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ABSTRACT

IZA DP No. 18176 OCTOBER 2025

The Immediate and Lasting Effects of 
Heat Waves on Workers*

This paper examines how prolonged exposure to heat affects the labor force’s ability to 

work in the short and long run. Linking administrative public health insurance records for 

one-third of the German working-age population to the quasi-experimental occurrence of 

heat waves, we provide the first comprehensive characterization of the occupation-specific 

heterogeneity in how heat-induced health damages materialize in decreased labor supply, 

and its distributional implications. An average hot day increases the number of new sick 

leave cases, and the effects build with prolonged heat. After seven consecutive days of 

heat exposure, the impact is roughly three times greater than on the first day. Workers 

who are already disadvantaged in terms of their income and working conditions are more 

vulnerable to heat stress. Those who are more flexible in scheduling and adjusting their 

working hours are less at risk. Our results also reveal a longer-term decrease in labor supply 

in the years following heat wave exposure, and suggest sustained increases in expenditures 

for healthcare.
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1 Introduction

Rising global temperatures and the increasing frequency of extreme heat events,

driven by anthropogenic climate change, are expected to have significant negative

consequences for labor markets worldwide (Deschenes 2011). Extreme temper-

atures can impair physical comfort and cognitive functioning, raising concerns

that growing heat exposure may reduce labor supply (Graff Zivin and Neidell

2014). While a growing body of research documents the health impacts of heat,

particularly among vulnerable populations such as the elderly (e.g., Carleton

et al. 2022, Heutel et al. 2021, Barreca et al. 2016, Deschênes and Greenstone

2011) and children (e.g., Isen et al. 2017a, Graff Zivin et al. 2018, Park et al.

2020), much less is known about its direct effects on the working-age popula-

tion’s capacity to engage in and sustain work. Existing evidence is often limited

to specific occupational groups, such as agricultural or outdoor workers (Flouris

et al. 2024), or to rather severe outcomes, such as workplace injuries (Dillen-

der 2021, Park et al. 2021, Drescher and Janzen 2025) and mortality (Wilson

et al. 2024), which, while important, leave broader impacts on labor market

performance insufficiently understood.

A broader understanding of the labor market consequences of heat is essential for

at least two reasons. First, the cumulative economic costs of heat-related work

disruptions can be substantial. Absences due to heat can interrupt workflows,

reduce productivity, and increase strain on remaining staff. These disruptions

can translate into significant economic losses, both in terms of forgone labor

supply and lost earnings for workers, as well as increased expenditures for em-

ployers and insurance systems.1 Second, heat exposure is unevenly distributed

across occupations, with certain groups facing much higher risks. More exposed

workers are disproportionately represented in outdoor occupations and jobs with

hazardous conditions and limited adaptive capacity. Yet, indoor workers are not

exempt from risk: those in poorly ventilated settings or without access to air con-

1For instance, in Germany, where universal access to paid sick leave is guaranteed, expenditures
related to work absences account for roughly 4% of gross national income (BAuA 2022).
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ditioning, as well as older employees with underlying health conditions, may also

experience considerable heat stress. A comprehensive assessment of heat’s labor

market effects must therefore account for its impact across the full spectrum of

working environments and demographic groups.

This paper investigates how prolonged exposure to heat influences sick leave

among the German working-age population, both in the short and long term, and

examines how these effects vary across the labor force. We link high-frequency

administrative health insurance microdata covering approximately one-third of

the German workforce with quasi-random variation in the occurrence of heat

waves at the zip code-by-day level over more than a decade. This allows us to

characterize how sick leave responds to varying intensities and durations of heat

exposure. The rich detail in the health insurance data enables us to examine het-

erogeneity in heat-related effects both across individual-level morbidity profiles,

and occupational characteristics. By analyzing workers across the full range of

occupations, not just those in outdoor or high-risk jobs, and by considering a

broad spectrum of health-related absences beyond workplace injuries, we offer

the first comprehensive assessment of the workforce’s vulnerability to heat waves.

This approach can holistically inform adaptation and occupational health mea-

sures. Moreover, in leveraging complete histories of claimed healthcare services,

we move beyond short-term responses to identify persistent declines in labor

supply and sustained increases in expenditures for healthcare utilization in the

longer-term.

The German context provides an ideal setting for this analysis. Health insur-

ance coverage is mandatory, and all workers are entitled to statutory sick leave,

which protects them against temporary income losses due to illness-related ab-

sences. Due to strict reporting requirements, health insurance funds maintain

comprehensive administrative records on sick leave, allowing for detailed and

population-wide analysis. Our study utilizes data from AOK, Germany’s largest

public health insurer, drawing on a sample of approximately 9.7 million work-

ing individuals aged 25 to 59 over the period 2007 to 2020. Compared to other
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commonly used health outcomes, such as mortality or hospitalization, sick leave

captures a broader range of health impairments, including milder or non-acute

conditions that do not result in death or emergency care but still affect the abil-

ity to work. This allows for the identification of more subtle health effects at the

individual level, which can accumulate to substantial damages when aggregated

across the labor force.

We structure our analysis in three parts. First, we estimate the average causal

effect of heat on sick leave using a two-way fixed effects model that exploits

quasi-random variation in the daily occurrence of high temperatures within zip

code areas over more than a decade. In addition to the standard binary indicator

for extreme heat, in the spirit of Miller et al. (2021), we base treatment on the

duration and intensity of heat exposure, which characterize a heat wave. This

accounts for the fact that the working population is generally less vulnerable

than the elderly or children. Prime-age workers may only react to heat un-

der prolonged and intense exposure, which significantly increases discomfort and

health risks (Anderson and Bell 2011, D’Ippoliti et al. 2010). Second, we exam-

ine heterogeneity in treatment effects using a machine learning–based inference

approach proposed by Chernozhukov et al. (2018). We train a gradient-boosted

decision tree on an extensive set of over 360 variables, including demographic

characteristics, health histories, occupational information, local environmental

conditions, and fixed effects, to predict each worker’s daily heat-absence risk.

Based on these predictions, we stratify workers into distinct ex-ante risk groups

and estimate the causal effect of heat exposure on sick leave within each group.

Third, we leverage the longitudinal structure of our administrative health records

to examine the monetized longer-term effects of severe heat waves, defined as at

least three consecutive days with temperatures of 30°C or higher. To this end, we

conduct event study analyses that identify changes in expenditures linked to sick

leave and medical treatments by a doctor in the years following exposure.

We produce three key findings. First, heat increases sick leave among workers

in the short run. On an average hot day, the number of new sick leave cases

4



increases by about 3.5%. This short-term effect grows in magnitude with the

duration of exposure. On the third day of consecutive heat stress, the effect

increases to 5.0%, and it roughly triples to 10.8% after seven consecutive heat

days. We find that heat-related increases in sick leave are driven by a range

of disease groups, extending beyond the expected ones such as cardiovascular

conditions. This suggests that heat may not only trigger new health issues but

also exacerbate existing conditions, thereby pushing individuals at the margin

of work capacity into sick leave.

Second, the short-term effects of prolonged heat exposure on labor supply dis-

tribute highly unevenly across workers. On the third day of consecutive heat

exposure, we observe that the increase in sick leave cases is more than 8.5 times

higher among the top 1% of workers at highest predicted heat-absence risk com-

pared to the bottom 50% of the risk distribution. Workers in the higher-risk

group tend to be older, the share of male workers is higher, and chronic diseases,

ranging from adiposity, over high blood pressure, to chronic respiratory diseases,

are more prevalent. Controlling for these individual demographic and health

characteristics, we categorize workers into 36 occupational groups and find that

those with the highest heat-absence risk are more commonly employed in the

transport and logistics, manufacturing, agriculture, and construction sectors. In

contrast, lower-risk workers are more prevalent in information technology, ed-

ucation, law and administration, and financial services. Common occupational

characteristics of high-risk workers are more physically demanding tasks, a higher

exposure to extreme temperatures and outdoor conditions, and a lower income.

They are less free to schedule and adjust their working hours and their satisfac-

tion with their job is lower. This finding underscores that heat disproportionately

affects the already disadvantaged segments of the workforce.

While the heat-absence risk distributes unevenly across occupations, a key find-

ing of our study is that a three-day heat wave increases sick leave cases across

all occupation groups, even among those least affected. This highlights that fo-

cusing ex-ante only on those assumed to be high-risk leads to underestimation.

5



Back-of-the-envelope calculations suggest that a three-day heat wave covering

Germany results in income compensation costs from heat-induced sick leave of

about 32 million € across occupations. This estimate is a conservative lower

bound of the total short-term effects of heat on labor supply, neglecting, e.g.,

the lower productivity of co-workers who are at work, disruptions to downstream

industries, and ripple effects across occupations. For instance, for the health sec-

tor, we estimate 24,680 additional absence days by medical professionals from a

three-day heat wave. These absences are likely to lead to treatment and service

shortages that could affect other workers and amplify costs through supply-side

constraints.

Third, heat waves lasting at least three days lead to sustained increases in ex-

penditures for sick leave and doctor visits in the four years following exposure.

On average, a three-day heat wave results in persistent cost increases of 2,715€

for sick leave and 124€ for doctor visits per 1,000 workers and quarter. Sug-

gestive evidence implies that the sustained cost increases arise through at least

two extensive margin channels: (a) heat waves can trigger new, incisive health

shocks with long-lasting impairments of workers’ health and ability to work, such

as strokes; (b) by temporally exacerbating symptoms that prompt individuals

to seek medical attention, heat waves may lead to the formal diagnosis of dis-

eases that likely existed before, such as depressive disorders. Once diagnosed,

these previously untreated conditions may result in persistent treatments and

recurring work absences. Heat episodes may, thus, play a role in revealing latent

disease burdens, which is important for putting the magnitude of the long-term

effects into perspective.

This paper makes several original contributions. Most notably, it offers com-

prehensive new evidence on the occupation-specific channels through which heat

exposure affects labor market outcomes. While a large body of research has

documented the detrimental impact of high temperatures on human health (e.g.,

Carleton et al. 2022, Karlsson and Ziebarth 2018, Barreca et al. 2016, Deschênes

and Greenstone 2011, Wilson et al. 2024), and a growing number of studies have
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shown that heat reduces economic productivity and income (e.g., Zhang et al.

2018, Behrer and Park 2017, Deryugina and Hsiang 2014, Deschênes and Green-

stone 2007), far less is known about how heat-induced health impairments trans-

late into reduced labor supply and how these effects differ across occupational

groups. The link between environmental health shocks and individual work ca-

pacity has only recently begun to receive attention. For example, Graff Zivin

and Neidell (2014) use the American Time Use Survey and LoPalo (2023) data

from the Demographic and Health Surveys Program to estimate heat-related

reductions in labor supply, while Dillender (2021), Park et al. (2021), Ireland

et al. (2023), and Drescher and Janzen (2025) examine heat effects on workplace

injuries and illness compensation claims in the US, Australia, and Switzerland,

respectively. Outside of the economics literature, research has largely focused

on heat impacts in specific occupational groups considered especially vulnerable

due to outdoor exposure and physical exertion, such as postal and delivery work-

ers, vineyard laborers, military personnel, and athletes, who are often relatively

young and healthy (Ioannou et al. 2017, Tannis 2020, Grimbuhler and Viel 2021,

Flouris et al. 2024). To the best of our knowledge, this paper is the first to

use administrative microdata on sick leave to comprehensively assess how heat

exposure affects the ability to work across the general labor force.2

Another distinctive feature of this study is that it goes beyond estimating short-

term responses by tracking the persistence of heat-related health effects over

time. Leveraging the longitudinal structure of administrative health records, we

conduct event study analyses to identify not only the immediate impact of severe

heat waves on sick leave but also delayed and lasting effects on work absences

and broader healthcare utilization. This allows us to capture sustained health

impairments, such as lingering illness or exacerbation of chronic conditions that

may not be reflected in immediate sick leave spikes but still carry important labor

market and welfare implications. By documenting these longer-term impacts, we

contribute new evidence on the cumulative burden of heat exposure on workers’

2For related work using sick leave data in the context of air pollution, see Holub et al. (2020).
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health and labor supply. To the best of our knowledge, the persistence of health

and labor market effects from heat shocks among the adult working population

have not been studied before. In a paper most closely related to ours, Isen et al.

(2017a) show that prenatal exposure to heat days is associated with a reduction

in adult earnings at age 30. While this provides first evidence for lasting impacts

of heat, they stem from in-utero exposure, which is a particularly vulnerable

phase of development (Almond and Currie 2011). Our evidence for long-term

increases in work absence and morbidity also adds to an emerging literature on

the persistence of adverse effects from other environmental hazards, such as air

pollution (Sanders 2012, Isen et al. 2017b, Simeonova et al. 2019, Klauber et al.

2024, Colmer and Voorheis 2025).

Finally, our setting with comprehensive health microdata offers a unique con-

text for characterizing the occupation-specific heterogeneity in how heat-induced

health damages materialize in decreased labor supply, and its distributional im-

plications. By leveraging this unusually rich data within a flexible machine

learning framework for estimating heterogeneous treatment effects, as proposed

by Chernozhukov et al. (2018), we aim to uncover more nuanced causal rela-

tionships. This contributes to a growing literature that builds on similar ap-

proaches to model complex, high-dimensional interactions between covariates

that may jointly influence effect heterogeneity in diverse contexts examining

academic tutoring, health programs, fintech adoption, and air pollution among

others (Guryan et al. 2023, Bhat et al. 2022, Breza et al. 2020, Deryugina et al.

2019). By showing the highly unequal impacts across occupations that correlate

with already existing labor market inequalities, we also contribute to a broader

labor economics literature that focuses on exacerbating labor market inequal-

ities induced by other shocks, such as technological progress, automation and

artificial intelligence (Acemoglu 2002, Acemoglu and Restrepo 2018, Acemoglu

2024).
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2 Data

2.1 Institutional Background

The German welfare system provides universal statutory sick leave to protect

workers against temporary income losses arising from workplace absences due to

illness (see Swart et al. 2014). From the first day of illness, workers receive 100%

of foregone gross wages from their employers for the first six weeks of absence.

Afterwards, the public health insurance takes over and provides compensation

payment that usually equals 70% of the gross salary, but at maximum 90%

of the net income. On an average working day in 2021, approximately 4.34%

of employees in Germany were absent from work due to illness (BMG 2022).

