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ABSTRACT

Difference-in—Kinks Design®

This paper introduces the Difference-in-Kinks (DiK) design, an econometric framework
that extends the standard regression kink design to settings in which the slope of a policy
rule varies over time. By combining the key features of the regression kink and difference-
in-differences approaches, the DiK design identifies causal effects from variation in kink
intensity over time. We formalize both sharp and fuzzy versions of the estimator and
derive the identification conditions under a parallel-trends assumption. Applying DK to
Finland’s 2011 guarantee pension reform demonstrates that changes in marginal incentives
significantly increased the probability of retirement, while the standard regression kink
design would have obtained implausibly large estimates in the opposite direction. The
DiK design thus offers a flexible framework for policy evaluation in dynamic, nonlinear
environments.
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1 Introduction

This paper introduces the Difference-in-Kinks (DiK) design. The method extends the stan-
dard regression kink design (RKD) by using policy changes over time that alter the slope
of the policy rule at the kink. While the traditional RKD identifies causal effects using
cross-sectional variation in the slope of a policy schedule at a known kink point, this new
approach leverages variation over time in the kink’s shape or intensity, thereby enabling
causal inference when the level of the policy variable remains constant but its slope changes.

We formalize both sharp and fuzzy versions of the DiK estimator and derive the condi-
tions under which the design identifies a policy relevant treatment-on-the-treated parameter.
This extension is important because many real-world policies feature nonlinear benefit sched-
ules whose slopes, though not necessarily their levels, change over time—settings in which
conventional regression kink or difference-in-differences designs are inadequate.

We present identification assumptions—including a parallel trends assumption at the
kink point—and develop estimators for both deterministic (sharp) and stochastic (fuzzy)
policy functions. We illustrate the practical value of this new method through an empirical
application examining the effects of Finland’s guarantee pension reform on retirement be-
havior. The policy introduced a sharp kink in pension accrual, and the DiK design enables
us to identify the causal impact of this change in marginal incentive to retire. Our empirical
estimates show a sizable and economically meaningful elasticity of retirement behavior with
respect to the guaranteed pension amount, highlighting the relevance of marginal incentives
in retirement decisions. The Difference-in-Kinks design therefore offers a promising avenue

for exploiting natural experiments in nonlinear policy environments that evolve over time.

2 Intuition behind the DiK

We study a setting in which the objective is to identify the effect of a policy variable B
on an outcome of interest Y. In our empirical application, which examines the impact of
Finland’s guarantee pension reform on retirement behavior, B denotes the level of annual
pension benefits, and Y denotes the probability of retirement.

In the sharp setup, the level of the policy variable is assumed to be completely determined
by the running variable V', so that for V' = v, the policy variable is B = b(v). In our empirical
example, V' is the annual accrued pension without guaranteed pension. In the fuzzy case
considered in Section [3.2] the policy variable is not fully determined by the running variable
V.

Denote the average potential outcome when receiving treatment level d for those with



running variable v and true policy level b(v) by Ely(d)|v], where y(d) is the potential potential
outcome when receiving treatment level d. Note, that we only observe Y (d = b(v),v) =
Ely(d = b(v))|v] at different levels of v. Let’s now consider what happens to the observed
average outcome when we move along the running variable from some point vy by some
small amount dv > 0. We can decompose the change in the observed average outcome Y as

v changes to two parts:

ay ooy dy
dv — Ov b dv |,

ob oY 1
= — T + Bias (1)
dv b -~
N—— Change related to everything else

Change related to change in treatment

Here, the first term, %%’ gives us the change in Y related to the change in the treatment
b as v changes. There are two parts in this term: first, 9b/9v measures how the policy variable
changes with the running variable at vy. This needs to be nonzero for there to be any impact
through the policy. The second part is ‘%. This is a causal parameter that captures how the
average potential outcome changes when the treatment changes, holding all else constant—
that is, for the same group of individuals that have running variable vy and treatment b(vy).
This average causal response on the treated (AC RT') parameter is the object of our analysis.

The second term, ‘é—f} p» 1s a bias term. This needs to be dealt with one way or another
for us to be able to identify %. The bias term reveals us how the average outcome changes
due to all factors other than the policy variable, which is held constant. This term captures
both the direct impact of the running variable on Y and the impact of any compositional
change (selection) as v increases slightly.

The decomposition in Equation [1| provides us with a useful framework to discuss how
DiK differs from RKD. We will next consider how the standard RKD uses Equation |1} how
it deals with the bias term, and what happens when it fails to do so. After that we will

discuss how DiK deals with this bias.

2.1 RKD versus DiK

In a standard regression kink design (see e.g. (Card et al. 2015), the bias term in equation
is dealt with by assuming that it is continuous at the kink point v = 0. Intuitively, this
means that there is no kink in the bias term caused by either the direct impact of the running
variable or by compositional differences. When this is the case, the difference between right
and left limits of the bias term in equation [1| are equal at the kink point. Hence, if the

bias-term is indeed continuous, we have



AYE Yooyt above
dv dv  OJv Ob Ov (%/\asv ®

RKD bias term (2)

~
Impact of the policy kink

oYt dbT oy

T dv Ob  dv Ob

The standard RKD estimand naturally arises from assuming that % is also continuous

in v close to the kink point, so that %_ = %—? = %. Then we have that

dy+ dY—:{db+ db‘]w (3)

dv dv v dv ob

which yields the sharp RKD estimand simply by dividing by the difference in slopes of the
policy schedule. Naturally, this requires there to be a kink at v = 0, as otherwise the
difference in slopes of the policy schedule would be zero.

