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Abstract

We show that personal experiences affect high-stakes economic decisions among inventors.

Using matched patent and survey data from French and German inventors linked to natural

disaster records, we exploit exogenous variation in disaster exposure. Inventors personally

affected by natural disasters subsequently produce 8.2% more green patents, primarily driven

by emission-reducing mitigation technologies, while non-green innovation remains unaffected.

The absence of sizable spatial spillovers highlights the importance of personal experience.

Disaster exposure shapes innovation choices by altering profitability expectations through

shifting higher-order beliefs about consumer demand and anticipated regulation. Embedding

this channel in a formal model, we disentangle the role of expectations and intrinsic moti-

vation. The model predicts, and the data confirm, that effects are strongest in competitive

markets, where profit incentives matter most.
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1 Introduction

What drives inventors to pursue new ideas? Popular accounts often point to moments of

personal frustration that make unmet needs visible: Netflix is linked to an anecdote about a

$40 late DVD return fee, while BioLite emerged when its founders sought a cleaner, lighter

wood-burning camp stove instead of carrying heavy fossil-fuel canisters.1 Such stories sug-

gest that invention may often arise from personal experience rather than from systematic

responses to markets. A rich literature links innovation to market conditions such as com-

petition (Aghion and Howitt 1992; Aghion et al. 2005) and market size (Acemoglu 2002;

Acemoglu and Linn 2004), but much less is known about inventor-level determinants. This

is particularly relevant given persistent underinvestment in R&D despite its large social re-

turns (Bloom et al. 2013; Azoulay et al. 2019; Jones and Summers 2020; Jones 2021), and

the role of innovation in combating climate change (Acemoglu et al. 2012; Acemoglu et al.

2016). Social background and childhood socioeconomic status influence who becomes an

inventor (Feng et al. 2021; Bell et al. 2019), but we know little about what ultimately drives

their choices about what to innovate.

In this paper, we bring insights from the experience effects literature to the production

side and explore how personal experiences shape inventors’ choices. The experience effects

literature has shown that households’ personal experiences shape beliefs, preferences, and

expectations (e.g., Malmendier and Nagel 2011; Malmendier and Nagel 2016; Giuliano and

Spilimbergo 2024). Expectations, in particular about commercial success and profitability,

matter for inventors, as pursuing innovation is inherently uncertain and risky (Rosenberg

1998; Bloom 2007; Manso 2011). Personal experiences plausibly play a role in forming these

expectations. To explore the role of personal experiences, we first exploit natural disaster

exposure as exogenous shocks to inventors’ personal experience, allowing us to identify causal

effects on subsequent green innovation. Green technologies either mitigate or adapt to cli-

mate change. To explore the underlying mechanisms, the second part of the paper examines

how disaster exposure influences inventors’ expectations about consumer demand for green

goods and environmental regulation using survey data. In the third part of the paper, we

propose a formal model that incorporates our behavioral mechanism into a quality-ladder

model, and disentangles the roles of intrinsic motivation and profitability expectations.

We begin our analysis by linking French and German inventors’ home addresses to natu-

ral disasters and use event-study designs to estimate the effects of natural disaster exposure

on subsequent innovation. Our design exploits random variation in the timing of inven-

1Based on interviews with Netflix’s Reed Hastings (CBS News 2006) and BioLite’s Alec Drummond and
Jonathan Cedar (Bastone 2018).
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tors’ exposure to natural disasters. We use patent data from 1994 to 2014 with geocoded

addresses from De Rassenfosse et al. (2019). Disasters are matched spatially using the Emer-

gency Events Database (Guha-Sapir et al. 2022), supplemented with geolocations from the

Geocoded Disasters dataset (Rosvold and Buhaug 2021). We identify green patents using

an established classification that tags technologies aimed at climate change mitigation or

adaptation. Most inventors in our sample are affiliated with firms (72%), while a substantial

share (16.8%) operates independently.

Our results show that natural disaster exposure leads to a significant increase in green

innovation. On average, one additional natural disaster increases green patenting by 8.2%

relative to the sample average. This impact evolves dynamically over time. Notably, five

years after a disaster, the number of green patents rises by 24%, with the effect gradually

tapering off thereafter. This 24% increase corresponds to 0.64 additional green patents in

the affected region. In terms of magnitude, our estimate is comparable to the effect of the

European Emissions Trading System (EU-ETS), which increased green patenting among

covered firms by about 10% (see Calel and Dechezleprêtre 2016).

We find that disaster exposure only affects climate-related innovation, consistent with a

salient link between personal experiences of natural disasters and climate change. Disaster

exposure does not lead to significant changes in non-green innovation. This additionally

suggests limited crowding out of other inventive activity. Green innovation increases sig-

nificantly more following more deadly disasters, consistent with the idea that the salience

of climate-related risks increases with disaster fatalities (Demski et al. 2017; Kalatzi Pan-

tera et al. 2023). The green innovation response appears tied to the broader issue of climate

change rather than to the specific disasters inventors experience. Disaster exposure increases

patenting in mitigation technologies by 8.4 percent. These technologies aim to reduce green-

house gas emissions and address the root causes of climate change, and are not tied to the

type of event. In contrast, directly related adaptation technologies that address local climate

impacts respond less strongly (4.4% increase).

Inventors respond only when personally affected; we find no evidence of large spillovers

from natural disasters to nearby regions. Yet, the innovations that result from these local

personal experiences have global reach and value, being both highly cited and frequently

triadic. Triadic patents are those filed in the United States, Europe, and Japan, and are

often used as a proxy for the most valuable technologies (Dernis and Khan 2004; Rassenfosse

and Pottelsberghe de la Potterie 2009).

To explore the potential mechanisms behind this increase in green innovation, the second

part of the paper links natural disasters to a survey of inventive firms, where most inventors

work. We use data from the Community Innovation Survey (CIS), which asks research
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personnel in German firms about recent innovations and the reasons behind them.

Natural disaster exposure alters higher-order beliefs (beliefs about others’ beliefs) regard-

ing consumers’ climate change attitudes, their consumption preferences and voting behavior.

Experiencing one additional disaster raises the likelihood of citing expected increases in green

demand as a motive for green innovation by 0.87 percentage points. It also increases the

likelihood of citing anticipated environmental regulation by 0.93 percentage points. Ex-

posed respondents do not report reputational concerns or increased government funding and

subsidies as drivers of their green innovation. To further examine the role of government

research funding, we match French administrative data on government research funding to

our disaster exposure measure. We do not detect systematic increases in funding for affected

regions. These results are consistent with a mechanism that primarily goes through expecta-

tions about the future profitability of green innovation. Natural disasters locally increase the

salience of climate change, shifting consumption toward environmentally friendly products,

and thus raise expectations of green demand and regulation.2 As a result, inventors expect

higher returns to green innovation and increase their R&D efforts accordingly.

Additionally, the CIS data allow us to capture innovations beyond those recorded in

the patent system, which we use to confirm that affected firms are more likely to introduce

green products and engage in green process innovation. Exposure increases the likelihood

of introducing green process innovation and green product innovation by roughly 4.7% and

4.3%, respectively. Moreover, self-reported climate change affectedness is robustly correlated

with our natural disaster measure.

In the third part of the paper, we embed our behavioral mechanism in a formal theoret-

ical framework to examine how it interacts with market forces, allowing us to disentangle

profitability expectations and intrinsic motivation. Building on Aghion et al. (2023), con-

sumers value both the consumption utility and the carbon footprint of goods—for example,

transportation and its associated emissions. Consumer preferences depend on beliefs about

climate change. We extend this framework by modeling how inventors respond to the height-

ened salience of climate change. Inventors form expectations about the future profitability of

green technologies and derive intrinsic utility from engaging in green research. Both expecta-

tions about profitability and intrinsic motives are shaped by local personal experiences with

natural disasters. Inventors operate in markets with varying degrees of competition, which

shapes how strongly they respond to changes in expected demand for green technologies.

In monopolistic markets, inventors have little incentive to develop green alternatives, as in-

cumbents already earn high profits. In contrast, in competitive markets, inventors face price

2Disaster exposure increases green good demand & environmental policy preferences (Djourelova et al.
2024, Chae et al. 2025).
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pressure and can use green innovation to differentiate their products and escape competition.

Our model predicts that only inventors motivated by profitability expectations respond

more strongly to natural disaster exposure when they operate in competitive markets. This

comparative static provides a test of our proposed mechanism. Since market structure affects

only the profit motive and not inventors’ intrinsic motivation, a stronger innovation response

in competitive markets would indicate that profit incentives play a central role. In contrast,

if intrinsic motivation were the sole driver, inventors would respond equally regardless of the

level of competition.

We test this comparative static empirically by matching our patent data with information

on industry competition, and find evidence consistent with profitability expectations playing

a central role. Following Aghion et al. (2023), we use inverse profit margins as a proxy for

industry-country-year-level competition.3 We find statistically significantly larger effects in

markets with high levels of competition, in line with our model predictions for profit-oriented

inventors. This highlights the importance of inventors’ personal experiences in shaping profit

expectations and ultimately affecting their innovation choices.

Our model predicts stronger responses in relatively larger green good markets, in line with

the “building on the shoulders of giants” insight from the literature on market size and the

direction of innovation (Acemoglu et al. 2012; Acemoglu et al. 2016), as well as research on

innovation responses to market size more generally (Aghion et al. 2024). In larger markets,

innovation becomes relatively cheaper because there is a richer base of existing knowledge

on which to build.4 We also take this to the data and find stronger effects of natural disaster

exposure in product markets with larger green good shares.5

Related Literature & Contribution: Our central contribution is to causally identify

personal experience as a driver of innovation. We highlight a novel channel: personal expe-

riences influence inventors’ profitability expectations. Disaster exposure shifts expectations

about future green good demand and environmental regulation. It alters higher-order beliefs

about consumers.

Our findings add to a small but growing literature that studies inventor-level drivers

of innovation. Recent work has investigated how socioeconomic background affects who

becomes an inventor, and documents unequal access to innovation careers (Aghion et al.

2017; Akcigit et al. 2017; Bell et al. 2019). There is also work that documents social and

3Our competition data come from CompNet (CompNet 2022).
4For example, inventing an induction stove is more feasible when the principles of magnetic induction

are already well understood, reducing the cost and risk associated with developing new green technologies.
5We proxy for green good demand by the share of green goods in a product market, using data from

PRODCOM and a list of green products from Bontadini and Vona (2023).
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intrinsic motives to innovate (Stern 2004; Feng et al. 2021). Our work discusses inventors’

personal experiences as central to their choice about what to innovate. These experiences

affect inventors’ choices through changes in their beliefs about the returns to innovation.

Our work builds on the behavioral experience effects literature, which documents corre-

lations between personal experiences and household expectations about inflation, recessions,

house prices, and stock returns (Malmendier and Nagel 2011; Malmendier and Nagel 2016;

Kuchler and Zafar 2019; Laudenbach et al. 2023). Giuliano and Spilimbergo (2024) summa-

rize this literature. We contribute to the literature on experience effects in three ways. First,

we move beyond correlations and show that experience effects causally influence high-stakes

decisions. Second, we extend the literature to the production side of the economy by show-

ing that personal experiences affect innovation choices. Third, we disentangle the channels

through which personal experiences operate, distinguishing intrinsic motivation from profit

expectations.

Our findings relate to the literature on higher-order belief formation and salience. Evi-

dence on higher-order belief formation has mostly been limited to experimental studies and

information treatments in surveys (Coibion et al. 2021).6 Our findings provide novel evidence

from an observational setting on how personal experiences of large shocks shape higher-order

beliefs. These findings also connect to the literature discussing the role of salience in decision

making (Bordalo et al. 2012; Bordalo et al. 2022). Prior work related to natural disasters

shows that they heighten local climate change salience and change voting and consumption

patterns (Gallagher 2014; Herrnstadt and Muehlegger 2014; Djourelova et al. 2024; Chae

et al. 2025). We show that inventors respond to these local changes, and that the salience

of climate change affects high-stakes innovation decisions.

Lastly, we contribute to the literature on the determinants of the direction of innovation.

Green R&D responds to market structure and policy incentives such as competition, energy-

price shocks, and carbon regulation (Aghion et al. 2005; Acemoglu et al. 2012; Acemoglu

et al. 2016; Hassler et al. 2012; Calel and Dechezleprêtre 2016). There is a small literature

that links the invention of adaptation technologies such as drought-resistant crops and air-

conditioning to natural disasters (Miao and Popp 2014; Barreca et al. 2016; Moscona and

Sastry 2023). However, how innovation responds in the crucial domain of mitigation, tech-

nologies that directly combat climate change by reducing emissions, is poorly understood.

We address this gap and show that natural disaster exposure leads to inventive activity that

goes beyond damage control and targets forward-looking abatement. Our results show that

6Higher-order beliefs shape decision-making and coordination in markets. This layering of expectations
helps explain diverse phenomena—from fluctuations in economic activity and asset price movements to
behavioral distortions like myopia and anchoring (Lorenzoni 2009; Banerjee et al. 2009; Angeletos and Huo
2021; Huo and Takayama 2024).
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there is an endogenous response to increasingly severe climate change, which integrated as-

sessment models neglect (see for example Ackerman et al. 2009; Cai 2020). Crucially, this

response depends on consumers’ green preferences and the market environment.

The rest of this paper is organized as follows. Section 2 describes our data. Section

3 describes our empirical approach. Section 4 presents our results on patenting. Section

5 discusses our proposed mechanism and provides survey evidence on inventors updating

their higher-order beliefs. Section 6 starts with our theoretical model and provides empirical

evidence for our proposed comparative statics. Section 7 concludes.

2 Data

To conduct our analysis we draw on a variety of different data sources. Table 1 gives an

overview of the data, the geographic coverage, the time period, and the key variables we use.

Table 1: Data Sources, Coverage, Periods, and Usage

Data & Source Countries Time Period Usage

Patents
(PATSTAT)

France, Germany
(also data for EPO,

USPTO, JPO)

1994–2014 Patent indicators; technology classifica-
tion; inventor geolocations

Natural Disas-
ters (EM-DAT &
GDIS)

France, Germany 1980–2018 Location; severity; type

Firm-level Survey
(Mannheim Inno-
vation Panel)

Germany 2009, 2015, 2021 Firm-level green innovation measures;
stated reasons for green innovation

Competition
(CompNet)

France, Germany From 2000 Industry-level competition measure
(available years vary by country – see
Appendix C.1)

Green Goods
(Eurostat PROD-
COM)

France, Germany 1995–2014 Industry-level production share of green
products, green goods from Bontadini
and Vona (2023)

Research Funding
(ScanR)

France 1999–2023 Public research and innovation funding

2.1 Patents

To measure innovation, we use data on patent applications filed by inventors living in France

and Germany from the European Patent Office’s (EPO) PATSTAT database, covering the

period from 1994 to 2014. Roughly 50% of patents filed at the EPO came from EPO member
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states. Of those, 50% came from France and Germany. They are the two most active

countries among EPO member states in terms of patenting. We have additional information

on research funding for France, and a firm-level survey on innovation for Germany. Hence,

we focus our analysis on France and Germany.

Given our focus on the personal experiences of inventors rather than on patents them-

selves, it is crucial to have comprehensive data on inventors’ patenting behavior regardless

of where they choose to file these patents. Because we study inventors residing in France

and Germany rather than patents filed solely within these countries, we require access to

patent records extending beyond the European Patent Office (EPO). For example, a French

inventor personally affected by a natural disaster may choose to patent an innovation in

the United States, anticipating greater commercial potential there. PATSTAT meets this

requirement by providing extensive data that includes filings not only at the EPO and its

member states’ national offices but also at global patent offices such as the Japanese Patent

Office (JPO) and the United States Patent and Trademark Office (USPTO). Additionally,

patents filed in these three jurisdictions—often referred to as triadic patents—are widely

recognized indicators of high-value inventions (see, e.g., Dernis and Khan 2004; Rassenfosse

and Pottelsberghe de la Potterie 2009; Dechezleprêtre et al. 2017).

We are interested in “green” technologies—innovations addressing climate change through

mitigation or adaptation. To identify green patents, we rely on PATSTAT’s Cooperative

Patent Classification (CPC) data, an extended version of the International Patent Classifi-

cation (IPC). CPC features the Y02 classification, explicitly denoting technologies designed

for mitigating climate change effects or adapting to its impacts. Utilizing this classification,

we distinguish between mitigation patents—those aimed at reducing the environmental im-

pact of human activities—and adaptation patents—those designed to help societies better

cope with climate change. The detailed CPC classes available in PATSTAT also allow us to

categorize patents broadly into technological groups such as agriculture, concrete and cement

making, or combustion engines. This detailed classification enables us to construct precise

indicators representing a region’s technological specialization. Figure 1 illustrates patenting

activity from 1994 to 2014 in France and Germany, distinguishing green from non-green

patents. Green patents comprise approximately 7.7% of all patents filed during this period,

and this share gradually increased over time.

We supplement PATSTAT with detailed information on the location of inventors and

applicants. Specifically, we use data from De Rassenfosse et al. (2019), which provides

precise coordinates for each inventor’s and applicant’s primary place of residence at the time

of patent filing. This data roughly corresponds to city-level assignments, enabling us to link

all patents in our sample to the location of their inventors. The data are available up to
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Figure 1: Patenting Activity in France and Germany over Time
Note: This figure depicts how patenting in France and Germany evolves over time until 2014. We split patents by green and non-green patents.

2014, limiting our analysis to years up to and including 2014.

From the available patent documents, we restrict our sample to first filings—i.e., the

first time any application was made for a distinct invention within an EPO worldwide bib-

liographic data (DOCDB) simple patent family. All patents in a simple patent family are

considered to cover the same technical content and share the same priority. In other words,

they describe the same invention and represent the same technological advancement. A pri-

ority patent is the first patent filed for that specific invention. We use the priority date—the

date of the first filing—as the year in which an invention was filed. Later claims or modifica-

tions to patent claims are excluded from our dataset, as we focus solely on original inventions.

Thus, we do not count instances where an existing patent is subsequently filed in another

jurisdiction. Similarly, we include only granted patents to ensure that what we measure is a

true new invention.

2.2 Natural Disasters

We obtain information on natural disasters from the emergency events database (EM-DAT)

published by the Centre for Research on the Epidemiology of Disasters (CRED) (see Guha-

Sapir et al. 2022). In our analysis, we are interested in the emergence of innovations to

combat and mitigate the consequences of climate change. We therefore only consider natural

disasters that occur more frequently in France and Germany due to climate change: floods,

storms, extreme temperature events, and droughts (see Intergovernmental Panel on Climate

Change (IPCC) 2023). The CRED includes a disaster in the database if it meets at least

one of the following conditions: (a) a death toll of ten or more people, (b) there are at
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least 100 people affected by the disaster, (c) the disaster causes the declaration of a state of

emergency, or (d) the affected country calls for international assistance.7

We complement the EM-DAT data with geolocations from the Geocoded Disaster (GDIS)

dataset (Rosvold and Buhaug 2021), which provides detailed spatial information on disasters

from 1960 to 2018. GDIS assigns events to the most precise available administrative unit,

ranging from national to subnational levels. In France and Germany, this includes up to

three tiers of administrative divisions: régions and Länder (large federal or territorial states),

départements and Regierungsbezirke (mid-level units akin to provinces), and arrondissements

and Kreise (smallest administrative units, comparable to US counties). The arrondissement

and Kreis levels correspond to the third Nomenclature of Territorial Units for Statistics

(NUTS) level in France and the second NUTS level in Germany. There are 403 Kreise and

350 arrondissements in our data.

Until 1984, only a small number of disasters are geolocated below the first administrative

level. We therefore only consider events from 1984 onward. For our event study, we use 10

years of lags and 4 years of leads, and use disaster data from the years 1984 to 2018. For

our full sample, we end up with 150 distinct natural disasters, some of which affect multiple

regions at once.

2.3 Analysis Sample - Patenting

We merge our patent and disaster data at the most granular administrative level in our

data—arrondissements in France and Kreise in Germany. Throughout the analysis, we refer

to this as the “regional” level or simply “region,” which should not be confused with the

French “région.”

Our dataset includes approximately 520,000 patents, of which around 40,300 are classi-

fied as green. These patents were filed by approximately 1,385,000 and 110,000 inventors,

respectively. On average, 33.8 patents are granted annually in each region, 2.6 of which

are green patents. We aggregate all patents by the region of their inventors. Since some

patents have multiple inventors with addresses in different administrative areas, we assign

each region a proportionate share of the patent. For instance, consider a patent i with three

inventors: 1, 2, 3, where two live in Region A and one in Region B. Patent P would then be

attributed with a share of 2/3 to Region A and 1/3 to Region B. More generally, to calculate

the count of all green patents in region l in year t, we sum over all patents i, weighting by

the share of i’s inventors residing in region l:

7See https://doc.emdat.be/docs/protocols/entry-criteria/ for the precise inclusion criteria.
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C(Y02lt) =
N∑
i

(
[Y02ilt = 1]∑L
l [Y02ilt = 1]

)
(1)

where

[Y02ilt = 1] =

1, if patent i in year t and region l is green (Y02)

0, otherwise
(2)

This yields a continuous (in fraction of counts) variable for the annual number of green and

non-green patents in each region. To ensure comparability between green and non-green

patents, we normalize the count of each type of patent in each region by its respective mean

across all years t and all regions l:

P (Y02lt) =
C(Y02lt)

1
L

∑L
l

1
T

∑T
t C(Y02lt)

(3)

where L is the number of regions and T is the number of years, and equivalently for non-green

patents. We adopt the same normalization procedure when aggregating across subclasses or

when splitting the sample by e.g. competition.

Natural disasters are reported at either the first-, second-, or third-order administrative

level. To ensure consistent spatial coverage, we assign each disaster reported at the first- or

second-order level to all corresponding third-order areas within the respective administrative

boundary. For instance, if an extreme temperature event is reported in the German state

Hessen, all 26 Kreise within Hessen are coded as being exposed during this period. Our

sample includes 150 natural disasters in total. Broken down by type, there are 64 floods, 63

storms, 20 extreme temperature events, and 3 droughts.

