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Abstract

The constant growth of the world population and the associated growing global
energy demand represents a major challenge. The need to abstain nuclear and
coal-fired power plants requires the rapid expansion of renewable energies and
thus the expansion of photovoltaics (PV). In addition to increasing production
capacity, improving the efficiency and sustainability of PV modules leads to
higher yields. The resulting shorter payback times and the lower space required
leads to increased economic interest and thus to a faster expansion of the PV
industry.
This thesis deals with several topics in the area of efficiency and sustainability of
PV modules. Research to improve the efficiency of solar cells and solar modules
mainly focuses on the cell efficiency. For the purpose of comparability, this
is verified conventionally at a fixed temperature and irradiation. The defined
standard test conditions (STC) ensure the comparability of efficiency measure-
ments in different laboratories around the world, but are not representative for
the expected efficiency or expected yield of a module in operation consisting
of several cells. The first topic addressed in this thesis is the extrapolation of
the expected yield of a PV module from the laboratory-measured efficiency of a
single CIGS solar cell. On the root of the extrapolation model stand temperature-
and irradiation-dependent IV measurements. Based on realistic assumptions,
a corresponding module characteristic of a 100 Wp module is extrapolated to
each measured cell IV characteristic. To determine the yield of this module
in realistic operating conditions, standard climatic reference profiles are used,
which are defined in the IEC61853 standard. In addition, the extrapolation
model can be used to determine how much yield potential there is in individual
improvements to the cell performance.
In addition to the temperature and irradiation dependent efficiency of solar
modules, efficiency stability is crucial for the yield of a solar module that
is in operation for several years. Long-term experiments of PV modules in
operation cover all possible influences affecting the performance. However, the
superposition of these many influences also means that individual influences
are difficult to separate from one another. In order to investigate the effect
of individual influences, laboratory tests are required in which the operating
conditions can be adjusted and controlled. One influence on CIGS modules
in operation is the illumination with (sun) light. To investigate the separate
influence of illumination in more detail, an accelerated degradation experiment
was set up in which a total of 24 flexible CIGS solar cells were illuminated

i



ii

under different operating conditions for approximately 1170 h. The operating
temperature was varied between 25◦C and 70◦C and the irradiation intensity
was varied between 0 Wm−2 and 1000 Wm−2. In addition, the influence of the
operating bias was examined, with 12 cells kept in open circuit and 12 cells
in short circuit. The results of the experiment show a strong dependency of
the sustainability on the operating bias, with cells in short circuit showing
high degradation rates. The process that leads to degradation is temperature-
dependent (higher effect at higher temperatures) and mostly independent of
the irradiation intensity. In addition, the analysis of the IV measurement data
with the one-diode model indicates an increased probability of a recombination
process with a high ideality factor. A possible recombination process that would
explain this development is Shockley-Read-Hall (SRH) recombination in the
quasi-neutral region of the p-n junction.
While laboratory experiments can lead to valuable insights on the effect of accel-
erated conditions, long-term experiments under realistic operating conditions are
ultimately the best way to depict all influences affecting a PV modules efficiency
in outdoor operation. In addition to measuring the module performance (often
IV characteristics), this also requires the collection of meteorological data (e.g.
module temperature and irradiation). Since the environmental influences are
not controlled in these long-term experiments, the data structures recorded in
this way are prone to errors. To this end, an analysis of the data requires a
classification of the data quality and an appropriate filter before the analysis.
In this work, two possible filter methods are developed and discussed. The
first approach evaluates on the plausibility, which is classified using physical
models describing the relationships between the different dimensions of the data
recorded. The correlation of several occurring deviations is weighted using the
Mahalanobis distance. The second filter method specifically aims to address a
systematic error in the data often present in outdoor data, which occurs due
to partial shading of the module and/or the irradiation sensor. Irradiation and
operating temperature dependencies of the short circuit current of a PV module
are described using several Gaussian process regressions (GPRs, a statistical
method for interpolating data) and outliers from measurement and expectation
are iteratively filtered out.
After the data quality has been assessed and an appropriate filter has been
applied, the data can be further analysed. The two biggest challenges are
the dimensionality and size of the data structures as well as the irradiation
and temperature dependencies, which needs to be taken into account rating
the performance. To reduce the dimensionality of the data, I use the so-
called extended solar cell parameters (ESPs), an extension of the standard
solar cell parameters ISC, VOC, IMPP and VMPP on a total of 10 parameters,
which describe the complete form of an IV characteristic. Furthermore, a
principal component analysis (PCA) is used, in which a new coordinate system
is chosen for the 10 ESPs and linear correlations between the ESPs are thus
separated. The 10 principal components (PCs) determined in this way are
linearly uncorrelated and are described with several Gaussian processes that use
the module temperature, irradiation and the time as input. In order to be able
to process the amount of data, the data set for each individual PC is divided
into monthly subsets and individual Gaussian process regressions are trained.
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The model can thus reproduce the 10 PCs, consequently the 10 ESPs and the
complete IV characteristic for any input of temperature, irradiation and time.
In addition, the Gaussian process regressions provide information about the
uncertainty of the output, which arises from the measurement uncertainty and
the distance (in time, irradiation and temperature) to the actual measurements.
The versatility of possible applications of the model is underlined with 3 examples
(a simple representation of the time series to visualize seasonality, long-term
degradation and acclimatization, the comparison to a classical performance ratio
analysis and an application of the one-diode model based on the output of the
GPRs). In addition, an analysis of the model’s uncertainty shows high accuracy
and good agreement between real and predicted error distributions.
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Kurzfassung

Das stetige Wachstum der Weltbevölkerung sowie der damit verbundene
wachsende globale Energiebedarf stellt eine große Herausforderung dar. Die
Notwendigkeit des Verzichts auf Atom- und Kohlekraftwerke bedingt dabei den
schnellen Ausbau der erneuerbaren Energien und damit den Ausbau der Photo-
voltaik. Neben der Steigerung der Produktionskapazität, führt die Verbesserung
der Effizienz und Effizienzstabilität von PV Modulen zu höheren Erträgen. Zu-
dem führen die resultierenden kürzeren Amortisationszeiten und der geringere
Flächenbedarf zu einem gesteigertem wirtschaftlichem Interesse und damit zu
einem schnelleren Ausbau der PV Branche.
Diese Doktorarbeit beschäftigt sich mit mehreren Thematiken im Bereich der Ef-
fizienz und Effizienzstabilität von PV Modulen. Forschung zur Verbesserung der
Effizienz von Solarzellen und Solarmodulen konzentriert sich hauptsächlich auf
die Zelleffizienz. Diese wird zwecks Vergleichbarkeit konventionell bei einer festen
Temperatur und Einstrahlung verifiziert. Die definierten Standardtestbedingun-
gen sorgen für die Vergleichbarkeit von Effizienzmessungen in unterschiedlichen
Laboren auf der Welt, sind jedoch nicht repräsentativ für die erwartete Effizienz
beziehungsweise den erwarteten Ertrag eines aus mehreren Zellen bestehenden
Moduls im Betrieb. Das erste Thema, welches in dieser Doktorarbeit behandelt
wird ist daher die Extrapolation eines erwarteten Ertrags eines PV Moduls
von der im Labor gemessenen Effizienz einer einzelnen CIGS Solarzelle. Die
Grundlage des Extrapolationsmodells bilden temperatur- und einstrahlungsab-
hängige Strom-Spannungs (IU) Messungen. Auf Basis realistischer Annahmen
wird zu jeder vermessenen IU Zellkennlinie eine entsprechende Modulkennlinie
eines 100 Wp-Moduls extrapoliert. Um den Ertrag dieses Moduls in realistis-
chen Betriebsbedingungen zu bestimmen werden Standardlkimareferenzprofile
verwendet, welche in der IEC61853 Norm definiert sind. Darüber hinaus kann
mit dem Extrapolationsmodell bestimmt werden, wie viel Ertragspotential in
einzelnen Verbesserungen der Zelleffizienz stecken.
Neben der temperatur- und einstrahlungsabhängigen Effizienz von Solarmod-
ulen, ist die Effizienzstabilität entscheidend für den Ertrag eines Solarmoduls,
welches über mehrere Jahre in Betrieb ist. Realistische Langzeitversuche an
Solarmodulen im Betrieb decken am besten alle möglichen Einflüsse ab. Die
Überlagerung dieser vielen Einflüsse hat jedoch auch die Folge, dass individuelle
Einflüsse schwer voneinander getrennt werden können. Um den Effekt einzelner
Einflüsse zu untersuchen bedarf es daher Laborversuche, bei welcher die Be-
triebsbedingungen kontrolliert und eingestellt werden können. Ein Einfluss auf
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CIGS Solarmodule in Betrieb ist die Beleuchtung mit (Sonnen-)Licht. Um den
separierten Einfluss der Beleuchtung genauer zu untersuchen wurde ein beschle-
unigter Degradationsversuch durchgeführt, bei dem insgesamt 24 flexible CIGS
Solarzellen unter unterschiedlichen Betriebsbedingungen für ungefähr 1170 h
beleuchtet wurden. Die Betriebstemperatur wurde dabei zwischen 25◦C und
70◦C und die Einstrahlungsstärke zwischen 0 Wm−2 und 1000 Wm−2 variiert.
Zudem wurde der Einfluss des Betriebspunktes untersucht, wobei 12 Zellen in
offener Klemmspannung und 12 Zellen in Kurzschluss gehalten wurden. Die
Ergebnisse des Versuches zeigen eine starke Abhängigkeit der Effizienzstabil-
ität vom Betriebspunkt, wobei Zellen in Kurzschluss hohe Degradationsraten
aufzeigen. Der Prozess, welcher zur Alterung führt ist dabei temperaturab-
hängig (größer bei höheren Temperaturen) und weitestgehend unabhängig von
der Einstrahlungsstärke. Zudem weißt die Analyse der IU Messdaten mit dem
Ein-Dioden Modell auf eine erhöhte Wahrscheinlichkeit eines Rekombination-
sprozesses mit hohem Idealitätsfaktor hin. Ein möglicher Rekombinationsprozess,
welcher diese Entwicklung erklären würde ist Shockley-Read-Hall (SRH) Rekom-
bination im quasi-neutralen Bereich des p-n Übergangs.
Während Laborexperimente wertvolle Erkenntnisse über die Auswirkung beschle-
unigter Degradationsbedingungen liefern können, sind Langzeitexperimente
unter realistischen Betriebsbedingungen letztlich der beste Weg, um alle Ein-
flüsse abzubilden, die sich auf die Effizienz eines PV-Moduls im Außenbetrieb
auswirken. Dazu bedarf es neben der Messung der Modulperformance (oft IU
Charakteristiken) auch die Erfassung meteorologischer Daten (z.B. Modultem-
peratur und Einstrahlung). Da die Umwelteinflüsse in diesen Langzeitversuchen
nicht kontrolliert sind, sind die so erfassten Datenstrukturen fehleranfällig. Eine
Analyse der Daten bedarf demnach eine Einordnung der Datenqualität und einen
der Analyse vorgeschalteten Datenfilter. In dieser Arbeit werden zwei mögliche
Filtermethoden erarbeitet und besprochen. Der erste Ansatz untersucht die
Plausibilität der Zusammenhänge der unterschiedlichen Datentypen, welche
mit physikalischen Modellen eingeordnet werden. Dabei wird die Korrelation
mehrerer auftretender Abweichungen mit der Nutzung der Mahalanobisdistanz
nicht übermäßig gewichtet. Die zweite Filtermethode richtet sich gezielt auf einen
oft auftretenden systematischen Fehler in den Daten, welcher durch teilweise Ab-
schattung des Moduls und oder des Einstrahlungssensors auftritt. Einstrahlungs-
und Betriebstemperaturabhängigkeiten des Kurzschlussstroms eines PV Moduls
werden mit mehreren Gaussprozessregressionen (einer statistischen Methode zur
Interpolation von Daten) beschrieben und Ausreißer von Messung und Erwartung
iterativ herausgefiltert.
Nachdem die Datenqualität bewertet ist und ein entsprechender Filter angewen-
det wurde, können die Daten weiter analysiert werden. Die zwei größten Heraus-
forderung bestehen dabei durch die Dimensionalität und Größe der Datenstruk-
turen sowie durch die Einstrahlungs- und Temperaturabhängigkeiten, welche zur
Einschätzung der Performance berücksichtigt werden müssen. Um die Dimen-
sionalität der Daten zu reduzieren verwende Ich dabei die sogenannten ESPs
(extended solar cell parameters), eine Erweiterung der Standardsolarzellparame-
ters ISC, VOC, IMPP und VMPP auf insgesamt 10 Parameter, welche die komplette
Form einer IU Kennlinie beschreiben. Des Weiteren wird eine PCA (principal
component analysis) angewendet, bei welcher ein neues Koordinatensystem für
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die 10 ESPs gewählt wird und so lineare Korrelationen zwischen den ESPs
getrennt werden. Die so bestimmten 10 PCs (principal components) sind linear
unkorreliert und werden mit mehreren Gaussprozessen beschrieben, welche die
Modultemperatur, Einstrahlung und den Zeitpunkt der Messung verwenden.
Um die Datenmenge prozessieren zu können, wird der Datensatz jeder einzelnen
PC in monatliche Teildatensätze geteilt und individuelle Gaussprozessregres-
sionen trainiert. Das Modell kann so die 10 PCs, folglich die 10 ESPs und so
die komplette IU Charakteristik für einen beliebigen Input aus Temperatur,
Einstrahlung und Zeit reproduzieren. Darüber hinaus geben die Gaussprozessre-
gressionen Aufschluss über die Unsicherheit des Outputs, welcher sich über die
Messunsicherheit und die Distanz (in Zeit, Einstrahlung und Temperatur) zu den
tatsächlichen Messungen ergibt. Die vielseitige Einsatzmöglichkeit wird anhand
von 3 Beispielen (einer einfachen Darstellung der Zeitreihen zur Visualisierung
von Saisonalität, Langzeitdegradation und Akklimatisierung, dem Vergleich zu
einer klassischen performance ratio Analyse und einer aufbauenden Anwendung
des Ein-Dioden Modells) aufgezeigt. Zudem zeigt eine Analyse der Genauigkeit
des Modells lediglich geringe Abwichungen und eine gute Übereinstimmung
realer und vorhergesagter Fehlerverteilungen.
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Chapter 1
Introduction

The growth of the photovoltaic (PV) sector is critical to addressing the increasing
global energy demand. Projections for 2050 estimate that the globally installed
PV capacity could range between 14 and 80 terawatts (TW) within the next 25
years [1]. To meet this demand, not only an increase in overall production is
necessary, but improvements in the efficiency and sustainability of PV modules
are also essential. This thesis focuses on the "Analysis and Prediction of Outdoor
PV Data", aiming to provide a comprehensive framework for predicting and
understanding PV performance from the laboratory to real-world conditions.

1.1 Predicting Outdoor PV Performance

The journey begins with predicting outdoor PV performance based on laboratory
solar cell data. Recent advancements in various solar cell technologies, including
cadmium telluride (CdTe), copper indium gallium selenide (CIGS), perovskite,
and silicon heterojunction cells, have shown remarkable efficiency improvements
[2]. However, the performance of individual cells under standard test conditions
(STC) does not directly translate to the performance of complete PV modules
in outdoor environments.
To bridge this gap, it is essential to extrapolate module performance from cell-
level data. This involves understanding the interplay between cell characteristics
and module configuration, accounting for factors such as cell and module size,
interconnection methods, dead area losses, and series resistances. Standard test
conditions, defined as an irradiance of GSTC = 1000 W/m2 and a cell temperature
of TSTC = 25◦C, provide a baseline for comparison. However, these conditions
rarely reflect real-world operating environments.
A more realistic approach involves using Nominal Operating Cell Tempera-
ture (NOCT) conditions, which consider medium-high irradiance (GNOCT =
800 W/m2) and moderate ambient temperature (Tamb,NOCT = 20◦C). Addition-
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2 CHAPTER 1. INTRODUCTION

ally, the IEC61853 standard offers a reference for outdoor conditions across
various climates [3], facilitating more accurate predictions of PV module perfor-
mance in different environments. This approach allows for the calculation of the
Climatic Specific Energy Rating (CSER), which estimates the expected yield
of PV modules under diverse climatic conditions and compares the estimated
outdoor performance with the STC efficiency [4].

1.2 Addressing Long-Term Degradation

Extrapolating from laboratory cells to outdoor performance can predict the
performance of a PV module measured at a specific point in time. However,
this prediction does not account for long-term degradation effects, which are
influenced by numerous environmental factors. Degradation mechanisms in PV
modules are complex, involving various overlapping processes that contribute to
performance loss over time. Given the complexity and lengthy timescales (up to
20 years), this thesis does not provide a comprehensive approach to predicting
long-term degradation.
On a laboratory scale, stability can be characterized to some extent. Due to the
high costs of laboratory infrastructure, it is generally not feasible to conduct
stability experiments on cells and mini-modules over many years. Instead,
laboratory characterization of cell stability is performed using accelerated ageing
tests, such as damp heat (DH) and potential induced degradation (PID), which
are typically conducted over weeks to months. The primary purpose of these
tests was not initially to gain deeper insights into the underlying mechanisms and
causes of degradation. In both accelerated ageing tests and long-term outdoor
studies, multiple degradation effects might overlap due to the simultaneous
influence of various factors on the PV module. Laboratory experiments at the
cell scale are more useful for decomposing these influences. Under laboratory
conditions, parameters such as humidity, bias, temperature, and irradiance can be
tuned and controlled. Furthermore, extensive ex-situ and in-situ characterization
is less tedious at the cell level.
However, accelerated testing procedures cannot replace actual long-term degra-
dation studies. Long-term studies on PV modules have the clear advantage of
best depicting real operating conditions and outdoor influences. Thus, such
long-term studies are crucial to test and validate the results of accelerated
testing procedures. Studies of PV module performance, such as those conducted
by Schweiger et al. [5] and Marion et al. [6], provide valuable insights into
degradation patterns. These studies, along with performance ratio analyses of
operational PV systems, are essential for assessing the expected lifetime of PV
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modules.

1.3 Challenges in Long-Term Studies

Long-term outdoor studies are hampered by several factors. The first limitation is
the extended time over which such experiments must be operated. Furthermore,
outdoor conditions are explicitly not controlled, and they should not be controlled
to reflect realistic conditions. Consequently, such datasets, typically comprising
electrical performance measures and meteorological data, often suffer from
disturbances leading to measurement errors, and missing or otherwise invalid
data. These datasets must thus be rigorously analysed to ensure data quality.
Filtering the data appropriately ensures that the dataset remains representative
and is a crucial step for further analysis.

1.4 Scope and Outline of this Thesis

In this work, a model to extrapolate CIGS PV module yield from cell perfor-
mance is developed and laboratory degradation experiments on CIGS solar cells
are presented. Furthermore, filtering methods and methodologies for further
analysis of module performance and degradation over time are developed. This
type of analysis is crucial to validate and test the completeness of degradation
mechanisms studied in laboratory settings, and thus allows for a more com-
prehensive understanding of laboratory cell performance to long-term outdoor
performance.
In Chapter 2 the theoretical background needed throughout the thesis is dis-
cussed. After a quick summary of the used mathematical concepts and tools,
the theory of semiconductor solar cell physics is summarized and common PV
technologies are discussed. Since IV characteristics are used throughout the
whole thesis as the most important performance measure of solar cells and PV
modules, descriptive and physical models for IV characteristics, temperature
and irradiation dependencies as well as fitting algorithms for IV characteristics
are discussed. Afterwards the used laboratory set-ups are presented. In the last
section of the first chapter outdoor data is discussed, emphasizing common, used
and reference data profiles, data issues and challenges, common performance
ratio analysis approaches as well as irradiance and module temperature mod-
elling. Chapter 3 presents a model to extrapolate CIGS module performance
from cell performance as well as to extrapolate module yield in different climates
from module performance. Furthermore, the effect of potential improvements on
cell level on the yield is quantified. Chapter 4 presents laboratory experiments,
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studying light induced degradation of CIGS solar cells as well as the dependency
on temperature, irradiation intensity and applied bias condition. Chapter 5
introduces two different approaches for data quality assessment and filtering.
In Chapter 6 a model for statistically analysing PV outdoor data is presented.
Finally, in Chapter 7 the presented work is summarized.
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This chapter provides a detailed introduction to the key theoretical concepts
required for the thesis. Section 2.1 lays the foundation by introducing the mathemati-
cal concepts applied in the thesis. Section 2.2 delves into the physics behind solar
cells, providing an overview of c-Si, CdTe, and CIGS PV technologies. The emphasis
shifts to IV characteristics in Section 2.3, highlighting them as a crucial performance
indicator for solar cells and PV modules. In Section 2.4 the experimental setups used
in the thesis are described, including the sun simulator, electroluminescence (EL)
and photoluminescence (PL) setup, and the light induced degradation (LID) setup.
Finally, Section 2.5 focuses on the PV outdoor data used, explores common analysis
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techniques for the performance ratio (PR) and the degradation of PV modules, and
introduces concepts such as Plane of Array (POA) modelling, PV module temperature
modelling, and outdoor performance rating.
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2.1 Mathematical methods
This section covers the key mathematical methods employed in the thesis. It
includes a succinct overview of principal component analysis, the Mahalanobis
norm, and Gaussian process regressions.

2.1.1 Principal component analysis (PCA)
Principal Component Analysis (PCA) essentially transforms the coordinate
system of a dataset. This method first introduced by Pearson aims to identify
the directions where the data spreads out the most, revealing the underlying
patterns of a set of n-dimensional data points [7]. In simpler terms, PCA finds
new axes (principal components) for the dataset such that each new axis accounts
for as much variability in the data as possible. Here’s how it works:

• The first principal component (PC) is the direction that best captures the
variance in the data, akin to finding the best straight line that fits through
a cloud of n-dimensional data points.

• Subsequent PCs identify the next best directions of variance that are
orthogonal (at right angles) to all previously determined PCs, ensuring a
lack of redundant information.

• This process redefines the dataset’s basis into an orthonormal one, where
the axes (PCs) are linearly uncorrelated and orthogonal to each other,
providing a comprehensive description of the n-dimensional space.

Figure 2.1.1 shows an example for a PCA applied to a 2D dataset of correlated
normal distributed random variables. Note that the axes of x and y are normal-
ized with the standard deviation in x respectively y direction. The red and blue
arrow depict the direction of PC1 and PC2, respectively, as well as the variance
of the dataset in the respective direction (by the length of the arrows).
For this example one finds the approximate directions(

PC1x

PC1y

)
=
(

0.718
0.696

)

and (
PC1x

PC1y

)
=
(

−0.696
0.718

)
.

PC1 points in the direction of highest variance in the dataset, while PC2 is
orthogonal to PC1. Note that the two directions form a orthonormal base, where
the two vectors are orthogonal to each other and have a (Euclidean) length of 1.

Expressing all 2D datapoints x⃗ =
(

x
y

)
in terms of the directions of the PCs

results in a basis change. Formally the basis change is performed by multiplying
each point x⃗ by a translation matrix P to compute the representation of the
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Figure 2.1.1: Example for a PCA respectively the PCs of a 2D dataset of
correlated normal distributed random variables. The direction of the red (blue)
arrow depict the first (second) PC, while the length depicts the variance found
for the respective direction.

point in terms of the PCs

−→PC =
(

PC1
PC2

)
=
(

PC1x PC1y

PC2x PC2y

)(
x
y

)
= Px⃗. (2.1)

For this example with a 2D dataset, the translation matrix P has the dimensions
of 2 × 2. In general, for a n-dimensional dataset, a PCA results in the determi-
nation of a n × n translation matrix, where the i-th row reflects the direction of
the i-th PC.
A key advantage of a PCA is its ability to streamline the data by removing linear
correlations, since the PCs are uncorrelated. It effectively reduces the dataset’s
dimensionality if it can be accurately represented in fewer dimensions. Thus,
PCA not only clarifies which directions in the data are the most informative but
also identifies if the dataset can be simplified into a lower-dimensional space,
shedding light on its intrinsic structure.

2.1.2 Mahalanobis distance
The Mahalanobis distance was first introduced by Mahalanobis as a measure of
the distance between a point x⃗ and the mean µ⃗ of a distribution Q. A reprint of
the work published first in 1936 can be found in [8]. With a given distribution
Q on Rn, the Mahalanobis distance of x⃗ from Q is

dM(x, µ) =
√

(x⃗ − µ⃗)T Σ−1(x⃗ − µ⃗), (2.2)

where Σ is the non negative definite covariance matrix of Q. The Mahalanobis
distance effectively measures how far a point x⃗ is from the mean µ⃗ of a dataset
Q. However, instead of calculating this distance in the usual way, it considers
the variance of Q in the direction of the distance between x⃗ and µ⃗. This means
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it takes into account how spread out the dataset is in the direction of interest,
providing a distance that is adjusted for the dataset’s overall variability.
Figure 2.1.2 gives an example for computing Euclidean and Mahalanobis dis-
tances for the 2D dataset of correlated normal distributed random variables also
used in Section 2.1.1. Note that the axes of x and y are normalized with the
standard deviation in x respectively y direction. The red, orange and yellow cir-
cles in Fig. 2.1.2 (a) depict a Euclidean distance of one, two and three standard
deviations from the mean of the 2D dataset. Incorporating the covariance of the
2D dataset in form of computing the Mahalanobis distance (see Fig. 2.1.2 (b))
results in the red, orange and yellow ellipses marking distances of one, two and
three standard deviations, respectively.

(a) (b)

Figure 2.1.2: (a)Euclidean and (b) Mahalanobis distances of a 2D dataset of
correlated normal distributed random variables. The red, orange and yellow cir-
cles respectively ellipses indicate a Euclidean respectively Mahalanobis distance
of one, two and three standard deviations.

Illustratively, the Mahalanobis distance describes the distance of a point x⃗ from
the mean µ⃗ of a dataset Q incorporating (linear) correlations in the dataset
Q. The Mahalanobis distance is closely related to a PCA. Computing the
Mahalanobis distance is equivalent to changing the basis according to a PCA,
subsequently normalizing the data to the variance in the direction of the PCs
and computing the Euclidean distance in the new normalized basis.
For normal distributed n-dimensional random variables, the Mahalanobis dis-
tance can further be used to define a threshold Mahalanobis distance, where a
given quantile of the dataset has a Mahalanobis distance to the mean µ⃗ smaller
or equal to the threshold. Assuming Q as a normal distribution in Rn, d2

M follows
the X 2-distribution with n degrees of freedom [9]. Equating the cumulative
distribution function (CDF) of the X 2-distribution with a given quantile q gives

Fχ2(n, dM,threshold) = q, (2.3)

where Fχ2(n, x) is the CDF of the X 2-distribution with n degrees of freedom,
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and dM,threshold is the Mahalanobis distance threshold for which only 1 − q of the
data points have a higher Mahalanobis distance than dM,threshold.

2.1.3 Gaussian process regression (GPR)
Gaussian Process Regression (GPR) serves as a probabilistic, non-parametric
approach for predicting outcomes for inputs that have not been previously
observed. By leveraging the inherent randomness in data measurements, GPR
excels in not only interpolating desired outputs but also in providing a measure
of certainty (or uncertainty) about these predictions. This section is designed to
capture the core principles of GPRs, elucidating their application and significance
within the scope of this thesis. Furthermore, the strengths and limitations of
GPRs are demonstrated with a simplified example.
For a thorough examination of GPR, including discussions on theoretical un-
derpinnings, model selection strategies, the challenges posed by large datasets,
and the implementation of approximate GPR methods, the work of Williams
and Rasmussen ([10]) is strongly recommended. This resource offers extensive
insights into GPR, making it an invaluable reference for those seeking to deepen
their understanding of these models.
Given a discrete set of observations y(xi), that are assumed to depend on the
measurements xi, a Gaussian process regression predicts y at the unsampled
inputs x̃j . Figure 2.1.3 visualizes a GPR fy : R → R trained with the observations
y (red) given for the three discrete measurements xi. Here, the data y follows
the underlying function y = f(x) = x2 sin (x) (red dashed line), which is in a
real case unknown, respectively to be approached with the predictions. For
simplicity, the modelled data y exhibit no noise. In the given example the goal
of the GPR is to determine the best guess for ỹ (blue) as well as the uncertainty
(95% confidence interval in light blue) at the unsampled locations x̃ ∈ (0, 10)1.

Figure 2.1.3: Example for a Gaussian Process Regression aiming to predict ỹ(x̃)
from the given discrete observations y at xi.

To predict ỹ(x̃j) one describes ỹ(x̃j) as a weighted sum of y(xi). The weights
1ỹ is modelled for a finite number of x̃ with regular spacing, since x̃ ∈ (0, 10) contains a

infinite number of real numbers. The output of a GPR prediction is always a finite set of
values, since a GPR cannot determine the underlying function.
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are defined via a correlation matrix Ky = Ky(x, x̃), where ỹ(x̃j) is close to y(xi),
if x̃j is close to xi. Beside the discrete xi and x̃j a GPR introduces a set of
hyperparameters Θ, that need to be optimized during regression, to define the
correlation matrix Ky = Ky(x, x̃, Θ). The correlation respectively covariance
matrix is also called kernel and defines the family of functions y(xi) used to
predict ỹ(x̃j), i.e. it defines the shape of the prediction (e.g. smoothness and
periodicity). Since the kernel reflects the correlation between a discrete set of n
data points, it is n × n dimensional and in general positive definite as well as
symmetric.
The optimization of the hyperparameters aims to maximize the probability (or
marginal likelihood) p(y|x, Θ) of observing y with given input x and Θ. With
the assumption of y being a set of random variables, any finite number of which
have a joint Gaussian distribution, the probability respectively the logarithm of
this probability (the log marginal likelihood) reads:

log p(y|x, Θ) = −1
2y⊤K−1

y y − 1
2 log |Ky| − n

2 log 2π. (2.4)

Here, the term −n
2 log 2π is a normalization constant depending on the number

n of observations y and the term −1
2 log |Ky| reflects the complexity penalty

arising due to the choice of the covariance function as well as from the inputs.
Beside its complexity the kernel or covariance matrix choice is crucial for a GPRs
performance. One of the most common choices is the radial basis function (RBF)
kernel, introducing an exponential decline of the correlation with increasing
distance defined by the lengthscale hyperparameter l. The RBF kernel is defined
as

K(x, x̃) = exp
(

||x − x̃||2

2l2

)
. (2.5)

The use of the RBF kernel implies the assumption, that the output functions to
predict are smooth, i.e. the family of functions y(x) used to predict ỹ(x̃j) are
smooth with varying x. Figure 2.1.4 shows the extended example (w.r.t. Fig.
2.1.3) of an optimized GPR trained with seven discrete observations y. Here,
the GPR is trained with a one dimensional RBF kernel. The optimization of
the hyperparameter based on the seven observations results in l = lx = 1.03.
One can see, that the predictions ỹ(x̃j) are smooth with varying x and close
to the expected underlying function f(x) as long as x̃j is close to a given xi.
Furthermore, it is clear, that the predicted uncertainty is low at x̃j close to xi

and rises with rising distance. Since the example introduces a noise free case,
the arising predicted uncertainty reflects solely the lack of information at the
respective points x̃j.
In Fig. 2.1.4 the main limitation of GPRs is clearly visible. Since a GPRs
prediction relies on the correlation of xi and x̃j it is unable to make reliable
predictions far away from the observations, i.e. a GPR is not suitable to ex-
trapolate a discrete dataset. This is reflected in an enhanced uncertainty on
the prediction far away from the observations. Far away from the observations
a GPRs predictions tend to 0. In real regression scenarios the mean of the n
observations µy, given by

µy =
n∑

i=0

y(xi)
n

, (2.6)
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Figure 2.1.4: Example for an optimized Gaussian Process Regression with a
lengthscale of lx = 1.03 and its limitations with a discrete set of given observations

is often subtracted from the data. In the given example the underlying function
oscillates around 0 and the mean of the observations is not subtracted. The
optimized lengthscale lx = 1.03 determines how fast the prediction tends to-
wards 0 with rising distance from the observations. Here, and in general, the
optimization of the hyperparameters is crucial for a GPRs performance. Figure
2.1.5 visualizes a GPR trained with the same data as in Fig 2.1.4, but with
the unoptimized fixed hyperparameter lx = 0.4. The performance of the GPR
close to the observations remains good, while the lower lengthscale leads to an
exaggerated tendency towards 0 in between observations.

