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Does educational content respond to technological advances, enabling workers to acquire 

new expertise? We study how digital technology transforms skill acquisition and impacts 

workers’ careers. We construct a novel database of legally binding vocational training 

curricula in Germany over 5 decades, and link curriculum updates to breakthrough 

technologies using Natural Language Processing. Technological change spurs curriculum 

updates, shifting training content toward digital and social skills while reducing routine-

intensive task content, predominantly through new skill emergence. Curriculum updates 

account for two-thirds of deroutinization in vocational skill supply over this period. Using 

administrative employer-employee data and a stacked DiD design, we show curriculum 

updates help workers adapt: new-skilled workers earn higher wages, with increases up to 

5.5\% for technology-exposed occupations. In contrast, older incumbents experience wage 

declines, indicating skill obsolescence. Firms increase capital investments when exposed to 

workers with updated skills, consistent with capital-skill complementarity. These findings 

highlight within-occupation skill supply adjustments’ central role in meeting evolving labor 

market demands.
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1 Introduction

Technological progress is among the most powerful forces shaping skill demands. Digital
technologies raise demand for competencies such as IT and social skills (Deming, 2017;
Cortes et al., 2021; Aghion et al., 2023), while reducing labor demand in routine tasks
through automation (Autor et al., 2003; Acemoglu and Autor, 2011; Goos et al., 2014;
Restrepo, 2024). The canonical race between education and technology emphasizes rising
educational attainment as the primary mechanism through which skill supply adapts—a
force that continues to shape wage inequality (Tinbergen, 1975; Goldin and Katz, 2008;
Acemoglu and Autor, 2011). Yet technological change also transforms which skills matter,
not only how much education workers need. While the literature on the skill demand side
is extensive,1 we know remarkably little about supply-side responses: whether educational
systems adapt their content within programs or occupations to meet evolving skill demands,
and whether such adaptation helps workers acquire relevant expertise. This asymmetry
is striking given that within-occupation task changes—not just compositional shifts across
occupations—account for the majority of aggregate changes in skill demand (Spitz-Oener,
2006; Atalay et al., 2020). Understanding whether and how skill supply adjusts within
occupations through educational content adaptation is therefore essential to understanding
how labor adapts to technological change.

We construct novel data spanning five decades of vocational training curricula in Ger-
many, covering the near universe of formal non-college occupational training. Linking these
data to administrative records over 1975–2018 and measures of technological progress, we
answer three core questions. First, does advancing technology spur curriculum updates? Sec-
ond, how does curriculum content evolve, and how do these within-occupational adjustments
in skill supply compare to between-occupational shifts? Third, do skill updates a!ect work-
ers’ labor market outcomes, improving outcomes for new-skilled labor market entrants while
inducing skill obsolescence among older occupational incumbents? Together, the answers
to these questions address whether educational content adaptation can reinstate workers’
expertise—their capability to perform economically valuable tasks (Autor and Thompson,
2025)— as technology advances.

1This literature considers how technologies such as computers, robotics, or AI reshape skill requirements by
automating some tasks, complementing others, and creating new labor-using ones. Recent examples include
Acemoglu and Restrepo (2019); Webb (2019); Acemoglu et al. (2020); Acemoglu and Restrepo (2022);
Acemoglu et al. (2022); Hémous and Olsen (2022); Kogan et al. (2023); Autor et al. (2024); Bonfiglioli et al.
(2024); Bessen et al. (2025); Hampole et al. (2025).
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Vocational training in Germany is a full-time educational program following high school,
and o!ers an ideal setting for studying these questions. First, the 1969 Vocational Training
Act mandates that virtually all German vocational training is codified in nationally stan-
dardized, legally binding curricula that are regularly updated through an institutionalized
process (discussed in detail in Section 2). This setting allows us to observe comprehensive,
detailed educational content changes over half a century, and to know precisely which skill
vintage individual workers were trained in—which is infeasible in most educational systems
where curriculum decisions are uncodified or decentralized. Second, it covers occupational
skill acquisition for a broad swath of the German labor market: vocationally trained workers
constitute 70% of the German workforce over the period we consider (compared to 12%
with a university degree).2 Vocational training programs prepare workers for a wide range
of jobs in both manufacturing and services, including administrative, logistics, and retail
jobs and various technical occupations in automotive industries, in machine-building and
-operating, and in electrical engineering. Third, vocationally trained workers are concen-
trated in middle-wage occupations that have been most exposed to task automation over the
past decades (Autor et al., 2006; Goos and Manning, 2007; Acemoglu and Autor, 2011; Goos
et al., 2014). By studying these non-college educated workers’ formal skill acquisition, we
examine adaptation mechanisms where they matter most: in occupations where automation
has fundamentally reshaped skill demands.

We employ two main empirical strategies to answer our research questions. First, to iden-
tify the e!ect of technological change on curriculum updates and content, we link vocational
training curricula to lagged patents using Natural Language Processing (NLP) techniques,
following a method pioneered by Seegmiller et al. (2023). To establish a causal connection,
we use breakthrough technologies (Kelly et al., 2021), which reflect discontinuous changes
in the innovation space that are plausibly exogenous to subsequent changes in skill supply.
We also use NLP techniques to analyze and classify skill content embodied in curriculum
updates. Second, to identify the causal e!ect of curriculum updates on individual worker
outcomes, we use a stacked di!erence-in-di!erences (DiD) model that leverages 365 curricu-
lum update events. Our DiD compares worker cohorts with old skills and worker cohorts
with new skills in occupations that experience curriculum changes to corresponding cohorts
in occupations without curriculum changes over the same time window. This identification
strategy rests on the discontinuity of the skill supply change. Potentially confounding fac-

2Averages over 1975–2021, based on the Sample of Integrated Labor Market Biographies (SIAB).
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tors such as changing skill demand plausibly evolve more smoothly over time, and we also
show models controlling for each curriculum’s underlying technology exposure. We also es-
timate DiD models (using curriculum updates, as before) to study skill obsolescence among
occupational incumbents, and capital investment responses among firms.

We establish four sets of findings. First, technological advances spur curriculum updates:
occupations more exposed to digital technology update their training content more frequently
and more rapidly. A standard deviation increase in technology exposure raises the annual
curriculum update probability by 1.24 percentage points—a 33% increase relative to the
3.8% average annual probability of curriculum updates.

Second, curriculum updates have brought about substantial shifts in training content over
the past five decades. Digital and social skills have increased while routine task intensity
has strongly declined—especially among technology-exposed occupations— predominantly
through new skill emergence rather than skill removal. This indicates workers acquire new
expertise in tasks complementary to advancing technology. This adjustment margin is quan-
titatively important: within-occupation skill adjustments account for two-thirds of aggregate
vocational skill supply changes in routine task content.

Third, curriculum updates generate sizable wage returns for new-skilled workers. Using
administrative employer-employee data, we show that labor market entrants trained under
updated curricula on average earn 3.3% higher wages than those trained under outdated cur-
ricula in the same occupation, relative to occupations without curriculum updates. Returns
reach 5.5% for technology-intensive curriculum updates, and reflect absolute improvements—
faster wage growth for new-skilled cohorts, not deterioration for controls. Workers with up-
dated skills also stay in their trained occupations at higher rates, and move to higher-paying
firms. These e!ects are not driven by changes in trainee composition, and remain when
controlling for the prior curriculum’s technology exposure.

Our final set of results considers the consequences of new skill supply for the value of
pre-update skills and firm capital investments. Skill updates have heterogeneous e!ects on
incumbent workers. The oldest incumbent workers (ages 55–65) experience wage declines
of up to 9.7% when new-skilled workers enter their occupation (partly by moving to lower-
paying firms), consistent with skill obsolescence. Younger incumbents do not experience wage
declines but respond by switching occupations more frequently. We also show that firms
exposed to workers trained in updated curricula increase capital investments, especially for
technology-intensive curriculum updates, in line with enhanced capital-skill complementarity
for workers with new skills.
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Our study contributes to several economic literatures. A first considers how technol-
ogy shapes the long-run evolution of skill demands, occupational structure, and wages (e.g.,
Goldin and Margo 1992; Katz and Murphy 1992; Acemoglu 1998; Autor et al. 1998; Katz and
Autor 1999; Krusell et al. 2000; Card and Lemieux 2001; Goldin and Katz 2008; Autor et al.
2020; Acemoglu and Autor 2011; Acemoglu and Restrepo 2018, 2019; Autor et al. 2024). A
key insight of this literature is that technological advances change the skills demanded in
the labor market, both by displacing labor from existing tasks through automation and by
complementing labor in existing tasks and creating new labor-using ones. We contribute to
this literature by providing the first systematic and long-run evidence of how skill supply
adapts to technological advances through educational content—not just educational attain-
ment. We demonstrate that these within-occupation skill supply adjustments help reinstate
the relevance of workers’ expertise: they are quantitatively important, predominantly driven
by the addition of new skills, and causally linked to improved worker outcomes for those
with updated skills.

Second, we contribute to a literature studying within-occupational task change. This
literature documents the importance of within-occupation task changes in accounting for
aggregate changes in skill demands (Spitz-Oener, 2006; Atack et al., 2019) including new
task emergence within occupations (Lin, 2011; Autor et al., 2024), and has developed mul-
tidimensional measures of occupation-level human capital using job vacancies and task de-
scriptions (Atalay et al., 2020; Deming and Noray, 2020; Acemoglu et al., 2022; Deming,
2023). Distinct from this demand-side approach, we develop multidimensional measures of
human capital on the labor supply side, and establish technological change as a driver of
within-occupational skill supply adjustments. Our analysis also illuminates the supply-side
mechanisms that enable workers to acquire expertise for the new occupational tasks emerging
on the demand side. Mirroring the literature’s finding that within-occupation task changes
account for the majority of aggregate task demand shifts, we show within-occupation skill
adjustments account for the majority of aggregate supply changes.

Third, our work relates to a literature on skill obsolescence in the context of technological
change (Neuman and Weiss, 1995; MacDonald and Weisbach, 2004; Janssen and Mohren-
weiser, 2018; Deming and Noray, 2020; Fillmore and Hall, 2021; Kogan et al., 2023). Most
closely related within this literature is Janssen and Mohrenweiser (2018), who pioneer a
case study of a German vocational curriculum update for a single occupation in response
to Computerized Numerically Controlled (CNC) machinery adoption. They show that this
curriculum update deteriorated labor market outcomes for incumbent workers in the occu-
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pation, indicating skill obsolescence. We contribute by analyzing curriculum changes for the
near-universe of vocational training occupations in Germany over the past five decades and
all (patented) technology these occupations are exposed to, and by identifying the causal
e!ect of technological change on educational content. Relative to the broader skill obso-
lescence literature, we make two additional contributions. First, we identify several hun-
dred specific educational updates and their skill content allowing us to directly observe
obsolescence-causing events, and second, beyond studying skill obsolescence among (occu-
pational) incumbents, we identify the gains to workers with updated skills. The emergence
of new valuable expertise does not necessarily follow from skill obsolescence. Just as task
displacement can occur without new task creation, incumbent workers’ skills may become
obsolete without corresponding benefits to new cohorts of workers, for example if workers’
previous expertise is now embodied in technology and therefore no longer scarce.

Fourth, we contribute to an emerging literature on educational content change. Recent
work examines how educational programs respond to shifting labor and student demand
(Conzelmann et al., 2023; Light, 2024) and how demand for college programs responds to
regional robot exposure (Di Giacomo and Lerch, 2023). Within higher education, Boustan
et al. (2022) document that universities introduce more CNC-related degree programs fol-
lowing the adoption of this technology, while Biasi and Ma (2023) show that larger gaps
between university curricula and the academic knowledge frontier are associated with worse
student outcomes. At earlier stages of education, Hermo et al. (2022) document a shift in
Swedish primary school curricula from factual knowledge toward reasoning skills. A related
broader literature analyzes the content of European vocational curricula by cataloging cur-
riculum skills and their relationship with wages (Eggenberger et al., 2017, 2018; Rupietta and
Backes-Gellner, 2019; Kiener et al., 2022, 2023; Langer and Wiederhold, 2023; Schultheiss
and Backes-Gellner, 2024; Buehler et al., 2025; Cnossen et al., 2025). We contribute to these
literatures by studying how exposure to new technologies a!ects curriculum content over
five decades, and by identifying the causal impacts on worker outcomes — enabled by our
comprehensive data on curriculum updates.

The remainder of this paper is structured as follows. The next section describes our data
and measurement. Section 3 tests whether technological advances spur curriculum change,
and documents the skill content of curriculum updates. Section 4 examines the labor market
impacts of vocational training updates for individual workers (separately for new-skilled
entrants in Section 4.2 and occupational incumbents in Section 4.3), and studies impacts on
firm investments (Section 4.4). Section 5 concludes.
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2 Data and measurement

We rely on three main data sources. The first two are training curricula and patent texts,
which we link using Natural Language Processing (NLP) techniques. We describe these data
sources below. The third comprises administrative data on firms and their workers, which
we describe in Section 4, where we turn to the labor market impacts of curriculum updates.

2.1 Training occupations and training curricula

Institutional setting. In Germany, vocational training typically combines classroom school-
ing (1–2 days weekly) with on-the-job training at a firm (3–4 days weekly), known as the dual
system. This full-time training is usually undertaken after high school and typically lasts
three years, with a minority of apprenticeships taking two years or three and a half years.
An external board of examiners—comprising equal parts representatives from employer asso-
ciations, employee associations, and vocational school teachers— administers both the final
written and practical exams, not the training company itself. Following the 1969 Vocational
Training Act (Bundestag, 1969), virtually all dual training is codified in state-approved and
nationally standardized training curricula, which are regularly revised through a well-defined
and institutionalized process.3 Employers (through individual firms, employer associations,
or professional organizations called Kammern), employees (through labor unions), or the
Federal Institute for Vocational Education and Training (Bundesinstitut für Berufsbildung,
BIBB) can initiate updates to training curricula.4 The parties involved have agreed to
limit the duration of the process to approximately one year (Bundesinstitut für Berufsbil-
dung, 2023), and another six months until legal enactment. Curriculum updates thus arrive
around 1.5 years after o”cial initiation. For some updates, firms receive grace periods before
they must comply with the new curriculum, while the majority of curricula take e!ect at
the start of the next training year.5

3Vocational training at vocational schools only, including training in health, education and social services, and
vocational training to become a civil servant are not delivered in the dual system subject to the Vocational
Training Act and therefore not included in our analyses. Overall, approximately 70% of all vocational
trainees are trained within the dual system subject to the Vocational Training Act (BIBB, 2020).

4Curricula for the part of the dual training taught in vocational schools are developed in close coordination
with the on-the-job training curricula that we study, and therefore arguably feature closely corresponding
changes (Kultusministerkonferenz, 2021).

5In our data, 33 curriculum updates, i.e. 7% of observed updates, are granted a grace period of on average 15
months. For example, the new curriculum for Industrial metal occupations took e!ect in August 1987, but
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While this institutional setting uniquely allows us to observe curriculum content and its
updates comprehensively over 50 years (as well individual workers’ skill vintage), changes in
educational content are a common feature of education systems worldwide, enhancing the
external relevance of our findings: in Appendix C we use U.S. Classification of Instructional
Programs (CIP) data to document widespread emergence of new degree programs over the
past three decades.

Sample construction. Our analysis focuses on occupations with observed vocational train-
ing curricula (‘training occupations’).6 We build a training occupation by year panel over
1971–2021 containing training occupations with their occupation classification code and in-
dicators of curriculum content and changes therein. The panel is unbalanced as training
occupations only enter once the first post-1969 curriculum is observed and need not exist
over the entire time interval.

To obtain training curricula and their changes, we proceed in three steps. First, we
collect vocational training curricula in Germany by web-scraping the archives of the Federal
Law Gazette.7 These exist from 1971 onward, and specify the obligations and rights of
both trainees and trainers for most dual vocational training programs. In total, we obtain
756 unique training curricula, characterizing 492 training occupations, defined as unique
occupation titles.8

The Vocational Training Act requires that all training curricula include five elements:
(1) the title of the training occupation, (2) the duration of the training, (3) the skills and
knowledge to be acquired during the program, (4) a plan outlining the sequence and descrip-
tion of these skills and knowledge in great detail (called the training framework curriculum),
and (5) the requirements for passing the final examination. The curriculum text is very
elaborate, averaging 11.1 pages. We machine-translate curricula from German to English.9

Second, we match these curricula to a separate database containing entries for all curricu-

apprenticeships that began before December 1989 were still allowed to follow the old curriculum. Similarly,
for the updated curriculum of Process mechanic for coating technology, which took e!ect in August 1999,
a grace period was granted until December 1999.

