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The secrets of eternity, neither you know nor I.
The riddle of this tale, neither you read nor I.

Behind the veil a dialogue goes on, between you and me;
And when the veil is lifted, neither you remain, nor I.

— Omar Khayyam

For my family





Abstract
Graphene (Gr) has obtained significant attention in the realm of advanced informa-
tion technologies due to its remarkable electronic properties, such as high carrier
mobility, an unusual quantum Hall effect, and long spin lifetimes at room temper-
ature. These attributes make Gr a promising candidate for various applications,
particularly in spintronics. There, research on Co/Pt(111) ultra-thin films, widely
utilized in perpendicular magnetic recording, focuses on enhancing material prop-
erties by adding buffer layers and alloying with other elements.
This thesis explores the electronic and magnetic properties of Gr when deposited on
Co/heavy metal (HM) substrates, particularly focusing on Pt and Ir as HMs. Our
investigation aims to elucidate the impact of Gr on Co/HM on magnetic exchange
interactions, with a particular focus on understanding the spin-orbit coupling (SOC)
effects like magnetocrystalline anisotropy (MCA) and the interfacial Dzyaloshinskii-
Moriya interaction (DMI) at both Gr/Co and Co/HM interfaces. These interactions
are pivotal in influencing various magnetic dynamics, including ferromagnetic
resonance, spin waves, and the behavior of chiral domain walls and skyrmions.
Modern electronic systems aspire to achieve high-speed operation and low energy
consumption, driving the development of electric-field-controlled spintronic de-
vices. The experimental reports reveal evidence of interfacial DMI at the Gr/Co
interface, contrasting with the SOC-induced DMI observed at the Co/HM interface.
Additionally, we find that depositing Gr leads to a reduction in DMI, potentially
enhancing the susceptibility of these structures to electric fields.
Efforts to manipulate DMI and MCA involve the application of electric fields and
the introduction of various capping layers, including oxide capping layers and an
HM overlayer, to engineer electronic and magnetic properties. Our exploration also
extends to Gr-covered Co/Pt multilayers, known for their perpendicular magnetic
anisotropy, contributing further to our understanding of the intricate interplay be-
tween material compositions and magnetic properties. These insights hold potential
implications for engineering DMI and MCA in future spintronic devices.
Theoretical advancements, particularly in density functional theory (DFT), play a
crucial role in unraveling material properties. The Full-potential Linearized Aug-
mented Planewave (FLAPW) method is renowned for its versatility and accuracy,
making it a widely accepted computational approach in materials science. Utilizing
the FLAPW method enables us to handle complex systems, encompassing those
with heavy atoms and pronounced SOC effects. In this thesis, we utilize the FLEUR
code, which employs the film FLAPW method to compute the DMI in the electric
field, an essential parameter in spintronics research. Our calculations consider SOC
effects both in a first-order perturbation theory for the DMI and self-consistently for
the MCA, aiming to stimulate SOC-induced effects and deepen our understanding
of these phenomena.





Kurzfassung
Graphen (Gr) hat aufgrund seiner bemerkenswerten elektronischen Eigenschaften
wie der hohen Ladungsträgerbeweglichkeit, dem ungewöhnlichen Quanten-Hall-
Effekt und der langen Spin-Lebensdauer bei Raumtemperatur große Aufmerk-
samkeit im Bereich der fortgeschrittenen Informationstechnologien erhalten. Diese
Eigenschaften machen Gr zu einem vielversprechenden Kandidaten für verschiedene
Anwendungen, insbesondere in der Spintronik. Dort konzentriert sich die Forschung
auf ultradünnen Co/Pt(111)-Filmen, die in der magnetischen Senkrechtaufzeich-
nung weit verbreitet sind, auf die Verbesserung der Materialeigenschaften durch
das Hinzufügen von Pufferschichten und die Legierung mit anderen Elementen.
In dieser Arbeit werden die elektronischen und magnetischen Eigenschaften von
Gr untersucht, wenn es auf Co/Schwermetall (HM)-Substraten deponiert wird,
wobei der Schwerpunkt auf Pt und Ir als HMs liegt. Unsere Untersuchung zielt
darauf ab, die Auswirkungen von Gr auf Co/HM auf magnetische Austauschwech-
selwirkungen zu klären, mit einem besonderen Fokus auf das Verständnis der
Spin-Bahn-Kopplungseffekte (SOC) wie magnetokristalline Anisotropie (MCA)
und die Grenz-flächen-Dzyaloshinskii-Moriya-Wechselwirkung (DMI) sowohl an
Gr/Co- als auch an Co/HM-Grenzflächen. Diese Wechselwirkungen spielen eine
zentrale Rolle bei der Beeinflussung verschiedener magnetischer Dynamiken, ein-
schließlich ferromagnetischer Resonanz, Spinwellen und dem Verhalten chiraler
Domänenwände und Skyrmionen.
Moderne elektronische Systeme streben einen hohe Geschwindigkeiten und einen
niedrigen Energieverbrauch an, was die Entwicklung von durch elektrische Felder
gesteuerten spintronischen Bauelementen vorantreibt. Die experimentellen Ar-
beiten zeigen Hinweise auf Grenzflächen-DMI an der Gr/Co-Grenzfläche, die
im Gegensatz zu der SOC-induzierten DMI an der Co/HM-Grenzfläche stehen.
Darüber hinaus stellen wir fest, dass die Deposition von Gr zu einer Verringerung
der DMI führt, was möglicherweise die Empfindlichkeit dieser Strukturen gegenüber
elektrischen Feldern erhöht. Unsere Bemühungen zur Beeinflussung von DMI
und MCA umfassen die Anwendung elektrischer Felder und die Einführung
verschiedener Deckschichten, einschließlich Oxid-Deckschichten und einer HM-
Überschicht, um die elektronischen und magnetischen Eigenschaften zu verbessern.
Unsere Untersuchungen erstrecken sich auch auf Gr-bedeckte Co/Pt-Multischichten,
die für ihre senkrechte magnetische Aniso-tropie bekannt sind, und tragen weiter zu
unserem Verständnis des komplizierten Zusammenspiels zwischen Materialzusam-
mensetzung und magnetischen Eigenschaften bei. Diese Erkenntnisse haben poten-
zielle Auswirkungen auf den Einsatz von DMI und MCA in zukünftigen spintronis-
chen Bauelementen.
Theoretische Fortschritte, insbesondere in der Dichtefunktionaltheorie (DFT), spie-
len eine entscheidende Rolle bei der Entschlüsselung von Materialeigenschaften.
Die FLAPW-Methode (Full-potential Linearized Augmented Planewave) ist bekannt



für ihre Vielseitigkeit und Genauigkeit, was sie zu einem weithin akzeptierten
Berechnungsansatz in der Materialwissenschaft macht. Die Verwendung der FLAPW-
Methode ermöglicht es uns, komplexe Systeme mit schweren Atomen und aus-
geprägten SOC-Effekten zu behandeln. In dieser Arbeit verwenden wir den FLEUR-
Code, der die Film-FLAPW-Methode zur Berechnung des DMI im elektrischen
Feld einsetzt, einem wesentlichen Parameter in der Spintronikforschung. Unsere
Berechnungen berücksichtigen SOC-Effekte sowohl in einer Störungstheorie er-
ster Ordnung für die DMI als auch selbstkonsistent für die MCA, mit dem Ziel,
SOC-induzierte Effekte zu stimulieren und unser Verständnis dieser Phänomene zu
vertiefen.
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1
Introduction

As traditional silicon-based technologies encounter limitations, various alternative
approaches like nanoelectronics, molecular electronics, and spintronics have gained
interest [1, 2]. Spintronics, in particular, revolutionizes information processing by
encoding data in the direction of spin, transporting it along designated paths, and
reading it at the final destination. Ensuring the spin orientation of conduction
electrons is sustained along the transport path for several nanoseconds is crucial
for their viability in electrical circuits and chips. A common method to achieve this
is by passing current through a ferromagnetic (FM) material and transmitting the
spin-polarized electrons to a receiver. Successful implementation of spintronic de-
vices and circuits depends on various functionalities, including spin detection, spin
transport, spin manipulation, spin-optical interaction, and single spin devices [3].
Moreover, perpendicular magnetic anisotropy (PMA) assumes a pivotal role in
spin-orbitronic devices, particularly in downsizing data storage spintronic devices
like spin transfer torque magnetic random access memories (STT-MRAM) [4, 5].
Maximizing PMA is essential for modern spintronic devices, including STT MRAM
and spin-orbit torque (SOT) MRAM [6, 7].
In the pursuit of advanced information technologies, high-speed operation, and
low-energy consumption [8] are prioritized. Non-collinear magnetic structures,
such as skyrmions, have received significant interest due to their unique properties
and potential applications in information technology [9]. Similarly, localized non-
collinear magnetic textures like domain walls (DWs) have emerged as promising
candidates for innovative advancements, especially in the realm of information
storage [10].
Materials with suitable spin transport channels, offering long spin lifetimes, ex-
tended spin propagation distances, and topologically stable spin textures have at-
tracted attention for their potential to realize high-density, low-power, and fast-spin
devices [9]. The emergence of two-dimensional (2D) materials offers new oppor-
tunities, which possess numerous attractive characteristics. Among the proposed
materials, carbon nanotubes stand out as a prominent example of nontraditional
materials whose properties can be modulated by an electric field [11]. Carbon nan-
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1. Introduction

otubes and graphene (Gr) are notable examples of such materials, with Gr exhibiting
long spin lifetimes and propagation lengths at room temperature [12].
The technique of micromechanical cleavage enables the deposition of a single Gr
sheet onto an insulating substrate, facilitating electron transport experiments on
this 2D system [13]. Furthermore, the observation of the electric field effect in a
naturally occurring two-dimensional material referred to as few-layer Gr on top
of an oxidized Si wafer [14], highlights the substantial influence of Gr’s surround-
ings, particularly its substrate, on its electronic characteristics [15]. To develop
Gr-based spintronics devices, it’s essential to integrate additional active properties
into Gr. Recent breakthroughs have demonstrated the generation of long-range
magnetic order and spin filtering in Gr through molecular functionalization [16].
Additionally, significant progress has been made in introducing "giant" spin-orbit
coupling (SOC) into Gr’s electronic bands via intercalation techniques [17, 18]. It
has been demonstrated that the characteristic electronic structure of Gr experiences
significant alteration that can be reduced by intercalation upon chemisorption on
Co, Ni, and Pd [19]. Inducing significant SOC in Gr without compromising its
inherent Dirac cone structure is crucial for practical applications utilizing spin-orbit
effects.
Moreover, the discovery of a potent Dzyaloshinskii-Moriya interaction (DMI) at the
interface of Gr and FM materials [20] is a pivotal development in advancing SO
technology, as it facilitates the electrical modulation of transport and manipulation
of magnetically (topologically) protected structures. The successful integration of
Gr as an efficient spin transport medium into technologies reliant on chiral spin
textures hinges on our ability to fabricate Gr-based PMA systems with finely tuned
interfacial SOC. The realization of Gr-mediated antiferromagnetic coupling between
ferromagnets [21] and the groundwork laid for engineering ferroelectricity for
various ferroelectric memory applications demonstrate significant advancements.
These achievements highlight the adept manipulation of SOC through metal inter-
calation [22] and the precise modulation of critical magnetic interactions, including
perpendicular anisotropy and interfacial DMI, via layer engineering. Besides, sig-
nificant progress has been made in studying the electric field-induced changes
in magnetization in thin films and advancing the development of 2D magnetic
tunnel junctions (2D-MTJ) [23, 24]. Extensive research has been conducted on the
source of PMA at both the HM/FM and FM/oxide interfaces [25, 26, 27, 28, 29, 30].
Utilizing both the top and bottom interfaces of the FM layer is a common strategy
to enhance the overall PMA of the system [31]. For instance, multilayers consisting
of repeated FM/HM bilayers, like Co/Pt multilayers, serve as the reference layer
for STT-MRAM [32].
Comprehending magnetic interactions is fundamentally significant in condensed
matter physics and the development of spintronic devices. The stabilization of
non-collinear magnetic states relies on the interplay of various competing interac-
tions [33]. Owing to the inversion asymmetric structure, an anisotropic exchange
coupling known as the (interfacial) DMI arises at the interface between the heavy
metal (HM), such as Pt, and an FM layer, such as Co. This interfacial DMI plays a
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crucial role in stabilizing non-trivial topological magnetic solitons, such as magnetic
skyrmions [33, 34] and chiral DWs [35, 36]. The DMI is prominent in systems char-
acterized by large SOC and broken inversion symmetry, such as at the interfaces of
Co and Ir or Pt [37]. Utilizing both the top and bottom interfaces of the FM layer can
enhance the overall PMA of the system [31]. Cobalt-based multilayer systems have
become a focal point of research, spurred by the exciting revelation of magnetic
skyrmions existing at room temperature [38, 39, 40]. Furthermore, the interfacial
DMI influences various types of magnetic dynamics, including ferromagnetic reso-
nance, spin waves, and the motion of chiral DWs and skyrmions [41].
In thin films, Néel-type DWs and bulks, Bloch-type DWs are usually two common
magnetic DW structures. The magnitude of the SOC influences the DMI vector, as
well as the effective magnetic anisotropy constant, which in turn determines the
profile of various magnetization textures such as DWs. Also, the sign of the DMI
vector, D, determines the chirality of the DW [42].
In addition to facilitating the formation of chiral DWs, the interfacial DMI also
promotes the creation of skyrmions [43, 44]. The radius of a skyrmion is determined
by numerically solving the equation that describes its profile. In the limit of small
skyrmions, an analytical expression for the skyrmion radius, RSk, in the absence of
an external magnetic field, the DMI forms the foundation of chiral magnetism [45],
a contemporary and vibrant study area in modern magnetism. This interaction,
along with the MA, is responsible for a range of novel static and dynamic magnetic
properties such as skyrmions in 2D structures and Hopfions in 3D structures. Hence,
enhancing the DMI and MA offers the potential to control magnetic properties ex-
ternally without altering temperature.
This thesis focuses on investigating the electronic as well as magnetic properties
of Gr deposited on Co/HM structures, choosing Pt and Ir(111) films as HMs. The
role of nonmagnetic elements in modifying magnetic exchange interactions is ex-
plored, with a particular focus on the MA and the DMI at the Co/Pt interface. The
Z element not only determines the interlayer distances between 4d-Pt and 4d-Co
but also slightly alters the Co/Pt interlayer distance and can modify the sign and
magnitude of the DMI [46]. To engineer the electronic and magnetic properties, a
range of techniques are employed. These include utilizing electric fields, applying
oxide capping layers, and sandwiching the FM layer between two non-magnetic
(NM) layers.
Modern electronics rely on the ability to control the electronic properties of ma-
terials through externally applied voltage [14]. The realization of electric-field
modulation in magnetic semiconductors and metals has initiated the development
of electric-field-controlled spintronics devices. The first observation of a direct
electric-field effect on magnetism in metal was reported for thin layers of FePt and
FePd, where utilizing an electric double layer enabled large electric fields to induce
surface charges [47]. Previously, it was widely believed that observing significant
electric-field effects in metals would be challenging due to their short screening
length [48]. However, subsequent theoretical investigations revealed that electric-
field effects on surface magnetization and magnetocrystalline anisotropy (MCA) can
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1. Introduction

be substantial even in metal FMs like Fe, Ni, and Co, owing to the spin-dependent
screening of the electric field [49]. These findings prompted extensive research
into electric-field effects in various materials, including the Co(Fe)/MgO system,
leading to the observation of room-temperature electric-field-induced changes in
MA, attributed to modulation of interface MA [50, 51]. The intrinsic electric dipole
at the FM/oxide interface drives the increase (decrease) of PMA under an electric
field, associated with a decrease (increase) of the interfacial electric dipole field,
which spontaneously exists even without the application of any electrical field. This
effect has been observed and quantified at the Fe/MgO interface [52].
In these developments, theoretical advancements have played a crucial role e.g.
by unraveling the properties of new materials. State-of-the-art ab initio methods,
particularly density functional theory (DFT), have emerged as powerful tools for
both interpreting experimental findings and exploring novel materials, allowing
predictions of their properties before experimental validation. The calculations
presented in this thesis represent the cutting edge of research, delving into the
intricate interplay of structural and magnetic complexities.
Electronic structure calculations for solids pose significant challenges due to the
complex interactions between nuclei and electrons within a many-body system.
The Born-Oppenheimer approximation enables a focus solely on electron dynamics,
considering their interaction with frozen, positively charged atomic nuclei. How-
ever, the complexity of electron-electron interactions, mediated by Coulomb forces,
necessitates approximations, even for a moderate number of particles. DFT, pio-
neered by Hohenberg and Kohn [53] and further developed by Kohn and Sham [54],
has revolutionized our possibilities to predict electronic properties of complex struc-
tures. This parameter-free approach facilitates the calculation of total energy using
the electron density as a fundamental variable, eliminating the need for many-body
wavefunctions. Ab initio methods, prominently DFT, have become essential in ma-
terials science, aiding in the interpretation of experimental data and the prediction
of material properties prior to experimental validation. This method facilitates the
development of ideal materials tailored for specific purposes without the need for
extensive experimental iterations.
In this thesis, the calculations employ the FLEUR code [55, 56], based on the full-
potential linearized augmented plane-wave (FLAPW) method rooted in DFT prin-
ciples. Notably, the FLEUR code uniquely facilitates the calculation of relativistic,
magnetic interactions e.g. the DMI, a key parameter in spintronics research. How-
ever, calculating the DMI presents challenges, requiring non-collinear calculations
and the presence of SOC. Consequently, it is necessary to employ either large su-
percells with commensurate magnetic moments or more sophisticated perturbative
approaches.
The thesis follows the structure outlined below:
Chapter 2 provides a comprehensive overview of the fundamental principles of
DFT and the Kohn-Sham framework. This chapter extends these foundational
concepts to include spin systems and non-collinear magnetic structures, laying the
groundwork for the following discussions.
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Following this, Chapter 3 delves into the FLAPW method, which forms the basis
of all calculations conducted in this study. These computations utilize the FLEUR
code, an advanced FLAPW code capable of dealing with non-collinear magnetic
structures.
To determine the magnetic ground state of the system, our methodology involves
employing an atomistic spin model, explained in detail in Chapter 4. We consider
three pivotal energy contributions. Firstly, the Heisenberg exchange interaction
characterizes the exchange coupling between spins on different atoms. Secondly,
the DMI emerges from SOC in systems lacking inversion symmetry, giving rise to
complex magnetic structures such as spin spirals. Lastly, the MCA is introduced,
accounting for the energy dependence on the magnetization direction relative to
the crystal lattice.
Focusing on Heisenberg exchange, MCA, and the DMI, Chapter 5 investigates the
essential magnetic interactions in Gr/Co/HM (111) heterostructures, taking Pt and
Ir as HM. This investigation sheds light on the interfacial DMI at both interfaces of
Gr/Co and Co/HM. Continuing in Chapter 6, we explore the impact of Co thickness
on both MCA and DMI. In Chapter 7, we investigate the modulation of DMI and
MCA through the application of an electric field and utilization of an oxide capping
layer. In Chapter 8, we introduce an HM capping layer, employing again Pt or Ir to
modulate DMI and MCA effectively. We also delve into the investigation of Co/Pt
compositions’ effects on MCA and DMI, offering insights into the intricate interplay
between material compositions and magnetic properties. The thesis is concluded in
Chapter 9, summarizing the main findings and conclusions reached throughout the
study.
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Density Functional Theory
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In order to study the structural or electronic properties of condensed matter such
as conductivity, or interaction between local spins, that leads to magnetic textures,
one must understand the electronic properties of such materials. Density func-
tional theory (DFT) has gained popularity in the last few decades for investigating
electronic properties of condensed matter [57]. Moreover, the significance of DFT
calculations in the field of magnetism is widely accepted. The DFT formalism
indicates that the ground state and additional properties of an electron system can
be determined solely from the electron density distribution. Therefore, only a few
input parameters have to be known to calculate the ground state properties such as
magnetic order, magnetic moments as well as magnetic interactions.

2.1 Hamiltonian in many-body systems

In the majority of solid state physics problems, the solution of the time-independent
Schrödinger Equation is greatly simplified by employing the Born-Oppenheimer
approximation [58]. This approximation allows for the many-body wavefunction to
be approximated as a product of wavefunctions for the nuclear and electronic coor-
dinates. Consequently, the purely electronic eigenvalue problem can be addressed
independently of the nuclei.
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2. Density Functional Theory

The initial step in computing the electronic structure involves considering the
electronic Hamiltonian,

Ĥ = T̂ + V̂ext + V̂ee, (2.1)

where T̂ represents the kinetic energy of the system, V̂ the interaction of elec-
trons with an external potential (including the atomic nuclei potential), and V̂ee the
electron-electron interaction. One can extend the Hamiltonian to a wave equation:

Ĥψ(r1, ..., rN) =

⎧⎪⎪
⎨
⎪⎪⎩

−
h̄2

2m

N
∑
i=1
∇2

ri
+

1
2

N
∑
i≠j

e2

∣ri − rj∣
−

M
∑
µ=1

N
∑
i=1

e2Zi
∣Rµ − ri∣

⎫⎪⎪
⎬
⎪⎪⎭

ψ(r1, ..., rN)

= ϵψ(r1, ..., rN).

(2.2)

Here Zi is the nuclear number, Ri and ri are the nuclear and electronic coordi-
nates, respectively. The behavior of electrons in the ground state can be described
by a many-body system wave function, ψ, which is a complex quantity in 3N-
dimensional space, where N represents the number of electrons, and M denotes
the number of nuclei. If spin and time dependency are contemplated, the problem
becomes even more complex.

2.2 The Thomas-Fermi model
Thomas and Fermi [59, 60, 61] pioneered an initial density-based approach to
electronic structure, deriving explicit expressions for the kinetic energy, electron-
electron interaction, and nuclear potential in Equation (2.2) in terms of the electronic
many-body density, n(r). In this model, electrons are treated as independent
particles with a purely electrostatic mutual interaction, known as the Hartree term,
given by

VH[n(r)] =
1
2 ∫ ∫

n(r)n(r′)
∣r − r′∣

d3rd3r′ (2.3)

The external potential formed by the nuclei can be expressed as a functional of the
density:

Vext[n(r)] = −∫ ∑
µ

Zi
∣Rµ − r∣

n(r)d3r (2.4)

Thomas and Fermi addressed the challenge of representing the kinetic energy by
considering a locally uniform electron gas of independent non-interacting particles.
Within this local density approximation, which will be discussed in Section (2.5),
the kinetic energy functional is given by

T[n(r)] = ∫ t[n]n(r)d3r = Ck ∫ n5/3(r)d3r, (2.5)

with Ck = 3h̄(3π2)2/3/10m. This fulfills the total energy functional,

E[n(r)] = T[n(r)] +Vext[n(r)] +VH[n(r)], (2.6)

12



2.3. Hohenberg-Kohn theorem

in the Thomas-Fermi model. By minimizing the total energy functional under the
condition that the overall number of electrons N = ∫ n(r)d3r remains constant and
using the Lagrange multiplier λ, the Thomas-Fermi equation is obtained:

1
2
(3π2)2/3n2/3(r) +∫

n(r′)
∣r − r′∣

d3r′ −∑
µ

Zµ

∣Rµ − r∣
+ λ = 0 (2.7)

The Thomas-Fermi approximation, despite its historical significance and frequent
use in the past, has notable limitations. While it can provide a reasonable approx-
imation of the charge density, it fails in several critical aspects. For instance, the
Thomas-Fermi charge density diverges at the nuclei and decays as r−6 away from
them, rather than exhibiting exponential decay. Additionally, this approximation
cannot account for the binding of molecules or solids, nor does it capture the pe-
riodicity of properties in solids relative to the nuclear number. Furthermore, the
Thomas-Fermi approach does not lead to ferromagnetism [62]. Despite these limita-
tions, the Thomas-Fermi approximation represents an exact solution in the limit of
infinite nuclear charge.

