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Abstract

We show that personal experiences affect high-stakes economic decisions among inventors.
Using matched patent and survey data from French and German inventors linked to natural
disaster records, we exploit exogenous variation in disaster exposure. Inventors personally
affected by natural disasters subsequently produce 8.2% more green patents, primarily driven
by emission-reducing mitigation technologies, while non-green innovation remains unaffected.
The absence of sizable spatial spillovers highlights the importance of personal experience.
Disaster exposure shapes innovation choices by altering profitability expectations through
shifting higher-order beliefs about consumer demand and anticipated regulation. Embedding
this channel in a formal model, we disentangle the role of expectations and intrinsic moti-
vation. The model predicts, and the data confirm, that effects are strongest in competitive

markets, where profit incentives matter most.
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1 Introduction

What drives inventors to pursue new ideas? Popular accounts often point to moments of
personal frustration that make unmet needs visible: Netflix is linked to an anecdote about a
$40 late DVD return fee, while BioLite emerged when its founders sought a cleaner, lighter
wood-burning camp stove instead of carrying heavy fossil-fuel Canisters[] Such stories sug-
gest that invention may often arise from personal experience rather than from systematic
responses to markets. A rich literature links innovation to market conditions such as com-
petition (Aghion and Howitt 1992; Aghion et al. 2005) and market size (Acemoglu 2002}
Acemoglu and Linn 2004)), but much less is known about inventor-level determinants. This
is particularly relevant given persistent underinvestment in R&D despite its large social re-
turns (Bloom et al. [2013; Azoulay et al. 2019; Jones and Summers 2020; Jones 2021), and
the role of innovation in combating climate change (Acemoglu et al. 2012; Acemoglu et al.
2016). Social background and childhood socioeconomic status influence who becomes an
inventor (Feng et al. [2021; Bell et al. 2019), but we know little about what ultimately drives
their choices about what to innovate.

In this paper, we bring insights from the experience effects literature to the production
side and explore how personal experiences shape inventors’ choices. The experience effects
literature has shown that households’ personal experiences shape beliefs, preferences, and
expectations (e.g., Malmendier and Nagel |2011; Malmendier and Nagel [2016; Giuliano and
Spilimbergo 2024). Expectations, in particular about commercial success and profitability,
matter for inventors, as pursuing innovation is inherently uncertain and risky (Rosenberg
1998; Bloom 2007; Manso [2011)). Personal experiences plausibly play a role in forming these
expectations. To explore the role of personal experiences, we first exploit natural disaster
exposure as exogenous shocks to inventors’ personal experience, allowing us to identify causal
effects on subsequent green innovation. Green technologies either mitigate or adapt to cli-
mate change. To explore the underlying mechanisms, the second part of the paper examines
how disaster exposure influences inventors’ expectations about consumer demand for green
goods and environmental regulation using survey data. In the third part of the paper, we
propose a formal model that incorporates our behavioral mechanism into a quality-ladder
model, and disentangles the roles of intrinsic motivation and profitability expectations.

We begin our analysis by linking French and German inventors’ home addresses to natu-
ral disasters and use event-study designs to estimate the effects of natural disaster exposure

on subsequent innovation. Our design exploits random variation in the timing of inven-

!Based on interviews with Netflix’s Reed Hastings (CBS News 2006) and BioLite’s Alec Drummond and
Jonathan Cedar (Bastone [2018)).



tors’ exposure to natural disasters. We use patent data from 1994 to 2014 with geocoded
addresses from De Rassenfosse et al. (2019). Disasters are matched spatially using the Emer-
gency Events Database (Guha-Sapir et al. |2022), supplemented with geolocations from the
Geocoded Disasters dataset (Rosvold and Buhaug 2021). We identify green patents using
an established classification that tags technologies aimed at climate change mitigation or
adaptation. Most inventors in our sample are affiliated with firms (72%), while a substantial
share (16.8%) operates independently.

Our results show that natural disaster exposure leads to a significant increase in green
innovation. On average, one additional natural disaster increases green patenting by 8.2%
relative to the sample average. This impact evolves dynamically over time. Notably, five
years after a disaster, the number of green patents rises by 24%, with the effect gradually
tapering off thereafter. This 24% increase corresponds to 0.64 additional green patents in
the affected region. In terms of magnitude, our estimate is comparable to the effect of the
European Emissions Trading System (EU-ETS), which increased green patenting among
covered firms by about 10% (see Calel and Dechezleprétre 2016).

We find that disaster exposure only affects climate-related innovation, consistent with a
salient link between personal experiences of natural disasters and climate change. Disaster
exposure does not lead to significant changes in non-green innovation. This additionally
suggests limited crowding out of other inventive activity. Green innovation increases sig-
nificantly more following more deadly disasters, consistent with the idea that the salience
of climate-related risks increases with disaster fatalities (Demski et al. 2017; Kalatzi Pan-
tera et al.[2023). The green innovation response appears tied to the broader issue of climate
change rather than to the specific disasters inventors experience. Disaster exposure increases
patenting in mitigation technologies by 8.4 percent. These technologies aim to reduce green-
house gas emissions and address the root causes of climate change, and are not tied to the
type of event. In contrast, directly related adaptation technologies that address local climate
impacts respond less strongly (4.4% increase).

Inventors respond only when personally affected; we find no evidence of large spillovers
from natural disasters to nearby regions. Yet, the innovations that result from these local
personal experiences have global reach and value, being both highly cited and frequently
triadic. Triadic patents are those filed in the United States, Europe, and Japan, and are
often used as a proxy for the most valuable technologies (Dernis and Khan [2004; Rassenfosse
and Pottelsberghe de la Potterie 2009)).

To explore the potential mechanisms behind this increase in green innovation, the second
part of the paper links natural disasters to a survey of inventive firms, where most inventors

work. We use data from the Community Innovation Survey (CIS), which asks research



personnel in German firms about recent innovations and the reasons behind them.

Natural disaster exposure alters higher-order beliefs (beliefs about others’ beliefs) regard-
ing consumers’ climate change attitudes, their consumption preferences and voting behavior.
Experiencing one additional disaster raises the likelihood of citing expected increases in green
demand as a motive for green innovation by 0.87 percentage points. It also increases the
likelihood of citing anticipated environmental regulation by 0.93 percentage points. Ex-
posed respondents do not report reputational concerns or increased government funding and
subsidies as drivers of their green innovation. To further examine the role of government
research funding, we match French administrative data on government research funding to
our disaster exposure measure. We do not detect systematic increases in funding for affected
regions. These results are consistent with a mechanism that primarily goes through expecta-
tions about the future profitability of green innovation. Natural disasters locally increase the
salience of climate change, shifting consumption toward environmentally friendly products,
and thus raise expectations of green demand and regulation’] As a result, inventors expect
higher returns to green innovation and increase their R&D efforts accordingly.

Additionally, the CIS data allow us to capture innovations beyond those recorded in
the patent system, which we use to confirm that affected firms are more likely to introduce
green products and engage in green process innovation. Exposure increases the likelihood
of introducing green process innovation and green product innovation by roughly 4.7% and
4.3%, respectively. Moreover, self-reported climate change affectedness is robustly correlated
with our natural disaster measure.

In the third part of the paper, we embed our behavioral mechanism in a formal theoret-
ical framework to examine how it interacts with market forces, allowing us to disentangle
profitability expectations and intrinsic motivation. Building on Aghion et al. (2023)), con-
sumers value both the consumption utility and the carbon footprint of goods—for example,
transportation and its associated emissions. Consumer preferences depend on beliefs about
climate change. We extend this framework by modeling how inventors respond to the height-
ened salience of climate change. Inventors form expectations about the future profitability of
green technologies and derive intrinsic utility from engaging in green research. Both expecta-
tions about profitability and intrinsic motives are shaped by local personal experiences with
natural disasters. Inventors operate in markets with varying degrees of competition, which
shapes how strongly they respond to changes in expected demand for green technologies.
In monopolistic markets, inventors have little incentive to develop green alternatives, as in-

cumbents already earn high profits. In contrast, in competitive markets, inventors face price

2Disaster exposure increases green good demand & environmental policy preferences (Djourelova et al.
2024] Chae et al. [2025).



pressure and can use green innovation to differentiate their products and escape competition.

Our model predicts that only inventors motivated by profitability expectations respond
more strongly to natural disaster exposure when they operate in competitive markets. This
comparative static provides a test of our proposed mechanism. Since market structure affects
only the profit motive and not inventors’ intrinsic motivation, a stronger innovation response
in competitive markets would indicate that profit incentives play a central role. In contrast,
if intrinsic motivation were the sole driver, inventors would respond equally regardless of the
level of competition.

We test this comparative static empirically by matching our patent data with information
on industry competition, and find evidence consistent with profitability expectations playing
a central role. Following Aghion et al. (2023)), we use inverse profit margins as a proxy for
industry-country-year-level competitionE] We find statistically significantly larger effects in
markets with high levels of competition, in line with our model predictions for profit-oriented
inventors. This highlights the importance of inventors’ personal experiences in shaping profit
expectations and ultimately affecting their innovation choices.

Our model predicts stronger responses in relatively larger green good markets, in line with
the “building on the shoulders of giants” insight from the literature on market size and the
direction of innovation (Acemoglu et al. 2012; Acemoglu et al. [2016), as well as research on
innovation responses to market size more generally (Aghion et al. 2024). In larger markets,
innovation becomes relatively cheaper because there is a richer base of existing knowledge
on which to build [f] We also take this to the data and find stronger effects of natural disaster

exposure in product markets with larger green good sharesE]

Related Literature & Contribution: Our central contribution is to causally identify
personal experience as a driver of innovation. We highlight a novel channel: personal expe-
riences influence inventors’ profitability expectations. Disaster exposure shifts expectations
about future green good demand and environmental regulation. It alters higher-order beliefs
about consumers.

Our findings add to a small but growing literature that studies inventor-level drivers
of innovation. Recent work has investigated how socioeconomic background affects who
becomes an inventor, and documents unequal access to innovation careers (Aghion et al.
2017; Akcigit et al. 2017; Bell et al. 2019). There is also work that documents social and

30ur competition data come from CompNet (CompNet 2022).

4For example, inventing an induction stove is more feasible when the principles of magnetic induction
are already well understood, reducing the cost and risk associated with developing new green technologies.

5We proxy for green good demand by the share of green goods in a product market, using data from
PRODCOM and a list of green products from Bontadini and Vona (2023).



intrinsic motives to innovate (Stern [2004; Feng et al. |2021)). Our work discusses inventors’
personal experiences as central to their choice about what to innovate. These experiences
affect inventors’ choices through changes in their beliefs about the returns to innovation.

Our work builds on the behavioral experience effects literature, which documents corre-
lations between personal experiences and household expectations about inflation, recessions,
house prices, and stock returns (Malmendier and Nagel 2011; Malmendier and Nagel 2016}
Kuchler and Zafar 2019; Laudenbach et al. 2023)). Giuliano and Spilimbergo (2024]) summa-
rize this literature. We contribute to the literature on experience effects in three ways. First,
we move beyond correlations and show that experience effects causally influence high-stakes
decisions. Second, we extend the literature to the production side of the economy by show-
ing that personal experiences affect innovation choices. Third, we disentangle the channels
through which personal experiences operate, distinguishing intrinsic motivation from profit
expectations.

Our findings relate to the literature on higher-order belief formation and salience. Evi-
dence on higher-order belief formation has mostly been limited to experimental studies and
information treatments in surveys (Coibion et al. 2021).@ Our findings provide novel evidence
from an observational setting on how personal experiences of large shocks shape higher-order
beliefs. These findings also connect to the literature discussing the role of salience in decision
making (Bordalo et al. |2012; Bordalo et al. 2022). Prior work related to natural disasters
shows that they heighten local climate change salience and change voting and consumption
patterns (Gallagher 2014; Herrnstadt and Muehlegger 2014; Djourelova et al. [2024; Chae
et al. 2025). We show that inventors respond to these local changes, and that the salience
of climate change affects high-stakes innovation decisions.

Lastly, we contribute to the literature on the determinants of the direction of innovation.
Green R&D responds to market structure and policy incentives such as competition, energy-
price shocks, and carbon regulation (Aghion et al. 2005; Acemoglu et al. 2012; Acemoglu
et al. 2016; Hassler et al. 2012; Calel and Dechezleprétre 2016)). There is a small literature
that links the invention of adaptation technologies such as drought-resistant crops and air-
conditioning to natural disasters (Miao and Popp [2014; Barreca et al. |2016; Moscona and
Sastry 2023). However, how innovation responds in the crucial domain of mitigation, tech-
nologies that directly combat climate change by reducing emissions, is poorly understood.
We address this gap and show that natural disaster exposure leads to inventive activity that

goes beyond damage control and targets forward-looking abatement. Our results show that

SHigher-order beliefs shape decision-making and coordination in markets. This layering of expectations
helps explain diverse phenomena—ifrom fluctuations in economic activity and asset price movements to
behavioral distortions like myopia and anchoring (Lorenzoni 2009; Banerjee et al. [2009; Angeletos and Huo
2021; Huo and Takayama [2024]).



there is an endogenous response to increasingly severe climate change, which integrated as-
sessment models neglect (see for example Ackerman et al. 2009; Cai [2020)). Crucially, this
response depends on consumers’ green preferences and the market environment.

The rest of this paper is organized as follows. Section [2] describes our data. Section
describes our empirical approach. Section [4] presents our results on patenting. Section
discusses our proposed mechanism and provides survey evidence on inventors updating
their higher-order beliefs. Section [f] starts with our theoretical model and provides empirical

evidence for our proposed comparative statics. Section [7] concludes.

2 Data

To conduct our analysis we draw on a variety of different data sources. Table [1] gives an

overview of the data, the geographic coverage, the time period, and the key variables we use.

Table 1: Data Sources, Coverage, Periods, and Usage

Data & Source Countries Time Period Usage
Patents France, Germany 1994-2014 Patent indicators; technology classifica-
(PATSTAT) (also data for EPO, tion; inventor geolocations

USPTO, JPO)
Natural Disas- France, Germany 19802018 Location; severity; type
ters (EM-DAT &
GDIS)
Firm-level Survey Germany 2009, 2015, 2021  Firm-level green innovation measures;
(Mannheim Inno- stated reasons for green innovation
vation Panel)
Competition France, Germany From 2000 Industry-level  competition = measure
(CompNet) (available years vary by country — see

Appendix )

Green Goods France, Germany 1995-2014 Industry-level production share of green
(Eurostat PROD- products, green goods from Bontadini
COM) and Vona (2023])
Research Funding France 1999-2023 Public research and innovation funding
(ScanR)

2.1 Patents

To measure innovation, we use data on patent applications filed by inventors living in France
and Germany from the European Patent Office’s (EPO) PATSTAT database, covering the
period from 1994 to 2014. Roughly 50% of patents filed at the EPO came from EPO member



states. Of those, 50% came from France and Germany. They are the two most active
countries among EPO member states in terms of patenting. We have additional information
on research funding for France, and a firm-level survey on innovation for Germany. Hence,
we focus our analysis on France and Germany.

Given our focus on the personal experiences of inventors rather than on patents them-
selves, it is crucial to have comprehensive data on inventors’ patenting behavior regardless
of where they choose to file these patents. Because we study inventors residing in France
and Germany rather than patents filed solely within these countries, we require access to
patent records extending beyond the European Patent Office (EPO). For example, a French
inventor personally affected by a natural disaster may choose to patent an innovation in
the United States, anticipating greater commercial potential there. PATSTAT meets this
requirement by providing extensive data that includes filings not only at the EPO and its
member states’ national offices but also at global patent offices such as the Japanese Patent
Office (JPO) and the United States Patent and Trademark Office (USPTO). Additionally,
patents filed in these three jurisdictions—often referred to as triadic patents—are widely
recognized indicators of high-value inventions (see, e.g., Dernis and Khan 2004; Rassenfosse
and Pottelsberghe de la Potterie 2009; Dechezleprétre et al. 2017)).

We are interested in “green” technologies—innovations addressing climate change through
mitigation or adaptation. To identify green patents, we rely on PATSTAT’s Cooperative
Patent Classification (CPC) data, an extended version of the International Patent Classifi-
cation (IPC). CPC features the Y02 classification, explicitly denoting technologies designed
for mitigating climate change effects or adapting to its impacts. Utilizing this classification,
we distinguish between mitigation patents—those aimed at reducing the environmental im-
pact of human activities—and adaptation patents—those designed to help societies better
cope with climate change. The detailed CPC classes available in PATSTAT also allow us to
categorize patents broadly into technological groups such as agriculture, concrete and cement
making, or combustion engines. This detailed classification enables us to construct precise
indicators representing a region’s technological specialization. Figure [1|illustrates patenting
activity from 1994 to 2014 in France and Germany, distinguishing green from non-green
patents. Green patents comprise approximately 7.7% of all patents filed during this period,
and this share gradually increased over time.

We supplement PATSTAT with detailed information on the location of inventors and
applicants. Specifically, we use data from De Rassenfosse et al. (2019), which provides
precise coordinates for each inventor’s and applicant’s primary place of residence at the time
of patent filing. This data roughly corresponds to city-level assignments, enabling us to link

all patents in our sample to the location of their inventors. The data are available up to
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Figure 1: Patenting Activity in France and Germany over Time

Note: This figure depicts how patenting in France and Germany evolves over time until 2014. We split patents by green and non-green patents.

2014, limiting our analysis to years up to and including 2014.

From the available patent documents, we restrict our sample to first filings—i.e., the
first time any application was made for a distinct invention within an EPO worldwide bib-
liographic data (DOCDB) simple patent family. All patents in a simple patent family are
considered to cover the same technical content and share the same priority. In other words,
they describe the same invention and represent the same technological advancement. A pri-
ority patent is the first patent filed for that specific invention. We use the priority date—the
date of the first filing—as the year in which an invention was filed. Later claims or modifica-
tions to patent claims are excluded from our dataset, as we focus solely on original inventions.
Thus, we do not count instances where an existing patent is subsequently filed in another
jurisdiction. Similarly, we include only granted patents to ensure that what we measure is a

true new invention.

2.2 Natural Disasters

We obtain information on natural disasters from the emergency events database (EM-DAT)
published by the Centre for Research on the Epidemiology of Disasters (CRED) (see Guha-
Sapir et al. 2022)). In our analysis, we are interested in the emergence of innovations to
combat and mitigate the consequences of climate change. We therefore only consider natural
disasters that occur more frequently in France and Germany due to climate change: floods,
storms, extreme temperature events, and droughts (see Intergovernmental Panel on Climate
Change (IPCC) 2023). The CRED includes a disaster in the database if it meets at least

one of the following conditions: (a) a death toll of ten or more people, (b) there are at



least 100 people affected by the disaster, (c) the disaster causes the declaration of a state of
emergency, or (d) the affected country calls for international assistanceﬂ

We complement the EM-DAT data with geolocations from the Geocoded Disaster (GDIS)
dataset (Rosvold and Buhaug 2021)), which provides detailed spatial information on disasters
from 1960 to 2018. GDIS assigns events to the most precise available administrative unit,
ranging from national to subnational levels. In France and Germany, this includes up to
three tiers of administrative divisions: régions and Lénder (large federal or territorial states),
départements and Regierungsbezirke (mid-level units akin to provinces), and arrondissements
and Kreise (smallest administrative units, comparable to US counties). The arrondissement
and Kreis levels correspond to the third Nomenclature of Territorial Units for Statistics
(NUTS) level in France and the second NUTS level in Germany. There are 403 Kreise and
350 arrondissements in our data.

Until 1984, only a small number of disasters are geolocated below the first administrative
level. We therefore only consider events from 1984 onward. For our event study, we use 10
years of lags and 4 years of leads, and use disaster data from the years 1984 to 2018. For
our full sample, we end up with 150 distinct natural disasters, some of which affect multiple

regions at once.

2.3 Analysis Sample - Patenting

We merge our patent and disaster data at the most granular administrative level in our
data—arrondissements in France and Kreise in Germany. Throughout the analysis, we refer
to this as the “regional” level or simply “region,” which should not be confused with the
French “région.”

Our dataset includes approximately 520,000 patents, of which around 40,300 are classi-
fied as green. These patents were filed by approximately 1,385,000 and 110,000 inventors,
respectively. On average, 33.8 patents are granted annually in each region, 2.6 of which
are green patents. We aggregate all patents by the region of their inventors. Since some
patents have multiple inventors with addresses in different administrative areas, we assign
each region a proportionate share of the patent. For instance, consider a patent ¢ with three
inventors: 1,2, 3, where two live in Region A and one in Region B. Patent P would then be
attributed with a share of 2/3 to Region A and 1/3 to Region B. More generally, to calculate
the count of all green patents in region [ in year ¢, we sum over all patents i, weighting by

the share of i’s inventors residing in region (:

"See https://doc.emdat.be/docs/protocols/entry-criteria/ for the precise inclusion criteria.
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C(Yoz) =3 ( 2[53252531]) 0

i
where
1, if patent ¢ in year ¢ and region [ is green (Y02)
Y02, = 1] = (2)
0, otherwise
This yields a continuous (in fraction of counts) variable for the annual number of green and
non-green patents in each region. To ensure comparability between green and non-green
patents, we normalize the count of each type of patent in each region by its respective mean

across all years ¢ and all regions [:

C(Y02;)
P(Y02y) = 3
YIS LS T (Y 02y) )

where L is the number of regions and 7' is the number of years, and equivalently for non-green
patents. We adopt the same normalization procedure when aggregating across subclasses or
when splitting the sample by e.g. competition.

Natural disasters are reported at either the first-, second-, or third-order administrative
level. To ensure consistent spatial coverage, we assign each disaster reported at the first- or
second-order level to all corresponding third-order areas within the respective administrative
boundary. For instance, if an extreme temperature event is reported in the German state
Hessen, all 26 Kreise within Hessen are coded as being exposed during this period. Our
sample includes 150 natural disasters in total. Broken down by type, there are 64 floods, 63
storms, 20 extreme temperature events, and 3 droughts.