6While not all workers employed in these occupations hold a vocational training diploma, on average 78%
do. Averages over 1975–2021, based on the SIAB.

7Bundesgesetzblatt, archives available online at https://www.bgbl.de/.
8Several documents contain training programs for more than one occupation: we split these to obtain separate
occupational curricula.

9We use GoogleTranslator from the Python package deep translator.

7

https://www.bgbl.de/


lum changes (‘Index of Recognized Training Occupations’, or Verzeichnis der Anerkannten
Ausbildungsberufe) based on training occupation title and year of issue. This allows us to
link preceding training occupations to current and future training occupations when occu-
pational titles changes. We match the large majority of data: for 48 curriculum changes
mentioned in the registers, we do not observe the curriculum text; and 28 scraped curricula
cannot be matched to the register containing recognized training occupations.

Third, we match training occupation title to o”cial occupation codes from the 2010
German classification system (Klassifikation der Berufe, KldB) at the 4-digit level using a
crosswalk provided by the BIBB (Lohmüller, 2021).10 The 492 training occupations link to
237 distinct KldB occupations (henceforth: occupations).11

Indicators of curriculum updates. We derive di!erent indicators on curriculum content
and changes at the training occupation by year level. Our baseline indicator is a binary
variable equal to 1 if the training curriculum was changed in a given year, and 0 otherwise.
We further categorize these curriculum updates into four types: updates in curriculum con-
tent without changes in the number or names of training occupations; updates in curriculum
content accompanied by a change in the name of the training occupation; updates in cur-
riculum content accompanied by the aggregation of multiple training occupations into one;
and updates in curriculum content accompanied by the segregation of a training occupation
into several distinct programs.12 We additionally characterize the skill content of curriculum
changes by analyzing changes in textual descriptions, as described in Section 3.2.

Labor market context. To contextualize these jobs in the broader German labor mar-

10The assignment of training occupations to KldB occupations is not always one to one. For the analyses in
Section 3 this is not an issue as analyses are at the level of training occupations and KldB occupations are
only used for fixed e!ects or clustering of standard errors. Here, when one training occupation is linked
to multiple KldB occupations, we assign the KldB occupation that is assigned to the training occupation
without specialization (ohne Fachrichtung or Monoberuf ). For later analyses at the KldB occupation level,
we employ a di!erent approach, discussed in Section 4.

11The number is lower for two reasons. First, whenever a training occupation receives a new occupation title,
we classify it as a new training occupation while the time-consistent KldB occupation does not change.
Second, the match between training and occupations is not unambiguous such that in some cases, one
KldB occupation covers multiple training occupations.

12The total number of updates is equal to the sum of content-only and other updates, but these other
categories are not mutually exclusive: a training occupation may be split into several successors, each
of which is an aggregation of multiple predecessors. Likewise, both aggregations and segregations may
be accompanied by changes in the name of the training occupation. Hence, the sum of the number of
content-only updates and those accompanied by renamings, aggregations, or segregations exceeds the total
number of changes.
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ket, Figure 1 shows separate boxplots of wages for training occupations and for all other
occupations. The median real training occupation wage is around 100 euros daily, slightly
below the 114 euros observed in other jobs. While daily wages in training occupations vary
meaningfully, with an interquartile range of 83 to 110 euros; the interquartile range for other
jobs is significantly wider, at 94 to 172 euros. This highlights that training occupations are
middle- to low-paid jobs compared to other occupations in the German economy.13 Col-
lective bargaining coverage in Germany in Germany is below 40% (2018), lower than some
other European countries like France or Italy, where it is closer to universal (Jäger et al.,
2025).

Table 1 lists the ten largest training occupations in our sample, based on employment
counts. This includes O”ce clerks and secretaries, which have 10.6% share in total employ-
ment on average over 1975–2021; Occupations in warehousing and logistics; Occupations
in machine-building and -operating; Retail sales occupations; Professional drivers (cargo
trucks); and Technical occupations in automotive industries, which each have 3 to 4% em-
ployment share. While daily gross real wages vary between 151 euros for Occupations in
electrical engineering and 71 euros for Retail sales occupations, nine out of ten of these occu-
pations have experienced decreasing employment shares, with the strongest decline observed
for O”ce clerks and secretaries (6 percentage points over 1975–2021), consistent with job
polarization patterns documented for Germany (Goos et al., 2014).

2.2 Descriptives on training curriculum updates

To illustrate the nature of training curricula and their updates, Figures 2 through 5 show
machine-translated excerpts of training curricula for two occupations, Process control elec-
tronics technicians (from the 1992 curriculum and its 2003 update) and Industrial clerks
(from the 1978 curriculum and its 2002 update). These examples highlight both the detailed
nature of these curricula and substantive changes over time.

Figure 2 shows that in 1992, Process control electronics technician apprentices had to
learn to manufacture mechanical parts and make mechanical connections. Each of these
skills is specified in further detail, where one part of the latter is “making connections using
screws, nuts and washers and secure them with safety elements, in particular spring washers,
toothed lock washers and paint”. Figure 3 shows excerpts illustrating changes in the 2003

13Appendix Figure A1 presents the wage distributions of vocationally trained workers and for all other
workers, showing the same pattern.
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update. Apprentices in the same training occupation (now named Electronics technician for
automation technology) must learn to install and configure IT systems and advise and sup-
port customers. The former is further detailed as, among other things, “selecting hardware
and software components”, “installing and configuring operating systems and applications”,
and “integrating IT systems into networks”. Further, “solving problems in a team” is now
mentioned among operational and technical communication skills.

Industrial clerk training similarly shows important changes in its 2002 curriculum (Fig-
ure 5) relative to its 1978 version (Figure 4). In 1978, purchasing skills are described as
“compiling, evaluating and supplementing purchasing documents”, “processing o!ers”, and
“processing orders”. In the 2002 update, specific reference is made to electronic procurement
and electronic commerce; as well as using “standard software and company-specific software”
and “entering data and information”. There is also emphasis on teamwork, planning, and
organization.

Table 2 provides descriptives on training curriculum changes over 1971–2021. Panel
A shows unweighted results. 3.8% of the 11,843 training occupation-year observations
have experienced a curriculum update, with the majority only involving a content update
(0.021/0.038 → 100 = 55%). 39% of updates additionally involve a renaming of the training
occupation. Around a quarter of changes are accompanied by aggregations of preexisting
training occupations. Only 33 training curricula involve occupational segregations, compris-
ing 8% of all curriculum updates. Employment-weighted patterns in panel B are similar,
but the annual curriculum update probability is 5.1% (compared to 3.8% in the unweighted
data), reflecting that larger training occupations are more likely to receive updates.

Panel A of Figure 6 shows the total number of curriculum updates over time, i.e. the num-
ber of new curricula conditional on observing the training occupation’s preceding curriculum,
using five-year moving averages. There is a strong rise in curriculum change since the early
1990s, peaking around 2004 when 22 curricula were updated (corresponding to around 7%
of training occupations at the time). This increase in curriculum change partly reflects the
rising number of observed preceding curricula, as seen in panel B. In our analyses, we do
not exploit this time series variation because it may also capture changing time investments
in curriculum updating for administrative reasons: instead, we leverage the distribution of
changes across training occupations within a given year.

Table 3 shows the most and least frequently updated training occupations in our data,
as measured by the average number of curriculum changes within that occupation per year.
Examples of occupations with frequent curriculum updates are Flexographers, Electron-
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ics technicians for automation technology, Industrial mechanics, Electricians, Retail clerks,
Automobile mechanics, and Electronics technicians for aeronautical systems. By contrast,
among occupations that updated at some point, the least frequently updated ones include
Gardeners, Manufactured porcelain painter, Foundation engineering specialists, Civil engi-
neers, Road builders, and Asphalt builders. Several occupations experience no curriculum
change over our time window, including Brass instrument makers, Delivery drivers, Floor
layers, Gilders, Glass blowers, Hotel clerks, Makeup artists, and Stage painters and sculptors.

Figure 7 characterizes the full distribution of curriculum update intervals. Panel A high-
lights substantial variation across curricula: some are updated within a few years, while
others remain unchanged for two or more decades. On average, curricula are updated after
15.3 years, as seen from the bottom row of Panel A in Table 2. The distribution of curricu-
lum change intervals varies substantially across broad occupation groups, shown in panel B
of Figure 7: the curricula for IT and scientific service occupations (comprising 5.7% of all
curricula) are updated with the highest regularity, followed by Business service occupations
(comprising 8.8% of all curricula), Production occupations (comprising 64.6% of all curric-
ula), and Other commercial service occupations (comprising 12% of all curricula). Personal
service occupations (comprising 9.0% of all curricula) receive the least frequent updates on
average, though there is substantial variation within each of the five broad groups.

2.3 Measuring technology exposure

We use U.S. utility patents as a measure of the flow of technological innovation, following
a large literature (e.g. see Griliches 1981; Ja!e et al. 1993; Hall et al. 2001): patents are
a detailed measure of the flow of technological innovation, though they do not capture all
innovations, such as those less suited to protection as intellectual property.

Rather than using all U.S. utility patents, we focus on the subset which Kelly et al. (2021)
classify as technological breakthroughs.14 These breakthroughs are both novel (i.e. distinct
from previous patents) and influential for subsequent innovation (i.e. similar to later patents),
operationalized as the top 10% of patents by year in terms of forward-to-backward tex-
tual similarity. We lag breakthroughs by 20–25 years relative to our 1971–2021 curriculum
data, considering technological breakthroughs occurring over 1946–2001 (following Autor

14Major technologies are patented in both the U.S. and in Germany: we use U.S. patents to leverage Kelly
et al. (2021)’s established classification of technological breakthroughs. From 1976 onward, we observe the
nationality of inventors in PatentsView: 2.7% of U.S. breakthrough patents are held by German inventors.
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et al. (2024) who use the same lag length for measuring exposure of occupational content to
breakthrough patents).

Using lagged breakthroughs rather than all patents serves two purposes. First, break-
throughs are the most transformative technologies (Kelly et al., 2021), and therefore likely
important for workers. This should increase signal in our technology measure. Second,
identifying the impact of innovation on curriculum updates requires exogenous technological
shifts. Reverse causality is a concern: new technology could emerge in response to contempo-
raneous shifts in skill supply as reflected by curriculum change. Moreover, contemporaneous
demand shifts could drive both innovation and changes in skill supply, introducing simul-
taneity bias. Using technological breakthroughs helps address these concerns because they
represent unexpected and discontinuous changes in innovation while being predictive of sub-
sequent patenting flows (see Autor et al. (2024) who developed this identification strategy
and provide supporting evidence). Lagging breakthroughs by twenty years also allows for
a delay between patenting these novel technologies and subsequent follow-on innovation as
well as implementation in the workplace. We explore the lag structure using local projections
(Jordà, 2005) below.

In our baseline models, we focus on digital technologies, though we show robustness
using breakthrough patenting activity across all technology classes. Figure 8 shows the
distribution of breakthrough patents across eleven broad technology classes as defined by
Kelly et al. (2021) over time. The technology class “Instruments & Information”, capturing
digital technologies, has seen the largest expansion of breakthrough patenting over 1946–
2021.15 Towards the end of the period, these technologies comprise the majority of all
patenting (Autor et al., 2024), reflecting the Digital Revolution.

Linking curricula to patents. We measure each training occupation’s technology exposure
by linking each curriculum in year t to the textual content of breakthrough patents emerging
over [t↑25; t↑20]. We use the entire text of both machine-translated training curricula and
patents.16 We follow Seegmiller et al. (2023)’s linking method and first retain verbs and nouns
excluding standard stopwords plus a small number of source-specific stopwords to compute
Term-Frequency Inverse-Document-Frequency (TD-IDF) weighted averages of pre-trained
word embedding vectors provided by Pennington et al. (2014). We then obtain the cosine

152.1% of U.S. digital breakthrough patents since 1976 are held by German inventors.
16Patent texts are obtained from Autor et al. (2024). Appendix Table B1 shows the number of tokens

contained in curriculum texts used for matching to patent texts—the average curriculum has 34,374 tokens.
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similarity between every patent-curriculum pair, and normalize these similarity scores by
subtracting the median similarity for each patent (as in Autor et al. 2024) to avoid assigning
low similarities to patents using more technical language. Appendix Table B2 shows the
most similar digital breakthrough patent for several example curricula, revealing sensible
linkages. For example, “Self-gauging sensor assembly” (a sensor assembly for generating
signals in response to the rotation of a body) is the most similar patent for the curriculum
of Body and vehicle builders; “Process for making a prosthetic implant” is the most similar
patent for the curriculum of Dental technicians; and “Computer travel planning system”
is the most similar patent for the curriculum of Travel agents. Finally, we retain the 15%
most similar patent-curriculum pairs, and sum them for each curriculum: the resulting
occupational patent count is our measure of technology exposure. We perform this procedure
separately for all patents and for the subset of digital patents, where the latter measure is
our baseline.

Variation in technology exposure. Training occupations vary widely in their exposure
to technological change embedded in patents, as illustrated by the distribution of linked
digital breakthrough patents across occupations in panel A of Figure 9. We will exploit this
occupational variation in technology exposure within years to study technology’s impact on
educational content of training curricula. Panel B of this figure reports the number of linked
patents separately for each of the five broad occupation groups. Technology exposure is
highest for IT and scientific service occupations, followed by Production occupations, and
lower for Other commercial service occupations, Business service occupations occupations,
and Personal service occupations.

Appendix Figure A2 highlights that overall and digital technology exposure are strongly
positively correlated in both halves of our 50-year period. Examples of highly exposed jobs for
both digital and overall technology are Electrical machine builders, Mechanical engineering
mechanics, and Body and vehicle builders. Least exposed on both dimensions are Funeral
workers, Housekeepers, Clothes tailors, and Barbers. However, there are some di!erences,
with for example Industrial clerks, Photographers, and Film and video editors more exposed
to digital than overall technology; and the reverse being true for Glassmakers, Distillers, and
Orthopedic technology mechanics.

Table 4 provides further examples of the most and least digital technology-exposed train-
ing curricula in our data. Highly exposed curricula include various types of Electronics
technicians (for machines and drive technology, for industrial engineering, for devices and
systems, for building and infrastructure systems, for information and system technology, and
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for automation technology), Industrial mechanics, Cutting machine operators, Plant me-
chanics, and Tool mechanics. Jobs with low exposure to digital technology include various
service occupations such as Factory firemen, Ice cream specialists, and Bespoke shoemakers,
as well as production occupations like Leather production and tanning technology specialists,
Candle and wax makers, Confectionery technologists, Wine technologists, and Concrete and
terrazzo manufacturers. Appendix Table B4 shows the most and least exposed occupations
separately for each of the five broad occupational groups. For example, for business service
occupations, Media designers are among the most exposed while Pharmaceutical clerks are
among the least exposed.

3 Does technology exposure spur curriculum change?

This section examines whether technology exposure spurs curriculum change. We first ana-
lyze whether occupations exposed to breakthrough digital technologies update their training
curricula more frequently (Section 3.1). We then examine the skill content of these updates
(Section 3.2). Section 4 turns to labor market outcomes.

3.1 Technology exposure and curriculum updates

Overall update probability. Figure 10 presents a Kaplan and Meier (1958) survival
plot of curricula that update during our observation window, separately for high- and low-
technology exposed curricula. “Survival” means the curriculum has not yet been updated.
The figure shows that high-technology exposed curricula update more rapidly: 15 years after
initial observation, around 70% of curricula with low technology exposure (below-median)
remain unchanged, compared to only 40% for those with high technology exposure (at-
or above-median exposure). While this approach accounts for right-censoring, it does not
control for other factors.

We thus estimate whether digital technology exposure spurs curriculum updates using
the annual panel of training occupations:

1(Update)kjt = ωTechkj,[t→25;t→20] + εt + ϑkj,ω + ϖJ(↑t) + ϱ
Ejt0
Et0

+ ςkjt , (1)

where k indexes curricula, j training occupations, t calendar years, and φ the first year a cur-
riculum is observed. The dependent variable equals one when training occupation j updates
its curriculum k in year t, and zero otherwise. Our key independent variable, Techkj,[t→25;t→20],
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measures the digital technology exposure of each training occupation’s curriculum k through
the log count of textually linked digital breakthrough patents in a five-year window 20 years
prior.