2.3 Hohenberg-Kohn theorem

DFT made it possible to calculate the energy of a solid, using only the electron
density, n(r). Initially, we will consider a non-magnetic material with spin degener-
acy, and later we will extend our discussion to spin-polarized systems. Let’s take
the many-body Hamiltonian in Equation (2.1), which comprises the kinetic energy
T, the external potential V due to the nuclei, and the electron-electron interaction
Vee. According to the first theorem by Hohenberg and Kohn, there exists a unique
functional relationship between the total energy and the electronic density of the
many-body system. It is based on two theorems and established by Hohenberg and
Kohn [53] and Kohn and Sham [54].
Theorem 1: For a given external potential v, the total energy of a system is a unique
functional of the ground state electron density

E [n (r)] = T [n (r)] +Vext [n (r)] +Vee [n (r)] . (2.8)

Theorem 2: The exact ground state density, n0, minimizes the energy functional

E[n0(r)] ≤ E[n(r)]. (2.9)

Having an explicit expression for E[n(r)] would enable the minimization of this
functional concerning the electron density. This approach allows for the calculation
of the ground state energy [63]. Given the complex nature of electron-electron inter-
actions, certain approximations are still necessary to derive an explicit expression
for E[n(r)]. These approximations will be outlined in the subsequent discussion.
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2.4 Kohn-Sham equation
As it has been discussed, DFT is based on the Hohenberg-Kohn theorem, supplying
the basis for the substitution of the many-body wavefunction with an electronic
density in the description of a quantum-mechanical system. The success of DFT lies
in the fact that the minimal energy of a certain system is directly provided by the
ground state density. The electron density can be obtained by integration over all
but one spatial variable,

n(r) = N∫ dr2...∫ drNψ⋆(r, r2, ..., rN)ψ(r, r2, ..., rN). (2.10)

Note that we use atomic units where the charge of an electron is unity. In this case,
the energy functional expressing the total energy is stationary for small variations of
the electron density around the ground state density [64]. One can write the energy
functional as

E[n(r)] = ∫ Vext(r)n(r)dr + F[n(r)], (2.11)

where the first term represents the Coulomb interaction of density with the external
potential, and the functional F captures the kinetic energy of the electrons and their
mutual Coulomb repulsion. All terms in equation (2.11) that can be supplied for a
known n(r), the kinetic energy for a non-interacting electron system with density
n(r), T0[n(r)], and the Coulomb interaction of electrons may be taken out separately

F[n(r)] = T0[n(r)] +
1
2 ∫ ∫

n(r)n(r′)
∣r − r′∣

drdr′ + Exc[n(r)]. (2.12)

The term Exc[n(r)] is then just a small correction which is called the exchange-
correlation functional. According to the Kohn-Sham theory, the ground state density
of a many-body system can be obtained from an effective single-particle Schrödinger
equation, the Kohn-Sham equation:

[−
h̄2

2m
∇2 +∫

n(r′)
∣r − r′∣dr′ +Vext(r) +Vxc(r)]ϕi(r) = ϵiϕi(r). (2.13)

Where n(r = ∑i ωi∣ϕ∣2) and the exchange-correlation potential,Vxc, the functional
derivation of the exchange-correlation energy contains all the many-body effects,
and the second term represents the Hartree potential. The Kohn-Sham equations
take the form of one-particle Schrödinger Equations for Ne non-interacting electrons
within an effective potential,

Veff(r) = Vext(r) +VH(r) +Vxc(r). (2.14)

The ϵi are so-called Lagrange parameters, due to the normalization condition.
However, they resemble eigen-energies of a Schrödinger equation. The ϕi are wave-
functions of auxiliary particles, not quasi-particles. As equation (2.13) includes the
density both implicitly and explicitly via the Hartree and the exchange-correlation
potential, it has to be solved self-consistently. In DFT, this process is accomplished
by iteratively solving the Kohn-Sham equation, gradually converging towards the
ground state density starting from an initial guess.
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2.5. Exchange-correlation energy approximations

2.5 Exchange-correlation energy approximations
Considering that the effective potential relies on the density, and conversely, the
density is constructed from the solutions of Equation (2.13), the Kohn-Sham equa-
tions constitute a self-consistent problem. Two different approximations, the local
density approximation (LDA) as well as the generalized gradient approximation
(GGA), are usually used in order to parameterize the exchange-correlation energy.
These approaches are based on quantum Monte-Carlo simulations for intermediate
values of the electron gas [65].
The LDA, originally proposed by Kohn and Sham in 1965, assumes that the elec-
tronic density varies slowly [66]. It is exact for a constant electron density, such
as in a homogeneous electron gas. The LDA exchange-correlation energy density
can be decomposed into exchange and correlation parts. The exchange part can be
obtained, for instance, from Hartree-Fock calculations for a homogeneous electron
gas [67], while the correlation part can be calculated using the quantum Monte-
Carlo method [68]. LDA approximation is derived from the limit of a uniform
electron gas, even for the cases in which the density varies in space.

ELDA
xc [n(r)] = ∫ ϵxc[n(r)]n(r)dr, (2.15)

here ϵxc[n(r)] is the so-called the exchange-correlation energy density. If the density
is spin-polarized, i.e., n = n↑ + n↓ and n↑ ≠ n↓, through the LDA, the exchange-
correlation energy density can be written as ϵxc(n↑, n↓). This approximation is
sufficient when the spin density changes slowly in space.
However, GGA is a more suitable approximation to describe real atoms, molecules,
and solids as it explicitly takes into account the variation of the density, incorporat-
ing both the density n(r) itself and its gradient:

EGGA
xc [n↑, n↓] = ∫ f (n↑, n↓,∇n↑,∇n↓) dr. (2.16)

In fact, different GGAs are available for exchange-correlation functionals. Many
studies have been performed to determine the most compatible expression for f
with experiments on various materials. One of the most successful ones is the PBE
functional conducted by Perdew, Burke, and Erzernhof [69].
Apart from LDA and GGA, another notable class of approximations worth men-
tioning is the use of hybrid functionals to approximate the exchange-correlation
potential. This technique combines elements of the Hartree-Fock formalism with a
standard DFT contribution, such as LDA or GGA [70].

2.6 Vector-spin DFT
The magnetic ground state features are completely described by the many-body
wavefunctions which are substituted by the density. Since no functional is known
to obtain the magnetization from density, only the spin density gives a clear picture
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2. Density Functional Theory

of magnetization. A spin-polarized scheme for the Kohn-Sham equation can be
derived for magnetic systems. The spin-dependent version of DFT is defined by
spinor wavefunctions. The spin density, s(r), can be expressed as [64]:

s(r) = ⟨ϕ(r)∣σσσ∣ϕ(r)⟩, ϕ(r) =
⎛
⎜
⎝

ϕ↑i (r)

ϕ↓i (r)

⎞
⎟
⎠

. (2.17)

Here, σ is referring to 2× 2 Pauli matrices. The corresponding density matrix can be
written in the form of

n(r) =
1
2
(n(r)I +σσσ ⋅ s(r)), (2.18)

where I is 2 × 2 unit matrix. The spin-polarized version of DFT, derived by von
Barth and Hedin [71], extends the Kohn-Sham equation (2.13) in the form of

[(−
h̄2

2m
∇2 +∫

n(r′)
∣r − r′∣dr′) I + v(r) +Vxc(r)]

⎛
⎜
⎝

ϕ↑i (r)

ϕ↓i (r)

⎞
⎟
⎠
= ϵi

⎛
⎜
⎝

ϕ↑i (r)

ϕ↓i (r)

⎞
⎟
⎠

, (2.19)

where v(r) = Vext(r)I + µBσσσ ⋅ B(r) is a 2 × 2 potential matrix. Besides, Vxc is deter-
mined as the functional derivative of the exchange-correlation energy with respect
to the density matrix. If both potentials are diagonal matrices, the equation (2.19)
would split into two equations for spin-up and spin-down in spin space. In this case,
the local spin density approximation (LSDA) is taken into account for calculating
the exchange-correlation energy, which can be cast in the form of

ELSDA
xc = ∫ n(r)ϵxc [n↑(r), n↓(r)] dr, (2.20)

which follows the equation (2.15), and that means the exchange-correlation energy
couples n↑ and n↓. Spin-polarized DFT allows us to determine different magnetic
configurations, as well as to calculate the magnetic interactions between atoms. Dif-
ferent strategies are provided to find ground-states and the global energy minimum,
which are based on atomistic models. The simplest one is the classical Heisenberg
model. This model will be discussed in Chapter 4.

2.7 Relativistic effects
When describing systems with heavy atoms, relativistic effects become significant
due to the high kinetic energy of electrons near the nucleus [63]. The relativistic
theory for an electron with charge −e and mass m in the presence of an external scalar
potential V and vector potential A can be described through the Dirac equation,
which is expressed as:

HΨ = +i h̄
∂

∂t
Ψ = E′Ψ; H = −eV(r) + βmc2 + α ⋅ (cp + eA(r)). (2.21)
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Here, c is the speed of light. Besides, α is a vector composed of 4 × 4 matrices,
expressed in terms of the Pauli spin matrices, whereas β, a matrix of the same
dimension, is represented using the 2× 2 identity matrix:

α =
⎛
⎜
⎝

0 σσσ

σσσ 0

⎞
⎟
⎠

, β =
⎛
⎜
⎝

I 0

0 −I

⎞
⎟
⎠

Ψ is a spinor wavefunction with four components, which can be split into two parts,
so-called large and small components, ψ and χ, each with two spin components,

ψ =
⎛
⎜
⎝

ψ↑

ψ↓

⎞
⎟
⎠

, χ =
⎛
⎜
⎝

χ↑

χ↓

⎞
⎟
⎠

With these four components, the Dirac equation reads now

(E′ −mc2 + eV(r))
⎛
⎜
⎝

ψ↑

ψ↓

⎞
⎟
⎠
= (σσσ ⋅ (cp + eA(r)))

⎛
⎜
⎝

χ↑

χ↓

⎞
⎟
⎠

, (2.22)

(E′ +mc2 + eV(r))
⎛
⎜
⎝

χ↑

χ↓

⎞
⎟
⎠
= (σσσ ⋅ (cp + eA(r)))

⎛
⎜
⎝

ψ↑

ψ↓

⎞
⎟
⎠

. (2.23)

Assuming that the total energy is close to the rest mass energy in the non-relativistic
limit and neglecting eV(r) ≪ E′ +mc2 ≈ 2mc2, χ can be eliminated. Moreover,
considering E = E′ −mc2, these equations simplify to a single equation for the large
component:

[E + eV(r) −
1

2m
(p(r) +

e
c

A(r))
2
]
⎛
⎜
⎝

ψ↑

ψ↓

⎞
⎟
⎠
= 0. (2.24)

This represents a minimal extension of the Schrödinger equation for a particle in a
vector potential [72].
To derive terms that explicitly include spin matrices, we need to refine our approxi-
mation of the Dirac equation. This involves approximating χ based on the previous
equations, substituting this approximation into Equation (2.22), and keeping terms
up to order (v/c)2. By accomplishing this, we can again derive an equation for just
the large component:

[E + eV(r) −
1

2m
(p(r) +

e
c

A(r))
2
+

1
2mc2 (E + eV(r))2 +

i
eh̄

(2mc)2
E(r) ⋅ p −

eh̄
(2mc)2

σσσ ⋅ (E(r) × p) −
eh̄

2mc
σσσ ⋅ B(r)]

⎛
⎜
⎝

ψ↑

ψ↓

⎞
⎟
⎠
= 0. (2.25)
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2. Density Functional Theory

In our DFT calculations, we neglect the vector potential, A, but retain the coupling
to the magnetic (exchange) field in the last term. In the so-called scalar-relativistic
approximation, the third and fourth terms are included as they do not explicitly
couple to the spin. The fifth term describes the spin-orbit coupling that plays an
important role in the following.
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In Chapter 2, the density functional theory (DFT) was presented as a reliable and
well-established method for analyzing the electronic structure of condensed matter
systems. However, the solution of the Kohn-Sham Equation (2.13) necessitates a
precise ab-initio technique to simulate the electronic properties of structures accu-
rately. The Full-potential Linearized Augmented Planewave (FLAPW) method [73],
stands out as a widely accepted approach due to its precision and applicability to
all atoms across the periodic table [74].
Originating from the framework of augmented planewave (APW) methods, this
chapter delves into the intricate details of the full crystal potential. It outlines the
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formulation of the generalized Kohn-Sham eigenvalue problem, achieved by con-
structing the Hamiltonian matrix within the non-orthogonal LAPW basis. Finally,
we explain the implementation of non-collinear magnetism, offering a compre-
hensive understanding of electronic structure calculations of complex magnetic
systems.

3.1 Basis set for density functional theory

According to Bloch’s theorem, one can use the periodicity of the crystal lattice to
define the crystal momentum k as a good quantum number to label the crystal’s
wavefunction, ϕk. The Bloch functions can be written as a phase factor times a
lattice periodic function

ψk(r) = eik⋅ru(k, r) = eik⋅r
∑
G

cG
k (k)e

G.r, (3.1)

where G and cG
k are reciprocal lattice vectors and variational coefficients used in the

expansion of the lattice periodic part, respectively [75].
The wavefunction of Bloch vector k and band index ν, ψk,ν, can be written as a
linear combination of basis functions ϕk(r). One can expand the wavefunction into
planewaves

ψ(k, ν) = ∑
∣k+G∣≤Kmax

cν
k,GϕG

k (r), (3.2)

where Kmax indicates a cutoff parameter that limits the number of planewaves in the
expansion of the wavefunctions. A planewave basis would simplify the calculation
since planewaves are diagonal in momentum space, but it fails to describe the states
near the nucleus.

3.1.1 Augmented planewaves

In the APW method, at the center of each atom site, one sphere is assumed which
is the so-called muffin-tin (MT), and the remaining region is called the interstitial
region. Inside the MT spheres, the potential is supposed to be spherically symmetric.
Besides, the MT spheres do not overlap, which should be considered if structural
relaxation is allowed. Therefore, they nearly fill the maximum possible space. The
schematic illustration of MT spheres and interstitial region is shown in Figure (3.1).
Thus, the single wavefunctions are represented in terms of the APW basis functions:

ϕG(k, r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1√
V

ei(k+G)r interstitial region

∑lm aG,i
l,m (k)ui

l(r)Y
l
m(r̂ −Ri) MT sphere i

. (3.3)
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Here, Ri is the position of the MT sphere and ul is the regular solution of the radial
Schrödinger equation that can be written

{−
h̄2

2m
∂2

∂r2 +
h̄2

2m
l(l + 1)

r2 +V(r) − E} rul(r) = 0, (3.4)

where E and V(r) are the energy and spherical component of the potential V(r).
The wavefunction coefficients are also assumed to be continuous at the boundary
of MT spheres to achieve a well-defined kinetic energy.
Unfortunately, it turns out that through the APW method, at the fixed energy, it
is not easy to solve the Kohn-Sham equations numerically in an efficient way, as
in MTs, the basisfunction depends on energy. Also, it can happen that the radial
functions, ul, vanish at the MT radius. If the planewaves and the radial functions
become decoupled, then boundary conditions on the spheres cannot be satisfied [76].

Figure 3.1.: unit cell partitioned into muffin-tin (MT) spheres of one type of atom
and the interstitial (INT) region.

3.1.2 Linearized augmented planewaves

To address the issues associated with the energy dependence of the Hamiltonian
in the APW method, an alternative approach known as the linearized augmented
planewave method (LAPW) was introduced [77, 78]. LAPW is a modified APW
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basis set, wherein El is introduced as an energy parameter to replace the E to be
determined for each Bloch vector and thus extend the freedom of variation. For this
purpose, the basis functions within the MTs were extended by including their energy
derivatives [79]. However, both the original basis function ul and its derivative
u̇l = ∂ul/∂E are now evaluated at a fixed energy El. Consequently, the initial energy
dependence of the radial basis function is substituted by a Taylor series expansion:

ul(E) = ul(El) + (E − El)u̇l(El) +O ((E − El)
2) (3.5)

Summarizing, the basic idea of the LAPW is to evaluate Equation (3.4) at a fixed
energy El and add variational freedom to the basis inside the MTs. In this case, the
basis functions are of the form

ϕG(k, r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1√
V

ei(k+G)r interstitial

∑lm [a
G,i
l,m (k)ui

l(r) + bG,i
l,m (k) u̇i

l(r)]Y
l
m (r̂ −Ri) MT sphere i

. (3.6)

Here, compared to APW, there is an additional term, bG
l,m (k) u̇l(r)Yl

m(r̂), where u̇ is
an energy derivation of u. The additional coefficients require the basis functions to
be continuous at the sphere boundaries [75]. Differentiating Equation (3.4) results in

{−
h̄2

2m
∂2

∂r2 +
h̄2

2m
l(l + 1)

r2 +V(r) − El} ru̇l(r) = rul(r), (3.7)

and the solution of this equation gives u̇l. The radial functions ul are normalized
over the MT radius; it follows from the energy derivative of the normalization
that the functions ul and their energy derivative u̇l are orthogonal. However, the
entire LAPW basis set is not. This lack of orthogonality needs to be considered
when setting up and diagonalizing the Hamiltonian matrix. Despite this, LAPW
basis functions are advantageous as they provide a suitable basis for describing the
Hamiltonian with a relatively small number of functions [80].

3.1.3 Full-potential linearized augmented planewave method

As the basis presents enough variational freedom, the LAPW method can be ex-
tended to non-spherical MT potentials with little difficulty. This gives rise to the
FLAPW method. Although the LAPW method yields accurate results for closed-
packed metals, it becomes difficult to study crystals with open structures, such
as surfaces. In the FLAPW method, any shape approximations in the interstitial
region and within the MTs are dropped [81, 73]. While in LAPW, the potential in the
unit cell V(r) is approximated by V0(r), using a constant potential in the interstitial
region and a spherically symmetric potential inside each sphere, in the FLAPW
method, V(r) remains general. By relaxing the constant interstitial potential, V I

0 ,
and spherical MT approximation, VMT

0 , the potential can be written as

V(r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑G V I
GeiG⋅r interstitial

∑l,m VMT
l,m (r)Y

l
m(r̂) MT

. (3.8)

22



3.2. Brillouin zone

This method emerged as a technique capable of deriving the Coulomb potential
for a general periodic charge density, without shape approximations. Notably, it
considers the Hamiltonian matrix elements arising from the warped interstitial and
non-spherical terms of the potential.

3.1.4 Extending the basis set with local orbitals

The LAPW basis is adapted and used to represent only the valence electrons. The
separation from the core electrons is possible because one can show that the LAPW
basis is orthogonal to core electron states as long as these states are completely
confined in MT spheres [82]. This condition can only be approximately fulfilled.
Energetically high-lying core electron states can be too far extended beyond the
MT sphere boundary, such that the approximate orthogonality cannot be assumed
anymore. These so-called semicore states thus have to be described as valence
electrons. However, the energetically linearized LAPW basis description around
the chosen energy parameters is not adapted to represent them. For a high-quality
representation of these states, one, therefore, adds local orbitals (LOs) [83] to the
LAPW basis.
These additional basis functions are explicitly designed to overcome the limitations
of the linearization in the LAPW method. It is possible to construct them to repre-
sent semicore states [83], unoccupied states [84, 85], or to generally eliminate the
linearization error for the valence states [86]. They are linear combinations of the
already specified radial functions ul and u̇l along with an additional radial function
ulo

l , each multiplied by spherical harmonics. For the representation of semicore
states or unoccupied states, the additional radial function typically is a conventional
ul , evaluated at an energy parameter near the respective state. For the general elimi-
nation of the linearization error, one chooses for the third radial function a second
energy derivative ül, evaluated at the conventional energy parameter. Overall, a
local orbital basis function is given by

ϕlo
Glo
(k, r) = ∑

m
(am,Glo

lo (k)ul(r) + bm,Glo
lo (k)u̇l(r) + cm,Glo

lo (k)ulo
l (r))Yl

m(r̂), (3.9)

where the coefficients am,Glo
lo , bm,Glo

lo , and cm,Glo
lo are constructed by enforcing a nor-

malization condition and vanishing value and slope of the LOs at the MT boundary.
For each m, these coefficients are then scaled according to the related m-channel of
a Rayleigh expansion of a plane wave with wave vector k +Glo at the MT boundary.
With differing, LO-dependent Glo, a set of 2l + 1 linearly independent LOs can be
defined that each has the symmetry properties of the related plane waves, e.g., they
are real-valued for inversion-symmetric setups.

3.2 Brillouin zone
Following Bloch’s theorem, for the calculation of electron density and energy of an
infinite periodic solid, quantities require the summation over all electrons require
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3. Augmented planewave methods

the integration over all k-points in the Brillouin zone (BZ) and all occupied states
or in other words, over the bands with energy ϵν located below the Fermi level.
Consequently, the integral is in the form of

1
VBZ
∫

BZ

∑
ν,ϵν(k)<EF

fν(k)d3k, (3.10)

where f is the function to be integrated. Numerically, integration is replaced by a
summation over a discrete mesh in the BZ. Due to symmetry, the Equation (3.10)
may reduce to a summation over the irreducible wedge of the BZ (IBZ). One can
write it in the form of

1
VBZ

∑
k∈IBZ

∑
ν,ϵν(k)<EF

fν(k)w(k), (3.11)

where w(k) gives the weight of the k-points. A sufficient number of k-points need
to be taken in order to obtain an accurate result. According to the Equation (3.2) if
the function fν(k) is given by ∣ψ(k, ν)∣2, the summation yields the electron density.

3.3 The FLAPW method for the film geometry

The study of surfaces and thin films is a highly active field of research, driven by the
intriguing properties that emerge partially from their reduced dimensionality. The
physics of surfaces and thin films is difficult to treat since they break the translation
symmetry. Consequently, there is only a 2D symmetry parallel to the surface in
such problems. Also, perpendicular to the surface, a semi-infinite problem has to
be considered. In the case of film calculations, space is divided into three distinct
regions, the MTs, the interstitial, and the vacuum region [87]. The interstitial region
is extended from −D/2 to D/2 in the z direction, perpendicular to the film. The
wavefunction representation inside the MT spheres remains exactly the same as in
the bulk case. However, the periodicity along the z-direction does not exist anymore.
Therefore, the unit cell expands additionally from D/2 to∞ in z-direction, where
the wavefunctions can be developed in terms of 2D planewaves and z-dependent
functions. In Figure (3.2), the film geometry is shown. Note that the 3D planewaves
fill a region from −D̃/2 to D̃/2 in order to avoid nodal planes at the boundary
between interstitial and vacuum. As a consequence, the form for the planewaves is
assumed to be

ϕG
∥
,G⊥(k∥, r) = ei(G

∥
+k
∥
)⋅r
∥eiG⊥z, (3.12)

where the wave vector G⊥ is defined as an integer multiple of 2π/D̃, perpendicular
to the film. G∥ and k∥ are the 2D reciprocal lattice and Bloch vectors, and r∥ is the
parallel component of r. In the vacuum region, the basis functions are constructed
akin to those in the MTs. They comprise plane waves aligned parallel to the film,
accompanied by a z-dependent function of uG

∥
(k∥, z) and its energy derivative
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Figure 3.2.: Side view of a slab model used in film calculations, showing a finite-
thickness slab (center) separated by two vacuum regions. The blue
spheres represent atoms in the slab, and the dashed box indicates the
unit cell.

u̇G
∥
(k∥, z), which solves the corresponding one-dimensional Schrödinger equation:

{−
h̄2

2m
∂2

∂z2 +V0(z) − Evac +
h̄2

2m
(G∥ + k∥)2}uG

∥
(k∥, z) = 0, (3.13)

{−
h̄2

2m
∂2

∂z2 +V0(z) − Evac +
h̄2

2m
(G∥ + k∥)2} u̇G

∥
(k∥, z) = uG

∥
(k∥, z). (3.14)

Here, Evac and V0(z) are the vacuum energy parameters and the planar averaged
part of the vacuum potential. To enhance the variational freedom in vacuum treat-
ment, the energy parameter can be substituted with Evac −

1
2 G2
⊥, which results in the

G⊥ dependent basis functions. Accordingly, the wavefunction in two-dimensional
geometries is expanded using a basis that takes the following form:

ϕG
∥
G⊥(k∥, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
V

ei(k
∥
+G
∥
)⋅r
∥eiG⊥z interstitial

∑lm [aG
l,m(k)ul(r) + bG

l,m(k)u̇l(r)]Yl
m(r̂) MT

[aG
∥
G⊥(k∥)uG

∥
(k∥, z)

+bG
∥
G⊥(k∥, z)u̇G

∥
(k∥, z)] ei(G

∥
+k
∥
)⋅r
∥ vacuum

. (3.15)
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3.3.1 Treatment of External Electric Fields

The application of an external electric field to a thin film induces a distinct potential
gradient across the slab, reflecting the redistribution of electronic charge in response
to the field. This gradient vanishes in the absence of the field, as illustrated schemat-
ically in Figure (3.3).
The influence of the electric field can be incorporated within the framework of
classical electrostatics, leading to an additional term in the total energy functional:

∫ dr Vext(r)n(r), (3.16)

where Vext(r) denotes the Coulomb potential due to the external field, and n(r) is
the electron density [88].
To impose a uniform external field in DFT calculations, a sheet of charge is intro-
duced at a distance from the film, placed far enough to avoid overlap with the
electronic density [89, 90, 91, 92]. This setup generates a homogeneous electric
field, E = 4πσn̂. The resulting potential variation across the slab depends on the
dipole moment formed between the applied field and the induced charge redis-
tribution. Consequently, the field’s effects within both the interstitial region and
the muffin-tin spheres are captured by adapting the boundary conditions at the
vacuum–interstitial interface.
Defining electric fields in terms of external surface charges results in a shift of the

Figure 3.3.: The diagram on the left illustrates the slab geometry, with the electric
field oriented normal (perpendicular) to the slab surface. On the right,
the external potential Vext(z) is plotted as a function of the out-of-plane
coordinate z. The slope dVext/dz corresponds to the local electric field
strength. Note the distinctly different potential behavior in the vacuum
regions compared to the slab interior.
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3.4. Magnetic calculations

electrostatic potential and, consequently, in the work function. This shift affects the
total energy of the system.

