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Zusammenfassung

Fir Unternehmen werden die Anforderungen an die Genauigkeit bei der Bewertung von Risiken
aufgrund interner und externer Faktoren zunehmend héher. Dies erfordert komplexere Modelle und
Berechnungsmethoden, sowohl auf der Ebene von Einzelrisken als auch auf der Ebene von
Risikoportfolios. Haufig fihren Unternehmen daher Monte-Carlo-Simulationen zur Ermittlung von
Risiko-Kennzahlen durch. In der vorliegenden Arbeit wird eine numerische Alternative, basierend auf
dem stochastischen Begriff der charakteristischen Funktion, vorgestellt und in drei komplexeren
Fallbeispielen angewendet. Es zeigt sich, dass bei den hier gewahlten Fallbeispielen die

Abweichungen zwischen den Ergebnissen der beiden Methoden nicht signifikant sind.

Abstract

For companies, the requirements for accuracy in risk assessment are becoming increasingly stringent
due to internal and external factors. This necessitates more complex models and calculation
methods, both at the level of individual risks and at the level of risk portfolios. Companies therefore
often use Monte Carlo simulations to determine risk indicators. This paper presents a numerical
alternative based on the stochastic concept of the characteristic function and applies it to three
complex case studies. It shows that, in the case studies selected here, the differences between the

results of the two methods are not significant.
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1. Einleitung

In der Betriebswirtschaftslehre gewinnt das quantitative Risikomanagement zunehmend
an Bedeutung. Verstarkt durch zusatzliche Anforderungen - allgemein, regulatorisch und
branchenbezogen - beschiftigen sich Unternehmen mit der Frage, wie sie ihre Risiken
noch genauer bewerten konnen. Dabei spielen sowohl die verwendeten Kennzahlen zur
Risikoquantifizierung (Risikomaf3e, z.B. Value at Risk und Expected Shortfall) als auch die
Modellierung der Risiken eine Rolle. Je komplexer jedoch die verwendeten
wahrscheinlichkeitstheoretischen Modelle sind, desto komplizierter werden die
bendtigten stochastischen Methoden zur Berechnung der Kennzahlen.

Zum einen beobachtet man dies bei der Risikoaggregation, d.h. der Zusammenfassung
verschiedener Risikopositionen zu einem einzigen Wert (vgl. [3], [5], [7], [8]). Zum
anderen kann es aber auch anspruchsvoll sein, ein Einzelrisiko zu bewerten, z.B. wenn
man zur Modellierung eine kombinierte Verteilung verwendet. Bei einer kombinierten
Verteilung werden die Haufigkeit, mit der das Risiko (pro Periode) eintritt, und der
Verlust, der mit dem Eintritt des Risikos verbunden ist, separat modelliert. Anschlief3end
werden beide Komponenten Zu einer Verteilung (zu einem
wahrscheinlichkeitstheoretischen Modell) zusammengesetzt (vgl. [7] S.44). Diese
Vorgehensweise kennt man bereits aus der Versicherungsmathematik (vgl. [10]).

[.d.R. steht Unternehmen zur Bearbeitung komplexer Risikoquantifizierungen (z.B.
Risikoaggregation und Bewertung komplexer Einzelrisiken) als Technik die Monte-Carlo-
Simulation zur Verfiigung. Daneben gibt es aber auch die Moglichkeit, den Wert der
Kennzahlen mit analytischen bzw. numerischen Methoden auf Basis der
charakteristischen Funktion zu ermitteln. In dem vorliegenden Artikel werden anhand
von drei Fallbeispielen die Verfahren zur Quantifizierung bei komplexen Einzelrisiken
gegeniibergestellt: Monte-Carlo-Simulation und analytische bzw. numerische Methoden.

Im Focus stehen bei den Fallbeispielen die bereits oben erwdhnten kombinierten
Verteilungen zur Modellierung eines Einzelrisikos. Angewendet wird diese Modellierung
z.B. bei operationellen Risiken bzw. Betriebsrisken. Also bei Risiken, die nicht den
unternehmerischen Risiken zugeordnet werden. Man versteht darunter Gefahren, die
durch das Versagen von Prozessen, Menschen und Systemen oder durch externe Einfliisse
bedingt sind (vgl. [6]). Im Industriebereich sind dies z.B. Ausfallrisiken von Maschinen, im
Allgemeinen z.B. Rechtsrisken und bestimmte IT- und Cyberrisiken.

Von zentraler Bedeutung fiir die analytischen und numerischen Methoden zur
Berechnung der Kennzahlen ist die charakteristische Funktion einer Verteilung. Deshalb
werden im zweiten Abschnitt zunachst wichtige Ergebnisse zu diesem stochastischen
Begriff zusammengestellt. Anschliefend wird im dritten Abschnitt das diesem Artikel
zugrunde liegende Modell vorgestellt und im vierten Abschnitt die Methoden im
Grundsatz erldautert. Danach folgen die drei Fallbeispiele, in denen die Methoden
angewendet und anhand der Ergebnisse gegeniibergestellt werden.



2. Charakteristische Funktion - Definition und wichtige Ergebnisse

Aus Sicht der Stochastik ist fiir die vorliegende Ausarbeitung wie bereits erwahnt der
Begriff der charakteristischen Funktion von zentraler Bedeutung. Deshalb werden in
diesem Abschnitt die Definition und die fiir den Fortgang des Artikels wichtigen
Eigenschaften von charakteristischen Funktionen zusammengestellt.

Gegeben sei eine reell-wertige Zufallsvariable U mit der Verteilungsfunktion F;; und der
charakteristischen Funktion

Py(®) = E(eV), t € R,
wobeii = v—1.

Als erste wichtige Eigenschaft ergibt sich der folgende Zusammenhang zwischen den
Ableitungen der charakteristischen Funktion und den Momenten:

Ist E(JU|™) < oo fiir n € N, dann ist ¢;; n-mal differenzierbar und es gilt
L(]k)(t) — k. E(Uk ) ei-t-U)
bzw. insbesondere
b0 = ik E(UX)
firk =0,1,2, ...,n. (vgl. [9] S.385)

Als Umkehrformel wird im Kontext von charakteristischen Funktionen das folgende
Ergebnis bezeichnet:

Es sei
p-lat _ p=ibt
g(t,a,b) = it ,t;tO'
b—a ,t=0

a < bund P(U=a) =P(U = b) = 0.Dann gilt
1 z
Pla<U<b)=——-" limf g(t,a,b) - Yy(t) dt.
2w 2o ),

(vgl. [9] S.386)
Aufgrund des Beweises der Umkehrformel kann dieses Ergebnis ohne die Voraussetzung
P(U = a) = P(U = b) = 0 wie folgt modifiziert werden:

1 1 1 z
S PU=0)+P(@<U<b)+5 P(U=b)=>— limj 9(ta,b) -y (t) dt
. Z—00
—Z

(vgl. [11] S.209f)

Ist U eine nichtnegative reell-wertigen Zufallsvariable mit P(U = b) = 0 fiir b > 0 und
P(U = 0) > 0, so ergibt sich daraus:



1 1 z
Fy(b) = PO SUSbB) =5 P(U=0) +5— hmf 9(t,0,b) - Py (£) dt

Mit dieser Formel lassen sich dann im Spezialfall einer nichtnegativen Zufallsvariablen
mithilfe der charakteristischen Funktion die Quantile der Verteilung berechnen.
Der Integrand lasst sich dabei im Fall t # 0 wie folgt umformen:

1— —ib-t
9(6,0,b) Py (8) = ———
_1—cos(=b-t) —i-sin(—b-t)

. E(ei-t-U)

“E(cos(t-U) +i-sin(t-U))

i-t
g (—i _cos(t-U) N sin(t - U) i cos(—b - t)t- cos(t-U) cos(=b- t)t. sin(t - U)
B sin(=b - t) - cos(t - U) L sin(—b - t) - sin(t - U))
t t

( ~cos(t-U) sin(t-U)  cos(=b-t+t-U) sin(—b-t+t- U))
=E(—-i- + +i- —
t t t t
Die letzte Umformung ergibt sich aus den Additionstheoremen fiir trigonometrische
Funktionen. Als Realteil des Integranden erhdlt man dann
sin(t-U) sin(—=b-t+t- U))
t t

Re(g(t, 0,b) - 1/)U(t)) = E(

als Imaginarteil

cos(t-U) N cos(b-t+t- U))
t t '

Im(g(t,0,b) -y (t)) = E(

Wegen

sin(—=t-U) sin(b-t—t-U)
-t —t )

Re(g(—t, 0,b) -1/)U(—t)) = E(

_z (sin(t -U) sin(=b-t+t-U)
a t t

) = Re(g(t,0,b) -y (1))

ist der Realteil des Integranden achsensymmetrisch zur vertikalen Achse des
Koordinatensystems durch den Ursprung und wegen
cos(—t-U) N cos(b-t—t- U))
—t —t

Im(g(—t, 0,b) - l/)U(—t)) =EF (—

» (_cos(t ), cos(=b-t+t- ‘”) = —1m(g(t,0,b) - Yy (D))

t t

ist der Imaginarteil punktsymmetrisch zum Ursprung des Koordinatensystems.

