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Zusammenfassung 

Für Unternehmen werden die Anforderungen an die Genauigkeit bei der Bewertung von Risiken 

aufgrund interner und externer Faktoren zunehmend höher. Dies erfordert komplexere Modelle und 

Berechnungsmethoden, sowohl auf der Ebene von Einzelrisken als auch auf der Ebene von 

Risikoportfolios. Häufig führen Unternehmen daher Monte-Carlo-Simulationen zur Ermittlung von 

Risiko-Kennzahlen durch. In der vorliegenden Arbeit wird eine numerische Alternative, basierend auf 

dem stochastischen Begriff der charakteristischen Funktion, vorgestellt und in drei komplexeren 

Fallbeispielen angewendet. Es zeigt sich, dass bei den hier gewählten Fallbeispielen die 

Abweichungen zwischen den Ergebnissen der beiden Methoden nicht signifikant sind.      

 

Abstract 
 
 

For companies, the requirements for accuracy in risk assessment are becoming increasingly stringent 

due to internal and external factors. This necessitates more complex models and calculation 

methods, both at the level of individual risks and at the level of risk portfolios. Companies therefore 

often use Monte Carlo simulations to determine risk indicators. This paper presents a numerical 

alternative based on the stochastic concept of the characteristic function and applies it to three 

complex case studies. It shows that, in the case studies selected here, the differences between the 

results of the two methods are not significant. 
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1. Einleitung 

In der Betriebswirtschaftslehre gewinnt das quantitative Risikomanagement zunehmend 
an Bedeutung. Verstärkt durch zusätzliche Anforderungen – allgemein, regulatorisch und 
branchenbezogen – beschäftigen sich Unternehmen mit der Frage, wie sie ihre Risiken 
noch genauer bewerten können. Dabei spielen sowohl die verwendeten Kennzahlen zur 
Risikoquantifizierung (Risikomaße, z.B. Value at Risk und Expected Shortfall) als auch die 
Modellierung der Risiken eine Rolle. Je komplexer jedoch die verwendeten 
wahrscheinlichkeitstheoretischen Modelle sind, desto komplizierter werden die 
benötigten stochastischen Methoden zur Berechnung der Kennzahlen. 

Zum einen beobachtet man dies bei der Risikoaggregation, d.h. der Zusammenfassung 
verschiedener Risikopositionen zu einem einzigen Wert (vgl. [3], [5], [7], [8]). Zum 
anderen kann es aber auch anspruchsvoll sein, ein Einzelrisiko zu bewerten, z.B. wenn 
man zur Modellierung eine kombinierte Verteilung verwendet. Bei einer kombinierten 
Verteilung werden die Häufigkeit, mit der das Risiko (pro Periode) eintritt, und der 
Verlust, der mit dem Eintritt des Risikos verbunden ist, separat modelliert. Anschließend 
werden beide Komponenten zu einer Verteilung (zu einem 
wahrscheinlichkeitstheoretischen Modell) zusammengesetzt (vgl. [7] S.44). Diese 
Vorgehensweise kennt man bereits aus der Versicherungsmathematik (vgl. [10]).   

I.d.R. steht Unternehmen zur Bearbeitung komplexer Risikoquantifizierungen (z.B. 
Risikoaggregation und Bewertung komplexer Einzelrisiken) als Technik die Monte-Carlo-
Simulation zur Verfügung. Daneben gibt es aber auch die Möglichkeit, den Wert der 
Kennzahlen mit analytischen bzw. numerischen Methoden auf Basis der 
charakteristischen Funktion zu ermitteln. In dem vorliegenden Artikel werden anhand 
von drei Fallbeispielen die Verfahren zur Quantifizierung bei komplexen Einzelrisiken 
gegenübergestellt: Monte-Carlo-Simulation und analytische bzw. numerische Methoden.  

Im Focus stehen bei den Fallbeispielen die bereits oben erwähnten kombinierten 
Verteilungen zur Modellierung eines Einzelrisikos. Angewendet wird diese Modellierung 
z.B. bei operationellen Risiken bzw. Betriebsrisken. Also bei Risiken, die nicht den 
unternehmerischen Risiken zugeordnet werden. Man versteht darunter Gefahren, die 
durch das Versagen von Prozessen, Menschen und Systemen oder durch externe Einflüsse 
bedingt sind (vgl. [6]). Im Industriebereich sind dies z.B. Ausfallrisiken von Maschinen, im 
Allgemeinen z.B. Rechtsrisken und bestimmte IT- und Cyberrisiken.  

Von zentraler Bedeutung für die analytischen und numerischen Methoden zur 
Berechnung der Kennzahlen ist die charakteristische Funktion einer Verteilung. Deshalb 
werden im zweiten Abschnitt zunächst wichtige Ergebnisse zu diesem stochastischen 
Begriff zusammengestellt. Anschließend wird im dritten Abschnitt das diesem Artikel 
zugrunde liegende Modell vorgestellt und im vierten Abschnitt die Methoden im 
Grundsatz erläutert. Danach folgen die drei Fallbeispiele, in denen die Methoden 
angewendet und anhand der Ergebnisse gegenübergestellt werden.   
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2. Charakteristische Funktion – Definition und wichtige Ergebnisse 

Aus Sicht der Stochastik ist für die vorliegende Ausarbeitung wie bereits erwähnt der 
Begriff der charakteristischen Funktion von zentraler Bedeutung. Deshalb werden in 
diesem Abschnitt die Definition und die für den Fortgang des Artikels wichtigen 
Eigenschaften von charakteristischen Funktionen zusammengestellt. 

Gegeben sei eine reell-wertige Zufallsvariable 𝑈𝑈 mit der Verteilungsfunktion 𝐹𝐹𝑈𝑈 und der 
charakteristischen Funktion 

𝜓𝜓𝑈𝑈(𝑡𝑡) ≔ 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑡𝑡∙𝑈𝑈�, 𝑡𝑡 ∈ ℝ, 

wobei 𝑖𝑖 = √−1. 

Als erste wichtige Eigenschaft ergibt sich der folgende Zusammenhang zwischen den 
Ableitungen der charakteristischen Funktion und den Momenten: 

Ist 𝐸𝐸(|𝑈𝑈|𝑛𝑛) < ∞ für 𝑛𝑛 ∈ ℕ, dann ist 𝜓𝜓𝑈𝑈  𝑛𝑛-mal differenzierbar und es gilt 

𝜓𝜓𝑈𝑈
(𝑘𝑘)(𝑡𝑡) = 𝑖𝑖𝑘𝑘 ∙ 𝐸𝐸�𝑈𝑈𝑘𝑘 ∙ 𝑒𝑒𝑖𝑖∙𝑡𝑡∙𝑈𝑈� 

bzw. insbesondere 

𝜓𝜓𝑈𝑈
(𝑘𝑘)(0) = 𝑖𝑖𝑘𝑘 ∙ 𝐸𝐸(𝑈𝑈𝑘𝑘) 

für 𝑘𝑘 = 0,1,2, … , 𝑛𝑛. (vgl. [9] S.385) 

Als Umkehrformel wird im Kontext von charakteristischen Funktionen das folgende 
Ergebnis bezeichnet: 

Es sei  

𝑔𝑔(𝑡𝑡, 𝑎𝑎, 𝑏𝑏) ≔ �
𝑒𝑒−𝑖𝑖∙𝑎𝑎∙𝑡𝑡 − 𝑒𝑒−𝑖𝑖∙𝑏𝑏∙𝑡𝑡

𝑖𝑖 ∙ 𝑡𝑡
, 𝑡𝑡 ≠ 0

𝑏𝑏 − 𝑎𝑎 , 𝑡𝑡 = 0
 , 

𝑎𝑎 < 𝑏𝑏 und  𝑃𝑃(𝑈𝑈 = 𝑎𝑎) = 𝑃𝑃(𝑈𝑈 = 𝑏𝑏) = 0. Dann gilt 

𝑃𝑃(𝑎𝑎 < 𝑈𝑈 ≤ 𝑏𝑏) =
1

2 ∙ 𝜋𝜋
∙ lim
𝑧𝑧→∞

� 𝑔𝑔(𝑡𝑡,𝑎𝑎, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑧𝑧

−𝑧𝑧
. 

(vgl. [9] S.386) 

Aufgrund des Beweises der Umkehrformel kann dieses Ergebnis ohne die Voraussetzung 
𝑃𝑃(𝑈𝑈 = 𝑎𝑎) = 𝑃𝑃(𝑈𝑈 = 𝑏𝑏) = 0 wie folgt modifiziert werden: 

1
2
∙ 𝑃𝑃(𝑈𝑈 = 𝑎𝑎) + 𝑃𝑃(𝑎𝑎 < 𝑈𝑈 < 𝑏𝑏) +

1
2
∙ 𝑃𝑃(𝑈𝑈 = 𝑏𝑏) =

1
2 ∙ 𝜋𝜋

∙ lim
𝑧𝑧→∞

� 𝑔𝑔(𝑡𝑡,𝑎𝑎, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑧𝑧

−𝑧𝑧
 

(vgl. [11] S.209f) 

Ist 𝑈𝑈 eine nichtnegative reell-wertigen Zufallsvariable mit 𝑃𝑃(𝑈𝑈 = 𝑏𝑏) = 0 für 𝑏𝑏 > 0 und 
𝑃𝑃(𝑈𝑈 = 0) > 0, so ergibt sich daraus: 
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𝐹𝐹𝑈𝑈(𝑏𝑏) = 𝑃𝑃(0 ≤ 𝑈𝑈 ≤ 𝑏𝑏) =
1
2
∙ 𝑃𝑃(𝑈𝑈 = 0) +

1
2 ∙ 𝜋𝜋

∙ lim
𝑧𝑧→∞

� 𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑧𝑧

−𝑧𝑧
 

Mit dieser Formel lassen sich dann im Spezialfall einer nichtnegativen Zufallsvariablen 
mithilfe der charakteristischen Funktion die Quantile der Verteilung berechnen. 

Der Integrand lässt sich dabei im Fall 𝑡𝑡 ≠ 0 wie folgt umformen: 

𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡) =
1 − 𝑒𝑒−𝑖𝑖∙𝑏𝑏∙𝑡𝑡

𝑖𝑖 ∙ 𝑡𝑡
∙ 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑡𝑡∙𝑈𝑈� 

=
1 − cos(−𝑏𝑏 ∙ 𝑡𝑡) − 𝑖𝑖 ∙ sin(−𝑏𝑏 ∙ 𝑡𝑡)

𝑖𝑖 ∙ 𝑡𝑡
∙ 𝐸𝐸(cos(𝑡𝑡 ∙ 𝑈𝑈) + 𝑖𝑖 ∙ sin(𝑡𝑡 ∙ 𝑈𝑈)) 

= 𝐸𝐸 �−𝑖𝑖 ∙
cos(𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
+

sin(𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

+ 𝑖𝑖 ∙
cos(−𝑏𝑏 ∙ 𝑡𝑡) ∙ cos(𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
−

cos(−𝑏𝑏 ∙ 𝑡𝑡) ∙ sin(𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

−
sin(−𝑏𝑏 ∙ 𝑡𝑡) ∙ cos(𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
− 𝑖𝑖 ∙

sin(−𝑏𝑏 ∙ 𝑡𝑡) ∙ sin(𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

� 

= 𝐸𝐸 �−𝑖𝑖 ∙
cos(𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
+

sin(𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

+ 𝑖𝑖 ∙
cos(−𝑏𝑏 ∙ 𝑡𝑡 + 𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
−

sin(−𝑏𝑏 ∙ 𝑡𝑡 + 𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

� 

Die letzte Umformung ergibt sich aus den Additionstheoremen für trigonometrische 
Funktionen. Als Realteil des Integranden erhält man dann 

𝑅𝑅𝑅𝑅�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� = 𝐸𝐸 �
sin(𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
−

sin(−𝑏𝑏 ∙ 𝑡𝑡 + 𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

� 

als Imaginärteil 

𝐼𝐼𝐼𝐼�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� = 𝐸𝐸 �−
cos(𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
+

cos(−𝑏𝑏 ∙ 𝑡𝑡 + 𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

�. 

Wegen 

𝑅𝑅𝑅𝑅�𝑔𝑔(−𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(−𝑡𝑡)� =  𝐸𝐸 �
sin(−𝑡𝑡 ∙ 𝑈𝑈)

−𝑡𝑡
−

sin(𝑏𝑏 ∙ 𝑡𝑡 − 𝑡𝑡 ∙ 𝑈𝑈)
−𝑡𝑡

� = 

= 𝐸𝐸 �
sin(𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
−

sin(−𝑏𝑏 ∙ 𝑡𝑡 + 𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

� = 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 

ist der Realteil des Integranden achsensymmetrisch zur vertikalen Achse des 
Koordinatensystems durch den Ursprung und wegen 

𝐼𝐼𝐼𝐼�𝑔𝑔(−𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(−𝑡𝑡)� = 𝐸𝐸 �−
cos(−𝑡𝑡 ∙ 𝑈𝑈)

−𝑡𝑡
+

cos(𝑏𝑏 ∙ 𝑡𝑡 − 𝑡𝑡 ∙ 𝑈𝑈)
−𝑡𝑡

� 

= − 𝐸𝐸 �−
cos(𝑡𝑡 ∙ 𝑈𝑈)

𝑡𝑡
+

cos(−𝑏𝑏 ∙ 𝑡𝑡 + 𝑡𝑡 ∙ 𝑈𝑈)
𝑡𝑡

� = −𝐼𝐼𝐼𝐼�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 

ist der Imaginärteil punktsymmetrisch zum Ursprung des Koordinatensystems. 

Ferner gilt 
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lim
𝑧𝑧→∞

� 𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑧𝑧

−𝑧𝑧
 

= lim
𝑧𝑧→∞

� 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� + 𝑖𝑖 ∙ 𝐼𝐼𝐼𝐼�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 𝑑𝑑𝑑𝑑
𝑧𝑧

−𝑧𝑧
 

= lim
𝑧𝑧→∞

� 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 𝑑𝑑𝑑𝑑
𝑧𝑧

−𝑧𝑧
+ 𝑖𝑖 ∙ lim

𝑧𝑧→∞
� 𝐼𝐼𝐼𝐼�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 𝑑𝑑𝑑𝑑
𝑧𝑧

−𝑧𝑧
 

Wegen der Punktsymmetrie des Imaginärteils gilt  

∫ 𝐼𝐼𝐼𝐼�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 𝑑𝑑𝑑𝑑𝑧𝑧
−𝑧𝑧 = 0, 

und wegen der Achsensymmetrie des Realteils 

� 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 𝑑𝑑𝑑𝑑
𝑧𝑧

−𝑧𝑧
= 2 ∙ � 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 𝑑𝑑𝑑𝑑

𝑧𝑧

0
, 

jeweils für alle 𝑧𝑧 > 0. 