3.4 Magnetic calculations

Through the magnetism, the symmetry of the ground state density between spin
up and spin down is broken. This is a consequence of µBσ ⋅Bxc(r) appearing as
an additional term in the Kohn-Sham Equation (2.13). Here, µB and σ are Bohr
magneton and Pauli matrices, while Bxc is the magnetic exchange field. The energy
functional of the ground state depends only implicitly on magnetization density
m(r) that gives rise to Bxc. In general, the magnetic moment in a MT sphere i can
be written as

Mi = ∫
MTi

dr m(r). (3.17)

The set of magnetic moments of all atoms, {Mi}, describes the magnetic struc-
ture. Therefore, the Kohn-Sham equation for the magnetic case can be modified as
follows:

⎛
⎜
⎝

H0 +Bxc
mz
∣m∣ Bxc

mx−imy
∣m∣

Bxc
mx+imy
∣m∣ H0 −Bxc

mz
∣m∣

⎞
⎟
⎠

⎛
⎜
⎝

ψ↑ν

ψ↓ν

⎞
⎟
⎠
= ϵν

⎛
⎜
⎝

ψ↑ν

ψ↓ν

⎞
⎟
⎠

, (3.18)

where H0 = p2 +Veff has been employed, and the influence of an external magnetic
field has been disregarded. In the FLAPW method, distinguishing between collinear
and non-collinear configurations is beneficial.

3.4.1 Collinear magnetism

In the case of collinear magnetism, containing ferro-, ferri-, and antiferromagnetic
structures, by neglecting SOC, one can choose m∥z. Therefore, the Hamiltonian
in Equation (3.18) becomes diagonal in spin space. In this case, the magnetization
density mz can be restricted only to spin-up and down densities. One can define the
magnetization density as

mz = −µB∑
i

ωi∣ ⟨ψi∣σz∣ψi⟩ ∣
2⇒ mz(r) = −µB (n↑(r) − n↓(r)) , (3.19)

where n↑ = ∑ν ω↑ν∣ψ
↑
ν(r)∣2 and n↓ = ∑ν ω↓ν∣ψ

↓
ν(r)∣2 are the electron densities of spin up

and down, respectively. ψ↑ and ψ↓ are the solutions of Kohn-Sham equation with
respect to V↑ = 1

2(V0 − µBBz) for spin up and V↓ = 1
2(V0 + µBBz) for spin down.

However, for a complex magnetic structure, spin up and down are no longer
decoupled, one has lower symmetry, and one has to calculate more states or over a
much larger fraction of the BZ, as will be argued in the following.
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3. Augmented planewave methods

3.4.2 Non-collinear magnetism

The energy functional of a general magnetic structure can be described either by
the charge density n and the spin density vector field m or by a density matrix ρ,
which is a 2× 2 hermitian matrix. That can be written as

ρ =
1
2
(nI2 +σσσ ⋅ s) =

1
2

⎛
⎜
⎝

n + sz sx − isy

sx + isy n − sz

⎞
⎟
⎠

. (3.20)

I2 is the unitary matrix in spin space and σ is the vector of the Pauli matrices [93].
Also, the potential matrix can be defined in the same way:

V = VI2 + µBσσσ ⋅B, (3.21)

where V involves the external, Hartree, and the exchange-correlation potential,
averaged over two spin directions, in the local frame. In this frame, the local z-axis
is parallel to the spin-quantization axis. Also, B consists of the external field as well
as the exchange field, which is diagonal in the local frame. The exchange field is
declared as the difference of exchange correlation potential for spin up and spin
down, in the local frame. The particle density, n(r), and spin density, s(r), can be
written as

n(r) =
N
∑
i=1

ψ⋆i (r)I2ψi(r), (3.22)

s(r) =
N
∑
i=1

ψ⋆i (r)σσσψi(r). (3.23)

The i is a composite index for the k and state, i = (k, ν) and N is the number of
occupied states. The density matrix, ραβ, can be expressed in terms of the solutions
of Kohn-Sham equations:

ραβ =
N
∑
i=1

ψ⋆i,αψi,β with α, β ∈ 1, 2. (3.24)

Kohn-Sham equation for a given k-point is conveyed in the form

{−
h̄2

2m
∇2 I2 +V}ψν = ϵνψν. (3.25)

The off-diagonal part of the 2× 2 potential matrix is the only part of this hermitian
matrix coupling the two components of Pauli spinor ϕi.
As mentioned in chapter 2, the exchange-correlation energy can be calculated in
different parametrizations such as the local spin-density approximation (LSDA)
and the generalized gradient approximation (GGA). These approximations have
been developed mostly for collinear calculations. In LSDA, the ϵxc depends only

28



3.4. Magnetic calculations

on the magnitude of magnetization m(r), due to its local feature. Hence, this
approximation can be equally applied to noncollinear systems. However, in the
GGA, through the gradients of the densities, the environment of a point in space
has to be considered in order to state the exchange-correlation energy.
Non-collinear magnetism has been developed within the FLAPW method. The
variant of the FLAPW method for noncollinear magnetism was developed by
Nordström and co-workers [94], [95]. Moreover, a hybrid method was introduced,
assuming a collinear B field in the vicinity of atomic nuclei, i.e. the MT spheres, and
the continuous B field in the interatomic region and in the vacuum [93]. Thus, inside
the non-overlapping spheres, the off-diagonal elements of the potential matrix are
assumed to be zero in the local frame. In this frame, the magnetic moment of atom
α points to the local z direction, which can be specified as êi

M direction in the global
coordinate frame.
Since in the FLAPW method MT spheres are used, the hybrid method, in which the
full magnetization density is collinear in the MT spheres and a continuous vector
field in the interstitial region and the vacuum is applied, can be implemented [96].
The result, which is shown in Figure (3.4), can easily be formulated in

m(r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

m(r) interstitial and vacuum

mi(r)êi
M MT sphere i

. (3.26)

This variant is used in the FLEUR code applied here.

Figure 3.4.: Illustration of the representation of non-collinear magnetization density.
In the interstitial region, the magnetization is a continuous vector field.
However, within each MT sphere, the magnetization has a fixed direc-
tion and can only vary in magnitude [97].
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3.4.3 The implementation of non-collinear magnetism in the FLAPW
method

In the collinear calculation, two sets of radial basis functions inside the MTs for
the two different spin directions are used. These are constructed from the ul(r)
as shown in Equation (3.4). Therefore, for each spin direction the spherical part
of the corresponding potential is specified as V↑(r) or V↓(r) and the same for the
corresponding energy parameter ϵl↑ or ϵl↓. These are used to determine the u↑l (r)
and u↓l (r)as shown in Equation (3.4).
According to Equation (3.26) in the non-collinear case, the magnetization in the MT
spheres can be restricted to the local quantization axis. Ṽ determines the quantities
in the local (l) coordinate frame. Consequently, Ṽ↑(r) or Ṽ↓(r) can still be used with
respect to the local axis. A spin rotation matrix UMT i connects the local and global
coordinate frames. The potential can then be expressed as:

Ṽ = U†
MT iVUMT i = (VH +Vext)I2 +

⎛
⎜
⎝

Ṽ↑↑xc Ṽ↑↓xc

Ṽ↓↑xc Ṽ↓↓xc

⎞
⎟
⎠

. (3.27)

The augmented plane waves are constructed by adding a two-component spinor,
ϕ

g
σ, and the functions are represented in the global (g) spin frame. In this local

frame, the ϕl
σ in the MTs has two-component spinors ϕ↑ and ϕ↓, the same as a global

spin frame in the collinear calculations. However, overall, the potential matrix V is
not diagonal in the two-dimensional spin space. The basis sets should change just
inside MT spheres, as a local spin coordinate frame is used, which is rotated with
respect to the global frame. The alignment of both local spin components of the basis
functions within the MT with the interstitial wavefunction at the MT/interstitial
boundary is essential.

3.5 Spin-spirals
The term spin-spiral is specifically given to a magnetic structure with the rotation
of the local moments M by a constant angle from atom to atom along a certain
direction of the crystal. This is defined by the propagation vector of the spin-spiral
is called q. Under the translation by a lattice vector R, the magnetic moment of an
atom rotates by an angle

φ = q ⋅R (3.28)

and the magnetic moment at an atomic position Ri is given by

Mi = M

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

cos(q ⋅Ri) sin θ,

sin(q ⋅Ri) sin θ,

cos θ,

(3.29)
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where the θ is the relative angle between the magnetic moment and rotation axis
(cone angle) [93]. In this case, the rotation axis is assumed to be in the z direction.
To define a spin-spiral uniquely, three parameters are needed: the rotation axis (di-
rection matters, only if SOC is included), the relative angle θ between the magnetic
moment and the rotation axis, and the spin-spiral vector q. Figure (3.5) shows four
examples of spin-spirals with spin rotation axes perpendicular and parallel to the
spin-spiral vector.
The spin-spiral vector q is a vector in real space, while the spin rotation axis is a
vector in the spin coordinate frame. In the absence of SOC, these two coordinate
frames are totally independent from each other. As a result, the angle between
the spin-spiral vector q and the spin rotation axis becomes meaningless. In this
case, the system is rotationally invariant in spin space, meaning its energy remains
unchanged under a uniform rotation of all spin directions when SOC is absent.
However, the spin spirals with different cone angles θ are not equivalent. If there is
only a single magnetization in the unit cell, the magnitude of the magnetic moment
of each atom is the same, and all see the same local environment. Only the angle
between the local moment and the lattice changes from site to site. Nevertheless,
it is only significant in the presence of SOC. Without the SOC, this leads to the
possibility of calculating spin-spirals of arbitrary q in the chemical unit cell by using
a generalization of the Bloch theorem [98].

3.5.1 Generalized Bloch theorem

According to the Bloch theorem, one can write the wavefunction of a system with a
periodic potential in the form Equation (3.1)

ψk(r) = eik⋅ruk(r), (3.30)

where the k is the Bloch vector and uk(r) has the periodicity of the potential. The
generalized Bloch Theorem is applied to the systems in which the spin-spiral has
broken the chemical translation symmetry. When spin-space and crystal lattice
are decoupled, a generalized Bloch theorem becomes applicable. This theorem
enables the description of any homogeneous spiral spin-density waves (SSDW)
using the chemical unit cell instead of the magnetic one [99]. When examining a
spin-spiral configuration within a crystal devoid of an external magnetic field, and
incorporating the rotational axis φ = q ⋅R, the resulting potential matrix is expressed
as:

V = VI2 + µBσσσ ⋅Bxc (3.31)

Introducing the m and Bxc in the spherical coordinates as

m = m (sin θ cos φ êx + sin θ sin φ êy + cos θ êz) , (3.32)

Bxc = Bxc (sin θ cos φ êx + sin θ sin φ êy + cos θ êz) , (3.33)

31



3. Augmented planewave methods

leads to the characterization of homogeneous SSDWs by

m(r +R) = m(r), Bxc(r +R) = Bxc(r),
θ(r +R) = θ(r), φ(r +R) = φ(r) + q ⋅R,

(3.34)

where R and q determine the chemical lattice vector and direction of spatial
propagation of the SSDW. The sign of q specifies the spiral’s rotational direction.
Then, the generalized Bloch theorem can be written in [100, 101]

ψk,ν(r∣q) =
⎛
⎜
⎝

ψ↑k,ν

ψ↓k,ν

⎞
⎟
⎠
=
⎛
⎜
⎝

ei(k−q/2)⋅ru↑k,ν(r)

ei(k+q/2)⋅ru↓k,ν(r)

⎞
⎟
⎠

, (3.35)

with lattice periodic functions u(σ)k,ν (r) = u(σ)k,ν (r +R). The q-dependent phase factor
signifies a spin rotation around the z-axis.
It is very efficient to implement the spin-spiral into the FLAPW method since
this method relies on planewave expansions and Fourier transforms. Therefore,
it is necessary to formulate the theory in terms of periodic functions. In such
circumstances, the eigenstate of the Hamiltonian can be written in the form [93]

ψk(r) = eik⋅r
⎛
⎜
⎝

e−iq⋅r/2ak(r)

e+iq⋅r/2bk(r)

⎞
⎟
⎠

. (3.36)

Here, ak(r) and bk(r) are functions with translational periodicity.

Figure 3.5.: An example of spin-spiral with spin rotation axis perpendicular to the
spin-spiral vector q.

3.6 Spin-orbit coupling and spin-spirals
The SOC , as discussed in section(2.7), is approximated [102, 103] by

HSO = ∑
n

ξn(rn)σσσ ⋅ L̂n, (3.37)
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where L is the orbital momentum operator and ξi(Ri) explains the SOC strength
as a function of the distance rn from the nth nucleus. Implemented within the
FLAPW method [104], SOC is exclusively accounted for within the MTs, while
being disregarded in the interstitial and vacuum regions. Therefore, the SOC
operator in each MT can be written as

HSO = ξ(r)
⎛
⎜
⎝

+L̂z L̂−

L̂+ −L̂z

⎞
⎟
⎠

, (3.38)

with L̂± = L̂x ± iL̂y. If the z-axis doesn’t align with the spin-quantization axis, a
rotation matrix U becomes necessary to align the global spin coordinate frame with
respect to the lattice. Achieving this involves rotating the SOC operator,

U†
HSOU = ξ(r)U†

(σσσ ⋅ L̂)U = ξ(r)
⎛
⎜
⎝

L̂↑↑ L̂↑↓

L̂↓↑ L̂↓↓

⎞
⎟
⎠

. (3.39)

The manner in which this adjustment integrates into the scalar-relativistic Hamilto-
nian varies according to the specific system under investigation (such as spin-spiral
systems) and the particular parameter of interest (like Dzyaloshinskii-Moriya inter-
action (DMI) or magnetocrystalline anisotropy (MCA)).
Since SOC distinguishes between different magnetization directions with respect to
the lattice in the chemical unit cells, using the generalized Bloch theorem is no longer
possible. As SOC is typically a weak effect compared to the rest of the Hamiltonian,
one approach could be to include it perturbatively. Hence, first, we neglect SOC
and calculate the spin-spirals within one chemical unit cell and periodic boundary
conditions, and then the action of the spin-orbit operator on these solutions will be
considered in the next step [99]. Thus, it can be determined by

⟨ψ0,ν∣ĤSO∣ψ0,ν⟩ = ( ⟨ψ
↑

0,ν∣ ⟨ψ
↓

0,ν∣ )
⎛
⎜
⎝

H
↑,↑
SO H

↑,↓
SO

H
↓,↑
SO H

↓,↓
SO

⎞
⎟
⎠

⎛
⎜
⎝

∣ψ↑0,ν⟩

∣ψ↓0,ν⟩

⎞
⎟
⎠

, (3.40)

where ψ0,ν are the unperturbed states. In first-order perturbation theory, the cor-
rection to the band energies remains uniform across all atoms. Each of the four
components, Hσσ′

SO of the spin-orbit operator exhibits lattice periodicity. When act-
ing on a Bloch function, it yields the same Bloch factor while introducing another
periodic Bloch function, denoted as ũ(r). This can be expressed as:

Hσσ′

SO ei(k∓q/2)⋅ruσ′

ν (r) = ei(k∓q/2)⋅rũσ′

ν (r). (3.41)
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The properties of magnetic materials are often described using model Hamiltoni-
ans, assuming that each atom exhibits a magnetization. In the case of strong local
magnetic moment formation, i.e., when ∣Mν∣ does not depend significantly on êν,
the cooperation of local spins on a global length scale at finite temperature can be
calculated. The magnetic ground state or the response to an excitation can thus be
determined. Consequently, the spin structures depend on slight modifications of
the exchange interactions.
The physical origin of these interactions lies in the Coulomb interaction of electrons
whose wavefunctions overlap with electron wavefunctions from the neighboring
atoms. Continuing this simple picture, the magnetic moment of an atom is then
generated by localized electrons. A general bilinear interaction between two spins
can be expressed as

H =∑
ij

M⊺
i VijMj, (4.1)

where Vij is a real 3× 3 matrix given by:

Vij =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

V11
ij V12

ij V13
ij

V21
ij V22

ij V23
ij

V31
ij V32

ij V33
ij

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (4.2)
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4. Spin models

Breaking down the interaction matrix, it can be decomposed into three components:
an isotropic part, Jij, a symmetric traceless part, V+ij, and an antisymmetric part, V−ij.
These components can be defined as

Jij =
Tr(Vij)

3
, (4.3)

V+ij =
(Vij +V⊺ij)

2
− Jij, (4.4)

V−ij =
(Vij −V⊺ij)

2
. (4.5)

Employing these expressions, the Equation (4.1) can be rewritten as:

H =∑
ij
(JijMi ⋅Mj +M⊺

i V+ijMj +M⊺
i V−ijMj) . (4.6)

The first component corresponds to the Heisenberg model, while the third com-
ponent is referred to as the Dzyaloshinskii-Moriya interaction (DMI). The second
part of the interaction, the symmetric traceless matrix, is commonly known as the
anisotropic exchange [105]. This component arises from relativistic two-particle
effects, contributing minimally to the overall energy. Alternatively, the magne-
tocrystalline anisotropy energy (MCA) can be considered within the on-site term of
V+ij = V+ii.
In conclusion, the magnetism of complex spin systems can be described within the
framework of a classical spin Hamiltonian, which can be written in the form of

H = −∑
ij

Jij (Mi ⋅Mj) +∑
ij

Dij ⋅ (Mi ×Mj) +∑
i

Ki M2
i cos2 ξi, (4.7)

where Jij represents the exchange interactions between spins, Dij represents DMI,
and Ki, due to the spin-orbit coupling (SOC), represents the anisotropy constant
with ξi being the angle between the magnetization Mi and the easy axis. In the
following, each term will be discussed separately.

4.1 Heisenberg-type exchange interaction
In the Heisenberg model [106], one can refer to the classical version by substituting
the Pauli matrices with classical vectors M = (Mx, My, Mz), in which the i, j are
considered different lattice sites.

H = −∑
ij

Jij (Mi ⋅Mj) (4.8)

The exchange interaction is isotropic and characterized by the pair-wise interaction
constants Jij. According to Equation (4.8), in localized model spin structures, a
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4.2. Dyzaloshinskii-Moriya interaction

Figure 4.1.: J1 is counted as the first-neighbour exchange parameter and J2 and J3
are the second- and third-exchange terms.

positive Jij favors ferromagnetic interactions, while a negative Jij favors antiferro-
magnetic ones. The exchange interactions up to third neighbors on a square lattice
are shown in Figure (4.1). The general solution of Equation (4.8) is the spin-spiral
discussed in Section (3.5).
Also, higher-order corrections such as a four-spin interaction or a bi-quadratic
interaction can be derived from a Hubbard model expansion [107, 108, 109]:

Hbiquad. = Bij(Mi ⋅Mj)
2, (4.9)

H4−spin = Kijkl [(Mi ⋅Mj)(Mk ⋅Ml) + (Mj ⋅Mk)(Ml ⋅Mi)

−(Mi ⋅Mk)(Mj ⋅Ml)] . (4.10)

Whereas bi-quadratic interaction describes a higher-order two-spin interaction,
while the four-spin exchange term expresses interactions among spins at four
distinct lattice sites.

4.2 Dyzaloshinskii-Moriya interaction
Dyzaloshinskii-Moriya interaction (DMI) (antisymmetric exchange interaction) was
derived based on symmetry by Dyzaloshinskii [110, 111] and has the form:

HDMI = ∑
ij

Dij ⋅ (Mi ×Mj) . (4.11)

Here, Dij is called the Dzyaloshinskii-vector, which depends on the symmetry of
the structure as well as the real space direction given by two sites i and j. Both the
sign and value of Dij can influence the stability of collinear uniaxial ferromagnetic
or antiferromagnetic structures. Hence, one can describe the collinear system with
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4. Spin models

a directional c = Si × Si+1. The DMI is usually much smaller than the exchange
interaction. However, it plays a major role in weak ferromagnetism and naturally
prefers non-collinear magnetic systems. Both SOC and an inversion-asymmetric
environment are crucial for the existence of the DMI. The chemical structure can be
carefully designed to meet both critical requirements for a strong DMI.
In the case of two spins, the energy solely depends on the angle between these
spins. In Figure (4.2), the relation between the spins and D-vector is pictured.
First-principles calculations of DMI can be conducted using methods that involve

Si
Sj

Dij

Figure 4.2.: Dzyalonshinskii-Moriya interaction (DMI) is an asymmetric interaction
that is observed in thin films with strong spin-orbit coupling (SOC) and
symmetry breaking.

mapping either the total energies or the energy derivatives. In total-energy mapping
methods, the Dij coefficients can be obtained from non-collinear DFT calculations,
such as those involving spin spirals. Subsequently, the energy change can be
analytically computed using perturbation theory [112].
DMI favors twisted spin configurations, resulting in the creation of various chiral
topological magnetic structures, such as skyrmions, and significantly influences
spin dynamics [113, 114].

4.3 Magnetic anisotropy
The third contribution in Equation (4.7) is caused by spin-orbit coupling, which
connects the spin-degree of freedom to the motion of the electron. Besides, it
depends basically on the symmetry of the lattice, and the crystal field determines
the orbital moment of the atom. Therefore, it is assumed to be a one-site interaction.
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4.3. Magnetic anisotropy

In uniaxial systems, it can be expanded in the form of

H =∑
i

Ki M2
i cos2 ξi, (4.12)

where ξ is the angle between the spin and the unique axis. Ki is a parameter de-
pending on the material. On the atomic scale, the magnetic moments at the lattice
site tend to align along a specific direction known as the easy axis. Deviating from
this preferred direction and aligning in a different direction leads to an energy cost.
The direction perpendicular to the easy axis, so-called the hard axis, represents
the orientation with the highest energy for magnetization. The strength of this
directional preference can be quantified by the magnetic anisotropy energy (MAE),
which is the energy difference between the magnetic moments aligned along the
hard and easy axes. Two main contributions to MAE will be discussed. The first is
magnetic shape anisotropy (MSA) energy, which arises from the macroscopic shape
of the structure and can be described using classical physics. The second contribu-
tion is magnetocrystalline anisotropy (MCA), which results from the anisotropic
arrangement of atoms within the crystal lattice and is dependent on the presence of
SOC.

4.3.1 Magnetic shape anisotropy

The magnetic field generated by a dipole moment Mi located at position Ri is
described by

Bi(r) = −
µB

2r5
i
[r2

i Mi − 3(ri ⋅Mi)ri] , (4.13)

where µB and ri are the Bohr magneton and ri = r −Ri, respectively. When a second
dipole moment Mj is positioned at rj, it interacts with the magnetic field Bi(r),
leading to the dipole-dipole interaction energy given by:

Edipole−dipole = −
µB

2r5
ij
[r2

ij(Mi ⋅Mj) − 3(rij ⋅Mi)(rij ⋅Mj)] . (4.14)

If both dipole moments Mi and Mj are aligned in the same direction, as is known as
a ferromagnet, the dipole-dipole interaction energy simplifies to

Edipole−dipole = −
µB

r3
ij

Mi Mj [1− 3 cos2 θ] , (4.15)

where θ represents the angle between Mi and rij. In thin films, the MSA is always
confined to the plane of the sample, causing the magnetization to align within this
plane due to the shape effects naturally. In this thesis, as we are primarily interested
in the SOC-induced effects, the dipole-dipole interaction is neglected in comparison
to the corresponding MCA value.
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4. Spin models

4.3.2 Magnetocrystalline anisotropy

MCA is influenced by the orientation of spins within the crystal lattice, influencing
the total energy of the structure only when SOC is considered.
The anisotropy can be calculated from DFT including SOC by comparing the total
energy for different angles, ξ. The spin-orbit coupling term is introduced in Equation
(3.37) with the spin-orbit coupling constant ξ. In a crystal, the primary contribution
to the spin-orbit interaction comes from the region near the nucleus, where ξ is
larger for heavier atoms. The MCA arises from the anisotropy in the spin-orbit
interaction, specifically the energy difference between Hamiltonians that include the
SOC term with the magnetization oriented in different directions. In practice, this
involves first solving the Schrödinger equation, then incorporating the SOC term
into the Hamiltonian and adjusting the spin-quantization axis using a spin-rotation
matrix U:

⟨Uψ0∣Ĥ0 + ĤSO∣Uψ0⟩ = ⟨ψ0∣Ĥ0∣ψ0⟩ + ⟨Uψ0∣ĤSO∣Uψ0⟩ (4.16)

= ϵ0 + ξ
⎛
⎜
⎝

ψ↑0

ψ↓0

⎞
⎟
⎠

†

U†
⎛
⎜
⎝

Lz Lx − iLy

Lx + iLy −Lz

⎞
⎟
⎠

U
⎛
⎜
⎝

ψ↑0

ψ↓0

⎞
⎟
⎠

If the orbital moment is small, the last term only provides a minor correction to
the energy, ϵ0, obtained from the Schrödinger equation, causing the magnetization
direction of the solution to align with the spin-quantization axis described by U.
Similar to the Heisenberg Hamiltonian used to describe exchange interactions in
a crystal, SOC is represented as ∑i ξiLi ⋅Si, where i denotes a specific atomic site.
Additionally, there can be a term that couples the spin at site i to the orbital motion
at site j, expressed as ∑i,j CijLj ⋅Si. This spin-other-orbit interaction, analogous to
the dipole-dipole interaction, is derived from the Breit equation. Although it was
included in ab initio calculations using the Hartree approximation, it was found to
be much weaker than the spin-same-orbit interaction [27].
It is evident that both strong SOC and a sizable orbital moment are necessary for a
significant contribution to MAE. Ab initio calculations are essential for determining
the relative significance of various contributions to MA. Most calculations focus on
SOC, using an effective one-particle, Schrödinger-like approach, and the classical
dipole-dipole energy, within a DFT framework.
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Graphene (Gr), a single atomic layer of graphite, is a suitable candidate to develop
spin transport channels with long spin lifetimes as well as propagation lengths at
room temperature. However, the development of Gr-spintronic devices demands
the generation of long-range magnetic order and spin filtering in Gr. Due to the
exceedingly low intrinsic spin-orbit coupling (SOC) in Gr, which is calculated to be
less than a few tens of µeV [115], the practical observation of such effects is unviable.
Considerable efforts have been made to identify a practical approach for enhancing
and customizing the strength of SOC from an external perspective. These have been
accomplished by intercalation of heavy metal (HM) atoms in order to propose a
giant SOC in the electronic bands of Gr [116, 18].
Comparing Co/Pt(111) with Gr/Co/Pt(111) suggests that engineering an epitaxial
structure with a Co layer sandwiched between Gr and an epitaxial Pt(111) buffer
grown on MgO(111) reveals substantial evidence of Dzyaloshinskii-Moriya interac-
tion (DMI) at the Gr/Co interface. This DMI opposes the SOC-induced DMI at the
Co/Pt interface. Also, it stabilized a left-handed Néel-type spin-spiral or domain
walls (DWs) [12]. Moreover, the research exploring the structural and magnetic
characteristics of Gr intercalated with Co on an Ir(111) substrate discovered that
Co naturally arranges into monolayer islands, aligning structurally with the Ir(111)
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5. Exploring graphene coverage on Co/HM(111) substrates

surface, then is covered by a Gr overlayer. Nevertheless, the robust interaction
between Gr and Co results in a significant lattice mismatch when deposited on the
Ir(111) substrate [22].
These magnetic configurations are achieved within noncentrosymmetric multilayer
assemblies exhibiting Perpendicular Magnetic Anisotropy (PMA). Maximizing the
PMA is crucial for reducing the size of data storage spintronic devices, such as
Spin Transfer Torque Magnetic Random Access Memories (STT-MRAM) [4]. They
are further influenced by the antisymmetric exchange interaction (DMI), which
promotes a chiral alignment of spins within the DWs [35]. This DMI also stabilizes
magnetic skyrmions, which are nanometer-sized, topologically protected magnetic
structures. They have been observed in the presence of strong magnetic fields and
at low temperatures [34, 113], and more recently, they have been detected at room
temperature even under minimal or no magnetic fields [117, 118].
In this chapter, we embark on an investigation of Gr/1ML Co/5ML HM using DFT
calculations, conducting separate analyses for both Pt and Ir as HMs.

