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S U M M A RY

Artificial intelligence (AI) solutions are increasingly taking on tasks traditionally
performed by humans. However, their rising computational demands and energy
consumption are unsustainable, highlighting the need for more efficient designs.
The human brain, evolved to function effectively even when energy is scarce,
offers inspiration. Since learning is central to both artificial intelligence and the
brain, insights about its underlying principles can deepen our understanding of
human learning while informing the development of algorithms that transcend
purely engineering-based methods.

This thesis investigates biological learning through two studies, examining it
from mechanistic and functional perspectives at an abstraction level commonly
employed in neurophysics and computational neuroscience. These fields distill
complex neural systems and phenomena into tractable mathematical and com-
putational models, enabling insights beyond the reach of traditional biological
approaches. Recognizing that synapses — the connections between neurons —
are fundamental to learning, the thesis begins with a review of state-of-the-art
computational neuroscience methods for modeling synaptic organization. This
review highlights critical aspects of synaptic signaling, including connectivity,
transmission, plasticity, and heterogeneity.

In the first study, a synaptic plasticity model is integrated into a spiking
neural network simulator and extended with biologically plausible features, for
example, continuous dynamics and increased locality. The effectiveness of this
enhanced model is demonstrated by training it on a standard neuromorphic
benchmark task, incorporating biologically realistic sparse connectivity and
weight constraints.

The second study demonstrates that the sampling efficiency of pre-trained
spiking neural networks can be enhanced by exposing them to oscillating back-
ground spiking activity. Analogous to simulated tempering, these rhythmic
oscillations modulate state space exploration, facilitating transitions between
high-probability states within the learned representation. These findings es-
tablish a link between cortical oscillations and sampling-based computations,
offering new insights into memory retrieval and consolidation from a computa-
tional perspective.

The research involves developing mathematical and computational models,
which are simulated on high-performance computing systems, evaluating learn-
ing and sampling performance using standard machine learning metrics, and
assessing computational efficiency by analyzing runtime. This thesis shows
how biologically inspired mechanisms enhance the functional capabilities of
spiking neural networks and how they can guide the development of scalable
and efficient AI systems.
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Z U S A M M E N FA S S U N G

Künstliche Intelligenz (KI) übernimmt zunehmend Aufgaben, die traditionell
von Menschen ausgeführt wurden. Allerdings sind der steigende Rechenauf-
wand und Energieverbrauch dieser Systeme nicht nachhaltig, was die Notwen-
digkeit effizienterer Designs unterstreicht. Das menschliche Gehirn, das sich
entwickelt hat, um auch unter Energieknappheit effektiv zu funktionieren, dient
hier als Inspiration.

Da Lernen sowohl für die Künstliche Intelligenz als auch für das Gehirn
zentral ist, können Einblicke in die zugrunde liegenden Prinzipien unser Ver-
ständnis des menschlichen Lernens vertiefen und gleichzeitig die Entwicklung
von Algorithmen fördern, die über rein ingenieurwissenschaftliche Ansätze
hinausgehen.

Diese Dissertation untersucht biologisches Lernen durch zwei Studien, die es
aus mechanistischer und funktionaler Perspektive auf einer Abstraktionsebene
betrachten, wie sie häufig in der Neurophysik und der computergestützten
Neurowissenschaft verwendet wird. Diese Disziplinen reduzieren komplexe
neuronale Systeme und Phänomene auf handhabbare mathematische und rech-
nergestützte Modelle, welche Einblicke ermöglichen, die über den Rahmen
traditioneller biologischer Ansätze hinausgehen. In der Erkenntnis, dass Synap-
sen — die Verbindungen zwischen Neuronen — für das Lernen grundlegend
sind, beginnt die Arbeit mit einem Überblick über aktuelle Methoden in der
rechnergestützten Neurowissenschaft zur Modellierung der Organisation von
Synapsen. Dieser Überblick beleuchtet wesentliche Aspekte der synaptischen
Signale, einschließlich Konnektivität, Übertragung, Plastizität und Heterogenität.

In der ersten Studie wird ein Modell der synaptischen Plastizität in einen
Simulator für spikende neuronale Netzwerke integriert und mit biologisch plau-
siblen Eigenschaften erweitert, wie etwa kontinuierlicher Dynamik und erhöhter
Lokalität. Die Effektivität des erweiterten Modells wird durch das Training
auf einer standardisierten neuromorphen Benchmark-Aufgabe demonstriert,
unter Berücksichtigung von biologisch realistischer spärlichen Konnektivität
und Gewichtsbeschränkungen.

Die zweite Studie zeigt, dass die Sampling-Effizienz vortrainierter spikender
neuronaler Netzwerke verbessert werden kann, indem sie oszillierenden Hin-
tergrundaktivitäten ausgesetzt werden. Analog zum „Simulated Tempering“
modulieren diese rhythmischen Oszillationen die Erkundung des Zustands-
raums und erleichtern Übergänge zwischen hochwahrscheinlichen Zuständen
in der gelernten Repräsentation. Diese Ergebnisse stellen eine Verbindung zwi-
schen kortikalen Oszillationen und auf Sampling basierenden Berechnungen her
und bieten neue Einblicke in die Gedächtnisabruf- und -konsolidierungsprozesse
aus einer rechnergestützten Perspektive.
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Die Forschung umfasst die Entwicklung mathematischer und rechnergestütz-
ter Modelle, die auf Hochleistungsrechnersystemen simuliert werden. Die Lern-
und Sampling-Leistung wird mit Standardmetriken des maschinellen Lernens
bewertet, und die Recheneffizienz wird durch Analyse der Laufzeit beurteilt.
Diese Dissertation zeigt, wie biologisch inspirierte Mechanismen die funktio-
nalen Fähigkeiten spikender neuronaler Netzwerke verbessern und wie sie die
Entwicklung skalierbarer und effizienter KI-Systeme anleiten können.
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1
I N T R O D U C T I O N

“Nature is a harmonious mechanism where all parts, including
those appearing to play a secondary role, cooperate in the functional
whole. ”

Santiago Ramón y Cajal in Advice to a young investigator,
translated 1999

In recent years, artificial intelligence (AI) has emerged as a transformative field,
with innovations rapidly changing our everyday lives. AI solutions increasingly
perform tasks traditionally carried out by humans. At the heart of AI’s success
are the principles of neural network learning. The 2024 Nobel Prize in Physics
was awarded to Geoffrey E. Hinton and John J. Hopfield in recognition of their
pioneering contributions to this topic.

As the name suggests, early neural networks were inspired by the brain,
particularly the principle that neurons communicate through connections, whose
strengths are modulated during learning. However, modern artificial neural
networks, with their intricate architectures and abstract mathematical dynamics,
are a product of engineering and have significantly diverged from their biological
origins. Training these powerful networks is computationally intensive, resulting
in high energy consumption levels that are becoming unsustainable for society.

Optimizing algorithms for energy efficiency has emerged as a critical challenge
in advancing AI systems. One promising direction involves revisiting the roots
of neural networks and drawing inspiration from biology. Over millions of years,
evolution has fine-tuned brain circuits for rapid and efficient learning, enabling
skill acquisition, even under conditions of scarce energy. The brain’s architecture
may hold the key to effective and energy-efficient learning.

Solutions developed by evolution differ fundamentally from those employed
in artificial neural networks. In biological networks, activity is sparse and spike-
based, functioning in an event-driven manner, whereas artificial networks rely on
dense, time-driven communication. Similarly, cortical networks are characterized
by sparse, recurrent synaptic connections, shaped by rewiring during evolution
and development. In contrast, artificial neural networks are typically dense and
feedforward in structure.

Training in artificial neural networks — adjusting weights to generate appro-
priate outputs based on inputs — shares similarities with functional plasticity
in the brain. However, while AI systems often start with randomly initialized
weights, the brain’s initial structures are fine-tuned through evolutionary pro-
cesses, providing a significant advantage in efficiency and functionality.
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Many tasks targeted by AI systems are already performed by the human
brain under comparable constraints. Skills essential for these tasks, explored in
this thesis, include managing uncertainty in inputs, generating sequences, and
classifying perceived objects. By understanding human learning mechanisms
more deeply, we can design novel algorithms that may surpass those developed
solely based on engineering principles [1].

This thesis explores the intersection of machine learning and neurobiology
through distinct studies addressing specific problems. While each chapter delves
into different aspects of this interdisciplinary domain, the work as a whole is
guided by several overarching questions:

1. How can machine learning principles be expressed through biological
mechanisms and incorporated into biologically plausible models?

2. How does function emerge from both biological and artificial mechanisms?

3. How can principles underlying biological mechanisms be leveraged to advance
machine learning algorithms?

These questions are not intended to be exhaustively or systematically addressed
or fully resolved within this work. Instead, they serve as thematic anchors,
providing a broader conceptual framework for the research.

Despite the biophysical complexity of synapses [2], their behavior can often
be effectively described using a few differential equations. Chapter 2 explores
the synaptic organization of the brain through the lens of computational neu-
roscience, systematically reviewing state-of-the-art methods for studying this
organization with an emphasis on phenomenological modeling grounded in
physics. This chapter provides a comprehensive overview of integrating empiri-
cal data into mathematical models, implementing these models in software, and
performing simulations that mirror experimental setups. Simulations, regarded
as the third pillar of scientific exploration alongside biological experiments and
mathematical theory [3], play a crucial role in validating theoretical predictions
and experimental findings. The chapter introduces key aspects of synaptic sig-
naling in a progressive manner. It begins with static binary brain connectivity,
advances to weighted connections, and finally incorporates dynamics into the
connectivity (structural plasticity) and the weights of these connections (func-
tional plasticity). In practice, each step of the modeling and simulation workflow
presents unique challenges and potential pitfalls, which are highlighted and
addressed.

Chapter 3 builds on a biologically inspired algorithm for spiking networks
that approximates the performance of state-of-the-art machine learning methods
for training recurrent neural networks. We extend this model by incorporating
biological features, analyzing each feature’s impact on computational accuracy
and efficiency through simulations on a widely recognized benchmark task for
neuromorphic hardware and algorithms.
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Chapter 4 examines the critical ability of both biological and artificial neural
networks to rapidly switch between plausible interpretations of ambiguous or
uncertain input. This task becomes increasingly difficult in high-dimensional
data spaces due to the curse of dimensionality, where distinct interpretations
act as strong and competing attractors. Inspired by a stochastic sampling tech-
nique, we hypothesize that cortical oscillations play a similar role in overcoming
this challenge. To test this hypothesis, we employ a framework based on the
concept that cortical networks perform sampling-based probabilistic inference
through their dynamics. We develop theoretical and computational models that
incorporate oscillatory activity into this framework, exploring its potential func-
tional roles. Using pre-trained spiking networks, we evaluate how oscillatory
spiking activity influences probabilistic sampling, demonstrating its impact on
the network’s ability to navigate and resolve competing attractor states.

This thesis explores how biological features influence learning capabilities
and the ability to sample from a learned distribution, particularly in high-
dimensional datasets that mimic real-world inputs. These challenges are es-
pecially pronounced in biologically plausible spiking neural networks, where
learning depends on the interplay of multiple biological mechanisms. To evaluate
the simulated networks, we use various metrics from machine learning.

Ultimately, the algorithms developed in this thesis will reach their full poten-
tial for energy efficiency when implemented on specialized hardware designed
to emulate brain-like learning, known as neuromorphic hardware. With this in
mind, this research primarily addresses the constraints of the interconnected
domains of machine learning and neurobiology, while the requirements of
neuromorphic hardware are considered as an outlook for future advancements.
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2
P H E N O M E N O L O G I C A L M O D E L I N G

Author Contributions

Phenomenological Modeling of Diverse and Heterogeneous Synaptic Dy-
namics at Natural Density. A. Korcsak-Gorzo*, C. Linssen*, J. Albers, S. Das-
bach, R. Duarte, S. Kunkel, A. Morrison, J. Senk, J. Stapmanns, T. Tetzlaff, M.
Diesmann, S. J. van Albada (2024) Book chapter in New Aspects in Analyzing the
Synaptic Organization of the Brain. Springer. DOI: 10.1007/978-1-0716-4019-7_15.

* Shared first authorship.

The author and CL contributed equally as the primary contributors to the
above publication, and this chapter comprises excerpts from it. MD and SJA
served as supervisors for the project. MD conceived the project and all authors
collectively provided ideas for the publication. The author and CL organized
the proposed ideas, defined subtopics, and assigned groups of authors to
conduct the literature review and draft texts for specific subtopics.
The author collaborated with JSt and AM on the subtopic of plasticity. Specifi-
cally, the author conducted the literature review and drafted the section on
structural plasticity, while JSt performed the same tasks for the section on
functional plasticity. The author, JSt, and AM subsequently revised the entire
section on plasticity. Figure 2.1, Figure 2.2, Figure 2.3, and Figure 2.4 are adap-
tations of existing figures from other publications. The author contributed
to the adaptations of Figure 2.1, Figure 2.2, and Figure 2.4. Additionally, the
author wrote the draft for the introduction, CL drafted the discussion, and
the author and CL jointly drafted the notes section. The main revision work
was carried out by the author and CL, with all authors contributing to the
review process.
Furthermore, Dennis Terhorst and Jessica Mitchell assisted with the techni-
cal aspects of the NEST documentation links, Angela Fischer gave advice
on the figure layout, and Rainer Waser provided valuable feedback on the
manuscript.

2.1 introduction

Creating mathematical models from experimental neurophysiological data has
grown into an established and essential method for investigating the brain.
Based on these mathematical models and exploiting the upswing of affordable
and powerful computing architectures over the last few decades, a new sub-field
concerned with the computational modeling of neurobiological systems has
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emerged. The discipline using mathematical modeling and analysis methods to
understand principles of brain organization, dynamics, and function is called
computational neuroscience. This discipline is also sometimes referred to as theo-
retical or mathematical neuroscience, each term having its own slightly different
emphasis. One of the most challenging subjects of this comparatively young
domain is the synaptic organization of the brain. This chapter reviews the status
quo of synaptic modeling approaches. It aims to provide insight into ways data
can be used to build mathematical or computational models.

The methods described in Lübke et al. [2] reveal diverse dynamical processes
and heterogeneous components involved in synaptic signaling at various spatial
and temporal scales. This variability is amplified by the size and complexity of
neurobiological systems: both the density and the total number of synapses in
mammalian brains are impressive, the former being on the order of 109 per cubic
millimeter in the cerebral cortex [4] and the latter being estimated as roughly
5 × 1014 in the human brain [5]. Each cubic millimeter of the human brain
contains on the order of 104 − 105 neurons adding up to about 1011 neurons in
the brain as a whole [6].

How can we model such a heterogeneous, complex, and dense large-scale
system? The process of modeling and simulation can be understood as a cycle, as
depicted in Figure 2.1. First, the experimental results recorded from the system
of interest (here, the synaptic organization of the brain) are analyzed, and a
mathematical model is formulated. Then, the mathematical model is translated
into computer language, i.e., into an executable model that implements the
mathematical operations needed to simulate the model. Finally, the model
of the system is executed, whereby this simulation is the numerical analog
to an experiment. This process yields results that can be compared with the
experimental results. In turn, this comparison may deliver outcomes that can
be used to improve the mathematical and computational models. Comparisons
between the system of interest, the mathematical model, and the executable
model ensure quality control. In general, three types of checks for correctness
can be distinguished [7]: Confirmation ensures that the mathematical formulation
applies to the system of interest, verification that the executable model sufficiently
represents the mathematical model, and validation that the simulation outcome
is consistent with and predictive of the system of interest. This review focuses
on the inner triangle of arrows: the practical methods to formulate mathematical
models in an informed way, to translate them into manageable and correct
executable models, to run simulations, and to inform further modeling choices
using the obtained data.

The challenge of computational neuroscience is to analyze the rich dynamics
of neuronal systems and abstract their complexity into mathematical models that
still capture essential characteristics of the experimental findings. At the same
time, these models should be simple enough to be tractable and generalizable
and thus reveal possible laws that govern the dynamical system. A fundamental
question in this endeavor is what processes and variables are of interest and best
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Figure 2.1: Cycle of modeling and simulation. The empirical data from the brain
structure under study (the “system of interest”) is first mathematically modeled and
then implemented in software. Closing the loop, simulation results can be compared to
experimental recordings. Reproduced with permission from Fig. 1 in Trensch et al. [7].

describe the data. In synaptic organization, candidates include the connection
strengths, synaptic time constants, delays, vesicle release characteristics, synaptic
plasticity, and neuromodulation.

Developing this thought further, a modeler needs to decide on the scale the
model represents and how to parameterize it. It is advisable to constrain the
number of model parameters to a minimal set that answers a specific research
question. Limiting the parameter space increases the tractability, mechanistic
interpretability, and robustness of the model and reduces the risk of overfitting.
However, capturing biological detail and enhancing the direct link between
parameters and their biological counterparts can usually only be done with
a large set of parameters. Heterogeneity can be represented by introducing
parameter value distributions, leading to additional parameters characterizing
the dispersion and possibly higher-order properties of the corresponding dis-
tributions. Overall, a suitable parameterization involves a tradeoff between the
model’s controllability and biological plausibility.

These decisions on which aspects of the system to express as variables and
the choice of the corresponding model equations are abstraction steps: they for-
malize a hypothesis on which features are germane to the question at hand and
which mathematical descriptions are appropriate for capturing the phenomena
of interest (see Section 2.3.8). In general, this abstraction can be approached
from two different directions. The bottom-up approach starts from the low-level
properties of the neurons and synapses making up the system and models
the complexity step by step in the hope of achieving realistic dynamical and
functional properties. However, one major point of modeling is to improve our
understanding of a system. Given that the starting point is a poor understand-
ing, this approach suffers from the fundamental problem that essential features
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might be abstracted away or obfuscated by an abundance of less relevant de-
tails. Another point can be to provide accurate predictions, even if we do not
understand the model. The opposite approach, top-down modeling, starts from
the high-level dynamical, functional, or behavioral properties one would like
to capture and then proposes concrete implementations. The drawback of this
approach is that a model created in this way might not fully conform to biology,
so it is difficult to draw conclusions about the brain. One solution is to use
different degrees of abstraction at different scales to arrive at an understanding
of the system, which is the motivation behind multi-scale modeling. Ideally, bi-
ological realism is incrementally enhanced through cycles of data comparison
and refinement (see Figure 2.1 and Section 2.3.1).

Some neurophysiological observations can be modeled with analytically solv-
able equations, i.e., in an exact way and usually with pen and paper. However,
various simplifying assumptions generally flow into such abstractions, and de-
riving an analytical solution to a model’s equations becomes less feasible as its
complexity increases. For such cases, numerical solutions can provide a useful
alternative. This computational approach tends to be slower, but it can validate
the analytical approach by requiring fewer simplifying assumptions and it may
even provide novel theoretical insight.

Simple small network models frequently consist of equations that can be
solved analytically or calculated numerically with few computational resources.
However, both numerical and analytical approaches reach certain limits when
attempting to replicate realistic neuron numbers in the volume of the brain
region under consideration. As the number of neurons increases, the number of
connections grows quadratically in networks without spatial dependence and
linearly for distant neurons in models incorporating spatial dependence since
most connections are local. To approximate natural density, analytical techniques
like mean-field theory sacrifice biological specificity. With sufficient computing
power, numerical methods may solve model equations at natural density. A
limitation is that, to date, this is only possible for small brains or small portions
of larger brains.

We restrict the scope of this review to phenomenological models, which
represent the empirical relationship between phenomena without explaining the
reason for the interaction. We neglect the molecular level or ultrastructure, i.e.,
structures visible at magnifications higher than that provided by standard optical
light microscopy. Furthermore, we address spiking neuron models, mainly so-
called point or few-compartment neurons, which neglect the precise morphology
of the neuron, as the effective dynamics of a morphologically complex neuron
can often already be meaningfully captured by such models.

The models are usually translated to be executable by a computer, i.e., imple-
mented in one of the various computer languages. One or an interconnected
set of dynamical model components representing neurobiological entities such
as neurons or synapses is simulated, i.e., evolved in time, for a specific duration
with a set of parameters, initial conditions, and stimuli.
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The generic framework that can numerically solve the dynamical equations
of various models is called a simulator. It solves complex interactions with
many coupled differential equations typically incrementally in discrete time
steps. Spiking neuronal network simulators also communicate spike events
from senders to receivers. The event-based nature of synaptic interactions in the
form of action potentials is advantageous for the efficiency of the simulation.
Furthermore, a simulator can record dynamical state variables in the network or
other observables like connectivity and apply stimuli during simulation.

Since the simulator needs to organize and maintain the appropriate data
structures in computer memory, a substantial amount of RAM may also be
required, depending on the simulated neurobiological system. Biologically
realistic network models are often large-scale to reflect or approach the natural
density of neurons and synapses, have additional computational overhead due
to heterogeneity, and are typically simulated for a long time, e.g., to gather
statistics or study behavioral timescales. Thus, a simulator should be efficient
and scale to high-performance architectures in terms of processing and memory
usage.

In addition to these performance aspects, criteria for a good simulator include
functional completeness, numerical accuracy, and reproducibility of results. Fur-
thermore, a simulator increases its value for the community if the available
models are relevant to many members and the documentation is comprehensive
and easy to understand. Developing a simulator that fulfills all these criteria
and supports diverse models is complex and time-intensive. Consequently, sim-
ulators with peer-reviewed collections of implemented models are continuously
developed as a community effort and shared as software packages to benefit the
field of computational neuroscience.

From the range of existing simulators for biologically inspired neuronal net-
works, this review focuses on NEST [8], an open-source software tool designed to
simulate anywhere from small to large-scale networks of diverse spiking neuron
models, and its associated domain-specific modeling language NESTML [9] that
facilitates the creation of new neuron and synapse models. Other simulators
with various scientific foci and special areas of application include NEURON
[10], Brian [11], Nengo [12], Arbor [13], and ANNarchy [14]. Some common
(simulator-agnostic) interfaces are provided by PyNN [15] and the modeling
language NeuroML [16].

This chapter is structured as follows. Each section from Section 2.2.1 to Sec-
tion 2.2.5 presents a two-step recipe to go from experimental data on a specific
feature or mechanism of the synaptic organization to simulations: first, how
to mathematically model experimental data, and second, how to simulate this
model. Section 2.2.1 starts with the most simplified view of brain circuitry,
namely binary connections between neurons. This view is advanced in Sec-
tion 2.2.2 to the notion of weighted connections. Then, dynamics is introduced to
the existence of connections in Section 2.2.3 and the weights of those connections
in Section 2.2.4. Finally, Section 2.2.5 discusses how to model the additional
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heterogeneity in all these features. Throughout the text, links to Section 2.3 high-
light aspects that are particularly challenging or contain pitfalls. Furthermore,
links to provide URLs to NEST code snippets that help the reader develop an
intuition on how the usage of the discussed models would look in code. The
chapter ends with some concluding remarks in Section 2.4.

2.2 aspects of synaptic organization

2.2.1 Connectivity

From empirical data to mathematical models

Anatomical and physiological experiments are yielding ever richer data sets on
brain connectivity. Integration of these data into dynamical models can help gain
insight into their implications for brain activity and function, besides identifying
gaps in the data which can inform future experiments. The data cover diverse
scales, ranging from electron microscopy at the sub-micron scale of synapses
to light microscopy for neuronal morphology, paired recordings identifying
fractions of connected neuron pairs, glutamate uncaging at the scale of tens to
hundreds of microns, axonal tracing for long-range connectivity, and diffusion
imaging for the whole-brain scale [17].

Despite the richness of the available data, none of these experimental ap-
proaches can specify full connectomes at the single-neuron resolution, especially
in organisms with complex brain structures such as mammals. Therefore, we
need to make predictions in order to complete the detailed connectivity data.
One strategy is to find statistical regularities in the existing data and use these
to extrapolate to missing data points. Of course, models do not need to be
fully data-driven; various abstractions may be used to explore the influence
of specific aspects of the connectivity. We illustrate the data-driven approach
using the example of the cerebral cortex. In view of the incompleteness of the
known cortical connectivity for any individual, we describe the connectivity in
a probabilistic manner. A different strategy for generating the connectivity may
be to grow connections according to developmental or other plasticity rules (for
structural synaptic plasticity, see Section 2.2.3).

The cerebral cortex contains different types of excitatory and inhibitory neu-
rons, distinguished by their morphology, electrophysiology, connectivity, and
molecular make-up [18, 19]. We refer to the set of neurons of the same type
in a given cortical area and layer as a population (see Figure 2.2). Connection
probabilities are specific to both source and target populations. Both within
and between areas, connectivity is also layer-specific. Furthermore, connection
probability decays with the distance between neurons, both locally within areas
and at longer ranges between areas [20–22]. A further organizing principle is
that excitatory connectivity tends to form patches [23, 24], meaning that neurons
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establish additional synapses onto other nearby neurons resulting in spatial
clusters (see Figure 2.2).

Figure 2.2: Substructures of the cortex on different scales. The neurons in the cortex are
organized into areas on the macroscale (middle). In each area, neurons are organized into
layers with distinct connectivity (here, shown as a microcircuit under 1 mm2 of cortical
surface) and into populations of neurons with similar properties within each layer
(upper left). Blue triangles and red circles represent excitatory and inhibitory neurons,
respectively. Long-range projections connect the areas (lower left). Moreover, on an
intermediate scale of millimeters, both intra-area and inter-area excitatory connections
cluster into “patches” (right, only outgoing connections for one neuron shown). Adapted
with permission from Fig. 1 in Schmidt et al. [25] under license CC BY 4.0 originally
from Fig. 1 in Potjans et al. [26] and Fig. 1 in Kunkel et al. [27].

When formalizing these properties into models, a number of subtleties are
involved [28]. First, the term connection probability needs to be defined carefully.
This could, for instance, refer to either the total number of synapses divided by
the product of the source and target population sizes or the probability for any
neuron pair to be connected via at least one synapse. The two definitions diverge
in the case of multapses, multiple synapses between a given source and target
neuron pair, often observed in reconstruction data [29]. Further, models can
either allow self-connections, also called autapses, or prohibit them. Moreover,
beyond a certain model size, the spatial decay of the connection probability
becomes important. To capture this, simulated neurons are assigned spatial
coordinates, and additional specifications are necessary, including boundary
conditions and the choice of connectivity profile. Common choices for the
local profile are Gaussian and exponential functions, where the latter generally
appears to be a better approximation to experimental data [20, 21].

Figure 2.3a illustrates the local decay of connectivity with distance. Choosing
a symmetric exponential as a model, Figure 2.3b shows that fitting to the
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experimental data can reveal fundamental constants such as the characteristic
length λ.

