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ABSTRACT
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Hotter Days, Wider Gap:  
The Distributional Impact of Heat on 
Student Achievement*

This study demonstrates that heat disproportionately impairs human capital accumulation 

among low-performing students compared with their high-performing peers, using 

nationwide examination data from 22 million students in Japan. Given the strong correlation 

between academic performance and socioeconomic background, this suggests that heat 

exposure exacerbates pre-existing socioeconomic disparities among children. However, 

access to air conditioning in schools significantly mitigates these adverse effects across all 

achievement levels, with particularly pronounced benefits for lower-performing students. 

These findings suggest that public investment in school infrastructure can help reduce the 

unevenly distributed damage caused by heat to student learning, thereby promoting both 

efficiency and equity.
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1. Introduction 
 Climate change affects numerous societal outcomes, including health, agriculture, labor 

productivity, income, cognition, and conflict, among many others (Carleton and Hsiang 2016). 
However, most studies measure only the average impact of heat, and thus its distributional 
impacts; identifying the individuals that disproportionately bear the burden of heat-related 
damage and the implications for inequality remain largely unexplored. 

This study examines how cumulative exposure to extreme heat affects student achievement 
differently based on their socioeconomic statuses (SES). Cognitive ability constitutes an essential 
component of human capital and is closely linked to future labor market performance and 
economic inequality (Cunha and Heckman 2007). Due to their physiological and neurocognitive 
immaturity, children’s cognition may be particularly vulnerable to environmental stressors 
(Rowland 2008). Prolonged heat exposure can disrupt their learning through distractions and 
reduced concentration, leading to a lasting impact on their accumulation of human capital. 
Therefore, the warming climate underscores the importance of improving children’s learning 
environments.  

There are two main challenges in studying the distributional consequences of heat exposure. 
First, assessing distributional impacts requires a representative sample. However, prior studies 
could not assess these impacts due to specific samples or lack of individual-level data. For 
example, Cho (2017) and Park et al. (2020) examined the effects of cumulative heat exposure on 
test scores but focused on high school students taking college entrance exams in Korea and the 
Preliminary Scholastic Aptitude Test (PSAT) in the United States (US). These students likely 
come from higher socioeconomic backgrounds than the general population, making them 
unsuitable for distributional analysis. Despite their representativeness, Park et al. (2021a) used 
aggregated achievement data at the school district level in the US, which did not allow 
distributional analysis. 

Second, even if heat damage on test scores is greater for disadvantaged than advantaged 
students, two mechanisms (not necessarily mutually exclusive) explain the finding: students from 
disadvantaged households live in warmer regions and experience extreme heat (“exposure”), or 
their limited resources make them more susceptible to the same heat exposure (“vulnerability”). 
This distinction is crucial because different policy responses are required to improve heat 
resilience among the poor (Hsiang et al. 2019). 

To overcome these challenges, we analyze individual-level test scores from nationwide 
exams in Japan between 2007 and 2019 for all public-school students in grades six and nine 
during compulsory education, encompassing an extensive sample of approximately 22.8 million 
students. Importantly, combining individual-level data with the exams’ national 
representativeness provides an ideal setting for examining, for the first time, the distributional 
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impact of temperature on test scores. 
Specifically, we analyze test scores at percentile ranks (10th, 25th, 50th, 75th, and 90th 

percentiles) within schools over time, comparing students who experienced hotter summer 
(colder winter) school days with those who experienced milder ones. Since a student’s rank 
correlates with SES, such as household income and parental education, it serves as a reasonable 
proxy for socioeconomic background, allowing us to assess whether cumulative exposure to 
extreme temperatures differentially impacts student performance by SES. Importantly, by 
holding the “exposure” constant for all students in the school, we can isolate the role of 
vulnerability—if low-SES students experience greater score declines than high-SES peers under 
the same heat exposure, the disparity likely reflects differences in “vulnerability” by 
socioeconomic backgrounds (e.g., differential access to private tutoring). 