5.1 Investigating the electronic structure
The electronic properties of Gr depend critically on its environment, and in par-
ticular, on its substrate [15]. Hence, we investigated Gr on both Co/Pt(111) and
Co/Ir(111) substrates. This further allowed us to explore the interaction between Gr
and Co in different HM substrate environments. The slab under study comprises
Gr, a single Co, and five Pt(Ir) layers. It was proposed that the ground state of
the Co monolayer on Pt is oriented along the fcc(111) direction [119]. Therefore,
we examined Gr on top of Co/Pt(Ir) on the fcc(111) plane, considering the lattice
constant of Pt(Ir). Taking into account the difference in lattice constants between
Gr at 2.46 Å and Co/Pt(Ir) at 2.76 (2.73) Å, it’s possible to have three distinct con-
figurations of Gr through the formation of moiré patterns. Consequently, within a
moiré lattice, top-fcc, top-hcp, and hollow stacking of Gr on Co/Pt(Ir) are within
the bounds of possibility, as depicted in Figure (5.1). The top site refers to the first C
atom positioned directly above a Co atom. The fcc, as well as hcp, corresponds to
the second C occupying a fcc or hcp site in the Co/Pt(111) structure. The hollow
site, in this notation, represents one C in the fcc and the other one in the hcp site.
An investigation demonstrates that the bonding of Gr on Ir(111) is primarily of van
der Waals (vdW) type, with a chemical modulation [120]. Also, the moiré pattern
arises due to the lattice mismatch between the Gr and the Ir(111) surface [121].
When Co is deposited onto a Gr/Ir(111) sample leads to the emergence of intercala-
tion regions characterized by moiré patterns, particularly when deposition occurs
at or slightly above room temperature [22]. Experimental observations suggest that
the formation of intercalated islands is driven by the migration of Co atoms from
the edges of the Gr patches [122].
To thoroughly explore the electronic and magnetic structures of Gr/Co/HM films,

we conducted individual optimizations for three specific configurations of Gr on
one ML of Co supported by a 5 ML substrate of either Pt or Ir. These configura-
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5.1. Investigating the electronic structure

Figure 5.1.: Within the formation of moiré configurations, three distinct arrange-
ments of Gr(10 × 10) on Co/Pt(111)(9 × 9) can be observed: top-hcp
(green), top-fcc (red), and hollow (blue) sites.
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tions are depicted in Figure (5.1). Our study focused on the distinct arrangements
of Gr on Co/HM without employing the supercell approach. This decision was
made to manage computational time effectively, ensuring that our calculations
provide a comprehensive understanding of how the interface interactions influence
the overall electronic and magnetic properties of the heterostructure. This opti-
mization included stacking in the top-fcc and top-hcp, as well as a hollow on the
Co/HM(111) configuration. The structural relaxations were performed using the
FLEUR-code [55, 56] employing the FLAPW method. To treat combined systems
of Gr, 3d-, and 5d-transition metals, DFT with GGA was employed. Since Gr on
Co is chemisorbed, no vdW corrections were necessary. We utilized a cutoff pa-
rameter of Kmax = 4.0 a−1

B for the basis functions, in conjunction with 21 k-points
encompassing the p3m1 symmetry class of primitive hexagonal (2D) BZ. In this
context, aB denotes the Bohr radius. The structural relaxation iterations were con-
ducted until the forces reached magnitudes below 0.05 eV/Å, in order to identify
the interfacial geometries that exhibit the highest stability. As shown in Table (5.1),

top-fcc top-hcp hollow

Figure 5.2.: A lateral depiction showcases three potential stacking configurations of
Gr atop Co/Pt(111). Gr on Co/Ir(111) is essentially identical to the Gr
on Co/Pt(111) where Pt is substituted with adjacent metal, Ir.

our calculations suggest that the ground state of Gr on both Co/Pt(111) as well as
Co/Ir(111) is obtained with the top-fcc stacking. Furthermore, it is worth noting
that both energetically favored top-fcc and top-hcp configurations are rather similar.
Although Gr appears chemisorbed (the C/Co distance is less than 2 Å), almost no
buckling in Gr is observed. In the Co/Pt(111) configuration, for the fcc stacking
position, the interlayer distances dCo/Pt(I) and dPt(I)/Pt(I−1) are reported as 2.02 Åand
3.37 Å, respectively [119]. It’s clear that the presence of the Gr overlayer reduces
the distance between Co/Pt(I) layers. Moreover, the interlayer distances between
Ir layers, particularly near the bottom of the slab, approach the ideal bulk value of
2.23 Å. Ultrathin films are well described by a general classical extended Heisenberg
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HM Pt Ir

a 2.76 2.73

Gr/Co stacking top-fcc top-hcp hollow top-fcc top-hcp hollow

dC(I−1)/C(I) 0.02 0.02 0.0 0.02 0.02 0.0

dC(I)/Co 1.95 1.98 1.97 1.96 2.00 1.95

dCo/HM(I) 2.04 2.04 2.04 2.04 2.05 2.06

dHM(I)/HM(I−1) 2.37 2.36 2.37 2.27 2.27 2.26

dHM(I−1)/HM(I−2) 2.33 2.33 2.33 2.26 2.25 2.26

dHM(I−2)/HM(I−3) 2.32 2.32 2.32 2.24 2.23 2.24

dHM(I−3)/HM(I−4) 2.35 2.34 2.34 2.20 2.20 2.20

Total energy 0.0 0.07 0.71 0.0 0.10 0.69

Table 5.1.: a and d indicate in-plane lattice parameters and interlayer distances for
different stacking positions of Gr on Co/Pt(111), respectively. Distances
are given in Å and total energies in eV relative to the top-fcc stacking of
Gr on Co/Pt(111). HM(I) denotes the interface Pt(Ir).
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Hamiltonian. The extended Heisenberg Hamiltonian assigns magnetic moments to
individual atomic sites. Considering Heisenberg exchange interaction (Jij), DMI,
and magnetic anisotropy (MA) parameters enables a precise characterization of the
energy landscape in 2D itinerant magnets.

5.2 Exchange interaction in Gr on Co/Pt(111)

In order to determine exchange interactions, we investigated the total energy of
the spin-spiral using the generalized Bloch theorem. This approach is applicable
in cases where the spin space and crystal lattice are not coupled, enabling us to
describe any homogeneous spiral spin-density wave (SSDW) using the chemical
unit cell. The generalized Bloch theorem [123, 101] postulates that the eigenstates of
a Schrödinger-type Hamiltonian

H0 =
1

2me
p2 +V(r) +σσσ ⋅ B(r) (5.1)

with a lattice periodic scalar potential, V, and an exchange-correlation B-field can
be written in

ψk,ν(r∣q) =
⎛
⎜
⎝

ψ↑k,ν

ψ↓k,ν

⎞
⎟
⎠
=
⎛
⎜
⎝

ei(k−q/2)⋅ru↑k,ν(r)

ei(k+q/2)⋅ru↓k,ν(r)

⎞
⎟
⎠

, (5.2)

with lattice periodic functions

uσ
k,ν(r) = uσ

k,ν(r +R), (5.3)

with k, ν, and σ representing crystal momentum, band index, and spin index,
respectively. The q-dependent phase factor represents a spin rotation around the
z-axis. This theorem allows us to deduce the complete solution of the Kohn-Sham
Schrödinger equation by confining the computation to the chemical unit cell and
the first Brillouin zone.
We iteratively solve the unperturbed Kohn-Sham equation until self-consistency is
achieved:

H0ψ0,ν = ϵ0,νψ0,ν. (5.4)

Subsequently, these energies are mapped to the extended Heisenberg model to
extract Jij parameters. Since we neglect the SOC, the orientation of magnetic mo-
ments with respect to the crystal lattice becomes irrelevant, allowing us to compute
the electronic structure of a homogeneous spin spiral using the generalized Bloch
theorem. Thanks to the generalized Bloch theorem, even long-wavelength spin
spirals with small values for ∣q∣, where the spin-spiral period length is given by
λ = 2π/∣q∣, can be efficiently treated within the chemical unit cell, eliminating the
need for large supercells. This theorem is thoroughly discussed in Section (3.5.1).
Enhancing the proficiency of studying magnetism on a periodic lattice involves
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expressing quantities in terms of their Fourier components. Thus, the spins are
represented at lattice sites by discrete Fourier components:

Sq =
1
N

N
∑
n

Sne−iq⋅Rn . (5.5)

Here, the summation is over the reciprocal lattice vector q and the real-space
coordinate of lattice site n is denoted as Rn, with the total number of lattice sites
in the crystal being denoted as N. By replacing the localized spins Sn with their
Fourier components in the Heisenberg Hamiltonian, we obtain:

H = −N∑
q

J(q)Sq ⋅ S−q. (5.6)

It is essential to ensure that the squared length of all spins, S2
n = S2, remains con-

served on all sites. This condition is, for example, met by adopting a spin configura-
tion described by:

Sn = S(êx cos(q ⋅Rn) + êy sin(q ⋅Rn)). (5.7)

This equation characterizes an SSDW in the xy-plane. The spin configuration of
conical spin-spiral, which precesses on a cone with an opening angle θ around êz,
can be expressed as:

Sn = S(êx cos(q ⋅Rn) sin θ + êy sin(q ⋅Rn) sin θ + êz cos θ), (5.8)

Such SSDWs represent general solutions of the classical Heisenberg model for
a periodic lattice. From Equation (5.6), it can be deduced that the lowest total
energy corresponds to the propagation vector Q, where ±Q are the values of q that
maximize the function J(q). This implies that Q tends to favor high-symmetry
points within the BZ and subsequently high-symmetry lines. For example, if Q = 0
maximizes J(q), the solutions correspond to the ferromagnetic state. To describe
the spin structure, we represent SQ in terms of real (RQ) and imaginary (IQ) parts:

SQ = RQ + iIQ. (5.9)

Substituting Equation (5.9) into Equation (5.5) for +Q and −Q yields the spin
configuration at lattice sites:

Sn = 2(RQ cos(Q ⋅Rn) − IQ sin(Q ⋅Rn)). (5.10)

As we are not considering spin-orbit terms in the Hamiltonian, we can assume that
the plane spanned by the two vectors RQ and IQ lies in the xy-plane. Consequently,
the spin of the helix rotates around the z-axis within the xy-plane as one moves
along the lattice plane in the direction of Q. In the following, we will identify
potential candidates for the ground state to determine the BZ of a two-dimensional
hexagonal lattice and minimize the Heisenberg Hamiltonian.
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Self-consistent calculations without SOC are performed for flat spirals and arbitrary
spin-spiral vector q. In pursuit of a precise characterization of surfaces and inter-
faces, we have employed GGA. The total energy of spin-spiral states was converged
in non-relativistic approximation using a 45× 45 k-point mesh. The size of the basis
set was determined by Kmax = 4.3 a−1

B . The calculated total energies as a function of q,
along with those fitted within the Heisenberg model, along the high symmetry line,
are illustrated in Figure (5.3). In order to discuss the energy of magnetic states on the
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Figure 5.3.: The self-consistently calculated total energies as a function of the spin-
spiral q-vectors along the high symmetry path are depicted by blue dots.
Subsequently, these energies are mapped within the framework of the
Heisenberg model to extract the exchange interactions, (J(q)).

2D hexagonal lattice within the Heisenberg model up to the third nearest neighbor
interaction. We include the exchange constants J1, J2, and J3. In a hexagonal lattice
one can parameterize the q-vectors on the line ΓK by q = (qx, 0). The energy on the
q-vectors of this line can be calculated and written as

EΓK(q⃗) = −S2{J1[2 cos(aqx) + 4 cos(
1
2

aqx)]

+J2[4 cos(
3
2

aqx) + 2]

+J3[2 cos(2aqx) + 4 cos(aqx)]}.

(5.11)
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However, the q-vectors on the line ΓM are parameterized by q = (0, qy). In this case,
the energy dependent on q-vectors is formulated as

EΓM(q⃗) = −S2{J1[2+ 4 cos(
√

3
2

aqy)]

+J2[4 cos(
√

3
2

aqy) + 2 cos(
√

3aqy)]

+J3[2+ 4 cos(
√

3aqy)]}.

(5.12)

The exchange interaction between nearest neighbors is summarized in Table (5.2),
and we have also conducted a comparative analysis with the findings from Co/Pt(111) [119].
Comparing the Heisenberg parameters, it’s notable that J1 decreases by nearly half

ML S2 J1 S2 J2 S2 J3

Co/Pt(111)[119] 27.8 2.5 −0.20

Gr(top-fcc)/Co/Pt(111) 15.61 2.54 1.65

Table 5.2.: It indicates that the Jij coefficients are derived by fitting the energy dis-
persion of spin-spirals, expressed in meV. Here, we regard the top-fcc
stacking of Gr on Co/Pt as the energetically most stable configuration.

as a result of Gr doping. In contrast, J3 shows an increase, while J2 remains rela-
tively unchanged. This observation, particularly the changes in Jij, reflects distinct
modifications in the electronic structure, which in turn influence the hybridization
of Co and Pt following Gr doping. To delve into this observation further, we’re
analyzing the bandstructure of Gr subsequent to doping on Co/Pt(111).

5.3 Tailoring interlayer distances of Gr and Co
Based upon various experiments, consistent with prior theoretical predictions, Gr
displays semi-metallic behavior attributed to Dirac cones at the K points in the
BZ [124, 125]. These Dirac points result in a zero bandgap and a vanishing DOS at
the Fermi energy [13]. Moreover, it is revealed that depositing a single Gr sheet on
a series of metal substrates causes the Fermi level to move away from the conical
points in Gr, due to doping with either electrons or holes. According to the DFT
findings, metals can be categorized into two groups. Gr exhibits chemisorption
on Co, Ni, and Pd(111). Conversely, its adsorption on Al, Cu, Ag, Au, and Pt(111)
results in physisorption, i.e., a weaker bonding [19]. In experiments involving Gr
adsorbed on Pt(111) and Ni(111)/Au, it is observed that hybridization locally opens
mini-gaps [126]. In Figure (5.4), the orbital weight of Gr along the bandstucture is
depicted. The optimized distance of Gr and Co is 1.95 Å, as shown in Table (5.1).
When Gr chemisorbs on Co, the unique electronic structure of Gr is perturbed,
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Figure 5.4.: The figure illustrates the orbital weight of Gr in the bandstructure of
Gr/Co/Pt(111). Here, dGr−Co denotes the interlayer distance of Gr on
Co. Only the top-fcc stacking of Gr on Co is considered in all three cases.
By decreasing dGr/Co, we show the effect of the chemisorption of Gr on
Co. As Gr is positioned further away, the bonding weakens. The Dirac
point aligns with the crossing of the pz bands of Gr at K.
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resulting in the splitting of the Dirac cone and the acquisition of a mixed Gr-metal
character. The lower part hybridizes with the Co bands, represented in blue dots.
It is evident that the conical point at K has been disrupted. However, shifting Gr
by 1 Å indicates a restoration of the Dirac cone and a downward shift at K point,
resulting in n-type doping as Co donates electrons to Gr, illustrated by the red dots.
This aligns with the chemisorption bonding between Gr and the substrate metal [19].
At a 3.95 Å distance, the valence and conduction bands of Gr come close to the
Fermi level, a characteristic feature of Gr, shown as green dots. The hybridization
of Gr with Co, which results in the opening of a gap at the K point, can significantly
impact the electronic structure of Co/Pt(111). This, in turn, affects the strength of
the RKKY interactions.

5.4 DMI in Gr/Co/HM(111)

To achieve a comprehensive understanding and determine the Dzyaloshinskii-
Moriya interaction (DMI) parameters, we focus on all three configurations to inves-
tigate the influence of graphene (Gr) on the electronic and magnetic properties of
Co/HM(111).
Similar to the exchange interaction, we employ the generalized Bloch theorem
to explore the total energy of spin-spiral states using the FLEUR code [56, 55].
Self-consistent calculations, initially disregarding SOC, are conducted for arbitrary
spin-spiral wave vectors, (q). The generalized Bloch theorem cannot be directly
applied in this context due to the presence of spin-orbit interaction. Consequently,
we employ a perturbative approach to address the magnetic structure.
Incorporating SOC within the framework of the generalized Bloch theorem would
significantly escalate computational costs, as it couples the wavefunctions at dif-
ferent k-points. Furthermore, in practice, SOC often exhibits a relatively weak
influence and can be efficiently handled using perturbation theory. Initially, we
disregard SOC and compute homogeneous SSDWs within a single chemical unit
cell while employing generalized periodic boundary conditions. In a subsequent
step, we take SOC into account. After obtaining the self-consistent solution of the
Kohn-Sham Schrödinger equation with the spiral boundary conditions as shown in
Equation (5.4), we introduce the SOC operator into the framework,

Ĥsoc = ∑
µ

ξ(µ)(r(µ))σσσ ⋅ L(µ). (5.13)

In this context, L(µ) represents the orbital momentum operator concerning the
position of the µ-the nucleus, while ξ(µ)(r(µ)) characterizes the strength of the SOC
as a function of the distance r(µ) from the µ-th nucleus [127, 128].
Subsequently, we incorporate the impact of SOC as a first-order perturbative term
as follows:

⟨ψk′,ν′ ∣Ĥsoc∣ψk,ν⟩ = ∑
σ′σ

⟨ψσ′

k′,ν′ ∣Ĥ
σσ′

soc ∣ψ
σ
k,ν⟩, (5.14)
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∣ψk,ν⟩ is an eigenstate to the unperturbed problem. The perturbative scheme is
carried out with 2025 k-points across the 2D BZ, setting Kmax = 4.3 a−1

B . As the Gr
lattice aligns with the Pt(Ir)(111) lattice, the K and M symmetry points within the
BZ of Pt(Ir) coincide. Accounting for ferromagnetic configurations, one can express
Equation (5.14) as the Hamiltonian matrix, which illustrates the SOC as a first-order
perturbation theory:

⟨ψ↑k′,ν′ ∣H
↑↑
soc∣ψ

↑

k,ν⟩

⟨ψ↑k′,ν′ ∣H
↑↓
soc∣ψ

↓

k,ν⟩

⟨ψ↓k′,ν′ ∣H
↓↑
soc∣ψ

↑

k,ν⟩

⟨ψ↓k′,ν′ ∣H
↓↓
soc∣ψ

↓

k,ν⟩

(5.15)

These expectation values vanish for the collinear states. However, it is a solid
approximation for the antisymmetric exchange interaction in noncollinear config-
urations. Presuming that the magnetization is constrained to the xz-plane, the
only remaining component of Hsoc, according to the Equation (5.13), would be
⟨ψ∣ξσyly∣ψ⟩ [99]. This method offers flexibility by enabling access to both regimes
of slowly and rapidly rotating non-collinear magnetic structures in a more realistic
manner through self-consistent calculations.
Our initial objective is to analyze the impact of Gr covering on Co/Pt(111). In
particular, the strength of DMI can be finely adjusted by employing two active
interfaces [129]. Using the generalized Bloch theorem, the behavior of the DMI near
the Γ-point is in Figure (5.5). The integration of Gr on Co/Pt(111), as an epitaxial
asymmetric, leads to chiral Néel-type domain walls stabilized by DMI at Gr/Co
and Co/Pt. However, the chirality relies on the stacking of Gr on Co/Pt. It is
evident from Figure (5.5) that the top-fcc and hollow stacking configurations exhibit
left-handed Néel-type domain walls (D < 0), while the top-hcp configuration results
in right-handed Néel-type domain walls (D > 0). Indeed, the observation reveals
that the contribution of Co in the top-fcc stacking is almost negligible. Additionally,
Pt(I) exhibits the same chirality as the total DMI. Across these three stackings, minor
variations in magnitude are noticeable within the bottom layers of the Pt layer.
Embracing SOC through perturbation theory can be analogously related to the

atomistic Dij parameters. In the discrete atomistic limit, the formulation of the DMI
is articulated as [110, 111]

EDMI = ∑
i,j

Dij ⋅ (Si × Sj) . (5.16)

By employing the spin configuration as defined in Equation (5.8), and considering a
flat spin-spiral (θ = π/2)where both Si and Sj exclusively rotate within the xz-plane,
achieving a linear chain of DMI along q can be accomplished by

EDMI(q) = S2Dysin(ϕij), (5.17)
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Figure 5.5.: The impact of Gr coverage on the DMI of various configurations in
Co/Pt(111) is illustrated. When we observe the dashed lines depicting
the total DMI, a noticeable distinction arises: the top-fcc stacking of
Gr demonstrates a different chirality in contrast to the other stacking
configurations.
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with ϕij = q ⋅ (Rj −Ri), as the corresponding angle between spins. To account for
all six nearest neighbors in a hexagonal lattice, which is illustrated in the diagram
shown in Figure (5.6), Equation (5.17) can be modified as

EDMI = 2S2Dysin(ϕij) + 2S2Dysin(2ϕij)

= 2DyS2sin(ϕij)(1+ 2cos(ϕij)). (5.18)

The Dy values obtained from the fit are interpreted as effective, since additional
contributions beyond those accounted for in Equation (5.18) can also produce lin-
ear terms in q for Ey

DMI. These include, for example, interplanar nearest-neighbor
bonds [130], as well as second-nearest and more distant neighbors. For a flat spin-

Figure 5.6.: The diagram illustrates the short-range DMI vectors between the first in-
plane Co–Co nearest neighbors. Red arrows indicate the magnetization
directions, while black arrows represent the corresponding D vectors.

spiral configuration, where q = 2π
a (

1
N , 1

N , 0), we can write ϕij =
2π
N [131]. Observing

the linear of DMI around the Γ-point in Figure (5.12), led us to calculate the Dy up
to q = 2π

a (
1

64 , 1
64 , 0), where the first calculated point along the ΓK direction is located.

