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To see a world in a grain of sand
And a heaven in a wild flower,
Hold infinity in the palm of your hand
And eternity in an hour.

– William Blake, Auguries of Innocence



The rapid evolution of quantum computers requires more and more refined optimization
strategies to enhance the performance of present and future quantum devices. Such
strategies span from pulse-level optimization in quantum control and variational circuits
to combinatorial optimization in system design and quantum circuit compilation. As
research progresses, such optimization tasks will also become more and more relevant
in the design of single and interconnected quantum devices, such as, e.g., quantum net-
works. In this work, we present several examples of potentially relevant optimization
problems in quantum devices. We start with meta-optimization and system identifica-
tion in quantum control and later move on to hybrid continuous-discrete compilation
in quantum circuits. We also consider the optimization of entanglement purification
protocols. We show how variational protocols can be optimized successfully to purify
families of quantum states and, more specifically, how optimized protocols can surpass
previous proposals for random two-qubit states. We conclude by considering different
types of estimators for observables of quantum systems. Such estimators are relevant to
all aforementioned optimization tasks, ranging from applications in variational quantum
circuits to the estimation of cost functions for control problems.



Contents
Introduction 1

Summary 3

1 Quantum computation 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Universal gate sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Quantum computing platforms . . . . . . . . . . . . . . . . . . . . . 8

1.2.2.1 Trapped-ion quantum computers . . . . . . . . . . . . . . 9
1.2.2.2 Superconducting quantum circuits . . . . . . . . . . . . . 10

1.3 Counteracting errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Entanglement purification . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Quantum control and optimization 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Classical optimal control theory . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Example: Trajectory optimization . . . . . . . . . . . . . . . . . . . 15
2.3 Quantum optimal control theory . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Pulse shaping and time discretization . . . . . . . . . . . . . . . . . 18
2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Gradient-based optimization . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 CRAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Adiabatic control techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Analytical pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 GOAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Variational quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Optimization and gradients for variational circuits . . . . . . . . . 26
2.8 Quantum compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Machine Learning 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Multi-layered perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Automatic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



Contents

3.6 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.1 Tabular methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Deep reinforcement learning - value-based . . . . . . . . . . . . . . 37
3.6.3 Deep reinforcement learning - policy-based . . . . . . . . . . . . . . 38

3.7 Machine learning for quantum science . . . . . . . . . . . . . . . . . . . . . 39

4 Continuous quantum gate sets and generalized pulse meta-optimization 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Continuous gate set learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Analytical adaptive control . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 GRAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Robust control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 Supervised training method: SOMA SL . . . . . . . . . . . . . . . . 49
4.2.6 Direct-training method with back propagation: SOMA BP . . . . 50
4.2.7 Experimental adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Single-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 CR gate with leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Data and Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7.1 Gradients of the fidelity . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7.3 Fidelity of discrete gates and their performance . . . . . . . . . . . 67

5 Hybrid discrete-continuous compilation of trapped-ion quantum circuits
with deep reinforcement learning 70
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Dynamics via fast exponentiation . . . . . . . . . . . . . . . . . . . 75
5.3.2 Continuous gradient-based optimization . . . . . . . . . . . . . . . . 75

5.3.2.1 Cost function based on known target unitaries. . . . . . . 76
5.3.2.2 Cost function based on black-box access to a target unitary. 77

5.3.3 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3.1 Reinforcement Learning with Projective Simulation . . . 79

5.4 Circuit compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.0.1 Layer-based compilation and heuristic search . . . . . . . 82
5.4.0.2 Reinforcement learning-based compilation . . . . . . . . . 85

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.1 Example 1: gate compilation . . . . . . . . . . . . . . . . . . . . . . 89

ii



Contents

5.5.2 Example 2: General quantum process simulation of a Hamiltonian
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.7 Data and Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8.1 Fast analytic ion gates . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.8.1.1 General Approach - Constructing the XY-rotation Gate 93

5.8.1.1.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . 94
5.8.1.1.2 Eigenvectors . . . . . . . . . . . . . . . . . . . . . 94
5.8.1.1.3 Calculating the Unitary . . . . . . . . . . . . . . 94

5.8.1.2 Generalization to the MS gate . . . . . . . . . . . . . . . . 95
5.8.1.3 Gradients and Hessians . . . . . . . . . . . . . . . . . . . . 96

5.8.2 Parameter-shift rules for ion gates . . . . . . . . . . . . . . . . . . . 97
5.8.3 Algorithmic implementation details . . . . . . . . . . . . . . . . . . 101

6 Optimal two-qubit gates in recurrence protocols of entanglement purification107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Entanglement purification protocol . . . . . . . . . . . . . . . . . . . 109
6.2.2 Protocol optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6.1 Gell-Mann type basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Statistical evaluation and optimization of entanglement purification pro-
tocols 128
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 Entanglement purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.1 Bennett protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2.2 Deutsch protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2.3 Matter-field interaction-based protocol . . . . . . . . . . . . . . . . 132
7.2.4 A CNOT-based protocol . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2.5 Variational purification protocols . . . . . . . . . . . . . . . . . . . . 136

7.3 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.3.1 Markov chain Monte Carlo sampler . . . . . . . . . . . . . . . . . . 138
7.3.2 Optimization with a quasi-Newton method . . . . . . . . . . . . . . 138

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4.1 Statistics of purification protocols . . . . . . . . . . . . . . . . . . . 141
7.4.2 Optimization of variational recurrence protocols . . . . . . . . . . . 144

7.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

iii



Contents

7.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.7.1 Hit-and-run algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.7.2 Statistics of entanglement purification . . . . . . . . . . . . . . . . . 148
7.7.3 Statistical evaluation of the fidelities . . . . . . . . . . . . . . . . . . 153

8 Estimation of observables in quantum systems 157
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.3 Linear combinations of estimates . . . . . . . . . . . . . . . . . . . . . . . . 161

8.3.1 Trivial estimator (TE): linear combinations of measurements . . . 161
8.3.2 Linear combination of unitaries . . . . . . . . . . . . . . . . . . . . . 163
8.3.3 Estimator with linear combination of unitaries (LCU) . . . . . . . 164
8.3.4 Extension to general linear combinations . . . . . . . . . . . . . . . 169

8.4 Trace estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4.1 DQC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4.2 Sampling Unitary traces and DQC1 basics . . . . . . . . . . . . . . 171

8.5 Quantum sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.5.1 Heisenberg scaling and phase estimation . . . . . . . . . . . . . . . 173
8.5.2 Amplitude amplification and estimation . . . . . . . . . . . . . . . . 174

8.5.2.1 Sampling with amplitude estimation . . . . . . . . . . . . 174
8.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Conclusion and Outlook 177
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

iv



Introduction
The last three decades have seen the rapid evolution of quantum information. Its the-
oretical foundations were elaborated in the seminal works of Paul Benioff [Ben80] and
Richard Feynman [Fey82]. Today quantum information encompasses physicists, math-
ematicians, computer scientists, and engineers all over the world. Quantum algorithms
that promise potential speedup over classical counterparts are among the most relevant
achievements of the field [Sho94; Gro96; DJ92; BV97]. Some of these discoveries are
causing concern because quantum computers could potentially break the most modern
cryptographic schemes [IAA&al21]. Simultaneously, quantum communication emerged
as a potential tool to achieve an extremely secure exchange of information over networks
[BB14]. Today, private companies implement quantum-key distribution protocols over
distances of hundreds of kilometers [RZV&al23].
The first models of quantum computations implemented abstract operations. However, a
quantum computer must be constructed on a physical quantum setup that uses universal
sets of gates, and in particular entangling gates. The first realization of the Cirac-Zoller
proposal [CZ95] of a controlled-NOT gate in trapped-ion systems dates back to 2003
[Sch&al03]. This achievement was the first attempt to realize an entangling gate in a
quantum system. At present, several companies attempt to implement fault-tolerant
quantum computation on different types of quantum devices [RAC&al24; AAA&al24].
At the lowest level, a quantum computing device consists of qubits, which are the basic
units of quantum information. Qubits are prepared in an initial quantum state and a
series of operations can be performed on the state itself. Implementing an arbitrary
operation on a register of qubits is not a trivial task. First, the types of interactions
available on the system may not allow a direct implementation of the operation itself.
For instance, a system with only two-qubit interactions cannot directly apply an n-qubit
interaction. However, an n-qubit interaction can be implemented through layers of sin-
gle and two-qubit operations [NC10]. In addition, even in the presence of the correct
type of interaction, the approach to performing a certain operation that starts from an
arbitrary Hamiltonian is often unclear. Second, quantum systems require careful engi-
neering to become potential candidates for quantum computers. The detrimental effects
of decoherence are unfortunately ubiquitous and therefore algorithms must be carefully
designed that can implement quantum operations successfully. Quantum control and
quantum compiling are sub-fields of quantum computation and technology that try to
address the problem of implementing operations on qubits efficiently.
In quantum systems, optimization is not a single-task process but requires the coop-
eration of multiple levels of careful engineering [YSK&al20]. At the lowest levels, the
quantum system undergoes a dynamic evolution governed by its Hamiltonian. In some
systems, such as superconducting qubits, various types of qubits can be engineered with
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different properties [Men&al21; KMS&al21; GGD&al21; CRC&al23]. Maximizing useful
properties of the qubits, and at the same time reducing detrimental effects, is one of the
targets of optimization algorithms. This task falls under the realm of so-called system
design optimization [MMD&al21]. The quantum system usually interacts with external
time-dependent electromagnetic fields that can be used to control the dynamics of the
system itself. Optimal quantum control studies how to implement and optimize time-
dependent signals to generate certain types of interactions using both system dynamics
and driving fields [Koc&al22]. However, the implementation of arbitrary quantum al-
gorithms requires layers of such interactions. Generating a quantum algorithm starting
from basic gates is the task studied by quantum compilation algorithms [Mar&al22;
YIL&al21].
In recent years, a new class of quantum algorithms based on classical optimization has
emerged. These algorithms are referred to as (variational) algorithms for NISQ (Noisy
Intermediate Scale Quantum) [Pre18] devices. Such algorithms could potentially achieve
quantum speedup already on noisy devices that do not exhibit fault-tolerance, although
this claim remains unproven and has been recently disputed [McC&al18; CLG&al24].
Optimization in quantum systems has become particularly important with the rise of
variational circuits [Cer&al21b] and related applications such as quantum machine learn-
ing [Bia&al17]. The necessity to optimize parametric gates has led to the development
of specialized algorithms used to optimize quantum systems [OGB21; WIW&al22]. On
the other hand, developments in quantum control have led to the necessity of optimizing
parametric pulses to achieve high-fidelity operations in quantum experiments [PCM22].
In summary, we have several potential types of optimization tasks in quantum systems
that are relevant for quantum science and technology. The design of qubit systems
with particular properties, e.g., in superconducting qubits, can benefit from optimiza-
tion methods. Quantum control algorithms optimize time-dependent control signals in
the form of electromagnetic fields acting on the qubits. Variational algorithms make use
of optimization routines to solve a vast range of problems using layers of entangling and
non-entangling gates. Discrete optimization in the sense of compilation is the task of
designing an optimal sequence of such gates so that the corresponding quantum circuit
generates a target quantum algorithm.
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In this work, we first consider standard quantum control problems for superconducting
transmon qubits. Such quantum systems have been studied extensively both from an
analytical and a numerical perspective [MSG&al11; TMW16]. Analytical pulses usu-
ally show dependencies from system parameters that are not easily found in numerical
solutions. Therefore, our approach is then to employ neural networks to learn the func-
tional dependence of optimal quantum control solutions from system parameters. We
show that we can optimize such solutions analytically for single and two-qubit gates
using either very few parameter samples or large numbers of pulse frequencies for large
parameter ranges. Afterward, we move to a higher level of optimization. We consider
variational gates in trapped-ion quantum computers [MMN&al16]. In this setting, we
employ a hybrid scheme that uses both reinforcement learning and continuous optimiza-
tion to optimize both circuit structure and variational angles concurrently [BDS&al18;
SEL&al22]. We show that our reinforcement learning algorithm assisted by a continuous
optimizer can construct effective solutions to the gate synthesis problem that matches
and surpasses standard circuit compilers.
Next, we consider variational optimization of non-linear maps [HCS&al23] acting on
quantum states such as entanglement purification protocols. An entanglement purifica-
tion protocol acts as a highly non-linear map, but it still outputs a faithful representation
of a quantum system. Optimizing it for a specific family of states requires reducing the
number of operations needed to retrieve the original state. This optimization has the po-
tential to make purification protocols easier to implement on a quantum device. In fact,
the exponential scaling of the purification protocol with the number of states [DB07]
implies that such protocols may not be applied directly without careful engineering. We
also show that the performance of standard purification protocols for arbitrary two-qubit
input states leads to poor output values of the concurrence. Our optimized protocols
prove instead able to increase the value of the concurrence above the maximum limit of
traditional analytical protocols. We also show how the twirling operation becomes an
obstacle to the performance of the protocol itself when considering random two-qubit
states, although it is a useful tool in the design of entanglement purification protocols.
Finally, we study parameter sampling in quantum circuits, focusing in particular on the
LCU methods. Such problems are particularly interesting for meta-variational settings
[CKA21] where we compute the average over observables evaluated at different points
in the parameter space. They are also relevant for optimal quantum control algorithms
because the computation of the fidelity with respect to a target operation is the basis of
most optimal quantum control routines.
In conclusion, we analyze several optimization problems that are relevant for quantum
science and technology. We show that machine learning-assisted solutions can be ap-
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plied successfully to engineer optimal quantum control pulses and compilation strategies
based on variational angles. Also in the context of entanglement purification, we show
how our optimized protocols can surpass current strategies for multiparametric families
of states.

4



1 Quantum computation

1.1 Introduction
Quantum computers promise to revolutionize computer science as they are believed
to be faster than classical computers in performing specific tasks [NC10]. During the
course of the last three decades, several algorithms with provable speedup compared
to their classical counterparts have been discovered. Examples of such cases are the
Shor’s algorithm [Sho94], which could in principle allow to break RSA cryptographic
keys, Grover search and amplitude amplification [Gro96; Bra&al02], the HHL algorithm
for the solution of linear systems of equations [HHL09], etc. Quantum algorithms also
offer potential speedups in the simulation of quantum systems [GAN14] and differential
equations [LPG&al20]. The last years have also seen the emergence of variational al-
gorithms [Cer&al21b] that encode specific optimization problems on quantum circuits
and then use classical opimization methods to try and reach the ground state of the
problem. Such methods are of particular relevance for several branches of quantum
science, e.g., quantum chemistry and quantum machine learning. Speedups offered by
such algorithms are of particular interest for both academia and industry [BBB&al21].
Unfortunately, quantum computers are not easy to build in practice. They are prone to
errors and affected by decoherence phenomena. As a result, considerable effort has to be
invested in developing quantum error-correction schemes [DMN13] and in suppressing
decoherence processes acting on qubits. At the same time reducing the overall number
of unitary operations and measurements required by quantum algorithms is extremely
important. In fact, the use of shorter circuits helps limit the influence of decoherence
on the register of qubits and increases the speed of calculations.

1.2 Quantum computation
Quantum computation deals with the execution of operations and the readout of in-
formation using a quantum system. On a classical computer, information is stored
on a bit, which is usually the internal state of a transistor (either zero or one). The
transistor-transistor logic allows for the implementation of arbitrary logical operations
[VMV&al22]. Due to the extreme speed in performing operations, transistors have
become ubiquitous, but, in principle, the logical operations they provide can be imple-
mented using different types of electronical and mechanical computation models. On a
more theoretical level, a classical computer can be realized using mechanical systems,
such as the billiard ball computer of Toffoli and Fredkin [FT82], although these models
are of limited practical utility. Classical bits are acted upon by logical operations, such
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as, e.g., the NOT operation, which negates the logical state it acts upon and can be
represented using a 2× 2 matrix acting on a two-element vector representing the digital
state in a matrix-vector multiplication fashion [Han]:

NOT ∶ {0,1}↦ {0,1}, xz→ [0 1
1 0] ⋅ x. (1.1)

The NOT operation acts on a single logical bit, that is it does not perform binary addi-
tions or multiplications of binary digits, and it is reversible, since a second application
of the gate brings the state to its original form. Other gates typical of classical compu-
tation do not have this property. This is the case, for instance, of the AND gate, which
performs binary addition

AND ∶ {0,1}⊗ {0,1}↦ {0,1}, x⊗ xz→ [1 0 0 1
0 1 1 0] ⋅ (x⊗ x). (1.2)

The reason for the lack of invertibility lies in the fact that the AND gate erases part
of the information contained in the initial binary digit vector. This is connected to the
Landauer principle [Lan61] and the amount of energy dissipated when deleting a bit of
information, which leads to an increase in the overall entropy of the universe. Nonethe-
less, operations that are not invertible are not unheard of in classical computation. It
was proved by Tommaso Toffoli that the Toffoli gate [BBC&al95], a three-qubit logical
gate is universal for classical computation and can implement classical reversible com-
putation (as it is an orthogonal symmetrical gate, so its inverse is just the gate iself). It
turns out that this gate, together with the Hadamard gate, is also universal for quantum
computation. Quantum computation instead uses the degree of freedom of a quantum
system to store information. The minimum degree of freedom of a quantum system is
given by a two-level system, i.e., a qubit

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ , ∣ψ⟩ ∈ C2, (1.3)

with the normalization condition ∣α∣2 + ∣β∣2 = 1. The time evolution of a pure quantum
state in absence of interaction with any external environment is given by the Schrödinger
equation for a pure state and a Hamiltonian H that describes the dynamics of the system
(setting h̵ = 1):

i
d
dt ∣ψ(t)⟩ =H ∣ψ(t)⟩ . (1.4)

and the Von Neumann equation for a mixed state

d
dtρ(t) = −i[H,ρ(t)]. (1.5)
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For a single-qubit Hamiltonian, the most general parametrization uses three real param-
eters ax, ay, az:

H = axσx + ayσy + azσz, (1.6)

where σx, σy and σz are the three Pauli matrices

σx = (
0 1
1 0) , σy = (

0 −i
i 0 ) , σz = (

1 0
0 −1) . (1.7)

Quantum-mechanically, coherent operations on a qubit are described by a single-qubit
gate U ∈ SU(2), which has the following general three-dimensional standard parametriza-
tion:

U(ax, ay, az) = e−i(axσx+ayσy+azσz), (1.8)

which can be rewritten using the Euler-angle representation [NC10] of the same group
to obtain standard single-qubit gate of IBM-Qiskit [Qis23; NC10]:

U(θ, ϕ, λ) =
⎡⎢⎢⎢⎢⎣

cos(θ
2) −eiλ sin(θ

2)
eiϕ sin(θ

2) ei(ϕ+λ) cos(θ
2)

⎤⎥⎥⎥⎥⎦
, (1.9)

Single qubits have two degrees of freedom and can therefore be represented as points
on a sphere, called Bloch sphere [NC10]. Single-qubit operations can bring a single
qubit to any point of the Bloch sphere, but they are not enough to generate all possible
unitaries for n-qubit systems. For an overview of the more general parametrization of
SU(d) acting on n-qubits, where d = 2n – see also Ref. [TS02]. Non-unitary operations
on qubits can be implemented by including measurements on so-called ancillary systems.
An operation involving measurements and unitaries acting on mixed states is a general
quantum operation [Cho75; Sti55].

1.2.1 Universal gate sets
In classical logic, a small subset of logical operations can be used to represent arbitrary
binary functions of the type f ∶ {0,1}n ↦ {0,1} [NC10]. This set is not unique: for
example the triple of operations AND, OR and NOT forms a universal set of logical
operations, whereas the Toffoli gate alone, a three-bit operation, is universal. In quantum
computing this concept can be extended to the one of universal sets of quantum gates.
An example is given by the two-qubit controlled-NOT (CNOT) gate:

CNOT =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
, (1.10)
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together with the Hadamard, the S and the T gate [NC10]:

S = (1 0
0 i
) , T =

√
S, H = 1√

2
(1 1
1 −1) . (1.11)

One should note that the Clifford group can be constructing using only CNOTs, Hadamard
and S gates [Got98]. These gates, however, and therefore any element of this group
can be simulated efficiently on classical computers due to the Gottesman-Knill theorem
[Got98]. Another example of universal sets of gates for quantum computation is given by
the Toffoli and the Hadamard gate [Aha03]. We see here that, compared to the classical
case, the Toffoli gate alone is not universal for quantum computation. The importance of
such universal sets of quantum gates is connected to a milestone result in quantum com-
putation, the Solovay-Kitaev theorem [DN06; NC10]. This states that we can use a set
of gates that generates a dense subgroup of SU(2) to construct arbitrary quantum gates
up to a precision ϵ using O(logc(1/ϵ)) gates, where c is a positive finite constant [NC10;
DN06]. As a result of this theorem, if it is possible to engineer platform-dependent sets
of universal gates that exploit the specific features of the quantum systems considered,
then it is also possible to implement arbitrary quantum operations. However, the over-
all depth of a circuit implementing a specific operation may vary from one system to
another. For example, multi-qubit GHZ states are comparatively easier to generate in
trapped-ion gates compared to superconducting qubits, thanks to the Mølmer-Sørensen
interaction [SM99; MS99; Pre20].
Quantum computing is often introduced using the so-called circuit model of quantum
computation, but this is not the only model available. Quantum computation can also be
performed by carrying out single-qubit measurements on highly entangled multi-particle
states – 2D cluster states [Bri&al09].

1.2.2 Quantum computing platforms
There exist several quantum systems that can be used to build quantum computers
thanks to their intrinsic features. The guidelines to identify whether a quantum system
is suitable for quantum computation are given by the so-called Di Vincenzo’s criteria
[DiV00]:

• The quantum system considered as a candidate for quantum computation should
have well-defined qubits and should be scalable, that is, it should be possible to
add more and more qubits without encountering significant difficulties.

• On the same system, the preparation of a specific state, in particular the zero
qubit, should be feasible. In fact, the zero qubit is the conventional starting point
for most quantum algorithms.

• The system should have coherence times that are longer than the execution times
of logical operations. In fact, the action of decoherence dilutes entanglement and
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makes it impossible to exploit its properties for quantum computation [Zur03;
Zeh02].

• We should be able to implement a universal set of quantum gates efficiently on the
quantum system of interest.

• There should be an effective measurement operation that characterizes the state
of the qubit after performing quantum gates for, e.g., logical operations.

Over the course of the last decade, we have witnessed an enormous progress in the realiza-
tion of primitive quantum devices that, while still unsuitable for fault-tolerant quantum
computation, could be still employed as so-called NISQ (Noisy Intermediate Scale Quan-
tum) devices [BDL24]. Applications of such devices range from annealing [HKL&al20]
to hybrid quantum-classical optimization such as that considered in QAOA [FGG14]
(Quantum Approximate Optimization Algorithm) and quantum machine learning. Some
of these applications have proved to be more challenging than expected [CLG&al24], in
particular due the phenomenon of so-called Barren plateaus [McC&al18; LTW&al24],
i.e., large areas where the gradient of the quantities sampled from the quantum systems
quickly approaches zero.
Platforms for quantum computing considered so-far include: trapped ions [BCM&al19]
in radiofrequency traps, cold atoms in optical lattices [SWM10], superconducting quan-
tum circuits driven by microwave pulses [HWF&al20], quantum dots in semiconductors
[LD98; KL13], cavity-based photonic quantum computers [SP19] and NV centers in di-
amond [ROM&al20]. The results obtained by the different platforms vary wildly: some
of these quantum systems offer incredibly long coherence times [BCM&al19], but lack,
e.g., scalability or a proper measurement procedure. In the case of photonic quantum
computers, it is not possible to easily isolate and store qubits, so that these systems
are more suitable for, e.g., measurement-based quantum computation [Bri&al09], and
specific quantum computing tasks such as boson sampling [BQA20]. In the last years,
superconducting and photonic quantum computers have been used to claim quantum
advantage [Mad&al22; Aru&al19].
In the following sections, we introduce the basics of these quantum computing platforms,
so to emphasize their strength and weaknesses, such as the upcoming challenges that, if
solved, could significantly advance the state of quantum computing research. In partic-
ular, we briefly outline the principles of quantum computers based on trapped ions in
radiofrequency traps and superconducting quantum circuits.

1.2.2.1 Trapped-ion quantum computers

Trapped-ion quantum computers use a Paul trap to confine cold ions at a temperature
of T ∼ 20mK thanks to laser and Doppler cooling [BCM&al19]. The Paul trap [Pau90]
is a device that uses a quadrupole with static and time-varying electric fields to trap
charged particles at the center of the potential. The type of ions employed usually
show a convenient fine- or hyperfine structure which can be easily addressed with lasers,
e.g., 43Ca+ or 171Yb+ [BCM&al19]. Qubits in trapped-ion systems are characterized
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by the type of energy splitting considered: Zeeman, fine-structure, hyperfine-structure
or optical [BCM&al19]. State preparation and readout are achieved by addressing the
qubits with laser pulses. In the latter case, photons at a particular wavelength are
emitted during scattering. Although one of the original proposals for a CNOT gate for
quantum computers, the Cirac-Zoller gate, was developed for trapped ions [CZ95] and
was realized experimentally in 2003 [Sch&al03], the current established entangling gate
for this platform is the Mølmer-Sørensen (MS) gate [SM99; MS99]. Trapped-ion gates
have a gate time of around 100 µs [BCM&al19], which is significantly shorter than the
coherence time of ions. However, the scalability remains a problem, due to the fact
that the trap has a limited size and can only keep a given maximum number of ions
confined at the same time. Current attempts at finding a solution for this issue rely on
interconnecting multiple microtraps [CZ00; KMW02]. Nonetheless, the architecture has
proved particularly successful and it is one of the current most promising candidates for
the realization of a quantum computer.

1.2.2.2 Superconducting quantum circuits

Superconducting quantum circuits are solid-state devices that can be used to engineer
qubits. A LC circuit made of solid-state materials that exhibit superconducting proper-
ties will show zero dissipation as its resistance drops to zero when cooled down below its
critical temperature. The addition of a non-linearity, such as the one Josephson junction
[Jos62], can be used to create a qubit. In fact, if only an LC circuit without additional
modifications were used, the resulting system would be a perfect harmonic oscillator
[BGG&al21], which cannot be used as qubits, as driving one transition would drive all
transitions at the same time, giving rise to a coherent state. The non-linearity of the
Josephson junction modifies the structure of the eigenstates, thus rendering the system
suitable for quantum computing. Other non-linear elements that can be used to create a
qubit are SQUIDs (Superconducting Quantum Interference Devices) [BGG&al21]. There
are several types of qubits that have been implemented in the last decades using differ-
ent physical systems: transmon [KYG&al07], flux qubit and phase qubit [MKG&al09],
0−π-qubit [BKP13], unimon [Hyy&al22], etc. Qubits can be addressed by driving them
with microwave fields [HWF&al20]. Qubits based on superconducting circuits exhibit
coherence times of up to a few milliseconds [SFM&al23] in the most recent implementa-
tions, which is considerably shorter than the coherence time of qubits in trapped ions.
This is one of the reasons why quantum control [TMM&al18] and optimized compilation
and transpilation procedures are so important for this type of architecture. Leakage in
the ∣1⟩ ↦ ∣2⟩ transition [HWF&al20] is also a relevant issue. Specific pulses to con-
trol the qubit and at the same time mitigate the effect of leakage have been developed
[MGR&al09]. More recent implementations have successfully tried to generalize the
approach to the mitigation of leakage in two-qubit gates [LCM22; LCM24].
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1.3 Counteracting errors
Whenever we find ourselves manipulating, storing or transmitting quantum information,
we always have to deal with the transmission of such information over noisy channels.
On a typical quantum computing platform, sources of noise include environmental de-
coherence caused by thermal fluctuations [ICJ&al05], excitation caused by cosmic rays
[McE&al22], distortions in the experimental control lines [GZB&al13], etc. In quantum
communication, that is for tasks such as quantum teleportation over long distances, we
have different types of noise, such as depolarization, dephasing and amplitude damping
[NC10]. Over the years, different solutions have been developed to protect the infor-
mation stored in the quantum system from being erased by noise: on the one hand
quantum error correction makes use of ancillary qubits to store the information redun-
dantly (analogously to the classical case) and to detect and eventually correct the action
of channel operators on the quantum state. Quantum error correction schemes encode
the state ∣ψ⟩ = α ∣0⟩ + β ∣1⟩ , ∣ψ⟩ ∈ C2, with ∣α∣2 + ∣β∣2 = 1 in a different state lying in a
larger Hilbert space C2n – see Ref. [DB07]:

∣ψ⟩ ∣0⟩⊗n−1 z→ ∣ψ̃⟩ = α̃ ∣0n⟩ + β̃ ∣1n⟩ , (1.12)

with different amplitudes ∣α̃∣2 + ∣β̃∣2 = 1. However, the encoding should not erase the
information originally stored in α,β, so that it can be retrieved after executing the
quantum algorithm. Quantum error correction [DMN13] studies the properties of such
encoding schemes that allow for error detection and eventual correction. The main
obstacle of using quantum error correction schemes in quantum networks is given by the
amount of error that such schemes can counteract. This low error threshold restricts
the application of quantum correction schemes to quantum communication channels of
relatively short length [DB07]. Entanglement purification instead uses an ensemble of
N pairs of noisy states over Hilbert spaces denoted by A1,B1,A2,B2, ...,AN ,BN :

ρ = ρA1B1 ⊗ ρA2B2 ⊗ ...⊗ ρAN BN
, (1.13)

which undergo the influence of a noisy channel and a series of entangling and LOCC
operations [CLM&al14] on the states and measurements on a sub-system. The repeated
application of such operations generates each time a new state after the collapse induced
by the measurements. The goal is to perform the sequence of operations in such a way
that the fidelity of this output state with respect to a target (usually an entangled
pure state) is larger than the initial fidelity. In the following, we are providing a short
introduction to the main protocols employed in entanglement purification.

1.3.1 Entanglement purification
Quantum communication requires sharing information encoded in quantum states be-
tween two nodes name Alice (quantum system A) and Bob (quantum system B) over
noisy channels. The action of a quantum channel turns, e.g., a pure state shared by
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A and B into a mixed state. The idea of entanglement purification is to increase the
amount of entanglement in a quantum state at the expense of the entanglement in other
quantum states. The fundamental principle is not dissimilar to quantum error correc-
tion. The final goal is to extract an entangled pure state, such as one of the Bell states
shared by A and B:

∣1⟩ = 1√
2
(∣0A10B1⟩ + ∣1A11B1⟩) (1.14)

∣2⟩ = 1√
2
(∣1A10B1⟩ + ∣0A11B1⟩) (1.15)

∣3⟩ = 1√
2
(∣0A11B1⟩ + ∣1A10B1⟩) (1.16)

∣4⟩ = 1√
2
(∣0A10B1⟩ − ∣1A11B1⟩) , (1.17)

from an ensemble of mixed states. The oldest protocol for entanglement purifica-
tion was proposed by Bennet et al. [BBP&al96] for Werner states and by Deutsch et
al. [DEJ&al96] for Bell diagonal states. These are states that resemble some of the
typical forms of quantum channels acting on density matrices. If we consider for instance
the depolarizing channel [NC10] for two qubits

Λ(ρ) = λρ + 1 − λ
4 I4, (1.18)

and compute its action on a Bell pair ρ = ∣1⟩ ⟨1∣, we obtain:

ρ′ = Λ(ρ) = 3
4λ ∣1⟩ ⟨1∣ +

1 − λ
4 (I4 − ∣1⟩ ⟨1∣) . (1.19)

If we consider now the overlap between this state and the ∣1⟩ state, we have

F1 = Tr{ρ′ ∣1⟩ ⟨1∣} = λ(1 + 1
4) −

λ

4 = λ. (1.20)
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2.1 Introduction
In quantum computation based on the circuit model, we always assume to have access to
a universal set of entangling gates. However, in many quantum systems it is not obvious
how to generate a specific gate, such as a CNOT gate, on an arbitrary system. More-
over, qubits used for quantum computation are generally not isolated systems: there
are, e.g., higher energy levels where excitations can occur and the qubit is also coupled
to an external environment [BGG&al21]. Moreover, there are state preparation and
measurement errors (SPAM) [JE15; LMK&al22], which are inevitable when operations
are executed and information extracted from the qubits. When dealing with operations
on quantum systems, one often uses the concept of fidelity, which quantifies the overlap
between the actual operation implemented on the device and the target operation, e.g., a
specific entangling gate, that should be implemented. Different sources of noise prevent
us from implementing high-fidelity operations, which are a fundamental requirement for
fault-tolerant quantum computation. Quantum control deals with the optimal imple-
mentation of operations on quantum systems. This is particularly important for gate
synthesis and state preparation [GBG&al19; ROM&al20].

2.2 Classical optimal control theory
In classical control theory [Kir04], a dynamical system is given which undergoes a tem-
poral evolution of the kind:

ẋ(t) = f(x(t),u(t), t), (2.1)

with t ∈ R≥0 and time-dependent functions x ∶ R≥0 ↦ RN , t z→ x(t) and u ∶ R≥0 ↦
RM , t z→ u(t). We use here the formalism given in Ref. [Kir04]. The goal of the
optimal control task is to find an appropriate optimal function u∗ that minimizes the
functional J(x,u, T ) :

J(x,u, T ) = C(x(T ), T ) +∫
T

t0
E(x(t),u(τ), τ)dτ, (2.2)

where C is a appropriate cost functional for time T and the integral of E is the function
whose integral needs to be minimized over the trajectory. Thus, the function C gen-
erally describes where the final state of the system should be and E is a running cost
that describes, e.g., what are the constraint for the optimization of the time-dependent
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trajectories u(t). For example, the dynamical system should reach a certain point in
the phase space at time T , and at the same time the energy that is used to control its
dynamic evolution through the input u(t) should be minimal. Minimizing the functional
with respect to u(t) requires that the minimum satisfies the relation J∗ ≤ J(x,u, T ) for
any admissible, properly constrained functions u and x. As an example for the meaning
of these constraints, the force steering a wheel should not cause a vehicle to capsize.
Alternatively, an electric signal should not exceed some values of amplitude and phase
because it could damage the system, etc. In classical optimal control there are usually
two approaches to the solution of control problems: closed-loop control (or feedback
control), in which the action is modified as a result of measuring outputs from the en-
vironment, and open-loop control, in which the action is optimized independently from
the system’s output. In feed-forward control, instead, we build a model that anticipates
disturbances of the system to predict and correct them. Formally, if a solution to the
optimal control problem has a form u∗(t) = b(x(t0), t) [Kir04], it is said to be an open-
loop solution, i.e., it is optimal only for a specific initial state. A closed-loop solution,
instead, should be valid for arbitrary input states. The first model is extensively used
in the theory of regulators, the most prominent ones being linear quadratic regulators
[Son98], which deal with designing and optimizing feedback systems for engineering pur-
poses using PID (Proportional Integral Derivative) controllers. The main disadvantage
of such regulators is that they often require to linearize the dynamical system consid-
ered. A special case in optimal control theory is given by linear systems, e.g., systems
whose dynamics is described by a linear inhomogeneous system of differential equations
[Kir04]:

ẋ(t) = Ax(t) +Bu(t). (2.3)

Such linear systems of differential equations can be solved using time integration. The
analysis of the resolvent operator of the system of differential equations (the so called
state-transition matrix [Kir04]) can also be employed. In particular, the Laplace trans-
form can be used to find the expression of the propagator analytically. If the control
problem is digital, i.e., if it employs a difference equation with discrete time-steps in-
stead of a differential equation in time, the Laplace transform becomes the Z-transform
[Kir04], but the treatment is analogous. The optimization of the functional with respect
to the control solutions uses different approaches. The theory of dynamic programming
[Bel52] defines rigorously the differential equations for both discretized and continuous
controls. Other approaches include calculus of variations, which leads to Pontryagin
maximum principle [Pon18]. Some techniques, such as feedback through pole assign-
ment [GEK19], can be applied both numerically and analytically. However, and in
particular for non-linear systems, these approaches usually have to be integrated us-
ing numerical techniques and time-discretization methods, such as collocation [Yad20],
which parametrizes continuous time-dependent problems using basis functions – e.g.,
interpolation polynomials in time with real coefficients – and maximizes the figure of
merit of the control problem with respect to the polynomial parametrization.
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2.2.1 Example: Trajectory optimization
We give here an example taken from Ref. [FGP&al21], a library for optimal control of var-
ious systems that uses trajectory optimization. We consider the famous reinforcement-
learning problem of the Cartpole [BCP&al16], which is often used in artificial intelligence
as a test bed to compare reinforcement learning algorithms. In this case, the problem
is considered from the perspective of of optimal control theory. For a cost functional of
the type [FGP&al21]:

J(u,T ) = ∫
T

t0
[u(t)]2 dt, (2.4)

where u(t) is a time-dependent horizontal force that moves the cart around and can be
used to balance the pole. The equations of motion of the system can be derived using
Lagrangian mechanics. This cost function is not properly an energy functional, however
it basically plays the same role in this context. The solution is provided in [Kel17].
The idea of collocation [Yad20] is now to represent the state vector of the system as a
polynomial of a certain grade and then define the constraints for the trajectory optimiza-
tion. First, the time dynamics is discretized in time steps t0, t1, ..., tN , where tN = T .
Afterwards, the optimization algorithm optimizes the functional, which is now a discrete
sum over the N samples, as a function of the polynomial coefficients and the control
parameters. This methodology is used extensively in non-linear control problems and
presents analogies with the current practical approaches to quantum optical control the-
ory. In controlled quantum systems the non-linear dependence of the typical functionals
from the control fields makes it unfeasible, in most of the cases, to find general, globally
optimal analytical solutions to the control problems. As we outline in the following
sections, ideas such as collocation are of fundamental importance to address problems
in quantum optimal control. Sometimes, however, it is not easy to define the dynamics
of the system in non-linear control: this is particularly true when dealing with abstract
tasks in robotics, such as teaching a robotic hand to rotate certain objects [SNR&al21].
In such cases, machine learning algorithms, and in particular reinforcement learning –
see Chapter 3, can be employed instead.

2.3 Quantum optimal control theory
Optimal quantum control (OQC) [Koc&al22; Wil&al20] deals with the optimization of
quantum dynamics in a time-dependent setting, i.e., where the goal is the optimiza-
tion of a functional rather than a simple cost function. Usually the experiment uses
a quantum system that evolves according to its own internal degrees of freedom with
a so-called drift Hamiltonian that describes the basic dynamics of the quantum sys-
tem without external inputs. The drift Hamiltonian could describe, e.g., an Ising chain
of nearest-neighbour interacting spins or a Heisenberg chain [MRS24], an an-harmonic
oscillator with Kerr-type non-linearities [BGG&al21; Bou&al12], etc. Driving fields rep-
resent external inputs, such as laser and microwave fields, etc. The full time-dependent
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Hamiltonian H(t) of a (bilinear) quantum control problem with drift Hamiltonian H0,
associated control fields u1(t), ..., um(t) and control Hamiltonians H1, ...,HM is given
by:

H(t) =H0 +
M

∑
m=1

um(t)Hm. (2.5)

The evolution of the corresponding (isolated) quantum system is given by the time-
ordered propagator

U(T, t0) = T̂ exp{−i∫
T

t0
H(τ)dτ}, (2.6)

where T̂ is the time-ordering operator [SN20]. The evolution of the corresponding quan-
tum state is given by

∣ψ(T )⟩ = U(T, t0) ∣ψ(t0)⟩ , (2.7)

in the case of pure states and

ρ(T ) = U(T, t0)ρ(t0)U(t0, T ), (2.8)

in the case of mixed states. When dealing with open quantum systems where the dy-
namics can be considered approximately Markovian, the time evolution is given by the
Lindblad superoperator

Levo(ρ) = i[H(t), ρ] +∑
j
(LjρL

†
j −

1
2{L

†
jLj , ρ}) , (2.9)

where Lj are specific jump operators [Ste07] which control the evolution of the density
matrix

d
dtρ = Levo(ρ), (2.10)

according to the master equation. The goal of OQC algorithms and analytical methods
is to find one or more optimal driving fields that allow us to perform different tasks:

• State preparation: Starting from an initial state ρ(t0), find the optimal dynamics
such that the state at time T , ρ(T ) is equal to some target state ρtarget. A possible
cost function for state preparation reads [Koc&al22]:

C = 1 −Tr{ρ(T )ρ∗target}. (2.11)

In experiments, a figure of merit for quantum control needs to be estimated by
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measuring the overlap between the evolved state and a target state. This can
be accomplished using, e.g., state tomographies [Cra&al10] or in some cases by
measuring certain populations in the energy levels.

• Gate synthesis: Starting from an initial unitary propagator U(t = 0) = U0 (usually
the identity) we want the unitary propagator U(t = T ) at time t = T to match
exactly a target unitary Utarget. A special case of this problem is the creation of a
perfect entangler [Wat&al15]. To generate a target gate we need to minimize the
distance between the unitary operator generated by the dynamics and the target
gate:

F = 1
d2 ∣Tr{U(T )U†

target}∣
2
. (2.12)

In experimental situations, measuring the gate fidelity can be challenging, par-
ticularly for large numbers of qubits. Existing strategies involve different types
of tomography [NGR&al21], randomized benchmarking [KLR&al08; GMT&al12;
CGT&al09; KBC&al14], estimators such as shadow tomography [HKP20], etc.

• Entanglement maximization: We want to maximize the amount of entanglement in
a quantum state. Possible figures of merit to maximize entanglement for bipartite
quantum states [PV07] are the concurrence and the entanglement of formation
[Woo98] and in some specific cases – see also Ref. [SB22] – the entanglement
entropy.

• Optimized transport of qubits (shuttling): This problem arises in different con-
texts, for example in solid-state systems, and in optical lattices, where the goal
is usually to move spin qubits inside the solid-state device [DPS&al24] and cold
atoms placed inside the lattice using, e.g., optical tweezers [MBD&al12].

Let us suppose that we want to control a quantum system in two different situations
(single-qubit and two-qubit), as shown in Fig. 2.1. These single-qubit case can be solved
analytically, at least in its simplest formulation. A general single-qubit system with
time-dependent fields is given by:

H(t) = σxu1(t) + σyu2(t) + σzu3(t), (2.13)

which can represent any single-qubit rotation [NC10]. This approach is theoretically
valid, but in practice ignores leakage in the higher energy levels that are typical of,
e.g., superconducting qubits [MGR&al09; LCM22]. We want now to consider the state-
preparation task of steering the dynamics from the ground state at ∣ψ(t = 0)⟩ = ∣0⟩ to the
state ∣ψ(t = T )⟩ = ∣1⟩. In Fig. 2.1 (a) the single-qubit is evolving according to Eq. (2.13).
An example of control signal is given by a Gaussian pulse on the Pauli σx component
for which we have ∫ T

0 u1(t)dt = π
2 and u2(t) = u3(t) = 0. This will implement a σx

operation on the qubit and will therefore invert the population. This is exactly the
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(a)

|ψ(t)〉|0〉 U(u1(t), u2(t), u3(t))

(b)

|0〉
U(α, u1(t), u2(t))

|0〉
|ψ(t)〉

Figure 2.1: Representation of two quantum control problems: single-qubit (a) and two-
qubit (b). The goal is to prepare a quantum state using time-dependent control fields. In
(a) the qubit is simply evolving according to a unitary U(u1(t), u2(t), u3(t)) generated
by the Hamiltonian in Eq. (2.13), so the state preparation problem has an immediate
analytical solution, while the gate synthesis problem given in Eq. (2.14) and (b) is less
trivial, but it can be solved using OQC methods [KRK&al05; CCM11; GBG&al19].

NOT gate used in classical logic. If we instead implement a π
4 -pulse, the state will end

up in an eigenstate of the σx operator, i.e., a superposition of ∣0⟩ and ∣1⟩. As we see,
these control problems can be solved immediately in the single qubit case. However,
they can become more challenging if higher levels are considered [MGR&al09]. Let us
now consider the two-qubit system – see Fig. 2.1 – (b) and, e.g., a Hamiltonian of the
type:

H(α, t) = α [σx ⊗ σy + σy ⊗ σx] + u1(t)(σz ⊗ I2) + u2(t)(I2 ⊗ σz), (2.14)

where I2 is the single-qubit identity matrix and u1(t) and u2(t) are driving fields. The
problem is to find optimal shapes for such pulses to generate a specific parametric
two-qubit gate, such as a cross-resonance (CR) gate [MMM20; KKL&al18; LCM24].
Another interesting question is whether it possible to construct parameter-dependent
pulses u1(α, t) and u2(α, t) that generate a target gate for every value of the parameter
α. The last topic, in particular, is discussed in depth in Chapter 4. In the next section, we
introduce some of the most relevant approaches in quantum optimal control theory. Such
approaches aim to solve the pulse optimization problem exactly on arbitrary quantum
systems.

2.3.1 Pulse shaping and time discretization
Quantum control deals with the optimization of the quantum dynamics according to
a figure of merit, e.g., the gate or state fidelity. In numerical approaches to quantum
optimal control problems, a time discretization for the control fields can be defined,
such as t0, t1, ..., tN = T , where, e.g., ti = t0 + i T

N . We see here the similarity between the
approaches of quantum optimal control and non-linear classical optimal control. The
pulse profiles are usually also discretized in values uj0 = u(t0), uj1 = u(t1), ..., ujN =
u(tN ) for 1 ≤ j ≤ M . A standard approach is to divide the total evolution time T in
N equal time intervals ∆t = T

N and use as parametrization a step function of the type
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[MGM&al11]:

uj(t) =
N

∑
k=1

fk(t)θjk, (2.15)

with pulse values θjk ∈ RM×N , where

fk(t) =
⎧⎪⎪⎨⎪⎪⎩

1, tk−1 ≤ t ≤ tk
0, otherwise

(2.16)

is a rectangular function acting on the interval [tk, tk+1) with 1 ≤ k ≤ N . This approach
uses N pulse values of length ∆t. However, this type of pulse shaping gives often rise
to discontinuous pulses and therefore requires a very fine time grid. An alternative to
this parametrization is to, similar to the collocation ansatz, find an appropriate time-
dependent basis to model the evolution of the driving fields. A common parametrization
in optimal control of quantum systems is the Fourier basis, which uses sinusoidal wave-
forms:

uj(t) =
K

∑
k=1

θjk sin [kπ(t − t0)
N

] , (2.17)

with Fourier amplitudes θjk ∈ RM×K . Eq. (2.17) represents the Fourier expansion of the
control pulse, assuming u(t0) = 0 and u(t− t0) = −u(t0 − t). This parametrization starts
and ends in zero, which can be beneficial in some experimental implementations. Further
examples of parametrizations are wavelets [Mal98] and the sinc function [PMC&al24].
In this formulation, the control problem is characterized by the parameter vector θ,
whose dimension depends on the nature of the basis functions. Once the parametriza-
tion is defined, the goal of the opimization routine is to maximize the figure of merit
with respect to the parameter vector θ.
Several of the known theoretical solutions in optimal control assume a perfect correspon-
dence between the theoretical pulse shapes and the pulses that act on the experimental
setup. In most of the experimental scenarios, however, it is necessary to consider distor-
tions in the control lines [GZB&al13] caused by the electronics. These distortions can
often be modeled as the effect of a convolution with a filter function ϕ:

v(t) = ∫
+∞

−∞
ϕ(t − t′)u(t′)dt′, (2.18)

where v(t) is the output pulse distorted by the filter and u(t) is the input pulse. These
distortions can be compensated if the filter can be modelled appropriately [SZC&al23].
The corresponding transfer function of the distortion can also be included in the numeri-
cal simulation of the optimal control problem and its subsequent optimization. Modelling
the effects of filters can actually increase the chances of succeeding in discovering a high-
fidelity solution that has experimental relevance. In fact, an optimal quantum control
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model that takes distortions into account can hopefully better represent the physical
reality that experimental physicists are confronted with on a daily basis.