Figure [2 visualizes the geographic variation in both disaster exposure and green patenting
activity across the regions in our sample. Regions shaded in yellow are characterized by ele-
vated levels of green patenting but relatively few natural disasters, while those shaded in blue
have experienced many disasters but exhibit limited green innovation. Green-shaded regions
display both high disaster exposure and high green patenting, indicating potential alignment
between environmental shocks and green innovation. In contrast, gray areas denote regions

with neither significant disaster exposure nor notable green patenting activity.
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Figure 2: Bivariate Map of Green Patent and Disaster Counts

Note: This map depicts the bivariate variation in green patenting (shades of yellow) and natural disasters (shades of blue). Darker tones signify
more patents (disasters) respectively. Shades of green indicate regions with high levels of both green patents and natural disasters. Grey regions
have a very low number of patents and disasters. Only green patents are displayed and we pool all years.

3 Empirical Strategy

This section outlines our empirical strategy for estimating the effect of natural disasters on
innovation. Innovation is a gradual process: the path from idea to patentable prototype often
spans years. To capture these dynamics, we adopt an event-study design, which allows us
to observe the dynamics of patenting following a natural disaster. Our baseline event-study

specification, applied to the data, is presented in the equation:

11
P(Y02,) = Z BsDit +1CPCy + Ay + N+ € (4)

s=—b5,s#£—1

with
SO dy, ifs=-5

Diy = q dus-s if —5<s<11 (5)
Y ec11 dies if s =11
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where P(Y02;,) is the normalized count of patents (as specified in equation (3))), and d;;_
is the count of natural disasters experienced by region [ in year t — s. The reference period is
the year prior to disaster exposure. Following McCrary (2007)) and the formal definition of
Schmidheiny and Siegloch (2023)), we bin all periods that are more than 10 years in the past
or more than 4 years in the future. We include region fixed effects A\; and country-by-year
fixed effects Acq) s, where (1) denotes the country that region [ belongs to. C'PCy, is a vector
of controls representing a region’s innovation composition at time t. For every region, we
calculate the percentage of patents falling into a broad CPC classﬁ These controls allow us to
account for different time trends in a region’s patenting industry composition. For instance,
we can account for the impact of a large pharmaceutical company, which frequently patents,
leaving a region, which would affect patenting in class C - “Chemistry; Metallurgy”.

Region level fixed effects (\;) control for region-specific natural disaster risk characteris-
tics and account for differences, such as one region being more accustomed to floods than
another. Although the exact timing of natural disasters is random, some regions experience
such events more frequently, as shown in Figure coastal and Alpine areas face higher
disaster risks than interior regions. Inventors might choose locations based on these regional
risks, potentially causing selection bias. Region fixed effects mitigate this concern by captur-
ing region-specific disaster exposure and institutional characteristics that are constant over
time. Additionally, country-by-year fixed effects (A.y,) account for trends in overall disaster
risk and differing innovation patterns between France and Germany.

Our coefficients of interest, (s, estimate the average change in green innovation in a
region at event time s, relative to the year before the disaster (s = —1), controlling for
time-invariant regional characteristics and differential trends across countries. Identification
comes from cross-regional variation in disaster timing. Because our natural disaster data are
only available at the regional level, our estimates resemble an intent-to-treat effect. If a flood
impacts only part of a region—such as a valley—we still treat all inventors in that region as
exposed. This likely attenuates the estimated effect and yields a conservative lower bound
on the individual-level response. We cluster standard errors at the regional level, which is
the level of treatment variation.

One remaining identification concern is that climate change may induce differential trends
in underlying disaster risk across regions. If these trends are observable to inventors, they
may select into regions accordingly, generating potential selection bias based on heteroge-

neous regional risk trajectories. We argue that the absence of such selection is plausible in

8These classes are: A - “Human Necessities - Agriculture”, B - “Performing Operations; Transporting”, C
- “Chemistry; Metallurgy”, D - “Textiles; Paper”, E - “Fixed Constructions”, F - “Mechanical Engineering;
Lighting; Heating; Weapons; Blasting”, G - “Physics”, H - “Electricity”. For example, in 2007, 33% of all
patented inventions by inventors in Dunkerque had the CPC class C (Chemistry; Metallurgy).

12



our setting, as the regional impact of climate change is inherently difficult to predict, even
for climate scientists (Hulme et al. [1999)). Moreover, the literature on migration patterns
following natural disasters mostly documents out-migration of skilled individuals (Boustan
et al. 2020), and inventors are highly skilled (Bell et al. 2019). If out-migration of inventors
occurred in our setting, our estimates would be biased downward and suffer from attenuation.
If the opposite was true, and inventors moved to affected regions, we would overestimate the
effect. The underlying assumption of our work is that inventors do not select into regions
based on regional differences in the trend of natural disasters.

We observe the universe of patent applications, which allows us to identify a subset of
inventors who previously filed in the same region. In Section [4.5, we show that our results
remain robust when restricting to this subsample (see Figure , which alleviates concerns
about inventor selection. A remaining caveat is that we observe inventors only at the time of
filing, so unobserved moves between filings cannot be entirely ruled out—even for apparent
stayers. Additionally, in Section [£.7, we show that self-reported climate change affectedness
is robustly correlated with our natural disaster measure.

In our context, the stable unit treatment value assumption (SUTVA) implies that there
are no unmodeled spillovers between regions. We will later explicitly model spillovers to
neighboring regions and show that natural disaster exposure only marginally affects directly
adjacent regionsﬂ

A concern in our event study framework is the potential presence of heterogeneous treat-
ment effects. Standard two-way fixed effects (TWFE) estimators, as used in our baseline
specification, implicitly average treatment effects across groups that may differ in the tim-
ing and magnitude of treatment, potentially leading to biased or misleading estimates when
treatment effects are heterogeneous. In our setting, regions are exposed to different numbers
of disasters at different points in time, and the effect of an additional disaster may vary
depending on prior exposure. This dynamic poses a challenge: regions used as controls at
a given point may themselves become treated in subsequent periods, and their treatment
effects may not be comparable to the newly treated units.

To address this concern, in Section of the Online Appendix we adopt the estimator
proposed by Chaisemartin and D’Haultfceuille (2023)) and Chaisemartin and D’Haultfceuille
(2024)). This estimator constructs control the group by conditioning on treatment history.
Specifically, regions that have experienced the same cumulative number of disasters up to t—1
form the control group, and those newly treated at ¢t are compared against those that remain

untreated at that time. Over time, as more units receive treatment, the control group shrinks.

9The effect is 1/8 of our baseline estimate for the effect on the directly exposed region. See section
for our results on spillovers. In general, positive spillovers would mean attenuation of our baseline estimates.

13



Our baseline model on the other hand, maintains a fixed control group. While the alternative
estimator yields somewhat larger and more persistent effects (Figure in Section in
the Online Appendix), the results are qualitatively consistent with those from our preferred
TWFE specification (Figure [3| in Section . This robustness across estimation strategies
provides reassurance that our main findings are not driven by bias due to heterogeneous
treatment effects, even if each approach carries its own limitations. We mainly report the
TWFE results because they provide more conservative estimates, and also potentially offer
greater external validity due to a more realistic and stable control group.

We are also interested in the long-run average effect that one additional disaster has
on green innovation in a region [. To estimate this effect, we use the following collapsed

difference-in-differences equation:

P(Y02,) =7 (Z dl,t—s) + 1 CPCy + 2 ey + 13N + €, (6)

s=0

where 2:10 d; s represents the cumulative number of past natural disasters. The parameter
of interest, (3, estimates the average effect that one additional disaster has on the number of
green patents in a region.

To summarize, our identifying variation comes from the random timing of severe natural
disasters across regions, which—conditional on regional fixed effects—is plausibly exogenous
and allows us to compare changes in green innovation in affected regions before and after
disasters relative to unaffected regions. Our data contain only severe natural disasters.
Therefore, we caution that not all exposure to the forces of nature induces changes in inventor

behavior.

4 Effects on Innovation

Figure |3| presents our results when estimating our event-study specification for green and
non-green innovation. Year 0 represents the partially treated year['”) While the initial effect
is small, we observe a large and significant impact two years after the natural disaster, with
the effect peaking five years after the event. Five years after natural disaster exposure, green
patenting is 24% higher than in unaffected regions. Subsequently, the effect diminishes over
time, becoming insignificant ten years after the natural disaster. We interpret the inverted
U-shape of the innovation response as stemming from the fact that innovation takes time.

Natural disasters trigger an impulse towards inventive activity, with the resulting innovations

101f region I experienced a natural disaster in June, only patents filed in the months after could potentially
be influenced by the natural disaster.
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materializing in the subsequent years. This pattern aligns with earlier literature, which
suggests that the salience and behavioral response to natural disaster exposure tend to fade
over time (see Gallagher 2014)). The initial lag is consistent with innovation taking time.
s
o Patent Class

X - Green Patents
4 Non-Green Patents

\,Q EE 1l |
# IJ LI I i

Percentage Change in Number of Patents & 95% C.I.
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Figure 3: Patenting following the Exposure to a Natural Disaster

Note: This figure depicts the results for our baseline event-study specification, where we compare patenting in regions exposed to natural
disasters to unaffected regions. We plot two separate regressions for green and non-green patents. Percentages are relative to the overall sample
averages of green/non-green patents per year per region: (2.54) and (30.5) respectively. An increase in green patenting of 24% corresponds to
0.61 additional green patents. Standard errors are clustered on the region level, and confidence intervals are drawn for the 95% interval.

We find no significant change in non-green innovation, consistent with limited crowding
out of other inventive activity. The magnitude of our effects is substantial. In comparison,
Calel and Dechezleprétre (2016) find a 10% increase in green patents among firms covered by
the EU Emissions Trading System (EU-ETS) in its early years, using the same measure of
green innovation we employ. Relative to their estimates, we observe a larger short-run spike
in patenting five years after a disaster, while our long-run effect, an 8.2% increase relative to
the sample average (Table , is of similar magnitude but slightly smaller. Similarly, the oil
crisis led to a 3% rise in green patenting (Popp 2002; Hassler et al. 2012), and a 10% increase
in fuel prices generated a 10% increase in green innovation (Aghion et al. 2016). By this
benchmark, natural disasters elicit a large and statistically significant response from local
inventors. That said, comparisons should be interpreted cautiously: while policy shocks like
the EU-ETS or oil price spikes are often systemic and partly predictable, natural disasters
are inherently local and unpredictable.

The event study plots indicate flat pre-trends, with pre-treatment coefficients closely

centered around zero, supporting the validity of the parallel trends assumption. To address
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concerns about heterogeneous treatment effects, in Section We re-estimate our main green
innovation results using the estimator proposed by Chaisemartin and D’Haultfceuille (2023))
and Chaisemartin and D’Haultfeeuille (2024)).

In Section of the Online Appendix, we show that our results are consistent across a
broad range of CPC classes and are not driven by any single technological domain. To assess
this, we replicate our baseline specification separately for green patents grouped by the broad
CPC class they belong to, based on the primary technology classification of each patent.
The post-disaster response is remarkably similar across classes B (Performing Operations;
Transporting), C (Chemistry; Metallurgy), F' (Mechanical Engineering; Lighting; Heating),
G (Physics), and H (Electricity). The effects are more volatile in D (Textiles; Paper) and
E (Fixed Constructions), while in A (Human Necessities)—which includes agriculture—the
response is comparatively weak or absent. Throughout, we control for a region’s broad
patenting composition. However, this composition may itself be endogenous to natural
disaster exposure. In Section of the online Appendix, we demonstrate that our results

remain robust and nearly identical when we omit these technology trend controls.

4.1 Mitigation vs. Adaptation

Do inventors primarily adapt to a changing environment (see, for instance, Miao and Popp
2014 and Moscona and Sastry [2023), or do their inventions combat the causes of climate
change? We investigate this by exploring the subcategories of green patents.

We split the sample of green patents based on their purpose—either to adapt to climate
change or to mitigate climate change. Specifically, we use the Y02A class, “technologies
for adaptation to climate change,” and all the other Y02 subclasses which relate to mitiga-
tion. Mitigation technologies for climate change are inventions that reduce greenhouse gas
emissions or enhance carbon removal from the atmosphere. Examples include renewable en-
ergy (like solar and wind), electric vehicles, carbon capture and storage, and energy-efficient
buildings.ﬂ Table 2| presents the estimates for our difference-in-differences specification @

In the long run, one additional natural disaster increases patenting in mitigation tech-
nologies by 8.6% compared to the sample average, and patenting in adaptation technologies
by 4.4%. Mitigation technologies are crucial in order to reduce long-run emissions. These
coefficients are also statistically significantly differentE There are roughly 10 times more
mitigation patents than adaptation patents in our sample. Section |[B.4] of the Online Ap-

pendix presents our results when estimating our event-study specification. We find that the

1See Online Appendix Section for an overview of all the Y02 classes used in this analysis.
12Using a Wald-test, we test whether these coefficients are statistically significantly different and can
reject the null hypothesis of equality with a p-value of 0.0097.
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pattern for mitigation patents largely mirrors our main results, while the effect on adaptation

technologies is comparatively muted.

Table 2: Patenting Responses split by Adaptation vs. Mitigation

Dependent variable:

All Green  Mitigation  Adaptation

(1) (2) (3)

Cumulative Count 0.082*** 0.086*** 0.044***
(0.009) (0.010) (0.013)
Country-Year F.E. Yes Yes Yes
Region F.E. Yes Yes Yes
CPC Controls Yes Yes Yes
Wald-test p-value 0.0097***
Sample Mean 2.54 2.32 0.22
Observations 15,813 15,813 15,813
R? 0.739 0.723 0.513
Adj. R? 0.725 0.708 0.487

Note: This table gives the results for our baseline regression for all green patents (1), and
split by mitigation and adaptation in columns (2) and (3). Cumulative Count is the count
(Beq1 *chz)Q
Var(Beq1 —Beq2)’
where: Var(Beq1 — Beq2) = Var(Beq1) + Var(Beq2) — 2 - Cov(Beq1; Beq2). We can reject
the Null hypothesis Hp : Beq1 = Beq2 against the alternative (Hp : Beq1l # Beq2) with
the reported p value. Standard errors are clustered on the region level and are reported

in parentheses. P-values are as follows: *p<0.1; **p<0.05; ***p<0.01

of past natural disasters. We construct a Wald-test of the form W =

Inventors thus not only invent technologies protecting against the adverse effects of cli-
mate change, but they patent ideas that help combat climate change itself. Mitigation tech-
nologies are not directly tied to natural disasters. The strong effects we observe for these
technologies suggest that inventors respond not only to the immediate threat of disasters,
but also by developing innovations with broader applications in everyday products. This
implies that they not only recognize rising risks, such as increased flood frequency, but also
perceive greater value in technologies that reduce GHG emissions. In Section[5], we show that
these expectations about greater value, at least in part, stem from inventors’ higher-order
beliefs about consumer preferences about green consumption and environmental policy.

In Online Appendix Section [B.4] we additionally present results for all the subclasses
in isolation. Estimating our baseline difference-in-differences specification @ separately for
each of these subclasses, we find that the coefficient on the cumulative count of past disas-
ters is consistently positive and statistically significant across all subclasses. Of particular

interest for mitigation are the YO2E class, “reduction of greenhouse gas (GHG) emissions
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related to energy generation, transmission, or distribution,” and the Y02T class, “climate
change mitigation technologies related to transportation,” as they cover the most polluting
activities. Additionally, we present event study estimates for these two subclasses separately.
The patterns mirror our main results, emphasizing that inventors react across different in-

dustries—even in the most polluting ones.

4.2 Spillovers

If personal experience is the primary channel through which natural disasters affect innova-
tion, then we should observe little to no impact in neighboring regions that were not directly
exposed. To test this, we examine potential spillovers by estimating the effect of disaster
exposure in adjacent regions on local patenting activity. For each region, we calculate the
number of natural disasters in neighboring regions. Figure [4] depicts our different distance
bands within which we consider a region to be a neighbor. Put differently, we estimate the
effect of natural disasters in the black-shaded region on patenting in neighboring regions.
Red-shaded areas are regions whose borders are closer than 50km, while orange-shaded ar-
eas are closer than 100km away, and yellow shaded areas are closer than 150km away. To
avoid including exposed regions in the control group, we remove all regions that experienced
natural disasters in the past five years.

We estimate our difference-in-differences specification @ and depict the results in Table
Bl Natural disasters only marginally affect patenting in directly adjacent regions, leading
to a long-run increase in patenting of about 1% in adjacent regions. Relative to the results
presented in Table [2] the magnitude of the increase is approximately eight times smaller.
When we move to regions that are 100km or 150km away, we find precisely estimated point
estimates close to zero. There is no sizeable effect of natural disasters on regions that are
more than 50km away. The lack of large spillovers is striking and underlines that the direct
personal experience of the inventor is the driving force behind our results.

While our approach of excluding affected regions from the control group ensures clean
identification, it also systematically excludes regions that experience disasters more fre-
quently. This exclusion may introduce some bias, as effects are primarily identified from
regions with lower disaster exposure. In section in the Online Appendix, we also show
our results when we exclude regions that have been affected in the past three, four, six, seven
years respectively. We also have one specification where we include all affected regions in the

control group, thus not restricting our sample. Results are qualitatively the same for both

18



Distance Range

- area
. 50 km
D 100 km

[ ] 1s0km

I:I other

Figure 4: Tllustration of Distances to Region

Note: This figure depicts the different distances at which we consider an area to be a neighbor of the black-shaded region in the center.
Red-shaded areas are regions whose borders are closer than 50km to the area of interest, while orange-shaded areas are closer than 100km away,
and yellow-shaded areas are closer than 150km away. We show only France for simplicity.

types of robustness Checksﬁ

4.3 Patent Value

To assess whether natural disaster exposure spurs economically valuable innovation, we
examine the value of resulting patents. A key concern is that observed increases in patenting
may reflect low-quality or hastily conceived inventions. To address this, we use citation
counts, a proxy for patent value, to gauge the technological and commercial relevance of
disaster-induced innovations. Prior work shows that more highly cited patents are more
socially valuable (Trajtenberg , command higher market valuations (Hall et al. ,
and are more likely to be sold (Harhoff et al. [1999). More recent studies further affirm their
reliability as indicators of patent quality (Jaffe and Rassenfosse 2017).

13When we exclude all regions affected in the past six, and seven years, we find slightly larger and more
imprecise estimates for the 50km range. When we do not restrict the control group, the results remain
very similar for the 50km range. We find very small but significant negative effects of neighboring natural
disasters that are more than 50km away. This is due to the control group now containing regions that are
affected by natural disasters. We essentially invert our main regression. In this specification, we compare an
area unaffected by a natural disaster with areas that are affected.
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Table 3: Spillovers of Neighboring Disasters

Dependent variable:
P(Y02,)
(1) (2) (3)

Cumulative Count (50km) 0.0100**

Neighboring Disasters (0.0037)
Cumulative Count (100km) 0.0001
Neighboring Disasters (0.0005)
Cumulative Count (150km) —0.0005
Neighboring Disasters (0.0004)
Country-Year F.E. Yes Yes Yes
Region F.E. Yes Yes Yes
CPC Controls Yes Yes Yes
Observations 4,125 4,125 4,125
R? 0.8499 0.8493 0.8494
Adjusted R? 0.8201 0.8193 0.8194
Note: This table shows our regressions results for spillovers from adjacent regions. “Cumulative Count

Neighboring Disasters” is the count of past natural disasters in neighboring regions. Which regions are
considered as “neighbors” depends on the distance threshold as shown in Figure From these regressions,
we exclude all regions that themselves experienced a disaster in the past 5 years. Standard errors are
clustered on the region level and are reported in parentheses. P-values are as follows: *p<0.1; **p<0.05;
***p<0.01

We investigate whether our findings result from the invention of high- and/or low-value
patents by examining the effects for patents with high and low citation counts separately.
We split the sample based on patents that received citations above or below the median
within their respective groups. Given that a patent published in 1995 is likely to have more
citations than one published in 2005, and that a patent for a toothbrush may attract a
different number of citations compared to one on quantum computing, we compare patents
within the same CPC class j (e.g., CPC class C for Chemistry) and published in the same
year t. Let the group of patents belonging to CPC class j published in year ¢t be denoted by
Gji. For all such groups, we then compute the median number of citations, denoted by éjt.
Since a patent might belong to multiple CPC classes (for instance, j and k), we define it as

having above-median citations if:

éjt + ékt

; (7

Citations;; >

Figure |baj plots the results when estimating our event-study for both samples.
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Figure 5: Green innovation response to natural disaster exposure by patent characteristics

Note: This figure presents results from our event-study analysis of green patenting following natural disasters, split by different patent
characteristics. Panel (a) differentiates patents by citations (above vs below median citations), with a sample mean of 1.271 (highly cited) and
1.253 (less cited) green patents per region-year. Panel (b) differentiates between Triadic and Non-Triadic green patents, with sample means of
0.503 and 2.05, respectively. Standard errors are clustered at the region level, and confidence intervals represent the 95% confidence level.

Both regressions show a positive, significant effect on subsequent green patents, as ob-
served in our baseline results in Figure [3] Moreover, there does not seem to be a significant
difference between patents with different citation counts. Our results suggest that natural
disasters stimulate patenting activity regardless of whether patents are highly cited or not,
indicating broad-based innovation rather than targeted low-value activity.

Another commonly used way to measure patent value is whether patents belong to a
triadic family. A triadic patent is a patent filed at the European Patent Office (EPO),
the Japanese Patent Office (JPO), and the United States Patent and Trademark Office
(USPTO). Patents of such nature are usually quite valuable, as filing multiple patents in
vastly different jurisdictions is, first of all, expensive, and secondly, implies that their techni-
cal content is economically valuable in some of the biggest markets on earth. We then use this
indicator to estimate our event study for these triadic patents. Figure [5b| plots our results.
We find a similar pattern as in our baseline regression. Significant effects on triadic patents
highlight that local experiences generate innovations with global market relevance, showing
that inventors’ responses are economically substantive and internationally applicable. As
triadic patents are filed all over the world, these findings also alleviate the concern that our
results are driven by any effect the natural disaster might have on the patent examiner. It

is unlikely that a disaster in the south of France will influence the examiner at the USPTO.