Damit ergibt sich für die obige Formel die Darstellung  

𝐹𝐹𝑈𝑈(𝑏𝑏) = 𝑃𝑃(0 ≤ 𝑈𝑈 ≤ 𝑏𝑏) =
1
2
∙ 𝑃𝑃(𝑈𝑈 = 0) +

1
𝜋𝜋
∙ lim
𝑧𝑧→∞

� 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) ∙ 𝜓𝜓𝑈𝑈(𝑡𝑡)� 𝑑𝑑𝑑𝑑
𝑧𝑧

0
. 

Zu erwähnen ist dabei noch, dass der Integrand wegen der Stetigkeit der 
charakteristischen Funktion (vgl. [9] S.385) und wegen 

lim
𝑡𝑡→0

𝑔𝑔(𝑡𝑡, 0, 𝑏𝑏) = 𝑏𝑏 = 𝑔𝑔(0,0, 𝑏𝑏) 

ebenfalls stetig ist in 𝑡𝑡 = 0. Somit beziehen sich alle Integrale auf eine stetige Funktion.  

Ein weiteres grundlegendes Ergebnis liefert der Eindeutigkeitssatz: Sei 𝑉𝑉 eine zweite 
reell-wertige Zufallsvariable mit der Verteilungsfunktion 𝐹𝐹𝑉𝑉  und der charakteristischen 
Funktion 

𝜓𝜓𝑉𝑉(𝑡𝑡) ≔ 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑡𝑡∙𝑉𝑉�, 𝑡𝑡 ∈ ℝ, 

so ist 𝜓𝜓𝑈𝑈 = 𝜓𝜓𝑉𝑉  äquivalent zu 𝐹𝐹𝑈𝑈 = 𝐹𝐹𝑉𝑉. 

D.h. die Verteilung einer Zufallsvariablen ist durch die charakteristische Funktion 
eindeutig festgelegt. (vgl. [9] S.388) 
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3. Das Modell 

Die Häufigkeit des Eintritts des Risikos pro Periode ist gegeben durch die ℕ0-wertige 
Zufallsvariable 𝑁𝑁. Des Weiteren sind die Verluste, die mit dem Eintritt des Risikos 
verbunden sind, gegeben durch die nichtnegativen Zufallsvariablen 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … . Hierbei 
handelt es sich gegeben 𝑁𝑁 um stochastisch unabhängige und identisch verteilte 
Zufallsvariablen, die ebenfalls stochastisch unabhängig sind von der Häufigkeit des 
Eintritts, d.h. von der Zufallsvariablen 𝑁𝑁. Im Folgenden wird für einen repräsentativen 
Verlust die Zufallsvariable 𝑋𝑋 verwendet, d.h. 𝑋𝑋 ist nichtnegativ und genügt der gleichen 
Verteilung wie 𝑋𝑋𝑘𝑘,𝑘𝑘 = 1,2,3, … . 

Es seien 

𝑝𝑝𝑘𝑘 ≔ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘),𝑘𝑘 = 0,1,2,3, …, 

 die Einzelwahrscheinlichkeiten, 

𝐹𝐹𝑁𝑁(𝑥𝑥) ≔ 𝑃𝑃(𝑁𝑁 ≤ 𝑥𝑥), 𝑥𝑥 ∈ ℝ, 

die Verteilungsfunktion, 

𝜇𝜇𝑁𝑁 ≔ 𝐸𝐸(𝑁𝑁) 

der Erwartungswert, 

𝜎𝜎𝑁𝑁 ≔ �𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁) < ∞ 

die Standardabweichung und    

ℎ(𝑠𝑠) ≔ 𝐸𝐸(𝑠𝑠𝑁𝑁), 𝑠𝑠 ∈ [0,1] 

die wahrscheinlichkeitserzeugende Funktion der Zufallsvariablen 𝑁𝑁. Dabei gilt der 
Zusammenhang ℎ′(1) = 𝐸𝐸(𝑁𝑁) und ℎ′′(1) = 𝐸𝐸(𝑁𝑁 ∙ (𝑁𝑁 − 1)). 

Für die Verteilung der Verluste seien 𝐹𝐹𝑋𝑋(𝑥𝑥), 𝑥𝑥 ∈ ℝ, die Verteilungsfunktion, 𝜇𝜇𝑋𝑋 der 
Erwartungswert, 𝜎𝜎𝑋𝑋 < ∞ die Standardabweichung und  

𝜑𝜑𝑋𝑋(𝑢𝑢) ≔ 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑋𝑋�,𝑢𝑢 ∈ ℝ, 

die charakteristische Funktion. Handelt es sich hierbei um eine stetige Verteilung, so sei 
𝑓𝑓𝑋𝑋(𝑥𝑥), 𝑥𝑥 ∈ ℝ, die Dichtefunktion.    

Der Gesamtperiodenverlust ist dann gegeben durch  

𝑍𝑍 ≔ 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑁𝑁 . 

𝜇𝜇 sei der Erwartungswert, 𝜎𝜎 die Standardabweichung und  

𝛷𝛷(𝑢𝑢) ≔ 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑍𝑍�,𝑢𝑢 ∈ ℝ, 

die charakteristische Funktion der Zufallsvariablen 𝑍𝑍. Mit der charakteristischen 
Funktion ist die Verteilung von 𝑍𝑍 eindeutig festgelegt (vgl. Abschnitt 2). 

Es gilt nun 𝐸𝐸(|𝑍𝑍|2) < ∞. Dies kann mithilfe der Jensenschen Ungleichung (vgl. [9] S.280) 
wie folgt gezeigt werden: 
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𝐸𝐸(|𝑍𝑍|2) = 𝐸𝐸(𝑍𝑍2) = 𝐸𝐸 �𝜒𝜒{𝑁𝑁≠0} ∙ ��𝑋𝑋𝑘𝑘

𝑁𝑁

𝑘𝑘=1

�

2

� = 𝐸𝐸 �𝜒𝜒{𝑁𝑁≠0} ∙ 𝑁𝑁2 ∙ ��
1
𝑁𝑁
∙ 𝑋𝑋𝑘𝑘

𝑁𝑁

𝑘𝑘=1

�

2

� 

Jensensche Ungl.
≤ 𝐸𝐸 �𝜒𝜒{𝑁𝑁≠0} ∙ 𝑁𝑁2 ∙�

1
𝑁𝑁
∙ 𝑋𝑋𝑘𝑘2

𝑁𝑁

𝑘𝑘=1

� = 𝐸𝐸 �𝑁𝑁 ∙�𝑋𝑋𝑘𝑘2
𝑁𝑁

𝑘𝑘=1

� = 𝐸𝐸�𝐸𝐸(𝑁𝑁 ∙ ∑ 𝑋𝑋𝑘𝑘2𝑁𝑁
𝑘𝑘=1 |𝑁𝑁)� 

= �𝐸𝐸(𝑁𝑁 ∙ ∑ 𝑋𝑋𝑘𝑘2𝑁𝑁
𝑘𝑘=1 |𝑁𝑁 = 𝑛𝑛) ∙ 𝑝𝑝𝑛𝑛

∞

𝑛𝑛=0

= �𝑛𝑛 ∙�𝐸𝐸(𝑋𝑋𝑘𝑘2)
𝑛𝑛

𝑘𝑘=1

∙ 𝑝𝑝𝑛𝑛

∞

𝑛𝑛=0

= �𝑛𝑛2 ∙ 𝐸𝐸(𝑋𝑋2) ∙ 𝑝𝑝𝑛𝑛

∞

𝑛𝑛=0

 

= 𝐸𝐸(𝑋𝑋2) ∙ 𝐸𝐸(𝑁𝑁2) = (𝜎𝜎𝑋𝑋2 + 𝜇𝜇𝑋𝑋2) ∙ (𝜎𝜎𝑁𝑁2 + 𝜇𝜇𝑁𝑁2 ) < ∞ 

 

Somit ergibt sich u.a. mithilfe der Differentialrechnung der folgende Satz. 

 

Satz: 

Es gilt: 

a) 𝛷𝛷(𝑢𝑢) = ℎ�𝜑𝜑𝑋𝑋(𝑢𝑢)� ,𝑢𝑢 ∈ ℝ. 

b) 𝜇𝜇 = 𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋  

c) 𝜎𝜎2 = 𝜎𝜎𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜎𝜎𝑋𝑋2   

(vgl. [10] S.115ff) 

Beweis: 

Zu a): 

𝛷𝛷(𝑢𝑢) = 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑍𝑍� = 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙(𝑋𝑋1+𝑋𝑋2+⋯+𝑋𝑋𝑁𝑁)� 

= 𝐸𝐸 �𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙(𝑋𝑋1+𝑋𝑋2+⋯+𝑋𝑋𝑁𝑁)�𝑁𝑁�� = 𝐸𝐸 �𝐸𝐸�∏ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑋𝑋𝑘𝑘𝑁𝑁
𝑘𝑘=1 �𝑁𝑁�� 

= �𝐸𝐸�∏ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑋𝑋𝑘𝑘𝑁𝑁
𝑘𝑘=1 �𝑁𝑁 = 𝑛𝑛� ∙ 𝑝𝑝𝑛𝑛

∞

𝑛𝑛=0

= �� 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑋𝑋𝑘𝑘�𝑁𝑁 = 𝑛𝑛�
𝑛𝑛

𝑘𝑘=1
∙ 𝑝𝑝𝑛𝑛

∞

𝑛𝑛=0

 

= �� 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑋𝑋𝑘𝑘�
𝑛𝑛

𝑘𝑘=1
∙ 𝑝𝑝𝑛𝑛

∞

𝑛𝑛=0

= �𝜑𝜑𝑋𝑋(𝑢𝑢)𝑛𝑛 ∙ 𝑝𝑝𝑛𝑛

∞

𝑛𝑛=0

= 𝐸𝐸(𝜑𝜑𝑋𝑋(𝑢𝑢)𝑁𝑁) = ℎ�𝜑𝜑𝑋𝑋(𝑢𝑢)� 

Zu b) und c): 

Es gilt (Kettenregel) 

𝛷𝛷′(𝑢𝑢) = ℎ′�𝜑𝜑𝑋𝑋(𝑢𝑢)� ∙ 𝜑𝜑′(𝑢𝑢) 

und (Produkt und Kettenregel) 
𝛷𝛷′′(𝑢𝑢) = ℎ′′�𝜑𝜑𝑋𝑋(𝑢𝑢)� ∙ (𝜑𝜑′(𝑢𝑢))2 + ℎ′�𝜑𝜑𝑋𝑋(𝑢𝑢)� ∙ 𝜑𝜑′′(𝑢𝑢) 
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für alle 𝑢𝑢 ∈ ℝ. 

Damit ergibt sich  

𝜇𝜇 = 𝐸𝐸(𝑍𝑍) =
1
𝑖𝑖
∙ 𝛷𝛷′(0) =

1
𝑖𝑖
∙ ℎ′�𝜑𝜑𝑋𝑋(0)� ∙ 𝜑𝜑′(0) =

1
𝑖𝑖
∙ ℎ′(1) ∙ 𝑖𝑖 ∙ 𝜇𝜇𝑋𝑋 = 𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋 

und 

𝜎𝜎2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) = 𝐸𝐸(𝑍𝑍2) − 𝜇𝜇𝑍𝑍2 = −𝛷𝛷′′(0) − 𝜇𝜇𝑍𝑍2 

= −ℎ′′�𝜑𝜑𝑋𝑋(0)� ∙ (𝜑𝜑′(0))2 − ℎ′�𝜑𝜑𝑋𝑋(0)� ∙ 𝜑𝜑′′(0) − 𝜇𝜇𝑍𝑍2 

= −ℎ′′(1) ∙ (𝑖𝑖 ∙ 𝜇𝜇𝑋𝑋)2 − ℎ′(1) ∙ 𝜑𝜑′′(0) − (𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋)2 

= 𝐸𝐸�𝑁𝑁 ∙ (𝑁𝑁 − 1)� ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ (𝜎𝜎𝑋𝑋2 + 𝜇𝜇𝑋𝑋2) − 𝜇𝜇𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2  

= 𝐸𝐸(𝑁𝑁²) ∙ 𝜇𝜇𝑋𝑋2 − 𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜎𝜎𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋2 − 𝜇𝜇𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2  

= 𝐸𝐸(𝑁𝑁²) ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜎𝜎𝑋𝑋2 − 𝜇𝜇𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2 = 𝜎𝜎𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜎𝜎𝑋𝑋2 

□ 

In den beiden folgenden Beispielen werden geeignete Verteilungen für die Häufigkeit des 
Eintritts eines Risikos und den Verlust, der mit dem Eintritt des Risikos verbunden ist, 
zusammengestellt. 

 

Beispiel 1: 

Für die Häufigkeit des Eintritts eines Risikos können in Anlehnung an die 
Versicherungsmathematik u.a. die folgenden Verteilungen verwendet werden. 

a) Wir betrachten zunächst den allgemeinen Fall, dass die Zufallsvariable 𝑁𝑁 Werte in der 
Menge {0,1,2, … ,𝑛𝑛} annimmt, d.h. die Einzelwahrscheinlichkeiten sind gegeben durch 

 

𝑝𝑝𝑘𝑘 = 𝑃𝑃(𝑁𝑁 = 𝑘𝑘),𝑘𝑘 = 0,1,2, … ,𝑛𝑛, 

 

wobei ∑ 𝑝𝑝𝑘𝑘𝑛𝑛
𝑘𝑘=0 = 1. Dann ergeben sich der Erwartungswert, die Standardabweichung 

und die wahrscheinlichkeitserzeugende Funktion allgemein durch: 

 

𝜇𝜇𝑁𝑁 = �𝑘𝑘 ∙ 𝑝𝑝𝑘𝑘

𝑛𝑛

𝑘𝑘=0

 

𝜎𝜎𝑁𝑁 = ��(𝑘𝑘 − 𝜇𝜇𝑁𝑁)2 ∙ 𝑝𝑝𝑘𝑘

𝑛𝑛

𝑘𝑘=0

= ��𝑘𝑘2 ∙ 𝑝𝑝𝑘𝑘

𝑛𝑛

𝑘𝑘=0

− 𝜇𝜇𝑁𝑁2  



 
9 

 

ℎ(𝑠𝑠) = �𝑠𝑠𝑘𝑘 ∙ 𝑝𝑝𝑘𝑘

𝑛𝑛

𝑘𝑘=0

, 𝑠𝑠 ∈ [0,1] 

b) Das einfachste Modell für die Zufallsvariable 𝑁𝑁 ist die Bernoulli-Verteilung mit dem 
Parameter 𝑝𝑝 ∈ (0,1). Dabei gilt 

 

𝑝𝑝0 = 𝑃𝑃(𝑁𝑁 = 0) = 1 − 𝑝𝑝 und  𝑝𝑝1 = 𝑃𝑃(𝑁𝑁 = 1) = 𝑝𝑝. 