Ferner gilt



Jim fzg(t, 0,b) - ¢y(t) dt
= lim ZRe(g(t, 0,b) -y () +i-Im(g(t,0,b) Py (1)) dt

Z Z
= lim f Re(g(t, 0,b) -1/)U(t)) dt +i-lim f Im(g(t, 0,b) -1/)U(t)) dt
z-0 J_, zoo )
Wegen der Punktsymmetrie des Imaginarteils gilt

)2 mm(g(t,0,b) -y (®)) dt =0,

und wegen der Achsensymmetrie des Realteils

f Re(g(t,0,b) - Py (0)) dt = z-] Re(g(t,0,b) -y (D) dt,

-z 0
jeweils fiir alle z > 0.

Damit ergibt sich fiir die obige Formel die Darstellung
1 1 z
Fy(b)=P(0<U<bh) = E-P(U =0)+ — lim f Re(g(t,0,b) -y (D)) dt.
Z—00 0
Zu erwahnen ist dabei noch, dass der Integrand wegen der Stetigkeit der

charakteristischen Funktion (vgl. [9] S.385) und wegen
ltin(} g(t,0,b) =b = g(0,0,b)

ebenfalls stetig ist in t = 0. Somit beziehen sich alle Integrale auf eine stetige Funktion.

Ein weiteres grundlegendes Ergebnis liefert der Eindeutigkeitssatz: Sei V eine zweite
reell-wertige Zufallsvariable mit der Verteilungsfunktion F;, und der charakteristischen
Funktion

Yy () = E(e"V),t eR,
so ist Yy = Yy aquivalent zu F; = Fy,.

D.h. die Verteilung einer Zufallsvariablen ist durch die charakteristische Funktion
eindeutig festgelegt. (vgl. [9] S.388)



3. Das Modell

Die Haufigkeit des Eintritts des Risikos pro Periode ist gegeben durch die N,-wertige
Zufallsvariable N. Des Weiteren sind die Verluste, die mit dem Eintritt des Risikos
verbunden sind, gegeben durch die nichtnegativen Zufallsvariablen X;, X,, X5, ... . Hierbei
handelt es sich gegeben N um stochastisch unabhdngige und identisch verteilte
Zufallsvariablen, die ebenfalls stochastisch unabhdngig sind von der Haufigkeit des
Eintritts, d.h. von der Zufallsvariablen N. Im Folgenden wird fiir einen reprasentativen
Verlust die Zufallsvariable X verwendet, d.h. X ist nichtnegativ und geniigt der gleichen
Verteilung wie X,k = 1,2,3, ....

Es seien
pr =P(N=k),k=0123,..,
die Einzelwahrscheinlichkeiten,
Fy(x)==P(N <x),x €ER,
die Verteilungsfunktion,
py = E(N)
der Erwartungswert,
oy =+/Var(N) <
die Standardabweichung und
h(s) = E(sV),s € [0,1]

die wahrscheinlichkeitserzeugende Funktion der Zufallsvariablen N. Dabei gilt der
Zusammenhang h'(1) = E(N) und k"' (1) = E(N - (N — 1)).

Fir die Verteilung der Verluste seien Fy(x), x € R, die Verteilungsfunktion, uy der
Erwartungswert, gy < oo die Standardabweichung und

px(u) = E(e"**),u e R,

die charakteristische Funktion. Handelt es sich hierbei um eine stetige Verteilung, so sei
fx(x), x € R, die Dichtefunktion.

Der Gesamtperiodenverlust ist dann gegeben durch
Z=X +X,+ -+ Xy.

u sei der Erwartungswert, o die Standardabweichung und
o(u) = E(e'“?),u € R,

die charakteristische Funktion der Zufallsvariablen Z. Mit der charakteristischen
Funktion ist die Verteilung von Z eindeutig festgelegt (vgl. Abschnitt 2).

Es gilt nun E(|Z]?) < co. Dies kann mithilfe der Jensenschen Ungleichung (vgl. [9] S.280)
wie folgt gezeigt werden:



2

N N
E(IZ1) = E(Z9) = E{ xweo) (Z Xk> = B Xpuwoy - N (Z -Xk>
k=1

k=1

2

2|

Jensensche Ungl. N

N
1
< E<X{N¢O}'N2 ZNXI§> = E(N ' ZX1§> = E(E(N'legﬂxi |N))
k=1

k=1
[ee) (o] n oo
= ) EON-SELXEIN =n) py= ) ne Y EGR) pu= ) w2 EX) - py
n=0 n=0 k=1 n=0

= EX?)-E(N?) = (o + pi) - (of + uf) < o

Somit ergibt sich u.a. mithilfe der Differentialrechnung der folgende Satz.

Satz:

Es gilt:

a) &(u) = h((px(u)) ,u € R.
b) p=uy-ux

c) o =0y i+ Uy 0%

(vgl. [10] S.115ff)

Beweis:

Zu a):

P(u) = E(ei'"'z) = E(ei'u-(X1+X2+...+XN))

—E (E(ei-u-(X1+X2+-~-+XN)|N)) —E (E(H11¥=1 ol WX |N))

— Z E([IN_, e *c|N = n) - p, = Z l_ln E(e!*Xx|N =n) - p,
£l Ly

n=0

=y ]_[ E(eX) -y = ) ox ()" pn = E(px10™) = h(px ()
n=0 k=1 n=0

Zu b) und c):
Es gilt (Kettenregel)
®'(w) = h'(px(w) - @' (w)

und (Produkt und Kettenregel)
®" (1) = h"(px (W) - (¢’ W)* + h'(px(W)) - 0" (W)



fir alle u € R.

Damit ergibt sich

p=E@ =7 0'0) = 5 K (0x(0) 9'(0) = T K (D) -ty = iy sy
und
0% =Var(Z) = E(Z*) — pj = —@"(0) — 3
= —h"(9x(0)) - (¢'(0))* = h'(x(0)) - 9" (0) — uZ
=—h"(1) - ({ pux)? —h' (1) 9" (0) — (uy - 1x)?
=E(N-(N—=1))-ui +puy - (0F +u3) — 4k - 1%
= E(N®) - g — iy - Mg + iy - 0% + iy - B — Uy HE
= E(N?) - u% + un - 0% — Uiy - 4§ = o - g + py - 0y
O

In den beiden folgenden Beispielen werden geeignete Verteilungen fiir die Haufigkeit des
Eintritts eines Risikos und den Verlust, der mit dem Eintritt des Risikos verbunden ist,
zusammengestellt.

Beispiel 1:

Fir die Haufigkeit des Eintritts eines Risikos konnen in Anlehnung an die
Versicherungsmathematik u.a. die folgenden Verteilungen verwendet werden.

a) Wir betrachten zunachst den allgemeinen Fall, dass die Zufallsvariable N Werte in der
Menge {0,1,2, ..., n} annimmt, d.h. die Einzelwahrscheinlichkeiten sind gegeben durch

pr = P(N =k),k=0,1,2,..,n,

wobei };_opr = 1. Dann ergeben sich der Erwartungswert, die Standardabweichung
und die wahrscheinlichkeitserzeugende Funktion allgemein durch:

n
MN:zk'Pk
k=0

n n
oy = Z(R—MN)Z'Pk= ZkZ'Pk—ﬂzzv
k=0 k=0



b)

d)

n

h(s) = ZS" Dk, S €10,1]

k=0
Das einfachste Modell fiir die Zufallsvariable N ist die Bernoulli-Verteilung mit dem
Parameter p € (0,1). Dabei gilt

po=P(N=0)=1-—pund p, =P(N=1) =p.