This study has two major findings. Our first finding is that the negative effects of heat are 
regressive; that is, they are far greater for low-performing than for high-achieving students. Each 
additional day with maximum temperature exceeding 34°C lowers scores by 0.09% SD for 
students in the top 10th percentile, but by 0.30% SD for those in the bottom 10th percentile, an 
impact approximately three times larger. This disproportionate effect of heat by student rank 
widens academic inequality, highlighting how average effects mask substantial disparities in 
heat-related damage between low- and high-performing students. 

Importantly, by comparing temperature effects within schools, we hold school-level 
“exposure” constant, eliminating influences by school-level resources such as staffing ratio, 
teacher quality, or access to air conditioning (AC). Instead, the results likely reflect differences in 
“vulnerability”—how advantaged and disadvantaged students differentially adapt to the same 
school heat exposure. Indeed, advantaged students tend to study longer after school, spend more 
on education, and are more likely to attend cram school. Given the strong link between academic 
performance and SES, this finding suggests that without further intervention, climate change will 
widen pre-existing socioeconomic disparities among children. 

This finding speaks to the emerging literature linking global warming and economic 
inequalities (Burke et al. 2015; Diffenbaugh and Burke 2019; Gilli et al. 2024). As educational 
attainment and earnings are positively correlated (Chetty et al. 2011), our findings suggest that 
differential vulnerabilities, which exacerbate inequality in academic performance, may be a 
pathway through which a warming climate accelerates economic inequality. Specifically, our 
sample (grades six and nine) comprises younger students compared with samples from other 
studies that focus on students nearing high school graduation (Cho 2017; Park et al. 2020). 
Dynamic complementarities, in which human capital investment in early childhood complement 
later investments (Cunha and Heckman 2007; Johnson and Jackson 2019), indicate that earlier 
heat shocks could have a more lasting impact on future economic outcomes. Furthermore, the 
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greater impact of heat on children from disadvantaged families indicates that it reduces their 
upward intergenerational mobility. 

Our second finding is that school AC can largely offset heat’s negative effects on 
learning—and importantly, in a progressive manner, benefiting low-performing students more 
than high-performing ones. In schools without AC, the adverse impact of extreme heat is 
significantly greater for low-performing students, who are more likely to come from low-SES 
backgrounds. In contrast, in schools with AC, heat has little effect on test scores across the 
performance distribution, resulting in greater relative gains for low achievers. Specifically, 
without AC, one additional day above 34°C increases the 90th–10th percentile test score gap by 
0.71 SD%, while AC reduces this widening by 0.55 SD%. These results suggest that public 
investment in school infrastructure, like AC, can mitigate unequal heat-related learning losses. 
This is especially encouraging given that both primary and secondary education are compulsory 
in Japan, as in many countries, reinforcing the importance of equitable learning environments. 

This second finding speaks to the literature on temperature adaptation, addressing whether 
environmental hazards are unavoidable or can be mitigated using current technology (see 
Carleton et al. 2024 for a review). While evidence supports adaptation for heat-related mortality 
(Barreca et al. 2016; Cohen and Dechezleprêtre 2022) and violence (Colmer and Doleac 2023), 
findings on workplace injuries are mixed (Dillender 2021; Park et al. 2021b). Regarding 
education, a seminal study by Park et al. (2020) demonstrated that school AC reduces the 
cumulative impact of heat on learning. Moving beyond averages, we examine distributional 
effects, revealing how adaptation unequally benefits students. 

