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We develop a micro-founded framework to account for individuals’ effort and cognitive 

noise which confound estimates of preferences based on observed behavior. Using a large-

scale experimental dataset we find that observed decision noise responds to the costs 

and benefits of exerting effort on individual choice tasks as predicted by our model. We 

estimate that failure to properly account for decision errors due to (rational) inattention on 

a more complex, but commonly used, task design biases estimates of risk aversion by 50% 

for the median individual. Effort propensities recovered from preference elicitation tasks 

generalize to other settings and predict performance on an OECD-sponsored achievement 

test used to make international comparisons. Furthermore, accounting for endogenous 

effort allows us to empirically reconcile competing models of discrete choice.
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! Introduction

Preferences, like skills and other latent personal attributes, are key drivers of inequalities in life

outcomes. Themselves unobserved, they need to be inferred from observed behavior. Heckman,

Jagelka, and Kautz (2021) clarify that performance on any task is a function of multiple prefer-

ences, skills, and also of effort and cognition. Careful experimental and survey design attempts to

isolate the impact of a particular preference (or of another latent attribute of interest) on observed

decisions. However, decision noise remains a potential source of bias, and of apparent preference

instability, when the analyst naively equates an observed choice with the decision-maker’s prefer-

ence.1 Our main contribution is to develop and estimate a micro-founded stochastic choice model

which separates the signal on preferences in observed choices from inattention due to endoge-

nous effort decisions and exogenous cognitive noise. It allows us to (i) de-bias estimates of risk

preferences, (ii) uncover an individual-specific tendency to exert effort which generalizes beyond

experimental settings, and (iii) reconcile competing models of discrete choice.

As demonstrated in the complexity literature (e.g., Gabaix and Graeber, 2023), the frequency of

individual decision errors is linked to the inherent level of cognitive difficulty of an experimental

task. As a consequence, the observed pattern of individual decisions is contaminated and may

induce statistical bias when estimating structural preference parameters.2 This can have large

policy implications given that, for example, the Netherlands now legally require pension funds

to measure the risk preferences of their members in a quantitative way (see, e.g., Goossens et

al., 2023). We model task complexity as one of the inputs into an individual’s endogenous effort

decision, which in turn impacts the probability that the individual will make a choice in line

with their true preference. Our model implies a general relationship between bias in preference

estimates (risk, time, social, etc.) and factors which reduce the benefits of exerting effort, or

increase its costs, when decision errors due to inattention are ignored. We show that choices on

the more complex of two popular task designs used in the literature for eliciting risk preferences

yield estimates of risk aversion biased by approximately 50% for the median individual when

effort is not properly accounted for. We provide a simple formula for predicting bias in preference

estimates from choice data and demonstrate its effectiveness even in preference elicitation tasks

with many choice options.

Our analysis is in line with recent research in psychology and economics which recognizes that

effort and imperfect perception of decision attributes influence observed measures even in con-

trolled settings.3 A key innovation is that we separate decision noise into two conceptually dis-
1Another extreme, equally dangerous, is to take the apparent preference instability as evidence that observed

decisions are a pure manifestation of decision noise and true preferences either do not exist or play no role in them.
2Importantly, this type of bias can be expected to persist in repeated measurements and thus cannot be removed

by applying standard techniques for dealing with measurement error such as the ORIV method popularized by Gillen,
Snowberg, and Yariv (2019).

3This is evidenced by frequent inconsistent choices on repeated tasks in experiments (e.g., Hey and Orme, 1994;
Gaudecker, Soest, and Wengstrom, 2011; Choi et al., 2014; Beauchamp, Cesarini, and Johannesson, 2017; Bruner,
2017; Gillen, Snowberg, and Yariv, 2019; Nielsen and Rehbeck, 2022) and by test-retest correlations well below the
noise-free benchmark of “1” for repeated survey measurements elicited on the same sample within a short enough
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tinct components: (i) endogenous (in)attention which responds to the costs and benefits of making

a choice on a task according to an individual’s true preference and can be reduced by applying

more effort and (ii) exogenous cognitive noise which remains even at full effort, is outside of an

individual’s control within the timeframe of observation, and may only be reduced over a longer

period of time as an individual improves their degree of self-knowledge regarding the preference

of interest.4 We model cognitive noise as a preference shock that influences the individual’s as-

sessment regarding which is his preferred (higher expected-utility) alternative5, while exerted

effort, relative to a task’s individual-specific difficulty, modulates the probability with which the

individual is able to select his preferred alternative on a given task.

In order to grasp the intuition behind our estimation strategy, it is useful to make an analogy

with standard factor analysis methods used to infer an individual-specific attribute (often cog-

nitive skill). These extract the latent factor from a large measurement system in which each

observed measure can load differently on the latent factor. Our approach is similar in that ob-

served differences in choice inconsistency are used to form relative effort probabilities which act

as choice specific weights.6 These are then used to distinguish between choices deemed informa-

tive of structural parameters (risk aversion in our case) and choices that are largely random and

thereby less informative of risk aversion. However, a major difference with statistical factor anal-

ysis is that the weights associated to each choice are endogenously determined by the individual.

While we apply it to a setting devoted to measuring risk aversion, our approach is general and

may be used in any context where the econometrician can access data on individual choices that

are exerted with varying stakes and/or require different levels of cognitive load.

We estimate the model on a representative sample of 1,224 Canadian high school seniors, each of

whom made choices on 55 incentivized tasks used to elicit risk preferences.7 There are two types

time period (e.g., a few weeks) such that the underlying attributes of interest can reasonably be assumed stable (e.g.,
Krueger and Schkade, 2008; Soto and John, 2017; Falk, Neuber, and Strack, 2021; Dohmen and Jagelka, 2024).

4The answer reliability measure of Dohmen and Jagelka (2024) and the cognitive uncertainty (CU) measure of
Enke and Graeber (2023) manifestly contain various mixtures of these two distinct sources of randomness. For ex-
ample, Enke and Graeber (2023) state that CU is “a composite measure that potentially captures people’s awareness
of a multitude of cognitive imperfections” and that “participants are relatively consistent in their degree of CU in a
given domain”, which suggests it largely captures what we call cognitive noise. However, they also find that their
CU measure has some responsiveness to task complexity, which is a shifter in the cost of effort required to answer
according to one’s latent preference.

5We model cognitive noise as the epistemic uncertainty of an individual with regards to his true preference. This
is a complementary approach to assuming that cognitive noise manifests itself as an imperfect perception of task at-
tributes (e.g., payoffs or probabilities) as in Woodford (2020), which is plausible in particular for attributes which occur
infrequently (see Frydman and Jin, 2022). We view the imperfect perception of a latent preference as empirically more
relevant than uncertainty regarding well-defined payoffs of a reasonable magnitude. However, preference shocks and
payoff shocks can be shown to yield equivalent choice probabilities in an expected utility framework under reasonable
assumptions. Note that our model is clearly distinct from a strand of recent work which emphasizes noise as the
main driver of observed choices (e.g., Vieider, 2024) in that we assume the existence of standard economic preferences
and utility functions. Yet another approach in the recent literature assumes that individuals are more likely to take
mental shortcuts when a setting is more familiar (see Cerigioni, 2021; Frydman and Jin, 2022).

6Throughout the paper we focus on relative effort (i.e., effort relative to a task’s difficulty) which, when normalized
to the [0;1] interval, can be interpreted as the probability than an individual’s choice is informative of his latent
preference. This is in contrast to some of the existing literature, which is concerned with effort understood as the
amount of cognitive resources (such as time spent thinking) exerted in an absolute sense (e.g., Gonçalves, 2024).

7Several recent papers analyze aspects of this rich dataset (e.g., Belzil, Maurel, and Sidibé, 2021; Jagelka, 2024).
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of such choice tasks in this experiment. While both use the Multiple Price List (MPL) setup,

which relies on ordered groups of binary choice tasks between lotteries with different expected

payoffs and payoff variances, they differ in the complexity of those tasks.8

The simpler design is based on tasks employed by Holt and Laury (2002) while the more complex

design is inspired by tasks used by Eckel and Grossman (2008).9 Within each MPL of the simpler

design, the first and the last task entails choices which should be easy for most individuals. In

addition, there is a clearly visible pattern in the changing attractiveness of the riskier lottery.

This reduces the per-task cognitive load necessary to make a choice according to an individual’s

latent risk preference compared to the more complex design which lacks these features. One

might thus expect more mistakes and more noise on the more complex design due to (rational)

inattention. We quantify this intuition.

We find that mistakes due to low relative effort increase with task complexity, with low relative

stakes, and with fatigue—instances in which the costs of making a choice in line with one‘s

underlying preferences are higher and the benefits are lower. Changing the task design from

the more complex one to the simpler one results in a 30% increase in the likelihood of exerting

sufficient effort for the median individual. 75% of the cross-sectional variation in individual

choices on the simpler tasks is explained by a single variable: whether an individual’s coefficient

of relative risk aversion lies above or below the theoretical threshold at which a person should

be indifferent between a given pair of lotteries. This percentage falls to only 20% in choices on

tasks of the more complex design. Accordingly, heterogeneity in risk preferences accounts for

90% of the explained cross-sectional variation in an individual’s average choices on tasks of the

simpler design but only for 50% on the more complex tasks (the other half is largely noise due to

inattention).

Incorporating endogenous effort improves model fit by approximately 15%. Accounting for en-

dogenous effort is particularly crucial when observed choices contain a lot of noise. While the

distribution of the coefficients of risk aversion estimated using the simpler tasks is largely un-

changed if endogenous effort is omitted, omitting effort on the more complex design biases risk

aversion estimates by approximately 50% for the median individual. We show that bias increases

when an individual is more prone to errors, while the direction of the bias depends on an inter-

action between a particular task design and an individual’s latent risk aversion.10 This quanti-
8Ordering ensures that the relative attractiveness of the riskier lottery is monotonically changing within an MPL.
9Harrison and Rutström (2008) provide an excellent summary on the various experimental designs and techniques

used to elicit risk preferences in the laboratory. While multiple task designs exist, we lack a systematic understanding
of the impact of design variations on decision noise and inferred risk preferences.

10The relationship between bias and errors that we document complements and ties together evidence from the
existing literature. For example, while Bruner (2017) claims that a negative relationship between mistakes and risk
aversion is a general feature of monotone random choice models, Khaw, Li, and Woodford (2022) note that their
“theory implies that increasing [the degree of imprecision] should both increase the randomness of the subject’s choices
and imply greater apparent risk-aversion” thus implying a positive relationship between mistakes and risk aversion.
Cognitive uncertainty of Enke and Graeber (2023) also predicts bias in decisions between risky prospects (lower risk
aversion for low payout probabilities and vice-versa). However, their proposed mechanism affects risky choice through
probability weighting, which is a channel that cannot explain our results as about half of the tasks we use involve
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fies Andersson et al. (2016, 2020)’s claim that the interaction of random decision errors with an

experimental design and an individual’s latent risk preference may introduce bias in preference

estimates, when sources of noise are not properly accounted for. In addition, we find that women’s

effort decisions are less sensitive to choice stakes and fatigue but more sensitive to task complex-

ity. This suggests a nuanced pattern of bias in preference estimates for different demographic

groups which should be further explored.

Our model has high internal validity. Estimated structural parameters explain 80% of the

cross-sectional variation in the average number of risky choices and 70% of choices on any indi-

vidual task. Structural estimates explain choices on the more complex tasks less well than on

the simpler tasks, consistent with a bigger role of noise in decisions on the former.

Importantly, we also demonstrate out-of-sample predictive power which extends to a different

decision context: choices between multiple lotteries. We find that (i) our risk aversion estimates

from the binary choice tasks predict the coefficient of relative risk aversion implied by choices

on the multiple choice tasks; (ii) our estimates of effort propensity predict the noisiness of a

persons’ decisions on the multiple choice tasks; and (iii) given the estimates of risk aversion and

relative effort obtained from the observed binary choices, our model correctly predicts not only

the direction of bias due to insufficient effort at the individual level on the multiple choice tasks

but also explains much of its cross-sectional variation.

Finally, we show that estimated propensity to exert sufficient effort also has external validity

and is particularly predictive of an individual’s performance in low-stakes environments, notably

on one of the most influential international assessment programs for mathematical literacy: the

OECD-sponsored International Adult Literacy Survey score (IALS). Transposing our results into

the contemporaneous PISA international ranking which measures the same skills at age 15,

we find that a one standard deviation increase in low-stakes motivation would affect the PISA

numeracy ranking of a mid-performing country by approximately 9 places (out of 38).

The rest of the paper is organized as follows: Section 2 surveys the literature on random choice

models, Section 3 presents the structural model, Section 4 describes the data, Section 5 presents

our estimates of the model parameters, Section 6 demonstrates out-of-sample predictive power

and external validity of the estimates, Section 7 shows how our framework reconciles estimates

from different discrete choice models, Section 8 discusses the broader implications of our findings

for the design of preference elicitation tasks, and Section 9 concludes.

" Background on Random Choice Mode#s

We contribute to the recent literature that links discrete choice models with concepts of Costly

Reasoning (Alaoui and Penta, 2022), Rational Inattention (Steiner, Stewart, and Matějka, 2017;

lotteries with a 50% probability of receiving either payment.
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Caplin and Dean, 2015; Caplin, Dean, and Leahy, 2022), Rational Imprecision (Steverson, Bran-

denburger, and Glimcher, 2019), Efficient Coding (Frydman and Jin, 2022), Cognitive Uncer-

tainty (Enke and Graeber, 2023), Cognitive Imprecision (Khaw, Li, and Woodford, 2021), Noisy

Cognition (Vieider, 2024), Imperfect Self-Knowledge (Jagelka, 2024; Dohmen and Jagelka, 2024;

Falk, Neuber, and Strack, 2021), or Limited Attention (Barseghyan, Molinari, and Thirkettle,

2021). As such, this paper enriches the broader domain of behavioral inattention summarized by

Gabaix (2019).

The Random Utility Model (aRUM), which has its origins in Thurstone (1927) and Luce (1959),

plays a central part in a multiplicity of microeconometric models of static and dynamic discrete

choice. Its popularity has been stimulated by empirical research on consumers’ discrete choices

and by the development of the Conditional Logit model (McFadden, 1974). Although the aRUM

may be used as a stochastic choice model, most applications incorporating an aRUM are con-

cerned with deterministic choices. For instance, in the static discrete choice literature, the aRUM

has been used as the main tool for specifying the demand for durable goods, in which the error

term represents unobserved heterogeneity in tastes.

Because of its numerical simplicity, the aRUM model has been used extensively also in the exper-

imental literature in which the cardinal utility shock reflects the degree of observed randomness

in repeated choices which cannot be explained by variation in task parameters alone. The aRUM

is used in many influential papers such as Hey and Orme (1994), Holt and Laury (2002), and An-

dersen et al. (2008). However, recent work by Wilcox (2011) and Apesteguia and Ballester (2018)

point out that choice probabilities derived using the popular aRUM exhibit non-monotonicities

which are at odds with a basic theoretical definition of risk (and time) preferences. For instance,

the aRUM model predicts that individuals endowed with high risk aversion (for whom the utility

function is very concave) would choose the safer and riskier options with equal probability.

Loomes and Sugden (1995) proposed the Random Preference Model (RPM) as a variant of random

utility which adds an error term directly onto the coefficient of relative risk aversion, thus making

it a random variable (or to an analogous parameter if another economic preference is studied).