  

Damit ergibt sich für den Erwartungswert 𝜇𝜇𝑁𝑁 = 𝑝𝑝, für die Standardabweichung 𝜎𝜎𝑁𝑁 =
�𝑝𝑝 − 𝑝𝑝2 = �𝑝𝑝 ∙ (1 − 𝑝𝑝) und für die wahrscheinlichkeitserzeugende Funktion 

ℎ(𝑠𝑠) = (1 − 𝑝𝑝) + 𝑠𝑠 ∙ 𝑝𝑝, 𝑠𝑠 ∈ [0,1]. 

c) Die Binomial-Verteilung mit den Parametern 𝑛𝑛 ∈ ℕ und 𝑝𝑝 ∈ [0,1] als 
Verallgemeinerung der Bernoulli-Verteilung ist gegeben durch 

𝑝𝑝𝑘𝑘 = 𝑃𝑃(𝑁𝑁 = 𝑘𝑘) = �𝑛𝑛𝑘𝑘� ∙ 𝑝𝑝
𝑘𝑘 ∙ (1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘,𝑘𝑘 = 0,1,2, … ,𝑛𝑛. 

Als Erwartungswert erhält man 𝜇𝜇𝑁𝑁 = 𝑛𝑛 ∙ 𝑝𝑝, als Standardabweichung 𝜎𝜎𝑁𝑁 =
�𝑛𝑛 ∙ 𝑝𝑝 ∙ (1 − 𝑝𝑝) und als wahrscheinlichkeitserzeugende Funktion  

ℎ(𝑠𝑠) = �(1 − 𝑝𝑝) + 𝑠𝑠 ∙ 𝑝𝑝�
𝑛𝑛

, 𝑠𝑠 ∈ [0,1] 

(vgl. [10] S.332). Insbesondere ist eine Bernoulli-Verteilung mit Parameter 𝑝𝑝 eine 
Binomial-Verteilung mit den Parametern 𝑛𝑛 = 1 und 𝑝𝑝. 

d) Setzt man für die Zufallsvariable 𝑁𝑁 die Poisson-Verteilung mit dem Parameter 𝜆𝜆 > 0 
voraus, so haben alle Elemente aus ℕ0 eine positive Wahrscheinlichkeit: 

𝑝𝑝𝑘𝑘 = 𝑃𝑃(𝑁𝑁 = 𝑘𝑘) = 𝑒𝑒−𝜆𝜆 ∙
𝜆𝜆𝑘𝑘

𝑘𝑘!
 , 𝑘𝑘 = 0,1,2, … 

Als Erwartungswert ergibt sich 𝜇𝜇𝑁𝑁 = 𝜆𝜆, als Standardabweichung 𝜎𝜎𝑁𝑁 = √𝜆𝜆 und als 
wahrscheinlichkeitserzeugende Funktion  

ℎ(𝑠𝑠) = 𝑒𝑒𝜆𝜆∙(𝑠𝑠−1), 𝑠𝑠 ∈ [0,1]. 

(Vgl. [10] S.333f) 

 

Beispiel 2: 

Für den Verlust, der mit dem Eintritt des Risikos verbunden ist, können ebenfalls in 
Anlehnung an die Versicherungsmathematik u.a. die folgenden Verteilungen verwendet 
werden. 

a) Für den Wert des Verlustes 𝑋𝑋 gibt es nur endlich viele Möglichkeiten 
{𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘 ≥ 0,𝑘𝑘 = 1,2, … ,𝑛𝑛}.  Dann gilt: 
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𝜇𝜇𝑋𝑋 = �𝑥𝑥𝑘𝑘 ∙ 𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

 

𝜎𝜎𝑋𝑋 = ��(𝑥𝑥𝑘𝑘 − 𝜇𝜇𝑋𝑋)2 ∙ 𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

= ��𝑥𝑥𝑘𝑘2 ∙ 𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

− 𝜇𝜇𝑋𝑋2  

𝜑𝜑𝑋𝑋(𝑢𝑢) = �𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥𝑘𝑘 ∙ 𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑘𝑘)
𝑛𝑛

𝑘𝑘=0

,𝑢𝑢 ∈ ℝ 

b) Ist der Verlust 𝑋𝑋 gleichverteilt auf dem Intervall [0,𝑀𝑀],𝑀𝑀 > 0, hat man 𝜇𝜇𝑋𝑋 = 𝑀𝑀
2

, 𝜎𝜎𝑋𝑋 =
𝑀𝑀
√12

 und    

𝜑𝜑𝑋𝑋(𝑢𝑢) =
𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑀𝑀 − 1
𝑀𝑀 ∙ 𝑖𝑖 ∙ 𝑢𝑢

,𝑢𝑢 ∈ ℝ ∖ {0} 

(vgl. [9] S.278, 287, 383). 
Mit der Regel von L’Hospital ergibt sich 

lim
𝑢𝑢→0

𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑀𝑀 − 1
𝑀𝑀 ∙ 𝑖𝑖 ∙ 𝑢𝑢

= 1. 

c) Eine in der Praxis oft verwendete Verteilung ist die Dreiecks-Verteilung. Die 
Parameter sind 𝑎𝑎  als best case, 𝑏𝑏 als normal case und 𝑐𝑐 als worst case, mit 𝑎𝑎 < 𝑏𝑏 < 𝑐𝑐. 
Nimmt nun man an, dass die Verluste im Intervall [0,𝑀𝑀] liegen, so wären 𝑎𝑎 = 0 und 
𝑐𝑐 = 𝑀𝑀.  

Die Dichtefunktion der Dreiecks-Verteilung ist gegeben durch 

𝑓𝑓𝑋𝑋(𝑥𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0 , 𝑥𝑥 ≤ 𝑎𝑎
2

(𝑏𝑏 − 𝑎𝑎) ∙ (𝑐𝑐 − 𝑎𝑎) ∙
(𝑥𝑥 − 𝑎𝑎) ,𝑎𝑎 < 𝑥𝑥 ≤ 𝑏𝑏

2
(𝑐𝑐 − 𝑏𝑏) ∙ (𝑐𝑐 − 𝑎𝑎) ∙

(𝑐𝑐 − 𝑥𝑥) , 𝑏𝑏 < 𝑥𝑥 < 𝑐𝑐

0 , 𝑥𝑥 ≥ 𝑐𝑐

 

=

⎩
⎪⎪
⎨

⎪⎪
⎧

0 , 𝑥𝑥 ≤ 0
2

𝑏𝑏 ∙ 𝑀𝑀
∙ 𝑥𝑥 , 0 < 𝑥𝑥 ≤ 𝑏𝑏

2
(𝑀𝑀− 𝑏𝑏) ∙ 𝑀𝑀

∙ (𝑀𝑀 − 𝑥𝑥) , 𝑏𝑏 < 𝑥𝑥 < 𝑀𝑀

0 , 𝑥𝑥 ≥ 𝑀𝑀

 

(vgl. [2] S.45f). 

Für den Erwartungswert gilt dann 

𝜇𝜇𝑋𝑋 =
𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐

3
=
𝑏𝑏 + 𝑀𝑀

3
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und für die Standardabweichung 

𝜎𝜎𝑋𝑋 = �(𝑐𝑐 − 𝑎𝑎)2 + (𝑐𝑐 − 𝑏𝑏)2 + (𝑏𝑏 − 𝑎𝑎)2

36
= �𝑀𝑀

2 + (𝑀𝑀− 𝑏𝑏)2 + 𝑏𝑏2

36
 

Ferner ist der normal case 𝑏𝑏 auch der Modus. 

Die Charakteristische Funktion berechnet sich für 𝑢𝑢 ∈ ℝ ∖ {0} wie folgt 

𝜑𝜑𝑋𝑋(𝑢𝑢) = 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑋𝑋� = � 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙ 𝑓𝑓𝑋𝑋(𝑥𝑥) 𝑑𝑑
∞

−∞
 

= � 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

𝑏𝑏 ∙ 𝑀𝑀
∙ 𝑥𝑥 𝑑𝑑𝑑𝑑

𝑏𝑏

0
+ � 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙

2
(𝑀𝑀− 𝑏𝑏) ∙ 𝑀𝑀

∙ (𝑀𝑀− 𝑥𝑥) 𝑑𝑑𝑑𝑑
𝑀𝑀

𝑏𝑏
 

 

Wendet man die partielle Integration an, so erhält man für das erste Integral: 

�
1
𝑖𝑖 ∙ 𝑢𝑢

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

𝑏𝑏 ∙ 𝑀𝑀
∙ 𝑥𝑥�

0

𝑏𝑏

− �
1
𝑖𝑖 ∙ 𝑢𝑢

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

𝑏𝑏 ∙ 𝑀𝑀
 𝑑𝑑𝑑𝑑

𝑏𝑏

0
 

= �
1
𝑖𝑖 ∙ 𝑢𝑢

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

𝑏𝑏 ∙ 𝑀𝑀
∙ 𝑥𝑥�

0

𝑏𝑏

− �−
1
𝑢𝑢2

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

𝑏𝑏 ∙ 𝑀𝑀
�
0

𝑏𝑏

 

=
2

𝑖𝑖 ∙ 𝑢𝑢 ∙ 𝑀𝑀
∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 +

2
𝑢𝑢2 ∙ 𝑏𝑏 ∙ 𝑀𝑀

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 −
2

𝑢𝑢2 ∙ 𝑏𝑏 ∙ 𝑀𝑀
 

=
2

𝑢𝑢 ∙ 𝑀𝑀
∙ �

1
𝑖𝑖
∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 +

1
𝑢𝑢 ∙ 𝑏𝑏

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 −
1

𝑢𝑢 ∙ 𝑏𝑏
� 

Für das zweite Integral erhält man ebenfalls mit partieller Integration: 

�
1
𝑖𝑖 ∙ 𝑢𝑢

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

(𝑀𝑀 − 𝑏𝑏) ∙ 𝑀𝑀
∙ (𝑀𝑀− 𝑥𝑥)�

𝑏𝑏

𝑀𝑀

+ �
1
𝑖𝑖 ∙ 𝑢𝑢

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

(𝑀𝑀− 𝑏𝑏) ∙ 𝑀𝑀
 𝑑𝑑𝑑𝑑

𝑀𝑀

𝑏𝑏
 

= �
1
𝑖𝑖 ∙ 𝑢𝑢

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

(𝑀𝑀− 𝑏𝑏) ∙ 𝑀𝑀
∙ (𝑀𝑀 − 𝑥𝑥)�

𝑏𝑏

𝑀𝑀

+ �−
1
𝑢𝑢2

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
2

(𝑀𝑀− 𝑏𝑏) ∙ 𝑀𝑀
�
𝑏𝑏

𝑀𝑀

 

= −
2

𝑖𝑖 ∙ 𝑢𝑢 ∙ 𝑀𝑀
∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 −

2
𝑢𝑢2 ∙ (𝑀𝑀− 𝑏𝑏) ∙ 𝑀𝑀

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑀𝑀 +
2

𝑢𝑢2 ∙ (𝑀𝑀 − 𝑏𝑏) ∙ 𝑀𝑀
∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 

=
2

𝑢𝑢 ∙ 𝑀𝑀
∙ �−

1
𝑖𝑖
∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 −

1
𝑢𝑢 ∙ (𝑀𝑀 − 𝑏𝑏) ∙ 𝑒𝑒

𝑖𝑖∙𝑢𝑢∙𝑀𝑀 +
1

𝑢𝑢 ∙ (𝑀𝑀 − 𝑏𝑏) ∙ 𝑒𝑒
𝑖𝑖∙𝑢𝑢∙𝑏𝑏� 

Damit ergibt sich als charakteristische Funktion für 𝑢𝑢 ∈ ℝ ∖ {0}: 

𝜑𝜑𝑋𝑋(𝑢𝑢) =
2

𝑢𝑢 ∙ 𝑀𝑀
∙ �

1
𝑢𝑢 ∙ 𝑏𝑏

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 −
1

𝑢𝑢 ∙ 𝑏𝑏
−

1
𝑢𝑢 ∙ (𝑀𝑀 − 𝑏𝑏) ∙ 𝑒𝑒

𝑖𝑖∙𝑢𝑢∙𝑀𝑀 +
1

𝑢𝑢 ∙ (𝑀𝑀− 𝑏𝑏) ∙ 𝑒𝑒
𝑖𝑖∙𝑢𝑢∙𝑏𝑏�  

=
2

𝑢𝑢2 ∙ 𝑀𝑀
∙ �

1
𝑏𝑏
∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 −

1
𝑏𝑏
−

1
𝑀𝑀 − 𝑏𝑏

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑀𝑀 +
1

𝑀𝑀 − 𝑏𝑏
∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏� 
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=
2

𝑢𝑢2 ∙ 𝑀𝑀
∙ �

𝑀𝑀
𝑏𝑏 ∙ 𝑀𝑀 − 𝑏𝑏2

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 −
1
𝑏𝑏
−

1
𝑀𝑀 − 𝑏𝑏

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑀𝑀� 

Durch zweimalige Anwendung der Regel von L’Hospital ergibt sich 

lim
𝑢𝑢→0

2
𝑢𝑢2 ∙ 𝑀𝑀

∙ �
𝑀𝑀

𝑏𝑏 ∙ 𝑀𝑀 − 𝑏𝑏2
∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑏𝑏 −

1
𝑏𝑏
−

1
𝑀𝑀 − 𝑏𝑏

∙ 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑀𝑀� = 1. 

d) Genügt der Verlust 𝑋𝑋 einer Exponential-Verteilung mit dem Parameter 𝜆𝜆 > 0, d.h. die 
Zufallsvariable hat die Dichtefunktion 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
0 , 𝑥𝑥 ≤ 0

𝜆𝜆 ∙ 𝑒𝑒−𝜆𝜆∙𝑥𝑥 , 𝑥𝑥 > 0
 , 

so gilt 𝜇𝜇𝑋𝑋 = 1
𝜆𝜆
, 𝜎𝜎𝑋𝑋 = 1

𝜆𝜆
 und    

𝜑𝜑𝑋𝑋(𝑢𝑢) =
𝜆𝜆

𝜆𝜆 − 𝑖𝑖 ∙ 𝑢𝑢
, 𝑢𝑢 ∈ ℝ. 