We include calendar year fixed e!ects (εt) to absorb year-specific variation in both cur-
riculum updates (for example for institutional reasons) and patent linkages (since patent
counts grow over time). We control for each training occupations’ curriculum inception year
(ϑkj,ω ) in five year bins, since training occupations enter the data at di!erent points in time.
Some specifications add broad occupation fixed e!ects or broad occupation by year fixed
e!ects (ϖJ(↑t)). We also control for occupations’ initial 1975 employment share (Ejt0

Et0
) to ad-

dress concerns that larger occupations receive more frequent curriculum updates.17 Standard
errors are clustered by occupation (236 clusters). We expect ω > 0, reflecting that train-
ing occupations that are more exposed to digital technology are more likely to experience a
curriculum update.

Table 5 presents results, with panel A showing unweighted models and panel B models
weighted by initial occupational employment shares. Across all specifications, we find that
technology exposure spurs curriculum updates: a doubling in the exposure increases the
probability that a curriculum is updated by 0.44–0.51 percentage points in the unweighted
models, and 0.79–0.84 percentage points in the ones weighted by occupational employment.
These estimates remain stable when controlling for broad occupation fixed e!ects (column 2)
and broad occupation by year fixed e!ects (column 3), confirming that technology exposure
drives curriculum updates within occupation groups. Results are also robust to controlling
for occupational employment size (column 4).

These e!ects are economically meaningful. As reported in Appendix Table B3, digital
technology exposure has a standard deviation of 2.58 in our unweighted panel. A one stan-
dard deviation increase in exposure therefore raises the annual curriculum update probability
by 1.26 percentage points (0.49 → 2.58, column 4)— a 33% increase relative to the baseline
update rate of 3.8% (shown in Table 2). Employment-weighted models yield somewhat larger
e!ects: a one-standard-deviation increase raises the update probability by 2.14 percentage
points (0.82 → 2.61, column 4), a 42% increase relative to the weighted baseline of 5.1%.18

17These occupations are not exactly one-to-one with training occupations as outlined in footnote 10.
18Results are also robust to restricting these models to occupations which are updated at least once; and

to excluding potentially ‘dying’ occupations, defined as those with a reduction in the number of training
contracts by more than half over time.
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Intensive margin: speed of updates. We complement the annual panel analysis with
a cross-sectional approach examining the duration until curricula are updated. Using each
curriculum’s first observation, we estimate:

Years until updatekj(ω)|{1(Update)kj = 1} = ωTechkj,[ω→25;ω→20]+ϑkj,ω +ϖJ +ϱ
Ejt0
Et0

+ςkj(ω) (2)

where k indexes curricula, j training occupations, and φ the first year a curriculum is ob-
served. The dependent variable measures years until a curriculum update occurs, conditional
on an update being observed.19 The independent variable of interest is each curriculum’s
initial technology exposure, defined as before. We control for curriculum inception year in
five year bins (ϑkj,ω ) and, in some specifications, broad occupation fixed e!ects (ϖJ) and ini-
tial occupational employment size (Ejt0

Et0
). This specification examines the intensive margin

only: given that a curriculum is updated, does technology exposure accelerate the update?
Here, we expect ω < 0, reflecting that technology-exposed occupations are updated more
rapidly.

Table 6 shows that technology-exposed occupations update more rapidly. Doubling tech-
nology exposure accelerates updates by approximately 8 months (= ↑0.63 → 12 months,
column 3 of panel A). A one standard deviation increase in technology exposure of 2.58
reduces time to update by 1.6 years, or 11% relative to the mean duration of 15.3 years
(reported in Table 2). Results hold in both unweighted (panel A) and employment-weighted
models (panel B), and remain robust to controlling for broad occupation fixed e!ects and
occupational employment size. Technology exposure thus a!ects both the extensive margin
(whether curricula update) and intensive margin (how quickly they update), though the
extensive margin e!ect is quantitatively more important.

Robustness checks. Our findings are robust to changes in how technology exposure is
constructed. First, results are similar when only using the exam section of curricula to
construct patent links— the high-stakes component describing skills subject to examination.
Estimates are smaller and less precise, as expected given that exam sections constitute only
11% of curriculum text (see Appendix Table B1). Nonetheless, curricula with exam content
more exposed to digital technology update more frequently (Appendix Table B7) and more
rapidly (Appendix Table B8). Second, Appendix Table B9 demonstrates that our results

19For curricula merging into more than one training occupation in di!erent years, we use the time until the
earliest change.
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hold when measuring technology exposure using all breakthrough patents rather than only
digital patents, though estimates are somewhat smaller. This confirms that exposure to
digital technology has particularly strong impacts on curriculum updates over this period,
and that exposure to other technologies does not o!set this e!ect. Third, our findings are
una!ected by removing the small share of patents held by German inventors.

Types of curriculum updates. Table 7 examines which types of curriculum change
drive our results. We separately analyze curriculum updates that occur (A) without any
occupational renaming, aggregation, or segregation; and those accompanied by (B) renaming,
(C) aggregation, or (D) segregation.20 We recode updates distinct from the type considered
as 0, to disaggregate the total e!ect on updates found in panel A of Table 5. Content-
only updates— those involving no occupational changes— account for half the total e!ect
of digital technology exposure on curriculum updates (0.25 in panel A, column 4, versus
0.49 in Table 5’s panel A). The remaining three update types jointly contribute the other
half. Technology exposure significantly predicts each update type individually, including in
specifications with the full set of controls. Appendix Table B10 shows similar results when
weighting models by occupational employment shares.

Timing of technology e!ects. To explore the time lag between breakthrough technology
exposure and curriculum updates, we use local projections (Jordà, 2005). We estimate how
technology exposure a!ects curriculum updates over expanding time horizons T :

1(Update)kj[t+T ] = ωTechk,[t→5;t] + ↼Techkj,[t→5;t→10] + εt + ϑkj,ω + ϱ
Ejt0
Et0

+ ϖJ↑t + ςkjt (3)

The coe”cient ω captures how initial technology exposure in years [t ↑ 5; t] a!ects updates
T years later. We control for lagged technology exposure (Techkj,[t→5;t→10]) to address se-
rial correlation in technology exposure, along with year fixed e!ects (εt), initial curriculum
year fixed e!ects (ϑkj,ω ), and—in the most saturated specification— initial occupational em-
ployment size (Ejt0

Et0
) and broad occupation by year fixed e!ects (ϖJ↑t). Standard errors are

clustered by occupation.
Figure 11 plots the estimated ω coe”cients for separate regressions with increasing T

(blue series). Technology exposure has a minimal immediate e!ect on curriculum updates:

20As noted in Section 2, renamings can co-occur with aggregations and/or segregations: around 85% of
aggregations or segregations involve occupational renaming. Aggregations and segregations may also co-
occur.
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coe”cients remain near zero for the first 15 years following technology exposure. From
then on, coe”cients increase and become statistically significant around the 20-year mark,
and remain higher for several years before declining mostly through year 25. This pattern
holds qualitatively in the saturated model (orange series), though estimates are noisier.
These findings validate our choice of a 20-year lag when measuring breakthrough technology
exposure.

3.2 Changes in curriculum content

Having established that technology exposure drives curriculum updates, we now examine
how training content evolves. We expect curricula to evolve towards tasks and skills com-
plementary to digital technology, specifically, increased use of digital technologies and social
skills, reduced routine task content, and greater task complexity. We also decompose cur-
riculum changes into newly added versus removed terms, to distinguish between curricula
where new skills have been added and those where the skill set has dwindled.

3.2.1 Skill content change

We estimate descriptive models to study changes in skill content:

skillkjt|{1(Update)kj} = ωt + ϱj + ςkjt , (4)

where skillkjt is a skill measure of curriculum k for training occupation j in year t. The
coe”cient ω on the linear time trend captures the average annual change in skill content
(in standard deviations) across curricula. Since content changes occur by definition at the
intensive margin, we estimate equation (4) for updated curricula only— those that have
potentially changed their skill content. We include 4-digit occupation fixed e!ects ϱj to
account for changing occupational composition over time,21 and cluster standard errors by
4-digit occupation. This requires dropping the first five years of data (when we do not
observe any curriculum updates), yielding a sample covering 1976–2021.

We also estimate equation (4) separately for training occupations with above-median
versus at or below-median technology exposure, measured in the year each curriculum was
first observed to avoid including endogenous changes in curriculum content. We expect ω to

21This results from the growing number of curricula, see panel B of Figure 6.
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be positive, and larger for highly technology-exposed occupations.

Digital technology and social skills. We first examine the emergence of keywords related
to digital technology and to social skills in vocational training curricula. Increased digital
keyword prevalence in curricula would further validate the technology’s role in driving cur-
riculum updates and indicate that workers are being trained to work with these technologies.
Social skills are particularly complementary to digital technology (Deming, 2017): we there-
fore expect rising social skill importance in curricula, especially when they are highly exposed
to technology.

For digital technology use, we consider words containing “digital”, “software”, “com-
puter”, “ICT”, “online” or “automat” (capturing automate, automation, et cetera). For
social skills, we use words containing “team”, “collaborat” (capturing collaborate, collabo-
ration, et cetera), or “negotiat” (capturing negotiate, negotiation, et cetera). Results are
robust to using narrower keyword sets. Descriptives are reported in Appendix Table B5.
We estimate equation (4) with the occurrence of these digital or social keywords as the
dependent variable, among updated curricula.

Figure 12 presents the results. The first row shows the average annual change in digital
technology use over time (controlling for 4-digit occupation fixed e!ects as before). The three
panels on this row measure this use in curriculum text as (1) a dummy for the occurrence
of any digital keyword; (2) the share of digital keywords; and (3) the absolute number of
digital keywords. Digital keywords increase significantly over 1976–2021 across all three mea-
sures. Moreover, this increase concentrates in curricula highly exposed to digital technology,
bolstering confidence in our exposure measure.

For example, digital keyword occurrence increases by 1.3 percentage points annually
among updated curricula, indicating that curriculum texts increasingly include one or more
digital keywords. The share of digital keywords in all curriculum text increases by 0.05
percentage points cumulatively over the entire period (0.012/1,000 → 100 percentage points
annually → (2021↑1976)). This pattern is more pronounced for highly technology-exposed
curricula, which experience a cumulative increase of 0.10 percentage points (0.023/1000 → 100
→ (2021↑1976)). For both the share (second panel, first row) and absolute number (third
panel, first row) of digital keywords, the increase is entirely driven by highly technology-
exposed curricula. As shown in the third panel, these curricula add more than 1 digital
keyword annually on average, while less exposed curricula show no significant change.

The bottom row of Figure 12 shows that social skills have also become significantly
more important in vocational training curricula over time, across all three measurement
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approaches. The rising importance of social skills is substantially more pronounced in highly
technology-exposed curricula, which add approximately 0.4 social keywords annually on
average, compared to no perceptible change for less exposed curricula.22

Routine task content. We next study how curriculum updates a!ect routine task content,
an omnibus measure of digital technology’s impact on task content. Routine tasks can be
codified in digital technology (Autor et al. 2003), and a large literature documents that digital
technologies replace workers in routine tasks while complementing them in non-routine ones
(e.g. see Autor et al. 2003, 2006; Autor and Dorn 2013; Goos et al. 2014). Vocational training
curricula should therefore become less routine-intensive over time if digital technology is an
important driver of curriculum updates. We expect this decline to be more pronounced
among highly technology-exposed occupations.

To measure curriculum task content, we leverage NLP methods. We use O*NET task
descriptions for routine and non-routine task items to construct TF-IDF-weighted vectors
of word embeddings for five task measures: routine cognitive tasks, routine manual tasks,
non-routine manual tasks, non-routine analytic tasks, and non-routine interpersonal tasks.23

We then measure cosine similarity between training curricula vectors (as constructed before)
and these task vectors: high cosine similarity indicates strong textual similarity between a
curriculum and a task.

We define routine task intensity as the sum of a curriculum’s cosine similarities to the
two routine tasks, minus the sum of its similarities to the three non-routine tasks. Routine
task intensity (RTI) for training curriculum k is therefore:

RTIk = (CSk,RM + CSk,RC) ↑ (CSk,NRM + CSk,NRA + CSk,NRI) ,

where CSk,i indicates the cosine similarity between curriculum k and task i, with i ↓
{RM, RC, NRA, NRM, NRI}. RM are routine manual tasks, RC routine cognitive tasks,
NRM non-routine manual tasks, NRA non-routine analytic tasks, and NRI non-routine in-
terpersonal tasks.

22Appendix Figure A4 highlights that these patterns exist both in production and service occupations,
though are more pronounced in the former. Appendix Figure A5 shows qualitatively similar results when
not conditioning on curriculum change.

23We adopt Acemoglu and Autor (2011)’s O*NET items for the task measures whenever these items have
more detailed textual descriptions available— these descriptions are required for textual linking to cur-
riculum text. Appendix Table B11 lists specific O*NET items used for each of the five task groups.
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Appendix Table B12 shows the most and least routine intensive curricula cross-sectionally.
Among the most routine intensive are curricula for Embroiderers, Confectioners, Glassmak-
ers, Dressmakers, Clothes tailors, Bakers, and Basket makers. By contrast, among the least
routine intensive curricula are those for Sports specialists, Personnel services clerks, Mar-
keting communication clerks, Market and social research specialists, and Event managers.24

These occupational routine task intensity rankings are consistent with the literature, giving
us confidence that our methodology accurately captures curricula’s routine task content.

We examine how curricula’s routine task intensity evolves over time by estimating (4),
with standardized curriculum RTI (zero mean, unit standard deviation).

Figure 13 plots estimates of ω (and 95% confidence intervals), showing a clear down-
ward trend in curricula’s routine task intensity. Annually, RTI decreases by 0.041 standard
deviations, totaling 1.8 standard deviations cumulatively over 1976–2021. This trend is
more pronounced for technology-exposed occupations, where RTI declines by 0.057 stan-
dard deviations annually (i.e. 2.6 standard deviations cumulatively over 1976–2021), com-
pared to 0.022 standard deviations annually (1.0 standard deviation cumulatively) for less
technology-exposed curricula. Curriculum updates thus equip workers with training in less
routine-intensive tasks, especially in occupations highly exposed to digital technologies.

Figure 13 reveals that these trends hold in both production and service occupations, even
though the decline is somewhat more pronounced among production occupations, which
constitute two thirds of training curricula. However, the decline in routine intensity for
technology-exposed curricula is of similar magnitude for both production and service occu-
pations (although the estimate for service occupations has a larger confidence interval).25,26,27

Table 8 uses representative SIAB data to document that these within-occupation skill

24Appendix Table B13 shows the most and least routine intensive curricula separately for each of the five
broad occupation groups. Appendix Figure A3 shows that routine task intensity is negatively correlated
with occupational employment growth, as expected.

25Appendix Figure A6 shows qualitatively similar results when not conditioning on curriculum change,
except that the di!erential decline in routine task intensity for technology-exposed occupations is driven
by production jobs only.

26Results are virtually identical when we additionally control for the number of tokens contained in each
curriculum, removing any potential mechanical association between the time trends in curriculum length
and in routine task intensity.

27Appendix Figure A7 shows that curricula are also becoming more complex, measured by the share of cur-
riculum words outside a typical eighth-grader’s vocabulary (Dale and Chall, 1948). Autor and Thompson
(2025) argue that word complexity captures expertise: more complex words reflect skills or tasks less easily
performed by broad groups of workers, and therefore more expert. At the curriculum level, this complexity
score correlates strongly with routine task intensity (r = ↑0.63).
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adjustments through curriculum updates account for two-thirds of the aggregate decline in
routine task content of vocational occupational skill supply. We compute the number of
vocational trainees with reasonable training durations in West Germany per occupation and
year, and assign each trainee their training occupation’s curriculum-based routine task in-
tensity. We decompose the total change in routine task intensity between 1976 and 2021
across occupations into two components: the within-occupation curriculum component, hold-
ing occupation shares constant, and the between-occupation component, holding curriculum
content constant.28 The routine task content of vocational skill supply decreased by 0.95
standard deviations over these 45 years, with 0.63 standard deviations (66.0%) stemming
from the within-occupation component, and the remainder reflecting the changing occu-
pational composition of trainees. This parallels previous findings that within-occupation
task changes dominate aggregate skill demand shifts (Spitz-Oener, 2006), underscoring the
importance of the within-occupation skill supply adjustment margin we study here.

3.2.2 New skill emergence and skill removal

The changes in vocational skill content may arise from new skills being added when curricula
are updated (‘new skill emergence’), continuously existing skills receiving a di!erent weight
in the new curriculum compared to the old one (‘intensive margin skill changes’), or skills
being removed (‘skill removal’), or some combination thereof.29 These mechanisms may
have di!erent implications for workers: acquiring a narrower skill set than prior trainees
(for example because some tasks are automated), is less likely to be beneficial, than (also)
acquiring new expertise.