Apesteguia and Ballester (2018) prove that the RPM is monotone.11

Although the RPM is intrinsically monotone, it leaves no room for processing error. Unlike the

aRUM, it cannot explain lapses in attention which may cause some individuals to choose dom-

inated options.12 The most common solution to this problem implemented in the experimental

literature is to introduce a “tremble parameter” which captures the probability with which an

individual makes a mistake (Harless and Camerer, 1994). In its original form, it essentially as-

sumes that everyone evaluates the expected utility of each alternative and mistakes in decisions

are purely random. The approach is still used, (see, e.g., Apesteguia and Ballester, 2018) who use
11Efforts to establish conditions under which aRUM applied to risk preference estimation can be monotone are

ongoing (see, e.g., Keffert and Schweizer, 2024)
12In the RPM, the error term affects the preference parameter used to compare all alternatives. Therefore, no value

of the shock can explain a choice which no level of risk aversion can justify.
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a tremble parameter assumed to be common to the whole population.

Most efforts to relax this assumption have focused on modeling heterogeneity in the mistake

probability, in general as a function of observed characteristics (see, e.g., Gaudecker, Soest, and

Wengstrom, 2011; Andersson et al., 2020), while Jagelka (2024) also allows it to depend on un-

observed heterogeneity. Such trembles – like exogenous additive random utility shocks – imply

involuntary (exogenous) mistakes. However, interpreting all mistakes as involuntary may be un-

realistic. When individuals see the choice tasks as relatively complex or perceive little meaningful

difference between the available choice options, they may judge that the cost of introspection and

solving the expected utility problem is too high compared with potential benefits of being able to

make a choice in line with their latent preference. For this reason, we endogenize the decision to

pay attention.13

Early attempts at incorporating the role effort into discrete choice models can be traced back

to Hey (1995). Although no formal model of effort is presented, he operationalizes the intuition

of Smith and Walker (1993) that “the error or randomness is determined optimally: the subject

balances the gain from thinking about the question against the cost of so doing”. Hey (1995)

tests three potential parametrizations of the error shock variance, finding some support for the

hypothesis that effort (proxied for by time spent on a task) reduces randomness. In a similar

vein, Moffatt (2005), takes insights from the “capital-labour-production” framework of Camerer

and Hogarth (1999) to introduce the possibility of learning (task order) into a tremble parameter.

While he does outline a simple theoretical model of effort, instead of inferring it from observed

choice patterns (like we do), he simply assumes it is measured by response time and does not

take it into account when estimating risk preferences.14

Even when individuals exert sufficient effort, residual randomness in choices from the point of

view of the econometrician often remains (e.g., Dohmen and Jagelka, 2024). We call this residual

exogenous decision randomness cognitive noise. We demonstrate that estimated distributions of

risk aversion using either aRUM or RPM shocks coincide once the decision to exert effort is incor-

porated. At least in the context of this experiment, proper estimation of the initial effort decision

is empirically more important than the placement of the error term. Nevertheless, we use RPM

shocks to preferences as our base specification due to their superior theoretical properties and

to the intuitive interpretation of preference shocks as reflecting cognitive noise in the form of

imperfect self-knowledge.

Existing estimates of the random preference model imply a significant degree of cognitive noise

(a high estimated standard deviation of the preference shock). We show that after accounting for

differences in endogenous effort, preferences are stable for the median individual. Furthermore,
13One way of viewing our model, is as providing a micro-foundation for, and endogenizing, the popular “tremble”

specification.
14A separate strand of the literature focuses on eliciting effort and cognitive noise through survey measures, with-

out incorporating them into a formal random choice model (see, e.g., Enke and Graeber, 2023; Dohmen and Jagelka,
2024).
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an individual’s estimated degree of cognitive noise, unlike the propensity to pay sufficient atten-

tion, is independent of task design. This is what one would expect if the scale of a preference

shock captures an individual characteristic such as imperfect self-knowledge.15

$ Mode#

Before providing technical details, let us exposit the general set-up of the model: An individual

makes choices on binary tasks designed to elicit a preference. Each choice provides information

about the individual’s latent preference of interest if he takes the task seriously and has at least

some self-knowledge regarding his preference.

When an individual is presented with a choice task, he takes in the readily and effortlessly

available characteristics of the options among which he has to choose. He then decides how

much effort to expend on making the choice. The amount of exerted effort relative to the task’s

individual-specific difficulty (ER
i,l) will influence the likelihood that individual i will in fact choose

the utility maximizing alternative on task l (henceforth the “preferred option”), given his relevant

latent preference and an error shock representing cognitive noise.16 As effort does not have a

natural scale, we normalize ER
i,l to the [0;1] interval without loss of generality. At the top end

of the scale, when ER
i,l approaches 1, the individual will choose his preferred option with close to

certainty. At the bottom end of the scale, when ER
i,l = 0, the individual’s choices will reflect pure

noise. At intermediate levels of relative effort, we assume that the probability of choosing the

preferred option is monotonically increasing in exerted effort. ER
i,l can thus be interpreted as the

probability that choice l is informative of individual i’s latent preference.17 It can be seen as the

“informativeness” weight that the econometrician, intent on inferring the preference of interest,

would want to assign to the particular choice.

Consider a task involving a choice between two options: Y and X. An observed choice of Y can

come about in two ways: (i) the individual prefers Y and exerted sufficient effort on the task to

select his preferred option, or (ii) the individual was not paying sufficient attention and chose

option Y randomly. Our estimation strategy accounts for the fact that the observed choice reveals

the individual’s latent preference only in the first case.

We can write the probability that individual i chooses option Y on a binary choice task l as:
15Our findings thus complement Enke and Graeber (2023) and Enke, Graeber, and Oprea (2023), who find that

inconsistencies in the domains of choice under risk, beliefs and expectations, and intertemporal choice are interrelated,
Jagelka (2024) who shows that one personality trait—conscientiousness—predicts the stability of both risk and time
preferences, and Dohmen and Jagelka (2024), who demonstrate that a single self-reported reliability measure predicts
the test-retest consistency of survey measures of an individual’s preferences, skills, and life satisfaction.

16The effort decision may be taken at an implicit level. Relative effort, ER
i,l , could be further decomposed into effort

exerted by individual i on task l, and the task’s individual-specific difficulty. However, relative effort is the object
relevant to the econometrician as it determines the probability with which the individual will choose the option that
he truly prefers.

17ER
i,l can also be understood as the probability that individual i exerts sufficient effort on task l to be able to reliably

choose the option that he prefers. The actual probability of choosing either option can never fall below the probability
with which the option is chosen if the individual is choosing randomly between the options.
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p(Y Ci,l = 1)= ER
i,l · p(Y Pi,l = 1)+ (1→ER

i,l) · rY ,i (1)

where p(Y Ci,l = 1) is the probability that individual i chooses option Y on task l; p(Y Pi,l = 1) is

the probability that individual i prefers option Y on task l; ER
i,l is exerted effort of individual i

relative to task l’s subjective difficulty normalized to the [0;1] interval; and rY ,i is the individ-

ual’s “effortless” randomization strategy which determines the probability with which individual

i picks option Y when exerted effort is insufficient to reliably make a choice in line with his

true preference. A reasonable default value is rY ,i = 0.5, i. e., an individual who exerts minimal

relative effort randomizes between the available options with equal probability.

We will now in turn characterize the initial effort decision and the determination of the preferred

option given the relevant latent preference.

$%a Decision to Exert Effort

In the previous section we established that the econometrically interesting object is the amount

of effort that an individual will choose to exert relative to a task’s difficulty because it is closely

related to the likelihood that the individual will be able to reliably choose the option which he

prefers. The individual will want to increase relative effort (ER
i,l) when the benefits of choosing

the preferred option are high and the costs are low.18

The benefits of choosing the preferred option will generally be increasing in the rewards associ-

ated with a choice and in the difference in the attractiveness of the choice options. The costs of

choosing the preferred option will generally be increasing in the amount of effort required and in

the cost to the individual of exerting that amount of effort. Denote Bl the vector of readily and

effortlessly available characteristics which pertain to the perceived benefits of exerting sufficient

effort such that an individual is able to reliably choose his preferred alternative. Denote Cl the

vector of readily and effortlessly available characteristics of choice task l which pertain to the

perceived costs of exerting sufficient effort. Let us assume that individuals act according to net

perceived benefits.

As mentioned in the previous section, because effort has no natural scale, we can normalize ER
i,l

to the [0;1] interval without loss of generality. The effort that individual i chooses to exert when

faced with task l, relative to that task’s difficulty, can thus be expressed as follows:

ER
i,l =ω(b0,i +b1,i ·Bl →b2,i ·Cl) (2)

where ω is the cumulative distribution function for a standard normal distribution, b0,i denotes

the intercept which captures individual differences in baseline propensity to exert relative effort

in the analyzed choice tasks (e.g., due to differences in personality or variability in how difficult
18For a theoretical analysis of conditions under which reasoning can be modeled as a cost-benefit analysis, see

Alaoui and Penta (2022). The authors find that these conditions are weak.
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the tasks are for different individuals), b1,i and b2,i are vectors of coefficients measuring the im-

portance that individual i accords to each of the readily and effortlessly available characteristics

pertaining, respectively, to the benefits and costs of effort.19

The normalized ER
i,l can be interpreted as the probability that individual i exerts sufficient effort

on task l to be able to reliably choose the option he prefers on that task, i.e, it is the probability

that the choice will be informative of the individual’s latent preference to the econometrician.20

$%b Preference Between Avai#ab#e Options

Assume that individual i is endowed with a utility function Ui(·) which maps a vector of attributes

into utility. The attributes can be monetary values (m), non-pecuniary characteristics of interest

(n), and other (nuisance) characteristics (o). Denote εi a vector of preference parameters over

these attributes. In the presence of delay or intertemporal separation, discounted expected utility

DEUi(m,n, o;εi) needs to be considered.

When an individual is faced with a choice between two options X and Y —in a deterministic world

with perfect information on relevant attributes and conditional on exerting sufficient effort—he

will prefer option Y if:

DEUi(my,ny, oy;εi)> DEUi(mx,nx, ox;εi) (3)

where my and mx are monetary characteristics, ny and nx are non-pecuniary characteristics, and

oy and ox are nuisance characteristics of options Y and X respectively.

However, for many individuals, observed choices reflect a degree of inconsistency which cannot

be justified by variation in task characteristics alone. Besides insufficient effort, various forms

of cognitive noise need to be considered.(e.g., Loomes and Sugden, 1995; Kahneman, 2011; Enke

and Graeber, 2023). Indeed, even when individuals exert sufficient effort, residual randomness

in individuals’ choices from the point of view of the econometrician often remains, for example

due to an individual’s imperfect self-knowledge (e.g., Dohmen and Jagelka, 2024).21

The residual decision noise can be incorporated by introducing shocks to utility: either addi-

tive shocks appended on to the utility function (leading to an additive random utility model or

aRUM) or shocks directly affecting preference parameters (leading to a random preference model

or RPM). We introduce a general error term ωi to complete the model.22 The discounted expected

utility that an individual i derives from a choice option thus depends on choice characteristics,
19While in principle b1,i and b2,i are unbounded, we limit them to the [-5;5] interval in estimation in order to avoid

numerical issues which arise as one approaches the limits of the standard normal cumulative distribution function.
20Indeed, Equation 2 can also be derived from an alternative set of assumptions: The individual is simply deciding

whether or not to take the decision task seriously, i.e., whether or not no exert sufficient effort, relative to the task’s
individual specific difficulty, such that he is able to reliably choose according to his latent preference. When the effort
decision itself is noisy, it yields a probability of exerting sufficient effort.

21A person who is unsure of their true preference may randomize within an interval of uncertainty which depends
on individual characteristics (Jagelka, 2024).

22The subscript i reflects the fact that some individuals may be subject to less residual (cognitive) noise than others
when making decisions, i.e., they receive smaller error shocks.
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preferences, and shocks: DEUi(m,n, o;εi;ωi). Certain contexts may favor one type of utility

shock over the other. For example, Apesteguia and Ballester (2018) show that preference shocks

have desirable theoretical properties when modeling risky choices.

When an individual is faced with a choice between two options in the presence of utility shocks,

even conditional on exerting sufficient effort his preference over the options will be probabilistic

unless one option is dominated by the other, i. e., there is no value of the error shock which

would make it the preferred option. Without loss of generality, option Y is preferred over option

X when DEUi(my,ny, oy;εi;ωi) > DEUi(mx,nx, ox;εi;ωi).23 The probability that individual i

prefers option Y is therefore equivalent to the probability that the value of the shock is such that

this inequality is satisfied.

To summarize: while utility differences (including error shocks) determine which option is pre-

ferred, the effort decision determines the probability with which an individual is able to convert

the preference into an actual choice.

$%c App#ication to Risk Preference E#icitation

The general model is easily adapted to choice under risk:

Let us consider an example in which the researcher observes individuals making binary choices

between lotteries, as is the case in our dataset described in Section 4. Shifters in the benefits of

exerting effort should target the magnitude of the lottery payoffs, or the relative attractiveness

of the two lotteries. Shifters in the costs of exerting sufficient effort should alter the amount of

effort needed to reliably select an individual’s preferred lottery, or the disutility associated with

a “unit” of exerted effort.24

If sufficient effort is exerted, an individual will choose according to expected utility maximiza-

tion given his coefficient of relative risk aversion and a preference shock, as in Jagelka (2024),

i. e., a choice alternative is characterized by monetary attributes (payments and probabilities

over them); the preference vector εi consists of the coefficient of relative risk aversion εi; the

functional form for utility is constant relative risk aversion (CRRA); and the error shock ωi is

added directly on to the preference parameter. If sufficient effort is not exerted, the individual

randomizes between the two options with equal probability, i. e., rY ,i = 0.5.

Let Ui(a) represent the utility which an individual obtains from a dollars. Define the coefficient
23In full, option Y is preferred when DEUi(Y ;εi ;ωi,y)>DEUi(X ;εi ;ωi,x). When ωi directly affects a preference

parameter, ωi,x = ωi,y = ωi because both choice options are judged based on the same underlying preference. When ωi is
an additive utility shock, we can always combine the shocks to obtain ωi = ωi,y →ωi,x because differences in discounted
expected utility determine the preferred choice.