Figure 2.1.5: Example for a Gaussian Process Regression with a fixed lengthscale
of lx = 0.4 reflecting an unoptimized GPR respectively a GPR with an inaccurate
result of the optimization routine.

In the limit of a lengthscale approaching 0 the resulting prediction ỹ(x̃j) would
still be accurate at the exact location of the observations (x̃j ∈ xi) but equal to
0 at any other point (x̃j /∈ xi). The other extreme case of a very high lengthscale
would result in a prediction equal to the mean of the data, since for every x̃j the
influence of all observations y is assumed to be equal with a constant correlation
matrix.
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For datasets, that are assumed to exhibit significant noise, a white noise kernel
KWN = σ2

nI (I denotes the identity matrix) is often added to describe Gaussian
noise with variance σ2

n in the observations. Referring to the given example this
allows for deviations of the predictions from the examples, where the distribution
of deviations should approach a Gaussian for high n (number of observations).
In the context of introduced noise, one can further interpret a too high (low)
lengthscale in a GPR with RBF kernel with underfitting (overfitting) the data
leading to a very high (low) predicted noise level.
A closer look on the first term of 2.4, that is influenced by the observations
y, introduces the second main limitation of the usability of GPRs. Since the
computation time to invert a positive definite symmetric n × n matrix scales
with n3, approximation methods might be necessary for large datasets. In this
thesis I use a “mixture of experts” approach to deal with the high computation
time arising to dataset sizes of n ≈ 60000. The “mixture of experts” approach is
based on splitting the dataset into m subsets, training individual GPR on subsets
and overlaying their predictions. Each individual GPR can be interpreted as an
“expert” on the subspace spanned by the used subset of inputs, i.e. each GPR
will result in predictions with lower uncertainties on the subspace covered by the
inputs used for training and predictions with higher uncertainties elsewhere. The
accuracy of “mixture of experts” approaches is dependent on the choice how to
split the dataset and the how to overlay the respective predictions of the multiple
GPRs. Using a “mixture of experts” approach reduces the computation time by
a factor of up to approximately 1

m2 with m being the number of subsets, since
instead of inverting one n × n matrix (computation scales with n3), m matrices
of size n

m
× n

m
(computation time scales with m n3

m3 = n3

m2 ) need to be inverted
during training of the GPRs. Note, that a “mixture of experts” approach has
been shown to be, in general, a suitable way to overcome challenges arising with
big datasets [11].
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2.2 Solar cells and PV modules
This section provides an overview of the theoretical foundation related to solar
cell physics and highlights key differences among prevalent photovoltaic (PV)
technologies.

2.2.1 Semiconductor solar cells
Absorption of light and generation of electron-hole pairs

The principle of solar cells is based on the generation of electrical energy through
the absorption of (sun) light. Every atom has specific energetic states that can
be occupied by electrons. If the photon energy is equal to the energy difference
of two possible energetic states the absorption of the photon can lead to the
excitation of an electron to a higher energetic state. For single atoms, there are
only a few possible states, leading to distinctive absorption lines (i.e. absorption
spectra featuring a few clearly defined and narrow peaks).
For condensed matter, the many different energetic or electronic states become
indistinguishable and form so called energy bands. The Fermi level EF defines
the characteristic energy of electrons within a material. Apart of (thermally)
excited electrons all electronic states below EF are occupied and all electronic
states above EF are unoccupied (or empty). For metals EF lies within an energy
band, leading to a high density of electronic states near the Fermi level, implying
a high mobility of electrons. In semiconductors and insulators EF lies within two
energy bands, the valence and the conduction band. These bands are separated
by a band gap Eg, allowing no, or only very few, possible electronic states in
between the two energy bands. At 0K the states in the conduction band are
completely empty and the states in the valence band are completely filled with
electrons. Unlike insulators, semiconductors have a smaller energy gap between
EF (the Fermi level) and the energy bands. This smaller gap allows for electrons
to be thermally excited to the conduction band. As the conductivity depends
on the number of electrons in the bands, and at any given temperature, only a
certain number of electrons get excited to this level, these materials are called
’semiconductors’, i.e. they conduct under circumstances.
Beside thermal excitation, also the absorption of a photon can lead to the
excitation of an electron to the conduction band. This process leaves behind an
"empty state" in the valence band, known as a "hole." Essentially, this hole is a
quasi-particle that represents the absence of an electron. Therefore, when an
electron is excited to the conduction band, an electron-hole pair is created. To
generate an electron-hole pair through photon absorption, the photons energy
needs to be at least equal to the energy of the band gap.
Semiconductors are effective absorbers for photons with an energy, that exceeds
the semiconductors band gap energy Eg

2. Considering the AM1.5G spectrum
2For indirect semiconductors the maximum of the valence and the minimum of the con-

duction band are shifted in momentum space. Due to the conservation of momentum, the
additional participation of a phonon is required. The photon energy required for absorption is
modified by the energy of the phonon. As a result also a small share of photons with a lower
energy than Eg can be absorbed and the increase in the absorption coefficient is less steep
with increasing photon energy.
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of the sunlight, i.e. the spectrum of the sun after a passage through 1.5 earth
atmospheres, a considerable share of the photons can be absorbed by various
types of semiconductors. In contrast, insulators do not serve well as materials
for absorbing sunlight, because the energy needed to overcome the band gap in
insulators is higher than the energy of most photons in the solar spectrum.

Thermalisation and recombination

Once an electron (hole) is excited to the conduction (valence) band, it relaxes to
the band edge, since the band edge is energetically most favourable inside the
energy band. This leads to the creation of phonons (quasi particles describing
quantized lattice vibrations) and such to thermalisation of the semiconductor.
The relaxation to the band edge is a fast process, since within the energy band
the possible energetic states are (nearly) continuous, enhancing the probability
of the process.
Once electron and hole have reached the energy band edges, the energetic separa-
tion of valence and conduction band leads to a dramatically decreased probability
of further thermalisation. However, there are many different mechanisms, that
lead to a limited lifetime of generated electron-hole pairs. These mechanisms
are called recombination mechanisms, since they describe the recombination of
an electron and a hole.

Selective contacts

Beside the absorption of the photon energy and the creation of an electron-hole
pair, the separation and extraction of the charge carriers is essential to create
an efficient solar cell. First of all, a considerable lifetime for the generated
electron-hole pairs is necessary. Second, the separation of the charge carriers
needs to be fast enough to ensure, that only a minor share will recombine directly
after generation and the charge carriers need to be extracted, i.e. a solar cell
needs to have selective contacts. In semiconductor solar cells the separation of
electrons and holes as well as the extraction of the charge carriers via selective
contacts is established via a pn junction3.

The pn junction

To understand the charge carrier separation in semiconductor solar cells via
a pn junction, a deeper look on the electrical properties of semiconductors is
necessary. The charge carrier densities of the holes in the valence band nh
and the electrons in the conduction band ne are of central importance. The
charge carrier densities increase with temperature and can be expressed using
the Boltzmann approximation to

nh = Nv exp
(

Ev − Efh

kT

)
(2.7)

3Note, that there are in principal other ways to establish selective contacts in a solar cell,
but the most common realization in semiconductor solar cells is via a pn junction.
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and
ne = Nc exp

(
Efe − Ec

kT

)
, (2.8)

where k is the Boltzmann constant [12], Efh and Efe are the quasi Fermi levels
of the holes and electrons and Nc and Nv are the effective density of states at
the conduction band edge Ec and the valence band edge Ev, respectively.

The quasi Fermi levels are in equilibrium equal to the Fermi level EF and
approximately in the middle of the band gap in intrinsic semiconductors. An
example for an intrinsic semiconductor is silicon. Defects in the crystal structure
of a semiconductor can create electronic states within the band gap. Shallow
defects (defects which are energetically close to the valance or conduction
band) may lead to an effect called doping. Doping can be of two types: n-
type and p-type. In n-type doping, a defect state close to the conduction band
donates an electron to the conduction band, increasing the electron concentration.
Conversely, in p-type doping, a defect state close to the valence band accepts
an electron from the valence band, increasing the hole concentration. Doping is
often intentionally used to modify the electrical properties of a semiconductor.
To achieve an n-type doping, atoms of the semiconductor lattice are replaced by
atoms containing more outer electrons. The increase in electron density results
in ne > nh equivalent to a shift of the Fermi level closer to the conduction band.
Likewise, p-type doping is achieved by substituting some semiconductor atoms
in the lattice with atoms with fewer outer electrons, thus leading to nh > ne,
and the Fermi level is shifted closer to the valence band. Common dopants
for n and p-type silicon are f.e. phosphorus and boron atoms, introducing one
access electron to the conduction band and one access hole to the valence band,
respectively. Figure 2.2.1 (a) illustrates this shift of Fermi level in n and p-type
semiconductors.

(a) (b)

Figure 2.2.1: (a)Position of the Fermi level EF within the band gap of a n and
p-type semiconductor and (b) illustration of the alignment of the Fermi level in
a pn homo junction.

In most semiconductor solar cells, n and p doped materials are brought into
contact, creating a pn junction. Due to alignment of the Fermi levels, the
conduction and valence band are bended. Figure 2.2.1 (b) illustrates the align-
ment of the energy bands for a pn homo junction, where the n-type and p-type
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material consist of the same semiconductor 4. In a pn junction, the difference
in the charge carrier densities of the two doped materials results in a diffusion
current of charge carriers. The accumulation of holes in the n-type material and
electrons in the p-type material induces a rising built-in electric field, generating
a drift current in the opposite direction. Once thermal equilibrium is reached,
the diffusion and drift currents balance each other, leading to no net current
flow. Such, the space charge region (SCR) is created, where the electric field
pulls all charge carriers to one or the other side.
In order to enable a net current flow through a pn junction in the absence
of generation, holes and electrons must recombine. The strong difference of
charge carrier concentration in doped semiconductors causes the net current to
be carried mostly by the majority charge carriers, i.e. by electrons in n-type
and by holes in p-type semiconductors. Due to the internal electric field, an
effective energy barrier is built for the majority charge carriers. With an applied
external positive voltage this energy barrier is reduced and the probability for
recombination is enhanced. The linear reduction of the internal electric field
with applying an increasing positive voltage results in an exponential increase
in recombination current.
Applying a (small) negative external voltage enhances the internal electric field
of a pn junction. This causes the enlargement of the space charge region, i.e.
the majority carriers are pulled away from each other. Thus, (in the absence
of optical generation) only a small net generation current of thermally excited
carriers occurs. This net current is called dark saturation current. Since a pn
junction limits the current for negative voltages and allows the current to flow for
positive voltages it behaves as a diode (i.e. exhibits an asymmetric conductivity,
where the conduction is much higher in one direction than in the other).

Recombination mechanisms

In solar cells different mechanisms of recombination occur. The reverse process
of the generation of an electron-hole pair by the absorption of a photon is called
radiative recombination. It describes the process of recombination of an electron
of the conduction band with a hole of the valence band under emission of a
photon. The rate of radiative recombination depends on the electron and hole
concentration and is given by

Rrad = Bnenh, (2.9)

where B is the material dependent radiative recombination constant. Radiative
recombination is generally not the dominant type of recombination in semicon-
ductor solar cells 5. Nevertheless, radiative recombination may contribute to
a performance loss, when electrons and holes are not separated fast enough.

4In a pn hetero junction the semiconductor of the n-type and the semiconductor of the
p-type differ. Due to the difference of the two materials band gaps, a shift in the energy level
of conduction and valence band edge at the interface of the two regions arises. Furthermore,
introducing an intrinsic semiconductor between n-type and p-type semiconductor creates a
p-i-n junction, leading to a more gradual transition between p-type and n-type band structure.

5Especially in indirect semiconductors the radiative recombination constant is very low due
to the necessity of a phonon in the recombination process due to conservation of momentum
analogous to the generation of an electron-hole pair in an indirect semiconductor
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Furthermore, the process of radiative recombination is used to validate a solar
cells or PV modules performance with electro- and photoluminescence (EL and
PL) measurements. More details on the measurement technique can be found in
Section 2.4.2.

A more decisive recombination mechanism in solar cells is Shockley-Read-Hall
(SRH) recombination. It describes the recombination of an electron and a hole
via a defect state within the band gap. Since the energy difference is reduced,
the process is more likely than radiative recombination. The SRH recombination
rate can be described via

RSRH = nenh − n2
i

neτh + nhτe
, (2.10)

where ni is the intrinsic charge carrier density and τe respectively τh is the
lifetime of an electron respectively a hole in a defect state. Assuming that the
lifetimes of the charge carriers are similar, the SRH recombination rate scales
with the minority charge carrier density. The minority charge carrier density
is exponentially dependent on the change of the minority charge carrier quasi
Fermi level (see 2.7 and 2.8) and to this end also exponentially dependent on the
voltage. Consequently, an exponential dependence on the voltage also results
for the recombination current density through a pn junction

Jrec = J0

[
exp

(
eV

nidkT

)
− 1

]
, (2.11)

where e denotes the elementary charge and J0 describes the dark saturation
current of recombining electron-hole pairs. Equation 2.11 further introduces
the ideality factor nid. The ideality factor accounts for different recombination
mechanisms (in different areas of the solar cell) with different exponential
dependencies on the applied voltage. For SRH recombination in the bulk the
ideality factor equals 1. The quasi Fermi level of the majority charge carrier
is fixed and the influence of the voltage results in a shift of the quasi Fermi
level of the minority charge carrier. In the SCR the ideality factor for the SRH
recombination can be derived to 2, since the voltage effects the quasi Fermi level
of both charge carriers, leading to the quasi Fermi level of electrons and holes is
shifted by half of the amount. Furthermore, most recombination mechanisms
are thermally activated. Putting this into context, it is suitable to express J0
with an activation energy Ea to

J0 = J00

(
T

T0

)3[
exp

( −Ea

nidkT

)
− 1

]
, (2.12)

where T0 is a material specific constant often assumed to be in the range of T ,
enabling to neglect the term

(
T
T0

)3
. For SRH recombination in the SCR and in

the bulk the activation energy equals the band gap energy (Ea = Eg).

In addition to radiative and SRH recombination, two important recombination
mechanisms are Auger recombination and interface recombination. Auger re-
combination is a three body process with the additional participation of a hole
or an electron, which absorbs the energy of the recombining electron-hole pair
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and relaxes to the band edge exciting phonons, i.e. leading to thermalisation of
the lattice. Interface recombination refers to recombination processes at the pn
interface. Due to band bending or a pn hetero interface, i.e. an interface between
a p and a n-type semiconductor from different materials, the local band gap
might be reduced. This leads to a decreased activation energy Ea = Φb < Eg.
With a similar argument as for SRH recombination in the bulk one can derive an
ideality factor of nid = 1 for interface recombination. Furthermore, tunnelling
enhanced recombination [13], thermionic field emission [14], potential fluctua-
tions [15] as well as trap assisted tunnelling [16] may lead to contributions of
the recombination current with ideality factors nid > 2.

Performance limitations in solar cells

Recombination is unavoidable at temperatures beyond absolute 0 and limits the
performance of a solar cell. Another unavoidable loss factor of solar cells arise
directly from the band structure of semiconductors. With a given band gap,
only photons with an energy higher than the band gap can produce electron-hole
pairs and thus be electrically used. On the other hand, if the energy of the
absorbed photon is larger than the band gap energy, the hole and the electron
relax to the band edge under step-wise excitation of phonons, i.e. resulting in
thermalisation of the lattice. Thus, only the band gap energy can be used. If one
considers the AM1.5G solar spectrum, a maximum of the theoretically usable
energy of the irradiation of the sun of 33.2 % results for a band gap of 1.34 eV.
This maximum is called Shockley Queisser limit.
In addition to the inevitable loss mechanisms, there are a few other factors
that further influence the performance of solar cells. Incomplete absorption
due to a finite width of the absorber, resistive losses due to finite mobilities in
the semiconductor and contact resistances, a finite parallel resistance as well
as parasitic absorption in the packaging material and transmissive layers and
reflective losses at interfaces may all contribute to a decreased efficiency.
To measure a solar cells efficiency, illuminated IV characteristics are used.
Section 2.3 summarizes the one-diode model often used to describe the shape
of an IV characteristic, discusses how various loss mechanisms affect the IV
characteristic and the efficiency and introduces models used to describe the
shape of IV characteristics as well as equations, that quantify temperature and
irradiation dependencies of the IV characteristic.

2.2.2 PV technologies

While c-Si wafer based PV technologies dominate the PV market (95% market
share [17]), thin-film technologies like CIGS and CdTe are important technologies
regarding the rising market of integrated PV applications (e.g. building and
vehicle integrated PV). Their possibility for deposition on flexible substrates
open a wide range of flexible and light-weight PV applications. In the following
section c-Si, CIGS and CdTe PV technologies are discussed.
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c-Si

The combination of high module efficiency and the possibility for high throughput
and low cost production makes c-Si PV the obvious choice for conventional PV
systems. The most common technology used in c-Si modules is the passivated
emitter and rear contact (PERC) cell structure shown in Fig. 2.2.2 (a). The
p-type doped c-Si absorber is passivated at the front side utilizing silicon oxide
(SiOY) and silicon nitride (SiNX). Passivation layers fulfil the purpose of reduced
interface recombination as they reduce the probability of SRH recombination
over defect states. Furthermore, the SiOY and SiNX act as anti-reflective layers
incorporating more light into the absorber. Near the front surface and near the
aluminium contacts a phosphorous diffusion process creates a n+ respectively
n++ doped silicon region establishing the pn homo junction. The back side
of the PERC solar cell is passivated using an aluminium oxide (Al2O3) and
SiNX layer. The area near the aluminium back contact is considered heavily
doped (p++ region). The advantages of the PERC structure mainly arise due
to their well established, reliable and cost-effective production processes. The
disadvantage, however, arises from the structure itself. Auger recombination
in the p++ region and interface defects at the metal semiconductor interface
leading to performance limitations. Note, that typically there are much more
contacts at the back side ensuring a low series resistance contribution. At the
front side all contact areas contribute to ISC losses since no light is incorporated
in the solar cell through the contact areas.

(a) (b) (c)

Figure 2.2.2: Typical structure of (a) passivated emitter and rear contact (PERC)
(b) tunnel oxide passivated contact (TOPCon) and (c) silicon heterojunction
(SHJ) solar cells.

Passivated contact silicon solar cell structures avoid the direct metal semiconduc-
tor interface, exhibiting a higher potential in efficiency. The two most prominent
passivated contact structures are the tunnel oxide passivated contact (TOPCon)
and silicon heterojunction (SHJ) cell structure. The TOPCon solar cell structure
is a direct evolution of the PERC cell structure shown in Fig. 2.2.2 (b), imple-
menting contact passivation layers at the back contact. The absorber is n-type
doped c-Si. The front contacts are established using the passivating Al2O3 and
SiNX layers and a direct contact of aluminium and p++ doped c-Si. The back
contact is passivated with a SiOY layer and an additional poly-crystalline Si
layer providing a low contact resistance due to increased charge carrier mobility.
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The use of the poly-crystalline Si layer is only possible on the back side due to
parasitic absorption of light. Since the TOPCon structure is an evolution from
the PERC structure the production processes are fundamentally compatible
with implemented production processes. Furthermore, the reduced necessity for
big contact areas on the back-side makes the TOPCon solar cell more suitable
for the use in bifacial PV modules.
The SHJ solar cell structure is shown in Fig. 2.2.2 (c). The approach is fun-
damental different from the PERC and TOPCon solar cell structures using
amorphous hydrogenated silicon (a-Si:H) layers for passivation and a transparent
conducting oxide (TCO) layer to ensure low contact resistances. As absorber
the SHJ structure uses n-type c-Si. The contact and passivating layer structure
is symmetric on both sides using an intrinsic a-Si:H, a doped a-Si:H (typically
n-type at the front and p-type at the back side) and a TCO layer. SHJ solar
cells exhibit much less recombination due to the complete avoidance of direct
semiconductor metal contacts. To this end, SHJ solar cells exhibit the best VOC
potential. Furthermore, they are are inherently suitable for bifaciality of PV
modules. However, the substantially different manufacturing process, w.r.t. the
established PERC solar cell structure, leads to comparably high production cost
and parasitic absorption of light in the TCO and a-Si:H layers might lead to a
lower ISC potential.
A more detailed summary about the three presented concepts as well as about
their advantages and disadvantages can be found in [18].

thin-film PV

Apart of the conventional and emerging c-Si based solar cell technologies, CIGS
and CdTe thin-film PV technologies have the largest market share. In contrast
to the wafer based technologies thin-film solar cells use direct band gap semi-
conductor absorbers. The direct band gap leads to much higher absorption
coefficients and enables up to two orders of magnitude thinner absorber layers.
Thin-film solar cells are deposited either on a sub- or superstrate. The difference
is the direction from where the light enters the solar cell. Figure 2.2.3 (a) shows
the substrate configuration of a thin-film solar cell. The substrate provides me-
chanical stability, the back contact layer provides a high electrical conductivity
and ensures a good charge extraction, the n- and p-type semiconductor build
the pn junction and the front contact ensures a good electrical contact as well
as a good incorporation of light. In a superstrate configuration (Fig. 2.2.3 (b)
the conductive and transparent front contact is deposited on the superstrate
followed by the solar cell stack (pn junction and passivation layers) and the
back contact. Beside the mechanical stability, the superstrate needs to provide
a good transparency, since the light enters the solar cell through the superstrate.
The depicted cell structure in Fig. 2.2.3 presents the minimum number of layers
needed to build a thin-film solar cell. The solar cell stack is depicted by n- and
p-type semiconductor, but might consist also of additional buffer layers used for
contact passivation. Furthermore, for organic solar cells the absorber itself is
not a semiconductor.
Thin film modules consist of several cells connected in series and or parallel. A
common structure in commercial thin-film modules is the so called “monolithic
interconnection”, where the series connection of multiple solar cells is established
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(a) (b)

Figure 2.2.3: (a)Substrate and (b) superstrate structure of thin-film solar cells
consisting of sub- respectively superstrate, front contact, pn junction and back
contact.

via scribing lines. It is called monolithic as it does not involve external wires or
soldering. Figure 2.2.4 shows the common P1P2P3 scribing line architecture in a
substrate configuration, which can be implemented in the deposition steps of the
layers. The scribing line P1 is typically implemented using laser-scribing after
the deposition of the back contact on the substrate. In CIGS, the P2 and P3
are usually performed mechanically by a graver after the deposition of the solar
cell stack respectively after the deposition of the TCO layer. The P1 and P3
lines separate two adjacent cells, whereas the P2 line connects the front contact
of one cell with the back contact of the next cell.

Figure 2.2.4: P1P2P3 scribing line architecture often used in commercial thin-
film PV modules. The scribing line architecture is incorporated during the
substrate deposition process.

The series connection of multiple cells via scribing lines in thin-film solar cells has
the advantage of the possibility to implement the scribing line processes into the
deposition steps. This allows for production of large scale PV modules within a
comparably simple production line. The implementation of the scribing lines can,
on the other side, cause irregularities within thin-film modules. The laser beam of
the P1 scribing process can be interrupted, reflected or scattered by irregularities
in the substrate or soiling of the surface of the substrate. This can cause scribing
line interruptions. While scribing of P2 and P3 mechanical wear can cause
unsmooth edges and can also lead to scribing line interruptions. In addition,
the deposition of different layers can lead to variations in layer thicknesses and
implemented defects. All of these irregularities affect the electronic structure of
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parts of the module, leading to a spread in the performance of individual cells.
To this end, the already challenging up-scaling of deposition processes from
small area cells to large area thin-film modules are additionally impeded. Beside
the conventional scribing line architecture presented, the serial connection of
several cells in thin-film modules can further be established using a front grid
connected to the back contact of the next cell.
In conventional thin-film modules glass is used as substrate and an ethylene
vinyl-acetate (EVA) foil encapsulation avoids external influences on the solar cell.
Furthermore, a transmissive front glass provides mechanical stability. Typically,
the encapsulation foil is approximately 150µm thick, front and substrate glass
are approximately 3 mm thick.
Beside the conventional glass glass structure of thin-film modules, the depo-
sition of the layers is also possible on flexible substrates. This allows for the
application of thin-film PV modules on uneven respectively curved surfaces and
in applications, where a light-weight PV module is a necessity. This leads to
thin-film PV being a suitable solution for multiple integrated PV applications.

CIGS

Conventional CIGS solar cells consist of five layers which can be deposited
on glass or flexible substrates. The back contact is typically made of a 1µm
thick molybdenum (Mo) layer and is highly conductive (ρMo = 54 · 10−9 Ωm).
The absorber consists of a typically 2µm thick p-type copper gallium indium
diselenide Cu(In1−xGax)Se2 layer. Variation of the proportion of gallium (Ga)
and indium (In) content allows for an adjustment of the band gap energy. The
highest efficiencies of CIGS solar cells are achieved with a share of gallium of
x ≈ 0.3 resulting in a band gap Eg, CIGS ≈ 1.15 eV [19]. A 50 nm thick thick layer
of cadmium sulphide (CdS) acts as the n-type semiconductor of the pn-hetero
junction with a band gap of Eg, CdS ≈ 2.42 eV. A combination of an intrinsic
zinc oxide (i-ZnO) layer (≈ 50 nm) and an aluminium doped zinc oxide (ZnO:Al)
ensure a good passivation as well as high transmission and high conductivity
(ρZnO:Al = 9 · 10−6 Ωm). The thickness of the ZnO:Al layer depends on the
design of the PV module. As already mentioned, conventional thin-film PV
modules use the P1P2P3 scribing line architecture, requiring a high conductive
respectively thicker TCO layer. With an architecture implementing a front
contact metal grid a less conductive, thinner, ZnO:Al layer can be used. Except
from the substrate the CIGS solar cell stack is approximately 4µm thick.

CdTe

Conventional CdTe solar cells consist of five layers deposited on glass or flexible
substrates respectively superstrates. An approximately 240 nm thick Indium tin
oxide (ITO) and an approximately 30 nm thick tin(IV) oxide (SnO2) layer act
as transmissive front contact. The tin(IV) oxide supports the conductivity and
provides essential adhesion and passivation benefits. The pn junction comprises
a n-type cadmium sulphide (CdS) layer, typically around ≈ 150 nm thick, paired
with a substantially thicker p-type cadmium telluride (CdTe) absorber layer,
generally with a thickness about ≈ 6µm. The back contact is established using
different materials like copper telluride (Cu2Te) or tin telluride (Sb3Te2). A
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more detailed overview of thin-film solar cells used in commercial thin-film PV
applications can be found in [20].
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2.3 IV characteristics
In this section the theoretical background regarding IV respectively JV charac-
teristics is given.

2.3.1 The one-diode equivalent circuit model
The current density-voltage respectively current-voltage characteristic (JV re-
spectively IV characteristic) is from central importance for characterizing solar
cells and PV modules. As discussed in Section 2.2.1 the pn junction of a solar cell
is a diode. The one-diode equivalent circuit model represented in Fig. 2.3.1 can
be used to determine the relationship between voltage and current in a solar cell.
It takes the diode character of the pn junction, the generation of electron-hole
in the absorber reflected as a current source (JPh), a series resistance RS and a
parallel resistance RP into account.

Figure 2.3.1: One-diode equivalent circuit model representing a solar cells
equivalent circuit. The pn junction is depicted as a diode and a current source
connected in parallel reflects the generated photo current due to absorption of
light in the absorber of the solar cell. A finite parallel and shunt resistance
reflect resistive losses.

Applying Kirchhoff’s circuit laws results in the equation

J = J0

[
exp

(
e(V − JRS)

nidkT

)
− 1

]
+ V − JRS

RP
− JPh, (2.13)

where JPh denotes the photo current density. Numerically, the implicit equation
can be solved for given values of RS, RP, JPh, nid and J0. Figure 2.3.2 gives an
example for a numerical solution of a JV characteristic with the parameters
RS = 0.5Ωcm2, RP = 105 Ωcm2, J0 = 3.0 · 10−9 mA/cm2, nid = 1.2 and
Jph = 32.0 mA/cm2 at T = 25◦C.
The short circuit current density JSC is defined as the current density when the
applied voltage to the device is V = 0 (i.e. the short circuit condition). For
reasonable assumptions of series and parallel resistances in functional solar cells,
JSC is directly given by JPh. One can interpret JSC as a measure of the amount
of generation of electron-hole pairs. Note, that JPh is approximated to be voltage
independent in the one-diode model. In real solar cells a slight decrease of the
photo current with increasing system voltage is often observed.
The open circuit voltage VOC is defined as the voltage where the current through
the device is J = 0 (i.e. the open circuit condition). At VOC the recombination
current through the diode needs to compensate the photo current. Consequently,
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Figure 2.3.2: Numerical solution of the JV characteristic of the one-diode
equivalent circuit model using the parameters RS = 0.5Ωcm2, RP = 105 Ωcm2,
J0 = 3.0 · 10−9 mA/cm2, nid = 1.2 and Jph = 32.0 mA/cm2 at T = 25◦C. JSC,
VOC as well as MPP are marked and the orange and grey areas give a visual
interpretation of the definition of the FF in 2.14.

the open circuit voltage depends on the photo current density JPh, on the
dark saturation current density J0 and on the diode ideality factor nid. J0 and
nid reflect the combined influence of different recombination processes on the
recombination current through the pn junction. Such, one can interpret VOC as
a measure for the amount of recombination in the solar cell.
Beside JSC and VOC the maximum power point (MPP) is marked in Fig. 2.3.2.
The MPP describes the point of the maximum power output PMPP of the solar
cell and thus in an ideal case also its operating point. Another important
parameter of solar cells regarding the performance is the fill factor FF. It is
given by the quotient of PMPP and the product of the VOC and the short circuit
current ISC to

FF = PMPP

VOCISC
= VMPPJMPP

VOCJSC
. (2.14)

The orange and grey areas in Fig. 2.3.2 can be seen as a visual interpretation
of the FF. The orange area is equal to the maximum power density pMPP =
PMPP/Area and orange and grey area together are equal to the product VOCJSC =
VOCISC/Area. Illustratively, the FF equals the ratio of the small rectangle to
the big rectangle.
The efficiency is the most important performance measure of a solar cell or PV
module and is given via the quotient of the power output at MPP and the power
input of the irradiation on the solar cells or PV modules area:

η = PMPP

Pin
= VMPPIMPP

Pin
= FFVOCISC

Pin
. (2.15)

For the determination of PMPP and, with this, for the determination of the
efficiency of solar cells and PV modules illuminated JV respectively IV charac-
teristics need to be measured. In order to guarantee a good comparability of
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illuminated IV characteristic measurements under laboratory conditions, the
AM1.5G solar spectrum is often used and simulated with prescribed accuracy
in sun simulators. The AM1.5G solar spectrum is a defined spectrum of sun-
light passing through 1.5 earth atmospheres. Varying the cell temperature and
irradiation intensity depicts further insights on a solar cells performance, since
different performance limiting mechanisms might be dominant under different
conditions. Section 2.4.1 summarizes the specifications of the sun simulator used
in this thesis to validate a solar cells performance in terms of illuminated IV
characteristics. Beside measurements under defined laboratory conditions, IV
characteristics are often used to verify a PV modules performance in field under
varying outdoor conditions. Environmental data, like the Plane Of Array (POA)
irradiation, GPOA, and module temperature, TMod, is required for evaluation of
the measurements.
In addition to the determination of the efficiency, the measurement of the
illuminated JV characteristic provides more detailed information on a solar cells
or PV modules performance. The influence of various effects on the shape of the
JV characteristic are not always intuitive. Using the numerical solution of the
one-diode model presented in Fig. 2.3.2, the variation of the parameters gain
insight how, f.e. the series and parallel resistance as well as the recombination
affects the shape of an JV characteristic.
Figure 2.3.3 shows the numerical solution of the JV characteristic varying the
parallel resistance. Low parallel resistances show the effect of shunt paths in the
solar cell.

Figure 2.3.3: Numerical solution of the JV characteristic for varying parallel
(RP = 40, 60, 80, 100, 500, 103, 104, 105 Ωcm2) resistance. The black line shows
the solution for the parameters in Fig. 2.3.2. The arrows show into the direction
of decreasing parallel resistance and, with this, in the direction of decreasing
performance.

