. Beginning in 2006 
preview versions of XBAT have been available through http://xbat.org as free and open-
source software licensed under the GNU Public License (GPL). Since making the code 
publicly available various other efforts have been initiated to support the development of 
XBAT as a successful open-source community project. A first non-preview release with 
sufficiently tested and stable programming interfaces is projected for the end of 2008 or the 
start of 2009. 
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Figure 1: BRP-developed autonomous recording unit (ARU) in the Big Woods of Arkansas during a 
large-scale survey seeking supporting evidence for the presence of the Ivory-Billed Woodpecker, a 
challenging project that used XBAT to support human evaluation and annotation and automated 
processing of the collected recordings. 

The following discussion provides a brief description of the process, goals, and efforts of 
XBAT development.  These are first presented from a software engineering perspective, and 
then very briefly from a community support and development perspective. The discussion will 
not include particular strategies, algorithms, and related functionality in the areas of signal 
detection and measurement developed and currently implemented as part of XBAT; these 
will be the subject of future publications. 
 
 
Software Perspective 
 

A basic goal of the XBAT development project is to create an extensible application that 
supports the kinds of interactive visualization and large-scale automated sound analysis 
typically required in bioacoustic research and monitoring. Interactive analysis and 
visualization tools support our familiarization with the data, the process of pattern discovery, 
and the development of new automated techniques as well as the evaluation of their results.  
The large-scale automated analysis tools allow us to scale various processes typical in the 
bioacoustic-monitoring data-processing scenario well beyond unassisted human capacities. 
Typical data-processing scenarios include, but are not limited to: 

• Scanning a long-term field-recording to detect events of interest (events typically 
means transient acoustic events of biological origin) and 
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• The measurement and classification of large collections of such events into biological 
categories, where the categories vary in meaning and degrees of granularity 
depending on the application. 

Finally, an extensible application offers the opportunity to adapt. It provides mechanisms to 
implement new algorithms, tools, and strategies that support both human and automated 
processing and evaluation. 

Extensibility creates a second basic focus for XBAT development. This focus of XBAT 
development is to create tools that support algorithm and software development for 
bioacoustic research and monitoring more generally. A primary goal here is to extend the 
MATLAB language and environment as a platform for the development of interactive 
visualization and large-scale automated sound analysis tools required for bioacoustic 
research and monitoring. MATLAB is an excellent learning and prototyping environment for 
research in signal-processing, numerical computation, and other fields relevant to 
bioacoustic tool development. For the above reasons it is already a commonly used as a 
development environment for bioacoustic tools; XBAT development aims to continue to 
facilitate these efforts.  Some activities related to this aspect of development include: 

• Ample use of C language MEX extension interface (THE MATHWORKS 2007) to 
implement relevant computationally-intensive functions, as well as to access relevant 
open-source C libraries for efficient improved sound file access, spectrogram 
computation, and database interfacing. 

• The development of the XBAT workflow-oriented programming interfaces to facilitate 
the implementation of various typical automated processing tasks, such as event 
detection, measurement, and classification. 

• The development of a GUI generation framework to support the agile creation of rich 
and uniform interfaces for newly developed tools, and 

• Along with provision of the basic XBAT programming interfaces, MATLAB command-
line and menu-based tools to assist in the development of new extensions using 
these programming interfaces.  These tools also enable easy exploration of existing 
extensions, so that these serve as living documentation for the interfaces. 

XBAT software and development represent an ongoing realization of the previously stated 
goals. Through current versions of the software users and developers can: 

• Easily and efficiently access short or long-term recordings (with single or multiple-
channels and in a variety of storage formats); navigate such recordings using familiar 
spectrogram and waveform amplitude visualizations, as well as listen to the data in 
various ways. 

• Manually browse for acoustic events of interest, as well as automatically search for 
these events and log their occurrence in persistent database documents accessible 
through a number of software interfaces. Further, the logged events can be 
visualized, used as a basis for navigation through the data, and annotated and 
measured in a growing number of ways. 

