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ABSTRACT
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Difference–in–Kinks Design*

This paper introduces the Difference-in-Kinks (DiK) design, an econometric framework 

that extends the standard regression kink design to settings in which the slope of a policy 

rule varies over time. By combining the key features of the regression kink and difference-

in-differences approaches, the DiK design identifies causal effects from variation in kink 

intensity over time. We formalize both sharp and fuzzy versions of the estimator and 

derive the identification conditions under a parallel-trends assumption. Applying DiK to 

Finland’s 2011 guarantee pension reform demonstrates that changes in marginal incentives 

significantly increased the probability of retirement, while the standard regression kink 

design would have obtained implausibly large estimates in the opposite direction. The 

DiK design thus offers a flexible framework for policy evaluation in dynamic, nonlinear 

environments.
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1 Introduction

This paper introduces the Di!erence-in-Kinks (DiK) design. The method extends the stan-

dard regression kink design (RKD) by using policy changes over time that alter the slope

of the policy rule at the kink. While the traditional RKD identifies causal e!ects using

cross-sectional variation in the slope of a policy schedule at a known kink point, this new

approach leverages variation over time in the kink’s shape or intensity, thereby enabling

causal inference when the level of the policy variable remains constant but its slope changes.

We formalize both sharp and fuzzy versions of the DiK estimator and derive the condi-

tions under which the design identifies a policy relevant treatment-on-the-treated parameter.

This extension is important because many real-world policies feature nonlinear benefit sched-

ules whose slopes, though not necessarily their levels, change over time—settings in which

conventional regression kink or di!erence-in-di!erences designs are inadequate.

We present identification assumptions—including a parallel trends assumption at the

kink point—and develop estimators for both deterministic (sharp) and stochastic (fuzzy)

policy functions. We illustrate the practical value of this new method through an empirical

application examining the e!ects of Finland’s guarantee pension reform on retirement be-

havior. The policy introduced a sharp kink in pension accrual, and the DiK design enables

us to identify the causal impact of this change in marginal incentive to retire. Our empirical

estimates show a sizable and economically meaningful elasticity of retirement behavior with

respect to the guaranteed pension amount, highlighting the relevance of marginal incentives

in retirement decisions. The Di!erence-in-Kinks design therefore o!ers a promising avenue

for exploiting natural experiments in nonlinear policy environments that evolve over time.

2 Intuition behind the DiK

We study a setting in which the objective is to identify the e!ect of a policy variable B

on an outcome of interest Y . In our empirical application, which examines the impact of

Finland’s guarantee pension reform on retirement behavior, B denotes the level of annual

pension benefits, and Y denotes the probability of retirement.

In the sharp setup, the level of the policy variable is assumed to be completely determined

by the running variable V , so that for V = v, the policy variable is B = b(v). In our empirical

example, V is the annual accrued pension without guaranteed pension. In the fuzzy case

considered in Section 3.2, the policy variable is not fully determined by the running variable

V .

Denote the average potential outcome when receiving treatment level d for those with
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running variable v and true policy level b(v) by E[y(d)|v], where y(d) is the potential potential
outcome when receiving treatment level d. Note, that we only observe Y (d = b(v), v) =

E[y(d = b(v))|v] at di!erent levels of v. Let’s now consider what happens to the observed

average outcome when we move along the running variable from some point v0 by some

small amount dv > 0. We can decompose the change in the observed average outcome Y as

v changes to two parts:

dY

dv
=

ωb

ωv

ωY

ωb
+

dY

dv

∣∣∣∣
b

=
ωb

ωv

ωY

ωb︸ ︷︷ ︸
Change related to change in treatment

+ Bias︸︷︷︸
Change related to everything else

(1)

Here, the first term, ωb
ωv

ωY
ωb , gives us the change in Y related to the change in the treatment

b as v changes. There are two parts in this term: first, ωb/ωv measures how the policy variable

changes with the running variable at v0. This needs to be nonzero for there to be any impact

through the policy. The second part is ωY
ωb . This is a causal parameter that captures how the

average potential outcome changes when the treatment changes, holding all else constant—

that is, for the same group of individuals that have running variable v0 and treatment b(v0).

This average causal response on the treated (ACRT ) parameter is the object of our analysis.

The second term, dY
dv

∣∣
b
, is a bias term. This needs to be dealt with one way or another

for us to be able to identify ωY
ωb . The bias term reveals us how the average outcome changes

due to all factors other than the policy variable, which is held constant. This term captures

both the direct impact of the running variable on Y and the impact of any compositional

change (selection) as v increases slightly.

The decomposition in Equation 1 provides us with a useful framework to discuss how

DiK di!ers from RKD. We will next consider how the standard RKD uses Equation 1, how

it deals with the bias term, and what happens when it fails to do so. After that we will

discuss how DiK deals with this bias.

2.1 RKD versus DiK

In a standard regression kink design (see e.g. Card et al. 2015), the bias term in equation

1 is dealt with by assuming that it is continuous at the kink point v = 0. Intuitively, this

means that there is no kink in the bias term caused by either the direct impact of the running

variable or by compositional di!erences. When this is the case, the di!erence between right

and left limits of the bias term in equation 1 are equal at the kink point. Hence, if the

bias-term is indeed continuous, we have
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dY

dv

+

→ dY

dv

→
=

ωb

ωv

+ωY

ωb

+

→ ωb

ωv

→ωY

ωb

→

︸ ︷︷ ︸
Impact of the policy kink

+ [Bias+ → Bias→]︸ ︷︷ ︸
RKD bias term

=
db

dv

+ωY

ωb

+

→ db

dv

→ωY

ωb

→
(2)

The standard RKD estimand naturally arises from assuming that ωY
ωb is also continuous

in v close to the kink point, so that ωY
ωb

→
= ωY

ωb

+ ↑ ωY (v=0)
ωb . Then we have that

dY

dv

+

→ dY

dv

→
=

[
db

dv

+

→ db

dv

→] ωY (v = 0)

ωb
, (3)

which yields the sharp RKD estimand simply by dividing by the di!erence in slopes of the

policy schedule. Naturally, this requires there to be a kink at v = 0, as otherwise the

di!erence in slopes of the policy schedule would be zero.

