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hospital, birth outcomes (birth weight, size and gestational weeks), and students outcomes 

(GPA, standardized tests, and attendance rates). We find harmful effects of exposure to 

wildfires smoke on health, specifically among sensitive groups such as infants, and that 
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1 Introduction

Wildfires have become more frequent and destructive due to increasing severity of droughts,

greater frequency of heatwaves, and increased availability of vegetational fuels (Malevsky-Malevich

et al., 2008; Gillett et al., 2004; Ellis et al., 2022). Climate change is projected to further ex-

acerbate these drivers, increasing both the frequency and intensity of wildfires in historically

fire-prone regions (IPCC, 2022; Abatzoglou and Williams, 2016; Bowman et al., 2017; Flannigan

et al., 2009, 2013), and shifting the burden to areas previously unexposed to high levels of fire

activity and its associated air pollution (Burke et al., 2021; Moritz et al., 2012). For example,

in the United States, wildfires now account for as much as 25 percent of annual exposure to

fine particulate matter (PM2.5) in some regions, particularly in the west and mountainous areas

(Burke et al., 2021).

These developments are particularly relevant in countries such as Chile and many regions

around the world where climate-induced extreme heat and prolonged droughts have increased

fuel aridity, thus amplifying wildfire risk.1 These events lead to a cascade of adverse outcomes:

immediate losses to human life, infrastructure, and agriculture; harm to economic activity; and

acute and chronic health effects due to exposure to wildfire-related air pollution (Flannigan

et al., 2009; Bowman et al., 2017; Cancelo-González and Viqueira, 2018).

Understanding the broad and evolving effects of air pollution from wildfires is essential for

evaluating the long-term costs of climate change and informing adaptation and mitigation pol-

icy. Exposure to wildfire air pollution can affect multiple domains of well-being in ways that

unfold over time. Immediate health effects, such as respiratory distress and hospitalizations,

represent only one facet of harm. These may later manifest in long-term deficits in health, cog-

nition, and educational attainment, particularly when exposure occurs in utero or during early

life (WHO, 2024; Almond et al., 2009, 2018). Quantifying both the short- and long-term effects of

exposure to wildfire air pollution is thus central to assessing its full human cost and to designing

effective interventions.

1The Sixth Assessment Report of the IPCC specifically highlights that several regions in South America—such as
Southwest South America (Chile), Patagonia, and Central America—will experience growing wildfire risk due to
climate change (IPCC, 2022).
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In this paper, we study both the short- and longer-term effects of wildfire air pollution on

health and human capital, using rich administrative microdata from Chile—a middle-income

country that has experienced an intensifying wildfire regime. We compile detailed data on 1,121

large wildfires (each burning over 200 hectares) occurring between 2002 and 2021, and match

these with administrative records of health at birth, inpatient hospital visits, and educational

outcomes. We employ detailed data on health and educational outcomes that is both contem-

poraneous to the occurrence of the wildfires—to capture short and mid-term effects—as well

as data throughout individuals’ life cycle (i.e. non-contemporaneous)—to capture longer term

effects.

Our identification strategy tackles two core challenges in the literature: measuring expo-

sure to wildfire air pollution accurately and establishing causal effects in a setting where expo-

sure is non-random. First, to measure exposure, we use the Hybrid Single-Particle Lagrangian

Integrated Trajectory (HYSPLIT) model (Stein et al., 2015), which simulates the dispersion of

wildfire smoke using meteorological and wind data. This approach moves beyond common

proximity-based metrics by providing a more accurate spatial and temporal mapping of air

pollution plumes from wildfires and offers a level of granularity and variability not feasible in

alternative modelling scenarios. Second, for identification, we rely on quasi-random variation

in exposure driven by exogenous atmospheric conditions. Building on recent work using wind

direction as a source of variation in pollution exposure (Rangel and Vogl, 2019; He et al., 2020;

Rocha and Sant’Anna, 2022; Morello, 2023), we implement a design comparing individuals in

geographically proximate areas who nevertheless differ in exposure to wildfire smoke due to

differences in space relative to the point of initiation of wildfire, as well as meteorological con-

ditions which determine exposure to smoke. Combining HSYPLIT’s dispersion model with rich

time- and location-fixed effects allows for a design in which causal effects are inferred from very

local variation to contaminants.

A vast extant literature has established that short-term exposure to wildfire smoke increases

hospital admissions and mortality, especially among vulnerable populations. In the U.S., recent

studies show that wildfire-specific PM2.5 increases emergency department visits for asthma and

respiratory conditions (Wen et al., 2023; Heft-Neal et al., 2023), hospitalizations for respiratory
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and cardiovascular diseases (Moeltner et al., 2013), and mortality among elderly populations

(Miller et al., 2024). Qiu et al. (2024) estimate that wildfire air pollution led to 15,000 excess

deaths per year in the U.S. between 2006 and 2019. Outside the U.S., evidence from Indone-

sia’s 1997 fires shows adverse effects on childbearing (Jayachandran, 2009), child growth and

lung function (Rosales-Rueda and Triyana, 2019), and adult height following prenatal exposure

(Tan-Soo and Pattanayak, 2019). Similarly, Frankenberg et al. (2005) document health impacts

on older adults and prime-age women, while Mead et al. (2018) show widespread exposure in

neighboring Malaysia. Health effects have recently been shown to not be limited to physical

health, but also mental health (Currie and Saberian, 2025). Moreover, Borgschulte et al. (2024)

finds important effects on the earnings and of workers at distant locations from the fire origin.

In terms of long-term effects, recent work shows that early-life exposure to wildfire pollution

affects years of schooling, adult mortality, and earnings (Arenberg and Neller, 2023; Lo Bue,

2019).

However, mapping out how exposure to wildfires affects human well-being across the short,

medium and longer term is challenging, and data limitations often constrain the ability to doc-

ument each of these margins within the same empirical setting. Whereas most studies focus on

short term effects of exposure to wildfire air pollution, long lasting effects of air pollution expo-

sure are usually considerably much larger (Isen et al., 2017). This paper contributes to ‘bridging’

the literature of short and long-term effects of exposure to wildfire air pollution by examining

these effects within the same empirical framework (Currie et al., 2014). Our study addresses

this gap and aims to shed some light on how one could translate estimates for short-term ef-

fects of exposure to wildfire air pollution—which benefit from data that is relatively easier to

obtain—into analysis of mid- and long-term effects, arguably a better indicator of overall ef-

fects on human well-being.

Aquí (Athey et al., 2025).

We make three key contributions to the literature. First, we adopt a more precise, model-

based approach to identifying exposure to wildfire smoke by applying HYSPLIT atmospheric

dispersion modeling to a novel setting. We argue that this is important in this context, where

such atmospheric models point to clear differences in exposure compared with often applied
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distance-based exposure methods. Second, we provide new evidence linking short-term respi-

ratory health impacts with long-term educational and health outcomes using a single (adminis-

trative) sample of individuals, bridging an important gap in the literature. Third, we contribute

evidence from Latin America—a region where high-quality administrative data is seldom com-

bined with environmental exposure modeling—thereby broadening the geographical scope of

the literature on the long-run effects of early-life conditions (e.g. Aguilar and Vicarelli, 2022;

Sanders, 2012).

In doing so, our results are relevant for both the environmental economics literature on pol-

lution and well-being, and the broader human capital literature on early-life shocks and how

these are traced-out and reinforce over the life course. Our results point to critical periods of

sensitivity early in life, and by empirically mapping short-term impacts onto long-term out-

comes, our findings offer a practical contribution to policy evaluation: they can provide a guide

to infer long-term consequences of exposure in settings where only short-run data is available,

thereby aiding the assessment of long-horizon interventions.

The remainder of this paper is structured as follows. Section 2 lays out a simple theoretical

model to illustrate our setting and the relationships we seek to uncover. Section 3 describes key

background on the Chilean setting and the outcomes which we study. Section 4 describes the

data and construction of the measure of exposure to wildfire air pollution. Section 5 outlines the

empirical strategy. Section 6 presents the main results, separated into both short-term effects

of wildfire exposure and long term human capital outcomes. Finally, section 7 concludes.

2 A Simple Model of Wildfires Exposure and its Effects on Human Capital Out-

comes

We sketch a simple conceptual model to formalize how short-term impacts of wildfire smoke

exposure while in the womb and in early life can accumulate into longer-term effects on human

capital. This model borrows heavily from Currie et al. (2014), the human capital framework of

Grossman (1972) and the early-life origins literature (Almond and Currie, 2011; Almond et al.,

2018). The goal is to provide a framework for bridging short-term effects of wildfire air-pollution

exposure in early life (e.g. while in utero or during the first year) with long-term effects later in
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childhood (e.g. during the school years). By bridging, we mean that one can isolate short-term

exposure at critical periods in life, and additionally map these into longer-term outcomes –

which are typically hard to estimate due to limited long-run data.

Suppose that human capital H (encompassing stocks of both health and education) accu-

mulates over time, and that exposure to air pollution P can affect H at any point in life. Early

childhood is a critical period for the accumulation of H (Almond and Currie, 2011; Almond

et al., 2018). We divide childhood into three life stages: perinatal (from conception through age

1), toddler years (ages 1 through 3), and preschool- and school-age (ages 4 through 18). We de-

note by HN , HT , and HS the human capital stock attained at the end of the perinatal N , toddler

years T , and preschool- and school-age periods S, respectively. Similarly, let PN , PT , and PS

represent air pollution exposure during each of these periods. For simplicity, we assume the

following production functions for human capital in each stage:

HN = fN (PN , Z ),

HT = fT (HN , PT ),

HS = fS(HN , HT , PS),

where Z captures time-invariant family characteristics (endowments) that affect early human

capital. In this setup, pollution exposure in any given period can directly affect human capital in

that period and may also have indirect effects on later periods by influencing the accumulated

stocks HN and HT .