Figure 2 visualizes the geographic variation in both disaster exposure and green patenting

activity across the regions in our sample. Regions shaded in yellow are characterized by ele-

vated levels of green patenting but relatively few natural disasters, while those shaded in blue

have experienced many disasters but exhibit limited green innovation. Green-shaded regions

display both high disaster exposure and high green patenting, indicating potential alignment

between environmental shocks and green innovation. In contrast, gray areas denote regions

with neither significant disaster exposure nor notable green patenting activity.
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Figure 2: Bivariate Map of Green Patent and Disaster Counts
Note: This map depicts the bivariate variation in green patenting (shades of yellow) and natural disasters (shades of blue). Darker tones signify
more patents (disasters) respectively. Shades of green indicate regions with high levels of both green patents and natural disasters. Grey regions
have a very low number of patents and disasters. Only green patents are displayed and we pool all years.

3 Empirical Strategy

This section outlines our empirical strategy for estimating the effect of natural disasters on

innovation. Innovation is a gradual process: the path from idea to patentable prototype often

spans years. To capture these dynamics, we adopt an event-study design, which allows us

to observe the dynamics of patenting following a natural disaster. Our baseline event-study

specification, applied to the data, is presented in the equation:

P (Y02lt) =
11∑

s=−5,s ̸=−1

βsD
s
l,t + γ1CPClt + λc(l),t + λl + ϵlt (4)

with

Ds
l,t =


∑−5

s=−∞ dl,t−s if s = −5

dl,t−s if − 5 < s < 11∑∞
s=11 dl,t−s if s = 11

(5)
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where P (Y02lt) is the normalized count of patents (as specified in equation (3)), and dl,t−s

is the count of natural disasters experienced by region l in year t−s. The reference period is

the year prior to disaster exposure. Following McCrary (2007) and the formal definition of

Schmidheiny and Siegloch (2023), we bin all periods that are more than 10 years in the past

or more than 4 years in the future. We include region fixed effects λl and country-by-year

fixed effects λc(l),t, where c(l) denotes the country that region l belongs to. CPClt is a vector

of controls representing a region’s innovation composition at time t. For every region, we

calculate the percentage of patents falling into a broad CPC class.8 These controls allow us to

account for different time trends in a region’s patenting industry composition. For instance,

we can account for the impact of a large pharmaceutical company, which frequently patents,

leaving a region, which would affect patenting in class C - “Chemistry; Metallurgy”.

Region level fixed effects (λl) control for region-specific natural disaster risk characteris-

tics and account for differences, such as one region being more accustomed to floods than

another. Although the exact timing of natural disasters is random, some regions experience

such events more frequently, as shown in Figure 2: coastal and Alpine areas face higher

disaster risks than interior regions. Inventors might choose locations based on these regional

risks, potentially causing selection bias. Region fixed effects mitigate this concern by captur-

ing region-specific disaster exposure and institutional characteristics that are constant over

time. Additionally, country-by-year fixed effects (λc(l),t) account for trends in overall disaster

risk and differing innovation patterns between France and Germany.

Our coefficients of interest, βs, estimate the average change in green innovation in a

region at event time s, relative to the year before the disaster (s = −1), controlling for

time-invariant regional characteristics and differential trends across countries. Identification

comes from cross-regional variation in disaster timing. Because our natural disaster data are

only available at the regional level, our estimates resemble an intent-to-treat effect. If a flood

impacts only part of a region—such as a valley—we still treat all inventors in that region as

exposed. This likely attenuates the estimated effect and yields a conservative lower bound

on the individual-level response. We cluster standard errors at the regional level, which is

the level of treatment variation.

One remaining identification concern is that climate change may induce differential trends

in underlying disaster risk across regions. If these trends are observable to inventors, they

may select into regions accordingly, generating potential selection bias based on heteroge-

neous regional risk trajectories. We argue that the absence of such selection is plausible in

8These classes are: A - “Human Necessities - Agriculture”, B - “Performing Operations; Transporting”, C
- “Chemistry; Metallurgy”, D - “Textiles; Paper”, E - “Fixed Constructions”, F - “Mechanical Engineering;
Lighting; Heating; Weapons; Blasting”, G - “Physics”, H - “Electricity”. For example, in 2007, 33% of all
patented inventions by inventors in Dunkerque had the CPC class C (Chemistry; Metallurgy).

12



our setting, as the regional impact of climate change is inherently difficult to predict, even

for climate scientists (Hulme et al. 1999). Moreover, the literature on migration patterns

following natural disasters mostly documents out-migration of skilled individuals (Boustan

et al. 2020), and inventors are highly skilled (Bell et al. 2019). If out-migration of inventors

occurred in our setting, our estimates would be biased downward and suffer from attenuation.

If the opposite was true, and inventors moved to affected regions, we would overestimate the

effect. The underlying assumption of our work is that inventors do not select into regions

based on regional differences in the trend of natural disasters.

We observe the universe of patent applications, which allows us to identify a subset of

inventors who previously filed in the same region. In Section 4.5, we show that our results

remain robust when restricting to this subsample (see Figure 6b), which alleviates concerns

about inventor selection. A remaining caveat is that we observe inventors only at the time of

filing, so unobserved moves between filings cannot be entirely ruled out—even for apparent

stayers. Additionally, in Section 4.7, we show that self-reported climate change affectedness

is robustly correlated with our natural disaster measure.

In our context, the stable unit treatment value assumption (SUTVA) implies that there

are no unmodeled spillovers between regions. We will later explicitly model spillovers to

neighboring regions and show that natural disaster exposure only marginally affects directly

adjacent regions.9

A concern in our event study framework is the potential presence of heterogeneous treat-

ment effects. Standard two-way fixed effects (TWFE) estimators, as used in our baseline

specification, implicitly average treatment effects across groups that may differ in the tim-

ing and magnitude of treatment, potentially leading to biased or misleading estimates when

treatment effects are heterogeneous. In our setting, regions are exposed to different numbers

of disasters at different points in time, and the effect of an additional disaster may vary

depending on prior exposure. This dynamic poses a challenge: regions used as controls at

a given point may themselves become treated in subsequent periods, and their treatment

effects may not be comparable to the newly treated units.

To address this concern, in Section B.1 of the Online Appendix we adopt the estimator

proposed by Chaisemartin and D’Haultfœuille (2023) and Chaisemartin and D’Haultfœuille

(2024). This estimator constructs control the group by conditioning on treatment history.

Specifically, regions that have experienced the same cumulative number of disasters up to t−1

form the control group, and those newly treated at t are compared against those that remain

untreated at that time. Over time, as more units receive treatment, the control group shrinks.

9The effect is 1/8 of our baseline estimate for the effect on the directly exposed region. See section 4.2
for our results on spillovers. In general, positive spillovers would mean attenuation of our baseline estimates.

13



Our baseline model on the other hand, maintains a fixed control group. While the alternative

estimator yields somewhat larger and more persistent effects (Figure B.1 in Section B.1 in

the Online Appendix), the results are qualitatively consistent with those from our preferred

TWFE specification (Figure 3 in Section 4). This robustness across estimation strategies

provides reassurance that our main findings are not driven by bias due to heterogeneous

treatment effects, even if each approach carries its own limitations. We mainly report the

TWFE results because they provide more conservative estimates, and also potentially offer

greater external validity due to a more realistic and stable control group.

We are also interested in the long-run average effect that one additional disaster has

on green innovation in a region l. To estimate this effect, we use the following collapsed

difference-in-differences equation:

P (Y02lt) = β

(
∞∑
s=0

dl,t−s

)
+ γ1CPClt + γ2λc(l),t + γ3λl + ϵlt, (6)

where
∑∞

s=0 dl,t−s represents the cumulative number of past natural disasters. The parameter

of interest, β, estimates the average effect that one additional disaster has on the number of

green patents in a region.

To summarize, our identifying variation comes from the random timing of severe natural

disasters across regions, which—conditional on regional fixed effects—is plausibly exogenous

and allows us to compare changes in green innovation in affected regions before and after

disasters relative to unaffected regions. Our data contain only severe natural disasters.

Therefore, we caution that not all exposure to the forces of nature induces changes in inventor

behavior.

4 Effects on Innovation

Figure 3 presents our results when estimating our event-study specification (4) for green and

non-green innovation. Year 0 represents the partially treated year.10 While the initial effect

is small, we observe a large and significant impact two years after the natural disaster, with

the effect peaking five years after the event. Five years after natural disaster exposure, green

patenting is 24% higher than in unaffected regions. Subsequently, the effect diminishes over

time, becoming insignificant ten years after the natural disaster. We interpret the inverted

U-shape of the innovation response as stemming from the fact that innovation takes time.

Natural disasters trigger an impulse towards inventive activity, with the resulting innovations

10If region l experienced a natural disaster in June, only patents filed in the months after could potentially
be influenced by the natural disaster.
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materializing in the subsequent years. This pattern aligns with earlier literature, which

suggests that the salience and behavioral response to natural disaster exposure tend to fade

over time (see Gallagher 2014). The initial lag is consistent with innovation taking time.
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Figure 3: Patenting following the Exposure to a Natural Disaster
Note: This figure depicts the results for our baseline event-study specification, where we compare patenting in regions exposed to natural
disasters to unaffected regions. We plot two separate regressions for green and non-green patents. Percentages are relative to the overall sample
averages of green/non-green patents per year per region: (2.54) and (30.5) respectively. An increase in green patenting of 24% corresponds to
0.61 additional green patents. Standard errors are clustered on the region level, and confidence intervals are drawn for the 95% interval.

We find no significant change in non-green innovation, consistent with limited crowding

out of other inventive activity. The magnitude of our effects is substantial. In comparison,

Calel and Dechezleprêtre (2016) find a 10% increase in green patents among firms covered by

the EU Emissions Trading System (EU-ETS) in its early years, using the same measure of

green innovation we employ. Relative to their estimates, we observe a larger short-run spike

in patenting five years after a disaster, while our long-run effect, an 8.2% increase relative to

the sample average (Table 2), is of similar magnitude but slightly smaller. Similarly, the oil

crisis led to a 3% rise in green patenting (Popp 2002; Hassler et al. 2012), and a 10% increase

in fuel prices generated a 10% increase in green innovation (Aghion et al. 2016). By this

benchmark, natural disasters elicit a large and statistically significant response from local

inventors. That said, comparisons should be interpreted cautiously: while policy shocks like

the EU-ETS or oil price spikes are often systemic and partly predictable, natural disasters

are inherently local and unpredictable.

The event study plots indicate flat pre-trends, with pre-treatment coefficients closely

centered around zero, supporting the validity of the parallel trends assumption. To address
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concerns about heterogeneous treatment effects, in Section B.1 we re-estimate our main green

innovation results using the estimator proposed by Chaisemartin and D’Haultfœuille (2023)

and Chaisemartin and D’Haultfœuille (2024).

In Section B.3 of the Online Appendix, we show that our results are consistent across a

broad range of CPC classes and are not driven by any single technological domain. To assess

this, we replicate our baseline specification separately for green patents grouped by the broad

CPC class they belong to, based on the primary technology classification of each patent.

The post-disaster response is remarkably similar across classes B (Performing Operations;

Transporting), C (Chemistry; Metallurgy), F (Mechanical Engineering; Lighting; Heating),

G (Physics), and H (Electricity). The effects are more volatile in D (Textiles; Paper) and

E (Fixed Constructions), while in A (Human Necessities)—which includes agriculture—the

response is comparatively weak or absent. Throughout, we control for a region’s broad

patenting composition. However, this composition may itself be endogenous to natural

disaster exposure. In Section B.2 of the online Appendix, we demonstrate that our results

remain robust and nearly identical when we omit these technology trend controls.

4.1 Mitigation vs. Adaptation

Do inventors primarily adapt to a changing environment (see, for instance, Miao and Popp

2014 and Moscona and Sastry 2023), or do their inventions combat the causes of climate

change? We investigate this by exploring the subcategories of green patents.

We split the sample of green patents based on their purpose—either to adapt to climate

change or to mitigate climate change. Specifically, we use the Y02A class, “technologies

for adaptation to climate change,” and all the other Y02 subclasses which relate to mitiga-

tion. Mitigation technologies for climate change are inventions that reduce greenhouse gas

emissions or enhance carbon removal from the atmosphere. Examples include renewable en-

ergy (like solar and wind), electric vehicles, carbon capture and storage, and energy-efficient

buildings.11 Table 2 presents the estimates for our difference-in-differences specification (6).

In the long run, one additional natural disaster increases patenting in mitigation tech-

nologies by 8.6% compared to the sample average, and patenting in adaptation technologies

by 4.4%. Mitigation technologies are crucial in order to reduce long-run emissions. These

coefficients are also statistically significantly different.12 There are roughly 10 times more

mitigation patents than adaptation patents in our sample. Section B.4 of the Online Ap-

pendix presents our results when estimating our event-study specification. We find that the

11See Online Appendix Section B.4 for an overview of all the Y02 classes used in this analysis.
12Using a Wald-test, we test whether these coefficients are statistically significantly different and can

reject the null hypothesis of equality with a p-value of 0.0097.

16



pattern for mitigation patents largely mirrors our main results, while the effect on adaptation

technologies is comparatively muted.

Table 2: Patenting Responses split by Adaptation vs. Mitigation

Dependent variable:

All Green Mitigation Adaptation

(1) (2) (3)

Cumulative Count 0.082∗∗∗ 0.086∗∗∗ 0.044∗∗∗

(0.009) (0.010) (0.013)

Country-Year F.E. Yes Yes Yes
Region F.E. Yes Yes Yes
CPC Controls Yes Yes Yes

Wald-test p-value 0.0097∗∗∗

Sample Mean 2.54 2.32 0.22
Observations 15,813 15,813 15,813
R2 0.739 0.723 0.513
Adj. R2 0.725 0.708 0.487

Note: This table gives the results for our baseline regression for all green patents (1), and
split by mitigation and adaptation in columns (2) and (3). Cumulative Count is the count

of past natural disasters. We construct a Wald-test of the form W =
(β̂eq1−β̂eq2)2

Var(β̂eq1−β̂eq2)
,

where: Var(β̂eq1 − β̂eq2) = Var(β̂eq1) + Var(β̂eq2) − 2 · Cov(β̂eq1, β̂eq2). We can reject
the Null hypothesis H0 : βeq1 = βeq2 against the alternative (H1 : βeq1 ̸= βeq2) with
the reported p value. Standard errors are clustered on the region level and are reported
in parentheses. P-values are as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Inventors thus not only invent technologies protecting against the adverse effects of cli-

mate change, but they patent ideas that help combat climate change itself. Mitigation tech-

nologies are not directly tied to natural disasters. The strong effects we observe for these

technologies suggest that inventors respond not only to the immediate threat of disasters,

but also by developing innovations with broader applications in everyday products. This

implies that they not only recognize rising risks, such as increased flood frequency, but also

perceive greater value in technologies that reduce GHG emissions. In Section 5, we show that

these expectations about greater value, at least in part, stem from inventors’ higher-order

beliefs about consumer preferences about green consumption and environmental policy.

In Online Appendix Section B.4, we additionally present results for all the subclasses

in isolation. Estimating our baseline difference-in-differences specification (6) separately for

each of these subclasses, we find that the coefficient on the cumulative count of past disas-

ters is consistently positive and statistically significant across all subclasses. Of particular

interest for mitigation are the Y02E class, “reduction of greenhouse gas (GHG) emissions
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related to energy generation, transmission, or distribution,” and the Y02T class, “climate

change mitigation technologies related to transportation,” as they cover the most polluting

activities. Additionally, we present event study estimates for these two subclasses separately.

The patterns mirror our main results, emphasizing that inventors react across different in-

dustries—even in the most polluting ones.

4.2 Spillovers

If personal experience is the primary channel through which natural disasters affect innova-

tion, then we should observe little to no impact in neighboring regions that were not directly

exposed. To test this, we examine potential spillovers by estimating the effect of disaster

exposure in adjacent regions on local patenting activity. For each region, we calculate the

number of natural disasters in neighboring regions. Figure 4 depicts our different distance

bands within which we consider a region to be a neighbor. Put differently, we estimate the

effect of natural disasters in the black-shaded region on patenting in neighboring regions.

Red-shaded areas are regions whose borders are closer than 50km, while orange-shaded ar-

eas are closer than 100km away, and yellow shaded areas are closer than 150km away. To

avoid including exposed regions in the control group, we remove all regions that experienced

natural disasters in the past five years.

We estimate our difference-in-differences specification (6) and depict the results in Table

3. Natural disasters only marginally affect patenting in directly adjacent regions, leading

to a long-run increase in patenting of about 1% in adjacent regions. Relative to the results

presented in Table 2, the magnitude of the increase is approximately eight times smaller.

When we move to regions that are 100km or 150km away, we find precisely estimated point

estimates close to zero. There is no sizeable effect of natural disasters on regions that are

more than 50km away. The lack of large spillovers is striking and underlines that the direct

personal experience of the inventor is the driving force behind our results.

While our approach of excluding affected regions from the control group ensures clean

identification, it also systematically excludes regions that experience disasters more fre-

quently. This exclusion may introduce some bias, as effects are primarily identified from

regions with lower disaster exposure. In section B.7 in the Online Appendix, we also show

our results when we exclude regions that have been affected in the past three, four, six, seven

years respectively. We also have one specification where we include all affected regions in the

control group, thus not restricting our sample. Results are qualitatively the same for both
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Figure 4: Illustration of Distances to Region
Note: This figure depicts the different distances at which we consider an area to be a neighbor of the black-shaded region in the center.
Red-shaded areas are regions whose borders are closer than 50km to the area of interest, while orange-shaded areas are closer than 100km away,
and yellow-shaded areas are closer than 150km away. We show only France for simplicity.

types of robustness checks.13

4.3 Patent Value

To assess whether natural disaster exposure spurs economically valuable innovation, we

examine the value of resulting patents. A key concern is that observed increases in patenting

may reflect low-quality or hastily conceived inventions. To address this, we use citation

counts, a proxy for patent value, to gauge the technological and commercial relevance of

disaster-induced innovations. Prior work shows that more highly cited patents are more

socially valuable (Trajtenberg 1990), command higher market valuations (Hall et al. 2005),

and are more likely to be sold (Harhoff et al. 1999). More recent studies further affirm their

reliability as indicators of patent quality (Jaffe and Rassenfosse 2017).

13When we exclude all regions affected in the past six, and seven years, we find slightly larger and more
imprecise estimates for the 50km range. When we do not restrict the control group, the results remain
very similar for the 50km range. We find very small but significant negative effects of neighboring natural
disasters that are more than 50km away. This is due to the control group now containing regions that are
affected by natural disasters. We essentially invert our main regression. In this specification, we compare an
area unaffected by a natural disaster with areas that are affected.
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Table 3: Spillovers of Neighboring Disasters

Dependent variable:

P (Y 02lt)

(1) (2) (3)

Cumulative Count (50km) 0.0100∗∗∗

Neighboring Disasters (0.0037)

Cumulative Count (100km) 0.0001
Neighboring Disasters (0.0005)

Cumulative Count (150km) −0.0005
Neighboring Disasters (0.0004)

Country-Year F.E. Yes Yes Yes
Region F.E. Yes Yes Yes
CPC Controls Yes Yes Yes

Observations 4,125 4,125 4,125
R2 0.8499 0.8493 0.8494
Adjusted R2 0.8201 0.8193 0.8194

Note: This table shows our regressions results for spillovers from adjacent regions. “Cumulative Count
Neighboring Disasters” is the count of past natural disasters in neighboring regions. Which regions are
considered as “neighbors” depends on the distance threshold as shown in Figure 4. From these regressions,
we exclude all regions that themselves experienced a disaster in the past 5 years. Standard errors are
clustered on the region level and are reported in parentheses. P-values are as follows: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01

We investigate whether our findings result from the invention of high- and/or low-value

patents by examining the effects for patents with high and low citation counts separately.

We split the sample based on patents that received citations above or below the median

within their respective groups. Given that a patent published in 1995 is likely to have more

citations than one published in 2005, and that a patent for a toothbrush may attract a

different number of citations compared to one on quantum computing, we compare patents

within the same CPC class j (e.g., CPC class C for Chemistry) and published in the same

year t. Let the group of patents belonging to CPC class j published in year t be denoted by

Gjt. For all such groups, we then compute the median number of citations, denoted by G̃jt.

Since a patent might belong to multiple CPC classes (for instance, j and k), we define it as

having above-median citations if:

Citationsit >
G̃jt + G̃kt

2
. (7)

Figure 5a plots the results when estimating our event-study (4) for both samples.
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(a) Patenting Activity by Citation

−2
0%

−1
0%

0

10
%

20
%

30
%

40
%

50
%

<−4 −4 −3 −2 0 1 2 3 4 5 6 7 8 9 10 10<
Years to Disaster

P
er

ce
nt

ag
e 

C
ha

ng
e 

in
 N

um
be

r 
of

 P
at

en
ts

 &
 9

5%
 C

.I.

Patent Class
Non−Triadic Green Patents
Triadic Green Patents

DEFR − meanGtriadic = 0.5037 meanGnon_triadic 2.0485

(b) Triadic vs Non-Triadic Patenting

Figure 5: Green innovation response to natural disaster exposure by patent characteristics
Note: This figure presents results from our event-study analysis of green patenting following natural disasters, split by different patent
characteristics. Panel (a) differentiates patents by citations (above vs below median citations), with a sample mean of 1.271 (highly cited) and
1.253 (less cited) green patents per region-year. Panel (b) differentiates between Triadic and Non-Triadic green patents, with sample means of
0.503 and 2.05, respectively. Standard errors are clustered at the region level, and confidence intervals represent the 95% confidence level.