Furthermore, this finding contributes to the debate on the effectiveness of resource-based 
education policies in fostering human capital accumulation (Baron 2022; Cellini et al. 2010; 
Jackson et al. 2016; Hyman 2017; Lafortune et al. 2018), especially investments in school 
facilities (Lafortune and Schönholzer 2022; Martorell et al. 2016; Neilson and Zimmerman 
2014). Our findings align with Biasi et al. (2025), who suggest that the impact of capital 
investments on test scores varies across project types and districts in the US. They found larger 
returns from school facility investments in socioeconomically disadvantaged districts. Such 
heterogeneous treatment effects may reflect either differential exposure or other unobserved 
characteristics across districts. By comparing students within schools, we demonstrate that 
school air conditioning (AC) disproportionately benefits lower-achieving students and reduces 
heat-related learning disparities, promoting both efficiency and equity. 

 

2. Conceptual framework 
This section outlines a conceptual framework for the distributional impact of extreme 

temperatures, based on Hsiang et al. (2019) and Behrer et al. (2021). We discuss how an 
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empirical observation (i.e., climate impacts are often greater for poor individuals) can mask two 
explanations: differing exposure and/or vulnerabilities. Exposure refers to the degree individuals 
are subjected to environmental stressors (e.g., heat, cold, and pollution), while vulnerability 
denotes their susceptibility to these stressors. 

Damage from environmental stressors is defined as a function of two factors: exposure and 
vulnerability. Here, we estimate the marginal damage, which is the slope of the damage function. 
Importantly, it can vary by SES (e.g., income, education, and occupation) for two reasons, as 
shown in Figure 1. We assume that exposure is higher for low-SES than for high-SES 
individuals because the poor indeed tend to live in hotter places, both within and across countries 
(Park et al. 2018). 

First, as shown in panel A of Figure 1, a convex damage function with respect to exposure 
can lead to greater marginal damage for low-SES individuals who experience more exposure 
than high-SES counterparts (i.e., differential exposure). Alternatively (or additionally), as 
illustrated in panel B of Figure 1, the damage function itself may differ by SES due to factors 
such as baseline health or defensive investments correlating with SES (i.e., differential 
vulnerability).  

Distinguishing whether SES-based disparities in heat impact stem from a single nonlinear 
damage function with differential exposure or differing vulnerabilities is crucial for policy 
design. The former requires reducing direct contact with extreme heat (e.g., urban cooling, 
housing, and warning systems). Conversely, the latter requires targeted support to enhance 
adaptive capacity (e.g., subsidizing AC and expanding medical programs to heat-related 
illnesses) or promoting broader poverty reduction to strengthen the heat resilience of low-SES 
individuals. 

However, distinguishing between exposure and vulnerability is challenging because the 
poor tend to live in hotter locations. Thus, even if heat damage is greater among the poor by 
simply comparing damages of the rich and the poor, this may just result from differential 
exposure (panel A) rather than differential vulnerability (panel B) by SES.  

This study is the first to rigorously isolate the impact of vulnerability from exposure. Using 
individual-level data from nationally representative exams, we analyze the distributional impact 
of temperature within schools, while holding exposure constant, at least in the school 
environment where most learning occurs. If test score reductions are greater for low-SES 
students than for their high-SES counterparts in the same school with identical heat exposure, the 
difference in marginal damages likely arises from varying vulnerabilities between these groups. 
 

3. Data  
We combine temperature data with nationwide test data of nearly 22.8 million students in 
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Japan. Appendix B provides details of the data sources. We discuss school AC penetration in 
Section 6. 

 

3.1. Test scores 

We use data on nationwide exams, called the National Assessment of Academic Ability 
(hereinafter “NAAA”), conducted by the Ministry of Education, Culture, Sports, Science and 
Technology (MEXT). The NAAA aims to monitor the academic performance and progress of 
students nationwide and contribute to improving educational policies (MEXT 2024a). The 
NAAA has been conducted annually since 2007, except in 2011, when it was canceled due to the 
Great East Japan Earthquake, and in 2010 and 2012, when the NAAA was administered to a 
random subset of schools.1 

The NAAA is administered to students in their final years of primary (grade six) and 
secondary school (grade nine). Both levels are compulsory in Japan. Nearly all public primary 
and secondary schools participate in the NAAA (National Institute for Educational Policy 
Research [NIER] 2024).2 Although the subjects assessed vary slightly over time, we focus on 
reading and mathematics, consistently tested throughout our sample period. 