24Given effort shifters available in our data, we let (i) the effort cost vector Cl consist of a dummy for task design
(allowing for tasks of the more complex design to have a different baseline effort requirement than tasks of the simpler
design) and an indicator for task order (allowing for the cost of a given amount of effort to change with fatigue and/or
learning); (ii) the effort benefit vector Bl consist of the percentage difference in the expected payoffs offered by each
lottery (reflecting the stakes associated with not making a mistake).
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of relative risk aversion εi = →a·U ↑↑(a)
U ↑(a) .25 A CRRA utility function can then be written as:

Ui(a)= a(1→εi) →1
1→εi

=U(a,εi) (4)

We chose this representation of CRRA utility over the frequently used Ui(a)= a(1→εi )

1→εi
(e.g., Ander-

sen et al., 2008; Apesteguia and Ballester, 2018) due to its smoother convergence to ln(a) in the

immediate vicinity of ε = 1. For a lottery X with two possible outcomes, x1 dollars with probability

px1 and x2 dollars with probability 1→ px1 , an individual’s expected utility is:

If εi ↓= 1,

EUi(X )= px1 ·
x(1→εi)

1 →1
1→εi

+ (1→ px1 ) ·
x(1→εi)

2 →1
1→εi

(5)

If εi = 1,

EUi(X )= px1 · ln(x1)+ (1→ px1 ) · ln(x2) (6)

When making a choice between lottery X and lottery Y, an individual first receives a realization

of a preference shock, ωi.26 We assume that the shock affects the individual’s perception of his

latent risk preference embodied by the coefficient of relative risk aversion, εi, which represents

the relevant coefficient of relative risk aversion that would prevail in a purely deterministic choice

context.27 The individual uses the shocked (or instantaneous) value of risk preference εi +ωi to

compare the two alternatives. The expected utility of individual i from lottery X and lottery Y

respectively becomes:

EUi(X ) = px1 ·
x1→(εi+ωi)

1 →1
1→ (εi +ωi)

+ (1→ px1 ) ·
x1→(εi+ωi)

2 →1
1→ (εi +ωi)

= EU(X ;εi +ωi) (7)

and

EUi(Y ) = py1 ·
y1→(εi+ωi)

1 →1
1→ (εi +ωi)

+ (1→ py1 ) ·
y1→(εi+ωi)

2 →1
1→ (εi +ωi)

= EU(Y ;εi +ωi) (8)

Assume that lottery X is less risky (has a lower variance in potential payoffs) than lottery Y in

all lottery choice tasks l=1,...,L that an individual faces. The individual will prefer the riskier

lottery Y to the safer lottery X on task l if

EU(Yl ;εi +ωi,l)> EU(Xl ;εi +ωi,l) (9)

25We restrict εi to the (wide) range of the coefficient of relative risk aversion covered by the available elicitation
tasks described in Section 4, so εi ↔ (→2,+5), see Section B.b of the Online Appendix..

26As explained by Loomes and Sugden (1995): “the stochastic element derives from the inherent variability or
imprecision of the individual’s preferences, whereby the individual does not always know exactly what he or she
prefers. Alternatively, it might be thought of as reflecting the individually small and collectively unsystematic impact
on preferences of many unobserved factors.” Alternatively, individuals may randomize deliberately, either because
they have a preference for randomization (see Agranov and Ortoleva, 2017) or because randomization essentially
allows them to achieve a lottery over available outcomes which they prefer to any individual outcome itself (see
Cerreia-Vioglio and Riella, 2019).

27For closed form solutions of the choice probabilities under the alternative random utility specification with addi-
tive shocks (aRUM), please see Section B.a of the Online Appendix.
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The probability that Y is preferred on task l is equivalent to the probability that the value of the

shock is such that the above inequality is satisfied. As ωi,l enters expected utility non-linearly,

obtaining a closed-form expression for this probability is non-trivial. We follow Apesteguia and

Ballester (2018) to do so, making use of the monotonicity of the random preference model (RPM).

Let us define a threshold level of indifference ε
eq
l which satisfies EU(Xl ,ε

eq
l ) = EU(Yl ,ε

eq
l ), i. e.,

the level of ε at which any individual would be exactly indifferent between lotteries X and Y on

choice task l in a deterministic context. We use the threshold level of indifference to obtain a

closed-form expression for the probability that individual i prefers the riskier lottery Y on task l.

Individual i will prefer the riskier lottery Y on task l if his shocked value of risk aversion is lower

than the indifference threshold associated with task l:

εi +ωi,l < ε
eq
l (10)

or, rearranging, if the value of the shock is lower than ωi,l , the maximum value which still satisfies

the inequality expressed in Equation (9):

ωi,l < ωi,l = ε
eq
l →εi (11)

Assuming that the random shock is normally distributed with ωi,l ↗ N(0,ϑ2
i ), the probability that

individual i prefers the riskier option Y on choice task l has a closed-form expression:

p(Y Pi,l = 1)=ω
(
ε

eq
l →εi

ϑi

)
(12)

The probability of preferring the safer option is simply:

p(Y Pi,l = 0)= 1→ p(Y Pi,l = 1) (13)

Notice that an individual’s risk preference can be understood as a normally distributed random

variable with mean εi and standard deviation ϑi, both of which are parameters to be estimated.28

We interpret εi as the individual’s latent coefficient of relative risk aversion, which would prevail

in a purely deterministic setting, and ϑi as a measure of either actual fluctuation in his risk

preference or of the individual’s degree of uncertainty as to its true value, i. e., as imperfect

self-knowledge or cognitive noise. The lower an individual’s ϑi, the more consistent is his risk

preference over a panel of choices he has to make.

Combining Equations 1, 2, and 12 while assuming than when an individual is choosing randomly

he randomizes between the available options with equal probability, we obtain the closed-form

expression for the probability that individual i chooses the riskier option Y on choice task l:

p(Y Ci,l = 1)=ω(b0,i +b1,i ·Bl →b2,i ·Cl) ·ω
(
ε

eq
l →εi

ϑi

)
+ [1→ω(b0,i +b1,i ·Bl →b2,i ·Cl)] ·0.5 (14)

Both ϑi and ER
i,l impact the consistency of an individual’s repeated observed choices. However,

28Following Jagelka (2024), we restrict ϑi to plausible values, so ϑi ↔ (0,1].
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there is an important difference between the two. On the one hand, ϑi is related to the stability

of preferences (or awareness of them). While his instantaneous preference can vary somewhat

from question to question, in the absence of decision mistakes an individual would be choosing

the preferred expected utility maximizing option given his current (shocked) risk preference. On

the other hand, by electing not to exert full effort he knowingly accepts the possibility of picking

the less preferred option some percentage of the time. This would result in uninformative choices

for the econometrician interested in inferring the individual’s latent risk preference.

$%d Identification of Decision Noise Parameters

Both ϑi and ER
i,l measure the consistency of an individual’s choice. However, each generates a

specific pattern of choice inconsistency which allows for their separate identification.

$%d%i Identification Under Exogenous Effort

First, let us consider a simplified model in which an individual’s decision to exert effort is insen-

sitive to task-specific perceived costs and benefits of effort. In this case each individual would

be characterized by a constant probability of exerting sufficient effort on all experimental tasks,

ER
i,l .

29 If, in addition, the individual randomized with equal probability between the two options

of a given task when he does not exert sufficient effort, he would make decision mistakes half of

that time. Thus the individual would choose the option which gives him lower expected utility
1→ER

i,l
2 % of the time.

In this simplified case, identification is analogous to an RPM model with random trembles de-

scribed in Jagelka (2024). We therefore only briefly outline the main intuitions here: In an RPM,

no value of the preference shock can explain choices of dominated options. Several choice tasks

in the present experiment involve such options and individuals choose them with non-zero prob-

ability. Only insufficient relative effort could explain such choices in our model and ER
i,l would

therefore trivially be identified from such choices.

The constant relative effort propensity would be a source of uniform noise which affects all choices

equally whereas ϑi, under a wide range of distributional assumptions on the preference shock,

represents noise which has a higher chance to reverse a choice closer to an individual’s point of in-

difference. It is identified as the residual noise after stripping away the uniform noise component

due to insufficient effort provision.

More generally, ER
i,l and ϑi can be identified from different moments of the noise distribution,

even in the absence of dominated choices. Essentially, there is a tension between the occurrence

of inconsistent choices on tasks with a ε
eq
l close to, or far away from, an individual’s latent risk

29Recall that the normalized ER
i,l can be interpreted as the probability that individual i exerts sufficient effort on

task l to be able to reliably choose the option he prefers on that task.
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preference εi.30 The resulting noise pattern is not sufficiently characterized by either consistency

parameter alone.

$%d%ii Identification Under Endogenous Effort

Identification of endogenous effort parameters is more subtle than under exogenous effort, but

follows the same general principles. The impact of shifters of the costs and benefits of effort is

identified from systematic differences in noise patterns for tasks which they affect. For example,

take two task designs eliciting the same latent preference but differing in complexity. Complexity

is a shifter in the per-task cost of effort required for an individual to be able to reliably choose

according to his actual risk preference. If repeated choices on the more complex design are sys-

tematically more inconsistent/noisy than on the simpler design, the negative effect of complexity

on effort would be manifested through the corresponding coefficient estimates in Equation 2.

Identification would break down if two task characteristics resulted in exactly the same noise

pattern. Similarly, separate identification of the influence of a particular component of the ef-

fort decision from the preference shock would be compromised if that component resulted in an

identical pattern of choice inconsistency as the preference shock, given the preference shock’s

assumed distribution. While unlikely in a sufficiently long panel of observed choices on tasks

with enough variation in lottery characteristics (per individual, in a fixed effects estimation, or

across individuals, in a representative agent framework), this should be evaluated on a case by

case basis.31

$%e Estimation

Individual i’s contribution to the likelihood based on his choice on lottery choice task l is:

p(Y Ci,l = yci,l)= p(Y Ci,l = 1)Y Ci,l · p(Y Ci,l = 0)1→Y Ci,l (15)

where the probability p(Y Ci,l = 1) that individual i chooses option Y on task l is given by Equa-

tion 14.

The likelihood contribution of individual i is the probability of jointly observing all L lottery

choices he makes:

Li =
L∏

l=1
p(Y Ci,l = yci,l) (16)

This is the likelihood to be maximized. We estimate the model individual by individual to obtain

individual fixed effect estimates of the structural parameters.
30We define choice inconsistency as a deviation in choice from the one that would prevail in a purely deterministic

setting given task parameters and the individual’s relevant latent preference parameter.
31We verify this at the individual level by estimating our model with many random starting values and checking

that the best fitting set of estimates is produced by a unique set of estimated structural parameters. For our base
specification, this condition is satisfied approximately 99% of the time.
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& Data

We illustrate the usefulness of our model in improving estimates of risk preferences using ex-

perimental data from “The Millennium Foundation Field Experiment on Education Financing”

designed by Claude Montmarquette and Cathleen Johnson.32 This dataset fits our purposes for

four main reasons: (1) it involves a large sample of 1,224 individuals, representative of the Cana-

dian population on characteristics other than age; (2) it features a long panel of 60 incentivized

tasks per individual designed to elicit risk preferences; (3) while the elicitation tasks look similar,

they include shifters for the costs and benefits of effort, e.g., they entail two levels of complexity;

(4) each individual’s performance on a low stakes and high-stakes test is recorded (an interna-

tional numeracy test and high school GPA), which allows us to test the external validity of our

estimates.

All 55 binary decision tasks involve choices between a safer and a riskier lottery.33 They are

organized into ordered groups (multiple price lists or “MPL”) and displayed 5 at a time. Within

each MPL, the relative attractiveness of the riskier lottery is either monotonically increasing

or decreasing. Choice payments and probabilities are presented using an intuitive pie chart

representation popularized by Hey and Orme (1994). Choices were incentivized and participants

were paid for one randomly drawn decision at the end of the session. The availability of a long

panel of choices per individual makes this an ideal setting to study decision noise at an individual

level. Each choice provides information about an individual’s risk aversion parameter provided

that he takes the task seriously. Characteristics of the lotteries that are readily and effortlessly

available to each individual, and therefore factor into the effort decision, are: task complexity

and order (costs) and choice stakes (benefits).

Choice tasks of both the simpler (henceforth “sMPL”) and more complex (henceforth “cMPL”) type

are designed to require little specialized skill, involve the same situation (pure choice under risk),

and to be incentive-compatible (i.e., to provide an incentive for individuals to choose according to

their latent risk preference). “The key assumptions behind this set-up are that the individual

understands probabilities and the expected values of options being offered, and that other factors

that may affect risky choice besides latent preference (for example, wealth), can be controlled for

adequately,” (Dohmen et al., 2018). However, in reality these assumptions may not hold fully.

&%a Simp#e Mu#tip#e Price List ’sMPL( Design

Of the 55 tasks designed to measure risk aversion, 30 are based on the work of Miller, Meyer, and

Lanzetta (1969) and Holt and Laury (2002). There are three groups, each containing 10 choice
32Participants were full time Canadian students in their last year of high school at the time of the experiment. The

experiment was conducted using pen and paper choice booklets as well as simple random sampling devices like bingo
balls and dice. Individuals were drawn from urban and rural schools in the provinces of Manitoba, Saskatchewan,
Ontario and Quebec. See Table A.1 of the Appendix for descriptive statistics. For a full description, see Johnson and
Montmarquette (2015).

33There are 5 additional multiple choice tasks, each of which involves a choice between 6 lotteries. We use them to
test the out-of-sample performance of our model. They are described in more detail in Section 6.b.
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tasks. In each group of questions, subjects are presented with an ordered array of binary lottery

choices. In each choice task, they choose between lottery X (safer) and lottery Y (riskier). In each

subsequent row, the probability of the higher payoff in both lotteries increases in increments of

0.1. For an example, see the left panel of Figure 1 below which shows the first two and last two

choice tasks from an ordered group of 10.

The sMPL design minimizes mental processing (effort) costs required to make a choice in line

with one’s latent risk preference. First, the initial choice in each ordered list of tasks is simple for

most individuals as the safer lottery also offers a higher expected value. Second, the increasing

attractiveness of the riskier option within each MPL is clearly visible due to the monotonically

increasing probability of receiving the higher payment. Third, the last choice task in each or-

dered group is also simple as the higher payment is received with certainty and thus there is a

dominated option.34 This makes it a very simple and intuitive setting to elicit preferences.

&%b More Comp#ex Mu#tip#e Price List ’cMPL( Design

The remaining 25 tasks designed to measure risk aversion used in this study are a binarized

version of the ordered lottery selection design developed by Binswanger (1980) and popularized

by Eckel and Grossman (2002, 2008). A similar task design was used in Engle-Warnick, Laszlo,

and Escobal (2006). They consist of five groups, each containing 5 choice tasks. Once again, in

each group of tasks, subjects are presented with an ordered array of binary lottery choices. In

each choice task, they choose between lottery X (safer) and lottery Y (riskier). This time, lottery

X offers a certain amount in the first row and all other alternatives increase in expected payoffs

but also in their variance. For an example, see the right panel of Figure 1.

While similar in appearance, the more complex “cMPL” task design lacks the three aforemen-

tioned features which reduce the per task effort required to make a choice in line with one’s

underlying risk preferences. We might thus expect choices to reflect a mix of signal on latent

risk preference and noise due to endogenous inattention as more individuals may decide that the

tasks are not worth the effort required to evaluate them correctly, given available incentives.

In a deterministic world, each individual should “switch” at most once between the riskier and

safer option within an ordered group of tasks. Each person’s “switching point” would then be

indicative of their risk aversion. On the one hand, each individual should switch at exactly the

same point on the 3 sets of sMPL questions.35 On the other hand, under standard assumptions

on the utility function (e.g., CRRA, CARA) the switching point should vary among the five sets

of the cMPLs for a given individual even if he is paying full attention and consistently choosing

according to his latent risk preference.36 In a deterministic world, the sMPL tasks should allow
34In the last row of all three sets of sMPL questions designed to measure risk aversion, both lotteries offer the

higher payment with certainty. Because no value of risk aversion can justify a preference for lottery X, it is dominated
by lottery Y.

35This prediction holds for the popular constant relative risk aversion (CRRA) utility.
36Indifference thresholds for each of the 55 tasks in this experiment along with the percentage of individuals who
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Figure 1: Binary Lottery Choice Tasks

(a) Simple “sMPL” Design (b) Complex “cMPL” Design

for the identification of an interval for an individual’s risk aversion while the cMPL tasks should

permit the refinement of this interval. Furthermore, while the sMPL tasks focus on the most

common range of risk preferences (up to a coefficient of relative risk aversion of 1.37 under CRRA

utility), cMPL tasks let us identify highly risk-averse individuals. The two types of task are thus

complementary.