To study this, we extract removed words and newly added words for each curriculum
update, with words including verbs and nouns as before.30

28We compute ”RTI1976,2021 =
∑

j ”RTIj,1976,2021(wj,1976 + wj,2021)/2 +
∑

j ”wj,1976,2021(RTIj,1976 +
RTIj,2021)/2, with wj occupation’s j trainee employment share in the respective year. For years be-
fore we observe an occupation’s first curriculum, we use the routine task intensity of the occupation’s first
observed curriculum. This arguably yields a conservative estimate of the within-occupation component.

29Buehler et al. (2025) study curriculum design by considering removed and added word shares in Swiss
curricula.

30In our baseline results presented here, we count as new any word that has not occurred in the previous
curriculum of the training occupation, and as removed any word not found in the newly updated curriculum.
Both measures are conditional on new and removed words being words found in a library of 466 thousand
English words from https://github.com/dwyl/english-words/blob/master/words_alpha.txt. Our
results are robust to only counting as new or removed the subset of words that are su#ciently distinct from
pre-existing and remaining words using a library of synonyms. Synonyms are identified using WordNet.
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Appendix Figure A8 shows that curriculum updates involve substantial word removal and
addition. Across all five occupation groups, an average curriculum update involves almost
200 distinct words being removed and around 170 distinct new words being added (panel
A), corresponding to 35–45% of the total distinct curriculum word (panel B).31

Importantly, intensive margin skill changes, skill removal, and new skill emergence play
distinct roles in changing curriculum skill content. Figure 14 illustrates this for changes in
non-routine task intensity by plotting the non-routine task intensity of the previous cur-
riculum’s remaining words (horizontal axis) against the non-routine task intensity of three
separate components of the new curriculum (vertical axis): words present in both curricula
but with potentially di!erent frequency (‘remaining words’), words removed in the update,
and words added in the update. Each observation represents a curriculum update, and local
polynomial plots are shown for each component. Observations on the 45-degree line indi-
cate that a component of the new curriculum had the same non-routine task intensity as
the previous curriculum’s remaining words, leaving overall routine task intensity unchanged.
Observations above (below) the line are higher (lower) in non-routine task intensity than
the previous curriculum, shifting it to become less (more) routine-intensive. Panel B shows
analogous patterns for curriculum word complexity, measured as the share of complex words.

We find that newly added words play an outsized role in increasing curriculum non-routine
task intensity: the orange-colored data lie most strongly above the 45-degree line in both
panels.32 At all levels of previous non-routine intensity, newly added words make updated
curricula more non-routine intensive. This e!ect is particularly pronounced for curricula
with the lowest initial non-routine intensity. Skill change along the intensive margin, repre-
sented by changing frequency of remaining words, and skill removal also contribute, though
to a lesser extent. Intensive margin skill change tends to increase non-routine task inten-
sity, especially for curricula that are already relatively non-routine intensive; and is mostly
neutral for curriculum complexity. Skill removal has a heterogeneous e!ect on non-routine
task intensity. Words removed from the most routine curricula are more routine— thereby
increasing an updated curriculum’s non-routine task content. However, words removed from
most non-routine curricula are more non-routine, increasing an updated curriculum’s routine
intensity slightly.

31Appendix Figure A9 shows that word removal and addition are not strongly correlated across curriculum
updates, but do vary substantially.

32Appendix Figure A10 show analogous results for task complexity, with similar findings.
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The results in Figure 14 demonstrate that curriculum content change arises from both
new skill emergence and skill removal: in the next section, we directly test whether these
skill updates reinstate labor’s expertise for new labor market entrants with updated skills
and erodes it for occupational incumbents trained in the previous curriculum.

4 The labor market impacts of curriculum updates

The preceding analysis establishes that technological advances spur updates in vocational
training curricula, driving training content to evolve towards skills more complementary to
digital technology, predominantly through new skill emergence. We now ask: do these up-
dated skill sets improve workers’ post-training labor market outcomes? If curriculum changes
enable workers to meet evolving skill demands, workers trained with updated curricula should
fare better in the labor market than those trained in outdated ones. Conversely, occupational
incumbents should experience skill obsolescence when workers with updated skills enter their
occupation. We examine both predictions here, along with consequences for firm’s capital
investments.

4.1 Sample construction

We use SIEED data (Berge et al., 2020) as our primary employer-employee dataset.33 SIEED
is a 1.5% random sample of German firms with linked employee information from adminis-
trative records provided by the Institute for Employment Research (IAB). The data contain
all workers ever employed by sampled firms. For these workers, we observe complete em-
ployment biographies between 1975 and 2018, including wages and occupation, as well as
industry and location of employing firms. While we do not observe unemployment, we ob-
serve non-employment, defined as not being employed in a job with mandatory social security
contributions.

We observe workers’ apprenticeship training spells, which indicate when workers start
and complete their training program and which occupation they train in. Combined with
our curriculum dataset, this allows us to determine which curriculum vintage each worker
is trained in. We restrict our sample to workers whose training curriculum we observe,

33SIEED data access was provided on-site at the Research Data Centre (FDZ) of the German Federal
Employment Agency at the Institute for Employment Research, and subsequently through remote data
access.
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dropping workers trained before the start of the data (1975), and workers not trained in
West Germany, because training curricula before German reunification apply only to West
German apprentices. Appendix D provides further details on data construction.

Since training occupations do not map one-to-one to KldB occupational codes provided in
SIEED (as discussed in Section 2.1), we adopt the following approach. For KldB occupations
(henceforth: occupations) comprising multiple training occupations, we classify workers em-
ployed in that occupation as having updated skills when at least one of underlying training
occupation curricula updates. For training occupations linked to multiple occupations, we
classify workers employed in all associated occupations as having updated skills.

We analyze both labor market entrants (Section 4.2) and occupational incumbents (Sec-
tion 4.3) below.

For occupational employment descriptives (including when using these as control vari-
ables) discussed in Section 2.1, we use SIAB data (Graf et al., 2023).34 These data contain
the same variables as SIEED but are a 2% random sample of individuals instead of firms.
Given their representativeness at the worker rather than firm level, these data are better
suited for describing the occupational employment distribution. For our main worker-level
analysis, we rely on SIEED instead because it contains considerably more individuals (5.6
million compared to 1.8 million in SIAB data) and spells (173 million compared to 46 million
in SIAB data).

4.2 Do curriculum updates reinstate worker expertise?

4.2.1 Empirical approach

To identify the causal impact of curriculum updates on post-training worker outcomes, we
employ a di!erence-in-di!erences event study design comparing outcomes for cohorts of work-
ers with old skills (‘old-skilled workers’) and cohorts of workers with new skills (‘new-skilled
workers’) in occupations with training updates against worker outcomes in occupations where
no such update occurred around the same time. We focus on labor market entrants, who
we define as vocationally trained workers in the first 5 years after completing their training.

34SIAB data access was provided on-site at the Research Data Centre of the German Federal Employment
Agency at the Institute for Employment Research, and subsequently through remote data access.
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We estimate

Yijt =
∑

c=[→5,5]
ωcUpdatej → Ic +

∑

c=[→5,5]
↽cIc + ϱj + εt + µXit + ςijt , (5)

where Yijt is an individual-level outcome for worker i who has been trained in occupation j

in year t.
Updatej is a treatment dummy indicating whether occupation j experiences an update to

its training curriculum during our time window: this separates our treatment group (workers
trained in occupations with curriculum changes) from our control group (workers trained in
occupations without curriculum changes in a window of 5 years before and 5 years after the
treatment occupation’s update).35 c denotes cohorts of workers defined by the start year of
their vocational training relative to the year of the curriculum change. We normalize c = 0
to represent the first cohort trained in the new curriculum: thus, all treated cohorts c ↔ 0
have been trained in the new curriculum, while treated cohorts c < 0 have been trained in
the old curriculum. We focus on worker cohorts whose training started in a window of 5
years before and 5 years after the treatment occupation’s update, i.e. c = [↑5, 5].

Treatment is staggered because di!erent curricula update in di!erent years, so we cannot
use the two-way fixed e!ect estimator (de Chaisemartin and D’Haultfoeuille, 2020; Sun and
Abraham, 2021; Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020). Instead, we stack
observations for di!erent events (i.e. di!erent curriculum updates) following Cengiz et al.
(2019).36 This stacking implies that workers and occupations can occur multiple times in the
data as controls; and occupations can also occur multiple times as treated, if their training
curriculum updates more than once. Therefore i indexes individual workers by curriculum
update (‘event’), j indexes occupations by event, and t indexes calendar years by event.

For each event, we draw all treated workers and a random sample of control workers
four times as large — with a minimum of 400 control workers when fewer than 100 treated
workers are observed. We drop a small number of events with fewer than 20 treated workers:
this leaves a total of 365 curriculum update events, with 226,077 unique treated workers and

35Treatment is defined by the occupational training workers have received, not the occupation of employment
after finalizing training. Since occupational choice is an outcome, we study this as a potential margin of
adjustment.

36Baker et al. (2022) show that a stacked di!erence-in-di!erences setup recovers the true treatment e!ects
in the case of staggered timing, just as the Callaway and Sant’Anna (2020) and Sun and Abraham (2021)
approaches do. Other recent papers using this setup include Goldschmidt and Schmieder (2017); Deshpande
and Li (2019); Clemens and Strain (2021); Bessen et al. (2025).
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257,779 unique control workers. Control group workers are weighted by 1/ni, with ni the
number of controls for treated worker i.

This approach uses repeated cross-sections of worker cohorts rather than a worker panel,
since pre-training (i.e. pre-treatment) labor market outcomes do not exist. The first di!er-
ence in our di!erence-in-di!erences strategy is the di!erence in outcomes between ‘old-skilled’
cohorts (workers trained in the old curriculum) and ‘new-skilled’ cohorts (workers trained in
the new curriculum) within the same occupation. The second di!erence is the di!erence in
outcomes between treated workers (trained in occupations that updated) and control workers
(trained in occupations that did not update over the same time window).

The parameters of interest are ωc, which capture the treatment e!ect relative to the
pre-treatment cohort c = ↑1. We consider a range of worker outcomes: log daily wages, log
annual earnings, non-employment, job mobility (across occupations, industries, and firms),
firm AKM fixed e!ects (Abowd et al., 1999), and educational upgrading. For log wages,
for example, we expect positive post-treatment estimates (ωc↓0 > 0), reflecting that workers
entering the labor market with updated skills earn higher wages over the first five post-
training years than past entrants without updated skills, relative to entrants in control
group occupations where no skill updates took place.

We control for calendar year (εt) and training occupation (ϱj) dummies as well as worker
characteristics (Xit)—age, and gender. We interact all control variables with event dummies
as is standard in stacked designs. We cluster standard errors at the level of treatment:
occupation by event.

Estimates of ωc can be interpreted as causal e!ects under three identifying assumptions:
(i) parallel trends in the absence of curriculum updates, (ii) no anticipation of the curriculum
update by (prospective) trainees or anticipatory reactions by firms, and (iii) SUTVA. We
provide empirical support for these assumptions in several ways. First, we show there are
no significant pre-trends in worker outcomes. Second, one might worry that curriculum up-
dates increase student interest in pursuing those occupational training programs, potentially
raising trainee quality and thereby a!ecting subsequent labor market outcomes. This would
imply that wage impacts need not reflect returns to new skills. In Appendix E, we therefore
extensively examine changes in trainee composition, finding no evidence of changes around
curriculum updates, consistent with parallel trends and no anticipation. Third, we show that
positive wage e!ects are driven by faster wage growth for treated cohorts, not deterioration
for control group cohort—the latter would be expected under a SUTVA violation. We also
confirm that results are robust to excluding from the control group those occupations with
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the highest worker mobility from the treated occupations. Last, in Section 4.3 we directly
study the impact of an influx of new-skilled workers on young incumbent workers, finding
no evidence of significant wage impacts, indicating that the pre-treatment entrant cohorts
are also unlikely to have been directly a!ected, consistent with SUTVA.

We consider the role of technology by studying outcomes separately for high- and low-
technology exposed occupations; by estimating event-level models and correlating outcomes
with technology exposure; and by controlling for the preceding curriculum’s technology ex-
posure.

4.2.2 Wage impacts

Table 9 shows descriptives for our sample of vocationally trained labor market entrants
within the first five years after training completion and the firms employing them, based
on SIEED data. Vocationally trained labor market entrants are 23 years old on average,
and 40% are female. Daily wages average around 70 euros, with a standard deviation of
30 euros. Most workers are employed year-round: the average number of annual working
days is 268, with a median of 365. Workers are employed in relatively large firms (560
workers on average), though the median firm size is 40 workers. Appendix Table B14 shows
corresponding descriptives for the stacked sample, separately for the φ = ↑1 cohorts of
treated and control group workers.

Panel A of Figure 15 presents estimates of equation (5), using log daily wages as the
dependent variable with ωc coe”cients multiplied by 100 for legibility. There is no evidence
of pre-trends, consistent with treated and control group worker cohorts following similar
wage trajectories before curriculum reforms. We find significant positive wage e!ects from
curriculum updates, measured over workers’ first five years after graduation from vocational
training. These e!ects reach 3.3% higher daily wages for graduates of the new curriculum
compared to graduates from the old curriculum— relative to a control group of graduates in
occupations with no curriculum update. This is striking since we compare workers trained
for the same occupation, but with an updated curriculum.

Positive wage e!ects emerge starting from cohort 2 onward, which is the third one trained
in the new curriculum. Grace periods in implementing new curricula, discussed above,
may contribute to the delay. This is particularly plausible since impactful and technology-
driven curriculum changes, for which we observe larger wage returns (as documented below),
more often receive grace periods. Incomplete compliance in immediately teaching the new
curriculum could be another factor, though we cannot observe this.
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Panel B shows similar patterns for annual wage earnings, implying that e!ects are pre-
dominantly driven by the wage rather than employment margin—unsurprisingly, given the
high labor force attachment of these workers. In further analyses of these labor market
entrants, we therefore focus on the daily wage margin.

The positive wage returns highlight that educational content is racing to keep up with
changing skill demands, and that graduates with updated skills earn a significant wage
premium. Appendix Figure A11 shows predicted log wages for treated and control group
workers, demonstrating that wage returns result from more rapid wage growth for treated
worker cohorts after the curriculum update, not slower wage growth for control group work-
ers. The wage premium for obtaining new skills thus reflects an absolute improvement, not
just a relative one.

In Appendix E, we use a training occupation dataset covering the universe of vocational
trainees to document that curriculum updates do not impact occupational trainee compo-
sition (in terms of prior high school education type, age, or gender), suggesting that wage
increases are not driven by improvements in trainee characteristics following curriculum
updates. We also find no changes in exam pass rates or in program selectivity around cur-
riculum updates, as proxied by the share of unfilled apprenticeship positions or unsuccessful
apprenticeship applications. Further, Appendix Figure A12 shows that curriculum updates
do not change the composition of training firms (for example because only higher-paying
firms can e!ectively provide updated skills): training firm AKM (Abowd et al., 1999) fixed
e!ects are una!ected by curriculum updates. This means that wage returns are not driven
by workers having been trained in higher-paying firms and remaining there after training
completion.

4.2.3 Mechanisms

E!ects by technology exposure. To understand the mechanisms underlying improved
wage outcomes for workers with updated skills, we first examine how wage impacts vary
with updated occupations’ pre-update technology exposure. While curriculum updates may
occur for various reasons, technology exposure is an important driver, as Section 3.1 docu-
ments. Curricula updated in response to technological advances should generate larger wage
returns if these changes align with evolving skill demands or induce complementary capital
investments (as we study below).

Figure 16 reports wage returns to curriculum updates separately by technology exposure,
defined as whether the treated occupation’s exposure to patents exceeds the median exposure,
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as before. Curriculum updates for highly technology-exposed occupations yield wage returns
for new-skilled worker cohorts, and these wage premia are higher than for less technology-
exposed occupations, especially for later cohorts. While no di!erence is visible for the first
‘new-skilled’ cohorts, cohorts trained in highly technology-exposed occupations three to five
years after the curriculum update earn 2.8% (cohort 3), 4.1% (cohort 4), and 5.2% (cohort
5) higher wages over the first five years of their careers than the last cohort trained in the old
curriculum (c = ↑1). Corresponding estimates for workers trained in low technology-exposed
occupations stabilize at around 2.2%. Appendix Figure A13 shows these daily wage e!ects
translate to higher annual earnings, with the largest e!ects for more technology-exposed
occupations.