Compared to RKD, DiK goes one step further and leverages variation in the slopes of

the kink over time. In DiK, we have

dYﬁ_de_ dYbJr_dY(f
dv dv dv dv
B db,toy; T db, oY,

dbyTOYy T dby Yy~ ) o ‘ o
= = o b — {d_vo (9_60 — d—;) 8_60 ~|—lB1as]L — Bias; — (Bias{ — Bias, )l

~
DiK bias term

. . . Vv
Impact of the policy kink in ¢ = 1 Impact of a pre-existing policy kink

(4)

Here, the bias terms cancel out under the assumption that the post-pre difference of the

bias term (Bias; — Biasy) is continuous in v. This is similar in spirit to the assumption made

in RKD, but for the post-pre difference. A revealing way to think about this assumption

is that it is really a parallel trends assumption at the kink point: there may be bias in the

cross-sectional difference at the kink so that Bias;” — Bias; may be non-zero, but this should
stay the same between pre- and post-periods.

Under this parallel trends assumption, we have

dv  dv dv  dv
Cdb oY, dbl‘f)}ﬁ‘_[db(ﬁaYO* dby = OYp ™

v, le‘_{dYO* dYO‘]
(5)

T dv Ob dv  Ob

dv 0b dv 0b

The sharp DiK estimand then arises by assuming that the average causal response pa-

+ . ) ) - + -
rameter % is both continuous at v = 0 and stable over time so that % = %Lbl = % =



Iyt _ 9Y (v=0)
ob ob

. When this assumption is in place, we have

avit  dviT [dYyt  dYyo
v dv _{% _%}

C[dby T dby [dbet dbT]] @Y (v =0)
-5 % 7 w7

(6)

which yields the sharp DiK estimand simply by dividing by the difference-in-differences of
the slope of the policy schedule. This leads to the natural assumption that there must be a
change in the kink at v = 0. What is noteworthy here is that this does not require one side
of the kink to stay the same — both derivatives may change. In other words, we do not need
a "clean” control group for identification.

Dividing by the difference-in-differences of the slope of the policy schedule at the kink
point, the sharp DiK estimand is

vt dviT _ |dYot _ dYe~

dv dv [ dv dv 8Y(v = 0) (7)
dyt_dy = [at o~ Ob

dv dv dv dv

In sum, as long as all the derivatives and limits used in this section exist and are finite,
the key identifying assumptions of sharp RKD can be summarized as 1) continuity of the
bias term at the kink, 2) continuity of the average causal response parameter at the kink, and
3) the existence of a known policy kink. A similar list for the sharp DiK would instead be 1)
parallel trends in the bias term (implying parallel trends without the change in the kink), 2)
continuity and time-stability of the average causal response parameter at the kink, and 3)
the existence of a known change in the policy kink. Hence, from a strict identification point
of view, sharp DiK identifies the same average casual response parameter as sharp RKD,
but allows time-invariant discontinuities at the kink-point. However, sharp DiK does require

the additional assumption that the treatment effect is stable over time at the kink-point.

3 Formal identification

3.1 Sharp DiK

Potential outcomes. The outcome of an individual of type w is given by a function
y(v, b, u), where v is the running variable and b is the level of the policy (i.e. treatment). We
denote the potential outcome of an individual receiving treatment d with running variable

v had they received treatment b by y(d|v,b,u). Moreover, we denote the average potential



outcome of individuals at v in time-period ¢ as E[Y;(d)[v] = [ y(d|v,b,u)dF;(ulv), where
Fi(u|v) is the conditional CDF of u at v in period t. Hence, we observe E[Y;(b:(v))|v].
We will begin by introducing the identifying assumptions of Sharp DiK. We consider an

arbitrarily small interval around v = 0.
Assumption SDiK1 (Sharp difference-in-kinks policy).

i) There is a known policy schedule by(v) in periods t € {0,1} that is continuously differ-

entiable in a neighborhood of v = 0.

ii) At v =0, there is a change in the policy schedule kink from t =0 tot =1, so that

lim b} (v) — lim b} (v) # lim by(v) — lim by(v).
v—0+ v—07F

v—0— v—0—

Assumption SDiK2 (Continuously differentiable E[Y;(d)|v]). The function E[Y;(d)|v]
18 continuously differentiable with respect to d and v in some neighborhood of v = 0, but not
necessarily at v =0 for both t € {0,1}.

Assumption SDiK3 (Existence of left and right limits). For eacht € {0,1}, the lim-
its of the partial derivatives lim,_,o+ OE[Y;(d = b,(v)|v]/0d, lim, o= OE[Y;(d = b(v))|v]/0v|,,

and lim,, o+ b)(v) exist and are finite.

Assumption SDiK4 (Parallel trends at the kink). The impacts of the other parameters
than b evolve similarly fromt =0 tot =1 for left and right limits at the kink-point v = 0:

i B =0)[]| . OEY(d=bi(v))[Y]

v—0— ov g vo0t ov d

i PO = bo(@)le]| . OE[Yo(d = bo(o))
v—=0— ov d v—0t1 ov d

Assumption SDiK5 (Stability and continuity of treatment effect at kink). OE[Y;(d)|v]/dd

18 continuous and time-invariant at v = 0:

i BN =0i()lo] _ . OE[YI(d = by (v))[0]
v—0t od v—=0~ od
o OE[Yo(d = by(o))lo] OE[Yo(d = bo(v))[v] _ DE[Y (d)]v = 0]

= lim =

v—07F od v—0~ od od

Assumption states that there is a known policy schedule that is a function of the
running variable v. Moreover, at a point in that schedule, normalized to v = 0, there is

a discontinuous change in the slope from one period to another. This is the change in the



kink at that point. Note that Assumption allows both sides of the policy schedule
to change, and there does not need to be a kink in both periods.

Assumption states that the average outcome is continuously differentiable near
the kink, but there may be discontinuity at the kink point. This contrasts with the standard
RKD setting, where such a discontinuity at the kink is ruled out.

Assumption is a technical assumption ensuring that the left and right limits of
partial derivatives exist and are finite. This allows us to use these limits in our identification
result.

Assumption states that other variables than b affect the limits in the same way
on both sides. Assumption implies a more standard parallel trends setup, where in
the absence of the policy change, the left and right limits of the observable total derivatives
would have evolved in the same way. Assumption together with Assumption
imply that while there may be discontinuities at the kink, these discontinuities do not change
from period 0 to period 1. Similarly as with standard DiD, we can pseudo-test this with
pre-trends if we have multiple pre-periods.

