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children from affluent families experience faster income growth, even conditional on 

their own characteristics. We propose a lifecycle estimator that captures this pattern and 

performs well across different settings. We apply the estimator to study mobility trends, 

including for recent cohorts that could not be considered in prior work. Despite rising 

income inequality, intergenerational mobility remained largely stable in both countries.
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1 Introduction

A key statistic to characterize inequality is the intergenerational elasticity of income (the IGE),

an inverse measure of intergenerational mobility. But while the IGE is ideally based on lifetime

incomes for two generations, most studies have to rely on short snapshots at specific ages. The

main challenge, therefore, is to account for the measurement errors introduced by the use of

such snapshots. While the literature has made progress on this front, concerns persist about the

robustness of available estimates and the reliability of comparisons of IGEs across place or time

(Mogstad and Torsvik 2023). For example, recent US estimates of the IGE range from 0.35 to 0.65,

despite building on similar methodological insights (e.g., Chetty et al. 2014a, Mazumder 2016).

We propose a new lifecycle estimator of the IGE in incomplete income data that is less sensitive

to the age at which child income is measured. Our estimator models income profiles as a function

of age and education, but also allows income growth to vary with parental background conditional

on own characteristics. We use long income series from Swedish registers and the Panel Study of

Income Dynamics (PSID) to illustrate that these family e�ects on income growth are sizable, and

to verify that the estimator performs well across di�erent data settings. We then apply the estimator

to study trends in intergenerational mobility for cohorts born between the 1950s and 1980s, in both

the US and Sweden.

We start by analyzing the key components of the income process that a�ect intergenerational

estimators: (i) income growth explained by an individual’s own characteristics, (ii) transitory

noise, and (iii) income growth unexplained by own characteristics. Crucially, this unexplained

income growth correlates within families: within education or occupation groups, children from

more a�uent families tend to have lower initial incomes but steeper income growth. For example,

college-educated sons with fathers from the top quartile of the Swedish income distribution earn

less in their mid-20s, yet have around 40 percent higher incomes by age 40, compared to college-

educated sons from bottom-quartile families. These findings matter for the estimation of income

mobility but also for the broader debate on the properties of income processes, supporting the

notion that income grows at an individual-specific and deterministic rate (Guvenen 2009).
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We then analyze whether existing methods account for these properties of the income process.

Two strategies can be distinguished. One option is to formalize the relation between (observed)

annual and (unobserved) lifetime income in an errors-in-variables model, as in Haider and Solon

(2006). Alternatively, one may estimate the shape of income profiles over the lifecycle, using

partially observed profiles and observable characteristics, as in Hertz (2007). Following the first

approach, most applications seek to reduce lifecycle bias by measuring incomes around midlife.

Although this rule of thumb is useful, the “ideal” age to minimize bias is typically unknown, and the

selected age ranges vary considerably across studies (see Table A.1). Moreover, midlife incomes

are not observed for recent birth cohorts.

Our proposed estimator exploits the available income information more fully. We first estimate

income profiles based on standard observables, such as age and education (as in Vogel 2007 and

Hertz 2007), to predict individual income at unobserved ages. However, we also account for the fact

that children from a�uent families experience steeper growth conditional on those observables, and

show that this reduces the sensitivity of mobility estimates to the age at which income is observed.

Specifically, by controlling for the interaction between parental income and child age, we reduce

the correlation between the prediction error in child income and parental income – a key condition

for unbiased estimation of the IGE. Alternatively, we allow the child’s income growth to depend

on their income level, to capture the “fanning out” of income profiles over age (Creedy 1988). We

then predict complete lifecycle income profiles and estimate the IGE in lifetime income.

In other words, before estimating the association of parent to child income (the intergenerational

regression), we first study its relation to the child’s income growth. We show that the proposed

lifecycle estimator performs well in both Swedish and US data, closely tracking a benchmark

estimate based on lifetime incomes. The estimator is largely robust to the exact age range or the

number of income observations available per individual and, therefore, promises to be applicable

in a wide range of settings. In contrast to current practice, it makes use of all available income

information. The estimator is particularly useful for analyzing mobility for recent cohorts, whose

incomes are observed only at younger ages. Our main analysis thus relies on a parametric first-step
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model, including predictors that are known sources of lifecycle bias and commonly available in

standard data sets. However, since this first step is essentially a prediction problem, alternative

data-driven approaches might perform as well or better. We show that in our data simple plug-in

estimators tend to perform worse than our parametric specifications, but future research could

explore the potential of more tailored implementations.

Finally, we apply the estimator to study mobility trends in Sweden and the US. Our objective

is three-fold. First, we examine whether prior estimates may be systematically biased. Second,

we estimate mobility trends for younger, more recent birth cohorts – which are especially relevant

from a policy perspective – exploiting that our method works well even if incomes are observed

only at an early age. Third, this application moves beyond the ‘’idealized data setting” used in the

preceding analyses, making it a more practical reference for other researchers interested in applying

the estimator. For Sweden, accounting for lifecycle e�ects leads to di�erent conclusions on how

mobility has developed over time. Basic fixed-age estimates suggest that mobility declined sharply

between the 1950s and 1970s cohorts. Accounting for lifecycle e�ects, however, yields much more

stable mobility estimates over these cohorts, and a slight increase for those born in the 1980s.

Thus, Sweden’s comparatively high level of income mobility has remained a persistent feature in

the second half of the 20th century.

For the US, failing to account for lifecycle dynamics leads to an overestimation of income

mobility for cohorts born in the 1980s, who are only observed at young ages. A naive estimator

would thus falsely suggest a sharp increase in mobility. Our lifecycle estimator produces larger

and more stable IGE estimates, suggesting that mobility remained remarkably constant over recent

decades in the US. Our findings therefore contrast with the hypothesis that mobility must have

plunged for children born in the 1980s (Putnam et al. 2012), and the observation that socioeconomic

gaps in parents’ monetary and time investments did increase (Ramey and Ramey 2010, Corak 2013).

An interesting question for future work is why mobility in outcomes has remained stable despite

widening gaps in inputs.

Our paper adds to an extensive literature on IGE levels and trends across countries (Solon 1999;
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Black and Devereux 2011; Jäntti and Jenkins 2015) and on measurement error in intergenerational

estimates. Early studies focused on classical errors from incomplete income data for parents

(Atkinson 1980, Solon 1999), recognizing that lifecycle variation should be accounted for but

assuming that basic age controls in IGE regressions would su�ce. Subsequent studies addressed

non-classical measurement error, shifting the attention to lifecycle bias from incomplete data for the

child generation. First discussed in Jenkins (1987), the problem gained wider attention following

Haider and Solon (2006) and applications by Grawe (2006), Böhlmark and Lindquist (2006), and

Nilsen et al. (2012), among others.1 In light of these issues, recent work often favors rank-based

measures that are less sensitive to measurement problems (e.g., Chetty et al. 2014a).2 As these

measures capture positional dependence but abstract from variation in income inequality, the IGE

remains a key measure in the analysis of income mobility.

Our method is particularly suitable for studying mobility variations across countries or over

time (Blanden 2011, Corak 2013, Chetty et al. 2014a). Comparisons of the IGE across di�erent

contexts are di�cult: if the shape of income profiles di�ers, measuring incomes at a specific age

will introduce biases of varying magnitudes or even signs. This problem also arises when studying

mobility trends. For Sweden the evidence is scarce, and we present credible estimates for cohorts

born through the 1980s. The US literature is more extensive. Earlier work found no evidence of

shifts in mobility for cohorts born up until around 1980 (e.g. Hertz 2007, Lee and Solon 2009,

Chetty et al. 2014b) – a surprising finding given the concurrent increase in income inequality, the

theoretical and empirical link between inequality and mobility (Blanden 2011, Corak 2013, Chetty

et al. 2014a), and increasing gaps in parental inputs (Blanden et al. 2023). However, Davis and

Mazumder (2024) found that mobility declined sharply for earlier cohorts not well covered by the

PSID, while Justman and Stiassnie (2021) and Jácome et al. (2022) found declining mobility for

cohorts also considered by Hertz (2007) and Lee and Solon (2009). We argue that the consideration

1In parallel, Creedy (1988), Vogel (2007) and Hertz (2007) suggested alternative approaches based on modelling
how the income profile varies with observable characteristics, and Chau (2012) and Jäntti and Lindahl (2012) consider
lifecycle models with heterogeneous intercepts and slopes.

2See also Nybom and Stuhler (2017) for a comparison of di�erent mobility measures, and Kitagawa et al. (2019)
for a correction method for measurement error in ranks.
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of family e�ects on income growth may help to produce more comparable estimates, including for

recent cohorts that have not yet been studied.

Our arguments also relate to the discourse on income processes (e.g., Meghir and Pistaferri

2011). This link is interesting in both directions. On the one hand, a better understanding of income

processes may help researchers to assess the usefulness of di�erent intergenerational estimators.

On the other hand, an intergenerational perspective may inform the debate on the role of unobserved

heterogeneity in income processes. A controversial question is whether (residual) income grows

at an individual-specific and deterministic rate or follows a random walk. Distinguishing between

these models is di�cult, and conventional tests of the covariance structure of income growth may

not be very informative (Guvenen, 2009). We argue that intergenerational data provide evidence

in favor of the model with heterogeneous growth rates – within education or occupational groups,

children from a�uent families experience substantially faster income growth than those from low-

income families, particularly early in their career (see also Michele and Francesco 2018, Halvorsen

et al. 2022, and Lochner and Park 2024).

The paper’s sections are divided as follows. In Section 2, we describe the Swedish and US

data and our sampling. Section 3 provides a discussion of the properties of the income process

and evidence on its key components. In Section 4, we analyze existing correction methods for IGE

estimates in light of the income process properties. Section 5 presents and tests our new estimator,

which we use in Section 6 to study mobility trends in Sweden and the US. Section 7 concludes.

2 Data

We use data from Sweden and the US. For Sweden, we use various administrative registers that

contain the universe of Swedish citizens aged 16-64 at any point between the years 1960-2018

(born 1896-2002) and gross labor earnings from tax records (reported by employers) for the period

1968-2018.3 Using multigenerational registers, we link children born 1932 or later (who have been

3See Statistics Sweden (2019a,b,c,d,e, 1990); Swedish National Archives (2005). We observe labor earnings
(including from self-employment) for all residents in 1968, 1970, 1971, 1973, 1975, 1976, 1979, 1980, 1982 and
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residents of Sweden at some point since 1961) to their biological parents. As we observe individual

rather than household income, we focus on father-son pairs to abstract from female labor market

participation, which also improves comparability with the previous literature. Other administrative

registers provide information on education, occupation and further individual characteristics.4

We construct two di�erent samples: a benchmark sample for studying the performance of

di�erent estimators and a trends sample for studying trends in income mobility. The benchmark

sample is chosen such that it contains nearly complete income trajectories, allowing us to compare

estimates from partial data to a “true” benchmark estimate based on lifetime incomes. Specifically,

we consider cohorts born 1952-1960, with incomes observed between ages 25 and 58. To measure

fathers’ income over a long period (age 41-58), we drop fathers born before 1927. The implied drop

in representativeness is not a concern for our purposes, provided the sample remains su�ciently

diverse to study lifecycle patterns in income.

Our trends sample covers cohorts born 1950-1989, which we analyze by decade of birth. To

ensure that the parental income measure is comparable across cohorts, we construct it in two steps.

First, we randomly select up to five annual income observations for each father (between age 40

and 55), such that the number of observations per father is similar across cohorts. Second, we

use these annual observations in an extended Mincer-type equation to predict income at age 50 for

each father. Specifically, we regress annual incomes on individual fixed e�ects and a cohort-by-

education specific age polynomial (of the father). We therefore balance both the number of income

observations and the age at measurement across cohorts.

For the US, we use data from the Panel Study of Income Dynamics (PSID 2019), which began

in 1968 with a nationally representative sample of over 18,000 individuals living in 5,000 families.

The survey is useful for intergenerational research since it follows children from the original sample

as they form their own households, and contains data on employment, income, and education. Apart

annually for 1985-2018. We impute data for the gap years that occurred after 1968 with neighboring observations,
bottom code annual incomes to 10,000 SEK (around 912 USD) and adjust incomes for inflation using the CPI.

4The Education Register contains data on highest educational attainment and field of education for practically the
entire population alive in 1970 or later. Occupational information comes from di�erent registers and is available
bidecennially from 1960 to 1990 and, for a large subsample, annually from 1996 and onwards.
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from a few exceptions, we follow the sampling and variable definitions in Lee and Solon (2009).

As such, we use only the PSID core sample (the Survey Research Center component). We focus

on family rather than individual income and pool sons and daughters to maximize our sample.

Our benchmark sample covers children born 1952-1960, which similarly to the Swedish case

enables us to observe almost complete income histories. To measure parental income, we average

log annual family income in the childhood home over the three years when the child was 15-17

years old, similar to the measures in Lee and Solon (2009) and Chetty et al. (2014a). We measure

the children’s adult income by the (log) annual family income in the household in which they were

the household head or head’s spouse and exclude outlier observations (using the same thresholds

as Lee and Solon 2009). As for Sweden, we also construct a trends sample covering US cohorts

born 1950-1989, using the same sampling and variable definitions as for the benchmark sample.

To improve comparability with previous studies, we use similar sampling and variable definitions

as in previous work. As such, those definitions di�er between the two countries. First, we use

family income and consider both sons and daughters for the US, while for Sweden we consider

individual labor earnings and father-son pairs. Second, we measure parental income at a given age

of the child for the US, but at a given age of the parent for Sweden. Third, the parental income

measure is based on up to 18 years of income for Sweden but a three-year average for the US, such

that the US estimates are more strongly attenuated by measurement error (see Mazumder 2005).

For these reasons, we cannot directly compare mobility levels between countries. However, our

results are comparable to prior work for each country, as well as across cohorts within countries.

Table 1 reports descriptive statistics for each sample. Our benchmark samples contain 201,066

and 1,286 individuals, respectively. The Swedish trends sample covers more than 2 million sons,

while the corresponding sample for the US includes approximately 5,000 sons and daughters.