(vgl. [9] S.257, 278, 287, 383) 

e) Gegeben sei eine normalverteilte Zufallsvariable 𝑌𝑌 mit Erwartungswert 𝜇𝜇𝑌𝑌 und 
Standardabweichung 𝜎𝜎𝑌𝑌. Die Zufallsvariable 𝑒𝑒𝑌𝑌 wird dann als log-normalverteilt 
bezeichnet. Da es sich um eine nichtnegative Zufallsvariable handelt, ist die Verteilung 
für den mit dem Eintritt des Risikos verbundenen Verlust geeignet. Wählt man für den 
Verlust 𝑋𝑋 die Log-Normalverteilung mit den Parametern 𝜇𝜇 und 𝜎𝜎, so ist die 
Dichtefunktion gegeben durch 
 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
0 , 𝑥𝑥 ≤ 0

1
√2 ∙ 𝜋𝜋 ∙ 𝜎𝜎2

∙
1
𝑥𝑥
∙ 𝑒𝑒−

(ln(𝑥𝑥)−𝜇𝜇)2
2∙𝜎𝜎2 , 𝑥𝑥 > 0

  . 

 
Als Erwartungswert ergibt sich  

𝜇𝜇𝑋𝑋 = 𝑒𝑒𝜇𝜇+
𝜎𝜎2

2 , 
als Standardabweichung   

𝜎𝜎𝑋𝑋 = �𝑒𝑒2∙𝜇𝜇+𝜎𝜎2 ∙ �𝑒𝑒𝜎𝜎2 − 1�. 

Die charakteristische Funktion kann nicht als geschlossener Ausdruck dargestellt 
werden. 
(vgl. [10] S.338) 

f) Genügt der Verlust 𝑋𝑋 einer Gamma-Verteilung mit den Parametern 𝛼𝛼, 𝛾𝛾 > 0, d.h. die 
Zufallsvariable hat die Dichtefunktion 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
0 , 𝑥𝑥 ≤ 0

𝛼𝛼𝛾𝛾

𝛤𝛤(𝛾𝛾)
∙ 𝑒𝑒−𝛼𝛼∙𝑥𝑥 ∙ 𝑥𝑥𝛾𝛾−1 , 𝑥𝑥 > 0

 , 
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wobei die Gamma-Funktion definiert ist durch 

 𝛤𝛤(𝛾𝛾) = ∫ 𝑒𝑒−𝑧𝑧 ∙ 𝑧𝑧𝛾𝛾−1 𝑑𝑑𝑑𝑑∞
0  , 

so gilt 𝜇𝜇𝑋𝑋 = 𝛾𝛾
𝛼𝛼

, 𝜎𝜎𝑋𝑋 = √𝛾𝛾
𝛼𝛼

 und    

𝜑𝜑𝑋𝑋(𝑢𝑢) = �
𝛼𝛼

𝛼𝛼 − 𝑖𝑖 ∙ 𝑢𝑢
�
𝛾𝛾

,𝑢𝑢 ∈ ℝ. 

Insbesondere ist eine Exponential-Verteilung mit dem Parameter 𝜆𝜆 > 0 eine Gamma-
Verteilung mit den Parametern 𝛼𝛼 = 𝜆𝜆 und 𝛾𝛾 = 1. 
(vgl. [9] S.186, 257, 278, 287, 383)   

g) Wir betrachten zunächst eine Beta-Verteilung auf dem Intervall [0,1]. Sei also 𝑌𝑌 eine 
Zufallsvariable mit der Dichtefunktion 

𝑔𝑔(𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧

0 ,𝑦𝑦 ≤ 0
1

𝐵𝐵(𝛼𝛼,𝛽𝛽)
∙ 𝑦𝑦𝛼𝛼−1 ∙ (1 − 𝑦𝑦)𝛽𝛽−1 , 0 < 𝑦𝑦 < 1

0 ,𝑦𝑦 ≥ 1

  , 

wobei 𝛼𝛼,𝛽𝛽 >0 sei und die Beta-Funktion definiert ist durch 

 𝐵𝐵(𝛼𝛼,𝛽𝛽) = 𝛤𝛤(𝛼𝛼)∙Γ(𝛽𝛽)
𝛤𝛤(𝛼𝛼+𝛽𝛽)

 ,  

so gilt 𝜇𝜇𝑌𝑌 = 𝛼𝛼
𝛼𝛼+𝛽𝛽

 und 𝜎𝜎𝑦𝑦 = �𝛼𝛼∙𝛽𝛽
�𝛼𝛼+𝛽𝛽+1∙(𝛼𝛼+𝛽𝛽)

.    

(vgl. Wolfsdorf S.340, Schmidt S.186, 256, 278, 287,  

Setzt man nun den Verlust mit 𝑋𝑋 ≔ 𝑀𝑀 ∙ 𝑌𝑌 an, so genügt der Verlust einer Beta-
Verteilung auf dem Intervall [0,𝑀𝑀] mit den Parametern 𝛼𝛼,𝛽𝛽,𝑀𝑀 > 0, d.h. die 
Zufallsvariable hat die Dichtefunktion 

𝑓𝑓𝑋𝑋(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

0 , 𝑥𝑥 ≤ 0
1

𝑀𝑀𝛼𝛼+𝛽𝛽−1 ∙ 𝐵𝐵(𝛼𝛼,𝛽𝛽)
∙ 𝑥𝑥𝛼𝛼−1 ∙ (𝑀𝑀 − 𝑥𝑥)𝛽𝛽−1 , 0 < 𝑥𝑥 < 𝑀𝑀

0 , 𝑥𝑥 ≥ 𝑀𝑀

  , 

(vgl. [2] S.44) 

Ferner gilt  

𝜇𝜇𝑋𝑋 = 𝑀𝑀 ∙ 𝜇𝜇𝑌𝑌 = 𝑀𝑀 ∙
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
 

und 

𝜎𝜎𝑋𝑋 = 𝑀𝑀 ∙ 𝜎𝜎𝑌𝑌 = 𝑀𝑀 ∙
�𝛼𝛼 ∙ 𝛽𝛽

�𝛼𝛼 + 𝛽𝛽 + 1 ∙ (𝛼𝛼 + 𝛽𝛽)
. 
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Angemerkt werden kann noch, dass der Fall 𝛼𝛼 = 𝛽𝛽 = 1 der Gleichverteilung auf dem 
Intervall [0,𝑀𝑀] entspricht. Dies ist anhand der Dichte der Beta-Verteilung wegen 

𝐵𝐵(1,1) = 𝛤𝛤(1)∙𝛤𝛤(1)
𝛤𝛤(2) = 𝛤𝛤(1)∙𝛤𝛤(1)

1∙𝛤𝛤(1) = 𝛤𝛤(1) = 1 leicht nachvollziehbar. 

Den Modus (d.h. die Maximalstelle der Dichte) im Fall 𝛼𝛼,𝛽𝛽 > 1 erhält man mithilfe der 
Differentialrechnung wie folgt. Zunächst lautet die erste Ableitung der Dichtefunktion 
für 0 < 𝑥𝑥 < 𝑀𝑀: 

1
𝑀𝑀𝛼𝛼+𝛽𝛽−1 ∙ 𝐵𝐵(𝛼𝛼,𝛽𝛽)

∙ �(𝛼𝛼 − 1) ∙ 𝑥𝑥𝛼𝛼−2 ∙ (𝑀𝑀− 𝑥𝑥)𝛽𝛽−1 + (𝛽𝛽 − 1) ∙ 𝑥𝑥𝛼𝛼−1 ∙ (𝑀𝑀 − 𝑥𝑥)𝛽𝛽−2� 

Setzt man die erste Ableitung gleich null, so ergibt sich 

(𝛼𝛼 − 1) ∙ 𝑥𝑥𝛼𝛼−2 ∙ (𝑀𝑀 − 𝑥𝑥)𝛽𝛽−1 − (𝛽𝛽 − 1) ∙ 𝑥𝑥𝛼𝛼−1 ∙ (𝑀𝑀− 𝑥𝑥)𝛽𝛽−2 = 0 

⟺ 𝑥𝑥𝛼𝛼−2 ∙ (𝑀𝑀 − 𝑥𝑥)𝛽𝛽−2 ∙ �(𝛼𝛼 − 1) ∙ (𝑀𝑀− 𝑥𝑥) − (𝛽𝛽 − 1) ∙ 𝑥𝑥� = 0 

Diese Gleichung ist für 𝑥𝑥 ∉ {0,𝑀𝑀} genau dann erfüllt, wenn  

(𝛼𝛼 − 1) ∙ (𝑀𝑀− 𝑥𝑥) − (𝛽𝛽 − 1) ∙ 𝑥𝑥 = 0 

Dies ist äquivalent zu 

(𝛼𝛼 − 1) ∙ 𝑀𝑀 = (𝛼𝛼 + 𝛽𝛽 − 2) ∙ 𝑥𝑥 

bzw. 

𝑥𝑥 =
(𝛼𝛼 − 1) ∙ 𝑀𝑀
𝛼𝛼 + 𝛽𝛽 − 2

. 

Wegen 𝛼𝛼,𝛽𝛽 > 1 erhält man für die beiden Grenzwerte lim
𝑥𝑥↓0

𝑓𝑓𝑋𝑋(𝑥𝑥) = 0 und lim
𝑥𝑥↑𝑀𝑀

𝑓𝑓𝑋𝑋(𝑥𝑥) =

0. Somit handelt es sich bei der Lösung um das Maximum bzw. den Modus. 

h) Eine in der Praxis verwendete Verteilung ist die Pert-Verteilung. Dabei handelt es sich 
um eine spezielle Beta-Verteilung. Sie wird auch als Alternative zur Dreiecks-
Verteilung mit differenzierbarer Dichtefunktion angesehen. Die Parameter seien 
analog zur Dreiecks-Verteilung 𝑎𝑎 (best case), 𝑏𝑏 (normal case) und 𝑐𝑐 (worst case) mit 
𝑎𝑎 < 𝑏𝑏 < 𝑐𝑐. Nimmt nun man wieder an, dass die Verluste im Intervall [0,𝑀𝑀] liegen, so 
sind 𝑎𝑎 = 0 und 𝑐𝑐 = 𝑀𝑀.  

Die beiden Parameter der Beta-Verteilung wählt man mit  

𝛼𝛼 =
−5 ∙ 𝑎𝑎 + 4 ∙ 𝑏𝑏 + 𝑐𝑐

𝑐𝑐
=

4 ∙ 𝑏𝑏 + 𝑀𝑀
𝑀𝑀

> 1 

und  

𝛽𝛽 =
−𝑎𝑎 − 4 ∙ 𝑏𝑏 + 5 ∙ 𝑐𝑐

𝑐𝑐
=
−4 ∙ 𝑏𝑏 + 5 ∙ 𝑀𝑀

𝑀𝑀
> 1. 

 

Damit erhält man für den Erwartungswert  
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𝜇𝜇𝑋𝑋 = 𝑀𝑀 ∙
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
= 𝑀𝑀 ∙

4 ∙ 𝑏𝑏 + 𝑀𝑀
𝑀𝑀

4 ∙ 𝑏𝑏 + 𝑀𝑀
𝑀𝑀 + −4 ∙ 𝑏𝑏 + 5 ∙ 𝑀𝑀

𝑀𝑀
= 𝑀𝑀 ∙

4 ∙ 𝑏𝑏 + 𝑀𝑀
6 ∙ 𝑀𝑀

=
4 ∙ 𝑏𝑏 + 𝑀𝑀

6
 

Die Standardabweichung kann ebenfalls mit der bei der Beta-Verteilung gültigen 
Formel berechnet werden. Da 𝛼𝛼,𝛽𝛽 > 1 berechnet sich der Modus durch 

(𝛼𝛼 − 1) ∙ 𝑀𝑀
𝛼𝛼 + 𝛽𝛽 − 2

=
�4 ∙ 𝑏𝑏 + 𝑀𝑀

𝑀𝑀 − 1� ∙ 𝑀𝑀
4 ∙ 𝑏𝑏 + 𝑀𝑀

𝑀𝑀 + −4 ∙ 𝑏𝑏 + 5 ∙ 𝑀𝑀
𝑀𝑀 − 2

=
4 ∙ 𝑏𝑏

4
= 𝑏𝑏. 

Somit handelt es sich bei der hier gewählten Pert-Verteilung um eine spezielle Beta-
Verteilung auf dem Intervall [0,𝑀𝑀]. Der best case und worst case sind durch die 
Intervallgrenzen gegeben und der normal case analog zur obigen Dreiecks-Verteilung 
durch den Modus.  
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4. Berechnung von Kennzahlen für den Gesamtperiodenverlust 

Zur Berechnung von Kennzahlen für den Gesamtperiodenverlust gibt es mehrere 
methodische Ansätze. Zunächst lassen sich im vorliegenden Modell Kennzahlen direkt 
analytisch aus den Verteilungsannahmen für die Häufigkeit des Eintritts des Risikos pro 
Periode und den Verlust, der mit dem Eintritt eines Risikos verbunden ist, berechnen. Für 
den Erwartungswert, die Varianz und die Standardabweichung lassen sich entsprechende 
Formeln herleiten (vgl. Satz aus Abschnitt 3). Will man hingegen Quantile der Verteilung 
des Gesamtperiodenverlustes aus den im Modell für die beiden Komponenten Häufigkeit 
und Verlusthöhe vorgegebenen Verteilungsannahmen ermitteln, so stößt man mit dieser 
Vorgehensweise wegen der Komplexität des hier verwendeten Modells bis auf 
Ausnahmen an rechentechnische Grenzen.   