&%c Observed Individua# Choices

Figure 2 plots the distributions of individuals’ choices on tasks designed to elicit their risk prefer-

ences. Choices are heterogeneous and some individuals make decisions indicative of limit values

of risk aversion - they either always choose the riskier or the safer lottery. The distribution of

choices roughly resembles normality.

picked the riskier option on each task are displayed in Tables B.1 and B.2 of the Online Appendix. The three sets of
choice tasks of the sMPL design share a common set of indifference thresholds under CRRA utility. The thresholds are
increasing from Q1 to Q10 in each such MPL reflecting the increasing relative attractiveness of the riskier option. As
predicted by the RPM model, the percentage of individuals choosing the riskier option is also monotonically increasing.
The five sets of cMPL choice tasks are characterized by decreasing indifference thresholds which reflect a decreasing
relative attractiveness of the riskier option. However, they do not exhibit the same congruence between the evolution
of indifference thresholds and observed choices suggesting a more important role of noise on this task design and the
need for a rigorous error specification in the structural model.
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Figure 2: Distribution of Individual Choices on Lottery Tasks
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Contrary to standard predictions, many individuals exhibit reversals in their choices within a

given MPL.37 This shows the usefulness of collecting data on the full set of tasks as opposed to

assuming that each individual will maintain his choice after the “switching point” (as is often

done in the literature, see Bruner (2017) for a recent example). In addition, some individuals

also have inconsistent switching points across comparable MPLs. This is a more subtle form of

choice inconsistency than outright reversals. If an individual is close to indifference around the

switching point and he is somewhat uncertain as to his true preference, he may switch earlier on

one set of tasks and later on another comparable set. While a small amount of cognitive noise

may suffice to explain this behavior, choice reversals within a given MPL are indicative of highly

erratic decision-making which suggests insufficient attention.38 These distinct patterns of choice

inconsistency help separately identify the various parameters of the model which govern choice

inconsistency, as discussed in Sections 3.d.ii and 5.c.iii.

Figure 3 plots the distributions of reversals within a given MPL and of inconsistency in switch-

ing points between comparable MPLs. It reveals that while some reversals are observed on sMPL

tasks, most of the action takes place on cMPL tasks. While almost 90% of individuals exhibit no

reversal behavior on the former, 2/3 have apparent preference reversals on the latter. As men-

tioned above, while the sMPL design has features which minimize the per-task mental processing

costs involved in choosing according to one’s latent risk preference, making a choice according to
37A reversal is defined as follows. Take for example one order list of the sMPL design which includes ten binary

choice tasks ordered by increasing relative attractiveness of the riskier lottery. If an individual starts out by picking
the safer option and then at some point switches to the riskier one as the riskier option becomes more attractive, this
is considered standard behavior. If however he then reverts back to the safer option on the same set of tasks even
though the riskier option became even more attractive, this is considered a reversal. The definition is analogous for
lottery tasks of the cMPL design.

38Between choice tasks on a given MPL, there are fairly large jumps in the relative attractiveness of the riskier
option.
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latent risk preference on a task of the cMPL design requires more mental effort. Hence we refer

to the cMPL design as the more “complex” one. Some individuals may not find it worth their

while to expend this effort and prefer to choose randomly at the cost of potentially choosing their

less preferred option some of the time. This hypothesis is consistent with correlational evidence

presented by Dave et al. (2010) who find that more complex risk elicitation tasks may lead to

noisier behavior, especially in lower numeracy test subjects and with Jagelka (2024) who finds

that variation in cognitive skills is the most important predictor of differences in individuals’

propensity to make mistakes. It is supported by results from the structural model presented in

the next section.

Figure 3: Observed Reversals per Individual on Lottery Choice Tasks
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Notes: The left panel shows the histogram of the number of choice reversals, within an order list of lottery choice
tasks of the simple sMPL design (blue bars) and of the more complex cMPL design (transparent bars), exhibited by
individuals in our dataset. The right panel plots the distribution of the standard deviation of an individual’s switching
points across MPLs on which the switching point is predicted to be the same for a given coefficient of relative risk
aversion under CRRA utility. The distribution is smoothed through kernel density estimation.

Inconsistencies in switching points can be easily detected on the three groups of sMPL tasks

because they share common indifference thresholds under CRRA utility. We measure them as

the standard deviation of switching points on the three ordered groups of the sMPL design for

each individual (0 implies consistent switching points across the sMPL lists). The right graph of

Figure 3 plots a distribution of switching point inconsistency on sMPL tasks smoothed through

kernel density estimation. The sample distribution of inconsistent switching points looks similar

to the sample distribution of choice reversals, with a high density at the origin and a fat tail. An

analogous exercise cannot be done easily for the 5 groups of cMPL tasks as predicted switching

points on them differ. Our structural model is needed to detect such inconsistencies.

The experiment also solicits background information collected both from students and from their

parents. Descriptive statistics including demographic and socioeconomic variables for test sub-
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jects and their families are displayed in Table A.1 of the Appendix.

) Empirica# Resu#ts

)%a Representative Agent Mode#

We first estimate a representative agent model to obtain a baseline comparison for our individual-

by-individual estimates.

Our model with endogenous effort results in an approximately 15% improvement in the log-

likelihood relative to the model with no effort.39 The model with endogenous effort dominates

also using the Akaike and Schwartz information criteria which include a penalization for the

number of parameters.

Furthermore, omitting endogenous effort results in an estimated coefficient of relative risk aver-

sion which is more than 50% higher than when endogenous effort is taken into account (1.1 vs.

0.67). Apparent preference instability (cognitive noise) is also magnified in that case. Finally, we

note that allowing endogenous effort decisions to differ by sex appears fruitful: the interaction

effects are statistically significant and model fit further improves. These results are summarized

in Appendix Table A.2. We explore these basic findings in more depth in the rest of the paper,

where we allow all structural coefficients to be individual specific.

)%b Individua# Estimates

Individual-specific estimates from the full model with endogenous effort and cognitive noise based

on observed choices on all 55 lottery tasks show that the median individual is risk averse, exhibits

almost no cognitive noise, and approximately 75% of the time exerts sufficient relative effort

required for observed choices on these tasks to give meaningful information about his latent risk

preference. The median (mean) estimated values of the structural parameters are: 0.68 (0.88)

for the coefficient of relative risk aversion, 0.01 (0.13) for the standard deviation of the coefficient

of relative risk aversion (a proxy for cognitive noise or imperfect self-knowledge), and 0.77 (0.76)

for the propensity to exert sufficient relative effort for being able to reliably choose according to

underlying preferences, averaged over the 55 tasks that each individual faced. Figure 4 plots the

parameter distributions.40

In order to put these results in context, it is helpful to compare them to existing estimates.41

The obtained values of the coefficient of relative risk aversion are broadly in line with the previ-

ous literature (see e.g., Holt and Laury, 2002; Andersen et al., 2008; Apesteguia and Ballester,
39For the purposes of this exercise, we exclude the 3 choice tasks which feature a dominated choice from the analysis

as a simple random preference model cannot explain such choices.
40The top histogram is capped at risk aversion of +3 as the overwhelming majority of observations falls within

this range. There is a small spike again at +5, the highest level of risk aversion distinguishable with the available
elicitation tasks.

41We omit our relative effort estimates from this discussion as we are not aware of any analogous previous estimates
in the literature.
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Figure 4: Distributions of Structural Parameters Estimated Using the Model with Endogenous
Effort
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2018; Apesteguia, Ballester, and Gutierrez, 2020; Jagelka, 2024).42 While there are few existing

estimates for the estimated scale parameter of the preference shock, previous results place it

somewhere in the 0.3-0.6 range (see Apesteguia and Ballester, 2018; Apesteguia, Ballester, and

Gutierrez, 2020; Jagelka, 2024), which is much higher than the value we obtain for the median

individual.43 We show that this discrepancy can be explained by the fact that when the initial

effort decision is not taken into account, preference estimates based on the more complex choice

tasks in our dataset are biased (see Section 5.c.iii). When using both simpler and more complex

tasks in estimation, without taking into account how this difference in situations impacts effort

decisions, the bias in estimates based on the more complex task design can be misinterpreted as

preference instability or cognitive noise. We refer the reader to Section 5.d for a deeper discussion

of this phenomenon.

We now describe in more detail the insights for theorists and practitioners revealed by our struc-

tural estimates.

)%c Endogenous Effort

Following our theoretical model, we allow the effort parameter to depend on readily and effort-

lessly available task characteristics which shift the costs and benefits of choosing the preferred

option. In the context of the lottery choices available in our dataset, these are: task design (com-

plexity), task order (fatigue), and relative stakes (benefits of making the right choice).
42While Holt and Laury (2002) do not report an estimate of the coefficient of relative risk aversion for the median

individual, Table 3 of their paper implies that it is somewhere between 0.41 and 0.68 for the median individual on
the “20x real” treatment, which most closely corresponds to the choice tasks included in this experiment. Andersson
et al. (2020) obtain a lower estimate for the coefficient of relative risk aversion (0.25). However, the types of choice
tasks that they use do not allow them to identify highly risk averse individuals.

43The only estimate of a comparable magnitude comes from a sensitivity analysis from Apesteguia, Ballester, and
Gutierrez (2020) using pooled individual estimates based on Coble and Lusk (2010) data and allowing for “correlation
between parameters using a Gaussian copula”.
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The median individual is more likely to exert sufficient effort to choose according to latent pref-

erences on less complex tasks, when stakes of getting the choice right are high, and when fatigue

is low. The average impact of going from the more complex to the simpler task design is a 30%

increase in the likelihood of exerting sufficient effort, ER
i,l , for the median individual.44 The

marginal effect of increasing relative stakes by one standard deviation averaged across all 55

lottery choice tasks is a 7% increase in ER
i,l whereas increasing fatigue by one standard deviation

results in a 2% decrease in ER
i,l .

45 These results are congruent with our estimates from the rep-

resentative agent model. Appendix Table A.3 shows that women on average exert higher relative

effort on the analyzed experimental tasks (i.e., their choices are on average more informative of

latent preferences). As a group, women are less sensitive to choice stakes and fatigue, but more

sensitive to task complexity.

Given the large estimated impact of experimental design on the cost of effort, we now explore its

impact on the noise content of observed choices in more depth. To this end we first examine the

predictive power of our structural parameters on moments of the raw data, and break it down by

task design. This analysis clarifies the explanatory power of each structural parameter for the

average behavior by an individual (both in terms of an average revealed preference for the safer

vs. riskier lottery and in terms of choice inconsistency) within a particular choice situation (task

design). Second, we analyze the importance of the structural parameters in explaining individual

choices. Third, we evaluate the bias in risk aversion estimates generated by omitting the initial

endogenous relative effort decision and explain its determinants.

)%c%i Determinants of Average Behavior

We find that our model fits the data well. We take key moments of the distribution of individual

choices and regress them on the estimated structural parameters: the preference parameter εi

and decision noise parameters ϑi and ER
i .46 Row 2 of Table 1 shows that these jointly explain over

80% of the cross-sectional variation in average choice behavior in terms of the percentage of the

time that an individual selects the safer lottery and half of the variation in choice reversals across

individuals. In comparison, the predictive power of demographic and socioeconomic variables is

an order of magnitude smaller (see row 1 of Table 1).

Subsequent rows break down the explained variation in choices due to the estimated structural
44This is consistent with the pattern of choice inconsistency observed in the raw data, which is concentrated on the

cMPL tasks (see Figure 3).
45Task order could also be associated with learning, which would presumably work to decrease the cost of effort

required to reliably make a choice in line with one’s latent risk aversion. We interpret the estimated negative effect
of task order on relative effort as suggesting that the effect of fatigue outweighs any potential benefits from learning.
We calculate all marginal effects using the estimated structural coefficients from our model. They are equal to the
difference between an individual’s predicted probability of exerting sufficient effort ER

i,l given each lottery’s actual

characteristics and the counterfactual ER
i,l if the design were flipped to cMPL, or if relative stakes or fatigue were

increased by one standard deviation.
46We obtain an individual’s propensity to exert sufficient effort ER

i as an average of the estimated task-specific
relative effort propensities ER

i,l . We can average ER
i,l alternatively over tasks of the simpler design to obtain ER

i,sMPL
or over tasks of the more complex design to obtain ER

i,cMPL.
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parameters into parts explained by the preference parameter and by the decision noise parame-

ters. This lets us compare their relative explanatory power, expressed as a percentage. Decision

noise parameters are further broken down into exogenous cognitive noise and endogenous rela-

tive effort. This allows us to provide empirical evidence on the separate identification of the two

types of decision noise parameters based on different moments of choice inconsistency as outlined

in Section 3.d.ii.

Almost 90% of the explained variation in observed choices is accounted for by variation in latent

risk preference across individuals on the simpler choice tasks compared to only 50% on the more

complex tasks (the remainder is noise due to inattention or imperfect self-knowledge). Increasing

the coefficient of relative risk aversion by one standard deviation leads to a 15% increase in the

proportion of safe choices selected on the simpler tasks, compared to a 10% increase on the more

complex tasks.47 This is yet another indicator that choices on the cognitively less demanding

task design are driven by individuals’ risk preferences to a much greater extent then choices on

the cognitively more demanding task design.

Table 1: Variation in Average Behavior on Lottery Choice Tasks Attributed to Preference vs.
Decision Noise Parameters

% Safe
Choices

% Safe
Choices:
Simple

% Safe
Choices:
Complex

%
Reversals

%
Reversals:

Simple

%
Reversals:
Complex

sMPL
Switch SD

Demographic and Socioeconomic Variables R2 0.05 0.04 0.07 0.02 0.03 0.02 0.03
All Parameters R2 0.81 0.89 0.56 0.48 0.19 0.54 0.43
Coefficient of Relative Risk Aversion 89.1% 88.2% 53.6% 0.0% 0.3% 0.0% 0.5%
Decision Noise Parameters 10.9% 11.8% 46.4% 100.0% 99.7% 100.0% 99.5%
- Cog. Noise 0.4% 0.8% 0.1% 0.0% 7.2% 0.1% 59.7%
- Relative Effort 10.5% 11.0% 46.4% 100.0% 92.5% 99.9% 39.8%

Notes: The rows labeled “R2” list the R2 of the regression of the moment listed in each column title alternatively
on 18 demographic and socioeconomic variables and on the relevant estimated structural parameters of the model.
Demographic variables include the student’s sex, age, language, number of siblings living with him, his parents’
age, as well as information on whether he was born in Canada and whether he is of aboriginal origin. Socioeconomic
variables include parents’ level of education and income. Due to the presence of missing values, this regression
has 888 observations. The rows below represent the relative explanatory power of the relevant subgroups of
parameters, expressed as a percentage. Columns 1-3 show the variation in the percentage of the time that a
person chooses the safer option which is explained by observed characteristics and by the estimated structural
parameters. Columns 4-6 show the explained variation in choice reversals. A reversal is defined as switching back
to the safe option after having already picked the risky one on a given ordered group of lottery tasks even though
the risky option became even more attractive, or vice versa. The last column looks at inconsistent switching points,
a more subtle form of choice inconsistency. This analysis is only possible with tasks of the sMPL design which
share a common set of indifference thresholds. The probability of exerting effort is averaged over the tasks of
the relevant design (all; simple, i.e. sMPL design; complex, i.e. cMPL design) for each individual. The analysis
excludes individuals with an estimated coefficient of relative risk aversion of below -2 and above +2 who are outside
of the range of risk aversion captured by sMPL tasks. This leaves 1,135 observations or over 90% of the sample.