These relationships imply that an early-life pollution shock – say, during the perinatal period

N – not only affects human capital in period N itself, but can carry over into the toddler and

school-age periods through the dependence of HT and HS on earlier stocks. We can see this by

differentiating the school-age human capital equation with respect to PN :

d HS = ∂HS

∂HN

∂HN

∂PN
dPN + ∂HS

∂HT

∂HT

∂HN

∂HN

∂PN
dPN , (1)
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which simplifies to
d HS

dPN
= ∂HS

∂HN

∂HN

∂PN
+ ∂HS

∂HT

∂HT

∂HN

∂HN

∂PN
.

Expression (1) represents the total long-term effect of a perinatal pollution exposure (PN ) on

human capital at the school-age stage (HS). The first term is the direct persistence of the perina-

tal shock (carried forward via HN ), and the second term captures the indirect effect that persists

via HT (since PN affects HN , which in turn affects HT , and then HS). In other words, early-life

exposure has the well-known “fetal origins” effect that can manifest in later human capital both

directly and through intermediary developmental stages.

By contrast, the immediate (within-period) effect of pollution in each childhood stage is

given by the partial derivative of H with respect to current exposure P in that stage. Specifically:

d HN = ∂HN

∂PN
dPN , (2)

d HT = ∂HT

∂PT
dPT , (3)

d HS = ∂HS

∂PS
dPS . (4)

Equation (2) represents the short-term effect of perinatal pollution on perinatal human cap-

ital (e.g. an in-utero exposure effect on birth or infant health outcomes). Similarly, (3) is the

contemporaneous effect air pollution exposure during the toddler years on human capital dur-

ing that period, and (4) is the contemporaneous effect of school-age pollution on that period’s

human capital.

The key insight of this model is that, by using an appropriate empirical design, we can es-

timate many of these parameters directly. In particular, our empirical analysis will yield es-

timates for: (i) the composite long-run effect of an early-life pollution shock, ∂HS
∂HN

∂HN
∂PN

(which

comes from the terms in equation (1)), and (ii) the short-run perinatal effect ∂HN
∂PN

(equation

(2)), the short-run toddler effect ∂HT
∂PT

(equation (3)), and (iii) the contemporaneous school-age

effect ∂HS
∂PS

(equation (4)).

This framework also illustrates the benefit of bridging short- and long-term estimates. If one
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is able to estimate the immediate perinatal impact ∂HN
∂PN

and the propagation factor ∂HS
∂HN

(embed-

ded in the composite effect from equation (1)), then one can infer the overall long-term effect of

a perinatal exposure, d HS
dPN

. In other words, armed with an estimate of the short-term impact of

pollution at birth and an estimate of how strongly early shocks transmit to later human capital

outcomes, we can bridge to the long-run effect without directly observing long-run outcomes

in every context. Of course, this approach is context-dependent (the transferability of these

parameters to other settings may be limited), but it provides a useful blueprint for translating

readily available short-run estimates into projections of longer-run impacts.

Finally, for completeness, consider the total effect of pollution across all periods on final

human capital. Totally differentiating HS = fS(HN , HT ,PS) with respect to all three exposure

variables yields:

d HS = ∂HS

∂PN
dPN + ∂HS

∂PT
dPT + ∂HS

∂PS
dPS ,

which, after substituting the chain-rule expressions for ∂HS/∂PN and ∂HS/∂PT , can be written

as:

d HS =
(
∂HS

∂HN

∂HN

∂PN
+ ∂HS

∂HT

∂HT

∂HN

∂HN

∂PN

)
dPN

+
(
∂HS

∂HT

∂HT

∂PT

)
dPT + ∂HS

∂PS
dPS .

(5)

Equation (5) highlights that the school-age human capital stock HS is influenced by pollution

shocks not only contemporaneously (via PS), but also via exposures in previous periods (PN

and PT ). Thus, a comprehensive account of the total impact of pollution on long-run human

capital must include these lagged (early-life) exposures. Our empirical strategy is designed to

incorporate such cumulative exposure effects when estimating the overall impact of wildfire

smoke on health and education outcomes.

3 Background and Context

3.1 Geographic Context, Wildfires and Exposure to their Air Pollutants

Chile is a geographically diverse country, extending across 38 degrees in latitude, and as

such is exposed to quite variable climatic and environmental conditions. Climate zones vary
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from desert in the north, to glacial in the south. The country has about 16 million hectares of

forest cover, with native forests composing around 85 percent of this, equivalent to 13 million

hectares, and forest plantations accounting for 14 percent, or around 2.3 million hectares. The

central region of Chile is significantly exposed to risk of wildfire given both its abundant vegeta-

tion and a Mediterranean climate. Historically, these wildfires have been mainly concentrated

in the central and south-central regions of Chile, from Valparaíso to Araucanía districts (Sarri-

colea et al., 2020).2 Most of the types of land use and land cover burned in Chile are savannas,

croplands, broad leaf and evergreen forests and woody savannas (Sarricolea et al., 2020).

Whereas the majority of wildfires in Chile are started, either directly or indirectly, by hu-

man activity (CONAF, 2022), warmer temperatures and droughts make these fires both more

frequent and destructive (Westerling et al., 2006). Indeed, the intensity of wildfires in Chile has

increased over the last years. For example, in 2017 Chile suffered from a particularly severe

wildfire season, when approximately 5,000 square kilometers of forest were burned – for con-

text, this is an area larger than the state of Rhode Island in the United States. This was about

ten times higher than previous yearly averages (CONAF, 2022). The costs owing to wildfires are

substantial. According to information from Chile’s National Forestry Agency (CONAF, due to

its acronym in Spanish), the direct costs incurred by the state during the 2016-2017 fire season

amounted to US$ 362.2 million, which is equivalent to US$ 635.3 per hectare. The classifica-

tion of these costs includes firefighting (39 percent), housing reconstruction (39 percent) and

support to productive sectors (16 percent), among others.3

Prior work has shown that wildfire events in Chile produce significant spikes in air pollution,

particularly in PM2.5 concentrations, which have well-documented links to morbidity and mor-

tality (Ciciretti et al., 2022). During severe wildfire seasons, urban centers such as Santiago, Con-

cepción, and Temuco have recorded pollution levels that far exceed WHO air quality guidelines.

2This is the most populated region in the country, concentrating 78.9 percent of the population according to censal
records (INE, 2018).

3Regarding private expenditure on forest fires reported by the Chilean Timber Corporation (CORMA, for its
acronym in Spanish), during the 2017-2018 fire season forestry companies increased their expenditures to al-
most US$ 80 million, 60 percent more than at the beginning of the 2016 season. The number of people dedicated
to prevention and combat increased by 700 in the same period, and the amount of resources allocated to preven-
tion tripled that season, reaching US$ 18 million. In addition, according to CORMA’s 2013-14, 2014-15, 2015-16
and 2016-17 season reports, the main forestry companies allocated, on average, US$ 50 million to fire prevention
and firefighting (González et al., 2020).
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Figure 1: PM2.5 Concentrations Over Time

2017 Chile Wildfires

Melipilla 2014 (14,805 Ha)
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Notes: Mean daily PM2.5 concentration is plotted across the entire country for the period under study. Vertical
dashed lines note key fire events. These dashed lines are offset slightly to the right as otherwise they exactly overlap
with large spikes observed in PM2.5 concentrations. These events refer to the largest fire of the 2013-2014 fire
season, which was a a fire in the locality of Melipilla which began on the 3rd of January 2014, eventually burning
over 14,000 hectares, and the 2017 wildfires which affected over 500,000 hectares in the South of the country, with
11 lives lost and thousands of homes destroyed in the fire, and with a peak intensity on January 27-28 of 2017.

These often result in persistent elevated air pollution, as inversion layers trap smoke in valleys,

compounding exposure for days or weeks. Yet to date, few studies have used high-resolution

data to link these pollution episodes to health outcomes across space and time. Descriptively, it

appears clear that large wildfires are important drivers of elevated air pollution levels. In Figure

1 we present a descriptive plot of mean rates of daily ambient PM2.5 in Chile over the period of

2003-2021 based on remotely sensed data on pollutants from the Climate Change Service of the

European Centre for Medium-Range Weather Forecasts (ECMWF). While there is clear cyclical

variation in line with temporal patterns in which PM2.5 concentrations are substantially higher

in winter than summer, key sharp spikes are observed during summer months each year. The

most notorious of these are indicated with red vertical lines (slightly shifted so as not to obscure

the spikes), and are observed surrounding large wildfires, or series of megafires. For example,
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the wildfires of 2017 are associated with mean PM2.5 concentrations which are an entire order

of magnitude higher than is standard in summer months, and rates of PM2.5 concentrations

around four times higher than winter peaks.

3.2 Health and Educational System

Beyond these proximal costs of wildfires, there are considerable additional societal costs

which have been documented. The widespread presence of forest fires considerably increases

atmospheric pollutants which are known to have severe consequences on human health, harm-

ing cardiovascular and respiratory systems (Heft-Neal et al., 2023; Wen et al., 2023). What’s

more, there is growing evidence that exposure to air pollution—particularly fine particulate

matter (PM2.5)—during sensitive developmental windows such as in utero and early childhood

can have lasting effects on health, cognitive development and educational attainment (Cur-

rie et al., 2014; Carneiro et al., 2024; Chen, 2025; Zhang et al., 2018). These effects may arise

through a variety of pathways: reduced birth weight and gestational age, increased incidence

of respiratory illness, and school absences due to illness from poor air quality (Rangel and Vogl,

2019; Wen and Burke, 2022). As such, wildfire-related pollution may impose long-run costs not

only on physical health but also on human capital formation, with implications for educational

trajectories, future earnings and social mobility (Arenberg and Neller, 2023; Borgschulte et al.,

2024; Paudel, 2023).

Chile provides a useful setting to study the health and educational consequences of wild-

fire exposure, in part because of its relatively centralized and comprehensive administrative

systems in both sectors. The country has a mixed public-private health care system, with the

public system (FONASA) covering about 80% of the population. Health services are delivered

through an extensive network of primary care centers, public hospitals, and specialized facili-

ties, with most inpatient care concentrated in the public sector. The Ministry of Health main-

tains centralized health records covering both the public and private system, including detailed

information on hospitalizations, diagnoses, and patient demographics, which are systemati-

cally recorded by the Department of Health Statistics and Information (DEIS).