The resultant expenditures amount to roughly 4% of the gross national income

(BAuA 2022). Hence, the costs associated with sickness absence, both in terms

of forgone labor supply and economic costs, are substantial.

Strict reporting regulations apply for sick leave. As soon as a worker falls sick,

she is obliged to inform her employer immediately of the expected duration of

her absence. Cases of absence lasting more than three calendar days must be

certified by a physician who issues a certificate attesting the incapacity to work

(“Arbeitsunfähigkeitsbescheinigung”).3 However, the employer may request the

certification earlier. By law, the certificate of work incapacity must be sent not

only to the employer, but also the health insurance fund without delay (EFZG,

§ 5). It is the responsibility of the worker to do so. They have incentives to

adhere to this rule because they otherwise risk losing their entitlement to con-

tinued payment of wages in the event of longer-lasting illnesses. Accordingly,

health insurance funds are able to register about 95% of the total sick leave rate

(Marschall et al. 2017). The cases of sick leave that they do not capture are

mostly those of short duration lasting less than three days or instances where

workers fail to fulfill their obligation to report their absence to the health insur-

3A person is incapacitated for work if she is no longer able to perform the tasks that she recently
performed, or is only able to perform them at the risk of aggravating the illness (§ 92 Abs. 1
Satz 2 Nr. 7 SGB V).
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ance fund. We assume that behavioral factors, such as shirking, are more likely

to influence these shorter cases, as workers can avoid the burden of visiting a

physician and undergoing a medical examination. In contrast, cases recorded by

health insurance are more likely to reflect genuine, health-related work absences,

representing a lower bound for the full extent of sick leave.

Based on this regulatory framework, health insurance funds have comprehensive

and detailed administrative information on sick leave for the German population.

In particular, they receive precise information on the medical reason for each

case of sick leave on the submitted medical certificate. For privacy reasons, this

information is not submitted to the employers.

2.2 Sick leave and morbidity data

We obtain sick leave data from Germany’s largest public health insurer AOK. Of

the roughly 90% of the German population that is publicly insured4, AOK cov-

ers about a third. This comprehensive coverage ensures that individuals from

all population subgroups are represented (Jaunzeme et al. 2013). The “AOK

Research Institute” provides us with pseudonomized data at the level of the

individual for all workers aged 25 to 59. This “prime age” group comprises indi-

viduals with a regular employment contract, but also self-employed individuals

and freelancers who decided against private insurance. Overall, the data com-

prise about 9.7 million workers, which we observe over a 14-year period from

2007 to 2020.

The daily sick leave data we obtained is based on the medical certificates issued

by physicians. It holds information on the start and end date of each sick leave

case as well as its medical reason classified according to the ICD-10 system.5 We

combine this data with information on the insured individuals, i.e., their sex,

birth date, location of residence at the 5-digit zip code level, and occupation

4The remaining 10%, in particular civil servants, self-employed, and high-income workers, are
insured privately.

5The ICD-10-Code is an international system for the statistical classification of diseases and
related health problems provided by the WHO. Germany uses the extended version ICD-10-
GM (DIMDI n.d.).
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group. Occupations are categorized according to the German Classification of

Occupations (KldB-2010), which aligns closely with the International Standard

Classification of Occupations (ISCO-08).6

Figure 1 provides a descriptive overview of the sick leave data. On average, a

zip code area covers 856 insured individuals, but there are regional differences

(Panel a). The number of sick leave cases per 1,000 workers is highest in the

northwestern part of Germany and lowest in the southeastern region of Bavaria

(Panel b). Sick leave spells differ in length (Panel c). About 30% of all cases last

only one to three days, another 30% last less than a week, and about 5% of all

cases cause long-term absences that last 40 days or more. The day of the week is

a strong predictor for the number of individuals that call in sick. About 35% of

all cases begin on a Monday while only few cases start on a Saturday or Sunday

(Panel d). This is because workers who fall ill on the weekend can usually get a

sick note only on Monday when the doctors’ offices are open. Panel e) presents

the six disease groups that are most often reported on sick leave certificates.

About 36% of all cases are linked to respiratory diseases, followed by 28% linked

to problems of the musculoskeletal system and the connective tissues, and 14%

linked to issues of the digestive system. Across all age groups, women call in

sick more often than men (Panel f). While the duration of sick leave increases

with age for both sexes, men are on sick leave slightly longer than women, on

average. In Appendix Table A.1, we provide additional descriptives.

6In 2011, the KldB-2010 system replaced the older KldB-1988/92-system. To ensure compa-
rability of the occupation data throughout our period of observation, we map the data in the
years before 2011 into the newer KldB-2010 scheme. Additionally, we observe the economic
sectors of jobs, classified according to the German Classification of Industries (Klassifikation
der Wirtschaftszweige, WZ 2008), which is based on the Statistical Classification of Economic
Activities in the European Community (NACE, Revision 2), which we incorporate into our
heterogeneity analysis.
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Figure 1: Descriptive statistics on sick leave

Number of AOK-insured workersa] Daily sick leave cases per 1,000 workersb]

Sick leave cases by duration (%)c] Sick leave cases by start day (%)d]

Sick leave cases

by top 6 disease groups (%)

e] Sick leave by

age group and sex

f ]

This figure provides a descriptive overview of the sick leave data. The maps show the number of AOK-insured workers per zip
area in Panel a) and the daily number of sick leave cases per 1,000 AOK-insured workers in Panel b). The barplot in Panel c)
illustrates the percentage share of all sick leave cases that last for the number of days specified on the x-axis. Panel d) presents
the percentage share of all sick leave cases that start on the weekday specified on the y-axis. In Panel e), we plot the percentage
share of sick leave that is due to the six disease groups that most often cause absence from work. In Panel f), we illustrate
differences in sick leave by age group and sex. The y-axis measures the annual number of sick leave cases per 100 workers on
the left-hand side and the average duration of these cases in days on the right-hand side.
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In addition to the daily sick leave data, the AOK Research Institute provides

quarterly data on morbidity based on healthcare utilization patterns on a rolling

basis. For every worker, we observe the average quarterly number of outpatient

treatments by a doctor measured over the previous eight quarters. In addition,

we also obtain 58 quarterly binary indicators identifying the presence of specific

chronic diseases. The indicators capture, for instance, whether workers suffered

from cancer, diabetes, adiposity, cerebrovascular disease, affective disorders, and

respiratory diseases, in the previous eight quarters. A full overview is available in

Appendix Table A.2. All morbidity variables are available for workers continu-

ously insured during the preceding eight quarters, starting from 2008. However,

because the morbidity variables are measured over a moving eight-quarter time

window, the exact timing of the recorded treatments and diagnoses within that

period is unknown.

2.3 Weather data

The European Center for Medium-Range Weather Forecasts (ECMWF) provides

meteorological data. We use the ERA5 land product for the years 2007 through

2020, which divides the surface of the Earth into a grid with a latitude-longitude

resolution of approximately 0.1° × 0.1° and provides hourly data for each grid

cell.7 For every day and grid cell, we extract the maximum and minimum temper-

ature measured two meters above the ground, the total amount of precipitation,

relative humidity, and wind speed. Based on the daily maximum temperature,

we calculate a heat day indicator which is equal to one, if temperatures are 30°C

or higher. To aggregate the weather data to the level of zip code areas, we take

the weighted sum of the amount of precipitation and the weighted averages of

all other variables, with weights equal to the population size in each grid cell.8

Heat days at the zip code level are defined as days when the aggregated heat

7There are a few grid cells in Germany that the ERA5 land product does not cover. For these
cells, we use ERA5 data with a lower resolution (0.25° × 0.25°).

8We use raster data for the working-age population with a 100-meter resolution from WorldPop
Hub (2018).
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Figure 2: Geographic variation of heat in Germany from 2007 to 2020

indicator is greater than zero.Figure 2 illustrates the variation in the occurrence

of heat across Germany and the 14 years of our observation period.

We construct several alternative measures of heat exposure. First, we define

variables that capture the duration, i.e., number of consecutive heat days, and

the intensity of exposure, i.e., the temperature in degree Celsius above 30. Ad-

ditionally, we construct our heat day indicator using apparent temperatures

rather than maximum temperatures. To this end, we calculate the perceived

temperature derived from either a combination of temperature and wind speed

or temperature and humidity, according to the definition by the US National

Weather Service (NWS 2024a, NWS 2024b). Moreover, we define an indicator

variable for tropical nights, which is equal to one if the minimum temperature

does not fall below 20°C. Summary statistics for these exposure measures are

available in Appendix Table A.4.

2.4 Occupational data and additional covariates

We obtain additional data on working conditions by occupation from the Federal

Institute for Vocational Education and Training. It is based on representative

survey data that describe the skill requirements and working conditions linked

to different professions in Germany (Gensicke and Tschersich 2018). The data
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is collected every six years from around 20,000 employed individuals. From

the 2018-survey wave, we extract data that capture to what extent employees (i)

work under very high and very low temperatures, (ii) work outdoors, (iii) perform

physically demanding tasks, (iv) are free to schedule and adjust their working

hours, and (v) are satisfied with their job. Table A.5 in the Appendix shows the

survey questions that we match to each of these five dimensions. If there is more

than one relevant question, we summarize the information from the different

questions in an index based on principal component analysis. In addition, we

consult data from the Federal Employment Agency on (vi) the median income

in each occupation group (Federal Employment Agency 2021).

Lastly, we compile a host of almost 300 mostly time-invariant variables from

diverse sources to characterize workers’ places of residence. These variables

capture demographic factors (e.g. age distribution, share of foreigners, and av-

erage household size), socioeconomic characteristics (e.g. share of households

in different socioeconomic status classes, and availability of social service facili-

ties), and infrastructure (e.g. number of outpatient medical practices, available

greenspace area, and age of buildings). We derive these zip-code-level variables

from raster data in the 2011 Census provided by the Federal and State Statisti-

cal Offices, geodata from OpenStreetMap, and commercial data from Acxiom.9

Appendix Table A.3 offers a summary overview of the captured zip code char-

acteristics.

3 Methodology

3.1 Identifying short-term effects of heat exposure

In the first part of our analysis, we aggregate individual sick leave data by zip

code area and day, separately for sex (male vs. female) and age groups (25–35,

36–50, and 51–59). Based on the aggregated data we run a two-way fixed effects

model to estimate the effect of an average single heat day on sick leave

9Acxiom is a service provider specialized in spatial customer and business information for
marketing.
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Sag
zdy = βHzdy + δ1Pzdy + δ2Fsyd + γzm + γwy + γkm + γd + γa + γg + ϵagzdy (1)

where the dependent variable Sag
zdy is the number of sick leave cases that are

newly reported on day d in year y per 1,000 workers living in zip code area z and

belonging to age group a and sex group g.10 If the daily maximum temperature in

a zip area reaches at least 30°C, the binary indicator Hzdy equals one, otherwise

it is zero. Our coefficient of interest, β, provides an estimate of the average effect

of a day with temperatures of at least 30°C on sick leave.

We control for zip code level precipitation on the same day, Pzdy, as well as public

holidays, Fsdy, that vary by day and state s. Zip code by calendar month fixed

effects γzm control for unobserved time-invariant determinants of sick leave by

zip code, as well as zip code specific seasonal differences across months (e.g. the

spreading of influenza or the number of seasonal workers). Week by year fixed

effects are captured by γwy and account for country-wide economic shocks and

trends common to all workers. Because sick leaves follow strong within-week

patterns (see Figure 1), we add day-of-the-week fixed effects γk that account

for patterns in sick leave tied to the day of the week k.11 In our preferred

specification, we allow them to vary across calendar months to address that

the amount of weekend work is dependent on the season in some professions

(e.g. in tourism, hospitality, and event management). Moreover, we add day-

of-the-year fixed effects γd to pick up seasonal fluctuations in sick leave within

months. Lastly, we absorb differences in sick leave common to each age and sex

group, by including γa and γg, respectively. All regressions are weighted by the

number of workers in a zip-age-sex cell. We cluster standard errors at the county

level.

10When constructing this variable, we exclude those workers who are already on sick leave on
day d from the denominator.

11For example, they capture that heat days occuring on a weekend are unlikely to result in new
sick leave cases because most physicians are available only during the week.

16



In addition to the standard binary indicator for heat exposure Hzdy, we adapt

Equation 1 and base treatment on the duration and intensity of heat exposure,

which characterize a heat wave. This accounts for the fact that the working

population is generally less vulnerable than the elderly or children and may only

react to heat under prolonged and intense exposure. To this end, we replace

βHzdy with
∑9

τ=0 θτE
τ
zdy, where Ezdy measures either the duration or the in-

tensity of exposure. We bin the exposure variables in τ intervals. For exposure

duration, the first bin equals one if day d in year y and zip area z corresponds

to the first day with at least 30°C in a row, the second bin equals one if it is

the second day with heat in a row, and so forth. For exposure intensity, we bin

temperatures of at least 30°C into 0.5-degree bins.

Our analysis rests on three assumptions. First, conditional on the fixed effects

and control variables included in our model, we assume the occurrence of heat

days to be quasi-randomly distributed. Second, we assume that heat exposure

which we assign to workers based on their zip code of residence, reflects their

actual exposure reasonably well. While we cannot observe the workers’ workplace

locations, we expect that, except for few individuals who commute very long

distances, heat exposure at home is likely highly correlated with exposure at

work.12 However, it is not even clear to what extent exposure at work and at

home drive sick leave. Both high temperatures during work and the lack of

recovery periods during leisure time and night at home may play a role. We

consider our treatment assignment a reasonable proxy for the more complex

concept of heat exposure.

Third, we assume that the start of sick leave aligns with the occurrence of heat

exposure. However, since workers may provide a medical certificate up to three

days after falling ill (see Section 2.1), there may be delays in reporting. It is

unclear to what extent this delay occurs. In principle, workers shall consult a

physician immediately, and, even if physicians examine workers a few days after

12In 2020, the average commuter distance was 24 km in Germany (Brixy and Haas 2025). While
commuting between zip code areas is fairly common, only 15.9% of workers are employed
outside their home county, which is the level at which we cluster standard errors, and most
of these work in a directly adjacent county (Krause and Kripfganz 2025).
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they have turned sick, they may note down the starting date of the sickness

retroactively. However, reporting delays are likely to exist and could lead to

underestimating the heat effects. To test for this we re-estimate Equation 1 while

allowing for effects that occur with a lag of up to three days post treatment.