Damit ergibt sich fiir den Erwartungswert uy = p, flir die Standardabweichung oy =

\/p —p? = \/p * (1 — p) und fiir die wahrscheinlichkeitserzeugende Funktion
h(s)=(1—p) +s-p,s €[0,1].

Die Binomial-Verteilung mit den Parametern n €N und p€[0,1] als

Verallgemeinerung der Bernoulli-Verteilung ist gegeben durch

n -
p=PWN =k) =) P (L=p)" " k=012,..,n

Als Erwartungswert erhdlt man uy =n-p, als Standardabweichung oy =
Jn - p- (1 —p)und als wahrscheinlichkeitserzeugende Funktion

h(s) = (1 =p)+s-p)",s €[01]

(vgl. [10] S.332). Insbesondere ist eine Bernoulli-Verteilung mit Parameter p eine
Binomial-Verteilung mit den Parametern n = 1 und p.
Setzt man fiir die Zufallsvariable N die Poisson-Verteilung mit dem Parameter 1 > 0
voraus, so haben alle Elemente aus N, eine positive Wahrscheinlichkeit:
ﬂ.k
pk=P(N=k)=e? o k=012, ...
Als Erwartungswert ergibt sich uy = A, als Standardabweichung oy = VA und als
wahrscheinlichkeitserzeugende Funktion
h(s) = e*¢~1 s € [0,1].

(Vgl. [10] S.333f)

Beispiel 2:

Fir den Verlust, der mit dem Eintritt des Risikos verbunden ist, konnen ebenfalls in

Anlehnung an die Versicherungsmathematik u.a. die folgenden Verteilungen verwendet

werden.

a)

Fiir den Wert des Verlustes X gibt es nur endlich viele Mdoglichkeiten
{x;|x, =0,k =1,2,..,n}. Dann gilt:



n

.uX:zxk'P(X:xk)

k=1

n n
Ox = Z(xk—ﬂx)z'P(szk)= in'P(szk)—ﬂgz(
k=1 k=1
n

e = 3 P = ) e

k=0
b) Ist der Verlust X gleichverteilt auf dem Intervall [0, M], M > 0, hat man uy = %, oy =
\/% und

ei-u-M -1
px(u) = MiaVE R\ {0}
(vgl. [9] S.278, 287, 383).
Mit der Regel von L'Hospital ergibt sich

el-u-M -1

lim——=1
u=0 M-i-u
c) Eine in der Praxis oft verwendete Verteilung ist die Dreiecks-Verteilung. Die
Parameter sind a als best case, b als normal case und c als worst case, mita < b < c.
Nimmt nun man an, dass die Verluste im Intervall [0, M] liegen, so waren a = 0 und

c =M.

Die Dichtefunktion der Dreiecks-Verteilung ist gegeben durch

( 0 ,x<a
: (x—a) ,a<x<bh
(x—a a<x
(b—a) - (c—a) ' B
fX(x)z< 2
(c—b)-(c—a).(c_x) b<x<c
\ 0 , X =C
( 0 ,x<0
2
b-M'x ,0<x<bh
:{ 2
(M—b)-M.(M_x) b<x<M
\ 0 ,x =M

(vgl. [2] S.45f).
Flr den Erwartungswert gilt dann

_a+b+c_b+M
Uy = 3 B

10



und fiir die Standardabweichung

Ce—@2+ =)+ (b —a)?  [M?+(M—b)?+ D2
% = 36 - 36

Ferner ist der normal case b auch der Modus.

Die Charakteristische Funktion berechnet sich fiir u € R \ {0} wie folgt

ox () = E(ei¥) = f e - o (x) d

b 2 M- 2
=f el'u'x'b_M'xdx+j e“"x'm'(M—x)dx
0 b

Wendet man die partielle Integration an, so erhalt man fiir das erste Integral:

[L ei-u-x.i.x]b — bi. elwx . 2
[ b'M 0 0

iu iu b-de

b

= [i elwx . 2 .x]b — [_i.ei-u-x.i]
i . 0 u2 b-Ml,

u
2 1 . 1 , 1
— N l-u-b+ . plub )
(i ¢ u-b ¢ u-b

Fiir das zweite Integral erhdlt man ebenfalls mit partieller Integration:

[ 1 i 2 (M ):|M+jM 1 fwex 2 d
iu S WM=b)M i PR R YRR s B Ve

M M
[%.ei.u.x.mw_x)]b+[_%_ei.u.x,m]b

2 . 2 . 2

— . el-u-b _ . el-u-M . ei-u-b
i~u-M u?-M—-»b)-M u?-(M—-»b)-M

— ﬁ . (_l ei-u-b _ ; ei-u-M + ; ei-u-b)

i u-(M—>b) u-(M—>b)

Damit ergibt sich als charakteristische Funktion fiir u € R \ {0}:

2 . (L etwb _ 1 1 fwM 4 ; ei-u-b)

‘pX(”):W u-b u-b_u-(M—b).e u-(M—b).

2 1 1 1 1
= _.ituwb ., iuM . ,iub
WM (b ¢ b mM—bp ¢ Tm-p© )

[l



d)

2 M . 1 1 .
— < .glud l-u-M)
u?-M \b-M — b? b M-b

Durch zweimalige Anwendung der Regel von L'Hospital ergibt sich

u-so0u?+-M \b-M — b? b M-b '

Genugt der Verlust X einer Exponential-Verteilung mit dem Parameter A > 0, d.h. die
Zufallsvariable hat die Dichtefunktion

0 ,x<0
fX(x):{ )
A-e™* x>0
SO gilt,ux=%, 0X=%und
A

(vgl. [9] S.257, 278, 287, 383)

Gegeben sei eine normalverteilte Zufallsvariable Y mit Erwartungswert p, und
Standardabweichung oy. Die Zufallsvariable e¥ wird dann als log-normalverteilt
bezeichnet. Da es sich um eine nichtnegative Zufallsvariable handelt, ist die Verteilung
fiir den mit dem Eintritt des Risikos verbundenen Verlust geeignet. Wahlt man fiir den
Verlust X die Log-Normalverteilung mit den Parametern p und o, so ist die
Dichtefunktion gegeben durch

0 , X< 0
x) = 1 1 _n@-w? :
fX() ﬁ;e 2.g2 'x>0
V2'm-o
Als Erwartungswert ergibt sich
2
Ux = e”+_,

als Standardabweichung

oy = \/ez-u+02 . (eaz — 1)'
Die charakteristische Funktion kann nicht als geschlossener Ausdruck dargestellt

werden.
(vgl. [10] S.338)
Gentigt der Verlust X einer Gamma-Verteilung mit den Parametern «,y > 0, d.h. die
Zufallsvariable hat die Dichtefunktion
0 ,x<0

fx(x) =1 a Co—ax . ay—1 )
r(y)

12



g)

wobei die Gamma-Funktion definiert ist durch

r@)=J, e* 27" dz,

sogilt uy = g 14

, Oy =;und

a

px(u) = (a——

14
- ) ,u € R.
i~u

Insbesondere ist eine Exponential-Verteilung mit dem Parameter 4 > 0 eine Gamma-
Verteilung mit den Parameterna = Aundy = 1.
(vgl. [9] S.186, 257, 278, 287, 383)

Wir betrachten zunéchst eine Beta-Verteilung auf dem Intervall [0,1]. Sei also Y eine
Zufallsvariable mit der Dichtefunktion

0 ,y<0

yel-(1—-y)F1t J0<y<1,

1
gy) = B@p)
k 0 ,y=>1

wobei a, f >0 sei und die Beta-Funktion definiert ist durch

_ r@T)
Blah)=Tars -

th-B
ﬁ w/oz+ﬁ+1-(oc+[f’)'

(vgl. Wolfsdorf S.340, Schmidt S.186, 256, 278, 287,

so gilt yy = ——und g, =

Setzt man nun den Verlust mit X := M -Y an, so geniigt der Verlust einer Beta-
Verteilung auf dem Intervall [0, M] mit den Parametern «,f,M >0, d.h. die
Zufallsvariable hat die Dichtefunktion

I 0 ,x<0

fx () =4l1v1a+ﬁ U B(a,B)

x 1 (M =x)F1 0<x<M,

0 , x =M
(vgl. [2] S.44)

Ferner gilt

=M - =M -
Ux Uy @+ B

und

. va-p
Ja+B+1-(a+p)

UX=M'UY=M

13
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Angemerkt werden kann noch, dass der Fall @ = = 1 der Gleichverteilung auf dem

Intervall [0, M] entspricht. Dies ist anhand der Dichte der Beta-Verteilung wegen

_ryr@ _ r@ra _ o :
B(1,1) = e - s I'(1) = 1 leicht nachvollziehbar.