The educational system in Chile is also mixed, with a large share of students attending pub-
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licly funded schools. Roughly 90% of school-age children are enrolled in either public or subsi-

dized private schools (i.e., voucher schools), both of which follow a national curriculum and are

regulated by the Ministry of Education. Importantly, administrative education records in Chile

track students longitudinally from early primary, with detailed student-level records of grades

as well as attendance, allowing for detailed study of educational trajectories over time.

These features make Chile particularly well-suited for examining the medium- and long-

term effects of environmental shocks. First, national coverage and individual-level tracking

of health and education outcomes allow for precise identification of vulnerable populations.

Second, centralized administrative data allow us to construct course panels with high temporal

and geographic resolution. Third, the national scope of these systems ensures that our findings

are not driven by selective sample attrition or localized shocks, and can plausibly reflect broader

patterns of exposure and resilience.

4 Data

As laid out at more length in section 5, we will work at two principal levels: an aggregate

municipal×week level when considering wildfire impacts on short term outcomes (air pollu-

tion and hospitalisations), and an individual level when considering the impact of longer term

or cumulative exposure (birth outcomes, later life health, and later life education). In each

case, we will match outcome measures (vital statistics and educational outcomes), with key de-

pendent variables (wildfires) and environmental conditions based on municipal or geographic

stratification. Below in Sections 4.1-4.4 we describe key data sources and variable definitions.

Then, in Section 4.5 we describe merged municipality- and individual-level datasets and pro-

vide summary statistics.

4.1 Wildfires

We access data on all wildfires occurring in Chile between the period of 2003 until 2022

from administrative records maintained by CONAF. We work with the period of years necessary

to match with hospital records discussed previously, and given that these data are available

until the end of 2019, our final sample used in models laid out below consists of fire seasons
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2003-2019. These records contain a record the precise geo-reference of the fire’s point of initia-

tion, the type of land-cover affected, the duration of the wildfire, and the total area burned. We

restrict our sample of wildfires to those that burn an area of 200 hectares or larger, as (a) these

have been previously identified to cause a significant amount of smoke pollution and greater

damage to human health (Jain et al., 2024) and (b) burn area in these cases is more systemati-

cally measured.4

In general, over the period under study we observe some evidence of an increase in exposure

to fires, particularly among larger fires. As shown in Online Appendix Table 1, the total number

of reported fires each season is dominated by small events (<1 ha), but the occurrence of large

fires (>500 ha and >1000 ha) has been increasingly frequent, especially in recent years. This es-

calation in fire size is reflected in the pronounced inter-annual variability in total burned area

(Online Appendix Figure 1), with catastrophic peaks such as the 2016–2017 season, when over

546,000 hectares were affected. Descriptive statistics (Online Appendix Table 2) confirm that,

while the median and mean fire sizes remain below 1,000 ha for most seasons, there is sub-

stantial heterogeneity in fire severity, as evidenced by high standard deviations and maximum

values exceeding 100,000 ha in extreme years. Notably, only a minority of fires account for the

vast majority of the burned area, underscoring the critical importance of large-scale events (i.e.,

those with burned area greater than 200 ha) in shaping landscape-level fire impacts. In total,

1,121 major wildfire events were included in our exposure modelling discussed in the follow-

ing section, representing the full set of large-scale fires that most strongly shape inter-annual

variability and regional impacts in Chile.

4.2 PM2.5 Air Pollution Data

We obtained data on particulate matter with diameter of 2.5 microns or less, PM2.5, from two

sources. The first set of PM2.5 air pollution data comes from a network of air quality monitoring

stations of Chile’s National Information System for Air Quality (SINCA, due to its acronym in

Spanish), of Chile’s Ministry of Environment. This network provides detailed data on PM2.5

4Measures of the total area burned are estimated by CONAF personnel, or in the case of large wildfires with a mag-
nitude of greater than 200 hectares (hereafter Ha), these are determined based off of satellite images. Measures
of total duration of fire are calculated as the time elapsed between the moment when fires were first detected and
the time at which the wildfires were reported to be extinguished.
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pollution concentrations at a high-level of frequency for selected cities (usually, those large and

mid-size cities that have historically been exposed to elevated levels of air pollution). Although

this network of monitoring stations has expanded rapidly in recent years, covering more and

more cities every year, this data remains very scant for most of the years in our sample and does

not provide good data coverage for smaller cities or mid-size cities that lack a long history of

high air pollution.

To complement this data, we obtained satellite-level data on PM2.5 from reanalysis data

from the Copernicus program of the European Centre for Medium-Range Weather Forecasts

(ECMWF). In particular, the ECMWF’s CAMS global reanalysis (EAC4) provides a dataset, every

three hours, at the 0.75°× 0.75°latitude-longitude at the earth surface level (more precisely, at

atmospheric pressure of 1000 hPa). This is roughly, a 70× 70 Km grid for the period 2004 to 2018.

By intersecting this with the geographical location of each municipality we calculate weekly

average PM2.5 pollution for each municipality.5

4.3 Health Outcomes

4.3.1 Inpatient hospitalisations

We have collected and systematized administrative records on all inpatient hospitalisation records

from the Chilean Ministry of Health’s Department of Health Statistics and Information (DEIS)

covering the period of 2003, the first year this data is available, and up to 2019. Inpatient hos-

pitalization data are rich, indicating each cause of hospitalization and its duration. These data

cover all hospitalizations in the country, whether occurring in the public or the private sys-

tem.6 These are recorded at the individual level, with one observation for each hospitalization,

with information on the principal cause of hospitalization (using standardized ICD-10 codes),

demographics such as age and sex, and information on the length of the stay. The data addi-

tionally include information of the municipality in which the individual resides–which needs

not be the same one as the municipality where the individual is hospitalised–which allows us

5Note that for this measure, there are a small number of observations missing over the entire period, which corre-
sponds to a single municipality (Chilean Antarctica).

6A full description of these data and quality checks at the micro level are discussed in Clarke et al. (2022).
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to link individuals to exposure to wildfire air pollution (see Section 5.1 below). We examine all

hospitalizations related to respiratory causes (generated from ICD-10 codings), as well as all

cause hospitalizations. When considering immediate impacts of exposure to wildfire, we focus

on both hospitalisations at all ages, as well as hospitalization among infants.

4.3.2 Birth data

We use birth records provided also by the DEIS. The dataset includes all children born between

1992 and 2018, with detailed information on sex, birth weight, size, gestational weeks, and the

exact date, municipality, and region of birth.7 This last two variables are key to measure the

in utero exposure to wildfire air pollution. It also contains parental demographics such as age,

education level, marital status, and municipality of residence. Since our data on wildfires start

from 2003, we focus our study on all children born between 2003 and 2018.

4.4 Educational Outcomes

To measure educational outcomes in both the short and long term, we rely on two primary

datasets covering primary and secondary education. The first consists of administrative educa-

tion records provided by the Ministry of Education, that offer detailed information on students’

academic trajectories. Using this source, we construct a comprehensive panel dataset at indi-

vidual level spanning the years 2007 to 2018, which includes annual data on attendance, enroll-

ment, GPA, grade retention, and school characteristics. Particularly we differentiate schools by

public, subsidized private (i.e. voucher schools), and private.8 Since the academic year starts in

March each year and ends in early December, this structure allow us to study the dynamics on

education in the year following a wildfire season during the previous summer (which is highly

7In Chile, a region is the largest administrative division, while a municipality is a smaller local unit within a
province, similar to a district or township.

8In Chile, school type – public, subsidized private (voucher), and private – is closely tied to socioeconomic back-
ground, resource levels, and academic outcomes. Importantly, both public and subsidized private (voucher)
schools receive government funding based on student attendance, creating financial incentives to maintain or
improve enrollment and daily presence. This makes school type a key dimension when analyzing education-
related effects and disparities.
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concentrated in December, January, and February). 9

For the analysis of long-term outcomes, we use our second main dataset: standardized

test scores in math and verbal from Chile’s Sistema de Medición de la Calidad de la Educación

(SIMCE), spanning 2012 to 2023. The SIMCE test is a nationwide assessment that evaluates

student attainment of Chile’s national curriculum through standardized tests administered in

selected grades. We focus on 4th-grade scores, as it is the only level consistently assessed across

cohorts, ensuring broad comparability over time.10 We restrict our sample to students born be-

tween 2004 and 2008, who typically take the 4th-grade test between the ages of 9 and 11 (see

e.g., Bharadwaj et al., 2017). Given the available data until 2018, we focus on the test scores for

the years between 2013 and 2018. One limitation of the SIMCE data is that it does not record

information on the student’s municipality at birth. So address this issue we use as a proxy the

municipality at which the student lived when he or she first enrolled in school, usually at age 5

to 7.11

4.5 Data Matches and Summary Statistics

We work at two levels depending on the outcome under study. In a first stage, where we

wish to consider outcomes for which we only have complete records at the municipal level (air

pollution, hospitalization rates), we aggregate by municipality and week. In a second stage,

where we are able to observe all outcomes at an individual level (educational outcomes, birth

outcomes, births matched to future health outcomes), we work at an individual level.

For the first of these cases, we generate a balanced panel covering each of Chile’s 346 mu-

nicipalities over time covering the period of 2003-2019, and hence consisting of a maximum

of 305,864 cells (52 weeks×17 years×346 municipalities). While data on hospitalizations and

wildfire exposure are available for every cell, a ground-level measure of air pollution exposure

9Thus, effects of wildfire exposure on students’ school attendance and annual GPA should not be directly impacted
by school closures due to wildfires burning.

10Fourth-grade SIMCE is the only test consistently administered every year between 2005–2018 and 2022–2023.
SIMCE tests in verbal and mathematics are administered in 4th, 8th and 10th, though tests in grades 8 and 10
occur only on alternating years.

11We check the validity of this proxy by combining our birth outcomes dataset and hospitalizations on later years.
Specifically, we check whether individuals remain in the same municipality or administrative district where they
were born. We find that, after 6 years since birth, approximately 71 percent of students remain in the same
municipality and 88 percent in the same administrative district of birth.
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is only available for the sub-group of municipalities in which monitoring stations exist. The to-

tal number of hospitalizations occurring in each municipality are aggregated to municipal level

totals, and are calculated as rates per 100,000 individuals using population records provided by

Chile’s National Institute of Statistics.