Both regressions show a positive, significant effect on subsequent green patents, as ob-

served in our baseline results in Figure 3. Moreover, there does not seem to be a significant

difference between patents with different citation counts. Our results suggest that natural

disasters stimulate patenting activity regardless of whether patents are highly cited or not,

indicating broad-based innovation rather than targeted low-value activity.

Another commonly used way to measure patent value is whether patents belong to a

triadic family. A triadic patent is a patent filed at the European Patent Office (EPO),

the Japanese Patent Office (JPO), and the United States Patent and Trademark Office

(USPTO). Patents of such nature are usually quite valuable, as filing multiple patents in

vastly different jurisdictions is, first of all, expensive, and secondly, implies that their techni-

cal content is economically valuable in some of the biggest markets on earth. We then use this

indicator to estimate our event study for these triadic patents. Figure 5b plots our results.

We find a similar pattern as in our baseline regression. Significant effects on triadic patents

highlight that local experiences generate innovations with global market relevance, showing

that inventors’ responses are economically substantive and internationally applicable. As

triadic patents are filed all over the world, these findings also alleviate the concern that our

results are driven by any effect the natural disaster might have on the patent examiner. It

is unlikely that a disaster in the south of France will influence the examiner at the USPTO.

4.4 Types of Inventors

To better understand who drives the observed green innovation response to natural disasters,

we disaggregate our analysis by inventor type, using detailed information on applicants and
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inventors recorded in PATSTAT. This is possible because PATSTAT includes standardized

names for both inventors and applicants, along with information on applicant type—such as

whether the applicant is a firm or an individual.14 In our sample, 72% of patents are filed

by firms and 16.8% by individual inventors. For the remaining 11.2%, the applicant type

cannot be determined.15
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(a) Firms vs Individual Inventors
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(b) Stayers vs Movers vs Not Categorized

Figure 6: Innovation by Inventor Type and Mobility
Note: This figure presents results from our event-study analysis of green patenting following natural disasters, split by inventor characteristics.
Panel (a) differentiates patents filed by firms (sample average: 1.82 patents per region-year) and solo inventors (sample average: 0.43 patents per
region-year). Panel (b) differentiates inventors by their mobility status: Stayers (sample average: 0.58), Movers (sample average: 0.1), and Not
Determined (sample average: 1.86). Standard errors are clustered at the region level, and confidence intervals represent the 95% confidence level.

We estimate equation (4) separately by inventor type, using the count of all patents filed

by either firms or individuals as the outcome. As patents can be filed by an individual and

a firm jointly, when focusing on individual patent holders, we only keep patents exclusively

filed by individuals. We compare the patenting behavior of exposed and unexposed inventors,

separately for those affiliated with firms and those working independently. Figure 6a shows

the event-study results. Given the larger number of patents filed by firms, estimates for

firms are more precise. Natural disasters affect both inventors embedded in firms and those

working independently or in small teams.

In Section B.12 of the Online Appendix, we show that personal experience of natural

disasters increases green patenting along both the intensive and extensive margins, affecting

both first-time and repeat inventors. We classify an inventor as a repeat inventor when

they have previously shown up as an inventor in the patent system. Any inventor that

files additional patents only afterward or only once is classified as a first-time inventor. We

classify a patent as coming from a repeat inventor if at least one of its inventors has previously

patented. Notice that the majority (roughly 83%) of patents are filed by at least one repeat

14This classification in PATSTAT is based on data from ECOOM (K.U. Leuven).
15We omit results for this unclassified group.
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inventors. Both first-time and repeat inventors react to natural disaster exposure, with the

response being significantly larger among repeat inventors.

In Online Appendix Section B.13, we further explore how inventors’ past patenting ac-

tivities influence their innovation response to natural disasters. Specifically, we differentiate

between inventors with extensive prior patent filings (“large filers”) and those with fewer

previous patents (“small filers”), additionally distinguishing between inventors with sub-

stantial past engagement in environmentally harmful (“brown”) technologies versus those

with less or no prior involvement. Overall, the observed innovation responses are relatively

similar across these classifications; however, large patent filers consistently exhibit stronger

responses than small patent filers.

4.5 Inventor Movement

To address potential concerns about endogenous inventor selection, we examine whether

green innovation responses differ between inventors who remain in their region and those

who move. For a limited sub-sample of inventors, we know if they were previously recorded

as living in the same region, or if they have moved. We can thus compare the evolution of

patents for inventors who either stayed, moved, or for whom we do not have such information.

We know that roughly 23% of inventors did not move, 4% moved, and we lack information

to pinpoint the moving status for the rest (63%). Figure 6b plots our results. For inventors

who did not move, results remain similar to our baseline findings. Results are noisy for

movers, likely because we have limited statistical power due to the low number of movers in

our sample. For those inventors for which we cannot determine their status, results are very

similar to our baseline findings. Our findings alleviate some of the concerns about inventor

selection into affected regions, as inventors who did not move equally respond to natural

disaster exposure.

4.6 Disaster Severity

To explore whether the magnitude of natural disasters shapes the innovation response, we

examine how green patenting varies with disaster severity, distinguishing between more and

less deadly events as well as more and less economically damaging ones. Table 4 presents

estimates from our baseline difference-in-differences specification (6), comparing the effects

of natural disasters on green innovation separately by disaster severity. In columns (1) and

(2), we contrast the effects of disasters with death tolls above the median column (1) and

economic damages above the median column (2) to those with lower severity.

Previous work has shown that disasters involving significant loss of life create greater
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Table 4: Patenting Effects by Disaster Severity

P (Y 02lt)

Split by Median

Deaths Damages

(1) (2)

Cumulative Count: Above Median 0.1074∗∗∗ 0.0582∗

Most Severe Disasters (0.0179) (0.0298)

Cumulative Count: Below Median 0.0564∗∗ 0.0868∗∗∗

Less Severe Disasters (0.0225) (0.0115)

Country-Year F.E. Yes Yes
Region F.E. Yes Yes
CPC Controls Yes Yes

P-Value: Coef. Difference 0.1627 0.4282
Observations 15,813 15,813
R2 0.7386 0.7386
Adjusted R2 0.7247 0.7246

Note: This table compares disasters with above and below median level disaster severity as measured by either
deaths or damages. In Column (1) disasters are split along the median on to their number of deaths. In column (2)
disasters are split along the median on the monetary value of damages. We test for difference in coefficients between

severe and less severe disasters using a Wald test of the form W =
(β̂top−β̂bot)

2

Var(β̂top−β̂bot)
, where Var(β̂top − β̂bot) =

Var(β̂top) + Var(β̂bot) − 2 · Cov(β̂top, β̂bot). We test the null hypothesis H0 : βtop = βbot against the two-sided
alternative H1 : βtop ̸= βbot, and report the corresponding p-value. Standard errors are clustered on the region
level and are reported in parentheses. P-values are as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

salience of climate-related risks among the public (Eisensee and Strömberg 2007; Kalatzi

Pantera et al. 2023; Demski et al. 2017). We find that highly deadly disasters have stronger

effects on green innovation compared to less deadly disasters. This is in line with our pro-

posed mechanism, as larger increases in public salience of climate change should translate

into inventors forming higher monetary expectations, thereby prompting a stronger innova-

tion response.16

In contrast, our analysis of economically damaging disasters shows weaker innovation

responses for the most severe disasters. In column (2), the effect for the most damaging

disasters is smaller that that for the less destructive disasters. This result is in line with lit-

erature documenting that large-scale economic disruptions from disasters destroy productive

16We also examine the effects of the single most severe disaster experienced by a region, which yields
larger but statistically noisier coefficients. These results are reported in Section B.5 of the Online Appendix.
In addition, we explore heterogeneity by disaster type. Due to the small number of drought events in our
data (only three cases), we exclude them from this analysis. For extreme temperature events, floods, and
storms, we find positive effects on green innovation that broadly mirror the patterns shown in Figure 3,
albeit with greater noise. Results are reported in Section B.6 of the Online Appendix.
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capital and critical infrastructure, which may in turn impede innovation by limiting firms’

capacity to invest and adapt (see Peters et al. 2024; Le et al. 2024).

4.7 Survey Measure of Green Innovation

Patent data are frequently used to measure innovation; however, there are some limitations

e.g. not all innovations are patentable, and not all inventors opt to patent their innovations.

To further underline our findings, we repeat our analysis using an alternative indicator for

green innovation based on survey data from the German part of the Community Innovation

Survey (CIS), a biennial firm-level survey covering innovation activity. While exclusively

focusing on firms is a drawback, the majority of green innovation occurs within a firm

structure: approximately 72% of patents in our data are filed by inventors embedded within

firms, compared to only 16.8% filed by individuals.17 The core questionnaire of the CIS

captures general innovation behavior, selected waves also include a dedicated module on

environmental innovation. These green innovation questions were introduced in 2009 and

repeated in 2015 and 2021. Survey responses are provided by individuals within firms who

are familiar with the innovation process or directly involved in R&D. However, because we

did not conduct the survey ourselves and the CIS does not record respondent identifiers

or roles, we cannot observe who exactly within the firm completed the questionnaire. Our

analysis sample comprises 18,425 firm-year observations from these three survey waves. The

CIS is structured as a repeated cross-section, and firms cannot be tracked across waves due

to the absence of consistent firm identifiers. The CIS contains region-level information of

the firms’ location, which we use to link firms to our natural disaster data.

We construct three alternative indicators of green innovation. The first captures the im-

plementation of internal environmental innovations within firms, such as technologies that

reduce energy, material, or water use, lower emissions or pollution, substitute fossil fuels

with renewables, or introduce safer materials. On average, 48.3% of firms report the adop-

tion of such internal green processes. The second indicator focuses on the introduction of

new or significantly improved products or services offering environmental benefits—such as

facilitating recycling, reducing pollution, or extending product life. On average, 34.8% of

firms report such product- or service-based green innovations. Both of these are dummies

that are equal to one if a firm indicated that they introduced one of these innovations. The

third measure combines both indicators.18

17For the remaining 11.2%, we are unable to determine the type of inventor. See Section 4.4 for details
on how inventor types are classified.

18Section B.9 in the Online Appendix describes the exact procedure how we construct our different
measures for green innovation.
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In Table 5 (columns 1-3), we regress all three indicators of green innovation on the count

of past natural disasters. One additional past natural disaster increases the likelihood of

introducing process innovation and green products by roughly 4.3% and 4.7%, respectively.19

The analysis supports our prior findings and highlights the positive and significant effect of

natural disaster exposure on green innovation. We do robustness checks in Section B.9 in the

Online Appendix, where we include NUTS-2 and region-level (NUTS-3) fixed effects. Results

remain robust with NUTS-2 fixed effects. With region-level fixed effects, point estimates are

similar but lose statistical significance due to limited within-region variation of our treatment

across only three survey waves.

Table 5: Effect of Natural Disasters on Green Innovation and Climate Affectedness

Green Innovation Within-firm Green Products Climate Affectedness
Combined Process Innovation

(1) (2) (3) (4)

Cumulative Count 2.16∗∗∗ 2.08∗∗∗ 1.63∗∗∗ 5.58∗∗∗

(0.283) (0.287) (0.237) (0.691)

Firm Size F.E. (employment) Yes Yes Yes Yes
Revenue Yes Yes Yes Yes
Year F.E. Yes Yes Yes No (Single Wave)
Industry F.E. (2-digit NACE) Yes Yes Yes Yes

Observations 15,395 15,426 15,226 4,873
R2 0.629 0.591 0.451 0.582
Adj. R2 0.627 0.589 0.448 0.576

Note: This table reports the effect of the cumulative number of past natural disasters on several survey outcomes. Column (2) reports results for within-firm process innovation,
columns (3) for a firm introducing new green products, and column (1) for both of these combined. Column (4) reports the effect on firms’ self-reported climate affectedness.
All models include firm size (based on employment dummies), revenue controls, year fixed effects, and 2-digit NACE industry fixed effects. Standard errors are clustered at the
regional (Kreis) level. Significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Additionally, we examine whether firms exposed to natural disasters report experiencing

their effects. In the last wave of the survey firms were asked how important various climate-

related impacts were between 2018 and 2020, we create a dummy variable equal to one if the

item “Impact of extreme weather conditions” (e.g., transport disruptions, storm damage,

flooding, drought) was rated as high, medium, or low importance. Firms in disaster-affected

areas are significantly more likely to report experiencing climate-related impacts, providing

a strong first stage for our analysis (see column (4) in Table 5).

5 Reasons to Innovate

In this section, we investigate the underlying reasons why inventors respond to natural

disasters, by drawing on additional survey items in the CIS environmental innovation module.

19This corresponds to the 2.08% and 1.63% percentage points increase in Table 5.
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Conditional on reporting the introduction of an innovation with environmental benefits, firms

were asked to assess the importance of various potential drivers. These include existing

environmental regulations, anticipated future regulations or taxes, voluntary standards or

best practices within the industry, current or expected market demand, government funding

or subsidies, and reputational concerns. The precise question text reads as:

“During [the past two years], how important were the following factors in driving

your enterprise’s decision to introduce innovations with environmental benefits?”

Each factor generates a dummy equal to one if it was rated “low,” “medium,” or “high”

importance, and zero if deemed “not relevant” (see Appendix C.2 for details).

The primary drivers of green innovations among the surveyed firms are existing envi-

ronmental regulations, with 63.3% of firms identifying this factor as significant. Voluntary

actions or standards for environmental best practices within their sector were noted as im-

portant by 57.9% of firms. Anticipated future regulations or taxes motivated 55.6% of the

firms, while current or expected market demand for environmental innovations influenced

49.1%. Lastly, 40.7% of firms cited government grants and subsidies as a key motivating

factor.

We then estimate the effect of natural disaster exposure on each of these drivers using

Yilkt = β
( ∞∑

s=0

dl,t−s

)
+ γ1 Sit + γ2Rit + γ3 λt + γ4 λk + ϵiltk, (8)

where Yilkt indicates whether firm i in region l in industry k at time t rated the factor as

relevant;
∑∞

s=0 dl,t−s is the count of natural disasters prior to questioning; Sit is a vector of

firm-size dummies for medium and large firms, with small firms being the reference group;

Rit is firm i’s revenue in year t; λt and λk are year and two-digit NACE industry fixed effects;

and ϵiltk is an idiosyncratic error term clustered at the NUTS-3 (Kreis) level. The firm-size

dummies Sit are based on the number of employees. Specifically, we differentiate small firms

with less than 50 employees, medium firms with 50-249 employees, and large firms employing

more than 249 individuals. Our coefficient of interest β estimates the effect one additional

past natural disaster has on a firm’s probability of stating a factor as relevant for their green

innovation decision. The comparison is between firms that have recently introduced a green

innovation and have been affected by a natural disaster, and those firms that have introduced

a green innovation but have not been affected by a natural disaster. Table 6 gives our results.

In column (1) of Table 6, a one-unit increase in the count of past natural disasters raises

the probability of mentioning expected future regulation by 0.932 percentage points on a

baseline mean of 63.33 percent, a highly significant effect at the 1 percent level. Column (2)
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Table 6: Effect of Cumulative Disaster Count on Reasons to Innovate

Dependent variable:

Expected
Regulation

Expected
Demand

Existing
Regulation

Public
Funding

Voluntary
Standard

Reputation

(1) (2) (3) (4) (5) (6)

Cumulative Count 0.932∗∗∗ 0.865∗∗∗ 0.748∗∗∗ 0.169 1.140∗∗∗ 0.391
(0.266) (0.263) (0.263) (0.269) (0.218) (0.313)

Firm Size F.E. Yes Yes Yes Yes Yes Yes
Revenue Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes
Industry F.E. (2-digit) Yes Yes Yes Yes Yes Yes

Mean of Y 63.33 55.64 40.66 49.07 57.95 61.47
Observations 8,787 8,754 8,862 8,776 8,782 5,423
R2 0.548 0.489 0.607 0.418 0.543 0.667
Adj. R2 0.544 0.484 0.603 0.413 0.539 0.662

Note: This table reports the effect of disaster exposure on the drivers of innovation as measured in the survey. One additional past disaster increases the probability of a firm mentioning
these factors by β percentage points (e.g. for column 1 by β=0.932 percentage points). Outcomes are: Expected Regulation = expected future environmental rules; Expected Demand
= expected future market demand for green innovation; Existing Regulation = current environmental rules/charges; Public Funding = government grants/subsidies; Voluntary Standard
= voluntarily joining a standard for green practices (e.g. environmental/organic label); Reputation = firm’s reputation concerns. Standard errors clustered at the region (NUTS-3) level
and are reported in parentheses. Significance levels: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

shows a similarly strong response for expected demand: each additional disaster increases

the likelihood of reporting anticipated market demand as a motivator by 0.865 percentage

points, relative to a 55.64 percent mean. Firms also become 0.748 percentage points more

likely to point to existing environmental regulations (mean 40.66 percent). By contrast, the

effects on public funding and reputation concerns are small and statistically indistinguishable

from zero. Voluntary standards show a sizable 1.140 percentage-point increase (57.95 percent

mean). Taken together, these results suggest that natural disasters most strongly amplify

firms’ expectations about future regulation and market demand, with more modest or no

effects on public funding and reputational motives.

We interpret the effects on expected regulation and expected demand as firms expecting

consumers to increasingly value green alternatives in the future—not only through their

purchasing decisions but also through political support for stricter environmental policies. In

essence, experiencing a natural disaster changes higher-order beliefs (beliefs about the beliefs

of others) about consumers’ climate change beliefs and their valuation of green consumption

and green policy. In turn, this expectation of stronger consumer environmental consciousness

leads firms to foresee greater pecuniary returns to investing in green innovation. Prior

research documents that natural disaster exposure shifts beliefs toward greater support for

environmental policy. Dechezleprêtre et al. (2022) and Djourelova et al. (2024) show that

disasters increase the salience of environmental issues. Owen et al. (2012) and Osberghaus

and Fugger (2022) find that personal disaster experience heightens perceived climate risks

and support for environmental regulation.
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Our findings also point to firms increasing their awareness of existing environmental

regulation. A potential reason is the increased salience of such policies. An increase in

local climate change salience leads firms to pay closer attention to related topics, such as

environmental regulation.

The positive effect on firms citing voluntary standards as primary reasons for innovation

can be attributed to two different channels. First, firms might join voluntary standards due

to the signaling value these standards have for consumers. Being able to label your products

as e.g. “micro-plastic-free” or can attract consumers (Agatz et al. 2021, Duckworth et al.

2022). Second, firms may engage in green innovation due to intrinsic motivation. Intrinsic

motivation refers to the idea that there is no reward for an activity other than the activity

itself. This includes acting based on ethical convictions or long-term sustainability goals,

even in the absence of financial rewards. In our setting, exposure to natural disasters may

shift firms’ internal priorities in this direction. We view reputational concerns as being

potentially aligned with such non-monetary motivations.

In Section B.8 in the Online Appendix, we additionally include NUTS-2-level and region-

level fixed effects.20 Results remain robust when we include NUTS-2 level fixed effects.

When including region-level fixed effects, our point estimates remain similar, but become

statistically insignificant apart from for the effect on “Expected Regulation”. When including

region-level fixed effects we lose a lot of our underlying disaster variation, as we only have

three survey waves.

Natural disaster exposure does not affect firms’ self-reported take-up of public funding

schemes. To further assess whether government research support could explain the observed

increase in green innovation, we analyze administrative data on French public R&D funding

(see Section B.8.1 in the Online Appendix). We find no significant changes in the number of

grants or funding levels in disaster-affected regions, further underlining that the innovation

response is not driven by targeted public subsidies.

Our proposed mechanism—complementing other potential channels—is that exposure to

natural disasters increases the local salience of climate change. This increase in salience can

have multiple effects on inventors and inventive firms. It shapes local inventors’ expectations

regarding environmental policy and the demand for green goods. These expectations are

driven by inventors’ higher-order beliefs about the climate change beliefs of consumers and

voters. Increased salience further leads to an increase in attention to climate change and

potentially affects inventors’ and firms’ intrinsic motivation.

20In Germany, the NUTS-2 level corresponds to current and former “Bezirke”, which are administrative
regions that are below the “Länder”. The city states of Berlin, Hamburg, and Bremen, as well as the federal
states of Brandenburg, Mecklenburg-Western Pomerania, Schleswig-Holstein, Saxony-Anhalt, Saarland, and
Thuringia, do not have any NUTS-2 level subdivision and are thus themselves NUTS-2 level areas.
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6 The Market for Green Goods

In this section, we introduce a model that captures how disaster-induced salience affects

green innovation, both through inventors’ intrinsic motivation and profit-driven responses

to anticipated shifts in consumer demand. We formalize our behavioral mechanism and

examine its interaction with market forces. To do so, we adapt and extend the framework

proposed by Aghion et al. (2023), whose core insight is that green innovation responds

to consumer demand for environmentally friendly products. A key feature of their model

is that market structure matters: firms facing intense product market competition benefit

more from “escaping” competition by developing green products that differentiate them from

incumbents.

We add a behavioral channel through which inventors form expectations about future

consumer demand in response to natural disasters. We introduce uncertainty about future

demand and allow inventors to derive intrinsic utility from pursuing environmentally benefi-

cial innovation. Both expectations and intrinsic motives vary across regions and are shaped

by local natural disaster exposure. This extension is motivated by our empirical finding in

Table 3, which shows limited evidence of geographic spillovers from neighboring disasters,

suggesting that behavioral responses are highly localized.

6.1 Model

Inventors choose R&D investments aiming to maximize expected profits. Once innovations

have realized, they produce with their respective technologies and compete for consumers.

Revenues are distributed as wages to production and R&D workers, and net profits are

redistributed to consumers, who also own firms as shareholders. There is a continuum of

horizontally differentiated goods indexed by j ∈ [0, 1]. For each variety, two duopolists and

a competitive fringe supply otherwise identical products that differ only in their emissions

intensity embodied in production. Producing one unit of the good with environmental quality

qj,f generates xj,f = 1/qj,f units of carbon emissions. Labor is the sole input, supplied

perfectly elastically at a wage normalized to one. The marginal labor requirement per unit

of output equals a constant c > 0.