Den Modus (d.h. die Maximalstelle der Dichte) im Fall a, # > 1 erhalt man mithilfe der
Differentialrechnung wie folgt. Zunachst lautet die erste Ableitung der Dichtefunktion
fir0 < x < M:

1
Ma+ﬁ—1 . B(a,ﬁ)

(@ =122 (M =)+ (B = 1) -2 (M — x)F2)

Setzt man die erste Ableitung gleich null, so ergibt sich
(a—1)x*2- M-x)f1—(B-1)-x*1-(M—x)f2=0
Sx 2. M-x)F?2((ea-1D) - M-x)—(-1)'x)=0
Diese Gleichung ist fiir x € {0, M} genau dann erfiillt, wenn
(@a—-1D)-M-x)—(B-1):x=0
Dies ist dquivalent zu
(a=1) M=(@+p—-2)x
bzw.
_(a-1)-M
a+p—-2"
Wegen a, f > 1 erhilt man fiir die beiden Grenzwerte 1}:{{)1 fx(x) = 0und }clnnv} fx(x) =
0. Somit handelt es sich bei der Lésung um das Maximum bzw. den Modus.

Eine in der Praxis verwendete Verteilung ist die Pert-Verteilung. Dabei handelt es sich
um eine spezielle Beta-Verteilung. Sie wird auch als Alternative zur Dreiecks-
Verteilung mit differenzierbarer Dichtefunktion angesehen. Die Parameter seien
analog zur Dreiecks-Verteilung a (best case), b (normal case) und ¢ (worst case) mit
a < b < ¢. Nimmt nun man wieder an, dass die Verluste im Intervall [0, M] liegen, so
sinda = 0und c = M.

Die beiden Parameter der Beta-Verteilung wahlt man mit

—5a+4-b+c 4-b+ M
= >1
c M

a =

und

_—a—4-b+5-c_—4-b+5-M>1
p= - — .

Damit erhalt man fiir den Erwartungswert

14



4-b+M

« _ — _ gy bt M _4b+ M

a+p ~ Ab+tM _ —4-b+5-M " 6-M 6
M M

px =M

Die Standardabweichung kann ebenfalls mit der bei der Beta-Verteilung giiltigen
Formel berechnet werden. Da «, f > 1 berechnet sich der Modus durch

4-b+M

@-n-M_ (Fgr—-1)m _4b_

a+p—-2 4-b+M _—4-b+5-M _ 4
Mt wm 2

Somit handelt es sich bei der hier gewdhlten Pert-Verteilung um eine spezielle Beta-
Verteilung auf dem Intervall [0, M]. Der best case und worst case sind durch die
Intervallgrenzen gegeben und der normal case analog zur obigen Dreiecks-Verteilung
durch den Modus.
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4. Berechnung von Kennzahlen fiir den Gesamtperiodenverlust

Zur Berechnung von Kennzahlen fiir den Gesamtperiodenverlust gibt es mehrere
methodische Ansadtze. Zundchst lassen sich im vorliegenden Modell Kennzahlen direkt
analytisch aus den Verteilungsannahmen fiir die Haufigkeit des Eintritts des Risikos pro
Periode und den Verlust, der mit dem Eintritt eines Risikos verbunden ist, berechnen. Fiir
den Erwartungswert, die Varianz und die Standardabweichung lassen sich entsprechende
Formeln herleiten (vgl. Satz aus Abschnitt 3). Will man hingegen Quantile der Verteilung
des Gesamtperiodenverlustes aus den im Modell fiir die beiden Komponenten Haufigkeit
und Verlusthohe vorgegebenen Verteilungsannahmen ermitteln, so st6f3t man mit dieser
Vorgehensweise wegen der Komplexitit des hier verwendeten Modells bis auf
Ausnahmen an rechentechnische Grenzen.

Aufgrund moglicher analytischer Probleme bei der Berechnung von Kennzahlen einer
Zufallsvariablen hat sich als iibliche Methodik bei der Risikoquantifizierung die Monte-
Carlo-Simulation etabliert. Dabei wird das Schicksal des Risikos mithilfe einer
Softwarel6sung hinreichend oft ausgewiirfelt. Die entstehenden fiktiven Ergebnisse fiir
den Verlust werden dann mit den Methoden der deskriptiven und der induktiven Statistik
ausgewertet. Der Erwartungswert wird hierbei mit dem arithmetischen Mittel und die
(theoretische) Standardabweichung mit der empirischen Standardabweichung
gleichgesetzt bzw. geschatzt. Auch Quantile, z.B. der Value at Risk, sowie der Expected
Shortfall des Verlustes kénnen aus den simulierten Ergebnissen ndherungsweise
ermittelt werden. Grundlegend fiir diese Methodik sind die Grenzwertsitze der
Stochastik, z.B. das Gesetz der grofden Zahlen.

Eine andere eher analytische Methode ergibt sich aus dem Eindeutigkeitssatz und der
Umkehrformel fiir charakteristische Funktionen. Der Eindeutigkeitssatz besagt, dass
durch die charakteristische Funktion die Verteilung einer Zufallsvariablen eindeutig
festgelegt ist, die Umkehrformel, dass man durch Integration des Produkt aus
charakteristischer Funktion und einer speziellen komplex-wertigen Funktion u.a.
Quantile der zugehorigen Verteilung berechnen kann (vgl. Abschnitt 2). Dartiber hinaus
lassen sich mithilfe der Ableitungen der charakteristischen Funktion die Momente einer
Zufallsvariablen bestimmen. Dieser Ansatz wurde bereits in Abschnitt 2 erldutert und im
Beweis zum Satz aus Abschnitt 3 verwendet.

Wegen der Komplexitit des Funktionsterms der charakteristischen Funktion des
Gesamtperiodenverlustes in den hier verwendeten Modellierungen ist eine Integration
mithilfe einer Stammfunktion i.d.R. nicht méglich. Daher wird im Folgenden die hier
beschriebene Vorgehensweise mit numerischen Methoden umgesetzt. D.h. in den
Fallbeispielen erfolgt u.a. die Integration des Produkts aus charakteristischer Funktion
des Gesamtperiodenverlustes und der speziellen komplex-wertigen Funktion mithilfe
numerischer Methoden.

Damit stehen fiir die vorliegende Ausarbeitung drei methodische Ansitze fiir die
Ermittlung der Kennzahlen des Gesamtperiodenverlustes zur Verfiigung:
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e Analytische Methoden, d.h. direkte Berechnung aus den Verteilungsannahmen
¢ Monte-Carlo-Simulation
e Numerische Methoden, insbesondere numerisches Integrieren

Diese drei Methoden werden in den folgenden drei Fallbeispielen bei unterschiedlichen
Modellannahmen beziiglich der Haufigkeit des Eintritts eines Risikos und der Héhe des
Verlustes bei Eintritt des Risikos gegeniibergestellt.
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5. Fallbeispiel 1

Wir betrachten zunidchst folgendes Fallbeispiel. Die Verteilung der Haufigkeit fiir den
Eintritt des Risikos pro Periode, d.h. fiir die Zufallsvariable N, sei gegeben durch die
folgenden Einzelwahrscheinlichkeiten:

5 1 4 3 1 2 1
PIN=0)===-PIN=1)==,PN=2)=—=-,P(N=3)==,P(N=4) = —

Damit ergibt sich jeweils gerundet auf vier Stellen hinter dem Komma py = 1,3333 und
oy = 1,2473.