Analysis of the effective D calculation reveals that doping Gr leads to a reduction in
DMI magnitude. Specifically, it impacts the chirality in both the top-hcp and hollow
configurations.
We replicated the procedure by substituting Pt(111) with Ir(111). The reduction in
DMI magnitude across all Gr configurations, along with the alteration in chirality
for the top-hcp and hollow configurations, is also observed in the Gr/Co/Ir(111) sys-
tem. However, it’s noteworthy that the magnitude of DMI in the Gr(top-fcc)/Co/Ir
configuration is less than half compared to that of Gr(top-fcc)/Co/Pt.
To examine the influence of different layers on DMI, we computed the layer-resolved
DMI for q = 2π

a (
1

64 , 1
64 , 0). We extensively examined each of the three configurations

of Gr on Co/Pt(Ir)(111). The results are depicted in Figure (5.7). Examining the dis-
tinct atomic contributions, it becomes apparent that the sense of the rotation follows
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ML Dy

Co/Pt(111)[119] 0.89

Gr(top-fcc)/Co/Pt(111) 0.15

Gr(top-hcp)/Co/Pt(111) −0.17

Gr(hollow)/Co/Pt(111) −0.22

Gr(top-fcc)/Co/Ir(111) 0.06

Gr(top-hcp)/Co/Ir(111) −0.27

Gr(hollow)/Co/Ir(111) −0.15

Table 5.3.: The effective component of D is determined within a range extending up
to q = 2π

a (
1

64 , 1
64 , 0) of the BZ edge ΓK, calculated in meVµ−2

B . Given that
the magnetic moment of Co is denoted as mCo = 1.84 µB.
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Figure 5.7.: Layer-resolved DMI is illustrated. The rotation sense follows Pt(I) con-
tributions. In the case of Ir, Co plays a decisive role in top-fcc stacking,
whereas other contributions of Ir influence strongly both top-hcp and
hollow stackings.
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the contribution of the Pt(I). A substantial contribution from Pt(I-1) effectively com-
pensates for Pt(I-2), mirroring a similar pattern between Pt(I-3) and Pt(I-4). Notably,
the influence of Co in the DMI is notably smaller compared to that of the Pt(I) and
is nearly negligible in the case of the top-fcc configuration. For Gr/Co/Ir(111), Co
exerts a significant influence on the top-fcc stacking configuration, while other con-
tributions of Ir notably impact both the top-hcp and hollow stacking arrangements.
In a manner consistent with the experimental findings, our results indicate that Gr
exerts a modest yet noteworthy influence on the DMI. However, this influence can
primarily derive from the interface Pt contribution, which contrasts with previous
findings regarding the Rashba nature of the DMI at the Gr and Co interface [12].

5.4.1 DMI across various stackings of Gr on Co/Pt(111)

The observed different senses of rotation in the various stacking arrangements
sparked our curiosity to delve deeper into the study of DMI. Continuing our in-
vestigation, we examine the DMI at a representative q = (2π

a )(
1

64 , 1
64 , 0) along ΓK

direction. To achieve a detailed analysis of DMI quantities with respect to k, we
employ the expression:

∆EDMI
k =

EF

∑
ν
(ϵsoc

k,ν − ϵ0
k,ν) =

EF

∑
ν

ϵDMI
k,ν . (5.19)

In Figure (5.8), the bandstructure of top-fcc, top-hcp, as well as hollow configura-
tions are presented with each colored point indicating the change of band energy
attributed to the SOC. Based on the schematics, the sign contrast between top-fcc
and top-hcp or hollow configurations emerges near the M-point, close to the EF.
This can be observed in the interface contribution of Pt, emphasizing its pivotal role
in driving DMI in Gr/Co/Pt(111), as depicted in Figure (5.9). Overall, extracting
the differences among various stackings of Gr on Co/Pt is challenging due to the
presence of all bands. It’s worth noting that the contributions, while significant,
exhibit a compensatory effect due to opposing influences below the Fermi level.
To analyze the spectral behavior of the DMI chirality, we plot the corresponding
energies integrated over k as a function of the number of electrons (ne) for each
q. This method is analogous to calculating magnetocrystalline anisotropy (MCA)
using the force theorem approach [132, 131, 133],

∆EDMI
k (ne; q) = ∑

k,ν
ϵDMI

k,ν (q) f (ϵDMI
k,ν (q) − ϵF(ne; q)) . (5.20)

The functions f represent the Fermi–Dirac distribution functions, which depend on
the magnetization axes through the Fermi energy. In our analysis, the finite elec-
tronic temperature denoted by kBT plays a crucial role as a smearing parameter. To
maintain precision, we adopt a value of 0.001 for this parameter. The corresponding
results are illustrated in Figure (5.10). When examining different arrangements
of Gr on Co/Pt(111) near the Fermi energy, particularly around 0.2 eV below the
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Fermi level, it becomes evident that all configurations contribute equally to the
Dzyaloshinskii-Moriya Interaction (DMI). However, subtle distinctions in the values
of DMI emerge near the Fermi level. This is also reflected in the bandstructure plot.
For a thorough analysis of the atomic contributions in the DMI, we generate a plot
by integrating the corresponding energies over k-space within the BZ for various Gr
stacking arrangements. Utilizing Equation (5.19), we turn to a k-resolved analysis
of DMI quantities in the entire BZ. This finding is presented in Figure (5.11). Exam-
ining the DMI contributions within BZ, the primary disparity lies in the vicinity of
the Γ point. In this region, the contributions of Pt(I) (right panel) emerge as notably
significant.
To study the effect of Gr coverage on Co/Pt(111), it is valuable to analyze the
variations in DMI. Therefore, we performed DMI calculations for the three afore-
mentioned structures depicted in Figure (5.4). Considering top-fcc stacking, Gr
was initially located at the optimized distance (1.95 Å) and subsequently shifted to
achieve an interlayer distance of 2.95 Å as well as 3.95 Å. As previously mentioned,
the DMI at the Gr/Co interface points opposite the SOC-induced DMI at the Gr/Pt
interface. However, increasing the interlayer distance between Gr and Co leads to a
reduced DMI contribution from the Gr/Co interface. As a result, the overall DMI
of the Gr/Co/Pt system closely resembles that of the Co/Pt system. Besides, an
opposite behavior is observed in the Co contribution. Shifting Gr causes the rotation
direction of the DMI vector for Co to reverse, and its magnitude increases. Therefore,
the majority of the DMI originates from Co and Pt(I), while the contribution from
Pt(I-1) diminishes.

5.5 MCA in Gr/Co/HM
Depositing ultrathin layers of magnetic materials, such as Co or Fe, and HMs like
Pt or Ir, a SOC can be induced at the interfaces through a proximity effect [134].
Experimental results confirmed the presence of a well-defined PMA in Gr/Con/HM
heterostructures, identified at 300 K below a critical Co thickness (nC ≈ 20 for Pt and
nC ≈ 10 for Ir) [135]. The magnetic anisotropy of metallic multilayers, owing to their
2D nature and the monatomic thickness of the ferromagnetic Co layer, is primarily
determined by the interface anisotropy [46].
To accurately determine the MCA values, we incorporate SOC terms fully self-
consistently, employing 2025 k-points across the 2D BZ with Kmax value of 4.0 a−1

B .
When considering spins aligned along both in-plane (E∥tot) and out-of-plane (E⊥tot)
axes, MCA can be expressed as:

∆EMCA = E∥tot − E⊥tot. (5.21)

Etot represents the total energies, including fully self-consistently computed SOC.
Focusing on Gr in the top-fcc configuration on Co/HM(111), with regard to both
Ir and Pt, we present MCA in the Table (5.4). Another study employing DFT con-
firmed a similar MAE of approximately 2.4 meV for the Gr(1× 1)/Co1/Pt5 system,
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Figure 5.12.: Increasing the distance between Gr and Co results in an increase in
DMI. Consequently, the contribution of Co is enhanced by the displace-
ment of Gr. Only top-fcc stacking of Gr on Co/Pt(111) is considered.

ML ∆EMCA

Gr(top-fcc)/Co/Pt 2.38

Gr(top-fcc)/Co/Ir 0.30

Table 5.4.: The table provides magnetocrystalline anisotropy (MCA) for Gr(top-
fcc)/Co/HM(111). The positive energy corresponds to the perpendicular
MCA, and the energy values are expressed in meV.
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which is almost double that of Co/Pt. The precise moirë pattern of Gr significantly
influences the MAE values by a few tenths of meV [135]. Additionally, at these small
thicknesses, the contribution of shape anisotropy remains weak. Our observation
indicates that the MCA is eight times stronger for Pt. Other factors, including
intermixing at the Co/HM interface, the specific moiré pattern formed between
the Gr and Co unit cells, and shape anisotropy, could also contribute to the overall
behavior of the system. However, these factors have been neglected in our study.
Given the Force Theorem approach [136], we evaluate the layer-resolved contri-
bution of the MCA. In this method, SOC is included non-self-consistently after
achieving the self-consistent solution of the Kohn-Sham equation.

∆EMCA ≈
occ.
∑
ν

ϵft,ν −
occ.
∑
ν

ϵ0,ν. (5.22)

Here, the eigenvalues Eft,ν are derived from H0 +HSOC. Due to the perturbative
formalism, the Force Theorem qualitatively reproduces the self-consistent results ef-
fectively. The Figure (5.13) illustrates the layer-resolved contribution of the ∆EMCA.
It is apparent that the MCA for Gr/Co/Pt is much larger than for Gr/Co/Ir. How-
ever, in both structures, the largest contributions come from HM(I) and HM(I-1).
This method can effectively determine the behavior of different contributions to
MCA, though it may not yield precise magnitudes.
Examining Table (5.5), it is evident that the induced magnetic moments (MMs) in Pt
and Ir vary significantly. Notably, the MMs at the Ir layers display oscillations in
sign, indicating their smaller magnitude compared to the Pt layers. This observa-
tion suggests a marked difference in the magnetic behavior at the Co/Ir interface
compared to the Co/Pt interface. Additionally, it is demonstrated that the higher

MM Pt Ir

Co(I) 1.67 1.31

HM(I) 0.35 0.13

HM(I-1) 0.14 −0.05

HM(I-2) 0.10 −0.01

HM(I-3) 0.08 0.03

HM(I-4) 0.06 0.04

Table 5.5.: The magnetic moment (MM) of Co and Pt(Ir) layers are represented in
µB. The MMs exhibit better convergence within the five layers of Pt
compared to Ir.

magnetization density at the Co/Pt interface is expected to be more influenced by
the SOC compared to the case with Ir. This is attributed to the stronger magnetic
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coupling between Co/Pt compared to Co/Ir across the interface, rather than solely
the strength of SOC [135]. To evaluate the impact of Gr on Co/Pt(111), we extend
the distances between Gr and Co. Concentrating on the top-fcc layer, Figure (5.14)
depicts the layer-resolved contribution to the MCA for three different distances
of the Gr/Co interface, utilizing the Force theorem. These results are visually pre-
sented in Figure (5.14). Expanding the interlayer distance between Gr and Co results
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Figure 5.14.: We examine the MCA using the Force theorem. The MCA displays a
decreasing tendency, highlighting a significant connection between the
spatial arrangement of Gr and Co and the strength of the MCA.

in nearly halving the MCA, with the primary impact observed on the contributions
from the HM layer. In contrast, the contribution from Co remains unchanged. This
effect is also evident in the bandstructure of Gr shown in Figure (5.4).
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Experimental findings reveal that Gr undergoes significant modification upon
Co intercalation due to its robust interaction with the underlying Co layer. This
phenomenon was previously explored in detail in the preceding chapter. We ob-
served that the Dzyaloshinskii-Moriya interaction (DMI) energy contribution is
concentrated at Pt(Ir), where the atomic SOC strength is notably large. Our findings
indicate that Gr inverts the chirality of the vacuum/Co interface, which is in agree-
ment with experimental results. Experimentally, it was shown that augmenting the
thickness of the Co layer promotes the formation of twin boundaries or stacking
faults. Additionally, the influence of the Gr/Co interface was compared with the
contribution observed in the Co/Pt(Ir) interface [135]. Upon intercalation with
Co, the electronic bandstructure of Gr is significantly modified due to the strong
interaction with the Co layer. This interaction reduces the intensity and sharpness
of the Gr bands compared to the Gr/Ir system. Further Co intercalation can be
interpreted as a combination of the original Gr/Ir π-band, which remains near the
Fermi level, and a more electronically doped π′ Gr/Co band at a deeper binding
energy. This effect can be associated with the Moiré pattern of Gr on Co/Ir. More-
over, the growth of 2ML of Co exhibits the development of mini Dirac cones within
a narrow energy range, approximately 0.2 eV below the EF, particularly evident at
Gr K-point [137].
Within this chapter, our focus shifts to an in-depth examination of Co-thickness
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6. The role of Co thickness in DMI enhancement

and its influence on both electronic and magnetic properties. This investigation
involves distinct analyses for both Pt and Ir as heavy metals (HMs) through DFT
calculations.

6.1 Enhancing structural optimization
To unravel the impact of the thickness of Co on spin texture as well as DMI, we
expanded the number of Co layers to 3. Three MLs of Co are arranged in an fcc
structure along the (111)-plane on a substrate of 5 MLs of Pt(Ir). Figure (6.1) displays
the structural characterization of the Gr/3ML Co/5ML Pt(111) heterostructure. For
Gr/3ML Co/5ML Ir, the structure is analogous, except for the substitution of Pt
atoms with Ir atoms. Due to the expansion of Gr to match the Pt(Ir) lattice, in our

top-fcc top-hcp hollow

Figure 6.1.: A side view presents three potential stacking configurations of Gr atop
3ML Co/5ML Pt(111). For Ir, Pt is substituted by Ir.

calculations, contributions from the Gr Moiré superlattice to the electronic structure
are disregarded. As in the case of Gr/Co/Pt(Ir), we conducted relaxation simula-
tions for the three various stacking configurations of Gr on 3ML Co/5ML Pt(Ir)(111),
maintaining consistent computational parameters. Hence, the planewave cutoff
for the basis functions was set to Kmax = 4.0 a−1

B . The charge density was expanded
to a cutoff Gmax = 11.8 a−1

B , along with 21 k-points, distributed within the primitive
part of the hexagonal (2D) BZ in accordance with the p3m1 symmetry class. Given
the chemical adsorption of Gr, there’s no requirement for a van der Waals (vdW)
correction. Table (6.1) displays the interlayer distances for Gr/3ML Co/5ML Pt
as well as Gr/3 Co/5ML Ir, including top-fcc as well as top-hcp arrangements
of Gr on 3ML Co/5ML Pt(Ir)(111). In Chapter 5, it was observed that these two
stacking configurations exhibit very similar energy levels and are the most stable
ones. Therefore, we focused our optimization efforts specifically on these two
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configurations. The forces have been optimized for all structures until reaching a
convergence threshold of 0.05 eV/Å. Based on the structural relaxation results, it is

ML Gr/3ML Co/5ML Pt Gr/3ML Co/5ML Ir

Gr/Co stacking top-fcc top-hcp top-fcc top-hcp

a 2.75 2.75 2.73 2.73

dC(I−1)−C(I) 0.02 0.02 0.02 0.02

dC(I)−Co(I) 1.99 1.99 1.97 1.99

dCo(I)/Co(I−1) 1.87 1.87 1.87 1.87

dCo(I−1)/Co(I−2) 1.91 1.91 1.92 1.93

dCo(I−2)/HM(I) 2.10 2.10 2.09 2.08

dHM(I)/HM(I−1) 2.41 2.41 2.25 2.25

dHM(I−1)/HM(I−2) 2.38 2.38 2.24 2.24

dHM(I−2)/HM(I−3) 2.38 2.38 2.24 2.23

dHM(I−3)/HM(I−4) 2.40 2.40 2.19 2.20

Total energy 0 0.01 0 0.01

Table 6.1.: a and d stand for in-plane lattice parameter and interlayer distances
for different stacking positions of Gr on 3ML Co/5ML Pt(Ir) along the
fcc(111) stacking, respectively. Distances are given in Å and total energies
in eV, both relative to the top-fcc stacking position, for each structure.

evident that the top-fcc configuration exhibits a marginal energy advantage of just
0.01 eV, indicating its slightly higher stability compared to the top-hcp configuration.
The optimized interlayer distances are nearly identical, particularly for the Gr/3ML
Co/Pt configuration.

6.2 Evolution of spin texture of Gr adjacent to 3ML Co/5ML
Pt(Ir)

The previously mentioned dual π band component, linked to a corrugated Gr layer,
aligns with the combined presence of the strongly interacting Gr/Co π′ band and
the less interacting Gr/Pt(Ir) π band. Similar observations have been reported in
analogous systems [138]. To confirm the observed spin splitting in experiments, we
performed DFT calculations aimed at assessing spin polarization within the plane.
The notion of density matrix is extended to encompass spin-polarized systems [139].
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6. The role of Co thickness in DMI enhancement

The scalar density is replaced with a hermitian 2× 2 matrix, denoted as

nσσ′(r) = ⟨ψ∣ϕ†σ′(r)ϕσ(r)∣ψ⟩ . (6.1)

Consequently, the Schrödinger equation can be written as:

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
−

h̄2

2m
∇2 + ∑

σ,σ′
∫

nσσ′(r′)
∣r − r′∣

dr′
⎞

⎠
I +V(r) +

δExc

δn(r)
+Hso

⎤
⎥
⎥
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⎦

⎛
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⎞
⎟
⎠
= ϵi

⎛
⎜
⎝

ϕ↑i (r)

ϕ↓i (r)

⎞
⎟
⎠

, (6.2)

The term V(r) is defined as the 2× 2 potential matrix. In terms of the Kohn-Sham
wavefunctions, the density matrix can be written as

nσσ′(r) =
N
∑
i=1

ϕ∗σ′

i (r)ϕ
σ
i (r). (6.3)

Utilizing the Pauli matrices, σ, the density matrix can be decomposed in

n(r) =
1
2
(n(r)I +σσσ ⋅m(r)) =

1
2

⎛
⎜
⎝

n(r) +mz(r) mx(r) − imy(r)

mx(r) + imy(r) n(r) −mz(r)

⎞
⎟
⎠

, (6.4)

corresponding to the charge and magnetization density. Therefore, the in-plane
configuration of the magnetization density can be defined as:

mx = n↑↓ + n↓↑ = 2 Re (n↑↓) , (6.5)

my = i (n↑↓ − n↓↑) = 2 Im (n↑↓) . (6.6)

Within this formalism, a general non-collinear structure can be determined in the
framework of DFT [63].
To demonstrate the band-splitting at Gr, we traced the k-points along the high-
symmetry lines, MΓKM. As depicted schematically in Figure (6.2), along ΓKM, the
sole in-plane spin contribution to the bandstructure perpendicular to the wavevector
is Sy, whereas along MΓ only Sx becomes prominent. In Figure (6.3), separate plots,
presenting the in-plane spin contribution to the bandstructure of Gr/3ML Co/5ML
Pt(111) at Gr along MΓ and ΓKM, are displayed. To discuss the hybridization
between Gr and Pt at the interface, it is necessary for the wavefunction, ψkν to be
present simultaneously at both Gr and Pt(I), which can be defined as:

⟨ψkν(r)∣ψkν(r)⟩Gr × ⟨ψkν(r)∣ψkν(r)⟩Pt(I). (6.7)

Here, the first and second terms highlight the weight of Gr and Pt at the interface
on the band structure, respectively. Consequently, the projected bandstructure of
Gr/3ML Co/5ML Pt(111) is also presented, emphasizing the density of states (DOS)
of Gr and Pt(I). The red and blue points correspond to the states with positive and
negative spins. Similarly, Figure (6.4) showcases the interplay between Gr and
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Figure 6.2.: The in-plane spin contributions to the bandstructure orthogonal to the
wavevector within the BZ are illustrated: Sx along MΓ and Sy along ΓK.

Ir at the interface, visualized through the Equation (6.7) as well as in-plane spin
polarization along MΓKM. In both structures, a subtle spin splitting around -4 to
-7 meV is noticeable, as marked within a defined region in both figures, consistent
with observations reported for Gr/2ML Co/5ML Ir [137]. However, this splitting
appears less pronounced compared to the effect observed in the case of 2ML Co.
A comparison of overlap and plots reveals that the in-plane spin polarization is a
result of the interface’s hybridization with the HM, contributing significantly to this
effect.

6.3 DMI variations across different Co thicknesses

Drawing from the analysis of the partial slab decomposition, it has been demon-
strated that at two layers Co, the Co/Pt and Gr/Co interfaces are effectively decou-
pled; however, their contributions still exhibit a dependency on the Co thickness.
Notably, the Co/Pt interface contributes significantly to the DMI, and at the Gr/Co
interface, the chirality is observed to be the opposite. Furthermore, employing
atomic spin-orbit decomposition, it is found that the contribution of the interfacial
Pt atomic plane dominates the whole DMI effect, demonstrating similar energy val-
ues with and without Gr. The Co atoms at this same interface contribute minimally
compared to the Co atomic layer at the Co/Gr interface [131]. This observation
aligned with a similar case reported in the literature for 3d/5d interfaces [140, 141].
Investigating DMI for Gr/3ML Co/Pt(Ir), we aim to compare the DMI effects be-
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6. The role of Co thickness in DMI enhancement

Figure 6.3.: The bandstructure for Gr/3ML Co/5ML Pt(111) along MΓ (upper pan-
els) ΓKM (lower panels) are presented. In the plots on the left-hand
side, circle sizes are proportional to the overlap between Gr and Pt at
the interface, with blue and red indicating the spin character as given in
the right panels. However, on the right-hand side, the in-plane contri-
butions of spin-polarization (Sx (upper), Sy (lower)) are given.
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Figure 6.4.: The bandstructure for Gr/3ML Co/5ML Ir(111) along MΓ (upper pan-
els) ΓKM (lower panels) are presented. In the plots on the left-hand
side, circle sizes are proportional to the overlap between Gr and Ir at
the interface, with blue and red indicating the spin character as given in
the right panels. However, on the right-hand side, the in-plane contri-
butions of spin-polarization (Sx (upper), Sy (lower)) are given.
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6. The role of Co thickness in DMI enhancement

tween single-layer Co and multiple layers for comparative analysis.
To account for all six nearest neighbors in a hexagonal lattice, depicted in Figure (5.6),
the DMI for a linear chain along q can be achieved as

EDMI = 2DyS2 sin(ϕij)(1+ 2 cos(ϕij)). (6.8)

The parameter Dy is derived from fitting a 2D model to interactions among nearest
neighbors on a hexagonal lattice, a discussion thoroughly explored in Section (5.4).
For a flat spin spiral, described by q = 2π

a (
1
N , 1

N , 0), we can write ϕij =
2π
N [131].

To compute the DMI, the generalized Bloch theorem detailed in Section (3.6) is
applied, which facilitates the calculation of DMI through a two-step computational
approach. Initially, we performed a self-consistent spin-spiral calculation utilizing
45× 45 grid in the complete 2D BZ, with Kmax = 4.3 a−1

B and Gmax = 13 a−1
B without

accounting for SOC,
H0ψ0,ν = ϵ0,νψ0,ν. (6.9)

Afterward, SOC is included in first-order perturbation theory,

⟨ψk,ν∣Ĥsoc∣ψk,ν⟩, (6.10)

where ∣ψk,ν⟩ is an eigenstate to the unperturbed H0 [99]. To evaluate the DMI, the
sum of the eigenvalues of the occupied state is the concluding step. In Figure (6.5),
the behavior of DMI in the vicinity of the Γ point is shown. The linear characteristic
of DMI within this low q regime leads us to compute D up to q ≤ ( 3

64 , 3
64 , 0) along

ΓK. Extraction of the effective D is performed through Equation (6.8) for left-
handed spirals, assuming ϕij =

2π
64 . In Table (6.2), the effective component of D, for

Gr/nCoML Co/5ML Pt(Ir) is presented for two different Co thicknesses (n=1,3).
In an alternative observation, there is a notable alignment between the effective

nCo DGr/Co/Pt
y DGr/Co/Ir

y

1ML 0.18 0.06

3ML 0.32 −0.06

Table 6.2.: The effective component of D is derived up to q ≤ 0.03 ΓK, expressed in
meVµ−2

B , where mCo = 1.84 µB.

in-plane D vector within the framework of Gr/nML Co/5ML Pt for the q = 0.25 ∣ΓK∣
configuration and our findings [131]. Furthermore, the corresponding outcome for
Co/5ML Pt without Gr stands at a value of 0.53 meVµ−2

B [119]. Thus, by augmenting
the thickness of Co within the Gr/Co/Pt(111), the effective D vector demonstrates
a rise, evidently converging closer to the Co/Pt(111) configuration. Conversely,
considering an Ir substrate, the chirality undergoes alteration, yet the magnitude
remains relatively steady.
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Figure 6.5.: The DMI energy near the Γ point is computed for left-handed spirals
rotating in xz-plane. The dashed line represents the total DMI for Gr(top-
fcc)/1ML Co/5ML Pt(111) heterostructure, exhibiting notably linear
behavior, especially within the q ≤ ( 3

64 , 3
64 , 0) range along ΓK. The col-

ored lines illustrate the diverse contributions from individual layers in
the DMI.
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6. The role of Co thickness in DMI enhancement

A layer-resolved approach to DMI could shed more light on the role of the interfaces
and help comprehend their impact on the DMI. Using the methodology explained,
we can conduct an atomic analysis to compare the influence of each layer. In
Figure (6.6), a comparative analysis of atomic contributions to DMI for both single-
layer and three-layer Co configurations is presented. In the case of Gr/3ML Co/Pt,
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Figure 6.6.: The figures illustrate the atomic contributions for two configurations:
Gr(top-fcc)/1ML Co/5ML Pt(Ir) on the left and Gr(top-fcc)/3ML
Co/5ML Pt(Ir) on the right. The increase in Co thickness predomi-
nantly influences the Pt(I) layer, dictating the overall DMI. In contrast,
in the case of Gr/3ML Co/Ir, the competition among the Ir layers is the
determining factor for DMI.

it is evident that any reduction at Co(I) is effectively compensated for by Co(I-2)
layers. The primary influence, however, originates from the Pt near the interface.
Increasing the Co thickness led to a rise in the total DMI. Conversely, when the Co
thickness is increased, the direction of the DMI vector for Gr/3ML Co/Ir undergoes
an inversion compared to the single-layer Co configuration. Furthermore, the
collective behavior of the Ir layers determines the overall DMI effect. Also, the
bottom layers of the slab appear to influence the interface.