Assumption states that the treatment effect OE[Y;(d = b,(v))|v]/0d is both stable
over time and and continuous at the kink. In other words the left and right limits at
v = 0 are equal and they do not change from ¢ = 0 to t = 1. This assumption fails if
e.g. bo(0) # b1(0) and the treatment effect is not constant at different levels of b. Another
important situation where Assumption fails is when there are compositional changes
near the kink resulting in different treatment effects between time-periods.

Denoting lim, o+ E[Y;|v] = Y;(0%) and lim,_o+ b}(v) = b,(0%), our identification result

for sharp Difference-in-Kinks is:

Proposition 1 (Identification for Sharp Difference-in-Kinks). Under Assumptions |[SDiK1-

dY1(07) dYy;1(01) dYp(07) dYp(0t)
1clv - 1dv - [ (Zlv - Odv . 8]E[Y(b)|’l] = 0]

b (07) = by (0%) — [b,(07) — BL0(0F)] b
Proof: See Appendix [A] The proof follows the intuition outlined in Section [2]

3.2 Fuzzy DiK

Instead of assuming a known deterministic policy function b(v), we now allow the relationship
between v and b to be stochastic, with an unobserved term . That is, we consider two policy
functions, by(v, ) and by (v, €).

Again, for a group at the running variable level v, we denote the average potential

outcome had they received policy level b as E[Yy(d)[v] = [ y(d|v,b,u)dG(e,ulv), where
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Gy(e,ulv) is the joint conditional distribution of € and w at v in period t. We also denote
the average potential outcome for a given e by E[Y;(d)|v,¢] = [ y(d|v,b,u)dFy(u|v,e), where
F(u|v,¢e) is the conditional CDF of u for given v and ¢.

In this Appendix, we analyze identification in a Fuzzy DiK setting. To that end, we make

the following assumptions.
Assumption FDiK1 (Fuzzy difference-in-kinks policy).

i) For each ¢, there is a policy schedule by(v,e) in periods t € {0,1} that is continuously
differentiable in a neighborhood of v = 0.

ii) At v =0, there is a change in the policy schedule from t =0 to t =1 so that

lim IE[br (v, e)|v] lim OE[b1 (v, ) |v] £ lim IE[bo(v,e)v] lim OE[by (v, €)|v]

v—0~ ov v—0t ov v—0~ ov v—07F ov ’

and the change in the kink is either non-negative or non-positive for all c.

Assumption FDiK2 (Continuously differentiable E[Y;(d)|v,¢]). The function E[Y;(d)|v, €]
1s continuously differentiable with respect to d and v in some neighborhood of v =0, but not
necessarily at v =0 for all € and both t € {0, 1}.

Assumption FDiK3 (Existence of left and right limits). For eacht € {0,1} and all e,
the limits of the partial derivatives lim, o= OE[Y;(d = b;(v)|v,€]/0d, lim, o= OE[Y;(d = b.(v))|v, €]/0v],,

aE[bt (7)76) ‘U,&‘]
ov

and lim,_,g+ exist and are finite.

Assumption FDiK4 (Parallel trends at the kink). For all €, the impacts of the other
parameters than b evolve similarly from t = 0 to t = 1 for left and right limits at the

kink-point v = 0:

OE[Y1(d = by(v,€))|v, €] OE[Y1(d = by (v, ¢€))|v, €]

li — 1

vlgl* ov d UL%IWL ov d

_ lim IE[Yo(d = bo(v,€))|v,e]| lim OE[Yy(d = by(v,€))|v, €]
v—0~ ov d v—0t ov d

Assumption FDiK5 (Stability and continuity of treatment effect at kink). 0E[Y;(d)|v,]/0d

18 continuous and time-invariant at v =0 for all :

lim OE[Y1(d = by(v,¢))|v, €] _ lim OE[Y1(d = by(v,¢))|v, €]
v—0+ 8({ v—0~ 8d
OE[Yo(d = bo(v,€))|v, €] OE[Yo(d = bo(v,))|v,e] _ IE[Y (d)|v =0, €]

= lim = lim =

v—0+ od v—0— od od




Assumption FDiK6 (Aggregation of e-level limits). For both left and right limits at

v =0, and for all £, we have:

E | lim dE[Yilv. €] v| = lim —dE[Yt|U],
v—0* dv v—0t  dv
and
E { lim dElbfv, €] v] = lim dE[bt‘v].
v—0*t v v—0*t d’U

Denoting lim, o+ E[Y;|v] = Y;(0%) and lim,_,o+ E[bs|v] = b;(0F), our identification result

for fuzzy Difference-in-Kinks is:

Proposition 2 (Identification for Fuzzy Difference-in-Kinks). Under Assumptions |FDiK1-

FDiK6,

dyi(0-)  dvi(0t) [dYo(O*) _ dYp(0t)

dv dv dv dv
= T -
dby(0-) _ dby(0F) _ [dbo(0-) _ dbo(0%) FDiK
dv dv dv dv

where Tppix = E [K(S)W v = 0] , and

K(e) = <db1(0—,s) _dbi(0te)  [dbo(0m) db0(0+,s)]> / (dbl(o—) _dbi(0F)  [dbo(0) db0(0+)D

dv dv dv dv dv dv dv dv
is a positie weight with [ k(e) = 1.

Proof: see Appendix [B. The intuition behind the proof is that for each ¢, one can obtain
a similar result as for the sharp DiK. Aggregating over ¢ then gives then links these to
observables under Assumption

Proposition 2 states that under a fuzzy policy schedule, the DiK estimand identifies a
weighted average of causal responses, where the weights x(¢) are proportional to the intensity
of the kink change for different €. In other words, groups with larger changes in the kink at

v = 0 receive more weight and groups with smaller changes receive less weight.