Aufgrund möglicher analytischer Probleme bei der Berechnung von Kennzahlen einer 
Zufallsvariablen hat sich als übliche Methodik bei der Risikoquantifizierung die Monte-
Carlo-Simulation etabliert. Dabei wird das Schicksal des Risikos mithilfe einer 
Softwarelösung hinreichend oft ausgewürfelt. Die entstehenden fiktiven Ergebnisse für 
den Verlust werden dann mit den Methoden der deskriptiven und der induktiven Statistik 
ausgewertet. Der Erwartungswert wird hierbei mit dem arithmetischen Mittel und die 
(theoretische) Standardabweichung mit der empirischen Standardabweichung 
gleichgesetzt bzw. geschätzt. Auch Quantile, z.B. der Value at Risk, sowie der Expected 
Shortfall des Verlustes können aus den simulierten Ergebnissen näherungsweise 
ermittelt werden. Grundlegend für diese Methodik sind die Grenzwertsätze der 
Stochastik, z.B. das Gesetz der großen Zahlen. 

Eine andere eher analytische Methode ergibt sich aus dem Eindeutigkeitssatz und der 
Umkehrformel für charakteristische Funktionen. Der Eindeutigkeitssatz besagt, dass 
durch die charakteristische Funktion die Verteilung einer Zufallsvariablen eindeutig 
festgelegt ist, die Umkehrformel, dass man durch Integration des Produkt aus 
charakteristischer Funktion und einer speziellen komplex-wertigen Funktion u.a. 
Quantile der zugehörigen Verteilung berechnen kann (vgl. Abschnitt 2). Darüber hinaus 
lassen sich mithilfe der Ableitungen der charakteristischen Funktion die Momente einer 
Zufallsvariablen bestimmen. Dieser Ansatz wurde bereits in Abschnitt 2 erläutert und im 
Beweis zum Satz aus Abschnitt 3 verwendet. 

Wegen der Komplexität des Funktionsterms der charakteristischen Funktion des 
Gesamtperiodenverlustes in den hier verwendeten Modellierungen ist eine Integration 
mithilfe einer Stammfunktion i.d.R. nicht möglich. Daher wird im Folgenden die hier 
beschriebene Vorgehensweise mit numerischen Methoden umgesetzt. D.h. in den 
Fallbeispielen erfolgt u.a. die Integration des Produkts aus charakteristischer Funktion 
des Gesamtperiodenverlustes und der speziellen komplex-wertigen Funktion mithilfe 
numerischer Methoden. 

Damit stehen für die vorliegende Ausarbeitung drei methodische Ansätze für die 
Ermittlung der Kennzahlen des Gesamtperiodenverlustes zur Verfügung: 
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• Analytische Methoden, d.h. direkte Berechnung aus den Verteilungsannahmen 

• Monte-Carlo-Simulation 

• Numerische Methoden, insbesondere numerisches Integrieren 

Diese drei Methoden werden in den folgenden drei Fallbeispielen bei unterschiedlichen 
Modellannahmen bezüglich der Häufigkeit des Eintritts eines Risikos und der Höhe des 
Verlustes bei Eintritt des Risikos gegenübergestellt.  
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5. Fallbeispiel 1 

Wir betrachten zunächst folgendes Fallbeispiel. Die Verteilung der Häufigkeit für den 
Eintritt des Risikos pro Periode, d.h. für die Zufallsvariable 𝑁𝑁, sei gegeben durch die 
folgenden Einzelwahrscheinlichkeiten: 

 𝑃𝑃(𝑁𝑁 = 0) = 5
15

= 1
3

,𝑃𝑃(𝑁𝑁 = 1) = 4
15

,𝑃𝑃(𝑁𝑁 = 2) = 3
15

= 1
5

,𝑃𝑃(𝑁𝑁 = 3) = 2
15

,𝑃𝑃(𝑁𝑁 = 4) = 1
15

   

Damit ergibt sich jeweils gerundet auf vier Stellen hinter dem Komma 𝜇𝜇𝑁𝑁 ≈ 1,3333 und 
𝜎𝜎𝑁𝑁 ≈ 1,2473. 

Für den Verlust, der mit dem Eintritt des Risikos verbunden ist, wird eine Gamma-
Verteilung mit den Parametern 𝛾𝛾 = 2 und 𝛼𝛼 = 0,1 angesetzt. Hier der Graph der 
zugehörigen Dichtefunktion: 

 

Man erkennt, dass in der gewählten Modellierung die Dichte bis zum Modus 𝑥𝑥 = 10 steil 
ansteigt und danach bis ins Unendliche flach ausläuft. D.h. kleinere Werte für den mit dem 
Eintritt eines Risikos verbundenen Verlust haben eine höhere Wahrscheinlichkeit als 
größere Werte. Für den Erwartungswert der gewählten Gamma-Verteilung gilt gemäß 

Beispiel 2f) 𝜇𝜇𝑋𝑋 = 2
0,1

= 20 und für die Standardabweichung 𝜎𝜎𝑋𝑋 = √2
0,1
≈ 14,1421. 

Analytische Methoden 

Mithilfe des Satzes aus Abschnitt 3 lassen sich nun der Erwartungswert 𝜇𝜇 und die 
Standardabweichung 𝜎𝜎 des Gesamtperiodenverlustes 𝑍𝑍 wie folgt berechnen: 

𝜇𝜇 = 𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋 ≈ 1,3333 ∙ 20 = 26,6660  

𝜎𝜎 = �𝜎𝜎𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜎𝜎𝑋𝑋2 ≈ �1,2473² ∙ 20² + 1,3333 ∙ 14,1421² ≈ 29,8155   
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Monte-Carlo-Simulation 

Zur Anwendung einer Monte-Carlo-Simulation für den Gesamtperiodenverlust benötigt 
man bei dem hier verwendeten Modell zum einen Zufallszahlen für die Festlegung der 
Häufigkeit des Eintritts des Risikos und zum anderen Zufallszahlen für den mit dem 
Eintritt des Risikos verbundenen Verlust. Die Zufallszahlen werden dabei jeweils im 
Intervall [0,1] generiert. 

Zur Festlegung der Häufigkeit aus einer gegebenen Zufallszahl wird, wie bei der 
Simulation von diskreten Zufallsvariablen üblich, das Intervall [0,1] entsprechend der 
gegebenen Einzelwahrscheinlichkeiten in fünf Teilintervalle aufgeteilt und daraus der 
Wert abgeleitet. Der Verlust bei Eintritt des Risikos hingegen wird durch Einsetzen der 
zugehörigen Zufallszahl in die Inverse der Verteilungsfunktion der gewählten Gamma-
Verteilung generiert. Addiert man dann je nach Häufigkeit des Risikos die jeweiligen 
Verluste auf, so erhält den fiktiven Gesamtperiodenverlust pro Simulationslauf.  

Eine entsprechende Monte-Carlo-Simulation wird für 10.000 Simulationsläufe mit Excel 
durchgeführt. Es ergeben sich die folgenden Ergebnisse: 

 

Kennzahl Ergebnis der Monte-
Carlo-Simulation 

Relative 
Abweichung zum 

theoretischen 
Wert  

Erwartungswert/Mittelwert 26,3375 −1,2319% 

Standardabweichung 29,5443 −0,9096% 

80%-Quantil 50,0982  

90%-Quantil 69,1202  

95%-Quantil bzw. Value at Risk 
zum Niveau 5% 

85,3542  

99%-Quantil bzw. Value at Risk 
zum Niveau 1% 

118,0841  

Expected Shortfall zum Niveau 5% 105,3408  

Expected Shortfall zum Niveau 1% 134,9285  

 
 
Numerische Methoden 

Bei der Ermittlung der beiden Kennzahlen Erwartungswert und Standardabweichung für 
den Gesamtperiodenverlust 𝑍𝑍 geht man von der komplex-wertigen charakteristischen 
Funktion  
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𝛷𝛷(𝑢𝑢) = 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑍𝑍� 

zur reell-wertigen momenterzeugenden Funktion  

𝑚𝑚(𝑢𝑢) ≔ 𝛷𝛷(−𝑖𝑖 ∙ 𝑢𝑢) = 𝐸𝐸(𝑒𝑒𝑢𝑢∙𝑍𝑍) 

über. Für die erste Ableitung der momenterzeugenden Funktion gilt dann 

𝑚𝑚′(𝑢𝑢) = −𝑖𝑖 ∙ 𝛷𝛷′(−𝑖𝑖 ∙ 𝑢𝑢) 

bzw. 

𝑚𝑚′(0) = −𝑖𝑖 ∙ 𝛷𝛷′(0) = −𝑖𝑖2 ∙ 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑍𝑍) 

und für die zweite Ableitung 

𝑚𝑚′′(𝑢𝑢) = 𝑖𝑖2 ∙ 𝛷𝛷′′(−𝑖𝑖 ∙ 𝑢𝑢) 

bzw.  

𝑚𝑚′′(0) = 𝑖𝑖2 ∙ 𝛷𝛷′′(0) = 𝑖𝑖4 ∙ 𝐸𝐸(𝑍𝑍2) = 𝐸𝐸(𝑍𝑍2). 

Die momenterzeugende Funktion für den Gesamtperiodenverlust 𝑍𝑍 berechnet sich wie 
folgt: 

𝑚𝑚(𝑢𝑢) = 𝛷𝛷(−𝑖𝑖 ∙ 𝑢𝑢) = ℎ�𝜑𝜑𝑋𝑋(−𝑖𝑖 ∙ 𝑢𝑢)� = ℎ ��
0,1

0,1 − 𝑢𝑢
�

2

� = �𝑃𝑃(𝑁𝑁 = 𝑘𝑘) ∙ ��
0,1

0,1 − 𝑢𝑢
�

2

�
𝑘𝑘4

𝑘𝑘=0

 

=
1
3

+
4

15
∙ �

0,1

0,1 − 𝑢𝑢
�

2

+
1
5
∙ �

0,1

0,1 − 𝑢𝑢
�

4

+
2

15
∙ �

0,1

0,1 − 𝑢𝑢
�

6

+
1

15
∙ �

0,1

0,1 − 𝑢𝑢
�

8

 

Leitet man diese Funktion numerisch an der Stelle 𝑢𝑢 = 0 ab, so erhält für Δ𝑢𝑢 hinreichend 
klein die Näherungen 

𝜇𝜇 = 𝐸𝐸(𝑍𝑍) = 𝑚𝑚′(0) ≈
𝑚𝑚(Δ𝑢𝑢) −𝑚𝑚(−Δ𝑢𝑢)

2 ∙ Δ𝑢𝑢
 

und 

𝜎𝜎2 + 𝜇𝜇2 = 𝐸𝐸(𝑍𝑍2) = 𝑚𝑚′′(0) ≈
𝑚𝑚(Δ𝑢𝑢) + 𝑚𝑚(−Δ𝑢𝑢)− 2 ∙ 𝑚𝑚(0)

(Δ𝑢𝑢)2 =
𝑚𝑚(Δ𝑢𝑢) + 𝑚𝑚(−Δ𝑢𝑢)− 2

(Δ𝑢𝑢)2  . 

(vgl. [1] S.125ff, [4]) 

Wählt man Δ𝑢𝑢 = 10−4, so ergibt sich 𝜇𝜇 ≈ 26,6669 und 𝜎𝜎 ≈ 29,8142. Die relativen 
Abweichungen zu den exakten Werten betragen 0,0034% bzw. −0,0044% und sind im 
Wesentlichen auf Rundungseffekte zurückzuführen.   

Die Ermittlung der Quantile erfolgt mithilfe der Umkehrformel bzw. mit numerischer 
Integration. Im ersten Schritt muss dazu die charakteristische Funktion des Verlustes, der 
mit dem Eintritt des Risikos verbunden ist, in ihren Real- und Imaginärteil zerlegt werden. 
Die dafür verwendete Gamma-Verteilung mit den Parametern 𝛾𝛾 = 2 und 𝛼𝛼 = 0,1 hat die 
charakteristische Funktion 
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𝜑𝜑𝑋𝑋(𝑢𝑢) = �
0,1

0,1 − 𝑖𝑖 ∙ 𝑢𝑢
�
2

,𝑢𝑢 ∈ ℝ, 

diese lässt sich wie folgt umformen: 

�
0,1

0,1 − 𝑖𝑖 ∙ 𝑢𝑢
�
2

= �
0,1

0,1 − 𝑖𝑖 ∙ 𝑢𝑢
∙

0,1 + 𝑖𝑖 ∙ 𝑢𝑢
0,1 + 𝑖𝑖 ∙ 𝑢𝑢

�
2

= �
0,01 + 𝑖𝑖 ∙ 0,1 ∙ 𝑢𝑢

0,01 + 𝑢𝑢2
�
2

 

= �
0,01

0,01 + 𝑢𝑢2
+ 𝑖𝑖 ∙

0,1 ∙ 𝑢𝑢
0,01 + 𝑢𝑢2

�
2

 

= �
0,01

0,01 + 𝑢𝑢2
�
2

+ 2 ∙ 𝑖𝑖 ∙
0,01

0,01 + 𝑢𝑢2
∙

0,1 ∙ 𝑢𝑢
0,01 + 𝑢𝑢2

− �
0,1 ∙ 𝑢𝑢

0,01 + 𝑢𝑢2
�
2

 

=
0,0001 − 0,01 ∙ 𝑢𝑢2

(0,01 + 𝑢𝑢2)2 + 𝑖𝑖 ∙
0,002 ∙ 𝑢𝑢

(0,01 + 𝑢𝑢2)2 

D.h. man erhält 𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)� =
0,0001 − 0,01 ∙ 𝑢𝑢2

(0,01 + 𝑢𝑢2)2  und 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)� =
0,002 ∙ 𝑢𝑢

(0,01 + 𝑢𝑢2)2 

Für die charakteristische Funktion des Gesamtperiodenverlustes gilt dann 

𝛷𝛷(𝑢𝑢) = ℎ�𝜑𝜑𝑋𝑋(𝑢𝑢)� = ��𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)� + 𝑖𝑖 ∙ 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)��
𝑘𝑘
∙ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘)

4

𝑘𝑘=0

 

= ���𝑘𝑘𝑗𝑗�
𝑘𝑘

𝑗𝑗=0

4

𝑘𝑘=0

∙ 𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)�
𝑗𝑗
∙ 𝑖𝑖𝑘𝑘−𝑗𝑗 ∙ 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)�

𝑘𝑘−𝑗𝑗
∙ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘) 

= � � �𝑘𝑘𝑗𝑗�
𝑘𝑘

𝑗𝑗=0
𝑘𝑘−𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 4=0

4

𝑘𝑘=0

∙ 𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)�
𝑗𝑗
∙ 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)�

𝑘𝑘−𝑗𝑗
∙ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘) 

+𝑖𝑖 ∙ � � �𝑘𝑘𝑗𝑗�
𝑘𝑘

𝑗𝑗=0
𝑘𝑘−𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 4=1

4

𝑘𝑘=0

∙ 𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)�
𝑗𝑗
∙ 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)�

𝑘𝑘−𝑗𝑗
∙ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘) 

−� � �𝑘𝑘𝑗𝑗�
𝑘𝑘

𝑗𝑗=0
𝑘𝑘−𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 4=2

4

𝑘𝑘=0

∙ 𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)�
𝑗𝑗
∙ 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)�

𝑘𝑘−𝑗𝑗
∙ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘) 

−𝑖𝑖 ∙� � �𝑘𝑘𝑗𝑗�
𝑘𝑘

𝑗𝑗=0
𝑘𝑘−𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 4=3

4

𝑘𝑘=0

∙ 𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)�
𝑗𝑗
∙ 𝑖𝑖𝑘𝑘−𝑗𝑗 ∙ 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)�

𝑘𝑘−𝑗𝑗
∙ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘) 

Der Realteil von 𝛷𝛷(𝑢𝑢) ergibt sich dann aus dem ersten und dem dritten Term, der 
Imaginärteil aus dem zweiten und vierten Term. 