Compared to RKD, DiK goes one step further and leverages variation in the slopes of

the kink over time. In DiK, we have

dY1

dv

+

→ dY1

dv

→
→

[
dY0

dv

+

→ dY0

dv

→]

=
db1
dv

+ωY1

ωb

+

→ db1
dv

→ωY1

ωb

→

︸ ︷︷ ︸
Impact of the policy kink in t = 1

→
[
db0
dv

+ωY0

ωb

+

→ db0
dv

→ωY0

ωb

→]

︸ ︷︷ ︸
Impact of a pre-existing policy kink

+ [Bias+1 → Bias→1 → (Bias+0 → Bias→0 )]︸ ︷︷ ︸
DiK bias term

(4)

Here, the bias terms cancel out under the assumption that the post-pre di!erence of the

bias term (Bias1→Bias0) is continuous in v. This is similar in spirit to the assumption made

in RKD, but for the post-pre di!erence. A revealing way to think about this assumption

is that it is really a parallel trends assumption at the kink point: there may be bias in the

cross-sectional di!erence at the kink so that Bias+t →Bias→t may be non-zero, but this should

stay the same between pre- and post-periods.

Under this parallel trends assumption, we have

dY1

dv

+

→ dY1

dv

→
→

[
dY0

dv

+

→ dY0

dv

→]

=
db1
dv

+ωY1

ωb

+

→ db1
dv

→ωY1

ωb

→
→
[
db0
dv

+ωY0

ωb

+

→ db0
dv

→ωY0

ωb

→] (5)

The sharp DiK estimand then arises by assuming that the average causal response pa-

rameter ωYt
ωb

±
is both continuous at v = 0 and stable over time so that ωY1

ωb

→
= ωY1

ωb

+
= ωY0

ωb

→
=
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ωY0
ωb

+ ↑ ωY (v=0)
ωb . When this assumption is in place, we have

dY1

dv

+

→ dY1

dv

→
→

[
dY0

dv

+

→ dY0

dv

→]

=

[
db1
dv

+

→ db1
dv

→
→

[
db0
dv

+

→ db0
dv

→]] ωY (v = 0)

ωb
,

(6)

which yields the sharp DiK estimand simply by dividing by the di!erence-in-di!erences of

the slope of the policy schedule. This leads to the natural assumption that there must be a

change in the kink at v = 0. What is noteworthy here is that this does not require one side

of the kink to stay the same – both derivatives may change. In other words, we do not need

a ”clean” control group for identification.

Dividing by the di!erence-in-di!erences of the slope of the policy schedule at the kink

point, the sharp DiK estimand is

dY1
dv

+ → dY1
dv

→ →
[
dY0
dv

+ → dY0
dv

→
]

db1
dv

+ → db1
dv

→ →
[
db0
dv

+ → db0
dv

→
] =

ωY (v = 0)

ωb
. (7)

In sum, as long as all the derivatives and limits used in this section exist and are finite,

the key identifying assumptions of sharp RKD can be summarized as 1) continuity of the

bias term at the kink, 2) continuity of the average causal response parameter at the kink, and

3) the existence of a known policy kink. A similar list for the sharp DiK would instead be 1)

parallel trends in the bias term (implying parallel trends without the change in the kink), 2)

continuity and time-stability of the average causal response parameter at the kink, and 3)

the existence of a known change in the policy kink. Hence, from a strict identification point

of view, sharp DiK identifies the same average casual response parameter as sharp RKD,

but allows time-invariant discontinuities at the kink-point. However, sharp DiK does require

the additional assumption that the treatment e!ect is stable over time at the kink-point.

3 Formal identification

3.1 Sharp DiK

Potential outcomes. The outcome of an individual of type u is given by a function

y(v, b, u), where v is the running variable and b is the level of the policy (i.e. treatment). We

denote the potential outcome of an individual receiving treatment d with running variable

v had they received treatment b by y(d|v, b, u). Moreover, we denote the average potential
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outcome of individuals at v in time-period t as E[Yt(d)|v] =
∫
u y(d|v, b, u)dFt(u|v), where

Ft(u|v) is the conditional CDF of u at v in period t. Hence, we observe E[Yt(bt(v))|v].
We will begin by introducing the identifying assumptions of Sharp DiK. We consider an

arbitrarily small interval around v = 0.

Assumption SDiK1 (Sharp di!erence-in-kinks policy).

i) There is a known policy schedule bt(v) in periods t ↓ {0, 1} that is continuously di!er-

entiable in a neighborhood of v = 0.

ii) At v = 0, there is a change in the policy schedule kink from t = 0 to t = 1, so that

lim
v↑0→

b↓1(v)→ lim
v↑0+

b↓1(v) ↔= lim
v↑0→

b↓0(v)→ lim
v↑0+

b↓0(v).

Assumption SDiK2 (Continuously di!erentiable E[Yt(d)|v]). The function E[Yt(d)|v]
is continuously di!erentiable with respect to d and v in some neighborhood of v = 0, but not

necessarily at v = 0 for both t ↓ {0, 1}.

Assumption SDiK3 (Existence of left and right limits). For each t ↓ {0, 1}, the lim-

its of the partial derivatives limv↑0± ωE[Yt(d = bt(v)|v]/ωd, limv↑0± ωE[Yt(d = bt(v))|v]/ωv|d,
and limv↑0± b↓t(v) exist and are finite.

Assumption SDiK4 (Parallel trends at the kink). The impacts of the other parameters

than b evolve similarly from t = 0 to t = 1 for left and right limits at the kink-point v = 0:

lim
v↑0→

ωE[Y1(d = b1(v))|v]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y1(d = b1(v))|v]
ωv

∣∣∣∣
d

= lim
v↑0→

ωE[Y0(d = b0(v))|v]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y0(d = b0(v))|v]
ωv

∣∣∣∣
d

Assumption SDiK5 (Stability and continuity of treatment e!ect at kink). ωE[Yt(d)|v]/ωd
is continuous and time-invariant at v = 0:

lim
v↑0+

ωE[Y1(d = b1(v))|v]
ωd

= lim
v↑0→

ωE[Y1(d = b1(v))|v]
ωd

= lim
v↑0+

ωE[Y0(d = b0(v))|v]
ωd

= lim
v↑0→

ωE[Y0(d = b0(v))|v]
ωd

↑ ωE[Y (d)|v = 0]

ωd

Assumption SDiK1 states that there is a known policy schedule that is a function of the

running variable v. Moreover, at a point in that schedule, normalized to v = 0, there is

a discontinuous change in the slope from one period to another. This is the change in the
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kink at that point. Note that Assumption SDiK1 allows both sides of the policy schedule

to change, and there does not need to be a kink in both periods.

Assumption SDiK2 states that the average outcome is continuously di!erentiable near

the kink, but there may be discontinuity at the kink point. This contrasts with the standard

RKD setting, where such a discontinuity at the kink is ruled out.