Figure 2.3: Fitting a model of connectivity to observed data. (a) Layer-resolved axonal
tracing data from V1 of New World monkeys. (Adapted from Sincich et al. [30], Fig. 3,
Copyright 2001 Society for Neuroscience) Images show staining of cortical layers after an
injection of biocytin into layer 3, anterogradely staining axons. (b) Fit of a 2D symmetric
exponential function f (r) = ae−λ/r + b (red) to the axonal density distribution (blue) of
layer 5. The model does not fully capture the connectivity profile for layers 2, 3, and 4B
(b) (A, B, C), which display patchy connectivity.

When including patchy connectivity, the spatial position of the patches can be
specified via a radial distance from a cell body and an angle [24]. Further possible
parameters are the number of patches, the size of each patch, and the degree of
overlap between patches. Layer-specific axonal tracing data, such as fractions of
supragranular labeled neurons from retrograde tracing experiments [31], can
inform the laminar inter-area patterns of cortical models. Here one should pay
attention to the fact that, on the target side, axonal tracing tells us about axonal
or synaptic locations but not about the locations of the target cell bodies. To
a reasonable approximation, one can statistically estimate which synapses are
established on which target neurons using morphological reconstructions, a
method that assigns the number of synapses proportionally to the total length
of dendritic elements in the vicinity of the synapses [32, 25].

This is only a tiny selection of data and features that can be included in
neuronal network models. One can go into greater complexity and, for example,
consider the higher-level organization of networks, such as hierarchical mod-
ularity or small-world properties. For a further discussion on model detail in
general, see Section 2.4.

From mathematical models to simulation

To simulate how the dynamics of a neuronal network model evolve, the mathe-
matical model description needs to be translated into an executable one. This
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is preferably done using a dedicated simulator to avoid mistakes in the imple-
mentation and to enhance comparability and reproducibility of results (for the
precise definition of the different forms of reproducibility, see Section 2.3.2.) Exe-
cuting a neuronal network simulation typically involves two successive phases:
during the build phase, the network is set up on the machine by instantiating
objects and data structures for neurons and synapses. The subsequent simulation
phase propagates the network state for a specified biological model time. How
fast a simulation runs, i.e., how the biological model time relates to the wall-
clock time, crucially depends not only on the machine specifications but also on
the representation of the network model on the machine. Parallel computing
combines the computational power of many separate compute cores or nodes to
enable large-scale simulations; to this end, NEST uses a hybrid approach with
the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP).
The former enables parallel computing on multiple processors with distributed
memory, while the latter enables parallel computing even on single processors
with shared memory, referred to as threading. The total number of so-called
virtual processes is determined as the product of the number of MPI processes
and the number of OpenMP threads per process. A direct mapping between
network structure and hardware is in general difficult to realize. Therefore, NEST
uniformly distributes the neurons of each population across the available proces-
sors to balance the compute load (Section 2.3.3). The neurons are connected via
synapses, which are assigned specific weights and delays reflecting conduction
times. Synapse models are stored and updated on the same compute nodes
that hold their postsynaptic partner neurons. Maintaining the complete network
connectivity in computer memory enables the use of plasticity mechanisms
that can modify synaptic strengths at runtime (for functional synaptic plasticity,
see Section 2.2.4). The alternative procedural connectivity approach generates the
required routing information on the fly and thereby requires fewer memory
resources [33, 34].

Establishing synapses in a computational network model requires defining
which neurons are connected. For specific data-driven models, the network
structure can be loaded from a file, but simulators also provide built-in routines
for generating connectivity. These routines1 range from a primitive that just
connects individual source and target neurons, to high-level connection rules
acting on the neuron population level [28]. For example, the deterministic rule
all-to-all connects each neuron of a source population to each neuron of a target
population. Probabilistic rules account for the often statistically described sparse
connectivity in biological neuronal networks. Random, fixed in-degree connectivity,
for instance, specifies only the number of incoming connections per neuron but
not which individual ones are selected as sources. If the connectivity is described
as pairwise Bernoulli, each pair of neurons is connected with a given probability.

1 https://nest-simulator.readthedocs.io/en/latest/tutorials/pynest_tutorial/part_3_c

onnecting_networks_with_synapses.html
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The fixed in-degree rule needs to be combined with the specification of whether
multapses are allowed, whereas the pairwise Bernoulli rule excludes them by
definition as each pair of neurons is considered only once. High-level connection
rules enable efficient low-level implementations such as parallelization of the
network construction.

Pseudo-random number generators (pRNGs) are used for drawing connec-
tions according to a probabilistic rule and optionally also for setting neuron
and synapse parameters (see Section 2.2.5). The resulting network realization
will be identical if the same sequence of random numbers is sampled; this is
achieved by fixing the pRNG seed. Random distributions sometimes have to be
constrained in order to restrict the sign of a weight, e.g, according to Dale’s law
[35], or to enforce connection delays to be larger than the simulation time step,
for which a typical value is 0.1 ms. A longer minimum delay, for instance, 1 ms,
can furthermore be used to limit the necessary frequency of communication
between virtual processes.

Large-scale neuronal network models require high-performance computing.
Employing several compute nodes in parallel not only distributes the workload
but also gives access to sufficient memory for storing the network connectivity.
Storing a single synaptic weight costs 8 bytes in NEST [36] as it sums up the
effects of a set of vesicles that may differ in size, as well as of potentially different
amounts of receptors. Moreover, a typical neuron in the mammalian brain has
on the order of 104 synapses [37]. This leads to a substantial amount of resources
required for large models. Networks with reduced neuron and synapse numbers
can preserve some characteristics (e.g., firing rates) of full-scale networks if the
downscaling is compensated for with informed parameter adjustments [38].
The pairwise correlation structure of the neuronal activity, however, cannot
be preserved simultaneously, rendering neuroscientific simulations at natural
density a necessity where correlation structure is relevant. This may be the case,
for instance, to ensure the correct network state: correlation changes may even
shift a network between linearly stable and unstable regimes. Data structures
that keep the memory usage per MPI process constant regardless of the total
number of MPI processes used in the simulation [39] provide a potential solution,
paving the way toward brain-size networks with realistic connectivity.

2.2.2 Synaptic transmission

From empirical data to mathematical models

Electrochemical signaling between neurons is mediated by various receptor
types, expressed post- and presynaptically. Different receptor types trigger dif-
ferent physiological responses. Ligand- or voltage-gated ion channels influence
ionic flows through the membrane, with distinctive kinetics for each receptor
type (examples include AMPA and NMDA). Metabotropic receptors trigger
intracellular biochemical signaling cascades with downstream actions that are
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typically not instantaneously noticeable but mediate physiological adaptation
processes. Electrical synapses (gap junctions) are transmembrane channels that
form a direct electrical and biochemical coupling between the cytosol of two
adjacent cells. Compared to chemical synapses, they provide increased speed
as the signal does not need to be converted from electrical to chemical and
back across a synaptic cleft. The composition of receptor types on a neuron’s
synapses, their spatial distribution on the dendritic tree and cell body, and their
individual, instantaneous efficacy and response kinetics determine how and at
which timescales the neuron filters and integrates its many presynaptic inputs.
We will focus here on chemical synapses.

The amplitude of the postsynaptic response is proportional to the synapse’s
strength or weight, which depends on the amount and types of both neurotrans-
mitters and receptors as well as the state of the postsynaptic neuron. Synaptic
weights can be estimated from paired recordings, usually in vitro, to avoid back-
ground activity that confounds the measurements. However, here it should be
taken into account that the synaptic weight obtained from paired-cell recordings
is determined by a combination of biophysical properties, e.g., postsynaptic
receptor density, amount of released neurotransmitters, reuptake kinetics, or
existence of more than one connection between a pair of cells (multapses). Hence,
the terms strength and weight refer to an effective, phenomenological quantity.
Mapping the corresponding parameters to the in vivo condition is nontrivial
because experimental conditions like temperature and extracellular fluid may
differ, as well as a high-conductance network state affecting the measured quan-
tities such as time constants [40, 41]. Change of synaptic strengths over time is
discussed in Section 2.2.4.

When a presynaptic neuron has emitted an action potential, the signal that
arrives at the postsynaptic neuron can be observed as a postsynaptic potential
(PSP): the deflection in the somatic membrane voltage caused by the incoming
spike. Alternatively, synaptic currents (PSCs) may be measured at different
holding potentials using voltage-clamp recordings. From a PSC or PSP, the
weight of the synapse can be derived. Synapses are often modeled as injecting
a current into the postsynaptic cell or acting as a conductance, the current of
which is proportional to the difference between the membrane potential and
a synapse- or receptor-specific reversal potential. In the simplest approxima-
tion of the postsynaptic response kinetics, the time course of this current or
conductance may be modeled as a Dirac delta function causing a step increase
in the membrane potential or current, respectively. With increasing levels of
complexity, the time course of the PSC (or postsynaptic conductance, PSG) can
be approximated by an instantaneous rise followed by an exponential decay
or by a double exponential with separate time constants for the rising and the
decaying phase [42].

Beside spatially precise communication via synapses, the spatially more
diffuse process of neuromodulation can alter the excitability of neurons and
affect synaptic plasticity (see Section 2.2.4). Neuromodulation is achieved by
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the release of a neurotransmitter with less detail in the connectivity patterns
than in typical synaptic (for instance, glutamatergic) neurotransmission. The
neuromodulator, such as dopamine or serotonin, is typically released from a
neuron whose cell body lies in a small, circumscribed nucleus in the brain but
which projects broadly and affects many downstream targets simultaneously.
The precise spatiotemporal profile of neurotransmitter concentration is often
approximated in models by assuming the neuromodulator diffuses through
extracellular space, referred to as volume transmission. Simulating the diffusion
process entails solving the Laplace equation—an equation that involves the
spatial gradient and divergence operators, requiring a different type of solver
than those that solve the neuronal network system dynamics. Instead of a
detailed representation of the geometry of extracellular space (for instance, based
on the finite-element method), the medium may be assumed to be spatially
homogeneous, and diffusion can even be assumed to occur instantaneously,
considerably simplifying the model and its computational requirements [43].

Neurons have a spatial extent, and their dendrites often exhibit intricate
branching patterns. Consequently, the spatial collocation of synapses on the den-
drites has important consequences for the neuron’s response to input. Dendritic
responses are often nonlinear, as dendrites are studded with a high density
of voltage-gated channels, which, combined with intracellular responses like
calcium signaling, can cause a nonlinear interaction between nearby synaptic
inputs. In addition, the dendrite itself can exhibit action potentials distinct from
a somatic action potential, for instance, involving a local, intracellular calcium
transient [see, e.g., 44]. The (local) change in membrane potential and conduc-
tance, in turn, affects the integration at adjacent synapses in the branch. The
triggering of dendritic action potentials by co-activated and co-located synapses
and their effects on the somatic dynamics can be accounted for in simple point
neuron models by including nonlinearities in synaptic input currents [45, 46].
For a more fine-grained analysis, multicompartment models are commonly used.
In these models, each neuron consists of dozens or hundreds of compartments,
each equipped with a distinct type of dynamics and parameterization and
coupled to neighboring compartments according to Ohm’s law [42]. Multicom-
partment models permit integrating experimental data at a highly detailed level
of description but are computationally and conceptually much more complex
and demanding. On the other hand, some biophysical details like synaptic adap-
tation can be adequately modeled without the need to address the microscopic
biophysics of synaptic vesicles but can be treated phenomenologically by adding
one or a few extra continuous state variables to the model [e.g., 47, 48].

From mathematical models to simulation

NEST integrates equations for neurons with linear subthreshold dynamics
exactly [49] and uses standard numerical solvers for nonlinear neuron models.
For synapses, an efficient approach is to specify the characteristic time evolution
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of some postsynaptic quantity, such as current or conductance, as a linear system
of equations. If responses sum linearly across a neuron’s synapses, they can be
lumped together into a single or a few state variables and do not have to be
stored and updated for each synapse separately. For this reason, the postsynaptic
response is typically specified as part of the (postsynaptic) neuron model. As
described in Section 2.2.2, the postsynaptic kernel could be, for example, a Dirac
delta function (causing an instantaneous jump in the postsynaptic membrane
potential), an instantaneous rise followed by an exponential decay, or a double-
exponential function with a finite rise time. Furthermore, because they are
linear, solving these equations does not require a numerical solver but only
multiplication with a constant at each time step [50]. The reduction to a simple
multiplication generally makes the solution much more precise: the computed
values are closer to the mathematically “true” solution and more efficient to
compute. Thus, simulations of networks with many synapses become feasible.
Multiple types of synapses can be easily incorporated into this scheme by
grouping them according to their kinetics, for instance, into a separate AMPA
and NMDA group2.

In simulations of large networks, the layout of data structures in memory
and communication can become bottlenecks. Conceptual modeling decisions
can interact with data layouts; for example, the synaptic delay can be chosen
as a property of the synapses or the pre- or postsynaptic neurons. In the point-
neuron framework, the delay is assigned to either a neuron’s axonal or dendritic
side, implying different biophysical interpretations and simulation outcomes.
The biophysical object of a synapse is not necessarily represented in code by a
specific software object but distributed into a presynaptic and a postsynaptic
component. In the instantiation of a particular model, these components may
not even live on the same compute node. As noted in Figure 2.2.1, NEST stores
synapses on the process containing the postsynaptic neuron.

In simulations using parallel computing, spike events and potentially other
quantities such as synaptic weights have to be communicated between threads,
processes, or across a computer network (Section 2.3.4). Parallel computing
presents a set of unique design requirements because the evolution of the dy-
namical model needs to occur synchronously, lest the model’s state becomes
internally inconsistent when some parts of it have become desynchronized in
time. This requirement can be addressed by instituting a minimum, nonzero
transmission delay for each synaptic connection in the model. A delay between
the presynaptic spike and the resulting postsynaptic response effectively decou-
ples neurons for this time window so that events can be transmitted across the
computer network in a regular cadence at the end of each window (Section 2.3.5).
This decoupling allows simulations to scale to many compute nodes [51].

From a mathematical modeling point of view, gap junctions are much simpler
than chemical synapses; their delay is negligible, and they do not filter the input.

2 https://github.com/nest/nestml/blob/master/models/neurons/wb_cond_multisyn.nestml
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However, modeling gap junctions numerically can be challenging because they
entail an instantaneous coupling between compartments. The waveform relaxation
technique helps retain simulation efficiency when combining gap junctions with
a numerical simulation method that takes advantage of a minimum, nonzero
synaptic delay. Each neuron is considered a separate subsystem in this technique,
and the gap junction coupling terms (current flowing from one neuron into the
other) are solved iteratively. This solution requires exchanging data (in particular,
membrane potentials) between the gap-junction coupled neurons only at the
end of each minimum delay step, thus limiting the necessary communication
frequency. In exchange, it requires only a modest increase in computation and
the size of the communicated packets since solving the forward dynamics of
each separately considered neuron needs to be repeated only once per iteration
of the waveform relaxation algorithm [52, 53].

2.2.3 Structural plasticity

The models introduced earlier in this chapter had static connectivity (see Sec-
tion 2.2.1). However, macroscopic observations of the brain have revealed that the
connections in cortical networks continually change as new synapses form and
others dwindle and disappear [for a review, see 54]. This rewiring is a lifelong
process to encode experiences but happens extensively during development and
recovery from lesions in the brain tissue [for a review, see 55]. The underlying
mechanisms introducing dynamics into the connectivity are summarized as
structural synaptic plasticity.

From empirical data to mathematical models

Including structural plasticity mechanisms into a synapse model can increase
its biological plausibility, e.g., regarding learning, development, reformation
after lesions [56] or topographic map formation [57]. Structural plasticity might
also be the basis for associative connections [58] and metaplasticity [59]. How-
ever, plasticity mechanisms capable of generating network connectivity in a
principled fashion can also be helpful in other ways. First, they can help reduce
dependence on cumbersome and expensive connectivity recordings in animals
(see Section 2.2.1). Second, they can serve a range of functional purposes. For
example, they can enhance learning performance [60] or increase the storage ef-
ficiency of long-term memories and, by that, prevent catastrophic forgetting [61].
Plasticity mechanisms also frequently serve a homeostatic function. In general,
the term “homeostasis” refers to a range of vital physiological processes that
assist organisms in maintaining internal states (such as body temperature, blood
sugar levels, and heart rate) at optimal levels. Likewise, homeostatic plasticity
maintains quantities such as spiking activity or numbers of connections at an
energetically or computationally favorable set-point [62]. Efficient pruning of the
connectivity and preserving sparse connectivity [63] can help save energy and
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optimize the usage of limited synaptic resources, which is particularly important
in neuromorphic computing [60, 64, 65].

To understand the process of developing a comprehensive and accurate math-
ematical model of structural plasticity, the following paragraphs sketch the steps
involved in creating the model suggested by Butz et al. [56] as an example. This
model is based on the observation that the creation and deletion of synapses can
bring the postsynaptic neuron’s firing rate into a certain physiological range. The
authors consider synaptic elements, namely axonal boutons on the presynaptic
side and dendritic spines on the postsynaptic side. When two such elements
are combined, a synapse is created. The dynamics of the number of synaptic
elements for each neuron depends on a readiness variable c (associated with
the calcium concentration), which indicates the propensity of a neuron to grow
synapses. The readiness variable is a low-pass filtered version of the spiking
activity and thus approximates the neuron’s instantaneous rate up to a scalar
multiplier.

The algorithm comprises four steps, which are repeated until the connectivity
converges. First, it continuously updates the spiking activity of the neurons
since each neuron’s mean firing rate influences the creation of synaptic elements.
Second, it updates the readiness c for each neuron:

dc
dt

= − c(t)
τ

+ βδ
(

t− tf
j

)
, (2.1)

i.e., c decays exponentially with the time constant τ and increases by a fixed
amount β whenever the neuron j spikes at tf

j, where δ(·) denotes the Dirac delta
function and f stands for “firing”. Third, a homeostatic rule drives the neuron
to reach and maintain a target activity by deleting postsynaptic elements if
the instantaneous activity is higher than the target activity or creating synaptic
elements if the current activity is lower than the target activity. A growth curve
defines the speed of these modifications toward a target calcium concentration
ctarget by means of a growth rate ν and can be expressed as a linear function

dz
dt

= ν

(
1− c(t)

ctarget

)
. (2.2)

Alternatively, a downward shifted Gaussian or other more complex function
may be used, as long as it has a zero-crossing with a negative gradient that
allows convergence. If the value of z increases or decreases by 1, the neuron
grows or deletes a synaptic element, respectively. The algorithm creates new
connections between randomly chosen synaptic elements from the available set
in the fourth and last step. This set comprises synaptic elements generated in
previous iterations that are not yet connected and the connection partners of
deleted synaptic elements.

Beyond this specific example, there exists a range of different structural
plasticity models: some have rules for deleting, some for forming synapses, and
some for both [for a book, see 66]. Often the algorithm prunes synapses that do
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not have the chance to become active again [67], are the weakest according to
a specific metric [68, 69], or have too little causal correlation between pre- and
postsynaptic spikes [70]. Sometimes the mechanism’s objective is to maintain
a preset number of connections [60], preserve short-range connections [71], or
prune until the connectivity has converged to the most efficient constellation
[67]. In many algorithms, the determining factors for rewiring are the pre- and
postsynaptic activity and the vicinity of other synapses. In general, one can
divide structural plasticity mechanisms into two categories: Hebbian structural
plasticity, which leads to an increase in the number of synapses during phases
of high neuronal activity and, conversely, a decrease in phases of low neuronal
activity; and homeostatic structural plasticity, which balances these changes by
removing and adding synapses [72].

From mathematical models to simulation

The NEST implementation of the discussed particular structural plasticity mech-
anism [73] updates the network connectivity at time intervals that are long
compared to the computational time step used to update the neurons, based
on experimental observations3. This slow timescale makes the algorithm more
efficient, as the available synaptic elements do not need to be calculated and
communicated at every time step. However, when using structural plasticity to
generate connections in a network, note that convergence is not guaranteed but
determined by the growth rate, network connectivity, and network activity; thus,
visual guidance is advised (see Nowke et al. [74] and Section 2.3.6).

2.2.4 Functional plasticity

The strength of a synapse is usually parameterized by a single static value,
the synaptic efficacy or synaptic weight (see Section 2.2.2). However, existing
synapses can grow stronger or weaker as an effect of a variety of biophysical
mechanisms on both the pre- and postsynaptic side, phenomena collectively
known as functional synaptic plasticity. These adjustments of synaptic efficacies
are likely to form the basis of learning and memory processes in the brain.
Thus, this section addresses the temporal evolution of synaptic efficacies and
the underlying mechanisms.

From empirical data to mathematical models

Over 70 years ago, Hebb famously postulated that neurons that fire together
wire together [75]. Since then, many phenomenological models of functional
plasticity have been derived and developed. Introducing categories brings some
order into the vast landscape of models, even if they do not have clear-cut
boundaries and often overlap. Four categorizations are common. First, with

3 https://www.nest-simulator.org/py_sample/structural_plasticity/
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respect to the timescale: while short-term plasticity models cover timescales from
milliseconds to seconds, long-term plasticity models cover minutes to hours, and
homeostatic plasticity models (e.g., synaptic scaling) even up to days [76, 77].
While structural plasticity can occur over the course of hours [78], timescales of
functional plasticity are typically shorter. One needs structural plasticity to create
new synapses (happening on a long timescale) which then grow stronger via
functional plasticity (happening on a faster timescale). Vice versa, synapses that
have grown weak are more likely to be pruned. To date, models usually include
either functional or structural plasticity but not both together, and the effects of
these mechanisms on synaptic learning are thus studied independently. A second
categorization distinguishes functional plasticity according to the mechanisms
involved: Unsupervised learning rules are based on unlabeled data, supervised
learning rules involve a target signal, and reinforcement learning rules function
via rewards [76, 77]. A third categorization considers the number of factors
that constitute the update formula of the synaptic efficacy: Standard correlation-
based rules usually involve two factors, the pre- and postsynaptic spiking, as
opposed to three-factor models that involve an additional modulatory signal, e.g.,
neuromodulation. Fourth, based on activity dependence, plasticity mechanisms
occur in two counteracting forms: in Hebbian-type mechanisms, higher activity
levels of the pre- and postsynaptic neurons lead to strengthening of the (positive
or negative) weights, whereas in homeostatic mechanisms, to their weakening
[72]. Without further constraints, Hebbian-type plasticity may lead to a positive
feedback loop and, consequently, substantial changes in synaptic weights and
network activity. In contrast, homeostatic synaptic plasticity pushes the synaptic
efficacy up if activities are low and down if neuronal activities are high, inducing
a negative feedback loop and stabilizing the dynamics.

Experimental studies show that the efficacy of a synapse can change for
a short time window of hundreds to thousands of milliseconds depending
on the history of the presynaptic spikes [79–81]. This phenomenon is termed
short-term plasticity (STP), or more precisely, short-term facilitation (STF) if the
efficacy is elevated, and short-term depression (STD) if the efficacy is decreased.
The biophysical mechanism underlying STP is the dynamics of vesicle pools
and spike-triggered exocytosis. On the one hand, after the generation of a
spike, calcium accumulates in the presynaptic axon terminal, increasing the
probability of neurotransmitter release, which enhances the synaptic efficacy
and thus causes STF. On the other hand, repetitive firing leads to the depletion
of vesicles and saturation of postsynaptic receptors, which decreases the efficacy
and thus causes STD. The mechanisms for STF and STD are counteracting,
and a combination of both can be present in the same synapse. Depending
on the synapse or neuron type, one of them may be more pronounced. These
phenomena form the basis for many STP models [for a review, see 82]. The
following paragraph outlines one possible modeling approach by using the
example of the model proposed by Tsodyks et al. [79].

21



The starting point is the view introduced in Section 2.2.1 and Section 2.2.2:
a neuron k receives spikes from neuron j over a synapse with the weight wjk.
Now, to make the static synaptic weight a dynamical variable, wjk is multiplied
by a time-dependent scaling factor fa(t), modeled by a set of three coupled
differential equations:

d fa

dt
= − fa

τi
+ u+ f−r δ

(
t− tf

j

)
, (2.3)

d fr

dt
=

fi

τr
− u+ f−r δ

(
t− tf

j

)
, and (2.4)

d fi

dt
=

fa

τi
− fi

τr
, (2.5)

describing the utilization of synaptic resources by each presynaptic spike ar-
riving at time tf

j. Here, fa(t), fr(t), and fi(t) = 1 − fr(t) − fa(t) denote the
fractions of active, recovered, and inactive synaptic resources, respectively, and
δ(·) the Dirac delta function. The superscripts “−” and “+” refer to the values
of the associated variables before and after their update. Each presynaptic spike
increases the active synaptic resources, i.e., the synaptic weight, and simultane-
ously reduces the available (recovered) resources by an amount proportional
to u+. The utilization variable u+ represents the probability of vesicle release,
controlled by the calcium concentration in the axon terminal. In the absence of
STF, this utilization is constant. However, in facilitating synapses, it is dynamic
and evolves according to

du
dt

= − u
τfac

+ U
(
1− u−

)
δ
(

t− tf
j

)
, (2.6)

where the parameter U corresponds to the amplitude of the postsynaptic current
(the synaptic weight) in response to a single isolated presynaptic spike. The time
constants τr, τi, and τfac describe the recovery time from synaptic depression, the
decay of the postsynaptic currents, and the decay of the utilization, respectively.
Despite its simplicity, this phenomenological model approximates experimental
findings well [79].

The modifications of the synaptic efficacy by STP occur only during presy-
naptic firing and last for a few hundred milliseconds. After presynaptic firing
has stopped, the synaptic resource variables, and hence the synaptic weight,
return to their resting states fa = 0, fr = 1, fi = 0, u = 0, and wjk. In contrast,
spike-timing-dependent plasticity (STDP) has a prolonged effect on synaptic efficacy
and thus constitutes a form of long-term plasticity. This form of plasticity was
discovered in several spike pairing experiments where a pre- and a postsynaptic
neuron were repetitively stimulated to emit spikes at a predefined interval
[83, 84]. Reviews of the experimental findings can be found in Caporale et al.
[85] and Markram et al. [86] and Brzosko et al. [87]. Although the results of
these studies vary across cell types and pairing protocols, they all find that the
induced change of the synaptic efficacy depends on the precise time difference
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∆t = tpost − tpre between a pair of pre- and postsynaptic spikes. The mapping
between the sign and value of the weight changes and the time lags between
pre- and postsynaptic spikes is described by the STDP kernel, which can take
either a Hebbian or an anti-Hebbian form and is sometimes modeled as either
symmetric or anti-symmetric [all forms illustrated by Fig. 2 in 88]. In nature,
however, the size and shape of the potentiation and depression windows might
differ, leading to an overall asymmetric window (see Figure 2.4a). Generally,
a postsynaptic spike occurring slightly after the presynaptic spike (∆t > 0)
induces long-term potentiation (LTP), whereas a postsynaptic spike occurring
slightly before the presynaptic spike (∆t < 0) induces long-term depression (LTD).
Thus, STDP can encode a causal relationship between the firing of the pre- and
postsynaptic neuron and the synaptic weight change. Since this finding follows
Hebb’s principle, this type of STDP belongs to the class of Hebbian plasticity
rules.