4.4 Types of Inventors

To better understand who drives the observed green innovation response to natural disasters,

we disaggregate our analysis by inventor type, using detailed information on applicants and

21



inventors recorded in PATSTAT. This is possible because PATSTAT includes standardized
names for both inventors and applicants, along with information on applicant type—such as
whether the applicant is a firm or an individual.ﬂ In our sample, 72% of patents are filed
by firms and 16.8% by individual inventors. For the remaining 11.2%, the applicant type

cannot be determined ']
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Figure 6: Innovation by Inventor Type and Mobility
Note: This figure presents results from our event-study analysis of green patenting following natural disasters, split by inventor characteristics.
Panel (a) differentiates patents filed by firms (sample average: 1.82 patents per region-year) and solo inventors (sample average: 0.43 patents per
region-year). Panel (b) differentiates inventors by their mobility status: Stayers (sample average: 0.58), Movers (sample average: 0.1), and Not
Determined (sample average: 1.86). Standard errors are clustered at the region level, and confidence intervals represent the 95% confidence level.

We estimate equation separately by inventor type, using the count of all patents filed
by either firms or individuals as the outcome. As patents can be filed by an individual and
a firm jointly, when focusing on individual patent holders, we only keep patents exclusively
filed by individuals. We compare the patenting behavior of exposed and unexposed inventors,
separately for those affiliated with firms and those working independently. Figure [6a] shows
the event-study results. Given the larger number of patents filed by firms, estimates for
firms are more precise. Natural disasters affect both inventors embedded in firms and those
working independently or in small teams.

In Section of the Online Appendix, we show that personal experience of natural
disasters increases green patenting along both the intensive and extensive margins, affecting
both first-time and repeat inventors. We classify an inventor as a repeat inventor when
they have previously shown up as an inventor in the patent system. Any inventor that
files additional patents only afterward or only once is classified as a first-time inventor. We
classify a patent as coming from a repeat inventor if at least one of its inventors has previously

patented. Notice that the majority (roughly 83%) of patents are filed by at least one repeat

14This classification in PATSTAT is based on data from ECOOM (K.U. Leuven).
15We omit results for this unclassified group.
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inventors. Both first-time and repeat inventors react to natural disaster exposure, with the
response being significantly larger among repeat inventors.

In Online Appendix Section [B.13] we further explore how inventors’ past patenting ac-
tivities influence their innovation response to natural disasters. Specifically, we differentiate
between inventors with extensive prior patent filings (“large filers”) and those with fewer
previous patents (“small filers”), additionally distinguishing between inventors with sub-
stantial past engagement in environmentally harmful (“brown”) technologies versus those
with less or no prior involvement. Overall, the observed innovation responses are relatively
similar across these classifications; however, large patent filers consistently exhibit stronger

responses than small patent filers.

4.5 Inventor Movement

To address potential concerns about endogenous inventor selection, we examine whether
green innovation responses differ between inventors who remain in their region and those
who move. For a limited sub-sample of inventors, we know if they were previously recorded
as living in the same region, or if they have moved. We can thus compare the evolution of
patents for inventors who either stayed, moved, or for whom we do not have such information.
We know that roughly 23% of inventors did not move, 4% moved, and we lack information
to pinpoint the moving status for the rest (63%). Figure [6b| plots our results. For inventors
who did not move, results remain similar to our baseline findings. Results are noisy for
movers, likely because we have limited statistical power due to the low number of movers in
our sample. For those inventors for which we cannot determine their status, results are very
similar to our baseline findings. Our findings alleviate some of the concerns about inventor
selection into affected regions, as inventors who did not move equally respond to natural

disaster exposure.

4.6 Disaster Severity

To explore whether the magnitude of natural disasters shapes the innovation response, we
examine how green patenting varies with disaster severity, distinguishing between more and
less deadly events as well as more and less economically damaging ones. Table [4| presents
estimates from our baseline difference-in-differences specification @, comparing the effects
of natural disasters on green innovation separately by disaster severity. In columns (1) and
(2), we contrast the effects of disasters with death tolls above the median column (1) and
economic damages above the median column (2) to those with lower severity.

Previous work has shown that disasters involving significant loss of life create greater

23



Table 4: Patenting Effects by Disaster Severity

P(Y02y,)
Split by Median
Deaths Damages
(1) (2)
Cumulative Count: Above Median  0.1074*** 0.0582*
Most Severe Disasters (0.0179) (0.0298)
Cumulative Count: Below Median  0.0564** 0.0868***
Less Severe Disasters (0.0225) (0.0115)
Country-Year F.E. Yes Yes
Region F.E. Yes Yes
CPC Controls Yes Yes
P-Value: Coef. Difference 0.1627 0.4282
Observations 15,813 15,813
R? 0.7386 0.7386
Adjusted R? 0.7247 0.7246

Note: This table compares disasters with above and below median level disaster severity as measured by either
deaths or damages. In Column (1) disasters are split along the median on to their number of deaths. In column (2)
disasters are split along the median on the monetary value of damages. We test for difference in coefficients between
(Btop —Ppot)>
Var(Btop —Bbot )
Var(Btop) + Var([;’bot) -2 Cov(Btop,Bbot)A We test the null hypothesis Hg: Btop = Bbot against the two-sided
alternative Hjp : Btop # Pbot, and report the corresponding p-value. Standard errors are clustered on the region
level and are reported in parentheses. P-values are as follows: *p<0.1; **p<0.05; ***p<0.01

severe and less severe disasters using a Wald test of the form W = , where Var(f}top — Bpot) =

salience of climate-related risks among the public (Eisensee and Stromberg [2007; Kalatzi
Pantera et al. 2023} Demski et al. [2017). We find that highly deadly disasters have stronger
effects on green innovation compared to less deadly disasters. This is in line with our pro-
posed mechanism, as larger increases in public salience of climate change should translate
into inventors forming higher monetary expectations, thereby prompting a stronger innova-
tion response[lY]

In contrast, our analysis of economically damaging disasters shows weaker innovation
responses for the most severe disasters. In column (2), the effect for the most damaging
disasters is smaller that that for the less destructive disasters. This result is in line with lit-

erature documenting that large-scale economic disruptions from disasters destroy productive

16We also examine the effects of the single most severe disaster experienced by a region, which yields
larger but statistically noisier coefficients. These results are reported in Section [B.5|of the Online Appendix.
In addition, we explore heterogeneity by disaster type. Due to the small number of drought events in our
data (only three cases), we exclude them from this analysis. For extreme temperature events, floods, and
storms, we find positive effects on green innovation that broadly mirror the patterns shown in Figure
albeit with greater noise. Results are reported in Section @ of the Online Appendix.
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capital and critical infrastructure, which may in turn impede innovation by limiting firms’
capacity to invest and adapt (see Peters et al. 2024; Le et al. [2024)).

4.7 Survey Measure of Green Innovation

Patent data are frequently used to measure innovation; however, there are some limitations
e.g. not all innovations are patentable, and not all inventors opt to patent their innovations.
To further underline our findings, we repeat our analysis using an alternative indicator for
green innovation based on survey data from the German part of the Community Innovation
Survey (CIS), a biennial firm-level survey covering innovation activity. While exclusively
focusing on firms is a drawback, the majority of green innovation occurs within a firm
structure: approximately 72% of patents in our data are filed by inventors embedded within
firms, compared to only 16.8% filed by individualsE] The core questionnaire of the CIS
captures general innovation behavior, selected waves also include a dedicated module on
environmental innovation. These green innovation questions were introduced in 2009 and
repeated in 2015 and 2021. Survey responses are provided by individuals within firms who
are familiar with the innovation process or directly involved in R&D. However, because we
did not conduct the survey ourselves and the CIS does not record respondent identifiers
or roles, we cannot observe who exactly within the firm completed the questionnaire. Our
analysis sample comprises 18,425 firm-year observations from these three survey waves. The
CIS is structured as a repeated cross-section, and firms cannot be tracked across waves due
to the absence of consistent firm identifiers. The CIS contains region-level information of
the firms’ location, which we use to link firms to our natural disaster data.

We construct three alternative indicators of green innovation. The first captures the im-
plementation of internal environmental innovations within firms, such as technologies that
reduce energy, material, or water use, lower emissions or pollution, substitute fossil fuels
with renewables, or introduce safer materials. On average, 48.3% of firms report the adop-
tion of such internal green processes. The second indicator focuses on the introduction of
new or significantly improved products or services offering environmental benefits—such as
facilitating recycling, reducing pollution, or extending product life. On average, 34.8% of
firms report such product- or service-based green innovations. Both of these are dummies
that are equal to one if a firm indicated that they introduced one of these innovations. The

third measure combines both indicators[™

17For the remaining 11.2%, we are unable to determine the type of inventor. See Section for details
on how inventor types are classified.

18Section in the Online Appendix describes the exact procedure how we construct our different
measures for green innovation.
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In Table 5] (columns 1-3), we regress all three indicators of green innovation on the count
of past natural disasters. One additional past natural disaster increases the likelihood of
introducing process innovation and green products by roughly 4.3% and 4.7%, respectivelyﬁ
The analysis supports our prior findings and highlights the positive and significant effect of
natural disaster exposure on green innovation. We do robustness checks in Section [B.9)in the
Online Appendix, where we include NUTS-2 and region-level (NUTS-3) fixed effects. Results
remain robust with NUTS-2 fixed effects. With region-level fixed effects, point estimates are
similar but lose statistical significance due to limited within-region variation of our treatment

across only three survey waves.

Table 5: Effect of Natural Disasters on Green Innovation and Climate Affectedness

Green Innovation Within-firm Green Products  Climate Affectedness
Combined Process Innovation
(1) (2) (3) (4)
Cumulative Count 2.16%* 2.08%** 1.63** 5.58***
(0.283) (0.287) (0.237) (0.691)
Firm Size F.E. (employment) Yes Yes Yes Yes
Revenue Yes Yes Yes Yes
Year F.E. Yes Yes Yes No (Single Wave)
Industry F.E. (2-digit NACE) Yes Yes Yes Yes
Observations 15,395 15,426 15,226 4,873
R? 0.629 0.591 0.451 0.582
Adj. R? 0.627 0.589 0.448 0.576
Note: This table reports the effect of the cumulative number of past natural disasters on several survey outcomes. Column (2) reports results for within-firm process innovation,
columns (3) for a firm introducing new green products, and column (1) for both of these combined. Column (4) reports the effect on firms’ self-reported climate affectedness.
All models include firm size (based on employment dummies), revenue controls, year fixed effects, and 2-digit NACE industry fixed effects. Standard errors are clustered at the
regional (Kreis) level. Significance levels: *p<0.1; **p<0.05; ***p<0.01.

Additionally, we examine whether firms exposed to natural disasters report experiencing
their effects. In the last wave of the survey firms were asked how important various climate-
related impacts were between 2018 and 2020, we create a dummy variable equal to one if the
item “Impact of extreme weather conditions” (e.g., transport disruptions, storm damage,
flooding, drought) was rated as high, medium, or low importance. Firms in disaster-affected
areas are significantly more likely to report experiencing climate-related impacts, providing

a strong first stage for our analysis (see column (4) in Table [5)).

5 Reasons to Innovate

In this section, we investigate the underlying reasons why inventors respond to natural

disasters, by drawing on additional survey items in the CIS environmental innovation module.

19This corresponds to the 2.08% and 1.63% percentage points increase in Table
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Conditional on reporting the introduction of an innovation with environmental benefits, firms
were asked to assess the importance of various potential drivers. These include existing
environmental regulations, anticipated future regulations or taxes, voluntary standards or
best practices within the industry, current or expected market demand, government funding

or subsidies, and reputational concerns. The precise question text reads as:

“During [the past two years|, how important were the following factors in driving

your enterprise’s decision to introduce innovations with environmental benefits?”

W

Each factor generates a dummy equal to one if it was rated “low,” “medium,” or “high”
importance, and zero if deemed “not relevant” (see Appendix for details).

The primary drivers of green innovations among the surveyed firms are existing envi-
ronmental regulations, with 63.3% of firms identifying this factor as significant. Voluntary
actions or standards for environmental best practices within their sector were noted as im-
portant by 57.9% of firms. Anticipated future regulations or taxes motivated 55.6% of the
firms, while current or expected market demand for environmental innovations influenced
49.1%. Lastly, 40.7% of firms cited government grants and subsidies as a key motivating
factor.

We then estimate the effect of natural disaster exposure on each of these drivers using

Yiw = 5 (Z dl,H) + 71 Sit + 72 R + 3 At + Y4 Ak + € (8)
s=0

where Y, indicates whether firm ¢ in region [ in industry k& at time t rated the factor as
relevant; Z;io d;4—s is the count of natural disasters prior to questioning; S;; is a vector of
firm-size dummies for medium and large firms, with small firms being the reference group;
R;; is firm 4’s revenue in year t; A\; and A\, are year and two-digit NACE industry fixed effects;
and €, is an idiosyncratic error term clustered at the NUTS-3 (Kreis) level. The firm-size
dummies S;; are based on the number of employees. Specifically, we differentiate small firms
with less than 50 employees, medium firms with 50-249 employees, and large firms employing
more than 249 individuals. Our coefficient of interest S estimates the effect one additional
past natural disaster has on a firm’s probability of stating a factor as relevant for their green
innovation decision. The comparison is between firms that have recently introduced a green
innovation and have been affected by a natural disaster, and those firms that have introduced
a green innovation but have not been affected by a natural disaster. Table[6|gives our results.

In column (1) of Table [6] a one-unit increase in the count of past natural disasters raises
the probability of mentioning expected future regulation by 0.932 percentage points on a

baseline mean of 63.33 percent, a highly significant effect at the 1 percent level. Column (2)
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Table 6: Effect of Cumulative Disaster Count on Reasons to Innovate

Dependent variable:

Expected Expected Existing Public Voluntary Reputation
Regulation Demand Regulation Funding Standard
(1) 2) (3) (4) (5) (6)
Cumulative Count 0.932*** 0.865*** 0.748*** 0.169 1.140*** 0.391
(0.266) (0.263) (0.263) (0.269) (0.218) (0.313)
Firm Size F.E. Yes Yes Yes Yes Yes Yes
Revenue Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes
Industry F.E. (2-digit) Yes Yes Yes Yes Yes Yes
Mean of Y 63.33 55.64 40.66 49.07 57.95 61.47
Observations 8,787 8,754 8,862 8,776 8,782 5,423
R2 0.548 0.489 0.607 0.418 0.543 0.667
Adj. R? 0.544 0.484 0.603 0.413 0.539 0.662

Note: This table reports the effect of disaster exposure on the drivers of innovation as measured in the survey. One additional past disaster increases the probability of a firm mentioning
these factors by 3 percentage points (e.g. for column 1 by 8=0.932 percentage points). Outcomes are: Expected Regulation = expected future environmental rules; Expected Demand
= expected future market demand for green innovation; Existing Regulation = current environmental rules/charges; Public Funding = government grants/subsidies; Voluntary Standard
= voluntarily joining a standard for green practices (e.g. environmental/organic label); Reputation = firm’s reputation concerns. Standard errors clustered at the region (NUTS-3) level
and are reported in parentheses. Significance levels: *p < 0.1; **p < 0.05; ***p < 0.01.

shows a similarly strong response for expected demand: each additional disaster increases
the likelihood of reporting anticipated market demand as a motivator by 0.865 percentage
points, relative to a 55.64 percent mean. Firms also become 0.748 percentage points more
likely to point to existing environmental regulations (mean 40.66 percent). By contrast, the
effects on public funding and reputation concerns are small and statistically indistinguishable
from zero. Voluntary standards show a sizable 1.140 percentage-point increase (57.95 percent
mean). Taken together, these results suggest that natural disasters most strongly amplify
firms’ expectations about future regulation and market demand, with more modest or no
effects on public funding and reputational motives.

We interpret the effects on expected regulation and expected demand as firms expecting
consumers to increasingly value green alternatives in the future—mot only through their
purchasing decisions but also through political support for stricter environmental policies. In
essence, experiencing a natural disaster changes higher-order beliefs (beliefs about the beliefs
of others) about consumers’ climate change beliefs and their valuation of green consumption
and green policy. In turn, this expectation of stronger consumer environmental consciousness
leads firms to foresee greater pecuniary returns to investing in green innovation. Prior
research documents that natural disaster exposure shifts beliefs toward greater support for
environmental policy. Dechezleprétre et al. (2022) and Djourelova et al. (2024)) show that
disasters increase the salience of environmental issues. Owen et al. (2012)) and Osberghaus
and Fugger (2022) find that personal disaster experience heightens perceived climate risks

and support for environmental regulation.
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Our findings also point to firms increasing their awareness of existing environmental
regulation. A potential reason is the increased salience of such policies. An increase in
local climate change salience leads firms to pay closer attention to related topics, such as
environmental regulation.

The positive effect on firms citing voluntary standards as primary reasons for innovation
can be attributed to two different channels. First, firms might join voluntary standards due
to the signaling value these standards have for consumers. Being able to label your products
as e.g. “micro-plastic-free” or can attract consumers (Agatz et al. 2021, Duckworth et al.
2022). Second, firms may engage in green innovation due to intrinsic motivation. Intrinsic
motivation refers to the idea that there is no reward for an activity other than the activity
itself. This includes acting based on ethical convictions or long-term sustainability goals,
even in the absence of financial rewards. In our setting, exposure to natural disasters may
shift firms’ internal priorities in this direction. We view reputational concerns as being
potentially aligned with such non-monetary motivations.

In Section in the Online Appendix, we additionally include NUTS-2-level and region-
level fixed effectsPY Results remain robust when we include NUTS-2 level fixed effects.
When including region-level fixed effects, our point estimates remain similar, but become
statistically insignificant apart from for the effect on “Expected Regulation”. When including
region-level fixed effects we lose a lot of our underlying disaster variation, as we only have
three survey waves.

Natural disaster exposure does not affect firms’ self-reported take-up of public funding
schemes. To further assess whether government research support could explain the observed
increase in green innovation, we analyze administrative data on French public R&D funding
(see Section in the Online Appendix). We find no significant changes in the number of
grants or funding levels in disaster-affected regions, further underlining that the innovation
response is not driven by targeted public subsidies.

Our proposed mechanism—complementing other potential channels—is that exposure to
natural disasters increases the local salience of climate change. This increase in salience can
have multiple effects on inventors and inventive firms. It shapes local inventors’ expectations
regarding environmental policy and the demand for green goods. These expectations are
driven by inventors’ higher-order beliefs about the climate change beliefs of consumers and
voters. Increased salience further leads to an increase in attention to climate change and

potentially affects inventors’ and firms’ intrinsic motivation.

20Tn Germany, the NUTS-2 level corresponds to current and former “Bezirke”, which are administrative
regions that are below the “Lénder”. The city states of Berlin, Hamburg, and Bremen, as well as the federal
states of Brandenburg, Mecklenburg-Western Pomerania, Schleswig-Holstein, Saxony-Anhalt, Saarland, and
Thuringia, do not have any NUTS-2 level subdivision and are thus themselves NUTS-2 level areas.
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6 The Market for Green Goods

In this section, we introduce a model that captures how disaster-induced salience affects
green innovation, both through inventors’ intrinsic motivation and profit-driven responses
to anticipated shifts in consumer demand. We formalize our behavioral mechanism and
examine its interaction with market forces. To do so, we adapt and extend the framework
proposed by Aghion et al. (2023)), whose core insight is that green innovation responds
to consumer demand for environmentally friendly products. A key feature of their model
is that market structure matters: firms facing intense product market competition benefit
more from “escaping” competition by developing green products that differentiate them from
incumbents.

We add a behavioral channel through which inventors form expectations about future
consumer demand in response to natural disasters. We introduce uncertainty about future
demand and allow inventors to derive intrinsic utility from pursuing environmentally benefi-
cial innovation. Both expectations and intrinsic motives vary across regions and are shaped
by local natural disaster exposure. This extension is motivated by our empirical finding in
Table [3, which shows limited evidence of geographic spillovers from neighboring disasters,

suggesting that behavioral responses are highly localized.

6.1 Model

Inventors choose R&D investments aiming to maximize expected profits. Once innovations
have realized, they produce with their respective technologies and compete for consumers.
Revenues are distributed as wages to production and R&D workers, and net profits are
redistributed to consumers, who also own firms as shareholders. There is a continuum of
horizontally differentiated goods indexed by j € [0, 1]. For each variety, two duopolists and
a competitive fringe supply otherwise identical products that differ only in their emissions
intensity embodied in production. Producing one unit of the good with environmental quality
¢; ¢ generates x; 5 = 1/g; s units of carbon emissions. Labor is the sole input, supplied
perfectly elastically at a wage normalized to one. The marginal labor requirement per unit
of output equals a constant ¢ > 0.

The representative consumer derives utility from variety consumption but also expe-
riences private disutility from their carbon footprint. These preferences could arise, for
instance, from social image concerns or a general sense of responsibility toward the environ-

ment. When purchasing y; s units from each firm f € F; in sector j, the period-t utility is
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given by:
1
L . _ 5
U, = / Ing;,dj, with g;; = / Yirt it df- (9)
0 feF;

where y;; is the quality-adjusted consumption of good j, purchasable from various firms
f € Fj. The value of a green product depends positively on the stringency of environmental
regulation, as stricter policies raise the relative costs of non-green alternatives. The pa-
rameter J; captures how individuals value their own private consumption and express their
political preferences regarding environmental policy. Empirical evidence suggests exposure
to natural disasters shifts local preferences towards stronger environmental policies.

The parameter ¢; is potentially heterogeneous across goods. For example, consumers
might weigh their carbon footprint differently when purchasing meat versus vegetarian al-
ternatives than when buying toothpaste. Such heterogeneity arises from differences in con-
sumer awareness, labeling practices, and the psychological salience of environmental impacts
across goods categories (Agatz et al. 2021, Duckworth et al. 2022). Additionally, climate
policy is often sectoral to protect national interests or to appease a certain group of voters,
which in turn makes climate policy more stringent in some product markets than others.

Varieties j are imperfect substitutes. Within each variety, all demand will be allocated
to the firm offering the highest quality-to-price ratio, ¢°/p. Logarithmic preferences imply
that expenditure is uniform across all varieties. For a formal derivation of this result, refer to
Section in the Online Appendix. We assume that consumer demand is non-local. Once a
product is patented, it is marketed globally.@ This assumption enhances model tractability
and is also grounded in the legal interpretation of patent rights. The Paris Convention for
the Protection of Industrial Property (1883), which has been adopted almost universally,
stipulates that an inventor who patents a product in one country has a 12-month window
during which they can apply for protection in other contracting states. These subsequent
applications are granted the same priority date as the original filing. This provision facilitates
easier entry into international markets without risking loss of intellectual property rights to
third parties. Even if an inventor decides not to patent their invention in some countries,
the same invention cannot be patented there by others and is instead regarded as publicly
accessible information.