Cross-sectional variation in choice reversals - a strong form of choice inconsistency within an

ordered group of tasks - is explained largely by differences in the propensity to exert sufficient

relative effort on both task designs. This is consistent with the finding that the median individual

exhibits stable risk preferences. Choice inconsistency on lottery tasks is thus largely due to
47For more details, see Table B.3 of the Online Appendix which displays estimated regression coefficients along

with calculated marginal effects.
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mistakes due to endogenous effort decisions. However, cognitive noise, captured by the estimated

standard deviation of the coefficient of relative risk aversion, accounts for the majority of the

explained cross-sectional variation in inconsistent switching points between groups of tasks in

which a person with a given latent risk preference is predicted to switch at the same point, a more

subtle form of choice inconsistency. One can see that while cognitive noise and propensity to exert

sufficient effort both explain randomness in observed decisions, they manifest through distinct

patterns of choice inconsistency and affect the two analyzed task designs to different degrees.

These results illustrate the intuition behind the identification strategy outlined in Section 3.d.ii

and complement the findings of Jagelka (2024).

Another interesting result is the lack of a relationship between the coefficient of relative risk aver-

sion and choice reversals (see Table B.3 of the Online Appendix). This nuances Bruner (2017)’s

claim that a negative relationship between mistakes and risk aversion is a general feature of

monotone random choice models such as the RPM.48

)%c%ii Determinants of Individua# Choices

We next examine how well our model predicts each individual choice. According to our model,

an individual’s choice on each lottery task is a function of the latent preference for risk only

if the individual decides to exert sufficient effort. As discussed in Section 3, payoff-relevant

lottery characteristics (potential payoffs in the two lotteries between which an individual has to

choose, along with their respective probabilities) can be conveniently summarized by a unique

threshold level of risk aversion ε
eq
l at which an individual would be indifferent between the two

lotteries. Estimating a simple linear regression, Table 2 shows that, as implied by the model, an

individual’s coefficient of relative risk aversion being above or below ε
eq
l for a given choice task

(henceforth referred to as the “threshold dummy”) is the main predictor of an observed choice on

that task.49 This information alone explains 75% of the cross-sectional variation in individual

choices on lottery tasks of the simpler design. However, on tasks of the more complex design it

explains only 21% of the cross-sectional variation in individual choices on lottery tasks. Once the

threshold dummy is accounted for, the inclusion of the full set of payoff-relevant task parameters

(lottery payoffs and their associated probabilities) in the regression has no meaningful impact.

Adding an interaction between the effort parameter and the threshold dummy does not affect the
48Bruner (2017) measured mistakes using choice tasks in which both alternatives have the same expected return

and differ only in its variance (one option is thus stochastically dominated for individuals who are not risk neutral).
In that situation, cognitive noise should in fact have a diminishing impact on observed choices for more risk averse
individuals. However, this is a special case which applies to risk averse individuals on tasks with the same expected
return where the threshold level of indifference is by definition 0—individuals with lower risk aversion than the
threshold (who are risk-seeking) should choose the option with the higher variance while individuals with higher risk
aversion (who are risk-averse) should choose the option with the lower variance. More risk averse individuals will
have a coefficient of relative risk aversion further away from the threshold level of indifference and thus a given level
of cognitive noise will be less likely to reverse their choice. There is no a priori reason to expect to see a negative
relationship between risk aversion and choice inconsistency due to cognitive noise (let alone due to decision errors) on
tasks where the threshold level of indifference varies such as the ones used in this experiment.

49The “threshold dummy” is equal to one if the estimated coefficient of relative risk aversion is below the indiffer-
ence threshold ε

eq
l for a given task. In a deterministic world with full attention, this variable should explain all of the

variation in observed choices.
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ability of our model to predict choices on the simpler elicitation tasks but almost triples it for the

more complex tasks.

Table 2: Explanatory Power of Individual Determinants of Lottery Choices

Observed Choices Wrong Choices

All Simple Complex All Simple Complex
Demographic and Socioeconomic Variables R2 0.00 0.00 0.01 0.00 0.00 0.00
Threshold Dummy R2 0.46 0.75 0.21 0.01 0.00 0.00
Relative Effort R2 0.00 0.00 0.01 0.24 0.16 0.18
Relative Effort * Threshold Dummy R2 0.59 0.79 0.36 0.25 0.18 0.19
Full Set of Regressors R2 0.62 0.82 0.40 0.28 0.25 0.22

Notes: The values displayed represent the R2 of a regression of observed individual choices (Columns
1-3) and of choices in which individuals did not select the expected utility-maximizing option
(Columns 4-6) on various sets of regressors. Demographic and Socioeconomic Variables include the
students’ sex, age, language, number of siblings living with him, his parents’ age, as well as informa-
tion on whether the student was born in Canada and whether he is of aboriginal origin. Socioeconomic
variables include parents’ level of education and income. Due to the presence of missing values, re-
gressions with demographic and socioeconomic variables include 52,360 observations (out of a 67,320
observations total) when all choices are considered. The “Threshold Dummy” is equal to one if the
estimated coefficient of relative risk aversion is below the indifference threshold for a given task.
“Relative Effort” is a task specific probability that an individual will exert sufficient relative effort
to be able to choose his preferred option (including the cognitive noise shock) given task characteris-
tics and his estimated relative effort function. The Full Set of Regressors includes demographic and
socioeconomic variables, individual lottery choice task parameters, and all estimated structural pa-
rameters along with their interactions with the difference between each lottery’s estimated threshold
level of indifference and the estimated coefficient of relative risk aversion as well as with the “ Thresh-
old Dummy”. The probability of exerting effort is averaged over the tasks of the relevant design (all;
simple, i.e. sMPL design; complex, i.e. cMPL design) for each individual.

The last three columns of Table 2 show that endogenous relative effort (modeled as a function

of relative stakes, task order, and task design) in and of itself accounts for virtually all of the

explained variation in wrong choices observed in the experiment.50 The threshold dummy and

its interactions with the remaining structural parameters contribute minimally. This provides

empirical support for the assumption that when an individual exerts low relative effort, he will

randomize between the safe and the risky lottery with equal probability.51 Finally, it is note-

worthy that the 18 included demographic and socioeconomic variables together predict neither

observed nor wrong choices.

)%c%iii Task Design and Bias in Estimates

Having established that observed choices on one of the task designs in our experiment are a

much noisier reflection of underlying risk preference than choices on the other task design, we

now examine the consequences of this fact for preference estimates.

In the context of our experiment, relative choice stakes and fatigue meaningfully influence effort

decisions only on the more complex tasks (i.e., their estimated average marginal effect for the

median individual on the simpler tasks is zero). This is easily discernible from the bottom right
50“Ideal” choices are calculated for each choice task based on task parameters and each person’s estimated latent

risk preference. Wrong choices represent instances where the “ideal” choice differs from the observed one.
51In other words, knowing whether or not an individual actual prefers the safe or the risky lottery on a given task

does not help us predict whether he is likely to make a mistake on it.
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histogram of Figure 5, which plots estimated relative effort for the median individual on the

first 25 tasks of each design. Furthermore, when we average estimated relative effort for each

individual alternatively across the 30 tasks of the simpler design and the 25 tasks of the more

complex design (bottom left histogram in Figure 5), we find that the median individual exerts

relative effort such that they are able to choose their preferred option almost all of the time on

the simpler tasks. In contrast, the median individual’s exerted relative effort enables him to

reliably select the preferred option only approximately 60% of the time on more complex tasks.

This suggests that the available incentives are sufficient for the median individual on the simpler

task design but not on the more complex one.52 Accordingly, we find that while omitting the

effort decision from our model leaves the distribution of estimated risk preferences from choices

of the simpler design virtually the same (see top left histogram of Figure 5), doing so biases

preference estimates from choices on the more complex design by approximately 50% for the

median individual (see top right histogram of Figure 5).53

Figure 5: Distributions of Structural Parameters by Task Design
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Notes: The top two panels plot distributions of the estimated coefficient of relative risk aversion in
the sample, alternatively using the model with endogenous relative effort (green bars) and without it
(transparent bars). The top left panel plots estimates based on choices on tasks of the simple design
while the top right panel plots estimates based on choices on tasks of the more complex design.
The bottom left panel plots the distribution of estimated relative effort exerted by individuals in the
sample, averaged alternatively over tasks of the simple design (blue) or of the more complex design
(red). The bottom right panel shows the relative effort exerted by the median individual on tasks 1-25
of the simple design (blue) and on tasks 1-25 of the more complex design (red).

Andersson et al. (2016) conjecture that random decision errors will lead to an overestimation of

risk aversion on lottery task designs in which individuals are expected to choose the riskier alter-

native more often than the safer one.54 We test this hypothesis formally. For each individual, we
52In contrast, the distributions of cognitive noise obtained using either task design are similar (see Figure 6). We

discuss the implications of this finding in more detail in Section 5.d.
53The estimated coefficient of relative risk aversion using the more complex choice tasks is 0.6 when endogenous

relative effort is accounted for and 0.91 when it is excluded. On the simpler tasks, the corresponding median is 0.68
regardless of whether the effort decision is estimated. As before, the histograms are capped at risk aversion of +3 as
the overwhelming majority of observations falls within this range.

54When actual risk preference leads an individual to choose relatively many riskier options, random errors are
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first calculate the difference between the estimated coefficient of relative risk aversion obtained

from the noisy complex design when the effort parameter is omitted and when it is included. This

is the (upawards) bias in estimated risk aversion resulting from a naive model which does not

take into account mistakes due to inattention. We next calculate the percentage of the time that

the individual would be expected to choose the riskier option on the 25 tasks of the more complex

design given our estimate of his true latent risk aversion. This represents the “lopsidedness” of

this choice task design for each individual. The first column of Table 3 shows that bias is indeed

increasing in the lopsidedness of the lottery choice tasks towards riskier choices.

Table 3: Bias as a Function of Individuals’ Predicted Percentage of Risky Choices and Relative
Effort on cMPL Tasks

Estimated Bias in the CRRA Coefficient of Relative Risk Aversion

Variables (1) (2)

Predicted % Riskier 2.70*** 0.33***
(0.82) (0.093)

Relative Inattention -0.14
(0.09)

Predicted % Riskier * Relative Inattention 7.62***
(0.23)

Constant -0.11*** -0.024
(0.027) (0.033)

Observations 1,224 1,224
R-squared 0.472 0.722
Standard errors in parentheses
*** p < 0.01, ** p < 0.05

Notes: Each column presents the results of a regression of the estimated bias in the coefficient of relative risk
aversion on variables predicted to determine this bias. “Predicted % Riskier” is the percentage of the studied binary
choice tasks on which an individual would be predicted to choose the riskier lottery, given the tasks’ parameters
and our estimate of that individual’s latent coefficient of relative risk aversion ε̂i . “Relative Inattention” is the
converse of average relative effort exerted on the more complex tasks, i.e. 1→ ER

i,cMPL in the notation of our
model. It represent the estimate of the percentage of the time that a given individual will choose randomly on the
available decision tasks, i.e., the percentage of the tasks on which he will choose not to exert sufficient relative
effort to make a choice according to his latent risk preference.

The bias should be larger for individuals who are less likely to exert sufficient relative effort on

the choice tasks and are thus more prone to making mistakes. In the second column we add the

estimated probability of not exerting sufficient effort on the more complex tasks along with the

interaction term. The interaction term is significant and positive as predicted. Bias is highest

for individuals who are prone to mistakes when their actual risk preference would lead them

to disproportionately choose the risky lotteries in choice tasks they face. The marginal effect of

increasing the predicted percentage of riskier choices by one standard deviation is a 0.77 increase

in the (upwards) bias of the estimated coefficient of relative risk aversion.55 It can be understood

as the effect of design imbalance at the individual level.

Given that task complexity is the key determinant of endogenous relative effort in our setting, our

more likely to flip a truly preferred choice of a risky option to safe than the converse. This implies fewer observed
risky choices than justified based on the person’s latent risk preference and overestimation of risk aversion if decision
error is not properly taken into account.

55The calculated marginal effect includes an interaction term calculated at the mean value of estimated relative
effort.
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findings predict a general relationship between elicitation task complexity and bias in preference

estimates. As an illustration, consider a hypothetical set of multiple ordered lists of tasks, each

consisting of repeated binary choices eliciting the same parameter of interest (e.g., preference for

risk, time, longevity) and assume that each list entails its own level of task complexity. Suppose

that with full effort, each list should reveal the same decision pattern (the same sequence of

choices). Now consider what happens if an individual reduces effort gradually when moving from

the least to the most complex list. As exerted relative effort approaches 0, choices are made

with an increasing degree of randomness until the probability of selecting each option reaches

0.5. Naive statistical inference which ignores the randomness in decisions will be biased as the

observed choice pattern becomes disconnected from the one reflecting actual preferences. To take

a concrete example, suppose we have a list with 10 decisions and assume that an individual has

a level of risk aversion which leads him to chose 9 risky choices and 1 safe choice with full effort.

Pure randomization (no effort) will result in a more balanced list of choices and will provide the

false impression that the individual is more risk averse than he truly is (an upward bias). On the

other hand, if the list is such that the individual prefers mostly the safe options, randomization

will give the false impression that the individual is less risk averse then he truly is (a downward

bias).

)%d Stabi#ity of Individua#s’ Preferences

A defining feature of the random preference model is that it assumes that the error term affects

preference parameters directly, making them random variables. One possible interpretation is

that each person has a “true” value of the preference parameter but some individuals have imper-

fect self knowledge and are essentially randomizing their choices within an interval around the

true value (see, e.g., Jagelka, 2024). Another interpretation is that preferences do actually fluctu-

ate due to external factors unobserved by the researcher such as fatigue or varying temperature

in the room. It is one way of formalizing Kahneman (2011)’s observation that “[t]o a psychologist,

it is self-evident that people are neither fully rational nor completely selfish, and that their tastes

are anything but stable.” Finally, individuals may randomize around their truly preferred choice

because they actually have a preference for randomization (Agranov and Ortoleva, 2017).

The concept of unstable preferences is not standard in the economic literature and indeed there

is a limit to how much preferences can plausibly fluctuate within a short time interval. One

of the contributions of this paper is to show that after accounting for differences in situations,

preferences become stable for the median individual. A particular task design is a situation.

Apparent preference instability (cognitive noise) estimated using only tasks of the same design

is low. Furthermore, the distribution of cognitive noise estimated separately on the simpler and

more complex tasks is similar, in contrast to the distribution of estimated relative effort (see

Figure 6 and the bottom left histogram of Figure 5, respectively). The fact that cognitive noise is

similar across task designs while mistakes due to inattention vary, suggests that the stability of

preferences is an individual characteristic (and can reasonably be considered as exogenous within
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the timeframe of an experiment) while decision errors are due to endogenous effort decisions,

responsive to incentives.

Figure 6: Distribution of the Estimated Cognitive Noise Parameter by Task Design
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Once the decision to exert effort is incorporated into the model, the median individual has stable

estimated risk preference even when all 55 available lottery choice tasks are used for estimation.

Combined with the results from the previous section regarding bias arising from elevated noise

on certain task designs, one may conclude that the high estimated standard deviation of risk

preference shocks, when not accounting for differences in situations, is largely an artifact of

biased preference estimates from tasks on which individuals exert low relative effort.56 This

suggests that the failure to account for differences in situations may in general result in an

overestimation of preference instability or cognitive noise.