The representative consumer derives utility from variety consumption but also expe-

riences private disutility from their carbon footprint. These preferences could arise, for

instance, from social image concerns or a general sense of responsibility toward the environ-

ment. When purchasing yj,f units from each firm f ∈ Fj in sector j, the period-t utility is
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given by:

Ut =

∫ 1

0

ln ȳj,t dj, with ȳj,t =

∫
f∈Fj

yj,f,t q
δj,t
j,f,t df. (9)

where ȳj,t is the quality-adjusted consumption of good j, purchasable from various firms

f ∈ Fj. The value of a green product depends positively on the stringency of environmental

regulation, as stricter policies raise the relative costs of non-green alternatives. The pa-

rameter δj captures how individuals value their own private consumption and express their

political preferences regarding environmental policy. Empirical evidence suggests exposure

to natural disasters shifts local preferences towards stronger environmental policies.

The parameter δj is potentially heterogeneous across goods. For example, consumers

might weigh their carbon footprint differently when purchasing meat versus vegetarian al-

ternatives than when buying toothpaste. Such heterogeneity arises from differences in con-

sumer awareness, labeling practices, and the psychological salience of environmental impacts

across goods categories (Agatz et al. 2021, Duckworth et al. 2022). Additionally, climate

policy is often sectoral to protect national interests or to appease a certain group of voters,

which in turn makes climate policy more stringent in some product markets than others.

Varieties j are imperfect substitutes. Within each variety, all demand will be allocated

to the firm offering the highest quality-to-price ratio, qδ/p. Logarithmic preferences imply

that expenditure is uniform across all varieties. For a formal derivation of this result, refer to

Section A.1 in the Online Appendix. We assume that consumer demand is non-local. Once a

product is patented, it is marketed globally.21 This assumption enhances model tractability

and is also grounded in the legal interpretation of patent rights. The Paris Convention for

the Protection of Industrial Property (1883), which has been adopted almost universally,

stipulates that an inventor who patents a product in one country has a 12-month window

during which they can apply for protection in other contracting states. These subsequent

applications are granted the same priority date as the original filing. This provision facilitates

easier entry into international markets without risking loss of intellectual property rights to

third parties. Even if an inventor decides not to patent their invention in some countries,

the same invention cannot be patented there by others and is instead regarded as publicly

accessible information.

We assume a market structure in which each sector features a duopoly, composed of two

competing innovators, alongside a competitive fringe. The fringe consists of firms that do not

invest in innovation and continue producing the previous-generation good, which is one step

behind the technological frontier. These goods are γ times more polluting than those of the

21Although this assumption is strong, we demonstrate that our main results remain valid when restricting
the analysis to globally marketed patents. See Section 4.3 for results focusing exclusively on triadic patents,
which are filed globally.
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duopolists and thus less attractive to environmentally conscious consumers. The presence

of the fringe disciplines the market by limiting the pricing power of the duopolists. If the

duopolists were to charge a price exceeding the marginal cost of the fringe good—adjusted

for its lower environmental quality—consumers would switch to the cheaper, albeit dirt-

ier, alternative. As a result, the duopolists, who have a quality advantage, cannot extract

monopoly rents beyond what the quality differential justifies.

The quality of a green good yj evolves according to qj = γkj , where γ > 1 denotes the

step size of a green innovation, and kj is the cumulative number of past innovations in variety

j. Intuitively, each successful innovation improves the environmental performance of a good

by a factor of γ. Innovation arises from directed R&D effort. Inventors can choose to exert

research effort zj ∈ [0, 1], incurring convex costs of κz2j /2 units of labor.22 With probability

zj, the investment succeeds, improving the quality of the good by a factor of γ in the next

period. With probability 1− zj, the attempt fails, and no technological progress is achieved.

Upon a successful innovation, the inventor receives a patent that grants it a temporary edge

over its rival. To capture the entire market, a successful inventor engages in limit pricing,

setting the price just low enough to undercut her competition—specifically at pM = γδc.

This allows the innovator to behave as a de facto monopolist for one period. After that, the

patent expires, the quality gap closes, and market competition resumes.

An important aspect of an inventor’s decision to innovate is how much she expects con-

sumers to value green products. Consumer valuation of green goods δj evolves over time,

and there exists local uncertainty regarding the future valuation level. The global level of

δ could, for instance, depend on the degree of global exposure to climate change. Inventors

are local and form Bayesian expectations about consumers’ valuation of green goods based

on a global prior ρ (common across all locations) and local events Dl:

El[δj] = φρ+ (1− φ)ϕDl, (10)

where ϕ denotes the size of the local shock. Inventors’ expectations can fall whenever they

are unaffected by natural disasters. We define the average expectation of consumer valuation

for green goods across locations as:

El[δj] =

∫
l

El[δj]f(l) dl = φρ+ (1− φ)

∫
l

ϕDlf(l) dl = φρ+ (1− φ)ϕDl

where f(l) denotes the probability density function over regions l, and Dl is the average level

22Convex innovation costs are a plausible assumption, as reducing the environmental impact of goods
becomes increasingly difficult. For example, designing a plane that consumes slightly less fuel is much easier
than creating one that emits no CO2 at all.
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of disaster exposure. We denote this benchmark as E[·], which reflects the average belief

held across all locations. Inventors’ expectations may deviate from this average depending

on their local exposure. In regions recently affected by natural disasters, inventors may

hold higher expectations about the future valuation of green goods (El[δj] > Ê[δj]), while

inventors in unaffected areas may hold lower expectations (El[δj] < Ê[δj]). For our welfare

analysis, we assume that the social planner takes this average expectation as given when

choosing the optimal innovation rate. We define the planner belief as Ê[δj] ≡ El[δj].

Inventors derive utility both from the profits of their innovation activity and from the

intrinsic satisfaction of pursuing research. For tractability, we assume the factors are linearly

separable in the utility function.

U I
l (zlj) = αΠ(zlj) + µlzlj

where the parameter α captures the weight on monetary rewards, while µl reflects the in-

ventor’s intrinsic motivation—specifically, the non-pecuniary utility derived from engaging

in green innovation. Intrinsic motivation may stem from ethical concerns, a sense of moral

responsibility, or personal interest in mitigating climate change. Importantly, µl may vary

across regions and can be shaped by local experiences, such as exposure to natural disasters.

Inventors with a high µl are thus more likely to engage in green innovation for its own sake,

independent of financial incentives. At the time of investing in research, inventors form

expectations over output and profitability, conditional on successful innovation:

El[yMj] =
1

E[pMj]
=

1

γEl[δj ]c
, and El[πMj] = 1− 1

γEl[δj ]
, (11)

Local expectations γEl[δj ] shape the profit component of utility and are critical for investment

decisions. A formal derivation of expected demand and profits is provided in Section A.1 of

the Online Appendix.23

In markets where no innovation takes place, the duopolists engage in price competition.

If they can collude perfectly, they charge the monopoly price and share profits equally.

They are constrained by the competitive fringe. In contrast, under full competition, firms

bid prices down to marginal cost. Following Aghion et al. (2005), we model the intensity

of competition as ∆j ∈ [1/2, 1], where ∆j = 1 corresponds to Bertrand competition and

∆j = 1/2 reflects full collusion. Duopoly profits thus depend on the degree of competition

23For comparison, the social planner holds expectations based on the average valuation across locations,

represented by γE[δj ]. These average beliefs determine the socially optimal direction and scale of innovation
across regions. See Section A.3 in the Online Appendix for the welfare analysis.
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in sector j, and are a fraction of expected monopoly profits:

El [πDj(∆j)] = (1−∆j)El [πMj] . (12)

Given this structure, the locally expected price under imperfect competition is:

El [pj(∆j)] =
c

1− 2(1−∆j)El[πMj]
=

c

1− 2(1−∆j)
(
1− γ−El[δj ]

) ∈ [c, El[pMj]] , (13)

and the corresponding expected output is:

El [yj(∆j)] =
1

El[pj(∆j)]
=

1

c

[
1− 2(1−∆j)

(
1− γ−El[δj ]

)]
∈
[
El[yMj],

1

c

]
. (14)

A local inventor in region l and sector j with an R&D opportunity maximizes

max
zlj∈[0,1]

U I(zlj,∆j, El(δj), µl) = α
(
zljEl [πMj] + (1− zlj)El [πDj(∆j)]−

κ

2
z2lj

)
+ µl zlj.

where successful innovation yields monopoly profits, and failure yields the duopoly profits

dependent on the level of competition. The stronger the competition is, the larger the benefit

of escaping competition by innovating becomes. Competition acts as a wedge between the

profits of a successful inventor and the profits that inventors can reap in the status quo. The

first-order condition of a local inventor with respect to the research rate is:

zlj = min

{
El [πMj]− El [πDj(∆j)]

κ
+
µl

ακ
, 1

}
. (15)

Using (15) with (11) and (12), we get:

zlj(∆j, El(δj), µl) =
∆j El [πMj]

κ︸ ︷︷ ︸
Monetary Incentives

+
µl

ακ︸︷︷︸
Intrinsic Motivation

=
∆j

κ

(
1− 1

γEl[δj ]

)
+
µl

ακ
(16)

The optimal research rate consists of two additive components: the first reflects the mon-

etary incentives to innovate, while the second captures the inventor’s intrinsic motivation.

The monetary incentive term increases with the intensity of competition ∆j and with lo-

cal beliefs about the profitability of green goods, captured by El[δj]. Intuitively, when

competition is intense (i.e., ∆j is high), duopoly profits are low, making the gains from

obtaining monopoly status through successful innovation more attractive. Similarly, higher

expected consumer valuation for green goods leads to higher expected monopoly profits,

34



further incentivizing R&D. Formally, innovation effort is increasing in both arguments:
∂zlj
∂∆j

> 0,
∂zlj

∂El[δj ]
> 0. Moreover, these forces are complements, as shown by the positive

cross-derivative:
∂2zlj

∂∆j∂E[δj ]
> 0. Competition and demand expectations thus reinforce each

other. In monopolistic markets, inventors already earn high rents from non-green products

and respond little to shifts in consumer preferences. In contrast, under competitive pressure,

inventors can escape price competition by innovating. When environmental quality matters

to consumers, green innovation becomes a path to monopoly. Expected profits rise with

both stronger demand expectations and higher competition.

The second term in Equation (16) reflects intrinsic motivation, scaled by the inventor-

specific parameter µl. Importantly, this component is unaffected by market competition,

as:
∂2zlj

∂∆j ∂µl
= 0. This implies that inventors motivated purely by intrinsic factors—such as

environmental concern or personal satisfaction—invest in green innovation regardless of the

competitive landscape. Competition only plays a role for those inventors who value monetary

rewards. Figure 7 visualizes these comparative statics.24

Figure 7: Innovation Responses dependent on Competition ∆j
Note: The figure on the left plots inventors’ innovation response dependent on their expectations El(δl) and the level of competition when
intrinsic motivation plays no role (α → ∞). The figure on the right plots innovation responses only dependent on inventors’ intrinsic motivation
µl, i.e. for δ = 0.

Hypothesis 1: Inventors facing fiercer competition (large ∆j) increase their research

output more whenever their profitability expectations increase due to exposure to a natural

disaster.

In line with these comparative statics, we formulate the above empirically testable hy-

pothesis. We can test Hypothesis 1 explicitly by comparing the response of inventors facing

24The figure is illustrative and highlights qualitative mechanisms. Quantitative implications depend on
the specific calibration. For details, see Section A.4 in the Online Appendix.
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high levels of competition with those facing low levels of competition. We confirm this

empirically in Table 7 in Section 6.2.1, which provides compelling evidence that shifts in

higher-order beliefs significantly influence inventors’ innovation decisions. Intuitively, be-

cause competition only affects pecuniary incentives, differences in competition levels should

impact only those inventors driven by monetary rewards. Purely intrinsically motivated in-

ventors would respond to exposure irrespective of the level of competition (see the right-hand

panel of Figure 7).

Generally, the overall (private) innovation rate in the economy is the average across all

sectors j and locations l, which is equivalent to the fraction of sectors where innovation is

successful

z ≡
∫
j

∫
l

zlj(∆j, El(δj), µl)f(l)dlf(j)dj.

Let

z ≡
∫
j

zj(∆j, E(δj), µ)f(j)dj

denote the research rate that would be achieved if all local inventors had the same (average

across regions l) expectation on future environmental profitability El(δj) = E(δj) ∀l and
intrinsic motivation µl = µ ∀l. We can then compare z with the aggregate private research

rate z).

Assumption 1: Assume that the El(δj) are not degenerate, i.e., there exists some j

such that

∃ l ̸= l′ with El(δj) ̸= El′(δj).

Assumption 1 simply states that not all regions have identical expectations regarding future

environmental demand. At least one region must differ in expectations, reflecting realistic

variation in the exposure to natural disasters.

Proposition 1: Under Assumption 1, we get that:

z =

∫
j

(
∆j

κ

(
1− 1

γE(δj)

)
+

µ

ακ

)
f(j)dj >

z =

∫
j

∫
l

zlj(∆j, El[δj], µl)f(l)dlf(j)dj =

∫
j

∫
l

(
∆j

κ

(
1− 1

γEl[δj ]

)
+
µl

ακ

)
f(l)dlf(j)dj

(17)

The research rate achieved under average expectations is larger than the research rate

achieved when expectations are heterogenous across regions. See Section A.2 in the Online

Appendix for our proof of Proposition 1. Proposition 1 demonstrates that heterogeneous

regional expectations generate inefficiencies in innovation. Specifically, due to the convexity
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of innovation costs, having uniform (average) expectations across regions would achieve ei-

ther higher total innovation for the same cost, or the same innovation level at a lower cost,

compared to a scenario where regions differ in their expectations.

Given the inefficiencies arising from heterogeneous expectations illustrated in Proposi-

tion 1, we investigate the implications of these inefficiencies for welfare. In Section A.3 in

the Online Appendix, we show that the socially optimal rate of innovation is strictly higher

than the privately chosen rate. Private innovation decisions systematically underreact to

climate risks due to localized belief formation, imperfect competition, and a failure to fully

internalize environmental externalities. Proposition 2 in the Appendix formalizes this result

and quantifies these welfare inefficiencies. This underscores a clear rationale for policy inter-

ventions, such as enhancing climate awareness or subsidizing clean innovation in less-affected

regions.

6.1.1 Building on the Shoulders of Giants & Market Size

We futher extend the model to incorporate market size effects, drawing on the literature

on directed technical change, which emphasizes that the profitability of innovation increases

with market size—a feature often referred to as “building on the shoulders of giants” (Ace-

moglu 2002; Acemoglu 2007; see also Acemoglu et al. 2012 for an application to green

technologies). To do so, we explicitly model the cost of research as depending on the size of

the market for green goods K(ηj) with
∂K
ηj

< 0. We then get that for any level of research

effort zj ≤ 1, investing K(ηj)z
2
j /2 units of labor yields, with probability zj, a green innova-

tion. See section A.5 in the Online Appendix for an alternative modeling assumption, where

the step size of innovation γ, as opposed to the cost, depends on market size. Results are

qualitatively the same.

Similar to equation (16), we have that the optimal private research rate is chosen accord-

ing to:

zlj(∆j, El(δj), µl, ηj) =
∆jEl [πMj]

K(ηj)
+

µl

αK(ηj)
=

∆j

K(ηj)

(
1− 1

γEl[δj ]

)
+

µl

αK(ηj)
.

The optimal private research rate increases in the size of the market
∂zlj
∂ηj

> 0. Additionally,

inventor expectations about the profitability of a green good El(δj) and the market size of

the green good ηj are complements:
∂2zlj

∂ηj∂El(δj)
> 0. Intuitively, inventors in large markets

face lower innovation costs and respond more readily to increased expectations about green

profitability and increased intrinsic motivation. We plot this comparative static in Section

A.4 in the Online Appendix. This allows us to formulate an additional hypothesis:
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Hypothesis 2: Innovation responses to natural disasters increase with the size of the

green good market
∂2zlj

∂ηj∂El[δj ]
> 0 and

∂2zlj
∂ηj∂µl

> 0 . Put differently, the increase in innovation

following exposure to natural disasters is larger in markets where the green technology market

is bigger.

The main takeaways of our model are as follows: First, inventors facing stronger compe-

tition increase their research effort more in response to higher profitability expectations after

natural disaster exposure. Since competition only affects pecuniary incentives and not in-

trinsic motivation, evidence supporting Hypothesis 1 would show that shifts in higher-order

beliefs about future profits play a key role in driving innovation decisions. Second, heteroge-

nous salience of climate change leads to higher aggregate costs for the same research output

than homogenous salience of climate change would. This is due to research costs being con-

vex. Third, a larger green good market induces stronger responses to changes in inventors

intrinsic utility and expectations about consumers’ valuation of green goods. Fourth, the

overall private research rate in the economy is lower than the socially optimal research rate.

6.2 Empirical Results on Model Hypothesis

In this section, we test how market conditions and changes in inventors’ expectations interact.

Our findings reveal that first, a well-functioning market is essential to ensure that inventors

respond to changes in the salience of climate change. Second, disaster induced changes in

inventors monetary expectations matter for their innovation.

6.2.1 Competition

We first empirically test Hypothesis 1 of the model: inventors in more competitive industries

should exhibit stronger green innovation responses to natural disaster exposure than those

in less competitive industries. To briefly summarize the intuition behind this hypothesis: a

monopolist does not have incentives to pursue green innovation, as green product differentia-

tion does not increase her profits above the monopoly profits she already enjoys. An inventor

in a competitive environment, on the other hand, stands to gain substantial monetary gains

from differentiating their product.

To empirically test this hypothesis, we measure competition using industry-level profit

margins from CompNet (2022), following Aghion et al. (2023). Higher profit margins reflect

lower competition. A key advantage of this measure is that it captures international com-

petition, unlike the Herfindahl–Hirschman index, which is country-specific. The CompNet

database consolidates administrative firm-level data across European countries and reports

aggregated indicators at various levels of industry and geography. For France and Germany,
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the data are available from 2003 and 2001, respectively. Both CompNet and PATSTAT

use the European Classification of Economic Activities (NACE Rev. 2), allowing us to link

patent filings to industry-level competition at the 2-digit level—the most granular available

in CompNet. For patents associated with multiple industries, we use industry weights to

compute a composite measure. For each patent, we calculate the associated profit margin

M(i) of patent i as:

Mit =
∑
c

ωic

∑
k

wik ×
(marginkc,t +marginkc,t−1)

2

where ωic represents the share of patent i’s inventors living in country c, and wik denotes the

weight with which the patent belongs to a specific industry k. Lastly,
marginkc,t+marginkc,t−1

2

is the average profit margin of industry k in country c during the year of filing and the prior

year. The profit margin Mit of a patent i is thus the weighted average of the profit margins

faced by its inventors at the time of invention and the year prior. For example, if a patent

related to the automotive industry was filed in 2004 by one French and one German inventor,

the associated profit margin would be the mean of the profit margins for both the German

and French automotive industries in 2003 and 2004. In Online Appendix section B.10, we

show our results for a 1-year and 3-year window of the profit margin. Results are similar.

Instead of splitting the sample based on the overall median level of competition across

all patents, we conduct the split within industries. This avoids comparing structurally dis-

tinct sectors—such as the highly competitive LED industry and the less competitive airline

industry—that may differ for reasons unrelated to competition intensity. Instead, we com-

pare patents within a given industry during periods of relatively high and low competition.

We define the “high-competition” group as patents with above-median competition within

their industry, and the “low-competition” group as those below the within-industry median.

To implement this, we calculate a patent-specific benchmark competition level (BMCi),

based on the median competition level of each 2-digit NACE industry across all years. For

each patent i, we compute:

BMCi =
∑
c

ωic

∑
k

wik ×median(margin)kc

where median(margin)kc denotes the median competition level in industry k and country c,

computed over the entire sample period. The weights ωic and wik reflect the country and

industry affiliations of patent i, respectively. If a patent’s observed competition level Mit

exceeds its benchmark BMCi, it is classified into the high-competition group; otherwise,

it is assigned to the low-competition group. Since this procedure leads to different sample
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averages across groups, we normalize the outcome variable by the sample mean within each

group to ensure comparability of results.

After splitting, we aggregate patents at the regional level separately for the high- and low-

competition samples, resulting in two distinct region-by-year panels. For each sample, we

estimate a difference-in-differences regression that compares changes in patenting activity

before and after natural disasters across affected and unaffected regions. This allows us

to separately identify the effect of natural disaster exposure on patenting for inventors in

highly competitive and less competitive markets. By comparing the estimated disaster effects

across the two groups, we can assess whether stronger pecuniary incentives (i.e., greater

competition) amplify inventors’ responses to disaster exposure. Columns (1) and (2) in

Table 7 show our results.

Table 7: Competition and Green Product Split

Dependent variable: P (Y 02lt)

Competition Cutoff Greenness Cutoff
High-Competition Low-Competition Above Median Below Median

(1) (2) (3) (4)

Cumulative Count 0.104∗∗∗ 0.007 0.088∗∗∗ 0.063∗∗∗

(0.022) (0.033) (0.011) (0.009)

Country-Year F.E. Yes Yes Yes Yes
Region F.E. Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes

Wald-test p-value 0.0365∗∗ 0.0307∗∗

Sample Mean 1.9854 1.284 1.335 1.3248
Observations 8,283 8,283 14,307 14,307
R2 0.653 0.535 0.625 0.788
Adj. R2 0.617 0.486 0.603 0.776

Note: This table reports the results for our tests of the model’s comparative statics. Columns (1)-(2) split the sample based on competition, while columns
(3)-(4) split based on the greenness of the industry’s products. Cumulative count is the count of past natural disasters. The Wald-tests examine if the coefficient

for cumulative disaster count significantly differs between splits. We construct a Wald-test of the form W =
(β̂eq1−β̂eq2)2

Var(β̂eq1−β̂eq2)
, where: Var(β̂eq1 − β̂eq2) =

Var(β̂eq1) +Var(β̂eq2)− 2 ·Cov(β̂eq1, β̂eq2). We can reject the Null hypothesis H0 : βh = βl against the alternative (H1 : βh > βl) with the reported p values.
Competition is measured as the average across filing year and the previous year. Greenness is calculated as average green product share across filing year and
the previous year. Standard errors are clustered at the region level and reported in parentheses. Significance levels: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Inventors respond significantly more strongly to natural disaster exposure when operating

in highly competitive environments. This finding provides strong support for our hypothesis

and is consistent with the predictions of our theoretical model. The difference in response

between high- and low-competition settings is both economically and statistically significant;

we reject the null of coefficient equality with a p-value of 0.0365∗∗ (see Table 7 and the

accompanying Wald test).