Columns 2 to 5 show summary statistics by decade of birth. Unsurprisingly, more recent cohorts

are more educated and have more educated fathers, but since their incomes are measured at earlier

ages this does not result in higher average income. Our benchmark sample for Sweden is slightly

negatively selected in terms of income and education (cf. columns 1 and 2), due to its restriction to
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Table 1: Descriptive Statistics

Benchmark 1950-59 1960-69 1970-79 1980-89

Panel A: Swedish Register Data

Father-son pairs 201,066 525,813 572,811 532,835 530,312
Father’s Age at Birth of Son 25.7 31.6 30.1 29.6 31.1
Log Lifetime Income of Sons 12.4 12.4 12.5 12.5 12.3
% Zero Income Obs of Sons 8.6 8.2 8.7 8.7 11.2
Mean Age Son at Earnings Obs 40.9 42.4 39.1 34.5 29.6
% Sons with College Degree 14.1 16.2 17.0 27.1 26.2
% Sons in Managerial Position 17.8 17.9 17.9 13.1 5.1
Log Lifetime Income of Fathers 12.3 12.3 12.3 12.3 12.4
Percent of Zero Income Obs of Fathers 6.0 5.4 6.2 6.9 8.6
% Fathers with a College Degree 7.7 7.3 10.6 14.9 16.8
% Fathers in Managerial Position 11.8 11.6 14.7 16.3 12.3

Panel B: PSID

Parent-child pairs 1,286 1,283 1,153 1,212 1,419
Share Female 51.2 50.9 51.3 48.9 53.4
Log Lifetime Income Child 9.2 9.2 9.2 9.2 8.9
Mean Age Child at Earnings Obs 36.1 36.2 34.2 31.6 27.7
Log Income Parent when Child was 15-17 9.3 9.3 9.4 9.3 9.4
Mean Age Parent when Child was 15-17 45.2 45.5 44.7 42.5 44.2
% Child with Some College 51.9 52.6 55.9 69.1 72.4
% Parent with Some College 26.9 26.8 35.7 50.0 56.4

Notes: The benchmark samples (column 1) contain the cohorts born 1952-1960 and are used for testing the performance
of the intergenerational elasticity estimators. The other columns present descriptive statistics from the samples used to
study mobility trends, separately by decade of birth of the child.

younger parents for whom we observe more complete income series. As a consequence, estimates

of the IGE will di�er between the benchmark sample and the more representative trends sample.

3 An Intergenerational Perspective on Income Processes

We start by illustrating those properties of the income process that are particularly important for

intergenerational research. This evidence will then allow us to characterize the advantages and

limitations of existing correction methods (Section 4) and to motivate a new lifecycle estimator

(Section 5) that addresses our key observation – that income growth varies with parental income
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even conditional on individuals’ own characteristics.

A large literature on income processes studies the shape of income profiles over the life cycle.5

While many properties are well established, two contrasting viewpoints exist about the idiosyncratic

components of income growth. The restricted income profile (RIP) model views income as the

sum of a mean-reverting component reflecting transitory shocks and a random-walk component

reflecting permanent shocks (MaCurdy 1982). In contrast, the heterogeneous income profile (HIP)

model assumes that incomes grow at an individual-specific and deterministic rate (Guvenen 2009).

The RIP and HIP models are di�cult to distinguish in standard data sets, but intergenerational

data may provide additional insights. As a reference point, consider the HIP model by Guvenen

(2009), which assumes that log income for individual i with experience h at time t is given by

yi
h,t = g(✓0t , Xi

h,t) + f (↵i, �i, Xi
h,t) + zi

h,t + �t"
i
h,t . (1)

The function g captures common income variation that is explained by observable characteristics

Xi
h,t .6 In our analysis, we consider in Xi

h,t characteristics that are typically observed by the researcher,

such as education or occupation. The second function, f, captures the component of life-cycle

earnings that is individual or group-specific and that is unexplained by those characteristics. By

“unexplained” we refer to determinants that are typically unobserved, such as an individual’s ability

or parental lifetime income. In the data we use, however, we observe proxies for those characteristics

and can therefore test whether they predict lifecycle profiles. Finally, the dynamic component of

income is modeled as an AR(1) process, zi
h,t = ⇢z

i
h,t�1 + ⇡t⌘i

h,t , with zi
0,t = 0 and with ⇡t capturing

possible time-variation in the innovation variance, plus a purely mean-reverting transitory shock,

"i
h,t , scaled by �t to account for possible non-stationarity in that component.7

We show evidence of each of these components in the Swedish (Figure 1) and the US data

5Insights from this literature have been used to study the causal e�ect of parental income (e.g., Carneiro et al. 2021),
but used only for motivational purposes in descriptive studies (an exception is Heidrich 2016).

6Guvenen (2009) considers a cubic polynomial in experience h. Yet, more generally, we could think of X i
t as

observables that could include education, gender, age, etc. The coe�cients ✓0t are common to all individuals.
7The innovations " and ⌘ are assumed to be independent of each other and over time while the vector (↵i, �i) is

distributed across individuals with zero mean, variances of �2
↵ and �2

� , and covariance �↵� . Persistent and transitory
shock components are scaled by time-specific coe�cients, as they may change over time (Mo�tt and Gottschalk 1995).
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Figure 1: Components of the Income Process in the Swedish Data
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Notes: Panel A shows income trajectories by education category. Panel B focuses only on college-educated sons, who
are split into four groups according to their annual income at age 35. Category Q1 refers to the bottom and Q4 to the
top quartile. In Panel C, college-educated sons are divided into two groups, those in the top and those in the bottom
quartile of fathers’ lifetime income. In Panel D, college-level sons whose fathers belong to the top half of lifetime
income are divided into college-educated fathers and fathers with only primary schooling. We remove time e�ects to
abstract from the business cycle. Confidence intervals (95%) are plotted around each line.

(Figure 2). Panel A of Figure 1 illustrates that, unsurprisingly, income profiles vary with own

education (and by occupation, see Appendix Figure A.1). Accounting for observable heterogeneity

is, therefore, important. Panel B illustrates that income levels and subsequent income growth are

negatively correlated. Splitting college-educated individuals into four quartiles of their annual

income at age 35, those in the bottom (top) quartile have the strongest (weakest) income growth in

the following years. Transitory shocks are one explanation for this regression to the mean. Apart

from attenuating intergenerational estimates via its e�ects on parental income (Atkinson 1980), it

may also complicate corrections for lifecycle dynamics in child income (see Section 4).

Panel C provides evidence on a more controversial question, namely if residual income yi
h,t

grows at an individual-specific and deterministic rate or follows a random walk. The figure plots
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Figure 2: Components of the Income Process in the PSID
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college whose parental income belongs to the top median of the distribution are divided into parents with at least some
college and parents with only primary schooling. Confidence intervals (95%) are plotted around each line.

the average income profiles of college graduates by the quartile of their father’s income. Even

conditional on education, we observe substantial di�erences in income growth. College-educated

sons with fathers in the top quartile tend to have lower incomes in their mid 20s, but around

40 percent higher incomes around age 40, compared to college-educated sons with fathers in the

bottom quartile. We find similar evidence in the PSID (Figure 2, Panel C) and when conditioning

on occupation (Figure A.1, Panel C) or additional dimensions of family background. For example,

in Panel D we show that among college graduates whose father’s income is above the median, those

with more educated fathers have steeper income profiles than those with less educated fathers (a

pattern that replicates in the PSID, see Figure 2 Panel D; and see Michele and Francesco 2018 for

related evidence in Italian data).
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Table 2: Heterogeneity in Income Growth by Parental Income (Swedish data)

(1) (2) (3) (4) (5) (6)

Log (Father’s Income)/100
x Age 25-30 9.119*** 3.778*** 3.421*** 3.656*** 1.890*** 1.887***

(0.229) (0.217) (0.250) (0.219) (0.215) (0.249)
x Age 30-35 4.799*** 2.034*** 1.404*** 2.689*** 1.651*** 1.167***

(0.194) (0.198) (0.225) (0.197) (0.198) (0.227)
x Age 35-40 1.276*** 0.352 0.159 0.154 0.018 -0.059

(0.189) (0.194) (0.223) (0.196) (0.197) (0.227)
x Age 40-45 0.123 -0.416* -0.284 0.034 -0.238 -0.159

(0.177) (0.183) (0.210) (0.184) (0.186) (0.214)
x Age 45-50 -0.223 0.118 -0.015 0.154 0.238 0.021

(0.173) (0.178) (0.207) (0.180) (0.182) (0.212)
x Age 50-55 -1.276*** -0.726*** -0.560** -0.663*** -0.456* -0.292

(0.171) (0.176) (0.203) (0.178) (0.180) (0.209)

Education x Age X X X X
Occupation x Age X X X
Skill scores x Age X X
Demographics x Age X

N 946,534 946,534 741,467 916,201 916,201 717,582
R2 0.072 0.102 0.107 0.102 0.117 0.122

Notes: The dependent variable is the five-year change in log annual income (i.e., the di�erence between log income
at age t and log income at t � 5), measured at t = 30, 35, 40, 45, 50, 55. Education distinguishes 15 levels of highest
educational attainment. Occupation is at the two-digit level (56 groups). Skill scores are cognitive and non-cognitive
skill scores from the military draft. Demographic variables are birth order, family size, and an immigrant dummy. All
these variables, as well as father’s log lifetime income/100, are interacted with the indicators for the six age groups. We
remove time e�ects to abstract from the business cycle. Annual incomes below 20% of the yearly in-sample median
are excluded. Robust standard errors in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001.

Could controlling for a broader set of characteristics capture this “unobserved” heterogeneity?

Table 2 reports a more systematic analysis, regressing income growth on father’s income and various

background characteristics, all interacted with six di�erent age groups. The dependent variable is

the five-year change in log annual income, measured in adjacent intervals, and starting with the

di�erence in log income between age 30 and age 25 in the first row.

Column (1) reports the raw di�erences, showing that a log-unit increase in father’s income is

associated with a 9.1 log point higher income growth between age 25 and 30. This di�erence in

growth rates diminishes over age, and eventually turns negative. The pattern weakens but still holds
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when controlling for observable characteristics. As shown in column (2), conditional on education

the incomes of those with fathers with a log-unit higher income grow more than 6 log points faster

between age 25 and 40 but about 1 log point slower between age 40 and 55. These patterns are

more pronounced among more highly-educated children, and remain similar when adding controls

for cognitive and non-cognitive skill scores from the military draft in column (3). The parental

income gradient remains large within 2-digit occupations, but shrinks when conditioning on both

education and occupation (columns 4 and 5). In column (6), we include all controls jointly and add

demographic characteristics (birth order, family size, immigrant status). While explaining much of

the heterogeneity, income growth in the late 20s and early 30s still increases in parental income.

Our primary question is whether income growth varies with the level of parents’ income, but

it might also vary with other properties of the parental income process. For example, Halvorsen

et al. (2022) show that fathers’ and children’s income growth are correlated even after controlling

for fathers’ income and wealth, while Lochner and Park (2024) note that conditional on the father’s

expected lifetime earnings, his earnings trajectory remains informative about the child’s earnings.

While we do not have information on wealth, we confirm in Appendix Table A.2 that income growth

patterns between parents and children are correlated early in life (between ages 25 and 30), even

after controlling for the father’s lifetime income.8 This relationship becomes weaker at older ages

and when controlling for education, illustrating that this similarity in income trajectories is partly

due to correlated educational choices within the family.

The role of unobserved heterogeneity in income processes remains controversial, as it is di�cult

to distinguish from stochastic processes with high persistence. By combining long income series

with information on family background, one can however provide evidence on this question:

income growth varies systematically with parental characteristics, conditional on an individual’s

own observable characteristics. Because parental characteristics are predetermined, and potentially

observed by the child, this pattern is more readily interpreted as a deterministic factor rather than

a stochastic shock. But while Guvenen (2009) assumes that the individual-specific component of

8We conduct this test using birth cohorts 1970-78, for whom we observe fathers’ income from ages 25 to 40.
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income growth is linear in experience, our evidence suggests that di�erences by family background

matter primarily at young age, and that this association may flip sign at older ages. More generally,

di�erences in skill and earnings growth decline with age (Lochner and Park 2024). Such non-linear

patterns would be di�cult to detect in the higher-order autocovariances of earnings that are often

used to identify HIP components (Guvenen 2009, Ho�mann 2019).

While we do not attempt to identify why children from a�uent families have steeper income

profiles, there are a number of plausible mechanisms. First, human capital investments depend

on parental background, either directly, because of credit constraints, or indirectly, because of the

e�ect of wealth on risk aversion (Blanden et al. 2023). This may not just a�ect investments in

formal education, but also human capital investments in the early career. Second, di�erences in the

returns to human capital investments a�ect the slope of age-income profiles (Ben-Porath 1967),

and those returns might increase with parental income. Third, children from a�uent families tend

to find jobs in better-paying firms (Dobbin and Zohar 2024), which may also o�er more on-the-job

learning or higher returns to experience (Arellano-Bover and Saltiel 2024; Forsberg et al. 2024).

The observation that children from a�uent families tend to have steeper income profiles matters

for distributional questions and may lead to biased estimates of income mobility, as we show next.

4 Bias Corrections in the Intergenerational Literature

In many intergenerational studies, the outcome of interest is an individual’s lifetime income, yet

typically only short snapshots of income are available. To address this issue the literature has

considered two alternative approaches: (i) errors-in-variables models that formalize the relation

between (observed) annual and (unobserved) lifetime income, and (ii) models of the income process

itself, which then determine the relation between annual and lifetime incomes.
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4.1 Errors-in-Variables Models

Errors-in-variables models have a long tradition in intergenerational research. The income process

is not explicitly modeled, but its assumed properties inform the errors-in-variables assumptions.

Many applications rely on a generalized errors-in-variables model proposed by Haider and Solon

(2006), which allows for the relation between annual and lifetime incomes to vary systematically

over the lifecycle. It implies that lifecycle bias is reduced by measuring incomes in midlife, a simple

rule-of-thumb that has become widely adopted. While indeed reducing bias, this strategy is subject

to some limitations (see also Appendix B). First, income growth varies with parental income even

conditional on own lifetime income, such that the bias may not be fully eliminated at the “optimal”

age as prescribed by the model (Nybom and Stuhler, 2016). More importantly, this optimal age

may vary across countries or time but is typically unknown in applications. Researchers therefore

measure incomes at some age in midlife, subject to data limitations, resulting in substantial age

di�erences across studies (see Table A.1). As even slight age variations a�ect the IGE (Table

B.1), existing estimates are di�cult to compare. Finally, prime-age incomes may simply not be

observable for the population of interest, such as for recent birth cohorts.

4.2 Modelling the Income Process

An alternative is to model the income process directly. Age-income profiles are first estimated based

on partial income profiles and individual characteristics. These first-step estimates are then used to

predict lifetime income for each person. The main challenge is to extrapolate (observed) income

spans to the complete lifecycle without inducing biases that co-vary with explanatory variables of

interest (e.g., parental income). We propose such a “lifecycle” estimator in Section 5.1. To motivate

our approach, however, it is instructive to first review existing work on this problem.

Accounting for Individual Characteristics. One strategy is to model the income process as a

function of an individual’s own characteristics. In a first step, we estimate

yict = ↵i + g(Aict, Zic) + "ict, (2)
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where yict is log income of individual i from cohort c in year t, ↵i an individual fixed e�ect, and

g(Aict, Zic) an interaction of age and a vector of individual characteristics Zic (e.g. education). The

estimates can then be used to predict lifetime incomes. Di�erent approaches are used to address the

issue that income profiles are only partially observed. Hertz (2007) predicts incomes at a given age,

whereas Vogel (2007) predicts the entire lifecycle under the assumption that parents and children

have similar income profiles (conditional on covariates). Justman and Stiassnie (2021) pool many

cohorts to estimate lifecycle profiles, an approach that we follow in our trends analysis in Section 6.