The inclusion of a properly parametrized relative effort parameter seems recommendable if a

researcher uses information on choices arising in different situations, which are likely to entail

varying degrees of decision noise. We show that modeling inattention as a function of a few

readily available attributes is able to account for differences in situations in our context and

greatly reduces the estimated degree of cognitive noise. Preferences nevertheless retain a degree

of apparent instability for a fraction of the population. While the median individual has an

estimated standard deviation of the coefficient of relative risk aversion of only 0.02, at the 75th

percentile the standard deviation reaches 0.22 suggesting that there are individuals who are

affected by significant cognitive noise, although they are in a minority. Nevertheless, it is possible

that once the influence of situations on choices is better understood, preferences will be revealed

as essentially stable, in line with classical theory.
56In our dataset, these are largely tasks of the more complex design.
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* Externa# Va#idity and Out+of+Samp#e Predictive Power

*%a Externa# Va#idity

While the internal validity of our model is well documented, an intriguing questions remains:

Does the estimated individual propensity to exert sufficient effort in a relatively low-stakes ex-

perimental setting capture an individual’s broader tendency to exert effort and predict external

outcomes?

To answer this question, we make use of the pre-experiment survey which contains two different

measures of student achievement: the International Adult Literacy Survey (IALS) quantitative

score (measuring an individual’s numeracy skills) and high school GPA.

The Survey of Adult Skills (PIACC), which contains the IALS, is the most important International

Large-Scale Assessment of adult skills. The test is regularly administered to representative sam-

ples of national populations and is meant to provide a basis for international comparisons of adult

achievement. Like the more prominent PISA test, which is administered to individuals at the age

of 15 only, it assesses both verbal and numeracy skills.57 As documented in many OECD publi-

cations, both tests are meant to assess the capacity of individuals to use mathematical concepts

in solving practical problems. Indeed, the first version of the PISA test was developed based on

the IALS, which predates PISA (see, OECD, 2019).

However, large scale international achievement tests such as PISA and IALS tests have been

criticized for several reasons, including the fact that they may be affected by confounders, such

as effort, which may distort international comparisons. This point is exemplified in Gneezy et

al. (2019), who study the PISA exam and show that the effort-incentive gradient may vary sub-

stantially across countries.

In our experiment, the numeracy score, like other elements, is purely anonymous, and has no

subsequent implications. This makes it a low-stakes outcome. In contrast, individual grades

are highly important for most students. High school grades have a huge impact on subsequent

schooling choices and may even be used by potential employers as a screening tool. This makes

it a high-stakes outcome.

Table 4 shows that effort estimated from the relatively low-stakes lottery choice tasks we study

predicts both numeracy scores and high school GPA, even after controlling for self-reported skills,

personality, and sex.58 It is a particularly good predictor of the low-stakes IALS outcome where

it alone accounts for approximately 10% of the total explained variation after including all the

aforementioned controls. Furthermore, the estimated marginal effect is meaningful in magni-

tude. Increasing effort by one standard deviation, holdings self-reported skills, personality, and
57Only the numeracy section of IALS was administered in the dataset we are studying.
58To test the predictive power of effort at an individual level, we use our estimate of an individual’s relative effort

averaged across all 55 binary lottery choice tasks faced by the individual.
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sex constant, is predicted to increase an individual’s numeracy score by 0.12 standard deviations

and their high school GPA by 0.09 standard deviations.

In order to provide an illustration of the implications of this result in terms of international com-

parisons, it is informative to make use of the proximity between PISA and IALS and extrapolate

the estimated 0.12 standard deviation effect to a corresponding difference in international rank-

ings.59 This is easy to do because results of the PISA test are standardized so that the mean score

is 500, and the standard deviation is 100 (see, OECD, 2019). A 0.12 standard deviation increase

therefore corresponds to an increase of 12 points on the PISA test. If we take PISA numeracy re-

sults from 2009, the period when our experiment was conducted, for a middle of the pack country

like Poland (rank 19 out of 38 studied OECD countries, see OECD, 2010), this would be enough

to move it up 7 places (to 12/38) while decreasing effort by one standard deviation would make it

move down 11 places (to 30/38).60

Table 4: Predictive Power of Estimated Relative Effort on the IALS Achievement Test and High
School GPA

(1) (2)
VARIABLES IALS HS GPA

ÊR
i 0.12*** 0.09***

(0.03) (0.02)
Cognitive Skills x x
Non-Cognitive Skills x x
Risk Preference x x
Sex x x

Constant 0.05 -0.15***
(0.04) (0.04)

Observations 1,224 1,224
R-squared 0.19 0.29
Standard errors in parentheses.
*** p<0.01, ** p<0.05

Notes: All variables apart from sex are standardized to be mean 0 and standard deviation 1. ÊR
i is our estimate of

an individual’s relative effort averaged across all 55 binary lottery choice tasks faced by the individual. Cognitive
Skills include self-reported math, computer, problem-solving, reading, writing, and communication skills. Non-
cognitive skills include proxies for emotional stability, extraversion, and conscientiousness. Risk preference is the
coefficient of relative risk aversion estimated using the endogenous relative effort model based on all 55 binary
lottery choice tasks.

Online Appendix Table B.4 provides additional interesting insights on the skills and preferences

which impact numeracy achievement tests and high school GPA. For example, it shows that, as

expected, self-reported math skills are the single most important predictor of numeracy scores.

It also shows that conscientiousness is the single most important predictor of high school GPA.

Finally, we can see that our estimate of effort is a stronger predictor of the low stakes achievement

test scores than of the high stakes high school GPA, both in terms of its estimated marginal effect
59We motivate our choice of the PISA test comparison by the fact that it is regularly administered to a larger and

more stable set of countries than the IALS achievement test and frequently referenced in policy discussions (see,
OECD, 2019).

60These results assume the same normalization of the obtained numeracy scores as is described by the OECD for
their PISA methodology: we re-scale the scores such that they are mean=500, standard deviation=100. The distribu-
tion of scores in our sample resembles a normal distribution, in line with the official PISA description.
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and the share of explained variation in the outcomes. This raises the intriguing possibility that

a tendency to exert effort in low-stakes and high stakes environments are separate individual

attributes which merit further study.

*%b Out of Samp#e Predictive Power, Preference E#icitation Tasks with More than
Two Options

In this subsection we test the ability of our estimates to predict behavior on a holdout sample of

tasks involving many risky options. To this end, we make use of 5 observed choices, in each of

which an individual can choose between 6 different lotteries. Each such multiple choice lottery

task (MCLT) combines the lotteries from an ordered group of 5 binary choice tasks of the more

complex “cMPL” design. See Figure 7 for an example combining the 5 cMPL tasks from Figure 1

into a single task.61

We use the MCLT tasks to test the predictions of our model in a related but different setting. To

link our results with the non-structural literature on preference estimation, in this subsection

we do no further estimation. We simply take our estimates of individual effort propensities and

risk aversion from the binary choice tasks, along with our structural model with endogenous

effort, to this additional multiple choice data. In particular, we wish to evaluate whether: (i)

our estimates of an individual’s risk aversion from the binary choice tasks predict risk aversion

implied by his choices on the multiple choice tasks; (ii) our estimates of an individual’s exerted

relative effort from the binary choice tasks predict the consistency of his choices on the multiple

choice tasks; (iii) our combined estimates of an individual’s risk aversion and exerted relative

effort from the binary choice tasks predict bias in the coefficient of relative risk aversion implied

by the individual’s choices on the multiple choice tasks when decision noise is not taken into

account, relative to our estimate of his true risk aversion.

We calculate the coefficient of relative risk aversion implied by an individual’s choices on the

MCLT tasks using the theoretical indifference thresholds between adjacent lotteries (see Figure 7

for an illustration).62 We call this coefficient of relative risk aversion naive because it because it

does not take into account bias due to decision noise.63 We denote it ε̃N
i,m where the “squiggle”

reflects the fact that the coefficient is calculated (rather than estimated) based on individual

i’s observed choice on MCLT task m. We also calculate the implied coefficient of relative risk

aversion ε̃N
i,M that would be inferred jointly from all 5 individual i’s observed multiple choice

decisions as a simple average of the ε̃N
i,m implied by each of his 5 observed choices individually.

61The 5 resulting MCLT tasks are analogous to the design used by Eckel and Grossman (2002). The writing in
blue was added for purposes of illustration of the indifference threshold method used below and was not shown to
experiment participants.

62For example, if an individual were to choose the lottery which pays $40 half the time and $64 half the time from
among the 5 lotteries in Figure 7, the naive estimate of his coefficient of relative risk aversion ε̃N

i,m based on that
choice would be (2.97+1)/2= 1.99.

63A similar approach has been employed in previous studies when authors wanted to obtain a quantitative measure
for risk aversion grounded in theory without estimating a structural model, (see e.g., Eckel and Grossman, 2008;
Dohmen et al., 2010).
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Figure 7: Lottery Choice Tasks - Multiple Choice cMPL design

We next obtain the bias in the coefficient of relative risk aversion calculated without taking

endogenous relative effort decisions into account. It is the difference between naive ε̃N
i,m and our

estimate of the individual’s true coefficient of relative risk aversion ε̂i from the binary choice

tasks which takes decision noise into account. Finally, we obtain the expected bias in the naive

ε̃N
i,m predicted by our model to arise when endogenous relative effort is neglected. We do so by

adapting Equation 3 to a setting with multiple choices.64 By subtracting bias predicted by our

model from the naive ε̃N
i,m, we obtain a de-biased coefficient of relative risk aversion ε̃i,m for

individual i’s choice on multiple choice task m. We refer the interested reader to Section A.b of

the Appendix for details of these calculations, including a simple formula to predict bias at the

individual level (see Equation 18).

64Intuitively, the naive ε̃N
i,m is a weighted average between the coefficient of relative risk aversion which would be

inferred if the individual chose his truly preferred option (with sufficient exerted relative effort) and the average of the
coefficients of relative risk aversion implied by all the available choice options (between which he would randomize
with equal probability in case of low relative effort). Predicted bias is high when exerted relative effort is low and when
the non-preferred available lottery options imply values of risk aversion far from the individual’s true risk preference.
Given our estimate that the median individual does not exert sufficient effort to make a choice in line with his latent
risk preference approximately a third of the time on the more complex binary choice tasks–and the resulting bias in
risk aversion estimates we document in Section 5.c.iii when endogenous effort decisions are not taken into account–we
expect the level of risk aversion implied by individuals’ decisions on the even more complex multiple choice data to be
even more biased.
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We are now ready to assess the out-of-sample predictive power of our risk aversion estimates

based on observed binary choices between lotteries. We test three specific hypotheses: (i) our

estimate of an individual’s latent coefficient of relative risk aversion ε̂i based on binary choice

lottery tasks will predict the coefficient of relative risk aversion implied by his choices on the

multiple choice lottery tasks, and it will better predict the de-biased coefficient of relative risk

aversion ε̃i,m than the naive ε̃N
i,m implied by the individual’s choice on multiple choice task m

when endogenous effort is not taken into account; (ii) individuals for whom we estimated lower

exerted relative effort on the more complex binary lottery tasks will make more inconsistent

choices also on the multiple choice lottery tasks; and (iii) bias predicted by our model will predict

actual bias in the implied naive coefficient of relative risk aversion at the individual level and

it will be a lower bound on actual bias because the multiple choice tasks are even more complex

than the binary task of the cMPL design used for the relative effort estimates.

To test the first hypothesis, we alternatively regress the naive and de-biased coefficient of relative

risk aversion implied by the multiple choice tasks on our estimate of each individual’s true coeffi-

cient of relative risk aversion after taking endogenous effort into account. The results are shown

in Table 5 below. Perfect predictive power of the estimated parameters on individuals’ decisions

on the multiple-choice lottery tasks would imply a constant equal to 0 and an OLS coefficient of

1 on ε̂i.65

Table 5: Predictive Power of an Individual’s Risk Aversion Estimate from Binary

Choices: Explaining the Naive and De-Biased Coefficient of Relative Risk Aversion Implied
by Choices on each MCLT Task

MCLT Decision 1 MCLT Decision 2 MCLT Decision 3 MCLT Decision 4 MCLT Decision 5

Naive ε̃N
i,m De-Biased ε̃i,m Naive ε̃N

i,m De-Biased ε̃i,m Naive ε̃N
i,m De-Biased ε̃i,m Naive ε̃N

i,m De-Biased ε̃i,m Naive ε̃N
i,m De-Biased ε̃i,m

End. Relative Effort Model ε̂i 0.34*** 0.54*** 0.45*** 0.74*** 0.15*** 0.24*** 0.47*** 0.77*** 0.18*** 0.27***
(0.02) (0.03) (0.04) (0.04) (0.01) (0.01) (0.04) (0.04) (0.02) (0.02)

Constant 0.92*** 0.61*** 1.14*** 0.40*** 0.64*** 0.66*** 1.16*** 0.51*** 0.67*** 0.67***
(0.04) (0.04) (0.05) (0.05) (0.02) (0.02) (0.05) (0.05) (0.02) (0.03)

Observations 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224
R-squared 0.13 0.27 0.11 0.27 0.11 0.19 0.12 0.27 0.10 0.17

Standard errors in parentheses
*** p < 0.01, ** p < 0.05

Notes: Each column displays the results of a regression of the coefficient of relative risk aversion implied by an individual’s choice
on a multiple choice lottery task on our estimate of that individual’s latent risk aversion ε̂i. The “End. Relative Effort Model ε̂i”
is obtained by estimating our model with endogenous relative effort using individual i’s choices on all 55 binary choice tasks. The
naive ε̃N

i,m is calculated based on individual i’s choice on a given multiple choice task, using indifference thresholds associated with
the constituent lotteries. The de-biased ε̃i,m is obtained by applying the bias correction implied by Equation 18 to the naive ε̃N

i,m.

Our results confirm that ε̂i estimated on binary choice lottery tasks has predictive power out

of sample. The fact that the estimated slope coefficient is less than 1 suggests that there is

some attenuation in mapping our endogenous relative effort model estimates to the coefficient

of relative risk aversion implied by choices on the MCLT tasks. This makes sense as the out of

sample decisions involve a different context and the indifference threshold calculation of ε̃i,m is

coarse. In line with our hypothesis, ε̂i, which already accounts for potential bias in risk aversion
65Conversely, if the full-model coefficients were not predictive at all, the OLS coefficient on ε̂i should be zero and the

constant would capture the average population coefficient of relative risk aversion inferred from the multiple-choice
questions.
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estimates due to insufficient effort, better predicts the coefficient of relative risk aversion implied

by choices on the MCLT tasks once we apply our bias correction.66 This holds for each of the 5

MCLT tasks in our dataset taken individually, and also when we consider an individual’s choices

on them jointly (see Table A.4 of the Appendix). Indeed, the average share of variation explained

by ε̂i roughly doubles once we apply our bias correction. At the same time, the estimated OLS

coefficient increases and becomes closer to 1, and the estimated constant falls and becomes closer

to 0.

To test our second hypothesis we verify that individuals who exhibit higher decision noise on the

binary choice tasks also exhibit higher decision noise on the multiple choice tasks. Specifically,

we check whether those who have a lower estimated exerted relative effort on the more complex

binary choice tasks also have a higher dispersion in the naive coefficient of relative risk aversion

implied by their observed choices on the five multiple choice tasks. This is the case as the corre-

lation between our estimate of the individual’s exerted relative effort on the cMPL tasks and the

standard deviation of the coefficient of relative risk aversion implied by individual i’s choices on

the five individual MCLT tasks is -0.21, statistically significant at the 1% level.