One concern is that observed wage returns are partially driven by ongoing technological
change, capturing a demand shift rather than pure skill-supply e!ects. We address this
concern by controlling for occupations’ contemporaneous technology exposure based on the
old curriculum, which reflects technology-driven demand changes had skill supply remained
constant. Appendix Figure A14 shows that our results are una!ected.

To further assess the relationship between technology exposure and wage returns from
skill updates, we estimate models separately by update event, and correlate the resulting
update-specific wage returns with each curriculum’s pre-update technology exposure. Figure
17 shows binscatters for these estimates over the range of technology exposure, separately for
production and service occupations. Technology exposure is measured as the log of linked
digital patent counts — Appendix Figure A15 shows corresponding binscatters when using
the level of patent counts, i.e. including curricula with zero linked patents. Event-specific
estimates are weighted by worker cohort size before constructing equally-sized bins. Low-
exposure bins include Orthopedic shoemaker, Bicycle mechanic, and Stone mason and stone
sculptor for production; and Barber and Tourism and leisure clerk for services. Medium-
exposed bins include Hydraulic engineer, Carpenter, and Technical assembler for production;
and Warehouse logistic specialist, Marketing communications clerk, and Medical assistant for
services. The most-exposed bins include Systems IT specialist, Automobile mechanic, and
Aircraft electronics technician for production; and Pharmacist and Media designer digital
and print for services. Both figures reveal a positive relationship between a curriculum’s pre-
update technology exposure and the resulting wage return. This relationship holds within
production and within service occupations, though wage returns are typically higher for
production occupations overall.

This evidence suggests that skill updates spurred by advancing technology impart larger
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and longer-lasting labor market advantages than updates driven by other factors.

Worker mobility. To examine whether these labor market advantages accrue from dif-
ferences in workers’ early career paths, we use occupation, industry, and firm mobility as
outcomes in equation (5).

Figure 18 displays mobility estimates relative to the worker’s apprenticeship position:
that is, we consider whether the worker has moved out of the 4-digit occupation, the 3-
digit industry, or the firm where they did their apprenticeship. (Results are similar when
considering year-on-year mobility, i.e. relative to the occupation, industry, and firm of the
past year.)

A consistent pattern emerges: curriculum updates have no measurable impact on industry
or firm switching, but reduce the probability of leaving the training occupation. This decrease
in occupational mobility aligns with the timing of wage returns, becoming stronger for later
cohorts. New-skilled cohorts are up to 2.9 percentage points less likely to move out of their
training occupations over the first five years of their career. This is a moderately-sized e!ect
compared to the baseline probability of occupation mobility of 34%, shown in Table 9.

Although new-skilled workers do not have di!erential rates of firm mobility, as shown in
panel of A of Figure 18, the direction of mobility may still di!er. Panel B therefore considers
the average AKM fixed e!ect of the firms workers are employed in. We find some evidence
that curriculum updates allow workers to move to higher-paying firms, especially for the
latest cohort: workers’ firm AKM fixed e!ect increases for the very last new-skilled cohort,
by 0.03 standard deviations. (For high-exposure events, this increases to 0.05 standard
deviations.)

Robustness checks. To understand how wage e!ects of curriculum updates evolve over the
first five years of workers’ careers, we estimate the model separately by workers’ potential
work experience. Appendix Figure A16 plots the estimates. For example, the series labeled
‘5 years post training’ shows how log daily wages in the fifth year after vocational training
completion evolve across worker cohorts. Comparing subplots reveals that wage returns
grow relatively consistently over the first five years of the career. An additional benefit of
these experience-specific estimates is that our baseline specification could contain spillover
e!ects because we average wages over the first five post-training years. In that specification,
old-skilled cohorts trained before the curriculum update partly earn their wages during years
when new-skilled cohorts have already entered the labor market, potentially impacting the
estimates for c < 0. The estimates shown in Figure A16 are therefore better identified under
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spillover e!ects.
We perform several additional robustness checks. First, Appendix Figure A17 shows that

our results hold when we control for firm fixed e!ects, whether defined by the firm where
workers completed their apprenticeship training or where they are employed. E!ect sizes are
reduced by approximately two-thirds when adding the latter firm e!ects, confirming that
moves to higher-paying firms are part of the underlying mechanism. Second, Appendix Fig-
ure A18 shows that results are robust to excluding from the control group those occupations
with the highest worker mobility to or from the treated occupations, or those within the
same two-digit occupation: while estimates become somewhat less precise, the e!ect sizes
are very similar. This mitigates concerns about SUTVA violations. Third, Appendix Figure
A19 shows that wage e!ects are not driven by subsequent educational upgrading by new-
skilled workers: these workers are no more likely to obtain a university or ‘Fachhochschule’
degree (akin to a university of applied sciences degree), nor a Master craftsman degree.37

Skill updates thus provide labor market entrants with advantages through higher wages,
coupled with increased occupational retention. These benefits concentrate in skill updates
related to technological exposure, suggesting that changes in within-occupational skill supply
play an important role in maintaining workers’ expertise amid changing skill demands.

4.3 Do curriculum updates lead to skill obsolescence for incum-

bent workers?

Having established that new-skilled workers benefit from curriculum updates, we now study
labor market outcomes of incumbent workers following curriculum updates. Curriculum
updates bring an inflow of new-skilled workers into incumbents’ occupations. We interpret
declining incumbent wages as evidence of skill obsolescence.

Empirical approach. We construct a worker-level panel of vocationally trained workers,
restricting the sample to occupational incumbents, defined as workers employed full-time
in the same occupation for at least five consecutive years before that occupation received a
curriculum update. We exclude apprentices and other workers not subject to social security

37On the whole, German vocationally trained workers are not very likely to pursue further full-time education:
in our sample, 2.7% obtain a university degree within 5 years post graduation, and 11% do so at some
point over their entire careers.
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contributions.
We exploit the fact that we can follow individual incumbents over time by analyzing

changes in their labor market outcomes before and after curriculum updates. We estimate

Yijt =
∑

t=[→5,5]
ωtUpdatej → It + ϱi + εt + ςijt, (6)

where t is normalized such that t = 0 is the year of the curriculum update. Yijt is an
outcome for worker i employed in occupation j in year t = [↑5; ↑5]. ϱi captures individual
fixed e!ects, and εt relative time period fixed e!ects. We stack observations for di!erent
events, interact all controls with event dummies, and cluster standard errors at the level of
treatment (occupation by event).

For each event, Updatej is a treatment dummy indicating whether occupation j has expe-
rienced a curriculum update, and therefore an inflow of workers trained in a new curriculum.
This separates our treatment group (incumbents in occupations with curriculum updates)
from our control group (incumbents in occupations without curriculum updates). All treated
workers are exposed to curriculum updates in their employment occupation in t ↔ 0.

The parameters of interest are ωt, which estimate the e!ect of exposure to entrants
with new skills on a range of incumbent worker outcomes: log daily wages, log annual
earnings, annual days in non-employment, and job mobility. For log wages, for example,
we expect negative post-treatment estimates (ωt↓0 < 0) if competition from new-skilled
workers reduces the returns to incumbents’ skills, indicating skill obsolescence, or positive
post-treatment estimates (ωt↓0 > 0) if incumbents benefit from new-skilled workers via, for
example, learning or q-complementarity between occupational incumbents and new-skilled
entrants.

We estimate the regression separately for incumbent workers of di!erent age groups (with
age measured in t = 0): 24–34, 35–44, 45—54, and 55–65 years old. For each event, we draw
all treated incumbents and an equally large random sample of control incumbents in the
same broad occupation group (manufacturing or service)— with a minimum of 100 control
incumbents when fewer than 100 treated incumbents are observed, resulting in a sample of
673,555 unique workers in the treated group and 548,250 in the control group (who can be
used as controls in multiple events). As before, control group workers are weighted by 1/ni,
with ni the number of controls for treated worker i.

Appendix Table B15 shows descriptives for the stacked sample of occupational incum-
bents. On average, incumbents are 43 years old, 23–26% are female, and they earn around
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113–117 euros daily— 50% more than the early career workers we considered earlier. Unsur-
prisingly, incumbents are somewhat less likely to switch occupations, industries, and firms
than are early career workers.

Findings. Panel A of Figure 19 shows that curriculum updates negatively a!ect wages for
older occupational incumbents (ages 35 and older, but especially ages 55–65), consistent with
skill obsolescence. These wage losses are sizable, and cumulate over time: after five years,
daily wages fall by 2.2% for incumbents aged 35–44, 3.3% for incumbents aged 45–54, and
9.7% for incumbents aged 55–65. These wage losses experienced by older workers inform
about pure skill price changes, since older workers are unlikely to upgrade their skills on
the job (Heckman et al., 1998; Bowlus et al., 2023). For the youngest incumbents, we do
not find wage losses: wage e!ects are small and positive but not statistically significant for
those aged 24–34. Panel B of Figure 19 shows that incumbents do not work fewer days a
year in response to the entrance of new-skilled workers. However, reductions in daily hours
(i.e., moves to part-time work) would be captured in our daily wage e!ects shown in panel
A. Moreover, we focus on incumbents who worked full-time in the five years prior to the
curriculum update and therefore likely have high labor force attachment.

Appendix Figure 20 shows that our results are robust to controlling for occupations’
technology exposure based on the old curriculum, though wage e!ects become somewhat
smaller in absolute size for the youngest and oldest age groups. For the youngest age group,
we now find zero wage e!ects, while workers aged 55–65 lose 7.5% five years after the cur-
riculum update. This is consistent with underlying technological change benefiting younger
and harming older workers.

In contrast to new-skilled workers, incumbents— especially the younger ones— are more
likely to switch 1-digit occupations or 1-digit industries, as shown in panels A and B of
Figure 21. (Results are robust to considering more detailed occupation and industry clas-
sifications.) This suggests that new-skilled workers have skills relevant for the occupation
they were trained in, reducing their occupation switching, while younger incumbents lack the
expertise currently relevant in their occupation and respond by switching to other jobs. We
also find that incumbents, especially older ones, are more likely to move to firms with lower
AKM fixed e!ects, shown in panel C of Figure 21. Our findings are consistent with Janssen
and Mohrenweiser (2018), who study the e!ect of a single curriculum update involving CNC
skills on incumbents, finding sizable wage losses coupled with increased occupational mobil-
ity (and only small and transitory non-employment e!ects).
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These analyses contribute causal evidence of skill obsolescence. Our findings align with
Deming and Noray (2020)’s cross-sectional analysis of STEM workers, showing flattening
age-earnings curves and increased job switching over worker careers for faster-changing ed-
ucational fields.

4.4 Curriculum updates and firm capital investments

If curriculum updates improve workers’ ability to work with new technologies, firms should in-
crease capital investments following curriculum updates. Previous work has shown a positive
correlation between firms’ apprenticeship training participation and innovation in Switzer-
land (Rupietta and Backes-Gellner, 2019); provided causal evidence that apprentice-supply
reductions reduce firm technology investments in Germany (vom Baur, 2025); and docu-
mented higher mentions of technology use in job ads for firms employing new-skilled appren-
tices in specific IT-intensive occupations in Switzerland (Schultheiss and Backes-Gellner,
2024). We identify causal e!ects of curriculum updates on investments using a di!erence-
in-di!erences design that considers all observed updates, allowing us to compare those with
high and low technology exposure. Examining whether firms increase investments reveals a
key mechanism through which curriculum updates may improve worker outcomes: enhanced
capital-skill complementarity for workers with new skills.

We leverage IAB’s Linked-Employer-Employee-Data (LIAB), which combines the IAB
Establishment Panel survey with administrative employment information for all employees
at surveyed firms on June 30 of each year. The IAB Establishment Panel is an annual
representative survey of establishments containing information about investments since 1993.
It is conducted at the workplace level (henceforth: firms). Employment information is based
on administrative records reported to social security. We retain firms in West Germany to
ensure comparability with the employment analyses, restricting the sample to firms with at
least one trainee in at least one year. We then merge these data with our curriculum update
events, and designate firms as treated if the curriculum updates for at least one of their two
largest vocational training occupations (in terms of pre-update trainee employment share).38

We estimate a stacked-event DiD model at the firm level:

Yft =
∑

t=[→5,5]
ωtUpdatef → It + ϱf + εt + ςft, (7)

38When there are more than two occupations tied for largest, we consider all largest occupations.
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where Yft is log investments for firm f in year t = [↑5, 5]. Time t is normalized such that
t = 0 is the year trainees enter vocational training under a new curriculum. Updatef is the
firm-level treatment indicator defined as above. ϱf captures firm fixed e!ects, and εt calendar
year fixed e!ects. As before, all indices refer to the index by event. We retain firms that
are observed for at least three years and invest at least once in the time window and match
firms on log investment levels in the pre-treatment periods (t↑1 to t↑5) using Mahalanobis
distance matching (selecting the three nearest-neighbors). To address zero investments, we
match on both log(investments+1) and binary variables for zero investments. We cluster
standard errors at the event-by-firm level.

Table 10 shows firm-level descriptives for treated and control firms in year t ↑ 1, post
matching. Our analyses are based on an unbalanced panel of 2,589 distinct firms in t ↗ ↑1,
with 1,429 treated. Treated firms employ an average of 587 workers (389 for control firms),
and are more likely to be in the manufacturing sector. Log investments have a high standard
deviation of around 2.2, reflecting that investments are lumpy. Around 86% of treated and
control firm observations report positive investments, with average log investments of 6.83
annually for treatment firms and 6.53 for control firms.

Panel A of Figure 22 shows the estimates. Log investments rise in treated versus control
firms in the first two years apprentices are trained in the new curriculum, with investment
increases of 7.3% in the first and 13.0% in the second year, corresponding to 3.3% and 5.9%
of a standard deviation. In Appendix E, we also show that the number of apprenticeship
positions increase for updated curricula compared to those without updates, which may
require additional investments. This suggests that both the need to train new skills and newly
supplied skills raise firm investments. Consistent with this interpretation, these investment
increases are mostly observed for curriculum updates with high technology exposure, as seen
in panel B of Figure 22.

The co-movement of skill supply and capital investment highlights the complementarity
between human and physical capital, especially in jobs with high technology exposure.

5 Conclusion

Advancing technology reshapes skill demands: can changes in educational content enable
workers to adapt? We examine this question using vocationally trained workers in Germany,
a large population of non-college workers in middle- and low-paid occupations, many of which
are highly exposed to technology.
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Leveraging a novel database of legally binding training curricula spanning 1971–2021, we
establish four main findings. First, technological breakthroughs drive curriculum updates:
occupations more exposed to digital technology update their training content more frequently
and more rapidly. Second, these updates bring about substantial skill evolution—curricula
shift toward less routine-intensive tasks, predominantly through the emergence of new skills,
highlighting that workers acquire new competences. Strikingly, within-occupation skill ad-
justments driven by curriculum updates account for two-thirds of the aggregate decline in
routine task content of vocational occupational skill supply, paralleling previous findings that
within-occupation task changes dominate aggregate skill demand shifts.

Third, curriculum updates generate significant returns for ‘new-skilled’ workers. La-
bor market entrants trained under updated curricula earn 3.3% higher wages and remain
employed in their trained occupation at higher rates than those trained under outdated
curricula in the same occupation, relative to entrants in occupations without curriculum up-
dates. These wage gains reflect absolute improvements—faster wage growth for new-skilled
workers—not relative gains from deteriorating outcomes for control groups. The benefits con-
centrate among curriculum updates with high technology exposure, suggesting that aligning
training content with technological change keeps workers’ labor market expertise relevant.

Fourth, skill updates create winners and losers. Older incumbent workers (ages 55–65)
experience wage declines of up to 9.7% when new-skilled workers enter their occupation,
consistent with skill obsolescence. Younger incumbents do not experience substantial wage
declines but respond by switching occupations. Consistent with technology’s important role
in demanding new skills, firms exposed to workers trained in updated curricula increase cap-
ital investments, especially for technology-intensive curriculum updates. This is consistent
with enhanced capital-skill complementarity for workers with new skills.

Our findings demonstrate that educational content adaptation—not just rising educa-
tional attainment—matters for reinstating human expertise as technology advances. This
holds particular importance for non-college post-secondary education, which equips workers
for a wide range of middle-class occupations. Our results also highlight the need to retrain
occupational incumbents, who fall behind as their occupations’ skill demands evolve. The
rapid progress of artificial intelligence only reinforces these points.