Assumption SDiK3 is a technical assumption ensuring that the left and right limits of

partial derivatives exist and are finite. This allows us to use these limits in our identification

result.

Assumption SDiK4 states that other variables than b a!ect the limits in the same way

on both sides. Assumption SDiK4 implies a more standard parallel trends setup, where in

the absence of the policy change, the left and right limits of the observable total derivatives

would have evolved in the same way. Assumption SDiK4 together with Assumption SDiK2

imply that while there may be discontinuities at the kink, these discontinuities do not change

from period 0 to period 1. Similarly as with standard DiD, we can pseudo-test this with

pre-trends if we have multiple pre-periods.

Assumption SDiK5 states that the treatment e!ect ωE[Yt(d = bt(v))|v]/ωd is both stable

over time and and continuous at the kink. In other words the left and right limits at

v = 0 are equal and they do not change from t = 0 to t = 1. This assumption fails if

e.g. b0(0) ↔= b1(0) and the treatment e!ect is not constant at di!erent levels of b. Another

important situation where Assumption SDiK5 fails is when there are compositional changes

near the kink resulting in di!erent treatment e!ects between time-periods.

Denoting limv↑0± E[Yt|v] ↑ Yt(0±) and limv↑0± b↓t(v) ↑ b↓t(0
±), our identification result

for sharp Di!erence-in-Kinks is:

Proposition 1 (Identification for Sharp Di!erence-in-Kinks). Under Assumptions SDiK1-

SDiK5,
dY1(0→)

dv → dY1(0+)
dv →

[
dY0(0→)

dv → dY0(0+)
dv

]

b↓1(0
→)→ b↓1(0

+)→ [b↓0(0
→)→ b↓+0(0+)]

=
ωE[Y (b)|v = 0]

ωb

Proof: See Appendix A. The proof follows the intuition outlined in Section 2.

3.2 Fuzzy DiK

Instead of assuming a known deterministic policy function b(v), we now allow the relationship

between v and b to be stochastic, with an unobserved term ε. That is, we consider two policy

functions, b0(v, ε) and b1(v, ε).

Again, for a group at the running variable level v, we denote the average potential

outcome had they received policy level b as E[Yt(d)|v] =
∫
ε,u y(d|v, b, u)dG(ε, u|v), where
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Gt(ε, u|v) is the joint conditional distribution of ε and u at v in period t. We also denote

the average potential outcome for a given ε by E[Yt(d)|v, ε] =
∫
u y(d|v, b, u)dFt(u|v, ε), where

Ft(u|v, ε) is the conditional CDF of u for given v and ε.

In this Appendix, we analyze identification in a Fuzzy DiK setting. To that end, we make

the following assumptions.

Assumption FDiK1 (Fuzzy di!erence-in-kinks policy).

i) For each ε, there is a policy schedule bt(v, ε) in periods t ↓ {0, 1} that is continuously

di!erentiable in a neighborhood of v = 0.

ii) At v = 0, there is a change in the policy schedule from t = 0 to t = 1 so that

lim
v↑0→

ωE[b1(v, ε)|v]
ωv

→ lim
v↑0+

ωE[b1(v, ε)|v]
ωv

↔= lim
v↑0→

ωE[b0(v, ε)|v]
ωv

→ lim
v↑0+

ωE[b0(v, ε)|v]
ωv

,

and the change in the kink is either non-negative or non-positive for all ε.

Assumption FDiK2 (Continuously di!erentiable E[Yt(d)|v, ε]). The function E[Yt(d)|v, ε]
is continuously di!erentiable with respect to d and v in some neighborhood of v = 0, but not

necessarily at v = 0 for all ε and both t ↓ {0, 1}.

Assumption FDiK3 (Existence of left and right limits). For each t ↓ {0, 1} and all ε,

the limits of the partial derivatives limv↑0± ωE[Yt(d = bt(v)|v, ε]/ωd, limv↑0± ωE[Yt(d = bt(v))|v, ε]/ωv|d,
and limv↑0±

ωE[bt(v,ε)|v,ε]
ωv exist and are finite.

Assumption FDiK4 (Parallel trends at the kink). For all ε, the impacts of the other

parameters than b evolve similarly from t = 0 to t = 1 for left and right limits at the

kink-point v = 0:

lim
v↑0→

ωE[Y1(d = b1(v, ε))|v, ε]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y1(d = b1(v, ε))|v, ε]
ωv

∣∣∣∣
d

= lim
v↑0→

ωE[Y0(d = b0(v, ε))|v, ε]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y0(d = b0(v, ε))|v, ε]
ωv

∣∣∣∣
d

Assumption FDiK5 (Stability and continuity of treatment e!ect at kink). ωE[Yt(d)|v, ε]/ωd
is continuous and time-invariant at v = 0 for all ε:

lim
v↑0+

ωE[Y1(d = b1(v, ε))|v, ε]
ωd

= lim
v↑0→

ωE[Y1(d = b1(v, ε))|v, ε]
ωd

= lim
v↑0+

ωE[Y0(d = b0(v, ε))|v, ε]
ωd

= lim
v↑0→

ωE[Y0(d = b0(v, ε))|v, ε]
ωd

↑ ωE[Y (d)|v = 0, ε]

ωd
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Assumption FDiK6 (Aggregation of ε-level limits). For both left and right limits at

v = 0, and for all ε, we have:

E
[
lim
v↑0±

dE[Yt|v, ε]
dv

∣∣∣∣ v
]
= lim

v↑0±

dE[Yt|v]
dv

,

and

E
[
lim
v↑0±

dE[bt|v, ε]
dv

∣∣∣∣ v
]
= lim

v↑0±

dE[bt|v]
dv

.

Denoting limv↑0± E[Yt|v] ↑ Yt(0±) and limv↑0± E[bt|v] ↑ bt(0±), our identification result

for fuzzy Di!erence-in-Kinks is:

Proposition 2 (Identification for Fuzzy Di!erence-in-Kinks). Under Assumptions FDiK1-

FDiK6,
dY1(0→)

dv → dY1(0+)
dv →

[
dY0(0→)

dv → dY0(0+)
dv

]

db1(0→)
dv → db1(0+)

dv →
[
db0(0→)

dv → db0(0+)
dv

] = ϑFDiK ,

where ϑFDiK = E
[
ϖ(ε)ωE[Y (b)|v=0,ε]

ωb

∣∣∣ v = 0
]
, and

ϖ(ε) =
(

db1(0→,ε)
dv → db1(0+,ε)

dv →
[
db0(0→,ε)

dv → db0(0+,ε)
dv

])
/
(

db1(0→)
dv → db1(0+)

dv →
[
db0(0→)

dv → db0(0+)
dv

])

is a positive weight with
∫
ε ϖ(ε) = 1.