By allowing for income growth to di�er by education, an important source of heterogeneity can

be accounted for (Panel A in Figures 1 and 2). However, our finding that income growth varies

with parental income even within education or occupation groups (Panel C in Figures 1, 2 and

A.1) suggests that the procedure may remain sensitive to lifecycle e�ects. Appendix Table A.3

probes this hypothesis by comparing estimates from partial profiles against the “true” IGE based on

lifetime incomes (for Sweden). We first estimate equation (2) using incomes from a given age range

and flexible age-education interactions to predict incomes at a given age (Panel A). While much

better than directly using annual income at that same age (bottom panel), the corrected estimates

still increase with (i) the age range included in the estimation and (ii) the age at which incomes are

predicted, even if aggregating predictions over the entire lifecycle (Panel B).9

Why do estimates from equation (2) remain volatile? Because children from high-income

families experience higher income growth even given own education or occupation (Section 3),

estimates of the fixed e�ects ↵i – and thus lifetime incomes – depend on the observed age range.

For example, when observing only early (late) ages, we understate (overstate) the lifetime income

of those with low initial incomes but stronger growth. The earlier incomes are observed, the more

the IGE is understated (see also Appendix C). This issue also a�ects estimation of mobility trends.

Many studies keep the age at which incomes are predicted fixed over cohorts, thereby eliminating

the variability across the columns in Panel A of Table A.3. But IGE estimates also vary with the

9Specifically, we split each individual’s income profile into two halves, with income for the “younger” copy assumed
to be observed in each of the age ranges of Table A.3, and the “older” copy being observed thereafter. This allows us
to focus on the problem of missing income information for a given person, while abstracting from the issue that certain
age ranges are missing for the entire population of interest. We follow the same strategy in Section 5.
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sample’s age composition, across the rows of Table A.3. For example, predicting incomes at age

25, the estimates shift from 0.042 to 0.147 when the sample extends from age 25-30 to age 25-45.

This age composition is typically not held constant when estimating mobility trends.

An alternative approach allows for income growth to vary with income levels.10 This approach

is rarely used in applications, but its potential advantages have been studied by Creedy (1988).

To understand the basic argument, assume that individuals maintain a constant relative position

in the income distribution. Researchers can then combine relative positions with information on

the income distribution at each age to construct lifetime incomes. Appendix D provides details on

this approach, showing that it tends to overstate the IGE. This bias stems from mean reversion (see

Figure 1C): due to transitory shocks, income growth and levels are negatively correlated. Still, the

observation that income levels and growth are correlated is useful and we revisit it below.

5 A Lifecycle Estimator for the Intergenerational Elasticity

In this section, we propose a lifecycle estimator of intergenerational mobility in lifetime income.

The key assumption for unbiased estimation of the IGE is that the prediction error in children’s

lifetime income is uncorrelated with parental income. Accordingly, our proposed estimator controls

for the relation between parental income and the shape of age-income profiles of their children.

Using Swedish and US data, we illustrate that the estimator can be applied in diverse settings and

that it provides more robust estimates of the IGE than other approaches.

5.1 Econometric Specifications

The estimation consists of two steps. In a first step, we estimate and predict the individual lifecycle

income profiles in the child generation, based on partial income snapshots and individual and

parental characteristics. In a second step, we estimate the IGE using lifetime incomes based on the

10While such heterogeneity could be captured by estimating individual-specific slopes (as in Jäntti and Lindahl
2012), we do not pursue this option here as direct extrapolation from partially observed slopes would produce unstable
predictions of lifetime income if only few income observations are available per person (see also Jenkins 2009).
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predicted profiles. This lifecycle estimator uses the available income information more fully than

the commonly used rule-of-thumb approaches based on income averages. Our two-step approach

builds on earlier contributions (see Section 4), but explicitly accounts for income growth to vary

with parental income even conditional on own characteristics (see Section 3).

Specifically, in the first step we use OLS to estimate variants of

yict = ↵i + g(Aict, Zic) + f (Aict, Zic, Pic) + "ict, (3)

where yict is log income of individual i from cohort c in year t, ↵i are individual fixed e�ects,

g(Aict, Zic) represents interactions between age and a vector Zic of the individual’s own charac-

teristics (e.g., education), and f (Aict, Zic, Pic) interacts age, education, and parental characteristics

Pic. In our application, Pic contains log parental income and indicators for parental education. Our

preferred specification allows for a quadratic in age in f (·), as income growth varies more strongly

with parental background in the early career than at later ages (see Figures 1 and 2). We also

consider two other variants of this estimator:

No-FE estimator. We estimate equation (3) with or without individual fixed e�ects ↵i. While

allowing for individual intercepts might seem an obvious improvement, the flexibility of a full

set of fixed e�ects comes at a cost, making it harder to capture the heterogeneity in income

slopes – especially when only short snapshots of incomes are observed and f (Aict, Zic, Pic) may be

misspecified. In such cases, it may be preferable to allow intercepts to vary only with the regressor

of interest (i.e., replacing ↵i with a function of parental income), as we demonstrate below.

Slope-level estimator. If parental income is not well observed, one may instead allow income

slopes to vary with the level of an individual’s own income. This slope-level estimator is motivated

by the fact that those from a�uent families have both higher levels and steeper slopes compared

to others (Figures 1 and 2, Panel C and Figure A.2), implying a positive relation between income

levels and growth (Creedy 1988). We allow for income growth to vary with the individual fixed

e�ect rather than current income, to address the mean reversion in the latter due to transitory noise
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(see Section 3). Specifically, we estimate

yict = µi + g(Aict, Zic) + f (Aict, Zic, µi) + ⌫ict, (4)

where individual characteristics Zic are interacted with age and the individual fixed e�ect µi.

This model can be estimated recursively (as in de la Roca and Puga 2017).11 Our preferred

implementation interacts µi with a quadratic in age, since income growth varies more at early age.

All three first-step models above are parametric, in which we specify the models at our own

discretion. Alternatively, one could consider data-driven approaches to select the first-step speci-

fication. We motivate our focus on parametric models by the fact that we know the main source

of bias – the relationship between parental income and own earnings growth – but also explore the

performance of more data-driven methods in Section 5.2.

After the first-step estimation of equation (3) or (4), we predict log annual incomes for each

person between age 25-58 for Sweden and age 22-58 for the US, and then convert them into absolute

incomes. We then construct the individual sum of all annual incomes to, finally, estimate the typical

IGE regression, regressing the log lifetime income of the child on the log income of the parent.12

However, this approach is subject to three conceptual issues. First, the estimation consists of

multiple steps, which a�ect statistical inference. As our benchmark sample for Sweden is large,

we initially ignore sampling error in the first-step estimation, but later study how sensitive the

estimators are to sample size. Second, the dependent variable in equation (3) is the log of annual

income, and conversion to absolute incomes for the construction of lifetime incomes gives rise to

a well-known re-transformation problem.13 We address this issue using the solution proposed by

11We first approximate the individual fixed e�ect µi by estimating equation (4) while omitting f (·). We then estimate
the complete equation (4) with bµi included in f (·). This second step can be iterated until estimates of the fixed e�ects
converge, but as further iterations have only negligible e�ects we report estimates from a single iteration below.

12Taking the average instead of the sum of annual incomes would not a�ect our estimates, as the denominator (# of
annual income observations) is constant across individuals and would only enter the intercept.

13While the fitted values from the estimation of equation (3) have mean zero by construction (E["ict ] = 0), their
mean will be positive after transformation (E[exp("ict )] > 0). If this expectation were constant across individuals and
linearly separable in log lifetime income, it would only a�ect the intercept of the intergenerational regression, not its
slope. But E[exp("ict )] tends to be larger for individuals with low lifetime income if their income is more variable
around the mean tendency over the lifecycle.
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Wooldridge (2006).14 Alternatively, we estimate a version of equation (3) in which yict is incomes

in levels instead of logs (see Appendix E). Third, in many applications the population of interest

is only observed for a certain age range (e.g. at young age), so their income profiles need to be

extrapolated over the unobserved age range. We initially abstract from this issue by exploiting that

our benchmark samples include long income series for each person. Specifically, we randomly split

each individual’s income profile into two parts, a “young” or an “old”. Each part is then assumed

to be a di�erent individual by receiving separate identifiers.15 If assigned to the “young” group, the

income profile is assumed to be observed only up to some age threshold, while if assigned to the

“old” group the income profile is assumed to be observed only thereafter. This allows us to focus

on the problem of missing incomes for a given person, while abstracting from the issue that certain

age ranges may be missing for the entire population of interest. We return to this extrapolation

issue in a robustness analysis, and in Section 6 when estimating mobility trends for recent cohorts.

5.2 Performance of the Lifecycle Estimator in Swedish Registers

Table 3 presents evidence on the performance of the proposed lifecycle estimator. We consider

di�erent age thresholds, assuming that child income is observed only over age 25-27 (first panel),

age 25-30 (second panel), and so on. Column (1) reports benchmark estimates of the IGE based

on “true” lifetime incomes, which are about b� = 0.25. In column (2), we report estimates based

on pooled annual incomes from age 25 to the indicated upper age bound (e.g. age 25-27 in the

first row). Consistent with prior evidence on lifecycle bias, those estimates are very sensitive to the

age range, being as low as 0.05 when child incomes are measured only until age 27 and increasing

monotonically when increasing that age range.

In columns (3) to (7) we implement di�erent variants of the lifecycle estimator. Column (3)

14Specifically, we estimate complete lifecycle profiles of each individual in the child generation, based on a quartic
in age interacted with education dummies and individual fixed e�ects, to construct SMic =

Õ58
t=25 exp("ict ) to adjust

the predicted lifetime income accordingly.
15We proceed with this random split of the sample into two parts for our analysis using the Swedish data. Due to its

small sample size, for the PSID analysis, we duplicate each individual’s income profile into two parts, a “young” or an
“old”. Each copy assumes a di�erent individual identifier.
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Table 3: The Lifecycle Estimator in the Swedish Data

Direct estimator Lifecycle estimator

Lifetime Annual Baseline Parental Parental Parental Slope-level
Linear Quadratic Quadratic Quadratic

FE FE FE no FE FE
Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 25-27 0.253 0.046 0.150 0.199 0.236 0.266 0.195
N=94,100 (0.004) (0.002) (0.004) (0.004) (0.004) (0.002) (0.006)
R2 1st step - - 0.193 0.198 0.202 0.006 0.221
R2 2nd step 0.050 0.001 0.017 0.030 0.042 0.202 0.013

Age 25-30 0.253 0.101 0.188 0.225 0.265 0.265 0.248
N=94,194 (0.004) (0.002) (0.003) (0.003) (0.003) (0.002) (0.005)
R2 1st step - - 0.317 0.321 0.325 0.006 0.366
R2 2nd step 0.050 0.006 0.030 0.043 0.059 0.201 0.026

Age 25-35 0.254 0.159 0.206 0.231 0.263 0.263 0.254
N=94,264 (0.004) (0.001) (0.003) (0.003) (0.003) (0.002) (0.004)
R2 1st step - - 0.485 0.487 0.489 0.006 0.536
R2 2nd step 0.050 0.013 0.040 0.050 0.064 0.200 0.036

Age 25-40 0.254 0.204 0.225 0.270 0.277 0.262 0.269
N=94,311 (0.004) (0.001) (0.003) (0.003) (0.003) (0.002) (0.004)
R2 1st step - - 0.646 0.648 0.648 0.006 0.678
R2 2nd step 0.050 0.018 0.046 0.066 0.069 0.198 0.042

Age 25-45 0.254 0.234 0.239 0.286 0.274 0.261 0.272
N=94,339 (0.004) (0.001) (0.003) (0.003) (0.003) (0.002) (0.004)
R2 1st step - - 0.783 0.783 0.783 0.006 0.800
R2 2nd step 0.050 0.021 0.051 0.071 0.066 0.197 0.047

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is log lifetime income in column (1), the pooled log annual incomes from age 25 to the
indicated upper age bound in column (2), or the predicted lifetime income from a first-step estimation in the indicated
age range of equation (3) in columns (3)-(6) or equation (4) in column (7). See text for detailed definitions of each
estimator.“R2 1st step” is the R2 from a regression of son’s actual lifetime incomes on predicted lifetime incomes based
on the observed age range. “R2 2nd step” is the R2 from the regression of the predicted log lifetime income of sons on
the lifetime income of fathers. Robust standard errors in parentheses.
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Figure 3: Comparison between Actual and Predicted Profiles
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A: Lifecycle Baseline FE (Age 30)
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B: Parental Quadratic FE (Age 30)

Notes: The figure plots the actual log income profiles and predicted profiles separately for the top and the bottom
quartiles of parental income. To predict complete profiles based on income observations until age 30 we implement a
lifecycle estimator without parental interactions (baseline, Panel A) or with quadratic interactions between child age
and parental income (parental quadratic, Panel B).

reports estimates from a baseline estimator based on equation (3) that distinguishes four education

groups (as defined in Figure A.3), but does not include parental characteristics Pic. This estimator

is similar in spirit to those used in prior studies (see Section 4), and performs better than a

direct estimator using annual incomes. However, it still varies with the age at which incomes are

measured and understates the IGE by nearly one third when child incomes are measured at age

25-30. As discussed in Section 4, this estimator remains sensitive to age since it does not account

for di�erences in income growth by parental background. This issue is also illustrated in Panel

A of Figure 3, which plots the mean actual (dots) and predicted (solid lines) lifecycle profiles of

children from the top (red) or bottom quarter (blue) of the parental income distribution when child

income is observed at age 25-30. The baseline lifecycle estimator understates the true income

growth at the top and overstates growth at the bottom of the parental income distribution, leading

to downward-biased estimates of the IGE.

Column (4) therefore reports estimates from the “parental” lifecycle estimator, in which the first-

step estimation of equation (3) includes linear interactions between child age and parental income

and education. This estimator performs better than the baseline estimator, in particular at young
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ages, as it captures some of the heterogeneity in income growth by parental background. However,

the estimated IGE still increases systematically with the age at which incomes are measured, and

understates the true IGE when incomes are measured at early age. The reason follows from Figure

3: the association between income growth and parental background is more pronounced at early

than late ages, so linear extrapolations from early age work poorly.

We, therefore, consider a “parental quadratic” lifecycle estimator in column (5), which uses a

quadratic rather than linear polynomial in child age interacted with parental income. The estimates

are now close to the benchmark for all age ranges, reflecting that quadratic interactions capture

the heterogeneity in income slopes by parental background well, as also illustrated in Figure 3B.