2.4 Algorithms
2.4.1 Gradient-based optimization
Given the pulse in an appropriate parametrization, the question arises whether it is
possible to extract the gradient of the figure of merit with respect to the pulse parameters.
Gradients are the basic ingredient of some of the most efficient optimization algorithms
available today [Rud17; LN89; KB15]. Let us consider for examples the gate fidelity
given in Eq. (2.12). Its derivative with respect to a pulse parameter θi, one of the
components of the parameter vector θ, that governs the quantum dynamics is given by:

∂F

∂θi
= 2
d2 Re{Tr{Uθ(T )U

†
target}Tr{∂Uθ(T )

∂θi
U

†
target}}. (2.19)

The problem is now to calculate the gradient of the propagator U defined in Eq. (2.6).
To simplify the problem, it is often assumed that the controls are piecewise constant
pulses over a time span ∆t – see Eq. (2.15). Solvers for quantum dynamics based on
Trotterization [Tro59] make use of products of unitary gates to compute the dynamics.
In Trotter-based approaches, the time-ordered propagator is written as a product of N
unitaries corresponding to a time interval ti − ti−1 =∆t. More sophisticated approxima-
tions make use of the Magnus expansion [BCO&al09; DM22] or the Dyson series in the
interaction picture [SGD&al21]. The use of ODE solvers such as Runge-Kutta is also
possible, but it may violate the unitarity of the dynamics. Assuming that the unitary
propagator can be written as a product of unitaries with sufficient precision, the gradient
can be computed separately for each piecewise constant pulse:

Uθ(T, t0) ≈
N

∏
i=1

Ui,θ(i)(∆t), (2.20)

using a unitary Trotter step

Ui,θ(i)(∆t) = exp
⎧⎪⎪⎨⎪⎪⎩
−iH0∆t − i

M

∑
m=1

θimHm∆t
⎫⎪⎪⎬⎪⎪⎭
, (2.21)

where θ(i) = (θi1, ..., θiM )T is the ith control pulse vector and θim = um(ti),0 ≤ i ≤ N,1 ≤
m ≤ M . In this formulation, the gradient-based optimization algorithm requires the
gradient of each unitary step Ui(∆t). In fact, the control parameters are local, i.e., the
ith and mth control parameter only appears in the unitary step Ui(∆t). Differentiating
Eq. (2.21) with respect to θim results in the analytical formula [MSG&al11; Aiz63;
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KRK&al05; DMJ&al20]:

⟨λk ∣
∂Ui,θ(i)

∂θim
∣λj⟩ =

⎧⎪⎪⎨⎪⎪⎩

−i∆t ⟨λk ∣Hm ∣λj⟩ e−i∆tλk , if λk = λj

⟨λk ∣Hm ∣λj⟩ e−i∆tλk−e−i∆tλj

(λk−λj) , if λk ≠ λj ,
(2.22)

where the values λk are the nλ eigenvalues and ∣λk⟩ the corresponding eigenvectors of Ui
for 0 ≤ k ≤ nλ. This expression requires knowing the eigenvalues of the full Hamiltonian
for each time step and uses diagonaliztion, which is computationally expensive. For
non-piecewise constant pulses – see Eq. (2.17) – an option is to treat again the pulse
as piecewise constant, with the only difference that now the piecewise constant values
are interpolated using an appropriate function basis – e.g., a truncated Fourier basis –
evaluated at discrete points ti,0 ≤ i ≤ N . The gradient can then be computed using
the chain rule on Eq. (2.22) [MGM&al11]. Alternatives are numerical differentiation
strategies or the analytical formula, i.e., [LPQ&al24]:

∂Uθ(T )
∂θi

= −i∫
T

t0
Uθ(T, τ)

∂Hθ(τ)
∂θi

Uθ(τ, t0)dτ, (2.23)

which under certain conditions can be evaluated on quantum devices using Monte Carlo
integration [LPQ&al24; KK23]. Gradient-based optimization of optimal quantum con-
trol problems can be performed using, e.g., GRAPE [KRK&al05] or Krotov [GBG&al19].
The GRAPE algorithm computes the full gradient of the fidelity with respect to the fig-
ure of merit using backpropagation. Nonetheless, implementing this algorithm in closed-
loop on physical devices is particularly challenging, because we cannot naively perform
backpropagation in quantum experiments – see also the analysis given in Ref. [BWP24].
The GRAPE algorithm uses concurrent update of all the piecewise constant control
fields, while the Krotov algorithm updates them sequentially. Ref. [MSG&al11] analyzes
the performance of concurrent and sequential updates of the control values in several
control problems. Overall, applying gradient descent concurrently over the entire control
pulse seems to be more efficient in most of the problems considered.

2.4.2 CRAB
Quantum control methods based on either solving (numerically or analytically) Lagrange
equations [BCR10] or computing the gradients of the quantum cost function with respect
to the pulse parameters (GRAPE, Krotov) can produce useful ansätze for experimen-
tal purposes. However, their direct implementation on real quantum hardware implies
that both the cost functions and their derivatives can be estimated with sufficient pre-
cision [KK23; LPQ&al24] from experimental measurements. Such estimators can be
constructed for arbitrary unitary dynamics [WIW&al22; WLW&al24], they are how-
ever only efficient for gates that have highly degenerate spectra, which is generally not
the case for the unitaries of quantum control problems. In fact, the number of shifts
needed to evaluate the partial derivative with respect to a variational parameter scales
linearly with the number of distinct eigenvalues of the quantum gate – see Section 2.7.1
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and Eq. (2.32) in particular. In the case of time-depedent Hamiltonians, an additional
level of complexity is present, as the derivative of the cost function with respect to
the pulses is proportional to the integrated time dynamics, which makes it particularly
challenging to sample the gradient in reasonable time. Furthermore, multiple sources
of errors present at the level of the experiment (including cross-talk between qubits
and control lines [ZBL23], coherent errors on the qubits, leakage in higher energy levels
[MGR&al09], SPAM errors [HFW20], etc.) make it challenging to achieve the desired nu-
merical precision in the sampling, therefore preventing the gradient-based optimization
from converging to the desired optimum. As a result, gradient-free methods represent
a valid alternative for quantum control experiments. More specifically, the CRAB ap-
proach (Chopped RAndom Basis) [CCM11; MSJ&al22] to quantum optimization allows
for gradient-free control by constructing an appropriate randomized ansatz. The idea
is to first choose a suitable basis to represent the time-dependent control pulse, e.g., a
(truncated) Fourier basis ansatz or a polynomial ansatz:

u(t) = g(t)
K

∑
k=1

akfk(ωk, t), (2.24)

where fk are suitable basis functions with relevant parameters ωk that can approximate
any time-dependent function u on [t0, T ] and g(t) is a suitable envelope function that
enforces the pulse constraints for t = t0 and t = T . Here the maximum number of basis
components used, K, is a free parameter of the problem and it is usually bounded from
above by the experimental constraints of the quantum system. We consider here only the
case in which a Fourier basis is used. Similar approaches can be used to include other
types of control bases, such as systems of orthogonal polynomials. The parameters
ωk for the Fourier basis can be chosen to be the principal harmonics ωk =

2πk(t−t0)
T ,

they are however randomized during the optimization to improve the convergence of the
algorithm: ω′

k
= ωk(rk +1), where rk ∼ U (−1

2 ,
1
2) [CCM11]. If more detailed information

about the physical system is available, it can be used to improve the standard randomized
ansatz. The CRAB ansatz can be further enhanced to construct a meta-optimization
method that tries to search for the optimal pulse in the control landscape by varying
the number and the structure of the Fourier basis functions. This procedure is known
as the dCRAB method [RMC&al15]. In this approach, on top of the main optimization
routine, a meta-optimization loop with steps j = 1, ...,NdCRAB is introduced to modify
the number and the structure of the function basis [MSJ&al22]:

u(j)(t) = c(j)0 u(j−1)(t) +
Kj

∑
k=1

c
(j)
k
f
(j)
k
(t), (2.25)

where u(j−1) is the optimized pulse from the previous step of the external loop and
f
(j)
i are the new basis functions at the super-iteration j. The coefficients for each

step of the meta-optimization loop are given by c
(j)
i for i = 0, ...,Kj . The number of

Fourier components Kj can be constant at each super-iteration, i.e., Kj = K or it can
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be progressively increased if the cost function minimum does not fall below a desired
threshold. The CRAB framework has been also extended to work remotely over the
internet (redCRAB [HVS&al18]) using ansätze provided by remote users in the context
of the so-called gamified citizen science [HVS&al18].

2.5 Adiabatic control techniques
In the context of optimal quantum control, several analytical solutions to produce dif-
ferent types of quantum gates and states have been discovered. The nature of these
solutions vary depending on the quantum computing platform considered. The adia-
batic theorem [Ber87] offers us the possibility to construct such solutions based on the
principle that for slow time evolution, a system starting in an eigenstate will end up in
the same eigenstate of the Hamiltonian and all the effects of the time dynamics will be
contained in a phase [SN20; TMM&al18]. Most of the analytical solutions attempt to
find ansätze that can, e.g., produce a particular entangling gate using the Hamiltonian
available in the system [SM99] or suppress specific sources of errors [LCM24; MM22].
At the same time, analytical solutions usually allow for the optimization of different
quantum gates using experimental free parameters.

2.5.1 Analytical pulses
Adiabatic transformations [TMM&al18; AL18] can be used to design optimal control
pulses. In particular superadiabaticity [TMM&al18; Ber87; DKM&al08] provides a
framework to suppress unwanted terms in the Hamiltonian interaction by performing
iterative frame transformations. Each transformation can potentially remove a specific
error term and introduce a less detrimental one. This procedure cannot be repeated in-
definitely, as the expansion diverges for a large number of iterations [TMM&al18]. The
condition for the transformation to be successful can be connected to certain conditions
in the control pulses. Let us, e.g., consider a single-qubit transmon device with leakage
[MGR&al09]. In the interaction frame, after performing a rotating wave approximation
(RWA), this device can be represented as a three-level system addressed by microwave
pulses:

H(t) = δ1 ∣1⟩ ⟨1∣ + δ1 ∣2⟩ ⟨2∣ +
u1(t)

2 (σ(01)
x + λσ(12)

x ) + u2(t)
2 (σ(01)

y + λσ(12)
y ), (2.26)

where δ1 and δ2 are the detunings. The transitions ∣0⟩− ∣1⟩ and ∣1⟩− ∣2⟩ have frequencies
ω1 and ω2 and are driven by a signal with carrier frequency ωd, s.t. δ1 = ω1 − ωd and
δ2 = α + 2δ1, where α is the anharmonicity of the transmon. The operators σ(ij)x =
∣i⟩ ⟨j∣ + ∣j⟩ ⟨i∣ and σ

(ij)
y = i (∣j⟩ ⟨i∣ − ∣i⟩ ⟨j∣) describe the transitions between the energy

levels. The signals u1(t) and u2(t) are the quadratures of the signal and λ quantifies
the effectiveness of the signal in driving each transition [MGR&al09]. The goal is to
find control pulses u1(t) and u2(t) that can maximize the fidelity of the corresponding
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unitary evolution U(T ) for t0 = 0 – see Eq. (2.6) – with respect to a target single-qubit
gate and efficiently suppress the unwanted leakage in the higher energy levels. The
DRAG (Derivative Removal by Adiabatic Gate) ansatz is an analytical perturbative
solution to the problem presented above that makes use of the following adiabatic unitary
transformation [MGR&al09]:

V (t) = exp{− i

2αu1(t)(σ
(01)
y + λσ(12)

y )}, (2.27)

applied on the Hamiltonian in Eq. (2.26), which transforms according to the known
rule H ′ = V HV † + iV̇ V . If one expands the resulting expression as a function of the
parameter λ, one obtains that for the leakage to be suppressed, the quadratures u1(t)
and u2(t) and the detuning δ1(t) have to fulfill the following equations [MGR&al09]:

δ1(t) =
(λ2 − 4)

4α u2
1(t), u2(t) = −

1
α

∂

∂t
u1(t). (2.28)

This expression can be used in combination with an appropriate ansatz for the quadra-
ture u1(t), whose parameters can be optimized with an appropriate algorithm, such as
GRAPE [KRK&al05]. Higher order corrections can be applied to obtain more refined
expressions for the pulse shapes. This approach has been successfully generalized in the
form or recursive DRAG to optimize two-qubit entangling gates [LCM22; LCM24] in
superconducting quantum systems.

2.6 GOAT
In the method GOAT [MAT&al18], the differential equation for the derivative of the
quantum state or gate with respect to the pulse parameters is propagated forward in
time together with the state. The differential equation [Goe15] reads:

∂

∂t
[
Uα(t, t0)

∂
∂αUα(t, t0)

] = −i [
H(t, α) 0

∂
∂αH(t, α) H(t, α)] [

Uα(t, t0)
∂

∂αUα(t, t0)
] , (2.29)

with Uα(t, t0) = T̂ exp{−i ∫ t
t0
H(τ,α)dτ}. The term H is any time-dependent Hamilto-

nian that depends on a parameter α, such as, H(t, α) =H0 +∑M
m=1 um(α, t)Hm. We see

that this method requires to calculate the propagator of a 2n×2n time-dependent matrix
instead of a n×n matrix, which is more time-consuming. Because the gradient of a cost
function such as the state overlap or the gate fidelity depends on the unitary Uα(t, t0),
Eq. (2.29) can be used to calculated the gradient of the fidelity. The original proposal
suggests using a Runge-Kutta solver to integrate the expanded Schrödinger equation.
However, any solver can be implemented in principle.
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2.7 Variational quantum circuits
In recent years, due to the increased interdisciplinary interest in quantum computers
from both academia and industry, some approaches have been developed to exploit the
computational power of quantum processors even in their current or near-future NISQ
format. The goal is to use these devices to address relevant problems in chemistry, drug
design, classical computer science, finance and artificial intelligence. In general, solving
an optimization problem on a quantum computer requires the preparation of an appro-
priate n-qubit ansatz consisting of entangling and single-qubit gates, which depend on
so-called variational parameters. Mathematically, these parameters are rotation angles
of unitary gates. From a physical point of view, the parameters are physically tun-
able quantities such as free parameters of laser or microwave pulses used to drive the
qubits. An example of a parametric circuit model would be a circuit structure composed
of layers of pairwise entangling gates and layers of single-qubit rotations [FGG14], but
several other ansätze have been developed [Cho&al21; MAG&al21]. The other element
needed in a variational algorithm is the Hamiltonian that encodes the problem to solve.
The Hamiltonian can usually be represented in terms of fermionic interactions and then
mapped to spins (qubits) using the Jordan-Wigner transformation [JW28; SOG&al02].
The expected value of the energy can be estimated using multiple instantiations of quan-
tum circuits or by using the LCU method [CW12].
Due to the presence of the aforementioned variational parameters, the expected value
of the energy of the problem Hamiltonian depends now on the variational angles. As a
result, we can in principle minimize the estimated quantity with respect to the parame-
ters to find the ground state of the Hamiltonian. The QAOA approach [FGG14], which
is particularly ambitious, attempts to solve hard optimization problems, such as the
MAX-CUT or the traveling-salesman problem [CK97], using a variational circuit. For a
general overview of variational quantum algorithms, see Ref. [Cer&al21b]. A variational
quantum cost function is a mapping

C(θ) = tr{V (θ)ρV †(θ)O}, (2.30)

that encodes a specific optimization problem using multiple quantum circuits and real
parameters θ ∈ Rnp , an observable O, an input density matrix ρ and a n-qubit variational
quantum circuit V (θ) ∈ U(d), d = 2n, given by the product of L parametric gates Vl:

V (θ) =
L

∏
l=1

Vl(θl), (2.31)

where θ = (θ1, ...,θL)T . The dimension of the parameter space np depends on the cir-
cuit structure, i.e., how many gates are employed per layer and whether each gate has
more than one parameter, which is the case in quantum optimal control [MAG&al21].
Generally, the number of parameters scales linearly with the number of layers L.
Ideally, by optimizing over the parameter vector θ, the expected value of the energy
should reach its minimum, which corresponds to the solution of the optimization prob-
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lem. Due to the relatively low depths of these circuits compared to quantum algorithms
such as Grover search or phase estimation, there is hope that variational algorithms
could provide quantum speedup already in noisy devices. However, the initial ambitions
of these approaches were frustrated by the presence of Barren plateaus [McC&al18],
which render the optimization exponentially hard as the number of qubits and the com-
plexity of the problems considered increases. In particular, it has been argued that
optimization problems for QAOA either exhibit Barren plateaus or are classically sim-
ulable [CLG&al24]. Overcoming the limitations represented by Barren plateaus has
become an important research direction in variational quantum algorithms [LTW&al24;
VC21; Cer&al21a].

2.7.1 Optimization and gradients for variational circuits
A variational algorithm first estimates the energy of a quantum system as a function of
variational parameters θ. Therefore, the algorithm must employ a suitable estimator for
the parameter-dependent observable. Afterwards, the optimization is carried out with
respect to the parameters. The parameter-dependent energy of the encoded optimization
problem is often referred to as quantum cost function. If one treats the so-called quantum
cost function as a black box, it is possible, in principle, to use a suitable gradient-free
optimization method [OGB21; CCM11] to minimize it. However, such methods often
show poor performance for large numbers of parameters [MSG&al11]. The alternative
is given by gradient-based methods. The problem here is how to estimate the gradient
of the aforementioned cost function. For a standard gate set composed of single-qubit
Pauli rotations Rx(θ) = exp{−iσxθ}, Ry(θ) = exp{−iσyθ} and Rz(θ) = exp{−iσzθ} and
a CNOT gate, this problem can be solved elegantly using a so-called parameter-shift
rule [Li17; WIW&al22]. With the same method, one can also sample higher derivatives
and estimate the Hessian [WIW&al22; KE21], which is needed for methods such a
BFGS [BRO70]. For more general gate sets with structure V (θ) = exp{−iHθ}, it is
possible to generalize the aforementioned approach by using trigonometric interpolation.
To implement such interpolation schemes, the eigenvalue decomposition of the gate
Hamiltonians needs to be known. The gradient is then given by:

∂C(θ)
∂θi

=
R

∑
i=1

aiC(θ + si), (2.32)

where si are the parameter shifts and ai are appropriate real coefficients that are related
to the eigenvalues of H – see also [WIW&al22; BWK22] and Chapter 5. The minimum
total number of shifts R depends on the number of eigenvalues. However, we see that
parameter-shift rules scale linearly with the total number of parameters and the num-
ber of distinct eigenvalues of the gate Hamiltonians. This is unavoidable for this type
of estimation, since in a general quantum circuit, such as the one in Eq. (2.32) each
parameter has to be shifted independently while the others are kept constant. The-
oretically, parameter-shift rules could also be parallelized embarrassingly on multiple
quantum processors, similarly to what can be accomplished for evolutionary strategies
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[WSG&al14; SHC&al17] and finite-difference methods in classical optimization. For
general gates exp{−iH(θ)} with parameter vector θ and where H(θ) is an arbitrary
parametric Hamiltonian, the gradient estimation procedure uses the properties of the ex-
ponential map [Aiz63]. Therefore, the construction of the adjoint operator [WLW&al24]
becomes necessary. An alternative approach could be represented by strategies that use
unitary interpolation [SPM&al24].

Figure 2.2: A representation of an optimization workflow between quantum control and
compilation. First, the pulse parameters need to be optimized to generate an appro-
priate set of entangling gates. Some parameters can be ignored in the initial quantum
control optimization, as we may want the pulse to represent a family of quantum gates.
Afterwards, one can build a computational circuit which is composed by multiple layers
of entangling and non-entangling gates acting on several qubits. Discrete optimization
algorithms can be used to prune the initially large circuit to reduce its size while keeping
its fidelity high. Meanwhile, some remaining variational parameters can be set to ap-
propriate values. The resulting optimized quantum algorithm is the product of multiple
layers of optimization that can potentially interact with each other [YLB21; SEL&al22].
A discrete optimization algorithm – graph-traversal algorithms [HN19] , reinforcement
learning [Mor&al21], etc. – can interact with continuous optimization algorithms –
dCRAB [CCM11], LBFGS [LN89], etc. – to improve the final solution iteratively. The
image was realized by the author using PowerPointTM.

In some cases, we may want to connect the parameters of a set of quantum gates to
some measurable quantities external to the problem, in order to establish a connection
between the parameters themselves and, e.g., the physical quantum computing setup.
In this sense, the new gate parameter α will exhibit a functional dependence from a
collection of external parameters λ and variational parameters θ, that is

α ∶= f(θ,λ), (2.33)
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where f is a suitable function, e.g., a linear model or a neural network. Let us further
suppose that we want to determine the optimal function parameter θ. As we will see
in the context of SOMA (Single-Optimization-Multiple-Application) – see also Chapter
4, there are two different ways of achieving this goal: By performing a regression over
input-ouput data coming from the experiment, or by training a model directly on the
cost function. We want to consider here the second case, since it is the one where
parameter-shift rules may be actually beneficial. Using the chain rule on the quantum
cost function in Eq. (2.30), we obtain:

∂C(α = f(θ,λ))
∂θi

= ∂C(α)
∂α

∂α

∂θi
∣
α=f(θ,λ)

, (2.34)

where the first gradient is evaluated using parameter-shift rules, and the second gradient
can be computed classically using backpropagation. Therefore, we can relate the gradient
with respect to the rotation angles to the gradient computed with respect to the function
parameters. This allows us to compute derivatives for problems that involve meta-
optimization. As we will see in Chapter 4, these problems are relevant for modern
applications, for example in cases where our goal is to optimize a family of control
pulses, quantum gates or Hamiltonians.

2.8 Quantum compilation
Quantum compilation [Mar&al22] deals with the execution of quantum algorithms on
real quantum hardware. Usually, quantum algorithms are given in terms of abstract,
multi-qubit unitaries, such as the Quantum Fourier Transform [NC10; Sho94], the Grover
operator [Gro96], a quantum simulation algorithm such as Trotterization [Tro59], etc.
Such unitary operations are generally not available on quantum devices. Hence, com-
plex quantum algorithms need to be decomposed into layers of more basic operations.
Similarly, a classical processor decomposes a complex numerical algorithm in basic oper-
ations such as addition and subtraction. In any quantum processor there is a transition
from the hardware level, where qubits are driven with electromagnetic fields, to the more
abstract mathematical level of unitary operations and digital gates – see also Fig. 2.2.
At the lowest level, on the left in Fig. 2.2, we have quantum control pulses, which can be
used to generate digital or analog gates. An example of a framework that can be used to
optimize different classes of gates using quantum control in QuTip [JNN13] is given in
Ref. [LAS&al22]. On an intermediate level, quantum control can also be used solely to
implement a universal set of gates with few free parameters – see also Chapter 4. Once
the gate set is available, the Solovay-Kitaev algorithm [DN06] provides us with an effi-
cient approach to decompose an arbitrary unitary using universal gates. This approach
can be combined with graph-traversal algorithms [HN19; YIL&al21]. Some more recent
approaches make use of reinforcement learning – see also Chapter 3 – and deliver highly
optimized solutions at the cost of long training times [SEL&al22; Ost&al21; Mor&al21].
An optimization method based on both reinforcement learning and continuous optimiza-
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tion of variational angles is introduced in Chapter 5. This method lies at the intersection
between full experimental quantum control and discrete optimization of digital gates.
At the highest level, on the right in Fig. 2.2, we have a full (digital) quantum algorithm,
such as amplitude amplification or the Shor’s algorithm. The overall fidelity of the final
quantum circuit depends on the efficiency of all the methods discussed above. To con-
clude, improving and developing new optimization methods for quantum circuits and
quantum dynamics is a fundamental step in the path towards fault-tolerant quantum
computation.
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3.1 Introduction
Machine learning [Alz&al21; Bis07; GBC16] is a domain of artificial intelligence that
studies algorithms to approximate functions using data. Due to the importance of learn-
ing data patterns in statistics long before the most recent developments in artificial intel-
ligence as an autonomous research field, several terms that find application in machine
learning often find correspondence in traditional statistics [Was10]. For example, the
process of learning from data is usually described as data fitting in statistical contexts.
The reason for these discrepancies are arguably due to the different questions that these
two fields seek to answer and their parallel development throughout the years: on the
one hand, machine learning usually tries to underline the connection between learning
a functional mapping from a data set and, e.g., neurobiological processes in mammal’s
brains [Hay09] and sea creatures [Ant&al03] or psychological concepts, such as learning
from rewards. In statistics, instead, the question is often about how to suitably rep-
resent the available data or, e.g., whether a certain hypothesis about patterns in the
data can be rigorously verified with sufficient precision. This difference in focus is often
reflected in the terms used in the two fields: for example, in statistics, the term (test set)
validation is used to talk about the performance of a trained function or model on new
data. The goal here is simply to test whether the model really represents the data or
not. But in machine learning the term used is generalization [HTF09], a more abstract
notion that envisions an agent trying to first gather some knowledge about a concept
and then trying to apply this knowledge on new, unseen phenomena. Mathematically,
this concept is often formalized in the so-called generalization error [Hay09], or general-
ization gap, that quantifies the performance of the learning algorithm on novel inputs.
The two fields, statistics and machine learning meet and partially merge in the context
of statistical learning theory [HTF09], which provides a rigorous framework for machine
learning models.
Leaving aside psychology and neurobiology, which despite their importance are outside
the scope of our discussion, another field of research shows deep connections with both
machine learning and statistics, i.e., control theory [Kir04]. In fact, control systems
often needs to gather data about sensors and other electromechanical components inside
industrial facilities or engines. The data has to be then used so to adapt the system
parameters to the underlying changing conditions, which often involves the optimization
of parametric models, such as neural networks. A summary of the differences in termi-
nology between machine learning and statistics is given in Table 3.1 and can be found
in Ref. [Was10] in a more comprehensive version.
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Statistics Machine learning
estimation learning

classification supervised learning
clustering unsupervised learning
covariates features
classifier hypothesis

Table 3.1: A comparison of some of the terms used in machine learning and statistics to
describe similar concepts (modified from Ref. [Was10]).

3.2 Multi-layered perceptrons
In deep learning, one usually relies on families of functions f ∶ Rd ×Rnp ↦ Rk, (x,θ) ↦
f(x; θ), where θ ∈ Rnp are real parameters [FHI&al18]. The families of functions con-
sidered usually in deep learning tasks are neural networks. The reason is that these
computational models have been shown empirically to perform extremely well in an
enormous number of tasks [Alz&al21; Mni&al15; Sil&al16; Jum&al21; CT17] due to
generalization capabilities and are comparatively easy to train thanks to the improve-
ments in computation, in particular in GPU computing. Feed-forward neural networks
are also universal function approximators [HSW89]. The simplest neural network can
be described by an affine function applied on the input values, followed by a non-linear
function σ, called activation function:

yi = σ
⎛
⎝

d

∑
i=1

Wijxj + bi
⎞
⎠

(3.1)

y =
k

∑
i=1

yiêi. (3.2)

The matrix entries Wij ,1 ≤ j ≤ d,1 ≤ i ≤ k multiplied with the input values are referred to
as weights, whereas the values bj ,1 ≤ i ≤ k represent the bias vector. The (feed-forward)
neural network has parameters θ = (W̄ ,b) and np = k(d+1). Eq. (3.1), for the case i = 1,
i.e., with just one output values, shows the original model of Rosenblatt’s perceptron
[Ros58], where the activation function is a sigmoid. Other activation functions, such
as ReLUs [Aga19], SeLUs [KUM&al17] have becomes more popular in the last decade.
While Rosenblatt’s perceptron has one single output and a single set of weights and bi-
ases, modern neural networks benefit from deeper structures. Consequently, the network
is equipped with several layers, each one with appropriate dimensionality of weights and
biases, acting on the output of Eq. (3.1) recursively. The layers before the last one
are then referred to as hidden layers, whereas the final one is the output layer. More
sophisticated neural network layers have been developed throughout the years to tackle
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specific tasks. Convolutional layers [LB98], for instance, have been extensively used for
image and video recognition tasks. Recurrent neural networks resemble the structure of
dynamical systems [HS97; GBC16] and are generally used for sequential inputs, such as
texts or speech. Graph-neural networks [ZCH&al21] resemble the computational struc-
ture of relational graphs and have recently found use in modelling complex physical
systems [SHS&al18], such as proteins [FBS&al17].

3.3 Automatic differentiation
Automatic differentiation is a powerful tool to compute derivatives of functions by using
the chain rule. This approach is fundamentally different than numerical differentiation,
which is prone to instabilities, and symbolic differentiation, whose derivative expression
can quickly become unmanageable due the large redundancies they produce [BPR&al18].
Any mathematical operation executed on a computer uses a specific set of basis functions,
for example the sinus function or the square root function [Ver00]. More complicated
operations are executed as a recursive application of the fundamental functions. This
makes it possible to differentiate any such computation with respect to an input value
by knowing the derivatives of the elementary functions and then applying the chain
rule on the recursive computations. The emergence of automatic differentiation has
greatly simplified the application of machine learning models to scientific problems. For
instance, all four Chapters 4 - 7 rely on automatic differentiation in JAX [BFH&al18] to
optimize different types of cost functions, some of which are particularly complex from
a numerical perspective and would be intractable without AD. Backward-mode AD can
arguably be considered for discrete systems what the Portraying maximum principle
is for continuous systems [BPR&al18] and has found application, for instance, in the
study of neural ordinary differential equations [CRB&al18]. Forward-mode AD has also
been considered [BPS&al22], but its efficiency in high-dimensional systems has been
questioned [Bel22].

3.4 Supervised Learning
Supervised learning (usually referred to as regression or classification in the context of
statistics) is a sub-field of machine learning that deals with learning from a data set
D. The data sets consists of labels yi ∈ Rk and corresponding data points xi ∈ Rd, s.t.
D = {(xi,yi) ∣ i = 1, ..., L}. The goal is to find a suitable function f̃ ∶ Rd ↦ Rk,xz→ f̃(x)
that can represent the relation between the data. The optimal function is usually selected
by minimizing an appropriate functional over the data. This functional quantifies how
well a family of functions can map input data to output data.
Arguably, the simplest supervised learning algorithm is the linear regression. In this
framework, we are given an unknown stochastic environment [Hay09] with input vector
x ∈ Rd. The action of the environment perturbs the vector to produce a response y ∈ Rk.
Sampling from the black-box environment multiple times gives us samples x1, ...,xL,
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that is

yi = f(xi) + ϵi, (3.3)

where f ∶ Rd ↦ Rk,x z→ f(x) is an unknown function and ϵi, i = 1, ..., L is an error
term with E [ϵi] = 0 [HTF09]. The goal is to approximate the input-output map of the
stochastic environment by optimizing appropriate parameters. We limit ourselves to
linear models, that is, functions of the type

ỹ =W x + b, (3.4)

where W ∈ Rk×d is a matrix and b ∈ Rk is a bias vector. Bayesian statistics [Was10]
allows to characterize the uncertainty in the parameters [Hay09]. In fact, the posterior
probability distribution of the output given the input and the parameters can be written
as:

p(y∣θ,x) = p(θ∣y,x)p(θ)
p(y)

. (3.5)

The Bayesian framework provides us with two approaches to obtain the optimal pa-
rameter θ∗. On the one hand, we can derive the maximum likelihood estimator by
minimizing the so-called likelihood function l [Hay09; Was10]:

θ∗ML = argmax
θ
[l(θ∣y,x)] , (3.6)

and the maximum-a-posteriori optimization

θ∗MAP = argmax
θ
[p(θ∣y,x)] . (3.7)

It can be shown that for Gaussian stationary environments [Hay09], the maximum a-
posteriori estimator resulting from Eq. (3.7) leads us to the minimization of the (regu-
larized) mean-squared loss function. The mean-squared-loss function is defined as:

L(θ) = 1
L

L

∑
i=1

L (θ,xi,yi) (3.8)

with

L (θ,x,y) = 1
2(W x + b − y)2 (3.9)

for θ = (W ,b). The generalization of the least-square-regression to dynamic systems
leads us to the Least-Mean-Square (LMS) filter [Kay93], which is the paradigmatic adap-
tive filtering algorithm for estimation and control. The algorithm can be implemented
recursively to adapt to changing environments and gives rise to the recursive Least-
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Mean-Square filter and the Kalman filter [Kay93].
So far, we have only considered models that are linear in the input data. In principle,
arbitrary parametrized functions can be implemented. In this case, due to the non-
linearity of the resulting cost function, the optimized parameters cannot be expressed
analytically, so it is custom to implement different types optimization algorithms such as
gradient descent, in which the model parameters are updated recursively in the direction
of the gradient:

θi+1 = θi + η∇θL(θi), (3.10)

where η is the so-called learning rate and θ0 is the initial guess for the parameters. If
successful, the optimization should converge to the parameters that minimize the loss
function, that is θ∗ = argminθ [L(θ)]. Often, however, reaching the so-called global
minimium of the loss function proves particularly challenging and only local minima can
be reached [GG24]. More refined algorithms have been developed for non-linear least
square, such as the Levenberg-Marquardt algorithm [Lev44], BFGS [BRO70], L-BFGS-B
[LN89], etc. However, most of these algorithms are too expensive from a computational
point of view to be implemented for the optimization of neural networks with potentially
large numbers of parameters and enormous data sets. For such problems, stochastic gra-
dients [Rud17] and in particular mini-batch gradient descent algorithms have been used
to optimize cost functions sampled over large data sets. These gradients are computed
over a subset of the whole data set:

∇θL(θ) ≈
1
NB

Nb

∑
i=1
∇θL(θ, x̃i, ỹi), (3.11)

where Nb is the batch size and the inputs x̃i, ỹi are Nb pairs randomly sampled from
the data set. Due to the small size of the batch compared to the whole data set, these
gradients are much faster to evaluate. Nonetheless, they have been showed to perform
extremely well in a variety of tasks compared to standard gradients, in particular in
combination of momentum-based algorithms such as Adam [KB15]. These algorithms
do not only make use of the first moment of the gradient estimate with respect to the
batch, but also of its second moments. In the case of Adam, in particular, the approach
is equivalent to sign descent [BH18].

3.5 Unsupervised Learning
Unsupervised learning (usually referred to as clustering in the context of statistics) de-
scribes a class of algorithms that attempts to find patterns in a data sets without the
help of so-called labels. Instead, transformations are performed on the data to infer its
mathematical properties. The main idea is to map an input x, which is often high-
dimensional, to a lower dimensional representation z = f(x,θ) [FHI&al18; Nau&al22]
and then map it back to the original vector using a second function g(z,θ′). In the
clustering approach, we want to map high-dimensional data to a finite number of clus-
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ters. However, in contrast with supervised learning, we do not have labels yi, i = 1, ..., L
available for each input xi, i = 1, ..., L from the data set. Before the rise of deep neural
networks, several relevant algorithms were developed, such as (naive) k-means clustering
algorithms [Llo82], mixture models trained with the expectation maximization algorithm
[Bis07] and the principal component analysis (PCA) [Bis07], all of which come in different
variants. Modern approaches make use of multilayered perceptrons tailored for unsuper-
vised learning such as auto-encoders [GBC16; KW22] and normalizing flows [KPB21;
CRB&al18]. The latter have proved particularly successful in tasks such as image, text
and sound generation and are employed by several AI companies [RBL&al22].

3.6 Reinforcement Learning
The term reinforcement learning (RL) characterizes a family of learning algorithms where
an agent, equipped with various computational structures usually in the form of neural
networks, receives a reward signal by interacting with an environment in discrete steps.
The goal of the agent it to maximize the long-term return of these rewards. The concept
of return describes the overall amount of reward obtained by the agent during its inter-
action with the environment, weighted according to the importance of the reward in a
specific moment of the training. During its interaction with the environment, the agent
should not just aim for immediate rewards, but also develop long-term strategies. In
recent years, RL has proved to be a successful tool in different branches of science and
technology, with results spanning from beating humans at various board games [Sil&al16]
and computer games [Vin&al19] to predicting the structure of proteins [Jum&al21] and
designing drugs and molecules [Kor&al22]. We give here a brief overview of some rele-
vant RL methods. For a more comprehensive overview of the most important results of
the field, see Ref. [FHI&al18] and for a detailed treatment Ref. [SB18]. An introduction
to RL is also given in Ref. [Pre20]. In the RL framework, the state space S describes all
possibles states s ∈ S that the agent can find itself in with respect to the environment
and the action space A contains all possible actions a ∈ A that the agent can execute.
The interaction of the agent with the environment is divided in time-steps t = 0,1, ..., T ,
where T is the maximum time. Usually, it is assumed that the process that governs the
transition [FHI&al18] between any state-action pairs at time t, (st, at) and the next state
st+1 is Markovian, as well as the assigned reward for each state-action-new state transi-
tions, which means that the next state that the agent experiences in its interaction with
the environment and the corresponding reward of the transition will be dependent only
on the previous state and the chosen action, without memory of the previous choices of
the agent. This allows to derive some important results regarding the convergence of the
policy, such as the Bellman equation [Bel52]. The function that describes how the agent
behaves in its interaction with the environment, i.e., which states are mapped to which
action, is called policy. The policy can be deterministic, i.e., π ∶ S ↦ A, sz→ π(s), which
means that the action of the agent at each step is completely determined by the state,
or stochastic, i.e., π ∶ S ×A ↦ [0,1] , (s, a) z→ π(s, a), where the policy is a probability
distribution over states and actions. The expected return of the reward associated with
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the policy π at time t [FHI&al18]:

V π(s) = E [
∞
∑
k=0

γkrt+k ∣st = s, π] , (3.12)

which is the so-called state-value function V π associated with the policy π and where
γ ∈ [0,1) is a so-called discount factor that ensures the convergence of the sum and
represents the diminishing weight of rewards that are located far in the future. The
reward rt is determined by the reward assignment function [FHI&al18]:

R ∶ S ×A × S z→ R, (st, at, st+1)z→ R(st, at, st+1) (3.13)
rt = Ea∼π(st,⋅) [R(st, a, st+1)] , (3.14)

under the state transition function [FHI&al18]:

T ∶ S ×A × S ↦ [0,1], (st, at, st+1)z→ T (st, at, st+1). (3.15)

Both the state-transition function and the reward-assignment function can be stochastic
or deterministic. To determine the optimal policy π∗, an option is to define the so-called
state-action value function [FHI&al18]:

Qπ(s, a) = E [
∞
∑
k=0

γkrt+k ∣st = s, at = a] , (3.16)

from which the optimal policy can also be derived

π∗(s) = argmax
a∈A

[Qπ(s, a)] . (3.17)

RL algorithms are classified based on how they use the information coming from the
environment and how they optimize the policy towards the optimal policy [FHI&al18].
In model-based RL, for instance, a model for the environment is first built and then
adapted using information collected from the environment. In model-free RL, instead,
no such model is present, and the environment itself is treated as a (partial) black-
box that feeds information to the agent. RL algorithms are also classified based on
the nature of the training. So-called value-based methods rely primarily on the state-
value or state-action-value functions (score functions that assign to states and actions
a numerical value to determine their effectiveness) to optimize the policy. Policy-based
methods, instead, optimize the policy directly without relying on score functions for
the reward. Combinations of the different methods are possible and can significantly
increase the proficiency of the algorithms. In the following sections we briefly outline
some algorithms for RL and their limitations. We also discuss the importance that deep
neural networks have acquired in the context of RL in the course of the last decade.
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3.6.1 Tabular methods
Tabular methods are value-based RL algorithms that store the values associated to
a discrete set of actions A and states S in a vector V π

s ∈ R∣S∣ for the value-function
and in a matrix Qπ

s,a ∈ R∣S∣×∣A∣ for the state-action-value function. Some tabular RL
algorithms use state-value functions, e.g., TD-0 and TD-λ [SB18], whereas others, such
as Q-learning, use action-value functions in their optimization routines. In Q-learning,
for instance, the optimal policy is determined by maximizing over the action dimension,
while the table of values is updated using the rewards coming from the environment
[WD92; SB18]:

Qt+1(s, a) = Qt(s, a) + α(Rt + γmax
at+1

Q(st+1, at+1) −Q(at, st)) . (3.18)

Another relevant tabular algorithm is SARSA (an acronym for state-action-reward-state-
action) [RN94], which modifies the update rule for the Q-function to:

Qt+1(s, a) = Qt(s, a) + α (Rt + γQ(st+1, at+1) −Q(at, st)) . (3.19)

Monte Carlo Tree Search (MCTS) can be used to enhance the exploration of the state
and action spaces [SB18; Mni&al15] and has also found implementation in more recent
algorithms [Sil&al17; Dal&al20]. More recently, the framework of Projective Simulation
(PS) has been introduced [BD12]. This approach to intelligent agents inspired by physics
also retains similarities with the aforementioned algorithms [Mau&al15], but it strength-
ens the connection between the underlying physical model and the learning algorithm.
These algorithms represent the building blocks of modern RL, however their convergence
is limited by the tabular structure, whose number of entries scales with O(∣A∣∣S∣). This
scaling is unfeasible for large discrete action and state spaces. Board games such as
Go [Sil&al16] are example of environments that are intractable with tabular methods.
The issue is even more evident in continuous state and action spaces, e.g., real-world
control problems that cannot be discretized easily. Moreover, the update rule given by
the Bellman equation quickly becomes intractable as the number of states and actions
grows [FHI&al18].

3.6.2 Deep reinforcement learning - value-based
Some early attempts to learn Q functions through regression make use of radial basis
function networks [SB18]. One possible alternative approach is to represent Q as a guess
Q′(θ) that depends on real parameters θ [FHI&al18; Rie05]:

L(θ) = (r + γmax
a∈A

Q(s, a,θ) −Q′(θ))2. (3.20)

The fitting parameters θ are minimized using a gradient descent algorithm with respect
to the loss L. The deep Q-learning approach uses a target network that is updated only
once every few iterations and therefore stabilizes training and replay memory that is
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used as a data set to sample the actions and states to train the Q function [Mni&al15;
FHI&al18]. In deep RL, we use a feed-forward neural network or a convolutional neural
network [GBC16] to represent either the policy, the value function or both. More specif-
ically, in the latter case, the agent is able to learn from visual inputs of the environment
state, such as, e.g., the display output of Atari games [MKS&al13; Mni&al15].

3.6.3 Deep reinforcement learning - policy-based
Policy gradients date back to the original REINFORCE algorithm introduced by Williams
[Wil92]. The idea is to evaluate gradients of black-box functions using Monte Carlo gra-
dient estimation, they build the basis of several black-box optimization and neuroevo-
lution algorithms. Let us consider a function f ∶ Rn Ð→ R,θ ↦ f(θ) and a probability
distribution π(x; θ) with parameter vector θ. Then we have [WSG&al14]:

∇θEx∼π(x;θ) [f(x)] = ∫ f(x)∇θπ(x; θ)dnx = ∫ f(x)∇θ log [π(x; θ)]π(x; θ)dnx,

(3.21)

so the estimator for the gradient can be written as

∇θf(θ) ≈
1
N

N

∑
i=1

f(xi)∇θ log [π(xi; θ)] , (3.22)

for samples x1, ...,xN from the probability distribution π(x; θ). This type of gradient
estimation is used in various areas of machine learning and optimization [MRF&al20].
It builds the basis of so-called NES (Natural Evolution Strategies), that are a class of
black-box optimization algorithms [WSG&al14] that have found various applications in
machine learning [SHC&al17; KT18] and of the policy gradient algorithm in RL. In
the context of RL, one usually considers a parametrized stochastic policy π(a, s; θ) that
determines the probability of choosing an action a given a state s. The score function
that needs to be maximized is given by the reward R(s, a), which guides the agent to-
wards the optimal policy. Gradients of RL policies can be formulated for both stochastic
[SMS&al99; FHI&al18] and deterministic policies [SLH&al14]. This formulation is used
in the DDPG algorithm [LHP&al19]. The policy gradient-based optimization can also
be enhanced by using natural policy gradients [WSG&al14; FHI&al18]. This approach is
used, with some modifications, in state-of-the-art algorithms such as TRPO [SLM&al17]
and PPO [SWD&al17]. The methods can be combined with actor-critic schemes: the
agent policy is parametrized by a neural network with either stochastic or deterministic
output, whereas the state-value or action-value functions are parametrized by a differ-
ent neural network [SB18]. The updates of the policy are based on the values of the
Q-functions. Here the difference is determined by each specific algorithm, but the com-
bination of policy-gradient based updates and value function updates proves particularly
efficient.
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3.7 Machine learning for quantum science
In this Section we give a brief overview of some applications of machine learning to
quantum science and technology, focusing in particular on supervised and reinforcement
learning – see also Ref. [KLF&al23] for a detailed analysis. When we refer to machine
learning (and more generally artificial intelligence) for quantum science, we usually con-
sider a variety of applications of neural networks and learning algorithms to the study of
quantum systems, the design and optimization of experiments both in theory and prac-
tice, i.e., where the agent actively interacts with a physical lab. This domain is therefore
different than quantum machine learning [Bia&al17], which studies instead how to de-
sign quantum algorithms for artificial intelligence that can run on fault-tolerant and
potentially also NISQ devices. Among the most notable achievements of using ma-
chine learning in quantum science are the approximation of quantum states and their
dynamics [CT17; GM22]. In quantum matter, unsupervised learning has been success-
fully employed to detect phase transitions [KHL&al20]. RL has proved to be particu-
larly successful in delivering solutions to problems in quantum science and technology.
These applications include design of measurement strategies for quantum systems, state
preparation and gate synthesis tasks [CRS&al21; PSJ&al24] with variational circuits
and quantum control techniques [Dal&al20; BAH&al21; GST24], transport of quantum
states [Por&al19], optimization of quantum error correction schemes [NDD&al19] and
feedback strategies [PPM23]. Particularly interesting are applications involving gener-
alization, that is when the machine learning model is able to learn an optimal strategy
and then apply it in different contexts: as an example, in Ref. [MPK&al18], the agent
is trained to generate a (photonic) multipartite entangled state with a specific Schmidt
rank vector [EB01]. It is shown that the same agent can discover states with different
Schmidt rank vectors faster compared to an agent which is trained only to generate these
other states. Therefore, identifying underlying patterns in the behaviour of intelligent
agents has become an interesting research topic [Nau&al22; Mel&al17; RMB19]. This
work adds another contribution to the application machine learning concepts in quantum
technology: The algorithms provided in Chapter 4 use a supervised learning approach
with different types of cost functions to discover adaptive pulses for quantum optimal
control, whereas in Chapter 5 RL is employed together with continuous optimization to
discover optimal quantum circuit compilation strategies. Chapter 6 and 7 do not make
direct use of neural network approaches. However, the optimization problems consid-
ered therein could potentially benefit from machine learning approaches, as given, e.g.,
in Ref. [WMD&al20]. Additionally, Chapter 8 mentions quantum machine learning as
one of the possible applications of the sampling method discussed therein.

39



4 Continuous quantum gate sets and
generalized pulse meta-optimization

Disclaimer: A modified version of this chapter was published in Ref. [PCM22]. FP and
FM developed the theoretical framework of the paper. FP developed the code and ran
all the simulations. The paper was written by FP with inputs from FM. TC provided
useful guidance and revisions to the manuscript.

Reduction of the circuit depth of quantum circuits is a crucial bottleneck to enabling
quantum technology. This depth is inversely proportional to the number of available
quantum gates that have been synthesized. Moreover, quantum gate-synthesis and con-
trol problems exhibit a vast range of external parameter dependencies, both physical
and application specific. In this paper, we address the possibility of learning families of
optimal-control pulses that depend adaptively on various parameters, in order to obtain
a global optimal mapping from the space of potential parameter values to the control
space and hence to produce continuous classes of gates. Our proposed method is tested
on different experimentally relevant quantum gates and proves capable of producing
high-fidelity pulses even in the presence of multiple variables or uncertain parameters
with wide ranges.