Fir den Verlust, der mit dem Eintritt des Risikos verbunden ist, wird eine Gamma-
Verteilung mit den Parametern y =2 und a = 0,1 angesetzt. Hier der Graph der
zugehorigen Dichtefunktion:

fy(x) Dichtefunktion
0,04
0,03
0,02
0,01
0
0 10 20 30 40 50

Man erkennt, dass in der gewahlten Modellierung die Dichte bis zum Modus x = 10 steil
ansteigt und danach bis ins Unendliche flach auslauft. D.h. kleinere Werte fiir den mit dem
Eintritt eines Risikos verbundenen Verlust haben eine hohere Wahrscheinlichkeit als
grofdere Werte. Fiir den Erwartungswert der gewahlten Gamma-Verteilung gilt gemaf}
Beispiel 2f) uy = & = 20 und fiir die Standardabweichung gy = 0—\/3 ~ 14,1421.
Analytische Methoden

Mithilfe des Satzes aus Abschnitt 3 lassen sich nun der Erwartungswert g und die
Standardabweichung o des Gesamtperiodenverlustes Z wie folgt berechnen:

1=y iy ~ 1,3333 20 = 26,6660

0 =02 12 + uy - 02 ~/1,2473% - 20% + 1,3333 - 14,1421% ~ 29,8155
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Monte-Carlo-Simulation

Zur Anwendung einer Monte-Carlo-Simulation fiir den Gesamtperiodenverlust benétigt
man bei dem hier verwendeten Modell zum einen Zufallszahlen fiir die Festlegung der
Haufigkeit des Eintritts des Risikos und zum anderen Zufallszahlen fiir den mit dem
Eintritt des Risikos verbundenen Verlust. Die Zufallszahlen werden dabei jeweils im
Intervall [0,1] generiert.

Zur Festlegung der Haufigkeit aus einer gegebenen Zufallszahl wird, wie bei der
Simulation von diskreten Zufallsvariablen tiblich, das Intervall [0,1] entsprechend der
gegebenen Einzelwahrscheinlichkeiten in fiinf Teilintervalle aufgeteilt und daraus der
Wert abgeleitet. Der Verlust bei Eintritt des Risikos hingegen wird durch Einsetzen der
zugehorigen Zufallszahl in die Inverse der Verteilungsfunktion der gewahlten Gamma-
Verteilung generiert. Addiert man dann je nach Haufigkeit des Risikos die jeweiligen
Verluste auf, so erhilt den fiktiven Gesamtperiodenverlust pro Simulationslauf.

Eine entsprechende Monte-Carlo-Simulation wird fiir 10.000 Simulationslaufe mit Excel
durchgefiihrt. Es ergeben sich die folgenden Ergebnisse:

Kennzahl Ergebnis der Monte- Relative
Carlo-Simulation Abweichung zum
theoretischen
Wert
Erwartungswert/Mittelwert 26,3375 —1,2319%
Standardabweichung 29,5443 —0,9096%
80%-Quantil 50,0982
90%-Quantil 69,1202
95%-Quantil bzw. Value at Risk 85,3542
zum Niveau 5%
99%-Quantil bzw. Value at Risk 118,0841
zum Niveau 1%
Expected Shortfall zum Niveau 5% 105,3408
Expected Shortfall zum Niveau 1% 134,9285
Numerische Methoden

Bei der Ermittlung der beiden Kennzahlen Erwartungswert und Standardabweichung fiir
den Gesamtperiodenverlust Z geht man von der komplex-wertigen charakteristischen
Funktion
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®(u) = E(e"*?)
zur reell-wertigen momenterzeugenden Funktion
m(u) = ®(—i-u) = E(e*?)
tber. Fur die erste Ableitung der momenterzeugenden Funktion gilt dann
m'(u) = —i- @' (—i-u)
bzw.
m'(0) = —i-®'(0) = —i?-E(Z) = E(Z)
und fiir die zweite Ableitung
m'(w) =i%-@"(—i-u)
bzw.
m'’(0) =i%-@"(0) =i*-E(Z?) = E(Z?).

Die momenterzeugende Funktion fiir den Gesamtperiodenverlust Z berechnet sich wie
folgt:

mw) = (i w) = h(px(=i-w) =h ((ofi u>2> - i PV =1 <<Ofi u)2>k
k=0

_1 4(0,1)2 1(0,1)4 2 (0,1)6 1 (0,1)8
=375 01—u T3 01 —u 15 01 —u 15 01—u

Leitet man diese Funktion numerisch an der Stelle u = 0 ab, so erhalt fir Au hinreichend

klein die Naherungen

N m(Au) — m(—Au)
- 2-Au

u=EZ)=m'(0)

und

m(Au) + m(—Au) — 2 - m(0) B m(Au) + m(—Au) — 2

o+ =EZ?) =m"(0) = (Au)? (Aw)?

(vgl. [1] S.125ff, [4])

Wihlt man Au = 1074, so ergibt sich u = 26,6669 und o = 29,8142. Die relativen
Abweichungen zu den exakten Werten betragen 0,0034% bzw. —0,0044% und sind im
Wesentlichen auf Rundungseffekte zuriickzufiihren.

Die Ermittlung der Quantile erfolgt mithilfe der Umkehrformel bzw. mit numerischer
Integration. Im ersten Schritt muss dazu die charakteristische Funktion des Verlustes, der
mit dem Eintritt des Risikos verbunden ist, in ihren Real- und Imaginarteil zerlegt werden.
Die dafiir verwendete Gamma-Verteilung mit den Parametern y = 2 und a¢ = 0,1 hat die
charakteristische Funktion
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01 \?

px(w) = (—0'1 — u) ,u € R,

diese lasst sich wie folgt umformen:

( 0,1 )2 ( 0,1 0,1+i-u)2_(0,01+i-0,1-u)2
0 0 -

1—i-u 1—i-u 01+i-u 0,01 + u?
_( 0,01 o 01-u )2
~\001+u2 ' 001+ u?
_( 0,01 )2 5., 001 0,1-u ( 0,1 u )2
~\0,01 + 2 Y001 +uz 001l+u2 \00l+uw?

_00001-001-u? . 0002-u

70,01 + u?)? Y0,01 + u2)?

0,0001 — 0,01 - u?
0,01 + u?)?

0,002 - u
(0,01 + u?)2

D.h. man erhalt Re(px(w)) = und Im(@x (W) =

Fir die charakteristische Funktion des Gesamtperiodenverlustes gilt dann

4
o) = h(px@) = ) (Re(px() +i- mm(px@)) POV = 1)
k=0
k
Z <k> : Re(fpx(u))] Lt Im(wx(u))k_] -P(N = k)

:i Zk: (f) -Re(px (W)’ - Im(px ) - POV = k)

k=0 j=0
k—j mod 4=0
._4 k k-R i I p(N = k
" ; Zo (j) - Relox@)’ - m(px@)” - Py = &)
- k—jr]n?)d4-=1
4 k . j y
_Z Z (j)'Re(fpx(u)) -Im(px(w))" ~-P(N =k)
k=0 j=0
k—j mod 4=2
4 k
- kzo ; (f) ‘Re(px W) ¥ - Im(px )" - POV = k)
k—jmod 4=3

Der Realteil von @(u) ergibt sich dann aus dem ersten und dem dritten Term, der
Imaginarteil aus dem zweiten und vierten Term.

Zur Berechnung eines Quantils mithilfe der Umkehrformel benétigt man den Realteil des
Produkts g(u, 0,b) - @(u) fiir b > 0. Dieser ergibt sich aus
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g, 0,b)-d(u) = (Re(g(u, 0, b)) +i- Im(g(u, 0, b))) . (Re((b(u)) +i- Im(cb(u)))
= Re(g(u, 0, b)) . Re(cb(u)) — Im(g(u, 0, b)) . Im(cb(u))
+i - (Re(g(u, 0, b)) . Im((b(u)) + Im(g(u, 0, b)) . Re((D(u))),

wobei fiir u # 0 gilt

1—e " 1 —cos(—=b-u)—i-sin(—b-u)

i-u i-u

g, 0,b) =

sin(—b-u)  cos(—b-u)—1 sin(b-u)  cos(b-u)—1
= - +1- = +1- .

u u u u
Ferner gilt g(0,0,b) = b.