Figure 2.3.4 shows the numerical solution of the JV characteristic varying the
series resistance. High series resistances are usually connected to issues regarding
the contacts or high sheet resistances of a TCO layer.
Figure 2.3.5 shows the numerical solution of the one-diode model for varying
dark saturation current densities J0. Since the diode ideality factor nid is kept
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Figure 2.3.4: Numerical solution of the JV characteristic for varying series
(RS = 0.2 − 5Ωcm2) resistance. The black line shows the solution for the
parameters in Fig. 2.3.2. The arrows show into the direction of increasing series
resistance and, with this, in the direction of decreasing performance.

constant this variation reflects increasing/ decreasing recombination rates, while
the recombination mechanism remains the same.
The one-diode model represents, all recombination processes with only a single
diode ideality factor and dark saturation current density, i.e. with one diode. In
real solar cells many recombination mechanisms might contribute as discussed in
Section 2.2.1. Furthermore, which recombination mechanism is dominant and to
this end limiting the solar cells performance might be voltage dependent. One
way to overcome the limitations of describing the pn junctions recombination
with one diode is the usage of the two-diode model, introducing a second
recombination current contribution with differing diode ideality factor and dark
saturation current density in parallel. Fitting the one- as well as the two-diode
model to a measured IV characteristic comes with implications, that are further
discussed in Section 2.3.3
Beside illuminated IV characteristics, dark IV characteristics can provide valu-
able information about a solar cells performance. Since only a possibility to
darken the sample and a source measurement unit are necessary, dark IV mea-
surements are less complex to perform. Since the illuminated IV characteristic is
not necessarily just the superposition of photo current and darkIV characteristic,
the dark IV characteristic is not sufficient to predict the efficiency of a solar
cell. Nevertheless, dark IV measurements are often used to evaluate the device’s
recombination properties, series, and parallel (shunt) resistances.
IV respectively JV characteristics yield much information on basic properties
of solar cells. However, if several solar cells are measured in series and/ or
parallel connection as it is the case for a PV module, the interpretation of
various influences can become more complex. The result of such a measurement
is in the easiest case the superposition of several IV characteristics. In general
the solar cells can affect each others performances. Since the same current flows
through all cells connected in series, cells providing a high current might be
limited by cells exhibiting a reduced current.
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Figure 2.3.5: Numerical solution of the JV characteristic of the one-diode
equivalent circuit model with varied dark saturation current density between
J0 = 3.0 − 25, 0 · 10−9 mA/cm2. The black line shows the solution for the
parameters in Fig. 2.3.2. The arrow points in the direction of increasing dark
saturation current density and, with this, increasing recombination rates.

2.3.2 Temperature and Irradiation dependencies accord-
ing to the IEC60891

The irradiation and temperature dependencies of IV characteristics vary through-
out different technologies and producers. Nevertheless, some similarities can be
observed. To describe the irradiation and temperature dependencies of various
PV modules and solar cells, many methods are proposed in literature. The
International Electrotechnical Commission (IEC) published the IEC60891 norm,
which provides several standardized procedures to translate IV characteristics
from one condition to another. In this work, only procedure 2 of the IEC60891
norm is used. The IEC60891:2009 norm [21] describes procedure 2 as:

I2 =I1(1 + α(T2 − T1))
G2

G1
, (2.16)

V2 =V1 + VOC1(β(T2 − T1) + a ln (G2

G1
))

− Rs(I2 − I1) − κI2(T2 − T1), (2.17)

where current I1 and voltage V1 are a current and voltage pair from the IV
characteristic at temperature T1 and irradiation G1. The current-voltage pair is
translated to current I2 and voltage V2 at temperature T2 and irradiation G2.
The procedure uses 5 coefficients:

• α The temperature coefficient of current [K−1]

• β The temperature coefficient of the voltage [K−1]

• a The irradiation correction factor of the voltage [V]

• Rs The series resistance of the device [Ω]
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• κ The temperature coefficient of Rs [ΩK−1]

By translating the points in an IV curve at T1 and G1 one by one to new current-
voltage coordinates a translated IV characteristics is obtained corresponding to
temperature T2 and irradiation G2.
In 2021 the IEC60891 norm was updated and procedure 2 was adjusted. The
transformation equations of procedure 2 from the IEC60891:2021 norm [22] are

I2 =I1
G2

G1

1 + α(T2 − 25◦C)
1 + α(T1 − 25◦C) , (2.18)

V2 =V1 − RS1(I2 − I1) − κI2(T2 − T1)
+ VOC,STCβ[f(G2)(T2 − 25◦C) − f(G1)(T1 − 25◦C)]

+ VOC,STCβ[ 1
f(G2)

− 1
f(G1)

], (2.19)

where

f(G) =B2ln2
(1000Wm−2

G

)
+ B1ln

(1000Wm−2

G

)
+ 1, (2.20)

RS1 =RS + κ(T1 − 25◦C), (2.21)

where the correction factor a from the previous version was substituted by
a non-linear description of the irradiation dependency of the voltage with 2
correction coefficients:

• B1 linear irradiation correction factor of the voltage [-]

• B2 quad. irradiation correction factor of the voltage [-]

Beside considering the non-linear irradiation dependency of the voltage, the
updated procedure 2 avoids inconsistencies regarding back and forth translation
of two different conditions. While for the 2009 version the result of translating
IV (G1, T1) → IV (G2, T2) → ˜IV (G1, T1) is in general not consistent, the updated
version guarantees that IV (G1, T1) = ˜IV (G1, T1). Furthermore, the updated
procedure is more referenced to STC conditions. This increases the comparability,
since a PV module’s performance is in general verified at these standardized
conditions.
The performance of procedure 2 of the IEC60891:2021 norm is verified in
literature [23]. The compact description and the verified good performance of
describing temperature and irradiation dependencies leads to widespread use of
procedure 2 of the IEC60891 norm in the PV community.

2.3.3 Describing the shape of (measured) IV characteris-
tics

This section introduces to concepts used to describe the shape of (illuminated)
IV characteristics. A (measured) IV characteristic consists of several current-
voltage (I/V ) pairs. As for every measurement, all I/V pairs are subject to
a certain degree of measurement uncertainty or noise level. For laboratory 4
quadrant measurements, performed under stable irradiation conditions with
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suitable source measure units (SMUs), the signal to noise ratio is usually small
and does not impede the data analysis. A common problem, however, is the solar
cells, respectively PV modules temperature during a measurement. PV modules
and solar cells heat up during illumination, such that the cell respectively
module temperature might differ at the start and beginning of a measurement.
As discussed in Section 2.3.2, the temperature has a noticeable influence on the
IV characteristic and temperature differences might need to be considered.
For outdoor measurements the data quality can be influenced by several factors.
Since the conditions are not controlled, unstable irradiation conditions during
the measurement, partial shading, unsteady module temperature and wind
conditions can influence the measurement. Outdoor data is often acquired
with programmable loads, leading to incomplete IV characteristics, i.e. such
equipment can only measure the active range of the PV module and thus
the short and open circuit points are not directly measured and cannot be
interpolated from the measurement either. Furthermore, malfunction of a SMU
or programmable load might cause an incomplete IV characteristic, where parts
of the current or voltage range are missing.
Beside implications arising due to incomplete or noisy measured IV character-
istics, the serial and parallel connection as well as the use of bypass diodes in
conventional PV modules might impede fitting procedures. When individual
cells or (sub-) strings inside of a PV module or array provide considerably less
current as the remaining cells or (sub-) strings, bypass diodes maximize the
power output. The IV characteristic, however, looks irregular in these situations,
i.e. a "S-shape" is often observed.

The standard solar cell parameters (SSPs)

The most widely used feature vector of describing an IV characteristic are
the standard solar cell parameters (SSPs). VOC, ISC, VMPP and IMPP describe
three key points of the IV characteristic, namely the open and short circuit
as well as the maximum power point. While the SSPs depict valuable and
the most important information an IV characteristic, the reduction of the
complete IV characteristic to 4 parameters implies information loss. The IV
characteristic cannot be adequately reconstructed using solely the SSPs and f.e.
an IV characteristic with "S-shape" and an IV characteristic with strong series
resistance are undistinguishable using only the SSPs.
To extract the SSPs from a measured IV characteristic a suitable interpolation
approach as well as a noise robust approach to extrapolate the IV to open
respectively short circuit might be needed. Nevertheless, extracting the SSPs
is in any case the first step of analysing an IV characteristic, since using these
easy and standardized parameters allows for meaningful interpretation and
comparison of solar cells and PV modules performance.

One- and two-diode model fits

Fitting the one-diode model (see Section 2.3.1) or the two-diode model are
common approaches to extract features of an IV characteristic [24–26]. Their
advantage is the representation of the IV characteristic in terms of physically
meaningful parameters. However, the parametrization of the two equations is
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quite challenging, which is reflected by a vast number of papers to this subject. A
detailed overview of proposed methods is given by the review papers in [24–26].
The one-diode model introduces five (free) parameters to describe the IV
characteristic. In comparison to the SSPs, the one-diode model can track more
information, inherited by the shape of the IV characteristic. The two major
downsides of using the one-diode model equation to describe an IV characteristic
are the challenging parametrization as well as the correlation of the diode model
parameters. A small change of the IV might result in large differences in the
parameters, if the parametrization procedure is ill-conditioned. Furthermore,
the one-diode model is limited to IV shapes, that can be described by a diode,
i.e. "S-Shapes" can f.e. not be described.
The diode ideality factor in the one-diode model can be seen as an effective ideal-
ity factor arising from the joint influence of different recombination processes. In
the two-diode model the two different ideality factors are introduced, by adding
a second diode character describing the recombination current. The two ideality
factors are often fixed to nid,1 = 1 and nid,2 = 2, since most recombination pro-
cesses can physically be described with an ideality of 1 respectively 2. The dark
saturation currents I0,1 and I0,2 then reflect the contributions of the respective
mechanisms to the overall recombination current. Fixing the two ideality factors,
however, excludes recombination mechanisms with nid ≠ 1, 2. To this end also
two-diode models with free ideality factors and dark saturation currents are used
in literature describing the IV characteristic with 7 free parameters. On the first
look, this seems to be an advantage over the one-diode model and the two-diode
model with fixed ideality factors, since the model is capable to describe a more
complex diode character often present in real solar cells and PV modules. On
the second look, adding 2 parameters to describe the diode character in more
detail extends the problems of the correlated parameter space and the tendency
of ill-conditioned parameterization procedures as mentioned for the one-diode
model. Often, an IV characteristic can be adequately described using multiple
combinations of the two dark saturation currents, I0,1 and I0,2, and the two
diode ideality factors, nid,1 and nid,2. Therefore, an optimization procedure to
find the best parameterization might face the challenge of many local minima in
the parameter space and the result of the parameterization is less meaningful.

The ESP model

One- and two-diode model are based on device physics and their fit to an IV
characteristic can result in meaningful parameters, gaining a better understand-
ing of the PV modules or solar cells performance. The physics based approach
leads, on the other side, to the restriction, that the measured IV characteris-
tic can be described with the fundamental physical assumptions of the model.
More complex IV shapes, that originate from the interplay of many cells in a
module, cannot be described adequately. Furthermore, in the presence of noisy
datasets the parameterization is further impeded. Another approach to track
the information of an IV characteristic is a descriptive approach.
Pieters introduces a descriptive model for the complete shape of the IV char-
acteristic based on the extension of the SSPs in terms of extended solar cell
parameters (ESPs) [27]. The ESPs extend the SSPs with the slopes of the IV at
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short and open circuit (GSC and ROC)6 as well as with two additional key points
(‘upper quasi maximum power point’ [Iqmp+, Vqmp+] and ‘lower quasi maximum
power point’ [Iqmp-, Vqmp-]) to comprehensively describe the complete shape of
the IV characteristic.
The lower and upper quasi maximum power points incorporate information on
the shape of the IV characteristic between short circuit (SC) and maximum
power point (MPP) and between MPP and open circuit (OC), respectively.
These points are defined using the power curve (P (V )) associated with the
IV . Vqmp+ is defined as the voltage between MPP and OC, where the power
curve exhibits the largest difference from a straight line drawn between the two
coordinates [VMPP,PMPP] and [VOC,0]. Iqmp+ is then the associated current of
the IV at V = Vqmp+. Analogously, Vqmp- is defined as the voltage, where the
power curve exhibits the largest difference from a straight line drawn between
the two coordinates [0,ISC] and [VMPP,PMPP] and Iqmp- is the associated current
at V = Vqmp-. Thus, the ESPs reduce the shape of the IV characteristic to 10
parameters.
The choice of the 2 key points has benefits regarding the additional information,
that they inherit as well as benefits regarding the parameterization of the model.
Compared to other parametrization routines, the ESPs result in less information
loss, since also more subtle features of the IV characteristic are tracked. By
reconstructing the IV characteristics Pieters demonstrated on a large dataset
of 2.2 million IV s, covering different PV technologies, that the ESPs provide
an accurate description of the IV showing for 90% of the IV characteristics
an root mean squared error (RMSE) w.r.t. the original measurements below
0.2%. For comparison, for the one diode model this is about 1% and for the
Karmalkar-Haneefa model [29] 1.2% [27].
Another benefit, is that the 10 ESPs describe 5 key points on the IV as well as
their slopes. Thus, also the irradiation and temperature corrections discussed in
Section 2.3.2 can be applied to directly translate the ESPs to different conditions.
More detailed explanations to the ESPs can be found in [27].

The IV Bézier model

Pieters introduces various interpolation models to reconstruct an IV charac-
teristics from the ESPs. A particularly effective model is the so called “PV
Bézier model”, based on a cubic Bézier interpolation[27]. Pieters describes a
method to parameterize the PV Bézier model directly from the ESP. Note that
for Bézier curves robust and efficient fitting algorithms exists, see for example
[30]. Here I introduce the PV Bézier model and its parameters as an alternative
representation of the ESPs. The PV Bézier parameters also entail the SSPs,
VOC, ISC, VMPP and IMPP.
The model uses cubic Bézier curves - parametric curves between a start coordinate
P0 and an end coordinate P3. In between the start and end coordinate the shape
is determined by two control points P1 and P2. A cubic Bézier curve can be

6Savitzki-Golay filters are used to obtain noise robust estimators for the slopes at short
and open circuit [28].



34 CHAPTER 2. THEORETICAL BACKGROUND

written as:

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3, (2.22)

where the time t ranges from 0 to 1 and B(t) is the coordinate at time t. At
t = 0 it results, that B(t)|t=0 = P0 and at t = 1 it results, that B(t)|t=1 = P3.
B(t) can be seen as a trajectory, where at each point the curve has a derivative
and a velocity w.r.t. the time variable t. The control points P1 and P2 encode the
slopes at the start and end coordinates, which becomes markable, considering
the derivative of the trajectory

B‘(t) = 3(1 − t)2(P1 − P0) + 6t(1 − t)(P2 − P1) + 3t2(P3 − P2). (2.23)

At the start point P0 it follows, that B′(t)|t=0 = 3(P1 − P0) and at the end
point P3 one can derive B′(t)|t=1 = 3(P3 − P2). The trajectory in the start point
(end point), thus follows the line segment P0 − P1 (P2 − P3) and the velocity is
proportional to the length of the line segment.
To describe a complete IV characteristic with cubic Bézier curves the IV
characteristic is divided in two sections, one from SC to MPP and one from MPP
to OC. The model adds to the SSPs a differential short circuit point [VdSC,IdSC],
which encodes the short circuit slope and effectively how long this slope dominates
the shape of the IV characteristics. Similarly the model has a differential open
circuit point [VdOC,IdOC]. Since the slope at MPP equals −Impp/Vmpp, the
analogously defined differential MPP point [VdMPP,IdMPP] effectively describes
how long the slope at MPP dominates the IV characteristic in both directions.
Thus, the PV Bézier parameters also reduce the shape of the IV characteristic
to 10 parameters. As for the ESPs, the performance of the model tested on
IV characteristics of different module types operated in different climates is
discussed in [27].

The PV-CRAZE library

To analyze IV curves throughout this thesis I use the open source PV-CRAZE
library [31]. The PV-CRAZE library implements, beside others, a fast and
noise-robust parameterization of the ESP model, the one-diode model as well as
of the PV Bézier model. Furthermore, as a part of the extraction of the ESPs,
PV-CRAZE detects various problems with IV characteristics. In particular it
will flag data-points when

• it is not at all possible to determine all ESPs (e.g. large parts of an IV
are missing)

• it is not possible to reliably determine the ESPs, (e.g. too few data to
make a reliable fit)

• the IV has unexpected features (e.g. multiple MPPs, or non-monotonous
IV characteristics)

Throughout the thesis, I use the library as a first filtering step for IV data,
excluding IV s that are flagged as unreliable. Furthermore, the PV-CRAZE
library is used for fitting of the one-diode model to IV characteristics. The
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fitting procedures for the diode model are rather involved as it is notoriously
hard to obtain a robust fitting algorithm [27]. As some of the used optimization
algorithms in PV-CRAZE are non-deterministic, and fitting with PV-CRAZE
is generally fast, I used multiple fits for each data-point to select the best fit.
More details about the library, its fitting performance as well as the processing
time for large data sets can be found in in [27].
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2.4 Characterization methods and set-ups
In this section the main characterization methods used to verify solar cell’s
performance as well as the used set-ups are discussed.

2.4.1 Sun simulator set-up
As introduced in Section 2.2.1 sun simulators are one of the most important
characterization tools for solar cells and PV modules. For the characterization
of solar cells with illuminated and dark IV characteristics I use a steady state
WACOM WXS-140S-Super sun simulator with class A accuracy of the AM1.5G
solar spectrum. The sun simulator uses a tungsten and a xenon lamp to reproduce
the AM1.5G solar spectrum. Various optics ensure a steady and homogeneous
irradiation on an area of 10 × 10 cm2 with inhomogeneities of less than 2%. The
cell temperature control is ensured via an external water cooling system, that
can be connected to various cell holders. Measurements at lower irradiation
intensities can be performed using neutral density filters.

2.4.2 Electro- and Photoluminescence set-up
With the same principle as light emitting diodes, injected charge carriers can
cause radiative recombination within a solar cell leading to light emission.
Electrically induced emission of photons is called electroluminescence (EL). When
the charge carriers are not injected due to an applied voltage but created due to
the absorption of light, the emission of radiation is called photoluminescence
(PL).
The emission signal can be detected with a camera, whose detector is sensitive in
the wavelength region around the band gap energy. The measured EL intensity
increases exponentially with the local voltage, since the recombination current
is proportional to exp ( eV

kT
). The measured PL intensity increases linearly with

the illumination intensity applied.
EL and PL measurements can be used to verify local differences in a solar cells
or PV modules performance. In EL images, inactive and poorly contacted areas
as well as shunts show up as dark areas respectively dark spots. Due to the
difference of charge carrier origin, variations in series resistances over the solar
cell do not effect the luminescence intensity in PL images. Furthermore, the
signal strength is dependent on the non-radiative recombination probability of
charge carries, since non-radiative recombination does not contribute to the EL
respectively PL signal. EL imaging, PL imaging and especially the combination
of both imaging techniques can yield valuable insights on a solar cells or PV
modules performance.
In this thesis all EL and PL measurements are performed on the same set-up.
The set-up uses a Princeton instruments Nirvana 640 Indium Gallium Arsenide
(InGaAs) camera with a 1050 nm band-pass filter with a full width half maximum
of 30 nm to measure the luminescence signal. The EL images are acquired using
a Keithley 238 high current SMU. The camera position can be changed with an
Isel X-Y moving stage, enabling EL image acquisition for DUTs of a size up to
32 × 25 cm2.



2.4. CHARACTERIZATION METHODS AND SET-UPS 37

The PL images are acquired using a 808 nm laser as a light source and a beam
homogenizer ensuring a homogeneity of ±2.5% on a 12 × 12 cm2 plane and
a homogeneity of +2.5/ − 6.5% on a 17 × 17 cm2 plane. The light intensity
is calibrated using a silicon hetero junction solar cell to an effective one sun
equivalent irradiation in the measurement plane.

2.4.3 Light induced degradation set-up
For the laboratory experiments discussed in Chapter 4 I use a light induced
degradation set-up. The three main components of the set-up are a light source,
three water cooling systems and a SMU. This way the set-up allows to study
the effect of light and temperature on the long-term performance of multiple
device under test (DUT), verified with in-situ IV measurements. As light source
a metal halide lamp HMI 4000 W/DXS - Osram 6000K is used. A long pass
filter of 390 nm blocks ultraviolet (UV) light and ensures no overlaid effect
of UV degradation. The set-up is shielded from external light sources and
the irradiation level can be tracked with a silicon photodiode in the middle
of the illuminated area. The homogeneity of the irradiation can be verified
in the measurement plane using two reference cells (PRC Krochmann GmbH
PRC911214/1 and PRC911214/2 with a BG17 filter of a size by 2 cm × 2 cm).
The two reference cells measure the total as well as the filtered short wavelength
intensity.
The DUT temperature can be controlled to three different temperatures with
the three water cooling systems. Furthermore, within the set-up, the DUTs
are thermally decoupled from the set-up, ensuring a well defined temperature.
The temperature of the refrigerated/heated water systems as well as the room
temperature can be tracked with PT100 temperature sensors. Furthermore, the
working point of the DUT can be set to OC or SC in between IV measurements
using relays.
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2.5 Outdoor Performance
This section explores prevalent patterns in PV outdoor data and introduces
the specific datasets utilized in this study. It delves into crucial methodologies
for modelling PV module temperature and in-plane irradiation, fundamental
for understanding module performance under varying environmental conditions.
Additionally, I provide an overview of the approach to assessing PV module
outdoor performance as incorporated in the IEC61853 standard. This standard
outlines procedures for rating the performance of PV modules in differing climates
and operational contexts, offering a comprehensive framework relevant to our
analysis.

2.5.1 Outdoor data
PV outdoor data consists in general of performance measures of PV modules or
strings and additional meteorological measurements, that set the performance
measure into the context of the condition the performance is measured at.

Meteorological data

One part of the meteorological data are irradiation measurements. The most
important irradiation measure is the point of array irradiation GPOA measuring
the irradiation in the plane of the installed PV module. In addition global
horizontal irradiation (GHI), diffuse horizontal irradiation (DHI) and direct
normal irradiation (DNI) can provide additional information about the effective
irradiation reaching a PV module. GHI can further be determined from DNI
and DHI using

GHI = DNI cos Θ + DHI, (2.24)
where Θ is the zenith angle. With sufficient knowledge about the topology of
the surrounding or the assumption of no topology causing shading, GPOA can
be modelled using GHI, DHI, location, elevation and time. The used modelling
approach in this thesis is discussed in Section 2.5.3. In addition the spectrum
of the respective irradiation measurements or the average photon energy can
provide more information on the measured irradiation parameters.
The most important temperature measure is the module temperature TMod
as it directly relates to a PV modules performance. In addition the ambient
air temperature Tamb, wind speed v and wind direction as well as rainfall and
humidity can provide valuable insights about the operating conditions and might
be used to predict TMod in case the parameter is not available.

Electrical performance measures

Performance measures of PV modules and arrays vary significantly regarding
their complexity. While for PV arrays often only the AC (alternating current)
or DC (direct current) power is tracked, some systems track AC respectively DC
voltage and current. The DC performance reflects the direct output of the PV
system respectively string and is a direct performance measure of the system
respectively string, the AC performance incorporates inverter losses and is more
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relevant evaluating the complete system, rather than rating the PV modules
solely.
As discussed in Section 2.3, IV characteristics are the most important and
most frequently used performance measure of solar cells and PV modules.
Since an IV measurement takes time and require suitable equipment, regular
IV measurements are not common for monitoring commercially operated PV
systems. Regular IV measurements of operated PV modules can, however, yield
valuable insights about performance degradation and seasonality and are often
subject of research projects observing the PV module performance over time.

Common challenges

Before processing, the acquired data quality needs to be evaluated. Beside
missing data and repetitive data, common issues are sensor alignment, sensor
shading, sensor drift, data and time shift, inverter clipping calibration problems,
data synchronization and data aggregation. A good summary of common data
quality issues is given by Lindig et al. [32]. After the evaluation of the data
quality, filtering approaches are applied, to exclude systematic errors and reduce
the dataset to e.g. clear-sky instances or a range of in-plane irradiation or
temperature conditions. Data filtering approaches are further discussed in
Chapter 5, where I further present two proposed filtering approaches.

Imaging techniques

Further performance measures for PV modules and systems in operation are
imaging techniques often used to monitor large scale PV power plants. The
decreased performance of single modules affects the whole string and, such,
the performance of the complete system. Electrical performance measures like
the string output power provide insight on the strings performance, but are
not suitable to rate the performance of individual PV modules being part of
the string. Infrared thermography (IRT), EL and PL as well as ultraviolet
fluorescence (UVF) imaging can be used to identify individual malfunctioning
PV modules.
A good overview of common imaging techniques used for inspection and moni-
toring of large scale PV systems is given by Høiaas et al. [33]. EL and PL are
already discussed in Section 2.4.2. In field, PL images can be acquired using
an external light source, i.e. using a laser or light emitting diodes (LEDs) or
the sun light, disconnecting a string or individual modules to open circuit. EL
image acquisition in field requires a portable power supply and is often done
at night to ensure a better signal to noise ratio. Furthermore a high signal to
noise ratio for measurements during the day can be achieved using lock-in tech-
niques. IRT is possible without disconnecting any modules or strings and is the
most common imaging technique used for PV system monitoring. Disconnected
modules or cells, bypassed cells or substrings inside a module as well as shunted,
delaminated or otherwise defected cells and parts of the module can be identified
using infrared thermography. UVF imaging is an emerging technique in PV
system monitoring. PV modules are excited using UV light and the resulting
fluorescence is usually capture common RGB cameras. UVF imaging can detect
cracks in single cells, not recognizable with optical inspection and IRT. Such,
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UVF imaging can help to detect less pronounced causes for power reduction
within a PV system.

TÜV data

Among the used data in this work I use a subset of PV outdoor data acquired by
TÜV Rheinland. Apart from the Thuwal dataset (which was not yet available
at that time, but is acquired with the same module types and measurement
devices) the data is published in [5]. For this dataset periodic IV measurements
were performed on industrial produced PV modules of different technologies at
5 different test locations in different climate zones over up to nearly three years.
The operated modules cover an amorphous/microcrystalline silicon tandem
module, a conventional PERC silicon module, three CdTe modules and four CIGS
modules from different producers. Note that he data was collected approximately
ten years ago and therefore reflects the PV technologies that were commercially
available at that time. Similar modules of all 9 types were operated in Ancona
(Italy), Pheonix (USA), Cologne (Germany), Chennai (India) and Thuwal (Saudi
Arabia). Depending on the module type and the location the operation period
varies between 17 and 35 months resulting in dataset sizes between ≈ 29.000 and
≈ 65.000 IV characteristics. The individual size of the datasets is listed in Tab.
5.2. In total the datasets consist of approximately 2.2 million individual IV
characteristics. In addition I use the simultaneously measured GPOA and TMod.
The IV characteristics are measured using programmable loads in intervals of ten
minutes. The module temperature TMod reflects the average of two measurements
with Pt100 temperature sensors mounted on the back of each PV module. The
irradiation GPOA is measured in plane by a ventilated pyranometer.

NREL data

As a second PV outdoor dataset is use a subset of data provided by the National
Renewable Energy Laboratory (NREL) described in [6]. From the dataset I
use data from 11 different modules, operated for 13 months in Cocoa, Florida,
and another 13 months in Eugene, Oregon. The different modules cover var-
ious thin-film as well as wafer based technologies (mono-crystalline Si, multi-
crystalline Si, CdTe, CIGS, amorphous/crystalline Si heterojunction, amor-
phous/microcrystalline Si tandem, amorphous Si tandem and amorphous Si
triple junction). The dataset sizes vary between ≈ 34.000 and ≈ 43.000 IV
characteristics. The individual size of the datasets is listed in Tab. 5.1 summing
up to a total of ≈ 880.000 individual IV characteristics. In this work I only use
the SSPs rather then the complete IV as well as the simultaneously to the IV
measured GPOA and TMod. The dataset is publicly available enabling, that the
performance of the filtering approach presented in Section 5.3 can be compared
with other approaches aiming for a similar outcome.

2.5.2 Performance ratio analysis and degradation estima-
tion

Crucial for the rating of a PV system is the performance respectively the
performance over time. A common way to depict the performance is the
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performance ratio (PR) defined in the IEC61724 norm [34]. For the AC/DC
output performance the PR is given by

PRAC/DC = EAC/DC/Pnom

HPOA/GSTC
= EAC/DCGSTC

HPOAPnom
, (2.25)

where Pnom is the nominal AC respectively DC output power at STC conditions,
GSTC = 1000 Wm−2 is the STC irradiation and HPOA is the normalized integrated
in-plane irradiation for the considered time span. The PR is defined on a time
interval, but is often generalized for the DC output power to a discrete time
using

PR = PDCGSTC

GPOAPSTC
, (2.26)

where I substituted Pnom = PSTC for the DC situation. As discussed in Section
2.3.2 the performance of a PV module and, thus, the performance of a string
of modules or a PV system is dependent on the module temperature TMod.
The temperature corrected performance ratio PRT includes the temperature
dependency of the output power using

PRT = PDCGSTC

GPOAPSTC(1 + γ(TMod − TSTC)) . (2.27)

Here, the STC performance is corrected to the performance at the measured
module temperature using a linear relationship described with the correction
coefficient γ similar to the linear correction of the currents in an IV according
to the IEC60891 norm in 2.18 using the correction coefficient α. Beside the
temperature dependency, a PV modules performance is further influenced by
the overall irradiation intensity 7 as well as by the irradiation spectra, incidence
angle and soiling [5].

Degradation estimates of PV module or system performance are often based
on the determination of the PR. The most common approach is a linear fit of
the PR respectively PRT , to determine a relative performance loss (given in %).
Especially for the not temperature corrected PR the linear fit is further often
supplemented by a periodic term describing the yearly seasonal variation of the
PR.

The estimate of the PR and degradation rates is highly dependent on the chosen
filtering approach. For simplicity many approaches are based on using only a
(small) subset of the available data, including only measurements, obtained f.e.
at irradiation intensities close to GSTC (800 − 1200 Wm−2, [36]), at clear sky
instances [32] or at high angle of incidence [37]. Which filtering approach is
suitable is dependent on the data specific challenges and is crucial for PR and
degradation rate estimates. More on data filtering approaches can be found in
Chapter 5.

7Typically the low light efficiency of PV modules is lower, than the STC efficiency due to
the finite shunt resistance [35]
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2.5.3 POA Modelling
To model the POA irradiation I use the open-source simple sky dome projector
library (SSDP) [38]. The library implements the Perez All-Weather sky model
[39] and accounts for diffusive and direct irradiation contributions. As input, the
model uses the location (latitude, longitude and elevation), orientation and tilt of
the PV module as well as the time and local effective albedo of the surrounding
and measured global horizontal direct and diffusive irradiation GHI and DHI.
Optionally a local topography may be provided to simulate shading from the
surrounding structures and terrain. More information on SSDP can be found in
[40].

2.5.4 Faiman module temperature model
The Faiman module temperature model aims to predict the module temperature
TMod from the ambient air temperature Tamb, the in-plane irradiation GPOA and
the wind speed v. The equation to determine TMod according to [41] is given by

TMod = Tamb + GPOA

u0 + u1v
, (2.28)

where u0 and u1 are module specific parameters, that need to be determined
experimentally. With the Faiman model accuracies with a bias error below 1 K
can be achieved. An evaluation of the accuracy of the Faiman model as well as
on the sensitivity of the performance with varying u0 and u1 can be found in
[42].