4.1 Introduction
The standard view of quantum computation [NC10] uses the classical-computing ab-
straction of a subdivision into a finite set of gates, measurements, and state reset tasks.
This paradigm has a number of benefits: notably, it permits formal derivation of univer-
sal computation [DN06; BBC&al95], that is, the composition of a quantum circuit for
any desired unitary operation, as well as error-correcting codes [Per85; Got98], where
specific error syndromes can be measured and corrected. On the other hand, this ab-
straction abandons the essential analog character of quantum devices, from which they
have the most to gain or lose in terms of their expressibility or fragility, respectively.
That is, the power of quantum processors depends strongly on the number of usable
gates available to them.
Practically speaking, the usage of discrete gate sets falls short in at least four impor-
tant respects. First, the analog character is a more complete (and therefore efficient)
description of variability between different qubits, which is inevitable, for instance, in
solid-state qubits [Aru&al19]. The use of qubit-agnostic gate sets as the computational
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primitive means that each qubit must be individually optimized and calibrated to yield
each such gate [Aru&al19], where parametric description of the gates would naturally
capture the variations. Second, these variations can occur for a given qubit as a function
of time [Pro&al20], e.g., due to time-dependent noise, and require complete recalibra-
tions where, typically, drift involves only a single parameter. This is very taxing on the
routines for error suppression, mitigation, and correction.
Third, the complexity arising from parameter variations in space and time is exacerbated
by the subsequent circuit complexity in composing useful circuits. It is well known that,
while discrete gate sets can be universal, the required number of discrete constituent
gates can be very large even for a simple circuit [BBC&al95; Fox&al20; YLB21]. Al-
lowing for analog parameter tuning can dramatically increase the controllability of the
system and thereby necessarily reduce the depth of the quantum circuit for arbitrary
tasks (see, e.g., Appendix 4.7.3). Since errors accrue with circuit depth (notably due to
decoherence), this increase in the circuit success probability may be highly beneficial to
both short-term and long-term (i.e., fault-tolerant) approaches.
Fourth, a further optimization layer is currently ubiquitous in noisy intermediate-state
quantum (NISQ) algorithms [Pre18]. Such optimizable circuits include adiabatic [AL18;
BSL&al16], annealing [ACd89; KN98], and variational [Per&al14; FGG14] quantum al-
gorithms. The common denominator in these approaches is the circuit being treated as
a black box, with a set of analog parameters acting as knobs to tune as inputs for the
respective algorithm. These analog inputs act as terms in the Hamiltonian and thus
may generate various quantum continuous gate sets. These cannot realistically be com-
piled with digital gates, and, moreover, to ensure that the gate set is correctly specified
requires a formal approach for their general construction.
Our contribution, in this work, is to present a unified framework to efficiently de-
scribe and optimize continuous quantum gate sets in these scenarios. This frame-
work allows learning of the parametric gates that can be tuned to very high fidelity
across a large number and wide range of parameter values. We refer to our method as
single-optimization multiple-application (SOMA) quantum gate synthesis. This kind of
learning can be understood as an instance of meta-optimization [HAM&al20; DVB19]
or adaptive-trajectory learning [AKM84; TSH18; DVS01; JT09; CW19; OSF&al91;
BAA22] and can be related to more recent uses of neural networks in quantum physics
[BDS&al18; YYW18; Niu&al19; WDD&al19; LKB&al20; YLB21]. That is, we find a
solution for an optimizer that itself provides solutions to specific problem instances or,
with a different formulation, automatically discovers heuristics to construct solutions for
a specific optimization problem. In particular, we see that our algorithms are able to
synthesize heuristics for general Hamiltonians.
We break down the problem of generalized gate synthesis into the following compo-
nents. We parametrize our quantum gate set using continuous indices that represent
either physical system parameters or desired angles of a continuous Lie group. We
then present two different machine-learning methods for obtaining continuous control
parametrizations that generate the indexed gate set. The first is a supervised approach
where traditional optimal-control theory is used to generate an operational data set
from which a generalized gate-set recipe can be trained. The second is an unsupervised
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Figure 4.1: An explanatory diagram of the concepts discussed in Section 4.2. (a) A gen-
eral quantum circuit containing a long sequence of discrete unitaries (Clifford + T set),
which do not exhibit any dependence on continuous parameters. (b) A general quantum
circuit containing different unitaries with different continuous parameters s1, s2, ..., s5 for
different qubits q1, q2, ..., q5 and angles θ1, θ2, ..., θ8 parametrizing each gate. R, U , and
W represent an analog single-, two- and three-qubit gate, respectively. Here, the same
unitary parametrization is capable of representing all the different gates needed in the
circuit. We show some notable analytical solutions used to engineer specific gate opera-
tions, which are usually implemented due to their adaptive character and simplicity (see
Eqs. 4.5,4.6, and 4.7). (c) STIRAP [KGH&al89; VRS&al17]. (d) The Mølmer-Sørensen
gate [SM99; SM00]. (e) DRAG [MGR&al09; TMM&al18]. (f) The method that we
propose, SOMA, does not make strict assumptions on how the pulse depends on the
problem parameters, but, rather, discovers it more generally through training.

approach using back propagation from which the continuous gate set can be incremen-
tally learned over the entire training population. Finally, we show that our approaches
encompass the various situations discussed above, including general solutions for gates
given generic physical architectures with wide parameter ranges, noise-adaptive optimal-
control theory, and compilation of a Lie group instead of a single element.
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The paper is organized as follows. In Sec. 4.2, we introduce the notation for supervised
and unsupervised training of parametrized pulses. In Sec. 4.3, we discuss the results ob-
tained by applying these methods to single-qubit and two-qubit gates in the presence of
leakage, showing that they display similarities with known analytical-solution families.
Furthermore, we also investigate how our methods perform compared to other existing
algorithms. Finally, in Sec. 4.4 we analyze the dependence on the parameter variability
range, the training data set size and batch size, the system and network size and again
compare our algorithms to other numerical robust approaches. We summarize our con-
clusions in Sec. 4.5.

4.2 Continuous gate set learning
4.2.1 Definitions
We define a continuous gate set in terms of some continuous sets or distributions of n
system parameters s1, s2, . . . , sn and m gate specifications θ1, θ2, . . . , θm. An element of
such a gate set is a unitary transformation between two Hilbert spaces H1 and H2:

U(s1, s2, . . . , sn, θ1, θ2, . . . , θm) ∶H1 ↦H2. (4.1)

Obtaining a single element of this set is a well-known problem in quantum information.
Depending on whether the unitary is synthesized from discrete or analog dynamics, its
composition is referred to as circuit compilation [BBC&al95; DN06; BRS15; MKW17] or
optimal-control theory [WRD93; Fre98; KRK&al05; GBG&al19; CCM11; GBC&al15],
respectively.
In Fig. 4.1(a), we see an example of a generic circuit acting on different qubits. Each
qubit in space (and time) will have different values of the common system parameters
{sk}. In addition, the different unitaries in the gate set {Ui}, each additionally charac-
terized by rotation angles {θi,j}, may vary both throughout the circuit and in iterated
uses of the circuit (e.g., in NISQ algorithms). For compactness we now regroup the
continuous indices into a common array of indices λ⃗ = (s1, s2, . . . , sn, θ1, θ2, . . . , θm).
Such a generalization of the gate-synthesis problem can be framed as solving for the
inverse function of the general dynamics given in Eq. (4.1), that is, for

g ∶ λ⃗↦ u(t), (4.2)

where u(t) is a wave-form function in the standard case of optimal-control theory, but
can also be thought of as a discrete sequence of hard pulses, as in NMR applications,
or of unitary gates in circuit compilation. Importantly, the optimal u(t) changes for
each parametrization λ⃗ of the unitary, which can be generated from e.g. the Schrödinger
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equation.

U̇(λ⃗, t) = −iH(λ⃗,u(t))U(λ⃗,u(t)), (4.3)

or other equations of motion defining the system. This task can be cast as an in-
stance of meta-optimization [Gre86] or trajectory learning for control [SA10; AM86;
OSF&al91]. We formalize the meta-optimization problem as list of problem-parameter
vectors λ⃗1, ..., λ⃗L ∈ Vλ ⊂ RD with figures of merit F1(x) = F (x, λ⃗1), ..., FL(x) = F (x, λ⃗L)
and initial guess x0, the physical parameters of which vary somewhat from each other,
such that λ⃗i ∼ π(λ⃗; v) for 0 ≤ i ≤ L and v ∈ Vλ, is drawn from a parameter distribution.
Throughout the paper we assume, without loss of generality, π to be a multidimensional
uniform distribution, such that π(λ⃗∣v) = U(λ⃗min, λ⃗max), with v = (λ⃗min, λ⃗max) defining
the parameter space Vλ. The objective is to find optimal parameters w∗,

w∗ = argmin
w

{1 − Fi(w)∣ ∀i = 1, ..., L} (4.4)

which allow for simultaneous optimization of all the systems considered within the range
of sampled parameters.

4.2.2 Analytical adaptive control
The most straightforward way to generate classes of solutions to quantum gates has been
the development of analytical solutions for particular quantum systems.
They have in common the knowledge of the relevant state of the system at all times
during the evolution. In particular, analytical knowledge of the eigenvalues [LCM22]
allows reverse engineering of the pulses to provide (near) exact solutions for the desired
states.
Fig. 4.1(c)-(f) shows several celebrated examples where such general classes of solutions
have been found. We quickly review some of their main features. Given a trial pulse
shape such as a Gaussian envelope p(t, t1, t2, θ) = Ae(t−t2/2+t1/2)2/σ2 , where θ denotes
the area under the curve, the following dynamical solutions have been found.
Fig. 4.1(c) shows the stimulated Raman adiabatic passage (STIRAP) solution for trans-
fering population between disconnected states ∣0⟩ and ∣2⟩, while avoiding any (nonvanish-
ing) temporary population in the intermediary connecting state ∣1⟩. The pulse shaping
is given by

STIRAP(∣0⟩→ ∣2⟩) ∶ (Ω1,Ω2,∆, θ, T )↦ u(t), (4.5)
u1(t) = Ω1eiθp(t, T /3, T, π)ei∆t ∣0⟩⟨1∣
u2(t) = Ω2p(t,0,2T /3, π)e−i∆t ∣1⟩ ⟨2∣

where the order of the pulses u1 and u2 is famously counterintuitive [KGH&al89; VRS&al17].
Fig. 4.1(d) shows the Mølmer-Sørensen (MS) method for trapped-ion gates [SM99;
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SM00]. The required laser pulses are given by

MS(σx ⊗ σx ⊗ ⋅ ⋅ ⋅ ⊗ σx) ∶ (Ω1,Ω2, δ, θ1, θ2)↦ u(t), (4.6)
u1(t) = Ω1p(t,0, T, θ1)eiθ2eiδt ∣g, n⟩⟨e, n − 1∣
u2(t) = Ω2p(t,0, T, θ1)e−iδt ∣g, n⟩⟨e, n + 1∣ ,

where the first state index denotes the state of the relevant qubit and second index
denotes the phonon occupation number. Because of the symmetry of the gate, it can
in theory be used on an arbitrarily large number of qubits, i.e., it is a collective gate
[MMN&al16; MKW17].
Fig. 4.1(e) shows the Derivative Removal for Adiabatic Gate (DRAG) solution, for leak-
age suppression in multi-level systems [MGR&al09; TMM&al18]. This pulse profile is
given by

DRAG(∣0⟩↔ ∣1⟩) ∶ (Ω1,Ω2, α, δ, θ1, θ2)↦ u(t), (4.7)
u1(t) = eiθ2eiδtp(t,0, T, θ1)(Ω1 ∣0⟩⟨1∣ +Ω2 ∣1⟩⟨2∣)
u2(t) = ieiθ2eiδt∂tp(t,0, T, θ1)/α(Ω1 ∣0⟩⟨1∣ +Ω2 ∣1⟩⟨2∣).

We see, with these families of solutions, the common trend that they allow for different
known system parameters or for different rotation or phase angles. Naturally, this is just
a representative set, but where the equations of motion are integrable such solutions are
numerous in the literature.
However, there are a few evident concerns about finding such analytical solutions.
Firstly, it is a labour-intensive task with no guaranteed result, where even particular
solutions do not preclude that a more systematic search would produce better results.
Secondly, it is important to emphasize that these are solutions to idealized models, and
in practice the more accurate physical models are not exactly solved by these ansätze.
Finally, most physical systems have to date not been able to find general analytical so-
lutions beyond qubits, qutrits and highly symmetric systems, both because of the larger
state space and the larger parameter space. This limits their viability for quantum
computing, which requires much larger Hilbert spaces.

4.2.3 GRAPE
GRAPE (GRadient Ascent Pulse Engineering) [KRK&al05] is a method originally devel-
oped in the context of quantum chemistry for the optimization of dynamical evolution
of NMR systems. The algorithm assumes a unitary dynamics U(t) = e− ∫

t
t0

iH(τ)dτ ,
governed by a Hamiltonian of type:

H(t) =H0 +
M

∑
m=1

um(t)Hm (4.8)
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Figure 4.2: The Single-Optimization Multiple-Application gate synthesis method rep-
resented in its two variants. (a) In SOMA SL we first optimize N different QOC
problems with different problem parameters λ⃗1, λ⃗2, ..., λ⃗N using an optimal quantum
control algorithm such as [KRK&al05; GBG&al19; Fra&al17; DMJ&al20] to obtain op-
tima x∗1 ,x

∗
2 , ...,x

∗
N , then use a function approximator to learn the mapping g ∶ RD ↦

RQ, λ⃗Ð→ x∗(λ⃗) between the problem parameters and the optimal pulses. (b) In SOMA
BP, we sample L OQC problems λ⃗1, λ⃗2, ..., λ⃗L and train the function approximator to
minimize the average infidelity of the ensemble of problems using back propagation,
without generating optimal solutions for a single problem with a standard quantum
control method.

where H0 is a time-independent drift Hamiltonian and Hm, with m = 1, ...,M , are
different suitable control Hamiltonians with corresponding control fields um(t). In sim-
ulations, U(t) is often computed through different types of Trotterization [Oli08].
GRAPE provides us with an efficient gradient of the merit function with respect to the
control pulse values. The merit function is usually given by the gate fidelity:

F = 1
d2 ∣Tr{UG†}∣2, (4.9)

where the normalization factor d corresponds to the dimension of the Hilbert space and
G is a target unitary, which we would like to generate using the unitary dynamics. We
assume a Trotter-like unitary evolution of the system of type:

U(T ) =
Nevo

∏
j=1

Uj(tj , tj−1), (4.10)

where Uj(tj , tj−1) = e−iHdt, with dt = T /Nevo = tj − tj−1 ∀j = 1, ...,Nevo, where Nevo
defines the number of time steps used in the Trotterization. In particular, considering
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Eq. (4.8), the unitary step Uj reads

Uj = exp{−idt(H0 +∑
k

uk(j)Hk)}. (4.11)

The gradient of the fidelity can be computed iteratively starting from the so-called
propagated optimal state [KRK&al05]:

Oj = Uj+1...UNevo
GU1...Uj−1, (4.12)

so that the gradient approximately results in:

∂F

∂uk(j)
≈ 2
d2 Re{Tr{UG†}Tr{idtHkOj}}. (4.13)

This approach, however, cannot directly account for variations of the underlying dynam-
ics due to e.g., stochastic noise [BHC10], field inhomogeneity [MSZ&al06], or Hamilto-
nian uncertainties [KMM&al12] and the optimal pulses output by following the native
gradient direction can prove significantly worse than expected if some of the underlying
problem parameters vary. A possible way around this is to switch to a robust con-
trol approach, in which the cost function (4.9) accounts for parameter shifts. A simple
way [KRK&al05] is to use an average fidelity over the parameter space sampled with
quasi-Monte Carlo,

F̄ = 1
L

L

∑
l=1

F (w, λ⃗l), (4.14)

where L is the number of samples.

4.2.4 Robust control
Similar to the adaptive solutions using analytical methods, solutions for controls robust
to uncertainty in parameters have been found both by analytical and numerical means
[Fre98; MSZ&al06; BHC10; KMM&al12; Bie&al09; MHW&al16; Sch&al22; MGC18;
YYW18]. Since this involves only a single solution and not a family thereof, this has
been the preferred method for parameter variability in quantum gate sets, as they are
easier to design.
Robust solutions are generally defined slightly differently from the adaptive solutions,
using the figure of merit

w∗ = argmin
w

⎛
⎝

1 − 1
L

L

∑
i=1

Fi(w)
⎞
⎠
. (4.15)
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This cost function is more tractable from an optimization point of view because we can
simply account for an ensemble of individual cost functions by taking the average of the
cost functions as the objective of the optimization.
Robust solutions have also been found using analytic methods. In particular, a common
pulse sequence for gates with robustness to amplitude noise is the Broad-Band 1 (BB1)
sequence

BB1(∣0⟩↔ ∣1⟩) ∶ (Ω,∆Ω, θ1, θ2)↦ u(t), (4.16)
u1(t) = Ωp(t,0, T /4, θ1)eiϕ ∣0⟩⟨1∣

u2(t) = Ωp(t, T /4, T /2, π)eiθ2+i cos−1(−θ1/4π) ∣0⟩⟨1∣

u3(t) = Ωp(t, T /2,3T /4,2π)eiθ2+i3 cos−1(−θ1/4π) ∣0⟩⟨1∣

u4(t) = Ωp(t,3T /4, T, π)eiθ2+i cos−1(−θ1/4π) ∣0⟩⟨1∣

which is independent of offsets in Rabi frequency ∆Ω up to sixth order, 1−F = O(∆Ω6)
[Wim94].
Likewise, when applying gates with unknown frequency offsets, the Compensation for
Off-Resonance with a Pulse SEquence (CORPSE) method [CJ00] given by

CORPSE(∣0⟩↔ ∣1⟩) ∶ (Ω,∆, θ1, θ2)↦ u(t) (4.17)

u1(t) = Ωeiθ2p(t,0, T3 ,2π +
θ1
2 − sin−1 (β2 )) ∣0⟩⟨1∣

u2(t) = Ωeiθ2p(t, T3 ,
2T
3 ,2π − 2 sin−1 (β2 )) ∣0⟩⟨1∣

u3(t) = Ωeiθ2p(t, 2T
3 , T,

θ1
2 − sin−1 (β2 )) ∣0⟩⟨1∣ ,

with β = sin(θ
2)is robust to the exact value of ∆, for small enough ∆.

Robustness has found widespread use in quantum computation where fabrication un-
certainty, use of ensemble systems, and noise have made control challenging. The use
of robust control is especially important where small deviations occur over time scales
roughly on par with gate durations.
Nevertheless, if deviations are not small, if they are over a much longer (or much shorter)
timescale, or if very high fidelity is sought after, then typically they have limited value.
This is especially the case where variability occurs as result of design uncertainty or slow
parameter drift, or when continuous gate sets are needed as for NISQ algorithms. To
understand why maximum fidelities suffer as a result of improved robustness, notice that
a longer pulse sequence (with multiple pulses) will necessarily incur more decoherence.
Thus while pulses such as BB1 and CORPSE will reduce drift error, the overall fidelity
will not be as high as a single pulse at a fraction of the duration could have yielded. We
will also show this quantitatively in the next sections.
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4.2.5 Supervised training method: SOMA SL
Rather than constructively producing such classes, or relying solely on optimal control
theoretic methods, here we pursue the approach of machine learning a functional ap-
proximation to the general solutions. Function approximators are mathematical objects
capable of reproducing arbitrary functions using families of functions [GBC16]. They
are normally identified with neural networks and find extensive application in machine
learning, data analysis, etc.
For the supervised approach, which is sometimes referred to as trajectory learning in
the robotic control literature [AM86], we employ an optimizer to find the corresponding
minima for a set of problems and a regressor g ∶ RD ↦ RQ which maps the problem pa-
rameter space to the space of solutions to the given problem. We refer to this approach
as SOMA SL (SOMA with supervised learning). A sketch of the algorithm is provided
in Fig. 4.2 (a). Starting from a seed problem with solution x∗0 , generated previously, for
N different optimal quantum control problems parametrized by λ⃗1, ..., , λ⃗N , we generate
N solutions x∗1 , ...,xN . Then we train the neural network to find the best non-linear
mapping between the original parameters and the solutions. Training is performed via
a standard mean squared error (MSE) loss:

L(w) =
N

∑
i=1
∥z∗i − g(w, λ⃗i)∥

2
2 (4.18)

z∗i =
x∗i − x̄

σx
(4.19)

where x̄ is the mean value of the generated data, σx its standard deviation, and z∗i the
normalized data.

Algorithm 1 SOMA SL
Input w, λ⃗0, λ⃗min, λ⃗max, optimizer OPT
Output w∗

1: x∗ = OPT (F (x, λ⃗0),∇xF (x, λ⃗0),x0) ▷ with random restart
2: for i = 1 to N do
3: λ⃗i ∼ π(λ⃗min, λ⃗max)
4: x∗i = OPT (F (x, λ⃗i),∇xF (x, λ⃗0),x∗)
5: end for
6: Save {(xi, λ⃗i)}Ni=1
7: Compute z∗i =

x∗i −x̄
σx

, i = 1, ...,N
8: L(w) = ∑N

i=1 dist(g(w, λ⃗i),z∗i ) ▷ with random restart
9: w∗ = OPT (L,∇wL,w)
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4.2.6 Direct-training method with back propagation: SOMA BP
An adaptive trajectory is a solution that depends on a specific parameter of the physical
system, which the optimizer does not control, although it can make use of it. Usually,
for many robotics applications, the system does not have an analytical model, thereby
preventing direct-learning strategies. However, for quantum dynamics, we show how we
can use the model to more directly train the function approximator. We refer to this
approach as SOMA with back propagation (SOMA BP). A sketch of the algorithm is
provided in Fig. 4.2 (b).

Prime examples of adaptive trajectories are the analytical pulses in Sec. 4.2.2. For
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w∗,Lmin

Optimizer

g(~λ,w)

Estimate gradient ∇wL(w)w∗,Lmin

CR(~λ1(t),~λ2(t))

Collect dataAdapt pulse

g(w′,~λ1) g(w′,~λ2)

(b) Single system whose values drift in time

w∗
g(w∗,~λ)

(d) In-situ fine-tuning

Experiment

Optimizer

x = g(w∗,~λ)

L(x) = 1− F(x)x∗,Lmin

Figure 4.3: Four diagrams describing two possible use cases of SOMA and two possible
experimental implementations of SOMA BP, respectively. (a) We consider a chip with
several qubits, each one with its own Hamiltonian parameter λ⃗. We assume parameter
variations δλ⃗ to be so large that robust pulses are generally ineffective. (b) In the second
use case, we consider a single system, the parameters of which vary with time. Pulses
are trained on the average cost function over ensembles of qubits. (c) The approxi-
mator is trained directly on the experimental setting by using a gradient estimator, in
this case a policy gradient [SMS&al99], which usually requires large numbers of sam-
ples to be drawn from the system. (d) The regressor is first trained first in open-loop
simulation and then used as an ansatz for a closed-loop optimization, which leaves the
neural-network parameter untouched but modifies the output amplitude parameter (or,
alternatively and if possible, the input parameters) to maximize the fidelity for spe-
cific experimental configurations. The optimization routine can be freely chosen among
gradient-free algorithms, such as Nelder-Mead in Ref. [CCM11]. This method can be a
viable option if the experimental setting can be simulated with sufficient precision.

instance, by using a frequency-dependent solution, DRAG eliminates the leakage inside
a qutrit. Moreover, this solution parametrized by the function approximator, g, directly
depends on the physical system values and can therefore be tuned if these are shifted.
The cost function for an ensemble of L quantum-optimal-control (QOC) problems de-
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fined by problem parameters λ⃗1, ..., λ⃗L is given by:

L(w) = 1 − 1
L

L

∑
l=1

F (g(w, λ⃗l), λ⃗l) (4.20)

where F , as before, is the figure of merit, e.g., the overlap fidelity of the operation with
the target quantum gate [Nie02].
By parametrizing the solution in terms of a neural network that depends on the gate
parameters, gradient-based optimization algorithms can be used to train the network
directly off the above cost function. In essence, the usual back propagation of neu-
ral networks matches naturally with gradient-descent optimal-control methods such as
GRAPE [KRK&al05]. Thus, while optimizing in the fidelity landscape of the controls,
our algorithm is able to simultaneously train the network to adapt to the extraneous
system and gate parameters. This method can also be used in combination with a more
standard robust-GRAPE approach. In this case, those parameters the calibration and
control of which proves difficult, can be excluded from the network input.

Algorithm 2 SOMA BP
Input w, λ⃗0, λ⃗min, λ⃗max, optimizer OPT
Output w∗

1: for i = 1 to L do
2: λ⃗i ∼ π(λ⃗min, λ⃗max)
3: x∗i = OPT(F (x,λi), x∗)
4: end for
5: L(w) = 1 − 1

L ∑
L
i=1F (g(w, λ⃗i), λ⃗i)

6: w∗ = OPT(L,∇wL,w) ▷ with random restart

4.2.7 Experimental adaptation
Direct experimental application of SOMA is possible both for model-based and model-
free implementations. For these purposes, one must have access to a controlled dis-
tribution of λ⃗ values, corresponding to gate parameters, pulse parameters, and system
parameters. For in situ optimization of the gates, one further requires access to an
experimental cost function to ascertain (with low noise and bias) the merit of the pulse
sequence. For model-free control learning, the system parameters should still be indexed
in some way, e.g., by performing characterization, by using a proxy such as other known
characteristics, or by externally tuning parameters (e.g., the qubit frequency via mag-
netic or Stark shifts). For model-based approaches, one can vary the parameters λ⃗ in
software to map the solution space of the continuous gate sets. Thus, in both cases,
provided that there is known variation in some parameters, then one can index them,
e.g., discretely in space or (slowly varying) continuously in time, as shown in Fig. 4.3
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(a) and (b) respectively.
Whichever parameters for λ⃗ one chooses for the experiment, the task then becomes to
learn the neural-network weights for the maximal performance on the relevant device
and gate defined uniquely by λ⃗. Two different approaches are shown in Fig. 4.3 (c) and
(d). When an accurate model for the generators of the dynamics is known, then Fig. 4.3
(d) is a natural choice whereby offline (i.e., open-loop) optimization of the simulated
gates is first brought up, and only once the solution class has been learned in situ (i.e.,
closed-loop) is control learning performed. In this secondary step, one can reoptimize
either over the space of solutions (fine tuning optimal λ⃗∗) or over the space of physical
controls (fine tuning optimal x∗).
Closed-loop optimization directly on the experiment can be performed a number of ways,
including numerical and parameter-shift approximations of the gradient, Nelder-Mead
[NM65], or evolutionary algorithms [WSG&al14]. In the latter case, for example, Monte-
Carlo gradient sampling can be used to estimate the update direction [MRF&al20]:

∇xF (x) =
1
Ñ

Ñ

∑
i=1

F (x + σϵi)ϵi (4.21)

where ϵi ∼ N (0, IQ), i = 1, .., Ñ is a normally distributed stochastic variable sampled Ñ
times, x is the network output representing the pulse and σ is the standard deviation
of the sampled pulses. This method is often referred to as natural evolution strategy
[WSG&al14]. Fig. 4.3 (c) shows how the experimental gradient of the cost function can
be then back propagated via the optimizer (similarly to the GRAPE implementation
above) in order to update the network weights w∗ directly, when the different λ⃗ can be
sampled simultaneously.

4.3 Results
We test our methods and compare to previous optimal-control theoretic approaches. For
this purpose, we train our solution networks to learn how to perform continuous gate
sets for both single- and two-qubit operations. As a figure of merit of the QOC prob-
lems, we choose the gate fidelity defined in Eq. (4.9). While the gradients of the fidelity
with respect to the pulse parameters x can be computed using GRAPE [KRK&al05;
MGM&al11] (see Section 4.2.3 and Appendix 4.7.1), in the context of these simulations
the gradient can also be obtained through automatic differentiation [BFH&al18; Ral06].
To simulate the quantum system, we use a second-order Magnus propagator as derived in
Refs. [BCO&al09; DM22], and which is compatible with analytical or automatic differ-
entiation [DM22]. For the optimization of all the parameters, we employ the algorithm
L-BFGS-B [LN89].
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Figure 4.4: The infidelity of pulses predicted by the different optimization methods for
the R1(θ = π/2) gate (first row) and the R2(θ = π/2) gate (second row) as a function of
three different quantum control problem parameters: (a), (e) the detuning δ between the
qubit frequency and the driving frequency; (b), (f) the nonlinearity α of the qutrit; and
(c), (g) the total gate duration T . (d) (h) THE average performance (1000 test samples)
of the algorithms as a function of the radial distance from the center λ⃗0 of the parameter
space. The terms δ̄, ᾱ, T̄ indicate that the problem parameters are renormalized to the
space [0,1]D – see Appendix 4.7.2. The shaded regions around each plot line show the
standard deviation of the corresponding infidelities. A more detailed discussion about
the standard deviation can be found in Appendix 4.7.2. Both gates are optimized with
four Fourier components for each one of the two control fields – see Eq. (4.28) – using
the Hamiltonian in Eq. (4.29). The range of each parameter is given in Tab. 4.1.

4.3.1 Single-qubit gates
Single-qubit gates are the fundamental building blocks of quantum circuits. Their most
general form – e.g., as they are implemented in the IBMQ compiler [IBM22] – is given
by:

R(θ1, θ2, θ3) = [
cos(θ1/2) −eiθ2 sin(θ1/2)

eiθ3 sin(θ1/2) ei(θ3+θ2) cos(θ1/2)
] . (4.22)

By choosing the vector parameter θ appropriately, one can construct arbitrary single-
qubit unitaries. Therefore, in any optimal quantum control problem, this triple can be
considered as a vector of problem parameters, since they define the entire class of QOC
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problems, the goal of which is the optimization of arbitrary single-qubit gates.
In the following section we consider an ensemble of QOC problems defined by parameters
of the unitary target gate, Hamiltonian parameters, parameters of the control fields, and
the evolution time T . To simplify the problem, we consider a target gate of type

R1(θ) = [
cos(θ/2) sin(θ/2)
sin(θ/2) − cos(θ/2)] (4.23)

by setting θ1 = θ, θ2 = π and θ3 = 0 in Eq. (4.22). For θ = π
2 , the gate is the H gate,

whereas for θ = π it produces the X gate.
The second family of unitaries that we consider can be obtained by setting θ1 = π and
θ2 = θ3 = θ − π in Eq. (4.22). The resulting family of gates,

R2(θ) = [
0 ei(θ−π)

e−i(θ−π) 0 ] (4.24)

generates, among other unitaries, the X gate for θ = π and the Y gate for θ = π
2 . We

would like to point out that a combination of single-qubit unitary gates as in Eq. (4.24)
and Eq. (4.23) is sufficient to generate arbitrary single-qubit unitaries [NC10].
For single-qubit simulations, we consider the Hamiltonian of a superconducting trans-
mon qubit [KSB&al20]. This system can be effectively reduced to a qutrit Hamiltonian
[KSB&al20; KGM&al09], where the ∣0⟩ and ∣1⟩ levels provide the computational sub-
space and the ∣2⟩ level represents the leakage. The drift Hamiltonian for our system
[MGR&al09] reads

Hd = ωdn̂ + αΠ̂2 (4.25)
Π̂j = ∣j⟩ ⟨j∣ (4.26)
n̂ =∑

j
jΠ̂j , (4.27)

where ωd is the qubit frequency and α is the anharmonicity. Furthermore, we consider
a control Hamiltonian of type:

Hc(t) = Ω(t)eiϕ+iωtσ̂+ +Ω(t)∗e−iϕ−iωtσ̂−, (4.28)

where ω is the driving frequency and ϕ represents a time-independent phase shift between
the raising σ̂+ and the lowering σ̂− operators, which can be related to the rotating-
wave approximation (RWA) [CDG98; MGM&al11] and which is, in this model, the only
problem parameter influencing the control fields.
Computing the RWA with detuning δ allows us to rewrite the drift Hamiltonian as:

Hd = δΠ̂1 + (α − 2δ)Π̂2, (4.29)
Hc(t) = u1(t)X̂(ϕ) + u2(t)Ŷ (ϕ) (4.30)
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Figure 4.5: The infidelity of pulses predicted by the different optimization methods
for the R1(θ) gate (first row) and the R2(θ) gate (second row) as a function of three
different quantum control problem parameters: (a), (e) the detuning δ between the
qubit frequency and the driving frequency; (b), (f) the phase error ϕ between the σ+
and the σ− terms; and (c), (g) the angle θ parametrizing the target gate. (d), (h) The
average performance (1000 test samples) of the algorithms as a function of the radial
distance from the center λ⃗0 of the parameter space. The terms δ̄, ϕ̄, θ̄ indicate that the
problem parameters are renormalized to the space [0,1]D (see Appendix 4.7.2). The
shaded regions around each plot line show the standard deviation of the corresponding
infidelities. A more detailed discussion about the standard deviation can be found in
Appendix 4.7.2. Both gates are optimized with four Fourier components for each one of
the two control fields for T = 10 ns using the Hamiltonian in Eq. (4.29).

where δ = ωd − ω, X̂(ϕ) = eiϕσ̂+ + e−iϕσ̂−, and iŶ (ϕ) = eiϕσ̂+ − e−iϕσ̂−.
For the control fields, we employ a Fourier ansatz:

uj(t) =
K

∑
k=1

xkj sin(kπt
T
), j = 1,2 (4.31)

with K Fourier modes. For the QOC simulations, we set the central values δ0 = 0 GHz
and α0 = −0.34 GHz [TMW16]. The parameter vector of the QOC-problem class is given
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by

λ⃗ = (δ,α, ϕ, θ, T )T . (4.32)

For all the single-qubit gate simulations, we consider a multidimensional rectangle cen-
tered at λ⃗0 = (δ0, α0, ϕ0, θ0, T0)T and with upper bounds defined by ±λ⃗max. We consider
four methods, which allow us to optimize multiple systems simultaneously: standard
GRAPE; robust GRAPE, which uses the average GRAPE gradient over an ensemble
of QOC-problems in Eq. (4.15); a supervised training method, which we refer to as
SOMA SL (Algorithm 1), using both linear and nonlinear models and where GRAPE
solutions are first generated and then approximated via Eq. (4.18); and the unsupervised
method, which trains a neural-network pulse directly on the fidelity of an ensemble of
QOC problems using back propagation on Eq. (4.20). The latter is referred to as SOMA
BP (Algorithm 2).
In the following section, we consider a QOC problem with N = 500 time steps of a
Magnus-type time integrator, which approximates the unitary temporal evolution of the
quantum system [DM22]. Our pulses are parametrized as in Eq. (4.28) by K = 4 Fourier
components according to Eq. (4.31) for each one of the two control fields X̂ and Ŷ . The
control fields are multiplied with a scaling factor equal to 1/A0 to ensure that the pulse
amplitudes do not exceed the typical experimental maximal value of 1 GHz.
The results are divided into four blocks of four plots each (Fig. 4.4, Fig. 4.5), represent-
ing models trained on two different sets of problem parameters, the ranges of which are
given in Tab. 4.1 and in Tab. 4.2. Here we limit the number of different parameters
to three, although larger numbers are possible depending on the parameter range taken
into account, the specifics of the physical system, the size of the neural network, and the
number of systems sampled (see Appendix 4.7.2). The first three plots in each row show
the infidelity as a function of one varying parameter, while the other parameters are kept
at their original values given by λ⃗0. The fourth plot shows the average performance of
the different methods as a function of the radial distance from the initial QOC problem
λ⃗0. This last plot ensures that the performance of the methods is stable when different
parameters are changed simultaneously across the entire range of the parameter space.
In Fig. 4.4, the problem parameters δ (the qubit-drive detuning), α (the nonlinearity of
the qutrit system), and T (the gate evolution time) and the target gates R1(θ) defined
by Eq. (4.23) – first row – and R2(θ) defined by Eq. (4.24) – second row – are consid-
ered. The blue continuous line shows the GRAPE solution for the λ⃗0 parameter, whose
fidelity shows an exponential decay as a function of the distance from the center of the
parameter space. The orange dashed line shows the performance of robust GRAPE and
the brown dashed line the performance of SOMA SL with a linear model, both with
infidelities around 10−2. The pink dashed line shows the performance of SOMA SL with
a neural network and the green dashed line the performance of SOMA BP. We observe
that for the second gate R2(θ), both methods are able to deliver an average infidelity
below 10−4, whereas for the first one R1(θ), SOMA BP clearly outperforms SOMA SL.
In Fig. 4.5, the problem parameters are as follows: drive frequency detuning δ, the phase
mismatch in the control fields ϕ, and the gate angle θ, together with the target gates
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δ(MHz) α(MHz) ϕ θ 1/A0 T (ns)
Center 0 −340 0 π

2 0.01 10
Maximum 40 −240 0 π

2 0.01 20
Minimum −40 −440 0 π

2 0.01 5
Table 4.1: The parameter range for the optimization of the single-qubit gates R1(θ) and
R2(θ) as given in Fig. 4.4. For this simulation, we do not vary the angle parameters
of the gate, but, rather, the physical parameters of the qutrit, such as δ and α and the
evolution time T .

δ(MHz) α(MHz) ϕ θ 1/A0 T (ns)
Center 0 −340 0 π

2 0.01 10
Maximum 20 −340 π

8 π 0.01 10
Minimum −20 −340 −π

8 0 0.01 10
Table 4.2: The parameter range for the optimization of the single-qubit gates R1(θ) and
R2(θ) as given in Fig. 4.5. In this case, we not only vary the detuning but also the
angles of the gates and the phase factor ϕ.

R1(θ) defined by Eq. (4.23) – first row – and R2(θ) definied by Eq. (4.24) – second row.
We note the same general trends as in Fig. 4.4. In particular, we observe that although
both SOMA methods are closer in terms of performance for R1(θ) with a little advantage
for SOMA BP, for gate R2(θ) SOMA BP clearly outperforms SOMA SL. We can again
note that SOMA BP mostly outperforms all the other methods, providing pulses that
are stable over a large range of parameters. For simulations with single-qubit gates, we
use a two-layered network with 256 components per layer and eight neurons in output
– the output space of the approximator has an output dimension Q = 2K.

4.3.2 CR gate with leakage
The cross-resonance (CR) gate is a two-qubit gate activated by microwave fields, which
drive one of the qubits (target) at the frequency of the other (control). The gate is
implemented in the context of quantum computing with superconducting qubits [Par06;
RD10; KKL&al18; MM22]. The gate gives rise to a ZX-type interaction [Par06], which
can then be used to generate different two-qubit entangling unitaries.
The CR gate can be embedded in a higher-dimensional system, e.g., where two qutrits
are capacitively coupled together. In this case, the target gate is a two-qubit gate,
but the unitary generated by the Hamiltonian evolution is a two-qutrit gate, thus the
fidelity is only computed with respect to the computational subspace – the CR gate is
constructed using the ∣0⟩ and ∣1⟩ levels. The Hamiltonian of a two-transmon system

57



4 Continuous quantum gate sets and generalized pulse meta-optimization

100 200 300

∆ (MHz)

10−4

10−3

10−2

10−1

100

1
−
F

C
N

O
T

(a)

−350 −340 −330

α (MHz)

(b)

−0.1 0.0 0.1

φ

(c)

0.0 0.5 1.0
〈√

∆̄2 + ᾱ2 + φ̄2
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Figure 4.6: The infidelity of pulses predicted by the different optimization methods for
the direct controlled-NOT (CNOT) gate (first row) and the CR(θ) gate (second row)
as a function of different quantum control problem parameters: (a), (e) the frequency
difference ∆ between the two qubits; (b), (f) the nonlinearity α of the qutrits; (c)
the phase error ϕ between the control fields σ̂+ and σ̂−; (g) the angle θ parametrizing
the CR continuous family of gates given by Eq. (4.38). Plots (d) and (h) show the
average performance (1000 test samples) of the algorithms as a function of the radial
distance from the center λ⃗0 of the parameter space. The terms ∆̄, ᾱ, ϕ̄, θ̄ indicate that
the problem parameters are renormalized to the space [0,1]D – see Appendix 4.7.2. The
shaded regions around each plot line show the standard deviation of the corresponding
infidelities. A more detailed discussion about the standard deviation can be found in
Appendix 4.7.2. Both gates are optimized with 30 Fourier components for each one of
the four control fields and for total gate duration T = 90 ns.

reads [RD10]

H(t) =Hd +Hc(t)

Hd =
2
∑
j=1
(ωj b̂

†
j b̂j + αj b̂j b̂

†
j b̂

†
j b̂j) + J (b̂1b̂

†
2 + b̂

†
1b̂2)

Hc(t) =
2
∑
j=1

Ω(t)eiωjt+iϕb̂
†
j +Ω(t)∗e−iωjt−iϕb̂j , (4.33)
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where J is the coupling strength of the transmon-transmon interaction, bj is the lowering
operator on the jth transmon, Ω is the driving field, and a Duffing-oscillator approxi-
mation is performed [KGM&al09]. A further standard RWA allows us to simplify the
problem, introducing at the same time the notation from Eq. (4.25), such that

Hd = ∆n̂1 + α(Π̂
(1)
2 + Π̂(2)2 ) + J (b̂1b̂

†
2 + b̂

†
1b̂2) (4.34)

Hc(t) =
2
∑
j=1
(u(j)1 (t) (e

iϕb̂
†
j + e

−iϕb̂j)+ (4.35)

u
(j)
2 (t) (e

iϕb̂
†
j − e

−iϕb̂j)),

where ∆ = ω1−ω2. As control operators, we use the projectors X̂j(ϕ) = e−iϕb̂j+eiϕb̂
†
j and

iŶj(ϕ) = eiϕb̂
†
j − e

−iϕb̂j both on the control qutrit (j = 1) and the target qutrit (j = 2),
as in Eq. (4.28), such that

Hc(t) =
2
∑
j=1

u
(j)
1 (t)X̂j(ϕ) + u

(j)
2 (t)Ŷj(ϕ) (4.36)

where u(1)j (t), u
(1)
j (t) are the control fields on the jth qutrit (for the X̂j and the Ŷj

operators respectively). Note that all the fields operate at frequencies near-resonant to
the target qubit. The Hamiltonian parameters are centered at values ∆0 = 0.2 GHz,
α0 = −0.34 GHz, J0 = 0.01 GHz. For each control field, we use a Fourier parametrization
[CCM11; KKL&al18]:

∀j = 1,2, ∀i = 1,2 ∶ u(j)i (t) =
K

∑
k=1

x
i,j
k

sin(kπt
T
) (4.37)

We further assume, as in the single qubit case – see Eq. (4.28), that the control fields
are influenced by a phase factor ϕ, which then counts as a QOC-problem parameter in
the two-qubit simulations.

For two-qubit gates with leakage we present two different simulations, one for the
CNOT gate alone and one for a family of CR-like gates with the following parametriza-
tion:

CR(θ) = exp[iθ(Z ⊗X)] (4.38)

.
For the two-qutrit gates we use a two-layered neural network with 500 neurons per layer
and 120 neurons in output. Here, the output of the approximator has a dimensionality
Q = 4K, where K = 30 is the number of Fourier frequencies for each one of the four
control fields – see Eq. (4.37). The time evolution is given by 5000 Magnus steps.
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∆(MHz) α(MHz) J(MHz) ϕ A0 T (ns)
Center 200 −340 10 0 0.05 90

Maximum 300 −330 10 0.1 0.05 90
Minimum 100 −350 10 −0.1 0.05 90

Table 4.3: The parameter range for the optimization of the two-qubit CNOT gate. The
range of values ∆, α and ϕ, as well as the evolution time T , are determined by consid-
ering typical experimental settings of state-of-the-art superconducting quantum circuits
[MM22; MMM20; HK21]. For the value of ϕ, we assume a small phase error influencing
the X̂ and Ŷ control fields both on the target and the control qubits.

∆(MHz) α(MHz) J(MHz) ϕ θ A0 T (ns)
Center 200 −340 10 0 π

4 0.05 90
Maximum 250 −330 10 0 π

8 0.05 90
Minimum 150 −350 10 0 3π

8 0.05 90
Table 4.4: The parameter space for the optimization of the two-qubit CR gate as given
in Eq. 4.38. Compared to the simulation of the CNOT gate, given in Tab. 4.3, the range
of the target-control frequency detuning ∆ is reduced but the continuous parameter θ
is also considered.

The results of the pulse class learning are shown in Fig. 4.6. The evolution time is chosen
as T = 90 ns, an improvement of about a factor of 2 over typical experimental durations.
The first row of plots shows the results for the CNOT gate, where variations of the
parameters ∆ (the frequency difference between the control and target qubits), α (the
nonlinearity of the qutrits), and ϕ (the phase term of the control fields) are considered.
The second line shows the results for the CR(θ) gate as defined in Eq. (4.38). The
maximal range for each parameter for each one of the two gates is described in Tab. 4.3
and Tab. 4.4 respectively. We observe that, for both gates, the neural-network pulse
trained with SOMA BP outperforms the other algorithms. For the CNOT gate, it
can produce pulses that are robust over a very large detuning range (∣∆max −∆min∣ =
200 MHz) by training on just 100 different systems sampled from a uniform distribution.
For the CR gate, we choose a range of 100 MHz, while also taking into account the
dependence on the angle θ. It is possible that a very large amount of samples or long
training times could improve the performance of SOMA SL further; however as the size
of the Hilbert space increases, the optimization of large sample numbers on classical
machines can become computationally too time consuming.
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Figure 4.7: A comparison of four different generalized optimization methods as a function
of the parameter space size, when only one parameter range is varied, while all the others
are kept constant at 10−3 GHz: (a), (b) the results for the single-qubit gate R1(θ); (c)
and (d) the results for the CR(θ) gate. Both axes are on a logarithmic scale and represent
the average infidelity over 1000 test samples. The values δmax, αmax, and ∆max on the
horizontal axes represent the maximum range of the corresponding problem parameter
δ,α,∆. The maximum range defines the parameter space over which the QOC problems
are sampled. We observe how the neural network trained with the supervised algorithm
outputs pulses with higher average fidelity than the other methods but it fails nonetheless
when the detuning variation in the two different systems is increased up to the order
of 100 MHz. In this case, the model trained with SOMA BP, however, still outputs
high-fidelity pulses.

4.4 Performance analysis
In this section, we compare the different meta-optimization methods as the size of the
QOC problem-parameter space increases. In particular, we vary the order of magnitude
of the laser-frequency detuning δ, the qubit-frequency detuning ∆ for the two-qubit gate,
and the nonlinearity α for both the single-qubit gate and the CR gate. For the sake of
this analysis, we only vary the maximal range of one single parameter at a time, while the
other problem parameters have a fixed maximal range of 10−3 GHz. As hyperparameters
for the different algorithms, we use the same values that have proved to be effective in
the previous simulations. For SOMA SL, we use up to 10000 sample problems optimized
with GRAPE, whereas for SOMA BP we optimize the average fidelity with 500 system
samples for the single-qubit gate and 100 systems for the two-qubit gate.
The results are shown in Fig. 4.7. We observe that although supervised training using
the minima produced by GRAPE shows lower infidelities for small variations of the de-
tuning (up to 10 MHz), it fails when this value is increased to 100 MHz, whereas the
neural network trained with back propagation of the fidelity still produces valid optima
of the QOC problem. In particular, we observe a crossing between 10 and 100 MHz for
both types of detuning (δ and ∆) and for the nonlinearity α in the two-qutrit case, where
the performance of the supervised method (SOMA SL, green line) worsens dramatically,
whereas SOMA BP (orange line) is able to keep the fidelity at high, experimentally
valid values. In general, we observed that SOMA SL significantly outperforms SOMA
BP for small parameter variations, where the precision of the non-linear regression is high
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enough to reproduce the pulse variations perfectly (see also Sec. 4.7). As a consequence,
SOMA SL can be a useful tool to achieve adaptive robustness against small parameter
variations, where it clearly surpasses SOMA BP, whereas the latter shines when the
parameter variations and the number of Fourier components are comparatively larger.
Furthermore, SOMA BP is capable of handling large variations of multiple parameters
at the same time, as shown in Fig. 4.5. In all cases, at least one neural-network approach
outperforms robust GRAPE and the linear regression model significantly.
We argue that sampling large amounts of problem parameters could actually lead to a
better performance of SOMA SL for in-situ physical systems or numerical simulations
where sampling proves fast and efficient. However, as we show in Fig. 4.8, it seems that
for SOMA SL (green line) there exist systems where its improvement as a function of
the sample size is limited, which makes SOMA BP (orange line) a better option, if its
implementation is possible. Likewise robust GRAPE (blue line) and the linear model
(pink line) gain limited benefit from increasing sample sizes. In particular for SOMA SL,
we can often observe behaviors such as branching and outliers in the training data set,
which probably contribute to a loss in the quality of the approximations. One may try to
increase the precision of the model by using loss functions that are sensitive to outliers,
such as the Huber loss [Hub64], or to restrict the use of SOMA SL to systems where
limited parameter drifting does not prevent the regressor from learning a high-quality
representation of the solution space.
We also study whether varying the chosen samples during training (i.e., minibatching)
can affect the performance of our algorithms; in particular for robust GRAPE and SOMA
BP. Computing the gradient over a batch of samples gives rise to a batched version of the
algorithms. More specifically, a batched version of robust GRAPE, called bGRAPE, has
been studied in Ref. [WDD&al19], where impressive robustness is achieved by combin-
ing batches of problem parameters with momentum-based stochastic gradient descent.
This is, of course, a different algorithm than L-BFGS-B, i.e., the optimization algorithm
employed in all simulations discussed in this paper, and it does not similarly guarantee
near-quadratic convergence [LN89]. For SOMA SL, computation of the gradient based
on the MSE loss over a batch of samples leads to standard neural-network training with
stochastic gradient descent. For the systems we consider, we do not observe an improve-
ment of bGRAPE over robust GRAPE (called sGRAPE in Ref. [WDD&al19]) neither
with L-BFGS-B nor with ADAM [KB15]. We believe that this is due to the use of Fourier
components, which allow for more controllability of the quantum system [MGM&al11],
and the use of curvature information granted by both algorithms. Nonetheless, explo-
ration of the effect of varying samples during training remains an interesting perspective
worthy of further studies and commitment, both in the context of adaptive and robust
control.