To implement our regression analysis, we have to address computational limita-

tions. Due to the large data size, we construct a smaller dataset by retaining

all heat-exposed observations and adding a randomly sampled control group of

approximately 10 million observations. This yields a final sample of about 13.3

million zip-age-sex-year-day-level observations.13

3.2 Machine Learning inference on heterogeneous heat effects

To identify effect heterogeneity in the second part of our analysis, we return to

the non-aggregated data at the level of the individual worker and implement

a machine learning based inference approach proposed by Chernozhukov et al.

(2018).

First, we randomly split all worker-day observations into two datasets, the train-

ing and main datasets, each covering a mutually distinct subset of about 50% of

all workers. In the training dataset, we assign all worker-day observations with

exposure to at least 30°C to the treatment and the rest to the control group,

and train a prediction model using a gradient tree boosting algorithm for each

group.14 Both models forecast sick leave cases, Sizdy, for worker i living in zip

area z on day d in year y based on the covariates Zizdy. The covariates include de-

tailed information about the insured workers, such as their exact age, sex, health

status, and occupation (classified according to the three-digit KldB-2010 code).

They also include daily precipitation levels and characteristics of the workers’

zip code area of residence, capturing population demographics, socioeconomic

13With 8,174 zip code areas, three age groups, two sexes, and 5,114 days, our full sample covers
about 250 million observations. The data size prevents us from running a single regression on
the full sample. In addition, the probability of heat exposure on any given day is relatively
low. Therefore, we run regressions on a subset of the control observations in our data, ensuring
that the sample is sufficiently large to preserve the robustness of our findings.

14We use the open-source distributed gradient-boosting framework LightGBM developed by
Microsoft.
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status, and the number of outpatient medical practices, for instance. We pro-

vide an overview of our binary variables capturing workers’ morbidity status in

Appendix Table A.2 and summarize the dimensions captured by our residential

zip code variables in Table A.3. Although the covariates come with varying tem-

poral and spatial resolution, we collectively index them at the worker-day level,

izdy, for ease of notation.15 Additionally, Zizdy includes county, year, month,

and day-of-the-week fixed effects.16 Next to the two models predicting sick leave

cases for the treatment and control group, we train a third model that rests

on all worker-day observations in the train data set and predicts the propensity

score, i.e., heat exposure Hzdy as a function of the covariates Zizdy.

Second, we predict the probability of a sick leave case for each worker-day in

the main data set using the models trained for the treatment and control group.

This yields two predicted probabilities: one assuming that worker i is exposed

to heat on day dy and the other assuming she is not. The difference between

both predictions, V̂ (Zizdy), corresponds to the sick leave probability attributable

to heat. It serves as a proxy for the individual’s risk of daily heat-absence.

Additionally, we predict the propensity score p̂(Zizdy) for each worker-day. Based

on the main data we estimate the following weighted regression to obtain Sorted

Group Average Treatment Effects (GATES):

Sizdy = α+

6∑
l=1

λl(Hzdy − p̂(Zizdy)) · 1(Gl) + θŜC(Zizdy) + ϵizdy, (2)

where the weights equal

w(Zizdy) =
1

p̂(Zizdy)(1− p̂(Zizdy))
.

15Individual information are registered quarterly, precipitations comes at the zip area-day level,
and characteristics of the place of residence are time-invariant and available at the zip area
level (see Section 2.4).

16The gradient tree boosting algorithm accommodates interactions among all variables and
fixed effects.
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The indicator 1(Gl) is equal to one if the predicted heat-absence proxy, V̂ (Zidy),

of worker i on day dy belongs to group l. To define groups, we split the proxy

values into increasingly small intervals, with the 0th, 50th, 75th, 90th, 95th,

and 99th percentiles as lower interval bounds. The coefficients λl represent the

average heat effects on sick leave cases for these groups of varying predicted

heat-absence risk. To explore how effects change by the day of exposure du-

ration, we estimate Equation 2 separately, allowing Hzdy to represent the first

through ninth consecutive day of heat sequentially. For greater precision, the

model also includes the predicted sick leave probability for days with no heat

ŜC(Zizdy).

We examine the characteristics of workers who are differently affected by heat

exposure using Classification Analysis (CLAN). To this end, we examine the

prevalence of individual characteristics, pre-conditions, and workplace charac-

teristics in the group of workers belonging to the top 10% with the highest

predicted heat-absence risk values, V̂ (Zidy), in comparison to those belonging to

the bottom 50% with the lowest values, respectively. We, first, compare the sex

and age of the workers in both groups. Then, we test for statistical differences

concerning the existence of several chronic diseases, while controlling for age and

sex. And, finally, we explore differences across 36 occupation groups (defined by

the two-digit occupation code) and six workplace characteristics (i.e. exposure to

extreme temperatures, outdoor work, physical demands, job flexibility, worker

satisfaction, and median income), while controlling for the effects of sex, age,

and morbidity.

To address computational challenges posed by the large individual-level dataset,

we limit the ML-based heterogeneity analysis to the summer months May through

September,17 apply a downsampling-strategy, and run regressions on 250 data

partitions. Appendix Section C provides a detailed description of our implemen-

tation approach.

17As a robustness check, we also restrict our sample for estimating Equation 1 to the summer
months. Appendix Table A.10 shows that the results remain robust.
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3.3 Identifying long-term effects of heat exposure

In the third part of our analysis, we estimate long-term effects of extreme heat

events on the costs for sick leave and other healthcare services in the years after

exposure. To this end, we restrict our sample to workers who are consistently

insured and employed, while also residing in the same zip code area throughout

the study period. This allows us to ensure a balanced sample for which we

can accurately track exposure to extreme heat over time. We aggregate these

observations at the zip code by quarter level, stratified by gender and across the

Gl groups of varying heat-absence risk identified in Section 3.2. 18 As a result of

enforcing a balanced sample, our sample size is reduced significantly to 3,244,386

observations. We focus our analysis on heat events that persist for at least three

consecutive days, and estimate the following event-study model:

Y gl
zqy =

4∑
t=−3

θtWavetzqy + δ1Pzqy + γzy + γsqy + γg + ϵglzqy (3)

where Y gl
zqy refers to the expenditures for either (i) income compensation due to

sick leave or (ii) the average number of outpatient treatments by a doctor, both

measured per 1,000 workers living in zip code area z, belonging to sex group

g and risk group l, reported in quarter q in year y. We calculate expenditures

based on aggregate statistics. For sick leave, we multiply the number of sick leave

days in each quarter with the average median income per day, which is equal

to 101.58€.19 For doctor visits, we multiply the average number of treatments

per quarter with 71.11€, the average cost per treatment in 2020 values (KBV

2019).20

18To ensure that individuals remain in the same risk group over time, we first average their daily
predicted heat-absence risk values and then categorize them into percentile groups based on
these averages. We do not disaggregate the data by age group, as done in Section 3.1, because
age is strongly correlated with the predicted heat-absence proxy that defines the groups Gl.

19This estimate is based on 2020 data from Federal Employment Agency 2021. We compute a
weighted average of the median income across occupational groups, using occupation-specific
workforce sizes as weights and adjusting for the proportions of part-time and full-time em-
ployment.

20KBV 2019 report a cost of 70.59€ per treatment in Germany (Q4 2019 values; see Table 1),
which we adjust for inflation to derive a 2020 value of 71.11€.

21



Wavezqy counts the number of heat wave days per zip code area and quarter, and

the coefficients θt capture the effects of these heat wave days in the years pre and

post their occurrence. We bin the endpoints, capturing post-treatment effects

that extend beyond the fourth year after treatment and for up to five years prior

to heat wave exposure.21 Pzqy captures precipitation. Fixed effects γzy account

for determinants of health care and occupation choices at the zip by year level,

e.g. the closure of a factory leading to local employment shocks. In addition,

γsqy absorb quarterly changes at the level of the states, e.g. temporal changes

in the healthcare system, which is partially managed at the federal state level.

γg captures differences in the outcome variable common to each gender.

For interpretation, it is important to note that while both outcome variables vary

at the quarterly level, the number of doctor consultations is a quarterly average

measured over the previous eight quarters (see Section 2.2). This means that in

the initial post-treatment periods, heat wave exposure affects this outcome only

partially, which we expect to result in a weaker treatment effect. To somewhat

account for this, we weight observations that are only partially exposed to the

treatment by the proportion of the treatment duration.22

We also estimate the treatment effect of heat waves pooled across all post-

treatment periods t ≥ 0. To examine heterogeneity in this effect across workers,

we interact the pooled post-treatment indicator with the group indicators for

heat-absence risk Gl. In doing so, we focus on the most at risk workers with a

predicted heat-absence proxy in the percentiles [90,95), [95,99), and [99,100] and

combine the remaining groups into a single, broader category [0,90).

Conditional on the included covariates and fixed effects, we assume strong par-

allel trends (Callaway et al. 2024), i.e. the path of outcomes for workers in areas

with fewer heat wave days reflects that for workers in areas with more heat wave

days had they instead experienced fewer heat wave days as well. However, the

21To ensure we have data for all t periods for each observation in our study period, we obtain
extended weather data ranging from 2003 to 2023.

22For example, the number of doctor visits is considered untreated in the first quarter post-
treatment, treated at 1/8 in the second quarter, at 2/8 in the third quarter and so on. Full
treatment is assumed only for outcomes measured after the second year post-treatment.
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model does not account for potential bias linked to treatment effect heterogene-

ity in settings of staggered treatments (Callaway et al. 2024, Athey and Imbens

2022, Goodman-Bacon 2021, de Chaisemartin and d’Haultfoeuille 2020), which

we address in our robustness analysis. We cluster standard errors at the county

level.

4 Results

4.1 Short-term heat effects on sick leave

We begin by presenting estimates of same-day heat effects on short-term sick

leave. Table 1 shows estimates of the effect of an average heat day with at least

30°C on the number of newly reported sick leave cases per 1,000 workers. We

find robust heat effects across the different choices of fixed effects, which increase

in stringency from left to right. Our preferred specification in Column (3) shows

that an average heat day increases cases by 0.152 per 1,000 workers, which equals

a relative increase of about 3.5%. Appendix Table A.9 demonstrates that these

results remain robust when additionally controlling for state-specific vacation

periods.

The same-day effects reported in Table 1 may underestimate the total impact

of heat, as some sick leave cases could occur and be registered with a delay. To

account for this, in Table A.6 in the Appendix, we gradually include additional

days following the heat day. We find that the effects of heat materialize over the

day of exposure and the two following days, while we do not find statistically sig-

nificant changes in sick leave on the third day after exposure. When accounting

for these lagged effects, we find that a single heat day results in approximately

0.216 additional cases of absence, equating to about a 5.3%-increase.

The effects vary across different measures of heat exposure. Firstly, Figure 3

shows effect variation by the duration of exposure (i.e. the number of consecu-

tive heat days) and the intensity of exposure (i.e. the average temperature on

heat days in degrees Celsius). The effects on sick leave cases increase in mag-
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Table 1: Contemporaneous effects of heat days on sick leave

Sick leave cases per 1,000 workers

(1) (2) (3)

heat day 0.095∗∗∗ 0.146∗∗∗ 0.152∗∗∗

s.e. (0.015) (0.016) (0.016)
r.e. [2.217] [3.409] [3.546]

Fixed effects
year x week yes yes yes
zip yes no no
day-of-the-week yes no no
zip x month no yes yes
day-of-the-week x month no yes yes
day-of-the-year no no yes

This table reports estimates of the effect of an average heat day on sick leave following Equation (1).
Fixed effects become more stringent from column (1) to (3). In (1), we absorb determinants of sick
leave specific to the zip area, the week, and the day-of-the-week. To control for seasonal patterns in
sick leave, (2) allows the zip area and day-of-the-week fixed effects to vary across calendar months, and
(3) adds day-of-the-year fixed effects to also pick up seasonal fluctuations in sick leave within months.
The dependent variable refers to new sick leave cases per 1,000 workers. In all regressions, we include
controls for age, sex, public holidays, and precipitation. The regressions are weighted by the number of
workers per zip-age-gender cell. Standard errors in round parentheses are clustered at the county level.
Relative effects in percent are in square parentheses. The sample size is 13, 293, 949 .
* p < .05, ** p < .01, *** p < .001.

nitude with the duration of heat exposure. The effect estimated on the first

heat day roughly triples to 0.463 (10.8%) after the seventh day of consecutive

heat (numerical estimates are available in Appendix Table A.8). This increase

is likely due to a combination of both the lagged impacts of previous heat days

and the disproportionate impact of a long exposure duration, which are chal-

lenging to isolate empirically. Moreover, heat waves with a length of more than

seven days have been rare in Germany, although progressing climate change is

increasing their likelihood (Brasseur et al. 2017). Interestingly, we observe no

effect differences with increasing intensity of heat in Figure 3. The estimated

coefficients follow a flat pattern, suggesting that higher temperatures above 30°C

are not necessarily reflected in more sick leave cases. Secondly, we compare how

the estimated effects change, when using apparent temperatures of at least 30°C

and tropical nights with a minimum temperature of at least 20°C as alternative

exposure measures in Appendix Table A.7. We find that the effect of a heat day

on sick leave cases increases from 0.152 (3.5%) in column (3) in Table 1 to 0.174

(4.1%) when considering apparent instead of regular temperatures to account

for the additional burden from relative humidity and low wind flow. However,

we observe no effect increase linked to the exposure to tropical nights.
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Figure 3: Heat effects by exposure duration and intensity

Heat duration Heat intensity

The figure illustrates how the effects of heat vary by duration (i.e., the number of consecutive heat days)
and intensity of exposure (i.e., the average temperature of a heat period). The dependent variable is
the number of new sick leave cases per 1,000 workers. The regressions include zip area–month, year–
week, day-of-the-week–month, and day-of-the-year fixed effects. We include controls for age, sex, public
holidays, and precipitation. The regressions are weighted by the number of workers per zip-age-gender
cell. Standard errors are clustered at the county level. Confidence intervals refer to the 5% level of
significance.