4 Estimation

In a sharp DiK design, the denominator in Proposition 1 is known, and we only need to

estimate the numerator. We do this with local polynomial regressions:

ne [ P 1?2 -
. _ _ N\ U; ¢
mlnz Yie — Zﬂjgt(vz’,t)j K (T)
B = | =0 | (8)
m Ld 1 v
win Y [vi = S gy | a8
B = L §=0 i

for t = 0 and t = 1, where the 4+ and — superscripts denote observations below and above
the kink at v = 0, p is the order of the polynomial being fitted, K is the kernel, and h the
bandwidth.

The sharp DiK estimator is then

A+ _ A+ _ N o A—
= ®

dv dv dv ~ dv

where Blit is the regression coefficient estimate of the first order polynomial term (i.e., linear
term) in Equation |8 for either below or above the kink point (+) in period ¢, and the
denominator is a known scalar.
In a fuzzy DiK setting, the estimator would then be
2+ _ A+ _[B- _ A
7’;FDZ'K _ [ﬁl,l 61,0] [/Bl,l ﬁl,o] : (10)

/\+ /\+ A — A —
[“1,1 - “1,0] - [51,1 - “1,0]

where /%ft is the local polynomial regression coefficient estimate of the first order polynomial
term (similarly as for Blit in Equation .

5 Empirical illustration: the effect of guaranteed pen-

sion on retirement decisions in Finland

We apply the Difference-in-Kinks (DiK) design to analyze the causal impact of Finland’s
2011 guarantee pension reform on retirement behavior. This reform introduced a kink in
the pension accrual schedule, altering marginal incentives for individuals with low accrued

pensions. The DiK framework exploits the change in the slope of the policy rule at the



guarantee pension threshold to identify the treatment effect.

5.1 Institutional background

In March 2011, Finland transitioned from a two-tier to a three-tier pension system with the
introduction of the guarantee pension. Tier 1 of the system is the earnings-related pension.
The accrual rate for tier 1 in our study period (2008-2015) was 1.5% of annual earnings until
age 52, 1.9% between ages 53 and 62, and 4.5% between ages 63 and 68, excluding the social
insurance payment of between 4.3% and 4.5% in the study period. Full retirement age was
63, with the possiblity of claiming pension at 62 with a penalty of 0.4 pp. of full pension
per month. It was also possible to delay claiming beyond age 68 for an increase of 0.4 pp.
of full pension per month. Tier 2 is the national pension, which was between approximately
560 and 640 euros per month for singles and around 500 and 560 euros for couples during
our study period. National pension is tapered by 50 cents for each euro of earnings-related
pensions (see Figure Panel A). Eligibility for national pension started at 62, with the
full retirement age at 65 years. A reduction or increase of 0.4 pp. was applied for claiming
before or after the age of 65 years.

The reform introduced a third tier to the pension system in the form of a guarantee
pension. The guarantee pension provides a minimum flat-rate benefit to all individuals whose
combined tier 1 and tier 2 pensions fall below a specified threshold. When introduced, it
was around 690 euros per month and increased to around 750 euros per month by 2015 (see
Figure|A1|Panel A). There was a early claiming penalty of 0.4 pp. for claiming before the full
retirement age of 65 years. For individuals above age 65 but below the eligibility threshold,
there was a strong financial incentive to claim. However, a claimant at age 65 would forgo
the late-claiming increases in the national pension (tier 2).

In our research design we define tiers 1 and 2 of the pensions system as the running
variable. The reform changed the policy rule for total pension as a function of the running
variable. Before the reform, the slope between the running variable and total pension was 1
at all points. After the reform, the slope in the treatment group, those eligible for guarantee

pension, the slope changed from 1 to 0, creating our differences-in-kinks study design (see
Panels B and C in Figure

5.2 Data and sample

We use the FOLK dataset from Statistics Finland, a nationwide register-based dataset cov-
ering all individuals living in Finland. The data contain high-quality individual-level data

on employment, income, education, and demographics. We complement this data from the
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Center for Pensions, the Social Insurance Institution of Finland and the Finnish Tax Au-
thority for complementing individual-level details on accrual and eligibility of the three tiers
(earnings-related, national and guarantee pension) of the Finnish pension system.

In our empirical study we focus on those aged 65 and more, since they had unequivocal
increase in incentives to claim earlier due to the reform. To do this, we restrict our sample to
individuals aged 64-69 at the start of the year. We include 64-year-olds, as they reach age 65
during the one-year follow-up period and provide additional statistical power for inference.
We restrict our sample to years 2008-2015. This only gives us 3 pre-treatment years, but we
are bound by a previous reform implemented in 2005, which had major effects on claiming
patterns for multiple years (see Gruber et al.| (2022)). We also require that the individual
has not claimed any type of pension to be included in the sample.

There is no established bandwidth estimator for the differences-in-kinks design. We
choose an ad hoc main bandwidth and confirm the robustness of our estimates for bandwidth
choice [l

Table summarizes the characteristics of both the full sample and the estimation
sample (individuals within the main bandwidth). In the main sample, the mean claiming
rate is 72%, with an average accrued pension of €8,145 and average earnings of €4,104.
These descriptive patterns highlight that the sample is concentrated around the eligibility
threshold, a prerequisite for credible kink-based identification. Panel B shows that the main
sample represents around one tenth of all non-retired 64 to 69 year-olds. Figure[Al], Panel D,

shows a histogram of our sample (N = 11,241) by treatment status and the running variable.

5.3 Baseline estimates and robustness

Panel A of Figure plots the pre- and post-reform retirement rates across bins of accrued
pension. The slope is considerably different in the treatment group from the control group
in the pre-period. Our focus is on the change of the retirement probability before and after
the treatment, which we use to estimate causal effect of the reform (Panel B). In Panel B, we
find visual evidence of a gradual increase in retirement rates in the treatment group as the
distance from the eligibility threshold grows, consistent with a behavioral effect of the reform.
In Panel C, we present the slope estimates from equation 7?7, when separating the regressions
by year and treatment status. We observe a change in the treatment group following the
reform. Panel D visualizes event-study type yearly differences-in-kinks estimates showing no
signs of a pre-trend in the three preceding year of the reform and an apparent effect following

the reform.