The lack of a response in low-competition environments suggests that pecuniary incen-
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tives play a central role in driving the observed innovation effects. If responses were primarily

driven by intrinsic motivation, we would expect to see effects even in less competitive set-

tings. Monetary incentives matter for how innovation responds to climate change. Our

results highlight the importance of functioning competitive markets in enabling innovation

to respond to climate-related shocks.

6.2.2 Green Good Demand

We next test Hypothesis 2, which predicts that a larger green goods market amplifies inven-

tors’ response to natural disaster exposure, as market size reduces the cost of innovation.

To empirically capture green market size, we use data from PRODCOM, a Eurostat

database that reports annual production values for over 4,000 manufactured goods in Eu-

rope. Each product is classified using an 8-digit PRODCOM code, with the first four digits

aligned to NACE industry codes. We identify green goods using the taxonomy developed

by Bontadini and Vona (2023), which refines earlier lists compiled by the WTO and OECD.

We update their list to reflect changes in PRODCOM codes over time (see Appendix C.3)

and restrict to data from 1995 to 2014 for France and Germany. For each industry-year cell,

we compute the share of green goods by production value:

Green Sharejt =

∑
gyjt,g∑

g yjt,g +
∑

ng yjt,ng
(18)

where yjt,g and yjt,ng denote the production values of green and non-green products, respec-

tively, in industry j and year t. We assign each patent a corresponding green market share

based on the industries to which it is linked. Since patents may span multiple industries, we

compute a weighted average using industry weights ωij:

Green Share Patenti =
∑
j

ωij · Green Sharejt+Green Sharejt− 1

2
(19)

where t is the filing year. This characterizes each patent by the green intensity of its market

environment in the year of filing and the prior year. Results are robust to using a 1-year

or 3-year window instead (Appendix B.11). We then split the sample of green patents by

whether they fall above or below the median green market share and estimate regressions

separately for each group. Results are presented in columns (3) and (4) of Table 7.

We find that market size plays a significant role in shaping inventors’ responses. Inventors

in industries with larger green product markets respond more strongly to disaster exposure

than those in less developed green markets. The difference is statistically significant (Wald
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test p-value = 0.0307). These results align with the predictions of the directed technical

change framework: larger green markets amplify the expected returns to green innovation

following disaster exposure. Since market size and inventor expectations are complementary,

the effects are strongest where both are aligned.

Together, these findings underscore the central role of market incentives in shaping in-

novation responses to climate change, and the importance of well-functioning, competitive

markets in ensuring that inventors act on heightened climate salience.

7 Conclusion

This paper demonstrates that personal experiences affect inventors’ research choices, bridging

the literatures on experience effects and the drivers of innovation. We show that experiencing

natural disasters significantly increases the invention of green technologies aimed at mitiga-

tion. This effect is highly localized and depends on direct personal experience. The effect is

stronger in competitive markets and sectors with preexisting green demand.

Our empirical findings and theoretical framework point to a central mechanism: natural

disaster exposure alters inventors’ higher-order beliefs about consumer beliefs, increasing

expectations of future green demand and regulatory tightening. This raises the perceived

profitability of green R&D. The effect is strongest in competitive markets, where firms are

more responsive to shifts in expected demand. While intrinsic motivation may also matter,

our results highlight the central role of profit expectations in shaping innovation responses.

These findings extend the experience-effects literature to the production side of the economy.

Prior work has shown how personal experiences shape household expectations; we show they

also influence high-stakes investment decisions with global implications.

We document an endogenous channel through which climate shocks affect the direction

of technological change. Climate change is among the defining challenges of the twenty-first

century. Its projected impacts—including more frequent floods (Hirabayashi et al. 2013;

Roudier et al. 2016), deteriorating environmental conditions (Intergovernmental Panel on

Climate Change (IPCC) 2023), and sea-level rise between 30 and 240 centimeters (Jackson

2022)—are both severe and global in scope. The economic literature highlights technological

innovation, particularly in mitigation, as essential to addressing these risks (Acemoglu et al.

2012; Acemoglu et al. 2016). Yet, how innovation itself responds to climate change remains

insufficiently understood. Our results suggest that forward-looking technological change may

be more adaptive to rising climate risk than is typically assumed in integrated assessment

models.

Beyond its theoretical contributions, our study has practical implications for policy. A
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well-functioning market and consumers’ belief in anthropogenic climate change are crucial

to ensuring that inventors act on increases in climate change salience. The local nature

of responses, however, leads to inefficiencies. This indicates that coordinated policies could

enhance the global benefits of climate-related technological progress. Our findings emphasize

the role of private-sector incentives in shaping climate change-mitigating innovation.

References

Acemoglu, D. (2002). “Directed Technical Change”. In: The Review of Economic Studies

69.4, pp. 781–809.

— (2007). “Equilibrium Bias of Technology”. In: Econometrica 75.5, pp. 1371–1409.

Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous (2012). “The Environment and

Directed Technical Change”. In: American Economic Review 102.1, pp. 131–166.

Acemoglu, D., U. Akcigit, D. Hanley, and W. Kerr (2016). “Transition to Clean Technology”.

In: Journal of Political Economy 124.1, pp. 52–104.

Acemoglu, D. and J. Linn (2004). “Market Size in Innovation: Theory and Evidence from

the Pharmaceutical Industry*”. In: The Quarterly Journal of Economics 119.3, pp. 1049–

1090.

Ackerman, F., S. J. DeCanio, R. B. Howarth, and K. Sheeran (2009). “Limitations of inte-

grated assessment models of climate change”. In: Climatic Change 95.3, pp. 297–315.

Agatz, N., Y. Fan, and D. Stam (2021). “The Impact of Green Labels on Time Slot Choice

and Operational Sustainability”. In: Production and Operations Management 30.7, pp. 2285–

2303.

Aghion, P., U. Akcigit, A. Hyytinen, and O. Toivanen (2017). The Social Origins of Inventors.

Tech. rep. w24110. National Bureau of Economic Research.

Aghion, P., R. Bénabou, R. Martin, and A. Roulet (2023). “Environmental Preferences and

Technological Choices: Is Market Competition Clean or Dirty?” In: American Economic

Review: Insights 5.1, pp. 1–20.

Aghion, P., A. Bergeaud, M. Lequien, and M. J. Melitz (2024). “The Heterogeneous Impact

of Market Size on Innovation: Evidence from French Firm-Level Exports”. In: The Review

of Economics and Statistics 106.3, pp. 608–626.

Aghion, P., N. Bloom, R. Blundell, R. Griffith, and P. Howitt (2005). “Competition and

Innovation: An Inverted-U Relationship”. In: The Quarterly Journal of Economics 120.2,

pp. 701–728.

43



Aghion, P., A. Dechezleprêtre, D. Hémous, R. Martin, and J. Van Reenen (2016). “Car-

bon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto

Industry”. In: Journal of Political Economy 124.1, pp. 1–51.

Aghion, P. and P. Howitt (1992). “A Model of Growth Through Creative Destruction”. In:

Econometrica 60.2, pp. 323–351.

Akcigit, U., J. Grigsby, and T. Nicholas (2017). The Rise of American Ingenuity: Innova-

tion and Inventors of the Golden Age. Tech. rep. w23047. National Bureau of Economic

Research.

Angeletos, G.-M. and Z. Huo (2021). “Myopia and Anchoring”. In: American Economic

Review 111.4, pp. 1166–1200.

Azoulay, P., J. S. Graff Zivin, D. Li, and B. N. Sampat (2019). “Public R&D Investments

and Private-sector Patenting: Evidence from NIH Funding Rules”. In: The Review of

Economic Studies 86.1, pp. 117–152.

Banerjee, S., R. Kaniel, and I. Kremer (2009). “Price Drift as an Outcome of Differences in

Higher-Order Beliefs”. In: The Review of Financial Studies 22.9.

Barreca, A., K. Clay, O. Deschenes, M. Greenstone, and J. S. Shapiro (2016). “Adapting to

Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship

over the Twentieth Century”. In: Journal of Political Economy 124.1, pp. 105–159.

Bastone, K. (2018). Behind the Curtain at BioLite. https://www.outsideonline.com/

business-journal/brands/biolite-behind-curtain/.

Bell, A., R. Chetty, X. Jaravel, N. Petkova, and J. Van Reenen (2019). “Who Becomes an

Inventor in America? The Importance of Exposure to Innovation*”. In: The Quarterly

Journal of Economics 134.2, pp. 647–713.

Bloom, N., M. Schankerman, and J. Van Reenen (2013). “Identifying Technology Spillovers

and Product Market Rivalry”. In: Econometrica 81.4, pp. 1347–1393.

Bloom, N. (2007). “Uncertainty and the Dynamics of R&D”. In: American Economic Review

97.2, pp. 250–255.

Bontadini, F. and F. Vona (2023). “Anatomy of Green Specialisation: Evidence from EU

Production Data, 1995–2015”. In: Environmental and Resource Economics 85.3, pp. 707–

740.

Bordalo, P., N. Gennaioli, and A. Shleifer (2012). “Salience Theory of Choice Under Risk”.

In: The Quarterly Journal of Economics 127.3, pp. 1243–1285.

— (2022). “Salience”. In: Annual Review of Economics 14.1, pp. 521–544.

Boustan, L. P., M. E. Kahn, P. W. Rhode, and M. L. Yanguas (2020). “The effect of natural

disasters on economic activity in US counties: A century of data”. In: Journal of Urban

Economics 118, p. 103257.

44

https://www.outsideonline.com/business-journal/brands/biolite-behind-curtain/
https://www.outsideonline.com/business-journal/brands/biolite-behind-curtain/


Cai, Y. (2020). The Role of Uncertainty in Controlling Climate Change.

Calel, R. and A. Dechezleprêtre (2016). “Environmental Policy and Directed Technological

Change: Evidence from the European Carbon Market”. In: Review of Economics and

Statistics 98.1, pp. 173–191.

CBS News (2006). The Brain Behind Netflix. https://www.cbsnews.com/news/the-

brain-behind-netflix/.

Chae, R. L., R. Siddiqui, and Y. Xu (2025). “Vulnerability to natural disasters and sustain-

able consumption: Unraveling political and regional differences”. In: Proceedings of the

National Academy of Sciences 122.5, e2409851122.

Chaisemartin, C. de and X. D’Haultfœuille (2024). Difference-in-Differences Estimators of

Intertemporal Treatment Effects. SSRN Scholarly Paper. Rochester, NY.

Chaisemartin, C. de and X. D’Haultfœuille (2023). “Two-way fixed effects and differences-in-

differences with heterogeneous treatment effects: a survey”. In: The Econometrics Journal

26.3, pp. C1–C30.

Coibion, O., Y. Gorodnichenko, S. Kumar, and J. Ryngaert (2021). “Do You Know that

I Know that You Know. . . ? Higher-Order Beliefs in Survey Data*”. In: The Quarterly

Journal of Economics 136.3, pp. 1387–1446.

CompNet (2022). CompNet 2022, User Guide for the 9th Vinate of the CompNet Dataset.

Tech. rep.

De Rassenfosse, G., J. Kozak, and F. Seliger (2019). “Geocoding of worldwide patent data”.

In: Scientific Data 6.

Dechezleprêtre, A., A. Fabre, T. Kruse, B. Planterose, A. Sanchez Chico, and S. Stantcheva

(2022). Fighting Climate Change: International Attitudes Toward Climate Policies. Work-

ing Paper.
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A Online Appendix - Theory

This appendix formalizes the consumer demand structure, characterizes equilibrium out-

comes for monopoly producers, and offers our proofs. It also includes welfare analysis and

explores alternative ways of modeling market size effects on innovation.

A.1 Demand & Market-Clearing

We consider a consumer with utility

U =

∫ 1

0

ln ȳj dj, where ȳj =

∫
Fj

yj,f (qj,f )
δj df,

subject to the overall budget constraint∫ 1

0

∫
Fj

pj,f yj,f df dj =M.

Intra-Good Optimization

For each good j, assume the consumer allocates an expenditure mj (with
∫ 1

0
mj dj = M)

across varieties f ∈ Fj by solving

max
{yj,f}

ln

(∫
Fj

yj,f (qj,f )
δj df

)

subject to ∫
Fj

pj,f yj,f df = mj.

Defining

ȳj =

∫
Fj

yj,f (qj,f )
δj df,

the Lagrangian for this subproblem is

Lj = ln(ȳj)− λj

(∫
Fj

pj,f yj,f df −mj

)
.

Taking the first-order condition with respect to yj,f gives

(qj,f )
δj

ȳj
− λj pj,f = 0 =⇒ (qj,f )

δj

pj,f
= λj ȳj ∀f with yj,f > 0.
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Thus, only those varieties that maximize the ratio

(qj,f )
δj

pj,f

can receive positive demand. Define

f ∗(j) = argmax
f∈Fj

(qj,f )
δj

pj,f
.

Then all expenditure in good j is allocated to variety f ∗(j). The budget within good j

therefore satisfies

pj,f∗(j) yj,f∗(j) = mj,

so that

yj,f∗(j) =
mj

pj,f∗(j)

and

ȳj =
mj

pj,f∗(j)
(qj,f∗(j))

δj .

Allocation Across Goods

Substituting the expression for ȳj into the overall utility yields

U =

∫ 1

0

ln

[
mj

pj,f∗(j)
(qj,f∗(j))

δj

]
dj =

∫ 1

0

{
lnmj − ln pj,f∗(j) + δj ln(qj,f∗(j))

}
dj.

The allocation {mj} is chosen subject to∫ 1

0

mj dj =M.

Form the Lagrangian for the allocation across goods:

L =

∫ 1

0

lnmj dj −
∫ 1

0

ln pj,f∗(j) dj +

∫ 1

0

δj ln(qj,f∗(j)) dj + θ

(
M −

∫ 1

0

mj dj

)
.

Taking the derivative with respect to mj for each j gives

1

mj

− θ = 0 =⇒ mj =
1

θ
, ∀ j.
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Then
∫ 1

0
mj dj =M implies

1

θ
=M =⇒ θ =

1

M
.

Hence, the optimal allocation is

mj =M for all j ∈ [0, 1],

so that each good j receives an equal share of the total budget.

Characterization of Expected Monopoly Outcomes

Due to the structure of consumer demand, a successful inventor who upgrades quality by a

factor γ faces the unsuccessful producer whose quality remains one “step” behind, qcomp =

qM/γ, and who sells at marginal cost c. Indifference between the innovator’s variety and

that of her competition requires

pMj (qM)δj = pcomp

(
qM/γ

)δj =⇒ pMj = γδj c.

With total expenditure on good j normalized to one, this implies

yMj =
1

pMj

=
1

γδj c
, πMj = 1− c

pMj

= 1− γ−δj .

Taking local expectations El[·] over δj immediately yields

El[yMj] =
1

El[pMj]
=

1

γ El[δj ] c
, El[πMj] = 1− 1

γ El[δj ]
,

as in (11). Thus, prospective inventors anticipate these output and profits whenever their

R&D succeeds.

A.2 Proof of Proposition 1

In this Section we proof Proposition 1 of Section 6. We know that γ > 1 and that for each

j we have: E[δj] ≥ 0. Let

Φ (E[δj]) ≡ 1− 1

γE[δj ]
.

A straightforward calculation shows that

Φ′(x) = γ−x ln γ and Φ′′(x) = −γ−x(ln γ)2.
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Since γ−x > 0 for all x ≥ 0 and ln γ > 0, it follows that Φ′′(x) < 0 for all x ≥ 0. Thus, Φ

is strictly concave on [0,∞). Let the average environmental expectation across regions be:

E(δj) =
∫
l
El[δj] f(l) dl. Then, by Jensen’s inequality for the strictly concave function Φ, we

have

Φ
(
El(δj)

)
>

∫
l

Φ
(
El[δj]

)
f(l) dl, (20)

provided that the El[δj] are not degenerate. Explicitly, this is

1− 1

γE(δj)
>

∫
l

(
1− 1

γEl[δj ]

)
f(l) dl.

Multiplying both sides of (20) by the positive constant ∆j/κ yields

∆j

κ

(
1− 1

γE(δj)

)
>

∆j

κ

∫
l

(
1− 1

γEl[δj ]

)
f(l) dl.

Now, suppose the intrinsic motivation is heterogeneous (i.e., it may vary with l). The

average of intrinsic motivation µl is defined as: µ =
∫
l
µl f(l) dl. Since the intrinsic motivation

term enters linearly, we have
µ

ακ
=

∫
l

µl

ακ
f(l) dl.

Therefore, adding these linear terms to both sides we obtain

∆j

κ

(
1− 1

γE(δj)

)
+

µ

ακ
>

∫
l

[
∆j

κ

(
1− 1

γEl[δj ]

)
+
µl

ακ

]
f(l) dl ∀j. (21)

Inequality (21) completes the proof. Notice that the nonlinearity (and hence the strict

inequality) originates solely from the concave function Φ; the linear intrinsic motivation

term averages exactly.

A.3 Welfare

We now turn our eye to societal welfare. Societal welfare depends on quality-adjusted con-

sumption (9) for all consumers and the externality dependent on emissions. Consumers are

homogeneous and of mass 1. The welfare problem then boils down to maximizing the utility

of a representative consumer. The level of tomorrow’s emissions depends on current research

input. With consumption expenditure normalized to 1, aggregate emissions are then:

X =

∫
j

(1− zj)y(∆j) + zljyMj
/γdj (22)
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Total emissions are the sum of emissions over all sectors where innovation was unsuccessful,

plus all emissions in sectors where innovation was successful with production being γ times

less polluting. Societal welfare is negatively affected by these emissions with a factor ψ > 0.

The social planner has expectations:

Ê[yMj] =
1

E[pMj]
=

1

γE[δj ]c
, Ê[πMj] = 1− 1

γE[δj ]
. (23)

where γE[δj ] is the expectation about the average valuation of a quality improvement γ in

good market j.

In our setting, the social planner can choose the research rate in every sector j, which

then determines good quality. The social planner maximizes welfare by choosing societal

research rate(s) zj:

max
zj

W =

∫
j

(1− zj) ln Ê[y(∆j)] + zj ln
(
γE[δj ]Ê[yMj

]
)

−ψ
[
(1− zj)Ê[y(∆j)] + zjÊ[yMj

]/γ
]

.+ λ

[
(1− zj)(1−∆j)Ê[πMj

] + zjÊ[πMj
]−K(ηj)z

2
j /2 +

µ

ακ

]
dj

(24)

The condition

(1− zj)(1−∆j)Ê[πMj
] + zjÊ[πMj

]−
K(ηj)z

2
j

2
+

µ

ακ
≥ 0

stipulates that inventors utility is positive and acts as a sort of resource constraint. λ then

gives the degree to which inventor profits/utility can be traded off against research costs.

Put differently, λ denotes the value the social planner attaches to innovators’ profits/utility.

When λ→ ∞, the social planner simply maximizes inventor profits/utility.
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Proposition 2: Under assumption 1 we get that:

z∗j (∆j, E(δj), ηj) = zj(∆j, El(δj), ηj)︸ ︷︷ ︸
average expectations

+
1

λK(ηj)

ln
[
γE[δj ]Ê[yMj

]

Ê[y(∆j)]

]
︸ ︷︷ ︸

collusion loss

+ψ
[
Ê[y(∆j)]− Ê[yMj

]/γ
]

︸ ︷︷ ︸
emission reduction


> zj(∆j, El[δj], ηj)︸ ︷︷ ︸

local expectations

(25)

If at least one region is differentially affected, in every sector the optimal research rate chosen

by the social planner is strictly larger than the average private research rate. Broken down

by its components, the socially optimal research rate z∗j (∆j, E(δj), ηj) is the research rate

achieved iff all inventors internalize the effects of climate change regardless of their personal

exposure plus a term that corrects the inefficiency from imperfect competition and adds

incentives to innovate in order to reduce emissions. See section A.3.1 in the appendix for

our proof of proposition 2.

In addition to the loss in research rate due to local expectations zj−zj, the overall research
rate is below the societal optimum due to collusion and inventors failing to internalize the

emission benefit. The loss due to collusion and inventors failing to inernalize the emission

reduction is scaled by the market size of a product j. We believe that a policymaker can likely

observe more, if not all, natural disasters and form better expectations than local inventors

can. Therefore, there is scope for policy to act by raising the salience of climate change in

unaffected regions or, alternatively, incentivizing research in unaffected regions. Based on

the optimal research rate of the social planner, increasing climate change salience unlikely

“hurt,” since the socially optimal research rate also corrects for imperfect competition and

the emission externality.

Lastly, if one is willing to assume that the social planner has a better understanding

of climate change dynamics, such as increased future disaster risk etc., the social planner

could further improve on market outcomes by anticipating how these changes affect future

environmental preferences. If, for instance, market participants systematically underestimate

future disaster risks such that planner expectations Ê[δ] > E[δ], then there is further scope

for policy by correcting these optimistic (from the point of climate change) beliefs. We indeed

believe that our results point toward the market underestimating the degree of climate

change, as the innovation response is only ever following, and not anticipating, natural

disaster exposure. However, it is less clear that an actual policymaker can fare significantly
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better than the market in this regard.

A.3.1 Proof of Proposition 2

In this section we proof Proposition 2 in Section A.3.