Figure 2.4: Spike-timing-dependent plasticity (STDP). (a) Weight change expressed
as a function of relative pre- and postsynaptic spike timing for an example of STDP
with an anti-symmetric (and slightly asymmetric), Hebbian learning window. Markers
correspond to empirical data from Bi et al. [84]. Solid lines show exponential approxi-
mations used in the model (red indicates depression and blue indicates potentiation in
all panels). An anti-Hebbian window would look similar but mirrored about the vertical
axis. (b-d) Three nearest-neighbor spike pairing rule variants for STDP. (b) Symmetric:
each presynaptic spike is paired with the last postsynaptic spike, and each postsynaptic
spike is paired with the last presynaptic spike. (c) Presynaptic centered: each presynaptic
spike is paired with the last postsynaptic spike and the next postsynaptic spike. (d)
Reduced symmetric: as in panel (c), but only for closest pairs. Adapted from Fig. 7 in
Morrison et al. [77].

Formalizing this robust finding based on the above experimental data allows
for mathematical treatment. Morrison et al. [77] developed a phenomenological
model with only a few free parameters, which reproduces the experimental
observations without referencing the underlying molecular mechanisms. They
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restricted the observables that can enter the plasticity rule to locally available
ones because biologically plausible phenomenological models should only con-
tain terms that are identifiable with mechanisms that exist in biology. In the
case of STDP, the synaptic weight change depends on the pre- and postsynaptic
spike times and potentially also on the current synaptic weight. Experiments
demonstrating that action potentials back-propagating through the dendritic tree
convey information about a postsynaptic spike support the fact that postsynaptic
spikes can be available at the synapse [83].

The dependence of LTP and LTD on ∆t is usually captured by exponential
functions with decay times τ±. Morrison et al. [77] give a simple model of the
weight change ∆w for pair-based STDP:

∆w+ = F+(w) e−
|∆t|
τ+ if ∆t > 0,

∆w− = −F−(w) e−
|∆t|
τ− if ∆t ≤ 0,

(2.7)

where the functions F± capture the dependence on the current weight w and have
to be specified further by fitting them to experimental data [89, 90] (Figure 2.4a).
A spike pair can be defined in different ways: for example, each presynaptic
spike can be paired with the most recent preceding postsynaptic spike and vice
versa, which is one variant of the class of nearest-neighbor schemes (see Figure 2.4b
to Figure 2.4d), whereas in the all-to-all scheme, each presynaptic spike is paired
with all preceding postsynaptic spikes [77, 91].

The STDP model described above can serve as a starting point for designing
extended models to describe more nuanced experimental results, for example
by including the postsynaptic membrane potential as an additional modulatory
factor beyond the pre- and postsynaptic spikes. Along these lines, Clopath
et al. [92] and Clopath et al. [93] account for the effects of voltage-dependent
receptors and channels. Their approach is based, among other findings, on
experiments showing that the same spike pairing protocol can, depending on
the postsynaptic membrane potential Vm, induce no change in synaptic weights
at all, LTD, or LTP [94]. While a Vm smaller than an experimentally determined
threshold potential Θ− induces neither LTD nor LTP, an intermediate membrane
potential Θ− < Vm < Θ+ triggers LTD, and a high Vm > Θ+ enables LTP. To
capture this behavior, the mathematical description of the plasticity rule contains
terms for facilitation and depression that are active based on these conditions of
the membrane voltage, formally expressed as Heaviside step functions. With this
mechanism, Clopath et al. [92] were able to reproduce the complex frequency
dependence of the synaptic weight changes in spike pairing experiments [95].

In Urbanczik et al. [96], the postsynaptic membrane potential is included
as a modulating factor. This plasticity rule, in particular, applies to synapses
that connect to the dendrite of a postsynaptic neuron. Experiments show that
presynaptic spikes that do not cause postsynaptic spikes lead to a depression
of synaptic weights whose strength increases with increasing dendritic voltage
[97]. From this observation, Urbanczik et al. [96] conclude that the synaptic
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weights are adjusted such that the dendritic voltage assumes high values if and
only if the soma of the postsynaptic neuron emits spikes. Therefore, in this rule,
the difference between the dendritic voltage and the somatic activity drives the
synaptic weight change.

Instead of the postsynaptic membrane potential, a third factor could also be
a neuromodulator concentration, which is motivated by experimental studies
[for a review, see 98] and by the fact that they provide a biologically plausible
implementation of reward signals [99].

From mathematical models to simulation

The STP implementation in NEST45 exploits several practical properties of the
corresponding differential equations for their numerical integration. Since the
synaptic resources are conserved (i.e., the fractions fr, fa, and fi add up to 1),
fa can be eliminated from the system. Furthermore, thanks to its linear form,
the system of coupled differential equations Equation 2.4, Equation 2.3 and
Equation 2.5 can be integrated exactly between two consecutive presynaptic
spikes [49]. Concretely, the joint state of u, fr, and fa can be iteratively evolved
by multiplying the state at the previous presynaptic spike with a propagator
matrix.

To simulate STDP, Equation 2.7 needs to be calculated efficiently [77]. Hav-
ing restricted the model parameters to those locally available at the synapse
facilitates the implementation in software6. These constraints also improve the
model’s performance, since network simulators running on distributed systems
take advantage of a limited need for global access to variables to reduce memory
consumption and high-latency communication between compute nodes [100,
101]. The all-to-all pairing scheme can be efficiently implemented using a specific
update scheme of the synaptic traces. These traces represent a fading memory of
past spikes at the synapse without explicit knowledge of all past spike times [89,
77]. If a pre- or postsynaptic spike occurs, the corresponding trace and synaptic
weight are updated, while no actions need to be performed in the periods in
between. Defining the exact order of updates in a plasticity model, particularly
with regard to pre- and postsynaptic spike timing, indicated by the “+” and “-”
in Equation 2.3, Equation 2.4, and Equation 2.5 is crucial and facilitated by the
high-level language NESTML7.

More complex learning scenarios, like reinforcement learning, are made possi-
ble by advanced plasticity rules, which, for example, depend on the postsynaptic
membrane potential or neuromodulators [102]. However, these rules typically
make it more difficult to discover an effective implementation. For example,

4 https://nest-simulator.readthedocs.io/en/latest/auto_examples/tsodyks_depressing.h

tml

5 https://nest-simulator.readthedocs.io/en/latest/auto_examples/tsodyks_facilitating

.html

6 https://nestml.readthedocs.io/en/latest/models_library/stdp.html

7 https://nestml.readthedocs.io/en/latest/nestml_language/synapses_in_nestml.html
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neuromodulators (e.g., dopaminergic signals) affect several nearby synapses
through volume transmission requiring a notion of physical 3D space (see Sec-
tion 2.2.2). Moreover, the presence of time-continuous signals in some of these
advanced plasticity rules necessitates the storage of the signal history if one
wishes to keep the efficient event-driven scheme of updating the synaptic weights
only at presynaptic spike times [100]. Depending on how the data structures are
laid out in a simulator, accessing the continuous third-factor variables can be
difficult or computationally costly because they need to be queried for every
spike at every synapse. Generally, rules that require only spike times are more
efficient in memory and compute time than rules that depend on the entire
history of variables, like the membrane potential trace.

Given access to the synaptic weights, another form of functional plasticity,
weight normalization, can be realized. It entails keeping the total sum, or a norm
of all incoming synaptic strengths of a neuron constant by re-normalizing all its
synaptic weights8. Since, in the brain, these weight changes happen on timescales
of several hundreds of milliseconds, the iterative re-normalization takes place
on a coarse time grid, increasing the operation’s efficiency.

Other advanced plasticity rules include, for example, a third-factor postsy-
naptic dendritic current [96] or inhibitory plasticity [103]. The discovery of new
plasticity rules can be, to a certain degree, even automated [104]. Furthermore,
state models with synaptic tagging and capture (STC), described, e.g., in Barrett
et al. [105], incorporate even plasticity effects beyond synapse-specific ones.
Ultimately, state-of-the-art computational plasticity models transcend the simple
STP and STDP models [see, e.g., 106]. Algorithmically, however, these compli-
cated models often use a combination of plasticity mechanisms and thus can be
synthesized from such a base stack of simpler models.

2.2.5 Heterogeneity

Complexity and heterogeneity are ubiquitous and well-established design prin-
ciples in neurobiological systems [107], covering a multitude of components
and mechanisms at various spatial and temporal scales. From an information
processing perspective, such variability is a fundamental component of the
system, as it determines the types of computations a given circuit can perform
and constrains the representational expressivity of its dynamics [108].

From empirical data to mathematical models

Biological synaptic connectivity is highly diverse in most of its constituent
properties, including the type of neurotransmitter used, the composition of
presynaptic vesicles and docking proteins (affecting release probability), the
postsynaptic receptor composition (affecting efficacy and kinetics of the elicited

8 https://nest-simulator.readthedocs.io/en/latest/guides/weight_normalization.html
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response), transmitter re-uptake and re-use, and the involvement of gliotrans-
mission [see, e.g., 109], but also properties characterizing signal propagation
such as axon diameter and conductance velocity [110–112]. These various types
of diversity translate to a high degree of heterogeneity in phenomenological
parameters characterizing mathematical models of the synaptic connectivity and
dynamics, such as the synaptic weight [113–117], synaptic time constants [118,
119], response latencies (synaptic delays; Brunel et al. [120] and Roxin et al. [119]),
and parameters specifying the plasticity dynamics [121]. In addition, biological
neuronal networks exhibit a high degree of heterogeneity in the anatomical con-
nectivity structure, such as the total number of inputs and outputs per neuron
(in/out-degrees; Markram et al. [83], Feldmeyer et al. [122–124], Stepanyants
et al. [125], and Roxin [126]), and the composition of presynaptic source and
postsynaptic target neuron populations.

Previous theoretical work on recurrent neuronal networks shows that hetero-
geneity in single-neuron properties or connectivity broadens the distribution
of firing rates [127, 119] and affects the stability of asynchronous or oscillatory
states as well as the level of synchrony [128, 129, 120, 130, 131, 126, 132, 133].
A large number of theoretical and experimental studies point at the benefit of
heterogeneity for the information processing capabilities of neuronal networks
[134–140, 132, 141–143, 108]. Therefore, modeling studies aiming at understand-
ing the dynamical and functional principles of biological neuronal networks
need to account for the synaptic (and other types of) heterogeneity.

Depending on the type of synaptic heterogeneity, its implementation in math-
ematical models may follow different strategies. Synaptic heterogeneity is ex-
pressed on local scales, such as in the connections between neurons in a given
layer of a cortical column, and on large scales, such as in cortical inter-area
connections. One form of this heterogeneity results from cell-type, layer, or area
specificity. It reflects the anatomical and electrophysiological diversity of neurons
in different brain regions and, in addition, emerges from specific interactions
with other components of the nervous system or with the environment during
brain development and learning. In mathematical models, this specificity is
usually accounted for by subdividing the network into several populations rep-
resenting different cell types or brain regions and applying distinct connectivity,
synapse, and plasticity parameters for each pair of populations (Figure 2.5a).

Another form of synaptic heterogeneity appears in an unspecific, quasi-
random manner. It refers to variations in the synaptic characteristics across an
ensemble of neuron pairs of seemingly identical type, for example, connections
between a group of neurons with similar morphological and electrophysiological
characteristics located in the same layer of a given cortical column (Figure 2.5b).
Similarly to the cell-type-, layer-, or area-specific diversity described above, the
unspecific forms of heterogeneity are partly caused by synaptic plasticity, i.e., by
adapting synaptic parameters during learning and development. In this respect,
unspecific heterogeneity is not truly unspecific; it is, on the contrary, the result
of fine-tuning, optimization, or specialization. Without knowing the details of
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Figure 2.5: Specific and unspecific heterogeneity in synaptic connectivity. (a) Sketch
of a neuronal network comprising three populations of neurons of type X, Y, and Z
(boxes). The properties of the different projections (arrows), such as the number of
synapses, the synaptic weights, synaptic time constants, or synaptic delays, depend
on the types of pre- and postsynaptic neurons. We refer to the resulting synapse-
type specific diversity as specific heterogeneity. (b) For each type of projection {PQ}
from population Q to population P (P, Q ∈ {X, Y, Z}), the synaptic parameters are
distributed (illustrated here with bell-shaped curves). We refer to this form of variability
as unspecific heterogeneity. The parameters characterizing each distribution, such as the
mean (horizontal position of each curve) or the variance, are usually synapse-type
specific.
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these processes, the resulting diversity appears random or unspecific. More-
over, the distinction between type-specific and unspecific forms of heterogeneity
relies on the assumption that different neuron types are distinguishable [144].
Without knowing the characteristics separating two neuronal phenotypes, these
cell classes are treated as one type, and the observed diversity in neuron and
synapse parameters appears unspecific.

To some extent, synaptic heterogeneity may also result from variations in
experimental protocols and in unobserved variables affecting the synapse char-
acteristics. Synaptic weights, for example, are often assessed in voltage-clamp
experiments as the amplitudes of somatic postsynaptic currents evoked by presy-
naptic action potentials. The resulting synaptic weights are then determined not
just by the properties of the pre- and postsynaptic cells or by the synapse type
and position but also by the holding potential or the electrical characteristics of
the electrode-cell contact. Even in the absence of variations in the experimental
protocol, the amplitude of the postsynaptic response is affected by fluctuations
in the postsynaptic membrane potential and by the pre- and postsynaptic spike
history. Hidden variables such as the spike history or the synapse position are
often not monitored in experimental studies. From the modeler’s perspective, it
is therefore not straightforward to decide what forms of reported heterogeneity
should be accounted for in a given model and what forms are perhaps already
represented indirectly by other model features (for example, the voltage de-
pendence of synaptic currents, short-term plasticity, or dendritic filtering in
multicompartment models).

In mathematical models, unspecific heterogeneity is typically accounted for in
a probabilistic manner. Here, the parameters characterizing synaptic connectivity,
such as synaptic weights, time constants, delays, in-degrees, etc., are randomly
drawn from certain distributions. In particular, in the brain, many properties
follow long-tailed distributions, often approximating the lognormal distribution
[145–147]. These distributions, or the parameters characterizing them, such as
the mean or the standard deviation, are extracted from experimental data. The
rationale underlying this probabilistic modeling approach is twofold. First, it
acknowledges that the synaptic parameters are typically not known for every
single synapse in a given network. The majority of experimental studies pro-
vide data for small subsets of synapses, often pooled across different recording
sessions or animals. Second, the probabilistic approach greatly simplifies the
models, as the total number of parameters is substantially reduced. In probabilis-
tic modeling approaches, the “model” is not defined by a single instantiation
of a network and all its parameters but by the ensemble of many independent
realizations generated from a given set of parameter distributions. Observations
or findings obtained from a single network realization are meaningless unless
they appear generically, i.e., frequently, for many different model realizations.

As described above, synaptic heterogeneity is often the result of an adaptation,
development, or fine-tuning process. As demonstrated in a number of studies
(see, e.g., Prinz et al. [148], Achard et al. [149], and Bahuguna et al. [150]), such
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processes typically lead to dependencies between parameters. Certain plasticity
processes, for example, lead to a competition (anti-correlation) between synapses,
such that the strengthening of one synapse results in the weakening of another
synapse [151, 152]. In a comprehensive probabilistic model, the set of parameters
{ξ1, ξ2, . . . , ξn} for a specific network realization is generated according to a joint
probability density function (pdf) p1,...,n(x1, x2, . . . , xn), describing the probability
of observing ξ1 = x1, ξ2 = x2, . . . , and ξn = xn. This joint pdf captures all pa-
rameter dependencies. Many modeling studies neglect parameter dependencies
and assume that the joint pdf p1,...,n(x1, x2, . . . , xn) = p1(x1)p2(x2) . . . pn(xn) fac-
torizes. In these studies, each parameter ξi is drawn from its respective marginal
distribution pi(·), independently of all other parameters. As before, this sim-
plifying assumption typically reflects a lack of knowledge, as the available
experimental data generally do not capture parameter dependencies. Theoretical
studies show that this choice can have detrimental consequences for the dynam-
ical and functional properties of the resulting system. Bahuguna et al. [150], for
example, demonstrate that when the parameter dependencies are unknown, re-
placing all parameters by their respective mean (and thereby ignoring diversity)
can be a better choice than drawing them from their marginal distributions.

A more direct approach toward modeling synaptic heterogeneity is the ex-
plicit account of known plasticity, learning, or developmental processes that
dynamically lead to the observed diversity in synaptic parameters, including
the dependencies described above [89, 152]. Similarly, multivariate parameter
distributions may arise from optimization procedures or supervised learning
methods fitting the model to some desired target dynamics or behavior [153, 150,
154]. While these top-down approaches are promising and commonly used in
state-of-the-art computational neuroscience, they bear the risk that the underly-
ing data or targets do not sufficiently constrain the model of the actual biological
system and hence lead to a multitude of solutions that may not be realized in
nature. A combination of bottom-up and top-down constraints appears to be
the most reliable method to reduce this form of uncertainty.

From mathematical models to simulation

Investigating the role of heterogeneity in synaptic connectivity by means of
analytical mathematical methods is challenging [120, 119]. Therefore, theoretical
studies often neglect heterogeneity to simplify the mathematical treatment and
provide intuitive insight. A common strategy underlying many mathematical
approaches is to reduce the dimensionality of the neuronal network dynamics
by assuming that the network can be decomposed into homogeneous subpopu-
lations, each of which comprises neurons with identical neuronal and synaptic
parameters. While this approach can account for the specific heterogeneity de-
scribed above to some extent, it can hardly describe the effects of unspecific
heterogeneity. Simulation enables us to test whether the insights obtained un-
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der these homogeneity assumptions remain valid if heterogeneity in synaptic
parameters is considered.

Even in simulation studies, however, accounting for synaptic heterogeneity is
challenging. Acknowledging that every synapse is unique requires representing
each synapse with the full individual set of parameters. In a homogeneous
network where all synapses have identical properties, the connectivity is fully
described by the adjacency matrix (which neuron is connected to which, and
how often) and a small set of parameters describing the synapse characteristics,
such as the synaptic weight w, the delay d, or the synaptic time constant τ. In
a heterogeneous network where each synapse {j → i} is unique, in contrast,
the individual weights wij, delays dij, and time constants τij need to be stored
for each connection. Therefore, representing the heterogeneous connectivity
in simulations of neuronal networks at natural density imposes high memory
demands for the underlying computing architecture (see Section 2.3.7).

In models of neuronal networks with heterogeneous synaptic connectivity,
the heterogeneity is either implemented by drawing synapse parameters from
predefined distributions or by a self-organization process driven by some plas-
ticity or learning dynamics (see Section 2.2.5). Simulations based on the first, the
probabilistic approach, require efficient methods of drawing random numbers
from specified distributions during the network generation phase. The NEST
simulator, for example, permits the high-level specification of probabilistic con-
nection rules by the user (see Section 2.2.1), including distributions of synaptic
weights, synaptic delays, or plasticity parameters. The task of generating a
specific connectivity realization by drawing random numbers from these distri-
butions is then delegated to fast low-level (C++) routines. The second approach
relies on simulating plastic networks or on numerical optimization methods.
Strategies for simulating different forms of synaptic plasticity are described in
Sections Section 2.2.3 and Section 2.2.4. Simulating plastic networks with natural
connection density is still a major challenge in computational neuroscience. Slow
biological processes such as learning and development on timescales of hours,
days, and years are presently inaccessible to simulation (or restricted to small
and highly simplified models) because of the required wall-clock time. In this
respect, dedicated neuromorphic computing architectures are particularly inter-
esting as simulation platforms for neuroscience, as they offer the potential for
faster-than-real-time simulations and hence, for an understanding of plasticity
mechanisms on long timescales [155, 156].

2.3 insights in modeling and simulation practice

In this section, we highlight some of the challenges and pitfalls that may be
encountered during modeling and simulation.
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2.3.1 Biologically plausible model refinements

Developing a mathematical model that exhibits a dynamic behavior close to
empirical biological data involves iterative optimization procedures, e.g., fitting
the experimental data or calibrating the model parameters. While this opti-
mization improves the model in some aspects, it may, at the same time, alter
it in ways no longer motivated by biological observations [149]. For example,
fitting is inherently biased in that, by definition, it improves the validation of
certain model features at the cost of those not included in the fitting procedure.
Thus, each optimization step should be conducted cautiously and checked for
biological plausibility.

2.3.2 Reproducible simulations

For small-scale simulations, sometimes custom simulation kernels are written.
However, besides possibly duplicating published and established routines, these
self-made frameworks are likely to contain bugs and lack documentation, for
instance, on edge-case behavior. Therefore, even for small networks, it helps to
use standardized simulators. In particular, these simulators offer the benefit of
being well characterized under different operating conditions using a diverse
array of automated tests, being updated on a regular release cycle, and benefiting
from the open-source model of iterative refinement [157]. All these factors
increase the likelihood of long-term reproducible results.

An individual simulator should exhibit replicable behavior: repeated simula-
tions of the same model should yield bitwise identical results, regardless of the
number of threads or processing nodes used, due to the use of deterministic
pseudo-random number generators. However, simulating the same model on
a different platform or using a different numerical solver or time step size
for ordinary differential equations (ODEs) may alter the results, especially in
network models exhibiting chaotic and unstable dynamics. Nonetheless, results
and conclusions should be reproducible, obtaining the same overall quantitative
and qualitative conclusions [for a commentary on this terminology, see 158]. Re-
producibility of results requires the original software to be available (including
libraries and other dependencies) and, where applicable, the original (raw or
pre-processed) dataset/s and relevant metadata.

Similar to the model descriptions, it increases the reproducibility of methods
and results [159] to use and contribute to existing simulation frameworks by
reporting bugs, improving implemented methods, and developing and publish-
ing custom modules of the respective framework, e.g., in NEST, in the form of
extension modules9.

9 https://nest-extension-module.readthedocs.io/en/latest/extension_modules.html
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2.3.3 Distribution of compute workload

It is beneficial to distribute the workload evenly across compute nodes, even for
networks with complex connectivity and heterogeneous population properties.
One way to achieve this is a round-robin distribution of neurons across compute
nodes, i.e., in the case of M compute nodes, assigning neuron n to node (n mod
M).

In general, the computing system’s size affects the workload distribution. On
small machines, the number of synapses per neuron is larger than the number of
compute nodes the simulation runs on. Hence, each neuron typically has many
targets on every compute node. However, with growing network size and the
emergence of new supercomputer architectures over the last decades, the ratio
between the numbers of synapses per neuron and compute nodes is in some
cases reversed. On these new-generation supercomputers, the distribution of
neurons over many nodes decreases the chance that a neuron shares a node with
a connected partner, especially considering the sparsity of biological neuronal
networks. Mitigating this issue, even more modern compute nodes follow the
opposite trend: they possess more memory and cores per processor and thus
more processing power, which reduces the number of nodes required for the
simulation and brings the neurons and their targets closer together.

One of the main computational challenges remains the connectivity of neu-
ronal networks. For example, representing each of the estimated 1014 synaptic
connections in the brain individually by two double-precision numbers requires
about 1.6 PB of main memory. Furthermore, neurons form connections with
nerve cells not only in their vicinity but also in various remote areas. This
feature distinguishes neuronal simulations from simulations of classical physical
systems, that use, for example, finite-element methods exploiting the locality of
physical interactions. However, memory and communication bandwidth, as well
as cache efficiency, are more critical than floating-point performance of spike
communication to local and distant targets [160].

Future work should address how computer network connectivity and the
simulation distribution across compute nodes can follow (simulated) biological
network organization, such as a modular organization on both small and large
scales in the brain.

2.3.4 Scalability in theory and practice

Recording the simulation time under varying network or computing system sizes
characterizes an implementation’s scalability, which is essential to judging its
efficiency [39]. The scenario of increasing the computing resources while keeping
the network size fixed is called strong scaling, and the scenario of increasing the
network size and computing resources proportionally is called weak scaling.
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Ideally, when in strong scaling the hardware becomes twice as powerful, the
simulation time is divided by two. However, in practice, the gains are usually less
due to communication overhead and other bottlenecks in the system. Sometimes,
a parallelization can even exhibit a super-linear speed-up [161], but this behavior
might only become apparent at very large computing system scales.

Scaling up standard network models to test weak scaling can induce unrealistic
activity patterns, for example, regarding the regularity and synchrony of spiking.
Since synapses tend to vastly outnumber neurons, the number of synapses
is an important determinant of the necessary computing resources. Thus, a
reasonable approach is to keep the in-degrees constant when increasing the
model size and thereby reduce the overall connection probability [see, e.g.,
39]. This method tends to lessen activity correlations between neurons and
hence diminish synchrony. In the case of ideal weak scaling, a network of
twice the size should run for twice the time, but in practice, the performance
is worse due to the same reasons as for strong scaling. Moreover, there is a
complex dependence of the scaling behavior on network properties, such as the
connectivity’s modularity [160].

2.3.5 Precise spike times in discrete-time simulation

A typical simulation of a continuous-time dynamical process runs in discrete
steps of time ∆t. However, exchanging events (spikes) on a grid can cause syn-
chronization in the network as a pure simulation artifact. This effect disappears
in the limit of ∆t→ 0, but decreasing the time step increases the time necessary
for the simulation to complete, so a tradeoff has to be made. A more computa-
tionally efficient solution is to store an extra offset value in spike events, which,
in combination with a minimum synaptic delay and an algorithm that finds the
precise time of spiking, decouples the simulation time step from the temporal
precision with which spikes are exchanged [162].

2.3.6 Simulating until convergence

Simulating neuroplasticity for too short of a period, especially longer-timescale
processes like normalization and neuromodulation, is a common pitfall. Several
of these dynamic processes have the potential to cause an abrupt bifurcation in
the system late in the simulation. Additionally, some plasticity rules produce
a long-tailed distribution of synaptic strengths [163], whereby the distribution
reaches equilibrium again only after an extended simulation period. A limited
measurement duration can also be a problem in empirical neuroscience, but
simulations can, in principle, run as long as desired. The only limitations are the
computing resources available (as these need to be shared with other users on
high-performance computing systems) and the amount of time the simulation
takes to complete, which depends on the simulator’s efficiency. Simulating until
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the measure of learning performance has adequately converged can circumvent
this pitfall to some degree.