2.5.5 CSER (IEC61853)
The IEC61853 norm implements a procedure to determine the Climatic Specific
Energy Rating (CSER) for 6 different standard reference climatic profiles. De-
scriptively, the CSER determines the ratio between overall outdoor performance
and Standard Test Condition (STC) efficiency ηSTC. The 6 reference climates
and the procedure how to determine the CSER are presented shortly hereinafter.
Part 4 of the IEC61853 norm [3] provides the 6 standard reference climatic
profiles. Figure 2.5.1 summarizes the 6 reference climates regarding the monthly
integrated in-plane energy input Hp,month and the maximum, mean and minimum
ambient temperatures. The six climates cover tropical humid, subtropical arid,
subtropical coastal, temperate coastal and temperate continental climates as well
as a high elevation reference climate. The annual in-plane energy input Hp,year,
the latitude and the annual average ambient temperature of the 6 reference
climates are summarized in Tab. 2.1. Beside month, day, hour, ambient
temperature, wind speed at module height, sun elevation and sun incidence
angle, the reference profiles of part 4 of the IEC61853 norm provide global and
direct horizontal as well as global and direct in-plane irradiation and the global
in-plane irradiation for a set of discrete wavelength bands.
Part 3 of the IEC61853 norm [4] describes the equations and steps to determine
the CSER. The procedure can be split into two steps. The first step is determining
the effective in-plane irradiation Geff and module temperature Tmod at every
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Figure 2.5.1: Monthly energy input Hp and maximum Tmax, minimum Tmin and
mean Tmean temperature in the six standard climatic reference profiles provided
in part 4 of the IEC61853 norm [3].

Table 2.1: Annual energy input Hp,year, latitude and annual average temperature
Tave,year of the IEC61853 standard reference climates [3].

reference climate Hp,year latitude Tave,year

high elevation 2139 kWhm−2/a 34◦0′ N -5.4 ◦C
subtropical coastal 1497 kWhm−2/a 33◦3′ N 16.0 ◦C

subtropical arid 2296 kWhm−2/a 33◦22′ N 19.5 ◦C
temperate coastal 973 kWhm−2/a 56◦0′ N 8.4 ◦C

temperate continental 1266 kWhm−2/a 57◦0′ N 2.5 ◦C
tropical humid 1678 kWhm−2/a 1◦0′ S 24.1 ◦C
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given time tj. The effective irradiation Geff,j is determined using direct and
diffuse8 irradiation components. Furthermore, the procedure for determining
Geff,j adapts for the second to third order (w.r.t. their influence on the overall
yield) angular and spectral effects. Tmod,j is calculated using the Faiman model
[41] according to 2.28.
In the second step the actual yield is computed. For this a performance matrix
of the PV module is needed, i.e. the Maximum Power Point (MPP) output
power at a set of effective in-plane irradiation Geff and module temperature
Tmod values. For every time step j of the hourly standard reference climatic
profile data, the module output power Pmod,j is then calculated using linear
interpolation. Afterwards, the hourly output power Pmod,j is integrated to an
energy output Emod,period of a given period. Conventionally, the period is one
year such that Emod,year is the annual energy output of a module placed in the
theoretical standard reference climate. The CSER w.r.t. one year is given by

CSER = Emod,yearGref

Hp,yearPmax,STC
. (2.29)

Here, Gref = 1000 Wm−2 is the reference irradiation at STC, Pmax,STC is the
module output power at MPP under STC and Hp,year is the sum of hourly
global in-plane irradiation for the reference climatic profile in the given period
(i.e. the integrated annual energy input). Inserting ηyear = Emod,year/Hp,year and
ηSTC = Pmax,STC/Gref, the definition of the CSER can be written as

CSER = ηyear

ηSTC
. (2.30)

Thus, the CSER gives the performance ratio between the annual average module
efficiency at the reference climatic profile and the STC efficiency. Note, however,
that the CSER can be determined for any given period (e.g. for every month of
the standard climatic profiles).

8The diffuse component of irradiation Dj is given by the difference of global irradiation Gj

and direct component Bj (Dj = Gj − Bj).
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In this chapter an extrapolation method to estimate the module yield under
various climatic conditions from the laboratory CIGS cell performance is presented.
As input for this extrapolation method, measured cell JV characteristics at various
irradiation intensities and temperatures are used. A model to estimate the module IV

characteristic based on the measured cell JV characteristic is developed. As a result,
module IV characteristics at various irradiation intensities and temperatures are
obtained. By fitting appropriate temperature and irradiation coefficients, procedure
2 of the IEC60891 norm (see section 2.3.2) is then employed to obtain a compact,
temperature- and irradiation-dependent model for the module IV characteristic.
Finally, the IEC61853 norm (see section 2.5.5), which defines a set of standardized
reference climatic profiles is implemented. In combination with the Faiman model for
the module temperature (see section 2.5.4), the module performance under the six
standardized climates of the IEC61853 is estimated. Furthermore, the impact on the
climate-specific yield of various cell optimizations is studied.

45
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3.1 Introduction and scientific context

Optimization efforts of Copper Indium Gallium Diselenide Cu(In,Ga)Se2 (CIGS)
solar cells has resulted in a current record efficiency of 23.6% [2]. The performance
of high efficiency CIGS solar cells is validated under Standard Test Conditions
(STC) [43], i.e. under the reference AM1.5G spectrum at GSTC = 1000 Wm−2

and a reference cell temperature of TSTC = 25◦C. Furthermore, also efforts on
optimization simulations and theoretical improvements most often refer to cell
performance at STC [44–46].
Similarly, the performance of PV modules is most often verified at STC
respectively at Nominal Operating Cell Temperature (NOCT) conditions
(GNOCT = 800 Wm−2, Tamb,NOCT = 20◦C) [47]. These standardized conditions
guarantee a comparability of measurements performed all over the world. How-
ever, there has always been a discussion in the PV community about whether
verifying the performance of solar cells or modules at only one or a few operating
conditions is sufficient. As a result, various approaches of rating or modeling
PV module as well as PV array outdoor performance under realistic operating
conditions are described in literature [4, 47–50].
While a share of the PV community already agrees on the necessity to verify
PV module performance under realistic operating conditions, the efficiency
of CIGS solar cells as well as cell optimization approaches still refer to STC
performance. Zinßer et al. showed that cell optimization w.r.t. STC can result
in less yield compared to cell optimization w.r.t. differing conditions based on
typical meteorological year’s irradiation data in different locations [51]. This
finding clearly underlines that a single measurement at STC can not reflect
how a PV module consisting of multiple cells would perform under different
conditions occurring during operation in various climates.
To verify cell performance in terms of expected yield on module level, a first
step is to extrapolate module performance from cell performance. Yousuf et al.
developed a method to extrapolate module from cell performance in case of
Si-based PV modules [52]. For Si-based technologies, cell-to module losses
arise mainly due to resistive losses caused by the cell-to-cell interconnection
[53]. The standard in CIGS glass-based modules is a monolithic cell to cell
interconnection. The extrapolation of CIGS module performance from cell
performance requires realistic assumptions of TCO properties and the P1-
P2-P3 scribing line architecture [54, 55]. Besides additional dead area and
resistive losses, the cell-to-module efficiency gap is further influenced by lateral
inhomogeneities (up-scaling of deposition processes) [53].
The second step is the translation of module performance to location respectively
climate specific conditions. The IEC61853 norm implements six standardized
climatic reference locations [3] depicting typical operating conditions of locations
all over the world. With a suitable way to describe temperature and irradiance
dependencies as well as with a model to describe the effective irradiance and
module temperature one can extrapolate the yield of a PV module operated
in different climates [4]. The standardized nature of the defined conditions
ensures the comparability of the extrapolated yield, setting a reference for yield
calculations.
This chapter presents a model, that extrapolates PV module outdoor performance
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respectively yield in various climates from CIGS cell performance. The presented
results are published in [56].

3.2 Sample preparation
The analysed CIGS solar cell was produced with an alkali-fluoride post-deposition
treatment [57] and the standard Mo/CIGS/CdS/i-ZnO/Al:ZnO architecture at
ZSW (Zentrum für Sonnenenergie- und Wasserstoff-Forschung) in Stuttgart. The
cell has a total TCO thickness of 150 nm and an associated TCO sheet resistance
of 66.7Ω/sq. The front grid covers 2.78% of the cell area Acell = 0.51 cm2.
The cell is characterized with JV characteristics at 9 different temperatures
ranging from 4◦C to 70◦C and 7 different irradiation intensities ranging from
0 to 1300 Wm−2. There, the cell is contacted with metal tips on the front grid
and on the Mo back contact layer next to the cell area. Using procedure 2
of the IEC60891 norm I compute JSC,STC = 31.2 mAcm−2, VOC,STC = 0.72 V,
JMPP,STC = 27.2 mAcm−2 and VMPP,STC = 0.60 V. The cell has a fill factor of
71.9% and an efficiency of 16.24% at STC.

3.3 From cell performance to module perfor-
mance

In the following, the model to estimate the module performance from lab cell
is discussed. For simplicity, the focus lies on first order effects, resulting in
relatively simple models. The CIGS module design used here is based on a
commercial CIGS module. The basic design parameters (i.e. geometric properties
and the TCO sheet resistance) are listed in Tab. 3.1.

Table 3.1: Module design parameters based on a commercial CIGS module.
Here wcell and lcell are the width and length of a cell stripe, respectively, wda
is the dead-area between cells, and Ncell the number of series connected cells.
The overall module dimensions are given by the width Wmodule and the length
Lmodule. The edge removal widths are Eshort and Elong, along the short and long
edges, respectively, and RTCO is the TCO sheet resistance.

wcell 3.0495 mm lcell 117.46 cm
wda 0.2605 mm Ncell 175 -
Wmodule 60.0 cm Lmodule 120.0 cm
Eshort 1.0375 cm Elong 1.27 cm
RTCO 25.0 Ω/sq

3.3.1 TCO series resistance
As the laboratory cell is a small cell contacted with a grid, the series resistance
originating from the electrodes is low. In the monolithically series-connected
thin-film modules, the series resistance originating from the TCO electrode
is higher. In general the design of monolithically series-connected thin-film
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modules is adapted to the TCO sheet resistance as an optimum exists as a trade
off between dead area losses and series resistance losses [58]. In a first-order
approximation the series resistance originating from the TCO electrode of a cell
stripe with width w in the x direction and length l in the y dimension is derived.
It is assumed, that the metal electrode is much more conductive than the TCO,
allowing to neglect this series resistance contribution. The series connection
in the module is achieved such that the TCO electrode is connected to the
back electrode of an adjacent cell at x = w, over the complete length of the
cell stripe. On the other side at x = 0 the TCO electrode is isolated from the
adjacent cell. Homogeneous cell and electrode properties are assumed as well
as, that the current density flow through the cell is uniform over the cell area.
In this case the potential is independent of the y coordinate and the potential
can be described with a one dimensional model. The lateral current in the TCO
electrode is

I(x) = Jclx, (3.1)
where I is the lateral current and Jc is the current density per unit area through
the solar cell. Due to the electrode sheet resistance the electric field in the
electrode is then

E(x) = −I(x)Rsq

l
= −JcxRsq, (3.2)

where Rsq is the electrode sheet resistance. The potential is obtained by integra-
tion of 3.2

V (x) = V0 − JcRsq

2 x2, (3.3)

where V0 is an integration constant. To compute the effective series resistance,
the potential difference between the contact at x = w and the average cell
voltage is considered. The average cell voltage equals

V =
∫ w

0 V (x)x
w

= V0 − JcRsqw2

6 . (3.4)

The series resistance then follows as

Rs = V − V (w)
I(w)

= Rsqw

3l
, (3.5)

where I(w) is the total cell current.

3.3.2 P2 series resistance
In the following the P2 series resistance is estimated. Yoon et al. measured a
contact resistivity on the order of 5 × 10−3 Ωcm2 [59]. Thus, with a P2 scribing
width in the order of 0.01 cm, the series resistance for a 1 cm long cell stripe
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(l = 1 cm), is on the order of 0.5,Ωcm. If a TCO resistance of 25Ω/sq and a
cell width w = 0.4 cm is assumed, a series resistance of 3.33Ωcm is obtained
using 3.5. Thus, for the module design the P2 contribution can be considered
low compared to the TCO sheet resistance contribution and, for simplicity, this
contribution is further neglected.9

3.3.3 TCO Transmission Correction
As listed above in section 3.2, the sheet resistance of the used TCO in the
laboratory cell is 66.7Ω/sq, and the thickness is 150 nm. As a more conductive
TCO is needed for a monolithic interconnection, the additional absorption losses
in the TCO which would result form a thicker TCO need to be estimated.
The TCO sheet resistance is assumed to be inversely proportional to the TCO
thickness. Thus, aiming for a TCO sheet resistance of 25Ω/sq, as listed in Tab.
3.1, a factor 2.668 thicker TCO, i.e. an approximately 400 − nm thick TCO layer
is needed. The transmission coefficient is estimated using a simple Lambert-Beer
law

TTCO(λ) = exp [−α(λ)d] , (3.6)
where α(λ) is the wavelength-dependent absorption coefficient, and d the thick-
ness of the TCO. Thus the transmission ratio equals

T̂TCO(λ) = exp [−α(λ)(dmodule − dcell)] , (3.7)

where dmodule and dcell are the TCO thicknesses in the module and cell, re-
spectively (dmodule = 400 nm and dcell = 150 nm). To estimate the effective
transmission ratio the weighted average over the relevant range of the AM1.5g
spectrum is computed.

T̂TCO,eff =
∫ λ1

λ0
T̂TCO(λ)FAM1.5g(λ)dλ∫ λ1

λ0
FAM1.5g(λ)dλ

, (3.8)

where FAM1.5g(λ) is the spectral photon flux for the AM1.5g spectrum, λ0 and
λ1 mark the start and end of the relevant spectral range of λ0 = 400 nm and
λ1 = 1100 nm. To obtain a TCO with a sheet resistance of 25Ω/sq the effective
transmission results in T̂TCO,eff = 0.9708, i.e. the thicker TCO in the module will
effectively reduce the short circuit current by approximately 3 %.
Finally, the area of the metal grid is considered. As mentioned before, the grid
on the cell covers 2.78 % of the cell area. Hence, most of the additional TCO
absorption losses are compensated by the absence of a grid in the module. The
overall ratio in photo current density is thus expected to be fPh = 0.9708 +
0.0278 = 0.9986. Thus, the cell JV characteristics are corrected using

Jmodule(V ) = Jcell(V ) + JSC,cell(fPh − 1), (3.9)

9In reference [59], the P2 series resistance is deemed a large contribution with respect to
the TCO resistance. However, Yoon et al. derived the expression for the TCO resistance
Rs = Rsqw2/2, which is not correct (compare with 3.5). Note that this erroneous series
resistance expression has the unexpected consequence that the overall TCO resistance is
independent of cell length.
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where, JSC,cell is the measured cell short circuit current density.

3.3.4 Extrapolation of module IV characteristics
Having expressions to correct the cell current density and account for the module
TCO series resistance, the cell JV can be extrapolated to a module IV . The
measured cell JV is considered as a list of current value pairs with index i. Each
cell current density is converted to a corresponding module current

Ii,module = wcelllcellJi,cellfPh. (3.10)

The corresponding module voltages are corrected for the number of series-
connected cells and the added TCO series resistance

Vi,module = Ncell

(
Vi,cell + Rsqwcell

3lcell
Ii,module

)
. (3.11)

Note that the model discussed does not account for cell-to-module losses due
to lateral inhomogeneities usually present due to the up-scaling of deposition
processes. Furthermore, it does not incorporate an additional series resistance
component of the P1P2P3 scribing line structure in addition to the TCO sheet
resistance. To this end, the model does not incorporate all contributions of
the cell-to-module efficiency gap in commercial fabricated CIGS modules and
only focuses on unavoidable losses due to parasitic absorption in the TCO layer,
resistive losses due to the TCO sheet resistance as well as dead area losses.

3.3.5 Resulting Module Performance
The extrapolation method is based on the performance matrix for the cell, where
the cell JV was measured as a function of irradiation and temperature. Using
the extrapolation method described in before, the corresponding module IV
characteristics are computed.
Figure 3.3.1 shows a measured cell JV characteristic and the associated extrapo-
lated module IV characteristic at G = 1000 Wm−2 and T = 28.5◦C. The scaling
adapts for the number of cells (Vm = NcellsVc) and further for the module-to-
cell area ratio (Im = Amodule/Ncells × Jc) to visualize cell-to-module ISC losses
(reduced transparency of the TCO, dead-area losses).
To describe the temperature and irradiation dependencies of the module IV
characteristic, procedure two of the IEC60891 norm is used. The six correction
coefficients as well as the standard solar cell parameters (SSPs), i.e. ISC, VOC,
IMPP and VMPP, at STC are determined from the extrapolated module IV
performance matrix using the four SSPs, irradiation intensity and temperature
of every IV characteristic and three least-squares fits. The correction coefficients
are: α = −5.4×10−4 K−1, β = −2.8×10−3 K−1, B1 = 4.3×10−2, B2 = 9.4×10−3,
RS = 7.3Ω and κ = −2.5×10−5 ΩK−1. Note that the result for the temperature
coefficient for the current (α) is negative, which is also observed for other CIGS
solar cells [60].
The SSPs at STC of the extrapolated module are: ISC = 1.14 A, VOC = 126.7 V,
IMPP = 0.98 A and VMPP = 101.1 V. The module has a fill factor of 68.2% and
an efficiency of 13.73% (total area) respectively 15.77% (active area) at STC.
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Figure 3.3.1: Comparison of cell JV (orange) and module IV (darkblue) at
G = 1000 Wm−2 and T = 28.5◦C. Note that the scaling adapts for the module-to-
cell area ratio (Im = Amodule/Ncells × Jc) and the number of cells (Vm = NcellsVc).

The maximum output power at STC is PMPP,STC = 98.83 W. The extrapolated
module has a nominal output power of Pnom ≈ 100 Wp.

3.4 From module performance to module yield
To extrapolate the module performance respectively the expected yield in the
6 standard reference climates, I use the climate data given by part 4 of the
IEC61853 norm (see section2.5.5). I neglect angular and spectral effects on the
effective in-plane irradiation and assume Geff,j = Gj. For the determination of
the module temperature (Tmod) from wind speed (v), effective in-plane irradiation
(Geff,j) and ambient temperature (Tamb) according to the Faiman model (see
section 2.5.4), the module-dependent parameters u0 and u1 are needed. I use
u0 = 29.8 WK−1m−2 and u1 = 4.79 WsK−1m−3 from a study about the Faiman
model accuracy in different climates [42]. The used parameters u0 and u1
represent the average of the Faiman model fit on half-year module temperature
data of commercial CIGS modules operated in five different climates. Barykina
and Hammer further show that the determined parameters result in a high
accuracy of the module temperature with a bias error less than 1 K and a root
mean squared error less than 2.5 K for all 5 investigated locations [42].
With the hourly values of Geff,j and Tamb,j and assuming an ideal MPP tracker I
compute the expected yield and associated CSER for the 6 standard reference
climates from the module STC performance and the 6 correction coefficients.
Figure 3.4.1 summarizes the monthly yield (blue bars) and monthly CSER (red
dots). The annual energy output Emod,year as well as the overall CSER of the
extrapolated ≈ 100 Wp module for the IEC61853 standard reference climates
are given in the top right corner of each plot and are further summarized in
Tab. 3.2. The high elevation climate shows the highest yield (218 kWh/a) and
the temperate coastal climate the lowest yield (95 kWh/a). The highest overall
CSER can be found for the high elevation climate (103.2%). For all other
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Table 3.2: Annual energy output Emod,year as well as overall Climatic Specific
Energy Rating CSER of the extrapolated ≈ 100 Wp module in the IEC61853
standard reference climates.

reference climate Emod,year CSER
high elevation 218 kWh/a 103.2 %
subtropical coastal 140 kWh/a 94.9 %
subtropical arid 209 kWh/a 92.3 %
temperate coastal 95 kWh/a 98.4 %
temperate continental 123 kWh/a 98.6 %
tropical humid 151 kWh/a 91.1 %

climates, the overall CSER is lower than 100% with the lowest CSER found for
the tropical humid climate (91.1%).
From Fig. 3.4.1 one can further see, that the monthly yield shows a strong
seasonality in temperate coastal and temperate continental climates. In the
high elevation and subtropical arid climate the yield varies much less over the
year. The CSER shows also a strong seasonality in high elevation, temperate
continental as well as in the two subtropical climates. For the tropical humid
and temperate coastal climate I observe a rather constant CSER over the year.
Comparing Fig. 2.5.1 and Fig. 3.4.1 one can see, as expected, that the yield
shows a strong correlation with the monthly energy input Hp. Furthermore, a
strong correlation of mean ambient temperature Tmean with the monthly CSER
can be seen. The overall difference in performance of 12.1% w.r.t. STC efficiency
(difference between overall CSER of high elevation and tropical humid) shows
clearly the necessity of climate-dependent performance considerations for CIGS
(and in general PV) modules.

3.5 Impact of performance changes on module
yield

If I now assume a potential gain in the solar cell parameters at STC or in the
correction coefficients I can determine the associated gain in the overall yield
in the six standard reference climates. I evaluated yield changes by varying all
parameters individually in a range of ±10%. I find that the gain or loss in yield
is linear in the change of all parameters, i.e. linear in a change of VOC and VMPP,
ISC and IMPP and linear in a change of all 6 correction coefficients, respectively
(not shown). For simplicity, I further refer to yield changes with respect to a 10%
gain of the individual parameters. Considering a gain in the photo current (ISC
and IMPP at STC) of 10%, I find a rather constant yield gain between 10.20%
(high elevation) and 10.44% (temperate coastal, not shown) for the six standard
reference climates.
Next I assume a potential gain in the six correction coefficients, i.e. α, β, and
κ are considered to be less negative, while B1 and B2 are considered to be less
positive. For RS I consider a more positive value as a gain, since the coefficient
does not reflect the real series resistance of the device and needs to be interpreted
as a measure of how the series resistance changes with a given condition change
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Figure 3.4.1: Extrapolated performance from CIGS laboratory cell towards an
≈ 100 Wp module for the six standard reference climates of the IEC61853 norm.
The blue bars show the monthly module yield, while the orange dots present
the associated monthly CSER. For the six reference climates the annual yield
varies between 95 kWh/a (temperate coastal) and 218 kWh/a (high elevation).
The overall (annual) CSER varies between 91.1% (tropical humid) and 103.2%
(high elevation).



54 CHAPTER 3. EXTRAPOLATION OF MODULE PERFORMANCE

w.r.t. STC.
Figure 3.5.1 shows the yield gain for a 10% gain of the six correction coefficients.
I find nearly no yield gain due to a 10% gain in κ independent of the reference
climate. In contrast, a 10% gain in β is highly dependent on the climate and
leads to the highest rise in overall yield in warm climates (0.73% in subtropical
arid climate) or even to a yield loss in cold climates (−0.35% in the high elevation
climate). The yield gain resulting from a 10% gain in the coefficients α, RS,
B1 and B2 is also climate dependent and correlates with the reference climates
average temperature Tave,year (α) respectively with the reference climates energy
input Hp,year (RS, B1 and B2) in Tab. 2.1.

Figure 3.5.1: Yield change in the six standard reference climates due to a 10%
gain in the 6 correction parameters α, β, RS, B1, B2 and κ implemented in the
IEC60891 norm.

In the past 20 years, efforts on optimizing CIGS solar cell efficiency has resulted
in a gain of more than 4% absolute, associated with a VOC gain of more than
11% [2]. If I assume a potential increase in VOC (and also in VMPP) at STC on
cell level, I have to consider that a potential gain in VOC would imply a gain
in the temperature coefficient of the voltages β. I can derive the temperature
dependency of the open circuit voltage according to the IEC60891 norm. To
this end I1 = I2 = 0, T2 = T and T1 = TSTC are substituted in 2.19 and,
as I consider the STC reference irradiation, G1 = G2 = 1000 Wm−2 implying
f(G1) = f(G2) = 1. From this it follows that

VOC(T ) = VOC(TSTC)[1 + β(T − TSTC)], (3.12)

where TSTC = 25◦C is the STC reference temperature. I can compare this result
to expressions derived from the standard one-diode equation. The standard
one-diode equation is given in 2.13. Neglecting the influence of series and parallel
resistances, accounting for the temperature dependency of the dark saturation
current given in 2.3.5, rewriting the equation for the current instead of current
density, inserting ISC = IPh and using Eg = Ea as activation energy of the
recombination mechanism (as e.g. the case in SRH recombination) results in

I(V ) = I00

(
T

T0

)3
exp

( −Eg

nidkT

)[
exp

(
V

nidkT

)
− 1

]
− ISC, (3.13)
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where I00 is a constant, T0 is a material specific constant, Eg is the band gap,
nid is the diode ideality factor and k is the Boltzmann constant. By equating
3.13 to 0 and solving for the voltage, I find

VOC(T ) = Eg + nidkT
[
ln
(

ISC

I00

)
− 3 ln

(
T

T0

)]
. (3.14)

Assuming the term T/T0 is close to 1, 3.14 simplifies to

VOC(T ) = Eg + nidkT ln
(

ISC

I00

)
= Eg + AT. (3.15)

Thus, I have two linear expressions for the temperature dependency of the VOC
in 3.12 and 3.15. From this it follows that

A = VOC(T0)β (3.16)

and

Eg = VOC(T0)(1 − βT0). (3.17)

Thus, obtaining a device with an improved open circuit voltage, V ′
OC, whilst

keeping the band gap Eg the same 10, it follows from 3.17 that

β′ = V ′
OC(T0) − VOC(T0)

V ′
OC(T0)T0

+ VOC(T0)
V ′

OC(T0)
β, (3.18)

where β′ is the new temperature coefficient for the voltages. To this end, a gain
in VOC is expected to result in a gain in the associated temperature coefficient
β, i.e. β is expected to be less negative due to a gain in VOC.
Figure 3.5.2 (a) shows the relative yield gain with a 10% gain in VOC and
VMPP with (orange) and without (darkblue) taking the associated gain in β into
account. The associated gain in β leads to an extra yield gain in warm climates
of up to 1.61% (subtropical arid), whereas it leads to a loss in cold climates of
up to −0.77% (high elevation).
Figure 3.5.2 (b) shows the absolute yield gain with a 10% VOC gain with
and without the associated gain in β. I find an absolute yield gain of up to
21 kWh/a (high elevation) not considering the gain in the temperature coefficient
β (darkblue) and of up to 24 kWh/a (subtropical arid) considering the gain in β
(orange). The lowest absolute yield gain I find for the temperate coastal climate
(≈ 9 kWh/a for both cases).
The extrapolated module reflects an ≈ 100 Wp module. With this context, a gain
of one kWh represents ten additional full load hours of operating the PV module.
In Fig. 3.5.3 a monthly resolution of the yield gain due to a 10% gain in VOC and
the associated gain in β is shown. In addition, the absolute change in the overall
CSER is shown. Here, a ∆CSER > 0 depicts an increase in the CSER due to the
VOC gain. I find a strong correlation of the monthly absolute CSER change (red)
and the monthly absolute yield gain (blue bars) for all six climates. The overall

10Note that this assumption also implies, that the dominant recombination mechanism and
with this the activation energy remains the same in the temperature range under consideration.
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Figure 3.5.2: Relative (a) and absolute (b) yield gain in the six standard
reference climates due to a 10% gain in VOC (and VMPP) with (orange) and
without (darkblue) considering the associated gain in the temperature coefficient
of the voltage β.

annual absolute CSER change is negative for cold climates with the highest
change for the high elevation climate (−0.9%) and positive for warm climates
with a change up to 1.1% absolute (subtropical arid and tropical humid). A
VOC gain respectively the associated gain in the temperature coefficient β leads
to less variance in the overall CSER across different climates. The maximum
difference in CSER respectively the maximum difference in performance w.r.t.
STC conditions drops from 12.1% to 10.2%. To this end, a gain in VOC or in the
temperature coefficient β leads to a more stable performance of a PV module
operated in different climates.

3.6 Summary
This chapter has introduced an extrapolation method to calculate module yield
from laboratory cell performance. The presented model is based on fundamental
temperature and irradiation dependent JV characteristics of a CIGS solar cell
measured under laboratory conditions. I have introduced a model to extrapolate
module IV characteristics incorporating associated cell-to-module losses due to
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Figure 3.5.3: Extrapolated ≈ 100 Wp module performance gain with a 10%
gain in VOC and the associated gain in the temperature coefficient β in the
IEC61853 standard reference climates. The blue bars show the monthly gain
in the module yield, while the orange dots present the associated absolute
CSER change ∆CSER. The overall annual yield gain varies between 9 kWh/a
(temperate coastal) and 24 kWh/a (subtropical arid). The overall annual absolute
CSER change varies between −0.9% (high elevation) and 1.1% (subtropical arid
and tropical humid).
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a change of the TCO thickness as well as dead-area losses. In the next step I
employed the temperature and irradiation correction equations from procedure
2 of the IEC60891 norm to determine the standard solar cell parameters (SSPs)
at STC as well as the temperature and irradiation dependencies of the module
IV characteristic. Using the standard reference climatic profiles provided in
the IEC61853 norm, I extrapolated module performance at different climates,
i.e. I determined the expected annual and monthly yield as well as the CSER
(i.e. the overall outdoor performance w.r.t. STC performance) at the 6 reference
climates. The expected annual yield varies between 95 and 218 kWh/a. The
overall CSER varies between 91.1 and 103.2%. These differences of up to 12.1%
absolute in the CSER in different climates underline the necessity to evaluate cell
performance not only with one or a few IV characteristics at specific conditions.
As a final step I quantified how a potential gain in the SSPs and in the 6
temperature and irradiation coefficients is reflected in the overall annual yield.
Such, I quantified how a potential gain on cell level would influence the expected
yield of a module consisting of many cells. For a potential gain in the open
circuit voltage VOC I considered an implied gain in the temperature coefficient
of the open circuit voltage β. This implied gain leads to an additional yield
gain in warm climates with an enhanced VOC. With a suitable approach to
extrapolate module performance from cell performance, the concept is in general
also applicable to other technologies.
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In this chapter, I will present the details and results of a light induced degradation
(LID) experiment on CIGS solar cells. While in literature the focus of LID of
CIGS modules and cells is on metastable changes analysed on time scales ranging
from minutes to hours, the focus of this work is on time scales up to more than
1000 hours. Industrially produced encapsulated CIGS solar cells are exposed for
approximately 1170 hours to light with varied intensity under varied temperature
conditions. Such, I aim to study temperature and light intensity dependencies of the
observed performance changes. Furthermore, I study the influence of applied bias
by comparing LID at short and open circuit. I demonstrate that LID under short
circuit (SC) conditions leads to VOC degradation, while being temperature assisted
and not dependent on the irradiance intensity. CIGS solar cells kept at open circuit
(OC) conditions appear to be stable under illumination. Exploiting the one-diode
model, I further connect the observed temperature assisted performance loss to
enhanced recombination with lower ideality factor, in comparison to the dominant
recombination process before degradation.