Mit der Umkehrformel und mithilfe der Rechteckregel bzw. der Mittelsumme der
numerischen Integration (vgl. [1] S.145ff) ergibt sich die folgende Nadherung fiir die
Verteilungsfunktion F des Gesamtperiodenverlustes Z an der Stelle b > 0:

1 1
F(b)=P(0<Z<b)=5 P(Z=0) +;-Zlgngof Re(g(w,0,b) - #(w)) du
0

1 1 200
~ > P(Z=0) +;-] Re(g(u,0,b) - @(u)) du

0
1 1 9.999
~5 P(Z=0)+—- Z Re(g(0,01 + k- 0,02,0,b) - @(0,01 + k - 0,02)) - 0,02
k=0
1 1 9.999
=5 P(Z=0)+ — Z Re(g(0,01 4+ k-0,02,0,b)) - Re(®(0,01 + k - 0,02)) - 0,02
k=0
9.999

1
- Z Im(g(0,01 + k- 0,02,0,b)) - Im(¢(0,01 + k - 0,02)) - 0,02
k=0

Die Umsetzung dieser Formel in Excel liefert fiir die Quantile bzw. den Value at Risk die
folgenden Ergebnisse:

Kennzahl Ergebnis
80%-Quantil 50,5519
90%-Quantil 69,5681

95%-Quantil bzw. Value at Risk 85,9592

zum Niveau 5%

99%-Quantil bzw. Value at Risk 118,3818
zum Niveau 1%

22



Die relativen Abweichungen zu den Ergebnissen der Monte-Carlo-Simulation liegen alle
im Promillebereich, d.h. unter 1%.

Die Berechnung des Expected Shortfall zum Niveau 5% des Gesamtperiodenverlustes
ESsq,(Z) erfolgt nun ebenfalls naherungsweise, dabei sei VaRsy,(Z) der mit numerischen
Methoden ermittelte zugehorige Value at Risk. Wir gehen ferner davon aus, dass die
Verteilungsfunktion F des Gesamtperiodenverlustes Z im Intervall (0, ) stetig ist und
die Dichte f besitzt. Damit ergibt sich fiir hinreichend grof3e L und mithilfe der partiellen
Integration:

oo L
z f(z)dz = — z-f(z)dz

ES-, (Z) = .
SA)( ) 0105 VaRsy,(Z)

0,05 VaRsy,(Z)

1 L L
=——="|-lz-(1-F 1-F(z)d
0,05 ( [Z ( (Z))]VaRs%(Z) +J;/aRs%(z) ) Z)
1 L
=005 (—L (1= F(L)) + VaRsy(2) - (1 — F(VaRS%(Z))) + fv ) (z)l — F(Z)dx>
) a 5%
1 52— F(zier) — F(zi)
C F(z.) — F(z
~ 005 —L- (1 - F(L)) + VaRsy,(Z) - 0,05 + Z k+21 k/. (Zis1 — Z1)

k=0
wobei die Stutzstellen gegeben sind durch z, = VaRsy,(Z), 21, Z2, « ) Zn—1, Zny Zns1 = L.

Dabei ergibt sich die letzte Naherung wiederum aus der numerischen Integration, diesmal
allerdings mit der Trapezregel (vgl. [1] S.145ff).

Berechnet man die Werte der Verteilungsfunktion F mit der obigen Ndaherungsformel und
wahlt man n = 100, z; = [zy] + 1 sowie z,,; = z;, + 1 fir k = 1,2, ...,100, so ergibt sich
wegen VaRzy,(Z) = 85,9592 fiir L der Wert 186. Als Expected Shortfall zum Niveau 5%
erhdlt man dann naherungsweise den Wert 105,3085. Die relative Abweichung zum
Ergebnis der Monte-Carlo-Simulation betragt —0,0307%. Zur Beurteilung der Qualitat
der Ndherung kann dabei noch angemerkt werden, dass P(Z > L) = 0,000156.

Fir den Expected Shortfall zum Niveau 1% ergibt sich mit der gleichen Methode
naherungsweise ein Wert von 135,2416 bzw. eine relative Abweichung zum Ergebnis der
Monte-Carlo-Simulation von 0,2320%.

Als Fazit kann festgehalten werden, dass es im vorliegenden Beispiel fiir die Ergebnisse
der Kennzahlen bei Anwendung der Monte-Carlo-Simulation einerseits und bei der
Anwendung der numerischen Methoden (numerisches Ableiten und numerisches
Integrieren) andererseits nur geringfiigige Abweichungen gibt.
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Kennzahl Monte-Carlo- Numerische Abweichung zur
Simulation Methoden Monte-Carlo-
Simulation (in%)
Erwartungswert 26,3375 26,6669 1,2507%.
Standard- 29,5443 29,8142 0,9135%.
abweichung
Value at Risk 85,3542 85,9592 0,7088%.
zum Niveau 5%
Value at Risk 118,0841 118,3818 0,2521%.
zum Niveau 1%
Expected Shortfall 105,3408 105,3085 —0,0307%.
zum Niveau 5%
Expected Shortfall 134,9285 135,2416 0,2320%.

zum Niveau 1%
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6. Fallbeispiel 2

Oft werden wird bei der Modellierung im quantitativen Risikomanagement davon
ausgegangen, dass ein Risiko maximal einmal pro Periode eintritt und die
Wahrscheinlichkeit dafiir p € (0,1) betragt. D.h. fiir die Zufallsvariable N wird die
Bernoulli-Verteilung verwendet. Fiir den Verlust, der mit dem Eintritt des Risikos
verbunden ist, gehen wir zunadchst ganz allgemein von einer stetigen Verteilung auf dem
Intervall [0, M] aus.

Fir den Gesamtperiodenverlust Z erhilt man als Erwartungswert
H=HUNn"Hx =D Hx

und als Standardabweichung

0=\/013'ﬂ§+ﬂ1v-0§ =\/p-(1—p)-ﬂ§+p'0§-
Flr die charakteristische Funktion des Gesamtperiodenverlustes Z ergibt sich

®w) =h(pxw) =1 —-p)+¢xw) p,uck

Wir wollen fiir diesen Fall nun ein konkretes Beispiel betrachten und modellieren den
Verlust, der mit dem Eintritt des Risikos verbunden ist, mit einer Pert-Verteilung mit best
case a = 0, mit normal case b = 25 und mit worst case ¢ = M = 100. Bei dieser Pert-
Verteilung handelt es sich um eine Beta-Verteilung auf dem Intervall [0,100] mit den

Parametern
_4-25+100_2 q _—4-25+5-100_4
@«=—"p0  _2undp= 100 =
Hier der Graph der zugehorigen Dichtefunktion:
Frlx) Dichtefunktion
0,03
0,02
0,01
0
0 20 40 60 80 100
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Der Parameter der Bernoulli-Verteilung wird im Folgenden mitp = 0,2 angesetzt. D.h. fiir
die Haufigkeit des Eintritts des Risikos pro Periode bzw. fiir die Zufallsvariable N gilt
P(N =0)=0,8 und P(N = 1) = 0,2. Damit ergibt sich fiir den Erwartungswert des
Gesamtperiodenverlustes

"M - “ =0,2-100- 2 2 6,6667

und fiir dessen Standardabweichung
a \? Va8 ’
":J“N i & b o = JP'(l‘P)'(M'm) +P'<M'F+ﬁ+1.@+m>

2\ V24 ’
= 10,2-0,8- (100 —) +0,2-( 100 - ~ 15,5329.
J 2+4 ( 2+4+1-(2+4)>

D.h. die analytischen Methoden auf Basis des Satzes aus Abschnitt 3 ermdglicht
wiederum die Berechnung der beiden Kennzahlen Erwartungswert und

Standardabweichung.

Ebenfalls direkt konnen in diesem Fallbeispiel die Quantile des Gesamtperiodenverlustes
Z bestimmt werden. Es sei z € (0,100].