We assume a market structure in which each sector features a duopoly, composed of two
competing innovators, alongside a competitive fringe. The fringe consists of firms that do not
invest in innovation and continue producing the previous-generation good, which is one step

behind the technological frontier. These goods are + times more polluting than those of the

21 Although this assumption is strong, we demonstrate that our main results remain valid when restricting
the analysis to globally marketed patents. See Section [£.3] for results focusing exclusively on triadic patents,
which are filed globally.
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duopolists and thus less attractive to environmentally conscious consumers. The presence
of the fringe disciplines the market by limiting the pricing power of the duopolists. If the
duopolists were to charge a price exceeding the marginal cost of the fringe good—adjusted
for its lower environmental quality—consumers would switch to the cheaper, albeit dirt-
ier, alternative. As a result, the duopolists, who have a quality advantage, cannot extract
monopoly rents beyond what the quality differential justifies.

The quality of a green good y; evolves according to ¢; = 7%, where v > 1 denotes the
step size of a green innovation, and k; is the cumulative number of past innovations in variety
J. Intuitively, each successful innovation improves the environmental performance of a good
by a factor of 7. Innovation arises from directed R&D effort. Inventors can choose to exert
research effort z; € [0, 1], incurring convex costs of I{ij /2 units of labor.@ With probability
zj, the investment succeeds, improving the quality of the good by a factor of v in the next
period. With probability 1 — z;, the attempt fails, and no technological progress is achieved.
Upon a successful innovation, the inventor receives a patent that grants it a temporary edge
over its rival. To capture the entire market, a successful inventor engages in limit pricing,
setting the price just low enough to undercut her competition—specifically at py; = ~’c.
This allows the innovator to behave as a de facto monopolist for one period. After that, the
patent expires, the quality gap closes, and market competition resumes.

An important aspect of an inventor’s decision to innovate is how much she expects con-
sumers to value green products. Consumer valuation of green goods d; evolves over time,
and there exists local uncertainty regarding the future valuation level. The global level of
0 could, for instance, depend on the degree of global exposure to climate change. Inventors
are local and form Bayesian expectations about consumers’ valuation of green goods based

on a global prior p (common across all locations) and local events Dj:

Ed;] = op+ (1 — @)oDy, (10)

where ¢ denotes the size of the local shock. Inventors’ expectations can fall whenever they
are unaffected by natural disasters. We define the average expectation of consumer valuation

for green goods across locations as:

Ej[6;] = /Ez[5j]f(l) dl = op+(1—) /cszf(l) dl = op+ (1= @)pD;

l l

where f (1) denotes the probability density function over regions [, and D; is the average level

22Convex innovation costs are a plausible assumption, as reducing the environmental impact of goods
becomes increasingly difficult. For example, designing a plane that consumes slightly less fuel is much easier
than creating one that emits no COs at all.
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of disaster exposure. We denote this benchmark as E[-], which reflects the average belief
held across all locations. Inventors’ expectations may deviate from this average depending
on their local exposure. In regions recently affected by natural disasters, inventors may
hold higher expectations about the future valuation of green goods (Ej[d,] > EI[d;]), while
inventors in unaffected areas may hold lower expectations (Ej[6;] < E[d;]). For our welfare
analysis, we assume that the social planner takes this average expectation as given when
choosing the optimal innovation rate. We define the planner belief as E[5,] = E[0;].
Inventors derive utility both from the profits of their innovation activity and from the
intrinsic satisfaction of pursuing research. For tractability, we assume the factors are linearly

separable in the utility function.
Ui (z15) = Il (z) + iz,

where the parameter a captures the weight on monetary rewards, while y; reflects the in-
ventor’s intrinsic motivation—specifically, the non-pecuniary utility derived from engaging
in green innovation. Intrinsic motivation may stem from ethical concerns, a sense of moral
responsibility, or personal interest in mitigating climate change. Importantly, u; may vary
across regions and can be shaped by local experiences, such as exposure to natural disasters.
Inventors with a high y,; are thus more likely to engage in green innovation for its own sake,
independent of financial incentives. At the time of investing in research, inventors form

expectations over output and profitability, conditional on successful innovation:

1 1 1
El[yM]] = E[pM]] = nyl[(sj]c7 and El[ﬂ-M]] =1- W? (11)

Local expectations v#1%! shape the profit component of utility and are critical for investment
decisions. A formal derivation of expected demand and profits is provided in Section of
the Online Appendix ]

In markets where no innovation takes place, the duopolists engage in price competition.
If they can collude perfectly, they charge the monopoly price and share profits equally.
They are constrained by the competitive fringe. In contrast, under full competition, firms
bid prices down to marginal cost. Following Aghion et al. (2005)), we model the intensity
of competition as A; € [1/2,1], where A; = 1 corresponds to Bertrand competition and

A; = 1/2 reflects full collusion. Duopoly profits thus depend on the degree of competition

23For comparison, the social planner holds expectations based on the average valuation across locations,

represented by vF1%1. These average beliefs determine the socially optimal direction and scale of innovation
across regions. See Section in the Online Appendix for the welfare analysis.
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in sector 7, and are a fraction of expected monopoly profits:
Ey [mpi(A;)] = (1= Ay) By [ma;] - (12)

Given this structure, the locally expected price under imperfect competition is:

C C

(1—A)Elmy]  1-2(1-A;) (1—~

Eilpi(Ag)] = 1— B € e, Eilpuyl],  (13)

and the corresponding expected output is:

Bl = gy = 3 (1= 20 4) (=750 € [l t | a0

T Elp(A)] e

A local inventor in region [ and sector j with an R&D opportunity maximizes

K

max, U (21, 8, E1(6), 1) = @ <zlel [mari] + (1 = 2i3) B [mp; (A)] — 5%) + 215
2l )

where successful innovation yields monopoly profits, and failure yields the duopoly profits

dependent on the level of competition. The stronger the competition is, the larger the benefit

of escaping competition by innovating becomes. Competition acts as a wedge between the

profits of a successful inventor and the profits that inventors can reap in the status quo. The

first-order condition of a local inventor with respect to the research rate is:

E |- E (A
2 = mm{ 1 [ ,.;l (7, (A;)] i %, 1} . (15)
Using with and , we get:
_ A Ey[my] i A 1 i,
le(Aj,El<5j),,ul) = T + % = ? 1—W +& (16)

N————

Monetary Incentives  Intrinsic Motivation

The optimal research rate consists of two additive components: the first reflects the mon-
etary incentives to innovate, while the second captures the inventor’s intrinsic motivation.
The monetary incentive term increases with the intensity of competition A; and with lo-
cal beliefs about the profitability of green goods, captured by E;[d;]. Intuitively, when
competition is intense (i.e., A; is high), duopoly profits are low, making the gains from
obtaining monopoly status through successful innovation more attractive. Similarly, higher

expected consumer valuation for green goods leads to higher expected monopoly profits,
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further incentivizing R&D. Formally, innovation effort is increasing in both arguments:

SZJ: > 0, %{g] > 0. Moreover, these forces are complements, as shown by the positive
J J
2 s . . . .
cross—derivative:#% > (. Competition and demand expectations thus reinforce each
J J

other. In monopolistic markets, inventors already earn high rents from non-green products
and respond little to shifts in consumer preferences. In contrast, under competitive pressure,
inventors can escape price competition by innovating. When environmental quality matters
to consumers, green innovation becomes a path to monopoly. Expected profits rise with
both stronger demand expectations and higher competition.

The second term in Equation reflects intrinsic motivation, scaled by the inventor-

specific parameter p;. Importantly, this component is unaffected by market competition,
822’“

EINED

environmental concern or personal satisfaction—invest in green innovation regardless of the

= 0. This implies that inventors motivated purely by intrinsic factors—such as

as:

competitive landscape. Competition only plays a role for those inventors who value monetary

rewards. Figure [7] visualizes these comparative statics]
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Figure 7: Innovation Responses dependent on Competition A;

Note: The figure on the left plots inventors’ innovation response dependent on their expectations E;(§;) and the level of competition when
intrinsic motivation plays no role (a« — oo). The figure on the right plots innovation responses only dependent on inventors’ intrinsic motivation
py, i.e. for § = 0.

Hypothesis 1: Inventors facing fiercer competition (large A;) increase their research
output more whenever their profitability expectations increase due to exposure to a natural

disaster.

In line with these comparative statics, we formulate the above empirically testable hy-

pothesis. We can test Hypothesis 1 explicitly by comparing the response of inventors facing

24The figure is illustrative and highlights qualitative mechanisms. Quantitative implications depend on
the specific calibration. For details, see Section @ in the Online Appendix.
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high levels of competition with those facing low levels of competition. We confirm this
empirically in Table [7] in Section [6.2.1] which provides compelling evidence that shifts in
higher-order beliefs significantly influence inventors’ innovation decisions. Intuitively, be-
cause competition only affects pecuniary incentives, differences in competition levels should
impact only those inventors driven by monetary rewards. Purely intrinsically motivated in-
ventors would respond to exposure irrespective of the level of competition (see the right-hand
panel of Figure [7]).

Generally, the overall (private) innovation rate in the economy is the average across all
sectors j and locations [, which is equivalent to the fraction of sectors where innovation is

successful

L= / / 25 (A, (85, ) F(DALF ().

Let

2= [ 58, B w6

denote the research rate that would be achieved if all local inventors had the same (average
across regions ) expectation on future environmental profitability E;(5;) = F(;) VI and
intrinsic motivation p; = 1 VI. We can then compare z with the aggregate private research

rate 2).

Assumption 1: Assume that the E;(0;) are not degenerate, i.e., there exists some j
such that
1 7& l/ with El(5j) 7é El’((;j)-

Assumption 1 simply states that not all regions have identical expectations regarding future
environmental demand. At least one region must differ in expectations, reflecting realistic
variation in the exposure to natural disasters.

Proposition 1: Under Assumption 1, we get that:

(i) 2o
s= [ [ milmsasin - [ [ (521 s) + 22) rwasi

The research rate achieved under average expectations is larger than the research rate

(17)

achieved when expectations are heterogenous across regions. See Section in the Online
Appendix for our proof of Proposition 1. Proposition 1 demonstrates that heterogeneous

regional expectations generate inefficiencies in innovation. Specifically, due to the convexity
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of innovation costs, having uniform (average) expectations across regions would achieve ei-
ther higher total innovation for the same cost, or the same innovation level at a lower cost,
compared to a scenario where regions differ in their expectations.

Given the inefficiencies arising from heterogeneous expectations illustrated in Proposi-
tion 1, we investigate the implications of these inefficiencies for welfare. In Section in
the Online Appendix, we show that the socially optimal rate of innovation is strictly higher
than the privately chosen rate. Private innovation decisions systematically underreact to
climate risks due to localized belief formation, imperfect competition, and a failure to fully
internalize environmental externalities. Proposition 2 in the Appendix formalizes this result
and quantifies these welfare inefficiencies. This underscores a clear rationale for policy inter-
ventions, such as enhancing climate awareness or subsidizing clean innovation in less-affected

regions.

6.1.1 Building on the Shoulders of Giants & Market Size

We futher extend the model to incorporate market size effects, drawing on the literature
on directed technical change, which emphasizes that the profitability of innovation increases
with market size—a feature often referred to as “building on the shoulders of giants” (Ace-
moglu 2002; Acemoglu 2007; see also Acemoglu et al. |2012| for an application to green
technologies). To do so, we explicitly model the cost of research as depending on the size of
the market for green goods K (n;) with ’27—5_( < 0. We then get that for any level of research
effort z; < 1, investing K (77j),zj2 /2 units of labor yields, with probability z;, a green innova-
tion. See section in the Online Appendix for an alternative modeling assumption, where
the step size of innovation ~, as opposed to the cost, depends on market size. Results are
qualitatively the same.

Similar to equation (|16|), we have that the optimal private research rate is chosen accord-
ing to:

A By [ma;]

N | N oA _ 1 Al
2 (8 Bil05), pusmj) = K(m)  aK(n) K@) <1 ’YE’[‘Sj]) Tk ()

The optimal private research rate increases in the size of the market Z’:? > 0. Additionally,
J

inventor expectations about the profitability of a green good Ej(d,) and the market size of

8221]' o). . .
T 0BG 0. Intuitively, inventors in large markets

face lower innovation costs and respond more readily to increased expectations about green

the green good 7; are complements:

profitability and increased intrinsic motivation. We plot this comparative static in Section
in the Online Appendix. This allows us to formulate an additional hypothesis:
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Hypothesis 2: Innovation responses to natural disasters increase with the size of the

6221]' 82?11]‘
On;OE|4;] > 0 and onjom

following exposure to natural disasters is larger in markets where the green technology market

green good market > (0 . Put differently, the increase in innovation

is bigger.

The main takeaways of our model are as follows: First, inventors facing stronger compe-
tition increase their research effort more in response to higher profitability expectations after
natural disaster exposure. Since competition only affects pecuniary incentives and not in-
trinsic motivation, evidence supporting Hypothesis 1 would show that shifts in higher-order
beliefs about future profits play a key role in driving innovation decisions. Second, heteroge-
nous salience of climate change leads to higher aggregate costs for the same research output
than homogenous salience of climate change would. This is due to research costs being con-
vex. Third, a larger green good market induces stronger responses to changes in inventors
intrinsic utility and expectations about consumers’ valuation of green goods. Fourth, the

overall private research rate in the economy is lower than the socially optimal research rate.

6.2 Empirical Results on Model Hypothesis

In this section, we test how market conditions and changes in inventors’ expectations interact.
Our findings reveal that first, a well-functioning market is essential to ensure that inventors
respond to changes in the salience of climate change. Second, disaster induced changes in

inventors monetary expectations matter for their innovation.

6.2.1 Competition

We first empirically test Hypothesis 1 of the model: inventors in more competitive industries
should exhibit stronger green innovation responses to natural disaster exposure than those
in less competitive industries. To briefly summarize the intuition behind this hypothesis: a
monopolist does not have incentives to pursue green innovation, as green product differentia-
tion does not increase her profits above the monopoly profits she already enjoys. An inventor
in a competitive environment, on the other hand, stands to gain substantial monetary gains
from differentiating their product.

To empirically test this hypothesis, we measure competition using industry-level profit
margins from CompNet (2022), following Aghion et al. (2023). Higher profit margins reflect
lower competition. A key advantage of this measure is that it captures international com-
petition, unlike the Herfindahl-Hirschman index, which is country-specific. The CompNet
database consolidates administrative firm-level data across European countries and reports

aggregated indicators at various levels of industry and geography. For France and Germany,
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the data are available from 2003 and 2001, respectively. Both CompNet and PATSTAT
use the European Classification of Economic Activities (NACE Rev. 2), allowing us to link
patent filings to industry-level competition at the 2-digit level—the most granular available
in CompNet. For patents associated with multiple industries, we use industry weights to
compute a composite measure. For each patent, we calculate the associated profit margin
M (@) of patent i as:

(marginge; + marginge—1)
M, = g Wic g Wik X 5
c k

where w;. represents the share of patent ¢’s inventors living in country ¢, and w;; denotes the
marginge ++marginge 1
2

is the average profit margin of industry k& in country ¢ during the year of filing and the prior

weight with which the patent belongs to a specific industry k. Lastly,

year. The profit margin M;; of a patent ¢ is thus the weighted average of the profit margins
faced by its inventors at the time of invention and the year prior. For example, if a patent
related to the automotive industry was filed in 2004 by one French and one German inventor,
the associated profit margin would be the mean of the profit margins for both the German
and French automotive industries in 2003 and 2004. In Online Appendix section [B.10] we
show our results for a 1-year and 3-year window of the profit margin. Results are similar.
Instead of splitting the sample based on the overall median level of competition across
all patents, we conduct the split within industries. This avoids comparing structurally dis-
tinct sectors—such as the highly competitive LED industry and the less competitive airline
industry—that may differ for reasons unrelated to competition intensity. Instead, we com-
pare patents within a given industry during periods of relatively high and low competition.
We define the “high-competition” group as patents with above-median competition within
their industry, and the “low-competition” group as those below the within-industry median.
To implement this, we calculate a patent-specific benchmark competition level (BMC;),
based on the median competition level of each 2-digit NACE industry across all years. For

each patent 7, we compute:
BMC; = Z Wic Z w;, X median(margin), .
c k

where median(margin),  denotes the median competition level in industry & and country c,
computed over the entire sample period. The weights w;. and w;, reflect the country and
industry affiliations of patent 7, respectively. If a patent’s observed competition level M,
exceeds its benchmark BMC;, it is classified into the high-competition group; otherwise,

it is assigned to the low-competition group. Since this procedure leads to different sample
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averages across groups, we normalize the outcome variable by the sample mean within each
group to ensure comparability of results.

After splitting, we aggregate patents at the regional level separately for the high- and low-
competition samples, resulting in two distinct region-by-year panels. For each sample, we
estimate a difference-in-differences regression that compares changes in patenting activity
before and after natural disasters across affected and unaffected regions. This allows us
to separately identify the effect of natural disaster exposure on patenting for inventors in
highly competitive and less competitive markets. By comparing the estimated disaster effects
across the two groups, we can assess whether stronger pecuniary incentives (i.e., greater
competition) amplify inventors’ responses to disaster exposure. Columns (1) and (2) in
Table [7] show our results.

Table 7: Competition and Green Product Split

Dependent variable: P(Y02;)

Competition Cutoff Greenness Cutoff
High-Competition  Low-Competition = Above Median Below Median
(1) (2) (3) (4)

Cumulative Count 0.104*** 0.007 0.088*** 0.063***

(0.022) (0.033) (0.011) (0.009)
Country-Year F.E. Yes Yes Yes Yes
Region F.E. Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes
Wald-test p-value 0.0365* 0.0307*
Sample Mean 1.9854 1.284 1.335 1.3248
Observations 8,283 8,283 14,307 14,307
R? 0.653 0.535 0.625 0.788
Adj. R? 0.617 0.486 0.603 0.776

Note: This table reports the results for our tests of the model’s comparative statics. Columns (1)-(2) split the sample based on competition, while columns
(3)-(4) split based on the greenness of the industry’s products. Cumulative count is the count of past natural disasters. The Wald-tests examine if the coefficient
(Beq1 —Beq2)?
Var(Beq1 —Beq2) |
Var(Beql) + Var(éeqz) -2 Cov(éeql, éeqz), We can reject the Null hypothesis Hq : 8, = 8; against the alternative (Hy : 8}, > ;) with the reported p values.
Competition is measured as the average across filing year and the previous year. Greenness is calculated as average green product share across filing year and

the previous year. Standard errors are clustered at the region level and reported in parentheses. Significance levels: *p < 0.1; **p < 0.05; ***p < 0.01.

for cumulative disaster count significantly differs between splits. We construct a Wald-test of the form W = where: Var(ﬁcql - chg) =

Inventors respond significantly more strongly to natural disaster exposure when operating
in highly competitive environments. This finding provides strong support for our hypothesis
and is consistent with the predictions of our theoretical model. The difference in response
between high- and low-competition settings is both economically and statistically significant;
we reject the null of coefficient equality with a p-value of 0.0365** (see Table |7 and the
accompanying Wald test).

The lack of a response in low-competition environments suggests that pecuniary incen-
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tives play a central role in driving the observed innovation effects. If responses were primarily
driven by intrinsic motivation, we would expect to see effects even in less competitive set-
tings. Monetary incentives matter for how innovation responds to climate change. Our
results highlight the importance of functioning competitive markets in enabling innovation

to respond to climate-related shocks.

6.2.2 Green Good Demand

We next test Hypothesis 2, which predicts that a larger green goods market amplifies inven-
tors’ response to natural disaster exposure, as market size reduces the cost of innovation.
To empirically capture green market size, we use data from PRODCOM, a Eurostat
database that reports annual production values for over 4,000 manufactured goods in Eu-
rope. Each product is classified using an 8-digit PRODCOM code, with the first four digits
aligned to NACE industry codes. We identify green goods using the taxonomy developed
by Bontadini and Vona (2023)), which refines earlier lists compiled by the WTO and OECD.
We update their list to reflect changes in PRODCOM codes over time (see Appendix
and restrict to data from 1995 to 2014 for France and Germany. For each industry-year cell,

we compute the share of green goods by production value:

Z gyjt,g (18)
Zg yjt,g + an yjt,ng

Green Sharejt =

where y;; , and y;¢ g denote the production values of green and non-green products, respec-
tively, in industry j and year t. We assign each patent a corresponding green market share
based on the industries to which it is linked. Since patents may span multiple industries, we

compute a weighted average using industry weights w;;:

Green Sharejt + Green Sharejt — 1
2

Green Share Patenti = Zwij : (19)

J

where t is the filing year. This characterizes each patent by the green intensity of its market
environment in the year of filing and the prior year. Results are robust to using a 1-year
or 3-year window instead (Appendix [B.11]). We then split the sample of green patents by
whether they fall above or below the median green market share and estimate regressions
separately for each group. Results are presented in columns (3) and (4) of Table 7]

We find that market size plays a significant role in shaping inventors’ responses. Inventors
in industries with larger green product markets respond more strongly to disaster exposure

than those in less developed green markets. The difference is statistically significant (Wald
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test p-value = 0.0307). These results align with the predictions of the directed technical
change framework: larger green markets amplify the expected returns to green innovation
following disaster exposure. Since market size and inventor expectations are complementary,
the effects are strongest where both are aligned.

Together, these findings underscore the central role of market incentives in shaping in-
novation responses to climate change, and the importance of well-functioning, competitive

markets in ensuring that inventors act on heightened climate salience.

7 Conclusion

This paper demonstrates that personal experiences affect inventors’ research choices, bridging
the literatures on experience effects and the drivers of innovation. We show that experiencing
natural disasters significantly increases the invention of green technologies aimed at mitiga-
tion. This effect is highly localized and depends on direct personal experience. The effect is
stronger in competitive markets and sectors with preexisting green demand.

Our empirical findings and theoretical framework point to a central mechanism: natural
disaster exposure alters inventors’ higher-order beliefs about consumer beliefs, increasing
expectations of future green demand and regulatory tightening. This raises the perceived
profitability of green R&D. The effect is strongest in competitive markets, where firms are
more responsive to shifts in expected demand. While intrinsic motivation may also matter,
our results highlight the central role of profit expectations in shaping innovation responses.
These findings extend the experience-effects literature to the production side of the economy.
Prior work has shown how personal experiences shape household expectations; we show they
also influence high-stakes investment decisions with global implications.