59
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4.1 Introduction
Copper Indium Gallium Diselenide Cu(In,Ga)Se2 (CIGS) solar cells achieved
a current record efficiency of 23.6% [2] and have to this degree shown to be
competitive to the more established wafer based technologies. Especially due to
the feasibility of CIGS solar cells in flexible and light weight photovoltaic (PV)
applications, the technology possesses a potential growth in the integrated PV
market, e.g. in the vehicle integrated PV (VIPV) and building integrated PV
(BIPV) market.
Considering warranted lifetimes of PV modules of typically 20-30 years, their
performance stability is for all PV applications one of the most crucial factors
regarding power generation and yield. For conventional glass-glass CIGS modules
the performance degradation has been studied in great detail as comprehensively
summarized in the two review articles from Theelen and Daume [61] respectively
Kettle et al. [62]. Long-term studies on the performance under outdoor conditions,
such as those performed in references [5, 63], are ultimately the best way to
evaluate the stability of CIGS modules as the conditions are closest to realistic
operation conditions. Under outdoor conditions conventional CIGS modules
are shown to experience a performance drop in the beginning of operation
(acclimatization) [5] overlaid with seasonal variations and a linear degradation
[5, 63]. While the research on outdoor degradation shows a clear trend, the
exact causes for the observed acclimatization, seasonality and degradation are
hard to infer from such measured time series. Under outdoor conditions various
factors like temperature, irradiance (long and short wavelength visible as well as
UV), humidity, wind as well as soiling, may influence the modules performance.
Furthermore, the conditions are highly correlated, e.g. PV modules heat up
under illumination, leading to a clear correlation of irradiance and module
temperature.
Laboratory experiments are more suited to study the isolated effects from the
various influences by an accurate control of the degradation conditions, enabling
to decompose effects, that are typically overlaid in outdoor experiments. Hence,
laboratory experiments can be used to elaborate on the insights on degradation
of CIGS modules gained in outdoor studies. Another advantage of laboratory
experiments is the time scale. While outdoor studies have to be performed over
years to make meaningful statements about the stability, laboratory experiments
can provide more extreme conditions (e.g. high irradiance, high humidity, high
temperature) which allow for much shorter time spans.
One aspect of outdoor degradation is the influence of illumination on the CIGS
module performance, i.e. light induced degradation (LID). In literature, effects
of illumination on the performance of CIGS solar cells is mainly focused on
metastable performance changes [64–68] evaluating performance changes over
short time periods, i.e. over minutes to hours. Walkons et al. describe a light
soaking experiment of up to ≈ 135 h on differently produced CIGS solar cells11

[69]. Cells from two different batches produced with different alkali treatments
were subject to the study. Each cell type was exposed to 1000 W/m2 of AM1.5
g light at different temperatures between 50 and 85◦C and short circuit (SC)
as well as open circuit (OC) conditions. Walkons et al. observe an increase in

11Unfortunately it is unclear whether the used samples are encapsulated or not
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VOC upon light soaking under OC and a decrease under SC conditions. An
increased degradation temperature seems to enhance the observed impact on
VOC. Furthermore, RbF Post deposition treatment (PDT) is shown to lead to
more stable performance under illumination [69].
In this work I systematically study the dependency of light induced degradation
(LID) of CIGS devices on the light intensity, temperature and bias condition on
a time scale of more than 1000 hours. I expose a set of industrially produced and
encapsulated CIGS solar cells to light under different illumination intensities,
temperature and bias conditions. To gain insights on the interplay of light and
temperature I expose the solar cells to three different temperatures between 25
and 70◦C and four light intensities between 0 and 1000 W/m2. All combinations
of temperature and light intensity are studied, keeping one set of cells at SC
and another set of cells at OC. With frequent in situ JV measurements as well
as with a detailed ex situ characterization before and after ≈ 1170 h of light
exposure I show, that the conditions during light exposure strongly influence
the observed performance changes.
Before I discuss the experiments in detail I first give a small overview of laboratory
(accelerated) degradation testing and the theory behind the observed degradation
and the metastable changes in Section 4.2. In Section 4.3 I comprehensively
explain the measurement procedure, describe the sample preparation and discuss
the used set-ups. Section 4.4 displays the main results structured in the solar
cells performance before LID, the in situ observed changes and the ex situ verified
comparison of the solar cells performance before and after LID. In Section 4.5 I
derive deeper insights on the observed changes employing the one-diode model.
Finally, in Section 4.6 the major results are summarized and an outlook on
future work is given.
This chapter presents temperature, bias and light intensity dependent laboratory
LID experiments on encapsulated CIGS solar cells. The presented work is
published in [70].

4.2 CIGS Degradation, Accelerated Testing
and Metastabilities

Long-term degradation studies, such as those in references [5, 63], are both
tedious and expensive. Ideally, the duration of such long-term degradation
studies would be oriented towards the module lifetime itself, however, with a
warranted lifetime of PV modules of typically 20-30 years this is unfeasible.
Consequently, such studies are limited to one or a few years, which may be
enough to study the mayor effects in long-term degradation. Arguably, the
economic lifetime of PV modules is likely much shorter [71]. However, one
of the reasons that the economic lifetime of PV modules is much shorter is
the technological advances over time [71], which in turn implies a risk that
the outcome of a long-term degradation experiment is outdated before it is
completed. Research on degradation of CIGS modules (and PV modules in
general) tends to focus on accelerated aging tests, evaluating the susceptibility
of the modules to common causes of degradation in operation.
Damp Heat (DH) testing quantifies their susceptibility to humidity and tem-
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perature [72–79]. In general a performance loss is observed under DH, which is
associated with a decrease in open circuit voltage (VOC), short circuit current
(ISC), fill factor (FF), and shunt resistance (Rsh), as well as an increase in series
resistance (RS). The performance loss ratios appear to be highly dependent on
the packaging material, encapsulant as well as the solar cell stack itself (e.g. TCO
and buffer layer). Suitable packaging and encapsulation materials can prevent
high performance loss ratios due to humidity ingress leading to an enhanced
series resistance, i.e. TCO [72–76] respectively molybdenum back contact [77–79]
degradation. Furthermore, enhanced shunting due to DH treatment is observed
[75, 76].
Potential induced degradation (PID) accelerated aging tests on CIGS modules
quantify the susceptibility of PV modules to high system voltages common
in medium to large PV systems. In literature several studies quantify the
performance loss due to PID [80–87]. As for DH treatments the performance loss
ratios due to PID are highly dependent on the design and production process of
the CIGS module, where a performance drop to close to 0% as well as nearly no
performance drop is observed after 50 h of PID for differently produced devices
Fjällström et al.. Here, high performance loss rates are associated with a large
drop in VMPP associated with a large VOC degradation. Further studies on PID
find increased bulk and interface defect concentrations [81], a decreased bulk
doping concentration [82] as well as an increase in the series resistance due to
TCO degradation [84, 85]. Furthermore, PID appears to be dependent on the
applied bias condition of the PV module, where faster degradation rates are
found for short circuited modules w.r.t. open circuited modules [86]. Fjällström
et al. further observe non-permanent PID with restored electrical performance
close to initial performance after storage in darkness or reversing the electric
field that led to the PID [87].
The observed reversibility of PID introduces another complexity. Observed
performance changes of CIGS solar cells and modules have to be considered in
the context of metastabilities. The metastable nature of CIGS solar cells has
already been observed decades ago [64]. Phenomenological it has been found,
that CIGS solar cells and thin films exhibit persistent photoconductivity (PPC)
due to illumination [88]. Furthermore, under white light illumination (light
soaking) a gain in VOC, FF and capacitance has been observed [64–68], where
the gain in capacitance as well as in conductivity is attributed to yellow light
illumination (absorption in the CIGS absorber) [68, 89, 90] and the gain in FF
attributed to blue light illumination (absorption in the CdS buffer layer) [91].
Under forward bias CIGS solar cells are shown to exhibit a gain in VOC as well
as in capacitance [64–66, 92–94].
Recent studies on metastabilities in CIGS solar cells have shown, that the
amplitude of observed metastabilities is dependent on the production process
[69, 95, 96]. Repins et al. examined CIGS metastabilities due to light soaking
on devices produced with different buffer layers. The efficiency of the differently
produced CIGS solar cells is found to be anti-correlated with the amplitude
of metastable VOC changes due to light exposure, where high-efficient solar
cells exhibit a less metastable nature [95]. Walkons et al. showed, that, while
temperature assisted (at 65◦C) light soaking at open circuit has a beneficial
effect on VOC, temperature assisted light soaking at short circuit conditions has
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a negative impact on the performance of different CIGS devices [69].
The most common theory in literature to explain the metastable behaviour of
CIGS solar cells is based on a selenium copper divacancy defect complex (VSe −
VCu) in the CIGS absorber first proposed by Lany and Zunger [97]. According
to Lany and Zunger the VSe − VCu defect complex has two configurations, that
act as shallow donor and shallow acceptor respectively. Which configuration
of the defect complex is dominant depends on the position of the Fermi-level
within the bandgap. With a Fermi-level close to the valence band (as in
typically p-type CIGS absorbers) the shallow donor configuration is dominant,
although the metastable equilibrium of the defect configuration may be shifted
by (photo-generated) free electrons. While the presence of such a metastable
defect configuration seems to be consistent with literature it has been shown,
that this explanation alone is not sufficient to explain the observed magnitude
and timescale of observed metastabilities [98–100].
The high attention in literature on studying DH, PID and metastabilities of
CIGS devices indicates that it is a challenging task to gain more insight into
the underlying mechanisms. There are several links that copper-, alkali- and
in general ion-migration into the device seems to play a crucial role regarding
degradation [75, 76, 80–85] and metastable changes [101–103]. The crucial role
of alkali elements is underlined by the recent improvements in efficiency achieved
by incorporating alkali-fluoride (i.e. RbF) in post deposition treatments (PDT)
[104, 105], leading to a substitution of sodium with heavier and less mobile
rubidium atoms. Beside the increased efficiency, RbF PDT seems to reduce the
amplitude of the metastable behaviour of CIGS solar cells under light exposure
[69].
The analysis of ion migration and changed concentrations of for example sodium
or copper due to DH, PID, bias or light exposure gains valuable insights on
how the stoichiometry in CIGS solar cells affects its performance. However,
the influence of e.g. increased sodium content on the band structure or on
shallow and deep defect concentrations are not fully understood. Furthermore,
a stoichiometric analysis always reflects only a small share of the solar cell not
being able to track lateral variations. Because of the variety and complexity of
the reactions during the production of CIGS thin films, the low comparability
of different cells from different production lines used in different studies impedes
the interpretation.

4.3 Experimental
In total 24 CIGS solar cells are exposed to light induced Degradation (LID).
During the LID for 1170 h, 12 cells are kept in short circuit (SC) and 12 cells
are kept in open circuit (OC) conditions. Both sets of 12 samples are degraded
under 12 different combinations of 3 temperatures (T1 = 25◦C, T2 = 50◦C, T3 =
70◦C) and 4 irradiation intensities (G0 = 0.0%, G1 = 13.5%, G2 = 47.3% and
G3 = 100.0% of one sun equivalent irradiation). To create an irradiance level
of 13.5 respectively 47.3% I use neutral density (ND) filters. The spectral
transmittance of the used ND filters is depicted in Fig. 4.3.1. Using the AM1.5G
photon flux, I find an effective transmittance of Teff,AM1.5G,1 = 13.53 % and
Teff,AM1.5G,2 = 47.30 % for the two used ND filters.
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Figure 4.3.1: Transmittance of the used ND filters in the wavelength range
between 300 and 1300 nm. Using the AM1.5G photon flux, I find an effective
Transmittance of Teff,AM1.5G,1 = 13.53 % and Teff,AM1.5G,2 = 47.30 %.

4.3.1 Sample preparation

The used samples are cut from two industrial produced flexible 308 × 44mm2

CIGS solar cells from MiaSolé that were commercially acquired [106]. The solar
cells are produced on a stainless steel substrate used as back contact and the
front contact is established using MiaSolé’s Ultrawire interconnect technology.
From each solar cell I cut 16 similar solar cells with a width of wcell = 44.0 mm
and a length of lcell ≈ 12.0 mm. Each solar cell is then contacted with aluminium
busbars using a commercial isotropic conductive adhesive and encapsulated by
vacuum lamination using a standard layer stack comprising all commercially
available flexible frontsheet, flexible backsheet and polyolefin based encapsulants.
OMEGA 5SC-TT-K-36-36 thermocouples are placed at the centre of the back
contact of each cell and encapsulated within.
In total 32 CIGS solar cells were prepared. All 32 cells were characterized
using EL and PL imaging as well as with a JV characteristic at standard test
conditions (STC, T = T1 = 25◦C and G = G3). Afterwards I selected 24 of the
32 cells for the light induced Degradation (LID) experiments aiming to have
the most comparable performance throughout the used solar cells. As described
the 32 cells are cut from two industrial produced cells. Since during the LID
I keep 12 cells in SC and 12 cells in OC, I chose for each condition to use 12
cells, which are cut from the same solar cell. I selected 12 out of 16 cells for
both conditions12. I first excluded solar cells with visible defects in the EL
respectively PL images. Furthermore, I chose the 12 samples with the most
similar fill factor (FF) of around 73% at standard test conditions (STC).

12Note, that both used solar cells are from the same production line ensuring a comparability
of the results obtained at OC and SC.
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4.3.2 ex situ measurements
After the sample selection I installed the samples in the sample holder, consisting
of a copper block (for tempering with a refrigerated/heated bath circulator) and
an anodized aluminium block (for holding the ND filters and reducing stray
lights). The solar cells are fixed in between the two blocks and soldered to four
pin connectors to ensure a steady and low external series resistance during all
electrical measurements. Afterwards the solar cells are kept in dark storage for
one week till the characterization before the LID.
Directly before and after the LID as well as two weeks after the LID the CIGS
solar cells are characterized with a steady state WACOM WXS-140S-Super sun
simulator with class A accuracy of the AM1.5G solar spectrum (details on the
used set-up can be found in Section 2.4.1). The JV characteristic of every cell
is measured at 12 different conditions (at G0, G1, G2 and G3 as well as T1, T2
and T3). I start at T1 and measure the JV characteristics at G0, G1, G2, G3
and again at G0 followed by measurements at T2 and T3 in the same order of
irradiation levels. The irradiation levels are achieved using the same filters as
during the LID with the transmissions shown in Fig. 4.3.1. In between the
measurements at different temperatures the cells are tempered using a climate
chamber.
After the JV characterization, the cells are further characterized with EL and PL
images. To this end I use a Princeton instruments Nirvana 640 Indium Gallium
Arsenide (InGaAs) camera. The camera is equipped with a 1050 nm band-pass
filter with a full width half maximum of 30 nm to block the 808 nm laser bias
illumination for the PL experiments. The integration time is set to 100 ms and
for both EL and PL, a background image is subtracted. The electrical bias of
0.75 V during the EL experiments is provided by a Keithley 238 high current
source measurement unit (SMU). To allow for the sample to reach steady state
conditions, the image acquisition starts ≈ 25 s after the solar cell is biased. For
more details on the used photo- and electroluminescence set-up see Section 2.4.2.

4.3.3 Light induced degradation set-up and in situ mea-
surements

To ensure constant degradation temperatures the sample holders are thermally
decoupled from the set-up and the temperature of the refrigerated/heated bath
circulators as well as the room temperature are tracked with PT100 temperature
sensors. As light source I use a metal halide lamp HMI 4000 W/DXS - Osram
6000K with a long pass filter of 390nm that blocks ultraviolet (UV) light. The
set-up is shielded from external light sources and the irradiation level is tracked
with a silicon photodiode in the middle of the illuminated area. The homogeneity
of the irradiation is verified at the positions of the cells with two reference cells
(PRC Krochmann GmbH PRC911214/1 and PRC911214/2 with a BG17 filter
of a size by 2 cm x 2 cm) before and directly after the LID to deviations below
±3.3%. I observe an increased intensity as well as a yellow shift over the course
of the 1170 hours of LID. The total intensity measured by PRC1 increased by
+0.7% and the filtered short wavelength intensity measured by PRC2 decreased
by −4.7%. For more details on the used LID set-up see Section 4.
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For the complete duration of 1170 h of the LID the samples are not moved to a
different set-up and only characterized in situ. Each solar cell is characterized
every 24 minutes with an JV characteristic at the specific conditions the cell
is degraded at. In between the JV measurements the samples are kept under
the respective OC and SC conditions, where the connected cable ends are
either open or connected to each other by a relay control. This means that
the cable resistance determines the operating point for the cells kept in SC.
The temperatures of the cells are tracked for every JV measurement with
the encapsulated thermocouples. Due to the laboratory environment and the
constant light source, the humidity can be considered very low during the LID.
Furthermore, the samples are encapsulated ensuring no effects originating from
water ingress.

4.4 Results

4.4.1 Performance before LID
Before the LID all 24 cells show a good and very similar performance. Table
4.1 summarizes the mean and standard deviation of the standard solar cell
parameters (SSPs), i.e. VOC, JSC, VMPP and JMPP, measured under STC for
the 24 used solar cells. For the open circuit voltage (VOC) at STC I find a
mean of 739.5 mV and a low standard deviation of 2.4 mV among the 24 cells.
The maximum power point voltage (VMPP) at STC shows a comparable scatter
(σVOC = 2.5 mV) with a mean of 596.7 mV. A larger scatter is observed for the
short circuit and maximum power point current densities (JSC and JMPP) at
STC with a mean of 33.8 mA/cm2 respectively 30.6 mA/cm2. This I attribute
to the variations in the sample preparation described in Section 4.3.1. I assume
constant dimensions given in Section 4.3.1, but deviations in the cell length and
therefore in the cell area occur due to the cutting process. I find a standard
deviation of 2.4% and 2.6% in JSC and JMPP respectively. Regarding the FF
at STC I find very low scatter with a mean of 73.0% and a standard deviation
of 0.6%. To compare the efficiency without the dominating effect of varying
JSC and JMPP I correct the current density values of every individual STC
measurement with the ratio of mean to measured JSC. This way, I find an
efficiency of ηcorrected = 17.83 ± 0.14% for the 24 solar cells .

Table 4.1: Standard solar cell parameters of the CIGS solar cells at STC before
LID

VOC 739.5 ± 2.4 mV VMPP 596.7 ± 2.5 mV
JSC 33.8 ± 0.8 mA/cm2 JMPP 30.6 ± 0.8 mA/cm2

FF 73.0 ± 0.6 % ηcorrected 17.83 ± 0.14 %

To further demonstrate the comparability in performance of the 24 solar cells
Fig. 4.4.1 shows the JV characteristics of all 24 cells at STC conditions. Note
that the current densities are normalized with JSC to remove the effect of varying
cell area. As described in Section 4.3.2 all 24 cells are characterized at the sun
simulator at 11 further conditions. Regarding the scatter within the batch of
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used solar cells for the performance at the other G and T conditions I find similar
relative standard deviations (not shown) as for the case of the comparison shown
for STC.

Figure 4.4.1: JV characteristics of the 24 used CIGS solar cells at STC. The
current density is normalized to the individual short circuit current densities
JSC.

4.4.2 Degradation of the SSPs (in situ)
In situ the CIGS solar cells are characterized with an JV measurement every
24 minutes at the specific conditions the cell is degraded at like described in
Section 4.3.3. First of all I observe no clear trend of decrease or increase in JSC
respectively JMPP for all monitored cells13. Variations in JSC respectively JMPP
occur mainly due to variations in the intensity of the light source and show a
similar pattern for all monitored cells (not shown).
The development of the open circuit voltage VOC and maximum power point
voltage VMPP exhibit a systematic evolution over time, depending on the bias
conditions. For simplicity I concentrate on VOC hereinafter. Figure 4.4.2 (a)
shows ∆VOC, the difference between the in situ measured VOC and the first
respective measured VOC after the start of LID 14 for the nine cells degraded at
open circuit conditions and at irradiation intensities G > 0. I observe a clear
trend of increasing VOC for the first few hours of LID at open circuit conditions
for all 9 cells. For the 3 cells degraded at T1 = 25◦C (dark blue) this increase is
observed over the whole duration of LID of about 1170 hours. For the 3 cells
degraded at T2 = 50◦C (yellow) the increase in VOC saturates after approximately

13Note that 6 cells (SC and OC at 3 different degradation temperatures) are not illuminated
and therefore the SSPs can not be analysed in situ.

14Note that I always compare VOC to the first measurement of the respective cell. Since the
cells are measured after each other in an interval of ≈ 1 min the first respective measurement
takes place in between 0 min < t < 24 min after the start of LID. The order of measurements is
oriented on the degradation temperature, where the cells degraded at T3 = 70◦C are measured
first, followed by the cells degraded at T2 = 50◦C and the cells degraded at T1 = 25◦C.



68CHAPTER 4. LIGHT INDUCED DEGRADATION OF CIGS SOLAR CELLS

400 hours of degradation. For the 3 cells degraded at T3 = 70◦C (orange) the
steep increase in VOC within the first 40 hours of LID is followed by a less gradual
decrease of VOC. Furthermore, after approximately 78 hours of LID I observe
an increased VOC for around 35 hours, this coincides and is explained with a
failure of the T3 = 70◦C water cooling/heating system and resulting slightly
lower cell temperatures (∆T = 4 − 8K depending on the sample). Comparing
the development of ∆VOC of cells degraded at the same degradation temperature
and different irradiation intensities I observe a change in amplitude of the effects
and trends described. Cells degraded at higher irradiation intensities show higher
absolute changes in VOC.

Figure 4.4.2: Absolute change in open circuit voltage ∆VOC due to LID at (a)
open circuit and (b) short circuit conditions. The color indicates the degradation
temperatures, i.e. dark blue corresponds to T = T1 = 25◦C, yellow to T =
T2 = 50◦C and orange to T = T3 = 70◦C. With the markers I differ for the
irradiation levels of G = G1 = 13.5% (triangles), G = G2 = 47.3% (squares) and
G = G3 = 100% (circles) during degradation.

Figure 4.4.2 (b) shows the development of ∆VOC for the nine cells degraded
at short circuit conditions at irradiation intensities G > 0. Contrarily to the
case of the samples degraded at OC I do not observe an increase in VOC in the
first few hours of LID. For the 3 cells degraded at T1 = 25◦C (dark blue) I
observe a slow decrease of VOC with a saturation towards the end of the 1170
hours of LID. The VOC of the 3 cells degraded at T2 = 50◦C (yellow) is rather
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stable during LID, with a slight decrease in VOC at the start of LID. The biggest
change in VOC is observed for the 3 samples degraded at T3 = 70◦C (orange)
at short circuit conditions, where ∆VOC appears to be stable for the first few
hours of LID followed by a steady decrease down to −40 mV (G = G1), −45 mV
(G = G3) respectively −60 mV (G = G2)15. Furthermore, for some samples I
observe a sharp increase respectively a sharp decrease of varying amplitudes, e.g.
in the case of the sample degraded at open circuit at T = T1 and G = G1 (dark
blue triangles in Fig. 4.4.2 (a)) after approximately 300 hours of LID.

4.4.3 Degradation of the SSPs (ex situ)
As described in Section 4.3.2 all CIGS solar cells are characterized with JV
characteristics at 12 conditions as well as with EL and PL images directly before
(pre LID), directly after (after LID) and 2 weeks after the LID, where the cells are
kept in dark (after dark storage, DS). Figure 4.4.3 (a) shows the change in VOC
at STC due to LID at open circuit conditions. All cells degraded at open circuit
conditions show a low absolute change in VOC after LID between ±15 mV. I
observe a tendency for a positive ∆VOC with increasing degradation temperatures.
∆VOC is positive for seven out of 8 samples degraded at T2 = 50◦C (yellow) or
T3 = 70◦C (orange), while ∆VOC is negative for two out of four samples degraded
at T1 = 25◦C (dark blue). Comparing these results to Fig. 4.4.2 (a) I find a
lower (or even negative) ∆VOC for the ex situ analysis in comparison to the last
in situ measurements for the majority of the samples. I attribute this effect
to a metastable increase in VOC due to illumination during the LID (see also
Section 4.2) as well as to a slightly different irradiation intensity and spectra
in the two set-ups. Furthermore, the ∆VOC shown in Fig. 4.4.2 are verified at
the respective degradation conditions, impeding the comparison to the ∆VOC
verified ex situ at STC. After two weeks of dark storage (DS) I observe a slight
enhancement of the VOC for the majority of cells. Regarding the dependency
from the illumination intensity during LID I do not observe a clear trend.
For the cells degraded at short circuit conditions I observe a very different
degradation behaviour of VOC as shown in Fig. 4.4.3 (b). ∆VOC is negative
for all 12 cells degraded at short circuit conditions. The absolute VOC loss
for the cells degraded under G = G0 = 0% (stars) is small and comparable
to the amplitude of VOC change for the case of the cells kept in open circuit
during LID (Fig. 4.4.3 (a)). For the 9 cells degraded at short circuit and light
intensities G > 0% I observe a high loss in VOC. The loss is highest for the cells
degraded at T3 = 70◦C (orange) with a ∆VOC between −70 and −100 mV. For
the cells degraded at low or medium temperature (T1 = 25◦C in dark blue and
T2 = 50◦C in yellow) I observe a VOC loss in between −25 and −40 mV absolute.
Again regarding differences due to the illumination intensity during LID I do
not observe a clear trend. Comparing these results to Fig. 4.4.2 (b) I find
similarly to the OC case a lower (more negative) ∆VOC for the ex situ analysis
in comparison to the last in situ measurements for all samples. As before, I
attribute this to metastabilities as well as to the difference in the conditions

15Note that after 78 hours of LID I also observe an increased VOC for around 35 hours due
to failure of the T3 = 70◦C water cooling/heating system and resulting slightly lower cell
temperatures (∆T = 4 − 8K depending on the sample).
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Figure 4.4.3: Absolute change in open circuit voltage ∆VOC at STC due to LID
at (a) open circuit and (b) short circuit conditions. The colour indicates the
degradation temperatures, i.e. dark blue corresponds to T = T1 = 25◦C, yellow
to T = T2 = 50◦C and orange to T = T3 = 70◦C. With the markers I differ
for the irradiation levels of G = G0 = 0% (stars), G = G1 = 13.5% (triangles),
G = G2 = 47.3% (squares) and G = G3 = 100% (circles) during degradation.

during the measurements. Analogous to the cells degraded at open circuit, for
the cells degraded at short circuit I observe a slight enhancement of the VOC for
the majority of cells after two weeks of dark storage.
Figure 4.4.4 shows the absolute change in JSC due to LID for all 24 degraded
CIGS solar cells. With the exception of one cell (Degradation at G = G0 and
T = T3) all cells degraded under short circuit conditions (Fig. 4.4.4 (b)) show
nearly no change in short circuit current density after LID (−0.1 mA/cm2 <
∆JSC < 0.15 mA/cm2). For the cells degraded at open circuit (Fig. 4.4.4 (a))
I find a slightly reduced short circuit current density after LID (changes up
to −0.65 mA/cm2). I find no clear trend of degradation light intensity and or
temperature. Note that even the highest absolute change in JSC corresponds
to a small relative change of less than 2% (compare with Tab. 4.1). After two
weeks of DS I observe for the majority of cells a slight enhancement of JSC w.r.t.
the STC measurement directly after the LID.
The maximum power point voltage VMPP at STC shows similar changes as
VOC at STC for all degraded cells, where cells degraded at short circuit and
T = T3 = 70◦C exhibit the highest VMPP loss and all cells degraded at open
circuit show only slight changes in VMPP (not shown). For the maximum power
point current density JMPP at STC I observe a slight loss (between −0.02 and
−0.76 mA/cm2) after LID for the cells degraded at open circuit (not shown)
and by this similar absolute changes observed for JSC. For cells degraded at
short circuit I also observe only slight changes (−0.35 mA/cm2 < ∆JMPP <
0.15 mA/cm2, not shown), where a loss in JMPP is correlated to the loss in VOC
(Fig. 4.4.3) and highest for the cells degraded at T = T3.
Regarding the absolute change in efficiency at STC ∆η in Fig. 4.4.5 I observe,
that all cells degraded at open circuit exhibit small changes due to LID (−0.5% <
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Figure 4.4.4: Absolute change in short circuit current density ∆JSC at STC due
to LID at (a) open circuit and (b) short circuit conditions. To differ between all
degradation conditions I use the same colour- and marker scheme used before in
Fig. 4.4.2 and Fig. 4.4.3.

∆η < 0.5%). For the cells degraded at short circuit I observe a loss in STC
efficiency of up to −3.1% absolute. Comparing Fig 4.4.5 and Fig. 4.4.3 I observe,
that the loss in efficiency is mainly connected with the loss in VOC respectively
VMPP.

Figure 4.4.5: Absolute change in efficiency ∆η due to LID at (a) open circuit
and (b) short circuit conditions. To differ between all degradation conditions I
use the same colour- and marker scheme used before in Fig. 4.4.2 - 4.4.4.

4.5 Discussion
The results presented in Section 4.4 show that LID appears to be strongly
dependent on the conditions CIGS solar cells are degraded at. The performance
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of CIGS solar cells after 1170 hours of LID under open circuit conditions appears
to be more or less stable with overall efficiency changes of less then ±0.5%
absolute. For LID under short circuit conditions I find an efficiency drop of
up to −3.1% absolute caused by a loss in VOC respectively VMPP. This drop in
efficiency seems to be more or less independent of the degradation light intensity,
while the degradation temperature appears to be crucial for the underlying
mechanisms. The cells degraded at low (T = T1 = 25◦C) respectively moderate
(T = T2 = 50◦C) temperatures degrade much less then cells degraded at high
temperature (T = T3 = 70◦C) conditions.
By now I only used the SSPs to evaluate changes due to LID. To further
investigate the observed VOC drop I use the open source PV-CRAZE library
[31] described in detail in Section 2.3.3. PV-CRAZE provides a robust fitting
algorithm for the one-diode model according to Shockley [107]. The current
density voltage relation for a p-n junction reads:

J(V ) = Jph − J0

 exp
(

V + J(V )RSA

nidkT/q

)
− 1

− V + J(V )RSA

RshA
, (4.1)

where Iph represents the photo generated current density, RS respectively Rsh
series respectively shunt resistance of the device, nid the diode ideality factor, A
the cell area, q the elementary charge, k the Boltzmann constant and

J0 = J00

(
T

T0

)3
exp

( −Eg

nidkT

)
(4.2)

the dark saturation current density. Note that, I use 2.13 from Section 2.3
and account for area correction of the series and shunt resistance in 4.1 16. As
expected I find a strong correlation of Jph and JSC, i.e. only small changes in Jph
due to the LID are observed (not shown). Figure 4.5.1 shows the development
of RS for all 24 cells derived from the JV characteristics measured under STC
directly before and after LID as well as after 2 weeks of DS. I find a clear trend
of increasing series resistance after LID for the cells kept under short circuit
conditions (see Fig. 4.5.1 (b)). For the series resistance of the cells degraded
at open circuit conditions I find no clear trend (see Fig. 4.5.1 (a)). Overall
the observed changes and absolute value of the series resistance is small for the
whole batch with a maximum of 0.21Ω. Furthermore, due to the definition of
the open circuit voltage (J(VOC) = 0) an increased series resistance can not be
the cause for the observed drop in VOC.
For the comparison of the shunt resistance before and after LID as well as after
dark storage I do not observe a clear trend regarding the degradation conditions
(not shown). The shunt resistance varies within the batch of solar cells in a range
of 200 to 1000Ω (outliers only occur to higher resistances) and to this end in a
range, which has slight to no negative influence on the solar cells performance.
Figure 4.5.2 shows the determined dark saturation current density J0 for all
cells before, after and after two weeks of dark storage after LID. Contrary to
the observed VOC loss in cells degraded at short circuit (see Fig. 4.4.3 (b)) J0
tends to increase only slightly for the cells degraded at open circuit (Fig. 4.5.2

16This results in units for series and shunt resistance in Ω rather than Ωcm2
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Figure 4.5.1: Series resistance RS determined from a one-diode model fit to JV
characteristics measured at STC conditions before and after LID as well as after
two weeks of dark storage for the cells kept at (a) open circuit and (b) short
circuit conditions during LID. The colour indicates the degradation temperatures,
i.e. dark blue corresponds to T = T1 = 25◦C, yellow to T = T2 = 50◦C and
orange to T = T3 = 70◦C. With the markers I differ for the irradiation levels of
G = G0 = 0% (stars), G = G1 = 13.5% (triangles), G = G2 = 47.3% (squares)
and G = G3 = 100% (circles) during degradation.

(a)), while a rather constant J0 is observed for the cells degraded at short circuit
(Fig. 4.5.2 (b)). Beside the dark saturation current density J0 the diode ideality
factor nid is essential to describe recombination in solar cells according to the
one-diode model. Figure 4.5.3 shows the determined diode ideality factor for all
24 cells. First of all I observe high ideality factors between 1.85 and 2.3 before
LID. After LID the majority of cells degraded at open circuit show an enhanced
ideality factor (Fig. 4.5.3 (a)), while the majority of cells degraded at short
circuit exhibit a reduced ideality factor (Fig. 4.5.3 (b)).
To put the combined effects of the observed changes in J0 and nid into context I
define a recombination current density Jx as

Jx = J0 exp qVx

nidkT
, (4.3)

which is the total recombination in the device as a fixed internal voltage Vx
(i.e. voltage over the diode without series resistance). Figure 4.5.4 shows the
recombination current density Jx at Vx = 0.7 V and the from the one-diode model
determined J0 and nid (Fig. 4.5.2 and 4.5.3). Note that I choose Vx = 0.7 V to
show the recombination current close to the initial VOC (the mean VOC across
the used batch of CIGS solar cells before LID is 739.5 mV, see Tab. 4.1). I
observe a strong correlation of Jx with the observed change in VOC and efficiency
η (see Fig. 4.4.3 and 4.4.5). I conclude, that LID of CIGS solar cells at short
circuit leads to an enhanced recombination and associated open circuit voltage
and efficiency loss.
It is interesting to note that the degradation on VOC is associated with a reduction
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Figure 4.5.2: Dark saturation current density J0 determined from a one-diode
model fit to JV characteristics measured at STC conditions before and after
LID at (a) open circuit and (b) short circuit conditions as well as after two
weeks of dark storage (DS). To differ between all degradation conditions I use
the same colour- and marker scheme used before in Fig. 4.4.2 - 4.5.1.