P(Z<2)=P(Z<zIN=0)-P(N=0)+P(Z<zIN=1)-P(N=1) =08+ Fy(z) - 0,2

Das 95%-Quantil bzw. den Value at Risk zum Niveau 5% kann dann wie folgt ermittelt
werden:

0,8 + Fxy(z) 0,2 = 0,95 © Fx(z) = 0,75 & z = F;1(0,75) = 45,4181
Analog ergibt sich fiir das 90%-Quantil 31,3810 und das 99%-Quantil 65,7408.
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Monte-Carlo-Simulation

Analog zu Fallbeispiel 1 wird eine Monte-Carlo-Simulation fiir 10.000 Simulationslaufe
mit Excel durchgefiihrt. Es ergeben sich die folgenden Ergebnisse:

Kennzahl Ergebnis der Monte- Relative
Carlo-Simulation Abweichung zum
theoretischen
Wert
Erwartungswert/Mittelwert 6,6598 —0,1035%
Standardabweichung 15,5153 —0,1133%
90%-Quantil 31,3624 —0,0593%
95%-Quantil bzw. Value at Risk 45,7070 0,6361%
zum Niveau 5%
99%-Quantil bzw. Value at Risk 66,0723 0,5043%
zum Niveau 1%
Expected Shortfall zum Niveau 5% 57,4979
Expected Shortfall zum Niveau 1% 73,3108
Numerische Methoden

Zunachst werden ebenfalls analog zu Fallbeispiel 1 der Erwartungswert und die
Standardabweichung des Gesamtperiodenverlustes Z mithilfe der ersten beiden
Ableitungen der zugehorigen momenterzeugenden Funktion berechnet. Die
momenterzeugende Funktion berechnet sich dabei naherungsweise mit numerischer
Integration wie folgt. Es seiu € R.

m(w) = &(—i-w) = E(e%?) = E(e*?|N = 0) - P(N = 0) + E(e*?|N = 1) - P(N = 1)

=1-08+E(“%):0,2=08+0,2" f e - fy(x) dx

100

1
~=08+02- wx.____—___.x.(100 - x)3d
fo e Toos Bzay ¥\ x)” dx

99

~08+0,2- Z ew(k+05) . - (k+0,5) (100 — (k +0,5))3
k=0

1
1005 - B(2,4)

Berechnet man das Integral numerisch fiir u = 10™* und u = —107%, so ergibt sich mit
numerischem Ableiten fiir den Erwartungswert u = 6,6661 und fir die
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Standardabweichung o = 15,5323. Die relativen Abweichungen zu den (gerundeten)
exakten Werten betragen —0,0090% bzw. —0,0039% und sind wie in Fallbeispiel 1 im
Wesentlichen auf Rundungseffekte zuriickzufiihren.

Zur Berechnung der Quantile mithilfe der Umkehrformel bendétigt man zunachst die
Zerlegung der charakteristischen Funktion in Ihren Real- und ihren Imaginarteil. Analog
zur momenterzeugenden Funktion wird dazu mit numerischer Integration gearbeitet. Es
seiu € R.

o) = E(e"?) = E(e"?|N =0)-P(N =0) + E(¢"*?|N =1)-P(N = 1)

=1-08+E(e"*)-02=08+0,2" j el - fy(x) dx

100
) 1
=08+4+02" X, . x- (100 —x)3d
+ fo e T san ¥ ¢ x)” dx
100
=08+02- j;) (cos(u-x) +i-sin(u-x)) 1005—3(2,4) -x - (100 — x)3 dx

Damit ergibt sich fiir u € R der Realteil Re((D (u)) niaherungsweise mit

100

08+0,2- f cos(u-x)-

—— _.x-(100-x)d
. 1005 B(za) * (100 - %) dx

99

~0,840,2- z cos(u - (k +0,5)) - (k +0,5) - (100 — (k + 0,5))3
k=0

1005 - B(2,4)

und der Imaginarteil Im(®(u)) naherungsweise mit

100

0,8+0,2- f sin(u-x)-

— — _.x-(100-x)%d
. 1005 Bz * (100 - %) dx

- (k +0,5) - (100 — (k +0,5))".

99
1
~08+02- ) sinfu-(k+05)) o
k_osm(“ ( ) o0 5w

Analog zu Fallbeispiel 1 wird nun die Verteilungsfunktion F des Gesamtperiodenverlustes
Z fir b > 0 ndherungsweise berechnet mit

F(b)=P(0<Z < D)
9.999
~ % ‘P(Z=0)+ % Z Re(g(0,01+j-0,02,0,b)) - Re(®(0,01 +j-0,02)) - 0,02
j=0
9.999
—%- Z Im(g(0,01 +j-0,02,0,b)) - Im(®(0,01 + j - 0,02)) - 0,02,
j=0

o sin(b-u)  cos(bh-u)—1 _
wobei wiederum g(u,0,b) = +i- furu > 0.

u
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Setzt man diese Formel in Excel um, so ergeben sich fiir die Quantile bzw. den Value at
Risk folgende Ergebnisse:

Kennzahl Ergebnis
90%-Quantil 31,4980
95%-Quantil bzw. Value at Risk 45,4987

zum Niveau 5%

99%-Quantil bzw. Value at Risk 65,5043
zum Niveau 1%

Die Abweichungen zu den direkt berechneten Werten sind bei allen drei Werten
unterhalb von 1%.

Analog zu Fallbeispiel 1 lassen sich auch hier der Expected Shortfall zum Niveau 5% und
zum Niveau 1% mithilfe numerischer Integration berechnen. Fiir den Expected Shortfall
zum Niveau 5% erhdlt man den Wert 57,7445 und fiir den Expected Shortfall zum Niveau
1% den Wert 72,9976

Als Fazit kann auch in diesem Fallbeispiel festgehalten werden, dass die es bei
Anwendung der Monte-Carlo-Simulation einerseits und bei der Anwendung der
numerischen Methoden andererseits nur geringfiigige Abweichungen gibt.

Kennzahl Monte-Carlo- Numerische Abweichung zur
Simulation Methoden Monte-Carlo-
Simulation (in%)

Erwartungswert 6,6598 6,6661 0,0946%.
Standard- 15,5153 15,5323 0,1096%.
abweichung
Value at Risk 45,7070 45,4987 —0,4557%.

zum Niveau 5%

Value at Risk 66,0723 65,5043 —0,8597%.

zum Niveau 1%

Expected Shortfall 57,4979 57,7445 0,4289%.
zum Niveau 5%

Expected Shortfall 73,3108 72,9976 —0,4272%.

zum Niveau 1%
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7. Fallbeispiel 3

Im dritten und letzten Fallbeispiel betrachten wir den Fall, dass sich dhnlich wie im ersten
Fallbeispiel der Gesamtperiodenverlust Z nicht auf einem moglichen Ereignis beruht,
sondern sich aus den Verlusten mehrerer gleichartiger Ereignisse zusammensetzt.

Die Haufigkeit N des Eintritts des Risikos wird dabei durch eine Poisson-Verteilung mit
dem Parameter A = 4 modelliert. Der Verlust, der mit dem Eintritt des Risikos verbunden
ist, gentige wiederum einer Pert-Verteilung, allerdings jetzt mit dem worst case ¢ = 5,
dem normal case b = 1,25 und dem best case a = 0. Damit handelt es sich ebenfalls um
eine Beta-Verteilung mit den gleichen Parametern wie in Fallbeispiel 2:

4-1,25+5 —4-1,25+5-5

- 9
« 5 5

Diesmal aber auf dem Intervall [0, M] = [0,5].

Die Konstellation ist so gewahlt, dass der Erwartungswert des Gesamtperiodenverlustes
Z im Vergleich zu Fallbeispiel 2 unverandert bleibt, d.h. der durchschnittliche Verlust pro
Periode gleich ist:

- M2 452 =20 66667
HE BN ixe= a+p 7 2+4 3 7

Allerdings verandert sich der Wert der Standardabweichung:

_ [ ot e i (m—" Y 42 G
”‘\/“1% B+ "X_\/’1 (M a+,8> t4 (M'm-(aﬂf))

2\’ V24 ’
=J4.(5._> +4.(5 > ~ 3,7796

2+4 '\/2+4+1-(2+4)

Im Folgenden werden wieder die Ergebnisse der Monte-Carlo-Simulation und die
Ergebnisse der numerischen Methoden gegeniibergestellt, insbesondere bezogen auf die
Quantile bzw. den Value at Risk und bezogen auf den Expected Shortfall. Im Unterschied
zu Fallbeispiel 2 konnen aufgrund der h6heren Komplexitat des Modells die Quantile nicht
direkt bestimmt werden.