Educational content updates occur beyond Germany, and the German vocational sys-
tem setting o!ers broader lessons. Curriculum updates in Germany result from negotiations
among employer organizations, labor unions, and the Federal Institute for Vocational Edu-
cation and Training. Recent work suggests that employer involvement may be important for
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ensuring skills remain labor-market relevant (Katz et al., 2022; Dillon et al., 2025). Further,
coordination among employers through legally binding curricula may increase costly training
investments in new skills. Absent such coordination, individual firms fearing poaching may
be less inclined to provide training—we show that firms indeed increase apprenticeship posi-
tions following curriculum updates. Benefits for workers are potentially strengthened by the
active role of labor unions and the Federal Institute for Vocational Training in curriculum
updates, since they emphasize that skills covered in the curriculum should be general rather
than firm-specific. Understanding how institutional arrangements shape the speed and na-
ture of educational content adaptation represents a promising avenue for future research.
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Figures

Figure 1: Distribution of Wages for Occupations With and Without Vocational Training
Curriculum
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Figure shows a boxplot of real daily wages for occupations with and without a vocational training
curriculum (base year for deflation: 2015) based on SIAB data. Vertical lines indicate the median; boxes
reflect the interquartile range; and whiskers indicate the 10th and 90th percentiles. Occupations weighted
by employment.
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Figure 2: Excerpts from 1992 Training Curriculum for Process Control Electronics
Technician
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Figure 3: Excerpts from 2003 Updated Training Curriculum for Industrial Electrical
Professions (Update of Process Control Electronics Technician)
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Figure 4: Excerpts from 1978 Training Curriculum for Industrial Clerk
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Figure 5: Excerpts from 2002 Updated Training Curriculum for Industrial Clerk
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Figure 6: Curriculum Updates Over Time

A. Number of Curriculum Changes by Year
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B. Number of Training Occupations with Observed Curriculum by Year
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Panel A shows the 5-year moving average of the number of curriculum changes by year. Panel B shows the
number of active training occupations in the national register after the introduction of the Vocational
Training Act in 1969.
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Figure 7: Years until Curriculum Update

A. Overall
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B. By Broad Occupation Group
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Figure shows the distribution of years until curriculum updates for initial training occupation observations
(N = 470). Panel A shows the overall distribution across training occupations. Panel B shows a boxplot by
broad occupation group. Vertical lines indicate the median; boxes reflect the interquartile range; and
whiskers indicate the 10th and 90th percentiles.
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Figure 8: Share of Breakthrough Patents by Technology Class
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Figure shows the distribution of breakthrough patents across broad technology classes defined by Kelly
et al. (2021). Over 1940–2002, we observe N = 141, 708 breakthrough patents in Instruments &
Information.

53



Figure 9: Digital Technology Exposure of Training Curricula

A. Overall
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Figure shows the distribution of linked digital patent counts for initial training occupation observations
(N = 791). Panel A shows the overall distribution across training occupations. Panel B shows a boxplot by
broad occupation group. Vertical lines indicate the median; boxes reflect the interquartile range; and
whiskers indicate the 10th and 90th percentiles.
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Figure 10: Curriculum Survival Rates by Technology Exposure
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Figure shows Kaplan-Meier survival curves for all curricula updated at some point over the 1970–2021
period, separately by technology exposure. Low technology exposure is below-median exposure; high
technology exposure is at or above median exposure.

55



Figure 11: Impacts of Digital Technology Exposure on Curriculum Updates Using Local
Projections
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Figure presents estimates of equation (3). The dependent variable is a dummy for the curriculum being
updated (conditional on not having being updated yet). Coe#cients multiplied by 100. Standard errors
clusted by occupation, whiskers represent 95% confidence intervals.
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Figure 12: Changes in Digital Technology and Social Skill Use in Updated Curricula,
1976–2021
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Figure reports coe#cients on a linear timetrend, from a regression of keyword occurrence, keyword shares,
or keyword counts in vocational training curricula (see equation (4)), for the subsample of curricula with
updates over 1976–2021. High tech (low tech) defined as curricula with an initial digital technology
exposure above (at or below) the median across all occupations.
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Figure 13: Changes in Routine Task Intensity in Updated Curricula, 1976–2021
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Figure reports coe#cients on a linear timetrend, from a regression of routine task content in vocational
training curricula (see equation (4)), for the subsample of curricula with updates over 1976–2021.
Horizontal lines reflect 95% confidence intervals. High tech (low tech) defined as curricula with an initial
digital technology exposure above (at or below) the median across all occupations.
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Figure 14: Changes in Curriculum Non-Routine Task Intensity from Removed, Remaining,
and Newly Added Words
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Figure presents the non-routine task intensity of new curriculum words plotted against remaining words in
the previous curriculum. Fitted lines are local polynomials weighted by training occupation employment
shares.
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Figure 15: Wage and Earnings Impacts of Curriculum Updates

A. Log Daily Wages
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B. Log Annual Earnings
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Figure reports stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals.
Cohort 0 is the first cohort with the new curriculum; cohort -1 is the reference category. Individuals are
included up to five years after graduation. Standard errors clustered at the level of occupation by event.
N = 7, 719, 765 for panel A and N = 8, 966, 826 for panel B; 375 events for both panels.
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Figure 16: Wage Impacts of Curriculum Updates by Technology Exposure
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Stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals. Cohort 0 is the
first cohort with the new curriculum; cohort -1 is the reference category. Individuals are included up to five
years after graduation. Standard errors clustered at the level of occupation by event. N = 4, 029, 336 for
low exposure (175 events), and N = 3, 670, 190 for high exposure (182 events).

61



Figure 17: Update-Specific Wage Impacts by Curriculum Technology Exposure
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Binscatter of wage returns estimated separately for each curriculum update event, against curriculum
technology exposure, measured as the log of linked patents. The vertical line indicates median technology
exposure as used throughout the paper.
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Figure 18: Worker Mobility Impacts of Curriculum Updates

A. Occupation, Industry, and Firm Mobility
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Stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals. Mobility is defined
relative to the apprenticeship position in panel A. Cohort 0 is the first cohort with the new curriculum;
cohort -1 is the reference category. Individuals are included up to five years after graduation. Standard
errors clustered at the level of occupation by event. Panel A: N = 9, 011, 655; Panel B: N = 8, 878, 251.



Figure 19: Wage and Employment Impacts of Curriculum Updates for Occupational
Incumbents

A. Log Daily Wage
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Stacked di!erence-in-di!erences estimates of equation (6), and 95% confidence intervals. Based on 420
curriculum update events for both panels. Panel A: N24→34 = 4, 715, 363, N35→44 = 7, 625, 523,
N45→54 = 6, 676, 771, N55→65 = 2, 453, 266; Panel B: N24→34 = 5, 298, 332, N35→44 = 8, 232, 520,
N45→54 = 7, 438, 999, N55→65 = 3, 135, 976.



Figure 20: Wage Impacts of Curriculum Updates for Occupational Incumbents, Controlling
for Prior-Curriculum Technology Exposure
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Stacked di!erence-in-di!erences estimates of equation (6), and 95% confidence intervals. Technology
exposure of the prior curriculum is defined as the log number of (lagged) digital breakthrough patents
linked to the occupation’s curriculum in t = ↑1. Based on 420 curriculum update events,
N24→34 = 2, 854, 368, N35→44 = 4, 673, 609, N45→54 = 4, 096, 838, N55→65 = 1, 535, 489.
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Figure 21: Job Mobility Impacts of Curriculum Updates for Occupational Incumbents

A. Occupational Mobility
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Stacked di!erence-in-di!erences estimates of equation (6), and 95% confidence intervals. Based on 420 curriculum update
events for all panels. Panel A: N24→34 = 3, 002, 679, N35→44 = 4, 605, 427, N45→54 = 3, 944, 682, N55→65 = 1, 233, 546; Panel
B: N24→34 = 4, 728, 882, N35→44 = 7, 633, 285, N45→54 = 6, 687, 258, N55→65 = 2, 461, 615; Panel C: N24→34 = 4, 694, 067,
N35→44 = 7, 587, 532, N45→54 = 6, 636, 704, N55→65 = 2, 435, 737.



Figure 22: Investment Impacts of Curriculum Updates

A. Overall
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B. By Technology Exposure
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Stacked di!erence-in-di!erences estimates of equation (7) using log investments as the dependent variable,
and 95% confidence intervals. Based on 262 curriculum update events, N = 71, 188 in Panel A. In Panel B,
N = 6, 363 for low exposure (51 events), and N = 63, 526 for high exposure (204 events).



Tables

Table 1: Largest Occupations with a Vocational Training Curriculum

Avg. empl.
share in %

# Empl. share
in pp

Avg. real
daily wage

O”ce clerks and secretaries 10.6 -6.2 101.6
Occupations in warehousing and logistics 4.3 0.3 82.3
Occupations in machine-building and -operating 3.4 -1.6 135.7
Sales occupations in retail trade 3.3 -2.5 70.6
Professional drivers (cargo trucks) 3.2 -0.9 87.4
Technical occupations in automotive industries 2.7 -1.5 100.2
Bankers 2.0 -0.6 142.5
Occupations in electrical engineering 1.9 -1.0 151.4
Management assistants in wholesale and foreign trade 1.4 -0.9 120.7
Occupations in metal constructing 1.4 -0.6 95.9

Source: SIAB. Average employment share: Average share of occupational regular full-time employment in
total regular full-time employment across the years 1975–2021. ” Employment share: Change in the share
of occupational regular full-time employment in total regular full-time employment between 1975 and 2021
in percentage points. Average gross daily wage: Average gross real daily wage of all regularly, full-time
employed workers in real euros.
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Table 2: Descriptives of Curriculum Updates

A. Unweighted B. Empl. Weighted
Mean SD N Mean SD N

Any update 0.038 0.192 11,843 0.051 0.220 11,709
Type of update:
Content update only 0.021 0.143 11,843 0.025 0.155 11,709
Content update + renaming 0.015 0.123 11,843 0.023 0.149 11,709
Content update + aggregation 0.010 0.098 11,843 0.020 0.140 11,709
Content update + segregation 0.003 0.053 11,843 0.004 0.065 11,709

Years until update | update = 1† 15.3 7.8 455 14.3 7.4 444
SD - Standard deviation. All variables are binary. Any update: Indicates that the curriculum was changed.

Content update only: Indicates that the content of the curriculum was changed without renaming, aggre-
gation, or segregation. Renaming: Indicates that the title of the occupation was changed independent of
the type of change. Aggregation: Indicates that the occupation was merged with another occupation. Seg-
regation: Indicates that the occupation was split into several occupations. A training occupation may be
split into several successors, each of which is an aggregation of multiple predecessors; and aggregations and
segregations may also be accompanied by renaming. These types of updates are therefore not mutually
exclusive and the sum across update types is larger than the total number of updates. Numbers based on
the yearly panel. † – Based on initial observations only.
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Table 3: Examples of Most and Least Updated Occupations

Training Occupation Broad Occupation
Pr(Update)

Per Year

A. Examples of Most Updated Training Occupations
Flexograph Production 0.12
Electronics technician for automation technology Production 0.10
Industrial mechanic Production 0.10
Electrician Production 0.09
Retail clerk Business service 0.09
Automobile mechanic Production 0.09
Electronics technician for aeronautical systems Production 0.09
Decor template maker Production 0.09
Chemical technician IT + scientific service 0.08
Packaging technologist Production 0.08

B. Examples of Least Updated Training Occupations
Gardener Production 0.02
Manufactured porcelain painter Production 0.02
Foundation engineering specialist Production 0.01
Civil engineer Production 0.01
Road builder Production 0.01
Asphalt builder Production 0.01
Wooden toy maker Production 0.01
Toy manufacturer Production 0.01
Industrial insulator Production 0.01

C. Examples of Training Occupations Without Updates
Brass instrument maker Production 0.00
Delivery driver Other commercial service 0.00
Floor layer Production 0.00
Gilder Production 0.00
Glass blower Production 0.00
Hotel clerk Personal service 0.00
Makeup artist Personal service 0.00
Stage painter and sculptor Personal service 0.00
Woodcarver Production 0.00

Training occupations associated with the most/least updated KldB occupations.
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Table 4: Most and Least Technology-Exposed Training Occupations

Training Occupation Broad Occupation

A. 10 Most Exposed Training Occupations
Electronics technician for machines and drive technology Production
Electronics technician for industrial engineering Production
Electronics technician for devices and systems Production
Industrial mechanic Production
Electronics technician for information and system technology Production
Electronics technician for building and infrastructure systems Production
Cutting machine operator Production
Plant mechanic Production
Electronics technician for automation technology Production
Tool mechanic Production

B. 10 Least Exposed Training Occupations
Plant technologist Production
Leather production and tanning technology specialist Production
Factory fireman Business service
Ice cream specialist Personal service
Confectionery technologist Production
Wine technologist Production
Candle and wax maker Production
Concrete and terrazzo manufacturer Production
Flat glass technologist Production
Bespoke shoemaker Personal service

Ranked by number of linked digital patents demeaned within years.
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Table 5: Curriculum Updates and Digital Technology Exposure

(1) (2) (3) (4)
A. Unweighted

Digital Tech Exposure 0.44↔↔↔ 0.47↔↔↔ 0.51↔↔↔ 0.49↔↔↔

(0.09) (0.10) (0.10) (0.10)
N 10,729

B. Weighted by initial employment share
Digital Tech Exposure 0.84↔↔↔ 0.79↔↔↔ 0.79↔↔↔ 0.82↔↔↔

(0.17) (0.17) (0.16) (0.15)
N 10,729

Initial Curriculum Year X X X X
Year X X X X
Broad Occ X X X
Broad Occ → Year X X
Initial Empl. Share X

Dependent variable: Dummy for curriculum update. Linear probability models, coe#cients multi-
plied by 100. Initial curriculum year fixed e!ects in five year bins. Standard errors clustered by 5
digit occupation. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 6: Years until Curriculum Updates and Digital Technology Exposure

(1) (2) (3)
A. Unweighted

Digital Tech Exposure ↑0.47↔↔ ↑0.62↔↔ ↑0.63↔↔↔

(0.17) (0.19) (0.19)
N 375

B. Weighted by initial employment share
Digital Tech Exposure ↑0.50↔ ↑0.59↔ ↑0.68↔↔

(0.23) (0.23) (0.21)
N 375 ’

Initial Curriculum Year X X X
Broad Occ X X
Initial Empl. Share X

Dependent variable: Years until curriculum update. Initial curriculum year fixed e!ects in
five year bins. Standard errors clustered by 5 digit occupation. * p < 0.05, ** p < 0.01, ***
p < 0.001.
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Table 7: Type of Curriculum Update and Digital Technology Exposure

A. Content update
only

B. Content update
+ Renaming

Digital Tech Exposure 0.21↔↔ 0.22↔↔↔ 0.26↔↔↔ 0.25↔↔↔ 0.21↔↔ 0.23↔↔ 0.24↔↔ 0.23↔↔

(0.07) (0.06) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08)
N 10,729 10,729

C. Content update
+ Aggregation

D. Content update
+ Segregation

Digital Tech Exposure 0.21↔↔ 0.21↔↔ 0.20↔ 0.18↔ 0.07↔↔ 0.08↔ 0.08↔ 0.08↔

(0.07) (0.08) (0.08) (0.08) (0.03) (0.03) (0.03) (0.03)
N 10,729 10,729

Initial Curriculum Year X X X X X X X X
Year X X X X X X X X
Broad Occ X X X X X X
Broad Occ → Year X X X X
Initial Empl. Share X X

Dependent variable: Dummy for curriculum update type. For each panel, the reference group is the combina-
tion of no updates and updates di!erent from the type considered in that panel. Note that the update types
in panels B, C, and D are not mutually exclusive, but they are jointly mutually exclusive with the update
type in panel A. Linear probability models, unweighted, coe#cients multiplied by 100. Initial curriculum year
fixed e!ects in five year bins. Standard errors clustered by 5 digit occupation. * p < 0.05, ** p < 0.01, ***
p < 0.001.