Let

zj(∆j, El[δj], ηj) ≡
∫
l

(
∆j

K(ηj)

(
1− 1

γEl[δj ]

)
+
µl

ακ

)
f(l)dl

be defined as the average private research rate in sector j across all regions l. And let

zj(∆j, E(δj), ηj) ≡
∆j

K(ηj)

(
1− 1

γE(δj)

)
+

µ

ακ

be defined as the research rate achieved if all regions had average expectations. While

proposition 1 (equation 17) does not have heterogeneous market size, it is straightforward

to extend to this case, resulting in the following analogous condition ∀j:

∆j

K(ηj)

(
1− 1

γE(δj)

)
+

µ

ακ
>

∫
l

(
∆j

K(ηj)

(
1− 1

γEl[δj ]

)
+
µl

ακ

)
f(l)dl (26)

Therefore, we have that zj(∆j, E(δj), ηj) > zj(∆j, El[δj], ηj). From the social planner’s first-

order condition with respect to zj we get:

z∗j (∆j, E(δj), ηj) = zj(∆j, E(δj), ηj)︸ ︷︷ ︸
average expectations

+
1

λK(ηj)

ln
[
γE[δj ]Ê[yMj

]

Ê[y(∆j)]

]
︸ ︷︷ ︸

≥0

+ψ
[
Ê[y(∆j)]− Ê[yMj

]/γ
]

︸ ︷︷ ︸
>0


(27)

where ln

[
γE[δj ]Ê[yMj

]

Ê[y(∆j)]

]
≥ 0 holds since we can rewrite equation (23) to Ê[yMj

]γE[δj ] = 1
c
,

which, together with (14), implies Ê[y(∆j)] ≤ 1
c
= γE[δj ]Ê[yMj

].

Secondly, ψ
[
Ê[y(∆j)]− Ê[yMj

]/γ
]
> 0 holds since from (14) we get that yj(∆j) ≥ yMj

∀∆j ∈ [1/2, 1] and we additionally have that γ > 1, ψ > 0.

A.4 Parameter Calibration - Comparative Statics

Figure A.1 plots our comparative static with respect to market size.

This section provides the parameters with which we calibrate our model in order to plot

Figures 7 and A.1.
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Figure A.1: Innovation Responses dependent on market size ηj
Note: The figure plots inventors’ innovation response dependent on their expectations El(δl) and market size ηj.

For the purpose of our comparative statics analysis, we calibrate the model with the

following parameters. In the baseline model without market size, we set the scaling constant

of costs to κ = 1 and chose γ = 2. Innovation intensity, ∆j, is varied across the representative

values 0, 0.5, and 1, while local expectations El(δj) are sampled continuously over the interval

[0, 1]. The intrinsic utility parameter µl is evaluated on the interval [0, 1].

In the extended model that incorporates market size, we fix the innovation intensity at

∆j = 0.5 and maintain γ = 2. The market size parameter ηj is evaluated at 0, 0.5, and 1.

The function K(ηj) is calibrated as

K(ηj) =
(
1− 0.5 log(1 + ηj)

)2
,

which provides a decreasing and concave relationship in ηj consistent with the assumption

of diminishing marginal effects.

A.5 Alternative Modeling of Market Size

Instead of decreasing costs, we can also model the step-size of innovation to be increasing in

the market size. The quality of a good yj then evolves according to: qj = F (Γ(ηj)), where

Γj(k) > 1 denotes the step size of a green innovation which potentially depends on the size

of the market ηj. F (.) simply sums over past inventive success. When
∂Γ(ηj)

∂ηj
> 0 the step

size increases with market size.

The privately chosen research rate in the economy is then given by:

zlj(∆j, El(δj), ηj) =
∆jEl [πMj]

κ
+
µl

ακ
=

∆j

κ

(
1− 1

Γ(ηj)El[δj ]

)
+
µl

ακ
. (28)
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As long as consumers somewhat value the greenness of a good El(δj) > 0, the returns to

innovation increase with larger step size Γ(ηj). Therefore, the privately chosen research rate

increases in the step size
∂zlj

∂Γ(ηj)
> 0 ∀l, j. Together with the feature of inventors standing on

the shoulders of giants
∂Γ(ηj)

∂ηj
> 0, this implies that the research rate increases in the size of

the green market of good j. Similar to the interpretation above, this is borrowed from the

literature on directed technical change, where a larger market for e.g. green goods implies

higher gains from innovation in that market (see Acemoglu 2002, Acemoglu 2007, Acemoglu

et al. 2012).

Assumption 2: Assume that Γ(ηj) andEl(δj) are reasonable small such that El(δj)ln(Γ(ηj)) <

1. Intuitively, when this term is instead larger than 1, it implies that either the step size is

significantly larger than Γ(ηj) > 2 or consumers value the quality of a good relatively more

than its consumption value δ > 1. Γ(ηj) > 2 would imply a doubling of quality with every

innovation, a somewhat unrealistic proposition. Under assumption 1, we have positive cross

derivatives
∂2zlj

∂ηj∂E[δj ]
> 0. We can then derive a hypothesis in the same spirit as hypothesis 2.

Hypothesis 2b: In addition to assumption 2, assume the world is such that inventors

stand on the shoulders of giants
∂Γ(ηj)

∂ηj
> 0. Then, in markets where green products are al-

ready proliferated (large ηj) inventors respond more strongly to increases in their expectation

El(δj).

B Online Appendix - Empirical Analysis

This appendix provides empirical robustness checks and supplementary analyses for the main

paper. It includes results verifying the robustness of findings to different technology trend

controls, examines heterogeneity by technology class and subclass, explores spillover effects

across neighboring regions, and tests robustness to alternative definitions of green innovation

and disaster exposure. Additionally, it assesses heterogeneity based on inventor experience,

disaster severity, disaster type, competition intensity, and green market size.

B.1 Alternative Estimator

To address concerns about heterogeneous treatment effects in difference-in-differences de-

signs, we re-estimate our main green innovation results using the estimator proposed by

Chaisemartin and D’Haultfœuille (2023) and Chaisemartin and D’Haultfœuille (2024). This

estimator remains valid under treatment effect heterogeneity and serves as a robustness check
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for our baseline specification in Equation (4).

In contrast to our preferred approach, which uses all untreated regions as controls re-

gardless of treatment history, the alternative estimator restricts comparisons to regions with

identical treatment trajectories up to period t − 1. For example, it compares regions with

two prior disasters that receive a third at time t, to regions with the same prior exposure

that are not treated at t. Once a control region becomes treated, it drops out of the control

group. As a result, the control group diminishes over time as more units receive treatment.

−3
0%

−2
0%

−1
0%

0
10

%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

<−4 −4 −3 −2 0 1 2 3 4 5 6 7 8 9 10 10<
Years to Disaster

P
er

ce
nt

ag
e 

C
ha

ng
e 

in
 N

um
be

r 
of

 P
at

en
ts

 &
 9

5%
 C

.I.

Patent Class
Green Patents

Chaisemartin−D'Haultfœuille Estimator − Main DEFR

Figure B.1: Patenting following Exposure to a Natural Disaster — Estimator of Chaisemartin
and D’Haultfœuille 2023; Chaisemartin and D’Haultfœuille 2024
Note: This figure depicts the results of our preferred event-study using the estimator of Chaisemartin and D’Haultfœuille (2023) and Chaisemartin
and D’Haultfœuille (2024). Standard errors are clustered at the region level, and confidence intervals are drawn for the 95% interval.

The resulting estimates (Figure B.1) are somewhat larger and more persistent than those

from our baseline model (Figure 3). This is encouraging, as it suggests that our findings are

not an artifact of bias introduced by treatment effect heterogeneity. However, the alternative

estimator also introduces trade-offs. The shrinking control group reduces statistical power

in later event periods, and the restriction to regions with identical treatment histories may

limit generalizability.

While it is not entirely clear which approach is more suitable in our context, the quali-

tative similarity across both estimators increases confidence in the robustness of our results.

The alternative estimator offers protection against heterogeneity bias, while our preferred

specification leverages a broader and more interpretable sample. Taken together, the results

from both approaches point to a consistent and significant relationship between disaster

58



exposure and green innovation. Given that the TWFE specification produces more conser-

vative estimates and facilitates clearer interpretation, we retain it as our primary approach

in the main analysis.

B.2 Patenting Results without Technology Trend Controls

For most of our analysis, we control for the time-varying regional shares in patenting from

different technology classes CPClt. In the long run, these shares might be themselves af-

fected by natural disaster exposure. For the sake of robustness, we reestimate our baseline

specification without controlling for technology trends. Figure B.2 plots the results of our

event-study specification (4) without controlling for technology trends CPClt. Results are

nearly identical to those in Figure 3.
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Figure B.2: Patenting following exposure - without technology trends
Note: This figure depicts the results for our baseline event-study specification, where we compare patenting in regions exposed to natural
disasters to unaffected regions. We drop the technology trend controls. We plot one regression for green and one for non-green patents. The
sample average of green patents per year per region is 2.54, while the sample average of non-green patents is 30.5. These numbers correspond to
the respective denominator for green and non-green patents in equation (3). Standard errors are clustered on the region level, and confidence
intervals are drawn for the 95% interval.

B.3 Green innovation by technology class

In this section of the appendix, we examine whether the baseline effect of natural disas-

ters on green innovation is concentrated in particular technological domains or reflects a

broader pattern across fields. To this end, we replicate our baseline green innovation event
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study specification separately by broad technology/CPC class. Panel A in Figure B.3 shows
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(b) Effects for CPC classes A,D,E

Figure B.3: Green innovation response to natural disaster by technology class
Note: This Figure depicts the effects of natural disaster exposure on green patenting for patents from different technology classes (1-digit CPC
classes). The mean number of green patents in CPC classes is as follows: A: 0.114, B: 0.451, C: 0.477, D: 0.054, E: 0.102, F: 0.766, G: 0.221, H:
0.550. Standard errors are clustered on the region level, and confidence intervals are drawn for the 95% interval.

results for classes B (Performing Operations; Transporting), C (Chemistry; Metallurgy), F

(Mechanical Engineering; Lighting; Heating), G (Physics), and H (Electricity). These classes

closely mirror the baseline response in both timing and magnitude, exhibiting a smooth and

persistent increase in green patenting following disasters. This consistency suggests that the

average effect is not driven by any single technological area.

Panel B in Figure B.3 presents results for classes A (Human Necessities), D (Textiles;

Paper), and E (Fixed Constructions), where greater heterogeneity is observed. Class D

shows particularly large and volatile effects, while class E remains broadly aligned with the

baseline pattern, albeit with more noise. Class A is the most distinct, possibly reflecting the

different dynamics of green innovation in agriculture and related fields.

Taken together, these results indicate that the positive innovation response to disasters

is not confined to a narrow set of technologies, but is instead distributed across a wide range

of broad CPC classes.

B.4 Subclasses of Y02

Our results suggest that natural disasters are a robust and broad-based driver of green

innovation. This has important implications for understanding the determinants of environ-

mental technological change, as it indicates that external shocks can meaningfully stimulate

patenting activity across a diverse set of green technology fields.

We can split our sample further by a patents respective “green subclass”. See Table B.1

for these subclasses.
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Class Description

Y02A Climate change mitigation technologies related to agriculture, forestry,
or land use

Y02B Climate change mitigation technologies related to buildings, e.g., hous-
ing, appliances, or related end-user applications

Y02C Capture, storage, sequestration, or disposal of greenhouse gases

Y02D Climate change mitigation technologies in information and communica-
tion technologies (ICT), aiming at reducing ICT-related energy use

Y02E Reduction of greenhouse gas (GHG) emissions related to energy genera-
tion, transmission, or distribution

Y02P Climate change mitigation technologies in the production or processing
of goods

Y02T Climate change mitigation technologies related to transportation

Y02W Climate change mitigation technologies related to wastewater treatment
or waste management

Table B.1: Y02 subclasses of climate change mitigation technologies

In Table 2 and Figure B.4a we pool subclasses Y02B-Y02W into mitigation technologies.

Figure B.4a depicts our results when estimating (4) on the split sample of adaptation and

mitigation technologies.
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(b) Patenting in Y02E and Y02T subclasses

Figure B.4: Green innovation patterns in Germany and France by technology focus
Note: Left panel: Each time we split the sample to only contain technologies from the respective CPC class(es). Therefore the figure depicts 2
separate regressions. The sample average of mitigation patents is 2.323, while the sample average of adaptation patents is 0.2256. Right panel:
This figure plots our baseline specification, when only looking at the Y02E and Y02T subclasses. The sample average of Y02E patents is 0.885,
while the sample average of Y02T patents is 0.933. Standard errors are clustered on the region level and confidence intervals are drawn for the
95% interval.

In Table B.2, we report estimates of the effect of natural disaster exposure on different

Y02 green patent subclasses. The outcome variables are subclass-specific indicators for green

patent filings, and the main regressor is the cumulative count of natural disasters over the
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past five years. Each column represents a separate regression. All models include country-

year fixed effects, region fixed effects, and CPC-class controls.

We find consistently positive and statistically significant effects across all Y02 subclasses.

The estimated coefficients are significant at the 1% level in all cases and vary in magnitude.

The largest effects are observed in Y02D (energy generation, coefficient = 0.265), Y02C (car-

bon capture and storage, coefficient = 0.178), and Y02B (building technologies, coefficient =

0.137), indicating particularly strong responsiveness in domains most directly tied to energy

systems and emissions mitigation.

Transport (Y02T) and energy conservation (Y02E) technologies, while not associated

with the largest coefficients, are notable for their relatively high baseline levels of patenting

activity and their relevance to energy-saving policy goals. Given their substantive importance

and distinct temporal dynamics, we present separate event-study plots for these subclasses

in Appendix Figure B.4b.

Taken together, these results demonstrate that the innovation response to natural disas-

ters is not confined to a narrow subset of green technologies, but rather operates across a wide

range of sectors—with particularly strong effects in energy-related and emissions-reducing

fields. This underscores the role of natural disasters as a catalyst for environmentally bene-

ficial technological change.

Table B.2: Regression by Y02 subclass

Dependent variable:

Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W

(1) (2) (3) (4) (5) (6) (7) (8)

Cumulative Count 0.044∗∗∗ 0.137∗∗∗ 0.178∗∗∗ 0.265∗∗∗ 0.084∗∗∗ 0.077∗∗∗ 0.088∗∗∗ 0.042∗∗∗

(0.013) (0.016) (0.047) (0.044) (0.014) (0.016) (0.012) (0.015)

Country-Year F.E. Yes Yes Yes Yes Yes Yes Yes Yes
Region F.E. Yes Yes Yes Yes Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes Yes Yes Yes Yes

Sample Means 0.226 0.251 0.036 0.075 0.885 0.425 0.933 0.152
Observations 15,813 15,813 15,813 15,813 15,813 15,813 15,813 15,813
R2 0.513 0.486 0.363 0.462 0.628 0.641 0.611 0.421
Adj. R2 0.487 0.459 0.329 0.433 0.609 0.622 0.590 0.390

Note: This table reports the results of our baseline difference-in-differences regression for different subclasses of green patents. We report results for all
subclasses of Y02. Sample Means gives the respective sample means per region-year for these subclasses. Standard errors are clustered on the region
level and are reported in parentheses. P-values are as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B.5 Most Severe-Disaster Severity

We use EM-DAT data to identify each region’s most severe natural disaster, defined as the

event with the highest recorded number of deaths. We then construct a treatment indicator

that equals one in all years following the region’s most deadly disaster. This specification

restricts treatment to occur at most once per region and allows us to implement the staggered

adoption event-study estimator of Sun and Abraham (2021), which is designed for settings

where treatment is irreversible and varies in timing.
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Figure B.5: Patenting following the Exposure to the Most Severe Natural Disaster
Note: This figure plots green patenting after the most severe disaster, as measured by deaths, in our sample. We estimate effects using the
estimator of Sun and Abraham (2021). Standard errors are clustered at the region level, and 95% confidence intervals are shown.

Figure B.5 shows the resulting event-study estimates. The identifying variation in this

setting comes from comparing regions that have already experienced their most severe disas-

ter to those that have not yet done so. Because treatment is limited to a single (and extreme)

event per region, we reduce concerns about overlapping or serially correlated shocks. At the

same time, this comes at the cost of substantially reduced variation, which leads to increased

standard errors and greater noisiness in the estimated effects.

Despite the reduced statistical precision, we find that the most severe disasters are asso-

ciated with stronger innovation responses than in our baseline specification. However, the
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effect is more delayed, with increases in green patenting becoming visible only several years

after the event.

B.6 Disaster Type

Figure B.6 plots our event-study estimates separately for each disaster type: extreme tem-

perature, flood, and storm. This breakdown allows us to explore potential heterogeneity in

the innovation response depending on the nature of the shock.
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Figure B.6: Green Patenting Following Different Disaster Types
Note: This figure presents event-study estimates for the impact of three different disaster types—extreme temperature, flood, and storm—on
green patenting. We omit droughts, as there are not enough droughts (3) in our sample to plot meaningful estimates. Confidence intervals
correspond to the 95% level, and standard errors are clustered at the region level.

While the estimates are noisier due to the smaller number of observations for each disaster

category, the overall patterns are consistent with our main findings in Figure 3. In all

three cases, we observe a notable increase in green patenting activity in the years following

disaster exposure. This supports our interpretation that natural disasters act as catalysts

for environmentally oriented innovation, regardless of the specific type of event.

These results suggest that the mechanism linking disaster exposure to innovation is not

driven by one specific type of shock, but appears to hold more generally across a range of

climate-related events.
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B.7 Spillovers - Alternative Modeling

Table B.3 depicts alternative sample restrictions compared to Table 3 in the main text. In

columns (1)–(3) we exclude regions affected in the past 3 years, (4)–(6) in the past 4 years,

(7)–(9) in the past 6 years, and (10)–(12) in the past 7 years. The more regions we remove,

the smaller our sample size comes. We do so as to not have affected regions in our control

group. Overall the results for spillovers from regions that are 100km or 150km remain largely

the same. However, when we remove all regions that were affected in the past 6 or 7 years,

we find somewhat larger effects of natural disasters in regions closer than 50km away.

Table B.4 presents regression results examining the spillover effects of neighboring dis-

asters using an unrestricted sample that includes regions directly affected by disasters. The

estimates are disaggregated by distance thresholds of 50km, 100km, and 150km. At the

50km threshold (column 1), the effect of cumulative neighboring disasters is positive and

statistically significant, with a coefficient of 0.0109. For the 100km and 150km thresholds

(columns 2 and 3), the coefficients are negative. This is due to the control group now con-

taining regions that are affected by natural disasters. We essentially invert treatment and

control group.
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Table B.4: Spillovers of Neighboring Disasters - Unrestricted Sample

Dependent variable:

P (Y 02lt)

(1) (2) (3)

Cumulative Count (50km) 0.0109∗∗∗

Neighboring Disasters (0.0025)

Cumulative Count (100km) −0.0018∗∗∗

Neighboring Disasters (0.0003)

Cumulative Count (150km) −0.0014∗∗∗

Neighboring Disasters (0.0002)

Country-Year F.E. Yes Yes Yes
Region F.E. Yes Yes Yes
CPC Controls Yes Yes Yes

Observations 15,813 15,813 15,813
R2 0.7376 0.7374 0.7378
Adjusted R2 0.7236 0.7234 0.7238

Note: This table gives the estimates of our spillover analysis when we do not constain the sample. Thus
all regions, regardless of past exposure, are in the sample. Standard errors are clustered at the region level
and reported in parentheses. We do not remove themselves affected regions from the sample. Significance
levels: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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B.8 Reasons to Innovate Robustness

To assess the robustness of our baseline survey results (Table 6), we estimate two alternative

specifications that sequentially incorporate more granular regional fixed effects. Table B.5

includes NUTS-2 fixed effects to control for unobserved time-invariant characteristics at a

broader regional level, while Table B.6 introduces NUTS-3 fixed effects.

Table B.5: Effect of Cumulative Disaster Count on Reasons to Innovate (Robustness Check
NUTS-2)

Dependent variable:

Expected
Regulation

Expected
Demand

Existing
Regulation

Public
Funding

Voluntary
Standard

Reputation

(1) (2) (3) (4) (5) (6)

Cumulative Count 3.66∗∗∗ 1.72∗∗∗ 2.89∗∗∗ 1.22∗∗ 2.43∗∗∗ 0.263
(0.582) (0.497) (0.569) (0.499) (0.563) (0.745)

Firm Size F.E. Yes Yes Yes Yes Yes Yes
Revenue Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes
Industry F.E. (2-digit) Yes Yes Yes Yes Yes Yes
NUTS-2 F.E. Yes Yes Yes Yes Yes Yes

Mean of Y 0.6333 0.5564 0.4066 0.4907 0.5795 0.6147
Observations 8,787 8,754 8,862 8,776 8,782 5,423
R2 0.554 0.492 0.610 0.422 0.547 0.670
Adj. R2 0.548 0.485 0.605 0.414 0.541 0.663

Note: This table reports the effect of disaster exposure on the drivers of innovation as measured in the survey. One additional past disaster increases the probability of a firm mentioning
these factors by β percentage points. Each column reports coefficients from separate regressions. Outcomes are: Expected Regulation = expected future environmental rules; Expected
Demand = expected future market demand for green innovation; Existing Regulation = current environmental rules/charges; Public Funding = government grants/subsidies; Voluntary
Standard = voluntarily joining a standard for green practices (e.g. environmental/organic label); Reputation = firm’s reputation concerns. Coefficients and standard errors are scaled
by 100 for interpretability as percentage point effects. “Cumulative Count” captures disaster exposure. Standard errors clustered at the region (Kreis, NUTS-3) level. Significance
levels: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Across both specifications, the direction of the estimated coefficients on cumulative disas-

ter exposure remains qualitatively consistent with the baseline, indicating that the underlying

relationship is robust. However, once NUTS-3 fixed effects are included, the magnitude of

estimated effects is similar, but statistical significance weakens in several cases. This re-

duction in significance likely reflects the limited within-region variation available across just

three survey waves, which constrains identification when highly granular fixed effects are

introduced. Nonetheless, the overall pattern provides reassurance that the baseline results

are not driven by omitted regional heterogeneity.