• Easily extend XBAT in a variety of functionally meaningful ways using MATLAB and 
the provided programming interfaces, for example to support new sound-feature 
visualizations or event detection or measurement strategies. Then, easily create 
integrated and familiar interfaces to the new functionality that allow effective 
exploration of configuration during research and development and also make it easy 
to share and work with non-developers. 

(Aspects of the above, as implemented in current development versions of the software, are 
shown in Figures 2, 3 and 4) 

The initial construction and current development of XBAT, a project of considerable scale 
and scope, have relied on the application of a number of software engineering and 
management strategies (HUNT 2000, BERKUN 2005). Continued sustainable development of 
XBAT in an open-source environment will rely even more on the effective application of such 
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strategies. Three of these are discussed here: extensible software development (Wilson 
2004), domain-driven design (EVANS 2004), and the creation of language-workbenches for 
domain-specific languages (FOWLER 2005). 
 

 

Figure 2: XBAT display demonstrating the automatic detection, visualization, and event-based 
navigation, as well as various other interactive displays. It shows the results of an automatic detection 
scan of a 30 hour field recording of a forest using a BRP-developed autonomous recording unit (ARU). 
The scan resulted in the detection of 9000 songs instances from of various songbirds including the 
Common Yellowthroat, Cerulean Warbler, and Indigo Bunting among others. 

 

Figure 3: A sample XBAT desktop demonstrating multiple linked interactive and configurable feature 
views, pre-selection through “active detection”, and “active measurement” of current selection. The 
various configuration palette interfaces are generated from simple descriptions by the GUI generation 
framework with no graphical programming effort required. 
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Figure 4: An XBAT “active detection” display for the interactive exploration of an automated detection 
strategy and configuration.  Active detection allows the user to configure the detection strategy (in this 
case by indicating a few examples along with some tags, and setting a threshold). This capacity is not 
limited to a particular detection strategy, but part of the programming interfaces to support such 
behavior for any developed extension. Any detector extension can express its “view” of the data, and 
reveal as much as it wants about its decision process.  We can also see the multiple-channel access 
and browsing capabilities, the displayed browser shows a subset of a 16-channel recording. 

 
Extensible Software Development 
 

In software development in general, and in the particular case of bioacoustic software, the 
need for both common function and case-specific adaptation stress the tool development 
process.  Mismanagement of this stress can lead to various wasteful software development 
scenarios.  In some of these for example, we can observe divergent versions of software 
containing common functionality along with duplicate and often incoherent development of 
new features that could benefit multiple projects. Bugs and inefficiencies are also addressed 
in non-uniform ways in such a scenario. Both effects result in software of overall lower 
quality. 

The use of version control systems such as Subversion (http://subversion.tigris.org, COLLINS-
SUSSMAN 2005) that support branching and tagging, can ameliorate the effect of such 
mismanagement for a particular development project, but they are not a solution. In 
particular, these problems are observed in development efforts at all scales, from a single 
developer to the development efforts of a community that depends on software for shared 
needs.  Version control systems do not address the community case directly. A possible 
exception to this last statement is provided by distributed version control systems, for 
example the decentralized workflows supported by the Bazaar version control system 
(http://bazaar-vcs.org), however even these do may not constitute a good solution 
(CLATWORTHY 2007). 

Extensible software development resolves the tension created by the need for common 
function and case-specific adaptation by providing a core of needed common infrastructure 
along with appropriate programming interfaces to allow for required adaptation (WILSON 
2004). Achieving an appropriate decomposition of the problem into a core of common 
functionality along with appropriate and well-designed programming interfaces for adaptation 
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are the challenges here. The decomposition problem may be called the modeling problem; 
the provision of appropriate programming interfaces is the problem of API development and 
design, or simply API design. These two problems should be considered separately, but 
they are not independent. 