In the last part of the analysis, we discuss the scaling of the network approximations
as we increase the output dimension, the number of qubits and the input dimension.
Since we aim at controlling single- and two-qubit gates, the number of expected controls
only scales linearly with the number of qubits; and since the weak coupling between
qubits drops off roughly exponentially with distance, we also do not expect the search
complexity in state space to increase dramatically. In simulations, we expect both algo-

62



4 Continuous quantum gate sets and generalized pulse meta-optimization

0 200 400 600 800 1000

sample size
10−5

10−4

10−3

10−2

10−1

100

1
-
F

Robust GRAPE

SOMA-BP

SOMA-SL

Linear model

Figure 4.8: An example of the average performance (1000 test samples) of robust
GRAPE, SOMA SL, SOMA BP and the linear model as a function of the number
of (training) systems sampled for the single-qubit R2(θ) gate with the same parameters
as in Fig. 4.5. We observe here how in this case the average infidelity in SOMA BP
decreases as a function of the sample size, whereas the other methods show little to no
improvement.

rithms to behave similarly to GRAPE (or a different gradient-based control algorithm,
if this is implemented) as the dimension of the Hilbert space increases. This is due to
the underlying time evolution, which in both cases is given by the Trotterization or,
as in our case, the Magnus expansion. The approximation of the quantum propagator
affects the gradient-based optimization for single QOC problems, which generates the
target data for SOMA SL, but also acts as an activation function for the neural network
[WDD&al19] in SOMA BP.
As a consequence, we do expect the state space and the equations of motion to scale
exponentially with the number of qubits, which is a general problem for all control and
compilation tasks. Just as in the general case, we expect a combination of informed state-
space parametrizations (such as tensor networks and sparse algebras) and of quantum-
aided optimization (as in Sec. 4.2) largely to address this important problem. Moreover,
by considering increasing numbers of qubits, the number of pulse parameters and control
fields increases consequently. However control fields acting on different qubits usually
commute, which can dramatically decrease correlations between the pulse components.
Therefore, one does not need, in general, to have a single neural network outputting all
pulse parameters at once, but, rather, several different neural networks, one for each
group of control fields, which commute between each other. For SOMA SL, we need to
generate a large data set of QOC-problem solutions by means of a standard quantum
control algorithm, which may be slow for many-qubit systems. However, this task can
be easily parallelized, since the different optimizations are independent of each other. In
this case, the main obstacle is not represented by the nonlinear regression over the data,
but, rather, by the quality of the data generated by the quantum control algorithm for
each solution in the parameter space. Since the problem is high dimensional, the solution
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space will probably exhibit structures such as branching and outliers that are difficult
to include in the nonlinear regression. A possible option here is to employ algorithms
for data reduction and clustering, in order to obtain a high-quality representation of the
solution space.
As for SOMA BP, one may distinguish between simulation and experimental implemen-
tation. In the former case, the evaluation of the infidelity and its gradient as a function
of the time evolution represents the main bottleneck – see Tab. 4.5 in Appendix 4.7.2 –
together with vanishing gradients, which are also a well-known problem for other NISQ
use cases and represent one of the main obstacles to any experimental application. Van-
ishing gradients could also be tackled with alternatives to back propagation (see, e.g.,
Ref.[LZF&al14]). Finally, for large output spaces and very deep networks, GPU train-
ing and stochastic gradient-descent algorithms may provide useful speedup, as it is the
standard in deep learning.

4.5 Conclusion
In this work, we show how to engineer solutions of problems in quantum optimal con-
trol that depend on problem parameters located outside the optimization routine. This
includes physical system parameters, other external parameters such as the pulse time
or bandwidth, and gate parameters such as rotation angles.
We therefore propose two methods to learn large classes of quantum gate-synthesis prob-
lems, SOMA SL and SOMA BP. We show through experimentally relevant examples that
these methods prove able to learn adaptive solutions to generalized QOC problems. The
output gates have fidelities that remain very high over the entire continuous parametriza-
tion of the gate sets, for typically large ranges as would be encountered experimentally.
These continuous gate sets provide the opportunity to be used as computational primi-
tives in compilation tasks, in NISQ variational algorithms, and for entire arrays of qubits
rather than individually optimized ones.

4.6 Data and Code
Data and code are stored on FZJ servers and are available on request. Please contact
the authors at franz3105@gmail.com or f.motzoi@fz-juelich.de.
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4.7 Appendix
4.7.1 Gradients of the fidelity
GRAPE [KRK&al05; dSG&al11] is the standard open-loop gradient-based method for
QOC solutions. It can be implemented together with a Magnus-based propagator – see
[DM22]. The gradient can then be used in combination with a gradient-based optimiza-
tion algorithm, e.g., the L-BFGS-B algorithm [BNS94; LN89]. Variations of GRAPE
exist which exploit the advantages of parametrizing the pulse according to a specific
set of basis functions (e.g. Fourier basis) [MGM&al11] or compute the higher order
derivatives of the fidelity with respect to the pulse [dSG&al11; DMJ&al20]. In this
paper, GRAPE is always used in combination with L-BFGS-B, which uses fast Hessian
estimation [Vir&al20].
For a given set of parametrized functions sk ∶ t ↦ sk(t), k = 1, ...,K describing the
time dynamics of the control fields uj(t) with control parameters xkj – see Eq. (4.28)
and Eq. (4.37) –, and which can be time-sliced in values ski = sk(ti), i = 0, ...,Nevo, the
gradient of the cost function with respect to the control parameters can be computed
using the chain rule [MGM&al11]:

∂F

∂xkj
=
∂uij

∂xkj

∂F

∂uij
(4.39)

where the k index runs over the number of basis functions components, the i index over
the time-slice and the j index over the different control operators. In a similar way,
this can be applied to a neural-network parametrization g ∶ RD ↦ RQ, λ⃗ Ð→ g(λ⃗) of
the GRAPE pulse, mapping a given number of meta-parameters to the pulse space, the
original formula can be rewritten to output the gradients of the fidelity with respect to
the neural-network parameters (wml, bl):

∂F

∂wml
=
∂xkj

∂wml

∂uij

∂xkj

∂F

∂uij
(4.40)

∂F

∂bl
=
∂xkj

∂bl

∂uij

∂xkj

∂F

∂uij
(4.41)

with the same indexing as Eq. (4.39). In this case, the neural-network output val-
ues, which give the coefficients of the time-dependent basis functions, i.e., the terms
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xik = g(λ⃗)ik depend on the QOC problem parameters λ⃗.

4.7.2 Implementation details

Comparison of SOMA methods
Algorithm parameter SOMA SL SOMA BP

QOC cost function evaluations nfev ⋅N nfev ⋅L ⋅Nguesses
Computation time tGRAPE ⋅N + tREG tBPROP ⋅L
Number of samples N L

Table 4.5: Comparison of SOMA SL and SOMA BP in terms of their performance
features. nfev and tGRAPE are here the maximal number of function evaluations and
computation time required by L-BFGS-B with GRAPE to solve a single quantum control
problem. tREG is the time required for the neural-network regression. tBPROP is the
time required by the neural network back propagation for one sample.

For every physical system considered – single qubit gate with leakage and two-qubit
gate with leakage, each one with different target gates and system parameters – we first
define an interval for each parameter. Values are sampled from a uniform distribution
over the hyper-volume defined by the intervals of parameters. The system together
with the interval of parameters defines a family of QOC problems, which we analyze
with one of 3 methods: Robust control with GRAPE, which simply seeks for the best
pulse for a set of different systems, SOMA SL, which first solves a sample of systems
and then performs a regression over the sampled values – for the sake of completeness
we consider here both a linear and a non-linear approach – and SOMA BP, where the
network is trained directly on the average infidelity of an ensemble of systems with back
propagation.
In the case of Robust GRAPE, we sample L systems and run the optimization with
random restart, i.e., we run the optimization Nguesses = 5 times with different conditions
and then choose the pulse with the smallest average infidelity.
For SOMA SL, we sample up to N = 10000 points within the parameter space. For each
one of these, we optimize the corresponding QOC problem with GRAPE – this can be
performed with any proper optimal quantum control method – and then train the model
to map the corresponding parameter to the optimal pulses.
As for SOMA BP, we sample L systems and run the neural-network training with random
restart. The number of total samples required by the regression is usually larger than
the one needed by the other two methods, the corresponding single-system optimization
is nonetheless much faster and can be run in parallel. Therefore we set N = 10000 for
each simulation, whereas for the sake of comparison and due to the similarity of the
other two methods always use the same number of samples (either L = 500 for the single
qubit case or L = 100 for the two-qubit case). Both SOMA methods employ two-layered
neural networks with 256 neurons per layer for the single qubit system and 500 neurons
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per layer for the two-qubit system. The linear model performs multi-linear regression
on the same data used by SOMA SL.
For the random restart of SOMA methods, we run the optimization Nguesses = 5 times
with different initial conditions and then test the quality of the predictions on a test
set. Afterwards we choose the model with the lowest average test infidelity. For both
algorithms, we use the L-BFGS-B algorithm. Since the training of SOMA SL, which
uses a MSE loss, is much faster than SOMA BP, we do not limit its maximal number
of iterations. For SOMA BP, however, this is limited to 6000 for the single qubit gates
and to 7000 for the two-qubit gates. Here, the input parameters for both SOMA SL and
SOMA BP should be re-scaled to lie e.g., within the range [0,1]. For SOMA BP, this
can be avoided in certain cases, as long as the size of the pulses remains large enough.
For details about the performance of the algorithms, see Tab. 4.5.
For each system, we evaluate the performance of the neural-network pulses on the entire
parameter space. In order to visualize the performance of the algorithms considered in a
one-dimensional plot, we consider the normalized parameter space, where all parameters
axes are re-scaled to the interval [0,1].

f ∶ RD ↦ [0,1]D, λ⃗Ð→ λ⃗ − λ⃗min
∣λ⃗max − λ⃗min∣

(4.42)

By then considering D-dimensional spheres of radius r ∈ [0,1]D, we sample Ns = 1000
systems on the surfaces of such spheres and compute the average infidelity over these
systems. By doing so, we can evaluate the performance over the parameter space, thereby
ensuring that our methods are effective for every combination of problem parameter
values. The result is then averaged over Ns samples, i.e., we plot the mean and its
standard deviation. The latter is pictured as a shady region.
We also want to consider how the standard deviation of the average infidelity behaves
when the different algorithms are tested against a batch of quantum systems sampled
according to the parameter space. In particular, the standard deviation of the infidelity
for Ns test systems is bounded by the average performance of the algorithms:

σ(w)2 = 1
L

Ns

∑
i=1

F (w, λ⃗i)2 − F 2
test ≤ 1 − F 2

test (4.43)

where Ftest is the average fidelity of the trained pulses on the Ns test systems. For
SOMA BP, assuming that over-fitting is negligible, we have σ(w)2 ≤ 1 − (1 − L(w))2.
which means that the fidelity of the algorithms considered is guaranteed not to drop
significantly below the average performance showed in Fig. 4.4, Fig. 4.5 and Fig. 4.6.

4.7.3 Fidelity of discrete gates and their performance
In this section we briefly illustrate how analog gates are expected to outperform equiv-
alent circuit decomposition with sequences of traditional discrete gates. In particular,
we first consider the standard universal set of quantum gates S = {CNOT, T, S,H} used
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in Fig. 4.1. We searched for decompositions to determine the correct compilation se-
quence for the aforementioned gates. In particular, we consider the CR gate defined in
Eq. (4.38) for an angle of θ = π

4 . The decomposition is given by the following circuit:

CR(π4 ) =
S

H S H

This decomposition consists of 1 entangling gate (the CNOT) and 4 local unitary
operations and the representation is exact. Note that CNOT has to be implemented
efficiently on the chosen quantum computing platform, which probably anyway requires
quantum control. An entangling gate in the context of superconducting circuits usually
requires T ∼ 150 ns [KWS&al21]. This is a little bit slower than the CR gate presented
here but shows the equivalency of these gate sets. Nonethless, SOMA also allows learning
both the CR and CNOT as part of the same continuous gate set, thereby saving the
additional cost of single qubit gates (which take typically at least T ∼ 15 ns each).

Number of gates
Angle θ NCNOT NT NS NH highest fidelity

π√
2 1 2 4 1 0.9819

π√
3 2 3 1 2 0.9778

π√
5 0 2 3 2 0.9728

π√
7 2 3 0 2 0.9999

Table 4.6: Results of searching for CR gate decompositions for four different angles:
π√
2 ,

π√
3 ,

π√
5 ,

π√
7 , obtained with the help of exhaustive search (up to 10 circuit layers)

and stochastic descent (up to 20 circuit layers). The universal gate set is S. We observe
here that while for π√

7 we can find a suitable decomposition with high fidelity, this is
not the case for the remaining angle values. Moreover, two of the best decompositions
contain two CNOT gates, which again lead us to much longer gate evolution time.

Where the advantage really shows up is for a gate angle that does not belong to the
same entanglement class as CNOT. It is clear here, how continuously parametrized gates
and consequently SOMA can be beneficial to quantum compilation. A CR gate with an
angle θ = π

8 also requires 5 gates to be implemented, as shown by the following circuit,

CR(π8 ) =
H S H

but its circuit contains two CNOTs. Since the CR(π
8 ) can take roughly half the time of

a CR(π
4 ), this implies the CNOT-based circuit can be as much as 7 times slower than

the continuously parametrized gate.
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Figure 4.9: Infidelities reached by applying stochastic descent search (a) and brute-force
(exhaustive) search (b) on the CR the gates defined by the angles in Tab. 4.6 in order
to decompose them in discrete circuits. As we can observe, both algorithms provide us
with the same results. However, they cannot find a circuit representation with F > 0.98
for the first three gates, thus indicating that circuits decomposing these gates with a
higher fidelity are longer, more error-prone, and harder to discover.

For other angles, it becomes increasingly difficult to find good circuits, with only
partial approximations being possible at reasonably short depth. In order to test the
quality of the approximation, we search for optimal discrete circuits representing a quan-
tum circuit according to a given parametrization. We use exhaustive search [Nie00] of
all possible circuits (up to circuit depth 10) and stochastic descent, a special type of
structured random search – see RL approach in [BDS&al18] – (up to circuit depth 20)
to search for optimal decompositions of discrete gates and try to reproduce the cho-
sen circuit with increasing number of unitaries. The results are given in Tab. 4.6 and
Fig. 4.9 for the CR gate with angles π√

2 ,
π√
3 ,

π√
5 ,

π√
7 . We see that although the fidelity

of the discrete gates increases with the size of the quantum circuit, in three cases it
cannot reach the value of F=0.99 for circuits of depth smaller than 20. In the case of
θ = π√

7 , a valid decomposition with fidelity F=0.9999 is found. The search is performed
exhaustively for lcirc < 10 and then using stochastic descent for lcirc > 10. Moreover,
the decomposition of CR( π√

7) contains 2 CNOT gates, which again implies a slowdown
of the gate execution time. Other examples for gates with superior analog performance
can be seen, e.g., Ref. [Fox&al20], with superior performance especially expected for
variational circuits.
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compilation of trapped-ion quantum
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Disclaimer: A modified version of this chapter was published in Ref. [PSJ&al24]. FP,
MS and SJ developed the theoretical framework of the paper. The PS-LSTM algorithm
was developed by FP and SJ during FP’s master project [Pre20]. Afterward, FP and
MS developed the work further to adapt it to significantly more complicated scenarios
than the ones considered in the previous work. In particular, MS developed the gate
decomposition – see Appendix 5.8.1. FP developed the code for fast variational gates
and ran all the simulations. LMT suggested the use of the curriculum. The paper was
written by FP with inputs from all authors. HJB and FM supervised the project.

Shortening quantum circuits is crucial to reducing the destructive effect of environmental
decoherence and enabling useful algorithms. Here, we demonstrate an improvement in
such compilation tasks via a combination of using hybrid discrete-continuous optimiza-
tion across a continuous gate set, and architecture-tailored implementation. The contin-
uous parameters are discovered with a gradient-based optimization algorithm, while in
tandem the optimal gate orderings are learned via a deep reinforcement learning algo-
rithm, based on projective simulation. To test this approach, we introduce a framework
to simulate collective gates in trapped-ion systems efficiently on a classical device. The
algorithm proves able to significantly reduce the size of relevant quantum circuits for
trapped-ion computing. Furthermore, we show that our framework can also be applied
to an experimental setup whose goal is to reproduce an unknown unitary process.

5.1 Introduction
The last decade has seen significant progress in the development of quantum computing
architectures [Aru&al19]. While scalable fault-tolerant quantum computers are still out
of reach in the near future, noisy, intermediate-scale quantum (NISQ) computers may
already offer some benefits over classical ones for specific computational tasks [Pre18;
Bra&al23]. In particular, variational algorithms [Per&al14; Cer&al21b], where most of
the operations depend on several continuous parameters, have emerged as a suitable
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class of methods that could potentially achieve quantum speed-up on NISQ devices.
Implementing a high-level quantum algorithm both on fault-tolerant and NISQ devices
requires adequate methods to compile it in the set of universal quantum gates available to
the hardware. While several frameworks for compilation of quantum circuit-based algo-
rithms on physical platforms are being developed [KMO&al23; YIL&al21; Qis23], com-
mon available approaches, such as heuristic and automated search [VDO&al19; WHB20],
in many case cannot output an optimal circuit for a specific target operation [Mar&al22].
In digital quantum computers, compilers implement a general quantum circuit through
a discrete set of universal quantum gates. In real physical quantum devices, however,
and more generally in analog computation, an additional layer of complexity is present,
due to the necessity of optimizing continuous gate parameters to reproduce target uni-
taries. These parameters may depend, e.g., on the specific Hamiltonian employed in
the quantum computing platform, such as the XY-Hamiltonian or the Mølmer–Sørensen
interaction for trapped ions [SM99; MS99], the cross resonance interaction for IBM quan-
tum computers [Mal21] or the Fermi-Hubbard model for neutral atoms [DW16]. As a
result, when taking into account physical parameters, variational algorithms, and gen-
erally continuous gate sets [PCM22], one must supplement the circuit compilation task
with a subsequent optimization of the parameters defining the individual constituent
gates. For the optimization of continuous parameters, we have several options available,
e.g., gradient-based algorithms [Dao&al22], evolutionary algorithms [Sim13] and direct
search [NM65]. For the compilation of the circuit gate structure, a standard approach is
given by methods based on the Solovay-Kitaev algorithm [DN06], different circuit fac-
torization strategies [VW04; WKW&al16], graph path traversal algorithms, such as the
A∗ algorithm [DST&al20], semi-definite programming and and various machine learning
methods, including reinforcement learning [Mar&al22]. More specifically, deep reinforce-
ment learning has been recently successfully implemented for the optimization of discrete
quantum circuits [Mor&al21; FNM&al21; Ost&al21; SEL&al22; BSK&al21; ZZZ&al20;
YLB21].
In reinforcement learning (RL) [SB18], an agent learns to maximize a properly engineered
reward signal by interacting with an environment, which encodes the optimization task
to solve. RL has already been applied to solve various challenging tasks, including,
e.g., surpassing human performance in certain classes of games [Sil&al17] or in com-
plex, computationally expensive problems such as protein folding [Jum&al21]. Projec-
tive Simulation (PS) is a physics-inspired framework for intelligent agents which has
also been applied to solve RL tasks in quantum physics [BD12; Mel&al17; MPK&al18;
WMD&al20; Dal&al20; NDD&al19] and biology [RMB19]. This model can naturally be
extended to a deep RL model [JTN&al21; Pre20] and has found applications in repre-
sentation learning [Nau&al22; Eva&al22].
In this work, we propose a unified approach to optimizing the placement and parameter
optimization of the gates in the circuit. We argue that such an approach is both rel-
evant to traditional compilation of a more expressive, continuous gateset [PCM22], as
well as to variational circuits where the experimental cost-function optimization may be
simultaneously performed over discrete and continuous degrees of freedom. We use a RL
agent, based on the PS framework, for the combinatorial optimization and a gradient-
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based optimizer for the continuous optimization of the gate angles. In particular, we
extend the method proposed in [Ost&al21] for the optimization of variational circuits in
quantum chemistry and [SEL&al22] for state preparation to the case of unitary compila-
tion. We consider the framework where an agent, that has control over an experimental
platform, interacts with a black-box unitary process and attempts to simulate it. The
task of the RL agent is to optimize the position of the gates on the circuit, whereas the
gradient-based optimizer finds the optimal set of continuous parameters that minimize
a given cost function. The reward function for the RL agent is constructed based on the
results of the continuous optimization.
We test the learning algorithm first on standard unitaries, such as Toffoli gates, and
then consider the task of quantum process simulation. The latter can be conceived as
an experimental black-box unitary approximation strategy that allows the agent to re-
construct an unknown unitary process by compiling a proper quantum circuit.
Independently of our circuit compilation results, we propose a method to speed-up the
simulation of quantum circuits based on an efficient representation of trapped-ion gates
replacing standard matrix exponentiation. This method allows us to obtain analytic
expressions for the ion-trap gates and their gradients and also to simulate the given gate
set on other quantum computing platforms, such as superconducting quantum circuits
[KTL&al21] or neutral atoms [Saf16].
The paper is organized as follows: In Section 5.2 we introduce the quantum circuit
framework for trapped-ions. In Section 5.3.1 we present our method to compute fast
analytic ion gates in simulation. In Section 5.3.2 we discuss continuous optimization
methods and strategies to compute the gradients of the cost function both in simulation
and on a real quantum device. In Section 5.3.3 we introduce PS and its extensions in the
context of RL methods. In Section 5.4 we introduce the problem of circuit synthesis and
our hybrid RL-continuous optimization method. In Section 5.5 we discuss the results of
applying the proposed method to the compilation of (black-box) unitaries.

5.2 Problem setting
In this work, we consider a specific set of gates, normally implemented in trapped-ion
quantum circuits, which is based on global Mølmer–Sørensen (MS) gates, equatorial rota-
tions acting on the entire register of qubits, as well as local polar rotations. Trapped ions
are among the most promising platforms for quantum computing hardware [BCM&al19].
They exhibit impressive coherence times even in absence of dynamical decoupling and
spin echo techniques [HAB&al14] and have been shown to allow for high-fidelity quan-
tum gates [BHL&al16; EWP&al19]. In a trapped-ion quantum computer, ions – usually
are confined in a Paul trap [Pau90] using a varying electromagnetic field. The ions are
addressed individually by a system of lasers aligned externally to the trap. The inter-
action of the laser field with the ion motional and electronic degrees of freedom allows
for entangling operations. The laser pulses can be engineered to define the following
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[C(α)] 7→ Rt

Figure 5.1: General scheme of the proposed hybrid training loop, where the RL agent
(a) learns to optimize a (variational) quantum circuit. By choosing an action at ∈
{1,2, ..., n + 2} the gate Gat is placed on the circuit (b), where G1 =MS,G2 = Cxy,G3 =
Z1, ...,Gn+2 = Zn correspond to the gate set introduced in Eqs. (5.1)-(5.3). At each RL
time step t, the circuit is used to compute a cost function C(α) based on the fidelity –
see Eq. (5.4) – either through classical simulation or the Hilbert-Schmidt test (c) – see
Eq. (5.13) – experimentally. The continuous optimizer (d) then outputs a guess for the
optimal parameters α∗ = argminα [C(α)] that minimize the cost function for a specific
circuit Vt. The minimal value of the cost function is used to assign a reward to the PS
agent – see Eq.(5.29) –, thus closing the RL training loop.

universal set of quantum gates [MMN&al16; GMT&al12; MRR&al14]:

MS(θ, ϕ) = exp{−iθ4(Sx cosϕ + Sy sinϕ)2} (5.1)

Cxy(θ, ϕ) = exp{−iθ2(Sx cosϕ + Sy sinϕ)} (5.2)

Zj(θ) = exp{−iθ2σ
(j)
z }, (5.3)
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where the first gate is a global MS gate [SM99; MS99], the second gate is a rotation of
the entire register of qubits in the equatorial plane of the Bloch sphere, and the third
gate represents a single-qubit, and therefore local, σz rotation acting on qubit j. The
operators Sx = ∑n

i=1 σ
(i)
x , Sy = ∑n

i=1 σ
(i)
y , Sz = ∑n

i=1 σ
(i)
z are given by the Pauli operators

acting on qubit i. These gates can be easily generalized to the qudit case [RMP&al22].
For the optimization of unitaries, the gate overlap fidelity is a standard figure of merit
[Nie02]:

F (U,V ) = 1
d2 ∣ tr{V U

†}∣
2
, (5.4)

where U and V are unitaries (one of them is the goal of the optimization) and d is the
dimension of the Hilbert space – for n-qubit systems d = 2n. Commonly, synthesising
quantum circuits to reproduce an arbitrary unitary U requires having access to quantum
computing hardware that implements a universal gate set and running the optimization
of the continuous parameters.
If the circuit synthesis is performed on a classical computer, it is also necessary to
simulate the gate set efficiently. Simulating and optimizing n-qubit collective gates
such as those given in Eq. (5.1) and Eq. (5.2) is generally considered more challenging
than with just two-qubit entangling gates and single qubit rotations [MMN&al16]. A
standard strategy is to progressively increase the number of entangling MS gates on the
circuit, accompanied by a suitable number of single and multi-qubit rotations, and to
progressively optimize the gate parameters until an acceptable threshold of the figure
of merit is reached. This is a viable strategy to obtain one solution for a quantum
compilation problem on a trapped-ion device; it is however sub-optimal with respect
to the number of gates required. More efficient solutions exist, but the optimization
landscape may be difficult to navigate for various algorithms [DMS22]. In particular,
as the optimization landscape with respect to the gate angles is particularly vast and
depends on the arrangement of the gates on the circuit, it is often necessary to search
through several combinations of gate sequences. Random or automated search can be
implemented to reduce the number of gates present on the circuit by arbitrarily trying
several configurations [Mor&al21; MMN&al16].

5.3 Methods
In the following section, we discuss our approach to address the three relevant aspects
that characterize a circuit synthesis task: the efficient computer-aided simulation of the
relevant trapped-ion gates, the optimization of the continuous gate parameters and the
optimal arrangement of the gates on the circuit. In addition, we address the possible
implementation of our hybrid RL-gradient based optimization method on real quantum
devices.
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5.3.1 Dynamics via fast exponentiation
In simulation, direct computation of the gates in Eqs. (5.1)-(5.2) is commonly done via
direct matrix exponentiation of a Hamiltonian, which is generally slow for large matrices,
since it requires several matrix multiplications, each one with a practical complexity of
O(d2.8) [Str69]– d is the matrix dimension –. Instead, here we show how to significantly
reduce the per-iteration computational cost of the matrix exponentiation by factorizing
it with respect to the rotation angle θ and to the phase angle ϕ. This is achieved via
a spectral decomposition where the phase-independent part can then be cached before
the optimization.
Mathematically, the factorization of the matrix exponential for a MS or Cxy gate can
be written via spectral decomposition as

UH(θ, ϕ) = exp{iH(θ, ϕ)} = (5.5)

= V (θ, ϕ)
⎛
⎝

d−1
∑
l=0

e−iλl(θ,ϕ) ∣l⟩⟨l∣
⎞
⎠
V †(θ, ϕ),

where H(θ, ϕ) is a θ- and ϕ-dependent Hamiltonian – see exponents in Eqs. (5.1)-(5.2)
–, V is the matrix of eigenvectors with respective eigenvalues λl.
Regrouping in terms of degenerate eigenvalues, and considering the case where the set
of eigenvalues are ϕ-independent, i.e., λl = λl(θ), while a ϕ-dependent unitary is applied
to the Hamiltonian, i.e., H(θ, ϕ) = V (ϕ)H(θ)V †(ϕ). As a consequence, the eigenvectors
matrix V = V (ϕ) is independent of θ, and we can rewrite

UH(θ, ϕ) =
nλ

∑
k=0

V (ϕ)
⎛
⎝
e−iλk(θ)∑

lk

∣lk⟩⟨lk ∣
⎞
⎠
V †(ϕ) (5.6)

=P (ϕ)⊙
nλ

∑
k=0

e−iλk(θ)Dl, (5.7)

where nλ is the number of distinct eigenvalues, ∣lk⟩ are the respective eigenvectors,
Dk = V (0)∑lk ∣lk⟩⟨lk ∣V †(0) and P (ϕ) is a matrix of phase components. In our case,

the columns of P (ϕ) are all equal and are given by the vector p(ϕ) = ( 1
eiϕ)

⊗n

, while ⊙

represents element-wise (Hadamard) matrix multiplication. The Cxy and MS gates have
few unique eigenvalues with λk = (2k − n)θ, 0 ≤ k ≤ nλ = n and λk = (2k − n)2θ, 0 ≤ k ≤
nλ = ⌈n+ 1

2⌉, respectively, making the computation with cached Dk particularly efficient.
A detailed derivation, together with a discussion of the computational speedup of this
representation, is available in Appendix 5.8.1.

5.3.2 Continuous gradient-based optimization
We consider the optimization of an observable with respect to the continuous parameters.
Although single problems can be optimized effectively by implementing an appropriate
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discretization method, in general this approach can lead to a sub-optimal solution, since
it introduces discontinuities in the search space. Instead, we want to consider the de-
pendency of the fidelity from continuous parameters and calculate its gradient.

5.3.2.1 Cost function based on known target unitaries.

We consider a quantum circuit composed of a sequence of continuous gates with angle
parameters α = (α1, ...,αL) and where each gate is composed of multiple rotation angles
α1 ∈ RM1 , . . . ,αL ∈ RML and M1, ...,ML ≥ 1 and M = ∑L

m=1Mm. The circuit is then
given by

V (α) =
L

∏
l=1

Vl(αl), (5.8)

where Vl(αl) is an arbitrary parametric unitary with parameters αl.
The gradient with respect to a figure of merit, here the average gate fidelity – see Eq. (5.4)
–, can also be directly computed and are given by

∇αlF =
2
d2 Re{tr(∇αlV (α)U†) tr(V (α)†U)}, (5.9)

with

∇αlV (α) = V1(αl1)⋯∇αlVl(αl)⋯VL(αL), (5.10)

for 1 ≤ l ≤ L. The naive element-wise computation of the gradient components uses M ⋅L
matrix multiplications, as the matrix in Eq. (5.9) needs to be evaluated M times and is
given by the product of L unitaries. However, the gradient can be computed recursively,
a method which is often referred to as GRAPE [KRK&al05], by storing the values of
the intermediate unitaries Wl =Wl−1V

†
l
(αl),W0 = Id for l = 1, ..., L in the product

∇αlF =
2
d2 Re{tr(Wl−1∇αlVl(αl)W

†
l
V U†) tr(V †U)}. (5.11)

The gradient computation method given in Eq. (5.11) computes first the intermediate
unitaries, for which we need L matrix multiplications and uses them to evaluate the
gradient, which compared to Eq. (5.9) needs only 4M +L+1 matrix multiplications and
therefore scales linearly with the number of gates and gate parameters in the circuit.
Eq. (5.11) allows us to compute the gradient of any cost function that resembles the
structure of Eq. (5.4) efficiently in numerical simulations. This can be further sped up
by similarly analytically computing the Hessian matrix of the cost function [DMJ&al20]
or by using GPU or TPU architectures [MHB&al22]. Eq. (5.11) can also be useful in
an experimental setting when the target dynamics, such as a desired state or unitary
evolution, are known a priori.
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5.3.2.2 Cost function based on black-box access to a target unitary.

In many NISQ-relevant algorithms, the structure of the quantum circuit need not be
prescriptive. Instead, we optimize a general circuit ansatz variationally to minimize
some performance cost function. In this setting, we once again may optimize both the
discrete and continuous degrees of freedom of the circuit to minimize the cost function.
One can conceive of situations where the target circuit unitary U may be given as a black-
box process [CN97; BH96], that is where any decomposition of the circuit is unknown
and we do not have a classical description of the unitary entries, or a circuit to compute
them. In this situation, the cost function computing the distance between the black-box
target U and a given parametric quantum circuit V (α) needs to be estimated.
A possible way to compute distances between a unitary implemented on a quantum
computer and a black-box unitary implemented by a different quantum system is the
Hilbert-Schmidt test (HST) [KLP&al19], a generalization of the SWAP test for state
preparation, which evaluates the gate fidelity of Eq. (5.4) on a quantum circuit. A
related cost function for black-box quantum compilation is given by the local Hilbert-
Schmidt (LHS) test – see Fig. 5.1, panel (c) –, which has been shown to be easier to
optimize and less sensitive to Barren plateaus [McC&al18; Cer&al21a]. Observe that
the cost function CLHS(V,U) is bound from above and below by the average gate fidelity
given in Eq. (5.4),

CLHS(V,U) < CHST(V,U) < nCLHS(V,U), (5.12)

which implies that minimizing CLHS(V,U) also minimizes CHST(V,U). Other cost func-
tions have been proposed which are based on so-called incoherent learning, i.e., where
the quantum computer and the black-box quantum system do not need to interact co-
herently [Jer&al23b].
For gradient-based optimization, we need to differentiate the cost functions CHST or
CLHS with respect to continuous gate parameters. Unfortunately, the gradient method
given in Eq. (5.11) requires access to the intermediate unitaries, which are generally
not available in real-world scenarios. Moreover, we do not generally have direct access
to the gradient of the unitary operations. As a consequence, we need to use the cost
function itself to estimate its gradient with respect to the continuous parameters, which
proves slower. In fact, computing the gradient in Eq. (5.9) with the method of finite
differences requires 2M evaluations of the test circuit, where M is the total number of
parameters. However, finite-difference methods applied to quantum circuits tend to have
small signal-to-noise ratios and therefore require large numbers of shots [KE21], espe-
cially when compared to sampling strategies that estimate the gradient via trigonometric
interpolation [WIW&al22; BWK22].

Let us now consider the specific case of trapped ions with the gate set introduced in
Section 5.2. There are three different types of gates (Z, MS and Cxy), with four types
of parameters shifts: the three rotation angles of the Z gate, the MS gate and the Cxy

gate, respectively, and the phase term ϕ of the MS and Cxy gates, which is the same for
both unitaries (see also Appendix 5.8.2).
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In the following, we consider a cost function on the Hilbert Schmidt test, but the results
can be applied to the local test as well. In the case of the Z gate, only one parameter θ
is present, whereas for the other two gates we have two possible parameter-shifts. The
experimental quantum cost function CHST comparing the parameterized circuit V (α)
in Eq. (5.8) with a target unitary U is given by

CHST (α) = 1 −Tr{H(U ⊗ V (α)∗)ρ(U† ⊗ V (α)T )}, (5.13)

where ρ and H are projectors defined in Appendix 5.8.2 and Ref. [KLP&al19]. We con-
sider here only the shift with respect to one gate at a time, which we name V1(α1), while
the remaining gates in the circuit, i.e., V2(α2), ..., VL(αL), are fixed. This procedure can
be repeated for each gate parameter. We first consider the case where V1(α1 = θ) = Z(θ).
The exact derivative of CHST(θ) is given by:

∂

∂θ
CHST(θ,Z) = CHST(θ +

π

2 , Z) −CHST(θ −
π

2 , Z) (5.14)

For V1(α1 = (θ, ϕ)T ) = Cxy(θ, ϕ) and following Ref. [WIW&al22], the parameter deriva-
tive with respect to θ is given by

∂

∂θ
CHST(θ, ϕ,Cxy)∣

θ=0
= (5.15)

2n

∑
l=1

(−1)l−1

2 sin (2l−1
2n π)

CHST (θ +
2l − 1

2n π,ϕ,Cxy) ,

whereas for V1(α1 = (θ, ϕ)T ) = MS(θ, ϕ), the parameter-shift rule with respect to θ
becomes,

∂

∂θ
CHST(θ, ϕ,MS)∣

θ=0
= (5.16)

2⌈n
2 ⌉
∑
l=1

(−1)l−1

2 sin( 2l−1
⌊n

2+1⌋π)
CHST (θ +

2l − 1
⌊n2 + 1⌋π,ϕ,MS) δfloor

i .

A more simplified rule can be derived for the parameter ϕ, which is valid for both the
Cxy and the MS gate

∂

∂ϕ
CHST(θ, ϕ) = CHST(θ, ϕ +

π

4 ) −CHST(θ, ϕ −
π

4 )+ (5.17)

+ ( 1√
2
− 1

2)CHST(θ, ϕ −
π

2 ) + (
1√
2
+ 1

2)CHST(θ, ϕ +
π

2 ).

Using the expressions given by Eq. (5.14) for the Z gate, by Eq. (5.15) and Eq. (5.17)
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for the Cxy gate and Eq. (5.16) and Eq. (5.17) for the MS gate, we can compute any
gradient of cost functions estimated in experiments on quantum devices that use cost
functions such as Eq. (5.13). For more details about the parameter-shift rules of the
Cxy and MS gates, and further possible simplifications, see Appendix 5.8.2.

5.3.3 Combinatorial Optimization
In this section, we consider the problem of determining an optimal arrangement of the
gates on the quantum circuit. This problem arises from the necessity of minimizing the
depth of a quantum circuit to reduce the total circuit execution time, thereby reducing
decoherence. And while the circuit can be compiled in layers [OGB21], it is difficult
to determine the optimal size due to the large number of possible optimal parameter
configurations that produce the same circuit. Therefore, it is necessary to search through
various combinations of gate arrangements to determine a minimal one. This task, which
partially falls in the realm of combinatorial optimization [MSI&al20], is particularly
suitable for reinforcement learning algorithms [Mor&al21].

5.3.3.1 Reinforcement Learning with Projective Simulation

Reinforcement learning describes a class of algorithms which use an agent-environment
interaction model to maximize a reward function. In particular, the agent can be rep-
resented by a parametrized model, called policy, that outputs action signals on the
environment upon receiving observations as inputs. For each action or sequence thereof,
the environment returns observations and reward signals. In gradient-based methods,
the policy parameters are updated in the direction that maximizes the discounted fu-
ture expected return [SB18]. Based upon the different tasks considered, a vast range of
algorithms and methods have been developed to tackle various environments [Li17].
In the following section, we consider the PS architecture – see Fig. 5.2 (a). Projective
Simulations (PS) is a framework for agency and decision making that has also found ap-
plications as a RL agent [Boy&al20; MPK&al18]. In that context, a PS agent interacts
with an environment by performing actions sampled from an action space A, whereas
the environment provides the agent with perceptual inputs, which reside in a percept
space S, and reward signals. Its central feature is represented by a so-called episodic
and compositional memory (ECM) – see Fig. 5.2 (a) –, a graphical model consisting of a
network, or weighted graph, where the vertices are clips and represent, e.g., remembered
percepts or remembered actions, but also more general states of the agent’s memory. In
this framework, the agent creates a clip inside the ECM each time it receives a previ-
ously unknown input from the environment, or each time it creates a new action clip or a
more abstract clip, e.g., through action composition. This makes it is possible to create
ECM networks with complex graph structures, allowing for generalization capabilities
[Mel&al17; Eva&al22]. Each input triggers a random walk between the nodes of the
ECM that is governed by the edge weights of the graph. We assume in the following
that the ECMs created are two-layered networks, with one layer representing percepts
clips and the other action clips and where a percept at time t of the RL interaction is
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Figure 5.2: (a) Schematic representation of a PS-environment interaction: the agent
is equipped with a memory structure that allows it to process the information input
by the environment (in the case of PS, the episodic and compositional memory, ECM
[BD12; Mel&al17]). Every perceptual input from the environment triggers a sequence
of transitions – showed in orange – within the internal computational graph of the agent
and governed by transition probabilities pij . The sequence of transitions connects a
percept clip st, which in our case corresponds to the sequence of actions a1, ..., at−1 used
to generate the circuit Vt using the corresponding gates, to an action clip corresponding
to at. (b) Policy parametrization of the PS-LSTM algorithm. In this implementation,
the agent receives a sequential input at time t and constructs a policy by outputting
weights ht(s, a, ut) corresponding to each action a, the current percept s and the hidden
state of the LSTM network ut. Afterward, an action a∗ is sampled from the policy
constructed this way and the weight corresponding to this action is propagated further
in the hidden state of the LSTM network, as given in Eq. (5.23). The weights are then
reset when the episode terminates.

connected directly to all action clips. The edge weights are initialized uniformly:

∀a ∈ A,∀s ∈ S ∶ h0(s, a) = 1. (5.18)

We define the probability distribution1 over percepts s ∈ S and actions a ∈ A as

p(a∣s) = eβht(s,a)

∑
a
eβht(s,a) , (5.19)

1In standard PS, the probability is defined without the exponential factors.
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for a edge weight ht(s, a) connecting s to a. The PS algorithm optimizes the policy,
similar to other RL frameworks, through a reward signal, which is provided by the
environment to the agent. At each RL time-step t, the update rule is given by

ht+1(s, a) = ht(s, a) − γ(ht(s, a) − 1)+ (5.20)
+gt(s, a)Rt,

where Rt is the reward at time step t, γ is a damping coefficient that regularizes the
result and reduces potential instances of trapping in local minima, gt(s, a) are so-called
glow values [Mau&al15], which are initially set to zero

∀a ∈ A,∀s ∈ S ∶ g0(s, a) = 0. (5.21)

They are set (or reset) to gt(s, a) = 1 at time t if the corresponding edge is traversed
and decay in value for each time step where they are not used according to the rule

gt+1(s, a) = (1 − η)gt(s, a), (5.22)

where 0 ≤ η ≤ 1. The glow mechanism helps distribute the rewards along the entire chain
of state-action transitions traversed by the agent in an episode. We see that the edge
weights that are rewarded positively grow, thereby enhancing the probability that the
same action is chosen again in the future upon receiving a similar percept.
PS has been successfully extended to include more powerful computational structures,
such as deep feedforward energy-based networks [JTN&al21; Nau&al22] and recurrent
networks [Pre20]. The aforementioned architectures enable the PS agent to update
the policy using function approximators. This allows the agent, as it is the case for
deep Q-learning [Mni&al15], to construct more powerful representations of the percept-
and action-spaces and achieve high performances in environments with, e.g., continuous
parametric percepts and actions without the need of discretization strategies [SB18]. We
focus here on the Long-Short Memory Network (LSTM) architecture [Hoc91; HS97], a
recurrent neural network that is equipped with an internal memory architecture that
helps it learn long-range correlations in a sequential input. In this case, the action
sampled at time t also depends on the LSTM internal state ut, i.e.,

a∗ ∼ p(a∣s, ut) =
eβht(s,a,ut)

∑
a
eβht(s,a,ut)

(5.23)

with s ∈ S and a, a∗ ∈ A and the u-value is updated w.r.t. the sampled action as follows:

ut+1 = ht(s, a∗, ut). (5.24)

The term ut = ut(s, a) also depends on percepts and actions, but as we see in Eq. (5.24),
only the u-value corresponding to the action sampled by the agent at time t are propa-
gated as information to the next RL time step, as shown in Fig. 5.2 (b). This value is the
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one that carries relevant information about the correlations in the sequential structure
of the percepts. We would like to stress that the presence of an additional non-linear
term in the update rule in Eq. (5.23) induces a different type of ECM structure, where
the term ut(s, a) represents an additional edge weight. The update of the reward mech-
anism can be generalized starting from the standard PS reward update mechanism to
fit the training of neural network-based policies, in analogy with the case of Q-learning
[JTN&al21; Pre20].

5.4 Circuit compilation
Quantum compilation is the general task of reproducing a general operationM ∈ C4n

×4n

on a n-qubit quantum processor. In particular, we consider the compilation of unitary
operations U ∈ U(n).

5.4.0.1 Layer-based compilation and heuristic search

A general approach for gate synthesis in trapped-ion circuits is discussed in Ref. [MMN&al16].
This approach is based on the universality of two-qubit entangling gates for quantum
computation [DiV95]. As a consequence, it is possible to compile a quantum algorithm
in growing layers, i.e., by iteratively placing entangling MS gates on the circuit followed
in each case by a collective rotation of the following type

R(θk, ϕk, ..., θk+n+1, ϕk+1) = (5.25)

= Cxy(θk, ϕk)
n

∏
i=1

Zi(θk+i)Cxy(θk+n+1, ϕk+1),

where the gates Cxy and Z are defined in Eqs. (5.2)-(5.3). For each layer of gates present
on the circuit, we have one MS gate and one general rotation R – see Eq. (5.25) –, which
consists of n local Z gates and two Cxy gates.
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Algorithm 3 Exhaustive search with layer-based compilation
Input Target unitary U , threshold ϵ, cost function C.
Output V ∗,α∗.

1: ▷ Construct layers:
2: for L = 1 to LMS do
3: ▷ Add MS gate and rotations:
4: V (α) =∏L

l=1 Vl(αl)
5: ▷ All angles but the ones of MS gates:
6: α = (θ1, ϕ1, ..., θ(n+2)L, ϕ2L)T

7: K̃ = (n + 2)(L + 1)
8: ▷ Loop over numbers of rotations:
9: for k = 1 to K̃ do

10: ▷ Loop over combinations of indices:
11: for j = 1 to (K̃k ) do
12: ▷ Set angles with chosen indices to zero:
13: ασ(j,k) = 0
14: α̃k = (..., ασ(j,k) = 0..., ασ(j,k) = 0, ...)T
15: ▷ Cost function according to Eq. (5.27):
16: C(α̃k) = 1 − F (V,U)
17: C∗ =min(C(α̃k),∇αkC(α̃k))
18: if C∗ ≤ ϵ then
19: α∗ = (α̃k)∗

20: V ∗ = V
21: break
22: else
23: continue
24: end if
25: end for
26: end for
27: end for

The unitary added to the circuit at each layer l is:

Vl(αl) =MS(θMS
l , ϕMS

l ) R(θl, ϕl, ..., θl+n+1, ϕl+1). (5.26)
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The cost function

C(α) = 1 − 1
d2

RRRRRRRRRRR
tr
⎧⎪⎪⎨⎪⎪⎩

L

∏
l=1

V (αl)U†
⎫⎪⎪⎬⎪⎪⎭

RRRRRRRRRRR

2
, (5.27)

based on the gate fidelity in Eq. (5.4), has to be minimized with respect to the angle
parameters α. After obtaining the optimal parameters α∗, if the desired error threshold
is reached, the algorithm terminates, otherwise a new layer of gates is placed on the
circuit, up to a maximum number of layers LMS. By running this procedure iteratively
with different angle parameter sets, we can search through the optimization landscape
to find different gate decompositions (see Algorithm 3 and Ref. [MMN&al16]).