6.3.1 Enhancing the thickness in HM layers

To ascertain that DMI solely arises from the interfaces, an examination of the
induced magnetic moments (MM) in the neighboring 3ML Co within the 5ML Pt(Ir)
is conducted. The induced MM in both Ir and Pt, assessing the convergence of these
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effects, are presented in Table (6.3). The incomplete convergence of MMs among the

MM 5ML Pt 7ML Pt 5ML Ir 7ML Ir 10ML Ir

Co(I-2) 1.58 1.57 1.57 1.57 1.57

Co(I-1) 1.84 1.84 1.84 1.85 1.85

Co(I) 1.91 1.90 1.77 1.74 1.73

HM(I) 0.26 0.26 0.15 0.26 0.13

HM(I-1) 0.10 0.08 −0.03 −0.05 −0.05

HM(I-2) 0.05 0.03 0.00 −0.01 −0.01

HM(I-3) 0.03 0.01 0.01 0.00 0.00

HM(I-4) 0.02 0.01 0.03 0.00 0.00

Table 6.3.: The magnetic moment (MM) of Co and the Pt(Ir) are represented in µB.
The relatively small induced MM from the bottom layers suggests that
employing five layers of HM, particularly Ir, is insufficient to achieve
convergence with the three layers of Co. Increasing the thickness of HMs
improved the convergence for the bottom of the slab. Only the first five
layers of HM were taken into consideration. For Gr/3ML Co/Ir, both 7
and 10 layers boost convergence.

initial 5ML of the HM suggests a potential influence from the underlying layers on
the DMI. To illuminate the role of interfaces in DMI and minimize the impact of the
bottom HM layers, we opted to increase the thickness of the HM. Figure (6.7) depicts
the newly configured setups. Given the stronger influence of bottom layers in Ir,
we decided to increase its thickness for a more pronounced effect. In Table (6.3),
a comparison of the MMs for Gr/3ML Co/5ML Pt(Ir), Gr/3ML Co/7ML Pt(Ir),
and Gr/3ML Co/10ML Ir is carried out. As the HM slab grows thicker, the MM
convergence improves, albeit with only a subtle change. Examining the MM in
thicker HM, it becomes evident that 7 layers of HM are sufficient to achieve a
precise value of DMI. Nonetheless, employing a thicker substrate will eliminate the
influence of the bottom surface on the interfaces. Figure (6.8) presents the layer-
resolved DMI for both Gr/3ML Co/Pt and Gr/3ML Co/Ir systems across various
thicknesses of the heavy metal (HM) substrate. In the case of Gr/3ML Co/5ML Pt,
the DMI is primarily dominated by the Pt(I) layer near the interface, indicating a
strong influence of this specific Pt layer on the total DMI. On the other hand, for
Gr/3ML Co/5ML Ir, the DMI is determined by a competitive interaction between
the Ir(I) layer and the adjacent Ir(I-1) layer, demonstrating that both layers contribute
significantly to the overall DMI effect in this configuration. The contribution from
the bottom layers, particularly in the 5-layer Ir substrate, is notably strong.
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Figure 6.7.: A Lateral representation highlights the presence of thicker layers of
heavy metals. Gr/3ML Co/7ML Pt (left), Gr/3ML Co/7ML Ir (center),
and Gr/3ML Co/10ML Ir (right). Gr is positioned in a top-fcc configu-
ration on the 3ML Co/HM(111) substrate.

To conclude, utilizing a total of 7 layers of HM can potentially yield a more accurate
D value. The Dy is reevaluated for the enhanced configurations, and the updated
outcome is presented in Table (6.4). The computation of D for Gr/3ML Co/10ML
Ir resulted in a similar value to that of 7 Ir. In the Gr/3ML Co/Pt system, a 5 ML

nHM DGr/3MLCo/Pt
y DGr/3MLCo/Ir

y

5ML 0.32 −0.06

7ML 0.36 −0.14

10ML −0.15

Table 6.4.: The effective component of D is calculated within q ≤ ( 1
64 , 1

64 , 0) along ΓK,
expressed in meVµ−2

B . The D magnitude displays enhancement in the
configuration featuring 7 layers of HMs.

Pt substrate is sufficient to ensure that the DMI arises predominantly from the
interfaces, minimizing contributions from the deeper layers. However, for Gr/3ML
Co/Ir, a 7 ML Ir substrate is necessary to achieve a similar effect, effectively isolating
the DMI to the interface and eliminating the influence of the bottom layers. This
outcome aligns with prior findings, suggesting that augmenting the thickness of Co
diminishes the influence of the Gr/Co interface in DMI, which is consistent with
other observations [131].
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Figure 6.8.: The layer-resolved DMI for both Gr/3ML Co/Pt and Gr/3Co/Ir for
various thicknesses of HM is shown. For Gr/3ML Co/5ML Pt, it is
evident that Pt(I) dominates the total DMI. Conversely, for Gr/3ML
Co/5ML Ir, the competition of Ir(I) as well as Ir(I-1) decides for DMI.
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Enabling control over magnetic properties through external mechanisms without
altering the temperature represents a significant goal from both fundamental and
technological perspectives. The concept of employing electric fields to manipulate
magnetism traces its origins back to the 1960s [142, 143]. The achievement of elec-
tric field modulation in the magnetic properties of both magnetic semiconductors
and metals has opened approaches for the development of the field of spintronics
devices controllable through electric fields. However, as a result of the screening
induced by charge carriers within the ferromagnetic metals, the application of a
significant electric field becomes impracticable [8].
The Dzyaloshinskii-Moriya interaction (DMI), originating from the spin-orbit cou-
pling (SOC) in a broken inversion symmetry, plays a pivotal role in the formation
of chiral magnetic textures. The impact of interfacial DMI on magnetic dynamics
in multilayered materials has been explored in discussions on spin waves, domain
wall motion, and skyrmions [41]. Therefore, discovering a more effective method
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to regulate the strength and orientation of DMI holds immense value in crafting
and maneuvering magnetic patterns crucial for spintronic applications. This can be
enhanced through alterations in material compositions [144] and structure, augmen-
tation of an oxide layer [145], the application of an electric field [140], or inducing
lattice strain [146].
In this chapter, our focus will be on exploring the tuning of magnetic properties,
particularly interfacial DMI in Gr/Co/Pt(111), by employing an external electric
field and applying a capping oxide layer.

7.1 Applying an external electric field

Electric field manipulation of interfacial magnetism has attracted significant atten-
tion, given its capacity to offer an extra degree of freedom for controlling magnetiza-
tion through the application of a gate electric field [47, 30, 147]. Applying an electric
field induces changes in the electrostatic potential, thereby influencing magnetic
anisotropy or DMI.
We employed a first-principles approach to investigate the manipulation of both
DMI and magneto-crystalline anisotropy (MCA) through electric field modulation.
To simulate the impact of the electric field, we adjusted the vacuum potential to
introduce two electrodes of opposite polarity positioned approximately 5 Å above
and below the surfaces of the film. The electric field is subsequently determined by
the charges on the electrodes and is further influenced by the dielectric responses
within septuple layers. In the illustrated configuration, a positive voltage change
was applied perpendicular to the Gr layer, directed towards a monolayer of Co
positioned atop five monolayers of Pt on the fcc(111) plane. Conversely, a negative
field denotes the reverse direction of this voltage propagation. Our calculations,
conducted in FLEUR-code [56, 55], establish that a positive field signifies a rise in
potential from Pt to Co to Gr, while a negative field indicates the opposite, outlining
the flow of potential in the opposite direction. Figure (7.1) visually illustrates the
propagation of the electric field.

7.1.1 Structural optimization

In our analysis in section (5.1), three configurations of Gr on 1ML Co/5ML Pt(111)
were observed, highlighting the top-fcc configuration as the most stable. To in-
vestigate the impact of an external electric field, perpendicular to the interface
planes, we performed the structural relaxation for these three possible stacking
of Gr on Co/Pt(111), as depicted in Figure (7.2). This enabled us to mitigate the
potential impact of interlayer forces on the magnetic properties. Like the opti-
mization performed for Gr/1ML Co/5ML Pt, we employed the FLAPW method
within the PBE, implemented in FLEUR-code [55, 56]. Additionally, we utilized
a cutoff parameter of Kmax = 4.0 aB and employed 21 k-points within the p3m1
symmetry class, distributed across 2D BZ. The forces have been optimized for all
structures till reaching a convergence threshold of 0.05 eV/Å. Table (7.1) presents
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Figure 7.1.: Illustration of the simulated electric field setup, where the positive field
denotes a potential increase from Pt to Co to Gr, while the negative field
signifies the reverse flow of potential. The change in potential influences
the dielectric responses within the separate layers.

top-fcc top-hcp hollow

Figure 7.2.: A lateral depiction showcases three possible stacking configurations of
Gr atop Co/Pt(111).
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7. DMI manipulation through electric field and oxide capping

the interlayer distances within Gr/1ML Pt, including top-fcc, top-hcp, and hollow
configurations. We investigated the impact of electric fields with magnitudes of 2.75
and 5.50 V/nm by enhancing the potential at the Pt (positive field), and conversely
increasing it at the Gr (negative field). Comparing the data from the table for each

Gr/Co stacking top-fcc top-hcp hollow

dC(I−1)/C(I) 0.026 0.026 0.005

dC(I)/Co(I) 1.959 1.985 1.970

dCo(I)/Pt(I) 2.048 2.041 2.047

dPt(I)/Pt(I−1) 2.372 2.359 2.375

dPt(I−1)/Pt(I−2) 2.335 2.334 2.334

dPt(I−2)/Pt(I−3) 2.323 2.323 2.323

dPt(I−3)/Pt(I−4) 2.349 2.344 2.344

Table 7.1.: d stands for interlayer distances for different stacking positions of Gr on
1ML Co/5ML Pt along the fcc(111) stacking. Distances are given in Å and
optimized for ±2.75, ±5.50 V/nm fields are measured in V/nm electric
fields. A positive field denotes an increase in potential from Pt to 1ML
Co/Gr, while a negative field implies the opposite.

configuration, the interlayer distances vary across different stacking configurations
of Gr on Co/Pt(111). The variations among stackings are particularly evident at
both interfaces of Co, primarily attributable to the doping of Gr. Nevertheless, the
influence of the electric field on the forces was considerably minimal. Hence, the
interlayer distances remained unchanged across different electric fields for each
stacking of Gr on Co/Pt(111). Figure (7.3) illustrates the impact of the electric field
on the total energies. Consistent with prior structural analyses of Gr/Co/Pt, the
top-fcc stacking of Gr emerges as the most stable configuration. Therefore, the
energy variations from the top-fcc arrangement are depicted for the top-hcp and
hollow configurations. It’s clear that the top-hcp configuration, differing by less
than 0.1 eV from the top-fcc, is the closest. Furthermore, the electric field shows
negligible influence on this proximity.
To further explore the role of the external electric field, we examined its influence on
the bandstructure of Gr/Co/Pt(111), with a particular focus on the Dirac cone at the
K point. As shown in Figure( 7.4), the orbital-resolved band structure analysis of Gr
in the top-fcc configuration demonstrates a pronounced influence of the external
electric field on the electronic structure near the K point. Under a negative electric
field, the gap between the Dirac-like bands at the K point increases. In contrast, in
the absence of an external field, this gap is significantly smaller. When the field
direction is reversed (positive field), the electronic bands shift further, and the gap
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Figure 7.3.: The influence of the electric field on total energies is illustrated, high-
lighting the top-fcc stacking of Gr as the most stable configuration.
Consequently, energy variations from the top-fcc arrangement are show-
cased in the presence of the electric field for the top-hcp and hollow
configurations.
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7. DMI manipulation through electric field and oxide capping

at the K point decreases even more, suggesting a tunable modulation of the Dirac
cone through the electric field.

7.1.2 DMI

Applying an external electric field to the FM/HM structure presents a method to
adjust structural inversion asymmetry, thereby enabling effective control of domain
wall dynamics through modulation of interfacial DMI. Various FM thin films have
been utilized to demonstrate the resulting alterations in interface magnetism [148,
149, 150]. Besides, in the absence of an external magnetic field, an analytical ex-
pression for the skyrmion radius has been derived, characterizing the profile of
skyrmions in the small skyrmion limit [45]. Modifying the DMI and the magnetic
crystalline anisotropy (MCA) will impact the skyrmion radius, as indicated by
this analytical model. It has been experimentally shown that electric control of
magnetism influences the interfacial DMI, which plays a critical role in the stability
of magnetic skyrmions [151].
Following the first-principles calculations, we explored the changes of DMI under
the impact of various electric fields on both Gr/Co as well as Co/Pt interfaces.
Assuming a flat spin spiral (θ = π/2), restricting Si and Sj to rotate exclusively
within the xz-plane, the DMI is characterized by

EDMI(q) = 2S2Dysin(ϕij), (7.1)

with ϕij = 2πq.(Rj −Ri). Taking into account all six nearest neighbors in a hexagonal
lattice, as illustrated in Figure (5.6), the revised equation is provided as

EDMI = 2DyS2sin(ϕij)(1+ 2cos(ϕij)), (7.2)

where ϕij =
2π
N [131]. The EDMI is computed using DFT. The response of various

layers to the electric field resembles. In contrast, a notable decrease was observed
in Co and Pt(I). Observing the linear nature of DMI around the Γ point, illustrated
in Figure (7.5), prompted us to calculate Dy specially up to q = (2π/a)( 1

64 , 1
64 , 0)

along ΓK, shown in the Table (7.2) displaying Dy corresponding to the different
stacking of Gr on Co/Pt(111). The effective model, derived from fits in the low-
q region, accurately replicates the energies of spin-spirals [119]. For the DMI
computation, we utilized the generalized Bloch theorem, which forms the basis
for a computational approach to calculate DMI, explained in Section (5.4). The
spin-spiral calculation was performed using a 45× 45 grid spanning the entire 2D
BZ. This computation was carried out Kmax = 4.3 a−1

B and Gmax = 13 a−1
B excluding

SOC effects. Subsequently, the introduction of SOC was approached as a first-order
perturbation theory. A response of DMI to the electric field is recognizable. Hence,
we investigated the potential impacts of such an increase on the DMI. Interestingly,
the adjustment in interlayer distances exhibits a subtle impact on the behavior of
DMI. Therefore, it can be concluded that structural optimization under the electric
field is essential to attain a precise understanding of the modifications to the DMI.
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Figure 7.4.: Band structure of Gr on Co/Pt(111) around the K point under different
external electric fields (E = ±5.50 V/nm and E = 0 V/nm). The applica-
tion of the field modifies the Dirac cone, inducing a bandgap opening
at the K point. The gap increases under a negative field and reduces
under a positive field, reflecting a tunable field-driven modification of
the electronic structure.
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Figure 7.5.: The computation of DMI energy around the Γ point focuses on the
left-handed spirals rotating specially within the xz-plane. The dashed
line showcases the total DMI for the Gr(top-fcc)/1ML Co/5ML Pt(111)
heterostructure, both with and without an applied electric field. Notably,
it displays a prominently linear trend, particularly within the range of
q = 6

64 (2π/a) along ΓK or q = 1
64 (2π/a) along ΓM. The colored lines

delineate the distinct contributions from individual layers to the DMI.

Gr/Co/Pt(111) Dy

E-field (V/nm) −5.50 −2.75 0 2.75 5.50

top-fcc 0.17 0.16 0.15 0.14 0.13

top-hcp −0.15 −0.16 −0.12 −0.18 −0.19

hollow −0.21 −0.21 −0.22 −0.22 −0.23

Table 7.2.: The effective component of the DMI vector (Dy) is determined up to
q ≤ 2

64 of the BZ edge ΓK, expressed in meVµ−2
B , where mCo = 1.84 µB.
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7.1. Applying an external electric field

Taking the optimization into account, the application of electric fields leads to a
decrease in the total DMI of Gr/Co/Pt(111). This shift is more explicitly illustrated
in the Figure (7.6).
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Figure 7.6.: The dependency of DMI is illustrated concerning the applied electric
field for various stacking configurations of Gr on Co. A positive field
signifies a positive voltage propagated perpendicular from Gr to 1ML
Co atop 5MLs of Pt on the (111) plane. Conversely, a negative field
indicates the opposite direction of this voltage. A diminishing trend is
evident in the presence of the field. The behavior induced by the field
appears similar for all configurations.

We characterized the observed shift by quantifying the slope of the nearly linear
curve, defined as the ratio of DMI change to the applied electric field (E),

β =
∆EDMI[meV]

E[V/nm]
, (7.3)

displayed in Table (7.3). Remarkably, the consistent nature of the slope depicting the
electric field control of DMI, denoted as β, across all Gr configurations on Co/Pt(111)
allows us to compare the DMI shift with other similar studies.
Applying the generalized Bloch theorem, a detailed examination of the layer-
resolved DMI during the modulation of the electric field is illustrated in Figure (7.7).
Examining the layer-resolved DMI, there is a decrease in DMI in the presence of a
perpendicular electric field. The contribution from Co displays a similarity to the
total DMI for both the top-fcc and top-hcp configurations, while the contribution
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Gr/Co stacking β [fJ⋅m/V]

top-fcc −15.4

top-hcp −15.4

hollow −15.4

Table 7.3.: β is determined up to q ≤ (2π/a)( 1
64 , 1

64 , 0), encompassing the initial point
in Figure (7.5) along ΓK. This ratio signifies the variation of DMI with
the application of an electric field.
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Figure 7.7.: Layer-resolved DMI for Gr/Co 1ML/5ML Pt(111) are presented. The
modulation of the electric field influences the contributions of both Co
and Pt layers, resulting in a consequent change in the DMI.
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7.1. Applying an external electric field

from Co for the hollow configuration remains constant under the influence of the
field.
Furthermore, the sign of the DMI originating from Co in the top-fcc configuration is
opposite to that of the total DMI. Therefore, the absolute value of DMI decreases
for top-hcp stacking, while it increases for the other two stackings. Adjacent to Co,
Pt(I) exhibits an increasing response for the top-fcc and top-hcp configurations and
a decreasing response for hollow configurations. Moreover, there are variations in
other layers of Pt; however, these changes compensate for each other. Ultimately,
the competition between Co and Pt(I) determines the total DMI.

7.1.3 MCA

Investigating the magnetocrystalline anisotropy (MCA) within the Gr/Co/Pt(111)
system, a significant out-of-plane MCA of 2.38 meV was observed. Experiments
also confirm a robust perpendicular magnetic anisotropy (PMA) [12]. Adjusting
both PMA and DMI enables us to manipulate magnetic skyrmions, given that their
size and stability rely on both DMI and PMA [46]. Moreover, within an electric
field, modifications to the equilibrium properties of skyrmions have been observed,
and the mechanism behind the electric-field control of skyrmion motion has been
identified. This control has been determined in terms of alterations to the static
properties of skyrmions [152].
In the computation of MCA attributed to SOC, we incorporate SOC within a self-
consistent collinear calculation. The MCA is defined by the expression:

∆EMCA = E∥tot − E⊥tot. (7.4)

Here, Etot denotes the total energies, including SOC terms, computed fully self-
consistently for spins aligned along the in-plane (E∥tot) and out-of-plane (E⊥tot) axes
within the application of electric fields. To ensure accurate MCA values, we achieved
convergence for this quantity with Kmax = 4.0 a−1

B within 2025 k-points in the entire
2D BZ. In Table (7.4), these values are presented for various electric fields. Here, we
exclusively focused on the Gr(top-fcc)/Co/Pt(111) configuration, which has been
calculated to be the most stable configuration of Gr on Co/Pt(111) in the presence
of an electric field. Despite the electric field’s negligible influence on the electronic

E [V/nm] −5.50 −2.75 0 2.75 5.50

∆EMCA[meV] 2.30 2.38 2.38 2.38 2.48

Table 7.4.: The ∆EMCA is determined for Gr(top-fcc)/Co/Pt(111) in the presence
of electric field. The positive energy corresponds to the perpendicular
MCA.

structure, we observed a contrast in the modification of the MCA compared to the
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Figure 7.8.: The correlation between MCA and the applied electric field is depicted
for Gr(top-fcc)/Co/Pt(111). Contrary to the observed decrease in DMI, a
noticeable increase is apparent. The MCA is calculated self-consistently.
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7.2. Implementing an oxide capping layer

DMI, as depicted in Figure (7.8). The calculated ratio as a function of the applied
field is denoted as γ and defined in

γ =
∆EMCA[meV]

E[V/nm]
, (7.5)

is determined to be γ = 24.9 fJ⋅m/V. Experimental findings indicate voltage-induced
alterations in magnetic anisotropy energy, with values ranging from 13 fJ⋅m/V in
a few MLs of FeCo [153, 154], 26±6 fJ⋅m/V in Au/Fe/MgO [155], to 48 fJ⋅m/V for
single-crystalline 5 nm Fe on MgO [156].
Besides, we employed the force theorem approach to obtain both MCA values
and distinct atomic contributions in MCA. The change in total energy is primarily
determined by the variation in the sum over the occupied single-particle energies in
the first order. This connection is commonly referred to as the force theorem [136].
Using the force theorem, the SOC is incorporated non-self-consistently after es-
tablishing the self-consistent solution of the Kohn-Sham equation. Then, the total
energy in the presence of the SOC can be approximated by

E − E0 ≈
occ.
∑
ν

ϵft,ν −
occ.
∑
ν

ϵ0,ν. (7.6)

The eigenvalues ϵft,ν are derived from H0 +Hsoc. Figure (7.9) represents the MCA
calculated using the Force theorem, showcasing distinct atomic contributions. Eval-
uating various contributions to MCA, it can be seen that the positive electric field
reduces MCA. The contribution of Co and Pt(I) within the field exhibits minimal
variation. However, Pt(I-1) as well as Pt(I-2) undergoes a reduction, resembling
the total contributions. Additionally, there are modifications in the contributions of
Pt(I-3) and Pt(I-4), which offset each other.
Both DMI and MCA undergo modifications in the presence of an electric field.

7.2 Implementing an oxide capping layer
Several studies have investigated the enhancement of DMI through the use of ox-
ide/ferromagnetic materials. A comprehensive analysis has been conducted on the
O/Fe/Ir(001) system examining charge transfer and induced dipole moment [145].
Significant changes emerge across varying O. This reveals a clear correlation be-
tween the strength and the sign of DMI with both charge transfer and induced
electrostatic moment. Another investigation involving MgO/Co/Pt indicates an
augmentation in the DMI of the Co/Pt system. This enhancement is attributed to
the enhanced Rashba effect at the interface of MgO(111)/Co [147].
Building on these investigations, we explored the DMI by introducing an oxide
layer onto the Gr/Co/Pt(111).

7.2.1 Structural optimization

In order to enhance magnetic properties, we deliberately introduced a dipole layer,
choosing BeO for its lattice structure compatibility and close proximity to the lattice
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Figure 7.9.: MCA analysis using the Force Theorem, presenting various atomic
contributions. The "total" corresponds to the contributions of SOC from
all layers. The positive field denotes a rise in potential from the bottom
layer of the film (Pt(I-4)) to the Gr. In the presence of an electric field,
the MCA decreases.
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7.2. Implementing an oxide capping layer

constant for Gr/Co/Pt(111).
Moreover, it was shown that combining the wurtzite-BeO barrier and the fcc-Co elec-
trode can form a new type of interfacial spin-filter-based magnetic tunnel junction
with highly spin-polarized transport properties and a strong spin-transfer torque ef-
fect. The underlying mechanism, which was modeled within a tight binding model,
is the significant spin-polarized charge transfer solely at the O/Co interface [157].
In our calculation, the oxide capping layer has been placed on top of the Gr. The
studied composition showcases 2 MLs of BeO on Gr/1 ML Co/5 ML Pt, visually
represented in Figure (7.11). There exist 12 potential stacking configurations for
placing either Be or O on top of Gr. We performed relaxation simulations for each
of these configurations. However, to enhance structural optimization, we chose
a symmetrical structure, as depicted in Figure (7.10). The symmetrical structure
undergoes relaxation until the forces converge to 0.05 eV/Å.
For the relaxation process, the basis functions were subjected to a plane-wave cutoff

Figure 7.10.: The symmetrical structure of BeO/Gr(top-fcc)/Co/Pt(111) was chosen
for structural relaxation, shown on the left side, while the optimized
BeO film is depicted on the right side.

set at Kmax = 4.0 a−1
B . 21 k-points were distributed within the primitive hexagonal

BZ, following the p3m1 symmetry class. Achieving convergence in both charge
density and total energy necessitated treating the semicore-states of Co using local
orbitals [83], as implemented in the FLEUR-code [158]. Besides, to stabilize the
bonding of Gr and BeO, the inclusion of van der Waals (vdW) correction is essential.
In our approach, we incorporated the vdW-D3 correction [159], implemented within
the framework of the FLEUR-code [56, 55].
Following the structural optimization, 6 stackings where Be initially occupied the
top position on Gr, optimization resulted in O taking its place. Consequently, the ini-
tial 12 configurations have been condensed into 6 distinct stackings, with O always
positioned atop graphene throughout the relaxation process. The Figure (7.11) de-
picts six distinctive stacking configurations of 2 MLs of BeO on Gr(top-fcc)/Co/Pt.
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The vdW gap between the oxide and Gr leads to a negligible influence on the
stacking of Gr on Co. Hence, we settled on the top-fcc arrangement of Gr on Co.
Notably, a preference is observed in settling O above a C atom of Gr beyond this

A
B
C

A
B
C

Figure 7.11.: A side view presents three potential stacking configurations of 2MLs
of BeO atop Gr/3ML Co/5ML Pt(111). The 12 initial configurations
have been optimized into six unique stackings.

refined set. The relaxed interlayer distances are shown in Table (7.5).
Comparing interlayer distances of BeO/Gr(top-fcc)/Co/Pt(111) with those of the
Gr(top-fcc)/Co/Pt(111) structure, it is evident that the interfacial dipole has a
modest impact on d. The bottom layers remain almost unaffected.