The modeling problem is largely an empirical one, of knowing what the core should contain, 
of expertly knowing the domain. In the case of XBAT this knowledge comes from working in 
close collaboration with experts in the fields of conservation-monitoring and animal-
communication under real-world project pressures to support: the human evaluation and 
annotation of recordings, the development and use of automatic techniques for processing 
recordings, and a seamless integration of these two modalities. These experiences suggest 
for example, that core needs include, but are not limited to: 

• Comprehensive and efficient access to sound data collections of arbitrary size.  For 
example, we should be able to access a recording stored in any of a variety of audio 
storage formats, even a custom one. Or a long-term recording that may be 
meaningfully represented as a single file or frequently as a collection of files. 

• Efficient computation of various fundamental operations and representations typical in 
sound analysis such as frequency-dependent filtering and spectrograms. 

• Supple visualization and navigation through the data that includes the capacity to 
explore the data at a range of temporal scales, from very small to very large. 

• Access to current and reliable signal-processing and numerical algorithms from a 
range of relevant related fields. 

• The need to create tools simply usable by non-developer biological or field experts by 
providing familiar and intuitive graphical interfaces. 

• Support for enlightening visualization of automated processing strategies to bridge 
the gap in understanding between signal-processing or pattern-recognition experts 
and non-experts. 

XBAT development addresses these listed common needs and many more such needs in 
very effective ways and offers these as core functionality. XBAT offerings with respect to the 
last two listed items are especially effective and interesting. These reflect the very important 
commitment to the integration of human evaluation and automated processing, as well as to 
the provision of an effective communication channel between experts from different fields. 

Beyond empirically gained knowledge, the decomposition problem can be assisted by more 
formal approaches.  One particularly effective approach in this respect used to support XBAT 
development is domain-driven design (Evans 2004). Initial XBAT development followed 
many of the patterns and principles proposed by domain-driven design intuitively. However, 
learning the more formal perspective allowed more focused development, making better use 
of the appropriate related practices and principles.  

The API design and development problem is considered difficult in general and of great 
importance to the success of any software development effort (BLOCH 2005, HENNING 2007). 
It is of particular importance in the context of open-source software development. API design 
a priori constrains the capacity of the developer using the API to express their solution to a 
particular problem. API constraints can have a positive or negative effect, they can clarify, 
focus, or muddle a solution strategy, and they can make a solution trivially-easy or nearly-
impossible to express and implement. Further, the clarity and expressiveness of the resulting 
code is also affected.  In the context of open-source community development, both of these 
effects influence the likelihood of participation of would-be developers as well as the 
effectiveness of those who participate. 
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XBAT makes use of domain-driven design principles along with dynamic and reflexive 
qualities of the MATLAB language to provide simple, meaningful, and effective programming 
interfaces. For example, parts of the interfaces that represent a parametrized computation 
use essentially a parametrized mathematical function model:  Y = F(X; P). Represented in 
code as,  

[result, context] = compute(data, parameter, context); 

 

Where a further “context” input is often required to develop the full meaning of the remaining 
inputs, and may also be used to maintain a global storage mechanism between calls to the 
functions. 

At the current state of development these have been used to develop between 100-200 
extensions of various types, by a handful of developers without the availability of extensive 
API documentation. However, work on the programming interfaces is not done. Not all 
proposed extension-type programming interfaces have been sufficiently exercised and some 
documentation will be required.  This is one of the main reasons dissuading a first non-
preview release of XBAT; because API changes after public release become much more 
problematic. 
 
 
Domain-Driven Design 
 

A first step and final goal in the application of domain-driven design to a particular domain is 
to create a ubiquitous language that can be used by both domain experts (restricted during 
this part of the discussion to biological or field experts) and developers to describe and talk 
about their questions and activities (EVANS 2004). Software development should then strive 
to offer a faithful representation of this ubiquitous language in the code. The idea is that a 
stubborn if not strict adherence to this goal will lead to a software system and human 
language that are essentially equivalent.  Through the use of this language both domain 
experts and developers can effectively communicate currently known problems and solutions 
in a way that is immediately relevant to development and readily expressible in code.  
Further, this language will sustainably support communication between domain experts and 
developers, through time and through the consideration of ever more complex problems.  
The closing of this communication circuit has a very powerful positive effect on development.  
However, we should not only consider software development, as this effect is a superficial 
observation of a deeper scientific implication of this exercise. Closing the communication gap 
through the ubiquitous language exercise helps formalize our natural language 
understanding of problems; it heralds a mathematical formalization and understanding of our 
problems. 