2.3.7 Limited synaptic weight resolution

Limiting the numerical resolution of synaptic parameters, such as the synaptic
weight, appears to be an obvious strategy to reduce memory and compute
load. To some extent, nature itself copes well with quantized synaptic weights:
Transmission in chemical synapses is quantized due to the release of neurotrans-
mitters in discrete packages from vesicles in the presynaptic axon terminals.
The analysis of spontaneous (miniature) postsynaptic currents, i.e., postsynaptic
responses to the release of neurotransmitters from single presynaptic vesicles,
reveals that the resolution of synaptic weights is indeed finite for chemical
synapses. As shown by Malkin et al. [164], the amplitudes of spontaneous
excitatory postsynaptic currents recorded from different types of excitatory
and inhibitory cortical neurons follow a unimodal distribution with a peak at
about 20 pA and a lower bound at about 10 pA. Such a cut-off is present despite
several factors that may wash out the discreteness of the synaptic transmission,
such as variability in vesicle sizes, variability in the position of vesicle fusion
zones, quasi-randomness in neurotransmitter diffusion across the synaptic cleft,
and variability in postsynaptic receptor densities. However, the discreteness of
synaptic strengths is obscured for evoked synaptic responses involving neuro-
transmitter release from many presynaptic vesicles and for superpositions of
inputs from many synapses, and thus unlikely to play a particular role in the
dynamics of the neuronal network as a whole.

Inspired by these observations, Dasbach et al. [165] systematically investigated
the effects of a limited synaptic weight resolution on the dynamics of recurrent
spiking neuronal networks resembling local cortical circuits. They show that a
naive quantization of synaptic weights generally leads to a distortion of the firing
statistics. However, in the example of one network type, they could demonstrate
that the firing statistics remain unaffected under a weight discretization that
preserves the mean and variance of the total synaptic input currents. In networks
with sufficiently heterogeneous in-degrees, the firing statistics stay constant, even
when replacing all synaptic weights with the mean of the weight distribution,
i.e., entirely neglecting the unspecific form of heterogeneity in synaptic weights.
Applying this finding in simulations reduces the memory demands substantially.
The effect of discretized synaptic weights in networks undergoing different
forms of synaptic plasticity has rarely been investigated [166] and remains a
subject for future study.
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2.3.8 Precise specification of the model

An incomplete and ambiguous description of a model without following conven-
tions can impede understanding by the reader and thus the reproducibility of
the respective study. The first step to avoiding this pitfall is to gain a clear picture
of the requirements a model description must fulfill. For this, Nordlie et al. [167]
propose that a neuronal network model description must contain a complete
and detailed account of its architecture and the dynamics of its parts. In the
formalization of model descriptions, computational neuroscience is less mature
than other fields of science. Nonetheless, best practice guidelines are emerging
that suggest the use of standardized tables of the model characteristics that cover
the network architecture and connectivity, all neuron and synapse models used,
the applied input stimuli, and the recorded data, described by a combination of
text, equations, figures, subtables, and pseudocode [167]. Formalized sketches
of the network and unified connectivity concepts [28] help computational neuro-
scientists to unequivocally convey their models and, consequently, readers to
understand them.

It is advisable to use one of the numerous formal languages that facilitate
such specifications and make them consistent, e.g., NeuroML [16], NESTML [9],
or PyNN [15]. Most of such languages adhere to the class of either declarative
or procedural languages. While a declarative language specifies the model’s
features, a procedural language specifies the series of commands or instructions
needed for constructing the model. Best practices for either of these approaches
include formally defined syntax and semantics or an API specification, both
uniquely identified by version numbers.

It is good practice to keep the specification and implementation of a model
separate. For example, implementation details such as the time resolution and
the spike threshold detection method are essential for the reproducibility of
the results but are not part of the model itself. Like the model description, the
implementation specification should be complete and sufficient, as it can be
challenging to reverse-engineer implementations and test the robustness of the
results to implementation alterations [167]. However, the model should be robust
to different choices in such implementation details.

Generating an executable representation of the model can be fully automated.
For example, tools like NESTML specialize in processing the model descrip-
tions of different complexity levels and in verbose formats like XML, creating
executable implementations and visualizations, and facilitating debugging [168].

To summarize, it is advisable to follow standardized model descriptions,
implementations, and generation procedures wherever possible for a project
and ideally share the models with the community in dedicated databases for
computational neuroscience models like ModelDB [169] or Open Source Brain
[170].
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2.4 discussion

Large-scale neuronal network simulations are a key tool for understanding brain
processes. They make the complex nonlinear dynamics of neuronal activity,
which are out of reach with analytic methods, accessible to inquiry. Moreover,
continuous interaction between computational modeling and advances in empir-
ical understanding have iteratively refined simulation approaches throughout
the history of computational neuroscience. We hence outline a few promising
directions for empirical and modeling approaches to work together.

New empirical data can bolster simulation studies in many ways. For example,
long-term tracking of synapses in vivo will elucidate the relationship between
synaptic plasticity and function [171]. Besides, recordings of complete connec-
tomes at single-neuron resolution are becoming feasible for ever-larger brains
and may soon be available on the scale of a mouse brain [172]. Data-driven
models based on such detailed and specific connectivity are complemented
by models whose connectivity is generated with statistical approaches. The
latter models also profit from more available data constraining their parameters;
higher-level network organization can, for instance, be informed by data on
hierarchical modularity and small-world properties. Sometimes, the conditions
of data retrieval are inconsistent between experiments, or experiments only cover
a small subset of the model system, and modeling could benefit from additional
studies to fill the gaps.

How the available data are integrated into models depends on the particular
research question and the level of abstraction appropriate for it. The modeler
needs to decide (or find out) which features and phenomena of the natural
system need to be represented in detail and which ones can be approximated.
For instance, a biophysically detailed model with discrete vesicle release dynam-
ics would be suitable when investigating how a compound influencing vesicle
fusion to the membrane affects synaptic transmission. In contrast, investigating
the compound’s effects on large-scale network dynamics could necessitate ap-
proximation of the vesicle release by a simplified set of continuous quantities
and differential equations. In essence, a good computational model should repre-
sent the relevant attributes of the studied biological structure, have explanatory
power and simultaneously not necessitate extensive simulation time.

There are several ways in which the infrastructure of computer simulations
itself can innovate, indicated by current trends and feature requests from the
community. Simulation efficiency is still a bottleneck, especially in simulations
involving plasticity, as they need to run for a comparatively long time. Further-
more, large-scale networks require powerful, high-performance compute clusters,
which provide large amounts of RAM, and enable running the simulation in
parallel and distributed across many CPUs or GPUs which are interconnected
through a low-latency network. More advanced synaptic plasticity rules, for
example involving tripartite synapses influenced by astrocytes or neuromodu-
lators like dopamine, still lack software support for efficient simulations on a
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larger scale. Finally, simulations at cellular resolution could be extended toward
multiphysics modeling by incorporating other physical phenomena. Such mod-
els could account for the volume diffusion of neuromodulators or the electric
field in the neuropil to simulate ephaptic coupling for instance.

In general, what should one strive for in a model? The statistician George Box
famously said “All models are wrong, but some are useful”. Although it helps to
remind ourselves of the difficulties of modeling, to say that all models are wrong
is not doing them justice, as put by Sir David R. Cox in a comment on Chatfield
[173]: “The very word model implies simplification and idealization. The idea that
complex physical, biological or sociological systems can be exactly described by
a few formulae is patently absurd. The construction of idealized representations
that capture important stable aspects of such systems is, however, a vital part of
general scientific analysis and statistical models [. . .]”. A model with unlimited
parameters can fit the data perfectly but at the cost of generalizability and
explanatory power. Ockham’s razor, or the law of parsimony, provides a helpful
heuristic in this context, guiding us to prefer the theory with fewer parameters
between two competing theories. This objective is also formalized in Bayesian
information criteria, which penalize models with larger numbers of parameters.
In other words, the aim to reduce complexity should guide modeling choices to
address a given research question.

However, condensing the biophysical details and terminology to arrive at
a parsimonious, phenomenological formulation could impede testing such a
minimal model experimentally. Moreover, the rigorous application of Ockham’s
razor leads to models optimized for single phenomena (e.g., connectivity, synap-
tic transmission, structural or functional plasticity) that are thus hard to combine.
To solve this problem, after reducing the phenomena to their essential variables,
we should express each model in a way that allows for their combination. Bio-
physical details could provide contact points between model concepts from
different subdomains. Progress in integrating heterogeneous phenomena in
large-scale models requires that models act as platforms that can be modified
and extended over time. For example, after a minimal model has achieved a
satisfactory performance, modelers could test whether the same results still hold
for models of greater biophysical detail.

As a foreseeable trend, more and more computational neuroscientists will
adopt procedures ensuring the reproducibility of their methods and results over
the following years. This approach includes, where possible, data, model, and
code sharing in open-access online repositories, adherence to open standards for
model formats and software tools, active management of metadata, containerized
distribution of dependencies, unit testing, and continuous integration instead of
creating new in-house toolchains from the ground up. Last but not least, active
contribution to an existing model database or open-source software, be it as
small as a feature request, is a low-threshold action conducive to reproducible
research everyone can take. Ultimately, the community’s research interests in
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the form of these requests and contributions shape the landscape of available
models in an open-access simulator.
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All parts of this chapter are excerpts from the above manuscript in preparation
for submission. The author was the primary contributor, actively participating
in all aspects of its development. MD and SJA supervised the author’s work,
MB supervised JAEV’s work, and HEP provided technical oversight for the
implementation.
The idea to adapt e-prop for large sparse networks arose from discussions
between SJA and the developers of the original time-driven e-prop. The au-
thor, in collaboration with JS, created the first event-driven online e-prop. The
author and JAEV jointly developed the biological extension of the model. DD
contributed to the theoretical development of both models. The author and
JAEV refined, tested, and finalized both models for integration into NEST,
with HEP providing technical review and refinement. The N-MNIST task
implementation was carried out by JAEV and refined by the author, who
also collaborated with JAEV on parameter refinement. The author and JAEV
collaboratively developed the simulation framework and jointly conceived
and conducted the simulations. The author visualized the experiments with
contributions from JAEV. JAEV designed the initial schematics, which the au-
thor recreated using an alternative program and further refined. The storyline
was conceptualized by the author, MD, SJA, and JAEV, with input from HEP
and DD. The author drafted the text, with JAEV contributing to the results
and methods sections. The manuscript underwent collaborative review and
editing by all authors.
Jakob Jordan and Alexander van Meegen implemented an early event-driven
offline e-prop. Figure 3.3 is the result of joint work by the author and Charl
Linssen, inspired by activities and feedback at the CapoCaccia Workshop
toward Neuromorphic Intelligence 2023. The project also benefited from
discussions with Franz Scherr on the original e-prop model, review comments
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on the NEST models from Charl Linssen, feedback on the documentation
from Jessica Mitchell, and technical assistance from Dennis Terhorst.

3.1 introduction

Artificial intelligence has permeated and is revolutionizing many aspects of our
lives. Examples include large language models in chatbots, computer vision in
security cameras, and generative models for content creation. However, as the
complexity and number of underlying neural networks and machine learning
algorithms grow, so does their energy demand. This presents a challenge for
computational science: optimizing these algorithms and networks for energy
efficiency. The goal is to strike a balance between computational efficiency and
accuracy. One promising approach to addressing this challenge is to draw inspi-
ration from the human brain, which operates with remarkable energy efficiency.
Emerging brain-inspired learning models not only deepen our understanding of
neural processes but also offer new opportunities to develop more sustainable
AI solutions [1].

One class of these learning models, supported by ample experimental evidence
[174], are the so-called three-factor models. These models combine classical Heb-
bian learning, characterized by pre- and post-synaptic terms, with an additional
modulatory signal [for a review, see 175, 76]. An example of this class is eligibility
propagation (e-prop) [154], a biologically plausible plasticity rule for recurrent
spiking neural networks (RSNNs) that approaches the performance of backprop-
agation through time (BPTT) [176]. The local, online-computable e-prop weight
update rule was derived by calculating the gradients from the loss at the output
layer and introducing approximations to address the biologically implausible
aspects of BPTT, such as time blocking and symmetric feedback weights. This
algorithm was originally implemented in TensorFlow [177] with time-driven
weight updates, meaning the weight updates are calculated synchronously at
each time step.

Current time-driven weight update methods face limitations, as substantial
computational resources are often wasted due to the sparse nature of spiking
activity. In biological brain networks, connectivity is sparse and neurons spike
infrequently with inter-spike intervals much larger than the time scale of neu-
ronal dynamics. An event-driven algorithm, where synaptic weight updates are
computed asynchronously and only when an event occurs at the corresponding
synapse, offers computational advantages by leveraging this sparsity. The re-
duced computations in this sparse setting, combined with event-driven updates,
would enhance the scalability of the e-prop algorithm. This improvement could
leverage the recent advances in exascale computing, enabling the simulation of
large-scale networks. Such brain-scale simulations are of great interest to com-
putational neuroscience for understanding learning processes and to machine
learning for tackling tasks of higher complexity that require larger networks.
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Drawing inspiration from nature and making these algorithms increasingly
biologically plausible offers dual benefits. From a neuroscience perspective, it
aids in understanding human learning. From a machine learning perspective, it
provides insights that could lead to the development of more energy-efficient
algorithms.

We present a computationally accurate, efficient, and scalable version of
e-prop with event-driven weight updates and additional biologically inspired
features, and benchmark its performance. The results are structured as follows. In
Section 3.2.1, we develop an event-driven algorithm for synaptic weight updates
in e-prop. In Section 3.2.2, we first reproduce a regression and a classification
proof-of-concept task from Bellec et al. [154] to demonstrate that the event-driven
scheme can replicate the results of the time-driven scheme. Then, we implement
the neuromorphic MNIST (N-MNIST) task using our event-driven algorithm,
showcasing its performance on a widely recognized benchmark. In Section 3.2.3,
we introduce additional features to enhance the model’s biological plausibility
and demonstrate the computational accuracy of these enhancements on the
N-MNIST task. Finally, in Section 3.2.5, we evaluate the computational efficiency
of the event-driven algorithm in terms of runtime, comparing versions with
and without additional biological features. Across these sections, we present the
mathematical and algorithmic formulations, as well as simulation results, that
underpin our approach and support our findings.

3.2 results

3.2.1 From time-driven to event-driven e-prop

In artificial neural networks (ANNs), all elements, including neurons and
synapses, are updated synchronously at every computational time step. Matrix
multiplications are well-suited for this algorithm, as implemented in widely used
frameworks like TensorFlow [177] and PyTorch [178]. However, spiking neural
networks (SNNs) require algorithms better tailored to their distinct temporal
dynamics.

3.2.1.1 The case for event-driven synapse updates

To accurately integrate the differential equations governing neuron dynamics,
a typical computational time step of 0.1 ms is required, defining the smallest
relevant timescale. Neurons communicate via spikes, which lack magnitude and
encode information solely through their timing. The propagation time of a spike,
known as the synaptic delay, varies between synapses and is typically an order
of magnitude larger than the computation time step. Given that the typical spike
frequency is 1 spikes s−1, two spike events at a given synapse are separated by
approximately 10 000 computational time steps.
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Biological neural networks exhibit sparsity not only in time but also in space.
Even within a cubic millimeter of tissue — where a neuron forms most of its
connections — the probability of two neurons sharing a common synapse is
only about 0.1 Despite this spatial sparsity, each neuron still receives roughly
10 000 synapses and projects to as many target neurons. Consequently, with the
parameters mentioned above, a neuron processes an input spike roughly every
0.1 ms, corresponding to the computation time step required for the neuron’s
internal dynamics. Thus, spikes are rare events from the perspective of a synapse,
but not from the neuron’s point of view. Given the widely different time scales
and object counts, separating neurons and synapses into distinct entities proves
computationally advantageous. Some algorithms for simulating SNNs therefore
adopt a hybrid approach, combining event-driven and time-driven strategies:
spike communication and synaptic processing are handled in an event-driven
manner, while the neurons’ state updates are time-driven. In this framework,
a spike is multiplied by its corresponding (potentially plastic) synaptic weight
when it arrives at the post-synaptic neuron, without the pre-synaptic neuron
needing to be aware of the weight. Over two decades of research on such a
hybrid algorithm [101, 89, 77] have demonstrated its suitability for parallel and
distributed computing [39, 161].

3.2.1.2 Event-driven weight updates in e-prop

The e-prop learning rule, designed specifically for SNNs, relies solely on infor-
mation locally available at the synapse. The primary bottlenecks of the e-prop
algorithm, ranked in descending order based on the number of objects, are the
computations in the synapses, recurrent neurons, and output neurons. This
makes it an ideal candidate for transitioning from the strictly time-driven algo-
rithms used in ANNs to a hybrid approach that leverages the spatiotemporal
sparsity of large-scale neural networks.

Our event-driven algorithm for the e-prop model stores presynaptic spikes
zt−1

i from each neuron i within the synapse. Following the framework described
by Stapmanns et al. [100], the time-driven neurons archive the histories of other
quantities required for weight updates: surrogate gradients ψt

j and learning
signals Lt (see Figure 3.1a, Equation 3.41, and Bellec et al. [154]). The weight
update is calculated over the history corresponding to the update interval which
is defined as the sample length T (typically 1 s to 2 s) multiplied by the batch size
n. At the first spike occurring after each sample length, the algorithm computes
and accumulates a gradient (Figure 3.1b). During this process, the synapse
retrieves the histories from the postsynaptic neuron to compute the weight
update associated with the update interval. Then, at the first spike occurring
after each complete update interval, the accumulated gradients are averaged,
and the weights are updated.

Especially in sparse spiking scenarios the first spike after a complete sample
length may occur several multiples of the sample length or even of the update

44



AW; (L;, W;, X;) AWei" (Ex, Z}) 

o =©@ <<: 
Li(E, 

Awyec(Lt, wt, 6-1) (I), © 

Tot ~ 5 ~ 5 

~ 5 +-
 

V 

~ 

Figure 3.1: Mathematical basis and technical implementation of e-prop with event-
driven weight updates. (a) Weight update rules for input, recurrent, and output
synapses. (b) The first spike of the update interval Tn+1 triggers the retrieval of the
archived history for Tn and the computation of the corresponding weight update. Ar-
rows indicate the surrogate gradient entries ψt

j and presynaptic spikes zt−1
i associated

with a learning signal entry Lt
j. (c) Instantaneous propagation of spikes and signals

within a single time step (dotted box). Over e-prop synapses (blue arrows): (I) Transmit
spikes from input neurons (green) to recurrent neurons (blue), (II) transmit spikes
to output neurons (red). (III) Transmit signals between output neurons (gray arrows)
to compute the softmax. (IV) Send the learning signal (red arrow) from the output
layer to the recurrent layer. (d) Representation of transmission I-IV as a pipeline across
four time steps. The number of incomplete operations (gray) at the boundary (dashed
line) increases with pipeline depth. In this case, three learning signals are missing,
corresponding to the pipeline depth minus one.
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interval later. In this case, the synapse retrieves the histories from the postsy-
naptic neuron to compute the weight update associated with the sample during
which the last spike traversed the synapse. All later samples during which no
incoming spike activated the synapse can be neglected since the presynaptic
factor is zero and since it enters multiplicatively in the weight update, these
sections of the history do not change the weight.

For each time step t of that update interval, the loss can be incrementally
calculated from the corresponding history values zt−1

i , ψt
j , and Lt:

L(Wji) =
T

∑
t=1

lt (Wji
)

, (3.1)

allowing to accumulate the gradient over the entire update interval:

dL
dWji

∣∣∣∣
Wji=W0

ji

=
T

∑
t=1

dlt (Wji
)

dWji

∣∣∣∣∣
Wji=W0

ji

. (3.2)

This final gradient can be optimized with gradient descent or Adam (Equa-
tion 3.54), yielding the weight update. The weight updates are accumulated
over a batch of n update intervals, averaged, and then applied to the synaptic
weights. To free up memory, we clear the histories of all update intervals where
synapses either retrieved data or lacked presynaptic spikes.

3.2.1.3 Transmission delays

In the main derivation of the original e-prop model by Bellec et al. [154], for
simplicity, delays are modeled only for recurrent connections and with a fixed
value of one time step. In the supplementary materials, they generalize the
formulas to account for non-uniform input and recurrent delays with arbitrary
values. However, transmissions from recurrent to output neurons, output to
recurrent neurons, and within the output layer are still modeled as instantaneous
(see Figure 3.1c).

Instantaneous transmission from recurrent to the output layer is indicated by
the update equation for the output layer, where the output signal yt and the
spike state zt share the same temporal index:

yt = h
(

yt−1, zt
)

. (3.3)

Here, yt represents a vector of continuous signals from the output neurons,
while zt denotes the spike state variables of the recurrent neurons, both at time
t.

Instantaneous transmission between output neurons is indicated in the soft-
max function in Equation 3.28, where the numerator and denominator share the
same temporal index.
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Instantaneous transmission from the output to the recurrent layer is indicated
by the same temporal index in both the learning signal, Lt

j, and the surrogate
gradient, ψt

j in Equation 3.30. However, the learning signal is computed remotely
from the synapse and neuron and is derived from the neuron’s state, represented
by the surrogate gradient. Consequently, having the same temporal index for
the learning signal and the surrogate gradient introduces a causality issue.

These assumptions of instantaneous transmissions conflict with empirical
evidence showing delays in neurobiological processes [179] and their critical
role in the processing and representation of information in the brain [180].
Furthermore, instantaneous transmission presents a computational challenge
when integrating this framework into neural simulators, which typically separate
spike and signal transmission by at least one time step. To address this, our
implementation compensates for transmission delays by synchronizing the
histories of the factors involved when calculating the weight updates. Moreover,
we decouple the connection delay from the simulation time step, allowing for
different, particularly shorter, time steps.

All transmission processes can be conceptualized as a pipeline [181], which
allows the distribution of these instantaneous transmissions across multiple time
steps. However, the pipeline reveals that three learning signals are missing at the
end of each update interval due to the assumption of instantaneous transmission
(Figure 3.1d).

One way to address the absence of the third learning signal is by integrating
over a semi-open range, which is open at the beginning and closed at the end. In
the following sections, we will present methods to recover the missing learning
signals and incorporate the necessary delays. But first we will introduce different
tasks which are used for validation of our implementation and the assessment
of further changes to the algorithm.

3.2.2 Supervised benchmark tasks with event-driven e-prop

3.2.2.1 Pattern generation

As a first proof of concept, we reproduced a supervised regression task from
Bellec et al. [154] with the event-driven strategy visualized in Figure 3.2a. In
this task, the network learns to generate a signal composed of the summation
of four sinusoids, each with randomly assigned phases and amplitudes. The
frozen spike input pattern functions as a temporal backbone for the signal. The
network output is projected on one output neuron whose membrane voltage
yk fluctuates around zero before training and follows the entrained signal after
training.

Figure 3.2b shows the time courses of the dynamic variables before and after
training. The before vs. after training weight distributions (Figure 3.2c) show
that this task can be solved if only the output synapses are plastic. The loss
time course recorded in a simulation with the event-driven implementation
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Figure 3.2: Pattern generation as a regression task with event-driven e-prop. (a)
Network architecture. (b) Time traces of dynamic variables recorded before and after
training. (c) Distributions of input, recurrent, and output weights. (d) Time course of
the loss (mean squared error), compared between the event-driven and the time-driven
implementation, with mean and standard deviation values averaged over 10 random
seeds.
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accurately matches the loss time course recorded in a simulation with the
time-driven implementation (Figure 3.2d). This task uses a mean-squared error
as loss (Equation 3.26), and the gradient is optimized via gradient descent
(Equation 3.48).

To demonstrate potential applications, we implemented two tasks requiring a
second output neuron inspired by tasks introduced in Laje et al. [182]. The two
output neurons encode the horizontal and vertical coordinates of a signal, en-
abling the creation of patterns such as a lemniscate (Figure 3.3a) or handwriting
(Figure 3.3b).
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Figure 3.3: Pattern generation with two output neurons. A lemniscate pattern (a) and
the handwritten word “chaos” (b), with two output neurons encoding the horizontal
and vertical coordinates, trained for 4000 iterations.

3.2.2.2 Evidence accumulation

As second proof of concept, we reproduce a classification task from Bellec et al.
[154] that is more challenging to learn than the regression task described in the
previous section. This evidence accumulation task, illustrated in Figure 3.4a, is
inspired by a behavioral task in which a mouse runs on a trail and gets cues on
the left and right. At the end of the tunnel, it has to decide if it turns left or right,
whereby the correct decision would be according to the underlying rationale to
turn to the side with more cues. In the spiking network, two input populations
provide Poisson spike trains that represent the cues. A third input population
provides background input throughout the task, and a fourth is only active at the
end of each update interval, indicating the phase when the network must decide.
The plasticity is turned on only in this last period, so we refer to it as a learning
window. A long intermediate phase between the presentation of the cues and
the onset of the recall phase with solely background adds an extra challenge to
this task since the network needs to keep the cues in memory. This memory can
be enabled by spike threshold adaptation with a slow decay, which introduces
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the required long time constants into the dynamics. Thus, the recurrent network
for this task consists of adaptive LIF (ALIF) neurons (Equation 3.21).

To solve a classification task, each output neuron represents a single class; in
this case, two output neurons correspond to the two possible options. Since this
is a classification task, a cross-entropy loss (Equation 3.29) is employed, and the
membrane voltages of the output neurons are converted into probabilities using
a softmax function (Equation 3.28). The softmax function computes probabilities
by dividing the exponential of each output neuron’s membrane voltage by the
sum of the exponentials of all output neuron membrane voltages. Consequently,
the softmax function requires access to the membrane voltages of all output
neurons, introducing additional connections between the output neurons and
necessitating an extra time step in the algorithm.

The weight updates for this task are optimized using the Adam algorithm
(Equation 3.54). Our experiments further indicate that this task can only be
solved using batch learning. Batch learning in the original model is implemented
by running multiple network copies, equal to the batch size, in parallel with
identical initialization but different task examples. After each iteration, the
weights are averaged, and the averaged weights are applied across all networks.
To achieve biologically realistic batch learning, we process the batch sequentially
rather than in parallel, applying the averaged weights only after completing the
specified number of iterations equal to the batch size.

Comparisons of the time courses of the dynamic variables before and af-
ter training are presented in Figure 3.4b, while comparisons of the weight
distributions are shown in Figure 3.4c. As the loss shows, the event-driven imple-
mentation reproduces the time-driven implementation accurately (Figure 3.4d).
The deviations are due to floating point arithmetics. Minor deviations in the
optimized weights might slightly change a neuron’s membrane voltage time
course. A tiny deviation in the membrane voltage can lead to the membrane
voltage in one implementation be slightly above the threshold whilst in the
other slightly below. This is already enough to trigger one spike in one case that
is missing in the other. To investigate this impact, we conducted perturbation
experiments, introducing one extra spike and comparing the network spikes
to a simulation without this extra spike (Figure 3.5a). These experiments show
that this extra spike introduces a cascade of deviations in spike times, which
accumulate to a significant deviation in loss (Figure 3.5b).