Table 8: Decomposition of the overall change in routine task content in vocational skill
supply, 1976–2021

Total change
Within-occupation

change
Between-occupation

change
Share of within-

occupation component
-0.947 -0.625 -0.322 66%

Decomposition of the total change in the routine task intensity between 1976 and 2021 across
occupations into the within-occupation curriculum component, holding occupation shares constant,
and the between-occupation component, holding curriculum content constant: ”RTI1976,2021 =∑

j ”RTIj,1976,2021(wj,1976 + wj,2021)/2 +
∑

j ”wj,1976,2021(RTIj,1976 + RTIj,2021)/2, with wj occupation’s
j trainee employment share in the respective year. Employment of vocational trainees with reasonable
training durations in West Germany per occupation and year based on the SIAB. For years before we
observe the occupation’s first curriculum, we use the routine task intensity of the occupation’s first ob-
served curriculum. This arguably leads to a conservative estimate of the within-occupation component.
In standard deviations.
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Table 9: Descriptives of Vocationally Trained Labor Market Entrants

Mean SD Median
Age 23.27 3.03 23.00
Year of birth 1975 9.63 1975
Female 0.40 0.49 0.00
Daily wage 70.17 29.79 71.44
Annual daily wage growth 0.33 6.94 0.07
Years of training 2.82 0.53 2.88
Typical years of training 2.98 0.40 3.00
Annual days employed 267.71 138.52 365.00
Annual labor earnings 18,249 13,611 18,367
Firm size 560.14 2,757.64 40.00
Job mobility, relative to apprenticeship:

Occupation 0.34 0.48 0.00
Industry 0.40 0.49 0.00
Firm 0.58 0.49 1.00

Job mobility, year-to-year:
Occupation 0.16 0.37 0.00
Industry 0.17 0.38 0.00
Firm 0.26 0.44 0.00

SIEED sample, full sample prior to stacking. Workers in the first five years after graduation with a
training duration between 1.75 and 4.25 years, restricted to workers for whom we observe the training
occupation and curriculum. N = 3, 276, 736 worker by year observations.

Table 10: Descriptives of Stacked and Matched Firm Sample

A. Treated B. Control
Mean SD Mean SD

Number of workers 586.6 1,591.5 388.5 684.3
Any investment (1/0) 0.86 0.34 0.88 0.32
Log(investments) 6.83 2.33 6.53 2.11
Absolute investments in e1,000 6,845 26,552 3,142 7,296
Manufacturing/service sector (1/0) 0.42 0.49 0.18 0.38
N unique firms 1,429 1,160
Source: LIAB. For years t ↗ ↑1.
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A Appendix figures

A.1 Data and measurement

Figure A1: Distribution of Wages for Vocationally Trained Workers vs. Others
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Figure plots the distribution of real daily wages (up to 500 euros) for vocationally trained workers versus
all others based on SIAB data.
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Figure A2: Digital and Overall Technology Exposure of Training Curricula

A. Average over 1971–1997
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B. Average over 1998–2021
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Figure presents a scatter plot of the relationship between occupational exposure to overall and digital
patents for 1971–1996 (panel A) and 1997–2021 (panel B). Each point corresponds to the average
percentile of overall (x↑axis) and digital (y↑axis) exposure of one occupational curriculum, where the
average is taken over 1971–1996 (N = 285 occupations) in panel A and over 1997–2021 (N = 451
occupations) in panel B. The 45 degree line in each panel is plotted with dashes.
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Figure A3: Employment Change by Initial Routine Task Intensity
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Source: SIAB. Y-axis: Change in occupational regular full-time log employment between 1975 and 2017.
The x-axis reflects standardized routine intensity of the first curriculum observed in this occupation. For
occupations with a training curriculum only. Weighted by the initial employment share in 1975.
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A.2 Curriculum change

Figure A4: Changes in Digital Technology and Social Skill Use in Updated Curricula
by Production versus Service Occupations, 1976–2021
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Figure reports coe#cients on a linear timetrend, from a regression of keyword occurrence, keyword shares,
or keyword counts in vocational training curricula (see equation (4)), for all curricula over 1976–2021. High
tech (low tech) defined as curricula with an initial digital technology exposure above (at or below) the
median across all occupations.
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Figure A5: Changes in Digital Technology and Social Skill Use in All Curricula,
1976–2021
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Figure reports coe#cients on a linear timetrend, from a regression of keyword occurrence, keyword shares,
or keyword counts in vocational training curricula (see equation (4)), for all curricula over 1976–2021. High
tech (low tech) defined as curricula with an initial digital technology exposure above (at or below) the
median across all occupations.
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Figure A6: Changes in Routine Task Intensity in All Curricula, 1976–2021
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Figure reports coe#cients on a linear timetrend, from a regression of routine task content in vocational
training curricula (see equation (4)), for all curricula over 1976–2021. Horizontal lines reflect 95%
confidence intervals. High tech (low tech) defined as curricula with an initial digital technology exposure
above (at or below) the median across all occupations.
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Figure A7: Changes in Word Complexity in Updated Curricula, 1976–2021
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Figure reports coe#cients on a linear timetrend, from a regression of complex word shares in vocational
training curricula (see equation (4)), for all curricula over 1976–2021. Complex words are defined as those
not in the Dale and Chall (1948) list, following Autor and Thompson (2025). High tech (low tech) defined
as curricula with an initial digital technology exposure above (at or below) the median across all
occupations.
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Figure A8: Removed and Newly Added Words in Curriculum Updates

A. Number of Words
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Figure presents the average number of distinct removed and distinct newly added words across curriculum
updates in absolute number (panel A) and as a share of distinct prior curriculum word counts (panel B),
by broad occupation.
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Figure A9: Removed and Added Word Shares Across Training Occupations
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Figure reports the share of removed words against the share of added words for curriculum updates. The
size of circles reflects average occupational employment shares.
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Figure A10: Changes in Curriculum Complexity from Removed, Remaining, and Newly
Added Words
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Figure presents the complexity of new curriculum words plotted against remaining words in the previous
curriculum. Fitted lines are local polynomials weighted by training occupation employment shares.
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A.3 Labor market impacts
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Figure A11: Predicted Log Daily Wages for Treated and Control Group Workers
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Figure reports predicted log wages for treated and control group workers using the stacked
di!erence-in-di!erences estimate of equation (5). Log wages are predicted holding all covariates constant
across events and between treated and control occupations. Level di!erences between treated and control
occupations are recovered by calculating the di!erence in average occupation fixed e!ects and adjusting the
predicted values by adding half of this di!erence to the treated group and subtracting half from the control
group. Dashed lines indicate means of pre- and post-treatment predictions.
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Figure A12: Impacts of Curriculum Updates on Training Firm Composition
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Figure reports stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals;
estimated separately by year post training. Cohort 0 is the first cohort with the new curriculum; cohort -1
is the reference category. Standard errors clustered at the level of occupation by event. Based on 365
events, N = 2, 231, 848.
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Figure A13: Impact of Curriculum Updates on Annual Income by Technology Exposure
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Figure reports stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals.
Cohort 0 is the first cohort with the new curriculum; cohort -1 is the reference category. Individuals are
included up to five years after graduation. Standard errors clustered at the level of occupation by event.
N = 4, 251, 785 for high exposure (182 events), and N = 4, 690, 903 for low exposure (175 events).
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Figure A14: Wage Impacts of Curriculum Updates by Technology Exposure, Controlling
for Prior-Curriculum Technology Exposure
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Stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals. Cohort 0 is the
first cohort with the new curriculum; cohort -1 is the reference category. Individuals are included up to five
years after graduation. Standard errors clustered at the level of occupation by event. Technology exposure
of the prior curriculum is defined as the log number of (lagged) digital breakthrough patents linked to the
occupation’s curriculum in t = ↑1. N = 3, 611, 583 for low exposure (175 events), and N = 3, 430, 761 for
high exposure (182 events).
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Figure A15: Update-Specific Wage Impacts by Curriculum Technology Exposure
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Binscatter of wage returns estimated separately for each curriculum update event, against curriculum
technology exposure, measured as the count of linked patents. The vertical line indicates median
technology exposure as used throughout the paper.

92



Figure A16: Log Daily Wage Impacts of Curriculum Updates By Post-Training Year and
Technology Exposure
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Figure reports stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals;
estimated separately by year post training. Cohort 0 is the first cohort with the new curriculum; cohort -1
is the reference category. Standard errors clustered at the level of occupation by event. Observations
numbers by year of post-training and technology exposure: N1,high = 792, 314, N2,high = 742, 779,
N3,high = 729, 085, N4,high = 706, 650, N5,high = 688, 608; N1,low = 848, 530, N2,low = 804, 461,
N3,low = 800, 496, N4,low = 789, 952, N5,low = 777, 146.
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Figure A17: Log Daily Wage Impacts of Curriculum Updates, Controlling for Firm Fixed
E!ects
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Figure reports stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals;
estimated separately by year post training. Cohort 0 is the first cohort with the new curriculum; cohort -1
is the reference category. Standard errors clustered at the level of occupation by event. Model with
training firm FE: N = 7, 715, 849; model with current firm FE: N = 7, 687, 050.
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Figure A18: Impact of Curriculum Updates on Wages: Robustness Checks

A. Only using control occupations from di!erent 2-digit occupations than treated
occupations
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B. Only using control occupations with low mobility to and from treated
occupations
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Figure reports stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals.
Cohort 0 is the first cohort with the new curriculum; cohort -1 is the reference category. Individuals are
included up to five years after graduation. Standard errors clustered at the level of occupation by event.
Both panels based on 365 events. Panel A: N = 4, 833, 972 for overall; N = 2, 316, 302 for high exposure;
and N = 2, 505, 806 for low exposure. Panel B: N = 7, 719, 765 for overall; N = 3, 670, 190 for high
exposure; and N = 4, 029, 336 for low exposure.



Figure A19: Impacts of Curriculum Updates on Later Educational Upgrading

A. Obtaining a University Degree
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B. Ever Obtaining Master Craftsman Degree
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Figure reports stacked di!erence-in-di!erences estimates of equation (5), and 95% confidence intervals;
estimated separately by year post training. Cohort 0 is the first cohort with the new curriculum; cohort -1
is the reference category. Standard errors clustered at the level of occupation by event. Based on 365
events for both panels. Panel A: N = 2, 231, 848; Panel B: N = 2, 231, 848.



Figure A20: Occupational Total Employment and Wagebill around Curriculum Updates

A. Log Total Employment
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B. Log Total Wagebill
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Stacked di!erence-in-di!erences estimates of curriculum updates on occupational total full-time log
employment (Panel A) and occupational total full-time log wagebill (Panel B), comparing occupations with
curriculum updates to occupations without updates. Based on 248 events for both panels. Panel A:
N = 27, 452; Panel B: N = 27, 452. The first year with the new curriculum is 0. Models absorb
occupation-by-event dummies, calendar year-by-event dummies and time-to-event dummies. Standard
errors are clustered at the curriculum level. Considering full-time employed workers in employment subject
to social security contributions.



B Appendix tables

B.1 Data and measurement

Table B1: Number of Tokens per Curriculum Section

Mean p10 Median p90
Exam 3,896 1,448 2,381 5,748
Skills and Knowledge 16,302 2,882 5,435 18,416
Training Framework Curriculum 22,023 7,927 16,396 39,257
Total 34,374 14,719 24,059 54,179
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Table B2: Examples of Digital Patent – Curriculum Pairs

Training Occupation Linked patent example

Body and vehicle builders Self-gauging sensor assembly
Communications electronics technician Method and apparatus for high frequency wireless communication
Courier, express and postal services clerk Internet billing method
Dental technician Process for making a prosthetic implant
Digitization management clerk Process and system for predictive resource planning
E-commerce clerk Method and architecture for multi-level commissioned advertising on a computer network
Engraver Document inscribing machine
Film and video editor Karaoke apparatus and method for medley playback
O”ce communications clerk Multi-facility appointment scheduling system
Postal service specialist Computer-aided prepaid transmittal charge billing system
Precision optician Modular electronic instrument system having automated calibration capability
Radio electronics technician Electronic circuit
Shipbuilder Wind velocity sensor for sailboat
Social security clerk Self-implementing pension benefits system
Tax clerk Electronic income tax refund early payment system
Travel agent Computer travel planning system

The table shows the title of the most similar digital breakthrough patent for each example training occupation.

Table B3: Descriptive Statistics of Technology Exposure

A. Yearly Panel B. Initial Observations
Unweighted Weighted Unweighted Weighted
Mean SD Mean SD Mean SD Mean SD

Digital Tech Exposure – Full Text 3.86 2.58 4.17 2.59 3.87 2.61 4.26 2.66
Digital Tech Exposure – Exam 4.11 2.57 3.89 2.78 3.81 2.63 3.67 2.74
Overall Tech Exposure – Full Text 5.53 2.24 5.57 2.23 5.36 2.46 5.51 2.44
SD - Standard deviation.
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Table B4: Most and Least Technology-Exposed Training Occupations

Most Exposed Training Occupations Least Exposed Training Occupations

A. Business service
Wholesale and foreign trade management clerk Factory fireman
Media designer digital and print Pharmaceutical clerk
Media designer image and sound Tax clerk

B. IT + scientific service
IT system management clerk IT clerk
Digitization management clerk Information and telecommunications system clerk
IT specialist Dairy laboratory technician

C. Other commercial service
Construction equipment operator Letter and freight tra”c specialist
Plumber Swimming pool safety specialist
Event technology specialist Legal clerk

D. Personal service
Housekeeper Bespoke shoemaker
Optometrist Ice cream specialist
Food technology specialist Audiologist

E. Production
Electronics technician for devices and systems Flat glass technologist
Electronics technician for industrial engineering Concrete and terrazzo manufacturer
Electronics technician for machines and drive technology Candle and wax maker

Ranked by number of linked digital patents demeaned within years.
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B.2 Curriculum change
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Table B5: Descriptive Statistics of Curriculum Keyword Groups

A. Total B. Low tech C. High tech
Mean SD Mean SD Mean SD

Digital Keywords
Occurrence of digital keywords (0/1) 0.44 0.50 0.30 0.46 0.57 0.49
Share of digital keywords (→1,000) 0.11 0.27 0.05 0.11 0.18 0.36
Number of digital keywords 3.99 15.59 0.92 2.10 7.02 21.43

Social Skills Keywords
Occurrence of social keywords (0/1) 0.36 0.48 0.31 0.46 0.42 0.49
Share of social keywords (→1,000) 0.07 0.13 0.06 0.14 0.07 0.12
Number of social keywords 1.96 5.50 1.26 2.62 2.64 7.24

Table B6: Averages of Detailed Curriculum Keywords

A. Occurrence (0/1) B. Share (→1,000) C. Number
Total Prod Svc Total Prod Svc Total Prod Svc

Digital Keywords
digital* 0.13 0.07 0.17 0.16 0.16 0.17 0.66 0.53 0.73
software* 0.19 0.25 0.16 0.38 0.57 0.28 1.38 1.42 1.35
computer* 0.14 0.12 0.14 0.15 0.09 0.17 0.40 0.23 0.48
ICT 0.19 0.18 0.20 0.26 0.34 0.22 0.84 0.87 0.82
online* 0.01 0.02 0.01 0.02 0.04 0.00 0.06 0.15 0.01
automat* 0.13 0.09 0.16 0.17 0.08 0.22 0.66 0.18 0.89

Social Skills Keywords
team* 0.33 0.47 0.27 0.60 1.02 0.39 1.79 2.14 1.61
collaborat* 0.06 0.07 0.06 0.03 0.04 0.02 0.08 0.10 0.06
negotiat* 0.04 0.07 0.03 0.03 0.06 0.01 0.09 0.15 0.06
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Table B7: Curriculum Updates and Digital Technology Exposure,
Exam Section Only

(1) (2) (3) (4)
A. Unweighted

Digital Tech Exposure 0.17↔ 0.20↔ 0.21↔ 0.20↔

(0.08) (0.09) (0.09) (0.09)
N 10,455

B. Weighted by initial employment share
Digital Tech Exposure 0.35 0.19 0.15 0.15

(0.19) (0.21) (0.21) (0.21)
N 10,455

Initial Curriculum Year X X X X
Year X X X X
Broad Occ X X X
Broad Occ → Year X X
Initial Empl. Share X

Dependent variable: Dummy for curriculum update. Linear probability models, coe#cients multi-
plied by 100. Initial curriculum year fixed e!ects in five year bins. Standard errors clustered at the
5 digit occupation level. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table B8: Years Until Curriculum Update and Digital Technology Exposure,
Exam Section Only

(1) (2) (3)
A. Unweighted

Digital Tech Exposure ↑0.39↔ ↑0.44↔ ↑0.44↔

(0.16) (0.17) (0.17)
N 354

B. Weighted by initial employment share
Digital Tech Exposure ↑0.16 ↑0.50↔ ↑0.45↔

(0.21) (0.24) (0.22)
N 354 ’

Initial Curriculum Year X X X
Broad Occ X X
Initial Empl. Share X

Dependent variable: Years until curriculum update. Initial curriculum year fixed e!ects in
five year bins. Standard errors clustered at the 5 digit occupation level. * p < 0.05, **
p < 0.01, *** p < 0.001.
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Table B9: Curriculum Updates and Overall Technology Exposure