However, even with quadratic interactions, some bias remains when measuring incomes in only a

short range at young age (e.g., age 25-27). This bias reflects a form of overfitting that can occur

due to the high flexibility of a model with individual fixed e�ects. Specifically, if the functional

form of f (Aict, Zic, Pic) in equation (3) does not correspond to the true functional form, some of

the heterogeneity in income growth may instead be captured by the individual fixed e�ects ↵i.16

Column (6) therefore shows estimates from a lifecycle estimator without individual fixed e�ects

(“no-FE”), in which intercepts can vary with parental income but individual variation around that

mean tendency is disregarded. This alternative estimator is insensitive to the age at which incomes

are observed, and is always close to the benchmark. It captures heterogeneity in income slopes

even if incomes are observed only at a very young age (age 25-27). These results illustrate that if

the object of interest is income di�erences by parental background, it can be advantageous to model

only that specific form of heterogeneity rather than individual-level variation in the intercepts.

Finally, column (7) shows estimates from the alternative “slope-level” estimator (see Section

4.2) based on equation (4), which interacts a quadratic in age with the individual’s own (estimated)

individual fixed e�ect rather than parental income. The estimator performs largely similarly

16While the “parental quadratic” estimator includes a quadratic in child age interacted with parental income, we
observe that children from high-income parents experience even steeper income growth in the first years of their career
than would be captured by this quadratic interaction. As a consequence, when splitting the income profiles of children
into a “young” and “old” copy to estimate equation (3), we estimate larger fixed e�ects for the “old” than the “young”
part. Since a time-constant fixed e�ect cannot provide a good approximation for di�erences in income growth over
many years, this issue arises only if child age is observed in a very narrow age range.
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to the corresponding parental lifecycle estimator, suggesting that systematic variation in income

growth by parental background could potentially be addressed indirectly, without observing parental

characteristics, by accounting for the covariance between income levels and growth. However, this

estimator performs worse when incomes are observed only at age 25-27, presumably because

income levels are not very predictive about long-term income at such early age.

Robustness. The estimates in Table 3 are based on large samples with many income obser-

vations. In many applications, however, researchers observe fewer individuals or fewer income

observations per individual. We therefore test our lifecycle estimator(s) in such settings. We first

study how its performance varies with the number of incomes available per child. Specifically,

we randomly select six annual incomes per person within the indicated age range and successively

drop income observations until only two remain per person. Table A.4 shows that while the noise

in the estimation of lifetime incomes increases and the R2 in the IGE regression drops, the mean of

the estimates remains stable.

A second concern is that the shape of lifecycle profiles cannot be precisely estimated in smaller

samples. To probe this concern, Table A.5 reports estimates from di�erently sized samples. We

draw fractions 1/k of our original sample (as indicated in the top row) and then implement the

benchmark estimator based on lifetime incomes, as well as the parental (with individual fixed

e�ects) and slope-level lifecycle estimators. The table reports the mean and standard deviation

of the IGE estimates across repeated draws from the main sample. The mean appears robust to

sample size, and while the precision of the estimators decreases in smaller samples, so do the

corresponding benchmark estimates based on observed lifetime incomes.

A third concern is that our estimator(s) may work well because we use the same cohorts and

income years in both estimation steps, but that they would perform worse in less ideal situations.

We thus explore their out-of-sample performance by varying the cohorts and income years used

in the first-step prediction, and then using these predictions to estimate the IGE for our baseline

cohorts born 1952-1960.17 This exercise approximates the type of settings in which our estimators

17Note that we here use the trends sample (see next section), which implies that the corresponding benchmark
estimate is slightly lower.
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will be particularly useful. Table A.6 shows in column (2) that the estimators are largely una�ected

when including a wider set of cohorts in the first step. However, columns (3) and (4) indicate that

the estimators overstate the IGE somewhat when we in addition only consider more recent income

years, such that we observe the baseline cohorts only at a relatively old age. Still, this upward bias

tends to be smaller compared to when directly using all observed incomes (see row 2).

Performance of the First-Step Estimation. While our objective is to reduce bias in estimates

of the IGE, an interesting question is to what extent controlling for parental income can improve

the lifetime-income predictions in the first estimation step. Separately for each estimator and age

interval in which child incomes are observed, Table 3 reports the R2 in a regression of the children’s

actual on their predicted lifetime income (R2 1st step). Naturally, the R2 is low if only short

snapshots of income are observed but increases when incomes are observed over longer age ranges

(compare rows). For a given age range, the R2 is slightly higher when allowing the income slopes

to vary with parental income (cf. columns 3 and 4), but the gains are small. Despite these small

gains in predictive power, the correction strongly improves estimates of the IGE. The reason is that

even variability that is negligible in an R2 sense can have strong e�ects on IGE estimates if it is

directly related to parental income. Our approach is therefore superior not so much in terms of

overall explanatory power, but in the sense of reducing systematic bias in mobility estimates.

ML/Regularization. An alternative to our parametric estimator is to use machine learning

(ML) methods, such as lasso or elastic nets, to select the first-step predictors. However, such

plug-in ML methods would optimize predictive accuracy in the first-step estimation of income

profiles (by balancing bias and variance), whereas our objective is to reduce bias in the second-step

estimation of the IGE. Although the two objectives are related, the key source of bias in the IGE

–– variation in income growth rates by parental income (see Figure 1) – may not be a particularly

strong determinant of lifetime incomes, as noted in the previous section.

We study di�erent ML estimators in Appendix G. Table 4 provides a summary, comparing

IGE estimates using our preferred parametric estimator (“parental quadratic”, column 2) with those
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Table 4: ML Estimation of Lifecycle Profiles

Direct Lifecycle estimator

Lifetime Parental Lasso Lasso Lasso Lasso Lasso
Quadratic (not pen.)

Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 25-27 0.219 0.203 0.040 0.117 0.173 0.203 0.203
N=71,794 (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
� .01 .001 .0001 .00001 .01
# vars 76 233 233 233 233 233
# vars selected 76 16 48 105 174 42

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is lifetime income in column (1) or the predicted lifetime income from a first-step estimation
in the indicated age range of equation (4) in columns (3)-(7). In column (7) we include the parental income x child age
interactions as non-penalized regressors in the first step. See text for a description of each estimator. Standard errors
in parentheses.

based on lasso to select the first-step predictors. To show how the latter’s performance varies

with the number of selected predictors, we also vary the lasso tuning parameter (�, columns 3-6).

We include a broad range of candidate predictors: alongside our standard variables (e.g. child

education, parental income) we also consider family size, birth order, immigrant status, cognitive

and non-cognitive skill scores (as in Table 2), and all two-way interactions with child age and age

squared, resulting in 233 candidate variables. We also include individual FEs in all specifications.

As the skill scores contain missings, the ML sample is smaller than our main intergenerational

sample used in the rest of the paper, resulting in a slightly smaller benchmark IGE (column 1).18

When selecting only a limited set of predictors, the lasso-based estimator performs substantially

worse than our preferred parametric estimator. For instance, the IGE estimate is only 0.117 when

selecting 48 predictors (column 4), rising to 0.173 with 105 non-zero predictors (column 5),

compared to 0.203 with our parametric first step with 76 predictors (column 2). Despite selecting

more predictors, the lasso estimator performs worse as it does not reliably select the interactions

between child age and parental income that, from Figure 1, we know are crucial sources of bias in

18We confirmed our arguments also in the sample as used in Table 3, using a more restricted set of predictor variables.
But here we ask whether machine learning methods could o�er benefits if a wide set of potential predictors is available.
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the second-step estimation of the IGE. Indeed, when including these interactions as non-penalized

regressors, lasso performs similarly to our parametric estimator (column 7). Lasso also performs

well when selecting a very small � (column 6), as the resulting long list of predictors then also

includes the interactions between age and parental income. In Appendix G, we extend this evidence

to other age groups (Table G.1), to using “postselection” rather than penalized lasso coe�cients

in the first step (Table G.2), and to lasso and elastic net estimates in smaller samples with cross-

validated tuning parameters (Table G.3). Although the performance of the ML-based estimators

varies across specifications, they perform either worse or similar to our parametric first step.

In sum, plugging standard ML methods into the first-step estimation will in many cases lead to

larger biases than our proposed parametric specifications. The issue is that plug-in ML methods

do not reliably select the predictors capturing the higher income growth among children from

high-income families, which is the key source of bias in the second-step estimation of the IGE. ML

methods may still perform well when a broad set of predictors can be selected in large samples, or

when including the crucial interactions between child age and parental income as non-penalized

regressors. A promising strategy for future research may be to construct a debiased ML estimator

for the IGE based on orthogonal moments (see Chernozhukov et al. 2022; Puerta 2024).

5.3 Performance of the Lifecycle Estimator in the PSID

To probe the generalizability of these findings, we study how the lifecycle estimator performs using

the PSID. We focus on our benchmark sample, born 1952-1960. For these cohorts, we observe

nearly complete income profiles and can perform an exercise analogous to the one conducted for

Sweden above. We again consider di�erent age thresholds, assuming that child income is observed

only at age 22-27, age 22-30, and so on. Column (1) of Table 5 shows that our benchmark estimate

based on “true” lifetime incomes for the child generation is around 0.43. This estimate is similar to

others reported in the literature, but is still downward biased from the use of noisy incomes in the

parent generation; Mazumder (2016) argues that the true IGE in the US is closer to 0.6. Column (2)
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Table 5: The Lifecycle Estimator in the US Data (PSID)

Direct estimator Lifecycle estimator

Lifetime Annual Baseline Parental Parental Parental Slope-level
Linear Quadratic Quadratic Quadratic

FE FE FE no FE FE
Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 22-27 0.426 0.242 0.316 0.373 0.375 0.428 0.373
N=892 (0.035) (0.016) (0.034) (0.034) (0.034) (0.014) (0.045)
R2 1st - lifetime - - 0.480 0.489 0.490 0.270 0.435
R2 2nd - lifetime 0.142 0.040 0.089 0.121 0.122 0.520 0.073

Age 22-30 0.426 0.280 0.359 0.416 0.432 0.428 0.421
N=892 (0.035) (0.013) (0.033) (0.033) (0.033) (0.014) (0.042)
R2 1st - lifetime - - 0.614 0.620 0.622 0.270 0.589
R2 2nd - lifetime 0.142 0.053 0.115 0.151 0.162 0.520 0.103

Age 22-35 0.426 0.321 0.400 0.449 0.456 0.428 0.464
N=892 (0.035) (0.011) (0.034) (0.034) (0.034) (0.014) (0.042)
R2 1st - lifetime - - 0.740 0.744 0.745 0.270 0.734
R2 2nd - lifetime 0.142 0.064 0.131 0.163 0.167 0.520 0.121

Age 22-40 0.426 0.354 0.413 0.465 0.465 0.428 0.464
N=892 (0.035) (0.010) (0.034) (0.034) (0.034) (0.014) (0.040)
R2 1st - lifetime - - 0.829 0.832 0.832 0.270 0.830
R2 2nd - lifetime 0.142 0.070 0.139 0.172 0.172 0.520 0.131

Age 22-45 0.426 0.373 0.397 0.426 0.421 0.428 0.426
N=892 (0.035) (0.009) (0.034) (0.034) (0.034) (0.014) (0.037)
R2 1st - lifetime - - 0.900 0.901 0.901 0.270 0.900
R2 2nd - lifetime 0.142 0.073 0.135 0.153 0.150 0.520 0.129

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is log lifetime income in column (1), the pooled log annual incomes from age 25 to the
indicated upper age bound in column (2), or the predicted lifetime income from a first-step estimation in the indicated
age range of equation (3) in columns (3)-(6) or equation (4) in column (7). See text for detailed definitions of each
estimator. “R2 1st step” is the R2 from a regression of son’s actual lifetime incomes on predicted lifetime incomes
based on the observed age range. “R2 2nd step” is the R2 from the regression of the predicted log lifetime income of
sons on the lifetime income of fathers. Robust standard errors in parentheses.

reports estimates based on annual incomes for the child generation, pooling observations between

age 22 and the upper age indicated in each row. As in the Swedish sample, the estimates are lowest

at early age, and remain substantially below the benchmark for all considered age ranges.
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In columns (3) to (7) we report the various lifecycle estimators. We keep the discussion brief as

the patterns are similar as in the Swedish data (although point estimates are noisier due to the smaller

samples). Column (3) reports estimates from equation (3) without parental characteristics Pic,

distinguishing three education groups. As in the Swedish data, this baseline estimator understates

the IGE, in particular when incomes are observed at early age. Columns (4) and (5) report the

parental lifecycle estimator as defined in equation (3), with either linear or quadratic age interactions

with parent income. These variants perform better than the baseline estimator, in particular at early

age. However, they still understate the IGE if incomes are measured at a very young age, for the

same reasons as illustrated in the Swedish data. Column (6) reports estimates from the parental

lifecycle estimator without individual fixed e�ects. As for Sweden, this estimator is stable over age

and close to the benchmark. Finally, column (7) reports estimates from the slope-level estimator

based on equation (4). It performs better than the baseline estimator, but still varies with the age at

which child incomes are measured.

Overall, the lifecycle estimator interacting a quadratic in child age with parental income, with

or without fixed e�ects (columns 5 and 6), performs well in both the Swedish and US data. It nearly

eliminates lifecycle bias in both samples, with estimates fluctuating closely around the benchmark.

We showed that the mean estimates are quite stable with respect to (i) the age range in which the

child generation is observed, (ii) the number of income observations available for each person,

and (iii) the number of individuals in the sample. This stability makes the estimator attractive for

comparative purposes, such as mobility comparisons across countries or over time.

6 Recent Trends in Income Mobility in Sweden and the US

Finally, we use the lifecycle estimator to study mobility trends in Sweden and the US, with three

key objectives. First, we probe whether earlier estimates may have been distorted by lifecycle

e�ects from the use of varying age windows across cohorts (see Section 4). Second, the estimator’s

robustness to the age at which child incomes are observed (Section 5) allows us to analyze mobility
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trends for younger, more recent birth cohorts not considered in previous studies, which are particu-

larly interesting from a policy perspective. Third, this application moves beyond the “idealized data

setting” considered earlier, making it a useful reference for other researchers interested in applying

the estimator.

6.1 A Lifecycle Estimator for Mobility Trends

Because recent cohorts can only be observed at a young age, their income profiles need to be

extrapolated over unobserved ages. For example, those born in 1989 are only observed up to age 29

in the Swedish data and 27 in the PSID. One way to address this issue is to pool individuals from

di�erent cohorts (as in Table A.6) and assume that, conditional on education or other observables,

the shape of age-income profiles remains constant across cohorts (Vogel 2007, Haider and Solon

2006). However, age-income profiles may in fact change (see also Eshaghnia et al. 2022), and

Figure A.3 shows that income growth di�ers not only by education but also between Swedish

cohorts conditional on education. Figure A.4 provides the corresponding evidence by occupation.