Zur Berechnung eines Quantils mithilfe der Umkehrformel benötigt man den Realteil des 
Produkts 𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏) ∙ 𝛷𝛷(𝑢𝑢) für 𝑏𝑏 > 0. Dieser ergibt sich aus 
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𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏) ∙ 𝛷𝛷(𝑢𝑢) = �𝑅𝑅𝑅𝑅�𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏)� + 𝑖𝑖 ∙ 𝐼𝐼𝐼𝐼�𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏)�� ∙ �𝑅𝑅𝑅𝑅�𝛷𝛷(𝑢𝑢)� + 𝑖𝑖 ∙ 𝐼𝐼𝐼𝐼�𝛷𝛷(𝑢𝑢)�� 

= 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏)� ∙ 𝑅𝑅𝑅𝑅�𝛷𝛷(𝑢𝑢)� − 𝐼𝐼𝐼𝐼�𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏)� ∙ 𝐼𝐼𝐼𝐼�𝛷𝛷(𝑢𝑢)� 

+𝑖𝑖 ∙ �𝑅𝑅𝑅𝑅�𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏)� ∙ 𝐼𝐼𝐼𝐼�𝛷𝛷(𝑢𝑢)� + 𝐼𝐼𝐼𝐼�𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏)� ∙ 𝑅𝑅𝑅𝑅�𝛷𝛷(𝑢𝑢)��, 

wobei für 𝑢𝑢 ≠ 0 gilt 

𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏) =
1 − 𝑒𝑒−𝑖𝑖∙𝑏𝑏∙𝑢𝑢

𝑖𝑖 ∙ 𝑢𝑢
=

1 − cos(−𝑏𝑏 ∙ 𝑢𝑢) − 𝑖𝑖 ∙ sin(−𝑏𝑏 ∙ 𝑢𝑢)
𝑖𝑖 ∙ 𝑢𝑢

 

= −
sin(−𝑏𝑏 ∙ 𝑢𝑢)

𝑢𝑢
+ 𝑖𝑖 ∙

cos(−𝑏𝑏 ∙ 𝑢𝑢) − 1
𝑢𝑢

=
sin(𝑏𝑏 ∙ 𝑢𝑢)

𝑢𝑢
+ 𝑖𝑖 ∙

cos(𝑏𝑏 ∙ 𝑢𝑢) − 1
𝑢𝑢

. 

Ferner gilt 𝑔𝑔(0,0, 𝑏𝑏) = 𝑏𝑏. 

Mit der Umkehrformel und mithilfe der Rechteckregel bzw. der Mittelsumme der 
numerischen Integration (vgl. [1] S.145ff) ergibt sich die folgende Näherung für die 
Verteilungsfunktion 𝐹𝐹 des Gesamtperiodenverlustes 𝑍𝑍 an der Stelle 𝑏𝑏 > 0: 

𝐹𝐹(𝑏𝑏) = 𝑃𝑃(0 ≤ 𝑍𝑍 ≤ 𝑏𝑏) =
1
2
∙ 𝑃𝑃(𝑍𝑍 = 0) +

1
𝜋𝜋
∙ lim
𝑧𝑧→∞

� 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏) ∙ 𝛷𝛷(𝑢𝑢)� 𝑑𝑑𝑑𝑑
𝑧𝑧

0
 

≈
1
2
∙ 𝑃𝑃(𝑍𝑍 = 0) +

1
𝜋𝜋
∙ � 𝑅𝑅𝑅𝑅�𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏) ∙ 𝛷𝛷(𝑢𝑢)� 𝑑𝑑𝑑𝑑

200

0
 

≈
1
2
∙ 𝑃𝑃(𝑍𝑍 = 0) +

1
𝜋𝜋
∙ � 𝑅𝑅𝑅𝑅�𝑔𝑔(0,01 + 𝑘𝑘 ∙ 0,02,0, 𝑏𝑏) ∙ 𝛷𝛷(0,01 + 𝑘𝑘 ∙ 0,02)� ∙ 0,02
9.999

𝑘𝑘=0

 

=
1
2
∙ 𝑃𝑃(𝑍𝑍 = 0) +

1
𝜋𝜋
∙ � 𝑅𝑅𝑅𝑅�𝑔𝑔(0,01 + 𝑘𝑘 ∙ 0,02,0, 𝑏𝑏)� ∙ 𝑅𝑅𝑅𝑅�𝛷𝛷(0,01 + 𝑘𝑘 ∙ 0,02)� ∙ 0,02
9.999

𝑘𝑘=0

 

−
1
𝜋𝜋
∙ � 𝐼𝐼𝐼𝐼�𝑔𝑔(0,01 + 𝑘𝑘 ∙ 0,02,0, 𝑏𝑏)� ∙ 𝐼𝐼𝐼𝐼�𝛷𝛷(0,01 + 𝑘𝑘 ∙ 0,02)�
9.999

𝑘𝑘=0

∙ 0,02 

Die Umsetzung dieser Formel in Excel liefert für die Quantile bzw. den Value at Risk die 
folgenden Ergebnisse: 

 
Kennzahl  Ergebnis  

80%-Quantil 50,5519 

90%-Quantil 69,5681 

95%-Quantil bzw. Value at Risk 
zum Niveau 5% 

85,9592 

99%-Quantil bzw. Value at Risk 
zum Niveau 1% 

118,3818 
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Die relativen Abweichungen zu den Ergebnissen der Monte-Carlo-Simulation liegen alle 
im Promillebereich, d.h. unter 1%. 

Die Berechnung des Expected Shortfall zum Niveau 5% des Gesamtperiodenverlustes 
𝐸𝐸𝐸𝐸5%(𝑍𝑍) erfolgt nun ebenfalls näherungsweise, dabei sei 𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍) der mit numerischen 
Methoden ermittelte zugehörige Value at Risk. Wir gehen ferner davon aus, dass die 
Verteilungsfunktion 𝐹𝐹 des Gesamtperiodenverlustes 𝑍𝑍 im Intervall (0,∞) stetig ist und 
die Dichte 𝑓𝑓 besitzt. Damit ergibt sich für hinreichend große 𝐿𝐿 und mithilfe der partiellen 
Integration: 

𝐸𝐸𝐸𝐸5%(𝑍𝑍) =
1

0,05
∙ � 𝑧𝑧 ∙ 𝑓𝑓(𝑧𝑧) 𝑑𝑑𝑑𝑑

∞

𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍)
≈

1
0,05

∙ � 𝑧𝑧 ∙ 𝑓𝑓(𝑧𝑧) 𝑑𝑑𝑑𝑑
𝐿𝐿

𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍)
 

=
1

0,05
∙ �−�𝑧𝑧 ∙ �1 − 𝐹𝐹(𝑧𝑧)��

𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍)
𝐿𝐿

+ � 1 − 𝐹𝐹(𝑧𝑧) 𝑑𝑑𝑑𝑑
𝐿𝐿

𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍)
� 

=
1

0,05
∙ �−𝐿𝐿 ∙ �1 − 𝐹𝐹(𝐿𝐿)� + 𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍) ∙ �1 − 𝐹𝐹�𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍)��+ � 1 − 𝐹𝐹(𝑧𝑧)𝑑𝑑𝑑𝑑

𝐿𝐿

𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍)
� 

≈
1

0,05
∙ �−𝐿𝐿 ∙ �1 − 𝐹𝐹(𝐿𝐿)� + 𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍) ∙ 0,05 + �

2 − 𝐹𝐹(𝑧𝑧𝑘𝑘+1) − 𝐹𝐹(𝑧𝑧𝑘𝑘)
2

𝑛𝑛

𝑘𝑘=𝑜𝑜

∙ (𝑧𝑧𝑘𝑘+1 − 𝑧𝑧𝑘𝑘)� 

wobei die Stützstellen gegeben sind durch 𝑧𝑧0 = 𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍), 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛−1, 𝑧𝑧𝑛𝑛, 𝑧𝑧𝑛𝑛+1 = 𝐿𝐿. 

Dabei ergibt sich die letzte Näherung wiederum aus der numerischen Integration, diesmal 
allerdings mit der Trapezregel (vgl. [1] S.145ff).   

Berechnet man die Werte der Verteilungsfunktion 𝐹𝐹 mit der obigen Näherungsformel und 
wählt man 𝑛𝑛 = 100, 𝑧𝑧1 = [𝑧𝑧0] + 1 sowie 𝑧𝑧𝑘𝑘+1 = 𝑧𝑧𝑘𝑘 + 1 für 𝑘𝑘 = 1,2, … ,100, so ergibt sich 
wegen 𝑉𝑉𝑉𝑉𝑉𝑉5%(𝑍𝑍) = 85,9592 für 𝐿𝐿 der Wert 186. Als Expected Shortfall zum Niveau 5% 
erhält man dann näherungsweise den Wert 105,3085. Die relative Abweichung zum 
Ergebnis der Monte-Carlo-Simulation beträgt −0,0307%. Zur Beurteilung der Qualität 
der Näherung kann dabei noch angemerkt werden, dass 𝑃𝑃(𝑍𝑍 > 𝐿𝐿) = 0,000156. 

Für den Expected Shortfall zum Niveau 1% ergibt sich mit der gleichen Methode 
näherungsweise ein Wert von 135,2416 bzw. eine relative Abweichung zum Ergebnis der 
Monte-Carlo-Simulation von 0,2320%. 

Als Fazit kann festgehalten werden, dass es im vorliegenden Beispiel für die Ergebnisse 
der Kennzahlen bei Anwendung der Monte-Carlo-Simulation einerseits und bei der 
Anwendung der numerischen Methoden (numerisches Ableiten und numerisches 
Integrieren) andererseits nur geringfügige Abweichungen gibt.  
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Kennzahl Monte-Carlo-
Simulation 

Numerische 
Methoden 

Abweichung zur 
Monte-Carlo-

Simulation (in%) 

Erwartungswert 26,3375 26,6669 1,2507%. 

Standard-
abweichung 

29,5443 29,8142 0,9135%. 

Value at Risk 

zum Niveau 5% 

85,3542 85,9592 0,7088%. 

Value at Risk 

zum Niveau 1% 

118,0841 118,3818 0,2521%. 

Expected Shortfall 

zum Niveau 5% 

105,3408 105,3085 −0,0307%. 

Expected Shortfall 

zum Niveau 1% 

134,9285 135,2416 0,2320%. 
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6. Fallbeispiel 2 

Oft werden wird bei der Modellierung im quantitativen Risikomanagement davon 
ausgegangen, dass ein Risiko maximal einmal pro Periode eintritt und die 
Wahrscheinlichkeit dafür 𝑝𝑝 ∈ (0,1) beträgt. D.h. für die Zufallsvariable 𝑁𝑁 wird die 
Bernoulli-Verteilung verwendet. Für den Verlust, der mit dem Eintritt des Risikos 
verbunden ist, gehen wir zunächst ganz allgemein von einer stetigen Verteilung auf dem 
Intervall [0,𝑀𝑀] aus.   

Für den Gesamtperiodenverlust 𝑍𝑍 erhält man als Erwartungswert  

𝜇𝜇 = 𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋 = 𝑝𝑝 ∙ 𝜇𝜇𝑋𝑋  

und als Standardabweichung  

𝜎𝜎 = �𝜎𝜎𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜎𝜎𝑋𝑋2 = �𝑝𝑝 ∙ (1 − 𝑝𝑝) ∙ 𝜇𝜇𝑋𝑋2 + 𝑝𝑝 ∙ 𝜎𝜎𝑋𝑋2. 

Für die charakteristische Funktion des Gesamtperiodenverlustes 𝑍𝑍 ergibt sich 

𝛷𝛷(𝑢𝑢) = ℎ�𝜑𝜑𝑋𝑋(𝑢𝑢)� = (1 − 𝑝𝑝) + 𝜑𝜑𝑋𝑋(𝑢𝑢) ∙ 𝑝𝑝 ,𝑢𝑢 ∈ ℝ. 

Wir wollen für diesen Fall nun ein konkretes Beispiel betrachten und modellieren den 
Verlust, der mit dem Eintritt des Risikos verbunden ist, mit einer Pert-Verteilung mit best 
case 𝑎𝑎 = 0, mit normal case 𝑏𝑏 = 25 und mit worst case 𝑐𝑐 = 𝑀𝑀 = 100. Bei dieser Pert-
Verteilung handelt es sich um eine Beta-Verteilung auf dem Intervall [0,100] mit den 
Parametern  

𝛼𝛼 =
4 ∙ 25 + 100

100
= 2 und 𝛽𝛽 =

−4 ∙ 25 + 5 ∙ 100
100

= 4. 