To shed light on the medical reasons for sick leave on heat days, we use the

number of sick leave cases per 1,000 workers by ICD-10 chapter as dependent

variables and present the cause-specific effect estimates in Figure 4. We find

that high temperatures affect a wide range of diseases. This includes diseases of

the circulatory system, injuries and poisoning (which includes damages linked to

external causes such as heat and sunlight), mental disorders, and pregnancy- and

birth-related complications which several recent studies associate with heat (Park

et al. 2021, Banerjee and Maharaj 2020, Mullins and White 2019, Obradovich

et al. 2018, Karlsson and Ziebarth 2018, Burke et al. 2018). Also, conditions

affecting the musculoskeletal system, such as back pain, and infectious diseases,

both common causes of sick leave, increase on hot days. These effects of heat

across several disease groups suggest that heat may not only trigger specific

health issues that would not otherwise occur, but also exacerbate existing con-

ditions—pushing individuals at the margin to take sick leave. Despite their

low absolute frequency, external causes of morbidity and mortality exhibit the

highest relative effect (+54.0%). This is a mixed group of sick leave cases, in-

cluding absences linked to accidents (such as heat-related burns or scalds and
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Figure 4: Heat effects on sick leave by disease groups

This figure reports estimates of the effect of an average heat day by disease group following Equation (1).
The dependent variable is the number of new sick leave cases per 1,000 workers for 18 broad disease
groups listed on the left. Appendix Table A.11 provides an overview of how the diseases groups are
defined in terms of ICD-10 codes. A separate regression is estimated for each disease group. All re-
gressions include zip area–month, year–week, day-of-the-week–month, and day-of-the-year fixed effects.
We include controls for age, gender, public holidays, and precipitation. The regressions are weighted
by the number of workers per zip-age-gender cell. We report the estimated coefficients in the table and
plot them on the right. Standard errors in round parentheses are clustered at the county level, relative
effects in percent are in square parentheses. The sample size is 13, 293, 897 .
* p < .05, ** p < .01, *** p < .001.

traffic-related injuries), intentional self-harm, assault, and adverse side effects of

medical interventions, which, unfortunately, we are unable to disentangle fur-

ther. We also observe large relative effects for diseases of the circulatory system

(+19.8%), followed by skin diseases (+10.7%), and injuries (+8.9%).

Appendix Figure B.1 shows estimates for cause-specific effects on sick leave by

heat duration and heat intensity. While the average estimate across diseases in

Figure 3 suggests that effects vary only with the duration of exposure, we now

find clear evidence that heat-induced sick leave due to diseases of the circulatory

system (I00-I99) are strongly increasing with both the duration and intensity of

exposure.

26



4.2 Heterogeneous heat wave effects on sick leave

Next, we turn to effect heterogeneity by workers’ risk of heat-related absence,

occupation and working conditions. Figure 5 shows that the effect of heat on

sick leave cases increase in a worker’s predicted heat-absence risk and as heat

exposure persists over days. On the third consecutive day of exposure, effects

range from 0.248 in the 50% of workers at lowest risk to 2.121 in the top 1% at

highest risk. For all risk groups, effects increase over the first three days and

then level off.23

Table A.12 in the Appendix provides a descriptive comparison between workers

in the top decile of the predicted heat-absence risk distribution and those in the

bottom half based on a CLAN analysis. Workers in the high-risk group are, on

average, 1.56 years older, and the share of male workers is seven percentage points

Figure 5: Sorted Group Average Treatment Effects (GATES) of heat exposure
on sick leave cases

The figure shows GATES estimates from Equation 2 for workers in predicted heat-absence risk per-
centiles [0, 50), [50, 75), [75, 90), [90, 95), [95, 99), and [99, 100]. We estimate the heat effect separately
by day of exposure duration and report coefficients along with 95% confidence intervals. Standard
errors are clustered at the state level. The sample size decreases from 3,445,046,772 on the first to
3,266,872,693 on the ninth heat wave day.

23While the effects on sick leave are positive for all groups from the second day onward, the
lowest-risk group exhibits a small but statistically significant decrease in sick leave on the
first day of heat exposure. This pattern may, for instance, result from a higher representation
of younger, healthier individuals in this low-risk group, for whom higher temperatures pose
less of a health risk and may even boost motivation and attendance in the short term.
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higher. Conditional on age and sex, we find systematic differences in health

outcomes between the two groups. High-risk individuals exhibit significantly

poorer health: they report 4.08 more doctor visits in the preceding two years

and the prevalence of various chronic conditions is higher in the high-risk group.

The largest relative differences are observed for cerebrovascular diseases such as

stroke (+56.5%), affective disorders such as depression (+48.2%), and cancer

(+47.8%).

Next, Figure 6 documents significant heterogeneity of heat-related sick leave

across 36 occupations. It illustrates the relative prevalence of each occupation

in the high-risk (top 10% of the predicted heat-absence risk distribution) versus

low-risk group (bottom 50%). We observe that workers in transport and logistics,

manufacturing, agriculture, and construction sectors are more likely to be at risk

of heat-related sick leave. In contrast, lower impacts are evident in computer

science and information technology, education, law and administration, and in

financial services.

A positive differential between the black and white bars in Figure 6 implies that

risk attribution increases once individual health characteristics are accounted

for. We observe this pattern, for example, in agriculture, construction and civil

engineering, as well as interior design. This finding may suggest that the heat-

related absence risk associated with greater workplace heat exposure in these

occupations is mitigated by lower individual vulnerability; i.e., individuals in

these occupations may be relatively young and healthy. Conversely, a negative

differential indicates that risk decreases when controlling for morbidity. This

suggests that the observed heat-related risk in typically heat-protected occupa-

tions, such as law and administration, may partly reflect the underlying health

profile of workers in these fields.
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Figure 6: Occupational differences between the 10% of workers predicted most
and 50% predicted least at risk

The figure illustrates CLAN results for 36 occupations. The bars represent the average percentage
difference in the share of workers belonging to occupation groups (classified by the 2-digit codes of
the KldB system) between workers in the top 10% percentile and the bottom 50% percentile of the
predicted heat-absence risk. Black bars represent estimates without controlling for the age, sex and
general healthcare demand of the workers, while white bars reflect estimates with these controls. The
column to the left of the plot displays the difference between these estimates. The bars are plotted with
95% confidence intervals. The sample size is 2,449,830,439 in regression without and 2,415,277,838 in
regressions with controls for healthcare demand.

In Figure 7, we provide a back-of-the-envelope estimate of the income com-

pensation costs paid for sick leave associated with an average three-day heat-

wave for each occupation group. We quantify the costs using the formula

Lk =
∑6

j=1(
∑3

d=1 βjdsjk)(N
f
k + Np

k ) · Ik · D, where sjk is the share of work-

ers in occupation group k belonging to risk group j.24 βjd denotes the estimated

effect of a heat exposure day d on sick leave for risk group j (as shown in Fig-

ure 5), Nf
k is the number of full-time and Np

k the number of part-time workers

24For every occupation group, Appendix Figure B.2 displays how the share of workers in each
risk group deviates from the average share in percent. Positive values indicate that a risk
group is more common in a given occupation than in the overall workforce, while negative
values indicate that the group is less common.
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in occupation group k, Ik is the median income in that group, and D is the

average duration in days of a sick leave episode (equal to 12 days). The bubble

size in Figure 7 represents the total income compensation costs per occupation

group due to a three-day heatwave. The y-axis shows the median income, while

the x-axis indicates the estimated increase in sick leave cases per 1,000 work-

ers. The color shading corresponds to the number of workers in each occupation

group.

Figure 7 provides two key insights. First, and most importantly, it shows that

a three-day heat wave leads to additional sick leave cases across all occupation

groups, even among those least affected. This highlights that heat affects the

Figure 7: Total sick leave income compensation payments linked to heat waves
by occupation group

The figure shows the total sick leave income compensation payments that accumulate in the 36 oc-
cupation groups in response to an average three-day heat wave. We calculate the total costs as the
product of the occupation-specific effects of a heat wave on sick leave cases, the total number of workers
in each occupation group, the median income they receive, and the average duration of a sick leave
case. We approximate the occupation-specific effects of a heat wave on sick leave cases based on the
risk-group-specific coefficients illustrated in Figure 5 and the occupation-specific distribution of workers
across these risk groups. The calculated effects represent the number of additional sick leave cases per
1,000 workers during a three-day heat wave and are illustrated on the x-axis. The y-axis represents the
median income in Euro, the color of the bubbles indicates the size of the workforce, and the size of the
bubbles the calculated sick leave-related income compensation costs.
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entire labor force and that focusing ex-ante only on those assumed to be high-risk

leads to underestimation. Second, the cost of income compensation linked to sick

leave varies due to different underlying factors. For example, compensation costs

in computer science, information, and communication (1,146,020 €) are close to

the costs for vehicle and transport drivers (1,016,766 €). However, the former

stems from higher median wages (5,302 € vs. 2,726 €), while the latter is driven

by a greater sensitivity of sick leave to heat exposure (0.610 vs. 0.882 cases per

1,000 workers) and a larger workforce (952,293 vs. 1,153,009 workers). Overall,

the highest costs are observed in business management and organization, with

total compensation payments amounting to 4,760,292 €. Aggregating across all

occupation groups, we estimate total sick leave-related income compensations

costs of 32,230,912 € for a single three-day heatwave across Germany.

The back-of-the-envelope calculation of the aggregate costs is a conservative

lower bound of the full labor market impact of heatwaves. In particular, it does

not account for potential disruptions to downstream industries or declines in

productivity among workers who remain on the job. One occupation group that

highlights the relevance of such amplifying effects is medical health professions

(“health” in Figure 7). Sick leave in this group indicates a strain on the system’s

supply capacity. We estimate that a three-day heatwave results in approximately

0.749 additional sick leave cases per 1,000 workers in the healthcare sector. With

2,745,919 workers in this occupation group and an average sick leave duration of

12 days, a heat wave covering Germany would lead to 24,680 additional absence

days by medical professionals. This reduction in staffing can lead to treatment

and service shortages, potentially amplifying the health impacts of extreme heat

through supply-side constraints. In line with this concern, Aguilar-Gomez et al.

(2025) find that in Mexico, more than half of excess deaths during extreme heat

may be linked to spillover effects from hospital congestion. A growing body of

evidence more generally suggests that heat can impair cognitive functioning and

decision-making (Heyes and Saberian 2019, Graff Zivin et al. 2018), indicating
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that the true cost of heat exposure to the labor market may be significantly

higher.

Finally, Figure 8 identifies the common occupational characteristics that corre-

late with higher effects of heat on sick leave across professions. To this end, we

examine the prevalence of six workplace characteristics (i.e. exposure to extreme

temperatures, outdoor work, physical demands, job flexibility, worker satisfac-

tion, and median income) among workers in our six risk groups shown in Figure 5,

with the 50% of workers at lowest risk serving as the reference group. We find

that the heat-absence risk increases with exposure to extreme temperatures and

outdoor conditions, as well as the amount of physical work. Simultaneously, it

decrease with the flexibility to adjust the working conditions, the satisfaction

with work, and the level of income. While the relationship is monotonic in most

Figure 8: Differences in occupational characteristics between the risk groups

i) Physical intensity score
of occupation

ii) Share frequently
working outdoors

iii) Share frequently exposed
to extreme heat/cold

iv) Flexibility score
of occupation

v) Satisfaction score
of occupation

vi) Median income
of occupation

The figure illustrates CLAN results for six occupational characteristics. For each characteristic, the
estimated coefficients represent the average percentage-point difference between workers in the six risk
groups shown in Figure 5. These groups correspond to workers whose predicted heat-absence risk falls
within percentile intervals beginning at the 0th (group 1), 50th (group 2), 75th (group 3), 90th (group 4),
95th (group 5), and 99th (group 6) percentiles. The six groups correspond to workers whose predicted
heat-absence risk falls within percentile intervals beginning at the 0th (group 1), 50th (group 2), 75th
(group 3), 90th (group 4), 95th (group 5), and 99th (group 6) percentiles. Risk groups are plotted on
the x-axes. Group one with the lowest predicted risk represents the reference group. Coefficients, are
plotted with 95% confidence intervals. The sample size is 4, 049, 603, 787 .
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panels, it levels off in some cases. For example, the risk groups four to six share

similar levels of workplace flexibility. Due to a high level of correlation among

the six observed occupational characteristics and in the absence of exogenous

variation, it is impossible to disentangle their individual causal impact on the

heat-sick leave relationship. However, the findings provide insights for the iden-

tification of occupation groups that are more likely to call in sick on hot days,

which can be informative for the design of heat protection measures. In partic-

ular, they suggest that heat disproportionately hits the already disadvantaged

part of the working population.

4.3 Long-term heat effects on health care expenditures

The final set of results exploits the longitudinal nature of our data and focuses on

the long-term impacts of experiencing a heat wave on sick leave-related income

compensation and expenditures for doctor visits. Figure 9 shows the event study

estimates for the effects of an additional day of exposure to a heat wave lasting

at least three days on the expenditures for (i) sick leave and (ii) doctor visits,

in the years before and after the heat wave occurred. Given that certificates

of work incapacity need to be issued by doctors, we expect any increase in sick

leave costs to also result in higher costs for doctor visits.

Our findings suggest a sustained increase in both outcomes following heat wave

exposure. We observe an immediate uptick after the heat wave in both cases.

While sick leave costs remain elevated at a consistent level, the initial increase

in expenditures for doctor visits subsides after the first year, before rising again

toward the later part of the observation period. This pattern could be explained

by heat waves triggering the onset of severe chronic conditions, which progres-

sively worsen over time and ultimately lead to increased long-term health care

demand. However, another possible explanation is that we observe doctor ex-

penditures in our data only as a rolling aggregate measured over the prior eight

quarters. Thus, coefficients in the first years post-exposure still partially re-
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Figure 9: Event-study estimates of long-term effects of heat waves on healthcare
expenditures

i) Sick leave income compensation costs
(current quarter)

ii) Expenditures for doctor visits
(prior eight quarters)

This figure shows event study estimates of the effects of heat wave days on outcomes in the years prior
and post to exposure, following Equation 3. The dependent variable refers to either the expenditures (in
Euro) for (i) sick leave-related income compensation in the current quarter or (ii) the average number
of outpatient treatments by a doctor over the previous eight quarters, both measured per 1,000 workers
and quarter. The regressions include zip area–year and state–year–quarter fixed effects. We include
controls for sex and precipitation. The regressions are weighted by the number of workers per zip-sex-
risk group cell. Standard errors are clustered at the county level. Confidence intervals refer to the 5%
level of significance.

flect pre-exposure measurements, potentially dampening immediate effects (see

Section 3.3).