To test our third hypothesis, we estimate how well our model predicts actual bias in the naive

coefficient of relative risk aversion that would be inferred from the MCLT tasks without taking

endogenous effort decisions into account. We do so by regressing actual bias on the bias predicted

by our model given an individual’s estimated risk aversion and relative effort from the more

complex binary tasks. While perfect predictive power would still imply a constant equal to 0,

this time we would expect an OLS slope coefficient >1 on predicted bias. This is because we

hypothesize that individuals should exert even lower relative effort on the MCLT tasks than on

the binary tasks of the cMPL design and thus the predicted bias should be a lower bound on

actual bias.67

Table 6 reveals that our model is indeed able to predict the bias in the naive ε̃N
i,m, which would

be inferred from a person’s choice on each individual MCLT task (see columns 1-5), as well as

the bias in the average ε̃N
i,M that would inferred considering all 5 multiple choice decisions jointly

(see column 6). The estimated constant is close to zero implying that there is little actual bias

when our model predicts that there should not be any, particularly when we look at all five MCLT

choices jointly. Furthermore, we cannot reject the hypothesis that the slope coefficient is greater

than or equal to 1. Indeed, the point estimate is 1.6 when considering all 5 MCLT choices together.

Taken together, these results illustrate that our model with endogenous relative effort general-

izes to a setting with multiple choice options. Our estimates of individuals’ risk aversion and

relative effort predict out of sample behavior on choices between multiple lotteries. A simple for-

66In other words, ε̂i better predicts the de-biased ε̃i,m than the naive ε̃N
i,m.

67Recall that the MCLT tasks are even more complex than the binary cMPL tasks. This raises the cost of effort
needed to choose according to an individual’s true preference. It therefore lowers relative effort that the individual
chooses to exert in our model, increasing the likelihood of decision mistakes.
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Table 6: Actual vs. Predicted Bias in the Coefficient of Relative Risk Aversion Inferred from
Choices on MCLT tasks without Taking Endogenous Effort Into Account

MCLT Decision 1 MCLT Decision 2 MCLT Decision 3 MCLT Decision 4 MCLT Decision 5 MCLT Average

VARIABLES Actual Bias

Predicted Bias 1.24*** 1.08*** 1.44*** 0.96*** 1.37*** 1.60***
(0.08) (0.07) (0.12) (0.07) (0.12) (0.08)

Constant 0.17*** 0.13** 0.03 0.31*** 0.06 0.04
(0.04) (0.06) (0.03) (0.05) (0.03) (0.03)

Observations 1,224 1,224 1,224 1,224 1,224 1,224
R-squared 0.17 0.16 0.10 0.12 0.10 0.27

Standard errors in parentheses
*** p < 0.01, ** p < 0.05

Notes: Each column displays the results of a regression of actual bias in an individual’s coefficient of relative risk aversion on predicted
bias, either for a given decision on a multiple choice lottery task (Columns 1-5), or jointly for that individual’s decisions on all 5 MCLT
tasks (Column 6). Actual bias BA

i,m is calculated as the difference between the naive ε̃N
i,m implied by an individual’s choice on a given

multiple choice task (or, in the last column, as an average implied by his choices on all 5 multiple choice tasks) and that individual’s
estimated ε̂i using our model with endogenous effort based on all 55 binary choice tasks. Bias predicted by our model is calculated as
the difference between the biased εN

i,m predicted by our model to be implied by individual i’s choice under insufficient effort on multiple
choice task m (or, in the last column, as an average implied by his choices on all 5 multiple choice tasks) and ε↘i,m that would be inferred
if the individual put in sufficient effort to choose his preferred option on multiple-choice task m.

mula derived from our theoretical model is effective in removing bias in risk aversion implied by

observed choices without requiring any further estimation.

- Reconci#iation of Competing Discrete Choice Mode#s

In the traditional Random Utility Model with additive i.i.d shocks (aRUM), the error term is

appended to an individual’s utility. Apesteguia and Ballester (2018) show that the aRUM as tra-

ditionally specified is not monotone when applied to risk preferences. Intuitively, the likelihood

of preferring the riskier option is not monotonic with respect to risk aversion under the aRUM

because shocks are added onto the cardinal utility of each alternative. As risk aversion goes to

infinity, the difference in cardinal utilities of any two payments goes to zero for standard util-

ity functions in which risk aversion is related to the curvature of utility (e.g., CRRA or CARA).

Therefore, any additive shocks with a strictly positive scale parameter ϑRU
ε,i will at some point

fully drive the decision maker’s choice. The likelihood of preferring the riskier (and the safer)

alternative will thus approach 0.5 in the limit.

Despite the non-monotonicity, both the CRRA coefficient of relative risk aversion ε and the error

scale parameter ϑ are identified in case of multiple binary choices between lotteries with vary-

ing payments and payment probabilities for each individual. As we have such information, we

can estimate the aRUM model even though we view the RPM as a theoretically more sound al-

ternative. Given the prevalence of the aRUM in past structural research estimating risk (and

time) preference due to certain attractive features (tractability and ability to explain choices of

dominated options with one error shock), we consider it worthwhile to compare estimates using

the two competing error specifications embedded within our endogenous effort framework and to

examine whether the non-monotonicity problem of the aRUM retains empirical relevance once

endogenous effort is incorporated.
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Jagelka (2024) finds that the aRUM-induced non-monotonicity in the probability of choosing the

riskier of two options with rising risk aversion is empirically relevant in the context of the present

dataset. Apesteguia and Ballester (2018) use Danish data from Andersen et al. (2008) to estimate

both an aRUM and an RPM with trembles using a representative agent framework. They find

that the RPM risk aversion estimate is 14% higher than that of the aRUM and that the difference

increases for more risk averse subjects.

We corroborate these results when we estimate risk aversion without taking into account the

initial effort decision. In this case, the entire distribution of the estimated coefficient of relative

risk aversion is shifted to the right when using preferences shocks rather than additive utility

shocks (see the left histogram of Figure 8 below).68

Figure 8: Distributions of Structural Parameters Estimated Using All Tasks with Alternatively
the RPM and aRUM Error Structure
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Notes: The figures plot distributions of the coefficient of relative risk aversion in the sample, estimated alternatively
using an aRUM model with additive utility shocks (transparent bars) and a RPM model with preference shocks (green
bars). The left panel omits endogenous relative effort from estimation while the right panel includes it.

Once we estimate our model with endogenous effort, the non-monotonicity of the aRUM becomes

empirically irrelevant, at least in the context of our experimental sample. The distributions

of the coefficient of relative risk aversion estimated using either preference shocks or additive

utility shocks converge (see the right histogram of Figure 8), with differences only visible at

high levels of risk aversion which are uncommon in our sample. Intuitively this is the case

because after accounting for the endogenous effort decision, the estimated variance of the error

shock falls both for the RPM and for the aRUM specification and approaches 0 for the median

individual. While the predicted probability of choosing the riskier option under aRUM continues

to be non-monotonic, the problematic behavior is shifted to high values of risk aversion which

are not commonly observed.69 After taking into account endogenous effort, one could thus put
68As before, the histograms are capped at risk aversion of +3 as the overwhelming majority of observations falls

within this range.
69This is due to the fact that we are combining a non-monotone choice model (aRUM) with a quasi monotone one
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risk preference estimation within an aRUM framework in the same category as time preference

estimation: problematic in theory but less so in practice.70

Figure 9: The RPM vs. aRUM Likelihood of Selecting the Riskier Lottery on the 6th Lottery
Choice Task Assuming CRRA Utility
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Notes: The figure illustrates the non-monotonicity problem of the aRUM, using one of the lottery choice tasks included
in the experiment. The probability of choosing the riskier of two options is plotted against the coefficient of relative
risk aversion. The blue line represents the prediction under an aRUM model with additive utility shocks while the red
line represents the prediction under a RPM model with preference shocks. The threshold level of indifference between
the two lotteries is εeq = 0.41. The error shock is always mean zero. The left panel uses the estimated standard
deviation of the error shock for the median individual when endogenous relative effort is not accounted for, while
the right panel uses the estimated standard deviation of the error shock for the median individual when endogenous
relative effort is accounted for. The standard deviation estimates are from the respective models (aRUM or RPM) used
to obtain the choice probability.

To illustrate this point, we take as an example the 6th choice task of the sMPL design contained

in our data. In Figure 9 we plot the predicted probability of choosing the riskier lottery Y under

RPM and under aRUM for values of risk aversion between 0 and 3 when the variance of the

scale parameter ϑi is set at the median estimate using alternatively a model without endogenous

effort (left) and our full model with endogenous relative effort (right). In either case, both the

RPM and aRUM curves are initially decreasing, in line with the intuition that a more risk averse

individual should be predicted to choose the riskier option with a lower probability. The curves

cross at the threshold level of indifference for this choice task (εeq
l = 0.41) where by definition

the expected utilities of the two lotteries are equal and both models correctly predict that the

probability of choosing either option is 0.5. The graph on the left assumes error shocks of a

magnitude estimated for the median individual when the effort decision is omitted. The RPM

curve continues to decrease monotonically while the aRUM curve reverts with risk aversion still

below one (and thus while still at moderate and empirically frequent values of εi). It resembles

Figure 1 in Apesteguia and Ballester (2018), which they use to illustrate the non-monotonicity

(random choice mistakes due to endogenous effort). Depending on the weight that each component receives, we can
obtain a choice pattern which is more or less monotone. Given our empirical estimates of the structural parameters
governing error shocks and endogenous effort, the non-monotone part receives little weight.

70Apesteguia and Ballester (2018) also prove theoretical non-monotonicity when the aRUM is applied to the esti-
mation of discount rates. However, they note that for standardly used experimental tasks the non-monotonicity occurs
at “absurdly high” discount rates.
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problem of the aRUM. The graph on the right assumes error shocks of a magnitude estimated

for the median individual when the relative effort decision is endogenized. Conditional on effort,

the probability of choosing the riskier option becomes almost degenerate (deterministic). While it

increases again for the aRUM, it does so at a much higher value of risk aversion (εi > 2 using the

example task).71 The non-monotonicity problem becomes practically irrelevant in terms of the

empirical estimation of risk aversion using our data: the estimated distributions of the coefficient

of relative risk aversion converge under RPM and aRUM once we allow the decision to exert effort

to depend on an individual’s perceived costs and benefits of doing so.

. Imp#ications for the Design of Preference E#icitation Tasks

Empiricists use a plethora of elicitation instruments for preferences, skills and other latent per-

sonal attributes. While these feature a number of design variations, these is a lack of a system-

atic understanding of their impact on the measurement properties of the chosen instrument. We

study binary choices between safer and riskier lotteries of two designs—a simpler (“sMPL”) de-

sign and a more complex (“cMPL”) design—for eliciting risk preferences which were previously

used interchangeably. On the one hand, we show that choices on tasks of the simpler design

largely reflect an individual’s latent risk preference at the provided incentive level. According to

our estimates, 75% of the cross-sectional variation in individual choices on these tasks can be ex-

plained simply by whether an individual’s coefficient of relative risk aversion lies above or below

the theoretical threshold at which a person should be indifferent between a given pair of lotter-

ies. The signal-to-noise ratio of observed choices is thus high and omitting either consistency

parameter has little impact on the estimated distribution of risk aversion. On the other hand,

our model with endogenous effort and cognitive noise reveals that only 20% of the cross-sectional

variation in choices on individual tasks of the more complex design is explained by whether an

individual’s coefficient of relative risk aversion lies above or below the theoretical threshold. Fur-

thermore, half of the explained cross-sectional variation in average choices on the more complex

elicitation tasks can be attributed to random decision-making due to insufficient effort (in which

case choices are uninformative about an individual’s latent risk preference).

Omitting the initial effort decision results in estimates of risk aversion biased by approximately

50% for the median individual on the more complex tasks. Overestimation of risk aversion is

higher for individuals who have a high propensity to make mistakes and whose actual risk pref-

erence would disproportionately make them choose the riskier alternative. Our findings are in

line with the predictions of our theoretical model which implies a general relationship between

elicitation task complexity and bias in inferred preferences (e.g., risk, time, social). When endoge-

nous effort is not accounted for, estimates are biased towards a preference level which would be

consistent with a random choice pattern. We derive a simple formula which applied researchers
71Correspondingly, at high values of risk aversion, we see imperfect convergence of the estimated distributions of

the coefficient of relative risk aversion using the aRUM and RPM once endogenous relative effort is taken into account.
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can use to correct naive preference estimates. We demonstrate its effectiveness on a holdout sam-

ple with incentivized decision data from tasks involving choices between multiple lotteries. The

statistically significant differences in how men and women respond to the costs and benefits of ex-

erting effort suggests a nuanced pattern of bias in preference estimates for different demographic

groups which merits further exploration.

Our results illustrate that a sophisticated model of decision noise is much less important on

tasks where individuals find it worthwhile to pay sufficient attention to choose according to their

true preference, given the available incentives, and choices are thus largely uncontaminated

by decision noise. It appears that the simpler choice design used in this experiment fits that

description pretty well. Simple and complex models of behavior thus yield similar estimates

of the population distribution of preferences. The inclusion of a properly parametrized effort

parameter seems recommendable if one uses information on choices in different situations. A

particular task design is a situation. At minimum, the noise content of a task design should be

evaluated prior to proceeding with reduced form estimation.

Does this mean that sMPL tasks are better suited than cMPL tasks to elicit risk preferences and

should thus be used exclusively? Not necessarily. In the context of the experimental dataset we

examine, the two types of choice tasks are complementary. Assuming an appropriate economet-

ric framework is used, researchers can employ them together to extract richer information on

risk preferences. The calculated indifference thresholds displayed in Online Appendix Tables B.1

and B.2 illustrate that while the sMPL design covers the most common levels of risk-aversion, in-

formation from cMPL tasks can be used to narrow down the interval within which an individual’s

coefficient of relative risk aversion lies and to capture more extreme behavior at the high end of

the distribution.72 However, cMPL tasks will only provide valid preference estimates if choice

inconsistency is properly accounted for. The sMPL design augmented to cover a wider range of

risk preferences would thus seem recommendable, especially if reduced-form techniques are to

be relied upon in estimation.

The obvious question is: What causes the large difference in individuals’ effort decisions on the

two task designs we study? As discussed in Section 4, the ensemble of features of the sMPL design

work to minimize the per-task effort required to choose according to one’s latent risk preference:

the first and last choice in an ordered list are easy for most individuals and the progression in

the relative attractiveness of the riskier lottery between them is clearly visible. This makes for a

simple setting to elicit preferences, with low mental processing costs per choice and low cognitive

demand. The effort required to choose according to latent preferences on a given task is thus

sufficiently low such that most individuals find it worthwhile given the experimental incentives.

The cMPL design lacks the aforementioned features which minimize the per task effort required

to choose in line with one’s actual risk preference. This makes the choices less intuitive and
72This is a feature of the particular parametrization of the sMPL tasks used in this experiment (which, however, is

very standard in the literature, see e.g., Holt and Laury, 2002), rather than of the design itself.
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potentially requiring varying amounts of effort, depending on one’s ease of processing the tasks

which in turn likely depends on cognitive and non-cognitive skills. In this context, one can expect

differentiation in the amount of mistakes made based on observed and unobserved heterogeneity.

It is reflected in the wide dispersion of our estimated effort propensities on the cMPL tasks.

One can conclude that while good experimental design can in some instances be used to substitute

for modeling complexity, it is risky to rely on it alone. Even decisions on incentivized choice tasks

in controlled experiments used to elicit a given preference reflect a mixture of signal and noise.