7.2.2 DMI

It has been reported that the robust PMA observed in (Co)Fe/MgO(AlOx) primarily
originates from strong hybridization between the interfacial (Co)Fe-3d and O-2p or-
bitals, influenced by SOC [29]. The strong correlation between the interfacial dipole
and PMA persists even in the absence of an applied electric field [52], prompting us
to investigate the enhancement of DMI with a capping layer of oxide, particularly,
BeO in our case.
To provide a comparison between the effective DMI vector, Dy, of BeO/Gr(top-
fcc)/Co/Pt(111) and Gr(top-fcc)/Co/Pt(111), we extended our calculations up to
q = (2π

a ) (
1

64 , 1
64 , 0) along ΓK in accordance with Equation (7.1). The total DMI is
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BeO/Gr stacking AbaB BabA BcbC CbcB AcaC CacA

dBe(I−1)/O(I−1) 0.04 0.04 0.04 0.04 0.04 0.04

dO(I−1)/Be(I) 2.56 2.56 2.56 2.56 2.56 2.56

dBe(I)/O(I) 0.03 0.03 0.03 0.03 0.03 0.03

dO(I)/C(I−1) 3.71 3.71 3.71 3.71 3.71 3.71

dC(I−1)/C(I) 0.03 0.03 0.03 0.03 0.03 0.03

dC(I)/Co 1.94 1.94 1.94 1.94 1.94 1.94

dCo/Pt(I) 2.03 2.03 2.03 2.03 2.03 2.03

dPt(I)/Pt(I−1) 2.36 2.36 2.36 2.36 2.36 2.36

dPt(I−1)/Pt(I−2) 2.34 2.34 2.34 2.34 2.34 2.34

Total energy 10.19 0 2.17 6.3 9.26 5.33

Table 7.5.: The relaxation of BeO on Gr(top-fcc)/Co/Pt(111) is shown. All forces
are optimized, reaching 0.05 eV/Å. d stands for interlayer distances,
given in Å and total energies in meV. The lattice constant of Gr(top-
fcc)/Co/Pt(111), which is consistently set at 2.75 Å, is considered for
all structures. Capital letters correspond to the stacking of O, while
lowercase letters represent the stacking of Be.
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computed via DFT employing the generalized Bloch theorem. These results are pre-
sented in Table (7.6). The presence of an oxide layer dipole induces a magnification

ML Dy

Gr(top-fcc)/Co/Pt 0.15

BeO/Gr(top-fcc)/Co/Pt 0.18

BeO(modified)/Gr(top-fcc)/Co/Pt 0.17

Table 7.6.: The effective component of D is determined within the range of q ≤
2

64 ΓK, and the values are expressed in meVµ−2
B , considering a magnetic

moment of 1.84 µB for Co. This adjustment leads to an increase in DMI.
In the modified configuration of BeO/Gr/Co/Pt, BeO(I-1) undergoes
modulation to dBe(I−1)/O(I−1)=0.26 Å.

in the DMI strength, surpassing the impact of an externally applied electric field. By
altering the dipole amplitude of BeO, we can effectively manipulate its properties.
Consequently, we constrained the Be(I-1) layer to shift away from the O(I-1) plane
by a magnitude of 0.26 Å. This modification was made to investigate the correlation
between dipole size and the resulting enhancement in DMI. The modification in
BeO leads to a lesser enhancement in DMI.
We utilized the generalized Bloch Theorem to assess the layer-resolved contributions
to the total DMI, aiming to examine the impact of the oxide capping layer on various
layers. Initially, a spin spiral calculation was conducted using a 45×45 grid covering
the entire 2D BZ. This computation was performed with a cutoff of Kmax = 4.3 a−1

B ,
excluding SOC effects. Subsequently, the inclusion of SOC was approached using
first-order perturbation theory. The layer-resolved analysis of the DMI is depicted
in Figure (7.12). The impact of the oxide capping layer extends to both Co and
Pt(I), causing an inversion in their respective contributions to DMI. Specifically,
there is a small decrease in Pt(I) and an increase in Co contributions. Additionally,
Pt(I-3) and Pt(I-4) exhibit expansions, while Pt(I-2) and Pt(I-1) effectively cancel
each other. Consequently, the total DMI increases. In the structurally modified
BeO, the contributions exhibit slight variations, resulting in a comparatively modest
augmentation in the total DMI.
Having observed a positive influence of the oxide capping layer on the DMI contri-
bution in Co, we investigated the impact of the oxide layer on thicker Co. Therefore,
we proceed to examine the configuration consisting of 2ML BeO on Gr(top-fcc)/3ML
Co/5ML Pt, as illustrated in Figure (7.13). After computing Dy using Equation
(7.2), the resulting value is compared under the presence of an oxide layer and with
increased thickness of Co. This value is presented in Table (7.7). The DMI is com-
puted utilizing the generalized Bloch theorem, employing a grid of 45×45 k-points
spanning the 2D BZ. The layer-resolved contributions to the DMI are illustrated
within the specified range of q ≤ ( 1

64 , 1
64 , 0) along ΓK in Figure (7.14). Remarkably,
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Figure 7.12.: Layer-resolved contributions to the DMI are shown. In the modified
configuration with BeO, we induced a displacement of the Be(I-1) layer
away from the O(I-1) plane by 0.26 Å.

Figure 7.13.: A side view of AbaB stacking of Gr(top-fcc)/3ML Co/5ML Pt(111) is
presented.
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ML Dy

Gr(top-fcc)/3ML Co/Pt 0.32

BeO(modified)/Gr(top-fcc)/3ML Co/Pt 0.82

Table 7.7.: The determination of the effective component of D is conducted within
the specified range of q ≤ (2π

a )(
1
64 , 1

64 , 0) along ΓK. The resultant values
are expressed in meVµ−2

B , considering a magnetic moment of 1.84 µB for
Co.
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Figure 7.14.: Layer-resolved contributions to the DMI are shown. Augmenting the
thickness of Co results in a substantial increase in the DMI.
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the DMI exhibits a substantial increase. This augmentation can be attributed to the
competitive influence originating from the bottom layers of Pt, particularly Pt(I-1),
Pt(I-2), and Pt(I-3).

7.3 Electrical control of BeO/GrCoPt(111)

Building on our previous studies into the modulation of magnetic properties
through the utilization of electric fields and capping oxide layers, we delved deeper
into the combined effects of both the oxide layer and electric fields. Theoretical
investigations conducted on Fe/MgO junctions have revealed that the hybridization
of Fe 3d and O 2p orbitals leads to modifications in the electronic structure at the
interface. This leads to changes in both the direction and intensity of magnetic
anisotropy. When an electric field is applied, it induces a shift in the Fermi en-
ergy positions at the interface, consequently altering the orbital occupancy and
thereby influencing the magnetic anisotropy at the interface [28, 160]. Furthermore,
experimental findings on FeCo/MgO systems suggest that the application of an
electric field can dynamically alter the degree of oxidation of Fe at the interface.
This reversible change in oxidation state may have implications for the overall
magnetism of the system [161].
In this section, we incorporate electric fields into the BeO/Gr(top-fcc)/Co/Pt(111)
system, as illustrated in Figure (7.15), with a primary focus on examining structural
modifications prior to investigating the DMI.

Figure 7.15.: Visual representation of the simulated electric field configuration,
wherein a positive field is applied from the BeO bilayer to the
Gr/Co/Pt film.
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7.3.1 Structural optimization

In the studied asymmetric configuration, the introduction of additional dipoles
within the vacuum region along the electric field complicates the structural opti-
mization. A similar investigation aiming to control the MAE via electric fields in
Fe/MgO was also performed for a symmetric structure [52]. Consequently, we ana-
lyzed the forces within the Gr/1ML Co/5ML Pt/1ML Co/Gr structure sandwiched
between two layers of 2 MLs of BeO.
The optimization is conducted for BabA stacking, recognized as the energetically
most stable arrangement of BeO on Gr(top-fcc)/Co/Pt(111). Following a method-
ology akin to the oxide optimization, we utilized 21 k-points within the p3m1
symmetry class of the primitive hexagonal BZ and Kmax = 4.0 a−1

B along with the
vdW-D3 correction. Also, obtaining convergence required using local orbitals to
handle the semi-core states of Co. Maintaining the interlayer distances, outlined
in the Table (7.5), the forces under fields of 2.75 and 5.50 V/nm in both directions
have been elevated to 0.5 eV/Å. Since quantifying further optimization within the
influence of the electric field is challenging, the calculation of DMI proceeds with
the AbaB stacking of Gr(top-fcc)/Co/Pt under the influence of an electric field.

7.3.2 DMI

Following the methodology employed in DMI studies concerning oxide layers on
Gr(top-fcc)/Co/Pt, we initiated our investigation from an atomistic model. The
computation utilized a cutoff Kmax = 4.3 a−1

B on a 45 × 45 grid in the 2D BZ. The
difference between ϵsoc and ϵ0 yields the DMI energy.
Based on Equation (7.1), the Dy values are tabulated in Table (7.8) for various field
strengths, in accordance Comparing the Dy component, the electric field induces a

E-field (V/nm) −2.75 0 2.75 5.50

Dy (meVµ−2
B ) 0.179 0.175 0.171 0.164

Table 7.8.: Within the range of q ≤ (2π
a )(

1
64 , 1

64 , 0) along ΓK, the effective component
of D is given for BeO/Gr/Co/Pt(111), while considering a magnetic
moment of 1.84 µB for Co. This application of electric field leads to a
decrease in DMI.

reduction in DMI. The modification of the dipole of the oxide layer by increasing the
interlayer distance of Be(I-1)/O(I-1), dBe(I−1)/O(I−1) = 0.26, enhances the convergence
of both charge density and total energy. However, it The combined effect of applying
an electric field and utilizing an oxide capping layer is illustrated in Figure (7.16),
depicting a layer-resolved contribution to the DMI. The impact of the electric field
is negligible for Co, especially with smaller fields. However, there is an increasing
contribution from Pt(I) and Pt(I-2), while Pt(I-1) exhibits a decreasing contribution.
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Figure 7.16.: Layer-resolved contributions to the DMI are shown. It is apparent that
the application of an electric field on BeO/Gr(top-fcc)/Co/Pt causes
diminishing DMI.

103



7. DMI manipulation through electric field and oxide capping

These changes result in the overall reduction of DMI. We compare the layer-resolved
contribution to the DMI both in the presence and absence of the modification of the
BeO dipole, under the influence of an electric field, as shown in Figure (7.17). The
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Figure 7.17.: Layer-resolved contributions to the DMI are shown. The alteration
in the total DMI remains consistent. The modified heterostructure
undergoes an expansion of the dBe(I−1)/O(I−1) distance.

dipole modification impacts the contributions from all layers; nevertheless, these
alterations tend to compensate for each other.
The ratio of DMI change to the applied electric field (E) is defined as:

β′ =
∆EDMI[meV]

E[V/nm]
. (7.7)

The table presents the ratios (7.9). The correlation between DMI and the electric field
is also depicted in Figure (7.18). When an electric field is applied in conjunction with
an oxide capping layer, a reduction in DMI is observed. However, the magnitude
of this reduction is weaker than the reduction observed in the absence of an oxide
layer.
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7.3. Electrical control of BeO/GrCoPt(111)

ML β′(fJ⋅m/V)

Gr(top-fcc)/Co/Pt −15.4

BeO/Gr(top-fcc)/Co/Pt −8.8

Table 7.9.: β′ is derived from fit up to q ≤ (2π
a )(

1
64 , 1

64 , 0) along ΓK. This ratio repre-
sents the change of DMI as a function of applied electric fields.
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Figure 7.18.: The relationship between the DMI and the applied electric field is
illustrated for the BeO/Gr(top-fcc)/Co/Pt(111) system. Similarly to
Gr(top-fcc)/Co/Pt(111), shown in Figure (7.6), a reduction in DMI is
observed.
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Research has shown that the Dzyaloshinskii-Moriya interaction (DMI) exhibits
extreme sensitivity to interface quality [162]. Similarly, the strength of the magnetic
anisotropy (MA) is sensitive to the flatness and intermixing of interfaces [163, 26].
Also, the strong perpendicular magnetic anisotropy (PMA) observed in [NM/Co]n
structures is attributed to interface effects [164, 165, 166].
Different studies indicate that sandwiching the FM layer between NM layers can
lead to enhanced DMI through additive induction [167, 129, 38]. In such systems,
where various interfaces collectively contribute to the overall DMI, isolating the
effects of each interface experimentally exhibits significant challenges. Hence, ab
initio techniques like DFT play a pivotal role in unraveling the impact of interfaces
in the DMI within multilayered systems [168]. A key aspect in handling large PMA
systems involving 3d transition metals lies in understanding and controlling the
spin-orbit coupling (SOC) at the interfaces and surfaces [169].
In this chapter, we are going to explore the impact of heavy metal (HM) capping
layers on both DMI and magnetocrystalline anisotropy (MCA). Additionally, we
will investigate Co-based multilayered films, where one Co layer is sandwiched
between two HMs and the other is coated with graphene (Gr), to assess the potential
for additive interfacial DMIs.
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8. Evolution of material composition

8.1 Heavy metal capping layer
This study aims to investigate the structural and magnetic properties by incorporat-
ing HMs on Gr/Co/Pt(111). For this purpose, we have selected Ir and Pt. Moreover,
it has been noted that there is charge displacement upon the formation of the
Gr/Pt(111) interface [19], resulting in an enhancement of the DMI. Well-optimized
structures are hence prerequisites for the determination of both ∆EDMI and ∆EMCA
within DFT calculations.

8.1.1 Structural optimization

To investigate the impact of HM monolayers, 1 ML of Ir(Pt) is placed onto the
Gr/Co/Pt(111) substrate. Considering HM on top of Gr(top-fcc)/Co/Pt, we exam-
ine three unique stacking configurations for the HM layer on Gr. These configu-
rations are illustrated in Figure (8.1). The described configurations illustrate the

A B C

A
B
C

Figure 8.1.: A lateral depiction illustrates three distinct stacking arrangements of
Ir on Gr(top-fcc)/Co/Pt(111). Notably, Ir displays variability in its
sequence orders when deposited onto Gr(top-fcc)/Co/Pt(111). These
sequences are denoted as A, B, and C, corresponding to the fcc stacking
of Co/Pt(111). In the case involving a Pt overlayer, we replace the Ir
layer with Pt.

arrangements of Ir(Pt) on Gr atop 1ML Co/5ML Pt substrate, along the (111)-plane
in a fcc stacking.
We utilized the FLAPW method within PBE approximation to optimize the struc-
tures, implemented in the FLEUR-code [55, 56]. Our calculations employed a cutoff
parameter of Kmax = 4.0 aB and included 21 k-points (within the p3m1 symmetry
class) in the 2D IBZ. Structural optimizations were performed until the forces con-
verged to a 0.05 eV/Å threshold for all studied configurations. In our analysis of
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8.1. Heavy metal capping layer

these systems, we maintained a consistent in-plane lattice constant of Pt at 2.76 Å
throughout all configurations. This standardization facilitates comparison among
the systems under study. It has been shown that the adsorption of Gr on Pt(111)
is characterized by weak bonding interactions. Hence, we included the vdW-D3
correction [159], implemented in the FLEUR code. The interlayer distances in the
relaxed structures are summarized in Table (8.1). In all these structures, Gr is posi-

HM Pt Ir -

HM/Gr stacking A B C A B C -

dHM/C(I−1) 3.36 3.36 3.34 3.20 3.42 3.18 -

dC(I−1)/C(I) 0.01 0.01 0.03 −0.02 0.02 0.05 0.02

dC(I)/Co 1.95 1.94 1.93 1.98 1.93 1.92 1.96

dCo/Pt(I) 2.02 2.02 2.02 2.03 2.02 2.03 2.04

dPt(I)/Pt(I−1) 2.33 2.34 2.34 2.36 2.34 2.36 2.37

dPt(I−1)/Pt(I−2) 2.33 2.32 2.33 2.33 2.32 2.34 2.33

dPt(I−2)/Pt(I−3) 2.32 2.32 2.32 2.33 2.33 2.33 2.32

dPt(I−3)/Pt(I−4) 2.37 2.36 2.36 2.36 2.35 2.36 2.35

Table 8.1.: This table presents the interlayer distances (d) for various stacking con-
figurations of a heavy metal (HM) overlayer on Gr(top-fcc)/Co/Pt(111),
considering both Pt and Ir as HMs. The last column shows the interlayer
distances for Gr(top-fcc)/Co/Pt(111) without an additional HM layer.
All distances are measured in Å.

tioned in a top-fcc configuration on Co/Pt(111). The main difference among these
configurations arises from variations within the interface of the Gr layer and HMs,
particularly the B stacking of Ir on Gr. Additionally, the HM capping layer impacts
the arrangement of C(I-1)/C(I) and the interlayer distances of Co/Pt(I) as well as
Pt(I)/Pt(I-1). These fluctuations in interlayer distances are negligible towards the
bottom of the film.
The Table (8.2) illustrates the total energy differences among the various stacking
configurations of HM/Gr for both Pt and Ir, presented separately. According to
the total energy results, the C stacking of Pt and the A stacking of Ir are the most
stable configurations. The energy difference between the other stackings of Ir on
Gr(top-fcc)/Co/Pt(111) compared to the most stable one is five times greater than
that of the Pt capping layer. Based on study [19], it has been observed that doping
Gr on Pt leads to p-type doping. The bandstructure analysis depicted in Figure (8.2)
illustrates the adsorption of Pt(Ir). An upward shift indicates that electrons are do-
nated by the capping HM to Gr, resulting in n-type doping, while a downward shift
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Figure 8.2.: The figure illustrates the orbital weight of Gr within the bandstructure
for an HM overlayer on Gr(top-fcc)/Co/Pt(111). We consider the most
stable configurations, denoted as C for Pt and A for Ir. The Dirac point
aligns with the crossing of the pz bands of Gr at K.
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8.1. Heavy metal capping layer

HM Pt Ir

HM/Gr stacking A B C A B C

Total energy (meV) 7.30 8.84 0.00 0.00 41.18 41.89

Table 8.2.: The total energies for the three distinct stackings of HM are presented.
Notably, the C stacking of Pt and the A stacking of Ir emerge as the most
stable configurations.

suggests that holes are donated, leading to p-type doping of Gr. In the Gr/Co/Pt
structure, Gr chemisorbs with Co, leading to the emergence of a gap at the K point
in all these films. Remarkably, the presence of a Pt overlayer induces an upward
shift in the upper band, while the inclusion of an Ir overlayer causes an upward
shift of the gap at the K point. This observation suggests a stronger electron transfer
within the Gr/Ir interface.
In the following analysis, we explore the DMI for the optimized configurations of
Pt and Ir on Gr(top-fcc)/Co/Pt(111). We then discuss their respective impacts on
enhancing DMI.

8.1.2 DMI

In Pt/Co/Ir(111) configurations, DMI at the Co/Ir and Co/Pt interfaces collec-
tively contributes to an amplified total DMI. This enhancement occurs when Co
is intercalated between two heavy metals, Pt and Ir, within a multilayer config-
uration [170]. This phenomenon is commonly referred to as additive DMI. The
use of two DMI-active layers opens the way for enhancing the DMI in multilayer
structures designed for domain walls and skyrmion racetrack memories [38]. Ex-
perimental measurements have determined that the insertion of a thin Ir layer at
the top Co/Pt interface leads to a reversal of the effective DMI. This reversal con-
tinuously changes the domain wall structure from a right-handed to a left-handed
Nëel wall. Comparing this configuration with an epitaxial Pt/Co/Pt multilayer
has provided further insights into the origin of DMI in polycrystalline Pt/Co/Pt
films, highlighting the exquisite sensitivity to atomic structure details at the film
interfaces. Consequently, this approach offers an efficient method for tuning and
enhancing DMI in thin magnetic films [129].
First-principles calculations are employed to investigate the impact of a heavy metal
layer capping layer on Gr/Co/Pt(111) on the DMI. Similar to previous studies on
DMI in Chapter (5), starting from the discrete atomistic limit and considering a
flat spin-spiral while restricting the rotation of both Si and Sj exclusively to the
xz-plane, the DMI can be expressed as:

EDMI(q) = 2S2Dysin(ϕij)(1+ 2cos(ϕij)), (8.1)
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where ϕij = q.(Rj − Ri) =
2π
N . Dy is interpreted as an effective parameter derived

from fitting to a 2D model that incorporates nearest-neighbor interactions within
a hexagonal lattice, as detailed in Section (5.4). Employing the generalized Bloch
theorem, the DMI energy for spin-spirals with q-vectors close to the Γ-point is
calculated and depicted in Figure (8.3). Examining the impact of HMs on Co,
we observed an increase in the contribution of Co. However, the sign of the Co-
contribution is opposite for Ir and Pt. This change in chirality is also evident in
Pt(I) when Pt serves as the capping layer. Subsequently, concentrating on the first
calculated q-point along ΓK (q ≤ 2

64(2π/a)), we examined the layer-resolved DMI for
these films, in Figure (8.4). As compared to Gr/Co/Pt(111), the DMI is enhanced by
both Pt and Ir. In the case of Ir, this increase is primarily due to the contribution of Ir,
while for Pt, it arises from the combination of contributions of the Pt-capping layer
and Co. The contribution of Co increases in both structures, exhibiting opposite
chirality for Pt capping. The magnitude of the Pt(I) contribution remains nearly
constant despite the change in chirality, compared to the Gr(top-fcc)/Co/Pt(111)
film.
Using Equation (8.1), in Table (8.3), we conduct a comparison of the effective D for
all these structures, considering the threshold q ≤ ( 1

64 , 1
64 , 0)(2π/a) along ΓK. The

ML Dy

Gr/Co/Pt 0.15

Pt/Gr/Co/Pt 0.25

Ir/Gr/Co/Pt 0.36

Table 8.3.: The effective component of D is determined within the specified range of
(q ≤ ( 1

64 , 1
64 , 0)(2π/a)), ΓK. The resulting values are expressed in meVµ−2

B ,
considering a magnetic moment of 1.84 µB for Co.

incorporation of an Ir overlayer results in a 140% modification of the DMI, while
the incorporation of Pt leads to a 67% increase in DMI. In our analysis, DMI is
influenced not only by a single interface. Particularly in the Pt capping layer system,
Gr/Co, Pt(I-1)/Pt(I), and Pt(capping layer)/Gr all play roles in the modification of
total DMI.
It has been demonstrated that the total DMI nearly doubles from Co/Ir(111) to
Pt/Co/Ir(111); however, in the latter case, the DMI is predominantly due to Pt
with only a minor contribution from Ir. Also, a simple additive effect, where both
interfaces contribute significantly to the total DMI, is not observed when one atomic
Co layer is sandwiched between Ir and Pt.
Given the significant contribution of the bottom layers to DMI, we decided to
examine the magnetic moment (MM) to ensure convergence. Due to the smaller
dGr/Ir, the significant increase in the induced MM of Ir in the C stacking, compared
to the A stacking of the Pt capping layer, as illustrated in Table (8.1), emphasizes its
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Figure 8.3.: The computation of DMI energy around the Γ-point emphasizes left-
handed spirals rotating within the xz-plane. Each plot represents the
DMI for the optimized stacking of HMs on Gr(top-fcc)/Co/Pt(111),
denoted as C for Pt and A for Ir. Upon comparing the dashed lines,
which represent the total DMI, it is evident that covering the film with
an HM layer increases the total DMI.
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Figure 8.4.: The element-resolved DMI contribution at q = ( 1
64 , 1

64 , 0)(2π/a) is de-
picted. Both Pt and Ir result in an enhancement of DMI.

MM Gr/Co/Pt Pt/Gr/Co/Pt Ir/Gr/Co/Pt

HM - 0.05 −0.90

C(I-1) −0.03 −0.02 −0.03

C(I) 0.01 0.01 0.01

Co 1.67 1.69 1.55

Pt(I) 0.35 0.35 0.33

Pt(I-1) 0.14 0.13 0.13

Pt(I-2) 0.10 0.08 0.08

Pt(I-3) 0.08 0.06 0.06

Pt(I-4) 0.06 0.05 0.04

Table 8.4.: The magnetic moment (MM) of Pt(Ir), Co, and the Pt are represented in
µB. The magnetic moment converges throughout all films.
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notable contribution to DMI. However, with increasing distance from Co, the MM
approaches convergence. Therefore, we can conclude that the contributions from
the lower layers diminish and compensate for each other. This conclusion can be
affirmed by examining the element-resolved contributions in Table (8.5).