The pooled estimates of the post-treatment effects, presented in Panel A of Ta-

ble A.14 in the Appendix, suggest that a heat wave day increases sick leave

costs by about 0.22%, and the expenditures for doctor visits by about 0.04% in

the following quarters. For a three-day heat wave, the additional costs per 1,000

workers amount to roughly 2,715€ for sick leave and 124€ for doctor visits every

quarter.25 This corresponds to annual per capita costs of 10.86€ (2,715€/quar-

ter · 4 quarters / 1,000 workers) for sick leave, and 0.50€ (124€ · 4 quarters

/ 1,000 workers) for doctor visits. The relatively higher cost increase for sick

leave compared to doctor visits could indicate that sick leave cases increase in

duration. This may be the case if heat wave exposure leads to more severe dis-

eases, causing doctors to certify extended recovery times per case, and resulting

25We obtain these values by multiplying the coefficient estimates in Table A.14 by a factor of
three.
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in a disproportionate increase in total sick leave days compared to the number

of doctor consultations.

To contextualize the magnitude of these effects, we compare them to the long-

term costs of a disease that typically leads to persistent health impairments

requiring ongoing treatment in Appendix Section D. While statistics on such

long-term costs are rarely available, we do have data on the costs occurring for

ischemic stroke survivors in post-incident years. We find that exposing approxi-

mately 6,868 workers to a severe heatwave results in long-term costs for doctor

visits comparable to those of all outpatient costs incurred by a single additional

stroke survivor. Moreover, exposing approximately 464 workers to a severe heat-

wave results in long-term sick leave costs comparable to those incurred by a single

additional stroke survivor.

Figure 10 presents pooled post-treatment effects by risk groups with different

levels of predicted heat-absence risk (see Panel B of Table A.14 for point es-

timates).26 For both outcomes, we observe that long-term effects increase in

magnitude as the predicted heat-absence risk rises. For doctor visits, statisti-

cally significant effects are found only for risk groups four, five, and six, i.e.,

the top 10% of workers with the highest predicted risk. In contrast, all worker

groups exhibit a significant increase in expenditures for income compensation

due to sick leave. Across the risk groups, the coefficients display a sharp gradi-

ent. For sick leave cases, for instance, the estimated coefficient for risk group one

(the top 1%) is approximately 12 times greater than for the bottom 90%.

We provide suggestive evidence that the sustained cost increases arise through at

least two channels on the extensive margin (see additional analyses for selected

health conditions in Appendix Section E for more details). First, we find that

heat waves can trigger the onset of new diseases, which constitute significant

health shocks that typically impair workers’ health and ability to work persis-

26Figures B.3 and B.4 in the Appendix also provide event study estimates for sick leave days by
ICD-10 chapter and gender. Long-term effects are particularly pronounced for diseases of the
blood and immune system (D50–D89), the nervous system (G00–G99), and the circulatory
system (I00–I99), among male workers.
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Figure 10: Pooled long-term effect of heat wave exposure by risk groups

i) Sick leave income compensation costs
(current quarter)

ii) Expenditures for doctor visits
(prior eight quarters)

This figure illustrates estimates of the pooled long-term effect of an average heat wave day by the heat-
absence risk group. The dependent variable refers to either the expenditures (in Euro) for (i) sick leave
income compensation in the current quarter or (ii) the average number of outpatient treatments by a
doctor over the previous eight quarters, both measured per 1,000 workers and quarter. Risk groups
1 to 3 include workers with a predicted heat-absence risk in the [0, 90) percentile interval; risk group
4 corresponds to the [90, 95) interval; risk group 5 to the [95, 99) interval; and risk group 6 to the
[99, 100] percentile interval. The regressions include zip area–year and state–year–quarter fixed effects.
We include controls for sex and precipitation. The regressions are weighted by the number of workers
per zip-sex-risk group cell. Confidence intervals refer to the 5% level of significance.

tently. In particular, we find that a three-day heat wave leads to a 1% increase in

new diagnoses of cerebrovascular diseases (I60–I69), such as stroke. Second, heat

waves have the potential to temporally exacerbate symptoms, thereby prompting

individuals to seek medical attention and consequently leading to the detection

of diseases that likely existed before but went undiagnosed. Supporting this po-

tential channel, we find that a three-day heat wave leads to a 0.35% increase

in new diagnoses of affective disorders (F30–F39), such as recurrent depressive

episodes which typically develop more gradually over time. Once formally diag-

nosed, these previously untreated conditions may lead to subsequent treatments

and work absences in the long-term. The potential role of heat episodes in re-

vealing latent disease burdens is important for putting the magnitude of the

long-term effects into perspective.

Overall, we suggest interpreting the findings in this section as indicative of per-

sistent increases in healthcare demand following prolonged periods of extreme

heat. While we use stringent fixed effects specifications to isolate the estimates

from confounding temporal and spatial dynamics, we only observe the outcome
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variable on doctor visits in biennial aggregates, and we lack precision for some

effect estimates. At the same time, we note that the size of the estimated effects

is economically significant. This makes substantiating our tentative findings all

the more important.

To this end, we conduct additional robustness checks. First, we perform a

placebo test by re-estimating the event studies shown in Figure 9, while random-

izing heatwave exposure across our units of observations. Appendix Figure B.5

illustrates that the sustained increases we observe in Figure 9 are no longer

present. Thus, the test does not indicate apparent model misspecifications.

Second, to account for potential bias linked to treatment effect heterogeneity

in settings of staggered treatments (Callaway et al. 2024, Athey and Imbens

2022, Goodman-Bacon 2021, de Chaisemartin and d’Haultfoeuille 2020), we re-

estimate the effects using the robust estimator proposed by De Chaisemartin

and d’Haultfoeuille 2024. To apply this estimator, we aggregate the data to the

year-zip level and include only zip and state–year fixed effects in the regression,

further limiting statistical power. We then estimate event-study effects that

are normalized by the average cumulative incremental treatment dose received,

and restrict the estimation to switchers for which all effects can be estimated,

to avoid compositional changes. Compared to the previous results, Appendix

Figure B.6 shows less clear effects and noisier pre-treatment trends, yet both

outcomes still seem to rise in the post-treatment period. For both outcomes,

the average cumulative total post-treatment effects are statistically significant

at the 0.1% level.27

5 Conclusion

This paper studies the impact of prolonged exposure to heat on sick leave among

the labor force in both the short and long run. To this end, we link rich admin-

27In Appendix F, we also present supplementary analyses using two additional measures of
healthcare demand that proxy worker co-morbidity through pharmaceutical and hospital
treatment expenditures. However, these variables come with limited informative value and
the analyses do not yield meaningful additional insights.
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istrative public health insurance data among German workers over more than

a decade to the quasi-experimental occurrence of heat waves. Germany is an

interesting case study. First, climate change has warmed up Europe more than

twice as fast over the past 30 years compared to the global average (WMO 2022).

Second, our study leverages an institutional setting that grants population-wide

access to health care and universal statutory sick leave to shield workers from

income losses due to workplace absences because of illness. In particular, we ex-

ploit individual-level sick leave data on about 9.7 million workers, with detailed

information on their occupation, health status, and individual characteristics.

This allows us to map how subtle health effects at the level of the individual em-

ployee aggregate to sizable economic costs and how these costs are distributed

among workers.

We present strong evidence showing that sick leave increases in response to heat.

A three-day heat wave covering Germany results in income compensation costs

from heat-induced sick leave of about 32 million € across occupations. However,

this number reflects only a fraction of the total costs of heat-induced decrease

in labor supply as it neglects disruptions for downstream industries and a lower

productivity in employees who are at work, for instance. We demonstrate that

certain workers are particularly susceptible to heat exposure, especially those

with lower income, more physically demanding tasks, and less flexibility to sched-

ule and adjust working hours. However, even those with the lowest predicted

risk of heat-related absenteeism show an increase in sick leave when heat persists

for more than a day. This finding underscores that heat impacts workers across

all professions, and that concentrating solely on specific occupation groups can

lead to a significant underestimation of the broader heat impact. Lastly, we

provide suggestive evidence for sustained increases in expenditures for sick leave

and doctor visits in the years following heat wave exposure.

Our results can inform the design of climate change adaptation measures. To

mitigate damages from heat today and in the future, labor markets worldwide

will need to implement strategies to protect workers while ensuring production
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continuity. In general, this may include the provision of training and education

on the risks of heat stress. More specifically, our results suggest that targeted

measures may be those that reduce heat exposure (e.g., access to cooler in-

door or outdoor environments and protective equipment), allow for flexible work

scheduling, and explicitly address the needs of workers with at-risk morbidity

profiles and those providing critical healthcare services. Our results also feed into

a more general debate about the distributional implications of climate change

within countries. They show that increasing heat could lead to a widening of

economic and social disparities, as those who are already disadvantaged are more

likely to experience negative consequences.

Our paper does not address some important aspects. First, while we provide

tentative evidence of increased healthcare demand in the long run following the

exposure to heat waves, this analysis is based on a smaller subset of individuals

who were continuously insured and did not relocate. Moreover, we analyze long-

term heat exposure effects on doctor visits measured over an extended period

of eight quarters, reducing statistical power and limiting the precision of this

analysis. We also note that taking sick leave, while reducing labor supply in the

short term, can support long-term labor supply if it serves a protective role by

preventing more severe illness. Second, while extremely high temperatures in-

crease sick leave in the aggregate labor market, we are unable to speak to the net

effect of climate change. If extremely cold temperatures also reduce the workers’

ability to work and become less frequent due to climate change, our estimates

for the overall impact on sick leave may be an upper bound. Third, while we

identify notable heterogeneity in the effects of heat exposure on sick leave and

healthcare demand, which helps guide the targeting of protection measures to

those most at risk, we are unable to disentangle the specific causal pathways

contributing to heat-related health risks. The lack of data on individuals’ spe-

cific workplaces prevents us from accounting for workplace-specific determinants

of heat susceptibility, which may vary significantly even within the same occu-

pations. Additionally, heat may influence workers’ decisions to take sick leave at
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a given level of illness, either because extreme conditions make supervisors more

understanding or because employees may be concerned about being perceived as

taking advantage of the weather.
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A Tables

Table A.1: Descriptive statistics on sick leave

Mean value of the

(1) (2) (3)

sick leave

cases per

1,000

workers

and day

number of

sick

workers

per 1,000

and day

duration

of sick

leave

cases in

days

Age and sex

Working men

25-35 years old 4.265 35.738 8.292

35-50 years old 3.884 47.155 11.782

50-60 years old 3.964 70.677 16.178

Working women

25-35 years old 4.776 37.615 7.696

35-50 years old 4.306 50.732 11.220

50-60 years old 4.182 71.791 15.385

Disease groups (ICD-10)

A00–B99: Infectious and parasitic diseases 0.401 2.620 6.395

C00–D48: Neoplasms 0.061 2.185 24.033

D50–D89: Blood, blood-forming organs, immune mechanism 0.008 0.297 21.203

E00–E90: Endocrine, nutritional and metabolic diseases 0.041 1.297 20.534

F00–F99: Mental and behavioural disorders 0.217 6.510 23.730

G00–G99: Diseases of nervous system 0.115 2.189 15.220

H00–H59: Diseases of eye and adnexa 0.052 0.471 7.866

H60–H95: Diseases of ear and mastoid process 0.056 0.583 9.358

I00–I99: Diseases of circulatory system 0.150 3.497 17.901

J00–J99: Diseases of respiratory system 1.125 8.348 7.268

K00–K93: Diseases of digestive system 0.452 3.411 6.913

L00–L99: Diseases of skin and subcutaneous tissue 0.068 0.959 12.489

M00–M99: Musculoskeletal system and connective tissue 0.867 16.085 16.064

N00–N99: Diseases of genitourinary system 0.104 1.350 11.540

O00–O99: Pregnancy, childbirth and the puerperium 0.042 0.468 10.969

Q00–Q99: Congenital body and chromosomal abnormalities 0.007 0.190 20.050

S00–T98: Injury, poisoning and other external causes 0.322 7.166 20.081

V01–Y98: External causes of morbidity and mortality 0.000 0.007 21.011

This table reports the mean daily values per 1,000 workers for: (1) new sick leave cases, (2) total sick
workers, and (3) the duration of a sick leave case in days.
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Table A.2: Binary variables describing workers’ morbidity status in previous
eight quarters

No. ICD-10 code Variable description

1 C00-C14 Malignant neoplasms of lip, oral cavity and pharynx

2 C15-C26 Malignant neoplasms of digestive organs

3 C30-C39 Malignant neoplasms of respiratory and intrathoracic organs

4 C40-C41 Malignant neoplasms of bone and articular cartilage

5 C43-C44 Melanoma and other malignant neoplasms of skin

6 C45-C49 Malignant neoplasms of mesothelial and soft tissue

7 C50 Malignant neoplasm of breast

8 C51-C58 Malignant neoplasms of female genital organs

9 C60-C63 Malignant neoplasms of male genital organs

10 C64-C68 Malignant neoplasms of urinary tract

11 C69-C72 Malignant neoplasms of eye, brain and other parts of CNS

12 C73-C75 Malignant neoplasms of thyroid and other endocrine glands

13 C76-C80 Malignant neoplasms of ill-defined, secondary and unspecified sites

14 C81-C96 Malignant neoplasms of lymphoid, hematopoietic and related tissue

15 C97 Malignant neoplasms of independent multiple sites

16 D00-D09 In situ neoplasms

17 E10-E14 Diabetes mellitus

18 E65-E68 Obesity and other hyperalimentation

19 F00-F09 Organic mental disorders

20 F10-F19 Mental and behavioural disorders due to psychoactive substance use

21 F20-F29 Schizophrenia, schizotypal and delusional disorders

22 F30-F39 Affective disorders

23 F40-F48 Neurotic, stress-related and somatoform disorders

24 F50-F59 Behavioural syndromes associated with physiological disturbances

and physical factors

25 F60-F69 Disorders of adult personality and behaviour

26 F70-F79 Mental retardation

27 F80-F89 Disorders of psychological development

28 F90-F98 Behavioural and emotional disorders with onset usually occurring in

childhood and adolescence

29 F99 Unspecified mental disorder

30 I00-I02 Acute rheumatic fever

31 I05-I09 Chronic rheumatic heart diseases

32 I10-I15 Hypertensive diseases

33 I20-I25 Ischaemic heart diseases

34 I26-I28 Pulmonary heart disease and diseases of pulmonary circulation

35 I30-I52 Other forms of heart disease

36 I60-I69 Cerebrovascular diseases

Continued on next page
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No. Variable Description