Bei der Poisson-Verteilung handelt es sich um eine diskrete Verteilung auf der Menge N,,.
Sowohl bei der Monte-Carlo-Simulation als auch bei den numerischen Methoden findet
eine Naherung dahingehend statt, dass die Ausgange mit mehr als 16 Ereignissen pro
Periode keine Beriicksichtigung finden. Damit werden Ereignisse, deren
Wabhrscheinlichkeit in Summe ca. 0,00000113 = 1,13 - 10~° betrigt, auler Acht gelassen.
Verwendet man statt Excel eine hohere Programmiersprache, so kann hier sicherlich eine
noch hohere Genauigkeit umgesetzt werden.
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Monte-Carlo-Simulation

Analog zu den vorherigen Fallbeispielen wird eine Monte-Carlo-Simulation fiir 10.000
Simulationslaufe mit Excel durchgefiihrt. Dabei ist zu beachten, dass sowohl fiir
Haufigkeit des Eintritts des Risiko, als fiir die moglichen 16 unterschiedlichen
Verlusthohen Zufallszahlen zur Verfiigung stehen miissen. Es ergeben sich die folgenden
Ergebnisse:

Kennzahl Ergebnis der Monte- Relative
Carlo-Simulation Abweichung zum
theoretischen
Wert
Erwartungswert/Mittelwert 6,6708 0,0615%
Standardabweichung 3,7724 —0,1905%
90%-Quantil 11,7886
95%-Quantil bzw. Value at Risk 13,5365
zum Niveau 5%
99%-Quantil bzw. Value at Risk 17,2988
zum Niveau 1%
Expected Shortfall zum Niveau 5% 15,8084
Expected Shortfall zum Niveau 1% 19,0562
Numerische Methoden

Die numerischen Methoden basieren wiederum auf der charakteristischen Funktion des
Gesamtperiodenverlustes Z. Diese berechnet sich wie folgt bzw. kann wie folgt
angendhert werden. Es sei u € R.

, had Ak
o (u) = E(e'*?) = h(py(w)) = eF@x@=D = g=2. phox(W) = o=4. Z i Ppx W)k
k=0

16

A A
wete D g e et D g (Reliox) + - m{on )
16 K K " _ .
=) ), (1) Re(px () - ¥ - tm(py ()"~
k=0 j=o

Re(px(w)) und Im(¢x(w)) werden dabei mit dem Verfahren aus Fallbeispiel 2 ermittelt

(nur mit anderen Parametern) und der Faktor i*~/ entscheidet jeweils dariiber, ob der
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Summand zum Realteil oder zum Imagindrteil der charakteristischen Funktion des
Gesamtperiodenverlustes Z hinzuzurechnen ist bzw. welches Vorzeichen bei einem
Summanden anzusetzen ist.

Die momenterzeugende Funktion des Gesamtperiodenverlustes Z kann analog
angenahert werden, allerdings muss dabei wegen m(u) = ®(—i - u) nicht zwischen Real-
und Imaginarteil unterschieden werden. Daher kann auch mit einer hoheren Genauigkeit
bezogen auf die nichtberticksichtige Wahrscheinlichkeit gerechnet werden. Es sei u € R.

m(u) = E(e“'Z) — h((px(—i . u)) = etlox(-tu)-1) — =1, g ex(-iu)
100

< PL L
T px(—i-u)k =~ et ZF Qx (=i u)k
k=0 k=0

_e—l_

Die Integrale werden wiederum numerisch bestimmt. Wahlt fiir das numerische Ableiten
analog zu den Fallbeispielen 1 und 2 Au = 107%, so ergibt fiir den Erwartungswert u ~
6,6661 und fiir die Standardabweichung o = 3,7795. Die relativen Abweichungen zu den
exakten Werten betragen damit —0,0090% bzw. —0,0026% und sind wieder im
Wesentlichen auf Rundungseffekte zuriickzufiihren.

Die Verteilungsfunktion F des Gesamtperiodenverlustes Z berechnet sich fir b > 0
wieder naherungsweise mit

F(b) =P(0<Z <b)
9.999

1 1

o P(Z=0)+—- Z Re(g(0,01+;-0,02,0,b)) - Re(¢(0,01 +j - 0,02)) - 0,02
14 =

9.999

1
- z Im(g(0,01 +j-0,02,0,b)) - Im(®(0,01 +j - 0,02)) - 0,02,
j=0

sin(b-u)  cos(h-u)—1
+1-

wobei wiederum g(u,0,b) = firu > 0.

u

Setzt man diese Formel in Excel um, so ergeben sich fiir die Quantile bzw. den Value at
Risk folgende Ergebnisse:
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zum Niveau 1%

Kennzahl Ergebnis
90%-Quantil 11,7467
95%-Quantil bzw. Value at Risk 13,5352
zum Niveau 5%
99%-Quantil bzw. Value at Risk 17,1469

Analog zu den Fallbeispielen 1 und 2 lassen sich auch hier der Expected Shortfall zum
Niveau 5% und zum Niveau 1% mithilfe numerischer Integration berechnen. Fiir den
Expected Shortfall zum Niveau 5% erhalt man den Wert 15,7886 und fiir den Expected

Shortfall zum Niveau 1% den Wert 19,1350

Als Fazit kann auch in diesem Beispiel festgehalten werden, dass die es bei Anwendung
der Monte-Carlo-Simulation einerseits und bei der Anwendung der numerischen
Methoden andererseits nur geringfiligige Abweichungen gibt, wie aus der folgenden

Tabelle ersichtlich ist.

Kennzahl Monte-Carlo- Numerische Abweichung zur
Simulation Methoden Monte-Carlo-
Simulation (in%)
Erwartungswert 6,6708 6,6661 —0,0705%.
Standard- 3,7724 3,7795 0,1882%.
abweichung
Value at Risk 13,5365 13,5352 —0,0096%.
zum Niveau 5%
Value at Risk 17,2988 17,1469 —0,8781%.
zum Niveau 1%
Expected Shortfall 15,8084 15,7886 —0,1252%.
zum Niveau 5%
Expected Shortfall 19,0562 19,1350 0,4135%.
zum Niveau 1%
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8. Fazit und Ausblick

Die drei Fallbeispiele zeigen, dass die numerischen Methoden, d.h. das numerische
Ableiten und das numerische Integrieren der charakteristischen Funktion, eine sinnvolle
Alternative zur Monte-Carlo-Simulation seien koénnen. Die mit den numerischen
Methoden verbundenen Ungenauigkeit, z.B. durch die gewahlte Breite der Flachenstiicke,
spielen in den drei Fallbeispielen keine entscheidende Rolle. Die relativen Abweichungen
bei den Kennzahlen zu den Ergebnissen der Monte-Carlo-Simulation liegen bis auf eine
Ausnahme im Promillebereich, d.h. unterhalb von 1%. Teilweise liegen die Ergebnisse der
numerischen Methoden naher an den exakten Werten als die Ergebnisse der Monte-Carlo-
Simulation.

Es erscheint lohnenswert die hier vorgestellten numerischen Methoden auch bei
komplexeren Modellierungen anzuwenden und ggf. mit den Ergebnissen einer Monte-
Carlo-Simulation zu vergleichen. Dabei koénnen sowohl Einzelrisiken als auch ein
Risikoportfolio im Fokus stehen. Eine Voraussetzung fiir die Anwendung der
numerischen Methoden ist allerdings, dass die charakteristische Funktion bekannt ist
bzw. mit Softwareunterstiitzung berechnet werden kann. Dies ist z.B. bei dem Barwert
einer bewerteten (inhomogenen) Markov-Kette (vgl. [4]) oder einem Risikoportfolio aus
unabhdngigen Einzelrisiken (mit jeweils bekannter charakteristischer Funktion) der Fall.
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