Proof: see Appendix B. The intuition behind the proof is that for each ε, one can obtain

a similar result as for the sharp DiK. Aggregating over ε then gives then links these to

observables under Assumption FDiK6.

Proposition 2 states that under a fuzzy policy schedule, the DiK estimand identifies a

weighted average of causal responses, where the weights ϖ(ε) are proportional to the intensity

of the kink change for di!erent ε. In other words, groups with larger changes in the kink at

v = 0 receive more weight and groups with smaller changes receive less weight.
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4 Estimation

In a sharp DiK design, the denominator in Proposition 1 is known, and we only need to

estimate the numerator. We do this with local polynomial regressions:

min
ϑ→
j

n→
t∑

i=1

[
Y →
i,t →

p∑

j=0

ϱ→
j,t(v

→
i,t)

j

]2

K


v→i,t
h



min
ϑ+
j

n→
t∑

i=1

[
Y +
i,t →

p∑

j=0

ϱ+
j,t(v

+
i,t)

j

]2

K


v+i,t
h

 (8)

for t = 0 and t = 1, where the + and → superscripts denote observations below and above

the kink at v = 0, p is the order of the polynomial being fitted, K is the kernel, and h the

bandwidth.

The sharp DiK estimator is then

ϑ̂SDiK =
[ϱ̂+

1,1 → ϱ̂+
1,0]→ [ϱ̂→

1,1 → ϱ̂→
1,0][

db+1
dv → db+0

dv

]
→
[
db→1
dv → db→0

dv

] , (9)

where ϱ̂±
1,t is the regression coe”cient estimate of the first order polynomial term (i.e., linear

term) in Equation 8 for either below or above the kink point (±) in period t, and the

denominator is a known scalar.

In a fuzzy DiK setting, the estimator would then be

ϑ̂FDiK =
[ϱ̂+

1,1 → ϱ̂+
1,0]→ [ϱ̂→

1,1 → ϱ̂→
1,0]

ϖ̂+
1,1 → ϖ̂+

1,0


→


ϖ̂→
1,1 → ϖ̂→

1,0

 , (10)

where ϖ̂±
1,t is the local polynomial regression coe”cient estimate of the first order polynomial

term (similarly as for ϱ̂±
1,t in Equation 8).

5 Empirical illustration: the e!ect of guaranteed pen-

sion on retirement decisions in Finland

We apply the Di!erence-in-Kinks (DiK) design to analyze the causal impact of Finland’s

2011 guarantee pension reform on retirement behavior. This reform introduced a kink in

the pension accrual schedule, altering marginal incentives for individuals with low accrued

pensions. The DiK framework exploits the change in the slope of the policy rule at the
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guarantee pension threshold to identify the treatment e!ect.

5.1 Institutional background

In March 2011, Finland transitioned from a two-tier to a three-tier pension system with the

introduction of the guarantee pension. Tier 1 of the system is the earnings-related pension.

The accrual rate for tier 1 in our study period (2008–2015) was 1.5% of annual earnings until

age 52, 1.9% between ages 53 and 62, and 4.5% between ages 63 and 68, excluding the social

insurance payment of between 4.3% and 4.5% in the study period. Full retirement age was

63, with the possiblity of claiming pension at 62 with a penalty of 0.4 pp. of full pension

per month. It was also possible to delay claiming beyond age 68 for an increase of 0.4 pp.

of full pension per month. Tier 2 is the national pension, which was between approximately

560 and 640 euros per month for singles and around 500 and 560 euros for couples during

our study period. National pension is tapered by 50 cents for each euro of earnings-related

pensions (see Figure A1 Panel A). Eligibility for national pension started at 62, with the

full retirement age at 65 years. A reduction or increase of 0.4 pp. was applied for claiming

before or after the age of 65 years.

The reform introduced a third tier to the pension system in the form of a guarantee

pension. The guarantee pension provides a minimum flat-rate benefit to all individuals whose

combined tier 1 and tier 2 pensions fall below a specified threshold. When introduced, it

was around 690 euros per month and increased to around 750 euros per month by 2015 (see

Figure A1 Panel A). There was a early claiming penalty of 0.4 pp. for claiming before the full

retirement age of 65 years. For individuals above age 65 but below the eligibility threshold,

there was a strong financial incentive to claim. However, a claimant at age 65 would forgo

the late-claiming increases in the national pension (tier 2).

In our research design we define tiers 1 and 2 of the pensions system as the running

variable. The reform changed the policy rule for total pension as a function of the running

variable. Before the reform, the slope between the running variable and total pension was 1

at all points. After the reform, the slope in the treatment group, those eligible for guarantee

pension, the slope changed from 1 to 0, creating our di!erences-in-kinks study design (see

Panels B and C in Figure A1.

5.2 Data and sample

We use the FOLK dataset from Statistics Finland, a nationwide register-based dataset cov-

ering all individuals living in Finland. The data contain high-quality individual-level data

on employment, income, education, and demographics. We complement this data from the
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Center for Pensions, the Social Insurance Institution of Finland and the Finnish Tax Au-

thority for complementing individual-level details on accrual and eligibility of the three tiers

(earnings-related, national and guarantee pension) of the Finnish pension system.

In our empirical study we focus on those aged 65 and more, since they had unequivocal

increase in incentives to claim earlier due to the reform. To do this, we restrict our sample to

individuals aged 64–69 at the start of the year. We include 64-year-olds, as they reach age 65

during the one-year follow-up period and provide additional statistical power for inference.

We restrict our sample to years 2008–2015. This only gives us 3 pre-treatment years, but we

are bound by a previous reform implemented in 2005, which had major e!ects on claiming

patterns for multiple years (see Gruber et al. (2022)). We also require that the individual

has not claimed any type of pension to be included in the sample.

There is no established bandwidth estimator for the di!erences-in-kinks design. We

choose an ad hoc main bandwidth and confirm the robustness of our estimates for bandwidth

choice.1

Table A1 summarizes the characteristics of both the full sample and the estimation

sample (individuals within the main bandwidth). In the main sample, the mean claiming

rate is 72%, with an average accrued pension of €8,145 and average earnings of €4,104.