∆EDMI Gr/Co/Pt Pt/Gr/Co/Pt Ir/Gr/Co/Pt

total 0.30 0.52 0.73

HM - 0.05 0.41

Co −0.04 0.13 −0.08

Pt(I) 0.07 −0.05 0.06

Pt(I-1) 1.10 1.18 1.03

Pt(I-2) −0.71 −0.73 −0.58

Pt(I-3) 0.17 0.10 0.08

Pt(I-4) −0.29 −0.17 −0.19

Table 8.5.: The element-resolved contributions to DMI, illustrated in Figure (8.4),
are displayed. The contributions of graphene are negligible. All energies
are in meV.

8.1.3 MCA

Experimental results confirm the emergence of a giant PMA in Ir/Co/Pt multilay-
ers [32]. Including a metal capping layer can potentially influence MCA. Hence, we
analyzed this effect using self-consistent calculations. The SOC is integrated within
a self-consistent collinear calculation.
To ensure accurate values for the MCA, we attained convergence for this quantity
with a cutoff parameter of Kmax = 4.0 a−1

B within 2025 k-points across the entire
hexagonal BZ. MCA is defined by

∆EMCA = E∥tot − E⊥tot. (8.2)

The computations were conducted fully self-consistently for spins aligned along
the in-plane (E∥tot) and out-of-plane (E⊥tot) axes. Similar to the DMI calculations, we
exclusively focused on the optimized structure, which consists of C stacking for Pt
and A stacking for Ir on Gr(top-fcc)/Co/Pt. The results are presented in Table (8.6).
It is evident that the Ir overlayer caused nearly a 6-fold modification in ∆EMCA,
resulting in an in-plane orientation. While ∆EMCA is reduced by 10% by integrating
the Pt capping layer, remaining in an out-of-plane orientation. In another study, it
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ML Gr/Co/Pt Pt/Gr/Co/Pt Ir/Gr/Co/Pt

∆EMCA 2.38 2.15 −14.28

Table 8.6.: ∆EMCA is shown for Gr(Top-fcc)/Co/Pt and Pt(Ir)/Gr(Top-fcc)/Co/Pt.
For both capping layers, we considered their respective optimized stack-
ing sequences, with A for Ir and C for Pt. Positive energy values corre-
spond to the out-of-plane MCA. All energies are in meV.

is demonstrated that MCA has increased by 30% in the Co/Ir(111) system with the
inclusion of a Pt overlayer. However, despite this increase, the orientation of the
MCA remained out-of-plane [171].
To investigate the contribution of each layer to MCA, a detailed analysis of the
element-resolved MCA can provide further insights. We utilized the force theorem
approach to compute both MCA values and individual atomic contributions to
MCA [136]. The change in total energy is predominantly determined by variations
in the sum of occupied single-particle energies in the first variation. In this scheme, a
collinear calculation neglecting SOC is done. Subsequently, SOC is treated in a non-
self-consistent manner for both in-plane and out-of-plane orientations, following
the self-consistent solution of the Kohn-Sham equation. MCA energy can be written
as

E − E0 ≈
occ.
∑
ν
Eft,ν −

occ.
∑
ν
E0,ν. (8.3)

The eigenvalues are derived from H0 +HSOC. Using Equation (8.3), the element-
resolved MCA is depicted in Figure (8.5). Analyzing MCA using the force theorem
reveals that Ir plays a decisive role in the large MCA and causes the in-plane
orientation. Meanwhile, Pt(I) and Pt(I-1) contribute to the MCA in Pt/Gr/Co/Pt.
It can be concluded that the elemental behavior in MCA for Pt/Gr/Co/Pt is very
similar to Gr/Co/Pt. However, this approach fails to explain the interfacial additive
effect in MCA. To provide further insight into the induced magnetic field and its
effects on the capping layer, we compute the induced MM as well as orbital MM
separately for the out-of-plane and in-plane orientations. The results are presented
in Table (8.7). Upon comparing the results for Pt and Ir capping layers, it becomes

HM MM∥ MM⊥ orbital MM∥ orbital MM⊥

Pt 0.00 0.05 0.00 0.03

Ir −0.41 −0.55 −0.02 −0.36

Table 8.7.: Spin magnetic moment (MM) and orbital MM are displayed for both
out-of-plane and in-plane orientation. All values are in µB. MM∥ and
MM⊥ indicate out-of-plane and on-plane directions, respectively.
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evident that Ir exhibits a significant induced orbital magnetic moment.
In the following, our focus will shift to the Co/Pt multilayer system and the impact
of Gr on both DMI and MCA.

8.2 Co/Pt multilayered films

The [Pt/Co] multilayer system is one of the most popular multilayer systems
exhibiting a strong PMA [172, 173]. An investigation using a model system compris-
ing a trilayer structure of [Pt/Co/Pt] has shown a comprehensive understanding
of the roles played by the Pt/Co and Co/Pt interfaces in influencing the PMA
strength [174]. Besides, Experimental findings have concluded that Co induces
magnetic polarization in Pt, leading to out-of-plane ferromagnetic behavior in the
Pt/Co bilayer [171].
Investigating the influence of Gr on the electronic and magnetic characteristics of
Co/Pt multilayers, here particularly Gr/Co/Pt/Co/Pt, we conducted comparisons
of the DMI and MCA in the absence and presence of Gr.

8.2.1 Structural optimization

Considering the influence of Gr on [Co/Pt] multilayers, we apply Gr coating to the
structure consisting of 1ML Co/1ML Pt/1ML Co/4ML Pt. Assuming a constant
in-plane lattice parameter for Pt in this configuration, aPt = 2.75 Å, we proceed with
the analysis similar to that outlined in Chapter 5. In this study, we consider that
Gr may have three possible stacking configurations, all of which could be realized
in a Moiré lattice, given that Gr possesses a smaller lattice constant compared to
Pt. Figure (8.6) depicts these three different stacking configurations of Gr on 1ML
Co/1ML Pt/1ML Co/4ML Pt along [111]-direction in an fcc stacking. To refine the
stacking arrangements, we employed again DFT calculation using FLEUR-code [56,
55]. Our approach utilized a Kmax cutoff of 4.0a−1

B and incorporated 21 k-points
within the irreducible BZ, exploiting the P3m1 symmetry class. Structural optimiza-
tions were conducted until the forces reached convergence with a threshold set
at 0.05 eV/Å. The interlayer distances in the relaxed structures are summarized
in Table (8.8). The distances between Gr and Co(I) in both top-fcc and top-hcp
stackings are highly similar. Generally, the introduction of Gr doping tends to result
in small or negligible distance changes between all layers. We present the energy
differences between these stacking configurations in the Table (8.9). It’s evident
that the top-fcc configuration stands out as the most stable arrangement of Gr on
Co/Pt/Co/Pt(111). Similar to Gr/Co/Pt(111), the top-hcp configuration is notably
close to the top-fcc arrangement.
To delve deeper into the alterations in the interlayer distances of the underlying lay-
ers, we investigate the convergence of the magnetic MM in the top-fcc configuration
of Gr on Co/Pt/Co/Pt. Consequently, we present the induced MM in Table (8.10).
The induced MM experiences a complete decay, as presented in Table (8.10). Prior
to Gr doping, the Co(I) layer exhibits a larger MM relative to the Co(I-1) layer
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top-fcc top-hcp hollow

Figure 8.6.: Lateral view illustrating various stacking arrangements of Gr
Co/Pt/Co/Pt(111).

ML Gr/Co/Pt/Co/Pt Co/Pt/Co/Pt

Gr/Co(I) stacking top-fcc top-hcp hollow -

dC(I−1)/C(I) 0.02 0.02 0 -

dC(I)/Co(I) 1.92 1.93 1.78 -

dCo(I)/Pt(I) 2.07 2.08 2.10 2.08

dPt(I)/Co(I−1) 2.11 2.10 2.11 2.14

dCo(I−1)/Pt(I−1) 2.03 2.03 2.05 2.05

dPt(I−1)/Pt(I−2) 2.36 2.36 2.38 2.40

dPt(I−2)/Pt(I−3) 2.34 2.34 2.34 2.38

dPt(I−3)/Pt(I−4) 2.36 2.36 2.36 2.39

Table 8.8.: Interlayer distances (d) exhibit variation across different stacking config-
urations of Gr on 1ML Co/1ML Pt/1ML Co/4ML Pt(111), which include
top-fcc, top-hcp, and hollow arrangements. The last column displays the
interlayer distances of 1ML Co/1ML Pt/1ML Co/4ML Pt along fcc(111).
All distances are measured in Å.
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ML Gr/Co/Pt/Co/Pt

Gr/Co(I) stacking top-fcc top-hcp hollow

Total energy (eV) 0 0.08 0.66

Table 8.9.: The total energies for the three distinct stackings of Gr on Co/Pt/Co/Pt
are presented. The top-fcc stacking emerges as the most stable configura-
tion.

MM Co/Pt/Co/Pt(111) Gr(top-fcc)/Co/Pt/Co/Pt(111)

Co(I) 2.01 1.57

Pt(I) 0.36 0.33

Co(I-1) 1.98 1.98

Pt(I-1) 0.33 0.34

Pt(I-2) 0.13 0.12

Pt(I-3) 0.03 0.03

Pt(I-4) 0.01 0.01

Table 8.10.: The magnetic moment (MM) of Co and Pt layers are represented in µB.
The MM converges throughout all films. The diminishing effect of MM
at the Gr/Co interface results from Gr doping electrons into Co.
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within the Co/Pt/Co/Pt(111) configuration. However, upon depositing Gr, there is
a notable reduction in the magnetic moment of the Co(I) layer, while the MM of the
Co(I-1) layer remains unchanged.

8.2.2 DMI

In thin magnetic films, DMI originates at the interfaces [37]. Therefore, to generate a
net DMI effect in Pt/Co/Pt multilayers, the contributions from the top and bottom
interfaces should vary. This variation is crucial for inducing and manipulating
DMI in such multilayer systems. Experimental investigation has revealed that a
similar stack composed of Pt(3 nm)/Co(0.7 nm)/Pt(1 nm) epitaxially exhibits strong
DMI. An important insight drawn from the conducted experiment is the noticeable
sensitivity of DMI to the atomic-scale details, such as the roughness, degree of
intermixing, and density of stacking faults, of the interfacial structure within the
multilayers [129].
In our analysis, initially, we examine the interfacial DMI in a 1ML Co/1ML Pt/1ML
Co/4ML Pt(111) system using first-principle calculations. Subsequently, we explore
the influence of an ML of Gr stacked on top-fcc configuration on this DMI. Similar
to the previous analysis, a spin spiral calculation was conducted using a 45 × 45
grid within the entire 2D BZ, with a cutoff of Kmax = 4.3 a−1

B excluding SOC effects.
Utilizing first-order perturbation theory, the inclusion of SOC was addressed based
on the generalized Bloch theorem [99]. The distribution of DMI energy around
Γ-point for different q-points is depicted in Figure (8.7). It becomes apparent that the
contributions from both Co layers decrease in the presence of Gr. The magnitude of
Pt(I) is significantly increased. However, the change in chirality of Pt(I) results in a
reduction of the total DMI. The reduction in net DMI caused by Gr has also been
observed in Gr/Co/Pt(111) [12], as discussed in detail in the Chapter 5. According
to Equation (8.1), the effective D for both monolayers can be determined, and is
presented in Table (8.11). Gr leads to an almost 50% reduction in total DMI compared

ML Dy

Co/Pt/Co/Pt 0.48

Gr(top-fcc)/Co/Pt 0.15

Gr(top-fcc)/Co/Pt/Co/Pt 0.25

Table 8.11.: Within the defined range of q ≤ ( 1
64 , 1

64 , 0)(2π/a)), along the ΓK direction
in Figure (8.7), we calculate the effective component of D. These values
are presented in units of meVµ−2

B , considering a Co magnetic moment
of 1.84 µB.

to the Co/Pt multilayer. Given that the effective D for Co/Pt(111) was reported
roughly as 0.43 meV/µ−2

B [119], the impact of Gr on Co/Pt(111) is more significant
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Figure 8.7.: Both plots illustrate the DMI energy near the Γ point, extending along
the ΓK and ΓM directions, for left-handed spirals rotating in the xz-
plane. In the left plot, the presence of Pt(I) is overshadowed by Co(I-1),
whereas in the right plot, it is outweighed by the contribution of Pt(I-3).
The inclusion of Gr results in a decrease in the net DMI.
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than on Co/Pt/Co/Pt(111). The maximum value for Dy in Gr/2ML Co/5ML Pt
is reported as 0.5 meV/µ−2

B [131], which is nearly double the value observed in
Gr/1ML Co/1ML Pt/1ML Co/4ML Pt and similar to Co/Pt/Co/Pt(111). For
the same q (= ( 1

64 , 1
64 , 0)(2π/a)), the layer-resolved DMI is depicted in Figure (8.8).

After introducing Gr, contributions from Co(I) and Co(I-1) decrease. However, the
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Figure 8.8.: The layer-resolved DMI contribution at q ≤ 2
64(2π/a) is depicted. The

alteration in chirality and magnitude of Pt (Ir) plays the most significant
role in the decrease of DMI after doping the film with Gr.

sign of Co contribution at the interface with Gr occurs in the opposite direction to
the Co(I-1). Meanwhile, the negative contribution from Pt(I) increases, and that
leads to a 50% reduction of the DMI. Additionally, there is a slight change in Pt(I-
1). Moreover, partial slab decomposition analysis revealed that for the Gr/2ML
Co/Pt heterostructure, the contribution of Co/Pt primarily accounts for the DMI.
Importantly, the chirality at the Gr/Co interface is opposite and of comparable
magnitude to that of Co/Pt(111) [131].

8.2.3 MCA

As previously noted, interfaces can significantly influence magnetic anisotropy. The
correlation between interface quality and perpendicular PMA strength in [Co/Pt]
multilayer systems has been extensively investigated [173, 32, 175].
To further illuminate the MCA, induced by SOC, in the asymmetrical Co/Pt/Co/Pt(111)
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multilayer and the influence of Gr on it, we perform a fully self-consistent calcula-
tion using a cutoff parameter of Kmax = 4.0 a−1

B within 2025 k-points sampling the
entire hexagonal BZ. Referring to Equation (8.2), we calculated and summarized
the values of ∆EMCA in Table (8.12). The introduction of Gr to Co/Pt/Co/Pt(111) is

ML Co/Pt/Co/Pt Gr/Co/Pt/Co/Pt Co/Pt[119] Gr/Co/Pt

∆EMCA(meV) 1.67 1.21 1.38 2.15

Table 8.12.: ∆EMCA is shown for 1ML Co/1ML Pt/1ML Co/4ML Pt, Gr(top-
fcc)/1ML Co/5ML Pt and Gr(top-fcc)/1ML Co/1ML Pt/1ML Co/4ML
Pt. Positive energy values correspond to the out-of-plane MCA.

associated with a decrease in the MCA. Interestingly, this contrasts with the effect
observed when depositing Gr onto Co/Pt(111), where the MCA exhibits an increase.
The force theorem approach is employed to analyze the contribution of each layer
in MCA. Referring to Equation (8.3), the change in total energy is determined by the
first variation. In this approach, SOC is considered non-self-consistently, but all or-
der perturbations are included. The layer-resolved MCA is depicted in Figure (8.9).
Using the force theorem, individual element contributions do not fully explain
the total MCA. However, examining the trend reveals that depositing Gr causes a
shift in the contribution of Co(I) from in-plane to out-of-plane. Additionally, the
contribution of Pt(I) becomes stronger.
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Figure 8.9.: MCA analysis using the Force Theorem, presenting various atomic
contributions. The "total" corresponds to the contributions of SOC from
all layers.
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9
Summary and Conclusions

Density Functional Theory (DFT) is needed to have a good basis for the parameter-
free ab-initio method in order to study the magnetism of surfaces, thin films, and
systems with reduced symmetry in general, discussed in Chapter 2. Therefore,
Chapters 2 and 3 presented a comprehensive review of the DFT and full-potential
linearized augmented planewave (FLAPW) method, highlighting its accuracy and
uniqueness as a computational tool. This method enabled the determination of
ground-state properties in the following, which aligned well with experimental
observations. Where available, the FLAPW method serves as a robust tool for
exploring non-collinearity in various systems, including bulk materials, magnetic
surfaces, thin films, and low-dimensional magnets. To deepen our understanding
and connect these calculations to spin interactions, we map them to spin models, as
discussed in Chapter 4. This chapter also provides a thorough discussion of spin
models to enhance our understanding of the magnetic properties inherent in 2D
systems.
In Chapter 5, we conducted an investigation into the impact of graphene (Gr) on
an ML of Co supported on a heavy metal (HM) substrate, specifically focusing
on Pt(111) and Ir(111). The significant difference in lattice constants between Gr
and the Co/HM structure leads to the formation of a Moiré lattice. This lattice
mismatch results in different stacking configurations of Gr on the Co/HM substrate
represented by: top-fcc, top-hcp, and hollow sites.
Our investigation indicates profound alterations in the electronic properties of
the Gr/Co interface with adsorption, notably manifesting in the emergence of a
gapped Dirac cone at the K point due to hybridization and charge transfer effects.
Moreover, the chemisorption of Gr onto Co results in a decrease in the Heisenberg
parameters and spin stiffness compared to Co/Pt(111). Furthermore, doping Gr
transfers electrons from Co to Gr, amplifying the magnetic crystalline anisotropy
(MCA) of the magnetic layer twofold. We ascertained that the DMI orientation at
the Gr/Co interface is opposite to that observed at the Co/HM interface, consistent
with experimental findings [12]. Various stacking configurations of Gr on Co/HM
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influence distinct magnitudes and orientations of the total DMI vector. By analyzing
the k-resolved DMI across the BZ for different stackings of Gr/Co/Pt, near the
Fermi level, a concentration of DMI changes around the vicinity of the Γ point can
be observed.
In Chapter 6, we explored the impact of increasing the thickness of Co. This led to
an augmentation in the DMI, approaching that of the Co/HM interface. However,
with an increased number of Co layers, the induced magnetic moment of the HM
did not reach convergence even through 5 ML. Consequently, the bottom layers
exerted an influence on the DMI, necessitating 7 ML for Pt(111). This was also used
for the Ir(111) substrate. By augmenting the thickness of the HM layer, we mitigated
the influence of the bottom layers, leading to a larger DMI. In a single-layer Co
system, the interface Pt layer, Pt(I), played a decisive role in determining the DMI,
a characteristic observed similarly in the case of 3 ML Co for both 5 and 7 layers
of Pt(111). Conversely, for Ir, both interface Ir layer, Ir(I), and sub-interface Ir layer,
Ir(I-1), contributed significantly to the DMI.
Subsequently, our focus shifted toward finding methods to manipulate DMI and
MCA within these heterostructures. Such efforts promise additional flexibility for
modern electronics, particularly in the dynamics of magnetic domain walls and
the radius of skyrmions. In Chapter 7, we investigated the application of electric
fields, which induced similar changes across all stacking configurations of Gr on
Co/Pt. The effective D vector experienced a 30% reduction when subjected to an
electric field of 5.50 V/nm. We quantified a ratio, denoted as β = -15.4 fJ/V⋅m
for DMI and γ = 24.9 fJ/V⋅m for MCA. Experimental results demonstrate varying
voltage-induced changes in magnetic anisotropy energy: 13 fJ/V⋅m for a few mono-
layers of FeCo [153, 154], 26±6 fJ/V⋅m for Au/Fe/MgO [155], and 48 fJ/V⋅m for
single-crystalline 5 nm Fe on MgO [156].
Our second strategy involved the implementation of an oxide capping layer, a
two-layered BeO, which exerted a modest influence on DMI. Attempting to en-
hance the effect by modifying the dipole effect, we expanded the distance between
dBe(I−1)/O(I−1), yet this alteration yielded minimal impact, with the primary con-
tribution still originating from the strongly screened Co/Pt interface. Following
that, we applied electric fields to Gr/Co/Pt(111) covered by oxide capping layers.
The resulting ratio, denoted as β′, exhibited a substantial reduction, reaching -8.8
fJ/V⋅m, nearly halving its value of β without the capping layer.
In Chapter 8, in another approach, we implemented a capping layer of HMs, specif-
ically choosing again Pt and Ir. Emphasizing the physisorption characteristics of
Gr and Pt (Ir), we incorporated van der Waals corrections for the relaxation of the
capping layer. This method yielded a remarkable 140% increase in the effective D
vector for Ir and a substantial 67% increase for Pt on Gr/Co/Pt(111). Moreover, the
MCA increases 6-fold for Ir/Gr/Co/Pt(111). The pronounced effect of Ir on DMI
can be attributed to its strong induced spin and orbital moments compared to Pt.
This results in an observable upward shift in the gapped Dirac cone at the K point
for Ir.
Drawing upon previous reports, indicating that Co/Pt multilayers exhibit perpen-
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dicular magnetic anisotropy, we opted to utilize this composition to capitalize on
its potential for further enhancements in the Gr/Co/Pt structure. We conducted
a comparative analysis between the stacking structure of 1ML Co/1ML Pt/1ML
Co/4ML Pt(111) and the Gr top-fcc stacking within this framework. Our findings
reveal a notable shift in both the DMI and MCA parameters, with each experiencing
a significant reduction by 50% compared to Co/Pt/Co/Pt(111).
In conclusion, this thesis has extensively examined the electronic and magnetic
implications of the Gr capping layer on Co/HM(111) systems. Additionally, our
research has delved into the modulation of DMI and MCA through various methods.
These include the application of electric fields, introducing capping oxide layers,
employing HM capping layers, and exploring the influence of [Co/Pt] multilayers.
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A
Computational details

In our study, we conducted self-consistent density functional calculations using the
FLAPW method implemented in the FLEUR-code [56, 55]. Initially, we ensured the
convergence of the electronic charge density by selecting computational parameters
that ensure predictive accuracy. Subsequently, we gathered data on wave functions
and band energies using a grid that adequately samples the Brillouin zone (BZ). For
our computations, we employed the generalized gradient approximation (GGA)
with the Perdew, Burke, and Ernzerhof (PBE) functional [176]. In the following, the
input file for the top-fcc, top-hcp, and hollow stackings of Gr on Co/Pt(111) are
shown.
For the structural optimization, we employed 21 k-points distributed within the
primitive section of the hexagonal (2D) Brillouin Zone (BZ), adhering to the P3m1
symmetry class. For the self-consistent, we used a grid of 45×45 k-points.
Furthermore, for the structural optimization involving the oxide overlayer, both
with and without an electric field, we used the following local orbital configuration
for Co:

<lo type="SCLO" l=”1" n=”1" eDeriv="0"/>
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Pt(5)(111)/Co(1)/C(2)/fcc

&input film=T / 

&lattice latsys=‘hP’  a=5.21133 /

8
6     -1.0    1.0   13.336063
6      1.0   -1.0   13.278908
27    2.0    1.0     9.575839   
78    0.0    0.0     5.717778    
78    1.0    2.0    1.233066
78    2.0    1.0   -3.180012
78    0.0    0.0   -7.570539
78 1.0    2.0 -12.010064
&factor    3.0    3.0    1.0

&atom   element="C" id=6 rmt=1.42 jri=473 lmax=6   /
&atom   element="Co" id=27 rmt=2.17 jri=819 lmax=10 / 
&atom   element=”Pt" id=78 rmt=2.47 jri=787 lmax=8 / 
&comp  kmax=4.0   gmaxxc=10.4 gmax=12 / 
&kpt div1=45 div2=45 div3=1 /

Pt(5)(111)/Co(1)/C(2)/hcp

&input film=T / 

&lattice latsys=‘hP’  a=5.21133 /

8
6     -1.0    1.0   12.850845
6      0.0    0.0   12.805688
27    2.0    1.0     9.053923
78    0.0    0.0     5.181338    
78    1.0    2.0    0.722884
78    2.0    1.0   -3.689716
78    0.0    0.0   -8.079484
78 1.0    2.0 -12.510064
&factor    3.0   3.0    1.0

&atom   element="C" id=6 rmt=1.42 jri=473 lmax=6   /
&atom   element="Co" id=27 rmt=2.17 jri=819 lmax=10 / 
&atom   element=”Pt" id=78 rmt=2.47 jri=787 lmax=8 / 
&comp  kmax=4.0   gmaxxc=10.4 gmax=12 / 
&kpt div1=45 div2=45 div3=1 /
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Pt(5)(111)/Co(1)/C(2)/hollow

&input film=T / 

&lattice latsys=‘hP’  a=5.21133 /

8
6     0.0    0.0   12.708832
6      0.0    0.0   12.660626
27    2.0    1.0     8.939792   
78    0.0    0.0     5.080376    
78    1.0    2.0    0.612698
78    2.0    1.0  -3.828971
78    0.0    0.0  -8.269617
78 1.0    2.0 -12.762814
&factor    3.0   3.0    1.0

&atom   element="C" id=6 rmt=1.42 jri=473 lmax=6   /
&atom   element="Co" id=27 rmt=2.17 jri=819 lmax=10 / 
&atom   element=”Pt" id=78 rmt=2.47 jri=787 lmax=8 / 
&comp  kmax=4.0   gmaxxc=10.4 gmax=12 / 
&kpt div1=45 div2=45 div3=1 /
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