B.8.1 French Research Funding

To explore whether changes in public research funding explain the increase in green inno-

vation after natural disasters, we draw on ScanR, an administrative database developed by
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Table B.6: Effect of Cumulative Disaster Count on Reasons to Innovate (Robustness Check
NUTS-3)

Dependent variable:

Expected
Regulation

Expected
Demand

Existing
Regulation

Public
Funding

Voluntary
Standard

Reputation

(1) (2) (3) (4) (5) (6)

Cumulative Count 2.50∗∗ 0.852 1.52 1.15 1.85 1.21
(1.25) (1.05) (1.03) (0.893) (1.30) (0.904)

Firm Size F.E. Yes Yes Yes Yes Yes Yes
Revenue Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes
Industry F.E. (2-digit) Yes Yes Yes Yes Yes Yes
NUTS-3 F.E. Yes Yes Yes Yes Yes Yes

Mean of Y 0.6333 0.5564 0.4066 0.4907 0.5795 0.6147
Observations 8,787 8,754 8,862 8,776 8,782 5,423
R2 0.574 0.515 0.629 0.451 0.566 0.694
Adj. R2 0.550 0.487 0.608 0.419 0.542 0.665

Note: This table reports the effect of disaster exposure on the drivers of innovation as measured in the survey. One additional past disaster increases the probability of a firm mentioning
these factors by β percentage points. Each column reports coefficients from separate regressions. Outcomes are: Expected Regulation = expected future environmental rules; Expected
Demand = expected future market demand for green innovation; Existing Regulation = current environmental rules/charges; Public Funding = government grants/subsidies; Voluntary
Standard = voluntarily joining a standard for green practices (e.g. environmental/organic label); Reputation = firm’s reputation concerns. Coefficients and standard errors are scaled
by 100 for interpretability as percentage point effects. “Cumulative Count” captures disaster exposure. Standard errors clustered at the region (Kreis, NUTS-3) level. Significance
levels: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

the French Ministry of Higher Education, Research, and Innovation.25 The platform lists

121,451 publicly funded research projects initiated in France between 1999 and 2023, in-

cluding funding from Horizon 2020/Horizon Europe, the French National Research Agency

(ANR), and the Hubert Curien Partnership (PHC). We restrict the data to projects launched

before 2019 to align with the period for which we observe disaster exposure.

We aggregate project-level information to the region-year level and construct two outcome

measures: (1) the count of distinct research funding streams and (2) the total research

budget per region-year. We then match this data to natural disaster exposure and estimate

difference-in-differences regressions with region and year fixed effects, controlling for CPC

technological structure.

Table B.7 reports the results. Across specifications, we find no statistically significant

effects of disaster exposure on either the number of funded projects or the total research

budget. Both cumulative and recent disaster exposure are unrelated to regional research

funding outcomes. These results rule out selective increases in public R&D support as the

primary mechanism behind our main findings.

25https://scanr.enseignementsup-recherche.gouv.fr/
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Table B.7: French Research Funding

Dependent variable:

Count Budget Count Budget

(1) (2) (3) (4)

Cumulative Count 0.254 −1,224k
(0.385) (1,248k)

Disaster Count −0.365 −165k
Last 3 Years (0.325) (1,228k)

Year f.e. Yes Yes Yes Yes
Region f.e. Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes

Observations 2,848 2,848 2,848 2,848
R2 0.309 0.106 0.309 0.105
Adj. R2 0.257 0.038 0.256 0.037

Note: This table reports results for different measures research funding. In columns (1) and (3) we report
results on the number of funding allocations to a region, while in columns (2) and (4) we report results
on the amount of funding allocated to a region. Cumulative count is the count of past natural disasters.
“Disaster Count Last 3 Years” is the count of natural disasters in the past 3 years. We only have research
funding data for France. Standard errors are clustered on the region level and are reported in parenthesis.
P-values are as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

B.9 Alternative Measures of Green Innovation Robustness

Our green product variable is derived from a survey question that asks: “During [the past

two years], did your enterprise introduce new products or services with the following envi-

ronmental benefits through the use of these products/services, and if yes, what was their

contribution to environmental protection The survey lists the following four benefits: (a)

reduced energy use, (b) reduced air, water, soil, or noise pollution, (c) improved recycling

of products after use, and (d) extended product life through longer-lasting, more durable

products. Respondents could answer with “Yes, significant”, “Yes”, insignificant, and “No”

for each of the four benefits. In our analysis, the dummy variable for Green Products is

assigned a value of one if a firm indicated that it has introduced a new product or service

encompassing any of the four environmental benefits, regardless of whether that benefit was

deemed significant or insignificant. Our within-firm green innovation indicator is based on

the following survey question: “During [the past two years], did your enterprise introduce

innovations that had any of the following environmental benefits, and if yes, was their con-

tribution to environmental protection rather significant or insignificant?”. The survey lists

the following benefits (a) reduced energy use per unit of output, (b) reduced material use/
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use of water per unit of output, (c) reduced CO2 footprint (total CO2 production), (d)

reduced air pollution, (e) reduced noise pollution, (f) replaced fossil energy sourced by re-

newable energy sources, (g) replaced materials by less hazardous substitutes, (h) recycled

waste, water, or materials for own use or sale. Firms could again indicate “Yes”, significant,

“Yes”, insignificant, and “No” for each of the four benefits. For our analysis, the within-firm

green innovation indicator equals one if a firm has introduced an innovation with any of the

mentioned (significant or insignificant) benefits.

Table B.8 provides additional robustness for our results reported in Table 5, which exam-

ine the effect of cumulative natural disaster exposure on survey green innovation outcomes

and perceived climate affectedness. While Table 5 includes controls for firm size, revenue,

industry, and year, it does not include region fixed effects. To provide additional robustness,

Table B.8 introduces regional fixed effects at two levels: columns (1)–(4) include NUTS-2

fixed effects, while columns (5)–(7) include NUTS-3 fixed effects. The direction and relative

magnitude of the coefficients on cumulative disaster count remain qualitatively consistent

across specifications. As in earlier robustness checks, the decline in statistical significance in

the NUTS-3 specification is attributable to reduced statistical power due to limited within-

region variation across the three available waves. Since climate affectedness is only elicited

in one wave, we can not include NUTS-3 fixed effects, as this is the level of our variation.

Table B.8: Effect of Cumulative Disaster Count on Green Innovation and Climate Affected-
ness (Robustness Regional Fixed Effects)

Green Innovation Outcomes Climate Green Innovation Outcomes
Green Innovation Within-firm Green Products Affectedness Green Innovation Within-firm Green Products

(1) (2) (3) (4) (5) (6) (7)

Cumulative Count 6.59∗∗∗ 5.75∗∗∗ 4.37∗∗∗ 10.7∗∗∗ 3.22 2.78 2.25∗

(0.702) (0.640) (0.532) (0.968) (2.08) (1.80) (1.18)

Firm Size F.E. Yes Yes Yes Yes Yes Yes Yes
Revenue Yes Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes No (Single Wave) Yes Yes Yes
Industry F.E. Yes Yes Yes Yes Yes Yes Yes
NUTS-2 F.E. Yes Yes Yes Yes No No No
NUTS-3 F.E. No No No No Yes Yes Yes

Observations 15,395 15,426 15,226 4,873 15,395 15,426 15,226
R2 0.638 0.599 0.457 0.597 0.653 0.614 0.475
Adj. R2 0.635 0.596 0.453 0.588 0.642 0.602 0.458

Note: This table presents robustness checks for green innovation outcomes. Coefficients and standard errors are multiplied by 100 to reflect percentage point effects. All models
include firm size (based on employment), revenue controls, year fixed effects, and 2-digit NACE industry fixed effects. We either include NUTS-2 (Bezirk) or NUTS-3 (region)
level fixed effects. Standard errors are clustered at the regional (Kreis) level. Significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

B.10 Alternative Competition Windows

Table B.9 presents the results from using alternative time windows to compute competition

intensity—specifically, using either a 1-year or 3-year window before the patent filing year.

This table complements the baseline analysis in Section 6.2.1 and the corresponding estimates
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in Table 7, where competition is measured as the average of the filing year and the year prior.

Qualitatively, the results remain consistent: the innovation response to natural disaster

exposure is concentrated in the high-competition group, while the low-competition group

shows no significant effect. However, the estimated coefficients in the high-competition

groups (columns 1 and 3) are slightly smaller than in the baseline (Table 7, column 1),

and the Wald test p-values are larger—0.1363 for the 1-year window and 0.054∗ for the 3-

year window—compared to 0.0365∗∗ in the baseline. This difference is primarily due to less

precise estimates in the low-competition subsamples (columns 2 and 4), as reflected in their

larger standard errors. Overall, while the alternative competition windows yield attenuated

statistical significance, the direction and relative magnitude of the effects remain stable,

providing additional support for the robustness of our findings.

Table B.9: Competition Split Above/Below Median

Dependent variable:

P (Y 02lt)
1 Year - High 1 Year - Low 3 Year - High 3 Year - Low

Competition Competition Competition Competition

(1) (2) (3) (4)

Cumulative Count 0.090∗∗∗ 0.035 0.099∗∗∗ 0.003
(0.023) (0.031) (0.029) (0.029)

Country-Year F.E. Yes Yes Yes Yes
Region F.E. Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes

P Value 0.1363 0.054∗

Sample Means 1.8046 1.382 2.0166 1.3536
Observations 9,036 9,036 7,530 7,530
R2 0.626 0.513 0.706 0.590
Adj. R2 0.591 0.467 0.672 0.542

Note: This table reports the results for our test of the model’s comparative statics with regard to competition. Columns (1)-(2)
measures competition based on the prior year, while columns (3)-(4) based on the last 3 years piror to patent filing. Cumulative
count is the count of past natural disasters. The Wald-tests examine if the coefficient for cumulative disaster count significantly differs

between splits. We construct a Wald-test of the form W =
(β̂eq1−β̂eq2)2

Var(β̂eq1−β̂eq2)
, where: Var(β̂eq1 − β̂eq2) = Var(β̂eq1) + Var(β̂eq2) −

2 · Cov(β̂eq1, β̂eq2). Standard errors are clustered at the region level and reported in parentheses. Significance levels: ∗p < 0.1;
∗∗p < 0.05; ∗∗∗p < 0.01.
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B.11 Alternative Green Good Window

Table B.10 presents results from using alternative time windows to compute the green prod-

uct share in each industry. Specifically, we calculate the share based on either the filing

year alone (1-year window) or the filing year and the two preceding years (3-year window).

These results relate to Section 6.2.2 in the main text and serve as a robustness check for our

baseline findings in Table 7, where the green share is calculated using a 2-year window.

The results are remarkably stable across specifications. Across all windows, inventors in

greener industries—defined as those above the median green product share—respond more

strongly to natural disaster exposure than those in less green industries. The coefficients

remain positive and highly significant for both high- and low-greenness groups, with larger

point estimates consistently observed in the above-median sample. Compared to the baseline

2-year window (Table 7), the cumulative count coefficients for the above-median groups in

both the 1-year and 3-year windows are nearly identical (0.088∗∗∗ and 0.087∗∗∗, respectively).

Likewise, the Wald test p-values remain below conventional significance thresholds: 0.0398∗∗

for the 1-year window and 0.0397∗∗ for the 3-year window, compared to 0.0307∗∗ in the

baseline. This consistency confirms that our results are not sensitive to the specific choice

of window for measuring green market size.

Taken together, these findings reinforce our interpretation that market conditions—specifically

the size of the green goods market—shape inventors’ responsiveness to climate-related shocks.

The robustness of the result across time windows strengthens the credibility of this mecha-

nism.
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Table B.10: Green Product Split by Median

Dependent variable:

P (Y 02lt)
1 Year Window 1 Year Window 3 Year Window 3 Year Window

Greenness Cutoff: Above Median Below Median Above Median Below Median

(1) (2) (3) (4)

Cumulative Count 0.088∗∗∗ 0.066∗∗∗ 0.087∗∗∗ 0.062∗∗∗

(0.011) (0.009) (0.009) (0.009)

Country-Year F.E. Yes Yes Yes Yes
Region F.E. Yes Yes Yes Yes
CPC Controls Yes Yes Yes Yes

Wald-test p-value: 0.0398∗∗ 0.0397∗∗

Sample Mean 1.2949 1.287 1.3617 1.3617
Observations 15,060 15,060 13,554 13,554
R2 0.613 0.776 0.636 0.799
Adj. R2 0.591 0.763 0.614 0.786

Note: This table reports the results for our test of the model’s comparative statics with regard to the size of the green good market. In columns
(1) and (2), for each industry, we calculate the average green product share over the present year. In columns (3) and (4), for each industry,
we calculate the average green product share over the last 3 years. Cumulative Count is the count of past natural disasters. Results are for the
years 1995–2014 in columns (1) and (2) and for the years 1997–2014 in columns (3) and (4). We only have PRODCOM data starting in 1995,
so a 3-year window allows us to estimate results starting in 1997. We test the null hypothesis that the Disaster Count coefficient is larger for
our sample of above-median competition patents than for our sample of below-median competition patents. We construct a Wald-test of the

form W =
(β̂eq1−β̂eq2)2

Var(β̂eq1−β̂eq2)
, where: Var(β̂eq1 − β̂eq2) = Var(β̂eq1) + Var(β̂eq2) − 2 · Cov(β̂eq1, β̂eq2). We can reject the Null hypothesis H0 :

βh = βl against the alternative (H1 : βh > βl) with the reported p value. Standard errors are clustered on the region level and are reported
in parentheses. P-values are as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B.12 First Time & Repeat Inventors

Table B.11 shows our results when we split the sample of patents based on an inventor having

previously patented or not. Both reapeat and first-time inventors react to natural disaster

exposure, with the effects being significantly larger for repeat inventors. Overall, there are

more inventors that have previously patented than first time inventors in our sample. We

denote a patent as coming from a repeat inventor if at least one of the inventors on that

patent has previously patented.

Table B.11: Response by First Time & Repeat Inventors

Dependent variable:

P (Y 02lt)
First-Time Repeat Inventors

(1) (2)

Cumulative Count 0.050∗∗∗ 0.097∗∗∗

(0.016) (0.010)

Country-Year F.E. Yes Yes
Region F.E. Yes Yes
CPC Controls Yes Yes

P Value 0.0129∗∗

Sample Means 0.1682 2.0954
Observations 15,813 15,813
R2 0.345 0.703
Adj. R2 0.310 0.687

Note: This table reports our results when we split the sample of inventors into First-
Time and Repeat inventors. Cumulative Count is the count of past natural disasters. We
test the null hypothesis that the Disaster Count coefficient is different for our sample of
first-time inventors than for our sample of repeat inventors. We construct a Wald-test of

the form W =
(β̂eq1−β̂eq2)2

Var(β̂eq1−β̂eq2)
, where: Var(β̂eq1 − β̂eq2) = Var(β̂eq1) + Var(β̂eq2) − 2 ·

Cov(β̂eq1, β̂eq2). We can reject the Null hypothesis H0 : βh = βl against the alternative
(H1 : βh ̸= βl) with the reported p value. Standard errors are clustered on the region level
and are reported in parentheses. P-values are as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Our findings in Table B.11 indicate that the innovation response to natural disasters

operates along both the extensive and intensive margins. We observe significant increases

in green patenting among first-time inventors as well as among those with prior patenting

experience, suggesting that disasters not only induce additional activity from established

innovators but also bring new inventors into the green innovation space. This broad-based

response reinforces the main result that environmental shocks stimulate green technological

effort across the innovation spectrum.
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B.13 Past Patenting

In this appendix section, we examine whether the baseline effect of natural disasters on green

innovation varies with inventors’ patenting histories. To do so, we split our sample along two

dimensions. First, we classify patents based on the share of green patents previously filed by

their inventors or firms. However, many patent holders in our dataset have no prior patent

history, preventing us from directly calculating their past green patent shares. To address

this limitation, we introduce a second classification based on the total number of patents

previously filed by inventors. For inventors in the top quartile of past patent filings, we can

reliably calculate their share of past green patents. For inventors below the top quartile, we

instead check whether any inventor on a patent previously filed a clearly defined ”brown”

patent—one associated explicitly with environmentally harmful technologies. We adopt this

definition of “brown” patents from Dechezleprêtre et al. (2021).
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(b) Effects for Small Patent Filers

Figure B.7: Green innovation response to natural disaster by past patenting
Note: This figure shows the effects of natural disaster exposure on green patenting, split according to inventors’ past patenting patterns. Panel
(a) depicts patenting responses by inventors in the top quartile of past patent filings. Within this group, we further distinguish between those
whose past patent portfolios contain an above-median share of brown patents (”Large Past Brown”) and those with a below-median share of
brown patents (”Large Past Less Brown”). Panel (b) depicts responses by inventors below the top quartile (”Small Patent Filers”),
differentiating between those who have previously filed at least one brown patent and those who have never filed a brown patent. Brown patents
are defined following the classification by Dechezleprêtre et al. (2021). Standard errors are clustered at the region level, and confidence intervals
represent the 95% level.

The effects observed across these classifications indicate fairly similar responses for both

”past brown” and ”past less brown” inventor groups. However, among large patent filers

(top quartile), inventors classified as ”past less brown” exhibit somewhat less persistence

in their response compared to their counterparts with extensive past brown patenting. In

general, large past filers demonstrate stronger innovation responses following natural disaster

exposure relative to smaller past filers.
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C Online Appendix - Data

C.1 Countries in the CompNet Dataset

Table C.1 shows the time span for which different countries are available in the 9th vintage

of the CompNet database (CompNet 2022). The information is directly taken from the

CompNet website https://www.comp-net.org/.

Country All firms 20e Time Span
Belgium x x 2000− 2020
Croatia x x 2002− 2021

Czech Republic x x 2005− 2020
Denmark x x 2001− 2020
Finland x x 1999− 2020
France x x 2003− 2020

Germany x 2001− 2018
Hungary x x 2003− 2020
Italy x x 2006− 2020

Latvia* x x 2007− 2019
Lithuania* x x 2000− 2020

Malta x x 2010-2020
Netherlands x x 2007− 2019

Poland x 2002− 2020
Portugal x x 2004− 2020
Romania x 2005− 2020
Slovakia x 2000− 2020
Slovenia x x 2002− 2021
Spain x x 2008− 2020
Sweden x x 2003− 2020

Switzerland x x 2009− 2020
United Kingdom x 1997− 2019

Table C.1: Comp Net TimpeSpans

C.2 Community Innovation Survey

We use data from the German part of the Community Innovation Survey, the

Mannheimer Innovationspanel, administered by the ZEW – Leibniz Centre for Eu-

ropean Economic Research (ZEW - Leibniz Centre for European Economic Re-

search n.d.). Detailed information is available at: https://www.zew.de/forschung/
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mannheimer-innovationspanel-innovationsaktivitaeten-der-deutschen-wirtschaft.

The CIS is a biennial survey of firms in the manufacturing and service sectors, designed

to monitor innovation activity across EU member states. For Germany, the survey is rep-

resentative at the two-digit industry level and includes both SMEs and large firms. It does

not track firms longitudinally, making it a repeated cross-section. We focus on the three

survey waves that include questions on environmentally beneficial innovations: 2009, 2015,

and 2021.

The dataset provides detailed information on innovation outputs, types of environmental

benefits targeted, and motivations for adopting green innovation. For our analysis, we retain

firms that report introducing an innovation with environmental benefits in the past two

years.

To examine the motivations behind green innovation, we use responses to the following

survey question:

“During [the last two years ], how important were the following factors in driving

your enterprise’s decisions to introduce innovations with environmental benefits?”

Responses are recorded on a four-point scale: “high,” “medium,” “low,” or “not impor-

tant.” We construct binary indicators equal to one if the firm rated a given factor as “low,”

“medium,” or “high,” and zero if it was “not important.” This inclusive definition captures

all cases where the firm viewed the factor as at least somewhat relevant to its innovation

decision.

Table C.2 lists the variables and their corresponding survey items:

Table C.2: Variable Definition - Factors driving green innovation

Variable Corresponding survey questions

Expected demand Current or expected market demand for environmental innovation
Expected regulatory changes Environmental regulations or taxes expected in the future
Existing regulations Existing environmental regulations OR

Existing environmental taxes, charges or fees
Reputation Improving your enterprise’s reputation
Voluntary standards Voluntary actions or standards for environmental good practice within your sector
Government funding Government grants, subsidies etc. for environmental innovations

C.3 Table of Green Goods for PRODCOM

Table C.3 gives the list of green goods we identify in PRODCOM (EUROSTAT 2025).

The list is almost entirely based on Bontadini and Vona (2023), with a few minor addi-
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tions. PRODCOM can be accesed on the EUROSTAT website: https://ec.europa.eu/

eurostat/web/prodcom/database.