(1) (2) (3) (4)
A. Unweighted

Overall Tech Exposure 0.22↔ 0.28↔↔ 0.36↔↔ 0.34↔↔

(0.11) (0.11) (0.12) (0.12)
N 11,096

B. Weighted by initial employment share
Overall Tech Exposure 0.65↔↔ 0.46↔ 0.48↔ 0.49↔↔

(0.24) (0.23) (0.20) (0.19)
N 11,096

Initial Curriculum Year X X X X
Year X X X X
Broad Occ X X X
Broad Occ → Year X X
Initial Empl. Share X

Dependent variable: Dummy for curriculum update. Linear probability models, coe#cients multi-
plied by 100. Initial curriculum year fixed e!ects in five year bins. Standard errors clustered by 5
digit occupation. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table B10: Type of Curriculum Update and Digital Technology Exposure,
Weighted Models

A. Content update
only

B. Content update
+ Renaming

Digital Tech Exposure 0.35↔ 0.29 0.43↔ 0.47↔↔ 0.50↔↔ 0.50↔↔ 0.36↔ 0.35↔

(0.16) (0.15) (0.17) (0.17) (0.15) (0.18) (0.15) (0.16)
N 10,729 10,729

C. Content update
+ Aggregation

D. Content update
+ Segregation

Digital Tech Exposure 0.53↔↔↔ 0.55↔↔ 0.38↔↔ 0.33↔ 0.08 0.09 0.09 0.10
(0.14) (0.17) (0.14) (0.14) (0.05) (0.06) (0.06) (0.06)

N 10,729 10,729

Initial Curriculum Year X X X X X X X X
Year X X X X X X X X
Broad Occ X X X X X X
Broad Occ → Year X X X X
Initial Empl. Share X X

Dependent variable: Dummy for curriculum update type, the reference group is always “no change”. A training
occupation may be split into several successors, each of which is an aggregation of multiple predecessors. The
categories are therefore not mutually exclusive and the sum of the number of segregations, aggregations and
pure content changes is larger than the number of changes. Linear probability models, weighted by employment
size, coe#cients multiplied by 100. Initial curriculum year fixed e!ects in five year bins. Standard errors
clustered by 5 digit occupation. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table B11: O*NET Items Included in Routine and Non-Routine Task Scores

Task O*NET Item
Non-routine analytic Analyzing data/information
Non-routine analytic Thinking creatively
Non-routine analytic Interpreting information for others
Non-routine interpersonal Establishing and maintaining personal relationships
Non-routine interpersonal Guiding, directing and motivating subordinates
Non-routine interpersonal Coaching/developing others
Routine cognitive Performing administrative activities
Routine manual Controlling machines and processes
Non-routine manual Operating vehicles, mechanized devices, or equipment
O*NET items are as in Acemoglu and Autor (2011) where possible: this means the item has to have a
detailed textual description.
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Table B12: Most and Least Routine-Intense Training Occupations

Training Occupation Broad Occupation

A. Most Routine-Intense Training Occupations
Embroiderer Production
Confectioner Personal service
Glassmaker Production
Men’s tailor Personal service
Clothes tailor Personal service
Dressmaker Production
Baker Personal service
Basket maker Production
Glass apparatus builder Production
Thermometer maker Production

B. 10 Least Routine-Intense Training Occupations
Sports specialist Personal service
Personnel services clerk Business service
Marketing communication clerk Business service
Market and social research specialist Business service
Tra”c service clerk Other commercial service
Legal administrative assistant Business service
Driving operations specialist Other commercial service
Railway and road tra”c clerk Other commercial service
Tourism and leisure clerk Personal service
Event manager Other commercial service

Routine intensity demeaned within years.
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Table B13: Most and Least Routine-Intense Training Occupations

Most Routine-Intense Least Routine-Intense

A. Business service
Legal assistant Marketing communication clerk
Media designer image and sound Market and social research specialist
Pharmaceutical clerk Legal administrative assistant

B. IT + scientific service
Material tester Information and telecommunications system clerk
Dairy laboratory technician IT system management clerk
Chemical laboratory technician IT clerk

C. Other commercial service
Brewers and malters Driving operations specialist
Interior decorator Railway and road tra”c clerk
Plumber Event manager

D. Personal service
Confectioner Travel agent
Men’s tailor Sports specialist
Clothes tailor Tourism and leisure clerk

E. Production
Embroiderer Information and telecommunications systems electronics technician
Glassmaker IT system electronics technician
Dressmaker Road and tra”c engineering specialist

Routine intensity demeaned within years.
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B.3 Labor market impacts

Table B14: Descriptives of Vocationally Trained Labor Market Entrants, Stacked Sample

A. Treated B. Control
Mean SD Median Mean SD Median

Age 24.01 2.78 24.00 24.10 2.98 24.00
Year of birth 1978 9.00 1978 1978 9.00 1978
Female 0.31 0.46 0.00 0.52 0.50 1.00
Daily wage 76.66 30.53 77.98 72.76 30.39 73.40
Annual daily wage growth 0.38 10.41 0.05 0.31 4.65 0.06
Years of training 2.89 0.54 2.92 2.75 0.50 2.84
Typical years of training 3.12 0.41 3.00 2.86 0.34 3.00
Annual days employed 264 143 365 266 142 365
Annual labor earnings 20,606 14,999 22,212 19,667 14,413 20,877
Firm size 642 2,778 57 443 2,193 40
N unique workers 41,070 105,166
SIEED sample, dataset stacked in event time as described in Section 4.1, for worker cohort ω = ↑1. Workers

in the first five years after graduation with a training duration between 1.75 and 4.25 years, restricted to
workers for whom we observe the training occupation and curriculum.

110



Table B15: Descriptives of Occupational Incumbents, Stacked Sample

A. Treated B. Control
Mean SD Mean SD

Age 42.46 9.75 43.49 9.66
Year of birth 1959 11.00 1958 11.00
Female 0.23 0.42 0.26 0.44
Daily wage (euros) 112.91 48.43 116.79 51.68
Annual days employed 327 105 324 107
Annual labor earnings 39,615 19,289 40,761 20,583
Firm size 894 3,381 956 3,597
Job mobility (year-to-year):

Occupation 0.05 0.23 0.04 0.21
Industry 0.06 0.24 0.05 0.22
Firm 0.10 0.30 0.09 0.29

N unique workers 673,555 548,250
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C Curriculum change in the United States

We use Classification of Instructional Programs (CIP) data from the National Center for
Education Statistics (NCES) to document the emergence of new educational degree programs
in the United States over 1990–2020. CIP data systematically catalog all post-secondary
degree programs in the United States, classified by field codes. Its first edition dates back
to 1980, with revisions occurring in 1985, 1990, 2000, 2010 and 2020. From 1990 onward,
separate records of newly added programs are available, which we also use here.

Specifically, we construct the share of newly added programs by broad field for each
edition from 1990 onward, cumulating the new degree program counts over time. We then
construct the share of new programs by field as the number of newly added programs over
the total number of programs by field in 2020. The resulting Figure C1 highlights substantial
curriculum change across a wide range of fields.

Figure C2 shows that curriculum change is common across the occupational wage spec-
trum, by crosswalking CIP degree fields to SOC occupation codes using the NCES-provided
crosswalk and combining it with BLS Occupational Employment and Wage Statistics (OEWS)
Survey data. For example, while high-paid occupations like legal professionals and computer
and information sciences have seen a high share of new education programs, so have public
administration and social service professions, engineering technicians, construction trades,
mechanics and repair technicians, and personal and culinary services. There has been less
educational content change in fields like history, and precision production.
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Figure C1: U.S. Curriculum Change by Degree Field, 1990—2020
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Figure C2: U.S. Curriculum Change by Occupation, 1990—2020
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Figure plots the share of newly added degree programs by occupations ranked by median hourly wages,
based on CIP data crosswalked to BLS data. The size of the circles reflects 2023 occupational employment
shares.
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D SIEED data construction details

We follow Dauth and Eppelsheimer (2020) in preparing the SIEED data. In particular, we
derive several career indicators such as tenure, days in employment, etc. from the spell data;
we merge the individual spell data with information on employers (location, industry, size)
from the Establishment History Panel (BHP), we deflate wages using the consumer price
index and we impute top-coded wages. Wages are top-coded in the data at the upper limit
for social security contributions. Wages of trainees in the first years of graduation rarely
exceed the contribution limit and thus are hardly ever censored or imputed. We retain the
main employment spell of each individual in case of multiple concurrent spells, where the
main employment spell is the one with the highest wage. The data provide daily information
on workers’ careers. We construct a yearly panel of workers by selecting workers’ employment
status at the 15th of October of each year. Most authors typically rely on the 30th of June
(=mid of year). We use the 15th of October, because vocational training typically starts in
August or September, so that by the 15th of October we are sure to cover all workers who
started or completed vocational training in that year.

In addition to these standard steps from the literature, we derive further indicators from
the data. In particular, we identify the start and end day of workers’ vocational training,
as well as training duration and occupation. We define the start of a workers’ vocational
training as the start day of an employment spell which is marked as a training spell, if
there was no previous vocational training spell and if the workers has not had a completed
vocational training before that spell (identified via the educational information). We identify
the vocational training occupation of a worker by their occupation in that spell. We define
the end of a vocational training of a worker by the end day of a vocational training spell
that is followed by a non-training spell in combination with the worker having a completed
vocational training status (identified via the educational information) in their next spell.

We drop Eastern Germany to avoid breaks in our data over time – East-German em-
ployment spells are available only from 1992 onward. We further drop workers who changed
occupations during their training, as well as workers with unreasonably long or short training
durations (less than 1.75 years, more than 4.25 years).
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E Do curriculum updates impact trainee composition?

Curriculum change is in principle observable to prospective students (and their parents):
curricula are publicly available legal documents, and the Federal Institute for Vocational
Education and Training (BIBB) also communicates training updates, which in recent decades
includes posting these changes on its website. This raises the concern that the quality of
student intake may change as a direct result of curriculum updates, violating parallel trends—
if student quality improves, this could contribute to the positive wage e!ects we find. On
the other hand, if student quality worsens, our estimates may understate the returns to skill
upgrades contained in the new curricula.

We use two separate datasets (DAZUBI and o”cial apprenticeship market statistics)
containing training occupation-level information on apprenticeships and trainees, obtained
from the BIBB, to consider how trainee observables evolve around curriculum updates. We
use a stacked DiD design as before, comparing apprenticeship position (application) numbers
and trainee observables before and after curriculum updates in training programs which were
updated versus those that were not.39 The estimating equation is

Yjt =
∑

ω

ωω Updatej → Iω + ϱj + εt + ςjt, (E1)

where Yjt is a training occupation-level outcome for training occupations j in year t. Be-
cause we stack observations as before, j indexes training occupations by curriculum update
(‘event’), and t indexes calendar years by event. φ denotes calendar years relative to the
year of the potential curriculum change event: we normalize φ = 0 as the first calendar year
the curriculum is updated. We control for training occupation dummies and calendar year
dummies, each interacted with event dummies. Standard errors are clustered at the training
occupation by event level, as before. Table E1 shows descriptives of the DAZUBI dataset,
using values in the initial period φ = ↑5.

We estimate models for West-Germany over 1976–2022. A first set of results reported in
panel A of Figure E1 describes the apprenticeship positions: the number of training contracts,
the share of these terminated before the end of training40, the pass rate among contracts
surviving until the final exam, the share of positions remained unfilled, and the share of
unsuccessful applicants. We find that the number of apprenticeship positions increases for
updated curricula compared to those without updates, with a transitory dip in enrollment
the year before the curriculum update. The share of terminated apprenticeship contracts
does not change following curriculum updates: updated programs have a slightly higher ter-
mination rate although these estimates are small and never statistically significant. Further,
there is a very small increase in the pass rate for students enrolling in updated training

39We exclude curriculum updates that regrouped several training occupations into several other training
occupations without a clear correspondence between the previous and succeeding training occupations.

40Such terminations occur when students choose to dis-enroll (and potentially re-enroll in a di!erent pro-
gram).
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programs, amounting to less than 2 percentage points (relative to a mean of 87%, shown in
Table E1). We also do not observe changes in the share of unfilled apprenticeship positions
(labeled ‘excess supply of positions’ in Figure E1) or unsuccessful apprenticeship applica-
tions (labeled ‘excess demand by apprentices’) around curriculum updates that would hint
at altered interest in training occupations following an update.

Panel B of Figure E1 considers changes in the composition of trainees by gender, age, and
education. Overall, we find little evidence that curriculum updates coincide with changes
in these trainee characteristics. The gender and age composition of trainees in updated
programs evolves in the same way as in programs without updates. Moreover, curriculum
updates do not coincide with changes in the educational composition of trainees’ high school
diploma41: we consider the share of students with an upper school track (the highest high
school diploma), a middle school track, a lower school track, and no high school diploma,
finding no discernible trend changes for any of these. Further, Figure E2 shows estimates sep-
arately for production and service training occupations, showing these findings hold within
these subsamples also.

All in all, we do not find evidence to support changes in worker composition concurrent
with curriculum change. This bolsters confidence that the documented wage returns from
curriculum reform are the result of skill upgrading rather than reflecting a changing worker
worker selection into updated training programs.42

41Because of changes in the educational classification, we estimate these e!ects separately over 1976–2006
and 2007–2022.

42Along with no changes in trainee composition, we also do not find any changes in total employment or
wagebills for training occupations around curriculum update events, using SIAB data. Estimates for these
models are shown in Figure A20, highlighting that training occupations with updated curricula are on
similar employment and wagebill trajectories as training occupations without curriculum updates over the
same time period.
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Table E1: Descriptives on Apprenticeship Positions and Trainee Composition

Mean SD N
A. Apprenticeship positions, supply, and demand

Log(new training contracts) 5.79 2.04 33,672
% Contracts terminated 20.62 13.85 32,706
% Final exams passed 89.37 7.9 7,466
% Excess supply of positions 4.19 5.19 7,869
% Excess demand by apprentices 10.86 11.12 7,869

B. Apprenticeship composition
% Female 32.95 34.38 22,534
Average age in years 19.46 1.09 10,338
% Upper school track (1976–2006) 16.63 20.74 17,631
% Upper school track (2007–2022) 21.15 23.33 8,695
% Middle school track (1976–2006) 31.31 17.29 17,631
% Middle school track (2007–2022) 35.01 14.95 8,695
% Lower school track (1976–2006) 34.62 23.78 17,631
% Lower school track (2007–2022) 38.52 25.76 8,695
% No school (1976–2006) 1.95 3.34 17,631
% No school (2007–2022) 2.9 3.33 8,695

Mean and standard deviation in the initial year ω = ↑5. N shows the number of observations included in
the respective regressions: this varies across outcomes due to missing values.
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Figure E1: Apprenticeship Positions and Trainee Composition Before and After
Curriculum Updates

A. Apprenticeship positions
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Stacked di!erence-in-di!erences estimates of curriculum updates on apprenticeship positions and trainee composition,
comparing occupations with curriculum updates to occupations without updates. Based on 317 curriculum update events
(pure content changes, aggregations without simultaneous segregations, and segregations without simultaneous aggregations)
over 1976–2022, West Germany only, N = 57, 745. The first year with the new curriculum is 0. Models absorb
occupation-by-event dummies, calendar year-by-event dummies and time-to-event dummies. Standard errors are clustered at
the curriculum level. Excess supply of positions defined as the number of unfilled positions among all o!ered positions in %.
Excess demand defined as the number of rejected applications by students over the number of all applications. Education
shares 1976–2006 based on the previously attended school type, including both general and vocational schools. Education
shares 2007–2022 based on school-leaving certificate (excluding vocational schools). Excess supply and excess demand
available from 2007 onward; % final exams passed available from 2010 onward; % female available from 1993 onward; average
age in years available from 2007 onward.
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Figure E2: Apprenticeship Number and Composition Before and After Curriculum
Updates – Production versus Service Occupations

A. Apprenticeship positions
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Stacked di!erence-in-di!erences estimates of curriculum updates on apprenticeship positions and composition comparing
occupations with curriculum updates to occupations without updates, over 1976–2022. Based on 223 updating events (pure
content changes, aggregations without simultaneous segregations, and segregations without simultaneous aggregations) in
production occupations (N=39,180) and 94 updating events in service occupations (N=18,565). The first year with the new
curriculum is 0. Models specification in equation (E1). Standard errors are clustered at the curriculum level. Excess supply of
positions defined as the number of unfilled positions among all o!ered positions in %. Excess demand defined as the number
of rejected applications by students over the number of all applications. Education shares 1976–2006 based on the previously
attended school type, including both general and vocational schools. Education shares 2007–2022 based on school-leaving
certificate (excluding vocational schools). Excess supply and excess demand available from 2007 onward; % final exams passed
available from 2010 onward; % female available from 1993 onward; average age in years available from 2007 onward.
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