Algorithm 4 PS-based compilation
Input Target unitary U , Action set G1 = MS,G2 = Cxy,G3 = Z1, ...,Gn+2 = Zn,

threshold function ϵt, cost function C

Output V ∗,α∗

1: for e = 1 to Emax do
2: s1 = (0, ...,0), V1 = Id
3: for t = 1 to Lmax do
4: ▷ Sample action according to Eq. (5.19):
5: at ∼ π(a∣st)
6: Vt+1(αt) = GatVt(αt−1)
7: st+1 = (a1, ..., at,0, ...,0)
8: α = (α1, ...,αt) ∼ 2π ⋅N (0α,Iα)
9: ▷ According to Eq. (5.27):

10: α∗ = argmin(C(α),∇αC(α))

11: Rt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 if ϵmin ≤ C(α∗) ≤ ϵt
10 if C(α∗) ≤ ϵmin

0 otherwise
12: if C∗ ≤ ϵt then
13: V∗ = Vt+1
14: break
15: end if
16: Update rule for all ht+1(st, at) (see Eq. (5.20))
17: end for
18: Update threshold ϵt according to Eq. (5.30)
19: end for
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However, while this method can be applied to circuits with a small number of layers
and qubits, its use becomes impractical as these two parameters grow. In fact, the
number of total combinations to analyze for a given number of MS layers LMS and a
number of qubits n is

Ncombinations =
2(n+2)(LMS+1) − 1

1 − 1
4
(n+2) −L2

MS. (5.28)

For a 3-qubit circuit with L layers of entangling gates, the number of possible circuits
is Ncombinations = 1049591. For a 4-qubit circuit with 5 entangling gates the number
of combinations is approximately Ncombinations ∼ 236. We see that already for 4-qubit
gates, a brute force approach is unfeasible. Moreover, due to the large search space, even
approaches based on random search are not a viable option, especially if the number of
entangling gates is large.
In the following section, we suggest a different approach to the optimization scheme
where the position of the discrete parameters is modified by a RL agent equipped with a
curriculum scheme, whereas the continuous parameters are optimized at each iteration
and using a pre-defined heuristic for angle initialization. This can offer benefits in several
situations where the number of gates is large enough to make the use of automated search
prohibitive but not so large to make the problem completely intractable from the point
of view of continuous parameter optimization.

5.4.0.2 Reinforcement learning-based compilation

In the following, we discuss the implementation of RL-based compilation. In this system,
the agent acts on the environment, which represents a quantum circuit, by choosing a
gate from, e.g., the gate set of Section 5.2 and placing it on the circuit. As an observation,
the agent receives information about the environment internal state. This can vary
depending on the task to be solved: in Ref. [Mor&al21], e.g., the input is a single-qubit
unitary and the task is to construct a pre-trained optimal compiler that constructs any
unitary with minimal average number of actions. In Refs. [Pre20; BDS&al18], the agent
receives an encoded representation of the quantum circuit in terms of gates and qubits.
The circuit-based input has the advantage of scaling linearly with the number of qubits
for n-qubit entangling gates and its sequential structure makes it suitable for recurrent or
autoregressive policies [YLB21; SEL&al22]. The perceptual input of the PS-LSTM agent
is given by the current gate on the circuit. The action of the PS-LSTM agent is placing
one further gate on the circuit. A representation of the interaction between the agent
and the quantum circuit environment is given in Fig. 5.1: at each time step, the agent –
Fig. 5.1 (a) – can place one or more gates on the circuit. Then the circuit – Fig. 5.1 (b) –
is mapped to the corresponding unitary function, which depends on parameters α. The
gradient-based optimizer – Fig. 5.1 (d) –, i.e., the L-BFGS-B algorithm [LN89], is given
the task of finding the optimal set of parameters to maximize the fidelity – Fig. 5.1
(c) – between the current circuit and a target unitary process. The reward function
and the percept for the next interaction step are constructed based on the result of the
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optimization. The algorithm is shown in Algorithm 4 for the standard PS method and
can be easily generalized to a framework with deep networks [JTN&al21; Pre20].
Furthermore, one may design different types of RL environments based on the way
the agent places gates on the circuit. We develop here two different approaches for two
different types of RL environments: In the first environment, we just mimic the structure
of layer-based compilation, in which we keep the entangling gates fixed and then let the
agent vary the rotations between them. This assumes that the RL interaction is defined
by the number of gates placed between each entangling layer and the total amount
of entangling layers considered. This architecture has the advantage of restricting the
search space of the RL agent, but it allows for less exploration of the cost function
landscape.
The second architecture allows the agent to place any available gate, entangling or non-
entangling, on the circuit and as such does not restrict the action of the agent on the
quantum circuit, with one single exception: if the agent places the same type of gate
twice in a row on the circuit, these two gates are merged together in one single gate. This
is needed to avoid the agent getting stuck in a loop where it keeps performing the same
operation over and over again, without any meaningful exploration of the optimization
landscape from the perspective of the continuous optimizer. We employ this architecture
in our simulations.
In our implementation, the action at chosen at time t is the index of certain gate in the
gate set, whereas the corresponding percept st is given by the concatenation of previously
chosen actions (a1, ..., at−1). Thus, the action space is given by the gate indices A =
{1,2, ..., n + 2} and the percept space by the Cartesian product of Lmax action spaces:
S = A×Lmax . The PS-LSTM algorithm, however, can also be given just the action at
time t−1 as percept, since the LSTM memory can automatically capture the correlations
between the elements in the sequence. Here, we adopt a RL training procedure with a
curriculum scheme as described in Ref. [Ost&al21]. This allows the agent to sufficiently
explore the solution space and gradually adapt the solution. More specifically, for each
task of quantum circuit optimization, we define a curriculum strategy where we reward
the agent at time step t each time it finds a sequence with achieved minimal infidelity
C(α∗) lower than a chosen moving threshold ϵt and a fixed threshold ϵmin = 10−2:

Rt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 if ϵmin < C(α∗) < ϵt
10 if C(α∗) < ϵmin
0 otherwise

. (5.29)

The episode terminates when the reward the cost function minimum in a given time step
falls below the threshold ϵt or when the maximal length of the circuit per episode, Lmax,
is reached. The RL training terminates upon reaching the maximum number of episodes
Emax. The reward scheme helps to progressively increase the fidelity throughout training
without allowing for too long circuits.
The threshold is then lowered as episodes progress based on previous rewards obtained
by the agent. In our implementation, we lower the threshold when it has been surpassed
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Toffoli, n=3 Toffoli, n=4 Size of the shortest optimal circuit foundToffoli, n=3 Toffoli, n=4 Size of the shortest optimal circuit found

Figure 5.3: Quantum circuit optimization of different gates using the gate set defined
in Eqs. (5.1)-(5.3). (a), (e) show the average reward; (b), (f) the average circuit size
(thick line) and the size of the best circuit found so far by all agents (dotted line);
(c), (g) the number of optimal sequences per episode; (d), (h) are histograms which
show the distribution of the optimal gate sequences over the circuit size. All lines
refer to simulations of the 3-qubit Toffoli gate, first compiled on a 3-qubit (green line,
average over 10 agents and 20 episodes) and then on a 4-qubit circuit (orange line,
average over 5 agents and 20 episodes). Due to the n-qubit interaction of the trapped-
ion gates, the optimal sequence that generates the gate – which we define as the shortest
sequence whose infidelity falls below ϵmin = 10−2 – increases in size from 10 to 19 gates.
Shaded regions in the plots represent the corresponding standard deviations. While
the average fidelity increases to reach the maximum for both circuits, we see that the
average circuit length appears to be higher than the shortest circuit length. There are
possible explanations for this: the shortest sequences can be harder to optimize, so there
is a higher chance that the optimizer fails at outputting the cost function minimum for
a given circuit structure and the curriculum scheme, that modifies the problem online
during the training. Overall, we observe that the size of the optimal circuit decreases as
training progresses, thus validating the successful optimization of the policy.

by the agent at least 500 times using the following scheme:

ϵt+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϵmin + 1
2(ϵmin − ϵt) if ϵmin ≤ ϵt ≤ 1

ϵmin if ϵt ≤ ϵmin
1 otherwise.

(5.30)
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5.5 Results
We test our algorithm on two relevant tasks of circuit optimization: Standard gate com-
pilation, which can be useful in particular for experimental applications of frequently
used gates (Toffoli, etc.) and the simulation of black-box unitary processes with quan-
tum circuits. The latter framework is particularly interesting for quantum simulation
and offers the possibility of implementing our algorithm directly on an experimental set-
ting where a black-box unitary process has to be simulated by a quantum circuit with
available gates.
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Figure 5.4: (a) Fidelity; (b) circuit size (thick lines) and size of the best circuit found by
all agents (dotted lines); (c) number of optimal sequences per episode and (d) histogram
of the optimal sequences – i.e., whose infidelity falls below ϵmin = 10−2 – based on the
circuit size for the UCC operators defined in Eq. (5.31) for β = π

2 and for 3, 4, 5, 6, 7,
8 qubits. The learning curves show the average over 20 agents, after which an average
over a time window of 20 episodes is performed. We observe how the average maximal
fidelity reached by the agents decreases as a function of the number of qubits, whereas
the optimal circuit size increases, which means that a longer circuit is necessary to
synthesize the desired operator. Moreover, the fraction of optimal sequences found by
the agent is also decreasing for higher numbers of qubits, as optimal policies become
more and more sparse and thus harder to discover for the PS-LSTM agent. The hardest
task for the PS-LSTM agent proves to be 7-qubit UCC operator, where the learning
curve of the agents fails to converge, while, e.g., for the 8-qubit UCC unitary the agent
can find sequences with very high fidelities (1−F < 10−5), even though the convergence
is sub-optimal. We also observe that for each learning curve there is a dip at some point
in the training: this is most likely due to the curriculum scheme, which modifies the
reward threshold during training and therefore influences the size of the optimal circuits
found by the agent. However, when considering the ensemble of simulations, we see that
the agents are capable of finding shorter and shorter optimal circuits. Shaded regions in
the plots represent the corresponding standard deviations.
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5.5.1 Example 1: gate compilation
As a first application of the method presented above, we consider the problem of compil-
ing a gate on an ion-trap quantum processor using the gate set given in Eqs. (5.1)-(5.3).
For this class of tasks, we choose two gate compilation problems which can be of interest
for typical applications, before passing to a more general framework which considers
black-box unitaries. First, we consider a standard quantum computing gate, the 3-qubit
Toffoli gate [Tof80; MKH&al09] – see Fig. 5.3 – for a 3-qubit (green line, upper four
plots) and a 4-qubit circuit (orange line, lower four plots). The dashed lines in Fig. 5.3
show the optimal solutions found by the agent. In the 3-qubit case, this solution matches
agrees with the results given in Ref. [MMN&al16]. Fig. 5.3 (a), (e) show the fidelity of
the sequences produced and optimized by the agents as the learning progresses, (b), (f)
show the average circuit size and the size of the shortest circuit found by the agent,
(c), (g) show the average number of optimal sequences, i.e., with fidelity higher than
0.99, found in each episode (which in the best-case scenario should converge to one per
episode) and (d), (h) show histograms representing the number of sequences for different
bins of circuit size. We observe from the first and second plot in each row of Fig. 5.3
that the agents are capable of maximizing the fidelity and at the same time of reducing
the average circuit size in both cases. Moreover, while the average circuit size is larger
than the size of the best circuit, most likely due to the presence of the curriculum and
the influence of local minima on the angle optimization, we also see that the agents find
shorter and shorter optimal circuits as the training progresses, hinting that the at least
one agent in the ensemble is indeed learning to optimize the circuit correctly. More-
over, the third plot in each row shows us that the agents find an increasing number of
high-fidelity sequences during training. The minimal sequences found by the agents are
located in the leftmost tail of the distribution.
The 3-qubit Toffoli gate implemented on a 4-qubit circuit could have in principle a rel-
atively long generating quantum circuit in the chosen gate set, since the 4-qubit gate
set also affects the qubits left unchanged by the Toffoli gate. We also observe, in our
simulations, that sequences generating this gate are sparse in the action space, which
could make it generally difficult to produce this gate on a register of n qubits without
the help of MS and Cxy gates acting only on subspaces of the register. We test whether
our method can discover a circuit of reasonable size.
For large numbers of qubits and large circuit sizes, we observe that although the al-
gorithm can find shorter circuits, it is still impaired by the computational overhead of
simulating such circuits exactly. In this case, the gate decomposition method introduced
in Section 5.3.1 provides a useful speedup for RL simulations, especially if compiled on
GPU architectures.

5.5.2 Example 2: General quantum process simulation of a
Hamiltonian model

As a second example, we compile parametric-type operators that play a relevant role in
quantum chemistry [TB06; BM07], i.e., UCC-type operators. These are part of a more
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general class of many-body operators [MKW17]:

U(β) = exp(iβ (
n

∏
i=1
(σ(i)x − iσ

(i)
y ) + h.c.)). (5.31)
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Figure 5.5: These plots summarize the result of simulating the XXZ-model unitary with
our approach for different parameter configurations for n = 3,4,5 qubits (3 agents for
each parameter sample). (a) shows the maximal value of the fidelity found by the agents,
(b) the mean fidelity, (c) the size of the shortest circuit associated with the fidelity in
(a) and (d) the average circuit size, as a function of the coupling J of the XXZ model for
two different configuration of the transverse coupling ∆ = 0.5 with varying J and and
J = 0.5 with varying ∆ (dark green, orange and blue and pink, light green and yellow,
respectively). The evolution time was fixed to τ = 0.25 and the maximum size of the
circuit to 50. The average fidelity is calculated over the last 200 episodes. Vertical bars
show the standard error for the mean values of fidelity and circuit size. We see here that
the circuit size increases dramatically as the parameters ∆ and J increase. We also see
from the number of outliers in (c) and (g), that for certain values of the parameters it
is hard for the agents to exactly retrieve the optimal circuit.

The class of operators defined by Eq. (5.31) resembles the collective rotations used in
trapped-ion gate sets given in Eqs. (5.1)-(5.3), they are however sparser. Due to their
importance, they represent our first candidate for process simulation on the quantum
circuit. The results for the simulation using PS-LSTM of several such operators – n =
3,4,5,6,7,8 – and for β = π

2 is given in Fig. 5.4. We observe that the agent is able to
increase the fidelity up to the optimal value. We also see that the size of the optimal
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circuit generating the corresponding operators increases with the number of qubits.
Furthermore, due to the growing number of local rotations available to the agent and
the sparseness of the reward, it becomes increasingly difficult to find and reward optimal
sequences. This also shows the benefit of implementing curriculum strategies in such
hybrid discrete-continuous optimization problems, where the landscape both for the RL
agent and for the numeric optimizer become increasingly sparse. We also note that
the generation of 7 and 8-qubit UCC operators proves more challenging. In particular,
for the 7-qubit UCC unitary, the agent is able to raise the fidelity to values close to
F = 0.99, but it cannot significantly increase the number of circuits with F > 0.99 over
the course of the training. In the case of the 8-qubit UCC operator, the agent instead
proves capable of discovering sequences with very high fidelity, i.e 1−F < 10−5, although
the average fidelity worsens slightly towards the end of the training. We also see that
an ensemble of agents can successfully reduce the size of the best circuit, even in those
cases where the average performance worsens during training.
We would like now to consider a (black-box) unitary U(τ) = e−iHτ , where τ is the
evolution time described by a Hamiltonian of the following type:

H = −2h
n

∑
i=1

σ
(i)
z − J

n−1
∑
i=1
(σ(i)x ⊗ σ

(i+1)
x + σ(i)y ⊗ σ

(i+1)
y (5.32)

+∆(σ(i)z ⊗ σ
(i+1)
z − 1

4I)),

which is usually referred to as the XXZ model [Tak99]. We want to analyze how the
optimal quantum circuit found by the RL agent changes when we vary the Hamiltonian
parameters. For the XXZ model, this parameter variation represents for instance the
transition from a XX model when ∆ = 0 to a XXX model for ∆ = 1, or from ZZ
interaction for J = 0 to a XXZ model for J > 0. In fact, we observe in different parameter
regions different behaviours of the circuit structure. Results of several RL runs for two
different configurations, one with fix coupling J = 0.5 and varying ∆ and another one
with fix ∆ = 0.5 and varying J of the XXZ model unitary are shown in Fig. 5.5 for 3, 4
and 5 qubits. Plots (a), (e) show the maximal fidelity found by the agents for each run,
plots (b), (f) the mean fidelity, plots (c), (g) the number of gates in the shortest circuit
among those with the highest fidelity and plots (d), (h) the average circuit size, all
represented in their functional dependence from the coupling J and transverse coupling
∆ of the XXZ model for two different configuration of the transverse coupling ∆ = 0.5
with varying J and and J = 0.5 with varying ∆ (dark green, orange and blue and pink,
light green and yellow, respectively). We also see how rapidly the circuit size grows in
the presence of entanglement, for example from J = 0 to J = 1, whereas the increase in
average circuit size seems less pronounced as we vary ∆. We observe that the optimal
circuit size can also decrease, for example when ∆ = 1 and J = 0.5. We also see some
instabilities and high variance in both the average circuit size and the size of the best
circuit discovered, though it is hard to determine whether the agent fails at finding
a shorter circuit for a specific parameter or the problem becomes suddenly harder to
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represent with the given gate set due to the parameter variation.

5.6 Conclusion
In this work we construct a framework to learn both classically simulated and black-box
unitaries on a quantum circuit using RL and unconstrained optimization. Our simu-
lation is specifically tailored to an ion-trap architecture based on collective gates and
local rotations. We demonstrate the synthesis of optimal circuits for Toffoli gates and
UCC operators for varying numbers of qubits. As instances of black-box unitaries, we
also consider Hamiltonian simulations of the XXZ model. More specifically, we study
the convergence and the quality of the solutions found by agent and optimizer as we
modify relevant parameters of the underlying black-box unitary, such as the coupling in
the XXZ Hamiltonian. After testing the algorithm on different unitary process simu-
lation scenarios, we observe that the optimization of circuits is generally possible even
for large numbers of gates, it is however difficult to foresee how sparse the cost function
minima can be as we increase the number of qubits and reduce the sparsity in the cor-
responding Hamiltonian. Possible improvements include combining the RL search with
a graph traversal algorithm to have a more efficient exploration of the discrete action
space [Dal&al20; ZZZ&al20]. We expect that this approach can be applied to different
architectures beyond trapped ions, and more carefully engineered reward functions can
be developed to further enhance the discovery of optimal circuits. Our unified optimiza-
tion, combining circuit compilation and unitary synthesis, may find use both in classical
pre-optimization and in experimental circuit learning, be it for in-situ (variational) al-
gorithms or module-compilation tasks.

5.7 Data and Code availability
The code and the data are available at the following link: https://github.com/franz3105/
RL_Ion_gates.
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5.8 Appendix
5.8.1 Fast analytic ion gates
In this section, we derive the representations for the MS and Cxy gates based on their
spectral decomposition and we show how these can be further simplified. We also provide
descriptions of the gate gradients based on the optimized representations. The n-qubit
XY-Rotation and MS Hamiltonians are given by

ĤXY(n,ϕ) =Sx cos(ϕ) + Sy sin(ϕ), (5.33)

ĤMS(n,ϕ) =ĤXY(n,ϕ)2 = (Sx cos(ϕ) + Sy sin(ϕ))2 , (5.34)

We will first focus on solving the XY-rotation gate and then generalize our solution to the
MS gate, using the fact that the MS-Hamiltonian is the square of the XY-Hamiltonian.
A representation of the XY unitary in terms of its real and imaginary entries for n = 8,
θ = 3

4π and ϕ = 2π is given in Fig. 5.6.

5.8.1.1 General Approach - Constructing the XY-rotation Gate

Due to the lack of multi-qubit interaction terms in the XY-rotation Hamiltonian, the
eigenvectors and eigenvalues of the n-qubit case can be constructed from the single
qubit closed-form solution, allowing us to factorize the evolution into ϕ dependent terms
and θ dependent terms (θ can be understood as the time evolution parameter, using a
standard notation of the literature of trapped-ion quantum computing). This allows us
to calculate the associated unitaries from element-wise operations. We decompose the
Hamiltonian into

ĤXY(n,ϕ) = V̂n(ϕ)ΛXYV̂
†
n(ϕ), (5.35)

with the ϕ dependent V̂n and the diagonal matrix of the eigenvalues ΛXY. For the
unitaries the eigenvalues then capture the θ dependence via exp(−iΛXY

θ
2).
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5.8.1.1.1 Eigenvalues The eigenvalues are constructed from the single qubit case us-
ing the following Kronecker sum notation Â⊕n = ∑n

i=1 I
⊗i−1 ⊗ Â⊗ I⊗n−i,

ΛXY = diag (2bn − n) , with bn = (
0
1)
⊕n

. (5.36)

We find that the i-th eigenvalue can be constructed from the binary Hamming weight
vector bn, because the i-th component of the binary Hamming weight bn(i) corresponds
to the number of qubits with ∣1⟩ at index i of the Hilbert space.

5.8.1.1.2 Eigenvectors The eigenvector matrices V̂n(ϕ) are also constructed from the
single qubit case, but using the tensorproduct,

V̂n(ϕ) =
1√
2n
( 1 1
−eiϕ eiϕ)

⊗n

= P̂n(ϕ)⊙
1√
2n
(Î2 + iσy)⊗n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Ŝn

. (5.37)

We furthermore decompose them into an elementwise product (⊙) of a sign Ŝn and
phase P̂n(ϕ) component. The phase components P̂n(ϕ) are column-independent P̂n(ϕ) =
[pn(ϕ),pn(ϕ),⋯,pn(ϕ)], where the vectors themselves can be regarded as the element
wise complex exponential vϕ of the binary Hamming weight vector bn

pn(ϕ) = (
1
eiϕ)

⊗n

= exp(iϕbn) = vϕ(bn). (5.38)

5.8.1.1.3 Calculating the Unitary We can now use the column independence of the
phase components P̂n(ϕ), to commute it with the eigenvalues. This allows us to separate
the phase component further. For the unitary of the XY-gate we then find

Cxy(ϕ, θ) = exp (−iĤXY(ϕ)θ) = V̂n(ϕ) exp(−iΛXY)θ)V̂
†
n(ϕ)

= 1
2n P̂n(ϕ)P̂ †

n(ϕ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=vϕ(Ĉ)

Ŝn exp(−iθ/2ΛXY)Ŝ
†
n. (5.39)

We substitute the phase term product with the previously defined element wise complex
exponential of Ĉ = P̂n − P̂T

n . Furthermore we split the sign components into degeneracy
subspaces one for each different eigenvalue in λXY. We decompose Ŝn = ∑n

i=0 Ŝλi
, where

Ŝλi
retains the values of Ŝn for columns with binary Hamming weight i, but is zero for

all other columns. From this we can then construct cached matrices D̂λi
= Ŝλi

Ŝ
†
λi

, so
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that we can rewrite

Ŝn exp(−iθ/2ΛXY)Ŝ
†
n =

n

∑
i=0

e−iλXY,i
θ
2 D̂λi

. (5.40)

From this we conclude

Cxy(ϕ, θ) =
1
2nvϕ(Ĉ)⊙

n

∑
i=0

exp(−iλXY,iθ) D̂λi
. (5.41)

The element wise exponential vϕ(Ĉ) is constructed efficiently by reusing 2n + 1 phase
values, because Cij ∈ [0,1,⋯,2n]. Each of the required computations require O ((2n)2)
operations, resulting in a total complexity of O ((n + 1)(2n)2).

0 50 100 150 200 250

0

50

100

150

200

250
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Figure 5.6: Real and imaginary components of the unitary matrix of the n-qubit XY-
rotation gate with ϕ = 2π and θ = 3/4π. The colormap describes the value range of the
matrix elements.

5.8.1.2 Generalization to the MS gate

The approach used for Cxy gate can be generalized to the MS gate. Due to its Hamil-
tonian being the square of the aforementioned Hamiltonian, the two gates share their
eigenvectors, while the eigenvalues of the Cxy gate are squared λ2

XY,i = λMS, i. This
reduces the number of different eigenvalues from n + 1 to ⌈n2 ⌉ + mod (2 + 1,2). The
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expansion in Eq. (5.41) is transformed into

MS(ϕ, θ) = 1
2nvϕ(Ĉ)⊙ (∑

⌈n
2 ⌉

i=0 exp(−iλMS,iθ)

=D̃i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(D̂λi

+ D̂λn−i
) δfloor

i ). (5.42)

where

δfloor
i =

⎧⎪⎪⎨⎪⎪⎩

1 if 0 ≤ i ≤ n
2

0 otherwise.
(5.43)

As both expansions, Eq. (5.41) and Eq. (5.42), rely solely on operations local to the
matrix elements, these operations are ideal for parallelisation. In Fig. 5.7 we show
the improvement in terms of computation time (a) and speedup (b) of our method
compared to standard matrix exponentiation as a function of the number of qubits : in
(a) the orange line shows the computation time of the matrix exponential, whereas the
green line shows our method implemented without caching the parameter-independent
matrices, and the blue line our method again, but with cached matrices; (b) shows
instead the ratio between the computation time of the cached method and standard
matrix exponentiation. We see that we can reach a speedup between 50 and 250 for
n ≤ 12, which proves particularly useful in our quantum-circuit simulations: In fact,
these require large numbers of cost function evaluations, due to the presence of both the
reinforcement learning agent and the gradient-based optimization.

5.8.1.3 Gradients and Hessians

The gradient of the Cxy gate can then be computed analytically via

∂

∂ϕ
Cxy(ϕ, θ) = iĈ 1

2nvϕ(Ĉ)⊙∑n
i=0 exp(−iλXY,iθ) D̂λi

, (5.44)

∂

∂θ
Cxy(ϕ, θ) = 1

2nvϕ(Ĉ)⊙∑n
i=0 −iλXY,i exp(−iλXY,iθ) D̂λi

. (5.45)

For the derivative by ϕ the sum can be reused from the previous gate construction in
Eq. (5.41) further reducing computational demands. For the MS gate we find

∂

∂ϕ
MS(ϕ, θ) = iĈ 1

2nvϕ(Ĉ)⊙ (∑
⌈n

2 ⌉
i=0 exp(−iλMS,iθ)

=D̃i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(D̂λi

+ D̂λn−i
) δfloor

i ) (5.46)

∂

∂θ
MS(ϕ, θ) = 1

2nvϕ(Ĉ)⊙ (∑
⌈n

2 ⌉
i=0 −iλMS,i exp(−iλMS,iθ)

=D̃i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(D̂λi

+ D̂λn−i
) δfloor

i ).(5.47)
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Figure 5.7: (a) Walltime for MS gate construction with standard matrix exponentiation
and with the analytical approach of this paper as a function of the number of qubits. The
orange line corresponds to the function scipy.expm, the blue and green lines represent
the analytical approach during caching and after caching, respectively; (b) speedup of
the new approach, once the parameter-indedependent matrices have been cached, as a
function of the number of qubits. Here we see that the speedup is not constant as the
number of qubits changes, but we have a maximum speedup around 5 qubits, which then
decreases until we reach 8 qubits, and then increases again. This effect is most likely due
to an underlying slowdown in the underlying fundamental operations, e.g., due to the
processor cache being filled up quickly, so that access to the RAM becomes necessary.
Moreover, our method is implemented only using NUMBA, i.e., compiled PYTHON
code, whereas the exponential matrix function of SCIPY profits from underlying time-
critical routines written in C, C++ and Fortran. It seems, however, that the speedup
grows steadily for values larger than 8 qubits.

Hessians can be derived direcly by applying the chain rule a second time in Eqs. (5.44)-
(5.47).

5.8.2 Parameter-shift rules for ion gates
The method for gate computation introduced above allows to express the derivative of
a quantum cost function in terms of so-called parameter-shifts rules. These have been
studied in the context of variational quantum circuit, quantum control and quantum ma-
chine learning. The gates contained in the gate set Z1(θ), ..., Zn(θ), Cxy(θ, ϕ), MS(θ, ϕ).
In general, expectation values with respect to parametrized quantum circuits will have
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the form

C(α) = ⟨ψ∣V (α)ρV †(α) ∣ψ⟩ , (5.48)

for a given quantum state ∣ψ⟩, where V (α) is a gate in the gateset defined in Section (5.2).
The cost function depends on a specific target operator ρ.

We first show that the cost function in Eq. (5.48) is equivalent to the cost function of
Eq. (5.13), as well as to the expectation value of the local and non-local Hilbert Schmidt
circuit, which is given in Ref. [KLP&al19]:

CHST (α) = 1 −Tr{H(U ⊗ V (α)∗)ρ(U† ⊗ V (α)T )}, (5.49)

with ρ = H = ∣ϕ+⟩A,B ⟨ϕ+∣A,B for the Hilbert Schmidt test, where A and B are the
subystems for unitary U and V and

∣ϕ+⟩A,B =
1√
d
∑
j

∣jA⟩⊗ ∣jB⟩ . (5.50)

Proof. We show the equivalence for the Hilbert Schmidt test. The proof for the local
Hilbert Schmidt test is analogous.
We see that

Tr{H(UV † ⊗ I)ρ(V ⊗U∗)} = 1
d
∑
j

Tr{∣jA⟩ ⟨jA∣UV † ∣jA⟩ ⟨jA∣V U†}Tr{∣jB⟩⊗ ⟨jB ∣},

which can be represented as a sum of squared amplitudes of with the same structure of
(5.48).

As a result, the cost functions considered here have to a common description, similar
to Eq. (5.48). We derive and comment the corresponding parameter-shift rule for each
one of these gates. We consider here the shift of one single parameter at a time, i.e., a
scalar rotation angle θ. The gradient is constructed by shifting each parameter according
to its own specific parameter-shift rule. The derivatives of the function can be written
as:

∂

∂θ
C(θ) = ⟨ψ∣ ∂

∂θ
V (θ)UV †(θ) + V (θ)U ∂

∂θ
V †(θ) ∣ψ⟩ . (5.51)

Assuming the gate has a generator V (θ) = eiGθ, where G is a parameter-independent
hermitian matrix, then we have:

∂

∂θ
C(θ) = ⟨ψ∣V (θ)i[G,U]V †(θ) ∣ψ⟩ . (5.52)
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In the simplest case, we consider, e.g., G = σ(i)z and obtain [LYP&al17]:

[σ(i)z , U] = eiσ
(i)
z π/2Ue−iσ

(i)
z π/2 − e−iσ

(i)
z π/2Ueiσ

(i)
z π/2, (5.53)

which leads to

∂

∂θ
C(θ) = C (θ + π2) −C (θ −

π

2) , (5.54)

a parameter-shift rule which is valid for the local Z-rotations. For the other two gates,
we have to differentiate with respect to both the parameters θ and ϕ. For θ, applying
Eq. (15) in Ref. [WIW&al22], we have:

∂

∂θ
C(θ, ϕ)∣

θ=0
=

2n

∑
l=1

(−1)l−1

2 sin (2l−1
2n π)

C (2l − 1
2n π,ϕ) . (5.55)

By using the general decomposition of the Cxy gates, parameter-shift rules can be ob-
tained directly by studying how the eigenvalues and eigenvectors of the unitaries vary as
a function of the continuous parameters. Since the Cxy gate has n+1 distinct eigenvalues
we will need at most 2(n+1) samples to calculate the derivative – see [WIW&al22]. We
observe that the matrices V̂n(ϕ) in Eq. (5.37) can be decomposed further in elementary
gates, such as:

V̂n(ϕ) = (P(ϕ)HX)⊗n = P(ϕ)⊗nH⊗nX⊗n, (5.56)

where

P(ϕ) = (1 0
0 eiϕ) ,H =

1√
2
(1 1
1 −1) ,X = (

0 1
1 0) . (5.57)

Let us first consider the Cxy gate. The corresponding Hamiltonian has n + 1 different
eigenvalues with energy λi = 2i − n and ck(ϕ) = vk(ϕ)†Uvk(ϕ) are the overlaps between
the target operator U and the gate eigenvectors vk(ϕ) of the gate. For the set of difference
pairs we have λi − ϵj = 2(i − j) ∶= 2l. Then Eq. (5.55) becomes

∂

∂θ
C(θ, ϕ)∣

θ=0
=

n

∑
k=1

2n

∑
l=1

(−1)l−1

2 sin (2l−1
2n π)

ck(ϕ)e2ik(2l−1
2n
). (5.58)

.
This expression can be simplified by evaluating the sum at θ = 0 with respect to the
index l.

∂

∂θ
C(θ, ϕ)∣

θ=0
=

n

∑
k=1

ck(ϕ)
csc ( π

2n) e
πi(k(4n+2)−n)

n (e
2πi(n+1)(n−2k)

n − (−1)n+
1
n)

2n ((−1)ne4πik + e2πin)
. (5.59)
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Figure 5.8: Average speedup (30 shots) required to compute the gradient for: (a) the
same circuit (50 gates) with increasing numbers of qubits. (b) a 6-qubit (blue) and
7-qubit (green) gate set for increasing number of random gates on the circuit. Shaded
regions show the standard deviation for each point (vertical bars are connected together
to form a poligon). The orange line represents the gradient compiled with NUMBA
on CPU (Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz), the second one the gradient
compiled with JAX on GPU (NVIDIA Tesla V100S-PCIE-32GB). We see a slowdown in
the speedup as we move past 8 qubits: this is probably due to computational overheads
that do not profit from the GPU parallel calculations. In fact, we see that the slowdown
is present only as we increase the Hilbert space dimension and not as we increase the
number of gates.

For the MS gate we obtain instead the following expression:

∂

∂θ
C(θ, ϕ)∣

θ=0
=

n

∑
k=1

ck(ϕ)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−
csc ( π

2n) e
8πikn−πi(n−2k)2

n ((−1)n+
1
n e

2πi(n+1)(n−2k)2
n − 1)

2n ((−1)ne2πi(4k2+n2) + e8πikn)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

(5.60)

For the derivative of Eq. (5.48) with respect to ϕ, we just have to consider the gate P(ϕ)
in Eq. (5.56), whose single-qubit gate generator is given in Eq. (5.61). We observe that
due to the simple structure of the gate, the derivative of the Cx,y gate with respect to
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ϕ is simply given by:

P(ϕ) = exp{iϕ2 (In − Sz)} = exp{iϕ2 } exp{−iϕ2 Sz}, (5.61)

where Sz = ∑n
i=1 σ

(i)
z is the collective Z-operator acting on the entire qubit register.

After inserting Eq. (5.61) into Eq. (5.48) for a Cxy gate, and using the representation
in Eq. (5.35), we obtain

C(θ, ϕ) = ⟨ψ∣ (exp{−iϕ2 Sz}BXY(θ) exp{iϕ2 Sz}U exp{−iϕ2 Sz}BXY(θ)† exp{iϕ2 Sz}) ∣ψ⟩ ,

(5.62)

where BXY(θ) = H⊗nX⊗n (∑n
l=0 exp{−iλlθ} ∣l⟩ ⟨l∣)X⊗nH⊗n – the same equation holds

for the MS gate, one needs just to replace λXY with the corresponding eigenvalues λMS .
Considering that P(ϕ) has two eigenvalues, we can write

exp{−iϕ2 Sz} = eiϕΠ(1)z + e−iϕΠ(2)z , (5.63)

where Π(1)z and Π(2)z are the projectors on the respective degenerate eigenspaces. By
using Eq. (5.63) in Eq. (5.62), we see that Eq. (5.62) has the following form

C(θ, ϕ) = b0(θ) + b1(θ)e−iϕ + b2(θ)eiϕ + b3(θ)e2iϕ + b4(θ)e−2iϕ, (5.64)

where bi(θ), i = 0,1,2,3,4 are ϕ-independent coefficients. Thus, we can write the deriva-
tive of C with respect to ϕ as

∂

∂ϕ
C(θ, ϕ) = −ib1(θ)e−iϕ + ib2(θ)eiϕ + b3(θ)2ie2iϕ − 2ib4(θ)e−2iϕ, (5.65)

which can be written as a linear combination of C(θ, ϕ±π
2 ) and C(θ, ϕ±π

4 ) cost functions:

∂

∂ϕ
C(θ, ϕ) = C̃(θ, ϕ + π4 ) − C̃(θ, ϕ −

π

4 ) + (
1√
2
− 1

2)C̃(θ, ϕ −
π

2 ) + (
1√
2
+ 1

2)C̃(θ, ϕ +
π

2 ).

(5.66)

5.8.3 Algorithmic implementation details
Our framework consists of two main parts: The agent (we consider a PS-LSTM agent
with LSTM cells and a linear layer, but any RL agent is a viable option), which should
learn to construct a proper representation of the quantum circuit and the optimizer,
which has to be equipped with a proper gradient function. The gradient function is
constructed according to the standard GRAPE procedure and using the gate represen-
tations for the Cxy and the MS gates given in Appendix 5.8.1. We use and test two
different versions of the gradient: The first one is compiled using NUMBA [LPS15], a
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library for fast python code, the second one employs JAX to allow execution on GPU.
A comparison of the two gradient functions is given in Fig. 5.8. We observe that the
GPU-based function allows for a certain speed-up, in particular as the number of gates
on the circuit increases. The main advantage of NUMBA lies in a faster and more
straightforward implementation of the parallel optimization runs with different seeds.
At time t of the agent-environment interaction, the agent receives an input (percept)
from the environment and outputs an action which is executed onto the environment.
The agent-environment interaction has the following structure.

Action: The action of the agent corresponds to placing one of the available gates
in the gate set (entangling or non-entangling) onto the quantum circuit. The gate is
represented by an integer a ∈ 1, ..., ∣A∣. The array of all the integers chosen by the agent
up to time t forms the quantum circuit structure at time t.

Percept: As input to the RL agent, we generally use a one-hot encoding of the cir-
cuit. For a circuit of length L and ∣A∣ different gates, the percept st ∈ {0,1}L × {0,1}∣A∣
has entries equal to:

(st)i,j =
⎧⎪⎪⎨⎪⎪⎩

1 if i, j = a, t
0 otherwise.

(5.67)

However, for the PS-LSTM agent (or other agents that are modified analogously), a more
suitable input can also be used. Since the update of the internal state of the PS-LSTM
agent follows the RL steps, the agent can just accept the input at time t as a percept,
since previous information about past agent-environment interactions is still processed
by the the internal state of the LSTM network. Therefore, the percept becomes the
one-hot encoded vector

(st)j =
⎧⎪⎪⎨⎪⎪⎩

1 if j = a
0 otherwise.

(5.68)

This percept only gives the agent partial information about the internal state of the
environment, which turns the problem from an MDP (Markov Decision Process) into
a so-called POMDP problem (Partially Observable Markov Decision Process) [Pre20].
Other agents than those derived by PS may use different inputs, based on their spe-
cific convergence properties in dealing with different environments. In general, if the
agent can accept a recurrent or autoregressive network as a policy, the percept given in
Eq. (5.68) may be used. It could be, however, that the algorithm needs to be modified
appropriately to function with this type of percept. The first type of input has been
used for the simulation of UCC operators, whereas the second one has been implemented
in all the other simulations. In general, both percepts lead to similar results, but the
second one should be preferred for the PS-LSTM architecture and most importantly
does not scale with the size of the circuit, leading therefore to faster forward passages
in the policy network.
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Reward and curriculum: Throughout the development of this manuscript, several
reward systems were tested. In general, we used a two-step reward that assigns a smaller

(a) Hybrid layer-based-RL environment with action space A = {Cxy, Z1, ..., Zn} and fixed MS gates.
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(b) Full RL environment with action space A = {MS,Cxy, Z1, ..., Zn}.
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Figure 5.9: Quantum circuit representation of two possible RL environments for quantum
circuit optimization. The first environment (a) resembles the structure of the layer-based
compilation, that is, the entangling MS gates are fixed and the agent can place rotations
on the circuit between the entangling layers. The second one (b) has no pre-defined
circuit structure but rather leaves the agent completely free to place any gate withing
the gate set on the quantum circuit, with only one additional simplification: two gates
of the same type placed immediately one after the other are automatically merged to
form one single gate. This is done to prevent the agent from getting stuck in loops, i.e.,
local minima, where it keeps choosing the same gate over and over again. In general, the
first circuit reduces the size of the action space and therefore the possible shapes of the
corresponding cost function, hence reducing exploration in favour of a more standardized
search.

reward value when the cost function minimum falls below the actual curriculum thresh-
old ϵt and a larger reward value when the cost function minimum falls below the global
target threshold ϵmin. Both curriculum thresholds can be adjusted depending on the
gate synthesis problem to be tackled.
The episode terminates when the cost function minimum in a given time step falls be-
low the threshold ϵt or when the maximal length of the circuit per episode, Lmax, is
reached. The RL training terminates upon reaching the maximum number of episodes
Emax. The reward scheme helps to progressively increase the fidelity throughout train-
ing without allowing for too long circuits. The threshold is then lowered as episodes
progress based on previous rewards obtained by the agent. In our implementation, we
lower the threshold when it has been surpassed by the agent at least 500 times using
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the following scheme:

ϵt+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϵmin + 1
2(ϵmin − ϵt) if ϵmin ≤ ϵt ≤ 1

ϵmin if ϵt ≤ ϵmin
1 otherwise.

(5.69)

Environments: We propose two different types of agent-circuit interaction. In the first
type – see Fig. 5.9 (a) –, which is more similar to layer-based compilation, the agent
only places rotations on the circuit, while the entangling gates are fixed in position.
While the episode progresses, more entangling gates are added to the environment, un-
til a maximum Lmax of gates on the circuit is reached. The circuit is also simplified
automatically by the environment, in such a way that if the agent places the same two
gates on the circuit one after the other, they are reduced to one single gate. This is im-
plemented in order to prevent the agent from getting trapped in local minima where it
places the same gate over and over again on the circuit, therefore reducing the necessary
training time. In the second type – see Fig. 5.9 (b) –, entangling gates are also given as a
possible action on the environment. This second type of environment leaves more room
for exploration, but it is also more challenging for the agent. The simulations presented
in this work were realized by using only the environment that allows for completely free
gate placement (so both the rotation gates as well as the entangling gates).

Agents: In order to test the effectiveness of our algorithm, we employ different agents for
testing. We consider the standard state-of-the-art PPO algorithm [Bar21] and the two
versions of PS with deep energy-based neural networks PS-DEBN and PS-LSTM. We
observe that PPO performs slightly worse than PS-LSTM, but better than PS-FNN, but
is probably due to the non-recurrent version of the PPO algorithm implemented. Due to
the large action and percept space, we did not include standard PS in the comparisons,
since this would require to store large h-matrices for each percept-action transition, lead-
ing to slow computation and eventually memory overflow. This algorithm can however
be used in circuit synthesis problems with a small number of gates and qubits.

Optimizers: As an unconstrained optimizer, in this work we only consider the L-BFGS-
B algorithm, as it is implemented in SCIPY [Vir&al20]. The number of iterations of
the optimizers for each RL interaction is set to 100. Both optimizers can run a given
number of optimization attempts in parallel with different seeds (a technique usually
referred to as random restart), which should prevent the optimizer from getting trapped
in local minima.

Simulations: In this work we consider three different groups of simulations: the
synthesis of a 3-qubit Toffoli gate on a 3-qubit and 4-qubit circuit, the synthesis of
UCC (Unitary Coupled Cluster) operators and the synthesis of the unitary of the XXZ
Hamiltonian with varying Hamiltonian parameters. In the case of the XXZ Hamiltonian
and the Toffoli gate, the simulation is realized on CPUs (72 Intel(R) Xeon(R) Gold
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Gate type A∗ search Dijkstra Greedy our method
MS gate 5 3 4 3
Cx,y gate 3 4 94 4
Z gate 27 24 297 3
Depth 17 15 113 10

Runtime 17 s 63 s 161 s 1.6 h

Table 5.1: Result of the compilation of the 3-qubit Toffoli gate with BQSKit [YIL&al21]
using the gate set given by Eqs. (5.1)-(5.3) and three of the given search heuristics: A∗,
Dijkstra, and greedy. The threshold is set to ϵ = 10−2. We see that the compilation uses
a considerable amount of Z gates and a larger amount of collective gates than the RL
algorithm. We see, however, that a standard compiler can be significantly faster than a
RL-based search with 10000 episodes and it is therefore possible to apply further pruning
methods and iterative optimization loops on top of the main compilation algorithm.

6240 CPU @ 2.60GHz), whereas the simulation of the UCC operators is performed on
GPUs (4 NVIDIA A100 Tensor Core GPU with 40 GB). This means, the library used to
compute cost functions and gradients in order to optimize them is NUMBA for the CPU-
based simulations and JAX for GPU-based ones. The reason is that NUMBA allows
for faster parallelization with the JOBLIB library that proves difficult to achieve with
JAX, thereby enabling us a better exploration of the cost function landscape for small
numbers of qubits, whereas JAX is significantly faster for larger numbers of qubits. In
particular, we set the number of optimization runs per RL iteration to 10 when we em-
ploy the NUMBA version, whereas we use only 1 when we employ the code using JAX.
The curriculum threshold was kept to ϵmin = 10−2. We used two-layered LSTM networks
implementing the policy given in Eq. (5.23) and 128 neurons, a training batch size of 64,
a learning rate of 0.01, a curriculum update window of 500. The agent is trained with a
replay-memory upon finding a gate sequence with infidelity lower than the curriculum
threshold, and also every 100 agent-environment interactions if the replay memory is
large enough. The target network is updated every 50 agent-environment interactions.
The number of iterations of the optimizer in the hybrid RL-continuous simulations is
fixed to 100. The temperature parameter β of the softmax distibution that parametrized
the PS-LSTM policy – see Eq. (5.19) – is annealed from β = 10−3 to β = 1 according
to a linear schedule based on the number of episodes, in order to force the agent, to-
wards the end of the training, to consider shorter and shorter circuits, thereby reducing
the exploration. Other parameters vary based on the simulation considered. The data
and hyperparameters can be found in https://github.com/franz3105/RL_Ion_gates.

Comparison with BQSKit: BQSKit is a quantum circuit compilation library de-
veloped by the Berkeley National Laboratory [YIL&al21]. It supports compilation of
both discrete and variational circuits with different algorithms, such as tree-search with
BFS, qsearch, etc. and allows for the implementation of custom gate sets. For compari-
son, we implement the trapped-ion gate set used in this work – see also Eqs. (5.1)-(5.3)

105

https://github.com/franz3105/RL_Ion_gates
https://github.com/franz3105/RL_Ion_gates


5 Hybrid discrete-continuous compilation of trapped-ion quantum circuits with deep
reinforcement learning

– and run the compilation using the QSearch algorithm implemented in the aforemen-
tioned library, which is based on multiple tree traversal search algorithm such as the
A∗ algorithm [HNR68] or the Dijkstra algorithm [HN19]. The results of these runs for
the Toffoli gate are given in Table 5.1: we see that the A∗ and Dijkstra routines give
similar solutions, whereas the greedy heuristic proves significantly worse overall. The
compilation routine offered by BQSKit, while significantly faster than the RL method, is
unable to converge to the same compact solution discovered by the PS-LSTM algorithm.
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Disclaimer: A modified version of this chapter was published in Ref. [PCT&al22]. FP
and JZB developed the theoretical framework of the paper. FP developed the code and
ran all the simulations. JZB wrote the introduction to the purification protocols with
inputs from FP and MT. FP and JZB worked together on the plots. FP wrote the
discussion of the results. TC provided useful guidance and revisions to the manuscript.
All authors contributed significantly to the revision of the manuscript.

We propose and investigate a method to optimize recurrence entanglement purification
protocols. The approach is based on a numerical search in the whole set of SU(4)
matrices with the aid of a quasi-Newton algorithm. Our method evaluates average con-
currences where the probabilistic occurrence of mixed entangled states is also taken into
account. We show for certain families of states that optimal protocols are not necessarily
achieved by bilaterally applied controlled-NOT gates. As we discover several optimal so-
lutions, the proposed method offers some flexibility in experimental implementations of
entanglement purification protocols and interesting perspectives in quantum information
processing.