XBAT development strongly adheres to these ideas and tries to prominently represent a 
number of concepts typical in bioacoustics research and monitoring through its data 
structures, programming interfaces, and graphical user interfaces. The following paragraphs 
help to define and describe some of the basic language offered by XBAT to support user and 
developer thinking and communication, and of course software development (some of these 
are also represented in Figure 5): 

A human becomes a user, and may create or subscribe to any number of 
libraries. 
A library contains a collection of sounds, along with all the associated 
annotation logs. 
A sound is a source of audio samples.  A sound may have a number of 
associated auxiliary attributes that assist our interpretation and computation with 
the samples. 
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Sounds can be annotated by storing events of interest in logs. Logs contain a 
collection of events and can be edited both by humans, and by automated 
processes of various types. 
Automated processes can edit logs in the following ways: detectors can add 
new events to a log, measurements can append measurement values (the result 
of repeatable computations) to the existing events, and classifiers can update 
event tags or annotation information based on the measurement values. 
Human users can also create new events and edit the time and/or frequency 
boundaries, tags, and annotation information. Many other operations are 
possible through the open-ended extension action interfaces. 
(That both human annotation and automated processes share a common storage 
format is a key design element that supports the seamless integration of manual 
and automated annotation modalities.)  
An event is a reference into a sound, containing time position, channel position, 
and frequency band of interest. Events can be annotated, tagged, and 
measured. At the moment the concept of measurements is reserved for 
repeatable, data-derived computations. 
An annotation is a collection of essentially qualitative observations about an 
object, their structure is specified through a protocol of arbitrary complexity, and 
they implement controlled annotation vocabularies. 
Tags are a collection of space separated strings that allow us to quickly record 
essentially qualitative observations, perhaps idiosyncratic, or related to 
developing categorizations.  Tags implement annotation with an open vocabulary. 
A measurement is the result of computation, based on data, and repeatable 
given access to the data and any required configuration parameters. The result of 
a measurement can be of arbitrary complexity. 

 

 

Figure 5: Simplified and annotated diagram of the domain-driven XBAT architecture. Most prominent 
in the representation are the workflow-oriented programming interfaces and the basic sound and log 
object concepts. Also noted are the various complementary annotation categories and some key 
implementation technologies. All block elements represent extension types, available programming 
interfaces. Blue block elements represent data, metadata, and annotation stores, and green block 
elements actions typical in the bioacoustic-monitoring data processing workflow. Again, these block 
elements and their relations are concepts prominently represented in the XBAT workflow-oriented 
programming interfaces and fundamental domain data structures. 
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Provided with such language we can describe our activities or desires in ways that share and 
retain meaning across domain experts, developers, and code. Here are some examples: 
(Note that all boldface words in the following paragraphs are effectively represented as data 
structures and/or programming interfaces, and typically reflected or visualized through the 
graphical interfaces in XBAT.) 

A recording consists of a sound with attributes particular to the recording 
system and which are relevant to various forms of measurement on this sound 
or derived sound selections.  For example, sounds generated by an array 
recording system require a sensor geometry attribute to enable the computation 
of source locations. 
Often we apply a signal-filter to a sound to emphasize a particular band, reduce-
noise, or remove a bias as a pre-processing step for further computation.  
We may want to visualize and navigate the raw or filtered sound through a 
particular feature view such as the spectrogram, zero-crossing rate, or output-
power from a filter-bank.  
In the context of bioacoustic-monitoring we are typically interested in the 
occurrence of bioacoustic events of interest, and a collection of these events can 
be recorded in a log or set of logs for future reference and further consideration.   
We may create multiple logs for a given sound depending on the focus of our 
study and our approach to organization; we may be interested in separate 
logging of different species or perhaps call types. 
To make possible the logging of new events of interest in very long-term field 
recordings or in real-time by autonomous systems, we can automatically detect 
these events through the evaluation of indicator sound features, and perhaps 
classify of the resulting events through more refined measurement of these 
events. 
We may want to quickly and informally tag events (to indicate their relation to 
various developing categories), or carefully annotate them according to a pre-
specified protocol. Tags and annotations are stored in the logs along with the 
events. 
We may also want to measure acoustic properties of these events. The results 
can be used to cluster events and discover latent categories. Or we can use the 
measurement results to try to explain or harmonize tags or annotation information 
in an effort to create an automated classifier. 