3.2.2.3 Neuromorphic MNIST

We implement a classification task using the N-MNIST dataset [183], an adap-
tation of the traditional MNIST dataset for handwritten digits, specifically
designed for neuromorphic computing. The N-MNIST dataset captures changes
in pixel intensity using a dynamic vision sensor, converting static images into se-
quences of binary events. These binary events can be interpreted as spike trains,
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Figure 3.5: Impact of a perturbation spike on learning dynamics during the regression
task. (a) Spikes that differ between simulations with and without a forced spike emission
from the neuron indexed at 201 at 1.5 s (red cross). (b) Absolute difference in loss
between the perturbed and non-perturbed simulations.

mimicking biological neural processing, making this task particularly suitable
for spiking neural networks (SNNs) equipped with the e-prop algorithm.

Each image in the dataset consists of a 34×34 pixel grid and a channel
encoding pixel intensity. Pixel intensity changes are encoded as binary events:
a value of 1 for an ON event (corresponding to an increase in intensity) and a
value of 0 for an OFF event (corresponding to a decrease in intensity). Increases
in intensity indicate brightening or the appearance of new features in the visual
field, while decreases signify dimming or the disappearance of features.

To enhance computational efficiency, we exclude pixels that generate no or
very few events. We represent each remaining pixel by a spike generator, which
emits a spike for every ON event registered in that pixel. Each spike generator
sends these spikes to a corresponding input neuron. The input neurons project
onto a recurrent network, which is further connected to 10 output neurons —
one for each digit class. Each output neuron compares the network signal to the
teacher signal, generated by a rate generator representing the correct digit class.

The setup is visualized in Figure 3.6a. The training error is computed using
the cross-entropy loss, and optimization is performed using gradient descent
with a batch size of 1. The time courses of the dynamic variables are shown in
Figure 3.7a, the weight distributions in Figure 3.7b — both comparing before
and after training — and the prediction error time course in Figure 3.7c.

3.2.3 Event-driven e-prop with additional biological features

In this section, we omit several machine learning components from the original
model and incorporate additional biological features into our event-driven
e-prop model.
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3.2.3.1 Dynamic firing rate regularization

In the original implementation by Bellec et al. [154], another feature dependent
on the update interval is the regularization of the firing rate (Equation 3.46),
which we successfully reproduce in our event-driven implementation. Addi-
tionally, Bellec et al. [154] propose a moving average variant of firing rate
regularization that accumulates spikes from the start of the iteration up to the
current time step and normalizes them by the current time step. We adopt this
dynamic firing rate regularization as it eliminates the dependency on the update
interval, thereby enabling inter-spike integration.

The corresponding loss is defined as

Lreg = creg
1
2 ∑

t
∑

j

(
f̄ (t)j − f target

)2
, (3.4)

with the dynamic firing rate

f̄ (t)j =
1

∆t
1
t

t

∑
t′=0

z(t
′)

j = β(t) f̄ (t−1)
j +

(
1− β(t)

) z(t)j

∆t
, (3.5)

where βt = t
t+1 and creg is the regularization coefficient. We propose using

an exponential moving average by replacing βt with a constant β, effectively
converting the operation into a low-pass filter. This approach offers two key
advantages over the standard moving average. First, it eliminates explicit time
dependence, both as a relative time measure and as an index, and does not
rely on a fixed time origin. Second, while the standard moving average assigns
equal importance to all spikes independent of the temporal occurrence, the
exponential moving average decay prioritizes recent spikes, making it more
responsive to dynamic changes in the neural activity.

In case of the exponential moving average, Equation 3.5 can be further ex-
pressed as:

f̄ t
j = Fβ

(
zt

j

)
(3.6)

= β f̄ t−1
j + (1− β) zt

j (3.7)

= (1− β)
t

∑
t′=0

βt−t′zt′
j . (3.8)

The gradient of the dynamic firing rate regularization loss is given by

dLt
reg

dWji
= creg

(
f̄ t
j − f target

) d f̄ t
j

dWji
, (3.9)
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Applying the core idea of e-prop [154], which considers only local interactions,
and using the definition of the eligibility trace, gives:

d f̄ t
j

dWji
=

dFβ

(
zt

j

)
dWji

(3.10)

= (1− β)
t

∑
t′=0

βt−t′
dzt′

j

dWji
(3.11)

= Fβ

(
dzt

j

dWji

)
(3.12)

≈ Fβ

([
dzt

j

dWji

]
local

)
(3.13)

= Fβ

(
et

ji

)
. (3.14)

With this expression Equation 3.9 becomes:

dLt
reg

dWji
≈ creg

(
f̄ t
j − f target

)
Fβ

(
et

ji

)
, (3.15)

which yields the weight update for the dynamic firing rate regularization for
synapses with recurrent neurons on the postsynaptic site:

∆Wreg
ji = ηcreg

(
f̄ t
j − f target

)
Fβ

(
et

ji

)
. (3.16)

3.2.3.2 Inter-spike integration

In the time-driven implementation, all synaptic weights are updated on a fixed
time grid. In contrast, the event-driven implementation updates a synaptic
weight after the passage of the update interval plus the time when the first spike
is transmitted. This update scheme ensures that the first spike requiring the new
weight utilizes the correct value.

Thus, in the time-driven implementation, all synapses are updated syn-
chronously, whereas, in the event-driven implementation, synaptic updates
are clustered around the beginning of each update interval.

However, this update scheme presents two problems. First, all training sam-
ples must have the same length. Second, it remains unclear what biological
mechanism corresponds to such a synchronous update, perhaps a central clock,
as all components of the system (i.e., synapses and neurons across all layers)
require knowledge of this global update interval.

Some algorithms update weights more frequently than once per update
interval. For instance, Truncated Real-Time Recurrent Learning (TRTRL) [184],
an adaptation of Truncated Backpropagation Through Time (TBPTT) [185],
updates weights midway through an update interval. Truncated algorithms
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offer the advantage of adapting more quickly to changes in the input sequence,
making them more responsive to new information and improving the learning of
short-term patterns. However, they have a reduced ability to capture long-term
dependencies and are less accurate, as they only approximate the exact gradients
that would otherwise be computed over the full sequence. In other words, the
gradients are calculated using outdated parameters, which, in this case, are the
synaptic weights.

This trade-off between dynamic adaptation and gradient accuracy [186] must
be carefully balanced based on the specific characteristics of the task. Forward
Propagation Through Time (FPTT) [187] solves this issue by updating weights
at every time step while minimizing a dynamically regularized risk function for
the loss [for SNNs, see 188].

To mitigate the biological implausibility of a synchronous update mechanism,
we draw on the central idea behind truncated algorithms and propose an inter-
spike integration scheme. In this approach, each spike transmitted by a synapse
triggers the calculation of a weight update based on the time elapsed since the
last spike, ensuring that the current spike utilizes the newly calculated weight.
This scheme aligns with established approaches to plasticity [e.g., 189, 89].

Given two consecutive spikes in a synapse, tprev spike and tspike, the weight
update corresponding to the most recent learning signal, Lt, is computed using
the history within the interval [tprev spike + ∆t, tspike], where ∆t represents one
time step. This scheme produces loss values that deviate from the original
approach, where weights remain constant over the entire update interval, as
each transmitted spike uses a distinct weight.

3.2.3.3 Continuous dynamics

In the original implementation by Bellec et al. [154], the neuronal dynamic
variables and the traces of the filtered e-prop variables are reset to zero after each
update interval. This reset aims to mitigate sample interference by preventing
residual activity from one sample from affecting the weight updates of the next.
We conduct experiments without resetting the neuron dynamics and the e-prop
traces.

3.2.3.4 Learning window signal generator

The learning window in the classification task is defined as the last few hundred
milliseconds of each update interval. To support the new implementation, we
introduce a learning window signal generator that indicates with the value one
that the learning window is open and plasticity is on, and zero if the learning
window is closed and plasticity is off. This generator makes the learning window
independent of the update interval and ensures maximal flexibility.
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3.2.3.5 Variable-length update intervals

In the original implementation, the weights are updated at fixed time intervals
determined by the batch size and the sample length. The features introduced
in Section 3.2.3.2 through Section 3.2.3.1 eliminate this dependency on fixed
update intervals. This allows the removal of fixed update intervals and enables
the processing of samples with variable lengths.

3.2.3.6 Classification via mean-squared error

For the classification tasks, the original implementation uses a cross-entropy loss
(Equation 3.29) which requires the output signal to be a softmax (Equation 3.28),
but this is problematic for two reasons. First, it introduces an extra time step
to communicate the signals between the output neurons to calculate the de-
nominator. Second, exchanging these output signals and the transformation
into a probability might not be biologically realistic. A potential alternative to
classification learning with cross-entropy loss is introduced by Hui et al. [190],
who show that squared error loss performs comparably to cross-entropy loss
across several prominent neural network architectures and benchmark classi-
fication tasks. Considering the temporal dynamics of our training regime, we
naturally extend this concept to mean-squared error and replace the temporal
cross-entropy loss in Equation 3.29 with a temporal mean squared error:

L =
1
K

T

∑
t=1

K

∑
k=1

Et
k

2
=

1
K

T

∑
t=1

K

∑
k=1

(
y∗,tk − yt

k

)2
, (3.17)

where K is the number of output labels, k the index of the output neuron, and
the error signal Et

k is given by Equation 3.25. The teacher signal y∗,t ∈ RK is
a one-hot encoded vector representing the correct label when t is within the
learning window and a vector of zeros otherwise.

This reformulation eliminates the need for inter-neuron communication at
each time step, thereby reducing the number of missing learning signals by one.

3.2.3.7 Eligibility trace filter decoupled from output time constant

In the rigorous derivation of the weight update rule in Bellec et al. [154], the
output neuron’s time constant in Equation 3.24 emerges as the time constant of
the eligibility trace filter in Equation 3.39. Since the weight update is computed
at the synapses, this implies that the synapses must be aware of the output
neuron’s time constant, which is biologically implausible and violates the locality
of the learning rule.

To address this issue, we conducted experiments to assess how learning
performance depends on the filter having a time constant identical to that of the
output neuron.
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3.2.3.8 Smooth surrogate gradient function

The original model employs a piecewise linear surrogate gradient as defined
in Equation 3.34. We first tune the two scale factors. Additionally, the literature
offers a plethora of surrogate gradients to explore (for an overview, see Neftci
et al. [191]).

Inspired by Shrestha et al. [192], we employ an exponential surrogate gradient
function:

ψ(vt) = γ exp
(
−β
∣∣vt − vt

th

∣∣) , (3.18)

as it is smoother than the piecewise linear function and therefore more biologi-
cally plausible.

We also investigate further smooth surrogate gradients: a function correspond-
ing to the derivative of a fast sigmoid as used in Zenke et al. [193]

ψ(vt) = γ
(
1 + β

∣∣vt − vt
th

∣∣)2, (3.19)

and an arctan function as used in Fang et al. [194]

ψ(vt) =
γ

π

1

1 +
(

βπ
(
vt − vt

th

))2 . (3.20)

We find that the different surrogate gradients suggested in the literature can be
made similar in shape by adequately adjusting the height and width parameters
(Figure 3.8a).

Yj
 

5Q - 

40 - 

30 - 

20 - 

10 - 

Original 
piecewise-linear 
y=0.5,B=1./7 

piecewise-linear 
y = 50.0, B = 20.0 

exponential 
y= 50.0, B = 50.0 

arctan 

y=15/7.0,B =15.0 

fast-sigmoid 
derivative 
y= 50.0, B = 35.0 

0.70 

tr
ai

ni
ng

 
er

ro
r od
 

oO
 I 

oa
 Ss 

© N | 

0.0 - 

te
st

 
er

ro
r 

0.10 - 

0.05 - 

0.00 - 

100 150 200 
training iteration 

250 300

Figure 3.8: Accuracy comparison between different surrogate gradients. (a) Profiles
of different surrogate gradient functions as a function of voltage, with a threshold
voltage set at 0.6 mV. (b) Training error time courses for the N-MNIST task, comparing
models with surrogate gradient shown in (a). The inset shows test errors averaged over
10 iterations. All error values, for both training and testing, are reported as the mean ±
standard deviation, calculated across 10 random seeds.

59



3.2.3.9 Full membrane voltage reset

In the original model, the membrane voltage undergoes a partial reset by
decrementing it by a specific value after each spike emission. In contrast, we
adopt a neuron model with a full reset mechanism, where the membrane voltage
is reset to a fixed value after each spike.

3.2.3.10 Sparse connectivity and weight constraints

In artificial neural networks, weights can typically assume both positive and
negative values. In contrast, biological neurons release only a single type of
neurotransmitter, meaning that the outgoing synapses of a given neuron are
either exclusively excitatory (positive) or exclusively inhibitory (negative) — a
principle known as Dale’s law. Although the type of synapse remains constant
over time, its strength can change (functional plasticity), and synapses can
vanish while new ones form (structural plasticity). Additionally, biological
neural networks usually consist of approximately 80 % excitatory neurons and
20 % inhibitory neurons, with a connection probability of about 10 %.

Bellec et al. [154] construct a network fulfilling all these constraints and train
it using e-prop in combination with the stochastic rewiring algorithm DEEP
R [195], which mimics structural plasticity. The learning performance of this
setup exceeds that of the standard network and e-prop without rewiring after
700 iterations on the evidence accumulation task [see 154, Fig. 3c].

Simulating the N-MNIST task with a fully connected network is impractical
due to the excessive computational load. Furthermore, the training error remains
high over many iterations, suggesting that the dense network fails to effectively
learn the task. These difficulties are overcome by reducing the connection
probability to 25 % for the input and 1 % for the recurrent connections, while
keeping the output connections dense. Consequently, we use sparse networks
for all experiments presented in Table 3.1.

We further explore biological weight constraints using an e-prop model that
incorporates all relevant biological features along with a full membrane voltage
reset. Specifically, we enforce that the weights do not change signs, applied sepa-
rately to input, recurrent, and output weights, as well as to all weights combined.
Additionally, we implement Dale’s law with an excitatory-to-inhibitory ratio of
4:1.

3.2.4 Computational Accuracy

We evaluate the computational accuracy of each feature on the N-MNIST task
in isolation. Computational accuracy, defined as the learning performance,
measures how effectively the network learns the task over 300 training iterations.
It is quantified by the classification error, averaged over 10 test iterations. A
smaller classification error corresponds to better learning performance. The
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results for each experiment are presented in Table 3.1, both as absolute values
and as relative differences from the learning performance of the event-driven
model without features.

Experiments without resetting the neuron dynamics or the e-prop trace dynam-
ics show 0 % and 3 % lower learning performance compared to implementations
with resets, respectively. These findings suggest that such resets are not critical
for maintaining learning performance, indicating minimal impact from sample
interference.

Using mean-squared error for classification improves learning performance
by 15 % compared to cross-entropy loss.

In an experiment where the filter time constant is decoupled from the output
time constant (reduced from 100 ms to 30 ms), the learning performance de-
creases by only 6 %, showing that learning remains effective. In a regression task,
the filter can be removed entirely, resulting in improved learning performance
(see Figure 3.9). This suggests that the filter’s time constant can be set inde-
pendently of the output neuron’s time constant, enabling synapses to function
without requiring knowledge of the output neuron’s parameters.
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Figure 3.9: Accuracy comparison between models with filtered and unfiltered eligibil-
ity traces. Loss time courses for the pattern generation task simulated for 2000 iterations
and averaged over 10 random seeds.

We find that tuning the two scale factors of the surrogate gradient function im-
proves learning performance by 3 %, while using a scaled exponential surrogate
gradient further enhances performance by 6 %. Surrogate gradient functions,
when parametrized to have similar shapes, yield comparable learning perfor-
mance (see Figure 3.8b). These findings align with previous studies, confirming
that learning is robust to variations in the shapes of surrogate gradient functions
[196]. Consequently, biological realism can be enhanced by using a smoother
exponential surrogate gradient instead of a piecewise linear function, without
compromising learning performance.
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The learning performance of a model that integrates all biological features
is less than 0 % worse than the feature-less model, while a model with an
additional full membrane voltage reset achieves a 5 % improvement. For the
model with all additional biological features and the full membrane voltage
reset, the time courses of the dynamic variables are shown in Figure 3.10a, the
weight distributions in Figure 3.10b — both comparing before and after training
— and the prediction error time course in Figure 3.10c. The error time course in
comparison to the original model is shown in Figure 3.6b.

To further investigate biological weight constraints, we utilize an e-prop
model combining all biological features with a neuron model featuring a full
membrane voltage reset, as described in Section 3.2.3.9. A slight decrease in
learning performance is observed when prohibiting weight sign changes, with
reductions of 20 % for input weights, 11 % for output weights, and 47 % for all
weights combined, including recurrent weights.

A more pronounced decrease in learning performance occurs when applying
Dale’s law with an excitatory-to-inhibitory ratio of 4:1. This reduction is 44 %
for input weights, 15 % for output weights, and a striking 73 % when applied to
all weights, including recurrent weights.

Conversely, constraining only the recurrent weights, both by prohibiting sign
changes and by implementing Dale’s law with an excitatory-to-inhibitory ratio,
leads to a 4 % improvement in learning performance. These findings suggest that
constraining recurrent weights facilitates learning, whereas constraining input
or output weights has the opposite effect. However, in these latter cases, the
learning performance may eventually converge with that of the unconstrained
network, albeit at a slower rate, indicating the network’s ability to adapt and
function effectively within these constraints.

3.2.5 Computational Efficiency

We evaluate the computational efficiency of each feature on the N-MNIST task in
isolation. Computational efficiency is measured by the time required to simulate
300 training iterations and 10 test iterations, corresponding to a biological time of
2 h 35 min. The results for each experiment are presented in Table 3.1 as absolute
values and as relative deviations from the runtime of the event-driven model
without features.

Features such as continuous neuron dynamics, mean-squared error classifi-
cation, and eligibility traces independent of the readout time constant result
in a 0 % change in runtime. However, computational overheads are introduced
by continuous e-prop trace dynamics (4 %), as well as by the scaled piecewise
linear (16 %) and exponential surrogate gradient (14 %). Simulating models that
incorporate all additional biological features requires 9 % more runtime, while
including a full membrane voltage reset increases runtime by 6 % compared to
the feature-less model.
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Figure 3.10: Dynamics and weight distribution before and after training N-MNIST
using biologically enhanced e-prop. (a) Time traces of dynamic variables observed
before and after training. (b) Distributions of input, recurrent, and output weights. (c)
Time course of the prediction error.
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In networks using the model with additional biological features and a full
membrane voltage reset, small runtime overheads are introduced when con-
straining the sign of the input (15 %), recurrent (10 %), output (7 %), or all weights
combined (16 %). Similarly, applying Dale’s law with an excitatory-to-inhibitory
ratio of 4 in the same networks increases simulation times by 12 % for input,
10 % for recurrent, 7 % for output, and 12 % for all weights combined.

These runtime overheads are within an acceptable range, rendering simula-
tions with biological features feasible.

3.3 methods

In this section, we provide background on the original time-driven e-prop setup
as outlined in Bellec et al. [154], along with details of their network architecture,
neuron models, and optimization schemes to reproduce their experiments using
our implementation as a proof of concept. Minor adjustments to the equations
are occasionally made for consistency within our framework.

3.3.1 Network architecture

This work focuses on recurrent spiking neural networks (RSNNs), which consist
of an input layer, a hidden layer with recurrent connections, and an output layer.

The primary function of the hidden layer is to process input sequences over
time, extract temporal patterns within the data, and generate corresponding
spike sequences. Recurrence plays a crucial role by providing the network
with memory, enabling it to retain information from previous time steps. This
allows the network to operate across multiple timescales, facilitating the effective
modeling and processing of sequential or temporal data.

3.3.2 Recurrent neuron models

The neurons in the hidden layer are modeled as leaky integrate-and-fire (LIF)
neurons in some cases with additional adaptation (ALIF). The following equa-
tions are presented for the case with adaptation but can be simplified for stan-
dard LIF neurons by setting the dynamic spike threshold voltage to a constant
vt

th = vth and omitting the equations for updating the spike threshold.
The dynamics of these neurons are described by the following update equa-

tion:

vt
j = αvt−1

j + ∑
i ̸=j

Wrec
ji zt−1

i + ∑
i

Win
ji xt

i − zt−1
j vt

th,j, (3.21)

where j and i are neuron indices, Wrec and Win are the recurrent and input
synaptic strengths, and α = exp

(
− ∆t

τm

)
represents the decay factor of the

membrane voltage over time, with τm denoting the membrane time constant.
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The binary spike state variable, zt
j = H

(
vt

j − vt
th

)
, is set to 1 if the neuron spikes

at time t, and 0 otherwise. The spike threshold voltage is updated according to:

vt
th,j = vth + βaat

j, (3.22)

at
j = ρat−1

j + zt−1
j , (3.23)

where ρ = exp
(
−∆t

τa

)
, βa is the prefactor of the threshold adaptation, and τa is

the adaptation time constant.

3.3.3 Output neuron model

All spikes from the recurrent neurons are integrated by the output neurons,
which are modeled as leaky integrators:

yt
k = κyt−1

k + ∑
j

Wout
kj zt

j + bout
k , (3.24)

where κ = exp
(
− ∆t

τm,out

)
. The output layer’s role is to integrate and filter the

recurrent activity, convert it into a continuous output signal yt
k, and compare

it to the target signal y∗,tk . The continuous target or teacher signal minus the
output signal is the error signal

Ek
t = y∗,tk − yt

k. (3.25)

3.3.4 Loss function

In regression tasks, the output signal is expected to approximate the target
signal. The corresponding loss function is defined as:

L =
1
2 ∑

t
∑

k
Et

k
2. (3.26)

The gradient of the loss with respect to the output of the recurrent network is
given by:

∂L
∂yt

k
= Et

k. (3.27)

In classification tasks, the network outputs a probability distribution over labels,
calculated using the softmax function:

πt
k = softmax

(
yt

k
)
=

exp
(
yt

k

)
∑k′ exp

(
yt

k′
) . (3.28)

This output signal is then used in conjunction with a cross-entropy loss function:

L = −∑
t

∑
k

π∗,tk log πt
k. (3.29)
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3.3.5 Gradients

The e-prop plasticity rule for supervised learning consists of a different set of
weight update equations for the input, recurrent, and output synapses. The
derivative of the loss w.r.t. to the recurrent weights is given by:

dL
dWrec

ji
= ∑

t
Lt

jFκ

(
et

ji

)
, (3.30)

whereby the filter F is defined in general defined as

Fκ

(
et

ji

)
= κFκ

(
et−1

ji

)
+ et

ji. (3.31)

One component of this plasticity rule is the eligibility trace, which accounts only
for local information:

et
ji =

[
dzt

j

dWrec
ji

]
local

=
∂zt

j

∂ht
j

∂ht
j

∂Wji
= ψt

jFα

(
zt−1

i

)
, (3.32)

where ht
j denotes the vector of state variables for the recurrent neuron. The first

factor of the eligibility trace represents the postsynaptic information:

∂zt
j

∂ht
j
=

∂zt
j

∂vt
j
← ψt

j . (3.33)

This surrogate gradient or pseudo-derivative function captures the relationship
between the discrete postsynaptic spike state variable, which is not differentiable,
and the postsynaptic membrane voltage. In the original model, a piecewise-linear
surrogate gradient ψt

j is used:

ψ
(
vt) = γ max

(
0, 1− β

∣∣vt − vt
th

∣∣) , (3.34)

which has a peak of the size of the prefactor γ at the spike time, that is, when
the membrane voltage crosses the spike threshold and linearly falls off to zero
in the positive and negative directions. In comparison to the original definition
of the surrogate gradient in Bellec et al. [154], we redefine the prefactor as
γ =

γoriginal
vth

and introduce a scaling factor, β, which incorporates the 1
vth

term
from the original definition.

The second factor of the eligibility trace represents the presynaptic information
in the form of the filtered presynaptic spike train[

∂ht
j

∂Wji

]
local

= Fα

(
zt

i
)
= αFα

(
zt−1

i

)
+ zt

i , (3.35)

where zt
i denotes the spike state variable at time t. The surrogate gradient factor

multiplied by the filtered spike train forms the eligibility trace

et
ji = ψt

jF
(

zt−1
i

)
, (3.36)
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indicating if the synapse is eligible for change according to the Hebbian principle.
For ALIF neurons, the eligibility trace is given by:

et
ji = ψt

j

(
Fα

(
zt−1

i

)
− βaϵt−1

ji,a

)
, (3.37)

with the adaptive component of the eligibility vector given as:

ϵt
ji,a = ρϵt−1

ji + et
ji. (3.38)

Moreover, the entire eligibility trace is filtered:

Fκ

(
et

ji

)
= κFκ

(
et−1

ji

)
+ et

ji, (3.39)

where κ = exp
(
− ∆t

τout

)
represents the decay factor of the output neuron’s

membrane voltage over time, with τout denoting the output neuron’s membrane
time constant. The error signal multiplied by the feedback weights is the learning
signal, and it provides the third factor; thus, the plasticity rule belongs to the
class of three-factor learning rules. Here, Lt

j represents the learning signal:

Lt
j = ∑

k
BkjEt

k. (3.40)

The static random feedback weight matrix Bkj embodies the principle of feedback
alignment [197], wherein the feedback weights are not symmetric to the output
weights — a symmetry that would be biologically implausible. Instead, the
plastic output weights adapt to align with these random feedback weights
during training. When error signals are propagated directly from the output
layer to each hidden layer, with each layer receiving its own distinct error signal,
this process corresponds to direct feedback alignment [198]. Conversely, when
the same error signal is broadcast to all neurons and modulated only by the
random feedback weights, it is referred to as broadcast alignment [199]. In
networks with a single layer (as used in all the experiments in this work), the
concepts of feedback alignment and broadcast alignment are equivalent.