These descriptive patterns highlight that the sample is concentrated around the eligibility

threshold, a prerequisite for credible kink-based identification. Panel B shows that the main

sample represents around one tenth of all non-retired 64 to 69 year-olds. Figure A1, Panel D,

shows a histogram of our sample (N = 11,241) by treatment status and the running variable.

5.3 Baseline estimates and robustness

Panel A of Figure A2 plots the pre- and post-reform retirement rates across bins of accrued

pension. The slope is considerably di!erent in the treatment group from the control group

in the pre-period. Our focus is on the change of the retirement probability before and after

the treatment, which we use to estimate causal e!ect of the reform (Panel B). In Panel B, we

find visual evidence of a gradual increase in retirement rates in the treatment group as the

distance from the eligibility threshold grows, consistent with a behavioral e!ect of the reform.

In Panel C, we present the slope estimates from equation ??, when separating the regressions

by year and treatment status. We observe a change in the treatment group following the

reform. Panel D visualizes event-study type yearly di!erences-in-kinks estimates showing no

signs of a pre-trend in the three preceding year of the reform and an apparent e!ect following

the reform.
1See Böckerman et al. (2018) for an application of this approach in the context of an RKD.
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Table A2 reports the estimated treatment e!ect. The DiK estimate of -0.219 (SE = 0.041)

is statistically significant at the 1% level, indicating that the slope of the retirement rate

with respect to accrued pension decreased following the introduction of guarantee pension.

This corresponds to an e!ect of 0.219 percentage points per €1,000 reduction in marginal

pension accrual. The implied elasticity of retirement with respect to pension income is 2.18,

suggesting a high sensitivity of retirement behavior to marginal financial incentives near the

eligibility cuto!.

Figure A3 confirms the robustness of our DiK estimates. Panel A shows that the point

estimates are stable across di!erent bandwidth choices, with varying statistical significance.

Panel B evaluates sensitivity to donut hole sizes, Panel C presents placebo tests with artificial

kinks, and Panel D examines di!erent follow-up periods. In all cases, our results tend

to remain consistent and robust to specification choices. Figure A4 documents additional

validity tests. Panel A reveals no sign of non-smoothness of the di!erence in pre- and post-

treatment density functions (see Table A3). Panels B to D analyze whether covariates (age,

earnings and female dummy) change due to the reform. We find a significant estimate for

age, and an insignificant estimate for earnings and female dummy. Controlling for age in the

main regression lowers the main estimate by 32% from -0.219 to -0.150 and the corresponding

t-value by 22%, yet the estimate remains significant at the 1% level.

6 Conclusion

This paper introduces the Di!erence-in-Kinks (DiK) design, a novel econometric framework

that extends the traditional regression kink design to settings where the slope of a policy

rule changes over time. By combining the strengths of both regression kink and di!erence-

in-di!erences approaches, the DiK design enables causal inference from policy reforms that

alter marginal incentives without a!ecting benefit levels. We formalize both sharp and

fuzzy versions of the estimator and provide identification conditions under a parallel trends

assumption at the kink point.

We employ the DiK design to analyze the e!ects of Finland’s 2011 guarantee pension

reform, which introduced a discontinuity in the slope of pension accrual. Our empirical

results show that changes in marginal incentives significantly a!ect retirement behavior.

Notably, we find a sizable elasticity of retirement with respect to pension income, highlighting

that individuals close to the eligibility threshold are highly responsive to changes in benefit

slopes. This e!ect is consistent with quasi-experimental evidence that local changes in

pension accrual slopes materially a!ect retirement behaviour (Ye 2022; Kolsrud et al. 2024).

The DiK design provides a flexible and policy-relevant tool for empirical researchers
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studying dynamic non-linear policy environments. The method opens up new opportunities

for evaluating marginal treatment e!ects in institutional settings where traditional RKD

or DiD approaches fall short. Future research can build on this framework to examine

a broader set of policy changes that involve shifts in slopes rather than levels, including

taxation, subsidies, and social insurance programs.
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A Appendix – Sharp DiK

Potential outcomes. The outcome of an individual of type u is given by a function

y(v, b, u), where v is the running variable and b is the level of the policy (i.e. treatment). We

denote the potential outcome of an individual receiving treatment d with running variable

v had they received treatment b by y(d|v, b, u). Moreover, we denote the average potential

outcome of individuals at v in time-period t as E[Yt(d)|v] =
∫
u y(d|v, b, u)dFt(u|v), where

Ft(u|v) is the conditional CDF of u at v in period t. Hence, we observe E[Yt(bt(v))|v].
In this Appendix, we analyze identification in a Sharp DiK setting. To that end, we make

the following assumptions:

Assumption SDiK1 (Sharp di!erence-in-kinks policy).

i) There is a known policy schedule bt(v) in periods t ↓ {0, 1} that is continuously di!er-

entiable in a neighborhood of v = 0.

ii) At v = 0, there is a change in the policy schedule kink from t = 0 to t = 1, so that

lim
v↑0→

b↓1(v)→ lim
v↑0+

b↓1(v) ↔= lim
v↑0→

b↓0(v)→ lim
v↑0+

b↓0(v).

Assumption SDiK2 (Continuously di!erentiable E[Yt(d)|v]). The function E[Yt(d)|v]
is continuously di!erentiable with respect to d and v in some neighborhood of v = 0, but not

necessarily at v = 0 for both t ↓ {0, 1}.

Assumption SDiK3 (Existence of left and right limits). For each t ↓ {0, 1}, the lim-

its of the partial derivatives limv↑0± ωE[Yt(d = bt(v)|v]/ωd, limv↑0± ωE[Yt(d = bt(v))|v]/ωv|d,
and limv↑0± b↓t(v) exist and are finite.

Assumption SDiK4 (Parallel trends at the kink). The impacts of the other parameters

than b evolve similarly from t = 0 to t = 1 for left and right limits at the kink-point v = 0:

lim
v↑0→

ωE[Y1(d = b1(v))|v]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y1(d = b1(v))|v]
ωv

∣∣∣∣
d

= lim
v↑0→

ωE[Y0(d = b0(v))|v]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y0(d = b0(v))|v]
ωv

∣∣∣∣
d

Assumption SDiK5 (Stability and continuity of treatment e!ect at kink). ωE[Yt(d)|v]/ωd
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is continuous and time-invariant at v = 0:

lim
v↑0+

ωE[Y1(d = b1(v))|v]
ωd

= lim
v↑0→

ωE[Y1(d = b1(v))|v]
ωd

= lim
v↑0+

ωE[Y0(d = b0(v))|v]
ωd

= lim
v↑0→

ωE[Y0(d = b0(v))|v]
ωd

↑ ωE[Y (d)|v = 0]

ωd

Assumption SDiK1 states that there is a known policy schedule that is a function of the

running variable v. Moreover, at a point in that schedule, normalized to v = 0, there is

a discontinuous change in the slope from one period to another. This is the change in the

kink at that point. Note that Assumption SDiK1 allows both sides of the policy schedule

to change, and there does not need to be a kink in both periods.