6.1 Introduction
Entanglement is a key resource for several tasks in quantum information, quantum simu-
lations [MCD&al21], computation [AL18], and communication [PAB&al20]. These tasks
are based on the idea of creating networks of quantum systems, where the generation of
maximally entangled sates between qubits in spatially separated nodes is essential. These
networks, which may consist of distant or nearby nodes, have been thoroughly investi-
gated for efficient processing and transfer of quantum information [ABB&al21]. How-
ever, due to interactions with an uncontrollable environment, mixed or non-maximally
entangled states are produced. To protect quantum information and to guarantee a high
performance of its processing, one can use quantum error correction [Per85; DMN13]
or quantum teleportation in combination with entanglement purification [BBP&al96;
DEJ&al96; BDS&al96]. Quantum error correction is characterized by the quantum
capacity of the transmission channel, which can be compared with the yield of entan-
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glement purification for both one- and two-way classical communication [BDS&al96].
The latter is the subject of this article. In particular, we consider a so-called recurrence
protocol [DB07], an iterative approach, which operates in each purification step only on
two identical copies of states.
In this paper, we discuss entanglement purification from the point of view of optimality.
Recently, optimized entanglement purification has been investigated with the help of
genetic algorithms [KAJ19], where the analytical and numerical studies are based on
Werner states [Wer89]. In fact, also the first ever proposed protocols are based on either
Werner [BBP&al96] or Bell diagonal states [DEJ&al96]. It has been shown that 4 or
12 local random SU(2) transformations can convert any state into a Bell diagonal or
Werner state, respectively [BDS&al96]. We have already argued that these random local
unitary transformations and states obtained in consequence are only useful for grasp-
ing and understanding the complex task of entanglement purification because they may
waste useful entanglement [TB16]. Therefore, here, we develop a method for general
states and demonstrate it for several simple examples including also the Werner state.
Nonetheless, our motivation also lies in the fact that an experimental implementation
may not have enough control over the generated mixed entangled states and thus more
general, adaptive, and optimal entanglement purification strategies have to be made
available. In this general context, we assume that an experiment can still guarantee
identical copies of states before the protocol takes place.
Our method is based on quasi-Monte Carlo numerical sampling of the states, which un-
dergo the purification protocol, and then the concurrence [Woo98] of the output states
is integrated over an a priori probability distribution function. This results in an aver-
age two-qubit gate-dependent cost function for the whole sample of states. We employ
a quasi-Newton algorithm [LN89] to solve this non-linear optimization problem on the
whole SU(4) group.
We focus on increasing entanglement in each step, therefore, the obtained two-qubit gate
is optimal in the sense that it achieves, on average, a higher increase of entanglement of
an input family of states for a given purification step. This is beneficial in reducing the
number of qubit pairs required to purify a single two-qubit state, as this number grows
exponentially with the number of steps. We discuss the performance of our method
for several examples and compare with protocols based on one bilateral application of
controlled-NOT (CNOT) gates, the paradigmatic two-qubit operation used in the sem-
inal purification protocols [BBP&al96; DEJ&al96].
The paper is organized as follows. In Sec. 6.2 we introduce our method and give some
elementary examples to allow further acquaintance with the concept of the introduced
cost function. In Sec. 6.3 we demonstrate our approach for one two-parameter and four
one-parameter family of states. Numerical and analytical results are presented for con-
currences and success probabilities. In Sec. 6.4 we summarize and draw our conclusions.
Some details supporting the main text are collected in the Appendix 6.6.1.
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6.2 Method
In this section, we describe how the recurrence protocol is optimized with respect to an
input family of quantum states.

6.2.1 Entanglement purification protocol
Let us consider the product state of two-qubit pairs

ρ = ρA1,B1 ⊗ ρA2,B2 , (6.1)

where qubit components of each pair are assumed to be spatially separated at nearby
or distant locations. These locations are labeled by A and B. In an entanglement pu-
rification protocol, one performs local quantum operations, which may not involve just
two-qubit gates [Ber17].
This is followed by measurements on one of the pairs at both locations. A classical
communication between A and B results in a qubit pair with a higher degree of entan-
glement. Both pairs are assumed to start in the same state ρ and the degree of the
entanglement is usually measured by the fidelity with respect to one of the Bell states

∣Ψ±⟩ = 1√
2 (∣01⟩ ± ∣10⟩) , ∣Φ±⟩ = 1√

2 (∣00⟩ ± ∣11⟩) . (6.2)

However, these states can be subject to local unitary transformations, which can cause
some technical difficulties, when one uses fidelity, i.e. using fidelity as a cost function
would force us to search also for additional local unitary operations in order to align the
output state of the protocol with the Bell basis.
Furthermore, using a fidelity restricts the purification process to a particular basis. For
instance, in Refs. [BBP&al96; DEJ&al96] a state can be purified only if it presents
fidelity greater than 1/2 with respect to any Bell state in Eq. (6.2). In this setting a
mixed state with fidelity close to one with respect to the maximally entangled state
∣ΨM⟩ = (∣Φ−⟩ + i ∣Φ+⟩ + i ∣Ψ−⟩ + ∣Ψ+⟩) /2 would not be purifiable, as ∣ΨM⟩ has a fidelity of
1/4 with respect to any Bell state. As we intend to analyze the entanglement purification
in a very general setup, we require an entanglement measure that is invariant under
local unitary transformations. Therefore, we turn to the concurrence as a measure of
the attainability of a maximally entangled state [Woo98]:

C(ρ) =max{0, κ1 − κ2 − κ3 − κ4}. (6.3)

Here κ1, κ2, κ3, κ4 are the square roots of the non-negative eigenvalues (enumerated from
the largest one to the smallest one) of the non-Hermitian matrix :

ρ̃ = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy),

where the asterisk is the complex conjugation in the standard basis and σy is the Pauli
matrix. It is worth noting that there are other possible entanglement measures, such as
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Figure 6.1: Schematic representation of bipartite entanglement purification, where the
entanglement purification protocol trades two entangled qubit pairs for a qubit pair with
a higher degree of entanglement, which is quantified by the concurrence C.

the entanglement formation or the relative entropy of entanglement [PV07], but we do
not consider them in this article, because the concurrence is, from a numerical point of
view, a more tractable entanglement measure for two-qubit states.

In this paper, we examine and optimize a purification protocol having the following
steps.

(i) Two unitary transformations ρ→ U(α)ρU(α)† are applied locally at A and B (see
Fig. 6.1), where U is a general two-qubit unitary described by a parameter vector α.
After the application of the quantum operation the four-qubit system attains the state

ρ′ = UA1,A2(α)UB1,B2(α)ρU
†
B1,B2(α)U

†
A1,A2(α). (6.4)

(ii) One of the pairs (A2,B2) is then locally measured in the standard basis. There are
four possible states, i.e., four-dimensional vectors, in which one can find the measured
pair:

∣1⟩ = ∣00⟩A2,B2
, ∣2⟩ = ∣01⟩A2,B2

,

∣3⟩ = ∣10⟩A2,B2
, ∣4⟩ = ∣11⟩A2,B2

.

A successful measurement of one of the states ∣i⟩ with i ∈ {1,2,3,4} results in a state for
the other qubit

ρ̃
A1,B1
i = ⟨i∣ρ′ ∣i⟩

Tr{∣i⟩⟨i∣ρ′} (6.5)

with probability
pi = Tr{∣i⟩⟨i∣ρ′}.

(iii) Depending on the value of the measurement results, which are communicated be-
tween the two parties, the state with the largest concurrence and the related success
probability are kept, whereas the others are discarded. The output of the protocol is
the pair (C′, P ), with the concurrence value C′ of the state obtained with probability
P . If there are multiple maxima, e.g. , C(ρ̃A1,B1

1 ) = C(ρ̃A1,B1
2 ), then C′ = C(ρ̃A1,B1

1 ) and
P = p1 + p2.
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Given two copies of a state ρ with concurrence C, it is straightforward to see that the
pair (C′, P ) depends on the vector α, which we use as the optimization parameter.
Recurrence entanglement purification protocols might include symmetric and asymmet-
ric single-qubit gates before and after the bilateral action of the two-qubit operations
[BBP&al96; DEJ&al96]. These are important in an analytical approach to maintain
the form of the state after each iteration, however, entanglement is not affected by this
process. In this work we omit these specific single-qubit gates, as we are focused on
increasing the value of the concurrence and not on the specific form of the state after
each iteration step. We may instead consider general single-qubit unitaries as part of
more general parametrizations. Furthermore, we stress again that our approach aims
to increase the amount of entanglement between the qubits pairs regardless of the ba-
sis. This is an improvement concerning previous approaches based on seminal protocols
[BBP&al96; DEJ&al96] where a fidelity greater than 1/2 with respect to a Bell state is
needed for a working entanglement purification protocol.

6.2.2 Protocol optimization
In order to optimize the protocol described in Sec. 6.2.1, we first define an appropriate
parametrization for the two-qubit unitary transformations used in Eq. (6.4). In principle,
one should consider elements from U(4), the group of 4 × 4 unitary matrices, which
contains the subgroup SU(4). However, U(4) is the semi-direct product of U(1) and
SU(4), where elements of U(1) are rotations of the unit circle [Bak02].
Therefore, choosing elements from SU(4) in Eq. (6.4) represents the most general unitary
quantum operation involving two-qubit gates at locations A and B. Elements in SU(4)
can be parametrized as [TBS02]:

U(α) = eiσ3α1eiσ2α2eiσ3α3eiσ5α4eiσ3α5eiσ10α6eiσ3α7eiσ2α8

eiσ3α9eiσ5α10eiσ3α11eiσ2α12eiσ3α13eiσ8α14eiσ15α15 ,

with α = (α1, α2, . . . , α15)T ∈ R15 (T denotes the transposition), and [TBS02]:

0 ⩽ α1, α3, α5, α7, α9, α11, α13 ⩽ π,
0 ⩽ α2, α4, α6, α8, α10, α12 ⩽

π

2
0 ⩽ α14 ⩽

π√
3
, 0 ⩽ α15 ⩽

π√
6
, (6.6)

where σi, i = 1, ...,15 are a basis of the Lie group SU(4) (see the Appendix 6.6.1). This
is called the Euler angle parametrization of SU(4), which is sufficient to represent every
element of the Lie group. For example, the canonical parametrization eiH , where H is
a 4 × 4 self-adjoint matrix with trace zero, is not minimal, because after exponentiation
we may have multiple wrappings around the great circles of the 7-sphere.
Our aim is to increase the concurrence, which is a non-linear function of the state ρ and
the protocol’s unitary matrix U . Furthermore, we have lower and upper bounds on α,
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as given in Eq. (6.6). We then consider a cost function f ∶ R15 → R as

f(α) = 1 − C′(α) (6.7)

and our optimization problem is to find a value α∗ that leads to a minimum f(α∗).
The gradient ∇f(α) can be made available to us due to an automatic differentiation
[BFH&al18], so we implement for the optimization a quasi-Newton algorithm the so-
called limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method [LN89].
Here, we have a constrained optimization problem, because α takes values in the hyper-
rectangle defined by Eq. (6.6) and thus we use the L-BFGS approach of Ref. [BLN&al95].
As long as the state to be purified is given, the above approach yields an optimal α∗

and a concurrence C′ as close as possible to one.
The vector α∗ gives the best two-qubit gate associated with this given state for a given
purification step. However, our main aim is to provide the best quantum gates, which
are able to purify most effectively certain classes of states and not only a fixed one.
This is relevant in a scenario where the generation of distant entanglement is affected
by altering noise, leading to slightly different types of states entering the protocol. In
order to formulate this quantitatively we introduce a probability density function (PDF)
p(x), where the vector x defines uniquely the state ρ according to a parametrization.
For example, in the case of a Werner state [Wer89]

ρ(x) = x ∣Ψ−⟩ ⟨Ψ−∣ + 1 − x
3 ∣Ψ+⟩ ⟨Ψ+∣

+ 1 − x
3 ∣Φ−⟩ ⟨Φ−∣ + 1 − x

3 ∣Φ+⟩ ⟨Φ+∣ , (6.8)

we have x ∈ [0,1] and the PDF satisfies

∫
1

0
p(x)dx = 1.

In general, a two-qubit state can be described by 15 parameters, which have to fulfill
some non-trivial conditions [Kim03; BK03; Gam16]. The choice of the PDF is not
straightforward and the only guideline we have is that the support supp(p) consists of
all x, which define entangled states. This is motivated by the fact that separable states
are not purifiable. In the case of the Werner states, the support of the PDF is the interval
(0.5,1]. Thus, the PDF may put more weight on states with a given concurrence.
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Algorithm 5 Optimization of recurrence protocol
Input ρ(x), optimizer OPT
Output ρ(x)

1: for j = 1 to M do
2: xj ∼ p(xj)
3: ρj = ρ(xj)⊗ ρ(xj)
4: end for
5: for N = 1 to Nmax do ▷ with random restart
6: UAB(α) = UA1,A2(α)UB1,B2(α)
7: for j = 1 to M do
8: σj(α) = UAB(α)ρjU

†
AB(α)

9: for l = 1 to 4 do
10: σ

jl
A(α) =

⟨l∣σj(α)∣l⟩
Tr{∣l⟩⟨l∣σj(α)}

11: end for
12: end for
13: Cl(α) = 1

M ∑
M
j=1 C(σ

jl
A)

14: l′ = argmin
l=1,2,3,4

[1 − Cl(α)]

15: f̄(α) = 1 − Cl′(α)
16: α∗ = OPT(f̄(α),∇αf̄(α))
17: for j = 1 to M do
18: ρj = σ

jl′

A (α
∗)⊗σ

jl′

A (α
∗)

19: end for
20: end for

In this context, we have an output concurrence C′(α,x) depending on both the two-
qubit gate and the input state. Therefore, we are going to use an average cost function

f̄(α) = 1 −∫supp(p)
C′(α,x)p(x)dx (6.9)

in the L-BFGS algorithm. The integral can be either solved numerically or approximated
via a quasi-Monte Carlo approach by sampling x over its corresponding parameter dis-
tribution p(x):

f̄(α) = 1 − E
x∼p(x)

[C′(α,x)] . (6.10)
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We chose the second approach since it proved to be precise enough, i.e.,

1
M

M

∑
j=1

p(xj) ≈ 1,

with M being the sample size, and numerically faster. A summary of the optimization
routine can be seen in Algorithm 5. We first sample a batch of random density matrices
by sampling over the parameter space according to a probability distribution p(x). Then
we optimize the average output concurrence of the protocol as a function of the param-
eters α. The optimization routine provides us with output density matrices, which are
re-inserted in the protocol for a successive purification round, controlled by a different
unitary matrix U(α). This is also optimized, giving rise to a loop that breaks when the
desired concurrence level or when the maximal number of iterations Nmax is reached.
We would like to highlight that the unitary matrices which build the optimized purifi-
cation protocol are different from each other. Each one of them is optimized for its own
purification step, a procedure that can be conceived as a form of adaptive purification.
Due to the nature of the optimization, and the intrinsic complexity of differentiating,
e.g., the concurrence, it is likely that some of the concurrence values output by our
optimization routine are not true optima, but rather local optima. However, in general,
restarting the algorithm multiple times with different initial conditions can help reduce
the probability of it being stuck in a local minimum.
Now, we shed light on the meaning of the average cost function through the following
two examples. We employ the CNOT gate

UCNOT =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
= ei 3π

4 × U ′
´¸¶
∈SU(4)

,

where U ′ in the Euler angle parametrization is given by setting

α3 = α5 = α7 =
π

4 ,

α4 = α6 = α10 =
π

2 ,

and the remaining nine angles to zero in Eq. (6.6). By fixing the vector α, we are able
to get a value for the average cost function of the CNOT gate and thus to evaluate its
performance.
We remark that for the following three examples, we merely calculate the cost function
of the CNOT gate in order to explain this particular process, and to show that this gate
can be optimal in certain cases with a possible combination of other single-qubit gates.
In Sec. 6.3 we run an optimization process where the cost function is evaluated for many
two-qubit gates in order to find the optimal one.
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Example II.1. Let us consider the state

1
6

⎛
⎜⎜⎜
⎝

1 + 2x 0 0 1 − 4x
0 2 − 2x 0 0
0 0 2 − 2x 0

1 − 4x 0 0 1 + 2x

⎞
⎟⎟⎟
⎠
, with x ∈ [0,1] (6.11)

subject to the purification protocol with CNOT gates. This state is a rotated Werner
state [Wer89] which was employed in the seminal protocol of Ref. [BBP&al96] and its
concurrence reads

C(x) =
⎧⎪⎪⎨⎪⎪⎩

2x − 1, x ∈ (0.5,1]
0, x ∈ [0,0.5].

The output reads

C′CNOT(x) =
3(4x2 − 1)

5 − 4x + 8x2 for x ∈ (0.5,1],

with success probability

PCNOT =
5 − 4x + 8x2

9 .

For the sake of simplicity, we consider a uniform PDF p(x) with supp(p) = (0.5,1].
Hence, the input average cost function reads

f̄input = 1 −∫
1

0.5
C(x)p(x)dx = 0.5

and the application of the purification protocol with CNOT gates yields

f̄CNOT = 1 −∫
1

0.5
C′(x)p(x)dx = 0.450103.

The result shows that the protocol with two identical copies of states allows us to in-
crease on average the entanglement of the output states.

Example II.2. Now, we consider the state

⎛
⎜⎜⎜
⎝

x
2 0 0 −x

2
0 0 0 0
0 0 1 − x 0
−x

2 0 0 x
2

⎞
⎟⎟⎟
⎠
, with x ∈ [0,1]. (6.12)

Restricted to the interval x ∈ [2/3,1] it corresponds to a maximally entangled mixed
state [IH00; MJW&al01]. In general for every x ∈ (0,1], this state with concurrence
C(x) = x is perfectly purifiable in just one iteration of the protocol [TB16]. We can find
after one iteration that the concurrence becomes

C′CNOT(x) = 1,
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with success probability

PCNOT =
x2

2 .

It is immediate from Eq. (6.9) that for any PDF with supp(p) = [0,1],

f̄CNOT = 1 −∫
1

0
C′(x)p(x)dx = 0.

This means that the CNOT gate is optimal for this family of states.
Example II.3. As the last example let us consider the initial state

x ∣Φ+⟩⟨Φ+∣ + (1 − x) ∣Φ−⟩⟨Φ−∣ , with x ∈ [0,1], (6.13)

and concurrence C(x) = ∣1 − 2x∣. After one iteration of the purification protocol with
bilaterally applied CNOT gates, it is not hard to realize that the resulting state has the
concurrence

C′CNOT(x) = (1 − 2x)2

with success probability PCNOT = 1. The output concurrence C′CNOT(x) is less than or
equal to C(x) for all x ∈ [0,1]. Thus, we conclude by using the properties of concurrence
and integration that

∫
1

0
C′CNOT(x)p(x)dx ⩽ ∫

1

0
C(x)p(x)dx (6.14)

for any PDF with supp(p) = [0,1]. Hence, the initial average cost function f̄input is
always less than or equal to f̄CNOT . This is an example where the purification fails
with the sole implementation of the CNOT gate. It should be noted that for x ≠ 0.5, the
state in this example can be purified with previous protocols [BBP&al96; DEJ&al96]
that work on the Bell basis, and where the implementation with the CNOT gate is now
accompanied by local single-qubit gates.
These examples demonstrate the meaning of the average cost function. It is obvious that
one or more two-qubit gates can be optimal for certain family of states and less optimal
for others. In the subsequent section, we will investigate numerically several cases.

6.3 Results
In this section it is demonstrated how our proposed method can find optimal purification
schemes. Our first case is the continuation of Example II.1. in Sec. 6.2. We have seen so
far that the CNOT gate in N = 1 purification round can reduce the average cost function
f̄ approximately by 0.05. The simulation results with the input state in Eq. (6.11) show
that the optimal SU(4) gate for N = 1 has a similar improvement on f̄ as the CNOT
gate (see Fig. 6.2). The optimal gates found for N = 2 and 3 can further reduce f̄ ;
however, it is easy to check that the CNOT gate alone is not optimal anymore for these
rounds of iterations. In Fig. 6.2 it is also shown that a higher number of iterations results
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Figure 6.2: Optimized purification protocol for the family of states in Eq. (6.11). Top left
panel: Average cost function f̄ with a uniform PDF as a function of N , the number of
iterations. Top right panel: Concurrence C as a function of x. Four curves are presented
for different values of iterations N : 0 or the input concurrence (black dashed line), 1
(orange dotted line), 2 (blue dash-dotted line), and 3 (red solid line). Bottom left panel:
Success probabilities as a function of x for different values of iterations N : 1 (orange
dotted line), 2 (blue dash-dotted line), and 3 (red solid line). Bottom right panel: The
overall success probability after N = 1 (orange dotted line), N = 2 (blue dash-dotted
line), and N = 3 (red solid line) iterations as a function of x. The sample size has been
set to M = 1000.

in more concave shapes of the corresponding concurrences. It is worth noting that the
success probability of the second iteration is lower than the success probability of the first
iteration. The overall success probability of three iterations, displayed also in Fig. 6.2,
is defined as follows: In the first iteration four qubit pairs, in the second iteration two
qubit pairs, and in the third iteration the final qubit pair are successfully purified. These
results show that states close to maximally entangled states can be produced already in
the third iteration, but the overall success probability of the procedure is getting smaller
with the number of iterations. The only fixed point is C = 1. Thus our method seems
to provide the same success probabilities as the ones found in [BBP&al96]. As a result,
we have investigated the circumstances where the CNOT gate is also optimal. It turns
out that the local unitary transformation introduced by [DEJ&al96] and given by

b
†
A1
⊗ b†A2

⊗ bB1 ⊗ bB2 ,
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Figure 6.3: Optimized purification protocol for Werner states, see Eq. (6.8). Left panel:
Average cost function f̄ with a uniform PDF as a function of N , the number of iterations.
Right panel: The overall success probability after N = 1 (orange dotted line), N = 2 (blue
dash-dotted line), and N = 3 (red solid line) iterations as a function of x. The sample
size has been set to M = 1000.

where
b = I2 + iσx√

2
, (6.15)

with the Pauli matrix σx and the identity map I2, is crucial for the CNOT gate. This
is the transformation, which transforms a Werner state in Eq. (6.8) into the state in
Eq. (6.11). Now if one applies Eq. (6.15) before all iterations of the protocol involving
only the CNOT gate, then the same curves are obtained as in Fig. 6.2. This means that
there are more optimal protocols which yield the same results and our approach can find
them.
The one-parameter family of states in Eq. (6.11) has the same concurrence as the Werner
state. Therefore, we consider the Werner state to be our next application. In Fig. 6.3
numerical results are presented for the average cost function f̄ and the overall success
probability which exhibit the same behavior found for the one-parameter family of states
in Eq. (6.11). In this case, one can note an improvement of 0.04 in f̄ after N = 3
iterations. This is less than the previously obtained value of 0.09 shown in Fig. 6.2.
Furthermore, this is accompanied by another numerical inaccuracy: The overall success
probability at C = 1 is less than one. Given these results, the proposed method can
find optimal entangling two-qubit gates for at least three iterations. It is also clear
from these tests that the algorithm is always reducing f̄ , but from N = 3 iterations this
might not be an optimal improvement of the concurrence. This originates from the fact
that the gradient ∇f(α) [see Eq. (6.7)] is almost flat in the neighborhood of C = 1 for
N > 2 iterations and thus the numerical search for the optimal gate, i.e, the search for
α∗ ∈ R15, becomes inefficient.
Now, to test our method further, let us consider another state whose entanglement
purification procedure is known. For this purpose we note that the state of Example
II.2. in Eq. (6.12) can be transformed using a separable gate b ⊗ b†,with b defined in
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Eq. (6.15), into the state
x ∣Ψ−⟩⟨Ψ−∣ + (1 − x) ∣Υ⟩⟨Υ∣ , (6.16)

with x ∈ [0,1] and
∣Υ⟩ = 1√

2
(∣Ψ+⟩ + i ∣Φ−⟩) .

Using the unitary transformation b†⊗b on Eq. (6.16), one obtains the state in Eq. (6.12)
which can be purified in one iteration using bilateral CNOT gates. For this reason, it
is expected that the optimal two-qubit gate that purifies the states in Eq. (6.16) is the
one that achieves the task in one iteration and given by a CNOT combined with single
qubit gates in the form of b. As both states are connected via a separable gate, they
have the same concurrence C(x) = x. However, it is important to note that the CNOT
gate is not optimal for the state in Eq. (6.16), because after one iteration round

C′CNOT(x) =
⎧⎪⎪⎨⎪⎪⎩

0, x ∈ [0,0.5]
2x, 2x−1

1+x2 x ∈ (0.5,1],

and C′CNOT(x) ⩽ x. The success probability is

PCNOT =
1 + x2

2 .

Thus, the CNOT gate without the non-symmetrical local transformation of Eq. (6.15)
impairs the concurrence. In contrast to this analytical observation, numerical analysis
with a uniform PDF yields already in the first iteration for both states an average
cost function f̄ ≈ 0.0002. To demonstrate the robustness of the numerical approach we
provide examples of three non-uniform PDFs for N = 1 iteration. First, we consider

p(x) = 2x, with x ∈ [0,1],

which describes a situation, where states with higher concurrences are more likely to be
subject to the purification. The resulting average cost function is f̄ ≈ 0.000004. Second,
we take

p(x) = 2(1 − x) with x ∈ [0,1],
which puts more weight on states with low concurrences and find f̄ ≈ 0.0005. Finally,
we investigate a PDF

p(x) = 6x(1 − x) with x ∈ [0,1],
i.e., the states around the concurrence C(x) = 0.5 are more likely to participate in the
purification, and obtain f̄ ≈ 0.00005. These results demonstrate the effectiveness of our
approach and up to a numerical precision these one-parameter families of states can be
purified in one iteration.
Next we consider the following two-parameter family of states arising from a generation
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Figure 6.4: Optimized purification protocol for the state in Eq. (6.17) for 1000 parameter
samples. Left panel: Average cost function f̄ with a uniform PDF as a function of N ,
the number of iterations. Crosses are the results of the CNOT gate, whereas circles
display the numerical optimization. They have been connected by lines to guide the eye.
Right panel: Concurrence C′ as a function of x and y after one purification round. The
cone-type surface is obtained with our approach. A less optimal surface with minima at
x = 0 and along the y axis is the result of the purification protocol with the CNOT gate.
The sample size has been set to M = 1000.

of distant entanglement in the context of a hybrid quantum repeater [Ber17],

ρ(x, y) = 1
4

⎛
⎜⎜⎜
⎝

1 − x iy −iy x − 1
−iy x + 1 −x − 1 iy
iy −x − 1 x + 1 −iy
x − 1 −iy iy 1 − x

⎞
⎟⎟⎟
⎠
. (6.17)

Here x, y ∈ R and x2 + y2 ⩽ 1. The concurrence of this state is
√
x2 + y2. In order to

relate the performance of our approach, we apply the CNOT gate based purification
protocol to this family of states. We obtain

C′CNOT(x, y) =
2∣x∣

1 + x2 , (6.18)

PCNOT = 1 + x2

2 (6.19)

after N = 1 and

C′CNOT(x, y) =
4∣x∣(1 + x2)
1 + 6x2 + x4 , (6.20)

PCNOT = 1 + 6x2 + x4

2(1 + x2)2
(6.21)

after N = 2 purification rounds. If one applies the unitary transformation in Eq. (6.15)
on the state before the bilateral CNOT gates are performed, then the above results
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remain unchanged. These results demonstrate that the CNOT gate and the additional
tricks, which have yielded optimal purifications for the one-parameter family of states,
are not optimal in this scenario, since they are outperformed on average by our opti-
mized protocol.
Thus, the original CNOT-based purification protocols cannot exploit all the useful en-
tanglement, because the concurrence and the success probability become independent
of the y variable. Using these analytical results and the uniform PDF

p(x, y) = 1
π

with x2 + y2 ⩽ 1,

we compare our approach with the above-presented analytical results [see Eq. (6.18) and
Eq. (6.20)]. In Fig. 6.4 we show that our optimized protocol provides after one iteration
an x- and y-dependent concurrence. Although the numerically obtained concurrence
is larger at x = 0 and y ∈ [−1,1] than the surface given by Eq. (6.18), one can also
observe the opposite at y = 0 and x ∈ [−1,1]. However, the concurrence has more
improvement with our algorithm and the average cost function with the uniform PDF
stays, for more iterations, lower than the original CNOT-based protocols [see the left
panel in Fig. 6.4]. In regard to the overall success probability, we let our algorithm
work until the third iteration and in Fig. 6.5 the results are compared with the CNOT-
based purification protocols. The obtained surfaces differ only by a π/2 rotation around
the z axis. Therefore, there is not much difference in the overall success probability
and from this aspect the CNOT gate can also be considered optimal, though it still
cannot improve the concurrence as effectively as the gate obtained with our approach.
However, one might think that with a proper choice of local unitary transformations,
like the transformation in Eq. (6.15) used for Werner and one-step purifiable states, the
application of the CNOT gate may result in an optimal purification protocol. Let us
consider then two general local unitary transformations at locations A and B for the
preparation of two-qubit states. It is enough to consider unitary transformations in
SU(2), for which the Euler angle parametrization reads [TS02]

UA = eiσzα1eiσyα2eiσzα3 , (6.22)
UB = eiσzβ1eiσyβ2eiσzβ3 , (6.23)

where σy and σz are the Pauli matrices. Here α1, β1 ∈ [0, π], α2, β2 ∈ [0, π/2], and
α3, β3 ∈ [0,2π] are the Euler angles for SU(2). For the first iteration, we analyze the
output unitary of the optimized protocol with Mathematica [Inc] and observe that the
angles α1 and β1 do not affect the effectiveness of the CNOT-based purification protocol.
Optimal concurrences for the remaining four angles yield either the result in Eq. (6.18)
or

C′CNOT(x, y) =
2∣y∣

1 + y2 , (6.24)

with success probability

PCNOT =
1 + y2

2 , (6.25)
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for α2 = π
8 , β2 = 3π

8 , and α3 = β3 = 3π
4 . For these results the average cost function with a

uniform PDF yields f̄ ≈ 0.372, which is still lower than the average concurrence found by
our approach. These results demonstrate that even with local unitary transformations
the CNOT gate is globally not optimal for all values of x and y. However, when x and y
are known beforehand, one can combine the CNOT gate together with the local unitary
transformation

U
†
A ⊗UB , with U = cos(θ)I2 + sin(θ)σx, (6.26)

where the angle θ is a function of x and y. For example, for x, y ⩾ 0, we have

cos(θ) =

¿
ÁÁÁÁÀ1

2 +

¿
ÁÁÁÀx +

√
x2 + y2

8
√
x2 + y2

.

Using this transformation before the purification protocol, we obtain the state

1 +
√
x2 + y2

2 ∣Ψ−⟩⟨Ψ−∣ + 1 −
√
x2 + y2

2 ∣Φ−⟩⟨Φ−∣ . (6.27)

Now, together with the single qubit gates in Eq. (6.26), the CNOT-based purification
yields, after one iteration, the concurrence

C′CNOT(x, y) =
2
√
x2 + y2

1 + x2 + y2 , (6.28)

with success probability

PCNOT =
1 + x2 + y2

2 . (6.29)

It is immediate that C′CNOT(x, y) ⩾
√
x2 + y2, i.e., we are improving the concurrence. In

this particular case, we do not need the average cost function in the numerical search,
because the state is fixed. Our algorithm running with a single state with parameters
(x, y) as defined in Eq. (6.17) instead of an ensemble of states can optimally improve
the concurrence, but is unable to find this particular optimal solution presented above,
because the transformation (6.26) together with CNOT gates is a nonsymmetrical trans-
formation at nodes A and B.
To show that optimization becomes more effective with an increased number of angles,
we consider a less general unitary gate than the one in Eq. (6.6). This gate consists of
one CNOT gate and four local unitary transformations of Eq. (6.22)

Ũ(α′) = [U1(α′1, α
′
2, α
′
3)⊗U2(α′4, α

′
5, α
′
6)] (6.30)

UCNOT[U3(α′7, α
′
8, α
′
9)⊗U4(α′10, α

′
11, α

′
12)],
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Figure 6.5: Overall success probability of the state in Eq. (6.17) after N = 3 iterations as
a function of x and y. Both surfaces are similar in appearance. The one having maxima
at x = 1 belongs to the CNOT-based protocol and the other one having maxima at y = 1
is obtained via the optimized numerical protocol.

N U(α∗) Ũ(α′∗)
0 0.666 0.666
1 0.753 0.751
2 0.897 0.798
3 0.968 0.937

Table 6.1: Comparison of the average concurrences produced with different parametriza-
tions of unitary matrices given in Eqs. (6.6) and (6.31) for M = 1000. The values in
columns 2 and 3 represent the two best sequences found by the algorithm among ten
different runs. We observe that the two different parametrizations provide us with im-
proving concurrences. Nonetheless, the general two-qubit gate seems to perform slightly
better.

i.e., the quantum gate has a clear quantum circuit representation. Now α′ is a 12-
dimensional vector of the angles. We have inserted this gate into our algorithm and
observe that the results are almost as good as the optimization of a general gate with
15 parameters (see Table 6.1). Furthermore, the two optimal gates after N = 1 iteration
are presented in Fig. 6.6.
Finally, let us point out that our approach does not take into account operational or
memory errors. These always depend on the implementation and if an experiment can
provide us models for the errors then our approach can be easily extended. Another
important experimental input is the PDF p(x), which is usually subject to the method
of generating entangled states between locations A and B. Furthermore, this PDF is
assigned to the process of choosing a value x as a random event, i.e, we have the same
two two-qubit pairs parametrized by x before the purification protocol.
In effect, we integrate away the parameter dependence of the states and thus our ap-
proach yields an optimal two-qubit gate on average. If the value of x is fixed in an
experimental design, then our method provides an optimal two-qubit gate designed for
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Figure 6.6: Optimized unitaries UN (α∗) – the Euler angle parametrization in Eq. (6.6)
(left two color plots) – and ŨN (α′∗) – the CNOT circuit given in Eq. (6.30) (right
two color plots) – for N = 1. The optimal protocols are obtained for the state given
in Eq. (6.17) with M = 1000 and the procedure discussed in Algorithm 5. For each
unitary, the first plot represents the absolute value of the matrix entries taken in the
computational basis, whereas the second one represents the phase of the same entries
divided by 2π. The color map describes values varying from 0 (white) to 1 (dark orange
and dark blue).

this particular state. The optimal two-qubit gates can always be realized by three CNOT
gates and additional single-qubit gates [VD04; VW04], and therefore the experimental
generation of this gate is possible with high fidelity [Deb&al16]. Also in the context of
trapped ions or superconducting quantum circuits, the generation of two-qubit entan-
gling gates can be achieved with high precision using the Mølmer-Sørensen gate [SM99]
or the

√
iSWAP [FRS05] gate. Since two-qubit gates have a straightforward implementa-

tion in many physical settings, due to quantum compilation [MMN&al16], we argue that
quantum computing and communication platforms could actually benefit from globally
optimal gates for entanglement purification.

6.4 Conclusions
In the context of entanglement purification and recurrence protocols, we have presented
a method to obtain optimal protocols. This method searches for the optimal two-qubit
gate, which is applied bilaterally at the nodes A and B in order to distill from an ensem-
ble of mixed entangled pairs a higher fidelity state with respect to a maximally entangled
state. Here we assumed that the same copies of the states can be generated before the
purification protocol takes place, but a different experimental run could result in dif-
ferent states. Errors originating from local operations, memory requirements, or even
classical communication have been neglected for now.
We numerically demonstrated the optimality of our proposal for several states. In the
case of the Werner state, we found that several optimal two-qubit gates and their per-
formances are the same as in the CNOT-based Deutsch protocol [DEJ&al96]. Thus,
for Werner states the optimality cannot be improved beyond the already known per-
formance. Next we investigated a family of states, which can be purified in one step,
i.e., two copies of mixed entangled states are enough to obtain a maximally entangled
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state. Here we immediately obtained a minimal average cost function f̄ ≈ 0, as expected.
Finally, we considered a two-parameter family of states which is obtained in theoreti-
cal models of a quantum repeater [Ber17]. Our numerical investigation demonstrated
that a single bilaterally applied CNOT gate cannot be globally optimal for these states.
On the other hand, when the state is known beforehand, then parameter-dependent,
non-symmetric local transformations allow again the CNOT gate to be also one of the
optimal two-qubit gates. This case exemplifies the difference between protocols that are
optimal for a full class of parametrized states and those that are only optimal for a single
state. We also investigated with our algorithm a concrete quantum circuit consisting of
four different single-qubit gates and a CNOT gate, which is only a subset of the SU(4)
group. We found that the optimal two-qubit gate among all elements of this quantum
circuit seems to be slightly worse than the one found among all matrices in SU(4). This
suggests that the search after an ensemble of optimal two-qubit gates can benefit from
a general parametrization.
In conclusion, we have proposed a general method to optimize entanglement purification
for an arbitrary family of states. Our algorithm [Pre22] can find the two-qubit gates that
on average induce the highest increase of entanglement. We remark that the method is
general for the set of parameters defining the states. Optimizing for a single state is also
possible, as shown in one of the presented examples. Furthermore, we focused on the de-
gree of entanglement measured by the concurrence and not on the fidelity with respect to
a particular Bell state. This is motivated by the fact that a general entanglement purifi-
cation protocol may not always purify towards a given Bell state, but rather a maximally
entangled state. As we optimize among many different protocols, it is necessary to use
a measure for which all maximally entangled states are equivalent. A possible drawback
is that one cannot know with certainty the final maximally entangled state produced by
the protocol. This and other issues such as different input states, non-symmetric two-
qubit gates, and nonideal local operations remain open questions. However, this work
aims to introduce a concept of globally optimized recurrence protocols that is flexible
enough to incorporate the aforementioned points in further investigations.
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6.6 Appendix
6.6.1 Gell-Mann type basis
In this appendix, details concerning one of the possible bases of the Lie algebra of SU(4)
are shown. The matrices read [TBS02]:

σ1 =
⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, σ2 =

⎛
⎜⎜⎜
⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, σ3 =

⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
,

σ4 =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, σ5 =

⎛
⎜⎜⎜
⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, σ6 =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
,

σ7 =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, σ8 =

1√
3

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, σ9 =

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

σ10 =
⎛
⎜⎜⎜
⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎟⎟
⎠
, σ11 =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
, σ12 =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎟⎟
⎠
,

σ13 =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
, σ14 =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎟
⎠
, σ15 =

1√
6

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎟⎟
⎠
. (6.31)

Actually, these matrices together with the identity matrix

σ0 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

form an orthogonal basis for the space Mn(C) of 4 × 4 matrices with complex entries
equipped with the Hilbert-Schmidt scalar product

⟨A,B⟩ = Tr{A†B}, A,B ∈Mn(C),
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6 Optimal two-qubit gates in recurrence protocols of entanglement purification

where A† is the adjoint of A. We first note that σ†
i = σi for all i ∈ {0,1,2, . . . ,15}.

Therefore, every matrix X ∈Mn(C) can be written as

X =
15
∑
i=0

⟨σi,X⟩
⟨σi, σi⟩

σi, X† =
15
∑
i=0

⟨σi,X⟩∗
⟨σi, σi⟩

σi,

where z∗ is the complex conjugate of z ∈ C [SBM&al21]. In this fashion, we can obtain
another representation for any element U ∈ SU(4) fulfilling U†U = UU† = σ0 and includ-
ing also that its determinant is equal to one. This is also a minimal parametrization,
however a cumbersome one compared to the Euler angle parametrization. In general,
a Gell-Mann-type basis for the Lie algebra of SU(n) can always be obtained, see Refs.
[TS02; BCC06].
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7 Statistical evaluation and
optimization of entanglement
purification protocols

Disclaimer: A modified version of this chapter was published in Ref. [PB24]. FP and
JZB developed the theoretical framework of the paper. FP developed the code based
on the sampling method developed in [SBM&al21] and ran all the simulations. JZB
and FP wrote the theoretical introduction of the manuscript together. FP composed all
the plots and wrote the discussion of the results and the description of the numerical
methods. Both authors worked together on the revision of the manuscript.

Quantitative characterization of two-qubit entanglement purification protocols is intro-
duced. Our approach is based on the concurrence and the hit-and-run algorithm applied
to the convex set of all two-qubit states. We demonstrate that pioneering protocols are
unable to improve the estimated initial average concurrence of almost uniformly sampled
density matrices, however, as it is known, they still generate pairs of qubits in a state
that is close to a Bell state. We also develop a more efficient protocol and investigate
it numerically together with a recent proposal based on an entangling rank-2 projector.
Furthermore, we present a class of variational purification protocols with continuous
parameters and optimize their output concurrence. These optimized algorithms turn
out to surpass former proposals and our protocol by means of not wasting too many
entangled states.

7.1 Introduction
Entanglement purification protocols aim to overcome the destructive effects of non-ideal
channels by generating highly entangled states from a large number of noisy entan-
gled states [DB07]. In this approach, the almost perfectly entangled pairs obtained are
used in quantum teleportation [BBC&al93], and thus quantum data can be transmit-
ted across the channels. The other possible solution to this problem is to use quantum
error correction [DMN13], when quantum data is sent through the channel by adding
enough redundancy, e.g., increasing the number of qubits, such that the original infor-
mation is recoverable even in the presence of noise. While in quantum error correction
the sources of errors and their models have to be identified, the first entanglement pu-
rification protocols [BBP&al96; DEJ&al96] offer solutions for general noisy two-qubit
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7 Statistical evaluation and optimization of entanglement purification protocols

states. However, these protocols convert a general two-qubit state to either Werner or
Bell diagonal states by using local random transformations, which waste useful entangle-
ment [BDS&al96; HHH96]. This was found by investigating particular entangled states,
whose entanglement is destroyed in the first step of the protocol, and this issue was
also confirmed in a different entanglement purification approach [TB16]. A quantitative
characterization of the ratio between wasted and improved entangled states is missing
and this paper is devoted to investigating this question.
The quest for optimality is ongoing and important research in quantum physics rang-
ing from experimental protocols to algorithms. In most cases, numerical optimization
based on continuous and discrete parameters is carried out to enhance performances with
respect to different figures of merit. This has recently led to the improvement of entan-
glement generation [MPK&al18], unitary compilation and state preparation [PSJ&al24],
quantum error correction [MMN&al16], communication [NDD&al19; WMD&al20], and
algorithms [WHT16], which are only a few examples of the vast literature. Concern-
ing entanglement purification, discrete optimizations have been considered for Werner
states [KAJ19] and we have started to investigate continuous optimization for certain
families of states [PCT&al22]. Therefore, in this paper we not only evaluate some exist-
ing proposals but also search for more optimal protocols with a lower amount of wasted
entangled states.
In this study, we avail ourselves of the hit-and-run algorithm to generate asymptoti-
cally and effectively uniformly distributed two-qubit density matrices [SBM&al21]. It
is known that approximately 24.24 % of the generated two-qubit states are separable,
a numerical result that has also been confirmed by other methods [SD12; SSN&al15b;
MS14; FJ16]. Therefore, almost one-fourth of the states are immediately useless in an
entanglement purification protocol. In the case of entangled states, we use the concur-
rence [Woo98] to measure the improvement or deterioration induced by a protocol. The
choice of the concurrence and its advantage over the usually employed fidelity will be
explained in the context of those protocols, which have two Bell states as stable fixed
points. We calculate the average concurrence over the whole sample, which will be our
cost function. Any change of this cost function characterizes only the whole sample
of two-qubit states, whereas the concurrence of individual states may show different
behaviors. The obtained estimates allow us to compare quantitatively some existing en-
tanglement purification protocols and to search numerically for more optimal scenarios.
These scenarios consist of the use of the SU(4) × SU(4) group to find optimal locally
entangling gates. We assume throughout the whole paper that these operations can be
performed without errors on both sides of the noisy channel.
Our search for optimal protocols is based on the limited memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGSB) optimization algorithm with bounds [BLN&al95; BK03].
To use this method we employ the Euler angle parametrization of the SU(4) × SU(4)
group [TBS02], where the group is constructed from angles, which form a hyperrectangle
in a 30-dimensional Euclidean vector spaces. Thus, every vector represents an element
of the group and its neighborhood is defined by the Euclidean norm. The resulting
parametrization allows us to construct a variational cost function that depends on a
unitary in SU(4) × SU(4) and that can be minimized with the LBFGSB method due

129
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to automatic differentiation [BFH&al18]. With this strategy, we demonstrate that it is
possible to increase the percentage of entangled states purified by computer-designed
protocol and achieve better performances. Furthermore, our approach introduces a sys-
tematic and general way to compare different proposals for entanglement purification
protocols, where more realistic experimental considerations can be incorporated upon
request.

The paper is organized as follows. In Sec. 7.2, we recall the mathematical description of
some known entanglement purification protocols. Furthermore, we present a controlled-
NOT(CNOT) gate-based protocol and also our variational approach. A brief description
of the numerical approach is given in Sec. 7.3. Numerical results are presented and
discussed in Sec. 7.4. Section 7.5 contains a summary and our conclusions. Some
technical details are provided in the Appendices.

7.2 Entanglement purification
Entanglement purification describes a protocol between two nodes of a quantum network
with the task of extracting highly entangled states, e.g., Bell states, from arbitrarily
entangled states. There are several categories of purification protocols, based on the way
the entangled states are distilled: filtering, recurrence, hashing, and breeding protocols
[DB07]. Here, our focus lies on bipartite recurrence protocols, where the two nodes A
and B initially share a pair of identical two-qubit states:

ϱ = ρA1,B1 ⊗ ρA2,B2 . (7.1)

The goal is to increase the entanglement of one of the pairs by performing local entangling
operations and measurements in the nodes. Finally, classical communication between A
and B is used. In this paper, we consider two-qubit states in the representation:

ρ =
4
∑

i,j=1
rij ∣i⟩ ⟨j∣ , (7.2)

with the Bell states

∣1⟩ = 1√
2 (∣01⟩ − ∣10⟩) , ∣2⟩ = 1√

2 (∣01⟩ + ∣10⟩) ,

∣3⟩ = 1√
2 (∣00⟩ − ∣11⟩) , ∣4⟩ = 1√

2 (∣00⟩ + ∣11⟩) .

Furthermore, we use the notation rj = rjj . The properties Tr{ρ} = 1 and ρ† = ρ yield
the following relations:

r1 + r2 + r3 + r4 = 1, rij = (rji)
∗
. (7.3)

In the following, we give a short overview of three purification protocols and introduce
a CNOT-based approach and our variational method for the search of more optimal
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strategies.

7.2.1 Bennett protocol
The seminal protocol introduced in Ref. [BBP&al96] is based on the CNOT gate and
allows one to distill the Bell state ∣1⟩ from a large ensemble of initial two-qubit states ρ.
In fact, the state ∣1⟩ is only reached in the asymptotic limit of the purification rounds.
The protocol operates only on Werner states [Wer89]

ρW = r1 ∣1⟩ ⟨1∣ +
1 − r1

3 (I4 − ∣1⟩ ⟨1∣), (7.4)

where I4 is the 4×4 identity matrix. The transformation of a general state ρ of Eq. (7.2)
into a Werner state ρW can be achieved by local random unitary rotations [BDS&al96],
i.e., the so-called twirling operation, which is given by

ρW =
1
12

3
∑
j=1

K
†
j (

4
∑
i=1

K
†
iK

†
i ρKiKi)Kj (7.5)

with the transformations

Kj = uA
j ⊗ u

B
j , u1 =

I2 + iσx√
2

, u2 =
I2 − iσy√

2
,

u3 = i ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ , u4 = I2, (7.6)

the Pauli matrices σx and σy, and the 2× 2 identity matrix I2. The protocol consists of
the following steps:

• Bring the state ρ into Werner form by using Eq. (7.5).

• Apply local σy rotations on qubits A1 and A2.

• Perform the bilateral operation UA1→A2
CNOT ⊗U

B1→B2
CNOT .

• Measure the target pair (A2,B2) in the eigenbasis of the Pauli matrix σz with
corresponding results (m,n), where m,n ∈ {0,1}. Keep the pair (A1,B1) if the
measurement result is either m = n = 0 or m = n = 1 and finally perform a σy

rotation on A1.