The factors are multiplied for each time step and summed for all time steps
within an update interval typically around one to two seconds long, where each
time step is one millisecond long. The gradient for each recurrent synapse is
given as

gt
ji = Lt

jFκ

(
ψt

jFα

(
zt−1

i

))
, (3.41)

and for each input synapse as

gt
ji = Lt

jFκ

(
ψt

jFα

(
xt

i
))

, (3.42)

The plasticity rule for synapses projecting onto output neurons lacks the sur-
rogate gradient part since the output neurons are leaky integrators without a
spike mechanism:

gt
kj = Et

k. (3.43)
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3.3.6 Firing rate regularization

Firing rate regularization introduces a penalty when the firing rate of a recurrent
neuron deviates from a target firing rate:

Lreg = creg
1
2 ∑

j

(
f̄ j − f target)2, (3.44)

where f̄ j = 1
T ∑t zt

j is the average firing rate of neuron j that is the sum of
postsynaptic spike emissions averaged over an update interval T, and f target is
the target firing rate. This mechanism ensures that throughout the optimization,
the firing rate of each recurrent neuron stays close to a desired target firing rate
despite the weight updates. It is realized by adding a regularization term to the
weight update. This regularization term computes the deviation of the average
firing rate from the target firing rate averaged over an update interval:

greg
ji = creg

1
Tntrial

(
f target − f̄ j

)
e(t)ji , (3.45)

f̄ j =
1

Tntrial
∑

t
z(t)j . (3.46)

It is negative if the average firing rate is larger than the target firing rate,
thus decreasing the weight, and positive if it is smaller, thus increasing the
weight. While this deviation is specific to the postsynaptic neuron, each synapse
multiplies the deviation with its eligibility trace history and averages it over an
update interval. The full gradient is given as the sum of the e-prop gradient and
the regularization gradient.

3.3.7 Locality and causality

The local and causal e-prop plasticity rules can be viewed as an approximation of
the non-local, non-causal Backpropagation Through Time (BPTT) and non-local
Real-Time Recurrent Learning (RTRL), both of which compute exact gradients
[for a detailed comparison of these algorithms, see 200]. RTRL is computationally
more intensive because it maintains eligibility traces that are updated recursively
at each time step to ensure causality [200]. Here, non-causal refers to requiring
knowledge of future activity, while non-local implies that the error must be
propagated across all neurons and synapses [200]. Unlike BPTT, e-prop and RTRL
are classified as “online gradient computation algorithms”, as their computations
for a given time step are causal and can be performed during the forward pass
[201].

In the typical definition of BPTT, weights remain constant over T time steps
and are only updated after the full sequence of T time steps. Under this condition,
BPTT is equivalent to RTRL. An “online weight update algorithm”, in contrast,
would involve updating the weights at every time step, which produces results
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distinct from those of these three algorithms [201]. More precisely, in e-prop,
weights are updated every nT time steps, where n is the batch size.

3.3.8 Optimization

Let the function f (·) represent an optimization mechanism, such as gradient
descent. Once the new weights are computed, the time step is reset to zero,
t← 0, and the weights for the next interval are initialized to the updated values,
W0

ji ←WT+1
ji , within the learning algorithm, and applied to the synapses:

WT+1
ji = W0

ji + f

 dL
dWji

∣∣∣∣
Wji=W0

ji

 . (3.47)

In simple gradient descent, the weight update is calculated as

∆Wji = −η ∑
t

gt
ji. (3.48)

The Adam algorithm cannot be applied to the sum of gradients as in gradient
descent since it has two internal variables that depend linearly and quadratically
on the gradient in each time step, respectively, and thus have to be evolved
in each time step. Here, we omit the indices ji for clarity, but the following
equations are synapse-specific:

m(0) = 0, v(0) = 0, t = 1, (3.49)

m(t) = β1m(t−1) + (1− β1) g(t), (3.50)

v(t) = β2v(t−1) + (1− β2) g(t)
2
, (3.51)

m̂(t) =
m(t)

1− βt
1

, (3.52)

v̂(t) =
v(t)

1− βt
2

, (3.53)

∆W = −η
m̂(t)

√
v̂(t) + ε

. (3.54)

The exponential decay rate of for the first and second moment estimate typically
have a value of β1 = 0.9 and β2 = 0.999, and the small numerical stabilization
constant a value of ε = 10−8.

3.3.9 Weight update rules

For the case of gradient descent the full weight update rules are given for input
neurons as recurrent neurons as

∆Wji = −η ∑
t

Lt
jFκ

(
ψt

jFα

(
zt−1

i

))
, (3.55)
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for recurrent neurons as

∆Wji = −η

(
∑

t
Lt

jFκ

(
ψt

jFα

(
xt

i
))

+ creg
1

Tntrial

(
f target − f̄ j

)
e(t)ji

)
, (3.56)

and for output neurons as

∆Wkj = −η ∑
t

Et
k. (3.57)

3.4 discussion

In this study, we present an extension to e-prop, a biologically plausible and
powerful spike-based three-factor learning rule. As a reference implementation,
we embed the new algorithm in the open-source spiking neural network sim-
ulator NEST, which is optimized for the distributed simulation of large-scale
spiking neural networks. All quantitative data reported in this study were ob-
tained using this implementation. The code1 is partially available as part of
NEST release 3.7 [202], while additional functionality is currently under review2.
To ensure accessibility for the wider community, we provide comprehensive
tutorials3. This conceptual and algorithmic work builds upon prior efforts to
implement three-factor learning rules in NEST [43, 100] and forms part of a
long-term collaborative project aimed at advancing neural systems simulation
technology [8].

By adapting e-prop’s original synchronous, time-driven weight updates to an
asynchronous, event-driven framework, we successfully reproduced two super-
vised tasks from the original publication. While minor numerical differences
between frameworks occasionally trigger an extra spike in one implementation
— resulting in a cascade of downstream spikes and cumulative differences in
loss — these variations did not affect overall learning success.

Our model generalized well to additional tasks, including the widely used
N-MNIST benchmark, and shows potential for extension to other tasks. Porting
the algorithm from TensorFlow to NEST and adapting it to NEST’s biologi-
cally grounded constraints provided valuable insights, such as the necessity of
incorporating previously absent connection delays and ensuring that neuron
interactions adhered to both locality and causality. The model serves as a foun-
dation for implementing reward-based e-prop [154] and generally three-factor
learning rules in NEST. Future development could be streamlined by porting
the algorithm to NESTML [9]. Other potential learning rules could include algo-
rithms similar to RTRL, which are practical for neuromorphic hardware [203]
and suitable for recurrent networks. One example is, EventProp [204] which has

1 https://github.com/nest/nest-simulator/pull/2867

2 https://github.com/nest/nest-simulator/pull/3207

3 https://nest-simulator.readthedocs.io/en/stable/auto_examples/eprop_plasticity/ind

ex.html
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been recently implemented in an event-driven manner on the neuromorphic
hardware BrainScaleS [205] [BrainScaleS 2, see 206] and SpiNNaker 2 [207]
[SpiNNaker 2, see 208]. Additional examples include a spiking BP variant [209],
UORO [210], KeRNL [211], KF-RTRL [212], RFLO [213], SnAP [186], DECOLLE
[214], OSTL [215], FP [216], ETLP [217], as well as STD-ED and MP-ED [218].

To enhance biological plausibility, we replaced several machine learning
components with biologically inspired mechanisms. While batch learning is
supported for the event-driven model, this functionality could be extended to the
biologically enhanced model for tasks requiring batch processing in the future.
Using the N-MNIST task, we optimized learning performance and evaluated
individual features for their impact. Despite variations in learning speed, all test
errors remained below 0.12 , demonstrating robust learning. Notably, continuous
neuron dynamics did not affect performance, and continuous e-prop dynam-
ics had only a marginal effect, suggesting that residual activity from previous
samples does not impair learning. Decoupling the eligibility trace filter from the
output time constant slightly reduced performance in this task, though complete
filter removal improved performance in others. This indicates that the reduction
in performance likely stems from the lowered filter factor rather than the decou-
pling itself. Up-scaling and smoothing surrogate gradient functions, along with
using mean-squared error as a biologically plausible alternative to cross-entropy
loss, enhanced learning. When combining all these features, updating weights
with each spike, and incorporating dynamic firing rate regularization, learning
performance was comparable to the baseline model without additional features.

Simulating the N-MNIST task for 300 training iterations and 10 test iterations,
corresponding to 2 h 35 min of biological time, requires approximately 3.2 core−h
without incorporating biological features. Runtime overheads increased by up
to 15 %, with some features having little to no impact. These modest variations
in runtime are likely partly due to changes in network dynamics introduced
by the additional features, leading to increased firing rates and, consequently,
longer simulation times. Such effects can be mitigated by making appropriate
parameter adjustments.

The computational accuracy and efficiency results presented here are specific
to the N-MNIST task. However, future work could extend validation to encom-
pass a broader range of network architectures, neuron parameters, and learning
hyperparameters. Achieving a fair comparison of computational efficiency and
accuracy across different frameworks would require fully optimizing the re-
spective frameworks, an area that remains a promising direction for further
investigation. The inherent energy efficiency of spike-based computations holds
the potential for considerable computational savings. When combined with
biologically inspired mechanisms, these features have the potential to inspire
advancements in machine learning technologies.

This work contributes to recent efforts to port e-prop to various frameworks
and computational substrates. Knight et al. [219] implemented e-prop in ml-
GeNN [220], a spike-based machine learning library optimized for GPU-based
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sparse data structures and algorithms provided by the pyGeNN simulator [221].
Their implementation demonstrates the functionality of e-prop on both CPU and
GPU platforms. E-prop has also been adapted for neuromorphic hardware. For
example, Perrett et al. [222] ported e-prop to SpiNNaker 1 [223], while Rostami
et al. [224] implemented it on SpiNNaker 2 [208], and Frenkel et al. [225] realized
it in ReckOn. Notably, the SpiNNaker implementations incorporate event-driven
weight updates [222, 224].

In contrast to our study, which focuses on faithfully reproducing and ex-
tending the original e-prop implementation, these efforts primarily emphasize
reproducing the core mechanism and, in some cases, simplifying the algorithm
to accommodate hardware constraints [225]. However, none of these studies
demonstrate an exact reproduction of the original implementation, and only one
provides an explicit accuracy comparison [see 224, Fig. 5]. These works demon-
strate e-prop across a variety of tasks. For instance, the pattern generation task
has only been reproduced by Perrett et al. [222], while evidence accumulation
tasks are addressed by both Perrett et al. [222] and Frenkel et al. [225]. The N-
MNIST task has not been demonstrated by others, but Knight et al. [219] trained
on a similar dataset, sequential MNIST. Additional tasks include Google Speech
Commands [224], DVS gesture recognition [219], spiking Heidelberg digits [220,
225], and a synthetic behavioral dataset [225]. Most of these studies investigate
network sizes ranging from several hundred to a few thousand neurons. Only
one study explicitly examines scaling properties in terms of processing time
(measured in clock cycles) as a function of network size [see 224, Fig. S1].

Our study stands apart in its emphasis on improving the biological plausibil-
ity of e-prop while systematically evaluating these enhancements in terms of
computational efficiency and accuracy. In contrast, other works primarily focus
on optimizing functional performance, energy efficiency, and memory usage,
often at the expense of biological plausibility.

This implementation, now integrated into a widely used neural simulator opti-
mized for large-scale networks, equips the research community with a powerful
tool to study neuroscientifically relevant tasks, simulate behavioral experiments,
and explore learning hypotheses. It has the potential to provide valuable in-
sights into how learning underpins diverse behaviors and neurological disorders,
while also driving advancements in machine learning that enable real-world
applications.
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4.1 introduction

The ability to build an internal, predictive model of reality endows an agent with
a clear evolutionary benefit. How the mammalian brain accomplishes this feat
remains a subject of debate, but the representation of uncertainty certainly plays
a role, considering the probabilistic nature of sensory data and uncertainty about
past and future events. A good representation of an uncertain reality must allow
efficient access to a large variety of plausible beliefs about the environmental
state.

Distributions over sensory data, characteristic for natural scenes, are complex
in the sense that the coexisting beliefs about the data manifest as numerous
deep, dissimilar modes of the state space — one of the many facets of the curse
of dimensionality. In probabilistic models of such complex data, exact inference
becomes intractable, but the distribution can be approximated by sampling.
Rapid convergence towards the target distribution requires the sampler to switch
(or mix) between these modes frequently. However, due to their dissimilarity,
this switching is notoriously difficult for most sampling methods, an issue which
is known as the “mixing problem”.

In this manuscript, we put forward a hypothesis for how the brain can
efficiently overcome this challenge. In doing so, we unify two aspects of cortical
dynamics under a common normative framework: spike-based probabilistic
inference and cortical oscillations. Both of these phenomena have been well-
studied but have not been explicitly linked in the context of spiking neural
networks. In particular, we consider the interpretation of spiking activity in
the cortex as probabilistic inference via sampling, which has gained ample
experimental [226–228] and theoretical [229–233] support over the last decade.
Mathematically, these models are closely related to Gibbs sampling, which tends
to get stuck in single states of high probability that act as local attractors.

We propose that this problem of sampling-based representations can be over-
come by firing rate oscillations. Firing rate oscillations over multiple frequency
bands are a naturally emerging phenomenon in spiking networks [234–237] and
have been extensively studied in the mammalian brain [238, 239]. Notably, they
appear to play an important role both during awake perception [240–242] and
during sleep [243, 244], suggesting a fundamental role in cognition and learn-
ing. In previous modeling studies, oscillating changes of neuronal excitabilities
have been shown to be beneficial for mixing [245–249], but how such changes
might arise on the cellular level within networks of spiking neurons has thus far
remained unclear.

We propose that the background firing rate of cortical neurons can be in-
terpreted as a (computational) temperature and can accordingly modify the
probability landscape sampled by cortical circuits. If the background activity is
oscillatory, the network temperature changes periodically and phase-dependent
stationary distributions emerge. By cyclically alternating between “hot” and
“cold” periods, cortical networks can effectively instantiate a tempering sched-
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ule, with hot phases corresponding to flat probability distributions in which
the network can move freely and cold phases representing the multimodal
target distribution. This schedule allows networks to escape from local minima
and efficiently sample from challenging distributions characterized by multiple
high-probability modes separated by large low-probability volumes of the state
space.

In this work, we provide an analytical treatment of tempering in spiking
networks induced by cortical background oscillations and demonstrate the
benefits of this phenomenon in simulations. We explicitly consider current-
based synaptic interactions as well as different network architectures. These
observations establish a novel connection between multiple observed cortical
phenomena, as well as between these experimental findings and normative
theoretical models of brain computation.

4.2 results

To understand how cortical oscillations affect computation at the network scale,
we study the behavior of single spiking neurons and networks of spiking neurons
under variable levels of background activity. We consider current-based leaky
integrate-and-fire (LIF) neurons, for which we can derive analytical expressions
for the neuronal response. We show how the level of background input affects the
input-output relationship of individual neurons (Section 4.2.1). We then discuss
the effect of the background activity on entire networks (Section 4.2.2), where
we show that this local increase of stochasticity at the single-neuron level gives
rise to corresponding changes of the probability landscape at the network level.
In particular, we find that these changes can be parametrized by a Boltzmann
temperature parameter. Moving to recurrent networks as models of computation
in the sensory cortex, we establish a rigorous interpretation of cortical oscillations
as a tempering algorithm (Section 4.2.2). We then demonstrate the functional
advantages of such oscillation-induced tempering for generative models of the
visual hierarchy trained on two different visual datasets (Section 4.2.3).

4.2.1 Single-neuron statistics

Cortical neurons are embedded in a noisy environment (Figure 4.1a). In addition
to functional input Iin, their many presynaptic partners provide them with an
effectively stochastic background [250, 233]. This background activity leads
to stochastic single-neuron behavior [251]. To understand this behavior, we
consider a simple LIF neuron model with current-based input synapses (see
Section 4.3.1). The neuron receives a large number of background inputs, with
firing rates νi and synaptic efficacies wi. In line with standard literature, we
model this stochastic background input as uncorrelated Poisson spike trains [42].
We first consider the free membrane potential ufree of this neuron, that is, the
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membrane potential in the hypothetical case that there is no firing threshold. The
steady-state distribution p(ufree) is well-described by a Gaussian (Figure 4.1b)
with moments

µu := E [ufree] = El +
Iin + ∑i wiνiτs,i

gl
, (4.1)

σ2
u := Var [ufree] = ∑

i
νiw2

i
τ2

s,i

2g2
l (τm + τs,i)

, (4.2)

where El and gl are the leak potential and conductance, and τm and τs are the
membrane and synaptic time constants [see Section 4.3 in 252]. Here, ∑i runs
over all background presynaptic partners. Note that excitatory and inhibitory
inputs (defined by the sign of the synaptic weight wi) can cancel each other
out in the mean but always add up towards the variance of the free membrane
potential distribution.

Upon introducing a firing threshold, some portion of the free membrane poten-
tial probability density will lie above it, causing the neuron to spike stochastically.
The shape of the neuronal response function, i.e., the firing rate in response to a
constant input current Iin, depends strongly on the characteristic time constant
of the neuronal membrane. Cortical neurons under strong presynaptic bombard-
ment have been shown to operate in a high-conductance regime [40], which
greatly reduces the effective membrane time constant τm. Under such conditions,
the neuronal response function (Figure 4.1c) can be well approximated by a
logistic function [232]:

νout(Iin) =
1

1 + exp [−β (Iin − I0)]
. (4.3)

Hence, the neuron’s stochastic response is characterized by two parameters, the
offset I0 and the slope β of the sigmoid. Both of these depend on the background
activity. The response function can be intuitively understood as the area under
the free membrane potential distribution that lies above the firing threshold.
Thus, its shape is similar to the integral of p(ufree), its offset I0 has a similar
linear dependence on µu, and its slope parameter β will decrease for increasing
σu. Their exact dependence on the background rates is shown in Figure 4.1d
and Figure 4.1e. In particular, the relationship between the slope of the response
function and the standard deviation of the free membrane potential distribution
is well-approximated by a linear function, which allows us, in turn, to establish
the relationship between the slope parameter β and the total (i.e., summing
over all background presynaptic partners) excitatory and inhibitory background
firing rates νexc and νinh and the corresponding weights wexc and winh using
Equation 4.2:

1
β

∝ σu ∝
√

w2
excνexc + w2

inhνinh. (4.4)
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Figure 4.1: Response functions of neurons in an ensemble. (a) Cortical ensemble of
networks. The spike input received by a neuron can be partitioned into functional (solid
black arrows) and background (dashed dark blue arrows) input. The background can
be partitioned into an excitatory and an inhibitory subset (dashed light blue arrows).
In the following panels, we consider one such neuron under five different illustrative
background regimes, each of which is assigned a specific color. (b) Steady-state free
membrane potential distributions. Shaded areas: numerical simulation; solid lines:
analytical approximation using Equation 4.1 and Equation 4.2. Purple, orange, green:
same σu, different µu; blue, orange, red: same µu, different σu. (c) Corresponding
neuronal response functions. Crosses: numerical simulation; solid lines: logistic fit with
Equation 4.3. (d) Slope parameter β and (e) offset I0 of response functions under various
background regimes defined by their respective pairs of excitatory and inhibitory
input rates (νexc, νinh). Dashed isolines indicate configurations of constant slope (cf.
Equation 4.4) or offset, with specific values given as colorbar ticks. Note the approximate
linearity of the contour lines.
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To summarize, we have established how the stochastic response of individual LIF
neurons depends on the level of background input. In particular, the background
input determines the slope β of the (logistic) neuronal response function.

4.2.2 Temperature in spiking networks

As discussed in Section 4.2.1, under Poisson background activity, individual
neurons react to their input stimulus in a well-defined stochastic manner. Based
on this result, we show here how the level of background activity influences
the stochastic properties of a recurrently connected network of LIF neurons
(Figure 4.2a, for the network setup see Section 4.3.5).
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Figure 4.2: Effects of oscillatory background activity on sampled distributions. (a)
Network dynamics. Each neuron encodes a binary random variable according to its
refractoriness. When the membrane potential (green) is clamped to the reset value, the
neuron state (red) is considered to be z = 1 (z = 0 otherwise). The collection of the
resulting network states z forms an estimate for the implemented probability distribu-
tion p(z). (b) Distributions sampled by a 4-neuron network at the three temperatures
marked in (c). States are ordered according to their respective probabilities at the low
temperature to emphasize the effect of tempering visually. (c) Time course of excitatory
and inhibitory background rates (dashed and dotted lines, Equation 4.10), along with
the associated temperature (solid line, Equation 4.4). Note that νexc is scaled by 0.5
and wexc by the square root of the inverse scaling factor to demonstrate that balance
is independent of such a rescaling. (d) Simulated (crosses) vs. calculated (solid line)
entropy course S(t). The slight lag is due to the finite relaxation time constants τs, τref
of the network (Equation 4.26 only holds strictly for quasi-static temperature changes).
(e) Effect of tempering on individual membrane potentials and spiking activity. The
background color represents the corresponding entropy.

In a spiking network, the information conveyed by a neuron at any point
in time can be described as binary: the neuron either spikes or it does not. A
spike has a twofold effect: it initiates a refractory period and elicits postsynaptic
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potentials (PSPs) in postsynaptic partner neurons. We can therefore view the
binary state z of a neuron being refractory (z = 1) or not (z = 0) following a
spike as corresponding to the state communicated to its downstream partners
[229, 232, see Figure 4.2a]. Thus, each neuron can be interpreted as sampling
from the conditional distribution p(zk = 1|z\k), i.e., the probability of the kth

neuron to be in the state “1” given the states of all other neurons z\k.
In general, the joint distribution sampled by the network cannot be given in a

closed form. To allow an analytical approach, we begin with a set of assumptions
about the neuron and network parameters (see Section 4.3.1 and Section 4.3.4).
For parameters emulating a high-conductance state [40] the activity of an LIF
network can be interpreted as sampling from a joint Boltzmann distribution
[232]

pT(z) ∝ exp [−E(z)/(kBT)] , (4.5)

where E(z) = − 1
2 ∑kj Wkjzkzj − ∑k Bkzk represents the energy of a particular

joint state z, with Wkj denoting effective recurrent synaptic weights and Bk
effective individual neuron biases. Here, kB is the Boltzmann constant and T is
the ensemble (Boltzmann) temperature. For such a network state distribution,
the state probability of each neuron k is given by

p(zk = 1|z\k) =
1

1 + exp
(
−∑i ̸=k Wkizi+Bk

kBT

) , (4.6)

as expressed in Petrovici [252] and Buesing et al. [229]. Note that this equation
has the same form as the neuronal response function in Equation 4.3.

Since weights and biases can both be interpreted as movements along the
Iin-axis of the neuronal response function, their simultaneous multiplicative
scaling by T is equivalent to a horizontal stretching of the response function.
This similarity allows us to identify

β = 1/(kBT), (4.7)

again analogous to statistical physics, for a Boltzmann constant kB that relates
the (unitless) reference temperature T = 1 to a chosen set of neuron and
background parameters via the resulting response function (here, the unit
of kB is nA). Note that the Boltzmann parametrization with unitless weights
W and biases B in Equation 4.6 is different from the synaptic weights and
biasing effects in Equation 4.3 induced by leak, threshold potentials, unbalanced
input etc. in the LIF domain, but they can be linearly mapped such that the
sampling distributions match (see Equation 4.24 and Equation 4.25). Equation 4.4
and Equation 4.7 thus establish an exact relationship between the ensemble
temperature and the background firing rates:

T ∝
√

w2
excνexc + w2

inhνinh. (4.8)
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In order to study the effect of pure temperature variations without affecting
neuronal offsets, excitatory and inhibitory background rates need to be bal-
anced. Such a balance is also well-documented in vivo [253, 254]. Note that
this is not simply achieved by setting wexcνexcτexc = winhνinhτinh and thus ef-
fectively equalizing the effects of excitation and inhibition; while this would
leave µu unchanged, it would still affect I0 (cf Figure 4.1b and Figure 4.1c).
A balanced regime can be achieved by a linear dependence between firing
rates (Section 4.3.2), following one of the isolines in Figure 4.1e, which are well
approximated by

νinh = ν0 + mνexc. (4.9)

The exact parameters ν0 and m that are necessary for balance depend on the
synaptic time constants and background input weights (see Section 4.3.3). Fol-
lowing such an isoline then results in a constant I0 and a

√
ν dependence of the

(inverse) slope parameter 1/β (see Section 4.3.2). While this approach enables a
strict realization of a Boltzmann temperature, the achieved effect does not rely
strongly on such a balance. Following Equation 4.4 we can maintain the balance
if we rescale the νexc and multiply wexc by the square root of the scaling factor,
which we apply in Figure 4.2.

With this definition of temperature, we now turn to its effects on the distri-
bution. In Equation 4.6, the ensemble (Boltzmann) temperature T scales the
effective weights and biases multiplicatively, identically to its effect in statistical
physics: as the temperature of an ensemble rises, particle interactions (here:
synaptic weights) and external fields (here: neuronal biases) become increasingly
inconsequential.

We can observe a similar effect on the sampled distribution when modulating
the temperature implemented by the background input (see Figure 4.2b): at
high temperatures, the distribution becomes flat, while at low temperatures, the
high-probability maxima become even more pronounced. Cyclic heating and
cooling — enabled here by oscillatory background — can thus alternate between
hot phases with equalized state probabilities and cold phases for reading out the
most relevant samples of the correct distribution, where the sampled distribution
approximates the target distribution most closely in the T = 1 crossings (see
Figure 4.3 for the divergence during one cycle). Such a cycle is often referred to
as tempering. We consider a simple sinusoidal oscillation as a basis function for
modeling cortical oscillations:

νexc(t) =
νmax − νmin

2
sin (2π fosct) +

νmax + νmin

2
, (4.10)

with minimum rate νmin, maximum rate νmax, and oscillation frequency fosc.
This time course implicitly also defines νinh(t) through Equation 4.9, such that
in this setup, excitation and inhibition vary synchronously (see Figure 4.2c),
as observed in vivo [see, e.g., 255]. Note that the network activity follows the
instantaneous level of balanced background input in the label layer (Figure 4.4a),
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visible layer (Figure 4.4b), and hidden layer (Figure 4.4c), which is also reflected
in the summed activity across all layers ((d)).

— DKL 

i 

oO 
N oO (0e 

T=La||4+d) 
1G 

| 

LO) 
ml 

©
 

! 

©
 

rol 

©
 

0.05 - 

i 

oO 
C oO 

1.0 0.8 0.6 0.4 0.2 

C oO 

t (Ss)

Figure 4.3: Divergence from the target distribution during one oscillation period.
Time course of the DKL to the target distribution together with the time course of the
temperature demonstrated at the network in Figure 4.2. The DKL is high for both high
temperatures (red dot, quasi-uniform distribution) and low temperatures (blue dot,
quasi-single state distribution), indicating that the distributions at these temperatures
differ. The divergence is small at the two crossings of T = 1, indicating high fidelity
representations. The yellow dot indicates the time of the readout.

The resulting temperature thus also varies periodically, with the square root
of a sine (see Figure 4.2c and Equation 4.8). Moreover, the ensemble temperature
controls the entropy of the sampled distribution, which effectively describes the
“disorder” of the network and corresponds to the uniformity of the sampled
distribution. For higher temperatures, as the sampled distribution becomes
more uniform, the entropy increases (Figure 4.2d). In high-temperature/high-
entropy states, membrane potentials are extremely noisy, causing neurons to
fire randomly and independently. In contrast, in low-temperature/low-entropy
states, membrane potentials are nearly constant, and neurons are “frozen” in
certain states, firing either persistently or not at all (Figure 4.2e).