To capture such changes in the shape of age-income profiles, we can extend equation (3) by

allowing for the age interactions with own and parental characteristics Zic and Pic to vary across

cohorts. As linear interactions generally perform poorly (see Section 5) and quadratic interactions

might be unstable when extrapolating over wide age intervals, we instead interact decade-of-birth

dummies with parental income and a “standardized” age profile that captures the average (concave)

shape of age-income profiles in our sample. This approach allows income growth di�erences by

parental income to vary across cohort groups but assumes that the overall shape of age-income

profiles remains otherwise similar.
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Table 6: Trends in Income Mobility in Sweden (Register data)

Direct Estimator Lifecycle estimator

Annual Annual Baseline Parental Parental Parental
All ages Age 25-30 FE FE FE no FE

– – Cohort Cohort
interaction interaction

(1) (2) (3) (4) (5) (6)

Cohort 0.230 0.087 0.197 0.197 0.195 0.180
1950-59 (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)

Cohort 0.224 0.138 0.207 0.212 0.213 0.202
1960-69 (0.002) (0.002) (0.002) (0.002) (0.002) (0.000)

Cohort 0.198 0.162 0.198 0.209 0.199 0.187
1970-79 (0.002) (0.002) (0.002) (0.002) (0.002) (0.000)

Cohort 0.162 0.153 0.181 0.197 0.164 0.152
1980-89 (0.002) (0.002) (0.002) (0.002) (0.002) (0.000)

R2 0.025 0.017 0.057 0.061 0.058 0.326
Obs 39,148,343 9,921,334 1,844,829 1,844,829 1,844,829 1,844,829
Individuals 1,844,829 1,842,203 1,844,829 1,844,829 1,844,829 1,844,829

Notes: Columns (1) and (2) are based on direct regressions in which we regress son’s log annual income on father’s
lifetime income, pooling all available income observations at age 25-58 (column 1) or in a fixed age range 25-30 (column
2). Columns (3) to (6) report di�erent variants of the lifecycle estimator based on all available income observations.
Column (3) includes individual FEs and a quartic in age interacted with dummies for four education groups. Column
(4) adds a quadratic interaction between son’s age and fathers’ income and a linear interaction between son’s age and
father’s education. We next add interactions between parental income x cohort dummies and a standardized profile in
column (5) (see main text). Finally, column (6) follows the specification of column (5), but intercepts are a function of
parental income rather than individual-specific (no fixed e�ects).

6.2 Mobility Trends in Sweden

Existing evidence on Swedish mobility trends is scarce, especially for cohorts born after the 1970s.19

Table 6 reports our estimates, distinguishing four groups of cohorts born 1950-1989.20 The first

19Engzell and Mood (2021) analyze how Swedish mobility trends vary across a number of specification choices.
Brandén et al. (2024) show trends over calendar years with a focus on gender di�erences.

20The estimated IGE for the 1950s cohorts is slightly lower than in our benchmark sample because of di�erences
in how the samples were constructed. To keep quality constant across cohorts, parental income is measured as a
shorter average in the trends sample (see Section 2), introducing attenuation bias. Moreover, our benchmark sample is
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two columns report direct estimates based on annual incomes. In column (1), we pool all available

income observations in a regression of (log) annual income of children on the father’s log income.

As expected, these estimates decrease monotonically across cohorts, from 0.23 for those born in

the 1950s to 0.16 for cohorts born in the 1980s. In column (2), we instead consider incomes at

a fixed age range available for all cohorts, age 25-30. These estimates increase across cohorts,

by nearly 80 percent. Neither specification seems plausible. The former estimates are based on

di�erent age windows over cohorts, but estimates of the IGE tend to increase with the age at which

child incomes are observed – explaining why they are larger for earlier cohorts. The latter estimates

promise to address this issue by holding the age window fixed, but lifecycle profiles may di�er

across cohorts because of changes in educational attainment (Heckman and Landersø 2021) or

because the education-specific profiles di�er (see Figure A.3).

Columns (3)-(6) report variants of the lifecycle estimator in equation (3). Column (3) presents

the baseline estimator that allows age-income profiles to vary by education but not across cohorts

(except for shifts in the individual intercepts ↵i and in education). The estimates are stable over

earlier cohorts but decline slightly – by about 10 percent – for the 1980-89 cohorts. In column

(4), we add interactions between parent (log) income or education and a quadratic of child age

to account for variation in income growth by parental background within education groups. This

addition has little e�ect on IGE estimates for earlier cohorts, but increases the estimates for the

more recent cohorts. As is intuitive, accounting for the steeper income growth among children

from more a�uent parents (see Table 2) is particularly consequential for recent cohorts, for which

only early-age incomes are observed. Finally, we allow age-income profiles to vary across cohorts,

conditional on the other regressors in the model. In column (5) we interact log parental income

with cohort-group dummies and the “standardized” age profile described above. The specification

in column (6) is similar but drops the individual fixed e�ects ↵i, allowing intercepts to vary only

with parental income. These variants suggest that the IGE remained stable between the 1950 and

1970s cohorts before declining for the most recent cohorts.

restricted to fathers who were relatively young at the birth of the son, for whom parental income is better observed.
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In sum, while estimates based on a fixed age window suggest that mobility decreased substan-

tially after the 1950s cohorts, accounting for lifecycle e�ects yields estimates that vary much less

across cohorts. Indeed, our preferred estimator in column (5) suggests that mobility remained stable

for cohorts born between the 1950s and 1970s, but then increased for more recent cohorts. To

further illustrate the divergence between the simpler and our preferred lifecycle estimator, Appendix

Table F.1 shows sequentially how estimates evolve once di�erent predictors are added.

These results illustrate that for the estimation of mobility trends up to more recent cohorts,

it is critical to allow for income profiles to vary by education and parental income. It can also

be important to allow for such relationships to vary over cohorts, as in our application. Part of

the divergence between our preferred and more basic estimators can be explained by changes in

the relationship between education and income growth, but changes in the relationship between

parental income and own income growth within education groups also contribute, as documented

in Table F.3.

6.3 Mobility Trends in the United States

Many previous studies find that income mobility in the US has remained relatively stable for cohorts

born between the 1950s and late 1970s (Hertz 2007, Lee and Solon 2009, Chetty et al. 2014b),

though others report a decline in mobility (Justman and Stiassnie 2021; Jácome et al. 2022) or that

trends vary across the income distribution (Palomino et al. 2017). The stability observed in many

studies is puzzling, given the concurrent rise in income inequality (Katz and Autor 1999) and the

negative relation between inequality and mobility predicted by theory (Solon, 2014) and observed

across countries (Blanden 2011; Corak 2013) and regions within countries (Chetty et al. 2014a;

Nybom and Stuhler 2021). Some studies discuss why a decline in mobility has not been observed.21

Others argue that it is yet to happen. For example, Putnam et al. (2012) note that the “adolescents of

21In particular, Davis and Mazumder (2024) show that studies based on the PSID miss a reduction in mobility that
occurred already for cohorts born in the early 1950s, who entered the labor market when inequality was rising during
the 1980s. Moreover, Nybom and Stuhler (2024) argue that changes in the joint distribution of income and education
in the parent generation may have counteracted the e�ect of rising income inequality on more recent cohorts.
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Table 7: Trends in Income Mobility in the US (PSID)

Direct Estimator Lifecycle estimator

Annual Annual Baseline Parental Parental Parental
All ages Age 25-30 FE FE FE no FE

– – Cohort Cohort
interaction interaction

(1) (2) (3) (4) (5) (6)

Cohorts 0.380 0.309 0.417 0.430 0.437 0.434
1950-59 (0.034) (0.039) (0.040) (0.040) (0.040) (0.017)

Cohorts 0.391 0.361 0.429 0.447 0.438 0.449
1960-69 (0.034) (0.037) (0.036) (0.035) (0.036) (0.013)

Cohorts 0.406 0.349 0.450 0.468 0.470 0.475
1970-79 (0.029) (0.033) (0.033) (0.033) (0.033) (0.009)

Cohorts 0.308 0.311 0.363 0.394 0.432 0.443
1980-89 (0.025) (0.027) (0.025) (0.025) (0.026) (0.008)

R2 0.087 0.082 0.147 0.159 0.165 0.581
Obs 59,458 17,616 4,937 4,937 4,937 4,938
Individuals 4,939 4,565 4,937 4,937 4,937 4,938

Notes: Columns (1) and (2) are based on direct regressions in which we regress o�spring’s log annual income on
parental lifetime income. For column (1) we pool all available income observations at age 22-58. In column (2) we
only consider age 25-30. Columns (3) to (6) report di�erent variants of the lifecycle estimator based on all available
income observations. Column (3) includes individual FEs and a quartic in age interacted with dummies for three
education groups. Column (4) adds a quadratic interaction between son’s age and fathers’ income and between son’s
age and father’s education. We next add interactions between parental income x cohort dummies and a standardized
profile in column (5) (see main text). Finally, column (6) follows the specification of column (5), but intercepts are a
function of parental income rather than individual-specific (no fixed e�ects).

the 1990s and 2000s are yet to show up in standard studies of intergenerational mobility but [other

evidence suggests] that mobility is poised to plunge dramatically.” We can study these cohorts, as

our lifecycle estimator performs well when incomes are observed at young ages.

Specifically, we use the PSID to estimate the IGE for four di�erent cohort groups born in the

1950s, 1960s, 1970s or 1980s, using the trends sample described in Section 2. Table 7 reports the

results, following the same structure as Table 6. The first two columns present “naive” regressions

in which we regress log annual income on log parental income. Pooling all observed incomes

(column 1), yields lower IGE estimates for more recent cohorts, which are observed only at a young
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age (generating a downward bias). Holding the age window fixed (column 2) suggests that mobility

decreased for the 1960s and 70s cohorts, but rebounded thereafter. However, as already discussed,

neither of these estimators is reliable. Switching to a lifecycle estimator generally yields larger

estimates (columns 3-6). In column (3), the baseline estimator that does not account for di�erential

income growth by parental background indicates a slight increase in the IGE between the 1950s and

1970s cohorts (in line with Justman and Stiassnie 2021), but a sizable drop for the 1980s cohorts.

Allowing income growth to vary with parental income or education (column 4) has little e�ect on

earlier cohorts, but increases the IGE estimate for the 1980s cohorts. This pattern is consistent with

the evidence shown in Section 3: allowing for di�erential lifecycle growth is particularly important

if individuals are only observed at young ages. Moreover, the shape of income trajectories might

have changed across cohorts. In column (5) we account for such shifts by interacting indicators of

the four cohort groups with parental income and a “standardized” age profile (as defined above).

This increases the estimated IGE for recent cohorts further, from 0.394 to 0.432. Finally, column

(6) shows that these results do not depend on the inclusion of individual fixed e�ects.

In sum, all variants of the lifecycle estimator suggest that mobility decreased only slightly

between the 1950s and 1970s cohorts, but the pattern for more recent cohorts depends on whether

we account for changes in income growth across cohorts. Naive estimators suggest that mobility

increased markedly for cohorts born in the 1980s, while estimators that allow for di�erential

lifecycle growth suggest no significant change in mobility.

As for Sweden, we systematically compare the role of specific income-growth predictors in

Table F.2. Compared to our preferred estimate in the final column, the estimate for the 1980s

cohorts is strongly underestimated when not allowing for heterogeneity in income growth. It

remains underestimated, though less so, once we introduce cohort-constant heterogeneity with

respect to parental income (col. 3) or cohort-varying heterogeneity with respect to education (col.

4 and 5). But it is only when introducing cohort-varying heterogeneity with respect to parental

income (col. 6) that we find a pattern of stable mobility between the 1950s and 1980s cohorts.

Similar to the Swedish case, the estimated trends depend thus both on changes in the relationship
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between own education and future income, and on changes in the relationship between own income

growth and parental income conditional on education.

Structural changes on the labor market may have therefore not only a�ected the distribution of

income at a given age, but also the distribution of income growth: in the US, children from richer

parents experience faster income growth over age today than in the past. Of course, these findings

are only a snapshot based on early labor market experiences, and it remains to be seen whether they

hold up when the 1980s cohorts reach later stages of their careers. Based on current data, however,

we reject any major change in US income mobility over the past four decades.

7 Concluding Remarks

Intergenerational mobility in income is di�cult to measure, and methodological improvements

have led to major revisions of mobility estimates (Solon 1999; Mazumder 2016). But despite a

better understanding of the source of attenuation and lifecycle biases, the literature still struggles to

address them e�ectively. As Mogstad and Torsvik (2023) note, “there is considerable uncertainty

associated with the IGE estimates, and especially with their comparison across time and place”.

The commonly used rule of thumb to measure income around midlife only helps partially, as it

cannot be applied to recent cohorts, and estimates remain sensitive to the exact age at measurement.

Instead, we proposed that researchers make more systematic use of available income information

over the lifecycle. We highlighted three properties of income processes relevant for intergenerational

research: (i) income growth explained by observable characteristics, (ii) transitory noise, and (iii)

unexplained income growth that correlates within families. The latter is also of more general

interest for a long-standing debate on whether (residual) income grows at an individual-specific

and deterministic rate or follows a random walk. Using long income series from Sweden and the

US, we found that residual income growth contains a systematic component: children from a�uent

parents tend to experience faster growth, even accounting for their own characteristics.

The estimation of intergenerational mobility is therefore intertwined with the analysis of income
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dynamics. Building on earlier contributions such as Hertz (2007), we proposed a two-step lifecycle

estimator of income mobility that captures these dynamics. In the first step, we predict income

profiles based on individual characteristics, but allow income growth to also vary with parental

background. Comparing this lifecycle estimator to benchmark estimates in Swedish and US data,

we found it to perform well in di�erent data settings, and to be less sensitive to the age at which

incomes are observed than other methods. These properties are attractive for comparative purposes,

such as mobility comparisons across place or time, or for studying mobility in recent birth cohorts

that are observed only at younger ages. Our main analysis employs a parametric first-step model,

which outperforms more data-driven methods in our setting. Future research could explore the

potential of more tailored implementations of machine learning approaches.

We used this estimator to study mobility trends in Sweden and the US, including for more recent

birth cohorts, which are particularly interesting from a policy perspective. For Sweden, estimates

based on a fixed age window suggest that mobility decreased substantially after the 1950s cohorts.

However, after accounting for lifecycle e�ects, we find that the IGE has remained stable for cohorts

born in the 1950s, 1960s and 1970s, and decreased slightly for more recent cohorts.

Accounting for lifecycle e�ects is particularly important for recent US cohorts. While a naive

fixed-age estimator yields a U-shaped mobility pattern across cohorts, our lifecycle estimator yields

more stable estimates: the IGE has been remarkably constant across US cohorts born 1950-1989.