In Table 1 below we provide summary statistics for our variables of interest both at the mu-

nicipality and individual level. Panel A shows wildfire smoke exposure at municipality level for

every cell in the data. Wildfire smoke exposure is measured as the number of days in a week

where the municipality was exposed to the wildfire smoke. As we lay out at more length in sec-

tion 5.1, we use different measures of exposure to wildfire based on a formal modeling strategy,

where wildfire exposure depends upon a number of factors such as distance from the point of

wildfire origin, smoke plume height, and so forth. Our exposure measure captures the total

number of days (or portions of days) in which a municipality is exposed to wildfire-induced

smoke pollution. While we provide summary statistics here of these main exposure methods,

their precise definition is laid out in section 5.1. In general, we can see that the mean expo-

sure, regardless of the measure used, is relatively small, which is explained by exposure to wild-

fires being highly concentrated only in some regions and during the wildfire season (largely, the

summer time). Still, we can see that in some cases municipalities can be exposed up to 2.3 days

to the smoke plume during a single week. For PM2.5 air pollution, the mean is 22.09 (µg /m3)

according to the remote-sensed data (ECMWF’s Copernicus), and 25 (µg /m3) according to the

data from the network of air quality monitoring stations (Chile’s SINCA). Both measures of

air pollution present large standard deviations and peaks surpassing safe levels (according to

World Health Organization’s guidelines) by more than an order of magnitude.

In the Panel A we also present summary statistics of administrative records covering all hos-

pital admissions at the municipal by week level. These are all cast as rates per 100,000 exposed

population. For the entire population, we observe that admissions due to respiratory causes

account for around 10 percent of all hospital admissions — a mean of 21 hospital admissions

per 100,000 inhabitants in a week, compared to 182 per 100,000 for all cause hospital admis-

sions. As well as all-cause and cause-specific hospital admissions for all ages, we document

rates for specific age groups which are particularly sensitive to health shocks, namely infants
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(i.e., those individuals younger than one year of age). Unsurprisingly, rates of hospital admis-

sions are around four times higher among infants than for the general population, and about

ten times higher when considering those admissions due to respiratory diseases. 12

In the case of individual-level analyses, each individual can be matched over time using

an anonymyzed version of their national identity number (the RUT). This matching process

has been documented to have excellent coverage (see, e.g. Clarke et al. (2022)). Individual-level

linked data is then matched to environmental exposure variables based on municipality of birth

or exposure. Depending on the outcome under study we consider environmental exposure

measure at differing times: either shorter-term exposure which matches educational data to

wildfire conditions in the summer before each school year, or longer-term exposure which links

outcomes with conditions to which individuals were exposed while in utero.

Panel B of Table 1 presents descriptive statistics for birth and long-term outcomes covering

over 3.3 million individuals, along with wildfire smoke exposure before birth. On average, wild-

fire exposure during the two-week period prior to birth is 0.004 days, with a maximum of 3 days.

For the third trimester of pregnancy, the average exposure rises to 0.024 days, with a maximum

of almost 6 full days. Birth-related measures show average birth weight of 3,315 grams and ges-

tational length of 38.5 weeks. Rates of hospital admissions are relatively low, with an average

of 0.73 hospitalizations per child across all ages. Although there are some extreme values, is

worth noting that 99.9 percent of the sample had less than 10 hospitalizations when they were

less than one year old. Short/mid term educational outcomes presented in Panel C are based

on over 35 million observations, covering a panel of students across years 2007 and 2019, with

high average school attendance (89 percent) and enrollment rates (97 ). Grade Point Average

(GPA) is 5.67 in a scale that spans from 1 to 7, and considers only those students who actu-

ally enrolled. Here the measure of exposure to wildfire’s smoke plume is considering the whole

summer prior to the academic year (specifically the months of December, January, and Febru-

ary prior to the beginning of the school year, in March each year), where the average of days of

12It is worth noting that in a small number of cases, not all cells have defined values of rates. For example, among
infants, less than 1 percent of the cells (2,600 of 305,864) have no defined rate of hospital admissions, given that
there are zero populations in this particular group in a number of very small municipalities. As we lay out in
the methods section later in this paper, we will generally weight cells by population size, so findings will not be
driven by municipalities with very small populations.
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Table 1: Summary Statistics

Obs. Mean Std. Dev. Min. Max.

Panel A: Municipality-by-Week Measures
Wildfire Smoke Exposurea 305,864 0.002 0.031 0 2.333
PM2.5 Air Pollution (µg /m3) – ECMWF’s Copernicus 304,980 22.09 25.87 0.14 642.24
PM2.5 Air Pollution (µg /m3) – Chile’s SINCA 18,946 25.00 21.78 1 303.97
Hospital Admissions for All Causes (per 100.000) 305,864 181.84 100.81 0 6,061
Hosp. Adm. for Respiratory Diseases (per 100.000) 305,864 21.29 24.38 0 1,667
Hosp. Adm. for All Causes, < 1 year old (per 100.000) 303,264 687.26 1000.26 0 175,000
Hosp. Adm. for Resp. Dis., < 1 year old (per 100.000) 303,264 210.64 493.46 0 100,000

Panel B: Individual Measures for Long Term Health Outcomes
Wildfire Smoke Exposure, two weeks before birtha 3,353,467 0.004 0.055 0 3.000
Wildfire Smoke Exposure, third trimestera 3,353,467 0.024 0.166 0 5.667
Weight at Birth (grams) 3,348,192 3314.69 548.51 110 6440
Size at Birth (cm) 3,347,776 49.26 2.61 16 59
Gestational Weeks 3,348,278 38.46 1.88 15 44
Total Hosp. Adm., < 1 year old 3,353,467 0.40 1.05 0 295
Total Hosp. Adm., 1−3 years old 3,353,467 0.22 1.18 0 681
Total Hosp. Adm., all ages 3,353,467 0.73 2.22 0 908

Panel C: Individual Measures for Short/Mid Term Educational Outcomes
Wildfire Smoke Exposure, previous summera 35,589,639 0.127 0.383 0 4.333
School Attendance (percentage) 35,589,639 89.21 17.80 0 100
Student Enrollment Rate 35,589,639 0.97 0.17 0 1
Grade Point Average (GPA) 34,471,808 5.67 0.67 1 7

Panel D: Individual Measures for Long Term Educational Outcomes
Wildfire Smoke Exposure, two weeks before birtha 593,472 0.000 0.002 0 0.667
Wildfire Smoke Exposure, third trimestera 593,472 0.000 0.010 0 1.000
Math Test Score at 4th Grade – Chile’s SIMCE 593,472 264.89 48.55 91.18 395.59
Verbal Test Scores 4th Grade – Chile’s SIMCE 593,472 272.18 51.85 116.60 405.96

Notes: Observations cover municipality by week cells for the 346 municipalities and 783 weeks over the period of 2003-2019.
Measures refers to rates of hospitalizations per 100,000 exposed population, and are generated based on consistently applied
ICD-10 codings from administrative records. Rates are presented for the full population and for individuals aged 0-1 year. A
small number of missing observations exist for municipal by week cells where the population is zero for a given age, as in
these cases population rates are undefined. Observations in Panel B covers individuals born from 2005 to 2018, and their
hospitalizations between 2005 and 2019. Observations in Panel C for outcomes such as attendance, enrollment, and GPA, cover
all students trajectories (panel data) at school from the years 2007 to 2019. In the case of math and verbal test scores (Panel D),
we only account of one observation per student at 4th grade who took the test in the years between 2004 and 2008 at 9, 10, or 11
years old. a As explained in section 5.1 below, we consider certain parameters to model wildfire smoke plume and thus exposure
to wildfire air pollution. Particularly, we consider smoke plume heights of up to 50 meters above ground for a municipality to
be classified as exposed to wildfire air pollution; modeled injection point (into the atmosphere) for the plume of pollutants
from the wildfire at 500 meters above ground at the point of origin of the fire; maximum distance from municipality centroid to
wildfire origin of 500 Km; maximum distance of the core of the modeled smoke plume to the centroid of the municipality of 5
Km; and up to 10 days of modeling for wildfire smoke (meaning the number of days a wildfire is assumed to transmit smoke).

exposure is about 0.13, with a maximum of 4.3 days. Finally Panel D shows individual measures

of long term educational outcomes, particularly, standardized test scores consider students in
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4th grade who took a test on both math (265) and verbal (272) during the years between 2004

and 2008. Here, the measure of wildfire smoke exposure is analogue to the one in Panel B, but

the mean and maximum values are lower, mainly because of the specific years we include.

5 Wildfire Exposure and Empirical strategy

5.1 Modeling of Wildfire Smoke Exposure (HYSPLIT)

While we have rich data on wildfire ignition location and intensity which can provide some

proxy of exposure, the environmental consequences of wildfires depend critically on atmo-

spheric conditions. Smoke plumes can travel long distances, often affecting populations far

from the fire origin. In Chile, prevailing westerly winds and topographic features such as the

Andes Mountains and Chile’s central valley basin shape the horizontal and vertical dispersion of

wildfire smoke. This makes it difficult to infer population-level exposure using only proximity-

based metrics. The use of atmospheric transport models is therefore particularly relevant in

Chile’s diverse topography, enabling a more precise estimation of exposure windows and the

spatial extent of health risk.

To measure exposure to wildfire smoke plumes, we employ the Hybrid Single-Particle La-

grangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015; Draxler and Hess, 1998).

HYSPLIT is a widely used atmospheric transport and dispersion model developed by the Air Re-

sources Laboratory of the US National Oceanic and Atmospheric Administration (NOAA) that

computes trajectories of air parcels, and thus, the spread of particle air pollutants under realistic

meteorological conditions. By using HYSPLIT, we can explicitly model the pathways of smoke

from the point of initiation of each wildfire through the atmosphere, rather than relying on

crude distance measures or purely observational proxies. This approach provides a physically

grounded estimate of where and when smoke travels, which is crucial for accurately assessing

exposure to each wildfire in our data.