We document an endogenous channel through which climate shocks affect the direction
of technological change. Climate change is among the defining challenges of the twenty-first
century. Its projected impacts—including more frequent floods (Hirabayashi et al. 2013}
Roudier et al. 2016), deteriorating environmental conditions (Intergovernmental Panel on
Climate Change (IPCC) 2023), and sea-level rise between 30 and 240 centimeters (Jackson
2022)—are both severe and global in scope. The economic literature highlights technological
innovation, particularly in mitigation, as essential to addressing these risks (Acemoglu et al.
2012; Acemoglu et al. [2016). Yet, how innovation itself responds to climate change remains
insufficiently understood. Our results suggest that forward-looking technological change may
be more adaptive to rising climate risk than is typically assumed in integrated assessment
models.

Beyond its theoretical contributions, our study has practical implications for policy. A
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well-functioning market and consumers’ belief in anthropogenic climate change are crucial
to ensuring that inventors act on increases in climate change salience. The local nature
of responses, however, leads to inefficiencies. This indicates that coordinated policies could
enhance the global benefits of climate-related technological progress. Our findings emphasize

the role of private-sector incentives in shaping climate change-mitigating innovation.

References

Acemoglu, D. (2002). “Directed Technical Change”. In: The Review of Economic Studies
69.4, pp. 781-809.

— (2007). “Equilibrium Bias of Technology”. In: Econometrica 75.5, pp. 1371-1409.

Acemoglu, D.,; P. Aghion, L. Bursztyn, and D. Hemous (2012). “The Environment and
Directed Technical Change”. In: American Economic Review 102.1, pp. 131-166.

Acemoglu, D., U. Akcigit, D. Hanley, and W. Kerr (2016). “Transition to Clean Technology”.
In: Journal of Political Economy 124.1, pp. 52—-104.

Acemoglu, D. and J. Linn (2004). “Market Size in Innovation: Theory and Evidence from
the Pharmaceutical Industry*”. In: The Quarterly Journal of Economics 119.3, pp. 1049
1090.

Ackerman, F., S. J. DeCanio, R. B. Howarth, and K. Sheeran (2009). “Limitations of inte-
grated assessment models of climate change”. In: Climatic Change 95.3, pp. 297-315.
Agatz, N., Y. Fan, and D. Stam (2021). “The Impact of Green Labels on Time Slot Choice
and Operational Sustainability”. In: Production and Operations Management 30.7, pp. 2285—

2303.

Aghion, P., U. Akcigit, A. Hyytinen, and O. Toivanen (2017). The Social Origins of Inventors.
Tech. rep. w24110. National Bureau of Economic Research.

Aghion, P., R. Bénabou, R. Martin, and A. Roulet (2023). “Environmental Preferences and
Technological Choices: Is Market Competition Clean or Dirty?” In: American Economic
Review: Insights 5.1, pp. 1-20.

Aghion, P., A. Bergeaud, M. Lequien, and M. J. Melitz (2024). “The Heterogeneous Impact
of Market Size on Innovation: Evidence from French Firm-Level Exports”. In: The Review
of Economics and Statistics 106.3, pp. 608-626.

Aghion, P.,; N. Bloom, R. Blundell, R. Griffith, and P. Howitt (2005). “Competition and
Innovation: An Inverted-U Relationship”. In: The Quarterly Journal of Economics 120.2,
pp. 701-728.

43



Aghion, P.; A. Dechezleprétre, D. Hémous, R. Martin, and J. Van Reenen (2016). “Car-
bon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto
Industry”. In: Journal of Political Economy 124.1, pp. 1-51.

Aghion, P. and P. Howitt (1992). “A Model of Growth Through Creative Destruction”. In:
Econometrica 60.2, pp. 323-351.

Akcigit, U., J. Grigsby, and T. Nicholas (2017). The Rise of American Ingenuity: Innova-
tion and Inventors of the Golden Age. Tech. rep. w23047. National Bureau of Economic
Research.

Angeletos, G.-M. and Z. Huo (2021). “Myopia and Anchoring”. In: American Economic
Review 111.4, pp. 1166-1200.

Azoulay, P., J. S. Graff Zivin, D. Li, and B. N. Sampat (2019). “Public R&D Investments
and Private-sector Patenting: Evidence from NIH Funding Rules”. In: The Review of
Economic Studies 86.1, pp. 117-152.

Banerjee, S., R. Kaniel, and I. Kremer (2009). “Price Drift as an Outcome of Differences in
Higher-Order Beliefs”. In: The Review of Financial Studies 22.9.

Barreca, A., K. Clay, O. Deschenes, M. Greenstone, and J. S. Shapiro (2016). “Adapting to
Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship
over the Twentieth Century”. In: Journal of Political Economy 124.1, pp. 105-159.

Bastone, K. (2018). Behind the Curtain at BioLite. https://www.outsideonline . com/
business-journal/brands/biolite-behind-curtain/.

Bell, A., R. Chetty, X. Jaravel, N. Petkova, and J. Van Reenen (2019). “Who Becomes an
Inventor in America? The Importance of Exposure to Innovation*”. In: The Quarterly
Journal of Economics 134.2, pp. 647-713.

Bloom, N.; M. Schankerman, and J. Van Reenen (2013). “Identifying Technology Spillovers
and Product Market Rivalry”. In: Econometrica 81.4, pp. 1347-1393.

Bloom, N. (2007). “Uncertainty and the Dynamics of R&D”. In: American Economic Review
97.2, pp. 250-255.

Bontadini, F. and F. Vona (2023). “Anatomy of Green Specialisation: Evidence from EU
Production Data, 1995-2015". In: Environmental and Resource Economics 85.3, pp. 707—
740.

Bordalo, P., N. Gennaioli, and A. Shleifer (2012). “Salience Theory of Choice Under Risk”.
In: The Quarterly Journal of Economics 127.3, pp. 1243-1285.

— (2022). “Salience”. In: Annual Review of Economics 14.1, pp. 521-544.

Boustan, L. P., M. E. Kahn, P. W. Rhode, and M. L. Yanguas (2020). “The effect of natural
disasters on economic activity in US counties: A century of data”. In: Journal of Urban
Economics 118, p. 103257.

44


https://www.outsideonline.com/business-journal/brands/biolite-behind-curtain/
https://www.outsideonline.com/business-journal/brands/biolite-behind-curtain/

Cai, Y. (2020). The Role of Uncertainty in Controlling Climate Change.

Calel, R. and A. Dechezleprétre (2016). “Environmental Policy and Directed Technological
Change: Evidence from the European Carbon Market”. In: Review of Economics and
Statistics 98.1, pp. 173-191.

CBS News (2006). The Brain Behind Netfliz. https : //www . cbsnews . com/news / the -
brain-behind-netflix/.

Chae, R. L., R. Siddiqui, and Y. Xu (2025). “Vulnerability to natural disasters and sustain-
able consumption: Unraveling political and regional differences”. In: Proceedings of the
National Academy of Sciences 122.5, €2409851122.

Chaisemartin, C. de and X. D’Haultfceuille (2024). Difference-in-Differences Estimators of
Intertemporal Treatment Effects. SSRN Scholarly Paper. Rochester, NY.

Chaisemartin, C. de and X. D’Haultfoeuille (2023). “T'wo-way fixed effects and differences-in-
differences with heterogeneous treatment effects: a survey”. In: The Econometrics Journal
26.3, pp. C1-C30.

Coibion, O., Y. Gorodnichenko, S. Kumar, and J. Ryngaert (2021). “Do You Know that
I Know that You Know...? Higher-Order Beliefs in Survey Data*”. In: The Quarterly
Journal of Economics 136.3, pp. 1387-1446.

CompNet (2022). CompNet 2022, User Guide for the 9th Vinate of the CompNet Dataset.
Tech. rep.

De Rassenfosse, G., J. Kozak, and F. Seliger (2019). “Geocoding of worldwide patent data”.
In: Scientific Data 6.

Dechezleprétre, A., A. Fabre, T. Kruse, B. Planterose, A. Sanchez Chico, and S. Stantcheva
(2022). Fighting Climate Change: International Attitudes Toward Climate Policies. Work-
ing Paper.

Dechezleprétre, A., Y. Méniere, and M. Mohnen (2017). “International patent families: from
application strategies to statistical indicators”. In: Scientometrics 111.2, pp. 793-828.
Dechezleprétre, A., C. B. Muckley, and P. Neelakantan (2021). “Is firm-level clean or dirty

innovation valued more?” In: The Furopean Journal of Finance 27.1-2, pp. 31-61.

Demski, C., S. Capstick, N. Pidgeon, R. G. Sposato, and A. Spence (2017). “Experience
of extreme weather affects climate change mitigation and adaptation responses”. In:
Climatic Change 140.2, pp. 149-164.

Dernis, H. and M. Khan (2004). Triadic Patent Families Methodology. OECD Science, Tech-
nology and Industry Working Papers 2004 /02.

Djourelova, M., R. Durante, E. Motte, and E. Patacchini (2024). “Experience, Narratives,
and Climate Change Beliefs”. In: SSRN Electronic Journal.

45


https://www.cbsnews.com/news/the-brain-behind-netflix/
https://www.cbsnews.com/news/the-brain-behind-netflix/

Duckworth, J. J., M. Randle, L. S. McGale, A. Jones, B. Doherty, J. C. G. Halford, and P.
Christiansen (2022). “Do front-of-pack ‘green labels’ increase sustainable food choice and
willingness-to-pay in U.K. consumers?” In: Journal of Cleaner Production 371, p. 133466.

Eisensee, T. and D. Stromberg (2007). “News Droughts, News Floods, and U. S. Disaster
Relief*”. In: The Quarterly Journal of Economics 122.2, pp. 693-728.

EUROSTAT (2025). PRODCOM.

Feng, J., X. Jaravel, and E. Einio (2021). “Social Push and the Direction of Innovation”. In:
Academy of Management Proceedings 2021.1, p. 10143.

Gallagher, J. (2014). “Learning about an Infrequent Event: Evidence from Flood Insurance
Take-Up in the United States”. In: American Economic Journal: Applied Economics 6.3,
pp- 206-233.

Giuliano, P. and A. Spilimbergo (2024). Aggregate Shocks and the Formation of Preferences
and Beliefs. Working Paper 32669. National Bureau of Economic Research.

Guha-Sapir, D., R. Below, and P. Hoyois (2022). EM-DAT — The international disasters
database.

Hall, B. H., A. Jaffe, and M. Trajtenberg (2005). “Market Value and Patent Citations”. In:
The RAND Journal of Economics 36.1, pp. 16-38.

Harhoff, D., F. Narin, F. M. Scherer, and K. Vopel (1999). “Citation Frequency and the Value
of Patented Inventions”. In: The Review of Economics and Statistics 81.3, pp. 511-515.

Hassler, J., P. Krusell, and C. Olovsson (2012). Energy-Saving Technical Change. Tech. rep.
w18456. Cambridge, MA: National Bureau of Economic Research, w18456.

Herrnstadt, E. and E. Muehlegger (2014). “Weather, salience of climate change and congres-
sional voting”. In: Journal of Environmental Economics and Management 68.3, pp. 435—
448.

Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H.
Kim, and S. Kanae (2013). “Global flood risk under climate change”. In: Nature Climate
Change 3.9, pp. 816-821.

Hulme, M., E. M. Barrow, N. W. Arnell, P. A. Harrison, T. C. Johns, and T. E. Downing
(1999). “Relative impacts of human-induced climate change and natural climate variabil-
ity”. In: Nature 397.6721, pp. 688-691.

Huo, Z. and N. Takayama (2024). “Rational Expectations Models with Higher-Order Beliefs”.
In: Review of Economic Studies, rdae096.

Intergovernmental Panel on Climate Change (IPCC) (2023). Climate Change 2022 — Impacts,
Adaptation and Vulnerability: Working Group II Contribution to the Sizth Assessment
Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge Uni-

versity Press.

46



Jackson, R. (2022). The Effects of Climate Change.

Jaffe, A. B. and G. de Rassenfosse (2017). “Patent citation data in social science research:
Overview and best practices”. In: Journal of the Association for Information Science and
Technology 68.6, pp. 1360-1374.

Jones, B. F. (2021). “Science and innovation: The under-fueled engine of prosperity”. In:
Rebuilding the Post-Pandemic Economy, ed. Melissa S. Kearney and Amy Ganz (Wash-
ington DC: Aspen Institute Press, 2021).

Jones, B. F. and L. H. Summers (2020). A Calculation of the Social Returns to Innovation.
Working Paper.

Kalatzi Pantera, D., T. Bohmelt, and Z. Bakaki (2023). “The transnational influence of
natural disasters on environmental attitudes”. In: Furopean Journal of Political Research
62.3, pp. 761-780.

Kuchler, T. and B. Zafar (2019). “Personal Experiences and Expectations about Aggregate
Outcomes”. In: The Journal of Finance 74.5, pp. 2491-2542.

Laudenbach, C., A. Weber, R. Weber, and J. Wohlfart (2023). Beliefs About the Stock Market
and Investment Choices: Fvidence from a Survey and a Field Experiment. SSRN Scholarly
Paper. Rochester, NY.

Le, H., T. Nguyen, A. Gregoriou, and J. Healy (2024). “Natural disasters and corporate
innovation”. In: The European Journal of Finance 30.2, pp. 144-172.

Lorenzoni, G. (2009). “A Theory of Demand Shocks”. In: American Economic Review 99.5,
pp. 2050-2084.

Malmendier, U. and S. Nagel (2011). “Depression Babies: Do Macroeconomic Experiences
Affect Risk Taking?*”. In: The Quarterly Journal of Economics 126.1, pp. 373-416.

— (2016). “Learning from Inflation Experiences *”. In: The Quarterly Journal of Economics
131.1, pp. 53-87.

Manso, G. (2011). “Motivating Innovation”. In: The Journal of Finance 66.5, pp. 1823-1860.

McCrary, J. (2007). “The Effect of Court-Ordered Hiring Quotas on the Composition and
Quality of Police”. In: American Economic Review 97.1, pp. 318-353.

Miao, Q. and D. Popp (2014). “Necessity as the mother of invention: Innovative responses
to natural disasters”. In: Journal of Environmental Economics and Management 68.2,
pp- 280-295.

Moscona, J. and K. A. Sastry (2023). “Does Directed Innovation Mitigate Climate Dam-
age? Evidence from U.S. Agriculture™”. In: The Quarterly Journal of Economics 138.2,
pp. 637-701.

Osberghaus, D. and C. Fugger (2022). “Natural disasters and climate change beliefs: The
role of distance and prior beliefs”. In: Global Environmental Change 74, p. 102515.

47



Owen, A. L., E. Conover, J. Videras, and S. Wu (2012). “Heat Waves, Droughts, and Pref-
erences for Environmental Policy”. In: Journal of Policy Analysis and Management 31.3,
pp. 5H6-577.

Peters, V., W. S. Langford, M. Sanders, and M. P. Feldman (2024). Local Finance and
Economic Resilience During Extreme Weather Events. SSRN Scholarly Paper. Rochester,
NY.

Popp, D. (2002). “Induced Innovation and Energy Prices”. In: American Economic Review
92.1, pp. 160-180.

Rassenfosse, G. de and B. van Pottelsberghe de la Potterie (2009). “A policy insight into the
R&D-patent relationship”. In: Research Policy 38.5, pp. 779-792.

Rosenberg, N. (1998). “Uncertainty and Technological Change”. In: The Economic Impact
of Knowledge. Routledge. 1SBN: 978-0-08-050502-2.

Rosvold, E. L. and H. Buhaug (2021). “GDIS, a global dataset of geocoded disaster loca-
tions”. In: Scientific Data 8.1, p. 61.

Roudier, P., J. C. M. Andersson, C. Donnelly, L. Feyen, W. Greuell, and F. Ludwig (2016).
“Projections of future floods and hydrological droughts in Europe under a +2°C global
warming”. In: Climatic Change 135.2, pp. 341-355.

Schmidheiny, K. and S. Siegloch (2023). “On event studies and distributed-lags in two-
way fixed effects models: Identification, equivalence, and generalization”. In: Journal of
Applied Econometrics 38.5, pp. 695-713.

Stern, S. (2004). “Do Scientists Pay to Be Scientists?” In: Management Science 50.6, pp. 835—
853.

Sun, L. and S. Abraham (2021). “Estimating dynamic treatment effects in event studies with
heterogeneous treatment effects”. In: Journal of Econometrics 225.2, pp. 175-199.

Trajtenberg, M. (1990). “A Penny for Your Quotes: Patent Citations and the Value of Inno-
vations”. In: The RAND Journal of Economics 21.1, pp. 172-187.

ZEW - Leibniz Centre for European Economic Research (n.d.). Mannheim Innovation Panel

(MIP).

48



A Online Appendix - Theory

This appendix formalizes the consumer demand structure, characterizes equilibrium out-
comes for monopoly producers, and offers our proofs. It also includes welfare analysis and

explores alternative ways of modeling market size effects on innovation.

A.1 Demand & Market-Clearing

We consider a consumer with utility
1
U= / Iny;dj, where y; = / Yj.f (qjyf)éj df,
0 Fj

subject to the overall budget constraint

1
/ / Pig Yipdf dj = M.
0o JF

Intra-Good Optimization

For each good j, assume the consumer allocates an expenditure m; (with fol m;dj = M)

across varieties f € F; by solving

max In (/ Yj.f (qj,f)‘;j df)
{vir} F;

J

subject to
/ Pis Yig df = m;.
Fj
Defining
. 6
yj = / Yir (a5.0)™ df,
Fi

the Lagrangian for this subproblem is
L; =In(g;) — X </ Pi.s i df = mj) :
Fj

Taking the first-order condition with respect to y; ¢ gives

AL 7))
(QJZ,jf.) o )‘j Djf = 0 _— % = )\j gjj Vf with Yi.f > 0.
] .77
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Thus, only those varieties that maximize the ratio

(g5.0)"

Dj.f

can receive positive demand. Define

Then all expenditure in good j is allocated to variety f*(7). The budget within good j

therefore satisfies

Pj. () Yi.r() = My,

so that
Yy i
S G) =
P D)
and
_ my; 5
G = ———(qj.5-()"-
Pj.r*(5)

Allocation Across Goods

Substituting the expression for g; into the overall utility yields

! m,; ) . ! .
U :/ 1”[ — (qj,f*(j)>6jl dj =/ {lﬂmj — Inpj ) + 0; ln(qj,f*(j))}d]'
0 Pj.r () 0

The allocation {m;} is chosen subject to

1
0

Form the Lagrangian for the allocation across goods:

1 1 1 1
£ = / In mj dj — / lnpj,f*(j) d] + / 53' ln(qj,f*(j)) d] + 9 (M — / mj dj) .
0 0 0 0

Taking the derivative with respect to m; for each j gives

1 1
— =0 = =—, V7.
m; My 0’ J
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Then fol m; dj = M implies

Hence, the optimal allocation is
m; =M for all j € [0, 1],
so that each good j receives an equal share of the total budget.

Characterization of Expected Monopoly Outcomes

Due to the structure of consumer demand, a successful inventor who upgrades quality by a
factor v faces the unsuccessful producer whose quality remains one “step” behind, geomp =
qm /7, and who sells at marginal cost ¢. Indifference between the innovator’s variety and

that of her competition requires

Pirj (QM)(;] = Pcomp (QM/")/) I = My = f)/éj c.

With total expenditure on good j normalized to one, this implies

1 1 C iy
= — = ——, Ty =1l-— =1-77%
Pmj AENE Pmj

Taking local expectations Ej[-] over J; immediately yields

1 1 1
Eylyn;] = Elpo] B0 ¢ Eylmyy) =1- S B

as in (11)). Thus, prospective inventors anticipate these output and profits whenever their
R&D succeeds.

A.2 Proof of Proposition 1

In this Section we proof Proposition 1 of Section [f, We know that v > 1 and that for each
J we have: E[d;] > 0. Let

A straightforward calculation shows that

®'(r) =7 "Iny and ®"(z) = —y “(Inv)>.
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Since v=* > 0 for all x > 0 and Invy > 0, it follows that ®”(x) < 0 for all z > 0. Thus, ®
is strictly concave on [0,00). Let the average environmental expectation across regions be:
E(0;) = [, Ea[6;] f(I) dl. Then, by Jensen’s inequality for the strictly concave function ®, we

have

o(B0) > [#(B65) 0 (20)

provided that the Ej[d;] are not degenerate. Explicitly, this is

1 1
ool /l(1 - —’VEZW> F(b)dl.

Multiplying both sides of by the positive constant A;/x yields

A, 1 A, 1

Now, suppose the intrinsic motivation is heterogeneous (i.e., it may vary with 7). The

average of intrinsic motivation y; is defined as: @ = fl wy f(1) dl. Since the intrinsic motivation

r_ [
%_/lom F(D)dl.

Therefore, adding these linear terms to both sides we obtain

Aj 1 I / Aj 1 122 .
29— 1 il )42 . 21
K < VE(JJ')> Tk~ ! [ K yEu1%] T an UCE I (21)

Inequality completes the proof. Notice that the nonlinearity (and hence the strict

inequality) originates solely from the concave function ®; the linear intrinsic motivation

term enters linearly, we have

term averages exactly.

A.3 Welfare

We now turn our eye to societal welfare. Societal welfare depends on quality-adjusted con-
sumption @ for all consumers and the externality dependent on emissions. Consumers are
homogeneous and of mass 1. The welfare problem then boils down to maximizing the utility
of a representative consumer. The level of tomorrow’s emissions depends on current research

input. With consumption expenditure normalized to 1, aggregate emissions are then:

X:/G—WM%H%W%M@ (22)
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Total emissions are the sum of emissions over all sectors where innovation was unsuccessful,
plus all emissions in sectors where innovation was successful with production being ~ times
less polluting. Societal welfare is negatively affected by these emissions with a factor ¢ > 0.
The social planner has expectations:
. 1 1 A 1

[yMJ] E[pMj] 7/E[(Sj]c7 [WM]] ,YE[JJ']

(23)

where 7W is the expectation about the average valuation of a quality improvement ~ in
good market j.