Interestingly, income growth has diverged in more recent cohorts, with children from more a�uent

backgrounds experiencing faster income growth today than in the past. One explanation for this

finding is an increased divergence in income growth within education groups. An interesting

question for future work is why children from a�uent families experience faster income growth,

even conditional on education and other characteristics, and why these patterns change over time.
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Figure A.1: Components of the Income Process
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Figure A.2: Income Profiles by Own Lifetime Income
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Figure A.3: Income Profiles by Education Group and Cohort
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Notes: The figure plots the observed log income profiles by education group and cohort. Source: Swedish Register
Data.
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Figure A.4: Income Profiles by Occupation Group and Cohort
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Notes: The figure plots the observed log income profiles by occupation group and cohort. Source: Swedish Register
Data.
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Table A.2: Associating income growth of sons with income growth and levels of fathers

(1) (2) (3) (4)

Dependent variable: Change in son’s log annual income between ages 25 and 30

Change in father’s log annual 0.096*** 0.082*** 0.027*** 0.014***
income between ages 25 and 30 (0.003) (0.004) (0.003) (0.003)
Log (Father’s Lifetime 9.454*** 1.994*** 0.651
Income)/100 (0.398) (0.391) (0.398)

N 170,044 170,044 170,044 170,044
R2 0.005 0.009 0.100 0.102

Dependent variable: Change in son’s log annual income between ages 30 and 35

Change in father’s log annual 0.008 0.007 0.003 0.002
income between ages 30 and 35 (0.004) (0.004) (0.004) (0.004)
Log (Father’s Lifetime 0.475 -1.409** -1.598***
Income)/100 (0.422) (0.432) (0.442)

N 104,393 104,393 104,393 104,393
R2 0.000 0.000 0.009 0.009

Dependent variable: Change in son’s log annual income between ages 35 and 40

Change in father’s log annual -0.003 -0.005 -0.005 -0.005
income between ages 35 and 40 (0.008) (0.008) (0.008) (0.008)
Log (Father’s Lifetime 0.964 0.220 0.375
Income)/100 (0.867) (0.880) (0.909)

N 23,447 23,447 23,447 23,447
R2 0.000 0.000 0.003 0.003

Education X X
Father’s Education X

Notes: Birth cohorts 1970-78. The dependent variable in each panel is the change in log annual income over
the indicated age range. Education distinguishes 12 levels of highest educational attainment. Father’s education
distinguishes four levels of parental education. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A.3: IGE Estimates Accounting for Age-Education Profiles

Panel A Panel B
Observed Prediction at Age Prediction of
Age Range 25 30 35 Complete Profiles

25-30 0.042 0.165 - 0.209
(0.003) (0.003) (0.004)

25-35 0.080 0.158 0.224 0.231
(0.003) (0.003) (0.003) (0.004)

25-40 0.121 0.173 0.224 0.249
(0.003) (0.003) (0.003) (0.004)

25-45 0.147 0.190 0.226 0.259
(0.003) (0.003) (0.003) (0.005)

25-58 0.182 0.224 0.248 0.277
(0.003) (0.003) (0.003) (0.004)

Annual 0.001 0.172 0.253 -
(0.003) (0.004) (0.004)

True 0.253 0.253 0.253 0.253
(0.003) (0.003) (0.003) (0.003)

Notes: Benchmark sample from Swedish registers, cohorts 1952-60, N =197,242 observations. The top rows report
estimates of the IGE based on the first-step estimation of equation (2), which includes a quartic in age interacted with
four education groups. In Panel A, we predict child income at age 25, 30 or 35 (within the observed range). In Panel B,
we predict child income over the entire lifecycle (by randomly assigning each observation of the benchmark generation
into a “young” or an “old” copy, as explained in Section 5.1).

7



Table A.4: The Lifecycle Estimator with Fewer Income Observations (Swedish data)

Lifecycle estimator (Parental, Quadratic)

Son’s Age N  6 obs.  5 obs.  4 obs.  3 obs.  2 obs.

Age  30 94,194 0.287 0.285 0.285 0.287 0.282
(0.003) (0.003) (0.004) (0.004) (0.004)

R2 0.069 0.067 0.065 0.063 0.056

Age  35 94,264 0.261 0.265 0.263 0.264 0.264
(0.003) (0.003) (0.003) (0.004) (0.004)

R2 0.060 0.060 0.057 0.055 0.049

Lifecycle estimator (Slope-level, Quadratic)

Son’s Age N  6 obs.  5 obs.  4 obs.  3 obs.  2 obs.

Age  30 94,194 0.241 0.239 0.237 0.235 0.230
(0.005) (0.005) (0.005) (0.005) (0.005)

R2 0.027 0.026 0.026 0.025 0.023

Age  35 94,264 0.245 0.244 0.242 0.244 0.246
(0.004) (0.004) (0.004) (0.005) (0.005)

R2 0.033 0.032 0.031 0.030 0.028

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income for the
Parental Quadratic FE and the Slope-level FE lifecycle estimators. The measure for son’s income is the predicted
lifetime income from a lifecycle estimator applied to the indicated age range. The top row indicates the maximum
number of income observations used for each person in the child generation. The observations are selected randomly
from all the observations available for each person below the indicated age threshold. Robust standard errors in
parentheses.
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Table A.5: The Lifecycle Estimator in Smaller Samples (Swedish data)

Sample Size k=1/4 k=1/16 k=1/64 k=1/256 k=1/1024

Son’s Age 25-30

Benchmark 0.259 0.258 0.263 0.257 0.269
Std. Deviation (0.003) (0.011) (0.028) (0.054) (0.103)

Lifecycle (Parental Quadratic) 0.249 0.263 0.266 0.256 0.266
Std. Deviation (0.005) (0.024) (0.060) (0.121) (0.316)

Lifecycle (Slope-level Quadratic) 0.242 0.254 0.241 0.256 0.267
Std. Deviation (0.003) (0.022) (0.056) (0.113) (0.221)

N 1,711,263 426,585 106,900 26,723 6,678

Son’s Age 25-35

Benchmark 0.261 0.258 0.258 0.257 0.264
Std. Deviation (0.005) (0.009) (0.022) (0.050) (0.107)

Lifecycle (Parental Quadratic) 0.266 0.259 0.266 0.252 0.253
Std. Deviation (0.011) (0.022) (0.053) (0.098) (0.261)

Lifecycle (Slope-level Quadratic) 0.258 0.252 0.262 0.255 0.269
Std. Deviation (0.006) (0.017) (0.046) (0.084) (0.200)

N 1,711,373 428,891 106,984 26,722 6,673

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income, comparing
the Parental Quadratic FE and the Slope-level FE lifecycle estimators with the benchmark. Each column reports
coe�cients estimated from multiple draws with replacement of di�erently sized sub-samples, as indicated in the top
row. For each sample size, we report the mean and standard deviation (in parentheses) of the point estimates, computed
across the random draws from the main sample. Thus, for k = {1/4, 1/16, 1/64, 1/256, 1/1024} we draw 1/k samples
of size Nk = N ⇤ k from the whole sample of size N . Sons’ incomes are observed from age 25 to 30 in Panels A and B.
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Table A.6: Robustness to Cohort and Year E�ects (Swedish data)

(1) (2) (3) (4)

Benchmark 0.215 0.215 0.214 0.210
(0.002) (0.002) (0.002) (0.003)

Annual, all observed ages 0.237 0.237 0.280 0.288
(0.002) (0.002) (0.003) (0.006)

Lifecycle (Parental Quadratic) 0.208 0.203 0.235 0.286
(0.003) (0.003) (0.003) (0.005)

Lifecycle (slope-level Quadratic) 0.201 0.198 0.204 0.245
(0.002) (0.002) (0.003) (0.005)

First-step sample
Cohorts: 1952-1960 1950-1989 1950-1989 1950-1989
Income years: 1977-2018 1977-2018 1998-2018 2014-2018

Individuals (second step) 293,333 293,333 284,806 152,412

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income, comparing
the Parental Quadratic FE and the Slope-level FE lifecycle estimators with the benchmark and an estimate based on all
observed annual earnings. Each column reports estimates for cohorts born 1952-1960 using data from di�erent time
periods and (for the first-step estimation) di�erent cohorts. We use the Swedish trends sample (see Section 2), which
results in slightly lower benchmark estimates than for the baseline sample. Column (1) uses the benchmark cohorts
(born 1952-1960) and all earnings years (when aged 25-58) in steps 1 and 2. Column (2) uses all cohorts (1950-1989)
and all earnings years (when aged 25-58) in step 1. Column (3) uses all cohorts (when aged 25-58) during the years
1998-2018 in step 1. Column (4) uses all cohorts (when aged 25-58) during the years 2014-2018 in step 1. Robust
standard errors are in parentheses and the final row shows the number of unique individuals used in each column
(among the 1952-1960 cohorts).
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B Modelling Errors-in-Variables

In the classical errors-in-variables model, inconsistencies in the IGE are limited to attenuation bias
caused by the imprecise measurement of the lifetime income of parents (e.g., Atkinson 1980).22
However, the association between current and lifetime income varies systematically over the life
cycle, contrary to a classical errors-in-variables model in which the errors are independent of true
values. As a consequence, the use of short income snapshots for the child generation introduces
a lifecycle bias in mobility estimates (Jenkins, 1987). Grawe (2006) and Haider and Solon (2006)
demonstrate that this bias tends to be large, such that mobility estimates are quite sensitive to the
age at which child income is being measured.23

Recent applications adopt therefore a generalized errors-in-variables (GEiV) model proposed
by Haider and Solon (2006), which accounts for the systematic relation between annual and lifetime
income over the lifecycle.24 Focusing on left-hand side measurement error, it corresponds to the
linear projection

ysit = �st y
⇤
si + usit, (5)

where ysit is the annual log income of the child of family i at age t, y⇤si is his or her log lifetime income,
and y⇤si and usit are uncorrelated by construction. Under the assumption that Cov(y⇤f i, usit) = 0,
with y⇤f i denoting parental log lifetime income, the probability limit of a regression of ysit on y⇤f i is

plim �t =
Cov(ysit, y⇤f i)

Var(y⇤f i)
= ��st, (6)

where � is the true IGE from regressing y⇤si on y⇤f i. The use of short income spans would therefore
not introduce bias if child income were measured at an age at which �st is close to one, which
tends to be around midlife.25 The key implication is that researchers can reduce lifecycle bias by
measuring income at mid-age.

As shown in Table B.1, this generalization of the classical error-in-variables model captures the
relation between annual and lifetime incomes remarkably well. The insight that �st increases over
age and approximates one around mid-age holds in simulated income data calibrated to the US labor
market (based on Guvenen 2009, details available upon request), as well as in actual income series

22While this bias can be reduced by averaging over longer income snapshots, Mazumder (2005) demonstrates that
even 10-year averages are not su�cient because the transitory component of income is highly serially correlated.

23This observation also motivates the recent interest in mobility in income ranks, as rank correlations su�er less
from attenuation and lifecycle bias (Chetty et al. 2014a; Nybom and Stuhler 2017).

24The GEiV model has been extended in subsequent work. Lee and Solon (2009) adapt it for the study of mobility
trends. An et al. (2017) implement it within a non-parametric framework that allows for the IGE to be heterogeneous.

25Böhlmark and Lindquist 2006 confirm this prediction in Swedish data. As noted by Haider and Solon (2006), for
individuals with di�erent income growth there will nevertheless exist an age t⇤ around midlife at which the expected
di�erence between individuals’ log annual incomes equals the expected di�erence between their lifetime incomes.
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from Sweden and the US. However, the approach is subject to some limitations. First, lifecycle bias
may not be fully eliminated at the age at which �st = 1 because the assumption Cov(y⇤f i, usit) = 0
tends to be violated if income growth varies with parental background even conditional on a child’s
own lifetime income (as indicated by Figure 1 and shown formally in Nybom and Stuhler 2016).

Second, the optimal age t⇤ at which �st = 1 is rarely known, as its estimation requires data
on lifetime incomes. In practice, applications follow instead a simple rule-of-thumb to measure
income at some point in midlife. Yet Haider and Solon (2006) warn that t⇤ is likely to vary across
countries, and Table B.1 shows that even slight deviations from this optimal age yield substantially
di�erent estimates. The rule-of-thumb estimates prevalent in the literature may therefore contain
large biases, in particular given the extent to which the age at measurement varies across studies
(see Table A.1).

Table B.1: Lifecycle Bias and the Generalized-Errors-in-Variables Model

Swedish Register Data US Simulated Data

Son’s Age �st �t Son’s Age �st �t

33 0.858 0.221 41 0.896 0.461
34 0.913 0.237 42 0.958 0.470
35 0.969 0.253 43 0.997 0.506
36 1.024 0.270 44 1.036 0.518
37 1.080 0.285 45 1.047 0.525

True 0.253 0.497

Notes: Estimates of �st are based on equation (5). Estimates of �t are based on a regression of parental lifetime income
on o�spring annual income at age t. Source: Swedish register data and simulated income data for the US, based on
Guvenen (2009).

A third problem is that income around midlife is often not observed in the sample of interest.
By definition, it will not be available if our interest centers on recent cohorts, who are still in their
20s or early 30s. Lee and Solon (2009) provide an extension of the GEiV model for the estimation
of mobility trends, which allows for the inclusion of observations at younger age by accounting for
the age di�erence to a reference age. Lifecycle bias would not a�ect the estimated mobility trend
if that bias remained su�ciently stable (i.e., if �st and Cov(y⇤f i, usit) remain constant) over cohorts.
However, the structure of income profiles does change over time (e.g., Guvenen 2009), and the
age profile of � varies over the cohorts in our benchmark sample: at age 35, estimates of � vary
between 1 and 1.2 between cohorts born in the early vs. late 1950s, scaling estimates of the IGE
accordingly.26 As a result, the IGE appears to increase twice as much when using incomes at age

26This observation may reflect that income distributions, and therefore the value of �, can change substantially with
macroeconomic conditions – such as the recession that Sweden experienced in the early 1990s.
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35 rather than lifetime incomes (see Figure C.2). These observations suggest that estimates based
on a fixed age window or fixed reference age, while useful for identifying sudden or large shifts in
mobility, might not provide a good approximation for more gradual mobility trends over time.

C Modelling the Income Process: Fixed E�ects

Figure C.1: Illustration of Potential Problems with Fixed E�ect Estimators
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Notes: In the Figure, the red line represents the average income profile in the population while the blue line represents
the income trajectory of an individual with steeper than average profile. The gray and green lines correspond to the red
line shifted by a positive or negative fixed e�ect, respectively.

Figure C.1 provides intuition for why mobility estimates based on equation (2) remain sensitive
to the age at which incomes are measured. Suppose the blue line (round dots) is the true income
trajectory of individual i with a steeper than average profile, while the red line (diamonds) is the
average income profile in the population. Now, suppose we only observe incomes at age 25-40,
as in Panel A of the figure. In this case, the predicted income profile for individual i is given by
the green profile (squares), corresponding to the red line plus a negative individual fixed e�ect.
We would therefore understate the lifetime income of those with steeper profiles. Because income
growth increases systematically with parental income even after conditioning on own education or
occupation (see Section 3), the intergenerational elasticity is understated as well. The shorter and
earlier the age range, the more we are understating the elasticity, as illustrated in Table A.3.