All the hypothetical examples in the previous paragraphs either currently exist as part of the 
XBAT system or are easily implemented with relatively little code. 

From a simplified perspective there are two overarching concept categories extracted 
through the domain-modeling process: “nouns” that typically become data structures, 
objects, or data stores in XBAT, and “verbs” or perhaps verb categories which are 
represented as programming interfaces. So it may seem that this domain-driven perspective 
is not doing much.  However, the previous perspective is too simple as many apparent 
“nouns” have effective dual/representations as both data structures and interfaces, and 
sometimes even as a collection of interfaces. To illustrate, we note that the sound concept 
appears in the XBAT model as a data structure or object, and at least one programming 
interface, the sound-format interface.  In fact, there are a couple more interfaces required to 
complete the representation of the concept of sound, the sound-file-format and sound-
attribute interfaces.  It turns out that the construction of the more complex representations 
can be assisted by the formal perspective. In this case it reflects the implementation of a 
layered-architecture that isolates infrastructure interfaces, related to aspects of the I/O 
systems, from higher-level domain interfaces. 
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This layered-architecture approach is reflected more generally in the fact that the provided 
XBAT programming interfaces support the following range of adaptation activities: 

• High-level workflow-oriented interfaces designed to support operations typical in 
bioacoustic research and monitoring, these support for example, the development of 
detection, measurement, annotation, and classification strategies for events of 
interest 

• Lower-level programming interfaces to support the integration of I/O technologies and 
processing primitives, examples of these are the sound-file-format, log-format, and 
signal-filter programming interfaces, and finally 

• Open-ended extension of the system, through the action and extension-type 
programming interfaces.  The latter allows for the creation of new extensions types, 
altogether new programming interfaces. 

Together these provide a very effective and meaningful way to apply an extensible software 
development strategy. 
 
 
Language-Workbenches for Domain-Specific Languages 
 
The application of an extensible software development strategy guided through domain-
driven design, along with a persistent effort to extend the MATLAB language to provide ever 
simpler and more complete support for the typical operations required during sound analysis 
as well as the construction of interactive visualization and large-scale analysis results in the 
development of an internal domain-specific language (DSL). Tools to support development in 
the domain-specific language complete the idea of a language-workbench (FOWLER 2005).  
So a way to describe XBAT development is as an effort to create an effective domain-
specific language and workbench (FOWLER 2005) for bioacoustic tool development.  It 
provides an adequate and concise answer to the question “What is XBAT?”. It is interesting 
to observe that MATLAB serves as an excellent base for this kind of development as it is in 
itself a domain-specific language and workbench for numerical computation, signal-
processing, and many other technical fields! It is perhaps, one of the best known and most 
successful examples of this approach to development in general. 

Related terms used to describe this approach to or level of development are “intentional 
software” (ROSENBERG 2007) and “software factories” (GREENFIELD 2004). In the end they all 
point to reaching a point in language development and tooling where a developer can 
“imaginate”, defined as “to instantiate into reality by pure will of imagination” (HUNT 2004). 