In our setting, the social planner can choose the research rate in every sector j, which
then determines good quality. The social planner maximizes welfare by choosing societal

research rate(s) z;:

— |(1 = %) Bly(A))] + % Elya ) 1] (24)

A [(1 —2) (1= 8)) Elmag,) + 2 Emar,) — K (1)} /2 + ﬂ g

>

The condition

K(n;)2; LB

(1—2)(1— Aj)E[WMj] + 2jE[7er] - ) aK

>0

stipulates that inventors utility is positive and acts as a sort of resource constraint. A then
gives the degree to which inventor profits/utility can be traded off against research costs.
Put differently, A denotes the value the social planner attaches to innovators’ profits/utility.

When A — oo, the social planner simply maximizes inventor profits/utility.
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Proposition 2: Under assumption 1 we get that:

7 (8, E(6;), 1) = Z(Ay, Eil6;),m;)
average e;gectations

VP Elya)
Ely(A;)]
collusion loss

> 2 (A, Ei[o;],my)

S/

1
AK (n;)

+ +0 |Ely(A)] - Blu) /7] | (25)

[ J/

VvV
emission reduction

~
local expectations

If at least one region is differentially affected, in every sector the optimal research rate chosen
by the social planner is strictly larger than the average private research rate. Broken down
by its components, the socially optimal research rate zj’-‘(Aj,Téj), n;) is the research rate
achieved iff all inventors internalize the effects of climate change regardless of their personal
exposure plus a term that corrects the inefficiency from imperfect competition and adds
incentives to innovate in order to reduce emissions. See section in the appendix for
our proof of proposition 2.

In addition to the loss in research rate due to local expectations z; —z;, the overall research
rate is below the societal optimum due to collusion and inventors faifng to internalize the
emission benefit. The loss due to collusion and inventors failing to inernalize the emission
reduction is scaled by the market size of a product j. We believe that a policymaker can likely
observe more, if not all, natural disasters and form better expectations than local inventors
can. Therefore, there is scope for policy to act by raising the salience of climate change in
unaffected regions or, alternatively, incentivizing research in unaffected regions. Based on
the optimal research rate of the social planner, increasing climate change salience unlikely
“hurt,” since the socially optimal research rate also corrects for imperfect competition and
the emission externality.

Lastly, if one is willing to assume that the social planner has a better understanding
of climate change dynamics, such as increased future disaster risk etc., the social planner
could further improve on market outcomes by anticipating how these changes affect future
environmental preferences. If, for instance, market participants systematically underestimate
future disaster risks such that planner expectations E (6] > W, then there is further scope
for policy by correcting these optimistic (from the point of climate change) beliefs. We indeed
believe that our results point toward the market underestimating the degree of climate
change, as the innovation response is only ever following, and not anticipating, natural

disaster exposure. However, it is less clear that an actual policymaker can fare significantly
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better than the market in this regard.

A.3.1 Proof of Proposition 2

In this section we proof Proposition 2 in Section [A.3|

Let

@550 = [ (575 (1- = ) + 22) s

be defined as the average private research rate in sector j across all regions [. And let

. 1 I
J 1 — =
K (n;) ( 7E(5ﬂ')> T ax

be defined as the research rate achieved if all regions had average expectations. While

Zi (A, E(65), ;)

proposition 1 (equation does not have heterogeneous market size, it is straightforward

to extend to this case, resulting in the following analogous condition Vj:

o () e (a (1) e oo

Therefore, we have that Z;(A;, E£(3;),n;) > zj(A;, Ej[6;],m;). From the social planner’s first-

order condition with respect to z; we get:

- - Bl Elyar ] ) )
— g Ym
25 (A, E(0:),n:) =Z; (A, E(;),n;) + In [ — = |+ |Ely(Ad))] = Elyn,) /v
85 B ) = G BO) 1) 4 I |z m o (B = Bl
average expectations N ~ _ ;6
>0

i i ' 2 El5;] — 1
Pl (o) > 0 holds since we can rewrite equation to E[yMj]V il =1

which, together with (14), implies Ely(A))] < I= VE[‘Sj]E[yMj}.
Secondly, [E[y(A])] — E[yMj]/fy] > 0 holds since from we get that y;(A;) > ya
VA; € [1/2,1] and we additionally have that v > 1,4 > 0.

where In [

v Blya,) ]

A.4 Parameter Calibration - Comparative Statics

Figure plots our comparative static with respect to market size.

This section provides the parameters with which we calibrate our model in order to plot

Figures [7] and
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Figure A.1: Innovation Responses dependent on market size 7;

Note: The figure plots inventors’ innovation response dependent on their expectations Ej(§;) and market size M.

For the purpose of our comparative statics analysis, we calibrate the model with the
following parameters. In the baseline model without market size, we set the scaling constant
of costs to k = 1 and chose v = 2. Innovation intensity, A;, is varied across the representative
values 0, 0.5, and 1, while local expectations £;(d;) are sampled continuously over the interval
[0,1]. The intrinsic utility parameter p; is evaluated on the interval [0, 1].

In the extended model that incorporates market size, we fix the innovation intensity at
A; = 0.5 and maintain v = 2. The market size parameter 7; is evaluated at 0, 0.5, and 1.

j
The function K(n;) is calibrated as

Ky) = (1-051og(1+ 1))

which provides a decreasing and concave relationship in 7; consistent with the assumption

of diminishing marginal effects.

A.5 Alternative Modeling of Market Size

Instead of decreasing costs, we can also model the step-size of innovation to be increasing in
the market size. The quality of a good y; then evolves according to: ¢; = F(I'(n;)), where

I';(k) > 1 denotes the step size of a green innovation which potentially depends on the size

of the market n;. F(.) simply sums over past inventive success. When %ﬂ@ > 0 the step

J
size increases with market size.

The privately chosen research rate in the economy is then given by:

AE) [Ty 1 A 1 1
23 (A8, Ei(05), ) = % += == (1 - W) + (28)

aKr K aKr
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As long as consumers somewhat value the greenness of a good Ej(d;) > 0, the returns to

innovation increase with larger step size I'(n);). Therefore, the privately chosen research rate

lej
or'(n;)
or'(n;)

the shoulders of giants > 0, this implies that the research rate increases in the size of
J

the green market of good j. Similar to the interpretation above, this is borrowed from the

increases in the step size > 0 VI, j. Together with the feature of inventors standing on

literature on directed technical change, where a larger market for e.g. green goods implies
higher gains from innovation in that market (see Acemoglu 2002, Acemoglu 2007, Acemoglu
et al. [2012).

Assumption 2: Assume that I'(n;) and Ej(;) are reasonable small such that £;(9;)In(I'(n;)) <
1. Intuitively, when this term is instead larger than 1, it implies that either the step size is
significantly larger than I'(n;) > 2 or consumers value the quality of a good relatively more
than its consumption value 6 > 1. I'(n;) > 2 would imply a doubling of quality with every

innovation, a somewhat unrealistic proposition. Under assumption 1, we have positive cross
82le
On;OE[5;]

derivatives > (. We can then derive a hypothesis in the same spirit as hypothesis 2.

Hypothesis 2b: In addition to assumption 2, assume the world is such that inventors

L(

stand on the shoulders of giants 86—7777?) > 0. Then, in markets where green products are al-
J

ready proliferated (large 7;) inventors respond more strongly to increases in their expectation
Ei(6;).

B Online Appendix - Empirical Analysis

This appendix provides empirical robustness checks and supplementary analyses for the main
paper. It includes results verifying the robustness of findings to different technology trend
controls, examines heterogeneity by technology class and subclass, explores spillover effects
across neighboring regions, and tests robustness to alternative definitions of green innovation
and disaster exposure. Additionally, it assesses heterogeneity based on inventor experience,

disaster severity, disaster type, competition intensity, and green market size.

B.1 Alternative Estimator

To address concerns about heterogeneous treatment effects in difference-in-differences de-

signs, we re-estimate our main green innovation results using the estimator proposed by
Chaisemartin and D’Haultfceuille (2023) and Chaisemartin and D’Haultfeeuille (2024]). This

estimator remains valid under treatment effect heterogeneity and serves as a robustness check
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for our baseline specification in Equation ({4]).

In contrast to our preferred approach, which uses all untreated regions as controls re-
gardless of treatment history, the alternative estimator restricts comparisons to regions with
identical treatment trajectories up to period t — 1. For example, it compares regions with
two prior disasters that receive a third at time ¢, to regions with the same prior exposure
that are not treated at £. Once a control region becomes treated, it drops out of the control

group. As a result, the control group diminishes over time as more units receive treatment.
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Figure B.1: Patenting following Exposure to a Natural Disaster — Estimator of Chaisemartin
and D’Haultfceuille 2023; Chaisemartin and D’Haultfeeuille 2024

Note: This figure depicts the results of our preferred event-study using the estimator of Chaisemartin and D’Haultfceuille (2023) and Chaisemartin
and D’Haultfeeuille (2024). Standard errors are clustered at the region level, and confidence intervals are drawn for the 95% interval.

The resulting estimates (Figure B.1]) are somewhat larger and more persistent than those
from our baseline model (Figure |3]). This is encouraging, as it suggests that our findings are
not an artifact of bias introduced by treatment effect heterogeneity. However, the alternative
estimator also introduces trade-offs. The shrinking control group reduces statistical power
in later event periods, and the restriction to regions with identical treatment histories may
limit generalizability.

While it is not entirely clear which approach is more suitable in our context, the quali-
tative similarity across both estimators increases confidence in the robustness of our results.
The alternative estimator offers protection against heterogeneity bias, while our preferred
specification leverages a broader and more interpretable sample. Taken together, the results

from both approaches point to a consistent and significant relationship between disaster
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exposure and green innovation. Given that the TWFE specification produces more conser-
vative estimates and facilitates clearer interpretation, we retain it as our primary approach

in the main analysis.

B.2 Patenting Results without Technology Trend Controls

For most of our analysis, we control for the time-varying regional shares in patenting from
different technology classes C'PCj;. In the long run, these shares might be themselves af-
fected by natural disaster exposure. For the sake of robustness, we reestimate our baseline
specification without controlling for technology trends. Figure [B.2] plots the results of our
event-study specification (4)) without controlling for technology trends C' PCy. Results are
nearly identical to those in Figure [3|
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Figure B.2: Patenting following exposure - without technology trends

Note: This figure depicts the results for our baseline event-study specification, where we compare patenting in regions exposed to natural
disasters to unaffected regions. We drop the technology trend controls. We plot one regression for green and one for non-green patents. The
sample average of green patents per year per region is 2.54, while the sample average of non-green patents is 30.5. These numbers correspond to
the respective denominator for green and non-green patents in equation 4 Standard errors are clustered on the region level, and confidence
intervals are drawn for the 95% interval.

B.3 Green innovation by technology class

In this section of the appendix, we examine whether the baseline effect of natural disas-
ters on green innovation is concentrated in particular technological domains or reflects a

broader pattern across fields. To this end, we replicate our baseline green innovation event
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study specification separately by broad technology/CPC class. Panel A in Figure shows
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Figure B.3: Green innovation response to natural disaster by technology class

Note: This Figure depicts the effects of natural disaster exposure on green patenting for patents from different technology classes (1-digit CPC
classes). The mean number of green patents in CPC classes is as follows: A: 0.114, B: 0.451, C: 0.477, D: 0.054, E: 0.102, F: 0.766, G: 0.221, H:
0.550. Standard errors are clustered on the region level, and confidence intervals are drawn for the 95% interval.

results for classes B (Performing Operations; Transporting), C (Chemistry; Metallurgy), F
(Mechanical Engineering; Lighting; Heating), G (Physics), and H (Electricity). These classes
closely mirror the baseline response in both timing and magnitude, exhibiting a smooth and
persistent increase in green patenting following disasters. This consistency suggests that the
average effect is not driven by any single technological area.

Panel B in Figure presents results for classes A (Human Necessities), D (Textiles;
Paper), and E (Fixed Constructions), where greater heterogeneity is observed. Class D
shows particularly large and volatile effects, while class E remains broadly aligned with the
baseline pattern, albeit with more noise. Class A is the most distinct, possibly reflecting the
different dynamics of green innovation in agriculture and related fields.

Taken together, these results indicate that the positive innovation response to disasters

is not confined to a narrow set of technologies, but is instead distributed across a wide range

of broad CPC classes.

B.4 Subclasses of Y02

Our results suggest that natural disasters are a robust and broad-based driver of green
innovation. This has important implications for understanding the determinants of environ-
mental technological change, as it indicates that external shocks can meaningfully stimulate
patenting activity across a diverse set of green technology fields.

We can split our sample further by a patents respective “green subclass”. See Table
for these subclasses.
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Class Description

YO02A

or land use

Climate change mitigation technologies related to agriculture, forestry,

Y02B Climate change mitigation technologies related to buildings, e.g., hous-
ing, appliances, or related end-user applications

Y02C Capture, storage, sequestration, or disposal of greenhouse gases

YO02D

Climate change mitigation technologies in information and communica-

tion technologies (ICT), aiming at reducing ICT-related energy use

YO2E Reduction of greenhouse gas (GHG) emissions related to energy genera-
tion, transmission, or distribution

YO02P Climate change mitigation technologies in the production or processing

of goods

YO02T Climate change mitigation technologies related to transportation

YO2W
or waste management

Climate change mitigation technologies related to wastewater treatment

Table B.1: Y02 subclasses of climate change mitigation technologies

In Table 2] and Figure we pool subclasses Y02B-Y02W into mitigation technologies.
Figure depicts our results when estimating on the split sample of adaptation and

mitigation technologies.
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(a) Patenting in Mitigation and Adaptation
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(b) Patenting in YO2E and Y02T subclasses

Figure B.4: Green innovation patterns in Germany and France by technology focus

Note: Left panel: Each time we split the sample to only contain technologies from the respective CPC class(es). Therefore the figure depicts 2
separate regressions. The sample average of mitigation patents is 2.323, while the sample average of adaptation patents is 0.2256. Right panel:
This figure plots our baseline specification, when only looking at the YO2E and YO02T subclasses. The sample average of YO2E patents is 0.885,
while the sample average of YO2T patents is 0.933. Standard errors are clustered on the region level and confidence intervals are drawn for the

95% interval.

In Table we report estimates of the effect of natural disaster exposure on different

Y02 green patent subclasses. The outcome variables are subclass-specific indicators for green

patent filings, and the main regressor is the cumulative count of natural disasters over the



past five years. Each column represents a separate regression. All models include country-
year fixed effects, region fixed effects, and CPC-class controls.

We find consistently positive and statistically significant effects across all Y02 subclasses.
The estimated coefficients are significant at the 1% level in all cases and vary in magnitude.
The largest effects are observed in Y02D (energy generation, coefficient = 0.265), Y02C (car-
bon capture and storage, coefficient = 0.178), and Y02B (building technologies, coefficient =
0.137), indicating particularly strong responsiveness in domains most directly tied to energy
systems and emissions mitigation.

Transport (Y02T) and energy conservation (YO2E) technologies, while not associated
with the largest coefficients, are notable for their relatively high baseline levels of patenting
activity and their relevance to energy-saving policy goals. Given their substantive importance
and distinct temporal dynamics, we present separate event-study plots for these subclasses
in Appendix Figure [B.4b]

Taken together, these results demonstrate that the innovation response to natural disas-
ters is not confined to a narrow subset of green technologies, but rather operates across a wide
range of sectors—with particularly strong effects in energy-related and emissions-reducing
fields. This underscores the role of natural disasters as a catalyst for environmentally bene-

ficial technological change.

Table B.2: Regression by Y02 subclass

Dependent variable:
Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W
(1) (2) (3) (4) (5) (6) (7) (8)

Cumulative Count ~ 0.044***  0.137***  0.178"*  0.265"*  0.084"*  0.077*  0.088"*  0.042""*
(0.013)  (0.016)  (0.047)  (0.044)  (0.014)  (0.016)  (0.012)  (0.015)

Country-Year F.E. Yes Yes Yes Yes Yes Yes Yes Yes
Region F.E. Yes Yes Yes Yes Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes Yes Yes Yes Yes
Sample Means 0.226 0.251 0.036 0.075 0.885 0.425 0.933 0.152
Observations 15,813 15,813 15,813 15,813 15,813 15,813 15,813 15,813
R? 0.513 0.486 0.363 0.462 0.628 0.641 0.611 0.421
Adj. R? 0.487 0.459 0.329 0.433 0.609 0.622 0.590 0.390

Note: This table reports the results of our baseline difference-in-differences regression for different subclasses of green patents. We report results for all
subclasses of Y02. Sample Means gives the respective sample means per region-year for these subclasses. Standard errors are clustered on the region
level and are reported in parentheses. P-values are as follows: *p<0.1; **p<0.05; ***p<0.01
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B.5 Most Severe-Disaster Severity

We use EM-DAT data to identify each region’s most severe natural disaster, defined as the
event with the highest recorded number of deaths. We then construct a treatment indicator
that equals one in all years following the region’s most deadly disaster. This specification
restricts treatment to occur at most once per region and allows us to implement the staggered
adoption event-study estimator of Sun and Abraham (2021)), which is designed for settings

where treatment is irreversible and varies in timing.
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Figure B.5: Patenting following the Exposure to the Most Severe Natural Disaster

Note: This figure plots green patenting after the most severe disaster, as measured by deaths, in our sample. We estimate effects using the
estimator of Sun and Abraham (2021). Standard errors are clustered at the region level, and 95% confidence intervals are shown.

Figure shows the resulting event-study estimates. The identifying variation in this
setting comes from comparing regions that have already experienced their most severe disas-
ter to those that have not yet done so. Because treatment is limited to a single (and extreme)
event per region, we reduce concerns about overlapping or serially correlated shocks. At the
same time, this comes at the cost of substantially reduced variation, which leads to increased
standard errors and greater noisiness in the estimated effects.

Despite the reduced statistical precision, we find that the most severe disasters are asso-

ciated with stronger innovation responses than in our baseline specification. However, the
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effect is more delayed, with increases in green patenting becoming visible only several years

after the event.

B.6 Disaster Type

Figure plots our event-study estimates separately for each disaster type: extreme tem-
perature, flood, and storm. This breakdown allows us to explore potential heterogeneity in

the innovation response depending on the nature of the shock.
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Figure B.6: Green Patenting Following Different Disaster Types

Note: This figure presents event-study estimates for the impact of three different disaster types—extreme temperature, flood, and storm—on
green patenting. We omit droughts, as there are not enough droughts (3) in our sample to plot meaningful estimates. Confidence intervals
correspond to the 95% level, and standard errors are clustered at the region level.

While the estimates are noisier due to the smaller number of observations for each disaster
category, the overall patterns are consistent with our main findings in Figure In all
three cases, we observe a notable increase in green patenting activity in the years following
disaster exposure. This supports our interpretation that natural disasters act as catalysts
for environmentally oriented innovation, regardless of the specific type of event.

These results suggest that the mechanism linking disaster exposure to innovation is not
driven by one specific type of shock, but appears to hold more generally across a range of

climate-related events.
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B.7 Spillovers - Alternative Modeling

Table depicts alternative sample restrictions compared to Table [3| in the main text. In
columns (1)—(3) we exclude regions affected in the past 3 years, (4)—(6) in the past 4 years,
(7)—(9) in the past 6 years, and (10)—(12) in the past 7 years. The more regions we remove,
the smaller our sample size comes. We do so as to not have affected regions in our control
group. Overall the results for spillovers from regions that are 100km or 150km remain largely
the same. However, when we remove all regions that were affected in the past 6 or 7 years,
we find somewhat larger effects of natural disasters in regions closer than 50km away.
Table |B.4] presents regression results examining the spillover effects of neighboring dis-
asters using an unrestricted sample that includes regions directly affected by disasters. The
estimates are disaggregated by distance thresholds of 50km, 100km, and 150km. At the
50km threshold (column 1), the effect of cumulative neighboring disasters is positive and
statistically significant, with a coefficient of 0.0109. For the 100km and 150km thresholds
(columns 2 and 3), the coefficients are negative. This is due to the control group now con-
taining regions that are affected by natural disasters. We essentially invert treatment and

control group.
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Table B.4: Spillovers of Neighboring Disasters - Unrestricted Sample

Dependent variable:

P(Y02)
(1) (2) (3)

Cumulative Count (50km) 0.0109***

Neighboring Disasters (0.0025)

Cumulative Count (100km) —0.0018***
Neighboring Disasters (0.0003)

Cumulative Count (150km) —0.0014***
Neighboring Disasters (0.0002)
Country-Year F.E. Yes Yes Yes
Region F.E. Yes Yes Yes
CPC Controls Yes Yes Yes
Observations 15,813 15,813 15,813
R? 0.7376 0.7374 0.7378
Adjusted R? 0.7236 0.7234 0.7238

Note: This table gives the estimates of our spillover analysis when we do not constain the sample. Thus
all regions, regardless of past exposure, are in the sample. Standard errors are clustered at the region level
and reported in parentheses. We do not remove themselves affected regions from the sample. Significance
levels: *p < 0.1; **p < 0.05; ***p < 0.01.
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B.8 Reasons to Innovate Robustness

To assess the robustness of our baseline survey results (Table[6)), we estimate two alternative
specifications that sequentially incorporate more granular regional fixed effects. Table
includes NUTS-2 fixed effects to control for unobserved time-invariant characteristics at a
broader regional level, while Table introduces NUTS-3 fixed effects.

Table B.5: Effect of Cumulative Disaster Count on Reasons to Innovate (Robustness Check

NUTS-2)

Dependent variable:

Expected Expected Existing Public Voluntary Reputation
Regulation Demand Regulation Funding Standard
(1) (2) (3) (4) (5) (6)
Cumulative Count 3.66*** 1.72% 2.89*** 1.22* 2.43*** 0.263
(0.582) (0.497) (0.569) (0.499) (0.563) (0.745)
Firm Size F.E. Yes Yes Yes Yes Yes Yes
Revenue Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes
Industry F.E. (2-digit) Yes Yes Yes Yes Yes Yes
NUTS-2 F.E. Yes Yes Yes Yes Yes Yes
Mean of Y 0.6333 0.5564 0.4066 0.4907 0.5795 0.6147
Observations 8,787 8,754 8,862 8,776 8,782 5,423
R? 0.554 0.492 0.610 0.422 0.547 0.670
Adj. R? 0.548 0.485 0.605 0.414 0.541 0.663

Note: This table reports the effect of disaster exposure on the drivers of innovation as measured in the survey. One additional past disaster increases the probability of a firm mentioning
these factors by 8 percentage points. Each column reports coefficients from separate regressions. Outcomes are: Expected Regulation = expected future environmental rules; Expected
Demand = expected future market demand for green innovation; Existing Regulation = current environmental rules/charges; Public Funding = government grants/subsidies; Voluntary
Standard = voluntarily joining a standard for green practices (e.g. environmental/organic label); Reputation = firm’s reputation concerns. Coefficients and standard errors are scaled
by 100 for interpretability as percentage point effects. “Cumulative Count” captures disaster exposure. Standard errors clustered at the region (Kreis, NUTS-3) level. Significance
levels: *p < 0.1; **p < 0.05; ***p < 0.01.