37 I70-I79 Diseases of arteries, arterioles and capillaries

38 I80-I89 Diseases of veins, lymphatic vessels and lymph nodes

39 I95-I99 Other and unspecified disorders of the circulatory system

40 J00-J06 Acute upper respiratory infections

41 J09-J18 Influenza and pneumonia

42 J20-J22 Other acute lower respiratory infections

43 J30-J39 Other diseases of upper respiratory tract

44 J40-J47 Chronic lower respiratory diseases

45 J60-J70 Lung diseases due to external agents

46 J80-J84 Other respiratory diseases principally affecting the interstitium

47 J85-J86 Suppurative and necrotic conditions of lower respiratory tract

48 J90-J94 Other diseases of pleura

49 J95-J99 Other diseases of the respiratory system

50 M00-M03 Infectious arthropathies

51 M05-M14 Inflammatory polyarthropathies

52 M15-M19 Arthrosis

53 M20-M25 Other joint disorders

54 M30-M36 Systemic connective tissue disorders

55 M40-M43 Deforming dorsopathies

56 M45-M49 Spondylopathies

67 M50-M54 Other dorsopathies

68 O80-O82 Delivery

This table presents the morbidity variables used as input features in the gradient-boosted decision tree
model described in Section 3.2. All variables are available at the worker-quarter level. The binary indi-
cators represent the presence of various diseases during the previous eight quarters, classified according
to ICD-10 codes.
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Table A.3: Dimensions captured by residential zip code variables

No. Characteristic Description Year Source

1 Socioeconomic status Proportion of households in the zip code area

belonging to one of seven socioeconomic

status classes

2019 Acxiom

2 Ambulance stations Absolute number and number per 1,000

inhabitants in zip area of ambulance stations

storing emergency supplies

2023 OSM

3 Hospitals Absolute number and number per 1,000

inhabitants in zip area of hospitals

2023 OSM

4 Clinics Absolute number and number per 1,000

inhabitants in zip area of medical centres

(have more staff than a doctor’s office, but do

not admit inpatients)

2023 OSM

5 Doctors Absolute number and number per 1,000

inhabitants in zip area of doctor offices

2023 OSM

6 Pharmacies Absolute number and number per 1,000

inhabitants in zip area of pharmacies

2023 OSM

7 Playgrounds Absolute number and number per 1,000

inhabitants in zip area of children’s

playgrounds

2023 OSM

8 Public baths Absolute number and number per 1,000

inhabitants in zip area of public baths

2023 OSM

9 Fitness centers Absolute number and number per 1,000

inhabitants in zip area of fitness centers

2023 OSM

10 Outdoor fitness

stations

Absolute number and number per 1,000

inhabitants in zip area of outdoor facilities for

street workouts (e.g. calisthenics parks, trim

trails)

2023 OSM

11 Pitchs Absolute number and number per 1,000

inhabitants in zip area in zip area pitches

(e.g. tennis courts, basketball courts, ball

parks, and riding arenas)

2023 OSM

12 Sports halls Absolute number and number per 1,000

inhabitants in zip area of sports hall for

indoor sports indoor

2023 OSM

13 Tracks Absolute number and number per 1,000

inhabitants in zip area of tracks for running,

cycling and other non-motorised racing

2023 OSM

Continued on next page
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No. Characteristic Description Year Source

14 Universities Absolute number and number per 1,000

inhabitants in zip area of university buildings

(higher education)

2023 OSM

15 Colleges Absolute number and number per 1,000

inhabitants in zip area of colleges buildings

(further education/continuing education)

2023 OSM

16 Social facilities Absolute number and number per 1,000

inhabitants in zip area of social facilities (e.g.

drug clinics, workshops for physically

disabled people, homeless shelters)

2023 OSM

17 Commercial area Absolute area of land used for commercial

purposes in square meters, and its share

relative to the total area of the zip code

2023 OSM

18 Constructions Absolute area of land being built on in square

meters, and its share relative to the total area

of the zip code

2023 OSM

19 Farmland Absolute area of farmland used for tillage in

square meters, and its share relative to the

total area of the zip code

2023 OSM

20 Forest Absolute area of forest or woodland in square

meters, and its share relative to the total area

of the zip code

2023 OSM

21 Gardens Absolute area of garden in square meters, and

its share relative to the total area of the zip

code

2023 OSM

22 Industrial area Absolute area of land used for industrial

purposes in square meters, and its share

relative to the total area of the zip code

2023 OSM

23 Nature reserves Absolute area of protected nature in square

meters, and its share relative to the total area

of the zip code

2023 OSM

24 Parks Absolute area of parks in square meters, and

its share relative to the total area of the zip

code

2023 OSM

25 Recreation ground Absolute area for general recreation in square

meters, and its share relative to the total area

of the zip code

2023 OSM

26 Residential area Absolute area in primary use by humans in

square meters, and its share relative to the

total area of the zip code

2023 OSM

Continued on next page
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No. Characteristic Description Year Source

27 Retail area Absolute area used predominantly for shops

in square meters, and its share relative to the

total area of the zip code

2023 OSM

28 Water Absolute area of all inland bodies of water

(naturally occurring and man made) in

square meters, and its share relative to the

total area of the zip code

2023 OSM

29 Coastline Absolute length of coastline in meters and

length per inhabitants in zip area

2023 OSM

30 Age Average age in years and age distribution by

age group (<10, 10–19, 20–29, ..., 80+) of the

population in years and percentage share of

people

2011 Census

31 Share of foreigners Percentage share of foreigners in the total

population

2011 Census

32 Country of birth Percentage share of persons by birth country

(Germany, EU-27, other Europe, other world,

unknown)

2011 Census

33 Citizenship Percentage share of persons by citizenship

across regions (Germany, EU-27, other

Europe, other world, unknown) and for

selected countries (e.g. Bosnia and

Herzegovina, Greece, Italy)

2011 Census

34 Number of citizenships Percentage share of persons by number of

citizenship (one, several foreign, German and

foreign, unknown)

2011 Census

35 Household size Average number of individuals belonging to

one household and percentage share of

households by number of persons (1 to 6+

persons)

2011 Census

36 Household type Percentage share of households by type

(couples without children, without children,

single parents, multi-person non-family)

2011 Census

37 Size of nuclear family Percentage share of households by family size

(2 to 6+ persons)

2011 Census

38 Family type Percentage share of households by family

types (categorized by relationship status and

child presence)

2011 Census

39 Senior citizen status Percentage share of households with senior

citizens (only senior citizens, with senior

citizens, no senior citizens)

2011 Census

Continued on next page
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No. Characteristic Description Year Source

40 Flat vacancy Proportion of flats that are vacant 2011 Census

41 Living space per

inhabitant

Average living space per resident in square

meters

2011 Census

42 Marital status Percentage share of people by marital status

(e.g. married, widowed, divorced,

registered-partnership)

2011 Census

43 Sex Percentage share of persons by sex (male,

female)

2011 Census

44 Religion Percentage share of people by religion (roman

catholic church, protestant church, unknown )

2011 Census

45 Construction year Percentage share of buildings and flats by

built year (<1919 to >2009) )

2011 Census

46 Ownership type Percentage share of buildings and flats by

owner type (e.g. private, community, state)

2011 Census

47 Type of building Percentage share of buildings by type (e.g.

residential, dormitories)

2011 Census

48 Building type size Percentage share of buildings and flats by

type (e.g. detached single family house,

multi-family house)

2011 Census

49 Type of heating Percentage share of buildings and flats by

type of heating (district, floor, block, central,

single/multi-room furnaces, none)

2011 Census

50 Occupancy type Percentage share of apartments by occupancy

type (e.g. owned, rented, leisure, vacant)

2011 Census

51 Number of rooms Percentage share of apartments by number of

rooms (1 to 7+)

2011 Census

52 Apartment size Percentage share of apartments by size in

square meters (<30, 30-39, 40-49,..., 180+)

2011 Census

This table reports the time-invariant characteristics of workers’ residential zip codes used as input
features in the gradient-boosted decision tree model described in Section 3.2. All variables are available
at the zip code level for the year indicated in the table. The data come from Acxiom, OpenStreetMap
(OSM), and the 2011 census from the Federal Statistical Office. The listed characteristics summarize
the dimensions included in the model; each characteristic may be measured using multiple underlying
variables.
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Table A.4: Descriptive statistics on heat

(1) (2) (3) (4)

mean sd min max

Heat days

Number of heat days 5.227 4.983 0.000 28.000

Apparent heat days

Number of apparent heat days 4.895 4.324 0.000 26.000

Tropical nights

Number of tropical nights 2.132 3.092 0.000 23.000

Heat intensity

Minimum heat temperature (°C) 30.348 0.770 25.749 35.168

Mean heat temperature (°C) 31.318 0.862 25.985 35.168

Maximum heat temperature (°C) 32.584 1.750 25.985 39.156

Heat duration

Number of 1 heat day in a row 2.814 2.238 0.000 13.000

Number of 2 heat days in a row 1.274 1.392 0.000 8.000

Number of 3 heat days in a row 0.596 0.836 0.000 5.000

Number of 4 heat days in a row 0.301 0.562 0.000 3.000

Number of 5 heat days in a row 0.119 0.339 0.000 3.000

Number of 6 heat days in a row 0.059 0.235 0.000 2.000

Number of 7 heat days in a row 0.029 0.166 0.000 1.000

Number of 8 heat days in a row 0.018 0.132 0.000 1.000

Number of 9 or more heat days in a row 0.018 0.204 0.000 4.000

The table reports summary statistics on the occurrence of heat by year and zip code area for our
study period (2007–2020) covering 8,174 German zip code areas. We present statistics for: (i) the total
number of heat days (≥30°C) per year and zip code area, (ii) the total number of apparent heat days,
(iii) the number of tropical nights, (iv) the minimum, mean, and maximum temperatures during heat
periods (heat intensity), and (v) the number of consecutive heat days ranked from the 1st to the 9th
day or more with temperatures ≥30°C (heat duration).
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Table A.5: Employment survey questions

Number Question

(i) Heat/cold exposure

F600 05 How often do they work under cold, heat, wet, damp or draught ?

(ii) Outdoor exposure

F600 Do you work outdoors for more than half of your working hours?

(iii) Physical work

F600 01 How often do you work while standing?

F600 03 How often do you lift or carry loads greater than 20kg (men)/ 10kg (women)?

F600 01 How often do you have to use your hands to perform tasks that require high skillfulness,

rapid sequences of movements, or greater forces?

F600 01 How often do you work in a stooped, squatting, kneeling position or overhead?

(iv) Flexibility

F700 02 How often does it happen that you can plan and schedule your own work?

F700 03 How often does it happen that you have influence over the amount of work assigned to

you?

(v) Satisfaction

F700 06 How often does it happen that you can decide for yourself when to take a break?

F1451 How satisfied are you with your work overall?

This table lists the questions from the survey of the Federal Institute for Vocational Education and
Training (Gensicke and Tschersich 2018), based on which we characterize the occupations groups in our
analysis. We match the questions to five dimensions capturing to what extent employees (i) work under
very high and very low temperatures, (ii) work outdoors, (iii) perform physically demanding tasks, (iv)
are free to schedule and adjust their working hours, and (v) are satisfied with their job.
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Table A.6: Lagged effects of heat days on sick leave

Sick leave cases per 1,000 workers

(1) (2) (3)

Heat day 0.091∗∗∗ 0.098∗∗∗ 0.096∗∗∗

s.e. (0.009) (0.009) (0.009)

r.e. [ 2.261] [ 2.431] [ 2.379]

Day 1 after heat day 0.097∗∗∗ 0.091∗∗∗ 0.091∗∗∗

s.e. (0.009) (0.009) (0.009)

r.e. [ 2.420] [ 2.269] [ 2.262]

Day 2 after heat day 0.027∗∗∗ 0.029∗∗∗

s.e. (0.006) (0.006)

r.e. [ 0.671] [ 0.710]

Day 3 after heat day -0.008

s.e. (0.006)

r.e. [-0.194]

This table reports estimates of the effect of an average heat day on the days
following the heat day. The dependent variable refers to new sick leave cases
per 1,000 workers. In all regressions, we include controls for age, sex, public
holidays, and precipitation as well as year x week, zip x month, day-of-the-
week x month, and day-of-the-year fixed effects. The regressions are weighted
by the number of workers per zip-age-gender cell. Standard errors in round
parentheses are clustered at the county level. Relative effects in percent are
in square parentheses. The sample size is 57, 292, 664 .
* p < .05, ** p < .01, *** p < .001.
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Table A.7: Different measures of heat exposure

Sick leave cases per 1,000 workers

(1) (2) (3)

Regular temperature 0.095∗∗∗ 0.146∗∗∗ 0.152∗∗∗

s.e. (0.015) (0.016) (0.016)

r.e. [2.217] [3.409] [3.546]

(4) (5) (6)

Apparent heat day 0.120∗∗∗ 0.192∗∗∗ 0.174∗∗∗

s.e. (0.013) (0.012) (0.013)

r.e. [2.792] [4.475] [4.064]

(7) (8) (9)

Tropical night 0.070∗∗∗ 0.081∗∗∗ 0.100∗∗∗

s.e. (0.017) (0.016) (0.016)

r.e. [1.638] [1.903] [2.347]

Fixed effects

year x week yes yes yes

zip yes no no

day-of-the-week yes no no

zip x month no yes yes

day-of-the-week x month no yes yes

day-of-the-year no no yes

This table reports estimates of the effect of an average heat day on sick leave
following Equation (1). The dependent variable refers to new sick leave cases per
1,000 workers. Panel A reports the effect of a heat day, defined using regularly
measured temperatures as in Table 1. Panel B reports the effect of heat days
defined using apparent temperatures, which account for humidity. Panel C reports
the effect of a tropical night, defined as a night in which the minimum temperature
does not fall below 20°C. In all regressions, we include controls for age, sex, public
holidays, and precipitation. The regressions are weighted by the number of workers
per zip-age-gender cell. Standard errors in round parentheses are clustered at the
county level. Relative effects in percent are in square parentheses. The sample size
is 13, 293, 949 in Panel A, 13, 075, 890 in Panel B, and 11, 283, 177 in Panel C.
* p < .05, ** p < .01, *** p < .001.
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Table A.8: Different forms of heat exposure