In our application, we performed forward trajectory simulations from the georeferenced ig-

nition point of each wildfire using the HYSPLIT model and meteorological data covering Chile

optimised for use in HSYPLIT described in Stein et al. (2015).13 For each wildfire, air parcel tra-

13These data are provided by NOAA, along with the US National Centers for Environmental Prediction (NCEP) and
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jectories were launched every 8 hours from the georeferenced point of ignition. Starting at the

time of ignition, trajectories were drawn throughout the duration of the event (up to a maxi-

mum of 10 days, or for the actual duration of the fire, if shorter). Each trajectory was initialized

at a height of 500 meters above ground level; additional simulations were conducted at 0, 250,

1000, and 1500 meters to assess robustness (see, for example Wen and Burke, 2022). The model

provides the position (latitude, longitude, and altitude) of the smoke parcel for every hour, en-

abling precise mapping of both the spatial and vertical dispersion of the plume during the first

days of each wildfire. All trajectories originate from the same fire start location, simulating the

continuous release of smoke under realistic atmospheric conditions.

Using the HYSPLIT output, we construct a measure of smoke exposure for each municipal-

ity and each wildfire in our data. In essence, we flag a location as “exposed” to the air pollutants

from the wildfire at a given moment of time if any simulated trajectory passes sufficiently close

to that location under criteria designed to capture meaningful ground-level smoke presence.

Specifically, we require that a trajectory segment comes within 5 Km of the location, at an al-

titude below 100 m (indicating the smoke is near ground level), and remains in the vicinity for

at least 1 hour.14 In our analysis, locations and time periods meeting all these conditions are

classified as experiencing wildfire smoke exposure for a period of 8 hours (which corresponds

to the frequency of the launching of trajectories). This trajectory-based exposure assignment

leverages the full spatiotemporal information from the HYSPLIT simulations: for example, if a

smoke plume travels over a city at low altitude for several hours, our method will record expo-

sure for that city on that date, even if the wildfire source is far away or not obvious from simple

distance measures.15

A key benefit of the HYSPLIT modeling approach is its ability to account for atmospheric

transport dynamics when determining smoke exposure. Simple proximity-based metrics (e.g.,

distance to the nearest fire) are often poor proxies for true smoke exposure because they ignore

National Center for Atmospheric Research (NCAR).
14These threshold values (5 Km, 100 m altitude, 1 hour of duration) serve to exclude cases where smoke is aloft or

too distant to materially impact ground-level pollution at the location.
15Exposure will of course thus depend upon geographic proximity to wildfires, and in the Chilean case in particular,

this exposure is concentrated in the central area of the country in which both substantial vegetational cover is
present, but summer conditions are hot and dry (see Appendix Figure 2).
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wind patterns and smoke plume behavior. Wildfire smoke can travel hundreds of kilometers

depending on wind direction and stability, sometimes heavily impacting distant communities

while sparing closer areas that lie upwind or considerably below the height of the smoke plume.

By explicitly simulating trajectories, we capture this heterogeneity: only those downwind areas

under the plume’s path and height are marked as exposed, which improves attribution of ob-

served impacts to wildfire smoke (Wen et al., 2023).

Similarly, satellite-derived measures of particle air pollution, such aerosol optical depth

(AOD), provide valuable information on smoke aerosol presence but they have limitations for

ground-level exposure assessment. AOD represents the total columnar aerosol load (as ob-

served from above) and does not directly indicate surface particle air pollution concentrations

that affect human health; satellite observations can also be unavailable or obscured during

cloudy conditions or only offer once-daily snapshots. As noted by Reid and Maestas (2019),

a high AOD does not always translate to high ground-level smoke pollution (for instance, if

smoke remains in the upper atmosphere). In contrast, our HYSPLIT-based approach focuses

on smoke at population level and overcomes many data gaps by using a transport model driven

by continuous meteorological data.

Another advantage is the improved temporal resolution and source attribution. Trajectory

modeling allows us to link pollution events to specific fires and hours, which is valuable for the

identification of the impact of exposure to wildfire on downstream (human capital) measures.

Traditional exposure metrics in the literature often rely on daily averages from sparse monitor-

ing stations or broad satellite plume maps (e.g., Borgschulte et al., 2024). Those approaches

may misclassify exposure (e.g., if a monitor is upwind of a plume or if a satellite detects a dif-

fuse haze that never reaches ground-level). In contrast, the HYSPLIT simulation provides a rich,

high-frequency representation of smoke dispersion, enabling us to identify not just whether a

location was affected by wildfire smoke, but also to quantify features like the duration of ex-

posure and potential smoke concentrations (with further modeling or assumptions). These

improvements in exposure measurement enhance the accuracy of our subsequent analysis of

wildfire smoke’s economic impacts, helping to address measurement error concerns that are

often not captured in the extant literature.
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Figure 2 provides a concrete example of our exposure modeling approach by illustrating the

spatial extent of smoke emissions from a single wildfire (the Nilahue-Barahora wildfire). The

red-shaded municipalities are those that meet all of our exposure criteria - namely, proximity

to the municipal centroid, vertical altitude of the smoke parcel, and maximum horizontal dis-

tance from the fire origin. The black lines trace the HYSPLIT-simulated trajectories of smoke

particles released from the fire. This example highlights how our method captures both the di-

rection and reach of smoke dispersion, allowing us to identify municipalities likely exposed to

harmful concentrations of fire-related pollutants during the wildfire’s active phase. This also

makes clear that a simple distance-based measure would result in a substantially different clas-

sification, likely not capturing municipalities quite far north of the source of the fire which are

indeed found to be exposed to smoke plumes. We validate this modeling strategy in Section

6.1 where we consider whether modeled exposure does indeed drive PM2.5 concentrations at

ground level.

5.2 Empirical Strategy for Estimating Effects of Exposure to Wildfire Smoke

In order to isolate causal effects of exposure to wildfire air pollution, we implement a de-

sign which seeks to compare outcomes among individuals in closely-located areas, but where

certain individuals were exposed to wildfire particulates – as modeled by HYSPLIT in a specific

moment in time – while others were not. To implement such a design, we rely on rich location-

and time-specific fixed effects such that, plausibly, the only difference between exposed and un-

exposed units is their exposure to wildfire air pollutants.16 The precise specification depends

upon the time-horizon and data set-up (e.g., whether municipal or individual-level or short-

or long-run). For the case of air pollution and health outcomes in the short run, we begin by

estimating:

ymr t =α+β ·Exposuremt +ϕm +λt +µr ·δq +φmr t (6)

where ymr t refers to outcomes in municipality m, in region r and in period t (whereby, for

estimating short-run effects, t refers to week-by-year). These outcomes are regressed on the

16This can be viewed as broadly analogous to designs based on upwind versus downwind exposure in areas which
are geographically proximate. In this case, rather than only depending on wind, our design depends upon mod-
eled climate conditions more generally, but maintains the local exposure design of wind-based settings such as
(Deryugina et al., 2019; Anderson, 2019; Rangel and Vogl, 2019; Rocha and Sant’Anna, 2022).
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number of days of smoke plume exposure occurring in that particular week in (6). We capture

any municipality-specific time-invariant factors – such as geographic location or slow-moving

demographic characteristics of resident – with ϕm , and any time-specific effect with λt . Im-

portantly, we consistently include region-by-quarter-by-year fixed effects, here µr ·δq . This is

key to the design as it allows us to isolate exposure to marginal wildfire air pollution when mu-

nicipalities within the same region r and time period t .17 Finally, the term φr mt is a stochastic

error term, and standard errors are consistently clustered at municipality level. The coefficient

of interest β captures the marginal effect of an additional day exposed to wildfires’ air pollution.

While (6) considers immediate impacts of wildfire exposure on outcomes of interest, we

consider a number of richer specifications which allow us to consider both the cumulative im-

pact of prior exposure, as well as provide partial specification checks. As a first consideration,

we replace contemporaneous exposure to wildfires Exposurem,t with the exposure over the 8

weeks previously. We then also consider a richer specification based on both lags and leads to

wildfire exposure. Specifically we estimate:

ymr t =α+
8∑

j=−6
β j Exposurem,t+ j +ϕm +λt +µr ·δq +φmr t (7)

where all details follow (6), with the exception of j = 6 lead effects (i.e. pre-wildfire periods), and

j = 8 lag effects (i.e. post-wildfire periods). This allows us to examine any immediate impacts of

wildfire exposure on outcomes (the coefficient β0), along with any delayed impacts (β1, . . . ,β8).

What’s more, this provides us with a consistency check in that if our specification is indeed

capturing differences owing to wildfire exposure – rather than systematic or cyclical differences

between areas exposed and unexposed to wildfires – we would expect no differences in the lead

up to the fire, which we can test by considering terms β−6, . . . ,β−1.

Our identification strategy relies on the assumption that, conditional on these fixed effects,

the wind direction and atmospheric conditions that shape wildfires’ smoke plumes should not

affect health outcomes other than via changes in exposure to the air pollutants from these wild-

fires. Thus, we estimate the impact of exposure to wildfire air pollution – i.e. whether an in-

17Municipalities are nested within administrative districts). There are 16 administrative districts in Chile and these
are the second level of administrative government.
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dividual’s normal area of residence falls within its smoke plume – on a number of health and

educational outcomes.

Moreover, for educational outcomes in the short/mid term, we wish to consider the impact

of exposure over the prior wildfire season. Noting that wildfire seasons commonly span from

December to February of the following year (i.e., the summer season in the southern hemi-

sphere), and that the academic year begins in March. Given that we have a measure of yearly

academic performance for all students repeated by student over time, we estimate:

yi tm =α+β ·ExposureSummer
i tm +ϕi +µr (m) ·δb ·λt +φi tm . (8)

Here yi tm represent educational outcomes for student i , at year t and municipality m. The

coefficient β measure the marginal effect of one additional day of wildfire air pollution during

the summer just before the academic year starts. Specifically, ExposureSummer
i tm sums the wildfire

smoke plume across the months December at year t −1, and January and February of year t ,

corresponding to the peak of wildfires and also the months just before classes start (typically

early March). We control for time-invariant characteristics of students with ϕi , and also we aim

to compare similar students in the same geographic location and time by interacting year-of-

birth b, year t , and region r fixed effects, here µr (m) ·δb ·λt .