1See Bockerman et al. (2018) for an application of this approach in the context of an RKD.
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Table[A2]reports the estimated treatment effect. The DiK estimate of -0.219 (SE = 0.041)
is statistically significant at the 1% level, indicating that the slope of the retirement rate
with respect to accrued pension decreased following the introduction of guarantee pension.
This corresponds to an effect of 0.219 percentage points per €1,000 reduction in marginal
pension accrual. The implied elasticity of retirement with respect to pension income is 2.18,
suggesting a high sensitivity of retirement behavior to marginal financial incentives near the
eligibility cutoff.

Figure confirms the robustness of our DiK estimates. Panel A shows that the point
estimates are stable across different bandwidth choices, with varying statistical significance.
Panel B evaluates sensitivity to donut hole sizes, Panel C presents placebo tests with artificial
kinks, and Panel D examines different follow-up periods. In all cases, our results tend
to remain consistent and robust to specification choices. Figure documents additional
validity tests. Panel A reveals no sign of non-smoothness of the difference in pre- and post-
treatment density functions (see Table . Panels B to D analyze whether covariates (age,
earnings and female dummy) change due to the reform. We find a significant estimate for
age, and an insignificant estimate for earnings and female dummy. Controlling for age in the
main regression lowers the main estimate by 32% from -0.219 to -0.150 and the corresponding

t-value by 22%, yet the estimate remains significant at the 1% level.

6 Conclusion

This paper introduces the Difference-in-Kinks (DiK) design, a novel econometric framework
that extends the traditional regression kink design to settings where the slope of a policy
rule changes over time. By combining the strengths of both regression kink and difference-
in-differences approaches, the DiK design enables causal inference from policy reforms that
alter marginal incentives without affecting benefit levels. We formalize both sharp and
fuzzy versions of the estimator and provide identification conditions under a parallel trends
assumption at the kink point.

We employ the DiK design to analyze the effects of Finland’s 2011 guarantee pension
reform, which introduced a discontinuity in the slope of pension accrual. Our empirical
results show that changes in marginal incentives significantly affect retirement behavior.
Notably, we find a sizable elasticity of retirement with respect to pension income, highlighting
that individuals close to the eligibility threshold are highly responsive to changes in benefit
slopes. This effect is consistent with quasi-experimental evidence that local changes in
pension accrual slopes materially affect retirement behaviour (Ye|2022; Kolsrud et al. 2024).

The DiK design provides a flexible and policy-relevant tool for empirical researchers
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studying dynamic non-linear policy environments. The method opens up new opportunities
for evaluating marginal treatment effects in institutional settings where traditional RKD
or DiD approaches fall short. Future research can build on this framework to examine
a broader set of policy changes that involve shifts in slopes rather than levels, including

taxation, subsidies, and social insurance programs.
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A Appendix — Sharp DiK

Potential outcomes. The outcome of an individual of type w is given by a function
y(v,b,u), where v is the running variable and b is the level of the policy (i.e. treatment). We
denote the potential outcome of an individual receiving treatment d with running variable
v had they received treatment b by y(d|v, b, u). Moreover, we denote the average potential
outcome of individuals at v in time-period t as E[Y;(d)|v] = [ y(d|v,b,u)dF,(ulv), where
F,(u|v) is the conditional CDF of u at v in period ¢. Hence, we observe E[Y;(b:(v))|v].

In this Appendix, we analyze identification in a Sharp DiK setting. To that end, we make

the following assumptions:
Assumption SDiK1 (Sharp difference-in-kinks policy).

i) There is a known policy schedule by(v) in periods t € {0,1} that is continuously differ-

entiable in a neighborhood of v = 0.

ii) At v =0, there is a change in the policy schedule kink from t =0 tot =1, so that

lim b} (v) — Uli)lél+ bi(v) # lim bj(v) m by(v).

— 1
v—0~ v—0~ v—0*

Assumption SDiK2 (Continuously differentiable E[Y;(d)|v]). The function E[Y;(d)|v]
1s continuously differentiable with respect to d and v in some neighborhood of v =0, but not
necessarily at v =0 for both t € {0,1}.

Assumption SDiK3 (Existence of left and right limits). For eacht € {0,1}, the lim-
its of the partial derivatives lim, o= OE[Y;(d = by(v)|v]/0d, lim,_,o+ OE[Y:(d = b:(v))|v]/0v],,

and lim,,_o+ b)(v) exist and are finite.

Assumption SDiK4 (Parallel trends at the kink). The impacts of the other parameters
than b evolve similarly from t =0 to t = 1 for left and right limits at the kink-point v = 0:

OE[Y1(d = by (v))|v] OE[Y1(d = by (v))|v]

vlir(r]l— ov d B vlir(r)l‘* v d
OBV = b)) OE[Y(d = by(v)) ]
v—0— ov g vo0t ov d

Assumption SDiK5 (Stability and continuity of treatment effect at kink). 0E[Y;(d)|v]/dd
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18 continuous and time-invariant at v = 0:

OE[Y1(d = b1 (v))|v] OE[Y1(d = b1 (v))]v]

Jim, ad = Jim ad
o OB = ()] OEYo(d = hw)le] _ OB ()} = 0
v—0t 8d v—0— 8d o 8d

Assumption states that there is a known policy schedule that is a function of the
running variable v. Moreover, at a point in that schedule, normalized to v = 0, there is
a discontinuous change in the slope from one period to another. This is the change in the
kink at that point. Note that Assumption allows both sides of the policy schedule
to change, and there does not need to be a kink in both periods.

Assumption states that the average outcome is continuously differentiable near
the kink, but there may be discontinuity at the kink point. This contrasts with the standard
RKD setting, where such a discontinuity at the kink is ruled out.