Assumption SDiK2 states that the average outcome is continuously di!erentiable near

the kink, but there may be discontinuity at the kink point. This contrasts with the standard

RKD setting, where such a discontinuity at the kink is ruled out.

Assumption SDiK3 is a technical assumption ensuring that the left and right limits of

partial derivatives exist and are finite. This allows us to use these limits in our identification

result.

Assumption SDiK4 states that other variables than b a!ect the limits in the same way

on both sides. Assumption SDiK4 implies a more standard parallel trends setup, where in

the absence of the policy change, the left and right limits of the observable total derivatives

would have evolved in the same way. Assumption SDiK4 together with Assumption SDiK2

imply that while there may be discontinuities at the kink, these discontinuities do not change

from period 0 to period 1. Similarly as with standard DiD, we can pseudo-test this with

pre-trends if we have multiple pre-periods.

Assumption SDiK5 states that the treatment e!ect ωE[Yt(d = bt(v))|v]/ωd is both stable

over time and and continuous at the kink. In other words the left and right limits at

v = 0 are equal and they do not change from t = 0 to t = 1. This assumption fails if

e.g. b0(0) ↔= b1(0) and the treatment e!ect is not constant at di!erent levels of b. Another

important situation where Assumption SDiK5 fails is when there are compositional changes

near the kink resulting in di!erent treatment e!ects between time-periods.

Denoting limv↑0± E[Yt|v] ↑ Yt(0±) and limv↑0± b↓t(v) ↑ b↓t(0
±), our identification result

for sharp Di!erence-in-Kinks is:

Proposition 1 (Identification for Sharp Di!erence-in-Kinks). Under Assumptions SDiK1-

SDiK5,
dY1(0→)

dv → dY1(0+)
dv →

[
dY0(0→)

dv → dY0(0+)
dv

]

b↓1(0
→)→ b↓1(0

+)→ [b↓0(0
→)→ b↓+0(0+)]

=
ωE[Y (b)|v = 0]

ωb
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Proof. Let’s first note that using the potential outcomes notation, we can denote dYt(0±)
dv =

limv↑0± dE[Y (d = bt|v]/dv, where the dependence of bt on v is left implicit to lighten nota-

tion. Using Assumption SDiK2 we then have that at a neighborhood around v = 0,

dYt(0±)

dv
=

lim
v↑0±

ωE[Y (d = bt)|v]
ωd

b↓t(0
±) + lim

v↑0±

ωE[Y (d = bt)|v]
ωv

∣∣∣∣
d

.

This means that

dY1(0→)

dv
→ dY1(0+)

dv
→

[
dY0(0→)

dv
→ dY0(0+)

dv

]

= lim
v↑0→

ωE[Y (d = b1)|v]
ωd

b↓1(0
→)→ lim

v↑0+

ωE[Y (d = b1)|v]
ωd

b↓1(0
+)

→
[
lim
v↑0→

ωE[Y (d = b0)|v]
ωb

b↓0(0
→)→ lim

v↑0+

ωE[Y (d = b0)|v]
ωd

b↓0(0
+)

]

+ lim
v↑0→

ωE[Y (d = b1)|v]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y (d = b1)|v]
ωv

∣∣∣∣
d

→
[
lim
v↑0→

ωE[Y (d = b0)|v]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y (d = b0)|v]
ωv

∣∣∣∣
d

]

By Assumption SDiK4, the four final terms equal 0, and by Assumption SDiK5 limv↑0±
ωE[Y (d=bt)|v]

ωd =
ωE[Y (d)|v=0]

ωd for t ↓ {0, 1}. Hence, we have that

dY1(0→)

dv
→ dY1(0+)

dv
→

[
dY0(0→)

dv
→ dY0(0+)

dv

]

=

b↓1(0

→)→ b↓1(0
+)→


b↓0(0

→)→ b↓0(0
+)
 ωE[Y (d)|v = 0]

ωd
.

The result then follows by dividing by b↓1(0
→)→b↓1(0

+)→

b↓0(0

→)→ b↓+0(0
+)

, which is non-zero

by Assumption SDiK1. We then have that

dY1(0→)
dv → dY1(0+)

dv →
[
dY0(0→)

dv → dY0(0+)
dv

]

b↓1(0
→)→ b↓1(0

+)→ [b↓0(0
→)→ b↓+0(0+)]

=
ωE[Y (d)|v = 0]

ωd
,

proving Proposition 1.
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B Appendix – Fuzzy DiK

Instead of assuming a known deterministic policy function b(v), we now allow the relationship

between v and b to be stochastic, with an unobserved term ε. That is, we consider two policy

functions, b0(v, ε) and b1(v, ε).

Again, for a group at the running variable level v, we denote the average potential

outcome had they received policy level b as E[Yt(d)|v] =
∫
ε,u y(d|v, b, u)dG(ε, u|v), where

Gt(ε, u|v) is the joint conditional distribution of ε and u at v in period t. We also denote

the average potential outcome for a given ε by E[Yt(d)|v, ε] =
∫
u y(d|v, b, u)dFt(u|v, ε), where

Ft(u|v, ε) is the conditional CDF of u for given v and ε.

In this Appendix, we analyze identification in a Fuzzy DiK setting. To that end, we make

the following assumptions.

Assumption FDiK1 (Fuzzy di!erence-in-kinks policy).

i) For each ε, there is a policy schedule bt(v, ε) in periods t ↓ {0, 1} that is continuously

di!erentiable in a neighborhood of v = 0.

ii) At v = 0, there is a change in the policy schedule from t = 0 to t = 1 so that

lim
v↑0→

ωE[b1(v, ε)|v]
ωv

→ lim
v↑0+

ωE[b1(v, ε)|v]
ωv

↔= lim
v↑0→

ωE[b0(v, ε)|v]
ωv

→ lim
v↑0+

ωE[b0(v, ε)|v]
ωv

,

and the change in the kink is either non-negative or non-positive for all ε.