Heat duration Heat intensity

(1) (2)

Heat day 1 0.154∗∗∗ T <= 30.5°C 0.148∗∗∗

s.e. (0.016) s.e. (0.017)

r.e. [ 3.579] r.e. [ 3.448]

Heat day 2 0.133∗∗∗ T ∈ (30.5°, 31.0°C] 0.151∗∗∗

s.e. (0.017) s.e. (0.021)

r.e. [ 3.098] r.e. [ 3.513]

Heat day 3 0.215∗∗∗ T ∈ (31.0°C, 31.5°C] 0.166∗∗∗

s.e. (0.021) s.e. (0.020)

r.e. [ 5.010] r.e. [ 3.874]

Heat day 4 0.170∗∗∗ T ∈ (31.5°C, 32.0°C] 0.162∗∗∗

s.e. (0.024) s.e. (0.019)

r.e. [ 3.961] r.e. [ 3.777]

Heat day 5 0.250∗∗∗ T ∈ (32.0°C, 32.5°C] 0.129∗∗∗

s.e. (0.037) s.e. (0.021)

r.e. [ 5.817] r.e. [ 3.010]

Heat day 6 0.170∗∗∗ T ∈ (32.5°C, 33.0°C] 0.125∗∗∗

s.e. (0.038) s.e. (0.022)

r.e. [ 3.952] r.e. [ 2.922]

Heat day 7 0.236∗∗∗ T ∈ (33.0°C, 33.5°C] 0.125∗∗∗

s.e. (0.049) s.e. (0.024)

r.e. [ 5.505] r.e. [ 2.903]

Heat day 8 0.463∗∗∗ T ∈ (33.5°C, 34.0°C] 0.119∗∗∗

s.e. (0.065) s.e. (0.022)

r.e. [10.787] r.e. [ 2.783]

Heat day 9 0.476∗∗∗ T > 34.0°C 0.028

s.e. (0.085) s.e. (0.022)

r.e. [11.089] r.e. [ 0.642]

This table reports how the effects of heat vary by (1) duration of exposure (i.e. the number of con-
secutive heat days) and (2) intensity of exposure (i.e. the temperature of a heat day). The dependent
variable is the number of new sick leave cases per 1,000 workers. The regressions include zip area–month,
year–week, day-of-the-week–month, and day-of-the-year fixed effects. We include controls for age, sex,
public holidays, and precipitation. The regressions are weighted by the number of workers per zip-age-
gender cell. Standard errors are clustered at the county level. The sample size is 13,293,949.
* p < .05, ** p < .01, *** p < .001.
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Table A.9: Adding controls for vacation days

Sick leave cases per 1,000 workers

Panel A: Including controls for vacation days

(1) (2) (3)

Heat day 0.088∗∗∗ 0.145∗∗∗ 0.148∗∗∗

s.e. (0.015) (0.016) (0.016)

r.e. [2.049] [3.381] [3.438]

Panel B: Including separate controls by vacation type

(4) (5) (6)

Heat day 0.098∗∗∗ 0.153∗∗∗ 0.154∗∗∗

s.e. (0.016) (0.016) (0.016)

r.e. [2.289] [3.575] [3.591]

Fixed effects

year x week yes yes yes

zip yes no no

day-of-the-week yes no no

zip x month no yes yes

day-of-the-week x month no yes yes

day-of-the-year no no yes

This table replicates Table 1 with additional controls for vacation days. Panel A regressions include
one dummy variable that equals one if the day of observation is a vacation day. Panel B regressions
include five dummy variables that are equal to one if the day of observation coincides with winter,
spring, pentecost, summer, fall, or winter vacation respectively. Fixed effects become more stringent
from column (1) to (3). The dependent variable refers to new sick leave cases per 1,000 workers. In
all regressions, we include controls for age, sex, public holidays, and precipitation. The regressions are
weighted by the number of workers per zip-age-gender cell. Standard errors in round parentheses are
clustered at the county level. Relative effects in percent are in square parentheses. The sample size is
13, 293, 949 . * p < .05, ** p < .01, *** p < .001.
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Table A.10: Restricting the sample to summer months

Sick leave cases per 1,000 workers

(1) (2) (3)

Heat day 0.146∗∗∗ 0.124∗∗∗ 0.136∗∗∗

s.e. (0.012) (0.012) (0.013)

r.e. [4.078] [3.465] [3.815]

Fixed effects

year x week yes yes yes

zip yes no no

day-of-the-week yes no no

zip x month no yes yes

day-of-the-week x month no yes yes

day-of-the-year no no yes

This table replicates Table 1 while restricting the sample to the summer months May through Septem-
ber. Fixed effects become more stringent from column (1) to (3). The dependent variable refers to
new sick leave cases per 1,000 workers. In all regressions, we include controls for age, sex, public holi-
days, and precipitation. The regressions are weighted by the number of workers per zip-age-gender cell.
Standard errors in round parentheses are clustered at the county level. Relative effects in percent are
in square parentheses. The sample size is 13, 077, 280 . * p < .05, ** p < .01, *** p < .001.
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Table A.11: ICD-10 disease groups

Chapter ICD-10 code Group name Figure label

I A00–B99 Infectious and parasitic diseases Infectious diseases
II C00–D48 Neoplasms Neoplasms
III D50–D89 Blood, blood-forming organs, immune mechanism Blood & immune mechanism
IV E00–E90 Endocrine, nutritional and metabolic diseases Endocrine & metabolic
V F00–F99 Mental and behavioural disorders Mental disorders
VI G00–G99 Diseases of nervous system Nervous system
VII H00–H59 Diseases of eye and adnexa Eye diseases
VIII H60–H95 Diseases of ear and mastoid process Ear diseases
IX I00–I99 Diseases of circulatory system Circulatory system
X J00–J99 Diseases of respiratory system Respiratory system
XI K00–K93 Diseases of digestive system Digestive system
XII L00–L99 Diseases of skin and subcutaneous tissue Skin & subcutaneous tissue
XIII M00–M99 Musculoskeletal system and connective tissue Musculoskeletal system
XIV N00–N99 Diseases of genitourinary system Genitourinary system
XV O00–O99 Pregnancy, childbirth and the puerperium Pregnancy & childbirth
XVI P00–P96 Conditions originating in the perinatal period Perinatal conditions
XVII Q00–Q99 Congenital body and chromosomal abnormalities Congenital abnormalities
XIX S00–T98 Injury, poisoning and other external causes Injury & poisoning
XX V01–Y98 External causes of morbidity and mortality External causes

This table provides an overview of how the diseases listed in Figure 4 are defined in terms of ICD-10
codes.
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Table A.12: CLAN results comparing high-risk and low-risk
workers

Absolute differences

coef. s.e.

Age (in years) 1.564 (0.007)

Female share -0.072 (0.001)

Number of doctor visits (last 8 quarters) 4.084 (0.006)

Relative differences (%)

coef. s.e.

Cancer (ICD-10: C00-D09) 47.793 (0.027)

Diabetes (ICD-10: E10-E14) 40.922 (0.019)

Adiposity (ICD-10: E65-E68) 33.356 (0.015)

Affective disorders (ICD-10: F30-F39) 48.242 (0.015)

High blood pressure (ICD-10: I10-I15) 23.470 (0.009)

Cerebrovascular diseases (ICD-10: I60-I69) 56.464 (0.037)

Acute respiratory diseases (ICD-10: J00-J22) 18.993 (0.007)

Chronic respiratory diseases (ICD-10: J40-J47) 39.260 (0.010)

Arthritis (ICD-10: M00-M25) 24.844 (0.012)

Diseases of spine and back (ICD-10: M40-M54) 29.461 (0.010)

The table reports CLAN regression estimates comparing workers in the top
decile [90,100] of the predicted heat-absence risk distribution to those in the
bottom half [0,50). All regressions except the first two include controls for age
and sex. The upper panel presents absolute differences in demographic and
healthcare-related variables. The lower panel reports relative differences in the
prevalence of chronic conditions to facilitate comparison across diseases with
differing baseline frequencies. All differences are statistically significant at the
0.1% level.
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Table A.13: Differences in occupational characteristics between the risk groups

(i) Share

frequently

exposed

to

extreme

heat/cold

(ii) Share

frequently

working

outdoors

(iii)

Physical

intensity

score of

occupa-

tion

(iv)

Flexibility

score of

occupa-

tion

(v) Satis-

faction

score of

occupa-

tion

(vi)

Median

income of

occupa-

tion

Risk group 2: [50, 75) 1.081∗∗∗ 1.046∗∗∗ 1.215∗∗∗ -13.193∗∗∗ -0.807∗∗∗ -0.734∗∗∗

s.e. (0.051) (0.062) (0.206) (0.177) (0.012) (0.016)

Risk group 3: [75, 90) 4.538∗∗∗ 4.040∗∗∗ 15.464∗∗∗ -35.804∗∗∗ -1.955∗∗∗ -1.478∗∗∗

s.e. (0.054) (0.079) (0.210) (0.147) (0.011) (0.017)

Risk group 4: [90, 95) 7.314∗∗∗ 7.603∗∗∗ 21.870∗∗∗ -42.836∗∗∗ -2.510∗∗∗ -2.116∗∗∗

s.e. (0.057) (0.093) (0.259) (0.207) (0.013) (0.020)

Risk group 5: [95, 99) 9.224∗∗∗ 10.319∗∗∗ 25.132∗∗∗ -43.419∗∗∗ -2.675∗∗∗ -2.517∗∗∗

s.e. (0.063) (0.102) (0.316) (0.292) (0.018) (0.024)

Risk group 6: [99, 100] 11.377∗∗∗ 14.521∗∗∗ 23.339∗∗∗ -39.958∗∗∗ -2.780∗∗∗ -2.962∗∗∗

s.e. (0.103) (0.189) (0.409) (0.371) (0.027) (0.039)

The table reports CLAN results. The estimated coefficients indicate the average percentage difference
between workers in the six risk groups illustrated in Figure 5, i.e. groups with the 0th, 50th, 75th, 90th,
95th, and 99th percentiles as lower interval bounds. Group one with the lowest predicted risk in the
quantile [0,50) represents the reference group. The sample size is 4, 049, 603, 787 .
* p < .05, ** p < .01, *** p < .001.
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Table A.14: Pooled long-term effect of heat wave exposure

Expenditures for Expenditures for

sick leave compensation doctor visits

(in Euro) (in Euro)

A. Average effect of heat wave day across risk groups

(1) (2)

All risk groups 904.911∗∗∗ 41.364∗

s.e. (228.207) ( 19.502)

r.e. [0.221] [0.035]

B. Effect of heat wave day by risk groups

(3) (4)

Risk group 1-3 776.394∗∗∗ 24.349

s.e. ( 227.845) ( 19.938)

r.e. [ 19.267] [ 0.020]

Risk group 4 2,347.360∗∗∗ 197.878∗∗∗

s.e. ( 286.816) ( 43.023)

r.e. [ 58.253] [ 0.166]

Risk group 5 4,682.843∗∗∗ 627.613∗∗∗

s.e. ( 367.717) ( 59.022)

r.e. [116.211] [ 0.526]

Risk group 6 9,613.696∗∗∗ 1,203.578∗∗∗

s.e. (1,502.208) ( 237.138)

r.e. [238.577] [ 1.009]

This table reports estimates of the long-term effect of an average heat wave day. The dependent variable
refers to either the expenditures (in Euro) for (i) sick leave compensation in the current quarter or (ii) the
average number of outpatient treatments by a doctor over the previous eight quarters, both measured
per 1,000 workers and quarter. Risk group 1-3 refers to workers with a predicted heat-absence risk in
the [0, 90) percentile-interval, risk group 4 to the [90, 95), risk group 5 to the [95, 99), and risk group 6
to the [99, 100] percentile-interval, respectively. The regressions include zip area–year and state–year–
quarter fixed effects. We include controls for sex and precipitation. The regressions are weighted by
the number of workers per zip-sex-risk group cell. Standard errors in round parentheses are clustered
at the county level. Relative effects in percent are in square parentheses. The sample size is 935,579.
* p < .05, ** p < .01, *** p < .001.
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B Figures

Figure B.1: Heat effects across disease groups by exposure duration and intensity
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The figure illustrates how the effects of heat vary by duration (i.e. the number of consecutive heat days)
and intensity of exposure (i.e. the average temperature of a heat period). The dependent variable is the
number of new sick leave cases per 1,000 workers, specific to the disease group indicated in each subplot
title. The regressions include zip area–month, year–week, day-of-the-week–month, and day-of-the-year
fixed effects. We include controls for age, sex, public holidays, and precipitation. The regressions are
weighted by the number of workers per zip-age-gender cell. Standard errors are clustered at the county
level. Confidence intervals refer to the 5% level of significance.
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Figure B.2: Risk group distribution by occupation
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This figure displays the distribution of workers across risk groups for every occupation group. Occupa-
tion groups are classified by the 2-digit KldB code and shown in each subplot title. Bars show each risk
group’s relative deviation, in percent, from the mean share of workers in that risk group across all oc-
cupations. Positive values indicate overrepresentation in the occupation, while negative values indicate
underrepresentation. For example, a value of 20% for Risk Group 1 means that the share of workers
with the lowest heat-absence risk is 20% higher relative to the overall mean across all occupations.
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Figure B.3: Event-study estimates of heat wave effects on cause-specific sick
leave days among male workers

i) Infectious/parasitic

diseases (A00-B99)

ii) Neoplasms

(C00-D49)

iii) Blood/immune

system diseases (D50-D89)
iv) Endocrine/metabolic

diseases (E00-E89)

v) Mental/cognitive

disorders (F01-F99)

vi) Nervous system

diseases (G00-G99)
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vii) Eye disease

(H00-H59)

viii) Ear disease

(H60-H95)

ix) Circulatory diseases

(I00-I99)

x) Respiratory diseases

(J00-J99)

xi) Digestive diseases

(K00-K95)

xii) Skin disease

(L00-L99)

xiii) Musculoskeletal

diseases (M00-M99)

xiv) Genitourinary

disorders (N00-N99)
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xix) Injuries and external

causes (S00-T88)