Finally, in the case of long-term effects we seek to determine how exposure in a particularly

sensitive period – namely the weeks and months before birth – shape later life health and edu-

cational outcomes. In this case, we estimate the effect of each individual’s exposure to wildfire

smoke during the in-utero period. Specifically we estimate:

yi mb =α+β ·ExposureIU
i mw(b) +µm +λt (b) +µr ·δb ·λs +φi mb (9)

where yi mb denotes the health and educational outcomes for individual i born in municipality

m and year b. Similarly to the exposure measure in (8), ExposureIU
i mw(b) sums the in-utero (IU)

wildfire smoke plume exposure, considering the weeks w before birth of individual i at year b.18

18Specifically, we use each individual’s date of birth and municipality of birth to calculate exposure to wildfire
smoke in that location during the weeks leading up to birth. We construct several measures of exposure, but in
this paper we focus on two in particular: exposure during the two weeks prior to birth and during the trimester
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Although the use of fixed effects vary between health and educational outcomes’ specifications,

here equation (9) illustrate the inclusion of fixed effects as follows: (i) µm represents fixed effects

at municipality of birth, (ii) λt (b) fixed effects at calendar-month-by-year-of-birth, and (iii) µr ·

δb ·λs is an interacted fixed effects at year-of-birth × season19 × region-of-birth.

6 Results

6.1 Wildfires Smoke Modeling (HYSPLIT) and Particulate Matter

We begin by documenting the estimated impact of wildfire exposure on particulate mat-

ter. Table 2 presents results from (6), where the outcome of interest is the natural logarithm of

PM2.5 concentrations. This table considers a range of specifications where differences depend

upon the key parameters inputs into HYSPLIT modeling. Specifically, across columns we vary

the maximum distance between municipality centroids and smoke trajectories modeled from

HYSPLIT, as well as the maximum distance which trajectories are followed. And across panels

A and B of the Table, we consider exposure defined as cases where municipalities are defined as

exposed if smoke is observed within 50 meters of ground level or within 100 meters of ground

level.

One key point from this table is that regardless of these choices, when combining wildfire

initiation points with HYSPLIT exposure modeling, we see clear and large estimated effects on

PM2.5 pollution at ground level. Outcome measures are all captured from ground-level moni-

toring stations, and so they provide high-quality measurements of PM2.5 pollution. These ef-

fects are large, ranging from between a 20 to a 40 percent increase in the week average consid-

ered when a municipality is determined to be exposed to a 24-hour period of wildfire smoke

exposure. A second key point is that while we see clear evidence that our exposure modeling

captures air pollution exposure, the degree to which exposure drives PM2.5 pollution does de-

pend on parameters used in HYSPLIT modeling to define exposure. Specifically, we generally

see that effects are larger when we consider greater areas over which smoke can travel (i.e.,

moving from columns 1 to 2, and from columns 3 to 4), and when considering municipalities

preceding birth.
19Which represent the different seasons such as spring, summer, autumn, and winter.
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which are closer to areas where smoke is modeled to pass (columns 1 and 2, as compared to

columns 3 and 4). Specifically, effects are observed to be largest when exposure is defined to

allow a greater smoke dispersion (500 Km rather than 100 Km), but municipalities are observed

to be closer to smoke plumes (within 5 Km rather than 10 Km). Finally, the Akaike information

criteria is observed to be minimized when the height of the smoke trajectory is no higher than

100 meters above ground. For these reasons, and given that such determinations are required

in modeling exposure, we rely on this set of parameters for modeling exposure in downstream

(educational and health) outcomes.

Table 2: Effect of Wildfire Exposure (24 hrs.) on Log of PM2.5 Pollution (µg /m3)

(1) (2) (3) (4)
Panel A. Height of modeled smoke trajectory above ground: ≤ 50 meters

Exposure (24 hrs.) 0.354∗∗ 0.404∗∗∗ 0.233∗∗ 0.259∗∗∗

(0.149) (0.149) (0.114) (0.095)

R-squared 0.787 0.787 0.787 0.787
Akaike I.C. 18,317 18,309 18,318 18,312

Panel B: Height of modeled smoke trajectory above ground: ≤ 100 meters
Exposure (24 hrs.) 0.297∗∗∗ 0.370∗∗∗ 0.201∗∗ 0.244∗∗∗

(0.109) (0.112) (0.087) (0.077)

R-squared 0.787 0.787 0.787 0.787
Akaike I.C. 18,318 18,308 18,318 18,309

Distance (≤ Km)
Smoke Traj. to Municipality 5 5 10 10
Municipality to Wildfire 100 500 100 500

Mean PM2.5 24.55 24.55 24.55 24.55
Observations 28,333 28,333 28,333 28,333

Notes: Each panel presents a sequence of FE models where the natural logarithm of

PM2.5 air pollution—as recorded by ground-level monitoring stations—is regressed on

the number of HYSPLIT-modeled smoke trajectories that meet the conditions specified

for each model and panel. For example, results for column (1) of Panel A considers only

those municipalities that are at a distance of up to 5 Km from the nearest HYSPLIT-

modeled air parcel trajectory, at a distance of up to 100 Km from the origin of the wildfire,

and where the HYSPLIT-modeled air parcel trajectory passes at an elevation of no more

than 1500 meters above ground. Standard errors, shown in parentheses, are clustered at

the level of the municipality. Each model includes municipality, week-year, and region-

by-quarter by year fixed effects. ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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6.2 Short-term effects on health and ‘Mid-term’ effects on education

We now turn to consider the impacts of exposure to wildfires air pollution on health out-

comes as measured by inpatient hospital admission, and educational outcomes as measured

by yearly enrollment and GPA. In Table 3 we present results for equation (6) including a combi-

nation of fixed effects and considering hospital admissions for respiratory causes only (ICD-10

codes J00-J99). Each column considers separate independent variables based on the timing of

exposure (i.e., from exposure in the contemporaneous week to exposure during the last eight

weeks). We also differentiate by ages, considering particularly all ages, infants (those one year

old or younger), and toddlers (1–5 years old). In the case of respiratory hospital admissions for

individuals of all ages, we observe small and non-significant effects on hospitalizations when

considering contemporaneous exposure (column 1) but this effect turns large and significant

when considering exposure over the last eight weeks (column 2). We find that an additional

day of smoke exposure leads to an increase of 4.9 (1.632×3 periods of 8 hours) hospitalizations

due to respiratory causes per 100,000 people, implying an increase of 22.4 percent respiratory

hospital admissions over the mean. When considering infants (columns 3 and 4), we identify

important and statistically significant effects for all measures of smoke exposure. Importantly,

when considering contemporaneous wildfire smoke exposure, column 3 shows that, an addi-

tional day of smoke exposure, we find an increase of 45.8 (15.264×3 periods of 8 hours) hos-

pitalizations due to respiratory causes per 100,000 infants, which implies an increase of 20.9

percent respiratory hospital admissions over the mean. When we consider the last eight weeks

we find that an additional day of smoke exposure leads to 240.5 hospitalization due to respira-

tory diseases, implying a 30.6 percent increase over the mean. This is represents the cumulative

effect of wildfire smoke exposure on infant’s respiratory hospital admission (we will return to

this in the paragraph below). Finally, note that we do not find statistically significant effects

for children 1–5 years old, demonstrating how important the effects can be for more vulnerable

ages, as is the case for infants.

Figure 3 reports the dynamic effects on infants’ hospitalizations due respiratory causes fol-

lowing equation 7. We observe statistically significant effects of wildfire smoke exposure. The

effects are clearly larger during the contemporaneous week, but we also can distinguish positive
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Table 3: Effects of Wildfire Exposure on Rate of Hospital Admissions due to Respiratory Diseases

All Ages Infants (≤ 1 year old) Toddlers (1–5 years old)

(1) (2) (3) (4) (5) (6)
Exposure on same week -0.016 15.264∗∗∗ 0.005

(8-hour period) (0.110) (2.805) (1.095)
Exposure over last eight weeks 1.632∗∗ 80.186∗∗∗ 6.045

(8-hour period) (0.699) (2.035) (4.515)

Mean of Dep. Var. 21.96 21.87 218.97 217.12 53.80 53.50
Observations 283,403 287,149 283,403 287,149 283,403 287,149
R-Squared 0.55 0.55 0.41 0.41 0.29 0.29

Fixed Effects
Municipality Y Y Y Y Y Y
Week×Year Y Y Y Y Y Y
Region×Quarter×Year Y Y Y Y Y Y

Notes: Each observation correspond to a cell municipality × week as described in the Section 4. The independent
variable measures exposure to wildfire smoke plumes in 8-hour intervals. To interpret the estimated coefficients as
the effect of an additional full day of exposure (i.e., 24 hours), the coefficients should be multiplied by 3. Standard
errors clustered at the Region level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

effects different from zero until week 6. Also we notice that before wildfire smoke exposure there

are no statistically significant effects, evidencing the existence of no pre-trends, which would be

suggestive of more general differences between exposed and unexposed municipalities in our

fixed effect design.

Figure 3: Dynamic Effects of Wildfire Exposure on Infants’ Respiratory Hospitalizations

Notes: Point estimates and 95% CIs are reported on coefficients {β−6, . . . ,β0,β8} from (7).
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Moving on to the effects on educational outcomes, Table 4 shows our main estimates by

school type. Here we observe that an additional day of wildfire smoke exposure during the

summer period led to unidentifiable effects on attendance, but negative effects on enrollment

rate and GPA in the following school year. Effects on enrollment are small (but statistically sig-

nificant), with a marginal effect of an additional day of wildfire smoke exposure on dropout rate

of 2.3 and 2.7 percent, with respect to the mean, for public and voucher schools, respectively.

We find no statistically significant effects for private schools.20 With respect to GPA, we find a

negative marginal effect in public and voucher school of approximately 0.007 and 0.005 points,

respectively, meaning a decrease of 1 percent and 0.7 percent of a standard deviation in the

GPA.21 Again, we find no statistically significant effects on GPA for private schools

6.3 Long-term effects on health and education

We now turn to the analysis of long-term outcomes using the model presented in equation 9.