Figure 4.5.3: Diode ideality factor nid determined from a one-diode model fit
to JV characteristics measured at STC conditions before and after LID at (a)
open circuit and (b) short circuit conditions as well as after two weeks of dark
storage (DS). To differ between all degradation conditions I use the same colour-
and marker scheme used before in Fig. 4.4.2 - 4.5.2.



4.6. SUMMARY AND OUTLOOK 75

Figure 4.5.4: Recombination current density Jx = J0 exp qVx
nidkT

at Vx = 0.7 V
determined from a one-diode model fit to JV characteristics measured at STC
conditions before and after LID at (a) open circuit and (b) short circuit conditions
as well as after two weeks of dark storage (DS). To differ between all degradation
conditions I use the same colour- and marker scheme used before in Fig. 4.4.2 -
4.5.3.

in the ideality factor. This indicates that the increased recombination rate is due
to a process with ideality factor 1. This in turn is an indication that additional
recombination centres are located in quasi-neutral regions of the device (i.e. not
within the depletion region) or are shallow traps[108]17.

4.6 Summary and Outlook
The presented work describes a detailed study of temperature, bias and intensity
dependent light induced degradation of industrially produced encapsulated
CIGS solar cells. The results show, that the bias condition is crucial w.r.t.
observed performance changes, where cells kept in OC appear to be stable
under illumination and cells kept in SC exhibit a performance drop of up to 3%
absolute (efficiency at STC) within 1170 h of light exposure. The performance
drop is shown to be dependent on the temperature condition during LID, while
being more or less independent on the irradiation intensity. Furthermore, it is
observed that the overall recombination rate increases and, at the same time,
the ideality factor is reduced. This indicates that the increased recombination
rate is due to a process with ideality factor 1, consistent with recombination
centres located in quasi-neutral regions of the device. Due to the observed big
discrepancy between performance stability at OC and SC, and the fact that
CIGS modules are operated somewhere between these extreme bias conditions
(optimally at MPP), future work should concentrate on filling this gap, aiming

17The derivation in Section 2 of the paper from Pieters et al. focuses on the activation energy
of recombination in p-i-n devices. However, the derivation is valid for Shockley-Read-Hall
(SRH) recombination in general, and, the paper also discusses the spatial and energetic
variation of the ideality factor of SRH recombination.
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to depict a bias condition closer to real operation scenarios. Furthermore, from
the results obtained it remains unclear, if the observed performance loss under
SC conditions is permanent or if the underlying processes are reversible with
e.g. LID under OC conditions (metastable behaviour). To this end future work
should also investigate how the performance of CIGS solar cells develops due to
LID under switched conditions and, if the processes are found to be reversible,
on which time scales metastable effects influence the performance.
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In this chapter, I will present two different approaches to filtering PV out-
door data. The first approach leverages correlations in the various dimensions of the
data. By fitting appropriate physical models to utilize these correlations, implausible
data, i.e., data where the different dimensions do not correlate according to the
physical models, can be identified due to high deviations from expectations. The
Mahalanobis distance (see Section 2.1.2) is used to quantify this deviation in terms of
standard deviations.
The second approach focuses on filtering PV outdoor data where the measured in-plane
irradiation intensity (GPOA) and the associated short circuit current (ISC) do not fit,
incorporating the temperature dependency of ISC. The temperature and irradiation
dependencies of ISC are described using multiple Gaussian Process Regressions (GPRs)
and a “mixture of experts” approach (see Section 2.1.3). The output of the multiple
GPRs is overlaid, and data with high deviations between the actual measured ISC
and the predicted ISC are iteratively filtered out.
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5.1 Introduction
The first step in measurement data analysis should always be the validation
and filtering of outliers, especially when measurements are performed under
conditions that are difficult to control, as is generally the case for long-term
outdoor experiments. Disruptions in normal operating conditions can signifi-
cantly affect the results of an analysis. Since there is usually little information
about the exact effects of outliers on the measurements, statistical analysis is
often impeded. In general, the superposition of natural uncertainty on measured
values with outlier deviations leads to a complex distribution.
For the evaluation of PV outdoor data, the PV community lacks standardizations
for outdoor data filtering [32]. Common filtering approaches often rely on
threshold filtering, such as imposing thresholds on values of plane of array
irradiation (POA), nominal output power, ambient temperature, or module
temperature. While thresholding has the advantage of simplicity, it generally
leads to information loss as valid data is removed, and at the same time, invalid
data points are not always reliably excluded. Furthermore, Jordan and Kurtz
showed that different filtering approaches can lead to different results in PV
degradation rate estimation [109]. Lindig et al. provide a comprehensive overview
of common filtering approaches, highlighting their advantages and disadvantages
[32].
An interesting approach is presented by Hansen, who proposes filtering by fitting
a diode model to IV characteristics and removing data for which the diode model
parameters are unreasonable [110]. This method, while potentially challenging
due to the complexities of diode model parameterization, goes beyond simply
imposing thresholds on individual measured values by filtering based on the
shape of the complete IV characteristics, thus imposing restrictions on how the
measured values correlate.
This chapter presents two different approaches, how to filter PV outdoor data.
The first approach, published in [111], utilizes correlations in various dimensions
of the data to identify and filter out implausible data points.
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5.2 Mahalanobis distance filter

In the following, I will present a PV outdoor filtering approach that seeks to
utilize the many correlations between the various measured dimensions in the
data to evaluate each data point’s plausibility. To this end, I simultaneously
consider all Standard Solar cell Parameters (SSPs) — short circuit current (ISC),
open circuit voltage (VOC), the maximum power point current (IMPP), and the
maximum power point voltage (VMPP) - along with meteorological data. By
using the Mahalanobis distance in combination with well-known correlations
between these various dimensions, I integrate all this data into a plausibility
measure. I demonstrate the presented method using publicly available data
published by the National Renewable Energy Laboratory (NREL) [6].

5.2.1 Concept

An anomaly, according to Hawkins, is defined as any observation that deviates
significantly from other observations, arousing suspicion that it was generated
by a different mechanism [112]. In outdoor datasets, we have many strongly
correlated measurements. Furthermore, a wide range of models describe these
correlations. In a way, these models describe the mechanisms behind the data
that we do not consider an anomaly. Thus, by comparing measured values with
expected (modelled) values based on other measured quantities, we can assess
to what degree a data point fits with the expected mechanisms. Formally, this
is expressed as:

∆Xi =Xi − Xexpected,i

dXi =∆Xi

σ∆X

, (5.1)

where Xi is the i-th measurement of a particular parameter, Xexpected,i is the
corresponding expected value, and σ∆X is the standard deviation of ∆X over all
measurements. From the NREL datasets introduced in Section 2.5.1, I used the
time series of SSPs: ISC, VOC, IMPP and VMPP; the module temperature, TMod,
and the POA irradiation, GPOA, as well as GHI and DHI.
For the parameter GPOA, I use 5.1 and substitute X = GPOA. The expected
GPOA (Xexpected) is computed from the measured GHI and DHI using SSDP (see
Section 2.5.3) and the given timestamp and coordinate (in Eugene and Cocoa).
For the albedo, a value of 20% is assumed for the test locations in Eugene and
Cocoa [113]. Note that occasionally there are missing values, and for simplicity,
incomplete data points are removed.
In a similar fashion, I treat the SSPs. Here, I use the correction procedure 2 of
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Table 5.1: Overview of dataset size and share of the filtered data for the 22
NREL datasets presented in Section 2.5.1.

Eugene Cocoa
module type dataset size filtered dataset size filtered

mSi0166 42,908 12.8% 35,669 13.7%
mSi0188 42,773 13.8% 38,012 13.7%

mSi460A8 42,755 15.4% 37,864 15.3%
xSi12922 42,829 13.7% 37,905 14.1%
HIT05667 42,912 13.2% 37,313 12.8%

aSiMicro03036 42,969 15.7% 37,949 16.0%
aSiTandem72-46 42,905 16.1% 38,109 15.3%
aSiTriple28324 42,353 14.8% 37,407 14.2%

CdTe75638 41,959 11.7% 37,993 13.0%
CIGS8-001 42,791 13.3% 37,860 11.7%
CIGS39017 42,312 13.2% 33,791 12.0%

total 879,338 data points 13.9% filtered

the IEC60891 standard (see Section 2.3.2) to correct each measured SSP to a
set of standard conditions. In this work, the standard conditions are defined
as TMod,S = 25◦C and GPOA,S = 500Wm−2. Note that I do not use the more
commonly applied GPOA,STC = 1000Wm−2, as this high irradiation is somewhat
atypical for actual operating conditions. Thus, I substitute a corrected SSP
for X in Equation 5.1. The expected value, Xexpected, is set to the mean of the
corrected SSP. The correction procedure 2 of the IEC60891 standard requires
six correction coefficients, which were obtained from regressions of the SSPs to
the measured TMod and GPOA.
The Mahalanobis distances, dM,i, are computed in five dimensions (dISC, dVOC,
dIMPP, dVMPP, dGPOA) using Equation 2.2. To filter the dataset, I use a threshold
distance of dM = dM,threshold ≈ 3.884, representing the distance where the CDF
of a Mahalanobis distance distribution of a five-dimensional normally distributed
vector reaches the quantile of q = 99%.

5.2.2 Mahalanobis distance filtering results

The Mahalanobis distance filter is applied to the NREL datasets as described in
Section 2.5.1 and, such, to in total ≈ 880, 000 data points divided in 22 datasets
(11 modules at the two locations). Table 5.1 comprehensively shows the size
of the used datasets (after measurement points with missing GHI and DHI
are filtered out) and the share (percentage) of the data the Mahalanobis filter
removes. In total ≈ 13.9% of the data points are filtered out. For the individual
datasets the share ranges from 11.7% to 16.1%.
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To discuss the filtering results in more detail I hereinafter focus on the exemplary
chosen Eugene mSi0166 dataset. The threshold distance of the Mahalanobis
distance filter was set to filter 1% of the data in case the variables are normal
distributed. Thus, the result of 12.8% filtered data for the Eugene mSi0166
dataset indicates a variable distribution with a significant deviation from a
normal distribution.
Figure 5.2.1 shows the calculated Mahalanobis distance for the approximately
43000 data points (dark blue) as well as the theoretical Mahalanobis distance of a
five dimensional (5D) normally distributed variable and the set threshold (orange).
The Mahalanobis distance distribution appears to be heavily tailed, showing
a strong deviation from the expected Mahalanobis distance for a normally
distributed 5D variable. This indicates the presence of more systematic deviations
from the applied physical models to utilize the correlations in the various
dimensions of the data.

Figure 5.2.1: Histogram of the calculated Mahalanobis distance d for the Eugene
mSi0166 dataset (dark blue) and theoretical Mahalanobis distance for a five
dimensional normal distributed random variable (orange). The orange vertical
line marks the used threshold to filter the dataset.

Figure 5.2.2 shows the scatter density plots for the modelled versus measured
GPOA for the Eugene mSi0166 dataset. The colour of the points in the scatter
plot represents the estimated local density of scatter points, with a logarithmic
colour scale. From the unfiltered dataset in Figure 5.2.2, we see that the SSDP
estimate of GPOA generally matches the measured data quite closely. The scatter
points closely follow the identity line, with the density of the scatter points
rapidly decreasing by more than an order of magnitude as they are located
further from the identity line.
Comparing the unfiltered and filtered dataset in Fig. 5.2.2 (12.8% filtered out),
one can see, that the Mahalanobis filter reliably removes measurements, where
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the with SSDP modelled GPOA deviates from the measured GPOA.

Figure 5.2.2: Scatter density plots of the modelled versus measured GPOA for
the (a) unfiltered and (b) filtered Eugene mSi0166 dataset. The straight black
line is the identity line, where the modelled and measured GPOA are equal.

Figure 5.2.3 shows scatter density plots for the corrected ISC against measured
GPOA for the unfiltered and filtered Eugene mSi0166 dataset. For irradiance
values of GPOA > 500Wm−2, the current correction is generally reliable. However,
below this value, the corrected values of the unfiltered dataset in Figure 5.2.3
exhibit considerable scatter. The highest densities of scatter points are around
the same corrected current values as for GPOA > 500Wm−2, indicating that
in most cases, the correction also works at low irradiation values. However,
there is a clear structure in the scatter density plot where the corrected currents
split into two branches, with one branch exhibiting considerably lower corrected
currents. This branching appears to be the effect of partial shading of the module,
occurring primarily in the mornings and evenings when the sun is low. Note
that the irradiation sensors are positioned higher than the modules, according
to the setup pictures in [6]. Thus, the modules may be partially shaded when
the sensors are not. Partial shading appears to be the main cause of systematic
deviations from the physical model in the dataset.
The corrected ISC of the filtered dataset in Figure 5.2.3 shows that the large
scatter for GPOA < 500Wm−2 is trimmed off, thereby effectively filtering partial
shading from the dataset. Finally, in Fig. 5.2.4, I show the scatter density
plots for the corrected VOC as a function of the measured TMod for the Eugene
mSi0166 dataset. Here it is quite notable that for temperatures above 310 K
(≈ 37◦C) there is considerably less scatter in the corrected VOC values. Also
here, it appears the partial shading events lead to an increased scatter. The
filtered dataset exhibits considerably less scatter. In general, the Mahalanobis
filter presented here is applicable when models are available for the mechanisms
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Figure 5.2.3: Scatter density plot of corrected ISC versus measured GPOA for the
(a) unfiltered and (b) filtered Eugene mSi0166 dataset.

Figure 5.2.4: Scatter density plot of corrected VOC versus TMod for the (a)
unfiltered and (b) filtered Eugene mSi0166 dataset.
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sought after. On one hand, this allows for a particularly targeted data filter. On
the other hand, the method will filter out any data not fitting with the model,
which are not necessarily measurement errors. In this case, I filtered out partial
shading, which arguably is not a measurement error. Nonetheless, for many
(most) performance analysis methods, the partial shading data is not desired.
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5.3 Gaussian Process Regression filter

In the following, I will present a PV outdoor filtering approach aimed at iden-
tifying data points where the measured in-plane irradiation (GPOA) does not
match the effective irradiation on the module. To achieve this, I consider the
temperature and irradiation dependencies of the short circuit current (ISC) us-
ing multiple Gaussian Process Regressions (GPRs) and a mixture of experts
approach. Utilizing the inherent assumption in GPR of statistically distributed
measurement uncertainties, I iteratively filter data points that show very large
deviations from the expected values. Unlike the Mahalanobis filter presented
in Section 5.3, this method does not assume a physical model. This concept is
demonstrated on outdoor datasets provided by TÜV Rheinland, described in
more detail in Section 2.5.1.

5.3.1 Concept

From the TÜV datasets, I used the time series of ISC, TMod, and GPOA. The
individual datasets consist of up to N ≈ 65, 000 data points. Assuming rather
constant conditions of the PV module and neglecting second-order spectral effects,
ISC is dependent only on TMod and GPOA. To describe these dependencies of the
short circuit current, I split the dataset into 20 random subsets and fit a GPR
fISC,i

: R2 → R model (see Section 2.1.3) to each of the i = 1, 2, ...20 subset. The
splitting of the dataset is necessary as the computation time of GPRs scales with
N3, i.e. I chose a “mixture of experts” approach [11] to reduce the computation
time (see Section 2.1.3). For each subset, I fit the three hyperparameters of a
two dimensional (2D) RBF kernel with an added white noise kernel. The kernel
of each fISC,i is defined as

K(X, X̃) = exp
( ||x1 − x̃1||2

2l1
2 + ||x2 − x̃2||2

2l2
2

)
+ σ2I. (5.2)

Where X = [x1, x2] = [GPOA, TMod] represents the 2D input space of irradiation
and temperature, I is the identity matrix and l1, l2, and σ are the three hyper-
parameters to be optimized during training of each fISC,i

. The hyperparameters
are optimized using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm implemented in SciPy [114].
Subsequently, I compute the predicted ISC,i,n for each of the n = 1, 2, ..., N

points of the dataset from each individual GPR and the, with the uncertainty
σISC,i,n

weighted, overlay of the i = 1, 2, ..., 20 predictions ISC,n. I assume here
statistical independence of the respective predictions to compute the uncertainty
σISC,n

neglecting the covariance between individual predictions. I justify this
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assumption with the individual optimized hyperparameters and the individual
subsets used for training18. The overlay of predictions has two advantages. First,
an outlier only affects the prediction of a single fISC,i

and thus only the i-th
individual prediction ISC,i,n for each point n (5% of the predictions). Second, the
predictions ISC,i,n of the i-th GPR that are trained with many outliers, as well as
predictions ISC,i,n of the GPRs at points n with TMod and GPOA conditions far
from the i-th training input, will result in ISC,i,n predictions with high associated
uncertainty σISC,i,n

. Overlaying multiple individual GPRs will suppress the
influence of outliers and lack of information in individual GPRs19.
To filter the data, I use a z-score filter with a very high threshold deviation
of the measured ISC, set at 20 standard deviations σISC,n

from the predicted
ISC,n

20. This filter only excludes data points, which cannot be explained by
statistical uncertainty in the measurement. In other words, the GPR predicts
a probability density of measuring ISC at the respective input conditions TMod

and GPOA and the filter is designed to exclude data points, that show a very
high deviation from this predicted probability distribution. Note, that this
approach inherits the assumption, that all measurements exhibit ideally only
statistical noise. This assumption is not valid in the presence of systematic
errors. However, in case the data would only exhibit only statistical noise the
filter presented would filter a share in the order of 10−87% (probability of a
Normal distribution to find a measurement outside of 20 standard deviations)
and such virtually no data. The high threshold is chosen to account for any
possible changes over time of ISC, which are not described within this filter.
Effects of degradation and seasonality in the short-circuit current typically show
low rates and exhibit low amplitudes over the approximately three-year span of
operation in the datasets under consideration. The high threshold ensures that
these effects are not filtered out.
Since this high threshold only excludes extreme outliers, the filtering process
is applied iteratively. In each iteration, the most extreme outliers are detected
and removed, which reduces the subsequent standard deviation (as the standard
deviation, due to the quadratic weighting of deviations, is strongly affected
by outliers). The iterative process can be continued until no extreme outliers
are detected. This iterative method effectively rejects the tails of distributions,
ensuring that the resulting distributions have no data points beyond 20 standard

18Note that the incorporation of the covariance would lead to slightly higher uncertainties.
The used approximation consequently leads to an underestimation of the uncertainty.

19Each GPR only uses 5% of the available data as training input and might not cover the
complete 2D input space of TMod and GPOA.

20Note that since the incorporation of the covariance would lead to slightly higher uncer-
tainties the used threshold of 20 σISC,n

reflects an effective threshold slightly lower then 20
standard deviations
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deviations from the mean. Thus the distributions are filtered specifically to
make them more Gaussian. In this work I limit the iterative process to a fixed
number of iterations.

5.3.2 Gaussian Process Regression filtering results

The presented filtering concept is applied to all 45 datasets described in Section
2.5.1. The individual size of the datasets as well as the share of filtered data
after four iterations is summarized in Tab. 5.2. The share of filtered data in
the individual datasets varies between 1.6% and 4.4%, where in total 2.6% of
the ≈ 2, 200, 000 data points are filtered out. It is noticeable, that the share
of filtered data does not vary much among one location. Since the modules
operated at the same location are positioned close to each other, the probability
of different effective irradiation of the PV module and the irradiation sensor
leading to outliers is correlated. Furthermore, the same irradiation sensor is
used for all datasets at the same location, resulting in (partial) shading of the
irradiation sensor affecting all datasets of the location in the same way.
Figure 5.3.1 shows a scatter density plot of measured GPOA versus ISC for the
exemplary chosen unfiltered (a) and filtered (b) Italy CdTe1 dataset after one
iteration of the applied GPR filter. As expected, the short circuit current is
linear in the POA irradiation. It is observed, that the density of measured
[GPOA,ISC] pairs decreases with increasing deviation from the linear trend, i.e.
slightly different effective irradiation on the PV module and the irradiation
sensor is more likely than large discrepancies. Furthermore, I find no clusters
with a high scatter density deviating from the observed linear relationship. The
first iteration of applying the GPR filter clearly removes only extreme outliers
with a share of 1.0% of the dataset.
The second (scatter density shown in Fig.5.3.2 (a)) and third iteration of ap-
plying the GPR filter remove 1.1% and 0.8% of the exemplary chosen Italy
CdTe1 dataset, respectively. The fourth and final iteration removes 0.4% of the
Italy CdTe1 dataset. This trend of a decreasing share of removed data with
more iterations of applying the GPR filter is observable across all 45 datasets.
This occurs as the distributions becomes more normal and less tailed. As the
distributions becomes more Gaussian, the share of data that can be accurately
predicted using GPRs increases, resulting in fewer points being filtered out with
each iteration. Finally, Fig. 5.3.2 (b) shows the scatter density plot of measured
GPOA versus ISC for the exemplary chosen filtered Italy CdTe1 dataset after all
four iterations of the applied GPR filter. One can see, that the filter reliably
removes outliers with high deviations from the expected relationship between
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Figure 5.3.1: Scatter density plot of ISC versus GPOA for the (a) unfiltered and
(b) filtered Italy CdTe1 dataset after one iteration of applying the GPR filter.

Figure 5.3.2: Scatter density plot of ISC versus GPOA for the filtered Italy CdTe1
dataset after (a) two and (b) four iterations of applying the GPR filter.
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ISC and GPOA.
The applied GPR filter removes reliably data points where the measured GPOA,
TMod and ISC show a high deviation from the expected relationship. In general,
the GPR filter presented here is applicable on any dataset, where GPOA, TMod

and ISC are available. IV characteristics, where the measured ISC does not match
(in a given uncertainty) the expectation based on the measured GPOA and TMod

are hard to interpret, since an interpretation w.r.t. the PV modules performance
or efficiency is only possible taking the conditions the IV is measured at into
account. On one hand, the filter removes outliers that originate from different
irradiation levels on the PV module and the irradiation sensor reliably. On the
other hand, the filter only accounts for this particular cause of systematic errors
in the dataset.
The major limitation of the filter is the inability to differentiate between a
signal in the data and a systematic deviation, i.e. the GPRs do not incorporate
the temporal development of the ISC due to acclimatization, seasonality and
degradation effects. These effects (the signal in the time series of ISC) are
overlaid with statistical noise and systematic deviations and leads to further
broadening of the probability distribution measuring ISC at conditions GPOA

and TMod. A reduced threshold for the filter as well as each iteration of applying
the filter increases the probability of removing valid data points. Due to this
limitation the filter is utilized to remove only outliers with high deviations from
the expectation, that cannot be explained with any mechanism relevant for
the further analysis. Using scatter density plots I further demonstrate, that
the data, which is filtered out does not show any clustering regarding high
scatter densities at specific ISC and GPOA combinations deviating from the linear
relationship. Since the effects of acclimatization, degradation and seasonality
exhibit, in general, low amplitudes, i.e. long lengthscales for changes in ISC

are observed, the signal in ISC cannot explain unclustered deviations from the
predicted probability density targeted and excluded with the applied filter.
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5.4 Summary and Outlook

A variety of data filtering methods exist for the analysis of datasets for PV
applications. However, most these filtering methods are based on simple thresh-
olding. The Mahalanobis filter presents a plausibility filter concept, utilizing
known correlations between the various measured quantities to define a measure
of plausibility for each data point. To obtain such a measure of plausibility,
the Mahalanobis distance combined with models to describe the correlations
between several measured dimensions in a dataset are utilized. The models are
fitted to the data in the dataset. This results in a very targeted filter, where data
is filtered out if it does not conform to the selected models. I demonstrated this
concept using the SSPs, TMod, GPOA, GHI and DHI. I show that a significant
portion of the data is affected by partial shading. Furthermore, the method
is effective in removing partial shading from the dataset, as partial shading
does not conform to the selected models. We argue that this type of filter is,
under circumstances, better at rejecting datapoints which underlie a specific
mechanism (such as partial shading), which is not interesting for the further
analysis than a purely statistical outlier metric. This advantage, however, is
only an advantage if no interest exists in the different mechanisms, which cannot
be described with the used physical models.

The Mahalanobis filtering concept may be extended to use more dimensions in
the data, for example, provided wind speed, ambient temperature, GPOA, and
TMod are available, the consistency between these dimensions may be validated
with the Faiman model [115]. More generally, this approach may be used
whenever a model is available which allows predicting one measured dimension
from one or more other dimensions available in the data, and all data of interest
more or less conform to the selected models. For my work I decided to not limit
the data to only datapoints conforming to some selected physical models. For
this reason I instead developed a filtering method based on purely statistical
outlier metrics.

The results of the first presented filtering concept shows that partial shading is
the main cause for systematic deviations from the applied physical models in the
NREL datasets. In the second filtering concept, I do not assume any physical
model but use a purely statistical outlier metric, where outliers, that cannot
described with Gaussian noise are filtered out. In this filter I only consider the
measured POA irradiation GPOA and module temperature TMod as well as the
short circuit current, ISC. The underlying assumption is that the data can be
described as Gaussian processes, the fundamental assumption of GPR. Thus,
much like with the Mahalanobis filter, I compare measured and predicted ISC
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values. However, as I only consider GPOA, TMod and ISC, I may use a simple
z-score filter approach. As the distributions in our data are heavily tailed, I
apply an iterative z-score filter.
The filter concentrates on data points, where the measured ISC shows a high
deviation from the predicted probability distribution based on the GPRs. I
demonstrate the filter on several outdoor datasets, showing that in the filtered
data I have little scatter in the GPOA and ISC, indicating an effective filtering.
The presented filter accounts for data points, where the measured performance
(here ISC as one specific performance measure) deviates from the expected
performance of the PV module under the respective conditions. GPOA and TMod

are in further analysis used to classify the measured PV module performance (i.e.
the IV characteristic). The presented filter such excludes data points, where
this classification based on the measured conditions would result in unreasonable
conclusions about the module performance.
Limitations of the applicability of the GPR filter arise, since the effects of
different irradiation levels is overlaid with other effects leading to deviations
from the expected relationship between ISC and GPOA and TMod. Variations
in ISC occur e.g. due to seasonality effects or degradation. The filter excludes
only a small share of the data varying between 1.6% and 4.4% depending on
the respective dataset. The scatter density plot further demonstrated, that the
data, which is filtered out does not show any clustering, which indicates, that
no signal resulting from acclimatization, seasonality and degradation is filtered
out. In summary the applied metric excludes a small share of the dataset, which
can be assigned to deviations between measured GPOA and TMod conditions and
the effective conditions the PV module exhibits.
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In this chapter, I introduce a statistical model designed to analyse PV out-
door data. This model utilizes electrical performance measures, specifically the
current-voltage (IV ) characteristics and the extracted ESPs, alongside meteorological
data, including plane of array irradiance (GPOA) and module temperature (TMod), as
inputs over time.
First, a suitable filtering approach is applied to the data to ensure its quality and
relevance. Following this, the ESPs undergo a principal component analysis (PCA),
which reduces the dimensionality of the data while preserving its most significant
features. Individual Gaussian process regressions (GPRs) are then trained on these
principal components (PCs). Once the GPRs are trained, the model is capable
of reproducing and predicting the complete IV characteristics at any given time t,
for specified values of GPOA and TMod. This prediction includes an assessment of
uncertainty, which is derived from data noise and the distance from the observations.
This model serves as a versatile tool for various applications, such as analysing
acclimatization effects, degradation trends, seasonal variations, and the performance
ratio (PR) of PV modules or systems. Part of this work is submitted to “Progress in
Photovoltaics: Research and Applications” and a preprint is published on Authorea
[116].
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6.1 Introduction

The reliability of PV modules is critically important for the amortization of PV
systems. Long-term outdoor monitoring of PV modules is essential for analysing
degradation, and, thus, also for assessing the quality and performance of PV prod-
ucts and technology. PV outdoor data generally includes electrical performance
measures and additional meteorological and temperature measurements.
Electrical performance is commonly assessed through measurements of the
complete current-voltage (IV ) characteristics, which provide a reliable means to
verify the status of individual modules over time[5, 117–119]. Meteorological and
temperature measurements, such as module temperature (TMod) and plane-of-
array irradiation (GPOA), are highly correlated with the measured performance,
and thus of particular use to explain the measured electrical performance (see
Section 2.5.1).
While many outdoor datasets provide the complete IV curve for analysis, the
evaluation of outdoor PV data typically focuses on just a few key solar cell
parameters: open-circuit voltage (VOC), short-circuit current (ISC), and the volt-
age and current at the maximum power point (VMPP and IMPP). This approach
simplifies the analysis by reducing the complexity to only four parameters instead
of the entire IV curve. However, this simplification can overlook potentially
significant information. For example, relying solely on VOC, ISC, VMPP, and IMPP

makes it impossible to distinguish between an IV curve with an "S"-shape (see
for on overview of this phenomenon [120]) and one with high series resistance
[27].
Another common way to simplify the information present in a measured IV

characteristic is the extraction of the 5 one diode model parameters [110]. The
one diode model is capable to extract more information then the SSPs as well
as physical meaningful information, where its parameters provide a physical
interpretation of the performance. While the one diode model is commonly
used in the PV community, to obtain a robust and efficient one diode model
parametrization method is a challenge itself. A more complete overview of
proposed methods can be found in [24, 25, 121]. However, the one-diode model
has inherent limitations: it cannot account for certain physical effects, such as
IV curves with an S-shape, restricting its applicability as a feature vector for
IV characteristics. Additionally, the complex non-linear optimization methods
required to fit the one-diode model to measured IV curves pose further challenges.
Arguably, the one diode model is beneficial for a physical interpretation of the
IV characteristic under many circumstances. However, a more descriptive and
comprehensive representation of the full IV curve shape can be achieved using
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extended solar cell parameters (ESPs) [27]. The ESPs distill the information
contained in the IV curve into ten key parameters (as detailed in Section 2.3.3),
preserving much detail of the shape of the IV characteristic. By analyzing ten
parameters instead of the conventional four or five, ESPs offer a more refined
and accurate representation of the original IV curve. Moreover, these ten ESPs
enable precise reconstruction of the original IV characteristic [27].
Analysing PV outdoor data remains challenging due to continuously changing
conditions, such as variations in plane-of-array irradiance (GPOA) and module
temperature (TMod). Individual IV characteristics, as well as their corresponding
ESPs, cannot be directly compared without accounting for the influence of
irradiance and temperature on the IV curve shape. Furthermore, additional
factors such as (partial) shading and humidity affect data quality and introduce
uncertainties. Another significant challenge in PV outdoor data analysis is the
lack of standardized filtering methods within the PV community [32]. Different
filtering approaches can lead to varying results, for instance, in PV degradation
rate estimation [109].
In this chapter, I introduce a statistical model for analysing PV outdoor data.
The model is designed to reproduce respectively predict the IV characteristic
as well as its uncertainty at any given time and temperature and irradiation
conditions. Such the model not only outputs the temperature- and irradiation-
dependent temporal development of the IV characteristic, but also sets the
output in context of a standard deviation arising through the uncertainty of the
measurement itself and the lack of data, i.e. the measured IV characteristics
are only available for distinct times at distinct conditions.
The presented model is depicted in Fig. 6.1.1. The arrows depict data flow
between the processing steps, while the colour code and numbering reflects the
structure of this chapter. At the root of the model stands PV outdoor raw data,
acquired by TÜV Rheinland [5]. The data consists of up to three years of IV

characteristic data as well as TMod, GPOA and the time t (up to approximately
60,000 data points each) for various commercial modules operated in different
climate zones. Note that the modules were new at the time of installation, i.e. the
data might be expected to show effects of acclimatization (a performance drop in
the beginning of operation). The model builds upon a simple filtering concept (a
brief overview is given in Section 6.2.1 and more details are discussed in Section
5.3.1), excluding incomplete data points as well as data where the effective
irradiation on the PV module (i.e. ISC) does not match the measured plane-of-
array irradiation GPOA. The filtering approach ensures to keep a representative
share of the available data, filtering only approximately 2 to 4% of the data. The
time series of IV characteristics from the raw data is reduced to a 10-dimensional
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time series of ESPs (see Section 6.2.2). After the ESP analysis and the filtering
routine, a Principal Component Analysis (PCA) is applied to the ESP time series
(see Section 6.2.3), resulting in a time series of 10 linearly uncorrelated principal
components (PCs). These PCs, along with time t, plane-of-array irradiance
(GPOA), and module temperature (TMod), serve as inputs for training multiple
Gaussian Process Regressions (GPRs), where each PC is treated independently
(see Section 6.2.4). To manage the challenges associated with large datasets 21,
the PC time series are segmented into monthly subsets.