Table C.3: Green Good Table

PRODCOM
Number

Label

1 24107500 Railway material (of steel)
2 25112200 Iron or steel towers and lattice masts
3 25301150 Vapour generating boilers (including hybrid boilers) (excluding central heating

hot water boilers capable of producing low pressure steam, watertube boilers)
4 25301230 Auxiliary plant for use with boilers of HS 8402 or 8403
5 25301330 Parts of vapour generating boilers and super-heater water boilers
6 25991131 Sanitary ware and parts of sanitary ware of iron or steel
7 25992910 Railway or tramway track fixtures and fittings and parts thereof
8 26112220 Semiconductor light emitting diodes (LEDs)
9 26112240 Photosensitive semiconductor devices; solar cells, photodiodes, photo-

transistors, etc.
10 26121330 Multiple-walled insulating units of glass
11 26511200 Theodolites and tachymetres (tachometers); other surveying, hydrographic,

oceanographic, hydrological, meteorological or geophysical instruments and
appliances

12 26511215 Electronic rangefinders, theodolites, tacheometers and photogrammetrical in-
struments and appliances

13 26511235 Electronic instruments and apparatus for meteorological, hydrological and geo-
physical purposes (excluding compasses)

14 26511239 Other electronic instruments, n.e.c.
15 26511270 Surveying (including photogrammetrical surveying), hydrographic, oceano-

graphic, hydrological, meteorological or geophysical instruments and appli-
ances (excluding levels and compasses), non-electronic; rangefinders, non-
electronic

16 26511280 Non electronic surveying (including photogrammatrical surveying), hydro-
graphic, oceanographic, hydrological, meteorological or geophysical instru-
ments and appliances (excluding rangefinders, levels and compasses),

17 26514100 Instruments and apparatus for measuring or detecting ionising radiations
18 26514200 Cathode-ray oscilloscopes and cathode-ray oscillographs
19 26514300 Instruments for measuring electrical quantities without a recording device
20 26514310 Multimeters without recording device
21 26514330 Electronic instruments and apparatus for measuring or checking voltage, cur-

rent, resistance or electrical power, without recording device (excluding mul-
timeters, and oscilloscopes and oscillographs)

22 26514355 Voltmeters without recording device
23 26514359 Non-electronic instruments and apparatus, for measuring or checking voltage,

current, resistance or power, without a recording device (excluding multime-
ters, voltmeters)

24 26514530 Instruments and apparatus, with a recording device, for measuring or checking
electric gains (excluding gas, liquid or electricity supply or production meters)

25 26514555 Electronic instruments and apparatus, without a recording device, for mea-
suring or checking electric gains (excluding gas, liquid or electricity supply or
production meters)

26 26514559 Non-electronic instruments and apparatus, without a recording device, for
measuring or checking electrical gains (excluding multimeters, voltmeters)

27 26515110 Thermometers, liquid-filled, for direct reading, not combined with other in-
struments (excluding clinical or veterinary thermometers)

28 26515135 Electronic thermometers and pyrometers, not combined with other instru-
ments (excluding liquid filled)

29 26515139 Thermometers, not combined with other instruments and not liquid filled,
n.e.c.

30 26515235 Electronic flow meters (excluding supply meters, hydrometric paddlewheels)
31 26515239 Electronic instruments and apparatus for measuring or checking the level of

liquids
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PRODCOM
Number

Label

32 26515255 Non-electronic flow meters (excluding supply meters, hydrometric paddle-
wheels)

33 26515313 Electronic gas or smoke analysers
34 26515319 Non-electronic gas or smoke analysers
35 26515330 Spectrometers, spectrophotometers... using optical radiations
36 26515350 Instruments and apparatus using optical radiations, n.e.c.
37 26515381 Electronic ph and rh meters, other apparatus for measuring conductivity and

electrochemical quantities (including use laboratory/field environment, use
process monitoring/control)

38 26516350 Liquid supply or production meters (including calibrated) (excluding pumps)
39 26516370 Electricity supply or production meters (including calibrated) (excluding volt-

meters, ammeters, wattmeters and the like)
40 26516500 Hydraulic or pneumatic automatic regulating or controlling instruments and

apparatus
41 26516620 Test benches
42 26516650 Electronic instruments, appliances and machines for measuring or checking

geometrical quantities (including comparators, coordinate measuring machines
(CMMs))

43 26516683 Other instruments, appliances, for measuring or checking geometrical quanti-
ties

44 26517015 Electronic thermostats
45 26517019 Non-electronic thermostats
46 26518200 Parts and accessories for the goods of 26.51.12, 26.51.32, 26.51.33, 26.51.4 and

26.51.5; microtomes; parts n.e.c.
47 26518550 Parts and accessories for automatic regulating or controlling instruments and

apparatus
48 26702450 Other instruments and apparatus using optical radiation (UV, visible, IR)
49 26702490 Exposure meters, stroboscopes, optical instruments, appliances and machines

for inspecting semiconductor wafers or devices or for inspecting photomasks or
reticles used in manufacturing semiconductor devices, profile projectors and
other optical instruments, appliances and machines for measuring or checking

50 27108230 Steel; iron or cast iron rails excl. current-conducting; with parts of non-ferrous
metal - screws; bolts; nuts; rivets and spikes used for fixing track construction
materials; assembled track

51 27108250 Iron or steel sleepers (crossties); rolled fish-plates and sole plates and check-
rails (excl. screws; bolts; nuts; rivets and spikes used for fixing track construc-
tion materials)

52 27109230 Railway material (of steel)
53 27123130 Numerical control panels with built-in automatic data-processing machine for

a voltage <= 1 kV
54 27123150 Programmable memory controllers for a voltage <= 1 kV
55 27123170 Other bases for electric control, distribution of electricity, voltage > 1000 V
56 27356200 Railway or tramway materials of steel or iron; not hot rolled
57 27401250 Tungsten halogen filament lamps for motorcycles and motor vehicles (exclud-

ing ultraviolet and infrared lamps)
58 27401293 Tungsten halogen filament lamps, for a voltage > 100 V (excluding ultraviolet

and infra-red lamps, for motorcycles and motor vehicles)
59 27401295 Tungsten halogen filament lamps for a voltage <= 100 V (excluding ultraviolet

and infrared lamps, for motorcycles and motor vehicles)
60 27401510 Fluorescent hot cathode discharge lamps, with double ended cap (excluding

ultraviolet lamps)
61 27401530 Fluorescent hot cathode discharge lamps (excluding ultraviolet lamps, with

double ended cap)
62 27402200 Electric table, desk, bedside, or floor-standing lamps
63 27403090 Electric lamps and lighting fittings, of plastic and other materials, of a kind

used for filament lamps and tubular lamps, including lighting sets for Christ-
mas trees

64 27403200 Lighting sets for Christmas trees
65 27403930 Electric lamps and lighting fittings, of plastic and other materials, of a kind

used for filament lamps and tubular fluorescent lamps
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PRODCOM
Number

Label

66 27512190 Other electromechanical appliances
67 27512690 Other electric space heaters
68 27521400 Non-electric instantaneous or storage water heaters
69 28112130 Steam turbines and other vapour turbines (excluding for electricity generation)
70 28112150 Steam turbines for electricity generation
71 28112160 Steam turbines and other vapour turbines
72 28112200 Iron or steel towers and lattice masts
73 28112400 Generating sets, wind-powered
74 28113100 Parts for steam turbines and other vapour turbines
75 28113200 Parts for hydraulic turbines and water wheels (including regulators)
76 28251130 Heat exchange units
77 28251380 Heat pumps other than air conditioning machines of HS 8415
78 28251410 Machinery and apparatus for filtering or purifying air (excluding intake filters

for internal combustion engines)
79 28251420 Machinery and apparatus for filtering or purifying gases by a liquid process

(excluding intake air filters for internal combustion engines, machinery and
apparatus for filtering or purifying air)

80 28251430 Machinery and apparatus for filtering and purifying gases (other than air and
excl. those which operate using a catalytic process, and isotope separators)

81 28251440 Machinery and apparatus for filtering or purifying gases by catalytic process
(excluding intake air filters for internal combustion engines, machinery and
apparatus for filtering or purifying air)

82 28251450 Machinery and apparatus for filtering and purifying gases with stainless steel
housing, and with inlet and outlet tube bores with inside diameters not ex-
ceeding 1,3 cm (excluding intake filters for internal combustion engines)

83 28251470 Machinery and apparatus for filtering or purifying gases including for filtering
dust from gases (excluding air filters for internal combustion engines, using
liquid or catalytic process)

84 28291100 Producer gas or water gas generators; acetylene gas generators and the like;
distilling or rectifying plant

85 28291230 Machinery and apparatus for filtering or purifying water
86 28291270 Machinery and apparatus for solid-liquid separation/ purification excluding

for water and beverages, centrifuges and centrifugal dryers, oil/petrol filters
for internal combustion engines

87 28298250 Parts for filtering and purifying machinery and apparatus, for liquids or gases
(excluding for centrifuges and centrifugal dryers)

88 28301150 Vapour generating boilers (including hybrid boilers) (excluding central heating
hot water boilers capable of producing low pressure steam, watertube boilers)

89 28301230 Auxiliary plan for use with boilers of 84.02 or 84.03, used
90 28301330 Parts of vapour generating boilers and super-heater water boilers
91 28992020 Machines and apparatus used solely or principally for the manufacture of semi-

conductor boules or wafers
92 28992060 Machines and apparatus used solely or principally for the manufacture of flat

panel displays
93 28993945 Machines and apparatus used solely or principally for a) the manufacture or

repair of masks and reticles, b) assembling semiconductor devices or electronic
integrated circuits, and c) lifting, handling, loading or unloading of boules,
wafers, semiconductor devices, electronic integrated circuits and flat panel
displays

94 29102400 Other motor vehicles for the transport of persons (excluding vehicles for trans-
porting >=10 persons, snowmobiles, golf cars and similar vehicles)

95 29102410 Motor vehicles, with both spark-ignition or compression-ignition internal com-
bustion reciprocating piston engine and electric motor as motors for propul-
sion, other than those capable of being charged by plugging to external source
of electric power

96 29102430 Motor vehicles, with both spark-ignition or compression-ignition internal com-
bustion reciprocating piston engine and electric motor as motors for propul-
sion, capable of being charged by plugging to external source of electric power

97 29102450 Motor vehicles, with only electric motor for propulsion

81



PRODCOM
Number

Label

98 29102490 Other motor vehicles for the transport of persons (excluding vehicles with
only electric motor for propulsion , vehicles for transporting > 10 persons,
snowmobiles, golf cars and similar vehicles)

99 29105200 Motor vehicles specially designed for travelling on snow, golf cars and similar
vehicles

100 29112130 Steam turbines and other vapour turbines (excl. for electricity generation)
101 29112150 Steam turbines for generation of electricity
102 29112200 Hydraulic turbines and water wheels
103 29113100 Parts for steam turbines and other vapour turbines
104 29113200 Parts of hydraulic turbines; water wheels incl. regulators
105 29231375 Absorption heat pumps
106 29231380 Heat pumps other than air conditioning machines of HS 8415
107 29231410 Machinery and apparatus for filtering or purifying air
108 29231420 Machinery and apparatus for filtering or purifying gases by a liquid process

excl. intake air filters for internal combustion engines; machinery and appa-
ratus for filtering or purifying air

109 29231430 Machinery filtering or purifying gases; by electrostatic process
110 29231440 Machinery and apparatus for filtering/purifying gases by catalytic process ex-

cluding intake air filters for internal combustion engines, machinery and ap-
paratus for filtering/purifying air

111 29231450 Machinery filtering or purifying gases; by thermic process
112 29231460 Machinery filtering or purifying gases; other
113 29231470 Machinery filtering or purifying gases
114 29241130 Producer gas or water gas generators, acetylene and similar water process gas

generators
115 29241150 Distilling or rectifying plant
116 29241230 Machinery and apparatus for filtering/ purifying water
117 29241270 Machinery and apparatus for filtering/ purifying liquids; for chemical industry
118 29245250 Parts for filtering and purifying machinery and apparatus, for liquids or gases

(excluding for centrifuges and centrifugal dryers)
119 29562582 Machines and apparatus used solely or principally for the manufacture of semi-

conductor boules or wafers
120 29562586 Machines and apparatus used solely or principally for the manufacture of flat

panel displays
121 29562588 Machines and apparatus used solely or principally for a) the manufacture or

repair of masks and reticles, b) assembling semiconductor devices or electronic
integrated circuits, and c) lifting, handling, loading or unloading of boules,
wafers, semiconductors.

122 29721400 Instantaneuous water heater apparatus non-electric
123 30201100 Rail locomotives powered from an external source of electricity
124 30201200 Diesel-electric locomotives
125 30201300 Other rail locomotives; locomotive tenders
126 30202000 Self-propelled railway or tramway coaches, vans and trucks, except mainte-

nance or service vehicles
127 30203100 Railway or tramway maintenance or service vehicles (including workshops,

cranes, ballast tampers, track-liners, testing coaches and track inspection ve-
hicles)

128 30203200 Rail/tramway passenger coaches; luggage vans, post office coaches and
other special purpose rail/tramway coaches excluding rail/tramway mainte-
nance/service vehicles, self-propelled

129 30203300 Railway or tramway goods vans and wagons, not self-propelled
130 30204030 Parts of locomotives or rolling stock
131 30921000 Bicycles and other cycles (incl. delivery tricycles), non-motorized
132 30921030 Non-motorized bicycles and other cycles, without ball bearings (including de-

livery tricycles)
133 30921050 Non-motorized bicycles and other cycles with ball bearings (including delivery

tricycles)
134 30923010 Frames and forks, for bicycles
135 30923030 Parts of frames, front forks, brakes, coaster braking hubs, hub brakes, pedals

crank-gear and free-wheel sprocket-wheels for bicycles, other non-motorized
cycles and sidecars
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136 30923060 Parts and accessories of bicycles and other cycles, not motorised (excl. frames
and front forks).

137 30923090 Other parts and accessories of bicycles and other cycles, not motorised
138 31203150 Programmable memory controllers; voltage <= 1000 V
139 31203170 Meter mounting boards and installation panels; voltage <= 1000 V
140 31501230 Tungsten halogen filament lamps (excl. ultra-violet; infra-red): for projectors
141 31501250 Tungsten halogen filament lamps for motorcycles and motor vehicles (excl.

ultraviolet and infrared lamps)
142 31501293 Tungsten halogen filament lamps; for a voltage > 100 V (excl. ultraviolet and

infra-red lamps; for motorcycles and motor vehicles)
143 31501295 Other tungsten halogen lamps; <= 100 V
144 31501510 Fluorescent hot cathode discharge lamps, with double ended cap (excluding

ultraviolet lamps)
145 31501530 Fluorescent hot cathode discharge lamps (excl. ultraviolet lamps, with double

ended cap)
146 31502200 Electric table; desk; bedside or floor-standing lamps
147 31503430 Electric lamps and lighting fittings, of plastic and other materials, of a kind

used for filament lamps and tubular fluorescent lamps
148 32105235 Semiconductor light emitting diodes (LEDs)
149 32105237 Photosensitive semiconductor devices; solar cells, photodiodes, phototransis-

tors, etc.
150 33201215 Electronic surveying & hydrographic instr.& appliances (incl. rangefinders;

levels; theodolites & tacheometers; photogrammetrical instr.& appliances;
excl. compasses)

151 33201219 Non-electronic surveying, hydrographic instr. and appliances (including
rangefinders, levels, theodolites and tacheometers, photogrammetrical instr.
and appliances; excluding compasses)

152 33201235 Electronic instruments and apparatus for meteorological, hydrological and geo-
physical purposes (excl. compasses)

153 33201253 Instruments and appliances used in geodesy; topography; surveying...
154 33201255 Non-electronic meteorological; hydrological and geophysical instruments and

apparatus (excl. compasses)
155 33201257 Non-electronic surveying, hydro-, oceanographic instr./appliances (excluding

rangefinders, levels, theodolites, tacheometers, photogrammetrical instr./app.,
compasses)

156 33203900 Installation of other special-purpose machinery n.e.c.
157 33204100 Installation of medical and surgical equipment
158 33204200 Cathode-ray oscilloscopes and cathode-ray oscillographs
159 33204330 Instruments and apparatus, for measuring or checking voltage: electronic
160 33204355 Voltmeters
161 33204359 Instruments and apparatus; for measuring or checking voltage: others
162 33205119 Other thermometers, not with other instruments, liquid, for direct reading
163 33205135 Thermometers; not combined with other instruments and not liquid filled;

electronic
164 33205139 Thermometers, not combined with other instruments and not liquid filled,

n.e.c.
165 33205313 Electronic gas or smoke analysers
166 33205319 Non-electronic gas or smoke analysers
167 33205330 Spectrometers, spectrophotometers using optical radiations
168 33205340 Exposure meters
169 33205350 Instruments and apparatus using optical radiations; n.e.c.
170 33205381 Electronic ph & rh meters; other apparatus for measuring conductivity &

electrochemical quantities (incl. use laboratory/field environment; use process
monitoring/control)

171 33205385 Viscometers, porosimeters and expansion meters
172 33205389 Other instruments and apparatus for physical and chemical analysis
173 33206350 Liquid supply or production meters (incl. calibrated) (excl. pumps)
174 33206370 Electricity supply or production meters (incl. calibrated) (excl. voltmeters;

ammeters; wattmeters and the like)
175 33206550 Electronic instruments...measuring; checking geometrical quantities: 3 D
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176 33206583 Other instruments, appliances, for measuring or checking geometrical quanti-
ties

177 33206589 Other instruments; appliances and machines for measuring or checking
178 33207015 Electronic thermostats
179 33207019 Non-electronic thermostats
180 33207050 Hydraulic or pneumatic automatic regulating or controlling instruments and

apparatus
181 33208120 Parts and accessories for surveying, geodesy, topography, levelling, photogram-

metrical, hydro-, oceanographic, hydro-, meteorological, geophysical instru-
ments excl. compasses

182 33208143 Parts and accessories for hydrometers and similar floating instruments, ther-
mometers, pyrometers, barometers, hygrometers and psychrometers, recording
or not, and any combination of these instruments

183 33208145 Parts and accessories of instruments and apparatus for measuring or checking
the variables of liquids or gases (excl. for supply or production meters)

184 33208147 Microtomes, and parts and accessories
185 33209100 Installation of instruments and apparatus for measuring; checking; testing;

navigating and other purposes
186 34102430 Vehicles with an electric motor, for the transport of persons (excl. vehicles for

transporting >= 10 persons, snowmobiles, golf cars and similar vehicles)
187 34102490 Other motor vehicles for carrying people (excluding vehicles for transport-

ing >= 10 persons, snowmobiles, golf cars and similar vehicles, electrically
powered)

188 34105300 Vehicles for travelling on snow; golf cars; etc; with engines
189 35201100 Rail locomotives powered from an external source of electricity
190 35201200 Diesel-electric locomotives; =< 1000 kW power continuous rating
191 35201330 Rail locomotives powered by electric accumulators
192 35201390 Rail locomotives and locomotive tenders (excl. locomotives powered from an

external source of electricity, locomotives powered by electric accumulators,
diesel-electric locomotives)

193 35202030 Self-propelled railway coaches... powered by external electricity
194 35202090 Self-propelled railway or tramway coaches; vans and trucks; (diesel)
195 35203100 Railway or tramway maintenance or service vehicles (including workshops,

cranes, ballast tampers, track-liners, testing coaches and track inspection ve-
hicles)

196 35203200 Railway passenger coaches for speed =< 250 km/h; local
197 35203330 Tank wagons and the like; not self-propelled
198 35203350 Rail-or tramway goods vans & wagons; not self-propelled (incl. self-

discharging and open vans & wagons) with non-removable sides; height >
60 cm; & other wagons

199 35204030 Parts of locomotives or rolling stock
200 35204055 Railway or tramway track fixtures and fittings, and mechanical or electrome-

chanical signalling, safety or traffic control equipment
201 35204058 Parts of railway or tramway track fixtures and fittings; and for electromechan-

ical signalling; safety or traffic control equipment
202 35204059 Mechanical (and electromechanical) signalling; safety or traffic control

equipement (excluding equipment and material for track)
203 35421030 Bicycles and other cycles; not motorized; without ball bearings
204 35421050 Mountain bike
205 35422013 Frames for bicycles, other non-motorized cycles and sidecars (excluding parts

of frames)
206 35422015 Front forks for bicycles; other non-motorized cycles and sidecars (excl. parts

of front forks)
207 35422019 parts of cycles
208 35422023 Wheel rims for bicycles other non-motorized cycles and sidecars
209 35422025 Wheel spokes for bicycles; other non-motorized cycles and sidecars
210 35422027 Hubs without free-wheel or braking device for bicycles, other non-motorized

cycles and sidecars
211 35422033 Coaster braking hubs and hub brakes
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212 35422039 Brakes for bicycles and other non-motorized cycles (excl. coaster braking hubs
and hub brakes)

213 35422040 Saddles for bicycles and other non-motorized cycles
214 35422053 Pedals
215 35422055 Crank-gear
216 35422063 Handlebars
217 35422065 Luggage-carriers for bicycles and other non-motorized cycles
218 35422067 Derailleur gears for bicycles and other non-motorized cycles
219 35431200 Parts and accessories of invalid carriages
220 40301003 Heat - heating plants (heat produced by heating plants using fossil fuels;

biomass or waste; sold to third parties)
221 40301005 Heat - geothermal (heat produced in geothermal fields; sold to third parties)
222 23121330 Multiple-walled insulating units of glass
226 28112160 Steam turbines and other vapour turbines (excl. for electricity generation)
227 28112200 Hydraulic turbines and water wheels
229 28113200 Parts of hydraulic turbines; water wheels incl. regulators
231 28251410 Machinery and apparatus for filtering or purifying air
232 28251441 Machinery and apparatus for filtering/purifying gases by catalytic process ex-

cluding intake air filters for internal combustion engines, machinery and ap-
paratus for filtering/purifying air

233 28291100 Distilling or rectifying plant
234 28298251 Parts for filtering and purifying machinery and apparatus, for liquids or gases

(excluding for centrifuges and centrifugal dryers)
237 27123150 Programmable memory controllers; voltage <= 1000 V
240 26516370 Voltmeters
244 26702490 Exposure meters
248 26515175 Parts and accessories for hydrometers and similar floating instruments, ther-

mometers, pyrometers, barometers, hygrometers and psychrometers, recording
or not, and any combination of these instruments

250 30201200 Diesel-electric locomotives; =< 1000 kW power continuous rating
251 30203100 Self-propelled railway or tramway coaches; vans and trucks; (diesel)
252 30921000 Bicycles and other cycles (including delivery tricycles), non-motorised
253 30923060 Bicycles and other cycles, not motorised, with ball bearings.
254 30923010 Frames for bicycles, other non-motorized cycles and sidecars (excluding parts

of frames)
255 22111200 Wheel rims for bicycles other non-motorized cycles and sidecars
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