Specifically, we study how in-utero exposure to wildfire smoke plumes affects birth outcomes,

early childhood hospitalizations, and educational outcomes in the longer run. Table 5 presents

the estimated effects of wildfire smoke exposure on birth outcomes, specifically birth weight,

birth size, and gestational weeks. By varying the measurement window of exposure in terms

of the number of weeks prior to birth we report two specifications for each outcome, exposure

over the last two weeks before birth and exposure in the third trimester of pregnancy.

Across all outcomes, we observe consistently negative effects, with the largest and most

statistically significant estimates appearing when exposure is measured during the two weeks

before birth. For instance, column (1) shows that one additional day of smoke exposure during

this period reduces birth weight by approximately 12 grams, equivalent to a 0.4 percent de-

crease relative to the mean. As the exposure window is extended, the estimates become smaller

in magnitude and less precise. Column (3) shows that one additional day of wildfire smoke ex-

posure is associated with a 0.06 cm reduction in birth size-roughly a 0.1 percent decrease com-

pared to the average. Similarly, in column (5), we find that an extra day of exposure shortens

gestational weeks by about 0.05, or 0.1 percent relative to the mean. One potential interpreta-

20Dropout rate is measured by subtracting 1 minus the enrollment rate.
21The standard deviations for public and voucher schools, are 0.685 and 0.653, respectively.
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tion of these findings is that wildfire smoke exposure may lead to more premature births, which

in turn result in worse birth outcomes such as lower birth weight and shorter length at birth.

We also present in Online Appendix Table 3 evidence of heterogeneous effects by mater-

nal education. Across all outcomes, we find consistently larger impacts among children whose

mothers have lower levels of education. Specifically, the effects are substantially larger for

children whose mothers completed only primary or secondary education, compared to those

whose mothers attained a college degree. Although statistically significant effects are found

only for the group with secondary education, the results suggest that more vulnerable fami-

lies are disproportionately affected. This highlights the potential importance of targeting social

support policies toward these families to help mitigate the adverse effects of wildfire smoke.

Also, this results may reflect the findings by Hoffmann and Rud (2024), where unequal effects

may be due to the limited ability of more vulnerable individuals to react to episodes of high air

pollution and limit their exposure.

Table 5: Effects of In-Utero Exposure to Wildfire on Birth Outcomes

Birth Weight Birth Size Gestational Weeks
(1) (2) (3) (4) (5) (6)

In-Utero Exposure [Last two weeks] -3.975* -0.021* -0.018*
(8-hours period) (2.339) (0.012) (0.010)

In-Utero Exposure [Third trimester] -0.434 -0.004 -0.007**
(8-hours period) (0.670) (0.005) (0.003)

Mean of Dep. Var. 3314.686 3314.686 49.259 49.259 38.460 38.460
Observations 3,348,192 3,348,192 3,347,776 3,347,776 3,348,278 3,348,278
R-Squared 0.01 0.01 0.02 0.02 0.01 0.01

Fixed Effects
Municipality Y Y Y Y Y Y
Month×Year Y Y Y Y Y Y
Year×Season×Region Y Y Y Y Y Y

Notes: Sample consists of all births (individual measures) between 2005-2018. The independent variable measures exposure to

wildfire smoke plumes in 8-hour intervals. To interpret the estimated coefficients as the effect of an additional full day of exposure

(i.e., 24 hours), the coefficients should be multiplied by 3. Standard errors clustered by municipality are displayed in parentheses.
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 6 presents the effects of in-utero exposure to wildfire smoke on early-life hospital-

izations. For each individual, we calculate the number of hospital visits within different age

ranges: infants (<1 year old), toddlers (1–3 years old), and all ages (i.e., the cumulative number
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over the life span). Similar to the birth outcomes, the estimated effects are consistently positive

but less precise. Focusing on the marginal effects of an additional day of exposure during the

two weeks prior to birth (columns 1, 3, and 5), we find that infant hospitalizations increase by

0.018 (0.006× 3), although the effect is not statistically significant. For toddlers, however, we

detect a statistically significant increase of 0.024 hospitalizations, equivalent to a 10.7 percent

rise relative to the mean. The effect for the all-ages category is also positive, but smaller in

magnitude and accompanied by larger standard errors.

While the overall evidence is not robust across specifications, the results do suggest a po-

tential link between prenatal exposure and increased hospitalization during early childhood.

This is particularly evident when we examine heterogeneous effects by maternal education.

Focusing again on exposure in the two weeks before birth, Online Appendix Table 4 shows that

children of mothers without a college education experience notably more hospitalizations fol-

lowing wildfire exposure during pregnancy. The effects are especially pronounced - and sta-

tistically significant - for children whose mothers completed only secondary education, with

toddler-age hospitalizations increasing by 21.5 percent (column 5).

Table 6: Effects of In-Utero Exposure to Wildfire on Lifetime Hospitalizations

Infants (≤ 1 years old) Toddlers (1-3 years old) All ages
(1) (2) (3) (4) (5) (6)

In-Utero Exposure [Last two weeks] 0.006 0.008** 0.004
(8-hours period) (0.004) (0.003) (0.005)

In-Utero Exposure [Third trimester] 0.001 -0.000 0.000
(8-hours period) (0.002) (0.001) (0.002)

Mean of Dep. Var. 0.403 0.403 0.224 0.224 0.731 0.731
Observations 3,353,467 3,353,467 3,353,467 3,353,467 3,353,467 3,353,467
R-Squared 0.01 0.01 0.00 0.00 0.01 0.01

Fixed Effects
Municipality Y Y Y Y Y Y
Month×Year Y Y Y Y Y Y
Year×Season×Region Y Y Y Y Y Y

Notes: Sample consists of all births (individual measures) between 2005-2018. The independent variable measures exposure to

wildfire smoke plumes in 8-hour intervals. To interpret the estimated coefficients as the effect of an additional full day of exposure

(i.e., 24 hours), the coefficients should be multiplied by 3. Standard errors clustered by municipality are displayed in parentheses.
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Finally, we focus on the long-term effects in-utero wildfire smoke exposure on educational
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attainment. Focusing on Column 1 of Panels A and B of Table 7, we find that in-utero exposure

to wildfire smoke during the two weeks prior to birth is associated with a negative but statisti-

cally insignificant effect on standardized test scores in both math and verbal test scores. While

the heterogeneous effects by school type (Columns 2 and 4) suggest some evidence of negative

and statistically significant impacts on verbal test scores - particularly for students attending

public and private schools - we believe that these results should be interpreted with caution.

Table 7: Effects of In-utero Exposure to Wildfire on Standardized Test Scores at 4th grade

Panel A: Math Test Score

All Public Voucher Private
(1) (2) (3) (4)

In-Utero Exposure [Last two weeks] -5.06 -1.46 -4.12 -4.47
(8-hours period) (7.39) (11.03) (13.05) (3.75)

Mean of Dep. Var. 264.887 249.383 266.739 298.598
SD of Dep. Var. 48.546 48.038 46.300 40.476
Observations 593,472 196,619 324,238 72,564
R-Squared 0.28 0.19 0.22 0.18

Panel B: Verbal Test Score

All Public Voucher Private
(1) (2) (3) (4)

In-Utero Exposure [Last two weeks] -10.24 -17.68** 8.27 -19.11*
(8-hours period) (7.12) (8.93) (11.73) (9.78)

Mean of Dep. Var. 272.177 258.664 273.736 301.812
SD of Dep. Var. 51.854 51.720 50.373 44.934
Observations 593,472 196,619 324,238 72,564
R-Squared 0.19 0.14 0.14 0.09

Fixed Effects
Municipality of birth Y Y Y Y
Year of test Y Y Y Y
School Y Y Y Y
Month×Year Y Y Y Y
Region×Season×Year Y Y Y Y

Notes: Sample consists of students (individual measures) born between 2004 and 2008 taking the exam
at 9, 10, or 11 years old. The independent variable measures exposure to wildfire smoke plumes in 8-
hour intervals. To interpret the estimated coefficients as the effect of an additional full day of exposure
(i.e., 24 hours), the coefficients should be multiplied by 3. Standard errors clustered at the school’s
municipality level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

First, in-utero exposure to wildfires is heavily concentrated in 2008, with a few additional

cases in 2007, but none between 2004 and 2006. This leaves us with a relatively narrow tem-
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poral window for analysis. Second, among students in this sample, the maximum number of

wildfire smoke plumes observed during the two-week pre-birth window is just 2, corresponding

to approximately 16 hours of wildfire smoke exposure, which is less than a full day. And third, as

we explained before, we do not have a precise identification of the municipality of birth of each

students, but only a proxy of it. Therefore, interpreting, for example, the coefficient in Column

2 of Panel B as implying that one additional day (24 hours) of exposure would reduce verbal

scores by 3×17.68 points in public schools may be misleading.

Indeed, Table 5 in the Online Appendix shows that when we expand the exposure window

to include more weeks prior to birth, the estimated coefficients become more imprecise and

in some cases even positive. Taken together, these findings suggest that the two weeks prior to

birth may be a particularly sensitive period for fetal development, consistent with the health-

related results presented earlier, but we must interpret the results with caution. Still, this re-

mains a preliminary insight. There is substantial room for future work to deepen our under-

standing – particularly once data becomes available for later birth cohorts, when wildfire activ-

ity in Chile increased significantly and exposure levels were likely higher and more prolonged.

7 Discussion and Concluding Remarks

In this paper we seek out to gain a better understanding of the broader effects of wildfires

on human well-being in a context of increased severity and frequency of fires due to soil aridity

linked to climate change. Looking at Chile as a case study, we empirically examine tempo-

ral dynamics of wildfire smoke exposure on a range of human capital outcomes. Our results

highlight both clear short run effects on environmental conditions and health outcomes, par-

ticularly among very young individuals, as well as varying longer-term effects on both health

and educational outcomes, suggesting that these initial effects unfold over a substantial period

of time over the life course.