This figure illustrates the effects of heat wave days in the years prior and post to exposure among
male workers. The dependent variable refers to the number of cause-specific sick leave days per 1,000
workers and quarter. The regressions include zip area–year and state–year–quarter fixed effects. We
include controls for sex and precipitation. The regressions are weighted by the number of workers per
zip-sex-risk group cell. Standard errors are clustered at the county level. The sample size is 935,579.
Confidence intervals refer to the 5% level of significance.
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Figure B.4: Event-study estimates of heat wave effects on cause-specific sick
leave days among female workers

i) Infectious/parasitic

diseases (A00-B99)
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(C00-D49)

iii) Blood/immune

system diseases (D50-D89)
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vi) Nervous system

diseases (G00-G99)
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vii) Eye disease

(H00-H59)
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(H60-H95)
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(I00-I99)
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(J00-J99)

xi) Digestive diseases

(K00-K95)

xii) Skin disease
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xv) Maternal health

causes (O00-O9A)

xix) Injuries and external

causes (S00-T88)

This figure illustrates the effects of heat wave days in the years prior and post to exposure among
female workers. The dependent variable refers to the number of cause-specific sick leave days per 1,000
workers and quarter. The regressions include zip area–year and state–year–quarter fixed effects. We
include controls for sex and precipitation. The regressions are weighted by the number of workers per
zip-sex-risk group cell. Standard errors are clustered at the county level. The sample size is 935,579.
Confidence intervals refer to the 5% level of significance.
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Figure B.5: Placebo event-study estimates of long-term effects of heat waves

i) Sick leave compensation costs

(current quarter)

ii) Expenditures for doctor visits

(prior eight quarters)

This figure illustrates the placebo effects of heat wave days in the years prior and post to exposure.
The dependent variable refers to either the expenditures (in Euro) for (i) sick leave compensation in
the current quarter or (ii) the average number of outpatient treatments by a doctor over the previous
eight quarters, both measured per 1,000 workers and quarter. The regressions include zip area–year
and state–year–quarter fixed effects. We include controls for sex and precipitation. The regressions are
weighted by the number of workers per zip-sex-risk group cell and the treatment variable is randomized
across the zip-sex-risk group cells. Standard errors are clustered at the county level. Confidence intervals
refer to the 5% level of significance.
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Figure B.6: Event-study estimates of long-term effects of heat waves on health

i) Sick leave compensation costs

(current quarter)

Average total effect: 15, 675.172∗∗∗(4, 269.675)

ii) Expenditures for doctor visits

(prior eight quarters)

Average total effect: 2, 177.690∗∗∗(649.363)

This figure illustrates the effects of heat wave days in the years prior and post to exposure using the
estimator robust to heterogeneous treatment effects proposed by De Chaisemartin and d’Haultfoeuille
(2024). We estimate event-study effects that are normalized by the average cumulative incremental
treatment dose received, and restrict the estimation to switchers for which all effects can be estimated,
to avoid compositional changes. The dependent variable refers to either the expenditures (in Euro) for
(i) sick leave compensation in the current quarter or (ii) the average number of outpatient treatments
by a doctor over the previous eight quarters, both measured per 1,000 workers and year. The data are
aggregated to the year-zip level and the regressions include zip and state–year fixed effects. We include
controls for precipitation. The regressions are weighted by the number of workers per zip cell. Standard
errors are clustered at the county level. The sample size is 72,862. Confidence intervals refer to the 5%
level of significance.
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C Implementation of ML-based heterogeneity analysis

Implementing the ML-based heterogeneity analysis involves practical implementation

challenges because of the size of the individual-level data. Therefore, we restrict the

analyses to observations occurring in the warmer months May through September. Ad-

ditionally, we train not a single prediction model based on the observations in our control

group, but randomly divide the control observations into three subsets and train a sep-

arate model on each subset. The predicted control values for the main dataset are then

averaged across the three models.

We also account for the relatively low probability of a new sick leave case on any given

day and follow Deryugina et al. (2019) by using a downsampling method. Further

details on this method are provided in Einav et al. 2018. We then run the regressions

on equally sized partitions of the data to aggregate the coefficients and standard errors

subsequently. To this end, we split the data randomly into 250 partitions that contain

13,780,187 observations each. To aggregate the results, we calculate the mean of the

estimated coefficients and divide the mean of the estimated standard errors by the square

root of 250. Due to long computing times, we do not repeat our estimation 100 times

as recommended by Chernozhukov et al. (2018) and argue that splitting variation is a

minor concern given our large sample sizes (see Deryugina et al. 2019). In all analyses,

we include only observations with an estimated propensity score between 0.025 to 0.975

to reduce noise.
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D Comparison of effect size with literature on stroke survivors

While suitable benchmarks for our estimates of the long-term effects of heat waves in

Section 4.3 are scarce, we aim to provide some context using available literature. To

this end, we compare them to the costs occurring for ischemic stroke survivors in post-

incident years.

The study by Kolominsky-Rabas et al. (2006) shows that the mean annual healthcare

costs per survivor of a stroke in Germany amount to 7,012.37€ in the years two through

five after the stroke occurred. Of these costs 3,433.87€ accumulate for outpatient ser-

vices like doctor visits and prescriptions.28 The annual costs for doctor visits linked to a

three-day heat wave according to our estimates are 0.50€ per worker (124€ · 4 quarters

/ 1,000 workers). This implies that exposing approximately 6,868 workers (3,433.87€ /

0.50€) to a severe heatwave results in long-term costs for doctor visits comparable to

those of all outpatient costs incurred by a single additional stroke survivor.

Moreover, in a study on Denmark, Skajaa et al. (2023) show that in the second year

after a stroke, survivors experience a 2.89-fold higher prevalence of sick leave, beyond the

baseline rate observed in the general population.29 Our data reveals that, on average,

workers accumulate 17.18 sick leave days per year. The average median income per day

across occupation groups is 101.58€. Accordingly, the annual additional sick leave costs

linked to a stroke are about 5,043.47€ (2.89 · 17.18 days · 101.58€). The annual per

capita costs for sick leave-related income compensation linked to a three-day heat wave

according to our estimates are 10.86€ (2,715€/quarter · 4 quarters / 1,000 workers).

This implies that exposing approximately 464 workers (5,043.47€/ 10.86€) to a severe

heatwave results in long-term sick leave costs comparable to those incurred by a single

additional stroke survivor.

28Kolominsky-Rabas et al. 2006 report costs of 5,479€ in total and 2,683€ for outpatient
services in Germany in 2004 values in their Table 1, which we adjust for inflation to obtain
the 2020 values of 7,012.37€ and 3,433.87€.

29We derive this number from Table 2 in the study by Skajaa et al. 2023.
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E Disease-specific extensive margins in long-term heat wave ef-

fects

The long-term effects on sick leave and outpatient care documented in Section 4.3 may

be driven by several causes. Here, we explore disease-specific channels operating on the

extensive margin. To this end, we use available data on the number of workers diag-

nosed with three selected diseases that typically require long-term treatment: ischemic

heart diseases (I20-I25), cerebrovascular diseases such as stroke (I60-I69), and affective

disorders such as recurrent depressive episodes (F30-F39). We observe the prevalence

of these diseases at a quarterly frequency for each worker recorded over the preceding

eight quarters.

Figure E.7 presents event-study estimates with patterns suggesting that heat waves

contribute to new diagnoses of workers with cerebrovascular and affective disorders. We

also estimate pooled post-treatment effects in Table E.15. Accordingly, for every 1,000

individuals exposed to a three-day heat wave, we observe 0.183 (0.061 · 3) additional

diagnoses of cerebrovascular diseases which corresponds to an increase of about 1%.

Moreover, our results suggest 0.462 (0.154 ·3) additional diagnoses of affective disorders,

which corresponds to a 0.35% increase. The estimates are economically meaningful and

suggest that heat wave exposure can increase the number of diagnosed diseases that

often come with longer-term treatment.

Figure E.7: Event-study estimates of heat wave effects on prevalence of specific
diagnoses

i) Ischemic heart diseases
(I20-I25)

ii) Cerebrovascular diseases
(I60-I69)

iii) Affective disorders
(F30-F39)

This figure illustrates the effects of heat wave days in the years prior and post to exposure. The
dependent variable refers to the number of workers diagnosed with either (i) cerebrovascular diseases,
(ii) ischemic heart diseases, or (iii) affective disorders measured in every quarter over the previous eight
quarters per 1,000 workers. The regressions include zip area–year and state–year–quarter fixed effects.
We include controls for sex and precipitation. The regressions are weighted by the number of workers
per zip-sex-risk group cell. Standard errors are clustered at the county level. The sample size is 935,579.
Confidence intervals refer to the 5% level of significance.
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Table E.15: Pooled post-treatment effect of heat waves on prevalence of specific
diagnoses

Workers diagnosed per 1,000 workers

Ischemic heart disease Cerebrovascular disease Affective disorder

(I20-I25) (I60-I69) (F30-F39)

(1) (2) (3)

Heat wave day 0.049 0.061∗ 0.154∗∗

s.e. (0.032) (0.03) (0.057)

r.e. [0.137] [0.331] [0.116]

This table reports estimates of the effect of an average heat wave day on the prevalence of specific
diseases. The dependent variable refers to the number of workers diagnosed with either (i) ischemic
heart disease, (ii) cerebrovascular disease, or (iii) affective disorder measured in every quarter over the
previous eight quarters per 1,000 workers. The regressions include zip area–year and state–year–quarter
fixed effects. We include controls for sex and precipitation. The regressions are weighted by the number
of workers per zip-sex-risk group cell. Standard errors are clustered at the county level. The sample
size is 935,579. Confidence intervals refer to the 5% level of significance. Standard errors in round
parentheses are clustered at the county level. Relative effects in percent are in square parentheses. The
sample size is 935,579. * p < .05, ** p < .01, *** p < .001.

We argue that the findings speak to the existence of two possible channels on the ex-

tensive margin. First, heat waves trigger the onset of new conditions, representing

significant health shocks that can persistently impair workers’ health and ability to

work. This is especially relevant for cerebrovascular diseases (I60-I69), which predom-

inantly involve acute, sudden-onset events such as strokes and hemorrhages. Although

some underlying vascular pathologies may develop gradually over time, the transition

to clinically manifest events that lead to diagnosis and necessitate long-term treatment

is typically abrupt and severe. Extended care is common in these cases. In particular,

stroke survivors often require rehabilitation and ongoing medical support due to last-

ing physical, cognitive, or functional impairments (see Section D). Second, heat waves

may temporarily exacerbate existing symptoms, prompting individuals to seek medical

attention and leading to the diagnosis of preexisting but previously undetected con-

ditions. This channel is particularly relevant for mental health, where prior research

has demonstrated a robust association between heat exposure and worsening psycho-

logical outcomes (Mullins and White 2019, Obradovich et al. 2018, Burke et al. 2018).

In line with this evidence, heat waves may intensify mental health symptoms to the

point of clinical recognition, resulting in new diagnoses among individuals who had not

previously engaged with the healthcare system. Among mood disorders (F30–F39), the

most common diagnoses, such as depressive and recurrent depressive episodes, typically
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develop gradually. In such cases, heat-induced symptom aggravation may serve as a

catalyst for diagnosis rather than indicating the onset of entirely new mental illnesses,

highlighting a potential role of extreme temperatures in revealing latent disease burdens.
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F Long-term heat wave effects on pharmaceutical and hospital

admission expenditures

In this section, we study the impact of heat waves on two additional outcome variables

measuring healthcare demand. The first variable is the number of distinct pharmaceuti-

cals prescribed over the previous eight quarters, identified at the three-digit code of the

Anatomical Therapeutic Chemical (ATC) classification system for pharmaceuticals.3031

Similar to the doctor visit outcome variable discussed in Section 2.2, this variable is

available only in biannual aggregates, and the exact timing of prescriptions within each

period is unknown. Interpretation is further complicated by the fact that, although

the variable measures the number of distinct pharmaceuticals a patient receives over

an eight-quarter period, it does not account for prescription frequency, i.e., whether

each pharmaceutical is prescribed only once or on multiple occasions across quarters.

Consequently, the variable should be viewed as reflecting the level of co-morbidity by

capturing the diversity of conditions requiring pharmaceutical treatment. It does not

provide information on the severity of morbidity, which may stem from multiple con-

ditions or a single disease. To adopt a conservative approach, we assume each distinct

pharmaceutical is prescribed only once over the observed eight quarters, dividing the

variable by eight to approximate a quarterly measure. We then multiply this quarterly

estimate by 64.02€, the average cost per pharmaceutical prescription in 2020 values

(Wissenschaftliches Institut der AOK 2020).

The second outcome is the number of hospital treatments with distinct discharge di-

agnoses in the previous quarter, identified at the three-digit ICD-10 code level.32 This

variable is reported quarterly; however, similar to the prescription outcome, it does not

capture repeated hospital admissions for the same ICD diagnosis. To obtain a cost

estimate, we multiply this variable by 5,125.77€, representing the average cost per hos-

pitalization in 2020 values (Destatis 2021).

Because both variables capture only specific aspects of pharmaceutical and hospital

treatment demand, their interpretation is not straightforward, and we therefore exclude

30The ATC classification system categorizes drugs based on their active ingredients according
to the organ or the system on which they act as well as their therapeutic, pharmacological,
and chemical properties.

31We include this variable also as input feature in the gradient-boosted decision tree model
described in Section 3.2.

32We include this variable also as input feature in the gradient-boosted decision tree model
described in Section 3.2.
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Figure F.8: Event-study estimates of long-term effects of heat waves on expen-
ditures for pharmaceuticals and hospitalizations

i) Expenditures for distinct pharmaceuticals
(prior eight quarters)

ii) Number of distinct hospitalizations
(prior quarter)

This figure illustrates the effects of heat wave days in the years prior and post to exposure. The
dependent variable refers to either the expenditures (in Euro) for (i) the average number of distinct
pharmaceuticals prescribed over the previous eight quarters or (ii) the number of hospital treatments
with distinct discharge diagnoses in the previous quarter, both measured per 1,000 workers and quarter.
The regressions include zip area–year and state–year–quarter fixed effects. We include controls for
sex and precipitation. The regressions are weighted by the number of workers per zip-sex-risk group
cell. Standard errors are clustered at the county level. Confidence intervals refer to the 5% level of
significance.

them from our main analysis. However, for readers interested in these outcomes, we

re-estimate Figure 9 using them as dependent variables. Figure F.8 reveals statistically

significant post treatment effects for both outcomes, however only in the later years

of the observed time period. Moreover, applying the robust estimator proposed by De

Chaisemartin and d’Haultfoeuille (2024), we find no statistically significant treatment

effects for either outcome.
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