Assumption FDiK2 (Continuously di!erentiable E[Yt(d)|v, ε]). The function E[Yt(d)|v, ε]
is continuously di!erentiable with respect to d and v in some neighborhood of v = 0, but not

necessarily at v = 0 for all ε and both t ↓ {0, 1}.

Assumption FDiK3 (Existence of left and right limits). For each t ↓ {0, 1} and all ε,

the limits of the partial derivatives limv↑0± ωE[Yt(d = bt(v)|v, ε]/ωd, limv↑0± ωE[Yt(d = bt(v))|v, ε]/ωv|d,
and limv↑0±

ωE[bt(v,ε)|v,ε]
ωv exist and are finite.

Assumption FDiK4 (Parallel trends at the kink). For all ε, the impacts of the other

parameters than b evolve similarly from t = 0 to t = 1 for left and right limits at the

kink-point v = 0:

lim
v↑0→

ωE[Y1(d = b1(v, ε))|v, ε]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y1(d = b1(v, ε))|v, ε]
ωv

∣∣∣∣
d

= lim
v↑0→

ωE[Y0(d = b0(v, ε))|v, ε]
ωv

∣∣∣∣
d

→ lim
v↑0+

ωE[Y0(d = b0(v, ε))|v, ε]
ωv

∣∣∣∣
d
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Assumption FDiK5 (Stability and continuity of treatment e!ect at kink). ωE[Yt(d)|v, ε]/ωd
is continuous and time-invariant at v = 0 for all ε:

lim
v↑0+

ωE[Y1(d = b1(v, ε))|v, ε]
ωd

= lim
v↑0→

ωE[Y1(d = b1(v, ε))|v, ε]
ωd

= lim
v↑0+

ωE[Y0(d = b0(v, ε))|v, ε]
ωd

= lim
v↑0→

ωE[Y0(d = b0(v, ε))|v, ε]
ωd

↑ ωE[Y (d)|v = 0, ε]

ωd

Assumption FDiK6 (Aggregation of ε-level limits). For both left and right limits at

v = 0, and for all ε, we have:

E
[
lim
v↑0±

dE[Yt|v, ε]
dv

∣∣∣∣ v
]
= lim

v↑0±

dE[Yt|v]
dv

,

and

E
[
lim
v↑0±

dE[bt|v, ε]
dv

∣∣∣∣ v
]
= lim

v↑0±

dE[bt|v]
dv

.

Assumption FDiK1 states that there is variation in the policy schedule based on unob-

servable ε. One can think of ε as indicating di!erent policy schedules. In fuzzy DiK, we also

have a kink in the average policy schedule at v = 0. The kink is assumed to have the same

sign for all ε. This rules out situations where some have a positive kink at v = 0 and some

have a negative kink at v = 0. Although one should note that there may be individuals

without any kink at v = 0.

Assumptions FDiK2-FDiK4 are similar to the sharp DiK assumptions SDiK2-SDiK4, but

at the level of each ε.

Assumption FDiK6 is a regularity assumption we need so that we are able to switch the

expectation sign with limits and derivation.

Denoting limv↑0± dE[Yt|v]/dv ↑ dYt(0±)/dv and limv↑0± dE[bt|v]/dv ↑ dbt(0±)/dv, our

identification result for fuzzy Di!erence-in-Kinks is:

Proposition 2 (Identification for Fuzzy Di!erence-in-Kinks). Under Assumptions FDiK1-

FDiK6,
dY1(0→)

dv → dY1(0+)
dv →

[
dY0(0→)

dv → dY0(0+)
dv

]

db1(0→)
dv → db1(0+)

dv →
[
db0(0→)

dv → db0(0+)
dv

] = ϑFDiK ,

where ϑFDiK = E
[
ϖ(ε)ωE[Y (b)|v=0,ε]

ωb

∣∣∣ v = 0
]
= E [ϖ(ε)ϑSDiK(ε)| v = 0], and

ϖ(ε) =
(

db1(0→,ε)
dv → db1(0+,ε)

dv →
[
db0(0→,ε)

dv → db0(0+,ε)
dv

])
/
(

db1(0→)
dv → db1(0+)

dv →
[
db0(0→)

dv → db0(0+)
dv

])

is a positive weight with
∫
ε ϖ(ε) = 1.
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Proof. Note that for each ε, the policy schedules b0(v, ε) and b1(v, ε) are fixed. Hence,

following the proof for Sharp DiK, we have that under Assumptions FDiK1-FDiK5,

dY1(0→, ε)

dv
→ dY1(0+, ε)

dv
→

[
dY0(0→, ε)

dv
→ dY0(0+, ε)

dv

]

=

[
db1(0→, ε)

dv
→ db1(0+, ε)

dv
→

[
db0(0→, ε)

dv
→ db0(0+, ε)

dv

]]
ωE[Y (d, ε)|v = 0]

ωd
.

Moreover, taking expectations over ε on both sides, and using Assumption FDiK6 this

becomes

dY1(0→)

dv
→ dY1(0+)

dv
→

[
dY0(0→)

dv
→ dY0(0+)

dv

]

=

[
db1(0→)

dv
→ db1(0+)

dv
→

[
db0(0→)

dv
→ db0(0+)

dv

]]
E
[
ϖ(ε)

ωE[Y (d, ε)|v = 0]

ωd

∣∣∣∣ v = 0

]
,

where ϖ(ε) =
(

db1(0→,ε)
dv → db1(0+,ε)

dv →
[
db0(0→,ε)

dv → db0(0+,ε)
dv

])
/
(

db1(0→)
dv → db1(0+)

dv →
[
db0(0→)

dv → db0(0+)
dv

])

is a positive weight with
∫
ε ϖ(ε) = 1 (the nominator of the weights have the same sign for

all ε due to due to Assumption FDiK1).