The NAAA is held on the 3rd or 4th Tuesday of April3, the month when the academic year 
begins in Japan. Consequently, the NAAA is designed to assess students’ understanding of the 
material covered until the previous academic year (NIER 2021). This timing aligns with our 
research design on learning disruptions from the past summer and winter. Since the exam date is 
predetermined and the NAAA is centrally administered and graded, no room exists for 
endogenous choice in test timing or score manipulation by schools and students. 

The NAAA is not a high-stakes exam for students or schools. Students’ scores do not affect 
promotion to higher grades or better schools. Furthermore, school performance has no direct 
consequences, such as reduced federal funding, unlike test-based accountability systems like the 
No Child Left Behind Act in the US. The only potential stakes are reputation concerns for 
schools (Morozumi and Tanaka 2023); however, publication of school-level scores is not 
allowed for years before 2014, and very few school councils do so in our sample period. 

We use 2007–2019 NAAA data with MEXT’s permission for secondary use of confidential 
information. Table A.1 details the number of participating schools and students each year. From 
2007 to 2019, approximately 22.8 million students took the exams, with approximately 30,000 
schools participating annually (excluding 2010 and 2012). See Figure A.1 for the school 

 
1 This is entirely due to political reasons. In 2009, a change of government occurred, and the new 
administration cut the NAAA’s budget. 
2 In 2022, 1.3% of primary and 7.7% of secondary students attended private schools (MEXT 2022).  
3 From 2019, it was held on Thursday instead of Tuesday. 
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locations nationwide. For statistical power, we combine both grades in the main analysis unless 
stated otherwise. Since the exams are administered to both grades on the same day, all students 
experience identical conditions, including cumulative heat exposure and test-day weather. 

Our primary outcome is the combined reading and math scores, although we also separately 
analyze each subject. Since exam difficulty varies by year, we calculate z-scores for each year 
and grade, multiplying them by 100 for interpretation as percentage changes. Student-level data 
include limited demographics, such as gender.4 The NAAA also conducts student surveys every 
round and parental surveys in 2013 and 2017. Student surveys capture behaviors (e.g., after-
school study and study habits), while parental surveys (administered to about 4.8% of randomly 
selected schools)5 collect household information such as household income, father’s occupation, 
and parental education. Table A.2 (panel A) provides descriptive statistics of individual 
characteristics. 

 
3.2. Temperature 

We use daily temperature data for 2006–2018 from the Japan Automated Meteorological 
Data Acquisition System (AMeDAS) operated by the Japan Meteorological Agency. We utilize 
AMeDAS data from 899 weather stations with daily temperature available for at least 99% of 
days during 2006—2018. To create a balanced panel, missing daily observations were imputed 
using the nearest station with complete data. Each school was then assigned to its nearest 
weather station to ensure estimates remain unaffected by changes in the number or location of 
stations. 

Figure A.2 displays the locations of all 899 weather stations in 2018 and the cumulative 
distribution of distance from the nearest station to each school. The density of stations is high 
given the country’s size, and consequently, the mean (median) distance is 6.95 (6.48) km, 
compared with 15.6 km in US (Park et al. 2020).  