Hier der Graph der zugehörigen Dichtefunktion:
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Der Parameter der Bernoulli-Verteilung wird im Folgenden mit 𝑝𝑝 = 0,2 angesetzt. D.h. für 
die Häufigkeit des Eintritts des Risikos pro Periode bzw. für die Zufallsvariable 𝑁𝑁 gilt 
𝑃𝑃(𝑁𝑁 = 0) = 0,8 und 𝑃𝑃(𝑁𝑁 = 1) = 0,2. Damit ergibt sich für den Erwartungswert des 
Gesamtperiodenverlustes 

𝜇𝜇 = 𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋 = 𝑝𝑝 ∙ 𝑀𝑀 ∙
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
= 0,2 ∙ 100 ∙

2
2 + 4

=
20
3
≈ 6,6667 

und für dessen Standardabweichung 

𝜎𝜎 = �𝜎𝜎𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜎𝜎𝑋𝑋2 = �𝑝𝑝 ∙ (1 − 𝑝𝑝) ∙ �𝑀𝑀 ∙
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
�
2

+ 𝑝𝑝 ∙ �𝑀𝑀 ∙
√𝛼𝛼 ∙ 𝛽𝛽

√𝛼𝛼 + 𝛽𝛽 + 1 ∙ (𝛼𝛼 + 𝛽𝛽)
�

2

 

= �0,2 ∙ 0,8 ∙ �100 ∙
2

2 + 4
�
2

+ 0,2 ∙ �100 ∙
√2 ∙ 4

√2 + 4 + 1 ∙ (2 + 4)
�

2

≈ 15,5329. 

D.h. die analytischen Methoden auf Basis des Satzes aus Abschnitt 3 ermöglicht 
wiederum die Berechnung der beiden Kennzahlen Erwartungswert und 
Standardabweichung. 

Ebenfalls direkt können in diesem Fallbeispiel die Quantile des Gesamtperiodenverlustes 
𝑍𝑍 bestimmt werden. Es sei 𝑧𝑧 ∈ (0,100]. 

𝑃𝑃(𝑍𝑍 ≤ 𝑧𝑧) = 𝑃𝑃(𝑍𝑍 ≤ 𝑧𝑧|𝑁𝑁 = 0) ∙ 𝑃𝑃(𝑁𝑁 = 0) + 𝑃𝑃(𝑍𝑍 ≤ 𝑧𝑧|𝑁𝑁 = 1) ∙ 𝑃𝑃(𝑁𝑁 = 1) = 0,8 + 𝐹𝐹𝑋𝑋(𝑧𝑧) ∙ 0,2 

Das 95%-Quantil bzw. den Value at Risk zum Niveau 5% kann dann wie folgt ermittelt 
werden:  

0,8 + 𝐹𝐹𝑋𝑋(𝑧𝑧) ∙ 0,2 = 0,95 ⟺ 𝐹𝐹𝑋𝑋(𝑧𝑧) = 0,75 ⟺ 𝑧𝑧 = 𝐹𝐹𝑋𝑋−1(0,75) = 45,4181 

Analog ergibt sich für das 90%-Quantil 31,3810 und das 99%-Quantil 65,7408. 
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Monte-Carlo-Simulation 

Analog zu Fallbeispiel 1 wird eine Monte-Carlo-Simulation für 10.000 Simulationsläufe 
mit Excel durchgeführt. Es ergeben sich die folgenden Ergebnisse: 

 
Kennzahl Ergebnis der Monte-

Carlo-Simulation 
Relative 

Abweichung zum 
theoretischen 

Wert  

Erwartungswert/Mittelwert 6,6598 −0,1035% 

Standardabweichung 15,5153 −0,1133% 

90%-Quantil 31,3624 −0,0593% 

95%-Quantil bzw. Value at Risk 
zum Niveau 5% 

45,7070 0,6361% 

99%-Quantil bzw. Value at Risk 
zum Niveau 1% 

66,0723 0,5043% 

Expected Shortfall zum Niveau 5% 57,4979  

Expected Shortfall zum Niveau 1% 73,3108  

 

 

Numerische Methoden 

Zunächst werden ebenfalls analog zu Fallbeispiel 1 der Erwartungswert und die 
Standardabweichung des Gesamtperiodenverlustes 𝑍𝑍 mithilfe der ersten beiden 
Ableitungen der zugehörigen momenterzeugenden Funktion berechnet. Die 
momenterzeugende Funktion berechnet sich dabei näherungsweise mit numerischer 
Integration wie folgt. Es sei 𝑢𝑢 ∈ ℝ. 

𝑚𝑚(𝑢𝑢) = 𝛷𝛷(−𝑖𝑖 ∙ 𝑢𝑢) = 𝐸𝐸(𝑒𝑒𝑢𝑢∙𝑍𝑍) = 𝐸𝐸(𝑒𝑒𝑢𝑢∙𝑍𝑍|𝑁𝑁 = 0) ∙ 𝑃𝑃(𝑁𝑁 = 0) + 𝐸𝐸(𝑒𝑒𝑢𝑢∙𝑍𝑍|𝑁𝑁 = 1) ∙ 𝑃𝑃(𝑁𝑁 = 1) 

= 1 ∙ 0,8 + 𝐸𝐸(𝑒𝑒𝑢𝑢∙𝑍𝑍) ∙ 0,2 = 0,8 + 0,2 ∙ � 𝑒𝑒𝑢𝑢∙𝑥𝑥 ∙ 𝑓𝑓𝑋𝑋(𝑥𝑥) 𝑑𝑑𝑑𝑑
∞

−∞
 

= 0,8 + 0,2 ∙ � 𝑒𝑒𝑢𝑢∙𝑥𝑥 ∙
1

1005 ∙ 𝐵𝐵(2,4)
∙ 𝑥𝑥 ∙ (100 − 𝑥𝑥)3 𝑑𝑑𝑑𝑑

100

0
 

≈ 0,8 + 0,2 ∙ � 𝑒𝑒𝑢𝑢∙(𝑘𝑘+0,5) ∙
1

1005 ∙ 𝐵𝐵(2,4) ∙ (𝑘𝑘 + 0,5) ∙ (100 − (𝑘𝑘 + 0,5))3
99

𝑘𝑘=0

 

Berechnet man das Integral numerisch für 𝑢𝑢 = 10−4 und 𝑢𝑢 = −10−4, so ergibt sich mit 
numerischem Ableiten für den Erwartungswert 𝜇𝜇 ≈ 6,6661 und für die 
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Standardabweichung 𝜎𝜎 ≈ 15,5323. Die relativen Abweichungen zu den (gerundeten) 
exakten Werten betragen −0,0090% bzw. −0,0039% und sind wie in Fallbeispiel 1 im 
Wesentlichen auf Rundungseffekte zurückzuführen.   

Zur Berechnung der Quantile mithilfe der Umkehrformel benötigt man zunächst die 
Zerlegung der charakteristischen Funktion in Ihren Real- und ihren Imaginärteil. Analog 
zur momenterzeugenden Funktion wird dazu mit numerischer Integration gearbeitet. Es 
sei 𝑢𝑢 ∈ ℝ.  

𝛷𝛷(𝑢𝑢) = 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑍𝑍� = 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑍𝑍�𝑁𝑁 = 0� ∙ 𝑃𝑃(𝑁𝑁 = 0) + 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑍𝑍�𝑁𝑁 = 1� ∙ 𝑃𝑃(𝑁𝑁 = 1) 

= 1 ∙ 0,8 + 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑋𝑋� ∙ 0,2 = 0,8 + 0,2 ∙ � 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙ 𝑓𝑓𝑋𝑋(𝑥𝑥) 𝑑𝑑𝑑𝑑
∞

−∞
 

= 0,8 + 0,2 ∙ � 𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑥𝑥 ∙
1

1005 ∙ 𝐵𝐵(2,4) ∙ 𝑥𝑥 ∙
(100 − 𝑥𝑥)3 𝑑𝑑𝑑𝑑

100

0
 

= 0,8 + 0,2 ∙ � (𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢 ∙ 𝑥𝑥) + 𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢 ∙ 𝑥𝑥)) ∙
1

1005 ∙ 𝐵𝐵(2,4) ∙ 𝑥𝑥 ∙
(100 − 𝑥𝑥)3 𝑑𝑑𝑑𝑑

100

0
 

Damit ergibt sich für 𝑢𝑢 ∈ ℝ der Realteil 𝑅𝑅𝑅𝑅�𝛷𝛷(𝑢𝑢)� näherungsweise mit 

0,8 + 0,2 ∙ � 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢 ∙ 𝑥𝑥) ∙
1

1005 ∙ 𝐵𝐵(2,4) ∙ 𝑥𝑥 ∙
(100 − 𝑥𝑥)3 𝑑𝑑𝑑𝑑

100

0
 

≈ 0,8 + 0,2 ∙ � cos (𝑢𝑢 ∙ (𝑘𝑘 + 0,5)) ∙
1

1005 ∙ 𝐵𝐵(2,4) ∙ (𝑘𝑘 + 0,5) ∙ (100 − (𝑘𝑘 + 0,5))3
99

𝑘𝑘=0

 

und der Imaginärteil 𝐼𝐼𝐼𝐼�𝛷𝛷(𝑢𝑢)� näherungsweise mit 

0,8 + 0,2 ∙ � 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢 ∙ 𝑥𝑥) ∙
1

1005 ∙ 𝐵𝐵(2,4) ∙ 𝑥𝑥 ∙
(100 − 𝑥𝑥)3 𝑑𝑑𝑑𝑑

100

0
 

≈ 0,8 + 0,2 ∙ � sin�𝑢𝑢 ∙ (𝑘𝑘 + 0,5)� ∙
1

1005 ∙ 𝐵𝐵(2,4) ∙
(𝑘𝑘 + 0,5) ∙ �100 − (𝑘𝑘 + 0,5)�

3
99

𝑘𝑘=0

. 

Analog zu Fallbeispiel 1 wird nun die Verteilungsfunktion 𝐹𝐹 des Gesamtperiodenverlustes 
𝑍𝑍 für 𝑏𝑏 > 0 näherungsweise berechnet mit 

𝐹𝐹(𝑏𝑏) = 𝑃𝑃(0 ≤ 𝑍𝑍 ≤ 𝑏𝑏) 

≈
1
2
∙ 𝑃𝑃(𝑍𝑍 = 0) +

1
𝜋𝜋
∙ � 𝑅𝑅𝑅𝑅�𝑔𝑔(0,01 + 𝑗𝑗 ∙ 0,02,0, 𝑏𝑏)� ∙ 𝑅𝑅𝑅𝑅�𝛷𝛷(0,01 + 𝑗𝑗 ∙ 0,02)�
9.999

𝑗𝑗=0

∙ 0,02 

−
1
𝜋𝜋
∙ � 𝐼𝐼𝐼𝐼�𝑔𝑔(0,01 + 𝑗𝑗 ∙ 0,02,0, 𝑏𝑏)� ∙ 𝐼𝐼𝐼𝐼�𝛷𝛷(0,01 + 𝑗𝑗 ∙ 0,02)� ∙ 0,02
9.999

𝑗𝑗=0

, 

wobei wiederum 𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏) =
sin(𝑏𝑏 ∙ 𝑢𝑢)

𝑢𝑢
+ 𝑖𝑖 ∙

cos(𝑏𝑏 ∙ 𝑢𝑢) − 1
𝑢𝑢

 für 𝑢𝑢 > 0.  
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Setzt man diese Formel in Excel um, so ergeben sich für die Quantile bzw. den Value at 
Risk folgende Ergebnisse: 

Kennzahl Ergebnis 

90%-Quantil 31,4980 

95%-Quantil bzw. Value at Risk 
zum Niveau 5% 

45,4987 

99%-Quantil bzw. Value at Risk 
zum Niveau 1% 

65,5043 

 

Die Abweichungen zu den direkt berechneten Werten sind bei allen drei Werten 
unterhalb von 1%.  

Analog zu Fallbeispiel 1 lassen sich auch hier der Expected Shortfall zum Niveau 5% und 
zum Niveau 1% mithilfe numerischer Integration berechnen. Für den Expected Shortfall 
zum Niveau 5% erhält man den Wert 57,7445 und für den Expected Shortfall zum Niveau 
1% den Wert 72,9976   

Als Fazit kann auch in diesem Fallbeispiel festgehalten werden, dass die es bei 
Anwendung der Monte-Carlo-Simulation einerseits und bei der Anwendung der 
numerischen Methoden andererseits nur geringfügige Abweichungen gibt.  

Kennzahl Monte-Carlo-
Simulation 

Numerische 
Methoden 

Abweichung zur 
Monte-Carlo-

Simulation (in%) 

Erwartungswert 6,6598 6,6661 0,0946%. 

Standard-
abweichung 

15,5153 15,5323 0,1096%. 

Value at Risk 

zum Niveau 5% 

45,7070 45,4987 −0,4557%. 

Value at Risk 

zum Niveau 1% 

66,0723 65,5043 −0,8597%. 

Expected Shortfall 

zum Niveau 5% 

57,4979 57,7445 0,4289%. 

Expected Shortfall 

zum Niveau 1% 

73,3108 72,9976 −0,4272%. 
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7. Fallbeispiel 3 

Im dritten und letzten Fallbeispiel betrachten wir den Fall, dass sich ähnlich wie im ersten 
Fallbeispiel der Gesamtperiodenverlust Z nicht auf einem möglichen Ereignis beruht, 
sondern sich aus den Verlusten mehrerer gleichartiger Ereignisse zusammensetzt. 

Die Häufigkeit 𝑁𝑁 des Eintritts des Risikos wird dabei durch eine Poisson-Verteilung mit 
dem Parameter 𝜆𝜆 = 4 modelliert. Der Verlust, der mit dem Eintritt des Risikos verbunden 
ist, genüge wiederum einer Pert-Verteilung, allerdings jetzt mit dem worst case 𝑐𝑐 = 5, 
dem normal case 𝑏𝑏 = 1,25 und dem best case 𝑎𝑎 = 0. Damit handelt es sich ebenfalls um 
eine Beta-Verteilung mit den gleichen Parametern wie in Fallbeispiel 2: 

𝛼𝛼 =
4 ∙ 1,25 + 5

5
= 2, 𝛽𝛽 =

−4 ∙ 1,25 + 5 ∙ 5
5

= 4 

Diesmal aber auf dem Intervall [0,𝑀𝑀] = [0,5]. 