Across both specifications, the direction of the estimated coefficients on cumulative disas-
ter exposure remains qualitatively consistent with the baseline, indicating that the underlying
relationship is robust. However, once NUTS-3 fixed effects are included, the magnitude of
estimated effects is similar, but statistical significance weakens in several cases. This re-
duction in significance likely reflects the limited within-region variation available across just
three survey waves, which constrains identification when highly granular fixed effects are
introduced. Nonetheless, the overall pattern provides reassurance that the baseline results

are not driven by omitted regional heterogeneity.

B.8.1 French Research Funding

To explore whether changes in public research funding explain the increase in green inno-

vation after natural disasters, we draw on ScanR, an administrative database developed by
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Table B.6: Effect of Cumulative Disaster Count on Reasons to Innovate (Robustness Check
NUTS-3)

Dependent variable:

Expected Expected Existing Public Voluntary Reputati
Regulation Demand Regulation Funding Standard eputation
(1) 2) (3) (4) (5) (6)
Cumulative Count 2.50** 0.852 1.52 1.15 1.85 1.21
(1.25) (1.05) (1.03) (0.893) (1.30) (0.904)
Firm Size F.E. Yes Yes Yes Yes Yes Yes
Revenue Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes
Industry F.E. (2-digit) Yes Yes Yes Yes Yes Yes
NUTS-3 F.E. Yes Yes Yes Yes Yes Yes
Mean of Y 0.6333 0.5564 0.4066 0.4907 0.5795 0.6147
Observations 8,787 8,754 8,862 8,776 8,782 5,423
R? 0.574 0.515 0.629 0.451 0.566 0.694
Adj. R? 0.550 0.487 0.608 0.419 0.542 0.665

Note: This table reports the effect of disaster exposure on the drivers of innovation as measured in the survey. One additional past disaster increases the probability of a firm mentioning
these factors by 8 percentage points. Each column reports coeficients from separate regressions. Outcomes are: Expected Regulation = expected future environmental rules; Expected
Demand = expected future market demand for green innovation; Existing Regulation = current environmental rules/charges; Public Funding = government grants/subsidies; Voluntary
Standard = voluntarily joining a standard for green practices (e.g. environmental/organic label); Reputation = firm’s reputation concerns. Coefficients and standard errors are scaled
by 100 for interpretability as percentage point effects. “Cumulative Count” captures disaster exposure. Standard errors clustered at the region (Kreis, NUTS-3) level. Significance
levels: *p < 0.1; **p < 0.05; ***p < 0.01.

the French Ministry of Higher Education, Research, and Innovation.ﬁ The platform lists
121,451 publicly funded research projects initiated in France between 1999 and 2023, in-
cluding funding from Horizon 2020/Horizon Europe, the French National Research Agency
(ANR), and the Hubert Curien Partnership (PHC). We restrict the data to projects launched
before 2019 to align with the period for which we observe disaster exposure.

We aggregate project-level information to the region-year level and construct two outcome
measures: (1) the count of distinct research funding streams and (2) the total research
budget per region-year. We then match this data to natural disaster exposure and estimate
difference-in-differences regressions with region and year fixed effects, controlling for CPC
technological structure.

Table [B.7] reports the results. Across specifications, we find no statistically significant
effects of disaster exposure on either the number of funded projects or the total research
budget. Both cumulative and recent disaster exposure are unrelated to regional research
funding outcomes. These results rule out selective increases in public R&D support as the

primary mechanism behind our main findings.

25https://scanr.enseignementsup-recherche.gouv.fr/
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Table B.7: French Research Funding

Dependent variable:
Count Budget Count Budget
(1) (2) (3) (4)

Cumulative Count 0.254 —1,224k
(0.385)  (1,248k)

Disaster Count —0.365 —165k
Last 3 Years (0.325) (1,228k)
Year f.e. Yes Yes Yes Yes
Region f.e. Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes
Observations 2,848 2,848 2,848 2,848
R? 0.309 0.106 0.309 0.105
Adj. R? 0.257 0.038 0.256 0.037

Note: This table reports results for different measures research funding. In columns (1) and (3) we report
results on the number of funding allocations to a region, while in columns (2) and (4) we report results
on the amount of funding allocated to a region. Cumulative count is the count of past natural disasters.
“Disaster Count Last 3 Years” is the count of natural disasters in the past 3 years. We only have research
funding data for France. Standard errors are clustered on the region level and are reported in parenthesis.
P-values are as follows: *p<0.1; **p<0.05; ***p<0.01

B.9 Alternative Measures of Green Innovation Robustness

Our green product variable is derived from a survey question that asks: “During [the past
two years|, did your enterprise introduce new products or services with the following envi-
ronmental benefits through the use of these products/services, and if yes, what was their
contribution to environmental protection The survey lists the following four benefits: (a)
reduced energy use, (b) reduced air, water, soil, or noise pollution, (c¢) improved recycling
of products after use, and (d) extended product life through longer-lasting, more durable
products. Respondents could answer with “Yes, significant”, “Yes”, insignificant, and “No”
for each of the four benefits. In our analysis, the dummy variable for Green Products is
assigned a value of one if a firm indicated that it has introduced a new product or service
encompassing any of the four environmental benefits, regardless of whether that benefit was
deemed significant or insignificant. Our within-firm green innovation indicator is based on
the following survey question: “During [the past two years], did your enterprise introduce
innovations that had any of the following environmental benefits, and if yes, was their con-
tribution to environmental protection rather significant or insignificant?”. The survey lists

the following benefits (a) reduced energy use per unit of output, (b) reduced material use/
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use of water per unit of output, (c) reduced CO2 footprint (total CO2 production), (d)
reduced air pollution, (e) reduced noise pollution, (f) replaced fossil energy sourced by re-
newable energy sources, (g) replaced materials by less hazardous substitutes, (h) recycled
waste, water, or materials for own use or sale. Firms could again indicate “Yes”, significant,
“Yes”, insignificant, and “No” for each of the four benefits. For our analysis, the within-firm
green innovation indicator equals one if a firm has introduced an innovation with any of the
mentioned (significant or insignificant) benefits.

Table provides additional robustness for our results reported in Table [§] which exam-
ine the effect of cumulative natural disaster exposure on survey green innovation outcomes
and perceived climate affectedness. While Table [5] includes controls for firm size, revenue,
industry, and year, it does not include region fixed effects. To provide additional robustness,
Table introduces regional fixed effects at two levels: columns (1)—(4) include NUTS-2
fixed effects, while columns (5)—(7) include NUTS-3 fixed effects. The direction and relative
magnitude of the coefficients on cumulative disaster count remain qualitatively consistent
across specifications. As in earlier robustness checks, the decline in statistical significance in
the NUTS-3 specification is attributable to reduced statistical power due to limited within-
region variation across the three available waves. Since climate affectedness is only elicited

in one wave, we can not include NUTS-3 fixed effects, as this is the level of our variation.

Table B.8: Effect of Cumulative Disaster Count on Green Innovation and Climate Affected-
ness (Robustness Regional Fixed Effects)

Green Innovation Outcomes Climate Green Innovation Outcomes
Green Innovation ~ Within-firm  Green Products Affectedness Green Innovation ~ Within-firm  Green Products
(1) &) () 4) (5) (6) (7)
Cumulative Count 6.59*** 5.75%* 4.37* 10.7+* 3.22 2.78 2.25*
(0.702) (0.640) (0.532) (0.968) (2.08) (1.80) (1.18)
Firm Size F.E. Yes Yes Yes Yes Yes Yes Yes
Revenue Yes Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes No (Single Wave) Yes Yes Yes
Industry F.E. Yes Yes Yes Yes Yes Yes Yes
NUTS-2 F.E. Yes Yes Yes Yes No No No
NUTS-3 F.E. No No No No Yes Yes Yes
Observations 15,395 15,426 15,226 4,873 15,395 15,426 15,226
R? 0.638 0.599 0.457 0.597 0.653 0.614 0.475
Adj. R? 0.635 0.596 0.453 0.588 0.642 0.602 0.458

Note: This table presents robustness checks for green innovation outcomes. Coefficients and standard err
include firm size (based on employment), revenue controls, year fixed effects, and 2-digit NACE industry
level fixed effects. Standard errors are clustered at the regional (Kreis) level. Significance levels: *p<0.1

are multiplied by 100 to reflect percentage point effects. All models
cd effects. We either include NUTS-2 (Bezirk) or NUTS-3 (region)
*p<0.05; ***p<0.01.

B.10 Alternative Competition Windows

Table presents the results from using alternative time windows to compute competition
intensity—specifically, using either a 1-year or 3-year window before the patent filing year.

This table complements the baseline analysis in Section and the corresponding estimates
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in Table[7] where competition is measured as the average of the filing year and the year prior.

Qualitatively, the results remain consistent: the innovation response to natural disaster
exposure is concentrated in the high-competition group, while the low-competition group
shows no significant effect. However, the estimated coefficients in the high-competition
groups (columns 1 and 3) are slightly smaller than in the baseline (Table 7] column 1),
and the Wald test p-values are larger—0.1363 for the 1-year window and 0.054* for the 3-
year window—compared to 0.0365** in the baseline. This difference is primarily due to less
precise estimates in the low-competition subsamples (columns 2 and 4), as reflected in their
larger standard errors. Overall, while the alternative competition windows yield attenuated
statistical significance, the direction and relative magnitude of the effects remain stable,

providing additional support for the robustness of our findings.

Table B.9: Competition Split Above/Below Median

Dependent variable:

P(Y02y)
1 Year - High 1 Year - Low 3 Year - High 3 Year - Low

Competition ~ Competition = Competition = Competition

(1) (2) (3) (4)

Cumulative Count 0.090*** 0.035 0.099*** 0.003
(0.023) (0.031) (0.029) (0.029)
Country-Year F.E. Yes Yes Yes Yes
Region F.E. Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes
P Value 0.1363 0.054*
Sample Means 1.8046 1.382 2.0166 1.3536
Observations 9,036 9,036 7,530 7,530
R? 0.626 0.513 0.706 0.590
Adj. R? 0.591 0.467 0.672 0.542

Note: This table reports the results for our test of the model’s comparative statics with regard to competition. Columns (1)-(2)
measures competition based on the prior year, while columns (3)-(4) based on the last 3 years piror to patent filing. Cumulative
count is the count of past natural disasters. The Wald-tests examine if the coefficient for cumulative disaster count significantly differs
(Beq1 —Beq2)? 5 5 5 5
———=—=="  where: Var — = Var + Var —
Var(ﬁeql*ﬁecﬂ) (Beql Beq2) (Beql) (ﬁqu)
2. Cov(éeql,équy Standard errors are clustered at the region level and reported in parentheses. Significance levels: *p < 0.1;
**p < 0.05; ***p < 0.01.

between splits. We construct a Wald-test of the form W =
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B.11 Alternative Green Good Window

Table presents results from using alternative time windows to compute the green prod-
uct share in each industry. Specifically, we calculate the share based on either the filing
year alone (1-year window) or the filing year and the two preceding years (3-year window).
These results relate to Section [6.2.2in the main text and serve as a robustness check for our
baseline findings in Table [7], where the green share is calculated using a 2-year window.

The results are remarkably stable across specifications. Across all windows, inventors in
greener industries—defined as those above the median green product share—respond more
strongly to natural disaster exposure than those in less green industries. The coefficients
remain positive and highly significant for both high- and low-greenness groups, with larger
point estimates consistently observed in the above-median sample. Compared to the baseline
2-year window (Table , the cumulative count coefficients for the above-median groups in
both the 1-year and 3-year windows are nearly identical (0.088*** and 0.087***, respectively).
Likewise, the Wald test p-values remain below conventional significance thresholds: 0.0398**
for the 1-year window and 0.0397** for the 3-year window, compared to 0.0307** in the
baseline. This consistency confirms that our results are not sensitive to the specific choice
of window for measuring green market size.

Taken together, these findings reinforce our interpretation that market conditions—specifically
the size of the green goods market—shape inventors’ responsiveness to climate-related shocks.
The robustness of the result across time windows strengthens the credibility of this mecha-

nism.
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Table B.10: Green Product Split by Median

Dependent variable:

P(Y02)

1 Year Window 1 Year Window 3 Year Window 3 Year Window
Greenness Cutoff: Above Median Below Median Above Median Below Median

(1) (2) (3) (4)

Cumulative Count 0.088*** 0.066*** 0.087*** 0.062%**
(0.011) (0.009) (0.009) (0.009)

Country-Year F.E. Yes Yes Yes Yes
Region F.E. Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes

Wald-test p-value: 0.0398** 0.0397**

Sample Mean 1.2949 1.287 1.3617 1.3617
Observations 15,060 15,060 13,554 13,554
R? 0.613 0.776 0.636 0.799
Adj. R? 0.591 0.763 0.614 0.786

Note: This table reports the results for our test of the model’s comparative statics with regard to the size of the green good market. In columns
(1) and (2), for each industry, we calculate the average green product share over the present year. In columns (3) and (4), for each industry,
we calculate the average green product share over the last 3 years. Cumulative Count is the count of past natural disasters. Results are for the
years 1995-2014 in columns (1) and (2) and for the years 1997-2014 in columns (3) and (4). We only have PRODCOM data starting in 1995,
so a 3-year window allows us to estimate results starting in 1997. We test the null hypothesis that the Disaster Count coefficient is larger for
our sample of above-median competition patents than for our sample of below-median competition patents. We construct a Wald-test of the
(E]eql _[;eq2)2
Var(Beq1 —Peq2)
Br = B; against the alternative (Hjp : B8; > ;) with the reported p value. Standard errors are clustered on the region level and are reported
in parentheses. P-values are as follows: *p<0.1; **p<0.05; ***p<0.01

form W = , where: Var(Beql — Bqu) = Var(ﬁeql) + Var(Bqu) -2 Cov(Beql, Bqu). ‘We can reject the Null hypothesis Hg :
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B.12 First Time & Repeat Inventors

Table shows our results when we split the sample of patents based on an inventor having
previously patented or not. Both reapeat and first-time inventors react to natural disaster
exposure, with the effects being significantly larger for repeat inventors. Overall, there are
more inventors that have previously patented than first time inventors in our sample. We
denote a patent as coming from a repeat inventor if at least one of the inventors on that

patent has previously patented.

Table B.11: Response by First Time & Repeat Inventors

Dependent variable:

P(Y02,)
First-Time Repeat Inventors
(1) (2)
Cumulative Count 0.050*** 0.097**
(0.016) (0.010)
Country-Year F.E. Yes Yes
Region F.E. Yes Yes
CPC Controls Yes Yes
P Value 0.0129**
Sample Means 0.1682 2.0954
Observations 15,813 15,813
R? 0.345 0.703
Adj. R? 0.310 0.687

Note: This table reports our results when we split the sample of inventors into First-
Time and Repeat inventors. Cumulative Count is the count of past natural disasters. We
test the null hypothesis that the Disaster Count coefficient is different for our sample of
first-time inventors than for our sample of repeat inventors. We construct a Wald-test of
(Beqlfée(ﬂ)z A A _ A A
Var(Boqt —Peq2)’ where: Var(Beq1 — Beq2) = Var(Beq1) + Var(Beq2) — 2 -
Cov(Beql, Bqu)A ‘We can reject the Null hypothesis Hg : 8, = 8; against the alternative
(H1 : Bp, # B;) with the reported p value. Standard errors are clustered on the region level
and are reported in parentheses. P-values are as follows: *p<0.1; **p<0.05; ***p<0.01

the form W =

Our findings in Table indicate that the innovation response to natural disasters
operates along both the extensive and intensive margins. We observe significant increases
in green patenting among first-time inventors as well as among those with prior patenting
experience, suggesting that disasters not only induce additional activity from established
innovators but also bring new inventors into the green innovation space. This broad-based
response reinforces the main result that environmental shocks stimulate green technological

effort across the innovation spectrum.
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B.13 Past Patenting

In this appendix section, we examine whether the baseline effect of natural disasters on green
innovation varies with inventors’ patenting histories. To do so, we split our sample along two
dimensions. First, we classify patents based on the share of green patents previously filed by
their inventors or firms. However, many patent holders in our dataset have no prior patent
history, preventing us from directly calculating their past green patent shares. To address
this limitation, we introduce a second classification based on the total number of patents
previously filed by inventors. For inventors in the top quartile of past patent filings, we can
reliably calculate their share of past green patents. For inventors below the top quartile, we
instead check whether any inventor on a patent previously filed a clearly defined ”brown”
patent—one associated explicitly with environmentally harmful technologies. We adopt this
definition of “brown” patents from Dechezleprétre et al. (2021)).

& ‘
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Figure B.7: Green innovation response to natural disaster by past patenting

Note: This figure shows the effects of natural disaster exposure on green patenting, split according to inventors’ past patenting patterns. Panel
(a) depicts patenting responses by inventors in the top quartile of past patent filings. Within this group, we further distinguish between those
whose past patent portfolios contain an above-median share of brown patents (”Large Past Brown”) and those with a below-median share of
brown patents (”Large Past Less Brown”). Panel (b) depicts responses by inventors below the top quartile (”Small Patent Filers”),
differentiating between those who have previously filed at least one brown patent and those who have never filed a brown patent. Brown patents
are defined following the classification by Dechezleprétre et al. (2021). Standard errors are clustered at the region level, and confidence intervals
represent the 95% level.

The effects observed across these classifications indicate fairly similar responses for both
"past brown” and "past less brown” inventor groups. However, among large patent filers
(top quartile), inventors classified as ”"past less brown” exhibit somewhat less persistence
in their response compared to their counterparts with extensive past brown patenting. In

general, large past filers demonstrate stronger innovation responses following natural disaster

exposure relative to smaller past filers.
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C Online Appendix - Data

C.1 Countries in the CompNet Dataset

Table shows the time span for which different countries are available in the 9th vintage
of the CompNet database (CompNet 2022). The information is directly taken from the
CompNet website https://www.comp-net.org/.

Country All firms | 20e | Time Span
Belgium X x | 2000 — 2020
Croatia X r | 2002 — 2021
Czech Republic X x | 2005 — 2020
Denmark X x | 2001 — 2020
Finland X x | 1999 — 2020
France T x | 2003 — 2020
Germany x | 2001 — 2018
Hungary X x | 2003 — 2020
Italy x x | 2006 — 2020
Latvia* X x | 2007 — 2019
Lithuania™® x x | 2000 — 2020
Malta X X 2010-2020
Netherlands X x | 2007 — 2019
Poland x | 2002 — 2020
Portugal X x | 2004 — 2020
Romania x | 2005 — 2020
Slovakia x | 2000 — 2020
Slovenia X x | 2002 — 2021
Spain X x | 2008 — 2020
Sweden X x | 2003 — 2020
Switzerland X x | 2009 — 2020
United Kingdom x | 1997 — 2019

Table C.1: Comp Net TimpeSpans

C.2 Community Innovation Survey

We use data from the German part of the Community Innovation Survey, the
Mannheimer Innovationspanel, administered by the ZEW - Leibniz Centre for Eu-
ropean Economic Research (ZEW - Leibniz Centre for FEuropean Economic Re-

search n.d.). Detailed information is available at: https://www.zew.de/forschung/

"
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mannheimer-innovationspanel-innovationsaktivitaeten-der-deutschen-wirtschaft|

The CIS is a biennial survey of firms in the manufacturing and service sectors, designed
to monitor innovation activity across EU member states. For Germany, the survey is rep-
resentative at the two-digit industry level and includes both SMEs and large firms. It does
not track firms longitudinally, making it a repeated cross-section. We focus on the three
survey waves that include questions on environmentally beneficial innovations: 2009, 2015,
and 2021.

The dataset provides detailed information on innovation outputs, types of environmental
benefits targeted, and motivations for adopting green innovation. For our analysis, we retain
firms that report introducing an innovation with environmental benefits in the past two
years.

To examine the motivations behind green innovation, we use responses to the following

survey question:

“During [the last two years], how important were the following factors in driving

your enterprise’s decisions to introduce innovations with environmental benefits?”

7

Responses are recorded on a four-point scale: “high,” “medium,” “low,” or “not impor-
tant.” We construct binary indicators equal to one if the firm rated a given factor as “low,”
“medium,” or “high,” and zero if it was “not important.” This inclusive definition captures
all cases where the firm viewed the factor as at least somewhat relevant to its innovation
decision.

Table lists the variables and their corresponding survey items:

Table C.2: Variable Definition - Factors driving green innovation

Variable Corresponding survey questions
Expected demand Current or expected market demand for environmental innovation
Expected regulatory changes Environmental requlations or taxes expected in the future
Existing regulations Existing environmental regulations OR
Existing environmental tazes, charges or fees
Reputation Improving your enterprise’s reputation
Voluntary standards Voluntary actions or standards for environmental good practice within your sector
Government funding Government grants, subsidies etc. for environmental innovations

C.3 Table of Green Goods for PRODCOM

Table gives the list of green goods we identify in PRODCOM (EUROSTAT [2025)).

The list is almost entirely based on Bontadini and Vona (2023), with a few minor addi-
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tions. PRODCOM can be accesed on the EUROSTAT website: https://ec.europa.eu/

eurostat/web/prodcom/database.