4.2.3 Mixing in high-dimensional multimodal data spaces

In the following, we discuss the computational role of background oscillations
for spiking networks trained to represent complex distributions over high-
dimensional visual data. Here, we have chosen two commonly used visual
datasets to serve as examples, but our conclusions hold for arbitrary distribu-
tions. As a simplified model of cortical visual hierarchy, we consider recurrent
layered spiking networks consisting of LIF neurons, which we train as simul-
taneous generative and discriminative models (Figure 4.5a). These two forms
of computation happen concurrently and bi-directionally: the label neurons
classify the state of the visible layer, while the visible neurons adapt their states
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Figure 4.4: Layerwise spike activity. Spike activity in the label layer ((a)), visible layer
((b)), hidden layer ((c)), and summed across all layers ((d)) of the NORB network in
Figure 4.5 is shown as a function of the phase of the background oscillation. The mean
firing rate per neuron oscillates in all three layers, synchronized with the phase of the
background oscillation.

to produce images that are compatible with the class represented by the label
layer. For each class, during the preceding training, probability mass was built
up in the corresponding region of the probability landscape, forming the modes
of the network.

High-dimensional but well-recognizable visual data confronts such networks
with two contradictory challenges. On the one hand, they need to produce good
samples, i.e., clean images corresponding to particular sharp high-probability
modes separated by large vanishing-probability volumes of the state space that
correspond to out-of-distribution samples. On the other hand, they need to be
able to switch between different modes in order to sample from the target distri-
bution fully; this is at fundamental odds with the probability landscape described
above. This so-called mixing problem is well-known and quasi-ubiquitous for
sampling models.

One solution to this problem was proposed by Marinari et al. [256] in the
context of Markov-chain Monte Carlo sampling for Ising models, which is
intimately related to our form of spike-based sampling in both dynamics and
sampled distribution [232]. This simulated tempering method describes a cyclic
heating and cooling schedule reminiscent of the periodic temperature variation
induced by cortical oscillations discussed above (Equation 4.10). In-between
readouts at the reference temperature, a temporary rise in temperature flattens
the probability landscape, allowing the network to escape from local attractors.
Thus, Equation 4.5, Equation 4.4, and Equation 4.10 establish a rigorous analogy
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Figure 4.5: Background oscillations improve generative properties of spiking sampling
networks. (a) Architecture of a hierarchical 3-layer (visible v, hidden h and label l)
network of LIF neurons and example layerwise activity. For a better representation of
the visible layer statistics, we consider neuronal activation probabilities p(v|h) rather
than samples thereof, to speed up the calculation of averages over (conditional) visible
layer states. Here, we show a network trained on images from the NORB dataset. (b)
Evolution of the activation probabilities of the visible layer (top) over one period of
the background oscillation (bottom). (c) Evolution of the visible layer over multiple
periods of the oscillation compared to a network with constant background input at
the reference rate (2 kHz, top) and at a high rate (10 kHz, middle), cf. also yellow and
red lines in (b). The activation probabilities are shown whenever the reference rate (see
panel (b)) is reached. The gray bar denotes the period shown in (b).
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between simulated tempering and cortical oscillations, which thereby take on
the computational role of enabling mixing in challenging real-world scenarios.

To evaluate these effects, we considered two example scenarios based on well-
studied visual datasets: NORB [257] and MNIST [258]. Network training was
done using a variant of wake-sleep learning [259], a contrastive Hebbian scheme
inspired by biological phenomenology and widely used for sampling models
(see in particular Leng et al. [260]). A background rate of νexc = νinh = 2 kHz
was chosen as reference, implicitly defining the reference temperature T = 1.

For visual datasets, the weakened correlations at higher temperatures cor-
respond to blurred images. For the network trained on NORB (Section 4.3.6),
this is particularly well observable (cf. Figure 4.5b). The network produces
sharp images at low background rates, whereas the images become blurred
under increased background activity. Note especially how the network enters
a superposition of several “clean” states at higher background rates. Constant
background stimulus cannot reproduce the ease of switching between different
image classes (modes). The network is either stuck in one mode while producing
sharp images (T = 1 upper row in Figure 4.5c) or only able to produce blurred
images (T = 2.5 middle row in Figure 4.5c). Tempering through background
oscillations effectively combines these two regimes, allowing a better sampling
of the target distribution at phases where the reference temperature is reached
(lower row in Figure 4.5c).

The effectiveness of this tempering schedule depends on the parameters of
the background oscillations: νmin, νmax, and fosc. In particular, the frequency
fosc plays a critical role, as it represents a tradeoff between exploration and
exploitation of the network’s state space. Low frequencies guarantee that the
network has time to relax towards its momentary stationary distribution pT,
with fosc → 0 representing the quasi-static limit, i.e., constant background.
This enables accurate sampling from the target distribution at T = 1, as the
network loses memory of previous states occupied at higher temperatures.
However, lower oscillation frequencies come at the cost of slower sampling, as
they increase the time between consecutive readouts. Furthermore, frequencies
significantly lower than 0.1 Hz are rarely observed in vivo [239]. In the following,
we study the behavior of spiking sampling networks under different background
oscillation regimes for a network trained on handwritten digits from the MNIST
dataset (for the network setup see Section 4.3.7).

Two essential quality criteria for any sampling network are its mixing speed
and sample fidelity. In principle, Equation 4.5 allows an analytical evaluation
of these properties, but in practice, this is unfeasible for high-dimensional
distributions. We, therefore, use a sample-based measure, the indirect sampling
likelihood (ISL, see Breuleux et al. [261] and Section 4.3.9). The ISL accumulates
fidelity values for all generated samples, assigning high values if they are similar
to images in the test set and low values otherwise. Additionally, the rate at
which the ISL increases over time implicitly represents a measure of the mixing
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speed. We use the distribution of times between label switches as a more explicit
measure of mixing times for different image categories.

Our MNIST-trained network allows a quantitative evaluation of the benefits
of oscillation-induced tempering. In each tempering cycle, around T = 1, one
digit stabilizes in the visible layer for a wide time window (see Figure 4.6). The
corresponding network mode is defined by the label neuron with the highest
probability inferred from the hidden layer activity. With oscillatory background
(Figure 4.8a), the sampled digits and labels change more frequently as compared
to constant background (Figure 4.8b). Consequently, the average mode duration
(see Section 4.3.10), as defined by the time interval between two mode switches,
is shorter for oscillatory background (compare Figure 4.8c and Figure 4.8d). Since
frequent mode switches are essential to efficiently cover the target distribution,
the Kullback-Leibler divergence (DKL, see Section 4.3.8) between the target and
sampled distribution also decreases more rapidly with oscillatory background
(Figure 4.8e). Furthermore, the ISL converges to higher values compared to the
constant background (Figure 4.8f), which indicates an overall better tradeoff
between generating clear examples of the imprinted classes and good mixing
between these classes (also see Figure 4.10). Note that tempering can likewise
improve the network’s performance in inference tasks (Figure 4.7).
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Figure 4.6: Probability of the label layer. Exemplary time course of the inferred activity
per label neuron over time (lower plot) and the associated state of the visible layer
(top bar) of the MNIST network in Figure 4.8. Spike probability is high and unique
during the low activity phases (around the T = 1 readout, vertical lines) and lower and
distributed over several labels during the high activity phases. The network is typically
in a stable response state for a certain time window around the readout. The length of
this time window depends on the depth of the modes.

Next, we studied tempering under a range of biologically plausible regimes,
with background rates (per neuron) varying between 0.5 and 30 kHz and oscil-
lation frequencies ranging from the alpha range to the first slow-wave band
[238]. In the landscapes over the mode durations (Figure 4.8g) and the ISLs (Fig-
ure 4.8h), we find that the most important prerequisite for effective tempering
is the maximum background rate, as the temperature between readouts has to
be high enough for frequent mode switches. For our networks, this required
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Figure 4.7: Inference task with ambiguous input. Superposition of the first 5421 images
of class 8 (a) and class 9 (b) of the MNIST training data set. (c) Superposition of images
in (a) and (b). (d) Biases of the network to clamp visible layer to the upper part of
the image in (c) and emulate an ambiguous input. (e) Distribution over the inferred
labels of the MNIST network from Figure 4.8 in a 100-cycles run averaged over ten
random seeds. The imprinted labels 8 and 9 dominate the distribution — the posterior
distribution — illustrating the uncertainty of the input. With oscillating background
input, the distribution is more balanced. Thus, oscillations can help in inference tasks.
Note that the network simultaneously completes the lower part of the ambiguous input
image in the visible layer — shown as the inferred visible layer activity for constant
background in (f) and oscillating background in (g).
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Figure 4.8: Parameter dependence of tempering effectiveness. (a, c) Visible and label
layer activity of an LIF network trained on the MNIST dataset, with (b, d) showing
the corresponding mode duration distributions (the active mode corresponds to the
image class and is determined by the most active label neuron). The network with
oscillatory background (red) moves quickly between modes, with correspondingly
short mode durations, whereas the network with constant background activity (blue)
switches to the 6 mode after two samples and remains there until the last of the 103

collected samples. (e) Kullback-Leibler divergence (DKL) between the distribution of
sampled modes and the uniform distribution. The sampled distribution quickly becomes
significantly more uniform for the oscillatory (red) compared to the constant (blue)
background. (f) Indirect sampling likelihood (ISL) as a measure of image quality and
diversity for the two background settings and, for orientation, for the optimal sampling
(OPT, orange) and the product of marginals (POM, gray). Under this measure, the
averaged MNIST images described by the POM are more similar to the entire dataset
than the near-unimodal distribution generated under constant background at T = 1.
Similarly, the network with oscillatory background needs several samples to produce a
distribution that is diverse enough to overtake the POM. The mean (solid lines) and
standard deviation (shades) over 10 runs of 103 samples are plotted. (g) Average mode
duration for different oscillation parameters: The peak background rate νmax represents
the most critical parameter and needs to be high enough to enable good mixing. The
minimum background rate νmin and the oscillation frequency fosc are less important.
(h) Same as (g) for the ISL values. The image quality remains consistently high across
a wide range of parameter configurations. The data used for (a-f) corresponds to the
simulations marked by the red and blue crosses, respectively. Values represent averages
over 10 runs of 104 samples.
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input rates above 10 kHz (Figure 4.8g and Figure 4.8h). On the other hand, the
minimum background rates in the cold phases have a much smaller influence.
In general, effective tempering is achieved over a wide range of oscillation pa-
rameters (yellow and light green areas in Figure 4.8g and Figure 4.8h) covering
all studied frequency bands. Overall, the best performance was achieved in the
slow-wave regime.

4.3 methods

4.3.1 Neuron model

The membrane potential u of a current-based leaky integrate-and-fire (LIF)
neuron evolves according to

Cm
du
dt

= gl(El − u) + I(t), (4.11)

with membrane capacitance Cm, leak potential El and leak conductance gl. The
resulting membrane time constant is τm = Cm/gl. When the membrane voltage
u reaches a threshold value vth from below, a spike is emitted and the membrane
potential is fixed to a reset value vreset ≤ vth for the refractory time τref (see
Table 4.1). The input current I(t) is a sum of synaptic currents

I(t) = Irec(t) + Iin(t) + Ibg(t), (4.12)

where we distinguish between functional input Irec, synaptic background input
Ibg and any other form of bias input Iin (see Figure 4.1a). Assuming exponential
synaptic kernels, the input current obeys

dI
dt

=
Iin − I

τs
+ ∑

j
wjSj(t), (4.13)

where wj and τs respectively denote the synaptic weight and time constant.
The sum goes over all presynaptic spike sources j, including both background
and recurrent input, with the corresponding spike trains Sj(t) = ∑ f δ

(
t− t( f )

j

)
,

where t( f )
j denotes the f th spike time of spike source j.

Table 4.1: Neuron parameters.

Cm gl El τexc τinh vth vreset τref

pF nS mV ms ms mV mV ms

200 2000 −50 10 10 −50 −55.1 10

Without loss of generality, we endow each neuron with a single excitatory
and a single inhibitory Poisson source characterized by rates νexc and νinh and
corresponding connection strengths wexc and winh.
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The resulting distribution of the free membrane potential ufree (no spiking,
vth → ∞) is well described by a Gaussian with moments given by Equation 4.1
and Equation 4.2 [for more details see Section 4.3 in 252]. In general, more
background input, originating from either larger weights wexc, |winh| or higher
frequencies νexc, νinh, increases the variance. The resulting neuronal response
function can be calculated from this distribution using a recursive approach [232].
In the high-conductance state [40], the membrane time constant becomes small,
leading to a more symmetric response function, which is well-approximated
by a logistic function (Equation 4.3). In the interpretation of spiking neurons
as binary random variables, the neuronal response becomes an expression for
the conditional probability of a neuron to be in state “1” given the states of its
presynaptic partners p(zk = 1|z\k). Neuron parameters are given in Table 4.1.

4.3.2 Spike response of sampling neurons

In the experiments underlying Figure 4.1, we connect a current-based sampling
neuron with one excitatory and one inhibitory Poisson source with weights wexc

and winh, where wexc = −winh, and vary the corresponding firing rates νexc and
νinh. Background input parameters are listed in Table 4.2. We can freely choose
the mapping of background rates to the Boltzmann temperature. For simplicity,
we chose T = 1 in the lower range of physiological values, such that the readout
can happen at low points in the oscillation cycle:

T = 1 ⇐⇒ νexc = νinh = 2 kHz, (4.14)

which results in a slope of β = 1.39 nA−1 and an offset of I0 = 1.34 nA (see
Figure 4.1d and Figure 4.1e). Since shifting the offset implies a change of the
neuronal bias, we only have one degree of freedom when changing the temper-
ature T. We, again arbitrarily, choose the excitatory rate νexc. The relationship
νinh = h(νexc) is then found by interpolating the measured response functions
from Figure 4.1e. In practice, this function can be approximated with the lin-
ear fit in Equation 4.9 with ν0 = −0.13 kHz, m = 1.04 and the coefficient of
determination r2 = 0.999 98 (Figure 4.9a). Choosing inhibitory and excitatory
rate combinations along this line, keeps the offset current constant and varies
solely the temperature (Figure 4.9b), which results into response functions with
constant inflection point and varying slope (Figure 4.9c).

The five explicitly marked background configurations shown in Figure 4.1b to
Figure 4.1e are given in Table 4.3.

4.3.3 Temperature as a function of background rates

The relationship between our temperature definition and the background rates
can be approximated by linking the probability density function of the membrane
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Figure 4.9: Changing the temperature of the system. The linear relationship νinh(νexc)
in (a) can keep the offset of the response function constant (solid line in (b)), while only
changing the slope of activation functions and thereby the temperature of a network
(dashed line line in (b)). This relationship also reflects the relative strengths of afferent
excitatory and inhibitory weights. (c) Three example activation functions with constant
offset for different background rates. Colors correspond to those in panel (a). Here,
we emphasize the binary-state interpretation by plotting p(z = 1|Iin) = νoutτref (cf.
Figure 4.1c).

Table 4.2: Hierarchical network parameters. For deep networks, the number of neurons,
Nnrns, is specified separately for the visible, hidden, and label layers.

symbol unit response function entropy NORB MNIST

Figure 4.1 Figure 4.2 Figure 4.5 Figure 4.8

Nnrns 1 4 3600, 500, 10 784, 400, 10

νexc,min kHz 0.5–30 0.25 0.5 0.5

νexc,max kHz 0.5–30 10 20 22

νinh,min kHz 0.4–31 0.1 0.4 0.4

νinh,max kHz 0.4–31 10.3 20.6 22.7

fosc Hz const. 1 1 2

wexc nA 0.5 1.0 0.5 0.5

winh nA -0.5 -0.5 -0.5 -0.5
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Table 4.3: Background parameters for the colored response functions and membrane
potential distributions in Figure 4.1.

color νexc νinh

kHz kHz

blue 1.000 1.000

orange 2.000 2.000

red 4.000 4.000

green 2.848 1.232

purple 1.232 2.848

potential to the derivative of the logistic response function. In the diffusion
approximation, the free membrane potential distribution is Gaussian:

f (u; µu, σu) =
1√

2πσu
exp

(
− (u− µu)

2

2σ2
u

)
. (4.15)

In the high-conductance state, the cumulative distribution function (CDF) has a
very similar shape to the (logistic) response function (Equation 4.3). In particular,
they have approximately the same derivative at their inflection point [for details,
see 232]. With the parameter transformation uin = Iin/gl and β = βugl, where
βu is the slope in the potential domain, the response function reads:

νout(uin) =
1

1 + exp (−βuin/gl)
. (4.16)

The slope of the CDF at its inflection point is

∂uF|u=0 = f |u=0 =
1√

2πσu
, (4.17)

whereas for the activation function it is

∂uin νout|uin=0 =
β exp (−βuin/gl)

gl(1 + exp (−βuin/gl))
2

∣∣∣∣∣
uin=0

=
β

4gl
. (4.18)

Equating the two creates a direct correspondence between the inverse tempera-
ture β and the width σu of the free membrane potential distribution:

β (σu) ≈
4gl√
2πσu

. (4.19)

In our case, with wexc = winh, τexc = τinh and 1/kB = βref, plugging in the expres-
sion for σu from Equation 4.2, the more precise expression for the temperature
in Equation 4.7 is given by

T =
βref

β
=

√
νexc + νinh

νexc,ref + νinh,ref
, (4.20)
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where νexc,ref and νinh,ref are the excitatory and inhibitory reference rate corre-
sponding to T = 1.

4.3.4 Entropy of spiking sampling networks

Networks of current-based LIF neurons can sample, to a very good approxima-
tion, from binary Boltzmann distributions

p (z) =
1
Z

exp
(
−E (z)

kBT

)
, (4.21)

with energy function

E (z) = −1
2 ∑

k,j
Wkjzkzj −∑

k
Bkzk. (4.22)

where W is a symmetric zero-diagonal matrix and B a bias vector [232]. The
associated neuronal response function represents a conditional state probability
and reads

p(zk = 1|z\k) =
1

1 + exp
(
−∑j Wkjzj − Bk

) . (4.23)

The synaptic strength wkj and input current Iin,k in the equivalent LIF network
can be related to the Boltzmann parameters Wkj and Bk via the slope of the
response function β (cf. Equation 4.3):

wkj =
Wkj

β

gl (τs − τm)

τs (1− exp(−1))− τm

(
1− exp

(
τref
τm

)) , (4.24)

Iin,k =
Bk

β
+ I0. (4.25)

Biases are implemented via a shift of the leak potential El. The entropy is given
by

S(pT) = ∑
z
−pT(z) log pT(z) . (4.26)

Depending on the base of the logarithm, the unit of S is either nats or bits.

4.3.5 Parameters of the Boltzmann distribution

For the entropy scaling in Figure 4.2, we use a 4-neuron network (for the layer
sizes, see Table 4.2) with random weights and biases distributed according to

Ŵkj ∝ N (0.0, 0.5), (4.27)

Wkj =
Ŵkj + Ŵjk

2
, (4.28)

Bk ∝ N (0.0, 0.5), (4.29)

(4.30)
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where N (µ, σ) is the normal distribution with mean µ and standard deviation σ.
The third and fourth neuron’s bias is set to ±1 to ensure one leak-over-threshold
and one leak-below-threshold neuron for Figure 4.2e.

4.3.6 NORB

The layer sizes of our hierarchical NORB networks is given in Table 4.2. In
order to reduce the pixelation in Figure 4.5a we do not plot the visible state
v ∈ {0, 1}3600 directly but instead show the activation probability p(v) that is
imprinted by the instantaneous state of the hidden layer:

pT=1(v|h) =
1

1 + exp (−Wvhh− Bv)
. (4.31)

The temperature schedule of the oscillating background case can be found in
Table 4.2. For the static background input we use the reference configuration
(Equation 4.14) and retrieve samples every 1/ fosc = 1 s in order to get an
equal-time comparison.

4.3.7 MNIST

The layer sizes of our hierarchical MNIST network is given in Table 4.2. In
Figure 4.8 we use a similar network structure to the one in Figure 4.5, with pa-
rameters from Leng et al. [260]. Background configurations are varied according
to Equation 4.9 as before and sine parameters are given in Table 4.2.

4.3.8 Kullback-Leibler divergence

The Kullback-Leibler divergence is a standard measure of the discrepancy
between two probability distributions. Intuitively, it measures how many bits are
wasted when encoding a distribution Q according to the optimal encoding for
distribution P. For a discrete probability distribution P with respect to another
Q, this divergence is defined as:

DKL (P||Q) = ∑
i

P(i) log
(

P(i)
Q(i)

)
. (4.32)

Note that Q must be strictly positive, whereas P may have states with zero
probabilities associated with it.

4.3.9 Indirect sampling likelihood

We quantitatively evaluate how well the samples generated by our networks
reflect the target distribution by calculating the indirect sampling likelihood
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(ISL) described in Breuleux et al. [261]. The ISL measures the similarity between
the generated samples and samples from the dataset that were not shown during
training (test set). Each test sample yj and generated sample xi is a d-dimensional
binary vector, whereby each xi is given by the instantaneous visible layer activity
v ∈ {0, 1}d.

For retrieving the ISL, a density model P is trained on N generated samples,
and the likelihood of each test sample under P is calculated. For d-dimensional
binary vectors, a non-parametric kernel density estimator is suitable:

P(y) = 1
N

N

∑
i=1

d

∏
j=1

γ
1yj=xij (1− γ)

1yj ̸=xij , (4.33)

which is essentially a mixture model representing the xi. The hyperparameter
γ ∈ [0.5, 1[ determines how much the empirical distribution over xi is smoothed
out (we use γ = 0.95).

The two exponents denote identity functions that compare an individual test
to a generated sample and count the identical and different pixels, respectively.
Intuitively, the ISL penalizes each test sample far from any generated sample.

In Figure 4.8f, we plot logP(y) averaged over all test samples versus the
number of samples. This time course reveals how many main modes of the
target distribution are well covered and how fast. Note that the ISL does not
necessarily evaluate how diverse the network output is, but rather how well the
test set is covered — repetitive samples would yield a high ISL compared to a
not very diverse test set.

For orientation, we show the ISL curves for the optimal sampler (OPT) and
the product of marginals (POM) (see Figure 4.8f). The optimal sampler draws
randomly, without replacement, from a pool of 105 images that were gener-
ated with Adaptive Simulated Tempering (AST) [259], a complex algorithm
that is constructed for optimal mixing properties. The POM sampler generates
examples by independently sampling each vector component from its respective
intensity distribution over the training set. Hence, the marginal probability distri-
bution for each component is preserved, and correlations between components,
i.e., the overall structure, are discarded. Note that since these off-class samples
overlap significantly with all image classes, they can be associated with higher
ISL values than a series of samples from a single mode.

One known drawback of the ISL is that it does not represent an accurate
reflection of a human’s perceptual judgment of image quality [262]. Therefore,
we additionally checked the sampling quality by eye and evaluated the activation
probability of the visible layer as shown in Figure 4.8a and Figure 4.8b. Based
on this, we picked a point on the fosc = 0.5 Hz plane with an intermediate ISL
value for display in Figure 4.8a, Figure 4.8b, Figure 4.8e and Figure 4.8f.
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4.3.10 Mode duration as a measure of mixing speed

We calculate the mode duration as the average time between two mode switches,
where the current mode is defined as the most active label unit, as measured by
its probability inferred from the hidden layer activity. The label layer reflects the
network’s interpretation of its own current visible state v and as such requires the
network to be self-consistent. In practice, we did not find significant deviations
(see Figure 4.8a and Figure 4.8b) from this assumption. Due to computational
constraints, we only simulated 1000 s in a single run and averaged over multiple
simulations for improved statistics. Note that conventionally, mixing speed
is measured by the area under the autocorrelograms of the network neurons’
activity, where a smaller area corresponds to faster mixing. For comparison,
we also recorded this measure from the inferred spike probabilities of the
label neurons, which confirmed the speed-up in mixing with oscillations (see
Figure 4.10). However, when classes are discrete, like in the MNIST data set,
mode durations are a sufficient and intuitive measure of mixing speed.
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Figure 4.10: Layerwise autocorrelograms indicate improved mixing. (a) Mean Pearson
autocorrelation coefficient calculated from the inferred spike probability of the label
layer neurons of the MNIST network in Figure 4.8 — for oscillating background (red)
and constant background at T = 1 (blue). (b) Same as (a), for the visible neurons.
Autocorrelation is reduced more quickly for the oscillating setup, leading to a smaller
area under the curve, indicating faster mixing.

4.3.11 Simulation details

The simulations of sampling experiments with current-based neurons were
performed with sbs [263] version 1.8.2 with slight modifications. This framework
was executed with PyNN [15] version 0.9.1 and NEST [264] version 2.14.0 with a
time resolution of ∆t = 0.1 ms.

4.4 discussion

Oscillatory activity is a naturally emerging phenomenon in spiking neuronal
networks. As it is well-known that background input increases the variability
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of neuronal firing, oscillatory background implies oscillatory variability. In the
context of ensemble theory, this creates a direct link to the notion of temperature.
We have shown that the level of background input determines the sampling
temperature in networks of LIF neurons and demonstrated that this effect leads
to functional advantages in sampling networks when oscillatory background
input is present. This finding holds in the case of current-based synaptic interac-
tions, for which we have presented an analytical treatment of cortical oscillations
as tempering. We have furthermore shown that oscillations improve sampling
from the distribution represented by the network (i.e., a prior distribution, see
Figure 4.5 and Figure 4.8) as well as for dealing with uncertainty evoked by
input (i.e., posterior distributions, see Figure 4.7.) Our results suggest that the
ubiquity of oscillations in human and animal brains provides a clear benefit
for behaviorally relevant computations, which is elucidated by considering the
analogy to simulated tempering.

related theoretical work Our considerations rest on the assumption
that for fixed parameters, spiking networks sample from a stationary distribution.
This assumption has been shown to hold under only mild constraints for a
large class of neuron and network models in Habenschuss et al. [265]. They
also showed that in the presence of periodic input, a phase-specific stationary
distribution exists, influenced by the network parameters and the properties
of the inputs. The existence of such a distribution naturally leads to questions
about its specific nature, given specific ensemble dynamics such as those arising
in networks of connected LIF neurons and its functional properties for cortical
computation. In this work, we have shown that the phase-dependent component
is a temperature scaling of a Boltzmann distribution, with periodic background
alternating between its exploration and exploitation.