Die Konstellation ist so gewählt, dass der Erwartungswert des Gesamtperiodenverlustes 
𝑍𝑍 im Vergleich zu Fallbeispiel 2 unverändert bleibt, d.h. der durchschnittliche Verlust pro 
Periode gleich ist: 

𝜇𝜇 = 𝜇𝜇𝑁𝑁 ∙ 𝜇𝜇𝑋𝑋 = 𝜆𝜆 ∙ 𝑀𝑀 ∙
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
= 4 ∙ 5 ∙

2
2 + 4

=
20
3
≈ 6,6667 

Allerdings verändert sich der Wert der Standardabweichung: 

𝜎𝜎 = �𝜎𝜎𝑁𝑁2 ∙ 𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑁𝑁 ∙ 𝜎𝜎𝑋𝑋2 = �𝜆𝜆 ∙ �𝑀𝑀 ∙
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
�
2

+ 𝜆𝜆 ∙ �𝑀𝑀 ∙
√𝛼𝛼 ∙ 𝛽𝛽

√𝛼𝛼 + 𝛽𝛽 + 1 ∙ (𝛼𝛼 + 𝛽𝛽)
�

2

 

= �4 ∙ �5 ∙
2

2 + 4
�
2

+ 4 ∙ �5 ∙
√2 ∙ 4

√2 + 4 + 1 ∙ (2 + 4)
�

2

≈ 3,7796 

Im Folgenden werden wieder die Ergebnisse der Monte-Carlo-Simulation und die 
Ergebnisse der numerischen Methoden gegenübergestellt, insbesondere bezogen auf die 
Quantile bzw. den Value at Risk und bezogen auf den Expected Shortfall. Im Unterschied 
zu Fallbeispiel 2 können aufgrund der höheren Komplexität des Modells die Quantile nicht 
direkt bestimmt werden.  

Bei der Poisson-Verteilung handelt es sich um eine diskrete Verteilung auf der Menge ℕ0. 
Sowohl bei der Monte-Carlo-Simulation als auch bei den numerischen Methoden findet 
eine Näherung dahingehend statt, dass die Ausgänge mit mehr als 16 Ereignissen pro 
Periode keine Berücksichtigung finden. Damit werden Ereignisse, deren 
Wahrscheinlichkeit in Summe ca. 0,00000113 = 1,13 ∙ 10−6 beträgt, außer Acht gelassen. 
Verwendet man statt Excel eine höhere Programmiersprache, so kann hier sicherlich eine 
noch höhere Genauigkeit umgesetzt werden.   
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Monte-Carlo-Simulation 

Analog zu den vorherigen Fallbeispielen wird eine Monte-Carlo-Simulation für 10.000 
Simulationsläufe mit Excel durchgeführt. Dabei ist zu beachten, dass sowohl für 
Häufigkeit des Eintritts des Risiko, als für die möglichen 16 unterschiedlichen 
Verlusthöhen Zufallszahlen zur Verfügung stehen müssen. Es ergeben sich die folgenden 
Ergebnisse: 

 

Kennzahl Ergebnis der Monte-
Carlo-Simulation 

Relative 
Abweichung zum 

theoretischen 
Wert  

Erwartungswert/Mittelwert 6,6708 0,0615% 

Standardabweichung 3,7724 −0,1905% 

90%-Quantil 11,7886  

95%-Quantil bzw. Value at Risk 
zum Niveau 5% 

13,5365  

99%-Quantil bzw. Value at Risk 
zum Niveau 1% 

17,2988  

Expected Shortfall zum Niveau 5% 15,8084  

Expected Shortfall zum Niveau 1% 19,0562  

 
 
Numerische Methoden 

Die numerischen Methoden basieren wiederum auf der charakteristischen Funktion des 
Gesamtperiodenverlustes 𝑍𝑍. Diese berechnet sich wie folgt bzw. kann wie folgt 
angenähert werden. Es sei 𝑢𝑢 ∈ ℝ. 

𝛷𝛷(𝑢𝑢) = 𝐸𝐸�𝑒𝑒𝑖𝑖∙𝑢𝑢∙𝑍𝑍� = ℎ�𝜑𝜑𝑋𝑋(𝑢𝑢)� = 𝑒𝑒𝜆𝜆∙(𝜑𝜑𝑋𝑋(𝑢𝑢)−1) = 𝑒𝑒−𝜆𝜆 ∙ 𝑒𝑒𝜆𝜆∙𝜑𝜑𝑋𝑋(𝑢𝑢) = 𝑒𝑒−𝜆𝜆 ∙�
𝜆𝜆𝑘𝑘

𝑘𝑘!
∙ 𝜑𝜑𝑋𝑋(𝑢𝑢)𝑘𝑘

∞

𝑘𝑘=0

 

≈ 𝑒𝑒−𝜆𝜆 ∙�
𝜆𝜆𝑘𝑘

𝑘𝑘!
∙ 𝜑𝜑𝑋𝑋(𝑢𝑢)𝑘𝑘

16

𝑘𝑘=0

= 𝑒𝑒−𝜆𝜆 ∙�
𝜆𝜆𝑘𝑘

𝑘𝑘!
∙ �𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)� + 𝑖𝑖 ∙ 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)��

𝑘𝑘
16

𝑘𝑘=0

 

= 𝑒𝑒−𝜆𝜆 ∙�
𝜆𝜆𝑘𝑘

𝑘𝑘!
∙��𝑘𝑘𝑗𝑗� ∙ 𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)�

𝑗𝑗
∙ 𝑖𝑖𝑘𝑘−𝑗𝑗 ∙

𝑘𝑘

𝑗𝑗=0

16

𝑘𝑘=0

𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)�
𝑘𝑘−𝑗𝑗

 

𝑅𝑅𝑅𝑅�𝜑𝜑𝑋𝑋(𝑢𝑢)� und 𝐼𝐼𝐼𝐼�𝜑𝜑𝑋𝑋(𝑢𝑢)� werden dabei mit dem Verfahren aus Fallbeispiel 2 ermittelt 
(nur mit anderen Parametern) und der Faktor 𝑖𝑖𝑘𝑘−𝑗𝑗 entscheidet jeweils darüber, ob der 
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Summand zum Realteil oder zum Imaginärteil der charakteristischen Funktion des 
Gesamtperiodenverlustes 𝑍𝑍 hinzuzurechnen ist bzw. welches Vorzeichen bei einem 
Summanden anzusetzen ist.   

Die momenterzeugende Funktion des Gesamtperiodenverlustes 𝑍𝑍 kann analog 
angenähert werden, allerdings muss dabei wegen 𝑚𝑚(𝑢𝑢) = 𝛷𝛷(−𝑖𝑖 ∙ 𝑢𝑢) nicht zwischen Real- 
und Imaginärteil unterschieden werden. Daher kann auch mit einer höheren Genauigkeit 
bezogen auf die nichtberücksichtige Wahrscheinlichkeit gerechnet werden. Es sei 𝑢𝑢 ∈ ℝ. 

𝑚𝑚(𝑢𝑢) = 𝐸𝐸(𝑒𝑒𝑢𝑢∙𝑍𝑍) = ℎ�𝜑𝜑𝑋𝑋(−𝑖𝑖 ∙ 𝑢𝑢)� = 𝑒𝑒𝜆𝜆∙(𝜑𝜑𝑋𝑋(−𝑖𝑖∙𝑢𝑢)−1) = 𝑒𝑒−𝜆𝜆 ∙ 𝑒𝑒𝜆𝜆∙𝜑𝜑𝑋𝑋(−𝑖𝑖∙𝑢𝑢) 

= 𝑒𝑒−𝜆𝜆 ∙�
𝜆𝜆𝑘𝑘

𝑘𝑘!
∙ 𝜑𝜑𝑋𝑋(−𝑖𝑖 ∙ 𝑢𝑢)𝑘𝑘

∞

𝑘𝑘=0

≈ 𝑒𝑒−𝜆𝜆 ∙�
𝜆𝜆𝑘𝑘

𝑘𝑘!
∙ 𝜑𝜑𝑋𝑋(−𝑖𝑖 ∙ 𝑢𝑢)𝑘𝑘

100

𝑘𝑘=0

 

= 𝑒𝑒−𝜆𝜆 ∙�
𝜆𝜆𝑘𝑘

𝑘𝑘!
∙ �� 𝑒𝑒𝑢𝑢∙𝑥𝑥 ∙ 𝑓𝑓𝑋𝑋(𝑥𝑥) 𝑑𝑑𝑑𝑑

∞

−∞
�
𝑘𝑘100

𝑘𝑘=0

 

Die Integrale werden wiederum numerisch bestimmt. Wählt für das numerische Ableiten 
analog zu den Fallbeispielen 1 und 2 Δ𝑢𝑢 = 10−4, so ergibt für den Erwartungswert 𝜇𝜇 ≈
6,6661 und für die Standardabweichung 𝜎𝜎 ≈ 3,7795. Die relativen Abweichungen zu den 
exakten Werten betragen damit −0,0090% bzw. −0,0026% und sind wieder im 
Wesentlichen auf Rundungseffekte zurückzuführen.   

Die Verteilungsfunktion 𝐹𝐹 des Gesamtperiodenverlustes 𝑍𝑍 berechnet sich für 𝑏𝑏 > 0 
wieder näherungsweise mit 

𝐹𝐹(𝑏𝑏) = 𝑃𝑃(0 ≤ 𝑍𝑍 ≤ 𝑏𝑏) 

≈
1
2
∙ 𝑃𝑃(𝑍𝑍 = 0) +

1
𝜋𝜋
∙ � 𝑅𝑅𝑅𝑅�𝑔𝑔(0,01 + 𝑗𝑗 ∙ 0,02,0, 𝑏𝑏)� ∙ 𝑅𝑅𝑅𝑅�𝛷𝛷(0,01 + 𝑗𝑗 ∙ 0,02)�
9.999

𝑗𝑗=0

∙ 0,02 

−
1
𝜋𝜋
∙ � 𝐼𝐼𝐼𝐼�𝑔𝑔(0,01 + 𝑗𝑗 ∙ 0,02,0, 𝑏𝑏)� ∙ 𝐼𝐼𝐼𝐼�𝛷𝛷(0,01 + 𝑗𝑗 ∙ 0,02)� ∙ 0,02
9.999

𝑗𝑗=0

, 

wobei wiederum 𝑔𝑔(𝑢𝑢, 0, 𝑏𝑏) =
sin(𝑏𝑏 ∙ 𝑢𝑢)

𝑢𝑢
+ 𝑖𝑖 ∙

cos(𝑏𝑏 ∙ 𝑢𝑢) − 1
𝑢𝑢

 für 𝑢𝑢 > 0.  

Setzt man diese Formel in Excel um, so ergeben sich für die Quantile bzw. den Value at 
Risk folgende Ergebnisse: 
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Kennzahl Ergebnis 

90%-Quantil 11,7467 

95%-Quantil bzw. Value at Risk 
zum Niveau 5% 

13,5352 

99%-Quantil bzw. Value at Risk 
zum Niveau 1% 

17,1469 

 

Analog zu den Fallbeispielen 1 und 2 lassen sich auch hier der Expected Shortfall zum 
Niveau 5% und zum Niveau 1% mithilfe numerischer Integration berechnen. Für den 
Expected Shortfall zum Niveau 5% erhält man den Wert 15,7886 und für den Expected 
Shortfall zum Niveau 1% den Wert 19,1350   

Als Fazit kann auch in diesem Beispiel festgehalten werden, dass die es bei Anwendung 
der Monte-Carlo-Simulation einerseits und bei der Anwendung der numerischen 
Methoden andererseits nur geringfügige Abweichungen gibt, wie aus der folgenden 
Tabelle ersichtlich ist.  

 
Kennzahl Monte-Carlo-

Simulation 
Numerische 

Methoden 
Abweichung zur 

Monte-Carlo-
Simulation (in%) 

Erwartungswert 6,6708 6,6661 −0,0705%. 

Standard-
abweichung 

3,7724 3,7795 0,1882%. 

Value at Risk 

zum Niveau 5% 

13,5365 13,5352 −0,0096%. 

Value at Risk 

zum Niveau 1% 

17,2988 17,1469 −0,8781%. 

Expected Shortfall 

zum Niveau 5% 

15,8084 15,7886 −0,1252%. 

Expected Shortfall 

zum Niveau 1% 

19,0562 19,1350 0,4135%. 
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8. Fazit und Ausblick 

Die drei Fallbeispiele zeigen, dass die numerischen Methoden, d.h. das numerische 
Ableiten und das numerische Integrieren der charakteristischen Funktion, eine sinnvolle 
Alternative zur Monte-Carlo-Simulation seien können. Die mit den numerischen 
Methoden verbundenen Ungenauigkeit, z.B. durch die gewählte Breite der Flächenstücke, 
spielen in den drei Fallbeispielen keine entscheidende Rolle. Die relativen Abweichungen 
bei den Kennzahlen zu den Ergebnissen der Monte-Carlo-Simulation liegen bis auf eine 
Ausnahme im Promillebereich, d.h. unterhalb von 1%. Teilweise liegen die Ergebnisse der 
numerischen Methoden näher an den exakten Werten als die Ergebnisse der Monte-Carlo-
Simulation. 

Es erscheint lohnenswert die hier vorgestellten numerischen Methoden auch bei 
komplexeren Modellierungen anzuwenden und ggf. mit den Ergebnissen einer Monte-
Carlo-Simulation zu vergleichen. Dabei können sowohl Einzelrisiken als auch ein 
Risikoportfolio im Fokus stehen. Eine Voraussetzung für die Anwendung der 
numerischen Methoden ist allerdings, dass die charakteristische Funktion bekannt ist 
bzw. mit Softwareunterstützung berechnet werden kann. Dies ist z.B. bei dem Barwert 
einer bewerteten (inhomogenen) Markov-Kette (vgl. [4]) oder einem Risikoportfolio aus 
unabhängigen Einzelrisiken (mit jeweils bekannter charakteristischer Funktion) der Fall.   
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