An elementary step of the protocol yields ρ′W with

r′1 =
1 − 2r1 + 10r2

1
5 − 4r1 + 8r2

1
(7.7)

and success probability Ps = (5 − 4r1 + 8r2
1)/9. The state ρ′W becomes more entangled

than ρW if
2r1 − 1 > 0. (7.8)
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7.2.2 Deutsch protocol
This protocol is conceptually similar to the previous one and operates on Bell diagonal
states [DEJ&al96]

ρB =
4
∑
i=1

ri ∣i⟩ ⟨i∣ . (7.9)

The transformation of a general state ρ of Eq. (7.2) into a Bell diagonal state reads

ρB =
1
4

4
∑
i=1

K
†
iK

†
i ρKiKi, (7.10)

where the Ki are given in Eq. (7.6). The Deutsch protocol can be summarized in three
steps:

• Apply the unitary operation u
†A1
1 ⊗ u†A2

1 ⊗ uB1
1 ⊗ u

B2
1 , see Eq. (7.6).

• Perform the bilateral operation ÛA1→A2
CNOT ⊗ Û

B1→B2
CNOT .

• Measure the target pair (A2,B2) in eigenbasis of σz with corresponding results
(m,n), where m,n ∈ {0,1}. Keep the pair (A1,B1) if the measurement result is
either m = n = 0 or m = n = 1.

After applying the purification protocol we obtain a new Bell diagonal state ρ′B , which
is described by the map

r′1 =
2r2r3
C

, r′2 =
r2
2 + r

2
3

C
,

r′3 =
2r1r4
C

, r′4 =
r2
1 + r

2
4

C
, (7.11)

where C = (r1 + r4)2 + (r2 + r3)2 = Ps is the success probability. Entanglement of the
state ρ′B compared to ρB is enhanced if

(2r1 − 1)(1 − 2r4) > 0 or (2r2 − 1)(1 − 2r3) > 0.
(7.12)

Depending on which one of the above conditions is fulfilled, the protocol distills asymp-
totically either ∣4⟩ ⟨4∣ or ∣2⟩ ⟨2∣ [Mac98], i.e, the Bell states ∣4⟩ and ∣2⟩.

7.2.3 Matter-field interaction-based protocol
A key step in the previous protocols is the application of an entangling unitary transfor-
mation in the nodes A and B. The motivation to choose the abstract CNOT gate comes
mainly from classical computer science. However, any entangling quantum operation can
serve the same purpose as shown in Ref. [BTK&al16] for a cavity QED setup, where
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an entangling transformation emerges from matter-field interactions and is modeled by
a rank-2 projector [BTK&al16]

M = ∣1⟩ ⟨1∣ + ∣3⟩ ⟨3∣ . (7.13)

The purification protocol based on this projector consists of the following steps:

• Apply M in both nodes which results in the state

ϱ′ = ΠϱΠ†

Tr{Π†Πϱ}
, Π =MA1,A2 ⊗MB1,B2 .

• Measure one of the pairs, say pair (A2,B2), in eigenbasis of σz with corresponding
results (m,n), where m,n ∈ {0,1}. This results in the state ρA1,B1

m,n .

• The final two-qubit state is then given by

ρ′ = (vA1
m ⊗ vB1

n+1)ρ
A1,B1
m,n (vA1

m ⊗ vB1
n+1)

†
,

where vn = (i ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣)σn
x .

The resulting state ρ′ depends only on seven real parameters instead of fifteen and the
map of the protocol reads

r′1 =
r2
1 + r

2
3 − r

2
13 − r

2
31

D
, r′3 = 2r2r4 − ∣r24∣2

D

r′2 =
r2
2 + r

2
4 − r

2
24 − r

2
42

D
, r′4 = 2r1r3 − ∣r13∣2

D
, (7.14)

r′12 =
r2
12 + r

2
34 − r

2
14 − r

2
32

D
, r′34 = 2r21r43 − r23r41

D
,

r′13 = r′14 = r
′
23 = r

′
24 = 0,

where the success probability Ps =D/2 and

D = (r1 + r3)2 + (r2 + r4)2 − (r13 + r31)2 − (r24 + r42)2.

Due to the relations in Eq. (7.3), we also have r′21 = (r
′
12)
∗ and r′43 = (r

′
34)
∗. Therefore,

r′1, r′2, r′3, r′4, r′12, r′21, r′34, and r′43 are the nonvanishing elements of ρ′. This protocol
was analysed in Ref. [TB16] and it was found that either

(2r1 − 1)(1 − 2r3) > −(2Im[r13])2 − (2Re[r24])2 (7.15)

or
(2r2 − 1)(1 − 2r4) > −(2Im[r24])2 − (2Re[r13])2 (7.16)
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is fulfilled, then ρ′ becomes more entangled than ρ. In a further iteration, the output
state ρ′′ remains in the same form as the input state ρ′ and according to Eq. (7.14) its
elements read

r′′1 =
r′21 + r

′2
3

D′
, r′′2 =

r′22 + r
′2
4

D′
, r′′3 = 2

r′2r
′
4

D′

r′′4 = 2
r′1r
′
3

D′
, r′′12 =

r′212 + r
′2
34

D′
= (r′′21)

∗
,

r′′34 = 2
r′21r

′
43

D′
= (r′′43)

∗
,

where
D′ = (r′1 + r

′
3)

2 + (r′2 + r
′
4)

2.

In the asymptotic limit, the protocol converts all states fulfilling Eq. (7.15) into ∣1⟩ ⟨1∣
and Eq. (7.16) into ∣2⟩ ⟨2∣.

7.2.4 A CNOT-based protocol
The proof presented in Ref. [TB16] is very general and one can apply it to obtain a better
CNOT-based protocol, where the transformations into either Werner or Bell diagonal
state are omitted. Our proposed protocol reads

• Apply the unitary operation u
†A1
1 ⊗ u†A2

1 ⊗ uB1
1 ⊗ u

B2
1 , see Eq. (7.6).

• Perform the bilateral operation ÛA1→A2
CNOT ⊗ Û

B1→B2
CNOT .

• Measure the target pair (A2,B2) in eigenbasis of σz with corresponding results
(m,n), where m,n ∈ {0,1}. Keep the pair (A1,B1) if the measurement result is
m = n = 1.

The protocol is described by the map

r′1 = 2r2r3 − ∣r23∣2
E

, r′2 =
r2
2 + r

2
3 + r

2
23 + r

2
32

E

r′3 = 2r1r4 − ∣r14∣2
E

, r′4 =
r2
1 + r

2
4 + r

2
14 + r

2
41

E
, (7.17)

r′13 = 2r24r31 − r21r34
E

, r′24 =
r2
21 + r

2
31 + r

2
24 + r

2
34

E
,

r′12 = r′14 = r
′
23 = r

′
34 = 0,

where the success probability Ps = E/2 and

E = (r1 + r4)2 + (r2 + r3)2 + (r14 − r41)2 + (r23 − r32)2.
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According to Eq. (7.3), we also have r′31 = (r
′
13)
∗ and r′42 = (r

′
24)
∗. Therefore, r′1, r′2,

r′3, r′4, r′13, r′31, r′24, and r′42 are the nonvanishing elements of ρ′. To increase the degree
of entanglement of ρ′, the state ρ has to fulfill either

(2r1 − 1)(1 − 2r4) > −(2Im[r23])2 − (2Re[r14])2 (7.18)

or
(2r2 − 1)(1 − 2r3) > −(2Im[r14])2 − (2Re[r23])2. (7.19)

It is worth noting that one can keep the pair (A1,B1) if the measurement result on
(A2,B2) is m = n = 0. However, in this case, the entanglement purification works only if
either

(2r1 − 1)(1 − 2r4) > (2Im[r23])2 + (2Re[r14])2 (7.20)
or

(2r2 − 1)(1 − 2r3) > (2Im[r14])2 + (2Re[r23])2. (7.21)
is fulfilled. These conditions are more restrictive than their counterparts in Eqs. (7.18)
and (7.19). They work for Bell diagonal states, but many states do not obey them,
and therefore for a general purification strategy the pair (A1,B1) has to be discarded,
whenever the pair (A2,B2) is measured in the state ∣00⟩. In a further iteration, the
output state ρ′′ remains in the same form as the input state ρ′ and according to Eq. (7.17)
its elements read

r′′1 = 2
r′2r
′
3

E′
, r′′2 =

r′22 + r
′2
3

E′
, r′′3 = 2

r′1r
′
4

E′

r′′4 =
r′21 + r

′2
4

E′
, r′′13 = 2

r′24r
′
31

E′
= (r′′31)

∗
,

r′′24 =
r′231 + r

′2
24

E′
= (r′′42)

∗
,

where
E′ = (r′1 + r

′
4)

2 + (r′2 + r
′
3)

2.

If the states fulfill the condition given in Eq. (7.18) then the protocol can distill ∣4⟩ ⟨4∣,
otherwise in the case of Eq. (7.19), the state ∣2⟩ ⟨2∣ is obtained. It is worth noting
that these Bell states can also be reached not only in the asymptotic limit. Based
on the second example in Ref. [TB16], one can pick r2 = c, r1 = r4 = (1 − c)/2, and
r14 = (r41)∗ = i(1 − c)/2 with c ∈ (0,1] to observe that one iteration of the protocol
yields ∣2⟩ ⟨2∣ with success probability c2/2. This state cannot be purified by the Bennett
protocol. If c ∈ (0.5,1], then the Deutsch protocol approaches the Bell state ∣2⟩ only
asymptotically.
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7.2.5 Variational purification protocols
In order to implement a numerical search for optimal protocols, a cost function has to
be defined. A convenient choice for the measure of the performance of a two-qubit-based
entanglement purification protocol is the concurrence [PCT&al22], for which we use the
definition introduced in Ref. [Woo98]:

C(ρ) =max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}. (7.22)

Here λ1, λ2, λ3, λ4 are the eigenvalues, listed in decreasing order, of the matrix

ρ̃ = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy),

where the asterisk represents the complex conjugation of ρ in the standard basis. The
advantage of the concurrence lies in the fact that it treats all maximally entangled states
equivalently. As we have discussed in the previous sections, the maps there can have two
stable fixed points corresponding to two Bell states and they can approach both of them
depending on the properties of the input density matrix. Therefore, picking a fidelity
with respect to a Bell state would not work, because the optimization would suppress
the convergence towards another Bell state or any maximally entangled state, which can
be reached otherwise. A different argument against the use of fidelity with an example
is given in Ref. [PCT&al22].

Let us consider a general unitary matrix V ∈ SU(4) ⊗ SU(4) acting on A1,A2 and
B1,B2. We employ the Euler-angle parametrization of SU(4) [TBS02],

U(α) = eiσ3α1eiσ2α2eiσ3α3eiσ5α4eiσ3α5eiσ10α6eiσ3α7eiσ2α8

eiσ3α9eiσ5α10eiσ3α11eiσ2α12eiσ3α13eiσ8α14eiσ15α15 ,

with α = (α1, α2, . . . , α15)T ∈ R15 (T denotes the transposition), and

0 ⩽ α1, α3, α5, α7, α9, α11, α13 ⩽ π,
0 ⩽ α2, α4, α6, α8, α10, α12 ⩽

π

2
0 ⩽ α14 ⩽

π√
3
, 0 ⩽ α15 ⩽

π√
6
, (7.23)

where we use the formulation of Ref. [TBS02]. The terms σi, i = 1, ...,15 are a Gell-
Mann type basis of the Lie group SU(4) (see the Appendix and the discussion in
Ref. [PCT&al22], where the same approach to angle parametrization was used). Then
we have

V (αAB) = UA1,A2(αA)⊗UB1,B2(αB) (7.24)

where αAB = (αA,αB)T and thus αAB ∈ R30. The Euler-angle parametrization guar-
antees that the group is not naively overcounted [TBS02]. It is worth noting that due to
the nature of the problem, one cannot consider operations that improve entanglement
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across the channel, i.e., general SU(16) operations on A and B, because badly entangled
states are the result of the noisy channel.

The purification protocol for our numerical investigations reads as follows.
(i) Apply entangling operations in both nodes which results in the state

ϱ′ = ΠϱΠ†

Tr{Π†Πϱ}
, (7.25)

where Π is a quantum operation. In the numerical simulations, apart from one
particular case, Π equals V (αAB).

(ii) Measure the pair (A2,B2) in eigenbasis of σz with corresponding results (m,n),
where m,n ∈ {0,1}. The four projectors of the (m,n) measurement results are:

(0,0)→ P1 = IA1,B1 ⊗ ∣00⟩ ⟨00∣A2,B2
, (7.26)

(0,1)→ P2 = IA1,B1 ⊗ ∣01⟩ ⟨01∣A2,B2
, (7.27)

(1,0)→ P3 = IA1,B1 ⊗ ∣10⟩ ⟨10∣A2,B2
, (7.28)

(1,1)→ P4 = IA1,B1 ⊗ ∣11⟩ ⟨11∣A2,B2
. (7.29)

We define a selection function π (measurement policy) that chooses which mea-
surement result is kept:

(ρA1,B1
1 , ρ

A1,B1
2 , ρ

A1,B1
3 , ρ

A1,B1
4 )↦ {1,2,3,4},

(7.30)

where
ρ

A1,B1
k

=
TrA2,B2{Pkϱ

′Pk}
Tr{Pkϱ

′}
. (7.31)

This function can be arbitrarily modified to suit different implementations. A
possibility is to choose a greedy policy:

π = argmax
k=1,2,3,4

[C(ρA1,B1
k

)] . (7.32)

In this case, one measures the subsystem (A2,B2) along all four measurement
directions and keeps the measurement that corresponds to the highest concurrence.
Alternatively, we also consider the case with only one of the measurement results,
e.g., k = 1 (m = n = 0). We will explore both these policies in our optimization.

If we employ Π = V (αAB) as the entangling operation, the output density matrix
ρout of the variational purification protocol will depend on the value of αAB :

ρ→ ρout(αAB). (7.33)
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7.3 Numerical methods
7.3.1 Markov chain Monte Carlo sampler
In this approach, the main mathematical object is the vector space M4(C) of 4 × 4
matrices with complex entries. This vector space with the Hilbert-Schmidt inner product
⟨A,B⟩HS = Tr{A†B} where A,B ∈ M4(C) is a 16-dimensional Hilbert space. In this
vector space, self-adjoint matrices form a subspace. This subspace can be identified with
the Euclidean space R16, if the orthonormal basis is constructed from tensor products
of Pauli matrices and the 2×2 unit matrix I2. There are also other possibilities, such as
the Gell-Mann-type basis of SU(4) or the Weyl operator basis [BK08], and they either
result in the same Euclidean structure or are unsuitable for our numerical approach
based on R16. If ρ is a density matrix, then

ρ =
16
∑
i=1

aiBi with Tr{ρ} = 1, ρ ⩾ 0, (7.34)

where the Bi are the basis vectors and ai ∈ R for all i. The positive semidefinite condi-
tion ρ ⩾ 0 implies that the ai have to fulfill three conditions based on Newton identities
and Descartes’ rule of signs [Kim03; SBM&al21]. Finally, one arrives at the result that
all 4 × 4 density matrices are presented by a 15 dimensional convex body K around the
origin of R15, because due to Tr{ρ} = 1 one real parameter out of sixteen is fixed. Hence,
if we consider B16 = I4/2 then a16 = 1/2 and the origin of R15 is the maximally mixed
state. The vector a = (a1, a2, . . . a15)T ∈ R15 with the positive semidefinite condition
yields a complete description of K. The hit-and-run algorithm introduced by Smith
[Smi84] realizes a random walk inside K and it was shown that the underlying Markov
chain converges to the uniform stationary distribution in polynomial time [Lov99]. The
convergence to the uniform distribution is independent of the starting point inside K
[LV06]. This algorithm provides a fast method of sampling large numbers (106 − 107)
of density matrices. There exist other numerical approaches [SBM&al21; SSN&al15b;
ŻS01; SSN&al15a; MS14] that can also sample uniformly distributed density matrices,
albeit with longer running times. All the statistical evaluations of the purification pro-
tocols are based on samples generated by the hit-and-run algorithm, whose details are
shown in Appendix 7.7.1.

7.3.2 Optimization with a quasi-Newton method
Our task is to improve the concurrence of the output state, which is a nonlinear function
of αAB (see Sec. 7.2.5). In addition, based on Eq. (7.23) αAB has lower and upper
bounds. Then, by using Eq. (7.33) we define the cost function f ∶ R30 → R as

f(αAB) = 1 − C [ρout(αAB)] . (7.35)

The cost function is based on the concurrence of the two-qubit state emerging after one
iteration of the protocol. Let us consider that the sample of two-qubit density matrices
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Figure 7.1: (a) Average concurrence and (b) success probability as a function of the
number of iterations for which a sample of N = 107 density matrices was used (ten
runs of the hit-and-run algorithm, each one outputting 106 density matrices). Numer-
ical evaluations are done for the four different purification protocols presented in Secs.
7.2.1–7.2.4, i.e., Bennett, Deutsch, MFI-based, and CNOT-based protocols, respectively.
Horizontal dashed lines show the theoretical limits of the protocols for the average con-
currence, which are given in Eqs. (7.49)–(7.52) for the Bennett, Deutsch, MFI-based,
and CNOT-based protocols, respectively. The points are connected by lines to guide the
eye. The MFI-based protocol and our proposed CNOT protocol turn out to produce the
same average values, to the point that the green points are barely visible beyond the
purple ones. The standard errors of the means are not visible in the plots. Values for
the unbiased sample variance are available in Appendix 7.7.2.

consists of N elements ρ1, ..., ρN , which are mapped onto ρout,1, ..., ρout,N . The average
output concurrence is estimated by

C̄(αAB) =
1
N

N

∑
j=1
C [ρout,j(αAB)] . (7.36)

Then, the average cost function reads

f̄(αAB) = 1 − C̄(αAB), (7.37)

which ensures that the optimal unitary transformations characterized by αAB increase
the average concurrence of the whole sample. This method is the extension of the one de-
veloped in our previous investigation [PCT&al22], where the cost function depends only
on 15-dimensional vectors, and the optimal search is constrained to specific families of
two-qubit states. We implement again one of the most effective quasi-Newton methods,
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the L-BFGS-B optimization algorithm [BNS94; BLN&al95]. The gradient ∇f̄(αAB)
is obtained via automatic differentiation [BFH&al18]. The algorithm does not require
second derivatives, because the Hessian matrix is approximated. This approach yields a
local minimum α∗AB of f̄ , i.e., f̄(α∗AB) ⩽ f̄(αAB) for all αAB sufficiently close to α∗AB .
Now, we briefly describe the methodology used to optimize the variational purification
protocols of Sec. 7.2.5. The optimization is subject to general two-qubit density matri-
ces parametrized by a 15-dimensional real vector a. As the number of samples needed
to cover the space of two-qubit quantum states with sufficient precision is particularly
large (106 − 107 samples; see [SB22]), the algorithm struggles with a particularly slow
optimization. Therefore, as a first attempt, we use smaller subsets of density matrices
to find optimal unitary matrices and then test their performance on the whole sample.

Algorithm 6 Optimization with the hit-and-run (HR) given in Algorithm 7
Input ρ(a),a ∈ R15, P1, P2, P3, P4 as in Eqs. (7.26), (7.27), (7.28), and (7.29),

Lmax iterations, optimizer (OPT)
Output ρ(a)

1: a0 = 0
2: for j = 1 to N do
3: aj = HR(aj−1)
4: ρj = ρ(aj)
5: end for
6: for i = 1 to Lmax do ▷ with random restart
7: V (αAB) = UA1,A2(αA)⊗UB1,B2(αB)
8: for j = 1 to N do
9: ϱj = ρ

A1,B1
j ⊗ ρ

A2,B2
j

10: σj(αAB) = V (αAB)ϱjV †(αAB)
11: for k = 1 to 4 do
12: ρjk(αAB) =

TrA2,B2{Pkσj(αAB)Pk}
Tr{Pkσj(αAB)}

13: end for
14: kmax = π(ρj1,ρj2,ρj3,ρj4)
15: ρj(αAB) = ρjkmax(αAB)
16: end for
17: f̄(αAB) = 1 − 1

N ∑
N
j=1 C [ρj(αAB)]

18: α∗AB = OPT [f̄(αAB),∇αAB f̄(αAB)]
19: for j = 1 to N do
20: ρj = ρj(α∗AB)
21: end for
22: end for
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The general optimization routine is presented in Algorithm 6. First, general density
matrices are sampled, which is followed by the optimization of the average cost func-
tion. The output density matrices are used again in the next purification step. This is
also optimized, until the maximal number of iterations Lmax is reached. In every step
of the iteration, we find different optimal unitary matrices, which yields an adaptive
purification protocol [PCT&al22].

7.4 Results
7.4.1 Statistics of purification protocols
In this section, we compare the recurrence protocols of Secs. 7.2.1, 7.2.2, 7.2.3, and 7.2.4
based on their average performance on a sample of two-qubit states drawn from an almost
uniform distribution [SBM&al21]. More formally, let ρ1, ..., ρN be N density matrices
generated by the hit-and-run algorithm. As the composition of completely positive maps
is again completely positive [Pau03], every entanglement purification protocol presented
in this work acts as a completely positive trace-preserving non-linear map. We denote
this by Φ, which maps the set of two-qubit quantum states

D(C4) = {ρ ∈M4(C) ∶ ρ ≥ 0, Tr{ρ} = 1}, (7.38)

i.e., positive semidefinite matrices with unit trace, onto itself

Φ ∶D(C4)↦D(C4), Φ(ρ) = ρ′. (7.39)

A purification map Φ is iteratively applied to a density matrix to purify it towards
a maximally entangled state, that is, to extract a state with higher concurrence. If
successful, the protocol approaches usually the concurrence value C = 1 in the limit of
infinite iterations, but there are also known cases of one-step purifiable states [BDS&al96;
TB16]. If unsuccessful, then a state with non-zero concurrence is mapped to a state with
zero concurrence, thereby destroying entanglement, which happens at the first iteration
of each protocol. The average concurrence after i iterations is estimated by

C̄(i) = 1
N

N

∑
j=1
C [Φi(ρj)] . (7.40)

The sample standard deviation reads

s
(i)
C =

¿
ÁÁÁÀ 1

N − 1
N

∑
j=1
{C [Φi(ρj)] − C̄(i)}

2 (7.41)
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and the standard error, i.e., the standard deviation of C̄(i), is given by:

σ
(i)
C̄
=
s
(i)
C√
N
. (7.42)

Similarly, the average success probability can be estimated. In this case, we should first
point out that for a general two-qubit density matrix ρ the success probability can only
be defined for those states whose concurrence is non-zero, that is in those cases where the
entanglement purification protocols are not failing. The probability of a measurement
at the i-th iteration can be described as

pk = Tr{PkΦi(ρj)}, k ∈ {1,2,3,4}, (7.43)

P
(i)
s (k, ρj) =

⎧⎪⎪⎨⎪⎪⎩

pk if C [Φi(ρj)] ≥ 0,
0 otherwise,

(7.44)

where Pk is the projector on (A2,B2) defined in Eqs. (7.26), (7.27), (7.28), and (7.29).
In the case of the protocols presented in Secs. 7.2.1, 7.2.2, 7.2.3, different measurement
results yield the same probability, and analytical formulas are given for the success
probability P

(i)
s (ρj). In the case of the MFI-based protocol, the success probability

is given by the probability of successfully performing the quantum operation given in
Eq. (7.13) and the probability of measuring the state in one of the four possible outcomes
is 1/4. The success probability of the approach in Sec. 7.2.4 is also shown. However, in
the optimized variational case, P (i)s (ρj) is a function of P (i)s (k, ρj), where k is selected
by the policy π introduced in Eq. (7.30). It is worth noting that the condition in Eq.
(7.44) is decisive only in the first step for the protocols in Secs. 7.2.1 and 7.2.2, because
after that all the remaining entangled two-qubit states are improved towards a Bell state.
The average success probability is estimated after each iteration step by

P̄
(i)
s = 1

N

N

∑
j=1

P
(i)
s (ρj), (7.45)

which corresponds to the probability of successfully implementing the i-th step of the
entanglement purification protocol on an unknown two-qubit state with non-zero con-
currence. In this case, the standard deviation of the sample is then given by

s
(i)
Ps
=

¿
ÁÁÁÀ 1

N − 1
N

∑
j=1
{P (i)s (ρj) − P̄

(i)
s }

2
(7.46)

with the standard error

σ
(i)
P̄s
=
s
(i)
Ps√
N
. (7.47)
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Figure 7.2: (a) Average concurrence and (b) success probability of the optimized pu-
rification protocols as a function of the number of iterations. The values shown in the
plot represent the average over N = 107 density matrices (ten runs of the hit-and-run
algorithm, each one outputting 106 density matrices). The asymptote of the MFI-based
protocol in Eq. (7.51) and the ultimate limit of Eq. (7.53) are also shown. The points
are connected by lines to guide the eye. The strategy of first destroying entanglement
and then improving it (green points) delivers the best performance compared also to
the protocols of Fig. 7.1. If we only keep the measurement result k = 1 (m = 0, n = 0),
the average concurrence turns out to be lower compared to the case where the argmax
policy of Eq. (7.32) is used. The standard error of the mean is not visible in the plot.
Values for the unbiased sample variance are available in Appendix 7.7.2.

The initial average concurrence is calculated over N = 107 density matrices and yields

C̄(0) = 0.1257(2), (7.48)

which represents the amount of entanglement present in the sample. Here we use paren-
theses to denote the standard error. We consider this number as a threshold and expect
that entanglement purification protocols can improve it. The results of the four protocols
are shown in Fig. 7.1. It is immediate to see that all protocols destroy entanglement in
their very first iteration. The twirling operations used in both the Bennett and Deutsch
protocols to obtain Werner or Bell diagonal states, respectively, destroy a significant
portion of the entangled states. The remaining entangled states reach C = 1 in the limit
of infinite iterations. We find these limits by imposing the conditions given by Eqs. (7.8)
and (7.12) on the whole sample. If a state does not satisfy it, then we assign C = 0 to
it, otherwise, we set C = 1. In other words, every state satisfying the conditions can be
purified into a Bell state in the limit of infinite iterations. This limit for the Bennett
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protocol yields
C̄(∞)Bennett = 0.01865(4), (7.49)

while the Deutsch approach results in

C̄(∞)Deutsch = 0.0709(1). (7.50)

We would like to stress that this value is lower than the initial average concurrence in
Eq. (7.48) for both protocols. Furthermore, they require several iterations to approach
these limits. The other two protocols yield

C̄(∞)MFI = 0.2128(1), (7.51)

and
C̄(∞)CNOT = 0.2133(1), (7.52)

which are based on the conditions in Eqs. (7.15), (7.16), (7.18), and (7.19). The per-
formance of these protocols is almost the same and despite destroying entanglement in
the first iteration, they can improve the average concurrence of the sample beyond its
starting value. They achieve this already after four iterations (see Fig. 7.1). It is worth
noting again that the asymptote of the Bennett protocol contains only the Bell state ∣1⟩,
being a stable fixed point, while the other three protocols have two relevant stable fixed
points in the limit of infinite iterations. These findings together with the average success
probabilities characterize the performances and they show that both the MFI-based and
our CNOT protocols are superior to the pioneering ones. However, one can define an
ultimate limit of every known or future proposal for entanglement purification, namely,
when all entangled two-qubit states are converted to a maximally entangled state, which
for our sample results in the numerical estimate

C̄(∞)ultimate = 0.7569(1). (7.53)

Given this number, one can conclude that all four evaluated protocols are not very
effective. The performance is confirmed by the analysis of the fidelities with respect to
the stable fixed-point states of the protocols, i.e., r1 for the Bennett, r4 and r2 for the
Deutsch, r1 and r2 for the MFI and r4 and r2 for the CNOT protocols, as a function
of the number of protocol iterations, which are shown in Appendix 7.7.3. This raises
the question of how one can obtain better performance, which will be discussed in the
subsequent section.

7.4.2 Optimization of variational recurrence protocols
In this section, we investigate numerically the variational purification protocol described
in Sec. 7.2. The optimization is based on the method given in Sec. 7.3.2, where the gra-
dient of the cost function associated with the protocol is computed through automatic
differentiation. First, we generate N = 106 density matrices using the hit-and-run al-
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gorithm to obtain an almost uniformly distributed sample. Afterwards, to speed up
the optimization, we randomly pick Ns = 1000 density matrices from this sample and
calculate the gradient. This approach guarantees that optimization is less time con-
suming and the convex set of all two-qubit states is well represented. Nevertheless, the
sampling of only 103 density matrices is not enough to ensure uniform distribution, in
particular for the statistics of the CNOT and MFI protocols. The optimization results
in a numerical value for α∗AB . We then apply the α∗AB-dependent protocol on the whole
sample. We also try different strategies for the measurement policy π of Eq. (7.30). In
particular, we test the policy of Eq. (7.32) together with the case in which we only track
the measurement result k = 1 (m = n = 0) in each iteration.

Our first try is the case when Π in Eq. (7.25) is equal to V (αAB) with policy π of Eq.
(7.32). In Fig. 7.2 we present the result, which demonstrates that this strategy does not
destroy initial entanglement, as one expects. However, the actual increase in average
concurrence is quite limited, which implies that an enormous number of iterations are
needed to purify the density matrices towards a maximally entangled state. As we seek
to obtain a more efficient protocol, we need to consider additional operations performed
on the sample of density matrices.

An interesting feature of Sec. 7.4.1 is that every protocol first destroys entanglement
before it starts to improve the remaining two-qubit quantum states. Next, we consider
the hypothesis that entanglement must be destroyed in order to find an efficient protocol.
Therefore, for the first iteration, we use the projector

Π =MA1,A2
2 ⊗MB1,B2

2 with M2 = I4 − ∣2⟩ ⟨2∣ ,
(7.54)

as the operation of the purification protocol, and for the rest of the iterations we make
use of the optimization with Π = V (αAB), which leads to higher average concurrence.
Here, we have tested both of our measurement policies π. In both cases, these approaches
outperform the limits of the MFI-based and the CNOT protocols, which are shown in
Fig. 7.2. We remind the reader that every optimized step of the variational protocol
yields a different entangling gate. The resulting performance for many iterations seem-
ingly approaches a limit, which is almost halfway between the ultimate asymptote and
the asymptote defined by the MFI-based or the CNOT protocol. The average success
probability of this optimized protocol oscillates as a function of the number of iterations.
We do not have a proper explanation for this effect, as it depends on the non-linear opti-
mizer. However, we can see that the values of the success probability are almost always
higher than those produced by the protocols considered in Fig. 7.1.

Finally, we need to address the realization of these optimized and abstract protocols.
Concerning the two-qubit gates in V (αAB), one can always employ quantum compila-
tion strategies [MMN&al16; Deb&al16; OGB21; PSJ&al24], where the optimal unitary
matrix V (α∗AB) is translated into native gates on the chosen experimental platform.
However, we are not aware of any possible implementation of M2 in Eq. (7.54), but it
seems necessary to first destroy entanglement before any variational purification protocol
is applied.
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7.5 Summary and conclusions
To summarize, we have presented a numerical method that is capable of characterizing
the performance of entanglement purification protocols. We have presented a CNOT-
based protocol, which was evaluated together with two pioneering protocols and a re-
cent proposal based on matter-field interactions. Our results show that all the protocols
destroy entanglement in the very first iteration. This was known for the pioneering pro-
tocols, and here in addition we have demonstrated quantitatively that only a small set
of entangled states is kept. Even though these states are turned into a Bell state in the
limit of infinite iterations, the average concurrence of the whole sample stays below its
starting value. The MFI-based and the CNOT-based protocols perform better and they
can turn slightly more than 21% of the two-qubit states into a Bell state.
We have defined the ultimate limit of all possible purification protocols, which is nothing
other than the percentage of all entangled states within the set of all quantum states,
i.e., approximately 75%. In other words, an ultimate protocol can purify all entangled
states into maximally entangled ones. In this context, we have searched for optimal
asymmetric entangling gates in the nodes A and B. We have found that this approach
is improving the average concurrence very slowly. Therefore, motivated by the other ap-
proaches, we have included in the first iteration an entangling projection, which destroys
some entanglement. This strategy turns out to be a boost for the optimized variational
approach, which can outperform all protocols discussed in this paper. However, even
the variational approach seems unable to reach the ultimate bound for entanglement
purification. At the current stage, we cannot determine whether this result could be im-
proved by implementing different quantum operations or optimization methods. There
might also be an upper bound for this family of protocols that lies below the ultimate
asymptote.
Our numerical analysis focuses on the improvement of the average concurrence. How-
ever, we would like to point out that all the protocols investigated in this work have a
common property. If some information about the input state is known, e.g., the state has
an overlap strictly larger than 0.5 with one of the Bell states, then we know beforehand
whether or not these protocols convert entangled states into a fixed maximally entan-
gled state, which is usually a Bell state. A further difficulty is that the iterations of the
protocol are nonlinear quantum state transformations, which lead to chaotic behavior
[KVT&al11; GNX&al13; GKJ16; PKJ&al22]. Therefore, in the trace norm topology
[Pau03], seemingly close density matrices might have different future trajectories. Our
approach avoids this interesting but complicated behavior by using the average concur-
rence, a choice, which we have demonstrated to be also successful in finding different
and effective entanglement purification protocols.
Finally, some comments on the average success probabilities are in order. It is known
that improving the concurrence alone is not a good enough measure, because success
probabilities play a crucial role in the identification of required resources, i.e., how
many qubits are required to perform some iterations. To improve the success proba-
bilities as well, this leads to a multiobjective optimization task. This is not included
here, because this work aims to introduce a general evaluation scheme based on the
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hit-and-run algorithm and the concurrence, which have given insight into the perfor-
mance of entanglement purification protocols and shown that improvements are possible
in computer-based protocol designs.
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7.7 Appendix
7.7.1 Hit-and-run algorithm
In this Appendix we briefly describe the steps of the hit-and-run algorithm in Algorithm
7. Given a K ⊆ R15, we generate for an a ∈K a random uniform vector x on the sphere,
which is around a and has unit radius. We generate a random uniform number λ on the
interval [−

√
3/2,
√

3/2], because K is inside the sphere of radius
√

3/2 around the origin
[SBM&al21]. If a′ = a + λx ∈ K, then we move there, otherwise we start all over from
a. We always start the sampling from a = 0, i.e., the maximally mixed state.
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Algorithm 7 Hit-and-run
1: j = 1 and a(1) = 0.
2: while j < N do
3: x(j) ∼ N (0, I15).
4: x(j) = x(j)/∥x(j)∥
5: Set I = [−r, r] with r =

√
3/2.

6: m = 0
7: while m = 0 do
8: λ ∼ UI .
9: if a(j) + λx(j) ∈K then

10: a(j+1) = a(j) + λx(j)

11: j = j + 1
12: m = 1
13: else
14: if λ > 0 then
15: I = [−r, λ]
16: else
17: I = [λ, r]
18: end if
19: end if
20: end while
21: end while

7.7.2 Statistics of entanglement purification
In this Appendix, details concerning the sample mean and standard deviation are dis-
cussed. The primary task is to estimate numerically different averages of the concurrence
or the success probability over all two-qubit density matrices. In the main text we have
already identified this set with the convex body K in the Euclidean space R15. Thus,
every density matrix ρ in Eq. (7.34) is uniquely described by a vector a ∈ K. In this
context, the average concurrence reads

C̄ = 1
vol(K) ∫a∈K

C [ρ(a)] d15a (7.55)

with respect to the Lebesgue measure in R15. If ρ1, ..., ρN are generated by the hit-and-
run algorithm, then the estimated value of C̄ reads ∑N

j=1 C(ρj)/N . Similarly, the average
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Figure 7.3: Unbiased sample variances of the concurrence and the success probability as
a function of the number of iterations for (a) and (b) the non-variational and (c) and
(d) the optimized variational protocols. We use the same color scheme as in Figs. 7.1
and 7.2. We observe that the sample variance grows with the number of iterations and
reaches its maximum asymptotic values when all the density matrices are all mapped
to either one or zero concurrence [see Eq. (7.58)]. The fraction of density matrices with
non-zero concurrence in the limit of infinite iterations determines the performance of the
protocol and also the maximum of the sample variance.

success probability
P̄s =

1
vol(K) ∫a∈K

Ps [ρ(a)] d15a (7.56)

is estimated by ∑N
j=1Ps(ρj)/N . The standard deviations of these means are given in

Eqs. (7.42) and (7.47). In the limit of infinite iterations, the distribution of the con-
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Figure 7.4: (a) Bar chart of the distribution of the concurrence for a sample of two-qubit
density matrices after removing the states with concurrence zero; and (b) average initial
concurrence as a function of the number of samples generated by the hit-and-run Monte
Carlo algorithm. Vertical bars show the standard error of the mean. We see that the
average approximately stabilizes after N = 103 samples. This is only true for the initial
concurrence, as the average concurrence after each run of the purification protocol needs
a higher resolution (empirically we find N > 104, especially for the MFI protocol). Plot
(a) uses 106 density matrices, obtained by running the hit-and-run algorithm once.

currence assumes a specific form: The entanglement purification protocol has purified
a certain number S of density matrices, while the other N − S have concurrence zero.
This means that the average concurrence in Eq. (7.40) is given by

lim
i→∞
C̄(i) = S

N
, (7.57)

and the sample standard deviation in Eq. (7.41) reads

lim
i→∞

s
(i)
C =

¿
ÁÁÀ S

N − 1 (1 −
S

N
)

2
+ N − S
N − 1

S2

N2

=
√

S

N − 1 (1 −
S

N
). (7.58)

Now, let us assume that after the ith iteration quantum state ρj belonging to the set of
purifiable density matrices has the concurrence

C(i)(ρj) = 1 − ϵ(i)j with 1 > ϵ(i)j > 0. (7.59)
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This model describes how far the concurrence of ρj from C = 1 is, which is attained for
i→∞. Now, we have

C̄(i) = S
N
− 1
N

S

∑
j=1

ϵ
(i)
j < lim

i→∞
C̄(i), (7.60)

i.e., the average concurrence is always smaller than S/N [see Eq. (7.57)]. Then the
sample standard deviation reads

s
(i)
C =

¿
ÁÁÁÀ 1

N − 1
S

∑
j=1
(1 − ϵ(i)j − C̄

(i))
2
+ N − S
N − 1

(C̄(i))2

=

¿
ÁÁÀS − 2ϵi

N − 1 (1 −
S

N
) −

ϵ2i
N(N − 1) +

βi

N − 1 , (7.61)

where

ϵi =
S

∑
j=1

ϵ
(i)
j , βi =

S

∑
j=1
(ϵ(i)j )

2
. (7.62)

Since (ϵ(i)j )
2
< ϵ(i)j for all j, we get βi < ϵi. Hence

−2ϵi (1 −
S

N
) −

ϵ2i
N
+ βi < −ϵi (1 −

2S
N
) −

ϵ2i
N
. (7.63)

If 2S < N , which is the case of the protocols discussed in 7.4.1, we obtain based on Eqs.
(7.61) and (7.63) that

s
(i)
C < lim

i→∞
s
(i)
C , (7.64)

i.e., the sample standard deviation reaches its maximum in the limit of infinite iterations.
This property is shown in Fig. 7.3. Finally, we also want to visualize the distribution
of the concurrence for the samples of density matrices that are generated by the hit-
and-run algorithm using bar charts. We know that approximately 24.24 % of them
are separable quantum states and have concurrence zero. These cannot be used by
the purification protocols discussed in the main text. Therefore, we remove the bar
chart corresponding to these matrices from our histograms, as they would be simply
represented by a single enormous peak around zero. The distribution of the concurrence
for the remaining randomly sampled two-qubit density matrices is given in Fig. 7.4. It
seems that the concurrence resembles a (skew) Gaussian distribution, however, this is
only a hypothesis and one should prove or disprove it by using methods developed in
random matrix theory concerning density matrices [ŻPN&al11].
In Fig. 7.5, we see the iteration-based evolution of the distribution of the concurrence for
C > 0. Each column represents one of three different points in the purification protocols:
(a), (d), (g) i = 2; (b), (e), (h) i = 7 and (c), (f), (i) i = 15. We show here nine plots,
where the first row (a), (b), (c) represents the Bennett protocol, the second row (d),
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Figure 7.5: Bar charts representing 50 bins of the concurrence distribution for the Ben-
nett – (a), (b), (c), Deutsch – (d), (e), (f), and optimized protocol [using the argmax
policy in Eq. (7.32) and the projector Π in Eq. (7.54)] – (g), (h), (i), each one for the
second, seventh, and fifteenth iteration – corresponding to the first, second and third
column of the plots. States with concurrence zero have been removed to allow us to
visualize the action of the protocols, as they skew the distribution due to their generally
high number. As a consequence, the bar charts exhibit different heights, since the three
protocols map different numbers of states to concurrence zero. Vertical axes have been
set so to range between 0 and 6 × 104, so that the reader can visualize the growth of
the number of states with concurrence equal to one on the right as the number of itera-
tions grows. We see that the optimized protocol preserves the most states, whereas the
number of purified states for the Deutsch and Bennett protocols is significantly lower.
These bar charts use N = 106 samples of the concurrence (one run of the hit-and-run
algorithm).
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(e), (f) the MFI protocol and the third one (g), (h), (i) the CNOT protocol. We find,
as expected, that the number of states with non-zero concurrence is much lower in the
case of the Bennett protocol than for the other two, although every protocol improves
the distribution of the concurrence towards C̄ = 1.

7.7.3 Statistical evaluation of the fidelities
To provide the reader with a better understanding of how the protocols transform noisy
entangled states into Bell states, we investigate here the evolution of the fidelities with
respect to the stable fixed points. The study of fidelity is always conditioned on the
properties of the input states. As we have already discussed in Sec. 7.2, these properties
define different stable fixed points towards which the state is mapped by the protocol.
Thus, the whole sample of input states will be separated into sets according to their
stable fixed points and fidelities will be evaluated only in the corresponding set. This
consideration allows us to exclude situations when the output state is separable and
converges towards the maximally mixed state, which has an overlap of 0.25 with any
Bell states and therefore would contribute to and at the same time skew the average
output fidelity of the protocol. It is obvious that the set with the maximally mixed state
as a fixed point will be not considered. This step is not necessary when one uses the
concurrence.
For a density matrix ρ, we consider the overlaps

rk = tr{ρ ∣k⟩ ⟨k∣}, (7.65)

where the states k = 1,2,3,4 are the Bell states defined before Eq. (7.3). We then use
them to define the output fidelity for the Bennett protocol [BBC&al93]

FBennett(ρ) =
⎧⎪⎪⎨⎪⎪⎩

r1 if 2r1 > 1,
0 otherwise.

(7.66)

Similarly, we define the output fidelities for the other protocols using their respective
conditions for purification. For the Deutsch protocol, we have

F
(4)
Deutsch(ρ) =

⎧⎪⎪⎨⎪⎪⎩

r4 if (2r1 − 1)(1 − 2r4) > 0,
0 otherwise.

(7.67)

F
(2)
Deutsch(ρ) =

⎧⎪⎪⎨⎪⎪⎩

r2 if (2r2 − 1)(1 − 2r3) > 0,
0 otherwise.

(7.68)
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In the case of the MFI protocol, we get

F
(1)
MFI(ρ) =

⎧⎪⎪⎨⎪⎪⎩

r1 if (2r1 − 1)(1 − 2r3) > −(2Im[r13])2 − (2Re[r24])2,

0 otherwise
(7.69)

F
(2)
MFI(ρ) =

⎧⎪⎪⎨⎪⎪⎩

r2 if (2r2 − 1)(1 − 2r4) > −(2Im[r24])2 − (2Re[r13])2,

0 otherwise,
(7.70)

and finally CNOT protocol yields

F
(4)
CNOT(ρ) =

⎧⎪⎪⎨⎪⎪⎩

r4 if (2r1 − 1)(1 − 2r4) > −(2Im[r23])2 − (2Re[r14])2

0 otherwise
(7.71)

F
(2)
CNOT(ρ) =

⎧⎪⎪⎨⎪⎪⎩

r2 if (2r2 − 1)(1 − 2r3) > −(2Im[r14])2 − (2Re[r23])2

0 otherwise.
(7.72)

Output fidelities need to be computed according to Eqs. (7.66)–(7.72) for each sampled
density matrix at each iteration of the corresponding protocol. The average fidelity is
defined as

F̄
(k)
protocol(ρ) =

1
N

N

∑
j=1

F
(k)
protocol(ρj), (7.73)

where k ∈ {1,2,4} is the label of the Bell states which are stable fixed points, and N is
the sample size.
The average fidelities for the purifiable states with respect to all stable fixed points for
the Bennett, Deutsch, MFI, and CNOT protocols are given in Fig. 7.6. We see that the
number of states that can be brought to a stable fixed point by the MFI and CNOT
protocols is significantly larger than those of the Bennett and Deutsch protocols. This
is in accordance with the findings presented in the main text.
Prior knowledge of the input state is essential because most of the protocols currently
available in the literature can only work if one knows that the states to be purified
have certain underlying properties, which need to be known to avoid failure. In the
subsequent discussion, we elucidate this argument by a simple demonstration. Let us
now consider a general two-qubit density matrix that we wish to purify towards a Bell
state. The Bennett protocol starts with a twirling operation, whose only goal is to bring
the state ρ into the Werner form

ρ
twirling
Ð→ ρW = r1 ∣1⟩ ⟨1∣ +

1 − r1
3 (I4 − ∣1⟩ ⟨1∣) . (7.74)
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Figure 7.6: Average output fidelities [calculated using Eqs. (7.66)–(7.72), and (7.73) for
the different fixed points] with respect to the attractors of the different protocols as a
function of the number of iterations. For the Bennett protocol, ∣1⟩ is the only fixed
point. For the other protocols, the attractors are ∣2⟩ and ∣4⟩ (Deutsch), ∣1⟩ and ∣2⟩
(MFI) and ∣4⟩ and ∣2⟩ (CNOT). We see that for each of their attractors, the shares of
purifiable states of both the MFI and the CNOT protocols are significantly larger than
the ones of Bennett and Deutsch. The plot is obtained by running ten simulations of
the hit-and-run algorithm, each one with N = 106 samples.

This operation, however, does not guarantee the success of the purification because the
Bennett protocol can only work if the condition r1 > 0.5 is fulfilled. If it does, then the
Bennett protocol in the asymptotic limit brings this state to the Bell state ∣1⟩. In all
other cases, the purification protocol fails and leads to a mixed state. The infinite-limit
output of the Bennett protocol for a general two-qubit density matrix is therefore a
classical mixture of the purified states (with concurrence one) and the mixed states for
which the protocol failed (with concurrence zero). It turns out that for most of the
density matrices, the protocol fails, i.e., the twirling operation maps them to Werner
states with r1 < 0.5, which is why the blue curve in Fig. 7.1 has such small values.
The asymptotic value of the curve represents exactly the fraction of states that can be
purified. The output of the Bennett protocol with asymptote C̄(∞)Bennett for a general
random density matrix in the limit of infinite iterations will be approximately

ρBennett = C̄
(∞)
Bennett ∣1⟩ ⟨1∣ +

(1 − C̄(∞)Bennett)
3 (I4 − ∣1⟩ ⟨1∣) (7.75)
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which is again a Werner state, but with fidelity C̄(∞)Bennett. This presents a limitation
of using the Bennett protocol on larger classes of states, especially if their generation
cannot be controlled in such a way that the condition r1 > 0.5 is met. This implies that
for the Bennett protocol information about the input state has to be given otherwise we
get a very noisy entangled output state even after infinitely many iterations.
The Deutsch protocol, unlike the Bennett, has three stable fixed points with two Bell
states, which is often not mentioned in the literature [DB07], but after the appearance
of the proposal this has been thoroughly investigated in Ref. [Mac98]. Now, one obtains
a classical mixture of three states with weights defined by C̄(∞)Deutsch, where the states
∣2⟩ ⟨2∣ and ∣4⟩ ⟨4∣ have the same weights as it is shown in Fig. 7.1. This leads also to a
noisy entangled state. In conclusion, one cannot start with an unknown density matrix
and just run the protocols without having some prior information beforehand, because,
as we see, the protocols mostly fail if certain conditions are not met. These conditions,
as we have shown, may be very restrictive or more relaxed, in which case a broader class
of input states can be successfully purified.
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8 Estimation of observables in
quantum systems

Disclaimer: This chapter contains an analysis and a partial review of some relevant
sampling techniques used in quantum circuits, in particular sampling and estimation
methods that use the so-called LCU approach (Linear Combination of Unitaries) [CW12].
These methods are of particular importance in quantum simulation [GAN14; Ort&al01],
but they can also be applied to various estimation problems. A more in-depth review of
the topic, with a detailed analysis of the advantages and disadvantages of implementing
LCU algorithms in different ways, is provided in Ref. [Cha24]. The manuscript was
written autonomously by the author, who thanks both Jószef Zsolt Bernad and Felix
Motzoi for the relevant feedback. Relevant parts of this chapter, with appropriate mod-
ifications, have been included in a more comprehensive publication, which can be found
in Ref. [Pre&al25]. Other co-authors listed therein did not contribute to the writing of
this chapter.