Assumption is a technical assumption ensuring that the left and right limits of
partial derivatives exist and are finite. This allows us to use these limits in our identification
result.

Assumption states that other variables than b affect the limits in the same way
on both sides. Assumption implies a more standard parallel trends setup, where in
the absence of the policy change, the left and right limits of the observable total derivatives
would have evolved in the same way. Assumption together with Assumption
imply that while there may be discontinuities at the kink, these discontinuities do not change
from period 0 to period 1. Similarly as with standard DiD, we can pseudo-test this with
pre-trends if we have multiple pre-periods.

Assumption states that the treatment effect OE[Y;(d = b:(v))|v]/0d is both stable
over time and and continuous at the kink. In other words the left and right limits at
v = 0 are equal and they do not change from ¢ = 0 to ¢ = 1. This assumption fails if
e.g. bp(0) # b1(0) and the treatment effect is not constant at different levels of b. Another
important situation where Assumption fails is when there are compositional changes
near the kink resulting in different treatment effects between time-periods.

Denoting lim, o+ E[Y;|v] = Y;(0%) and lim,_o+ b}(v) = b,(0*), our identification result

for sharp Difference-in-Kinks is:

Proposition 1 (Identification for Sharp Difference-in-Kinks). Under Assumptions |[SDiK1-

dY1(07) dYy(01) dYp(07) dYp(01)
1dv - 1dv - [ (llv - Odv . 8E[Y(b)|v = 0]

b(07) = 04(0) — [6(07) — ,0(0%)] 9b
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dv,(0%) _

Proof. Let’s first note that using the potential outcomes notation, we can denote —5-— =

lim, o+ dE[Y (d = b|v]/dv, where the dependence of b; on v is left implicit to lighten nota-
tion. Using Assumption [SDiK2| we then have that at a neighborhood around v = 0,

dy,(0%)

dv

OE[Y(d=b)l0],, y. . OE[Y(d=b)]
S, ga 0+ lim v .

This means that
ai(07)  dvi(oh) [dmm ) dYo<0+>]

dv dv dv dv
. OE[Y(d=b)[v],, . OE[Y(d=bi)|v],,,
= ad h(07) = lim, ad h(07)
. OE[Y(d=by)|v],, . OE[Y(d = by)|v], n
N Lli%l— ab bo(07) = lim ad %(07)
4 lim OE[Y (d = by)|v]  lim OE[Y (d = by)|v]
v—0— ov d v—0t ov d
[y 2BV =], 2BV =]
v—0-— ov g vo0t ov d

OE[Y (d=b)[v] _
ad

By Assumption[SDiK4] the four final terms equal 0, and by Assumption |SDiK5|(lim,,_, o+

W for t € {0,1}. Hence, we have that

dy;(07)  dY;(07) dYp(07)  dYy(07)
dv  dv _{ dv  dv 1

= [14(07) = #07) = [1h0) — pp0)) =,

The result then follows by dividing by b} (07) =, (07) — [64,(07) — ¢/,0(0")], which is non-zero
by Assumption We then have that

dY1(07) dyy1(0%1) dYp(07) dYp(0t)
ldv - 1dv _[ Odv - ?11) i| 8E[Y<d)|7):0]

01(07) = b1(0%) — [6p(0~) — 6L.0(0%)]

?

od

proving Proposition 1.
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B Appendix — Fuzzy DiK

Instead of assuming a known deterministic policy function b(v), we now allow the relationship
between v and b to be stochastic, with an unobserved term . That is, we consider two policy
functions, by(v,e) and by (v, ).

Again, for a group at the running variable level v, we denote the average potential
outcome had they received policy level b as E[Y;(d)|v] = fs’u y(d|v, b,u)dG (e, ulv), where
Gi(g,u|v) is the joint conditional distribution of € and w at v in period ¢t. We also denote
the average potential outcome for a given e by E[Y;(d)|v,e] = [ y(d|v,b,u)dF;(u|v,e), where
Fi(ulv, e) is the conditional CDF of u for given v and «.

In this Appendix, we analyze identification in a Fuzzy DiK setting. To that end, we make

the following assumptions.
Assumption FDiK1 (Fuzzy difference-in-kinks policy).

i) For each e, there is a policy schedule by(v,e) in periods t € {0,1} that is continuously
differentiable in a neighborhood of v = 0.

ii) Atv =0, there is a change in the policy schedule fromt =0 tot =1 so that

lim IE[br (v, e)|v] lim OE[b (v, €)|v] £ lim IE[bo(v,e)|v] lim OE[bo(v, €)|v]

v—0— ov 0+ ov v—s0— ov v—s0+ ov

9

and the change in the kink is either non-negative or non-positive for all .

Assumption FDiK2 (Continuously differentiable E[Y;(d)|v,¢]). The function E[Y;(d)|v, €]
1s continuously differentiable with respect to d and v in some neighborhood of v =0, but not
necessarily at v =0 for all £ and both t € {0,1}.

Assumption FDiK3 (Existence of left and right limits). Foreacht € {0,1} and alle,
the limits of the partial derivatives lim,_,o= OE[Y;(d = by(v)|v,€]/0d, lim, o= OE[Y;(d = b(v))|v,€]/0v],,

8E[bt ('U,E) "U,E]
v

and lim,_,o+ exist and are finite.