The problem will be compounded when using equation (2) to predict lifetime incomes for
both the child and the parent generation. Panel B of Figure C.1 illustrates why the the approach
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understates the income of children (observed early in life) with steeper than average profiles, and
overstate the lifetime income of parents with steeper than average profiles (observed late in life).
Suppose that the income profile of both parent and child is given by the red line, but that we observe
the child earlier in life (e.g., ages 25-40) and the parent later in life (ages 40+). As individual
heterogeneity can only be captured by the fixed e�ects, the father will have a positive fixed e�ect
and the child a negative fixed e�ect. As a consequence, we would be understating the lifetime
income of sons who have steeper than average profiles (green line), overstating the lifetime income
of their fathers (gray line), and therefore, understating the intergenerational elasticity.

Figure C.2: Estimation of Trends in the IGE
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Panel A. Trends with Annual Incomes
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Notes: In this Figure, we plot trends in the IGE using the Swedish Register data. In Panel A, we plot true trends using
son’s lifetime income (in black) and trends using annual incomes at ages 30, 35 or 40. In Panel B, we plot estimates
of the IGE based on the first-step equation (2) using either ages 25-45 or 25-35, to then predict income at age 25 for
estimation of the IGE. For the line red in Panel B (“Rolling Year”) we instead use a rolling age window that reduces as
the cohorts become younger (similar to Hertz 2007). For the 1952 cohort the age range for estimation is 25-43, for the
1953 cohort the range is 25-42, and so on.

The same problem also a�ects the estimation of mobility trends, as is illustrated in Figure C.2
based on our Swedish benchmark sample. The “true” cohort trend (based on lifetime incomes,
black line) increases for cohorts born in the 1950s. Panel A compares this benchmark to estimates
based on income at a fixed age. While these estimators agree on the direction of the trend, the
magnitudes di�er. Panel B compares the benchmark to the two-step estimator as described in
Section 4.2. The trend is relatively well captured if the estimator is based on fixed age windows
(blue and green lines). However, using a rolling age window – considering age 25-43 for the 1952
cohort but reducing the age range for more recent cohorts – we fail to capture the increase in the

14



IGE (red line). Our findings therefore suggest that trend estimates based on rolling age windows
are susceptible to lifecycle e�ects.

D Modelling the Income Process: Relating Growth and Levels

Creedy (1988) proposes a correction method based on the insight that the dispersion of earnings
tends to increase over age, even conditional on education or occupation. To account for this
pattern, he assumes that income growth varies with the income rank of the individual in the income
distribution. An important advantage of this method is that it can be implemented in cross-sectional
data sources. In a first step, we estimate how the mean and the variance of log income vary over
age within each occupational or education group. Following Creedy (1988), we estimate

yi j = �0 + �1agei j + �2age2
i j + ui j, (7)

separately by each occupational or education group j, where yi j is the log income of individual i and
group j. Then, we predict µt j , which is the average income by each occupational group j and age
group t. The variance of log income �2

t j is also computed within each group. Next, we estimate:

�2
t j = �0 + �1aget j + ✏t j, (8)

and obtain predicted values for �2
t j . Alternatively, one can obtain these measures from external

sources.
In a second step, these predicted values are used to rescale individual incomes to a common

base year. First, compute the standardized value of an individual’s log-earnings,

zt = yt � µt j/�t j . (9)

Then, rescale these standardized incomes according to the occupation or education-specific age-
earning profile to compute adjusted log earnings at a common age t*:

yt⇤ = µt⇤ j + z�t⇤ j . (10)

Those adjusted earnings depend on a single observable income at age t and on the values of µt and
�t that were predicted within the education and/or occupational group. Finally, we have adjusted
income observations for di�erent ages, computed based on a single cross-section observation and
scaling factors. Creedy (1988) proposes to either use adjusted earnings directly or to compute an
aggregated discounted lifetime earnings measure for the estimation of the IGE.
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Figure D.1: Extrapolating from Observable Profiles
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Notes: We compare IGE estimates based on the “true” lifetime income of sons (black line), estimates based on annual
incomes (green line), and two versions of Creedy’s proposed estimator. In the first, we approximate the profiles of µt j
and �2

t j with a linear function in age (red line). In the second, we use their non-parametric age profile as observed in
the sample (blue line).

We implement this method in the Swedish data. We combine the first-step estimates of µt j and
�2

t j with an individual’s earning at a certain age, to obtain his predicted income from ages 25-53
(which are then used to construct lifetime incomes). We therefore obtain a di�erent measure of
lifetime income, and a di�erent estimate for the IGE, depending on the age at which we measure
sons’ income. We plot the resulting estimates of the IGE in Figure D.1. We compare estimates
based on the “true” lifetime income of sons (black line), estimates based on annual incomes (green
line), and two versions of Creedy’s proposed estimator. In the first, we approximate the profiles of
µt j and �2

t j with a linear function in age (red line). In the second, we use their non-parametric age
profile as observed in the sample (blue line).

The comparison demonstrates that estimates of the IGE can be significantly improved by taking
the dispersion of income growth over age into account. The corrected estimates are within 20
percent of the benchmark over the age range 30 to 50, even if the age profiles of µt j and �2

t j are
approximated linearly. The correction works less well than a correction based on the generalized
errors-in-variables model proposed by Haider and Solon (2006), but it is also based on less
stringent requirements – only the age pattern of the variances and means is required. As Creedy
(1988) discusses, the statistics that are necessary for the correction can potentially be estimated
from a single cross-section. However, Figure D.1 also shows that the correction method works only
imperfectly, and tends to overstate the IGE over most of the age range.

A key limitation is that equation (10) rescales incomes based on the assumption that individual’s
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rank in the widening income distribution remains stable over age: that is, individuals with high
annual rank are assumed to have higher income growth in the future. This is not the case in
practice, as is illustrated in Panel B of Figure 1. Because of short-term variability, annual incomes
are instead mean-reverting – individuals with high income rank at age t tend to have lower income
growth in the next few years. By not accounting for this mean-reverting influence, the imputation in
equation (10) tends to overstate the variance of lifetime incomes and therefore the IGE. The method
performs better the more important the heterogeneous growth rates are compared to the transitory
shock component. For example, in the HIP process proposed by Guvenen (2009), incomes at early
ages are dominated by transitory shocks from an AR(1) process (and intercepts), while incomes at
later ages are dominated by idiosyncratic growth rates, and the extrapolation from observed ranks
would work better at later ages.

E Levels vs Logs in the First Step of the Estimator

The first step of our proposed lifecycle estimator consists of the estimation of variants of the
following equation, as explained in Section 5.1:

yict = ↵i + g(Aict, Zic) + f (Aict, Zic, Pic) + "ict . (11)

In this section, we set yict to be the absolute income of individual i from cohort c in period
t instead of log income, our preferred specification. There are advantages and disadvantages
of estimating equation (11) with absolute instead of log incomes. The main advantage is the
avoidance of the re-transformation problem described in Section 5.1. While the fitted values from
the estimation of equation (11) with logs have mean zero by construction (E["ict] = 0), their mean
will be positive after transformation to absolute income (E[exp("ict)] > 0) before aggregation of
lifetime incomes. In practice, this implies that we need to add an additional step in our estimation. If
incomes are estimated and predicted in levels, we are not subject to the re-transformation problem.
However, other challenges become evident, as discussed below.

Table E.1 shows the performance of the lifecycle estimators with absolute incomes in the first
step instead of log incomes for the Swedish Registers. The first noteworthy di�erence between
Table E.1 and the benchmark Table 3 (with log incomes) is the lower number of observations for
each age range, especially in column (7). This happens because some annual predictions with
absolute incomes happen to be negative. Thus, when we take logs for the computation of lifetime
incomes, these observations are assigned a missing value. This is particularly problematic for the
“slope-level” estimator of column (7).

To overcome this issue, we bottom code predictions of annual incomes to 10,000 SEK (around
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912 USD). This is the same bottom coding done to the actual annual incomes. Table E.2 shows the
performance of the lifecycle estimators with absolute incomes in the first step and with predicted
annual incomes bottom-coded to 10,000 SEK. After the bottom coding, we obtain the exact number
of observations as in the benchmark Table 3. The baseline lifecycle estimator of Table E.2 column
(3) shows a clear lifecycle pattern, but lower levels for most age ranges (except the first) when
compared to Table 3. The parental lifecycle estimators of columns (4) and (5) and the slope-level
estimator of column (7) are very similar to the ones in Table 3, with the exception of the lowest age
range, where the estimator of Table E.2 performs better. Finally, the parental quadratic estimator
without fixed e�ects (column 6) is slightly lower than the one in Table 3 and the benchmark of
column (1), although still performing well.

Table E.3 shows the comparison between estimates in logs and levels for the PSID. The
performance of the parental lifecycle estimators in levels (Table E.3, columns 4 and 5) is similar
to the one of the estimators in logs (Table 5). The exception is the 22-27 age range, where the
estimator in levels is closer to the benchmark. In turn, the slope-level estimator in levels (column 7)
of age ranges 22-27 and 22-30 performs worse than the one in logs, overstating the IGE compared
to the benchmark.

In sum, our lifecycle estimators show good performance regardless of whether we estimate
the first step with log or absolute annual incomes. With log annual incomes, we need to correct
for the re-transformation problem. With absolute annual incomes, we need to take into account
negative predictions, which might exclude some observations entirely. We suggest that practitioners
experiment with both approaches and choose the one that best fits their data and application.
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Table E.1: The Lifecycle Estimator - First Step in Levels (Swedish Registers)

Direct estimator Lifecycle estimator

Lifetime Annual Baseline Parental Parental Parental Slope-level
Linear Quadratic Quadratic Quadratic

FE FE FE no FE FE
Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 25-27 0.252 0.045 0.151 0.240 0.280 0.233 0.158
(0.004) (0.002) (0.002) (0.002) (0.002) (0.001) (0.004)

N= 94,098 281,504 94,098 94,098 94,098 94,098 90,073
R2 0.049 0.001 0.053 0.124 0.162 0.385 0.020

Age 25-30 0.253 0.100 0.162 0.233 0.272 0.232 0.199
(0.004) (0.002) (0.002) (0.002) (0.002) (0.001) (0.003)

N= 94,192 561,502 94,192 94,192 94,192 94,192 91,353
R2 0.050 0.006 0.065 0.124 0.164 0.385 0.034

Age 25-35 0.254 0.158 0.181 0.234 0.255 0.232 0.221
(0.004) (0.001) (0.002) (0.002) (0.002) (0.001) (0.004)

N= 94,262 1,024,560 94,262 94,262 94,262 94,262 91,176
R2 0.050 0.013 0.071 0.113 0.132 0.384 0.041

Age 25-40 0.254 0.204 0.198 0.250 0.254 0.231 0.239
(0.004) (0.001) (0.002) (0.002) (0.002) (0.001) (0.004)

N= 94,310 1,482,460 94,310 94,310 94,310 94,310 91,790
R2 0.050 0.018 0.071 0.108 0.111 0.383 0.047

Age 25-45 0.254 0.234 0.212 0.267 0.255 0.232 0.244
(0.004) (0.001) (0.003) (0.003) (0.003) (0.001) (0.004)

N= 94,323 1,935,127 94,323 94,323 94,323 94,323 92,386
R2 0.050 0.021 0.069 0.105 0.097 0.385 0.049

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is log lifetime income in column (1), the pooled log annual incomes from age 25 to the
indicated upper age bound in column (2), or the predicted lifetime income from a first-step estimation in the indicated
age range of equation (3) in columns (3)-(6) or equation (4) in column (7). See text for detailed definitions of each
estimator. Robust standard errors in parentheses.
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Table E.2: The Lifecycle Estimator - First Step in Levels with Bottom Coding (Swedish Registers)

Direct estimator Lifecycle estimator

Lifetime Annual Baseline Parental Parental Parental Slope-level
Linear Quadratic Quadratic Quadratic

FE FE FE no FE FE
Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 25-27 0.253 0.046 0.151 0.239 0.277 0.233 0.227
(0.004) (0.002) (0.002) (0.002) (0.002) (0.001) (0.005)

N= 94,100 281,510 94,100 94,100 94,100 94,100 94,100
R2 0.050 0.001 0.054 0.124 0.161 0.385 0.026

Age 25-30 0.253 0.101 0.162 0.232 0.271 0.232 0.251
(0.004) (0.002) (0.002) (0.002) (0.002) (0.001) (0.004)

N= 94,194 561,514 94,194 94,194 94,194 94,194 94,194
R2 0.050 0.006 0.065 0.125 0.164 0.385 0.039

Age 25-35 0.254 0.159 0.180 0.234 0.255 0.232 0.267
(0.004) (0.001) (0.002) (0.002) (0.002) (0.001) (0.004)

N= 94,264 1,024,582 94,264 94,264 94,264 94,264 94,264
R2 0.050 0.013 0.071 0.113 0.133 0.384 0.047

Age 25-40 0.254 0.204 0.197 0.249 0.253 0.231 0.263
(0.004) (0.001) (0.002) (0.002) (0.002) (0.001) (0.004)

N= 94,311 1,482,461 94,311 94,311 94,311 94,311 94,311
R2 0.050 0.018 0.071 0.109 0.112 0.383 0.052

Age 25-45 0.254 0.234 0.210 0.266 0.255 0.232 0.257
(0.004) (0.001) (0.002) (0.002) (0.002) (0.001) (0.004)

N= 94,339 1,935,194 94,339 94,339 94,339 94,339 94,339
R2 0.050 0.021 0.070 0.108 0.100 0.385 0.054

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is log lifetime income in column (1), the pooled log annual incomes from age 25 to the
indicated upper age bound in column (2), or the predicted lifetime income from a first-step estimation in the indicated
age range of equation (3) in columns (3)-(6) or equation (4) in column (7). See text for detailed definitions of each
estimator. Robust standard errors in parentheses.
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Table E.3: The Lifecycle Estimator - First Step in Levels (PSID)

Direct estimator Lifecycle estimator

Lifetime Annual Baseline Parental Parental Parental Slope-level
Linear Quadratic Quadratic Quadratic

FE FE FE no FE FE
Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 22-27 0.426 0.242 0.303 0.399 0.451 0.432 0.506
N=892 (0.035) (0.016) (0.024) (0.024) (0.024) (0.014) (0.045)
R2 0.142 0.040 0.152 0.238 0.288 0.513 0.123

Age 22-30 0.426 0.280 0.311 0.394 0.426 0.432 0.514
N=892 (0.035) (0.013) (0.024) (0.024) (0.024) (0.014) (0.045)
R2 0.142 0.053 0.163 0.237 0.268 0.513 0.129

Age 22-35 0.426 0.321 0.339 0.402 0.417 0.432 0.479
N=892 (0.035) (0.011) (0.025) (0.025) (0.025) (0.014) (0.041)
R2 0.142 0.064 0.166 0.220 0.235 0.513 0.135

Age 22-40 0.426 0.354 0.372 0.443 0.442 0.432 0.454
N=892 (0.035) (0.010) (0.028) (0.028) (0.028) (0.014) (0.038)
R2 0.142 0.070 0.166 0.222 0.220 0.513 0.137

Age 22-45 0.426 0.373 0.384 0.440 0.423 0.432 0.427
N=892 (0.035) (0.009) (0.030) (0.030) (0.030) (0.014) (0.036)
R2 0.142 0.073 0.156 0.196 0.183 0.513 0.136

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is log lifetime income in column (1), the pooled log annual incomes from age 25 to the
indicated upper age bound in column (2), or the predicted lifetime income from a first-step estimation in the indicated
age range of equation (3) in columns (3)-(6) or equation (4) in column (7). See text for detailed definitions of each
estimator. Robust standard errors in parentheses.