We argue that we make a number of contributions to the literature. The first is to highlight

the utility of rich model-based measures of wildfire exposure in quantifying the environmen-

tal impacts of such wildfire exposure. In applying these methods in the context of Chile we

show that modeled wildfire smoke exposure, as determined from a leading atmospheric model
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(HYSPLIT), is quite different to simple distance-based measures of exposure. The second is

to seek to provide a framework to better understand, and empirical evidence speaking to, the

way which exposure to air pollutants from wildfires maps out over the life course. And a third

contribution is to consider this in a setting which is well-suited to such analysis, with both rich

linked microdata and increasing exposure to wildfires over time, but for relatively understud-

ied geographical region in the empirical literature, which is often based in the US or the global

north.

While our results do point to the existence of important persistent effects on human capital,

we also face a number of limitations, particularly in settings based on longer-term educational

outcomes, where we can only consider impacts on relatively early cohorts exposed to wildfires

smoke while in-utero, given that educational attainment is only observed nearly a decade later.

This is a relevant limitation when considering that more recent cohorts have been exposed to

wildfire seasons with increasing intensity in recent years. And although a broader set of even

longer-term educational outcomes could be explored such as school completion, college en-

rollment, or university admission test scores, such analyses are left for future work. This also

applies to examining other dimensions of wildfire exposure on education, including exposure

at different ages or during later stages of schooling.

Nevertheless, our findings point to the importance of building in the long-term impact on

human well-being to the calculus of the social returns to fire-prevention and suppression pro-

grams, which are becoming a central component of government environmental protection pro-

grams both within and outside of Latin America. They additionally point to the importance of

both early-warning and mitigation systems for wildfire smoke, and suggests that such systems

will be most effective when accounting for groups which are particularly vulnerable and less

capable to adapt to limit their exposure.
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A Appendix Figures and Tables

Table 1: Number of wildfires reported in Chile by season and burned area range

Season < 1 ha 1-10 ha 10-100 ha 100-200 ha 200-500 ha 500-1000 ha > 1000 ha

2004-2005 4457 1766 343 38 28 10 11
2005-2006 3831 1312 218 16 14 4 1
2006-2007 3723 1205 167 16 13 10 10
2007-2008 4706 1869 327 36 26 6 3
2008-2009 4099 1597 369 32 37 11 12
2009-2010 2763 1016 202 25 38 12 13
2010-2011 3339 1311 234 31 24 5 7
2011-2012 3789 1368 285 31 22 6 8
2012-2013 3941 1435 248 15 11 1 0
2013-2014 4246 1615 364 44 37 15 19
2014-2015 5100 2173 617 72 66 28 17
2015-2016 4466 1829 426 27 24 5 7
2016-2017 3178 1490 419 40 58 32 57
2017-2018 3814 1729 468 40 22 6 2
2018-2019 4726 1899 450 51 29 14 14
2019-2020 5274 2127 568 72 48 21 17
2020-2021 5120 1614 311 28 20 5 3
2021-2022 4788 1571 445 45 53 17 28

Table 2: Descriptive statistics of selected wildfires by season (only fires with area affected greater
than 200 ha)

Season N Mean Median Std Min Max P25 P75 Total

2002-2003 34 648.31 345.00 765.16 220.00 3583.00 280.00 676.25 22042.57
2003-2004 48 620.90 424.50 524.18 206.00 2200.00 278.50 657.78 29803.13
2004-2005 45 613.33 420.00 480.01 203.80 2154.00 255.00 800.00 27600.00
2005-2006 14 422.84 325.00 304.07 201.00 1300.00 223.25 465.50 5919.69
2006-2007 32 1025.77 742.23 917.33 200.00 5046.00 450.00 1498.00 32824.10
2007-2008 30 620.08 382.76 855.81 208.50 3740.00 277.50 461.75 18602.31
2008-2009 56 695.15 412.50 788.68 201.00 3975.91 253.75 662.82 38928.58
2009-2010 59 749.44 400.00 808.72 201.00 3500.00 250.00 840.00 44216.96
2010-2011 36 701.43 375.00 811.03 210.00 3891.60 268.75 703.00 25251.47
2011-2012 4 7469.73 2380.13 11757.05 223.00 24895.65 468.25 9381.60 29878.90
2012-2013 12 296.35 270.00 104.14 203.00 523.40 206.75 348.10 3556.20
2013-2014 69 1209.64 482.00 2432.43 202.00 14805.00 300.00 1050.00 83465.09
2014-2015 111 830.21 395.00 1593.80 200.49 13833.00 268.50 618.96 92153.14
2015-2016 35 573.48 353.00 491.89 205.00 2082.10 233.75 746.00 20071.80
2016-2017 144 3792.21 689.50 14402.29 203.00 159812.58 339.50 2280.45 546077.82
2017-2018 28 428.57 296.22 357.18 200.50 2069.00 262.70 478.72 12000.04
2018-2019 56 950.21 504.82 1999.83 207.00 15145.00 302.18 949.95 53211.61
2019-2020 85 796.54 439.20 1642.91 208.96 14987.90 273.76 826.52 67706.08
2020-2021 27 615.65 311.43 751.68 202.89 3420.03 256.79 577.08 16622.42
2021-2022 96 1034.47 445.85 1693.76 203.17 13768.00 253.72 1066.49 99309.45

Note: This table reports descriptive statistics by wildfire season, considering only wildfires with an affected area greater than 200
hectares. Only the wildfires included in the atmospheric trajectory modeling using HYSPLIT are reported here.
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Table 3: Heterogeneous Effects of In-Utero Exposure to Wildfire on Birth Outcomes, by Mother’s
Education Level

Birth Weight Birth Size Gestational Weeks

Mother’s education level: College Secondary Primary College Secondary Primary College Secondary Primary
(1) (2) (3) (4) (5) (6) (7) (8) (9)

In-Utero Exposure [Last two weeks] -0.338 -5.777** -5.924 -0.005 -0.025* -0.049 0.001 -0.024* -0.034
(8-hours period) (3.329) (2.881) (7.672) (0.017) (0.014) (0.049) (0.013) (0.014) (0.033)

Mean of Dep. Var. 3272.339 3330.898 3348.007 49.096 49.328 49.356 38.277 38.526 38.618
Observations 1,045,584 1,881,036 420,547 1,045,562 1,880,783 420,428 1,045,609 1,881,079 420,564
R-Squared 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01

Fixed Effects
Municipality Y Y Y Y Y Y Y Y Y
Calendar Month-of-birth×Year-of-birth Y Y Y Y Y Y Y Y Y
Year-of-birth×Season×Region Y Y Y Y Y Y Y Y Y

Notes: Sample consists of all births (individual measures) between 2005-2018. The independent variable measures exposure to wildfire smoke plumes in

8-hour intervals. To interpret the estimated coefficients as the effect of an additional full day of exposure (i.e., 24 hours), the coefficients should be multiplied

by 3. Standard errors clustered by municipality are displayed in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 4: Heterogeneous Effects of In-Utero Exposure to Wildfire on Lifetime Hospitalizations,
by Mother’s Education Level

Infants (≤ 1 years old) Toddlers (1-3 years old) All ages

Mother’s education level: College Secondary Primary College Secondary Primary College Secondary Primary
(1) (2) (3) (4) (5) (6) (7) (8) (9)

In-Utero Exposure [Last two weeks] -0.008 0.012* 0.020 0.002 0.016*** -0.003 -0.008 0.010 0.017
(8-hours period) (0.006) (0.006) (0.013) (0.005) (0.005) (0.008) (0.007) (0.008) (0.015)

Mean of Dep. Var. 0.332 0.415 0.523 0.215 0.223 0.252 0.646 0.743 0.892
Observations 1,045,630 1,881,172 420,632 1,045,630 1,881,172 420,632 1,045,630 1,881,172 420,632
R-Squared 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.02

Fixed Effects
Municipality Y Y Y Y Y Y Y Y Y
Calendar Month-of-birth×Year-of-birth Y Y Y Y Y Y Y Y Y
Year-of-birth×Season×Region Y Y Y Y Y Y Y Y Y

Notes: Sample consists of all births (individual measures) between 2005-2018. The independent variable measures exposure to wildfire smoke plumes in

8-hour intervals. To interpret the estimated coefficients as the effect of an additional full day of exposure (i.e., 24 hours), the coefficients should be multiplied

by 3. Standard errors clustered by municipality are displayed in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 5: Effects of In-Utero Wildfire Exposure on Standardized Test Scores at 4th grade by Dif-
ferent Weeks of Exposure

Math Test Scores Verbal Test Scores
(1) (2) (3) (4) (5) (6)

Smoke Exposure IU [Last two weeks] -5.06 -10.24
(8-hours period) (7.39) (7.12)
In-Utero Exposure [Last Month] 5.05 5.70
(8-hours period) (4.40) (6.72)
In-Utero Exposure [Third trimester] 1.26 0.40
(8-hours period) (1.70) (1.93)

Mean of Dep. Var. 264.887 264.887 264.887 272.177 272.177 272.177
SD of Dep. Var. 48.546 48.546 48.546 51.854 51.854 51.854
Observations 593,472 593,472 593,472 593,472 593,472 593,472
R-Squared 0.28 0.28 0.28 0.19 0.19 0.19

Fixed Effects
Municipality of birth Y Y Y Y Y Y
Year of test Y Y Y Y Y Y
School Y Y Y Y Y Y
Calendar Month-of-birth × Year-of-birth Y Y Y Y Y Y
Region×Season×Year-of-birth Y Y Y Y Y Y

Notes: Sample consists of students (individual measures) born between 2004 and 2008 taking the exam at 9, 10, or 11
years old. The independent variable measures exposure to wildfire smoke plumes in 8-hour intervals. To interpret
the estimated coefficients as the effect of an additional full day of exposure (i.e., 24 hours), the coefficients should be
multiplied by 3. Standard errors clustered at the school’s municipality level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Figure 1: Total area burned by wildfires per season in Chile (2004-2022).
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Figure 2: Wildfire exposure by municipality – season 2016-2017

Notes: Heat map present the municipal exposures to wildfire smoke during the 2016–2017 season as modelled by
HYSPLIT. A municipality is considered exposed when the particle plume, injected at 500m above the fire origin, lies
within a 500km horizontal radius of the municipality, passes within 5km of its centroid, and remains at or below
100m altitude.
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