The latter could become a strength once properly accounted for, as it can be used to understand

the determinants of decisions not only when they go right (i. e., when they are consistent with a

person’s actual preferences) but also when they go wrong. This is particularly relevant in real-

world settings which involve a high degree of complexity and choices likely contain a significant

amount of noise. If we can identify factors which affect individuals’ propensity to make mistakes

in the laboratory, we might also be able to predict who and under what circumstances is prone

to making sub-optimal decisions outside of it. This could in turn be used to design targeted

interventions to help at risk individuals and thus contribute to redressing inequalities.

/ Conc#usion

We develop and estimate a micro-founded random-choice model which accounts for endogenous

effort and cognitive noise in estimates of preferences based on observed behavior. We exploit

shifters of the costs and benefits of effort on choice tasks for eliciting preferences to demonstrate

how our model can be used to (i) detect noise in observed choices, (ii) de-bias preference estimates,

(iii) inform the policy implications of low stakes achievement tests such as PISA, and (iv) reconcile

competing models of random choice.

Our model implies that decision noise may interact with an experimental elicitation design to

produce upwards or downwards bias in preference estimates (risk, time, social, etc.), which man-

ifests itself as apparent preference instability when not taken into account. We apply the model

to experimental data from a representative sample of over 1,200 individuals, each of whom made

55 binary choices on incentivized tasks, commonly used to elicit risk preferences, of two designs

which differ in their complexity. The availability of a long panel allows us to study preferences

and decision noise at the individual level. When we omit the initial effort decision from the

model, the estimated distribution of risk aversion based on the more complex choice tasks shifts,

resulting in a bias of approximately 50% for the median individual. We use our model to derive a

simple formula for the bias and demonstrate that it generalizes to a related out-of-sample setting

involving incentivized choices between multiple lotteries.

We find that individuals are less likely to exert the effort necessary to make a choice in line with

their latent risk preference when mental processing costs and fatigue are high and when the

stakes of making an incorrect choice are low. Unlike mistakes due to inattention, the estimated
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distribution of cognitive noise is essentially invariant to elicitation task complexity. Indeed, pref-

erences are essentially stable for the median individual once effort is properly accounted for,

suggesting that previous estimates misinterpreted differences in situation across decision tasks

as cognitive noise. This is good news for traditional economic theory.

One of the advantages of having individual-specific estimates is that these may be used to test the

external validity of the structural parameters of a model. We find that estimated relative effort

is predictive of an individual’s high school GPA and performance on an achievement test used

to make international comparisons. This suggests that it captures an individual’s propensity

to exert effort which generalizes to other settings. Extrapolating our results to contemporaneous

PISA numeracy results, we show that a one standard deviation increase in low-stakes motivation

would affect the international ranking of a mid-performing country by approximately 9 places (a

40% jump in the rankings).

Our results suggest that accounting for decision noise which systematically varies with task

attributes is a fruitful avenue for obtaining better estimates of true latent preferences from ob-

served decisions. In this paper, we explored shifters in the costs and benefits of effort; however,

the set of potential determinants of decision noise is much wider. Future research should aim to

disentangle the impact of an expanded set of environmental and task design features on the de-

cision noise content of observed choices. We see this as a path towards explaining the seemingly

incongruous preference estimates when a feature of the decision environment is altered, which

currently generate much attention in the literature. As more systematic variation is accounted

for, modeling the residual randomness in decisions as classic white noise will be more plausible.

The predictive power of economic preferences on outcomes should be re-evaluated once decision

noise is accounted for and contrasted with the predictive power of the parameters governing the

inconsistency of an individual’s choices. In addition, it is desirable to compare our method to

reduced-form ways of detecting low quality responses such as asking individuals to self-report

the overall reliability of their answers. Finally, the importance of low-stakes and high-stakes

motivation in real-world settings also merits further study.
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A Appendix

A%a Appendix Tab#es

Table A.1: Sample Demographic and Socioeconomic Variables

Test Subjects Observations % Mean % if Male

Gender 1224
Male 46% NA NA
Female 54% NA NA

Age 1224
15-16 12% NA 11%
17 67% NA 65%
18 15% NA 17%
19+ 6% NA 7%

Language 1224
English 68% NA 69%
Other 32% NA 31%

Born in Canada 1087 96% NA 96%
Lives with Siblings 1224 75% NA 76%

Parents

Age 1068 NA 46 NA
Indigenous Canadian 1224 7% NA 7%
# Children under 18 1085 NA 2 NA
Thinks University is Important 1088 92% NA 91%
High School Dropout 1224 12% NA 11%
High School 1224 52% NA 50%
University 1224 36% NA 39%
Annual Income 976

<20k 6% NA 6%
20-40k 13% NA 11%
40-60k 23% NA 24%
60-80k 19% NA 17%
80-100k 15% NA 17%
100k+ 24% NA 25%
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Table A.2: Representative Agent Model: Raw Coefficient Estimates

(1) (2) (3) (4)

Coefficient of Relative Risk Aversion 0.67*** 0.67*** 1.10*** 0.68***
(0.01) (0.01) (0.03) (0.01)

Cognitive Noise Intercept -0.63*** -0.64*** 0.61*** -0.67***
(0.02) (0.02) (0.02) (0.02)

Relative Effort Intercept 2.13*** 2.00*** 1.46***
(0.11) (0.15) (0.14)

Relative Effort: Stakes -0.02 0.02 0.25***
(0.03) (0.04) (0.08)

Relative Effort: Fatigue -0.23*** -0.23*** -0.28***
(0.03) (0.03) (0.04)

Relative Effort: Complexity -2.04*** -1.89*** -1.26***
(0.13) (0.18) (0.17)

Relative Effort: Intercept*Sex 1.09**
(0.46)

Relative Effort: Stakes*Sex -0.42***
(0.13)

Relative Effort: Fatigue*Sex 0.12**
(0.06)

Relative Effort: Complexity*Sex -1.30**
(0.53)

Number of observations 67,320 63,648 63,648 63,648

Dominated choices excluded x x x
Log-likelihood 31,398 31,294 36,130 31,261
Akaike Information Criterion 62,807 62,601 72,264 62,542
Schwartz Information Criterion 62,862 62,655 72,282 62,632
Standard errors clustered at the individual level in parentheses
*** p < 0.01, ** p < 0.05
Notes: In order to allow for comparability with the model which omits the relative effort decision, columns
(2)-(4) exclude 3 choice tasks per individual which feature a dominated option. To accommodate the model
without relative effort, the standard deviation of the preference shock is allowed to be unbounded, as, in
that specification, it not only reflects pure cognitive noise but also picks up on other sources of inconsis-
tency in individuals’ decisions. It can be calculated as exp(Cognitive Noise Intercept).

Table A.3: Representative Agent Model: Marginal Effects

Men Women

Baseline Relative Effort 0.81*** 0.92***
(0.04) (0.08)

Marginal Effects
Stakes 0.07*** -0.03

(0.02) (0.02)
Fatigue -0.08*** -0.03**

(0.01) (0.01)
Complexity -0.34*** -0.39***

(0.05) (0.08)
Standard errors clustered at the individual level in parentheses
*** p < 0.01, ** p < 0.05
Results come from a representative agent model allowing for interactions between the compo-
nents of endogenous relative effort decisions and the decision-maker’s sex. Marginal effects
denote the effect of a 1 standard deviation increase in the relevant relative effort shifter or, in
the case of complexity, the effect of a change from the simpler task design to the more complex
one. Estimates are calculated at average values of shifters of relative effort.
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Table A.4: Predictive Power of an Individual’s Latent Risk Aversion Estimated from

Binary Choices: Explaining the Naive and De-Biased Level of Risk Aversion Implied by Choices
Averaged Across all 5 MC Tasks

Multiple Choice Average

Implied Naive ε̃N
i,M De-Biased εi,M

Endogenous Relative Effort Model ε̂i
OLS Coefficient 0.32*** 0.51***

(0.02) (0.02)
Constant 0.91*** 0.57***

(0.03) (0.03)
Observations 1,224 1,224
R-squared 0.17 0.35

Standard errors in parentheses
*** p < 0.01, ** p < 0.05

Notes: Each column displays the results of an OLS regression. The dependent
variable is the coefficient of relative risk aversion implied by an individual’s choices
on the 5 lottery multiple choice tasks. The explanatory variable is an estimate of
that individual’s risk aversion from binary lottery choice tasks. The “Endogenous
Relative Effort Model ε̂i” is obtained by estimating our model with endogenous effort
using individual i’s choices on all 55 binary choice tasks. The naive ε̃N

i,M is calculated
from individual i’s choices on 5 multiple choice tasks, using indifference thresholds
associated with the constituent lotteries. The de-biased εi,M is obtained by applying
the bias correction implied by Equation 18 to the naive ε̃N

i,M .

A%b Adapting the Mode#with Endogenous Re#ative Effort to Inference of Risk Aver+
sion in a Mu#tip#e+Choice Lottery Setting

We proceed in three steps:

1. We first calculate the naive coefficient of relative risk aversion ε̃N
i,m implied by individual

i’s observed choice on MCLT task m.73 As we perform no estimation here, we simply take

the average of the 2 indifference thresholds around a chosen lottery on task m to obtain the

relevant ε̃N
i,m.74

We then calculate the implied coefficient of relative risk aversion ε̃N
i,M that would be inferred

from all 5 individual i’s observed multiple choice decisions as a simple average of the ε̃N
i,m

implied by each of the 5 observed choices:

ε̃N
i,M =

∑M
m=1 ε̃

N
i,m

M
(17)

73The calculated risk aversion indifference thresholds for the 5 ordered groups of binary cMPL choice tasks give
the respective thresholds for the 5 MCLT tasks (see Table B.2 of the Appendix). This is illustrated in Figure 7 for the
first multiple choice lottery task which combines the 5 cMPL tasks from Figure 1 into a single task. The indifference
thresholds represent the level of risk aversion at which an individual would be indifferent between two adjacent
lotteries in a given MCLT task. Individuals with a εi above the highest indifference threshold in a given MCLT task
will prefer the safe lottery. Individuals with a εi below the lowest indifference threshold in a given MCLT task will
prefer the riskiest lottery. Individuals with intermediate εi will prefer one of the remaining 4 lotteries, depending on
their exact level of risk aversion. This holds under the simplifying assumption of fully stable/known risk preferences.
The assumption is reasonable given our finding that once effort is taken into account, the scale of the error shock
tends towards 0 for the median individual.

74If an individual chooses either the safe lottery or the riskiest lottery, we only have one indifference threshold
to work with. We thus either add half of the average difference between two adjacent indifference thresholds in the
corresponding row of Table B.2 of the Appendix (if an individual chose the safe lottery on a given MCLT task) or
subtract it (if he chose the riskiest lottery).
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According to our model, we expect ε̃N
i,M to be biased for individuals who do not put in suffi-

cient effort to make a choice in line with their latent risk preference on the MCLT tasks.

2. For each of the five MCLT tasks, we next determine an individual’s preferred lottery based

on our estimate of that individual’s latent coefficient of relative risk aversion ε̂i, obtained in

Section 5.b by applying our model with endogenous relative effort to all 55 observed binary

lottery choices of individual i.75 We then calculate the implied coefficient of relative risk

aversion ε↘i,m that would be inferred from an individual’s choice of his preferred lottery on

multiple choice task m. To this end, we use the same indifference threshold methodology

described in Step 1 above.

We then obtain the implied coefficient of relative risk aversion ε↘i,M that would be inferred

if individual i chose his preferred lottery on all 5 MCLT tasks, by averaging the constituent

ε↘i,m, analogously to Equation 17.

3. Finally, for each individual i and MCLT task m, we can now calculate the predicted level

of bias in the naive ε̃N
i,m, given the characteristics of task m, individual i’s estimated true

latent risk aversion ε̂i, and his estimated average relative effort on the more complex binary

tasks, which we denote ÊR
i,cMPL.76 We obtain it as the difference between the biased naive

εN
i,m that our model predicts we can expect to be implied by individual i’s choice on task

m given his estimated relative effort on similar binary tasks, and ε↘i,m which would have

been obtained from the individual’s choice of his truly preferred option on task m under

sufficient relative effort. According to our model summarized in Equation 1, εN
i,m will be a

weighted average between ε↘i,m (chosen when the individual exerts sufficient relative effort,

so ÊR
i,cMPL percent of the time) and the average coefficient of relative risk aversion that

would be inferred from a random choice among the available options (when the individual

chooses to exert no effort). More precisely, our model predicts that the bias BM
i,m in the

naive coefficient of relative risk aversion, for individual i based on his choice on MCLT task

m with z options is:

BM
i,m = E(ε̃N

i,m → ε̂i)= εN
i,m →ε↘i,m (18)

with

E(ε̃N
i,m)= εN

i,m = ER
i,m ·ε↘i,m + (1→ER

i,m) ·
∑Z

z=1εz,m

Z
(19)

75As this section tests the out-of-sample predictive of our model, we need to distinguish between estimates of the
coefficient of relative risk aversion ε̂i–obtained through maximum likelihood estimation by applying our model to indi-
vidual i’s observed binary choices–and values of the coefficient of relative risk aversion ε̃N

i,m implied by the individual’s
multiple choice data and calculated separately without the use of any statistics or econometrics. Our model will have
out-of-sample predictive power if ε̂i predicts ε̃N

i,m.
76ÊR

i,cMPL can be seen as the upper bound on individual i’s propensity to exert sufficient relative effort on the
MCLT tasks as these are even more complex than tasks of the binary cMPL design, while having on average the same
stakes as the cMPL binary tasks and involving the same (or greater) mental fatigue, because the MCLT tasks come at
the end of the choice task section. We thus take our predicted bias as a lower bound on actual bias. This hypothesis is
supported by our empirical results presented below.
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where E(.) is the expectation operator, εN
i,m is the naive (biased) coefficient of relative risk

aversion that our model predicts an analyst can expect to infer for individual i on task m

given the characteristics of task m, individual i’s estimated true latent risk aversion ε̂i, and

ER
i,m: his relative effort exerted on task m; ε̃N

i,m is the naive coefficient of relative risk aver-

sion inferred from individual i’s actual choice on task m using the indifference threshold

method outlined above, ε↘i,m is the coefficient of relative risk aversion that would be in-

ferred using the indifference threshold method if individual i chose his preferred (expected

utility maximizing) option on task m given his ε̂i, z is the number of alternatives that the

individual is choosing between on task m, and εz,m is the coefficient of relative risk aver-

sion that would be inferred from a choice of lottery z on multiple choice task m using the

indifference threshold method. For the purposes of the calculation, we assume that indi-

vidual i has a constant propensity to exert sufficient effort across the MCLT tasks, equal

to his average estimated relative effort on the more complex cMPL binary choice tasks, so

ER
i,m = ÊR

i,cMPL. Equation 19 can easily be adapted to predict bias due to insufficient effort

in other revealed preference elicitation settings (e.g., time preferences, social preferences)

by substituting in the relevant preference level implied by an individual’s choice of the

various available options.77

The bias correction is obtained by subtracting predicted bias implied by Equation 18 from

the naive coefficient of relative risk aversion: the de-biased ε̃i,m = ε̃N
i,m →BM

i,m.

77We analogously define actual bias BA
i,m as the difference between the coefficient of relative risk aversion implied

by individual i’s actual choice on MCLT task m and the individual’s coefficient of relative risk aversion estimated
based on his 55 observed decisions on binary choice tasks, so BA

i,m = ε̃N
i,m → ε̂i .
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