Cost functions used to optimize the quantum dynamics in optimal quantum control and
variational quantum circuits can be represented as mean values of specific observables.
However, how to measure a certain observable on an arbitrary quantum system is not
always obvious. One of the possible methods to measure such quantities is given by
LCU algorithms. In this section, we discuss some of the properties of such algorithms
and some advantages and disadvantages of their implementation. For a more detailed
analysis, we refer, e.g., to Refs. [Cha24] and [Pre&al25].

8.1 Introduction
A quantum algorithm is usually implemented as a family of one or multiple quantum cir-
cuits, which represent physical experiments on one or more of the available quantum com-
puting platforms, such as superconducting quantum circuits [KKY&al19; BGG&al21],
trapped-ions [HRB08] or Rydberg atoms [SWM10]. In these models, a quantum state
is first prepared, evolves under the action of unitary operations and is then measured.
Qubits can be measured in between unitary operations [DeC&al23] (and subsequently
reset if needed), so that more complex maps involving mixed states can also be imple-
mented in quantum algorithms. By executing a quantum algorithm multiple times, we
can collect a statistics about the possible different outcomes. In variational quantum
algorithms [Cer&al21a] the statistics is used to estimate a cost function, which is then
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optimized with respect to variational parameters using classical optimization methods.
As an example, mean values of arbitrary observables are estimated by sampling from dif-
ferent quantum circuits, each one representing an element of an operator basis – e.g., the
Pauli basis –[SOG&al02; FGG14; Per&al14; Bia&al17; Koc&al14; Jer&al23a; Sch&al22;
PCM22; CKA21; WIW&al22; HKP20; DMS22]. The mean values of the single elements
of the operator basis can be evaluated using multiple copies of the same circuit. In
the most straightforward implementation the scaling is linear in the number of circuits
L: O(L/ϵ2). If we can implement a shadow tomography model [HKP20; HKP21], the
scaling can be dramatically improved at the cost of larger errors O(log(L)/ϵ4), whereas
using amplitude amplification the scaling becomes sub-linear, at the cost of having to
implement the amplitude amplification routine [HWM&al22] O(

√
L/ϵ). Once the mean

values have been estimated, they are summed together with appropriate coefficients.
This further increases the variance linearly in the number of terms [BBN19].
Linear combinations of measurements represent the standard approach to the estimation
of observables [Hay17] and they also appear in situations where the expected value of
an observable is averaged over other parameters native to the quantum system. For
instance, there are cases in which mixtures of classical and quantum expectation val-
ues need to be computed, using, e.g., quasi-Monte Carlo approaches. Quantum ma-
chine learning requires the computation of averages over data sets [Bia&al17; Jer&al23a;
SAC&al21]. Quantum control and optimization, on the other hand, for example in the
context of so-called robust [Sch&al22] or adaptive control/meta-optimization [PCM22;
CKA21], require to compute averages of cost functions over a certain parameter space
[ORC&al22; DWM22] (robustness). Control pulses obtained this way are potentially
robust against experimental parameter drifts. Another example of estimators that use
both classical and quantum sampling are (stochastic) parameter-shift rules [LYP&al17;
WIW&al22], which are used to evaluate gradients of quantum cost-functions sampled
using variational quantum circuits.
Several quantum algorithms make instead use of linear combination of unitary operations
[SOG&al02; CW12; CKS17; Cer&al21a; CS17] to create superpositions. The question is
whether this implementation can be beneficial in specific contexts. In this work, we com-
pare Linear Combination of Unitaries-based (LCU) estimators to the standard estimator
for quantum observables and determine the conditions in which the implementation of
the former is detrimental or beneficial, i.e., where it provides us with a speed-up over
the classical counterpart thanks to amplitude estimation.

8.2 Problem statement
Sampling from one or multiple quantum circuits involves computing linear combinations
of binary counts corresponding to different outputs. An example is given by QUBO
problems [Koc&al14], where a quantity, which is in a quadratic form with binary argu-
ments, needs to be sampled from various quantum systems. In the case of variational
quantum eigensolvers [Per&al14], the goal is to minimize the energy of a Hamiltonian
given a certain input state. The n-qubit observable as a whole is usually not available
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(a) Circuits controlled by external parameters θ,λ

...
...ρ U(θ) V1(λ)
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...ρ U(θ) V2(λ)
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...ρ U(θ) VL(λ)

(b)

. . .

. . .

. . .

... . . .

. . .

. . .
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. . .

|0c〉 R1 R2

|0〉

Wa

|0〉

|0〉

ρ U(θ) V1(λ) V2(λ) VL(λ) Sz

LCU sampler with the θ,λ-dependent unitaries

Figure 8.1: In the context of the aforementioned sampling problems we consider two
different approaches: (a) the trivial estimator (TE), which prepares various circuits with
indices i = 1, ..., L that have ρ as input density matrix and an arbitrary unitary evolution
operator U(θ), θ ∈ Rnp . Different circuits are characterized by unitaries V1, V2, ..., VL,
where λ is a parameter sampled from an external distribution λ ∼ P . In (b) we see the
LCU approach, in which the unitaries are multi-controlled on a register of qubits that
encodes the linear combination through a unitary matrix Wa. The unitaries Wa, R1
and R2 encode the properties of the cost function to implement.

directly but it can be represented as a linear combination of hermitian matrices, e.g.,
Pauli strings Pi, which can potentially be measured using quantum circuits. We consider
the observable:

O =
L

∑
i=1

aiPi, ai ∈ R. (8.1)

We limit ourselves to the case in which O can be realized by considering only one element
of the generalized Pauli group, in which case the expression above becomes:

O =
L

∑
i=1

aiViZprodV
†
i , (8.2)

where Zprod =
N
⊗
i=1
σ
(i)
z is the n-qubit σz operator and Vi, i = 1, ..., L are appropriate

unitary matrices – e.g., they map Zprod to other elements of the Pauli basis. The
choice of Zprod is arbitrary: another possibility is to map the operator to a single-qubit
σz operator Z(i)prod = I ⊗ ... ⊗ σ

(i)
z ⊗ I via CNOT operations, but any generalized Pauli

operator can be used in principle, as matrices mapping generalized Pauli operator to
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each other can all be generated using CNOT, Hadamard and Phase gates [BBC&al95;
CW12]. The mean value of the observable O is computed with respect to a quantum
state ρ, such that for the expected value of O we can write:

⟨O⟩ = tr{ρO} =
L

∑
i=1

ai tr{ρViZprodV
†
i }. (8.3)

Using this representation, we can implement the unitaries Vi, i = 1, ..., L on different
quantum circuits and then measure the register of qubits in the computational basis.
We assume that the input state ρ undergoes a parametric evolution generated by a
variational unitary. As a result, the expression

⟨O(θ)⟩ =
L

∑
i=1

ai tr{U(θ)ρU†(θ)ViZprodV
†
i } (8.4)

encodes an energy minimization problem in up to L different quantum circuits using
real parameters θ ∈ Rnp and a n-qubit variational quantum circuit U(θ) ∈ U(d), d = 2n.
Let us assume that any two different Pauli strings considered in Eq. (8.1) commute. If
this is the case, they can be estimated within the same circuit run, which significantly
reduces the amount of measurements needed – if L of them commute, estimating their
mean values scales as in O(⌈log(L)⌉/ϵ2) [HWM&al22]. If they do not commute, up
to L circuits need to be executed. Moreover, cost functions for variational circuits are
also averaged over additional external parameters, where a relevant parameter λ ∼ P is
sampled from a probability distribution P :

C(θ) = Eλ∼P [⟨O(θ,λ)⟩] . (8.5)

Therefore, there are two types of parameters: meta-parameters, denoted by λ, which
are sampled and averaged over – an example of this is given by Monte-Carlo sampling,
where we want to average a value over a data set of parameters – and variational param-
eters, denoted by θ which are generally used for numerical optimization in the context
of variational algorithms.
Sampling using Eq. (8.4) is not the only option to evaluate the mean value of the ob-
servable. We can construct an estimator for ⟨O(θ)⟩ by first constructing estimators for
L different circuits. A different estimator can be constructed based on linear combi-
nation of unitaries [SOG&al02; CW12] using a circuit that forks [PSF&al19] the state
evolution in different directions based on controlled operations. Our goal is to analyze
the behaviour of such an estimator compared to the standard sequential procedure that
uses L circuits.

160



8 Estimation of observables in quantum systems

(a)

|0〉 W1
k (W1

k )
†

|ψ〉 V1 V2

(b)

· · ·

|0〉

WL
k (WL

k )
†...

|0〉

|ψ〉 V1 V2 VL

Figure 8.2: (a) Circuit implementing the sum of two unitaries V1 and V2 on a quantum
computer using one control qubit and (b) circuit implementing the sum of L unitaries
using up to ⌈log(L)⌉ qubits (both are based on the circuits given in Ref. [CW12]). Upon
measuring the control qubit in either 0 or 1, the whole state collapses in a state propor-
tional to either V1 + V2 or V1 − V2. The LCU can therefore be used to probabilistically
implement arbitrary operators acting on a state ∣ψ⟩, as those found, e.g., in Hamilto-
nian simulation. In its generalized implementation (b), the LCU generates all possible
combinations using coefficients k of sums and differences of L unitaries. The linear com-
bination with only positive terms is mapped to the zero state, however the probability
of measuring it decreases with 1/L.

8.3 Linear combinations of estimates
8.3.1 Trivial estimator (TE): linear combinations of measurements
Our goal is to construct an estimator C̃ that, using the measurement outcomes collected
from the quantum circuits, can successfully approximate C in Eq. (8.5). Let us consider
a collection of circuits numbered 1 to L, each one implementing a unitary V1, ..., VL that
we use to perform a measurement of Zprod. We refer to this estimator as the trivial
estimator (TE). This is a straightforward approach in most of the sampling problems in
variational quantum circuits, so we use this name just for clarity. The principle is simple:
we have different circuits that are initialized independently (i.i.d). On each one of these
circuits we prepare an identical initial state ρ. We first limit ourselves to the case in
which the coefficients ai are all non-negative. Formally, we consider first an estimator
denoted by the pair (M(i)j1j2...jn

, C̃) , i = 1, ..., L for a state ρ [Hay17], where M(i)j1j2...jn
are

projectors of the form:

M
(i)
j1j2...jn

= Vi (Πj1 ⊗Πj2 ⊗ . . .Πjn
)V †

i , (8.6)
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where j1, j2, . . . jn ∈ {0,1} and

Π0 = (
1 0
0 0) , Π1 = (

0 0
0 1) . (8.7)

Then, we have
ViZprodV

†
i = ∑

j1,j2,...,jn=0,1
(−1)∑

n
l=1 jlM

(i)
j1j2...jn

. (8.8)

This allows us to estimate mi = tr{ρViZprodV
†
i } for a given ρ and thus

⟨O⟩ρ =
L

∑
i=1

ai ∑
j1,j2,...,jn=0,1

(−1)∑
n
l=1 jl tr{ρM(i)j1j2...jn

}. (8.9)

Each outcome of a circuit measurement corresponds to a binary string x
(i)
k(i)
∈ 1, ...,2n

and is weighted with either a coefficient plus or minus one, depending on its binary
Hamming weight:

b(x) =
n−1
∑
l=0

jl(x), (8.10)

where x = ∑l jl(x)2l and jl(x) ∈ {0,1} are the binary digits of x. Finally, C̃ is the map
from the measurement data set to the real line. Our first choice is given by the TE
estimator:

C̃TE =
L

∑
i=1

ai

n
(i)
s

n
(i)
s

∑
ki=1
(−1)b(x

(i)
ki
)
. (8.11)

We consider here the estimation of the expected values of L Pauli strings P1, ..., PL. The
mean value of a Pauli string for a quantum state ρ has the following variance:

σ2
Pi
= ⟨P 2

i ⟩ − ⟨Pi⟩2, (8.12)

and due to P 2
i = I for any Pauli string, we have:

σ2
Pi
= 1 −m2

i , (8.13)

where mi = Tr{ρPi} ∈ [−1,1]. Eq. (8.13) can be considered as the variance of a
Rademacher variable, which can be transformed into a Bernoulli variable with mean
pi = 1

2(mi + 1) with variance

σ2
pi
= pi(1 − pi). (8.14)
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Eq. (8.14) can be also seen as the variance of a projective measurement Πi, with pi =
Tr{Πiρ} ∈ [0,1]. Any TE estimator draws measurement values x(j)

k(1)
, ..., x

(j)
k(L)

,1 ≤ j ≤ n(i)s

and 1 ≤ i ≤ L from circuits V1, ..., VL acting upon Hilbert spaces H = H(1) ⊗H(2) ⊗ ...⊗
H(L) with input density matrices ρ. Each circuit is used to estimate the mean value of
Zprod using n(i)s shots. Hence, the TE estimator has a variance of

Var(C̃TE) =
L

∑
i=1

a2
i

n
(i)
s

pi(1 − pi). (8.15)

Due to the absence of entanglement between the circuits, there are no correlations be-
tween the estimates and we can write:

σ2
C̃TE
=

L

∑
i=1

a2
i

n
(i)
s

(Tr{ρΠ2
i } − tr{ρΠi}2) (8.16)

=
L

∑
i=1

a2
i

n
(i)
s

pi(1 − pi).

If we set n(i)s ≥ mini=1,...,L [n
(i)
s ] = ns for all i = 1, ..., L and use Chebyshev inequality

[Was10], we can lower-bound the number of shots per circuit as ns ≥ La2
max

4ϵ2 , where ϵ is
the precision of the estimation. For a total of L circuits, this results in a circuit sampling
complexity of O[L2a2max/(4ϵ2)], where amax =maxi=1,..,L [ai] – see also Refs. [WHT15;
BBN19; RBM18].

8.3.2 Linear combination of unitaries
The Linear Combination of Unitaries [CW12] is a quantum algorithm that allows to
perform sums and differences of unitaries on a quantum computer. In its simplest form
it uses the operator:

Wk =
⎛
⎜
⎝

√
k

k+1 −
√

1
k+1√

1
k+1

√
k

k+1

⎞
⎟
⎠
, (8.17)

to create a superposition between ∣0⟩ and ∣1⟩. Afterwards, conditional operations V1 and
V2 are applied on an arbitrary state ∣ψ⟩, followed by a second operation W †

k
. This leads

to a superposition of V1 +V2 and V1 −V2 with different probability amplitudes – see also
Fig. 8.2 (a). In particular, we see that the probability of finding measuring the control
qubit in its ∣1⟩ state is given by

p1 =
k

(k + 1)2
∥(V1 − V2) ∣ψ⟩∥2 ≤

4k
(k + 1)2

, (8.18)
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so that the algorithm implements 1√
α+
(V1 + V2) ∣ψ⟩ for k z→ ∞ and 1√

α−
(V1 − V2) ∣ψ⟩

for k z→ 0, where α± = ∣⟨ψ∣ (V1 ± V2)†(V1 ± V2) ∣ψ⟩∣. If the goal is to apply the sum of L
operators, one either applies the circuit represented in Fig. 8.2 (a) recursively or uses a
circuit with multi-controlled gates – see Fig. 8.2 (b) and also Appendix in Ref. [CW12].
In this case the success probability will be always smaller than p1.
The ancillas that implement the summation procedure can also be encoded in a larger
number of qubits [MKW17; Ara&al21]. If, e.g., L qubits instead of ⌈log(L)⌉ qubits
are used, the implementation requires only single-qubit controlled gates and no multi-
controlled gate. The overall depth of the circuit is then lower [BBC&al95], but the
number of control qubits is exponentially larger.

8.3.3 Estimator with linear combination of unitaries (LCU)
Variants of the LCU circuit have been applied to estimation problems (with some claims
of speedup) [PSF&al19; SOG&al02]. Our goal here is to characterize the variance prop-
erties of these two estimators. Ref. [Cha24] gives a more in-depth overview of different
variants of the algorithm, including continuous variables and integrals. We consider a
circuit of the type given in Fig. 8.1 (b). The circuit is a LCU circuit that uses a unitary
Wa to generate the state

Wa ∣0⟩ = ∣a⟩ (8.19)

on the LCU register, which uses O(⌈log(L)⌉) qubits [BBC&al95], where

∣a⟩ = 1√
∥a∥1

L

∑
i=1

√
∣ai∣ ∣i − 1⟩ (8.20)

for ∥a∥1 = ∑L
i=1 ∣ai∣ and where the weights of the observable are now written in vector

form a = ∑L
i=1 aiei, where ei are unit vectors. We refer to the normalized probabilities

associated with each amplitude of the state as wi:

wi = ∣⟨i∣a⟩∣2 =
∣ai∣

∑L
l=1 ∣al∣

. (8.21)

It is clear than any convex combination of such weights with values 0 ≤ pi ≤ 1 lies
itself between zero and one. The circuit measures the upper control qubit and the n
system qubits (analogously to the case of the TE estimator). We calculate the mean
and variance of the circuit output measurements. We consider here the case in which
measurements are drawn from the computational basis.

Theorem 1 (Mean and variance of the LCU estimator). The expected value and variance
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of the observable ΠLCU = ∣0c⟩ ⟨0c∣⊗ IL ⊗Π measured with the LCU circuit are:

p̄ =
L

∑
i=1

wipi, (8.22)

σ2
p̄ =

L

∑
i=1

wipi −
⎛
⎝

L

∑
i=1

wipi
⎞
⎠

2
= p̄(1 − p̄), (8.23)

with pi = 1
2 tr{ViρV

†
i Π}. If instead the observable ZLCU = ∣0c⟩ ⟨0c∣⊗IL⊗Zprod is measured,

then the corresponding expected value and variance are:

m̄ =
L

∑
i=1

wimi, (8.24)

σ2
m̄ = 1 −

⎛
⎝

L

∑
i=1

wimi
⎞
⎠

2
= 1 − m̄2, (8.25)

with mi = tr{ViρV
†
i Zprod}.

Proof. The initial input state of the LCU circuit is given by the tensor product of the
n-qubit input density matrix, the zero state of the LCU register and the zero state of
the control qubit:

ρin = ∣0c⟩ ⟨0c∣⊗ ∣0⟩ ⟨0∣⊗ ...⊗ ∣0⟩ ⟨0∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nLCU

⊗ρ, (8.26)

where nLCU = ⌈logL⌉. The evolved density matrix of the LCU circuit is given by

ρout = (
A B
B† C

) , (8.27)

where A, C, B are given by

A =
L

∑
j=1

L

∑
i=1

√
wi
√
wj

2 (∣0c⟩ ⟨0c∣⊗ ∣i⟩ ⟨j∣⊗ ρ) , (8.28)

B =
L

∑
j=1

L

∑
i=1

√
wi
√
wj

2 (∣1c⟩ ⟨0c∣⊗ ∣i⟩ ⟨j∣⊗ (Viρ)) , (8.29)
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C =
L

∑
j=1

L

∑
i=1

√
wi
√
wj

2 (∣1c⟩ ⟨1c∣⊗ ∣i⟩ ⟨j∣⊗ ViρV
†
j ) . (8.30)

The entries of A, B, C may change depending on the values of the single-qubit unitary
gates R1,R2 – see Fig. 8.1 – acting on the first control lines. We consider here the case
in which the first gate in the control line corresponds to the Hadamard gate R1 = H
and the second one to the X gate R2 = X. Hence, the output probability distribution
corresponding to the projector Π acting on the subspace of the density matrix ρ and the
measurement line is given by

p̄ = Tr{ρoutΠLCU}, (8.31)

where ΠLCU = Π1 ⊗ IL ⊗Π, Π1 = ∣1c⟩ ⟨1c∣. The value of p̄ is given by

p̄ =
L

∑
i=1

wi

2 Tr{ViρV
†
i Π} =

L

∑
i=1

wipi. (8.32)

Each mean value pi represents the probability of success of a Bernoulli distribution, and
it lies between 0 and 1, which introduces constraints on the values pi that depend on
the different unitaries Vi:

pi =
1
2 Tr{ViρV

†
i Π}. (8.33)

The variance of the estimator is given by

σ2
p̄ = Tr{ρoutΠ2

LCU} −Tr{ρoutΠLCU}2, (8.34)

which corresponds to the variance of a Bernoulli-type distribution, because Π2
LCU =

ΠLCU. Using Eq. (8.32), we have

σ2
p̄ = p̄(1 − p̄) =

L

∑
i=1

wipi −
⎛
⎝

L

∑
i=1

wipi
⎞
⎠

2
. (8.35)

The mean value of the estimator is bounded between zero and one, whereas the variance
has its maximum at σ2

p̄ =
1
4 when p̄ = 1

2 . Now we turn to the estimation of Zprod. If
instead of the projective measurement, a measurement of Zprod is carried out on the
n-qubit subspace, on the whole Hilbert space we will be dealing with the measurement
of the observable ZLCU = Π1 ⊗ IL ⊗ Zprod. In this case we have mi = Tr{ViρV

†
i Zprod}

166



8 Estimation of observables in quantum systems

and the mean of the measurement:

m̄ =
L

∑
i=1

wimi, (8.36)

as well as the variance

σ2
m̄ = 1 −

⎛
⎝

L

∑
i=1

wimi
⎞
⎠

2
, (8.37)

where we used the property Z2
LCU = Π1 ⊗ IL ⊗ I and ∑L

i=1wi tr{ViρV
†
i } = 1.

We can define a new estimator using the framework described before: Let x̄(j), j =
1, ..., ns be shots of the LCU circuit that are sampled by measuring the control qubit in
0 and the corresponding Sz = Zprod operator, then

C̃LCU =
∥a∥1
ns

ns

∑
j=1
(−1)b(x̄

(j)), (8.38)

with variance

Var(C̃LCU) =
∥a∥21
ns

σ2
m̄ ≤
∥a∥21
ns

. (8.39)

Theorem 2. Let ∀i, j,1 ≤ i, j ≤ L ∶ 0 ≤ pi, pj ≤ 1 and ∀i, j,1 ≤ i, j ≤ L ∶ 0 ≤ wi,wj ≤ 1,
∑L

i=1wi = 1, and Xi,Xj ∶ Ω ↦ {0,1} – Ω is a probability space – are random variables
with mean pi and pj respectively and for which ∀i = 1, ..., L ∶ E [X2

i ] = E [Xi] = pi. Then
we have:

L

∑
i=1

L

∑
j=1

wiwj E[XiXj] ≤
L

∑
i=1

wipi. (8.40)

Proof. By the Cauchy-Schwarz inequality, we know that

∣E[XiXj]∣ ≤
√
E[Xj]

√
E[Xj] =

√
pi
√
pj , (8.41)

where we used the fact that E[X2
i ] = E [Xi] = pi and so

L

∑
i=1

L

∑
j=1

wiwk E[XiXj] ≤ (8.42)

≤
L

∑
i=1

L

∑
j=1

wiwj
√
pi
√
pj =
⎛
⎝

L

∑
i=1

wi
√
pi
⎞
⎠

2
.
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Now we employ one of the generalized-mean inequalities [Bul03], i.e., we use the fact
that for p < q:

⎛
⎝

L

∑
i=1

wip
p
i

⎞
⎠

1
p

≤
⎛
⎝

L

∑
i=1

wip
q
i

⎞
⎠

1
q

, (8.43)

setting p = 1
2 and q = 1. After applying this equation to Eq. (8.42), we have

L

∑
i=1

L

∑
j=1

wiwk E[XiXj] ≤
L

∑
i=1

wipi. (8.44)

Therefore, we have that for such variables X1, ...,XL the variance of their linear com-
bination can be bounded from above as follows:

L

∑
i=1

L

∑
j=1

wiwjCov(Xi,Xj) ≤
L

∑
i,j=1

wiwjpi(1 − pj). (8.45)

The Cauchy-Schwarz inequality provides us with the upper bound for the variance of
the linear combination, i.e.:

Var
⎛
⎝

L

∑
i=1

wiXi
⎞
⎠
≤
⎛
⎝

L

∑
i=1

wi

√
pi(1 − pi)

⎞
⎠

2
. (8.46)

If instead we consider shifted estimates Yi in the interval I = [−1,1], we obtain that the
covariance is always bounded by one, which is the first term in Eq. (8.25). Thus, also in
this case we have:

L

∑
i=1

L

∑
j=1

wiwjCov(Yi, Yj) ≤ 1 −
⎛
⎝

L

∑
i=1

wimi
⎞
⎠

2
. (8.47)

The maximum variance for this case can be derived by applying the same principle
as the one used in Eq. (8.46). We can see immediately that the variance of the LCU
sampler is always larger than the variance of the TE sampler in any circumstance. For the
sampling of a bounded quantity, such the expected value of a Pauli string with respect to
variational angles, the variance of the LCU sampler is O(1) and its sampling complexity
is O(1/ϵ2). Vice versa, the variance of the TE sampler for the mean is O(1/L), but
L circuits need to be evaluated, so the overall sampling complexity is O(1/ϵ2). The
two algorithms are therefore equivalent again, although the LCU that uses logarithmic
encoding has a slightly – log(L) – deeper circuit. Unless classical correlations are present
or are not negligible, some of the applications that have been considered for the LCU
circuit [PSF&al19; SOG&al02; Qis23] may be useful in specific contexts, but it cannot
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LCU TE
(embarrassing) parallelization no yes
sampling complexity (i.i.d.) O(L2/ϵ2) O(L2/ϵ2)
sampling complexity (AE) O(L/ϵ) O(L2/ϵ)

Table 8.1: A table representing the differences in terms of sampling complexity the LCU
and TE approaches. In case of normalized sums, all sampling complexities have to be
re-scaled by L2. AE denotes the full amplitude estimation algorithm [Bra&al02], or one
of its approximate versions – see also Section 8.5.2.

naively provide a speedup with respect to L in terms of sampling complexity (not even
in terms of state preparation, as the variance of the TE sampler is quadratically smaller,
which reduces the total number of shots needed from the L circuits).

8.3.4 Extension to general linear combinations
If the coefficients of the linear combination have both positive and negative values, we
need to partially modify the encoding defined above and the derivations of the variance
scaling. We first observe that we can separate the coefficients in positive and negative
terms:

C̃ =
L

∑
i=1

aixi =
L

∑
i=1
(a+i − a

−
i )xi, (8.48)

and

a+i =
⎧⎪⎪⎨⎪⎪⎩

ai, if ai ≥ 0
0, otherwise,

(8.49)

a−i =
⎧⎪⎪⎨⎪⎪⎩

−ai, if ai < 0
0, otherwise.

(8.50)

We define therefore L+/− as the number of coefficients with positive and negative signs
respectively, s.t. L = L+ +L−. In order to be able to represent Eq. (8.11) using positive
weights, we have to first decompose it in its positive and negative terms:

C =
L

∑
i=1

aipi =
L

∑
i=1

a+i pi −
L

∑
i=1

a−i pi. (8.51)
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Afterwards, each term in the sum is redefined s.t.:

L

∑
i=1

aipi =
⎛
⎝

L

∑
l=1

a+l
⎞
⎠
p+ −

⎛
⎝

L

∑
k=1

a−k
⎞
⎠
p−, (8.52)

with p± = ∑L
i=1w

±
i pi, where w±i = a

±
i / (∑

L
l=1 a

±
l
). Using the formulation of Eq. (8.3), we

see that for each one of the positive or negative coefficients we have a correspondent
unitary V

+/−
i for the positive and negative coefficient respectively. To use the LCU

circuit to sample both negative and positive linear combinations, we use the first control
qubit line – see Fig. 8.1 (b). The unitaries V +i , i = 1, ..., L+ are controlled on the value
zero of the qubit and the unitaries V −i , i = L+, ..., L are controlled on value one, whereas
the rest of the circuit remains unchanged. This leads to, e.g., the modified output of the
circuit:

q0 =
1
2
⎛
⎝

L+

∑
i=1
∣wi∣m+i +

L

∑
i=L++1

∣wi∣Tr{ρZprod}
⎞
⎠
, (8.53)

q1 =
1
2
⎛
⎝

L

∑
i=L++1

∣wi∣m−i +
L+

∑
i=1
∣wi∣Tr{ρZprod}

⎞
⎠
. (8.54)

The difference between q0 and q1 gives the final result up to a bias, i.e., the term
⟨Zprod(0)⟩ = Tr{ρZprod}. An interesting case is one where the number of positive and
negative terms in the sum is the same, i.e., L+ = L− = L

2 and the absolute value of each
coefficients is ∣wi∣ = 1

L . In this case, the bias is the same for both q0 and q1 and is
removed when subtracting them. In the case of uniform coefficients, i.e., ∣wi∣ = 1

L , we
can write the expression as

q0 =
1
2
⎛
⎝

1
L

L+

∑
i=1

m+i +
L −L+
L
⟨Zprod(0)⟩

⎞
⎠
, (8.55)

q1 =
1
2
⎛
⎝

1
L

L

∑
i=L++1

m−i +
L+

L
⟨Zprod(0)⟩

⎞
⎠
, (8.56)

which leaves us with

z = 2(q0 − q1) + (
2L+
L
− 1) ⟨Zprod(0)⟩, (8.57)

which, as expected, reduces to the case z = 2(q0 − q1) for L+ = L− = L
2 . This procedure

allows us therefore to estimate linear combinations of expected values of, e.g., Pauli
strings or projectors that contain both positive and negative coefficients. Now, let us
analyze the variance in the case of this more general kind of linear combination of
estimates. Each estimate q0 and q1 will have a Bernoulli-like variance – see Eq. (8.23).
The bias will affect the variance with a quadratic factor (2L+/L−1)2 ≤ 1, which depends
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(a)

|0〉 H H

ρ = I
d V

〈x̄〉 = p̄
σ2
x̄ = p̄(1− p̄)

∼ x̄

(b)

|0〉 H H

{|i〉}di=1 V

∼ xi

〈xi〉 = pi
σ2
xi = pi(1− pi)

Figure 8.3: In this figure we consider different types of sampling problems that use the
Hadamard-like test circuit normally employed for DQC1 tasks. In (a) and (b) the same
circuits are considered with a fixed unitary V . The values x̄ and xi, i = 1, ..., d represent
the Bernoulli counts sampled using the circuits (a) and (b), respectively.

on the problem considered.

8.4 Trace estimation
8.4.1 DQC1
When dealing with NMR quantum computers [Jon11], it is common to have access to
n-qubit mixed states. So the question arose whether quantum computation could be
performed using only mixed states and some control qubits, rather than using pure
states that undergo unitary evolutions, which are significantly harder to produce using
these systems. It turns out that there exist problems that can be solved exponentially
faster on such a quantum computer compared to a classical computer [SJ08]. However,
it turns out that this computation model is also significantly weaker than standard
quantum computation [SJ08; She06]. This model is referred to nowadays as DQC1
[KL98] (Deterministic Quantum Computation with One Clean Qubit). Several problems
involving computing distance measures between unitaries and states using quantum
circuits are DQC1-complete or -hard [Pou&al04; KSC&al20; Bra&al23]. One for all,
trace estimation of unitaries is DQC1-complete. The same is true for energy estimation
for Hamiltonians with very low (logarithmic) connectivity [She06]. There is a deep
connection between all problems involving linear combination of unitaries and DQC1
[Bra&al23]. In general, one can construct a DQC1-cost function by implementing a
LCU-type circuit with controlled operations [PSF&al19].

8.4.2 Sampling Unitary traces and DQC1 basics
The complexity class DQC1 that allows direct computation with one clean qubit uses
a single- or multi-qubit controlled unitary V acting on a maximally mixed state (which
corresponds to uniformly sampled random pure states) to perform quantum computation
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[KL98]. This model has been shown to be hard to simulate on classical computers if
more than three output qubits are considered [MFF14]. Estimating the re-normalized
real part of the trace of a unitary V is a complete problem for DQC1 [She06]. The
circuit that allows this estimation is given in Fig. 8.3 (a) for mixed-states inputs and (b)
for pure states. We describe these circuits in details below.
The probability of measuring the control qubit for the circuit that uses mixed states –
see Fig. 8.3 (a) – in the zero (+) or one (-) state is given by

p̄± =
1
2 (1 ±

1
d

Re{Tr{V }}) . (8.58)

The imaginary part can be obtained by inserting an S gate before the final measurement
in the circuits given in Fig. (8.3). We can see that if we want to compute the trace of
a unitary, the variance of the estimator for the trace behaves as a Bernoulli variable
[AJL06]:

Var(x̄) = p̄+(1 − p̄+). (8.59)

Here, we consider only one of the two outcomes and thus set p̄ = p̄+. Without using a
maximally mixed state ρ = I

d , computing the trace requires preparing d = 2n orthonormal
basis states {∣i⟩}di=1 and estimating their corresponding probability distribution pi:

pi =
1
2(1 +Re{⟨i∣V ∣i⟩}). (8.60)

As the real part of the trace of V is given by ∑d
i=1 Re{⟨i∣V ∣i⟩}, we can construct an

estimator for the trace by creating an estimator x̄′ that collects the counts of the d
different circuits and sums them together.
The variance of this estimator behaves as a sum of independent Bernoulli variables, each
one with variance pi(1 − pi):

Var(x̄′) =
d

∑
i=1

pi(1 − pi), (8.61)

and is d-times smaller than the variance of the estimator based on the maximally mixed
state.

Proof. We prepare the d states ∣i⟩ , i = 1, ..., d and apply the Hadamard test on each of
them using the controlled unitary V . Since the states are prepared on d different Hilbert
spaces, the variance of the estimates is simply the sum of the variances, each one equal
to pi(1 − pi) for i = 1, ..., d. Afterwards, we use the fact that pi ≤

√
pi for 0 ≤ pi ≤ 1 and

write:

1
d

d

∑
i=1

pi(1 − pi) ≤
⎛
⎝

1
d

d

∑
i=1

√
pi

√
1 − pi

⎞
⎠

2
. (8.62)
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Then we apply one of the generalized mean inequalities [Bul03], which follows from the
Jensen’s inequality [Jen06]:

⎛
⎝

1
d

d

∑
i=1

√
pi

√
1 − pi

⎞
⎠

2
GM
≤ 1

d2
d

∑
i=1

pi

d

∑
j=1
(1 − pj). (8.63)

The last term is the variance of the DQC1 estimator. Therefore, we have

Var(x̄′) ≤ 1
d

Var(x̄). (8.64)

We see that the variance of the first estimator is at least d times smaller than the one
of the DQC1 estimator. However, the DQC1 estimator does not require the preparation
of d different states, as long as we have access to a source of randomly distributed pure
states in input (or, equivalently, a maximally mixed state). In summary, the query
complexity of both estimators with precision ϵ is O(d2/ϵ2) – in the former case, we need
to sample the sum of d circuit outputs with precision O(d/ϵ2), in the latter we sample
from one circuit with precision O(d2/ϵ2).

8.5 Quantum sampling
8.5.1 Heisenberg scaling and phase estimation
For specific problems, phase estimation can be used to sample values at the Heisenberg
limit [GLM04; GLM11]. If we consider a Hadamard test estimating the value p, with
p = cos2(ϕ), we can implement the nth power of the corresponding operator to obtain:

pn = cos2(nϕ). (8.65)

The uncertainty in the estimation of pn is given by a Bernoulli variance pn(1−pn), which
is O(1). If we apply the propagation of the uncertainty to the value ϕ knowing the value
of pn with precision

√
pn(1 − pn), we can see that the value of ϕ has a variance that scales

as O( 1
n) [GLM04]. This is in contrast to classical estimation, where the standard error

in standard Monte Carlo sampling scales with O(1/
√
n). The same phase value can be

then used to estimate p with precision O(1/n). Phase estimation has found application
in different contexts outside of quantum metrology, for example in noise mitigation
[PAO23] and Hamiltonian simulation [DLL&al24]. The amplitude estimation algorithm
[Bra&al02] can be considered a generalization of this procedure to arbitrary sampled
cost functions that do not exhibit the simple structure given in Eq. (8.65). An example
is a situation in which the sampled quantity does not depend on a single phase value,
but rather on a sum of different phase contributions. In this case, this algorithm can
offer quadratic speedup over classical estimation routines.
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8.5.2 Amplitude amplification and estimation
Amplitude amplification (AA) [Bra&al02] describes a class of algorithms based on Grover
search [Gro96] that allows to perform faster sampling on quantum computers. If applied
to estimation problems in the context of quantum circuits, it is often referred to as
amplitude estimation (AE) and can be used to sample the information hidden inside of
amplitudes of quantum states of the type:

∣ψ⟩ =√p ∣0⟩ ∣ψ1⟩ +
√

1 − p ∣1⟩ ∣ψ2⟩ , (8.66)

where p is value to estimate. There exists a quantum algorithm that outputs to an
estimator p̃ of p [Bra&al02], which is bounded from above as follows:

∣p − p̃∣ ≤ 2πk
√
p(1 − p)
nq

+ π
2k2

n2
q
. (8.67)

The AE routine succeeds with probability psucc = 8/π2 if k = 1 and psucc ≥ 1 − 1
2(k−1) if

k > 1, where nq is the number of oracle calls. Generally, the routine for AA is defined for
pure states and not for mixed inputs, such as the DQC1 circuit given in Fig. 8.3 (a) and
(b). However, the routine that generates the mixed state can be expressed as tracing out
a pure state of higher dimensionality than the one considered as input to the sampling
circuit. As a result, to apply AE to one of our problems, we have to consider the entire
algorithm, the one that generates the mixed state and the one that generates the state
in Eq. (8.69). As given in Ref. [KLP&al19], the n-qubit maximally mixed state ρ = I

d
can be generated by creating a 2n-qubit pure state

∣ψ⟩ = 1√
d

d

∑
i=1
∣i⟩ ,⊗ ∣i⟩ (8.68)

and tracing out one of the n-qubit subsystems. So the (n + 1)-qubit DQC1 circuit can
be written as a (2n + 1)-qubit circuit by including the generation of the mixed state in
its original routine.

8.5.2.1 Sampling with amplitude estimation

We consider here the TE sampler for the trace estimation problem. In this case we need
to apply the AE scheme to each sub-problem. It is clear that this bound is quadratically
better than classical Monte Carlo sampling. We assume that each quantum algorithm
of the TE estimator can be written as [SUR&al20]:

Vi ∣0⟩ =
√
pi ∣0⟩ ∣ψi,1⟩ +

√
1 − pi ∣1⟩ ∣ψi,2⟩ , (8.69)

for i = 1, ..., L. Thus, the Grover operator for AE is simply given by

Qi = −ViS0V−1
i Sχ, (8.70)
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where Sχ is the reflection operator that switches the sign of the state if the state is equal
to the target (also known as the good state) [Bra&al02; SUR&al20] and the operator S0
flips the state if it is the zero state. For each amplitude encoded in a quantum algorithm
Vi we have:

∣pi − p̃i∣ ≤ 2πk
√
pi(1 − pi)
nq

+ π
2k2

n2
q
. (8.71)

Our aim is to achieve an overall precision ϵ of the full estimation, which gives us:

ϵ = ∣
L

∑
i=1

pi −
L

∑
i=1

p̃i∣
∆
≤

L

∑
i=1
∣pi − p̃i∣ ≤ (8.72)

L

∑
i=1

2πk
nq

√
pi(1 − pi) +

k2Lπ2

n2
q

,

where nq is the number of oracle calls for each algorithm i = 1, ..., L and k ∈ N>0. The
estimation is probabilistic, i.e., it is successful with probability psucc. In the next steps
we mention some aspects of the original derivation in Ref. [Bra&al02]. The probability
of success of the AE algorithm can be bound from below using the trigamma function
ψ(1)(k) = ∑∞m=k 1/m2 [Bra&al02; AS64]. For any k ∈ N>0 we have:

psucc ≥ 1 − 1
2ψ
(1)(k). (8.73)

As the trigamma function fulfills the identity [Bra&al02]:

ψ(1)(k) ≤ 1
k − 1 , (8.74)

the lower bound for the success probability can be written as

psucc ≥ 1 − 1
2(k − 1) , (8.75)

where psucc is the success probability of one quantum AE algorithm running on one of
the estimation problems. For k = 1 we have psucc = 8

π2 and considering that pi(1 − pi)
is always smaller than 1

4 , we can write the following relation for the precision ϵ of the
estimation:

ϵ = πL
nq
+ π

2L
n2

q
, (8.76)

and after solving the quadratic equation for small ϵ we obtain πL
nq
≈ ϵ. The number of

evaluations needed is thus O(L2/ϵ) – L circuits with nq oracle calls each, in analogy
with the TE estimator – to have convergence with probability psucc. If the sum given
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in Eq. (8.72) is divided by L – which corresponds to the case where we sample a mean
–, then the complexity reduces to O(1/ϵ). In the case of the LCU estimator we have
instead O(L/ϵ) for the non-renormalized estimation and O(1/ϵ) for the renormalized
one. In classical estimation, the renormalization factor causes the variance of the LCU
estimator to grow quadratically with the number of estimates. In the case of AE, it
only increases the error linearly. Despite this advantage, the implementation of the AE
oracle is non-trivial.
We can briefly analyze a further important difference between the two algorithms. In the
TE case, we run L different AE routines, each one with a success probability psucc ≥ 8

π2 .
In the LCU case, we apply the routine to one single circuit. Clearly, the second approach
has an advantage in terms of overall probability of failure. In fact, in the former case
there are L independent algorithmic runs that can return the wrong outcome. In the
latter case, however, only one circuit with a corresponding AE routine and success
probability psucc is used.
If we consider NISQ circuits, which are not fault-tolerant, we quickly realize that the
depth of the Grover’s algorithm, which lies at the core of the AE routine, cannot be
easily implemented on such circuits. However, alternative versions of the AE can be
potentially applied on noisy quantum devices [SUR&al20; Gri&al21; PRF&al22]. AE
can be used to estimate means of data sampled from arbitrary distributions [Shy21]
and has a potentially vast range of industry-relevant applications, e.g., in finance. In
this context, it can be used to sample quadratically faster from stochastic processes
[SES&al20].

8.6 Discussion and Conclusion
In Chapter 2, 4 and, to a certain extent, 6 and 7 we consider several optimization prob-
lems involving (quantum) cost functions, i.e., cost functions that depend on variational
parameters governing on the quantum dynamics. However, it is not always clear a priori
how these cost functions can be estimated using quantum circuits. For example, mea-
suring the average gate infidelity, which is quadratic in the trace, requires the tensor
product of two unitaries [KLP&al19; MSG&al11]. Arbitrary cost functions can thus
be implemented using both LCU and TE estimators, which exhibit the same sampling
complexity. In the context of these two approaches, we provided the reader with an
overview of different estimators used to determine the mean value of observables within
acceptable precision. It is clear from our analysis – see also [Cha24] – that the com-
plexity of estimating observables using LCU and TE samplers without any quantum
AE routine is the same, i.e., O(L2/ϵ2). In the case of AE, the sampling complexity of
the LCU estimator reduces to O(L/ϵ), which therefore proves to be quadratically faster
than the TE estimator. Moreover, when using AE, the LCU approach benefits from
the reduced execution time due to the success probability being considered for just one
circuit and not for L circuits.
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8.1 Summary
Optimization and machine learning have become ubiquitous in quantum science and
technology [KLF&al23]. In this work, we covered several optimization problems for
quantum systems that are potentially relevant for present and future applications of
quantum science. We start in Chapter 4 with functional learning of pulses for optimal
quantum control problems. We show that it is possible to train adaptive solutions char-
acterized by a functional dependence on system parameters similar to analytical control
solutions. Such neural network-based solutions are significantly more expressive than
standard optimal control pulses, even when trained using so-called robust cost functions.
This enables us to perform gate-set learning using optimal control pulses: a family of
such pulses can be trained to produce a continuous entangling gate as a function of its
rotation angles, which enables the creation of universal gate sets with continuous pa-
rameters from an optimal control ansatz.
After showing that it is possible to generate variational gate sets using optimal control
pulses, we move to a higher-level optimization problem. To compile arbitrary gates
on quantum computers, a proper circuit compiler is needed. Such compilers exist and
can be quite fast [YIL&al21], but they often do not provide optimal solutions. In this
context, we deal not just with continuous, but also with discrete optimization of gate
decompositions. In Chapter 5 we show how a reinforcement learning agent minimizes
the length of compiled variational quantum circuits to produce relevant gates such as
Toffoli or UCC unitary operators.
In Chapter 6 we introduce the optimization of purification protocols for specific families
of states as a function of variational parameters. We show that the concurrence proves
to be a powerful instrument to quantify the performance of such protocols for arbitrary
input and output states and that the proposed variational protocol can surpass a basic
CNOT protocol that does not use variational rotations.
In Chapter 7 we generalize this approach to arbitrary two-qubit quantum states. We
compare the performances of static protocols based on the twirling operation and pro-
tocols that do not implement it against variational protocols with optimized angles. We
conclude that the twirling operation seems to be affecting the overall performance of
the original purification protocols, which are severely limited when dealing with random
two-qubit input states. On the contrary, our optimized variational protocols do not
employ twirling, but rather use a rank-two projector before applying layers of optimized
non-linear maps. Our results show that thanks to such protocols it is possible to signif-
icantly increase the average concurrence output of purification protocols.
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All the optimization problems considered above make use of sophisticated quantum cost
functions that are often evaluated in experiments, such as the average gate fidelity or the
concurrence. Therefore, we investigate how to construct estimators for such cost func-
tions efficiently using measurement outcomes of different quantum circuits. In Chapter
8 we considered two different types of estimators. The former is the standard estimator
(TE), which utilizes multiple quantum circuits, each one estimating the mean value of
non-commuting observables. The latter uses the LCU approach (Linear Combination of
Unitaries).
By analyzing the properties of both estimators, we observe that the LCU cannot lead to
speedups with respect to the trivial estimators in the case of classical sampling. How-
ever, both estimators can be combined with amplitude amplification/estimation routines,
which seems more beneficial for the LCU approach. Estimation routines based on AE
are often complex and their corresponding circuits are of significant depth. However,
recent implementations [SUR&al20; PRF&al22] have considered approaches to the AE
algorithm that are more suitable for near-term quantum computers and can still retain
part of the quantum speedup. The use of such near-term routines in variational and
meta-variational optimization problems which use the LCU can be potentially beneficial
for quantum experiments and deserves further investigation.

8.2 Outlook
Our work focused on optimizing the design of various quantum operations. As fu-
ture goals of SOMA methods for continuous quantum gate sets we plan to implement
such algorithms on experimental platforms. This implies training the meta-optimization
control method in an open-loop setting and then testing it in a real-world scenario
(open-loop) with the help of, e.g., interleaved randomized benchmarking [MGJ&al12]
and black-box optimization algorithms [CCM11; WSG&al14]. Under certain conditions,
the experimental implementation can also benefit from gradient estimation techniques
[WIW&al22; KK23]. Exploring the possibility of using filters [SZC&al23] could dras-
tically increase the precision of the optimal quantum control solution. Such optimal
control methods could also benefit from reinforcement learning applications and adap-
tive estimators such as contextual bandits [BAL21], which could potentially address
parameter drifts. Another possible research direction is represented by reinforcement
learning algorithms specifically developed for quantum circuits and quantum control ap-
plications [PPM23]. The optimization routine developed for purification protocols can,
in principle, be extended to other entanglement distillation procedures, for example in
the case of so-called pumping protocols [DB07] and in the case of qudits [SB22]. The
potential of the LCU approach is currently still under investigation. We aim at combin-
ing it with near-term amplification routines to estimate different types of cost functions
and to study its benefit in mitigating classical experimental noise [OPR&al21].
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