21



F Supplementary Evidence on Cohort Trends

Table F.1: Tests of trends estimates (Swedish Data)

Lifecycle estimator, di�erent specifications
(1) (2) (3) (4) (5) (6)

Cohorts 0.196 0.197 0.195 0.197 0.197 0.196
1950-59 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Cohorts 0.190 0.206 0.209 0.208 0.208 0.213
1960-69 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Cohorts 0.168 0.200 0.212 0.201 0.200 0.200
1970-79 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Cohorts 0.134 0.186 0.215 0.181 0.183 0.164
1980-89 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Education X age X X X X
Parent educ. X age X X X X
Parent income X age X X
Educ.X age X cohort X
Parent educ.X age X cohort X
Parent inc.X age X cohort X

R2 0.050 0.061 0.065 0.060 0.060 0.059
Individuals 1,844,829 1,844,829 1,844,829 1,844,829 1,844,829 1,844,829

Notes: The table reports di�erent variants of the lifecycle estimator for cohort trends in Sweden, in which the set of
first-step regressors varies across columns. The specifications in all columns include individual fixed e�ects, year fixed
e�ects, and a standardized age profile interacted with cohort dummies. Column (2) adds quadratic age profiles that
are allowed to vary by own and parental education. Column (3) instead includes an interaction between quadratic age
profiles and fathers’ income. We next add interactions between cohort dummies, a standardized profile, and either own
education (column 4), parental education (column 5), or parental income (column 6).
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Table F.2: Tests of trends estimates (PSID)

Lifecycle estimator, di�erent specifications
(1) (2) (3) (4) (5) (6)

Cohorts 0.385 0.422 0.434 0.423 0.425 0.437
1950-59 (0.038) (0.040) (0.037) (0.040) (0.040) (0.040)

Cohorts 0.391 0.437 0.453 0.435 0.432 0.438
1960-69 (0.035) (0.036) (0.034) (0.036) (0.036) (0.036)

Cohorts 0.396 0.457 0.468 0.459 0.457 0.470
1970-79 (0.031) (0.033) (0.031) (0.033) (0.033) (0.033)

Cohorts 0.290 0.376 0.405 0.391 0.384 0.432
1980-89 (0.024) (0.025) (0.024) (0.026) (0.026) (0.026)
Education X age X X X X
Parent educ. X age X X X X
Parent income X age X X
Educ. X age X cohort X
Parent educ. X age X cohort X
Parent inc.X age X cohort X
R2 0.123 0.148 0.173 0.150 0.150 0.165
Individuals 4,939 4,937 4,939 4,937 4,937 4,937

Notes: The table reports di�erent variants of the lifecycle estimator for cohort trends in the US, in which the set of
first-step regressors varies across columns. The specifications in all columns include individual fixed e�ects, year fixed
e�ects and a standardized age profile interacted with cohort dummies. Column (2) adds quadratic age profiles that
are allowed to vary by own and parental education. Column (3) instead includes an interaction between quadratic age
profiles and fathers’ income. We next add interactions between cohort dummies, a standardized profile, and either own
education (column 4), parental education (column 5), or parental income (column 6).
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G Machine Learning and Regularization

Ainteresting question is whether machine learning and regularization methods to select the first-step
regressors ld improve the performance of the lifecycle estimator. To study this, we implemented
this first step in the Swedish data using penalized regression methods, such as lasso or elastic nets.
While we provide a short summary in the main text, we provide here a more extensive set of results.

Table G.1: ML Estimation of Lifecycle Profiles

Direct Lifecycle estimator

Lifetime Parental Lasso Lasso Lasso Lasso Lasso
Quadratic � = 0.01 � = 0.001 � = 0.0001 � = 0.00001 � = 0.01

not pen.
Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 25-27 0.219 0.203 0.040 0.117 0.173 0.203 0.203
N=71,794 (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
# vars 76 233 233 233 233 233
# vars selected 76 16 48 105 174 42
Age 25-30 0.219 0.241 0.099 0.191 0.239 0.254 0.268
N=71,846 (0.003) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004)
# vars 76 234 234 234 234 234
# vars selected 76 15 52 115 170 45
Age 25-35 0.219 0.229 0.151 0.208 0.235 0.236 0.256
N=71,863 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
# vars 76 234 234 234 234 234
# vars selected 76 14 51 105 173 44
Age 25-40 0.219 0.238 0.181 0.233 0.244 0.240 0.257
N=71,871 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
# vars 76 233 233 233 233 233
# vars selected 76 20 60 112 180 43
Age 25-45 0.219 0.237 0.213 0.243 0.240 0.235 0.245
N=71,873 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
# vars 76 234 234 234 234 234
# vars selected 76 17 63 121 181 45

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is lifetime income in column (1) or the predicted lifetime income from a first-step estimation
of equation (4) in columns (2)-(7), using our preferred predictors in column (2) or selecting predictors by lasso in
columns (3)-(7). In column (7) we include the parental income x child age interactions as non-penalized regressors in
the first step. See text for a description of each estimator. Standard errors in parentheses.

Table G.1 compares estimates of the IGE using our preferred first-step estimator (“parental
quadratic”, column 2) with those based on lasso to select the first-step predictors. To show how the
performance of the latter varies with the number of selected predictors, we vary the lasso tuning
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parameter � (columns 3-6). We include a broad range of candidate predictors: alongside our
standard variables (e.g. child education, parental income) we also consider family size, birth order,
an indicator for second-generation immigrants, cognitive and non-cognitive skill scores (as also
used in Table 2), and include all two-way interactions of these variables with child age and with
age squared, resulting in 233 candidate variables. We also account for individual fixed e�ects in
all specifications.27 As the skill scores contain missings, the sample for our ML analysis is smaller
than the main intergenerational sample used in the rest of the paper, resulting in a slightly smaller
benchmark estimate of the IGE (column 1).

When observing child income only at age 25-27, the lasso-based estimator tends to perform
worse than our preferred parametric estimator, especially when selecting only a limited set of
predictors (corresponding to a larger �). For instance, the IGE estimate is only 0.117 when
selecting 48 predictors (column 4), rising to 0.173 with 105 non-zero predictors (column 5). This
is substantially below the benchmark estimate (0.219, column 1), and also lower than the estimate
from our parametric approach with 76 first-stage predictors (0.203, column 2). That is, despite
selecting more predictors for the estimation of income profiles than our preferred specification, the
lasso estimator results in a greater downward bias in the IGE. All lifecyle estimators perform better
when child income is observed over wider age ranges, and the gap between our preferred parametric
and the lasso-based estimators becomes less pronounced. Still, the lasso tends to perform worse
than our parametric procedure.

The reason why the lasso-based approach performs worse is related to both the variable selection
and regularization steps that it entails. First, lasso does not reliably select the interactions between
child age and parental income that, from Figure 1, we understand to be a crucial source of bias in the
second-step estimation of the IGE. When including these interactions as non-penalized regressors,
the lasso performs similarly as our parametric estimator (“not penalized” lasso, column 7). The
lasso also performs well when selecting a very small value for � (column 6), as the resulting
longer list of predictors then also includes the crucial interactions between child age and parental
income. The lasso does not reliably select these predictors as it maximizes the predictive accuracy
in the (first-step) prediction of lifetime incomes, whereas our objective is to reduce bias in the
(second-step) estimation of the IGE. Although the two objectives are related, the key source of bias
in the IGE –– variation in income growth rates by parental income (see Figure 1) – may not be a
particularly strong predictor of lifetime incomes, as also noted in Section 5.

Another source of bias in the lasso-based approach is the regularization (or shrinkage) of
coe�cients. While improving out-of-sample predictive accuracy, regularization in the first step

27Since available implementations of lasso and elastic net in Stata or R struggle with handling many (non-penalized)
fixed e�ects, we first residualized the outcome and all potential predictors against these fixed e�ects and then used
Stata’s lasso and elasticnet commands with the residualized variables. This approach is numerically equivalent
(Frisch-Waugh-Lovell theorem), as we also verified in our data.
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Table G.2: ML Estimation of Lifecycle Profiles (postselection OLS)

Direct Lifecycle estimator

Lifetime Parental Lasso (OLS) Lasso (OLS) Lasso (OLS) Lasso (OLS) Lasso (OLS)
Quadratic � = 0.01 � = 0.001 � = 0.0001 � = 0.00001 � = 0.01

not pen.
Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 25-27 0.219 0.203 0.058 0.152 0.202 0.224 0.201
N=71,794 (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
# vars 76 233 233 233 233 233
# vars selected 76 16 48 105 174 42
Age 25-30 0.219 0.241 0.133 0.217 0.253 0.255 0.271
N=71,846 (0.003) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004)
# vars 76 234 234 234 234 234
# vars selected 76 15 52 115 170 45
Age 25-35 0.219 0.229 0.169 0.226 0.235 0.231 0.255
N=71,863 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
# vars 76 234 234 234 234 234
# vars selected 76 14 51 105 173 44
Age 25-40 0.219 0.238 0.207 0.245 0.242 0.238 0.256
N=71,871 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
# vars 76 233 233 233 233 233
# vars selected 76 20 60 112 180 43
Age 25-45 0.219 0.237 0.233 0.247 0.233 0.236 0.245
N=71,873 (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003)
# vars 76 234 234 234 234 234
# vars selected 76 17 63 121 181 45

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is lifetime income in column (1) or the predicted lifetime income from a first-step estimation
of equation (4) in columns (2)-(7). In columns (3)-(7) we use the postselection OLS rather than penalized lasso
coe�cients. In column (7) we include the parental income x child age interactions as non-penalized regressors in the
first step. See text for a description of each estimator. Standard errors in parentheses.

may induce bias in the second step (Chernozhukov et al. 2022). To probe this issue, Table G.2
reports the resulting estimates of IGE when using the “postselection” rather than penalized lasso
coe�cients in the first-step prediction of income profiles, which are calculated by taking the
variables selected by lasso and refitting the model by OLS. While this improves the second-step
estimates of the IGE, they are still substantially biased when child income is only observed at young
ages, unless a su�ciently large set of predictors is selected. For example, when observing child
income between age 25 and 27, using postselection lasso in the first step with 48 predictors yields
an estimate of the IGE of only 0.152 compared to the benchmark estimate of 0.219.

Still, ML methods may perform well in large samples such as ours, if a low tuning parameter
� and therefore su�ciently many predictor variables are chosen (see column 6 of Tables G.1 and
Table G.2). In contrast, ML estimation of the first step will yield worse results in smaller samples.
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Table G.3: ML Estimation of Lifecycle Profiles (2% sample)

Direct Lifecycle estimator

Lifetime Parental Lasso Lasso Elastic net Elastic net Lasso
Quadratic postselection postselection not pen.

Son’s Age (1) (2) (3) (4) (5) (6) (7)

Age 25-27 0.212 0.188 0.131 0.156 0.131 0.156 0.198
N=5,686 (0.013) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
� 0.00032 0.00032 0.00032 0.00032 0.00032
↵ 1 1 1 1 1
# vars 76 234 234 234 234 234
# vars selected 76 97 97 97 97 108
Age 25-30 0.212 0.224 0.224 0.226 0.223 0.225 0.257
N=5,688 (0.013) (0.012) (0.013) (0.013) (0.013) (0.013) (0.013)
� 0.00010 0.00010 0.00012 0.00012 0.00054
↵ 1 1 0.75 0.75 1
# vars 76 234 234 234 234 234
# vars selected 76 122 122 126 126 96
Age 25-35 0.212 0.214 0.217 0.232 0.217 0.232 0.250
N=5,694 (0.013) (0.011) (0.012) (0.012) (0.012) (0.012) (0.012)
� 0.00054 0.00054 0.00054 0.00054 0.00558
↵ 1 1 1 1 1
# vars 76 234 234 234 234 234
# vars selected 76 93 93 93 93 48
Age 25-40 0.212 0.243 0.257 0.261 0.257 0.262 0.270
N=5,694 (0.013) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012)
� 0.00068 0.00068 0.00129 0.00129 0.00210
↵ 1 1 0.5 0.5 1
# vars 76 234 234 234 234 234
# vars selected 76 85 85 87 87 66
Age 25-45 0.212 0.242 0.253 0.254 0.253 0.254 0.256
N=5,694 (0.013) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012)
� 0.00052 0.00052 0.00100 0.00100 0.00270
↵ 1 1 0.5 0.5 1
# vars 76 234 234 234 234 234
# vars selected 76 87 87 88 88 58

Notes: The table reports the slope coe�cient from a regression of son’s income on father’s lifetime income. The
measure for son’s income is lifetime income in column (1) or the predicted lifetime income from a first-step estimation
of equation (4) in columns (3)-(7), using the indicated method to select the predictors. In column (7) we include the
parental income x child age interactions as non-penalized regressors in the first step. See text for a description of each
estimator. Standard errors in parentheses.

To illustrate this, Table G.3 summarizes the performance of ML-based lifecycle estimators in a 2%
subsample of our main intergenerational sample. We consider both lasso and elastic net, using either
postselection or penalized coe�cients for predicting lifetime incomes in the first step. We use cross-
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validation to select the optimal tuning parameters � (lasso) and ↵ (elastic net), selecting between
↵ = 0.5, 0.75, or 1 (where ↵ = 1 corresponds to the lasso). As even our 2% subsample contains
several thousand individuals, the set of selected predictors remains large (between 85 and 126
predictors, depending on specification). Still, the ML-based lifecycle estimators tend to perform
worse than our preferred parametric specification. For example, when observing child income
between age 25 and 27, using the penalized lasso coe�cients to predict lifetime incomes yields
a second-step estimate of the IGE of 0.131, substantially below the benchmark (0.212, column
1) or our preferred lifecycle estimator (0.188, column 2). As before, including the interactions
between child age and parental income as non-penalized regressors improves the performance of
the lasso-based estimator (column 7).

We therefore conclude that plugging in standard machine learning methods in the first step is
unlikely to lead to better IGE estimates than our parametric approach. Of course, this does not
rule out the possibility that more tailored applications of ML methods may prove useful. Plug-in
ML methods perform poorly because they aim to maximize predictive accuracy in the first-step
estimation of lifecycle income profiles, rather than to minimize bias in the second-step estimation
of the IGE (i.e. they target the wrong objective function); regularization and model selection bias
from the first step then generate bias in the second step. More sophisticated ML implementations
that explicitly minimize bias in the second step may perform better than plug-in ML methods, but
would also be harder for practitioners to implement. One promising strategy considered by Puerta
(2024) is to construct a debiased machine learning estimator for the IGE based on orthogonal
moments (Chernozhukov et al. 2022).
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