At the current state of development, this seems to accurately describe some aspects of 
extension development, namely the creation of new extensions either using command-line or 
menu-based tools related to the one described and represented in Figure 6. A working 
skeleton of a new extension for the system can be generated instantly. To the extent that 
MATLAB, and the XBAT provided functions, data structures, and programming interface 
abstractions allows us to add to this skeleton the behaviors we intend using concise code 
largely readable by non-developers, the statement that we can “imaginate” extensions to the 
system seems true in general. This second step however is not an end but an ongoing 
process.  

Finally we should note that previous discussions are not a gratuitous theoretical rehashing of 
development. This effort to develop an effective domain-specific language for bioacoustic 
tool development along with the set of tools to facilitate the use of this language did not stem 
from a theoretical exercise, but rather developed from very practical considerations and 
benefited considerably from theoretical reflection. 

Quick prototyping from user specifications motivated the domain-model objects previously 
described. User proposed workflows and algorithm development pressures motivated the 
development of programming interfaces. 

 152



 

Figure 6: XBAT offers MATLAB command-line tools for the development of new extensions and the 
exploration of existing ones. The blue text is hyper-linked to perform various expected operations, 
such as navigating to a given API category and seeing what is available, navigating to a related 
extension, operating on existing files (including Subversion integration), and adding new 
implementations of a method. This tool serves as active documentation and support for the various 
API definitions. Intuitive and repeated API patterns and naming conventions also support the 
developer.  A related menu-based system is also accessible for developers from the same extension 
interfaces available to users for extension configuration. 

The fact that many of these tools were to be operated by biologists during analysis of their 
data also required that the domain-specific language allow the agile development of 
graphical user interfaces.  These quick code and tool development pressures also led to use 
of design patterns and metaphors in both arenas of interface design to support simpler code, 
faster learning, and error reduction in interface use (FREEMAN & FREEMAN 2004, RASKIN 
2000, TIDWELL 2006). A large part of this is simply achieved through the reduction of modal 
interfaces which is apparent in the dominant use of palette-based graphical interfaces in 
XBAT in contrast to dialog-based graphical interfaces. 

The creation of the tools to support the domain-specific language and interfaces also 
emerged intuitively and practically in response to the pressure to quickly adapt and develop 
new techniques and software tools for many sound analysis and monitoring projects, while 
supporting multiple developers and dealing with a nearly complete lack of documentations for 
the programming interfaces provided. 
 
 
Community Perspective 
 

This aspect of XBAT development is recent and largely unknown, and therefore this is a very 
brief perspective.  This is also true as some community related considerations also appeared 
very naturally from a software perspective. This is nevertheless a very exciting and important 
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aspect of XBAT development, and we believe the potential positive effect of developing such 
a community resource is considerable. 

From a community perspective, the XBAT development project aims at the creation of a 
community resource for the efficient and effective communication of ideas as concise and 
understandable running code. This free and open-source software resource can offer: 

• Support to students and researchers in the learning, evaluation, and reproduction of 
published research (BUCKHEIT & DONOHO 1995, TREFETHEN 2005), 

• Help in providing tool access to non-developers to recently developed techniques, by 
helping developers create intuitive and familiar interfaces with very little effort, and  

• The incremental improvement of tools and techniques by a community of users and 
developers.  

We believe that progress in any single one of these would be worth the development efforts 
incurred in the development of XBAT, but believe and hope much more is possible. 

From a more mechanical perspective in preview versions of XBAT have been available 
starting in 2006 have been available through http://xbat.org as free and open-source 
software licensed under the GNU Public License (GPL). A first non-preview release with 
sufficiently tested and stable programming interfaces is projected for the end of 2008 or the 
start of 2009. 

Various other efforts have been initiated to support the development of XBAT as a successful 
open-source community project, these include: 

• Along with the website and the stable preview release downloads, a version 
controlled source code repository for XBAT development is available through Google 
Project Hosting at http://code.google.com/p/xbat-devel/, and 

• Various Google-Groups to support announcements, user, and developer discussions. 
More information on how to access these various resources is available from the XBAT 
website at http://xbat.org. The described efforts constitute merely essential elements and 
continued work is underway to promote the success of the open-source XBAT development 
project. 
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