Assumption FDiK4 (Parallel trends at the kink). For all €, the impacts of the other
parameters than b evolve similarly from t = 0 to t = 1 for left and right limits at the

kink-point v = 0:

lim IE[Yi(d = bi(v,e))|v,e]| lim OE[Y1(d = by(v,¢))|v, €]

00~ ov g vo0t ov B

— lim IE[Yo(d = by(v,e))|v,e]| lim IE[Yo(d = bo(v,€))|v, €]
v—0~ ov q v—0t ov d
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Assumption FDiK5 (Stability and continuity of treatment effect at kink). 0E[Y;(d)|v,e]/0d

s continuous and time-invariant at v =0 for all e:

L OBY(d=by(e,e)lve] | OEYi(d = by(v,2)lv.e]
i ad e ad
aIE[YO(d - bO(Uv 8))|U’ 5] a]E[YE)(d - bO(”? 5))|U7 5] aE[Y(d)|U =0, 5]

= lim = lim =

v—01 od v—0~ od od

Assumption FDiK6 (Aggregation of e-level limits). For both left and right limits at

v =20, and for all €, we have:

E | lim dEYilv. €] v| = lim —dE[Y;M,
v—0F dv v—0t  dvu
and
E | lim M v| = lim dE[th.
v—0% dv v—0% dv

Assumption states that there is variation in the policy schedule based on unob-
servable €. One can think of € as indicating different policy schedules. In fuzzy DiK, we also
have a kink in the average policy schedule at v = 0. The kink is assumed to have the same
sign for all €. This rules out situations where some have a positive kink at v = 0 and some
have a negative kink at v = 0. Although one should note that there may be individuals
without any kink at v = 0.

Assumptions [FDiK2HFDiK4] are similar to the sharp DiK assumptions [SDiK2HSDiK4], but
at the level of each ¢.

Assumption is a regularity assumption we need so that we are able to switch the
expectation sign with limits and derivation.

Denoting lim, o+ dE[Y;|v]/dv = dY;(0%)/dv and lim,_,o+ dE[bs|v]/dv = db;(0F)/dv, our

identification result for fuzzy Difference-in-Kinks is:

Proposition 2 (Identification for Fuzzy Difference-in-Kinks). Under Assumptions |FDiK1-

FDiK6,

dyi(0-) _ dva(0t) [dyo((r) _dYp(0h)

dv dv dv dv
= T .
db1(0-) _ dby(0F) _ [dbp(0-) _ dbo(0%) FDiK
dv dv dv dv

where Trpix = E [K(g)—am[y(zggvzo,s] ’ v = 0] = E [k(e)Tspix(e)|v = 0], and

K(e) = <db1(0—,s) _dh(0te) [dbo(O—,a) _ dbo(o+,s)]> / (dbl(o—) _dbi(0F)  [dbo(0) db0(0+)D

dv dv dv dv dv dv dv dv
is a positive weight with [ r(e) = 1.
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Proof. Note that for each ¢, the policy schedules by(v,e) and by(v,e) are fixed. Hence,
following the proof for Sharp DiK, we have that under Assumptions [FDiK1HFDiK5

dYi(0-.e)  dVi(0%,e) [dYe(0m,e) dYp(0*,e)
dv a dv a [ dv a dv 1

_ [dbi(07,¢)  dbi(0T,¢) dby(0~,e)  dby(0,¢e)]] OE[Y (d,e)|v = 0]

B { v dv [ dv  dv ” ad ‘

Moreover, taking expectations over € on both sides, and using Assumption [FDiK6| this

becomes

dvi(0-)  dvi(0*) [dYO(O_) B dYo(OJF)}

dv v dv v
_ {dbﬁ) ) db;l(i) ) [dbz(;) ) dbod(s )H . {K(g)E)E[Y(d,azﬂv = o]’v _ o} |

db1 (0 e) _dh (0+ dbo (0 ) dbo(()Jr €) db1(07) dby (01) dbp(07) dbo(01)
dv / dv o dv o dv o dv

is a positive weight with f (the nommator of the weights have the same sign for
all € due to due to Assumpt1on FDlKl)
Under Assumption [FDiK1] |407) _ &i(0%) [dbO(o ) _ dbo 0+ H # 0, so that

where k(g) = <

dv dv dv

dyi(07) _ dyi(0h) [dYO(O_) dY0(0+)]

v - v - v - v 8E Y d — 0

d d d d _E (o) [Y(d,e)lv | v=o0|.
dbi(0-)  dbi(0+) [dbo(o—) _ db0(0+)] od

dv dv dv dv

proving Proposition 2.
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C Appendix - Figures and Tables

Figure A1l: Research Design

Panel A: The policy rule Panel B: Differences-in-kinks design
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Notes: Panel A depicts the three tiers of the Finnish pension system in the year of the introduction of
guarantee pension (2011). Annual national pension was 7037.52 (single) or 6242.28 (with spouse) euros at
zero earnings-related pension. Annual guarantee pension was set at 8252.88 euros. Panels B—C show the
policy rule in terms of differences-in-kinks design. The running variable (x-axis) is the sum of earnings-related
pension and national pension. With the introduction of the guarantee pension, the slope of the policy rule
for the treatment group shifted from 1 to 0 (i.e., 7 = —1). Panel D shows the histogram of the sample and
the main specification bandwidth of 1,500 euros. Sample size is 11,241.
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Table A1l: Descriptive statistics

Panel A: Means and SDs

All observations Main sample

Mean SD Mean SD

(1) (2) (3) (4)

Retirement rate 0.60 0.49 0.72 0.45

Accrued pension 23,430 16,364 8,145 913

Running variable 15,122 16,345 -142 914

Age 65.08 1.00 65.04 1.13
Earnings 24,842 30,678 4,104 10,539

Panel B: Sample size
2008 2009 2010 2011 2012 2013 2014 2015

All observations 9,805 11,906 14,332 16,045 17,243 18,762 19,047 20,938
Main sample 1,188 1,236 1,335 1,444 1,405 1,478 1482 1,673

Notes: All values refer to individuals who are not retired and are aged between 64 and
68 years at the beginning of the year. The main sample includes only those within the
CCT bandwidth of the guarantee pension eligibility threshold. Claiming rate is the annual
proportion of sample claiming old-age pension. Accrued pension is the tier 1 (earnings-
related pension), 2 (national pension) and 3 (guarantee pension) accrual at the start of
the year. Running variable is accrued annual pension for tiers 1 and 2 normalized at the

guarantee pension eligibility threshold. Total sample size of the main sample is 11,241.