Figure 6.1.1: Illustration of the presented GPR IV model and its PV outdoor
data processing steps. The arrows depict the data flow from one step to another,
while the numbers and colour code give a reference to the structure of the
chapter.

Once the individual GPRs are optimized and trained, their outputs can be
combined to predict the PCs, and thereby reconstruct the ESPs and the complete
shape of the IV characteristic for any given t, GPOA, and TMod. Note that the
model is not capable respectively designed to extrapolate (e.g. forecasting).
Additionally, the GPRs provide insights into the uncertainty of the predictions,
which arises from both data noise and gaps in the input data. Specifically,
predictions for outputs far from observed data points will have higher uncertainty
compared to those close to observations.
The result of this approach is a compact yet comprehensive description of the
temporal, temperature, and irradiation dependencies of the modules ESPs, and
thus IV characteristics. The applicability of this concept is demonstrated using
the TÜV datasets, which consist of up to three years of outdoor monitoring
data for various modules operating in different climate zones, as thoroughly

21In particular the computational complexity, as GPR optimization scales with N3, where
N is the number of data points.
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presented in Section 2.5.122. Furthermore, the output of the GPRs can be used
for validation (see Section 6.4) using the ESP(t,TMod,GPOA) predictions at the
measured input conditions. Such, the from the IV characteristics determined
ESPs are reconstructed, while test and training data is temporally separated
with a common training to test ratio of 80:20.
In Section 6.2, I provide a detailed explanation of the model concept, highlighting
how it integrates the data filtering approach introduced in Section 5.3.1, ESPs,
PCA, and multiple GPRs. Following this, the concept is applied to an exemplary
dataset from the TÜV outdoor data in Section 6.3, where one possible model
output is compared with a traditional performance ratio (PR) analysis approach.
Finally, in Section 6.4, I evaluate the model’s accuracy before summarizing the
major findings in Section 6.5.

6.2 A Gaussian process regression IV model

6.2.1 Filtering

An essential step in all PV outdoor data analyses is the proper filtering of data to
eliminate erroneous measurements (e.g., missing data, physically unreasonable
IV shapes, or shading-induced errors). To achieve this, ESPs (see Section
6.2.2) are extracted from an IV dataset using the PV-CRAZE library [31].
During ESP extraction, PV-CRAZE automatically flags IV data with unusual
properties. Specifically, PV-CRAZE flags IV characteristics that do not allow for
reliable ESP extraction due to issues such as excessive noise or insufficient data.
Additionally, non-monotonic IV curves are identified and removed, including
cases where the slope at VOC is negative or where the maximum power point
current IMPP exceeds the short-circuit current ISC. Furthermore, incomplete
data points (those missing IV characteristics, GPOA, or TMod) are also discarded.
This initial filtering step effectively removes the most obvious errors from the
dataset, ensuring higher data reliability for further analysis.
Beyond filtering for obvious errors, we also apply the more nuanced filtering
approach presented in the Section 5.3.1. This method involves filtering out data
points where there is a mismatch in the effective irradiation levels experienced
by the PV module and the irradiation sensor, addressing the most common
source of systematic errors in the datasets under consideration. The short-circuit
current (ISC) is modelled as a function of GPOA and TMod using multiple GPRs,

22Note that the presented model is exemplary applied to PV outdoor data consisting of
complete IV characteristics alongside GPOA and TMod, but is in principal applicable to any
kind of PV outdoor data consisting of an electrical performance measure (e.g. AC or DC
power) and data capturing the conditions, the performance is measured at.
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randomly splitting the complete dataset into 20 subsets, similar to a bootstrap
aggregating approach. We compare the overlaid prediction of the 20 GPRs
with the measured ISC. A high filter threshold is set so that only significant
discrepancies between the expected and actual ISC are filtered out. Furthermore,
we use an iterative approach, resulting in an effective filter excluding roughly 2
to 4% of the data points. Details to the filtering approach can be found in the
Section 5.3.1.

6.2.2 ESPs

For completeness and readability, I begin with a brief introduction to the
extended solar cell parameters (ESPs); a more detailed discussion can be found
in Section 2.3.3. The ESPs comprise a set of 10 parameters that describe the IV

characteristics of a solar cell. As the name suggests, the ESPs extend beyond the
standard solar cell parameters (SSPs) of VOC, ISC, VMPP, and IMPP. The ESPs
extend the SSPs with the slopes of the IV at short and open circuit (GSC and
ROC). Savitzki-Golay filters are used to obtain noise robust estimators for the
slopes at short and open circuit [28]. Furthermore, the ESPs add two additional
key points (‘upper quasi maximum power point’ [Iqmp+, Vqmp+] and ‘lower quasi
maximum power point’ [Iqmp-, Vqmp-]) to comprehensively describe the complete
shape of the IV characteristic.
The lower and upper quasi-maximum power points incorporate information on
the shape of the IV characteristic between short circuit (SC) and maximum
power point (MPP) and between MPP and open circuit (OC), respectively.
These points are defined using the power curve (P (V )) associated with the
IV . Vqmp+ is defined as the voltage between MPP and OC, where the power
curve exhibits the largest difference from a straight line drawn between the two
coordinates [VMPP,PMPP] and [VOC,0]. Iqmp+ is then the associated current of
the IV at V = Vqmp+. Analogously, Vqmp- is defined as the voltage, where the
power curve exhibits the largest difference from a straight line drawn between
the two coordinates [0,ISC] and [VMPP,PMPP] and Iqmp- is the associated current
at V = Vqmp-. Thus, the ESPs provide a general-purpose parameterization of
IV characteristics using ten parameters. Compared to other parameterization
methods, ESPs result in less information loss, as they capture more subtle
features of the IV curve.

6.2.3 PCA

After fitting the ESPs and applying the filters described in the previous sections,
I obtain a time series of 10 ESPs that vary along with GPOA and TMod. Since
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these time series are generally correlated, I further apply a principal component
analysis (PCA) to extract possible linear correlations. To this end, the ESPs
are normalized by their respective mean values. As described in Section 2.1.1, a
PCA involves a change in the basis of the coordinate system used to describe
a set of n-dimensional data points. Illustratively, this basis change aligns the
first principal component (PC) with the direction that best represents the linear
fit to the m-dimensional point cloud of the dataset. Subsequent PCs represent
directions that best fit the data, subject to the constraint of being orthogonal to
all previous PCs.
Formally, the j-th PC can be expressed as:

PCj =
10∑

k=1
pj,k

ESPk − ESPk

ESPk
, (6.1)

where the matrix elements pj,k of the transformation matrix P serve as the
weights that translate the mean-normalized 10 ESPs into the 10 PCs. The
primary advantage of using PCs to describe a dataset is the elimination of
redundant information in the form of linear correlations. Additionally, a PCA
can reduce the dimensionality of the dataset by revealing whether it can be
adequately described with d < m principal components. However, it is important
to note that in this context, the PCA is not necessarily applied to reduce the
data’s dimensionality but rather to concentrate redundant information that
manifests as linear correlations among the ESPs.

6.2.4 Mixture of Experts GPR

After applying the PCA, I obtain 10 PC time series, which are treated sepa-
rately in the subsequent analysis. To describe the temporal, GPOA, and TMod

dependencies of each PCj, I use multiple Gaussian Process Regressions (GPRs).
As described in Section 2.1.3, a GPR is a probabilistic method that allows for
predictions of unsampled inputs, assuming a Gaussian distribution of measure-
ments. Note that this assumption refers to a single measurement being Gaussian
distributed in case it is repeated under the exact same conditions and time,
i.e. I do not assume that the modelled time series is Gaussian distributed. I
utilize GPRs to interpolate desired outputs, e.g. a time series of IV characteris-
tics under constant GPOA and TMod conditions, and to estimate the associated
uncertainty based on the available discrete data. I.e. the model is designed to
predict the IV characteristic under given inputs of t, GPOA and TMod within the
parameter space spanned by the observations (not for extrapolation respectively
forecasting).
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Each PCj time series contains of up to N ≈ 65, 000 data points. To mitigate the
computational burden, which scales with N3 for a single GPR (see Section 2.1.3),
I adopt a "mixture of experts" approach [11]. I split each PCj time series into n

monthly subsets, indexed by i, and train individual GPRs fPCji
: R3 → R. Each

fPCji
is optimized using five hyperparameters within a 3D radial basis function

(RBF) kernel, which is multiplied by a constant kernel and supplemented by a
white noise kernel. The kernel of each fPCji

is defined as:

K(X, X̃) = c exp
( ||x1 − x̃1||2

2l1
2 + ||x2 − x̃2||2

2l2
2 + ||x3 − x̃3||2

2l3
2

)
+ σ2I, (6.2)

where X = [x1, x2, x3] = [GPOA, TMod, t] represents the 3D input space of irradi-
ation, temperature, and time, I is the identity matrix, and c, l1, l2, l3, and σ are
the five hyperparameters optimized during training. The use of an RBF kernel
assumes that each PCj varies smoothly with time, temperature, and irradiation.
The most influential hyperparameters for the accuracy of GPR predictions are
the lengthscale parameters l1, l2, and l3, which define the correlation length in
the directions of time t, irradiation GPOA, and temperature TMod. By training
separate GPRs for each month, the model allows for temporal variation in these
parameters, thereby adjusting the sensitivity to small changes over time. The
hyperparameters are optimized using the limited-memory BFGS algorithm with
parameter constraints (L-BFGS-B) implemented in SciPy [114]. For a more
reliable result the optimization routine is applied 5 times with random start
parameters. The parameter constraints ensure a limitation of the parameter
space to meaningful variation of the hyperparameters. 23

After training the individual 10n GPRs fPCji
: R3 → R, the models can predict

PCji(GPOA, TMod, t) and the associated uncertainty σPCji
(GPOA, TMod, t)24. In

addition to providing predictions and uncertainties, the model outputs can be
interpreted as probability densities, with each GPR prediction corresponding to
a Gaussian distribution N (PCji(GPOA, TMod, t), σPCji

(GPOA, TMod, t)).
The ESPs can be derived from the PC predictions using the matrix elements
p̂k,j of the inverse transformation matrix P−1 as follows:

ESPki(GPOA, TMod, t) = ESPk
(
1 +

10∑
j=1

p̂k,jPCji(GPOA, TMod, t)
)
. (6.3)

This allows the model to predict the complete IV characteristic at any given
23E.g. if a lengthscale parameter becomes very large w.r.t the variation of the dataset in

the respective direction, a GPR outcome is visually not affected by further increasing the
lengthscale parameter.

24Note that the uncertainty arises from both data noise and the distance from observed
data points.
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t, GPOA, and TMod. The uncertainty of the ESP predictions can be calculated
from σPCji

(GPOA, TMod, t) using the following equation:

σESPki
(GPOA, TMod, t) = ESPk

√√√√ 10∑
j=1

p̂2
j,kσ2

PCji
(GPOA, TMod, t), (6.4)

where I assume that the j = 1, 2, ..., 10 predictions PCji(GPOA, TMod, t) are
statistically independent, i.e., the covariance matrix elements σPCji,PCli are
zero for j ̸= l. Given that the PCs are linearly uncorrelated (by defini-
tion of the PCA) and that each GPR uses individual hyperparameters for
predictions, this assumption is a reasonable approximation. Consequently,
the ESP predictions can also be interpreted as Gaussian probability densities
N (ESPki(GPOA, TMod, t), σESPki

(GPOA, TMod, t)), since the linear combination of
statistically independent Gaussian variables is itself Gaussian.
The model’s accuracy is highest for test points [GPOA, TMod, t] close to observed
data, and the model is not intended for extrapolation. Within these limitations,
the model is capable of extracting, for example, temperature or irradiation depen-
dencies at a specific time, or the temporal development of the IV characteristic
under constant conditions. By splitting the dataset into i = 1, 2, ..., n monthly
subsets, each fPCji

becomes an "expert" for the respective month. As the tem-
poral distance from observations increases, the prediction PCji(GPOA, TMod, t)
and consequently ESPki(GPOA, TMod, t) exhibit increased uncertainty.

6.3 Results

The presented concept is applied to all 45 datasets provided by TÜV Rheinland.
For simplicity, I use an exemplary dataset of a CIGS module (CIGS4 in Tab. 5.2)
operated for approximately 2.8 years, beginning on the 1st of November 2013,
in Ancona, Italy to provide a compact overview of possible applications of the
presented GPR IV model concept. I provide in the following three examples of
how to utilize the presented concept to analyse PV outdoor data, concentrating
on the temporal development of the shape of the complete IV characteristic,
the determination of the performance ratio (PR) in comparison to a classical
temperature-corrected performance ratio PRT and utilizing the models output
for a physical analysis using the one-diode model.

6.3.1 Timeseries analysis

Figure 6.3.1 shows one possible output of the GPR prediction, a timeseries of
the 10 PCs over the complete operation time of approximately 2.8 years at
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constant TMod = 40◦C and GPOA = 750 Wm−2 for the exemplary chosen Italy
CIGS4 dataset. Note that the constant conditions are chosen to represent a
medium high irradiation with a realistic module temperature at such irradiation
levels. Compare e.g. to typical nominal operating cell temperature (NOCT) at
GPOA = 800 Wm−2 and Tamb = 20◦C being in the range of 40 to 50◦C [122].
The output shown in Fig. 6.3.1 is produced with a five-month sliding window
approach, i.e. I use the output PCji(t) (constant TMod and GPOA) of fPCji

for
i = m − 2, m − 1, m, m + 1, m + 2 to predict PCj(t) for times t in month m using

PCj(t) = σ2
PCj(t)

m+2∑
i=m−2

PCji(t)
σ2

PCji
(t) , (6.5)

where the standard deviation of the prediction σPCj(t) is determined from the
uncertainty outputs of the five GPR predictions according to

σPCj(t) = 1√
m+2∑

i=m−2
1

σ2
PCji

(t)

(6.6)

and the prediction of the five GPRs are weighted with the respective uncertainty
output for the predictions. The window size of five months is chosen to suppress
the influence of observations with a temporal distance of more than three months,
i.e. three months are used as a threshold for the temporal correlation. The 95%
confidence interval, defined as [PCj(t) − 1.96σPCj(t) , PCj(t) + 1.96σPCj(t)],
is denoted with the blue area.
From Fig. 6.3.1 one can see, that the amplitude of the PCs gets lower with
increasing number. This is expected with the nature of a PCA, reflecting the
direction of most information (highest variance) in the first PC and decreas-
ing degree of information with higher number of the respective PC. The first
(Fig. 6.3.1 (a)) and second (Fig. 6.3.1 (b)) PC show a clear seasonality in the
temporal development with a period of one year. Note, that all PCs reflect a
linear combination of the mean-normalized ESPs ∆ESP

ESP . To visualize this linear
combination Fig. 6.3.2 (a) and (b) exemplary show the direction of PC1 and
PC2, respectively. PC1 (negative in Fig. 6.3.1 (a)) reflects a direction towards
negative deviations from the mean currents and mean GSC and (with a lower
amplitude) in the direction of negative deviations from the mean voltages as well
as in the direction of positive deviation from the mean ROC. PC2 (positive in Fig.
6.3.1 (b)) reflects a direction towards positive deviations from the mean currents
and mean GSC and (as well with a lower amplitude) in the direction of negative
deviations from the mean voltages as well as in the direction of positive deviation
from the mean ROC. First of all, the directions of PC1 and PC2 show, that ROC,
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Figure 6.3.1: Output of the GPR prediction with a 95% confidence interval for
a timeseries of the 10 PCs over the complete operation time of approximately
2.8 years at constant TMod = 40◦C and GPOA = 750 Wm−2 for the exemplary
chosen Italy CIGS4 dataset. For the prediction a five-month sliding window
approach is chosen, where PCj(t) and σPCj(t) are determined for times t in the
m-th month according to 6.5 and 6.6, respectively.
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the current parameters and GSC exhibit a higher (with the mean normalized)
variance throughout the dataset w.r.t. the voltage parameters. Note, that ROC

and GSC reflect slopes of the IV characteristics, where a slight change in the
condition may lead to big discrepancy between the two slopes at OC respectively
SC. The higher variance of the current parameters w.r.t. the variance of the
voltage parameters also reflects their sensitivity to condition changes. While
the current parameters are expected to change e.g. linear with irradiation, the
voltage parameters are expected to exhibit a logarithmic dependency on the
irradiation. Beside the overall variance of the ESPs, the directions of PC1 and
PC2 set their temporal development in Fig. 6.3.1 into context of describing a
strong seasonality in the current parameters and GSC, while the seasonality of
the voltage parameters and ROC is less pronounced, where the seasonality in
PC1 is partially compensated by the seasonality of PC2.

Figure 6.3.2: Direction of (a) PC1 and (b) PC2 for the Italy CIGS4 dataset.
PC1 reflects a direction towards negative deviations from the mean currents and
mean GSC and in the direction of negative deviations from the mean voltages as
well as in the direction of positive deviation from the mean ROC. PC2 reflects
a direction towards positive deviations from the mean currents and mean GSC
and in the direction of negative deviations from the mean voltages as well as in
the direction of positive deviation from the mean ROC.

The example of the direction of PC1 and PC2 show how linear correlations
of the ESPs are reflected in the PCs. Regarding the uncertainty of PC1 and
PC2, I find rather high uncertainty estimates w.r.t. the amplitude of PC1 and
PC2. PC1 and PC2 clearly describe a seasonal behaviour, typically induced
by metastabilities in CIGS modules. Considering the typical time scales of
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metastabilities ranging from days to years, the observed high uncertainty might
be a result of lower time scales, which are not tracked accordingly due to the
GPRs temporal lengthscale parameter or just due to a lack of data points needed
to fully resolve shorter time scales.

The directions of PC3 till PC10 are less intuitive to interpret, but also reflect a
linear combination of the mean-normalized ESPs ∆ESP

ESP . The temporal develop-
ment of PC3, PC4 and PC5 (Fig. 6.3.1 (c), (d) and (e)) all show an increase
of the respective PC over the operation time, where the increase of PC3 can
be considered more or less linear, the increase in PC4 is superimposed with a
periodic variation and the increase in PC5 saturates towards the end of the
operation time considered. The sixth PC (Fig. 6.3.1 (f)) appears to be constant
over most of the time period with a slight increase at the beginning and towards
the end of the time period. PC7 (Fig. 6.3.1 (g)) depicts a step-wise decrease
after half a year and one and a half years of operation. The uncertainty of the
prediction of PC3 till PC7 is comparably low w.r.t. the uncertainty of PC1 and
PC2. Considering, that the temporal development of PC3 till PC7 all exhibit a
(stepwise) increase or decrease, one might argue, that these PC are somehow
connected to effects of degradation and acclimatization. The lower uncertainty
such reflects a higher confidence of present degradation and acclimatization
effects w.r.t. seasonality effects. PC8, PC9 and PC10 (Fig. 6.3.1 (h), (i) and
(j)) all show very low amplitudes 3 orders of magnitude lower than the first PC.
The temporal development clearly shows a signal, which implies, that these PCs
carry information present in the dataset. The amplitude of this information,
however, is at a level, where it becomes negligible w.r.t. the amplitudes of PC1
till PC7 once the ESPs are reconstructed from the PCs.

While the representation of the PCs may be beneficial to decompose several
effects visible in the performance development of the operated CIGS module, the
reconstruction of the ESPs allow for a more meaningful interpretation regarding
PV module performance changes during outdoor operation. Figure 6.3.3 shows
the output of the GPR prediction for the 10 reconstructed ESP timeseries
including the 95% confidence interval at the same constant TMod = 40◦C and
GPOA = 750 Wm−2 condition for the exemplary chosen Italy CIGS4 dataset.
ESPk(t) and σESPk(t) are determined from PCj(t) and σPCj(t) (see Fig. 6.3.1)
according to 6.3 and 6.4. A clear seasonality superimposed with a slight linear
decrease is visible for the 4 current parameters ISC, IMPP, Iqmp+ and Iqmp- (Fig.
6.3.3 (a), (c), (e) and (g)). For the 4 voltage parameters VOC, VMPP, Vqmp+ and
Vqmp- (Fig. 6.3.3 (b), (d), (f) and (h)) the temporal development shows a more
or less linear decrease, where the slope of Vqmp+ is observed to flatten out. The
slope of the IV characteristic at open circuit is described by the parameter ROC
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(Fig. 6.3.3 (i)), which is observed to be constant over the operation period with
a high uncertainty of the prediction 25. For the slope of the IV characteristic at
short circuit, depicted by the parameter GSC (Fig. 6.3.3 (j)), one can observe
a steady increase superimposed with a periodic change over the course of the
operation time. Considering the temporal development of PC1 and PC2 in Fig.
6.3.1 as well as their directions in terms of the mean-normalized ESPs ∆ESP

ESP (see
Fig. 6.3.2), I find the expected seasonality in the current parameters and GSC,
while the seasonality contribution of PC1 and PC2 are mostly compensated by
each other in the temporal development of the voltage parameters and ROC.

The representation of the complete shape of the IV characteristic in terms of
the ESPs enables to quantify the temporal development of the PV modules
performance. First of all it is clear, that a strong seasonality affects the current
level of the IV characteristic, while a slight degradation is visible in both the
current and voltage parameters. The difference in the development of ISC and
IMPP already indicates a loss in the FF over time, since the degradation appears
to be more pronounced in IMPP. Considering the temporal development of GSC

as well as of Vqmp+ one can follow, that the slope at SC as well as the complete
shape of the IV between SC and MPP changes, while the shape of the IV

between MPP and OC remains quantitatively the same (rather constant ROC as
well as similar temporal development of VOC, VMPP and Vqmp-).

Regarding the uncertainty estimate of the ESPs I find the highest confidence
(lowest relative uncertainty) for the temporal development of the parameter
GSC (Fig. 6.3.3 (j)). The uncertainty on the temporal development of the 4
current parameters (Fig. 6.3.3 (a), (c), (e) and (g)) as well as on the temporal
development of Vqmp+ (Fig. 6.3.3 (f)) is comparably higher. Nonetheless, one
can clearly observe a high confidence for the qualitative temporal development,
i.e. the amplitude of seasonality and linear degradation is comparable to the
amplitude of the 95% confidence interval. For the 3 voltage parameters VOC,
VMPP and Vqmp- (Fig. 6.3.3 (b), (d) and (h)) and especially for the parameter
ROC (Fig. 6.3.3 (i)), I find a comparably high uncertainty on the temporal
development, where the amplitude of the signal (temporal variation of the
prediction) is lower than the respective confidence interval.

25Note that negative ROC values do not occur in IV characteristics measured under steady
conditions. The uncertainty estimate for ROC thus primarily arises from deviations toward
higher ROC values, resulting in a one-sided tailed distribution. One could argue that the
graph and the lower confidence interval in Fig. 6.3.3 (i) should be constrained to zero as a
physically meaningful boundary for ROC. However, since Gaussian process regression (GPR)
predictions follow a Gaussian distribution, the uncertainty output is also Gaussian. As a
result, the representation in Fig. 6.3.3 (i) is mathematically more accurate.
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Figure 6.3.3: Output of the GPR prediction with a 95% confidence interval for
a timeseries of the 10 reconstructed ESPs over the complete operation time of
approximately 2.8 years at constant TMod = 40◦C and GPOA = 750 Wm−2 for
the exemplary chosen Italy CIGS4 dataset. For the prediction a five-month
sliding window approach is chosen, where ESPk(t) and σESPk(t) are determined
for times t in the m-th month according to 6.3 and 6.4 from PCj(t) and σPCj(t).
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6.3.2 PR analysis

As stated in Section 2.5.2 a common way to verify a PV modules performance
over time is the performance ratio PR respectively the temperature corrected
performance ratio PRT . Usually both PR and PRT are referenced to STC
conditions. Since STC conditions are uncommon in real operation scenarios
and GPRs are not able to extrapolate to inputs far away from the discrete
inputs they are trained on, a models output like shown in Fig. 6.3.3 is not
suitable to evaluate on classical STC referenced PR analysis. However, the PR
for distinct constant conditions can be computed, comparing the MPP power
output PMPP,GPR(t) = VMPP,GPR(t)IMPP,GPR(t) to the initial PMPP,GPR(t=0).
Since there is no producer information on the nominal output power at the
respective conditions available and taking only one single value as reference
(Pref = PMPP,GPR(t = 0)) might result in high deviations when PMPP,GPR(t = 0)
is not accurate, I define the initial PMPP,GPR as the mean of PMPP,GPR(t) in the
first 7 days of operation PMPP,GPR|t≤7d

26. Thus, I define a generalized PR from
the GPR IV model at constant GPOA and TMod conditions as

PRGPR(t) = PMPP,GPR(t)
PMPP,GPR|t≤7d

= VMPP,GPR(t)IMPP,GPR(t)
VMPP,GPR|t≤7dIMPP,GPR|t≤7d

. (6.7)

Regarding the uncertainty estimate of the such defined PRGPR, one has to con-
sider the uncertainty of VMPP,GPR and IMPP,GPR. As already discussed in Section
6.2.4 the predictions of the ESPs can be interpreted as a Gaussian probabil-
ity density N (ESPk(GPOA, TMod, t), σESPk(GPOA, TMod, t)). For the uncertainty
prediction of PRGPR(t) the correlation between the two probability densities
of VMPP,GPR(t) and IMPP,GPR(t) needs to be considered 27. Since all ESPs are a
linear combination of the PCs, I can generalize 6.4 to determine the covariance
between two ESPs via the matrix elements p̂k,j of the inverse translation matrix
P−1 and the matrix elements σ2

PCj of the diagonal covariance matrix of the PCs.

26Note, that the choice of the reference output power is not arbitrary and might affect the
absolute PR.

27Arguably, the uncertainty on the reference power output PMPP,GPR|t≤7d might need to
be considered as well. Here, I neglect the influence of the uncertainty on the reference power
output for two reasons. First, this reference value would be ideally substituted by available
manufacturer data on the modules performance, making the task of the uncertainty estimate
of the reference power output obsolete. Second, a possible deviation of the actual initial power
output and the chosen reference affects all computed PR estimates (and the later computed
uncertainties) by the same factor. This way the uncertainty originating from the reference
cannot be directly compared to the GPR uncertainty prediction resulting from noise and
missing data and would need to be treated separately.
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Formally I compute the covariance between ESPk(t) and ESPl(t) given by

σESPk,ESPl(t) = ESPkESPl
10∑

j=1
p̂k,jσ

2
PCj(t)p̂l,j, (6.8)

where p̂l,j = p̂⊤
j,l are the matrix elements of the transposed matrix P−1⊤. With

the covariance of VMPP,GPR(t) and IMPP,GPR(t) the standard deviation σPRGPR(t)
can be computed to

σPRGPR(t) =
( σVMPP,GPR(t)IMPP,GPR(t)

VMPP,GPR|t≤7dIMPP,GPR|t≤7d

)2
+
( VMPP,GPR(t)σIMPP,GPR(t)

VMPP,GPR|t≤7dIMPP,GPR|t≤7d

)2

+
2VMPP,GPR(t)IMPP,GPR(t)σIMPP,GPR,VMPP,GPR(t)

(VMPP,GPR|t≤7dIMPP,GPR|t≤7d)2

 1
2

. (6.9)

While the standard deviation of the probability density for PRGPR(t) can be com-
puted, defining a confidence interval similar to the confidence interval given in Fig.
6.3.1 and Fig. 6.3.3 directly from σPRGPR(t) might not be accurate, since the prob-
ability density of a product of two correlated Gaussian distributed random vari-
ables is in general not Gaussian. While there is an expression for an exact solution
of the probability density (compare e.g. with [123]), the computation of the exact
solution involves an infinite sum of modified Bessel functions and is not applicable
without an approximation (e.g. setting a limit for the infinite sum). To compute
a confidence interval for PRGPR(t), I use an alternative approach approximating
the probability density with a numerical solution. I generate nr = 106 random
distributed variables according to the 2D multivariate Gaussian distributed
probability density (N (IMPP,GPR(t), σIMPP,GPR(t)), N (VMPP,GPR(t), σVMPP,GPR(t)))
with covariance σIMPP,GPR,VMPP,GPR(t) and compute the probability density of
PRGPR(t) for each t28.

Figure 6.3.4 shows the temporal development of the PRGPR (blue, including
95% confidence interval) for the constant GPOA = 750 Wm−2 and TMod = 40◦C.
In Fig. 6.3.4 the PRGPR is further compared to a classical determined monthly
temperature corrected performance ratio PRT (red, including 95% confidence)
referenced to GPOA,ref = 750 Wm−2 and TMod,ref = 40◦C. For the determination
of the classical PRT I use 2.27 and substitute the STC with the reference
conditions, insert PDC = PMPP,meas and further use PMPP|t≤7d from the GPR
prediction as reference for the initial output power at the reference conditions.

28Note that the probability density computed this way approaches the exact solution with
nr → ∞.
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This results in the expression

PRT = 750 Wm−2

GPOA,meas

PMPP,meas

PMPP,GPR|t≤7d(1 + γ(TMod,meas − 40◦C))
, (6.10)

where the temperature correction coefficient γ is determined by a linear fit to
the filtered dataset. The shown temperature corrected PR is a commonly used
monthly PRT , where all measurements in a narrow irradiation band 550 Wm−2 <

GPOA < 950 Wm−2 around the reference irradiation GPOA = 750 Wm−2 are used
for the determination of the average PRT and its 95% confidence interval 29. Thus,
the 95% confidence interval is defined as the interval between the boundaries set
by the 2.5% and 97.5% quantile of the distribution of determined PRT in the
respective month.

Figure 6.3.4: GPR performance ratio PRGPR(t) (blue) prediction for the constant
GPOA = 750 Wm−2 and TMod = 40◦C and classical PRT estimate (red) using
a narrow irradiation band filter of 400 Wm−2 referenced to GPOA = 750 Wm−2

and TMod = 40◦C. The blue area and the red errorbars depict a 95% confidence
determined from the numerical approximation to the theoretical probability dis-
tribution of PRGPR(t) and the distribution of the determined PRT , respectively.

One can observe a strong acclimatization effect within the first few months of
operation overlaid with a seasonality and a long-term degradation for both PR
estimates. The PRT , determined with the classical monthly approach matches
qualitatively the PRGPR, while a slightly higher uncertainty can be observed
for the classical approach. Furthermore, I observe for some months PRT values
several percent below the PRGPR, remaining within the 95% confidence interval
of the GPR prediction. While the GPR prediction uses all available information

29Note that for the determination of PRT the dataset is also filtered with the GPR filter as
described in Section 5.3.1, before applying the additional narrow band irradiation filter. Such
the presented PRT is already corrected from possible influences due to outliers resulting from
shading of the module respectively the irradiation sensor.
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of the performance measures at different conditions within one month 30, the
narrow irradiation band filter reduces the dataset to ≈ 22% and such to a share
of the dataset, that can not be expected to be representative for the complete
dataset.
Despite reducing the dataset to a small share of itself, these narrow irradiation
band filters are a common choice while determining the PR respectively PRT

of PV modules respectively systems. Beside effects of low-light performance
of PV modules gaining more influence on the result, for the determination of
the PR a broader irradiation band filter would further increase the influence
of the operating temperature, highly correlated with the GPOA. Such a PR
estimate would experience an increased uncertainty. For the PRT the effect of
the operating temperature is reduced due to the linear correction coefficient,
but can still affect the result in the presence of non-linear temperature effects.
Figure 6.3.5 underlines the increasing uncertainty of the PRT with increasing
width of the irradiation band filter. In comparison to the PRT shown in Fig.
6.3.4, the PRT shown in Fig. 6.3.5 is determined with a doubled width of the
irradiation band filter, averaging PMPP for all measurements for GPOA with
350 Wm−2 < GPOA < 1150 Wm−2. Note that despite the choice of a broad
irradiation band filter, the dataset is reduced to ≈ 42% in this case.

Figure 6.3.5: GPR performance ratio PRGPR(t) (blue) prediction for the constant
GPOA = 750 Wm−2 and TMod = 40◦C and classical PRT estimate (red) using
a broad irradiation band filter of 800 Wm−2 referenced to GPOA = 750 Wm−2

and TMod = 40◦C. The blue area and the red errorbars depict a 95% confidence
determined from the numerical approximation to the theoretical probability dis-
tribution of PRGPR(t) and the distribution of the determined PRT , respectively.