An alternative way of promoting mixing was proposed by Leng et al. [260].
There, short-term synaptic plasticity was shown to weaken local attractors. This
mechanism has a similar effect but is different from a change in temperature.
Since this form of plasticity only affects active synapses, it only suppresses
active local modes rather than flattening the entire distribution. These dynamics
ensure that local modes can be abandoned quickly, as synapses can be weakened
significantly by only a few spikes, but they come at the cost of changing the
sampled distribution. In contrast, cortical oscillations induce a well-defined
temporal structure that promotes an undistorted readout. For mathematical
tractability, we considered LIF neurons with current-based synaptic interactions
and network structures that are easily amenable to contrastive Hebbian training.
This suggests that the computational role we propose for cortical oscillations is
generalizable to a diverse set of cortical structures and their associated functions.
Indeed, it has already been observed that oscillations appear to have a similar
function throughout the cortex [266].

A similar function of brain rhythms related to slower oscillations was pro-
posed by Sohal et al. [246], who suggested on theoretical grounds that during
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the hippocampal theta cycle, modulation of GABAB synapses performs a process
similar to simulated annealing in a model of population dynamics. Such a mech-
anism was shown to be advantageous for sequence disambiguation [245]. In this
work, we propose that temperature control takes place on the level of individual
neurons via input regardless of the synapse type. Thus, the mechanism we
propose for incorporating such annealing in neural networks has a much more
general scope. Savin et al. [248] showed the benefits of rhythmic changes of
neuron excitability in a model of probabilistic memory recall, resulting in a
similar kind of annealing as in our model. Our work shows how such a schedule
of excitability changes arises in spiking neural networks via background input,
thus suggesting an implementation of this mechanism on the cellular level.

One key aspect of previous models is their reliance on excitability modulation
of a limited subset of inputs (e.g., recurrent vs. feedforward inputs [248]).
While distinct modulations might arise in biological neurons when inputs target
different neuronal compartments, our model shows that this constraint is not
necessary to leverage the computational benefits of oscillations as global changes
of neuronal input-output behavior suffice. Our model also does not rely on a
specific synapse or receptor type, and the proposed mechanism can play out
across different oscillatory frequency bands, thus giving our results a very
general scope.

The results in this work suggest that oscillations of the background input
promote mixing. Previous theoretical work has shown that other sampling
methods such as Langevin [267] and Hamiltonian Monte Carlo [249] sampling
can also serve this purpose. These studies use rate-based models to sample from
continuous-valued probability distributions such as multivariate Gaussians. Our
models differ from this approach in two important ways. First, the sampling
models based on firing rates [267, 249] require specifically tuned network weights
to accomplish rapid sampling. We have shown that oscillating background
input can speed up mixing without requiring specifically tuned weights, thus
providing our proposed mechanism with a broader scope. Second, our model is
based on more complex network state distributions, defined over binary-valued
random vectors instead of continuous values. Importantly, these values relate
directly to spiking activity. Langevin sampling and Hamiltonian Monte Carlo
are not directly applicable to this case. However, it could still be the case that
these mechanisms complement each other in the cortex, potentially acting on
different timescales.

related experimental work and model predictions Across the
entire spectrum of cortical rhythms, individual components of these oscillations
are characterized by their frequency and amplitude. We have shown that an
effective tempering schedule can be achieved for sinusoidal waves across a wide
range of frequencies and amplitudes, roughly corresponding to the range lying
between slow and alpha waves [238]. For higher modulatory frequencies, the
sampling quality quickly deteriorates as the internal network dynamics cannot
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react quickly enough to the changes in temperature. However, the soft upper-
frequency limit is not fixed and depends on model parameters and the network
distribution. In particular, the speed at which the network can change its state
depends on the ratio of the dominant time constants of individual neurons and
synapses (here on the order of 10 ms) to the duration of a cycle. For faster dy-
namics, as often observed in vivo (e.g., membrane time constants [268]; synaptic
time constants [269, 270]; refractory periods [271, 272]), correspondingly faster
oscillations can be accommodated. For example, oscillations in the gamma band
could be employed by ensembles with synaptic time constants and refractory
times in the order of a few milliseconds, as discussed in recent sampling-based
modeling approaches [249, 273]. Thus, this form of tempering can be exploited
both for inference in the awake state, where oscillations are typically fast, and
during sleep, for functions such as memory retrieval and consolidation [274,
242–244].

Concerning experimental neuroscience, the suggested computational mecha-
nisms relate to various physiological and psychophysical phenomena, ranging
from single-neuron activity to behavior. The tempering in our model modulates
the gain of the neuronal transfer functions, similar to the stochastic sampling
of a scene through an oscillatory modulation of attentional gain [242, 275],
particularly through top-down input [276, 277]. The stochasticity in our model
by which stored memories are selectively recalled is mirrored in the random-
ness of hippocampal replay during sleep that goes beyond the more typical
behavior [278], or in free memory recall in humans [279]. The oscillatory recall
that supports cognitive computation in our model can also be related to creative
thinking [280], to midbrain oscillatory activity during stimulus disambiguation
[281], to mind wandering [282] and to local sleep [283].

The oscillation frequency, and thus the rate of temperature change, carries
another subtle effect. For slow waves, the effect of a single transition from maxi-
mum to minimum temperature is similar to simulated annealing [284]. As the
network effectively has more time to relax towards its corresponding thermody-
namic equilibrium, it will, at least statistically, tend towards the global minimum
energy state. On the other hand, faster oscillations are more akin to tempered
transitions [285, 286]. Indeed, the extreme scenario of quenching (extremely
rapid cooling) could be implemented by switches between synchronized cortical
up and down states [236, 254, 253]. Thus, different oscillatory phenomena in
the brain can shift the focus from finding a small set of maximum probability
modes to finding a larger range of relevant modes. Similarly, the oscillation
amplitude can also control the effective breadth of the exploration space, with
larger maximum rates promoting larger jumps between more dissimilar network
states.

The benefits of cortical oscillations also extend to other facets of Bayesian
inference. For example, when the state distribution is constrained by partial
observations, tempering helps explore the conditional distribution and find
multiple ways to solve this pattern completion problem. Similarly, this can
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help find multiple solutions to a given problem, such as assigning multiple
categories to particular input patterns. Importantly, this also highlights the
potential benefits of background oscillations during learning (see also Capone
et al. [287]), where exploration plays an essential role.

Our results demonstrate that oscillations provide an additional benefit to
improved mixing: they serve as a reference for reading out computational
results, reducing the amount of data requiring processing, and facilitating the
temporal organization of neural computations. Furthermore, they can also serve
as a means of input filtering, increasing susceptibility to coherent stimuli [288]. In
general, it is well known that information encoding via a background oscillation
can be found in the brain, for example, in the hippocampus [289], where place
cells convey information by firing earlier or later relative to the theta rhythm. A
similar form of coding takes place in our models, as the network distribution
changes during each cycle of the background input.

Furthermore, cyclic background input results in the network generating a
stream of candidate solutions, with one such state arriving in each cycle. This
leads to a form of computing in discrete steps, as computations are structured
into episodes defined by background oscillations. A similar type of structured
computation has been suggested to take place in monkey and human visual
brains during the processing of visual inputs [290]. These experiments showed
that shifts in attention were aligned to beta-band oscillations, and every shift took
place within a single cycle. In our model, we find similar shifts of the state taking
place within each cycle as the temperature decreases. Temperature changes from
oscillations predict that the time course of the network state variability is coupled
to the oscillation phase, as we have shown in our model. This suggests that a
similar coupling could be found in sampling-based computations in the brain.
Jezek et al. [291] have given a hint that this can indeed be the case in hippocampal
circuits by showing that ambiguous interpretations of the network input are
more likely in the first half of the theta cycle. However, this data is rather coarse,
thus, more detailed experimental data are required to constrain sampling models
based on background oscillations adequately.

In particular, experimental data could elucidate whether cortical networks
are tuned to an unbiased sampling regime. In our model, achieving unbiased
sampling requires tuning of neuron parameters and the background oscillation
time course. A model more closely matching biological networks would help to
either corroborate this finding or provide more insight into how such a tuning
might be achieved in brain networks. The closer matching could be achieved,
for example, by incorporating additional features such as short-term plasticity,
neuronal adaptation, and more specific inhibition (see [292] for an example). In
general, the balance between excitation and inhibition is of renewed interest in
this context, as it connects directly to experimental data. Individual neurons
or neuron populations can, for example, use unbalanced rates to implement
biases for their associated random variables. Moreover, we expect that different
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networks tune their background inputs to different balances, depending on
which biases are beneficial for their respective tasks.

The experiments of Jezek et al. [291] provide evidence for a sampling-based
representation of spatial beliefs in the hippocampus, with one sample drawn
in each theta cycle. Another important account of place cell activity states that
the activity within different parts of each theta cycle corresponds to different
places of the animal within its movement trajectory (e.g., O’Keefe et al. [289]
and Pfeiffer et al. [293]). This view is consistent with a sampling strategy that
samples trajectories (temporal sequences) instead of static values, where one
trajectory sample is drawn per cycle. While the analysis of trajectory sampling
in spiking neural networks is beyond the scope of this work, we note that the
general sampling framework can be extended to temporal sequences [265] in
which a phase-dependent probability distribution arises from external, phase-
dependent input. A model of such a form of sequence sampling could be used
for both modeling the phase-dependent activity of neurons encoding previously
visited locations [289] as well as for sampling possible future trajectories [293].
For the latter case of sampling diverse sequences within one theta cycle, faster
background oscillations (e.g., alpha-band), superimposed on the theta activity,
could provide rapid sequential annealing to the individual sequence elements.

In general, our model relates to simple experimental observations at multi-
ple levels. For example, with respect to the activity of single neurons or small
populations, the strength and frequency of cortical oscillations should directly
influence the decorrelation of neuronal activity (see also Figure 4.10). At a more
behavioral level, oscillatory changes in background activity would influence the
frequency of perceptual switches. For example, for multi-stable or incomplete
images (such as those in Figure 4.7), perceptual switches should happen in
phases of high activity (i.e., during cortical up-states), as measured, for example,
by EEG data. We would thus predict a monotonic relationship between the fre-
quency of switches between up and down states and the frequency of perceptual
switches.

In this work, we have used sinusoidal modulations of the background rates.
This represents a natural choice, as any other periodic waveform can be described
via Fourier synthesis over such elementary waveforms. Particular time courses of
the background input would influence and possibly even benefit computations
in the network, depending on the circumstances and nature of the task that
needs to be solved. For example, prolonging the low-temperature phase could
allow valid samples to be read out over a longer period of time. In contrast, more
frequent high-temperature phases would prevent the network from clinging
to a possibly wrong belief. The background rates could even take on only two
distinct values and alternate between high background activity (resulting in a
high temperature, allowing the network to traverse the state space) and low
background activity (where the network converges onto a single mode). This
provides a link to experiments that study the computational role of cortical
on/off states. For example, Engel et al. [294] report that monkeys are more likely
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to correctly recognize subtle visual cues if they happen during on-states. This
aligns with our proposed computational role of cortical background activity,
as networks need a stronger background to be able to change their current
belief and react to small changes in their input. Note also that these different
phases need not be strictly cyclic but might underlie external control, allowing
external circuitry to flexibly guide computations in cortical networks according
to momentary cognitive demands.

applications Recent years have seen an increasing interest in using spike-
based computation on specialized hardware to perform energy-efficient com-
putations [1]. This has spurred efforts to develop models which allow efficient
learning and inference with spiking neural networks. Some of these platforms
explicitly exploit the stochasticity of their components for computation [295, 296].
By offering a mechanism for modulating neuronal stochasticity, the oscillatory
background can enhance computation in stochastic neuromorphic networks, for
example, in generative spiking models [233, 297].

Periods of faithful matching between the sampled and target distribution
mark the implicit time windows in which computational results can be read
out and manifest as constrained intervals of the entire cycle (also see Figure 4.3
and Figure 4.6). However, it is important to note that the length of these time
windows depends on the underlying distribution, the time course of the back-
ground modulation, and the time constants in the network. The time window
suggests that such oscillations may also improve the performance of networks
used for constraint satisfaction problems [298–300]. These are solved by shaping
the stationary distribution of the network so that solution states have a high
probability. However, it is not clear at any given point in time whether the
current state is a solution candidate or a transitional state. In contrast, in an
oscillation-driven tempering schedule, it is known that solutions are likely at
low-temperature phases.

Overall, the parallels with a variety of empirical phenomena and the advan-
tages for spike-based sampling demonstrated here make neuronal oscillations
not only a likely mechanism for supporting stochastic computations in the brain
but also a useful tool for fulfilling this same function in biologically inspired
neural networks.
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5
C O N C L U S I O N S

“If the figures obtained from the satellite were simply the product of
my deranged mind, they could not possibly coincide with the second
series. My brain might be unhinged, but it could not conceivably
compete with the Station’s giant computer and secretly perform
calculations requiring several months’ work. Therefore if the figures
corresponded, it would follow that the Station’s computer really
existed, that I had really used it, and that I was not delirious.”

Stanislaw Lem in Solaris, 1961

This thesis explores spike-based neural networks, with a particular focus on
network effects and emergent functions. Situated at the intersection of neuro-
science and machine learning, this work has the potential to drive innovation
in both fields [1, 301]. The research was guided by three overarching questions,
which were addressed through the development of novel models and compu-
tational approaches. By approaching these themes indirectly through specific
research problems, this thesis enhances the understanding of complex issues in
this interdisciplinary field from multiple perspectives.

Chapter 3 : biologically inspired enhancements to a synaptic

plasticity model

How can machine learning principles be expressed through biological mechanisms and
incorporated into biologically plausible models?

We integrated eligibility propagation (e-prop) [154] into NEST [8], a spiking
neural network simulator specialized for large-scale network simulations. E-prop,
a biologically plausible synaptic plasticity model for spiking recurrent neural
networks, approximates the performance of backpropagation through time
(BPTT) [176]. It already provides biologically plausible solutions for machine
learning features such as gradient-based optimization, regularization, weight
optimization, credit assignment, and loss functions. This learning rule belongs to
the class of three-factor models, supported by substantial experimental evidence
[174], which combine classical Hebbian learning (pre- and post-synaptic terms)
with an additional modulatory signal [for a review, see 175, 76]. E-prop further
employs surrogate gradient methods to enable gradient-based training of spiking
neural networks, approximating gradients despite the non-differentiable nature
of spike-induced membrane voltage resets [for a review, see 191].
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Porting the algorithm from the machine learning library TensorFlow [177] to
NEST involved translating its synchronous, time-driven weight update scheme
into an asynchronous, event-driven scheme better suited to NEST’s architecture.
This transition accommodates the sparse, spike-driven nature of biologically
plausible networks and promises improvements in computational efficiency. Us-
ing two proof-of-concept tasks from [154], we showed that our event-driven im-
plementation precisely reproduces the results of the original time-driven model.
Adapting the plasticity rule to the simulator’s built-in biologically inspired con-
straints revealed certain shortcomings in the original model’s biological realism.
For instance, the original model assumes instantaneous signal transmission on
some connections, neglecting delays. To address this, we introduced connection
delays and restored the original model’s behavior by shifting the histories used
for weight updates. This modification facilitates future experiments without the
compensatory shift and with varying connection delays. Moreover, the original
model employs a batch learning paradigm from classical machine learning,
processing multiple samples in parallel and averaging the resulting weight
updates. To replicate the original model’s behavior while enhancing biological
plausibility, we replaced this approach with the sequential processing of batch
samples, summing updates to compute the final average.

We extended the synaptic plasticity model by replacing machine learning-
inspired features with biologically plausible mechanisms and introducing new
realistic components. By removing the reset of neuron dynamics and the eligibil-
ity trace filter, we enabled continuous dynamics. The addition of a learning signal
generator and dynamic firing rate regularization allowed for weight updates
with every spike, replacing fixed updates after each sample and eliminating the
need for a biologically unrealistic central clock mechanism.

The biological mechanism of connection delays revealed that certain loss
functions, such as cross-entropy loss, necessitate additional communication
between network components. This insight prompted us to explore alterna-
tives, ultimately leading to the adoption of mean squared error for classification
tasks. The simulator’s biologically inspired constraint, which mandates that all
information must be locally available unless transmitted through continuous
signals or spikes, exposed a biologically unrealistic aspect of the original model:
synapses depend on the output neuron’s membrane voltage time constant to
compute the eligibility trace filter. To address this, we decoupled the eligibil-
ity trace filter from this time constant. Additionally, we introduced smoother
and more fine-tuned surrogate gradients, which are biologically more realistic
compared to the original piecewise linear surrogate gradient.

Finally, we combined all the above features and adopted a neuron model with
a full reset of the membrane voltage. We conducted experiments to constrain
the weights — separately for input, recurrent, and output layers as well as for
all weights collectively. These constraints included fixed weight signs and Dale’s
law together with a biologically realistic excitatory-to-inhibitory ratio.
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How does function emerge from biological and artificial mechanisms?

In our biologically enhanced model, the function of “learning” emerges from
the interplay of multiple biologically inspired mechanisms. We evaluated the
contribution of each biological feature to learning performance using the widely
recognized neuromorphic MNIST task [183], a benchmark adapted from classi-
cal machine learning for spiking neural networks. Learning performance was
assessed by averaging the error across iterations during the test phase following
training.

Several features contributed to improved learning performance, including
mean squared error classification, scaled linear surrogate gradients, scaled ex-
ponential surrogate gradients, and the combination of all features with full
membrane voltage reset. Additionally, fixed weight signs and Dale’s law com-
bined with a biologically realistic excitatory-to-inhibitory ratio applied to the
recurrent weights, further enhanced learning performance. Continuous neuron
dynamics did not influence learning performance, while the other features led
to slight reductions. Nevertheless, the overall test error consistently remained
below 0.12, demonstrating effective learning.

Continuous dynamics eliminate the need for additional operations to reset
neuron and synapse dynamics, simplifying the model. Dynamic firing rate
regularization enables the network to respond more flexibly to changes in
spiking activity and adapt sensitively to recent data. Introducing a dedicated
signal allows for the flexible opening and closing of learning windows. Together,
these three features — along with inter-spike integration — enable the processing
of variable-sized samples, moving the model closer to real-world data processing
capabilities.

How can principles underlying biological mechanisms be leveraged to advance machine
learning algorithms?

Transforming biological phenomena into innovations for machine learning re-
quires several key steps. As discussed in Chapter 2, biological phenomena can
be described using mathematical models. While mathematical derivations pro-
vide exact solutions, they often rely on significant simplifications, limiting their
capacity to capture the complex interactions observed in biological systems.
Simulations bridge this gap, enabling the empirical exploration of such complex-
ities. Computational models and simulations, as emphasized in Chapter 2, are
particularly valuable for studying neural processes that analytical methods alone
cannot fully address. To effectively answer research questions, modelers must
carefully balance biological realism with the computational simplicity necessary
for large-scale simulations.

The simulations presented in Chapter 3 allowed us to identify several biologi-
cal features that enhance learning performance, making them strong candidates
for improving machine learning algorithms. In machine learning systems, where
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performance is critical, computational efficiency is as important as accuracy. To
evaluate the computational efficiency of each feature, we measured the runtime
of each simulation across the training and test iterations. Our results showed
that biologically realistic sparsity in network connections significantly improved
computational efficiency. While most features — such as continuous neuron
dynamics, mean squared error classification, and decoupling the eligibility trace
filter from the output — did not increase runtime, the other features led to run-
time increases of up to 16 %. These minor increases could partly be attributed to
altered network activity, which may prolong simulation times. Nevertheless, our
biologically realistic plasticity model remained computationally feasible.

The algorithmic formulation of the biological mechanisms presented here
enables seamless integration of these underlying principles into machine learn-
ing algorithms. This allows the emergent functions of the biological features
identified to provide tangible benefits to machine learning systems.

Chapter 4 : spike-based sampling facilitated by oscillatory back-
ground activity

How can machine learning principles be expressed through biological mechanisms and
incorporated into biologically plausible models?

We consider the interpretation of spiking activity in the cortex as probabilistic
inference via sampling, a perspective that has gained substantial experimental
[226–228] and theoretical [229–233] support over the last decade. Mathematically,
these models are closely related to Gibbs sampling, which often struggles to
transition between states of high probability. This challenge, referred to as
the “mixing problem”, arises particularly when networks are trained on high-
dimensional data, where strong attractor states dominate the representation.

An algorithm known as “simulated tempering” introduced by Marinari et al.
[256] in the context of Markov-chain Monte Carlo sampling for Ising models,
addresses the mixing problem. Ising models are closely related to spike-based
sampling, both in their dynamics and in the distributions they sample [232].
We demonstrate how the rate of background spike activity functions as an
effective temperature, with oscillations in this rate being interpretable as a form
of simulated tempering. Firing rate oscillations across multiple frequency bands
and amplitudes are a naturally emerging phenomenon in spiking networks
[234–237] and have been extensively studied in the mammalian brain [238, 239].
Notably, these oscillations appear to play a critical role both during awake
perception [240–242] and during sleep [243, 244], highlighting their fundamental
importance in cognition and learning.

We establish a rigorous mathematical link between spike-based probabilistic
inference and cortical oscillations, two phenomena that have not been explicitly
connected in the context of spiking neural networks. Through simulations, we
provide a proof of concept showing that oscillations robustly realize the same
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functionality as tempering across different frequency bands. We demonstrate
this in various networks and tasks, including a Boltzmann network with a few
neurons, the NORB dataset [257], and the MNIST dataset [258]. To evaluate the
quality of the sampled distributions, we use machine learning metrics such as
Kullback-Leibler divergence and indirect sampling likelihood [261], and measure
the duration the network remains in a high-probability state, referred to as a
“mode”.

How does function emerge from biological and artificial mechanisms?

Our results demonstrate that cortical oscillations can fulfill a functional role simi-
lar to simulated tempering: enabling mixing by helping the circuit escape strong
attractors and transition efficiently between different high-probability network
states. Unlike short-term plasticity [260], oscillations maintain an undistorted
distribution. Brain waves rhythmically modulate exploration and exploitation
in the state space of learned representations by periodically flattening the en-
ergy landscape through an increased effective temperature. High-frequency
oscillations facilitate fine-grained sampling of the representation, while larger,
high-amplitude oscillations enable coarser sampling. Thus, these oscillations
accelerate sampling, enhance the network’s generative properties, and support
efficient stochastic computations.

How can principles underlying biological mechanisms be leveraged to advance machine
learning algorithms?

The presented analogies between oscillations and simulated tempering, com-
bined with the extensive literature on the role of oscillations in various cognitive
functions, offer valuable inspiration for innovative machine learning algorithms.
For instance, oscillations can improve the handling of input uncertainty in the
context of sequence disambiguation [245] by enabling rapid switching between
interpretations of ambiguous data, which is essential for efficient learning and
sampling-based probabilistic inference. Experimental evidence strongly links
oscillations to memory formation and retrieval [274, 242–244] and attention [242,
275–277]. Furthermore, oscillations can serve as temporal references for organiz-
ing inputs and structuring them into discrete episodes [290]. Our mathematical
and algorithmic formulation of brain oscillations allows for their straightforward
integration into machine learning algorithms.

reproducibility

Chapter 2 highlights the growing importance of reproducibility in computational
neuroscience, emphasizing the value of open-access data, models, and code.
Adhering to open standards, contributing actively to community resources, and
employing practices such as containerized distribution and version-controlled
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software enhance transparency and facilitate collaboration. These collective
efforts are fostering the development of a robust ecosystem of simulation tools,
enabling the creation of integrative computational models in neuroscience.

In the research projects presented in this thesis, we adhered to these standards.
In the project on the event-driven implementation of e-prop (Chapter 3), we
first reproduced the original results exactly using a different computational
scheme before extending the model further. Both implementations are provided
as open-source code within the NEST simulator, accompanied by comprehensive
tutorials on their usage. The project on cortical oscillations (Chapter 4) has been
published as an open-access codebase on Zenodo.

limitations

Although the algorithms presented in this work are broadly applicable, they
were demonstrated on a limited set of benchmark tasks, serving primarily as
proofs of concept. Each benchmark comes with its own inherent biases, which
may influence the generalizability of the results. Furthermore, the algorithms
were implemented with only a limited number of neuron and network models,
which do not fully capture the diversity of biological systems or potential use
cases.

Our findings suggest that the dynamics — and consequently the learning
performance — are sensitive to variations in neuron and network parameters,
as well as the hyperparameters of the algorithms. Testing the robustness of
these algorithms against parameter changes and fine-tuning the parameters for
optimal performance remains an intriguing direction for future research.

Additionally, the rapid advancements in the field of machine learning have
introduced more sophisticated metrics for evaluating performance, which could
further refine the evaluation of these algorithms.

outlook

Advancements in AI demonstrate that large-scale networks exhibit qualitatively
different performance compared to small ones, underscoring the need to study
biologically realistic models at scale. Such studies are essential for understanding
system-level learning. Future research should therefore explore the scalability of
these models under both strong and weak scaling scenarios and identify tasks
that challenge large-scale networks. A key open challenge is finding a scalable,
real-world task of neuroscientific relevance or one inspired by behavioral studies.
Video frame prediction, for example, is a promising candidate that could leverage
the models’ strengths in temporal processing.

The abstract models developed in this work could be refined to incorporate
brain-area-specific architectures, enabling a deeper evaluation of how structural
constraints influence functional outcomes. Constraining parameters and net-
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work architectures with experimental data would enhance both the biological
relevance and predictive accuracy of these models. Additionally, the oscillatory
dynamics could be improved to align more closely with biological plausibility,
guided by experimental data such as EEG recordings, which provide accessi-
ble measurements of brain wave activity for constructing realistic oscillatory
patterns.

Our implementations serve as benchmarks for other coding platforms and
provide a foundation for deployment on neuromorphic hardware, particularly
if their computational efficiency surpasses that of conventional systems. These
models can assist neuromorphic hardware development by serving as a reference
for verification, ensuring systems are built correctly, and validation, confirm-
ing their performance matches or exceeds traditional computing standards.
Although designed with hardware-agnostic principles, adapting and optimizing
the algorithms for neuromorphic hardware remains a critical area for future
exploration.

Finally, measuring energy consumption on conventional computing archi-
tectures is an important direction for assessing the models’ efficiency and
sustainability, as well as providing a basis for comparison with alternative
platforms.

concluding statement

This dissertation demonstrates the implementation of biologically inspired algo-
rithms in a widely used neural simulation platform, enhancing the learning and
sampling functions of spiking neural networks for diverse applications. Balanc-
ing biological plausibility and machine learning performance while leveraging
sparsity and locality, the algorithms are primed for future implementation on
neuromorphic hardware. The findings highlight the computational benefits of
biologically grounded constraints, enabling scalable and efficient, brain-inspired
AI systems. This work bridges machine learning and neuroscience, deepening
our understanding of processes underlying cognitive functions.
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