Under Assumption FDiK1,
[
db1(0→)

dv → db1(0+)
dv →

[
db0(0→)

dv → db0(0+)
dv

]]
↔= 0, so that

dY1(0→)
dv → dY1(0+)

dv →
[
dY0(0→)

dv → dY0(0+)
dv

]

db1(0→)
dv → db1(0+)

dv →
[
db0(0→)

dv → db0(0+)
dv

] = E
[
ϖ(ε)

ωE[Y (d, ε)|v = 0]

ωd

∣∣∣∣ v = 0

]
,

proving Proposition 2.
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C Appendix - Figures and Tables

Figure A1: Research Design

Panel A: The policy rule Panel B: Di!erences-in-kinks design

Panel C: Slopes Panel D: Sample

Notes: Panel A depicts the three tiers of the Finnish pension system in the year of the introduction of

guarantee pension (2011). Annual national pension was 7037.52 (single) or 6242.28 (with spouse) euros at

zero earnings-related pension. Annual guarantee pension was set at 8252.88 euros. Panels B–C show the

policy rule in terms of di!erences-in-kinks design. The running variable (x-axis) is the sum of earnings-related

pension and national pension. With the introduction of the guarantee pension, the slope of the policy rule

for the treatment group shifted from 1 to 0 (i.e., ω = →1). Panel D shows the histogram of the sample and

the main specification bandwidth of 1,500 euros. Sample size is 11,241.
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Table A1: Descriptive statistics

Panel A: Means and SDs
All observations Main sample

Mean SD Mean SD
(1) (2) (3) (4)

Retirement rate 0.60 0.49 0.72 0.45
Accrued pension 23,430 16,364 8,145 913
Running variable 15,122 16,345 -142 914
Age 65.08 1.00 65.04 1.13
Earnings 24,842 30,678 4,104 10,539

Panel B: Sample size
2008 2009 2010 2011 2012 2013 2014 2015

All observations 9,895 11,906 14,332 16,045 17,243 18,762 19,047 20,938
Main sample 1,188 1,236 1,335 1,444 1,405 1,478 1,482 1,673

Notes: All values refer to individuals who are not retired and are aged between 64 and

68 years at the beginning of the year. The main sample includes only those within the

CCT bandwidth of the guarantee pension eligibility threshold. Claiming rate is the annual

proportion of sample claiming old-age pension. Accrued pension is the tier 1 (earnings-

related pension), 2 (national pension) and 3 (guarantee pension) accrual at the start of

the year. Running variable is accrued annual pension for tiers 1 and 2 normalized at the

guarantee pension eligibility threshold. Total sample size of the main sample is 11,241.
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Figure A2: Results

Panel A: Pre- and post-treatment means Panel B: Pre- and post-treatment di!erences

Panel C: Estimated slopes by treatment status Panel D: Event study design

Notes: Panel A shows the annual pre- and post-treatment retirement rate means in bins of 100 euros of

accrued annual tier 1 and 2 pensions. Tier 2 (national pension) accrual is a decreasing function of tier

1 (earnings-related pension) accrual. Panel B shows the di!erences between the pre- and post-treatment

means depicted in Panel A. Panel C shows the estimated slopes by treatment status from a single regression

(equation XXX) with a year interaction term. Panel D presents the event-study design, reporting yearly

di!erence-in-kinks estimates relative to the baseline year 2010.
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Table A2: Results

(1)

Panel A: The estimate

Di!erence-in-kinks estimate (ϱ1) -0.219 (0.041)***

Baseline slope -0.039* (0.020)

Baseline slope for post period 0.011 (0.012)

Baseline slope for treatment group 0.327 (0.034)***

Yearly fixed e!ects ↭
N 11,241

Panel B: The economic interpretation

Change in policy rule (ς) -1

The e!ect per 1,000 euros of GP (ϑ = ϑ1

ϖ ) 0.219

Panel C: Retirement elasticity w.r.t. pension

Baseline retirement rate (R) 0.83

Baseline pension (Y) 8,290

Elasticity (
!R


R

!Y

Y
) 2.18

Notes: Panel A reports the key estimates from the di!erence-in-kinks (DiK)

specification. The main coe”cient of interest, ε1, measures the change in the

slope of the outcome variable at the kink point for the treatment group relative

to the control group. Standard errors are reported in parentheses. Triple asterisks

(***) indicate statistical significance at the 1% level. All models include year fixed

e!ects. Panel B provides the economic interpretation of the DiK estimate. The

change in the slope of the policy rule due to the guarantee pension reform is ϑ = →1,

implying that the DiK estimate can be directly interpreted as the marginal e!ect

of a 1,000 euro increase in guarantee pension on the outcome of interest. Panel C

derives the implied elasticity of retirement rate with respect to acccrued pension

income. The elasticity is computed as the ratio of the relative change in retirement

to the relative change in pension at pre-treatment baseline (calculated at within

one tenth of main specification bandwidth from the threshold) retirement rate (R)

and pension (Y) in the sample.
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Figure A3: Robustness checks

Panel A: Bandwidth Panel B: Donut size

Panel C: Placebo kink Panel D: Follow-up period length

Notes: Each panel depicts the estimates from a series of regressions varying one parameter of the main

specification. The gray area is the 95% confidence interval. Panel A shows the estimates from 121 regressions

varying the bandwidth around the optimal RKD CCT bandwidth by increments of 20 euros. Panel B shows

the estimates from 81 regressions increasing the the omitted data around the threshold for maximum benefit

(donut) by increments of 10 euros. No data are omitted in the main specification. Panel C shows the

estimates from 169 regressions in which a placebo kink is created by moving the kink point by increments of

100 euros. Of the 163 regressions, which are not around the true kink point, 12 (7.4%) are significant at the

5 % significance level. Most regressions to the left of the true kink lack su”cient mass to cover the whole

support of the optimal bandwidth. Panel D shows the estimates from 35 regressions varying the follow-up

period length. For follow-up periods shorter than 12 months, part of the sample does not reach the next

round age, at which much of the claiming occurs. For follow-up periods longer than 14 months, the 2010

sample is a!ected by the guarantee pension reform, which took e!ect in March 2011, and for periods longer

than 26 months, the 2009 sample is also a!ected by the reform.
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Figure A4: Validity tests

Panel A: Local polynomial density test Panel B: Covariate linearity (age)

Panel C: Covariate linearity (earnings) Panel D: Covariate linearity (female)

Notes: Panel A shows the estimated 13th order local polynomial over the pre-post di!erence of the density

function and the corresponding histogram with 80 bins. The bandwidth and bin size are extracted from

running the ”rddensity” package for a local polynomial density test for regression discontinuity design in

R. Panels B, C and D show the di!erences between pre- and post-treatment mean in age, earnings and

female dummy in bins of 100 euros of the running variable.
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Table A3: Validity tests

Local poly- Covariate linearity

nomial Age Earnings Female

(1) (2) (3) (4)

Estimate -2.20 0.27** 540 0.001

(10.07) (0.09) (927) (0.039)

Year fixed e!ects ↭ ↭ ↭ ↭
N 80 13,469 13,469 13,469

Notes: The first column reports the estimated change in the first-order term of the 13th-order

local polynomial over the pre–post di!erence of the density function. Columns 2 to 4 report the

covariate linearity regression for our main specification with age, earnings and female dummy as

the dependent variable.
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