From the comparison of Fig. 6.3.4 and Fig. 6.3.5 I find as expected an increased
uncertainty for the PRT estimate with broader irradiation band filter. Further-

30The contributions of each measurement are weighted differently.
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more, one can observe clear deviations of PRGPR(t) and PRT , where PRT is
found to be reduced in the summer months31 and this way in operation at higher
ambient and resulting higher operation temperatures. This effect of temperature
in the time series of PRT shows one major downfall of the classical PR approach.
Equation 2.27 only accounts for temperature and irradiation dependencies in
terms of linear dependencies using a single correction coefficient. In comparison,
the IEC60891 norm (see Section 2.3.2) accounts for 6 correction coefficients.
Furthermore, while observing degradation mechanisms in PV modules it is
expected, that correction coefficients might also change over time leading to
increased inaccuracy of the classical PRT method.
The PR analysis using GPR prediction on the others side allows for arbitrary
temperature and irradiation dependencies in the data, allowing the dependencies
further to change over time. Furthermore, the GPR PR analysis does not
require to exclude large part of the data, since the influence of each data point
is weighted according to the respective distance in temperature, irradiation and
time. Therefore, I argue the GPR PR analysis is a more accurate alternative to
classical PR analysis techniques.

6.3.3 Physical analysis using the one-diode model

In Fig. 6.3.3, I show one possible output of the GPR IV model, where the
IV characteristic respectively the ESPs are shown over time for one constant
set of irradiation and temperature conditions. However, from the trained
GPRs one can reproduce the ESPs at arbitrary conditions, enabling multiple
applications 32. One possible application is to fit a physical model to a given
produced output. To cover the range of irradiation intensities and module
temperatures occurring in operation, I compute the timeseries prediction of the
ESPs for the exemplary chosen Italy CIGS4 dataset for multiple combinations
of the two conditions, where I use TMod = 10, 20, 30, 40, 50, 60◦C and GPOA =
100, 250, 500, 750, 1000 Wm−2. With the output of in total 30 timeseries of ESPs
at constant conditions, the temperature and irradiation dependent one diode
model is fitted to the predicted IV data.
Rewriting 2.13 for the current, substituting RP by RSh, accounting for N number
of cells connected in series and assuming a temperature activated recombination

31Note that the operation of the CIGS4 module operated in Italy started on the 1st of
November 2013.

32Note that for the predictions there are limitations arising due to the parameter space of
[GPOA,TMod,t] covered by the observations and associated high uncertainties for predictions
that need to be extrapolated.
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current results in

I(V ) =I00

(
T

TSTC

)3
exp

((T − TSTC)Ea

kTSTCT

)[
exp

(
e(TSTC − T )(V − I(V )RS)

NnidkTSTCT

)
− 1

]

+ V − I(V )RS

RSh
− IPh(G, T ), (6.11)

where Ea is an activation energy and

IPh(G, T ) = G

GSTC
(1 + α(T − TSTC))IPh,STC (6.12)

similar to the IEC60891 temperature dependency of the currents in 2.18 substi-
tuting I1 = IPh,STC. With the fit of 6.11 and 6.12 to the timeseries of ESPs at the
distinct conditions using the PV-CRAZE library [31] the result is a timeseries of
the parameters RS, RSh, IPh,0, Nnid, I00, α and Ea. I find a better fit is obtained
with PV-CRAZE, if the fitting is repeated several times and the best optimum
is selected (some fitting algorithms used by PV-CRAZE are probabilistic). In
this work the fit was repeated 23 times in a trade off between computation time
and fit error. Figure 6.3.6 shows the development of the extracted parameters
RS, RSh, IPh,0, Nnid, I0, α and Ea over time, enabling to physically interpret
the temporal development of the performance of the operated CIGS module.
Furthermore, the root mean squared error (RMSE) of the fit is shown.

First of all, I observe a strong acclimatization effect most prominent in the
shunt resistance RSh (Fig. 6.3.6 (e)), the activation energy Ea (Fig. 6.3.6 (g)),
as well as in I00, Nnid and RS (Fig. 6.3.6 (a), (b) and (d)). In the first few
months of operation the RSh is reduced from over 5 kΩ to less than 2 kΩ
and the activation energy drops from 0.7 to 0.5 eV . Comparing the temporal
development of I00 and Nnid (Fig. 6.3.6 (a) and (b)), I find a strong correlation
of the two parameters. The observed increase in dark saturation current I00 is
associated with an enhanced ideality factor (Nnid increases and N is constant).
This suggests, that there is a change in the most prominent recombination
mechanism, i.e. either a recombination process with low ideality is reduced
or a recombination process with high ideality enhanced. Furthermore, the
series resistance shows an acclimatization effect, where the diode model fit finds
two solutions, one close to the initial RS between 5 and 6Ω and one solution
between 1 and 2Ω. This effect where the solution alternates between two values
is also visible in the RMSE, indicating the solution alternates between two local
minima with distinct RS values. Inspection shows the slightly smaller errors are
associated with the more constant RS solution between 5 and 6Ω.

Beside the described acclimatization effects a strong seasonality is visible for the
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Figure 6.3.6: One diode model parameters timeseries prediction fitted to a GPR
predicted timeseries matrix at different irradiation and temperature conditions
for the Italy CIGS4 dataset.
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photo-generation current IPh,STC (Fig. 6.3.6 (c)). With the metastable nature
of CIGS solar cells and modules in mind this clear difference in performance in
winter and summer is not surprising. Furthermore, a seasonality contribution
is visible in Ea (Fig. 6.3.6 (g)), the temperature coefficient α (Fig. 6.3.6 (f)) as
well as in the RMSE (Fig. 6.3.6 (h)), which implies a slightly better fit accuracy
in winter.
I find contributions of a linear degradation for the parameter RSh and for α (Fig.
6.3.6 (e) and (f)). A linear degradation over the complete operation period is
further observed for the activation energy Ea, where a slight linear reduction
is overlaid with the seasonality and the acclimatization. Assuming e.g. SRH
recombination, the activation energy is expected to be dependent on the ideality
factor, where the activation energy can be replaced by the quotient of the
band gap energy and the ideality factor (Ea ≈ Eg

nid
). To this end, I correct

the activation energy for the ideality factor influence. Figure 6.3.7 shows the
temporal development of the product NnidEa. I find a clear linear degradation
overlaid with a seasonal variation 33. This further indicates a more complex
change in the prominent recombination mechanism over time.

Figure 6.3.7: Product of the one diode model parameters timeseries prediction
NnidEa fitted to a GPR predicted timeseries matrix at different irradiation and
temperature conditions for the Italy CIGS4 dataset.

Comparing the qualitative development of the diode parameters with the PRGPR

in Fig. 6.3.4 or 6.3.5, I attribute the acclimatization effect to a change in the
prominent recombination mechanism overlaid with a reduced shunt resistance.
The relative amplitude of the seasonality matches well with the seasonality
observed for the photo current and the long term degradation is influenced

33Note that the seasonality appears to have a slightly lower period than one year. I attribute
this discrepancy to the overlay of effects in the product of Nnid(showing strong acclimatization)
and Ea (showing an overlay of acclimatization, seasonality and degradation).
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by multiple factors, such as the further reduced activation energy and shunt
resistance.
Without further knowledge on the exact production and design of the CIGS
module chosen as an exemplary outdoor study, it is hard to directly link the
observed trends to the accelerated light induced degradation experiments on
CIGS cells from a different producer presented in Chapter 4. Furthermore, the
results of the outdoor study presented reflect many more influences affecting
a PV modules performance over time than the isolated influence of irradiation
at constant temperature and bias conditions. Nonetheless, I find only a slight
reduction of the open circuit voltage (see Fig. 6.3.3) and argue, that the observed
outdoor degradation is better reflected by LID at OC conditions. Furthermore
the increasing dark saturation current I00 and ideality factor nid match the
tendency of a slight increase in the respective parameters due to LID at OC
(compare Fig. 4.5.2 and 4.5.3).

6.4 Validation

With the three examples shown, I have introduced to some possible outputs
of the GPR IV model without addressing to its accuracy. To this end, I use
the trained GPRs fPCji

to validate their performance regarding recreating the
training data (observations). Since each GPR is inherited to recreate its own
input with an accuracy of the estimated noise level, validating a GPR on its own
training input has little to no information on the performance. For validation
there needs to be a clear separation of training and test data, where no test
data is used for training the model. To further ensure a temporal separation of
training and test data, I compare the input of the PCjm(t) (ESPjm(t)), i.e. the
observations in the m-th month, with the overlaid output of fPCji

for i = m − 2,
i = m− 1, i = m + 1 and i = m + 2, i.e. the predictions of the four GPRs trained
with the data of the two months before and after the month of consideration.
Formally, I compute

PCjval,m(GPOA, TMod, t) = σ2
PCj(GPOA, TMod, t)

∑
i=m−2,m−1,

m+1,m+2

PCji(GPOA, TMod, t)
σ2

PCji
(GPOA, TMod, t) ,

(6.13)
for all distinct observations in [GPOA,TMod,t] for t in month m and determine
ESPkval,m(GPOA, TMod, t) analogously to 6.3. This way, I use four instead of five
months (w.r.t. the predictions shown in Section 6.3) for training and the fifth
month as test data repeating the procedure for each month of the complete
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dataset, resulting in a training-to-test ratio of approximately 80:20 34. Due to
the reduced input for validating the prediction for the first and last month (67:33
ratio) as well as for the second and second to last month (75:25 ratio) of each
dataset, the actual training to test ratio is a bit lower than the commonly used
80:20 ratio.
I compute the difference of prediction output (ESPkval,m(GPOA, TMod, t)) and
the test observations (ESPktest(GPOA, TMod, t)) for each month m of the dataset
and set the performance of the models prediction in comparison to the difference
of observations to their mean using

R2
ESPk = 1 −

∑(ESPktest − ESPkval)2∑(ESPktest − ESPktest)2 . (6.14)

Illustratively, a R2 = 0 translates to the prediction having the same RMSE of a
model that would predict a constant ESP for all measurements independent of
GPOA, TMod and t. The maximum possible value for R2 is one (100%), translating
to a perfect prediction with no deviation for all test data points.
For the ten ESPs, I find median R2 values between 91.7% and 99.4% among
all 45 datasets (five locations, nine modules). Figure 6.4.1 shows a boxplot of
the R2 values of each ESP, reconstructed from 10 PCs. The orange line denotes
the median R2, the box denotes the range of the first to third quartile, the
whiskers extend from the box to the farthest data point lying within 1.5 times
the inter-quartile range (IQR, the distance between first and third quartile)
and the single points denote individual R2 values outside the described ranges.
Note, that the logarithmic scale of the y axis is chosen such, that it captures
the relevant range of R2 values with increasing resolution towards most often
observed high R2 values close to 100%. For the four current parameters, I find
high R2 values among all 45 datasets with only a few outliers below 98% and the
majority above 99%. The three voltage parameters VOC, VMPP and Vqmp+ are
predicted with median R2 values around 96%. The median accuracy of Vqmp-,
ROC and GSC is between 91.5 and 94.5%. In total I find only very few outliers of
predictions with R2 values below 70%. Note that the R2 values set the models
performance in comparison to the difference of observations to their mean. Since
the measured voltage parameters are better represented by their mean w.r.t.
representing the current parameters by their mean, the observation of significant
higher R2 values for the current parameters is not surprising.
Due to the decreasing amplitude of the PCs, the validation can further be used

34Note, that due to the sliding window approach, the validation of the model does not result
in a high additional computation time, since the already trained GPRs respectively optimized
hyperparameters are used for the predictions.
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Figure 6.4.1: GPR performance validation in terms of the R2 values of each
ESP prediction, reconstructed from 10 PCs. The PC prediction is computed
according to 6.13.

to evaluate, if the PCA reduces the data to a lower dimensional representation.
I find no improvement regarding the R2 values using more than seven and eight
PCs, respectively, depending on the dataset. Thus, the ESPs can be reduced
to a seven to eight-dimensional representation, and the computation time can
be reduced to 70 − 80%. To visualize this high performance already observed
using seven PCs, Fig. 6.4.2 shows the boxplot of the R2 values for the ESPs
reconstructed from seven PCs (computed with limits of the sum in 6.3 of [1,7]).
Comparing Fig. 6.4.1 and 6.4.2, I find only slight deviations for single parameters
in some datasets.

Figure 6.4.2: GPR performance validation in terms of the R2 values of each ESP
prediction, reconstructed from 7 PCs. The PC prediction is computed according
to 6.13.

R2 values give a reasonable indication how good a model performs setting the
performance in comparison to the deviation of the respective data from its mean.
For PV outdoor data analysis it might be from greater interest to evaluate on
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(mean) absolute deviations of the prediction, since they determine the accuracy
regarding a PV modules performance (and yield). Figure 6.4.3 shows the
histogram (dark blue) of the absolute deviations ∆ESPk = ESPkGPR − ESPktest

of the from seven GPR predicted PCs reconstructed ESPs (ESPkGPR) from the
real test data of ESPs (ESPktest) for the exemplary chosen Italy CIGS4 dataset.
The standard deviation of the histogram σhist is given in each subplot in dark
blue.

Furthermore, Fig. 6.4.3 depicts the from the GPRs predicted probabil-
ity density of deviations (red), i.e. the prediction of the histogram ac-
cording to the GPR output. Each GPR prediction has an individual
predicted standard deviation (compare with 6.6), i.e. every prediction
PCj(GPOA, TMod, t) of the GPRs fPCji

can be interpreted as a predicted
Gaussian probability density N (PCj(GPOA, TMod, t), σPCj(GPOA, TMod, t)). The
prediction ESPk(GPOA, TMod, t) is a linear combination of the predictions
PCj(GPOA, TMod, t) (compare 6.3). In the approximation, that the 10 predictions
PCj(GPOA, TMod, t) are statistically independent for each input of [GPOA, TMod, t]
(see Section 6.2.4), the prediction ESPk(GPOA, TMod, t) can be interpreted as
a Gaussian probability density N (ESPk(GPOA, TMod, t), σESPk(GPOA, TMod, t)),
where σESPk(GPOA, TMod, t) is determined analogously to 6.4 from the predic-
tions PCj(GPOA, TMod, t) and standard deviations σPCj(GPOA, TMod, t). Con-
sidering deviations from the prediction sets the mean of each normal distri-
bution to zero resulting in the prediction of the probability of deviations to
N (0, σESPk(GPOA, TMod, t)) for each coordinates [GPOA, TMod, t]. The set of N

test data points and the respective n = 1, 2, .., N input vectors [GPOA, TMod, t]n
can essentially be interpreted as a random choice for a subset of coordinates
[GPOA, TMod, t]. Exploiting the law of total probability and substituting n for
[GPOA, TMod, t]n the probability densities for the deviation of each test point n

(pn(∆ESPk) = N (0, σESPk(n)) can be summed up to receive the predicted joint
probability of deviations from the model prediction

P (∆ESPk) = 1
N

N∑
n=1

pn(∆ESPk) (6.15)

where the sum of the predicted deviations is divided by the number of tests
data points N for normalization. In general, this sum of multiple Gaussian
probability densities reflects a Gaussian mixture model and might be Gaussian
in specific scenarios, e.g. in case all individual standard deviations are identical.
However, regardless of this, the resulting standard deviation can be computed
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and is given by

σGPR =
√∫ ∞

−∞
(∆ESPk)2 P (∆ESPk) d∆ESPk

=

√√√√∫ ∞

−∞
(∆ESPk)2 1

N

N∑
n=1

pn(∆ESPk) d∆ESPk. (6.16)

Since pn(∆ESPk) is a probability density, it holds pn(∆ESPk) ≥ 0 and according
to the Fubini-Tonelli theorem [124] it follows

σGPR =

√√√√ 1
N

N∑
n=1

∫ ∞

−∞
(∆ESPk)2 pn(∆ESPk) d∆ESPk

=

√√√√ 1
N

N∑
n=1

σ2
ESPk(n), (6.17)

where I use, that the standard deviation of pn(∆ESPk) is given by σESPk(n). In
every subplot in Fig. 6.4.3 σGPR is given in orange for reference.
I find standard deviations of the deviation histograms for the current parameters
ISC, IMPP, Iqmp+ and Iqmp- in the range of 14.8 to 23.8 mA (compare σhist, dark
blue). If I compare these absolute deviations to the mean of the time series
data in Fig. 6.3.3 I find relative deviations in the range between 2.3 and 2.6%.
All absolute and relative deviations of the prediction are summarized in Tab.
6.1. For the voltage parameters VOC, VMPP, Vqmp+ and Vqmp- I find absolute
deviation in the range of 1.17 to 1.36 V (σhist, dark blue) and compared to the
time series at GPOA = 750 Wm−2 and TMod = 40◦C, relative deviations in the
range of 1.3 to 2.4%.

Table 6.1: Absolute and relative deviation of the GPR ESP prediction

parameter σhist σGPR
abs. rel. abs. rel.

ISC 23.8 mA 2.3% 24.7 mA 2.4%
IMPP 22.1 mA 2.5% 22.3 mA 2.5%
Iqmp+ 23.5 mA 2.4% 24.1 mA 2.5%
Iqmp- 14.8 mA 2.6% 14.5 mA 2.5%
VOC 1.17 V 1.3% 0.84 V 0.9%
VMPP 1.36 V 1.8% 1.10 V 1.5%
Vqmp+ 1.32 V 2.4% 1.12 V 2.0%
Vqmp- 1.26 V 1.5% 0.96 V 1.1%
GSC 24.4 1

MΩ
6.9% 12.4 1

MΩ
3.5%

ROC 59.0Ω 648% 10.5Ω 115%

Comparing the histogram with the GPR predicted probability density (orange)
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Figure 6.4.3: Histogram (dark blue) of the absolute deviations ∆ESP =
ESPGPR − ESPtest of the from seven GPR predicted PCs reconstructed ESPs
from the real test data of ESPs for the exemplary chosen Italy CIGS4 dataset.
The histograms standard deviation σhist is given in dark blue. The GPR pre-
dicted probability density of deviations (with the standard deviation of σGPR) is
depicted in orange.
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for the current and voltage parameter, I find, that all eight deviation distributions
are heavy tailed compared to the GPR predicted probability density, where the
effect is more pronounced for the four current parameters. Especially for the
four voltage parameters, the GPR predicted deviation qualitatively matches
the real distribution of deviations, while the standard deviation of the real
distribution of deviations σhist matches the predicted GPR uncertainty σGPR for
the four current parameters. Table 6.1 further summarizes the GPR predicted
uncertainty σGPR for all parameters. For the 8 current and voltage parameters
the GPR predicted uncertainty is in the range of 0.9 to 2.5% relative to the
mean of the time series at GPOA = 750 Wm−2 and TMod = 40◦C.
For the parameter GSC I find similar to the eight current and voltage parameters
a heavy tailed distribution, which is qualitatively well described by the GPR
predicted probability density. Furthermore, one can see, that the tail of the
distribution is more pronounced for negative ∆GSC. The relative deviation of
∆GSC, however, is much higher. I find an absolute deviation of GSC of 24.4 1

MΩ

and a relative deviation of 6.9% compared to the mean of GSC in Fig. 6.3.3.
This comparably high relative deviation can be explained by the definition
of GSC as the slope at short circuit. In comparison to the current or voltage
parameters GSC is not directly dependent on irradiation and temperature, thus
more influenced by more subtle factors, like noise and such expected to have a
higher relative variance. Furthermore, the definition of GSC as a slope can be
used the observed one-sided heavily tailed distribution.
For the parameter ROC I find a high discrepancy between the shown histogram
(dark blue) and the GPR predicted probability density (orange). This high
discrepancy can be explained with (systematic) outliers to high ROC values
in the dataset, which are not captured with the GPR prediction, since they
cannot be described adequately with the assumption of Gaussian noise. The
uncertainty prediction of the GPR is, however, clearly affected by the blatant
outliers predicting an unreasonable high uncertainty of the prediction, e.g. the
GPR predicted probability distribution (orange) does not match the histogram
(dark blue). Neglecting these outliers would result in a standard deviation of
the histogram σhist more than one order of magnitude lower, depending on the
cut-off deviation, after which outliers are neglected. Since also ROC describes a
slope (at OC), a similar argument as for GSC applies, where a higher relative
variance is already expected.
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6.5 Summary and Outlook

This Chapter has introduced a statistical model how to analyse PV outdoor
data. First the general concept of the model has been discussed. Starting
with the compact description of IV characteristics using the ESPs, a suitable
filtering approach is applied. Afterwards, the ESPs are processed with a principal
component analysis (PCA). The main step is then temporally splitting the PC
timeseries and training individual Gaussian process regressions (GPRs) using
GPOA and TMod and the time t as input. Once the GPRs are trained the model
can reproduce respectively predict the complete IV characteristic at any given
time t, GPOA and TMod, incorporating an uncertainty of the ESP prediction
based on the data noise and distance from the observations.
To underline its usability, the presented concept is applied to represent the IV

characteristic in terms of the 10 ESPs (and PCs) clearly showing superimposed
acclimatization, degradation and seasonality effects in the respective parameters.
Furthermore, the model is utilized to determine a PV modules performance
ratio over time and compared to a classical monthly temperature corrected
performance ratio approach. Especially regarding the uncertainty estimate
resulting from the GPR predicted uncertainty I find an improvement of the
PRGPR estimate over the classical PRT approach. A set of predicted ESP
timeseries is further used as input for a one diode model fit, allowing for a more
physical interpretation of the presented performance variation and changes over
time. I find a strong seasonality reflected mostly in the photo current and a
more complex acclimatization and long-term degradation reflected in multiple
parameters. Further I connect the outdoor analysis to the LID studies discussed
in Chapter 4. I argue, that LID at OC conditions is reflects realistic operation
conditions better.
Finally, the presented concept is validated using a common 80:20 training to
test data ratio, while keeping training and test data temporally separated. The
overview of the models performance measure R2 over all 10 ESPs and all 45
datasets shows a consistently good accuracy of the model for a wide range
of technologies operated in different climates. For one exemplary subset, the
accuracy of the model is discussed in more detail, showing low relative deviations
in the prediction of the majority of ESPs, while being consistent with the models
prediction for its uncertainty.
The presented model widen the possibilities in the field of PV reliability monitor-
ing and PV degradation analysis. The manageability of big datasets is ensured
due to the compact description in terms of the ESPs and a temporal split of the
data. The accuracy of the model is validated for different locations (climates) on
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different module types. Furthermore, only the possibility to measure in field IV
characteristics, module temperature and irradiation is presupposed. As a result,
that provides for the concepts presented many applications. Especially the
possibility to set the results into context of their uncertainty enables to quantify
the confidence of the results. Further, if only parts of the IV is available, e.g.
the SSPs or only AC or DC output voltage, current or power, the concept of
training monthly GPRs is still applicable.
In the presence of rising accessibility to high computational power and the
possibility to utilize Graphics Processing Units (GPUs) for matrix multiplications,
GPRs become more and more applicable to big datasets [125]. This way, the
presented approach could be updated in future to bigger subsets or by a single
GPR on each timeseries. Furthermore, the model can be utilized to compare
different filtering approaches, since the applicability of GPRs to data remains
on Gaussian distributed errors in the data and can help to detect the presence
of systematic errors.



Chapter 7
Summary

The rapid extension of the renewable energy sector is essential for the compliance
with climate goals especially considering the rising global energy demand. In-
creasing the energy production from PV technologies is one key aspect to achieve
a clean and reliable energy supply system. Beside the need for an overall growth
in production and capacity, improvements regarding the outdoor performance
and sustainability of PV modules are inalienable for an economy driven extension
of renewable energy production.

This thesis has addressed multiple topics related to PV module outdoor perfor-
mance and sustainability. Chapter 3 has introduced a model to extrapolate CIGS
module performance from cell performance as well as to extrapolate module yield
in different climates from module performance. The in the PV community well
implemented IEC60891 norm for irradiation and temperature corrections has
been utilized to gain a compact description of a solar cells respectively PV mod-
ules irradiation and temperature dependent performance. Afterwards, standard
reference climates defined in the IEC61853 norm have been used to determine
an expected yield in different climates and such quantified the potential of a PV
module operated in various locations around the world. Furthermore, the effect
of potential improvements on cell level on the yield have been discussed. This
way the presented model represents a possibility how to interpret cell efficiencies
and performance in terms of energy production and yield in different climates
and translates fundamental cell improvements to the resulting energy production
potential.

Beside the (potential) outdoor performance of PV modules and systems, their
reliability and performance stability is crucial for the energy yield during opera-
tion over many years. Monitoring the PV outdoor performance is ultimately the
best method to analyse the performance stability considering all effects on the
PV modules performance occurring in a real operation scenario. However, in

125



126 CHAPTER 7. SUMMARY

PV outdoor data multiple influences affecting the performance are overlaid. To
separate these multiple influences laboratory experiments can be used, where
the conditions of degradation can be tuned and are well defined. One aspect of
degradation and performance variations in operation arises through illumination
of the semiconductor layer stack. In Chapter 4 laboratory experiments were
presented, studying light induced degradation of CIGS solar cells as well as the
dependency on temperature, irradiation intensity and applied bias condition.
The results remarkably showed, that the operation bias is crucial for the effects
triggered due to illumination of CIGS solar cells. Cells kept under OC appear
stable under illumination while cells kept in SC exhibit a significant performance
drop. This performance drop is shown to be more or less independent on the
intensity, but shown to be affected by the operation temperature. High oper-
ation temperatures lead to the highest amplitude of up to −3% absolute loss
in efficiency. The efficiency loss is caused by an increase of the overall recom-
bination rate, while the ideality factor is reduced. This indicates an enhanced
probability of a recombination process with ideality factor 1, consistent with e.g.
recombination centres located in quasi-neutral regions of the device.

Accelerated testing procedures like the presented LID experiment cannot replace
actual long-term studies. Monitoring the PV outdoor performance over years
of operation is ultimately the best method to test and validate the results of
accelerated ageing tests, tracking performance stability considering all effects
on the PV modules performance occurring in a real operation scenario. The
evaluation of the PV performance requires information on the conditions the
performance is measured at, e.g. meteorological data as well as a suitable
approach to validate the data quality. Chapter 5 has introduced two different
approaches for PV outdoor data quality assessment and filtering. The first
approach is based on utilizing the many correlations present in the electrical
performance and meteorological data. Physical models are used to compare
individual measured parameters with the expectation of these parameters based
on other information available from the data profile. Further, the Mahalanobis
distance is used to weight correlated deviations from the expectation accordingly.

The second filtering approach presented is designed to selectively filter out data
points where the effective irradiation on the PV module does not match the
measured in plane irradiation. For that I utilize the stochastic nature of GPRs to
find data points that cannot be described adequately with Gaussian deviations
from the expectation and can such only originate from a systematic deviation
from the expected dependency of the short circuit current ISC on irradiation
GPOA and temperature TMod. An iterative approach is hereby chosen, to suppress
the influence of outliers on the prediction.
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Once the data quality is assessed and low quality data is filtered, analysing PV
outdoor data still needs to overcome challenges arising through the data quantity
and correlations in the different dimensions impeding to separate multiple effects
influencing the PV module performance. In Chapter 6 a model for statistically
analysing PV outdoor data has been presented. The GPR IV model is based on
dimensionality reduction through the use of the ESPs and a subsequent PCA.
The timeseries of linear uncorrelated PCs is then processed using multiple GPRs
and a mixture of experts approach overlaying the predictions. After the model
is trained, it can predict the PCs, this way the ESPs and such the complete IV

characteristic at any time, irradiation and temperature condition. Furthermore
the model provides information about the uncertainty of the prediction resulting
from the noise level of the data and the distance (in time, irradiation and
temperature) of the prediction from observations used for training. The model
has been shown to be an alternative to analyse PV outdoor data and gain insights
on e.g. acclimatization, seasonality and long-term degradation. Furthermore,
the model has been shown to outperform a classical PR estimate, gaining results
with lower uncertainty, while being not dependent on the choice of an additional
filter, commonly used in the classical approach.

7.1 Outlook

Wafer-based crystalline silicon (c-Si) solar cells are the dominant PV technology
for more then 6 decades [126]. Consequently, the reliability and performance
stability of the established glass-backsheet and glass-glass encapsulated c-Si
PV modules has been tested and verified sufficiently. Arguably, reliability and
performance stability under accelerated tests or outdoor operation become less
and less important in the PV sector. Considering the future of the PV sector,
however, reliability and performance stability analysis and by this the topics
of extrapolation of module performance, outdoor data analysis and accelerated
ageing tests are expected to gain importance:

• Currently, the most promising (new) PV technologies are based on per-
ovskites, where high efficiencies have been demonstrated on cell level as
well as in tandem configurations [2]. Poor long-term stability is the major
challenge hindering the commercialization of perovskite PV technologies
[127]. Long-term outdoor studies and especially accelerated ageing tests
are needed to validate the long-term performance of perovskite and per-
ovskite tandem modules. Furthermore, insights gained from such studies
might help addressing the long-term performance issue and such play a
crucial role for the future of perovskites in the PV sector.
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• The PV sector is currently an example for a classical linear economy, where
PV modules are mostly not recycled at the end of life (EoL) and end up
in landfill [128]. The transition to a circular economy, where ideally all
resources needed for production of new devices are recovered from EoL
devices is a huge challenge. While the share of recycling of EoL PV modules
increases politically driven, methods of recycling of commercial glass-
backsheet and glass-glass encapsulated c-Si PV modules 35 lack on recovery
rates or purity and are in general not profitable, due to the amount of
energy needed to separate glass, metals and semiconductor materials from
the encapsulant and each other. Considering an expectation of cumulative
78 million tons of PV waste by 2050 [129], module concepts, where the
recyclability at the EoL is part of the design (design for recycling, DFR),
are a necessity for a circular economy. For the successful implementation
of new DFR PV module concepts in the market, long-term outdoor studies
and accelerated ageing tests are needed.

Beside the overall prospect of the topic of PV module performance stability and
reliability I further want to give a short term outlook on the topics covered in
this thesis:

• Chapter 3 has introduced a model how to extrapolate from CIGS cell
performance to module yield. While part of the model is transferable to
other PV technologies, future work could work on a generalization of the
presented model to e.g. c-Si solar cells or tandem applications.

• Chapter 4 has presented the results of LID accelerated ageing tests on
industrially produced CIGS solar cells. While the difference in stability
of the solar cells at OC and SC is shown to be remarkable, the question
arises how a bias condition between SC and OC would affect the observed
performance changes in CIGS solar cells under illumination. An experiment
applying a bias, which is common in operation, i.e. a bias close to MPP,
during the LID might gain valuable insights on how the effects observed
translate to real operation scenarios.

• Chapter 5 has introduced two possibilities of filtering PV outdoor data.
The two approaches address different systematic errors typically present in
PV outdoor data sets, but do not take into account all possible influences
affecting the data quality. Furthermore the question remains, how different
filtering approaches affect further analysis, e.g. PR estimates or degradation
studies.

35more than 90% market share over the last 40 years [128]
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• Chapter 6 has presented a model how to statistically analyze PV outdoor
data. While the general applicability of the model has been demonstrated,
a physical model how to describe the observed trends of acclimatization,
seasonality and degradation as well as the extrapolation of the observed
temporal trends is beyond the scope of this work. The overlaid nature of
many effects affecting a PV modules performance as well as the accuracy
of the measurements itself impede further analysis. The classification of
the data in terms of an uncertainty estimate fro a given time, temperature
and irradiation as well as the possibility to produce arbitrary outputs
with the presented model, however, might enable the application of fur-
ther timeseries analysis methods. One promising approach (especially for
extrapolation and such for predicting future performance) is the autoregres-
sive integrated moving average (ARIMA) approach. An ARIMA timeseries
analysis requires a regularly spaced timeseries, which is in general not the
case for PV outdoor data, but can be produced with the presented model.

• Combining the topics addressed, it will be a question for future work, how
to combine the prediction of outdoor performance in various climates with a
degradation model based on the insights gained through accelerated ageing
tests and long-term outdoor studies. The insights gained through outdoor
and laboratory experiments might be used as input for a more realistic
yield prediction, where performance variations occurring in operation are
included in the yield calculations in Chapter 3.
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