21



Figure A2: Results

Panel A: Pre- and post-treatment means Panel B: Pre- and post-treatment differences
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Notes: Panel A shows the annual pre- and post-treatment retirement rate means in bins of 100 euros of
accrued annual tier 1 and 2 pensions. Tier 2 (national pension) accrual is a decreasing function of tier
1 (earnings-related pension) accrual. Panel B shows the differences between the pre- and post-treatment
means depicted in Panel A. Panel C shows the estimated slopes by treatment status from a single regression
(equation XXX) with a year interaction term. Panel D presents the event-study design, reporting yearly
difference-in-kinks estimates relative to the baseline year 2010.
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Table A2: Results

(1)

Panel A: The estimate

Difference-in-kinks estimate () -0.219 (0.041)%**
Baseline slope -0.039* (0.020)
Baseline slope for post period 0.011 (0.012)
Baseline slope for treatment group 0.327 (0.034)***
Yearly fixed effects v

N 11,241

Panel B: The economic interpretation

Change in policy rule () -1

The effect per 1,000 euros of GP (7 = i—l) 0.219

Panel C: Retirement elasticity w.r.t. pension

Baseline retirement rate (R) 0.83

Baseline pension (Y) 8,290
AR/R

Elasticity ( 2.18

ay /v

Notes: Panel A reports the key estimates from the difference-in-kinks (DiK)
specification. The main coefficient of interest, 31, measures the change in the
slope of the outcome variable at the kink point for the treatment group relative
to the control group. Standard errors are reported in parentheses. Triple asterisks
(***) indicate statistical significance at the 1% level. All models include year fixed
effects. Panel B provides the economic interpretation of the DiK estimate. The
change in the slope of the policy rule due to the guarantee pension reform is vy = —1,
implying that the DiK estimate can be directly interpreted as the marginal effect
of a 1,000 euro increase in guarantee pension on the outcome of interest. Panel C
derives the implied elasticity of retirement rate with respect to acccrued pension
income. The elasticity is computed as the ratio of the relative change in retirement
to the relative change in pension at pre-treatment baseline (calculated at within
one tenth of main specification bandwidth from the threshold) retirement rate (R)

and pension (Y) in the sample.
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Figure A3: Robustness checks

Panel A: Bandwidth Panel B: Donut size
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Notes: Each panel depicts the estimates from a series of regressions varying one parameter of the main
specification. The gray area is the 95% confidence interval. Panel A shows the estimates from 121 regressions
varying the bandwidth around the optimal RKD CCT bandwidth by increments of 20 euros. Panel B shows
the estimates from 81 regressions increasing the the omitted data around the threshold for maximum benefit
(donut) by increments of 10 euros. No data are omitted in the main specification. Panel C shows the
estimates from 169 regressions in which a placebo kink is created by moving the kink point by increments of
100 euros. Of the 163 regressions, which are not around the true kink point, 12 (7.4%) are significant at the
5 % significance level. Most regressions to the left of the true kink lack sufficient mass to cover the whole
support of the optimal bandwidth. Panel D shows the estimates from 35 regressions varying the follow-up
period length. For follow-up periods shorter than 12 months, part of the sample does not reach the next
round age, at which much of the claiming occurs. For follow-up periods longer than 14 months, the 2010
sample is affected by the guarantee pension reform, which took effect in March 2011, and for periods longer
than 26 months, the 2009 sample is also affected by the reform.
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Figure A4: Validity tests

Panel A: Local polynomial density test Panel B: Covariate linearity (age)
Treated Control
A
061 , 04
: o
04 1 U FEE )
I 1 A 1 ©
| \ ]
3 ! . \‘D?: 0.2+ ® . .
-2 0.2 e D LN Y Bei T > ° . . . . ®
o] £ . ® . .
P 3 ° ®e * * .
s 007 ) S 0.0 .
L 0.2 ! o ° .
£ 1 - L]
5 A // o \\\‘// ' g 021 . . °
/ \ 7 1 o . .
04 \I l’ \\,,’/ : [ e
! 1
1
| -0.4
-0.6 !
|
-06 04 02 00 02 04 0 -2000 -1000 0 1000 2000
Annual accrued pension excl. GP relative to threshold for maximum benefit (€) Annual accrued pension excl. GP relative to threshold for maximum benefit (€)
Panel C: Covariate linearity (earnings) Panel D: Covariate linearity (female)
4000 - Treated Control 0.3
L] ¢ @
@ o . § 0.2
é 2000 - . . E .
c . ®e . S 0.14
= .
3 o . . o oo 5
GE) ° L] L] ° . . . o L] g .
e 0 . . ®e * * c 0.04 . .
o * . @ . ®
(9] 1] .
%: S o . . . oo
P S . . 2 01 * *., o .
3 o o P X
é-2000 1 ‘g . . . . oo .,
o Q .
b 02 . .
o
-4000 -0.3 1
2000 -1000 0 1000 2000 -2000 -1000 0 2000
Annual accrued pension excl. GP relative to threshold for maximum benefit (€) Annual accrued pension excl. GP relative to threshold for maximum benefit (€)

Notes: Panel A shows the estimated 13th order local polynomial over the pre-post difference of the density
function and the corresponding histogram with 80 bins. The bandwidth and bin size are extracted from
running the "rddensity” package for a local polynomial density test for regression discontinuity design in
R. Panels B, C and D show the differences between pre- and post-treatment mean in age, earnings and

female dummy in bins of 100 euros of the running variable.

25



Table A3: Validity tests

Local poly- Covariate linearity
nomial Age Earnings Female
(1) (2) (3) (4)
Estimate -2.20 0.27%* 540 0.001
(10.07) (0.09) (927) (0.039)
Year fixed effects v v v v
N 80 13,469 13,469 13,469

Notes: The first column reports the estimated change in the first-order term of the 13th-order
local polynomial over the pre—post difference of the density function. Columns 2 to 4 report the
covariate linearity regression for our main specification with age, earnings and female dummy as

the dependent variable.
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