Table C.3: Green Good Table

RODCOM Label
umber
1 24107500  Railway material (of steel)
2 25112200  Iron or steel towers and lattice masts
3 25301150  Vapour generating boilers (including hybrid boilers) (excluding central heating
hot water boilers capable of producing low pressure steam, watertube boilers)
4 25301230  Auxiliary plant for use with boilers of HS 8402 or 8403
5 25301330  Parts of vapour generating boilers and super-heater water boilers
6 25991131  Sanitary ware and parts of sanitary ware of iron or steel
7 25992910  Railway or tramway track fixtures and fittings and parts thereof
8 26112220  Semiconductor light emitting diodes (LEDs)
9 26112240  Photosensitive semiconductor devices; solar cells, photodiodes, photo-

10 26121330
11 26511200
12 26511215
13 26511235

14 26511239
15 26511270

16 26511280

17 26514100
18 26514200
19 26514300
20 26514310
21 26514330

22 26514355
23 26514359
24 26514530
25 26514555

26 26514559
27 26515110
28 26515135

29 26515139

30 26515235
31 26515239

transistors, etc.
Multiple-walled insulating units of glass
Theodolites and tachymetres (tachometers); other surveying, hydrographic,
oceanographic, hydrological, meteorological or geophysical instruments and
appliances

ectronic rangefinders, theodolites, tacheometers and photogrammetrical in-
struments and appliances
Electronic instruments and apparatus for meteorological, hydrological and geo-
physical purposes (excluding compasses)
Other electronic instruments, n.e.c.
Surveying (including photogrammetrical surveying), hydrographic, oceano-
graphic, hydrological, meteorological or geophysical instruments and appli-
ances (excluding levels and compasses), non-electronic; rangefinders, non-
electronic
Non electronic surveying (including photogrammatrical surveying), hydro-
graphic, oceanographic, hydrological, meteorological or geophysical instru-
ments and appliances (excluding rangefinders, levels and compasses),
Instruments and apparatus for measuring or detecting ionising radiations
Cathode-ray oscilloscopes and cathode-ray oscillographs
Instruments for measuring electrical quantities without a recording device
Multimeters without recording device
Electronic instruments and apparatus for measuring or checking voltage, cur-
rent, resistance or electrical power, without recording device (excluding mul-
timeters, and oscilloscopes and oscillographs)
Voltmeters without recording device
Non-electronic instruments and apparatus, for measuring or checking voltage,
current, resistance or power, without a recording device (excluding multime-
ters, voltmeters)
Instruments and apparatus, with a recording device, for measuring or checking
electric gains (excluding gas, liquid or electricity supply or production meters)
Electronic instruments and apparatus, without a recording device, for mea-
suring or checking electric gains (excluding gas, liquid or electricity supply or
production meters)
Non-electronic instruments and apparatus, without a recording device, for
measuring or checking electrical gains (excluding multimeters, voltmeters)
Thermometers, liquid-filled, for direct reading, not combined with other in-
struments (excluding clinical or veterinary thermometers
Electronic thermometers and pyrometers, not combine
ments (excluding liquid filled)

Thermometers, not combined with other instruments and not liquid filled,
n.e.c.

Electronic flow meters (excluding supply meters, hydrometric paddlewheels)
Electronic instruments and apparatus for measuring or checking the level of
liquids

with other instru-
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PRODCOM Label

umber

32 26515255

33 26515313
34 26515319
35 26515330
36 26515350
37 26515381

38 26516350
39 26516370

40 26516500

41 26516620
42 26516650

43 26516683

44 26517015
45 26517019
46 26518200

47 26518550

48 26702450
49 26702490

50 27108230

51 27108250

52 27109230
53 27123130

54 27123150
55 27123170
56 27356200
57 27401250

58 27401293
59 27401295
60 27401510
61 27401530

62 27402200
63 27403090

64 27403200
65 27403930

Non-electronic flow meters (excluding supply meters, hydrometric paddle-
wheels)
Electronic gas or smoke analysers
Non-electronic gas or smoke analysers
Spectrometers, spectrophotometers... using optical radiations
Instruments and apparatus using optical radiations, n.e.c.
Electronic ph and l“ﬁ meters, other apparatus for measuring conductivity and
electrochemical quantities (including use laboratory/field environment, use
process monitoring/control)
Liquid supply or production meters (including calibrated) (excluding pumps)
Electricity supply or production meters (including calibrated) (excluding volt-
meters, ammeters, wattmeters and the like)
Hydraulic or pneumatic automatic regulating or controlling instruments and
apparatus
Test benches
Electronic instruments, appliances and machines for measuring or checking
geometrical quantities (including comparators, coordinate measuring machines
CMMs))
ther instruments, appliances, for measuring or checking geometrical quanti-
ties
Electronic thermostats
Non-electronic thermostats
Parts and accessories for the goods of 26.51.12, 26.51.32, 26.51.33, 26.51.4 and
26.51.5; microtomes; parts n.e.c.
Parts and accessories for automatic regulating or controlling instruments and
apparatus
Other instruments and apparatus using optical radiation (UV, visible, IR)
Exposure meters, stroboscopes, optical instruments, appliances and machines
for inspecting semiconductor wafers or devices or for inspecting photomasks or
reticles used in manufacturing semiconductor devices, profile projectors and
other optical instruments, appliances and machines for measuring or checking
Steel; iron or cast iron rails excl. current-conducting; with parts of non-ferrous
metal - screws; bolts; nuts; rivets and spikes used for fixing track construction
materials; assembled track
Iron or steel sleepers (crossties); rolled fish-plates and sole plates and check-
rails (excl. screws; bolts; nuts; rivets and spikes used for fixing track construc-
tion materials)
Railway material (of steel)
Numerical control panels with built-in automatic data-processing machine for
a voltage <=1 kV
Programmable memory controllers for a voltage <= 1 kV
Other bases for electric control, distribution of electricity, voltage > 1000 V
Railway or tramway materials of steel or iron; not hot rolled
Tungsten halogen filament lamps for motorcycles and motor vehicles (exclud-
ing ultraviolet and infrared lamps)
Tungsten halogen filament lamps, for a voltage > 100 V (excluding ultraviolet
and infra-red lamps, for motorcycles and motor vehicles)
Tungsten halogen filament lamps for a voltage <= 100 V (excluding ultraviolet
and infrared lamps, for motorcycles and motor vehicles)
Fluorescent hot cathode discharge lamps, with double ended cap (excluding
ultraviolet lamps)
Fluorescent hot cathode discharge lamps (excluding ultraviolet lamps, with
double ended cap)
Electric table, desk, bedside, or floor-standing lamps
Electric lamps and lighting fittings, of plastic and other materials, of a kind
used for filament lamps and tubular lamps, including lighting sets for Christ-
mas trees
Lighting sets for Christmas trees
Electric lamps and lighting fittings, of plastic and other materials, of a kind
used for filament lamps and tubular fluorescent lamps
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umber

66 27512190
67 27512690
68 27521400
69 28112130
70 28112150
71 28112160
72 28112200
73 28112400
74 28113100
75 28113200
76 28251130
77 28251380
78 28251410

79 28251420

80 28251430
81 28251440

82 28251450

83 28251470

84 28291100

85 28291230
86 28291270

87 28298250
88 28301150

89 28301230
90 28301330
91 28992020

92 28992060
93 28993945

94 29102400

95 29102410

96 29102430

97 29102450

Other electromechanical appliances

Other electric space heaters

Non-electric instantaneous or storage water heaters

Steam turbines and other vapour turbines (excluding for electricity generation)
Steam turbines for electricity generation

Steam turbines and other vapour turbines

Iron or steel towers and lattice masts

Generating sets, wind-powered

Parts for steam turbines and other vapour turbines

Parts for hydraulic turbines and water wheels (including regulators)

Heat exchange units

Heat pumps other than air conditioning machines of HS 8415

Machinery and apparatus for filtering or purifying air (excluding intake filters
for internal combustion engines)

Machinery and apparatus for filtering or purifying gases by a liquid process
(excluding intake air filters for internal combustion engines, machinery and
apparatus for filtering or purifying air)

Machinery and apparatus for filtering and purifying gases (other than air and
excl. those which operate using a catalytic process, and isotope separators)
Machinery and apparatus for filtering or purifying gases by catalytic process
(excluding intake air filters for internal combustion engines, machinery and
apparatus for filtering or purifying air)

Machinery and apparatus for filtering and purifying gases with stainless steel
housing, and with inlet and outlet tube bores with inside diameters not ex-
ceeding 1,3 cm (excluding intake filters for internal combustion engines)
Machinery and apparatus for filtering or purifying gases including for filtering
dust from gases (excluding air filters for internal combustion engines, using
liquid or catalytic process)

Producer gas or water gas generators; acetylene gas generators and the like;
distilling or rectifying plant

Machinery and apparatus for filtering or purifying water

Machinery and apparatus for solid-liquid separation/ purification excluding
for water and beverages, centrifuges and centrifugal dryers, oil/petrol filters
for internal combustion engines

Parts for filtering and purifying machinery and apparatus, for liquids or gases
(excluding for centrifuges and centrifugal dryers)

Vapour generating boilers (including hybrid boilers) (excluding central heating
hot water boilers capable of producing low pressure steam, watertube boilers)
Auxiliary plan for use with boilers of 84.02 or 84.03, used

Parts of vapour generating boilers and super-heater water boilers

Machines and apparatus used solely or principally for the manufacture of semi-

conductor boules or wafers o
Machines and apparatus used solely or principally for the manufacture of flat

panel displays

Machines and apparatus used solely or principally for a) the manufacture or
repair of masks and reticles, b) assembling semiconductor devices or electronic
integrated circuits, and c) lifting, handling, loading or unloading of boules,
wafers, semiconductor devices, electronic integrated circuits and flat panel
displays

Other motor vehicles for the transport of persons (excluding vehicles for trans-
porting >=10 persons, snowmobiles, golf cars and similar vehicles)

Motor vehicles, with both spark-ignition or compression-ignition internal com-
bustion reciprocating piston engine and electric motor as motors for propul-
sion, other than those capable of being charged by plugging to external source
of electric power

Motor vehicles, with both spark-ignition or compression-ignition internal com-
bustion reciprocating piston engine and electric motor as motors for propul-
sion, capable of being charged by plugging to external source of electric power
Motor vehicles, with only electric motor ?or propulsion

81



PRODCOM Label

umber

98 29102490

99 29105200

100 29112130
101 29112150
102 29112200
103 29113100
104 29113200
105 29231375
106 29231380
107 29231410
108 29231420

109 29231430
110 29231440

111 29231450
112 29231460
113 29231470
114 29241130

115 29241150
116 29241230
117 29241270
118 29245250

119 29562582
120 29562586
121 29562588

122 29721400
123 30201100
124 30201200
125 30201300
126 30202000

127 30203100

128 30203200

129 30203300
130 30204030
131 30921000
132 30921030

133 30921050

134 30923010
135 30923030

Other motor vehicles for the transport of persons (excluding vehicles with
only electric motor for propulsion , vehicles for transporting > 10 persons,
snowmobiles, golf cars and similar Vehicles?
Motor vehicles specially designed for travelling on snow, golf cars and similar
vehicles
Steam turbines and other vapour turbines (excl. for electricity generation)
Steam turbines for generation of electricity
Hydraulic turbines and water wheels
Parts for steam turbines and other vapour turbines
Parts of hydraulic turbines; water wheels incl. regulators
Absorption heat pumps
Heat pumps other than air conditioning machines of HS 8415
Machinery and apparatus for filtering or purifying air
Machinery and apparatus for filtering or purifying gases by a liquid process
excl. intake air filters for internal combustion engines; machinery and appa-
ratus for filtering or purifying air
Machinery filtering or purifying gases; by electrostatic process
Machinery and apparatus for filtering/purifying gases by catalytic process ex-
cluding intake air filters for internal combustion engines, machinery and ap-
paratus for filtering/purifying air
Machinery filtering or purifying gases; by thermic process
Machinery filtering or purifying gases; other
Machinery filtering or purifying gases
Producer gas or water gas generators, acetylene and similar water process gas
enerators
istilling or rectifying plant
Machinery and apparatus for filtering/ purifying water
Machinery and apparatus for filtering/ purifying liquids; for chemical industry
Parts for filtering and purifying machinery and apparatus, for liquids or gases
(excluding for centrifuges and centrifugal dryers)
Machines and apparatus used solely or principally for the manufacture of semi-

conductor boules or wafers o
Machines and apparatus used solely or principally for the manufacture of flat

panel displays

Machines and apparatus used solely or principally for a) the manufacture or
repair of masks and reticles, b) assembling semiconductor devices or electronic
integrated circuits, and c) lifting, handling, loading or unloading of boules,
wafers, semiconductors.

Instantaneuous water heater apparatus non-electric

Rail locomotives powered from an external source of electricity
Diesel-electric locomotives

Other rail locomotives; locomotive tenders

Self-propelled railway or tramway coaches, vans and trucks, except mainte-
nance or service vehicles

Railway or tramway maintenance or service vehicles (including workshops,
cranes, ballast tampers, track-liners, testing coaches and track inspection ve-
hicles)

Rail/tramway passenger coaches; luggage vans, post office coaches and
other special purpose rail/tramway coaches excluding rail /tramway mainte-
nance/service vehicles, self-propelled

Railway or tramway goods vans and wagons, not self-propelled

Parts of locomotives or rolling stock

Bicycles and other cycles (incl. delivery tricycles), non-motorized
Non-motorized bicycles and other cycles, without ball bearings (including de-
livery tricycles)

Non-motorized bicycles and other cycles with ball bearings (including delivery
tricycles)

Frames and forks, for bicycles

Parts of frames, front for s, brakes, coaster braking hubs, hub brakes, pedals
crank-gear and free-wheel sprocket-wheels for bicycles, other non-motorized
cycles and sidecars
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136 30923060

137 30923090
138 31203150
139 31203170
140 31501230
141 31501250

142 31501293

143 31501295
144 31501510

145 31501530

146 31502200
147 31503430

148 32105235
149 32105237

150 33201215

151 33201219

152 33201235

153 33201253
154 33201255

155 33201257

156 33203900
157 33204100
158 33204200
159 33204330
160 33204355
161 33204359
162 33205119
163 33205135

164 33205139

165 33205313
166 33205319
167 33205330
168 33205340
169 33205350
170 33205381

171 33205385
172 33205389
173 33206350
174 33206370

175 33206550

Parts and accessories of bicycles and other cycles, not motorised (excl. frames
and front forks).
Other parts and accessories of bicycles and other cycles, not motorised
Programmable memory controllers; voltage <= 1000 V
Meter mounting boards and installation panels; voltage <= 1000 V
Tungsten halogen filament lamps (excl. ultra-violet; infra-red): for projectors
Tungsten halogen filament lamps for motorcycles and motor vehicles (excl.
ultraviolet and infrared lamps)
Tungsten halogen filament lamps; for a voltage > 100 V (excl. ultraviolet and
infra-red lamps; for motorcycles and motor vehicles)
Other tungsten halogen lamps; <= 100 V
Fluorescent hot cathode discharge lamps, with double ended cap (excluding
ultraviolet lamps)
Fluorescent hot cathode discharge lamps (excl. ultraviolet lamps, with double
ended cap)
Electric table; desk; bedside or floor-standing lamps
Electric lamps and lighting fittings, of plastic and other materials, of a kind
used for filament lamps and tubular fluorescent lamps
Semiconductor light emitting diodes (LEDs)
Photosensitive semiconductor devices; solar cells, photodiodes, phototransis-
tors, etc.
Electronic surveying & hydrographic instr.& appliances (incl. rangefinders;
levels; theodolites & tacheometers; photogrammetrical instr.& appliances;
excl. compasses)
Non-electronic surveying, hydrographic instr. and appliances (including
rangefinders, levels, theodolites and tacheometers, photogrammetrical instr.
and appliances; excluding compasses)
Electronic instruments and apparatus for meteorological, hydrological and geo-
physical purposes (excl. compasses)
Instruments and appliances used in geodesy; topography; surveying...
Non-electronic meteorological; hydrological an geop%ysical instruments and
apparatus (excl. compasses)
Non-electronic surveying, hydro-, oceanographic instr./appliances (excluding
rangefinders, levels, theodolites, tacheometers, photogrammetrical instr. /app.,
compasses)
Installation of other special-purpose machinery n.e.c.
Installation of medical and surgical equipment
Cathode-ray oscilloscopes and cathode-ray oscillographs
Instruments and apparatus, for measuring or checking voltage: electronic
Voltmeters
Instruments and apparatus; for measuring or checking voltage: others
Other thermometers, not with other instruments, liquid, for direct readin
Thermometers; not combined with other instruments and not liquid ﬁl%ed;
electronic
Thermometers, not combined with other instruments and not liquid filled,
n.e.c.
Electronic gas or smoke analysers
Non-electronic gas or smoke analysers
Spectrometers, spectrophotometers using optical radiations

Xposure meters
Instruments and apparatus using optical radiations; n.e.c.
Electronic ph & rh meters; other apparatus for measuring conductivity &
electrochemical quantities (incl. use laboratory/field environment; use process
monitoring/control)
Viscometers, porosimeters and expansion meters
Other instruments and apparatus for physical and chemical analysis
Liquid supply or production meters (incl. calibrated) (excl. pumps)
Electricity supply or production meters (incl. calibrated) (excl. voltmeters;

ammeters; wattmeters and the like)
Electronic instruments...measuring; checking geometrical quantities: 3 D
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176 33206583

177 33206589
178 33207015
179 33207019
180 33207050

181 33208120

182 33208143

183 33208145

184 33208147
185 33209100

186 34102430

187 34102490

188 34105300
189 35201100
190 35201200
191 35201330
192 35201390

193 35202030
194 35202090
195 35203100

196 35203200
197 35203330
198 35203350

199 35204030
200 35204055

201 35204058
202 35204059

203 35421030
204 35421050
205 35422013

206 35422015

207 35422019
208 35422023
209 35422025
210 35422027

211 35422033

Other instruments, appliances, for measuring or checking geometrical quanti-
ties
Other instruments; appliances and machines for measuring or checking
Electronic thermostats
Non-electronic thermostats
Hydraulic or pneumatic automatic regulating or controlling instruments and
apparatus
Parts and accessories for surveying, geodesy, topography, levelling, photogram-
metrical, hydro-, oceanographic, hydro-, meteorological, geophysical instru-
ments excl. compasses
Parts and accessories for hydrometers and similar floating instruments, ther-
mometers, pyrometers, barometers, hygrometers and psychrometers, recording
or not, and any combination of these instruments
Parts and accessories of instruments and apparatus for measuring or checking
the variables of liquids or gases (excl. for supply or production meters)
Microtomes, and parts and accessories
Installation of instruments and apparatus for measuring; checking; testing;
navigating and other purposes
Vehicles with an electric motor, for the transport of persons (excl. vehicles for
transporting >= 10 persons, snowmobiles, golf cars and similar vehicles)
Other motor vehicles for carrying people (excluding vehicles for transport-
ing >= 10 persons, snowmobiles, golf cars and similar vehicles, electrically
powered)
Vehicles for travelling on snow; golf cars; etc; with engines
Rail locomotives powered from an external source of electricity
Diesel-electric locomotives; =< 1000 kW power continuous rating
Rail locomotives powered iay electric accumulators
Rail locomotives and locomotive tenders (excl. locomotives powered from an
external source of electricity, locomotives powered by electric accumulators,
diesel-electric locomotives)
Self-propelled railway coaches... powered by external electricity
Self-propelled railway or tramway coaches; vans and trucks; (diesel)
Railway or tramway maintenance or service vehicles (including workshops,
cranes, ballast tampers, track-liners, testing coaches and track inspection ve-
hicles)
Railway passenger coaches for speed =< 250 km/h; local
Tank wagons and the like; not self-propelled
Rail-or tramway goods vans & wagons; not self-propelled (incl.  self-
discharging and open vans & wagons) with non-removable sides; height >
60 cm; & other wagons
Parts of locomotives or rolling stock
Railway or tramway track fixtures and fittings, and mechanical or electrome-
chanical signalling, safety or traffic control equipment
Parts of railway or tramway track fixtures and fittings; and for electromechan-
ical signalling; safety or traffic control equipment
Mechanical (and electromechanical) signalling; safety or traffic control
equipement (excluding equipment and material for track)
Bicycles and other cycles; not motorized; without ball bearings
Mountain bike
Frames for bicycles, other non-motorized cycles and sidecars (excluding parts
of frames)
Front forks for bicycles; other non-motorized cycles and sidecars (excl. parts
of front forks)
parts of cycles
Wheel rims for bicycles other non-motorized cycles and sidecars
Wheel spokes for bicycles; other non-motorized cycles and sidecars
Hubs without free-wheel or braking device for bicycles, other non-motorized
cycles and sidecars

oaster braking hubs and hub brakes
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212 35422039

213 35422040
214 35422053
215 35422055
216 35422063
217 35422065
218 35422067
219 35431200
220 40301003

221 40301005
222 23121330
226 28112160
227 28112200
229 28113200
231 28251410
232 28251441

233 28291100
234 28298251

237 27123150
240 26516370
244 26702490
248 26515175

250 30201200
251 30203100
252 30921000
253 30923060
254 30923010

255 22111200

Brakes for bicycles and other non-motorized cycles (excl. coaster braking hubs

and hub brakes)
Saddles for bicycles and other non-motorized cycles
Pedals
Crank-gear
Handlebars
Luggage-carriers for bicycles and other non-motorized cycles
Derailleur gears for bicycles and other non-motorized cycles
Parts and accessories of invalid carriages
Heat - heating plants (heat produced by heating plants using fossil fuels;
biomass or waste; sold to third parties)
Heat - geothermal (heat produced in geothermal fields; sold to third parties)
Multiple-walled insulating units of glass
Steam turbines and other vapour turbines (excl. for electricity generation)
Hydraulic turbines and water wheels
Parts of hydraulic turbines; water wheels incl. regulators
Machinery and apparatus for filtering or purifying air
Machinery and apparatus for filtering/purifying gases by catalytic process ex-
cluding intake air filters for internal combustion engines, machinery and ap-
paratus for filtering/purifying air
Distilling or rectifying plant
Parts for filtering and purifying machinery and apparatus, for liquids or gases
%}excluding for centrifuges and centrifugal dryers)

rogrammable memory controllers; voltage <= 1000 V
Voltmeters
Exposure meters
Parts and accessories for hydrometers and similar floating instruments, ther-
mometers, pyrometers, barometers, hygrometers and psychrometers, recording
or not, and any combination of these instruments
Diesel-electric locomotives; =< 1000 kW power continuous rating
Self-propelled railway or tramway coaches; vans and trucks; (diesel)
Bicycles and other cycles (including delivery tricycles), non-motorised
Bicycles and other cycles, not motorised, with ball bearings.
Frames for bicycles, other non-motorized cycles and sidecars (excluding parts
of frames)
Wheel rims for bicycles other non-motorized cycles and sidecars
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