Our primary measure of cumulative exposure to extreme temperatures is the number of hot 
and cold school days a student experienced in the year leading up to the test in April (i.e., from 
April of the previous year to March of the test year). We utilize the daily maximum temperature 
as a measure because schooling occurs during daytime hours when peak temperatures are 
typically observed. Following Park et al. (2020), we focus on temperatures during terms as 
school days and separately include school break days in robustness checks later.6 

 
4 Student IDs are updated annually, so we cannot track G6 students in the G9 data three years later. 
5 In 2013 and 2017, parental surveys covered 2,821 of 59,734 schools (4.72%) and 203,023 of 4,255,669 
students (4.77%), with an 84.9% response rate. 
6 School days, school break days, and weekends during the terms are mutually exclusive, averaging 212.6, 
85.1, and 67.6 days, respectively. Lacking a comprehensive school calendar dataset, we assign each school a 
probable start and end date using the 2018 calendar of its prefectural capital (Figure A.3). Colder regions have 
shorter summer and longer winter breaks, while warmer regions exhibit a reverse pattern.  
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We use weather station data to construct both cumulative and test-date measures for rainfall, 
wind speed, and relative humidity. We also include pollution and pollen data from the nearest 
monitoring station, known to impact short-term cognition (e.g., Ebenstein et al. 2016; Marcotte 
2015). Table A.2 (panel B) presents the descriptive statistics of weather conditions.  

 

4. Econometric model 
4.1. Estimation of the average of marginal damages 

We exploit year-to-year variations in the number of hot and cold school days to identify the 
causal impact of exposure to extreme temperatures on human capital accumulation. Specifically, 
we compare test scores of students in the same school who experienced hotter summers or cooler 
winters with those exposed to milder conditions.  

Figure A.4 shows both the spatial and temporal variations in the daily maximum 
temperature that students experienced from last April to March of the test year, highlighting 
significant climate differences across the region and considerable year-to-year variations in both 
cold and hot school days. 

To reduce the computational burden, we collapse the data into school-year cells and weight 
estimates by the number of students in each cell. Specifically, we estimate the following 
specifications:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑡𝑡 + 𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠 , [1] 

where the dependent variable is the average z-score for school s in year t. 𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘  represents the 
number of school days in the prior year where the maximum temperature falls into one of nine 
bins k: below 6°C, 6–10°C, 10–14°C, 14–18°C, 22–26°C, 26–30°C, 30–34°C, and above 34°C, 
with 18–22°C as the reference, the optimal range for test performance.  

This specification enabled us to flexibly capture nonlinear temperature effects. The 

coefficients of interest are 𝛽𝛽𝑘𝑘. 𝜌𝜌𝑠𝑠 and 𝜃𝜃𝑡𝑡 are school FE and year FE, respectively. 𝑋𝑋𝑠𝑠𝑠𝑠′  includes 
other time-varying school-level controls, such as precipitation, humidity, and pollution. Standard 
errors are clustered at the weather station level (N=889) to account for potential serial 
correlations reflecting the underlying variations in our treatment variable (Abadie et al. 2023). 

The underlying assumption for 𝛽𝛽𝑘𝑘 to reflect the causal impact of temperature is that the temporal 
and geographic variations in prior-year temperature are uncorrelated with unobserved 
determinants of student learning.7  

To visualize identifying variations underlying the baseline specification, we plot residuals 
from a regression of the number of school days <6°C and >34°C against school fixed effects. 

 
7 A potential threat to identification is that cumulative heat and cold exposure drive selection into the NAAA, 
but Table A.3 shows little evidence of endogenous selection into test-taking. 



9 

 

Figure A.5 illustrates the interquartile and interdecile ranges of the residuals by prefecture and 
year. These distributions confirm ample variations in the number of extreme-temperature school 
days within each prefecture and each year, ensuring that our estimates are not driven by 
variations in a specific region or year. 
 
4.2. Estimating heterogeneous marginal damages 

This study’s main contribution is moving beyond the effect of temperature on average test 
scores (Equation [1]) and examines distributional impacts. Using individual test scores linked to 
school IDs, we assess the effect of the temperature by score rank within schools. Specifically, for 
each school, we compute z-scores at the 10th, 25th, 50th, 75th, and 90th percentiles within 
schools (Chetverikov et al. 2016).8 We use each value separately as the outcome:  

𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑋𝑋 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑋𝑋 = 10, 25, 50, 75,𝑎𝑎𝑎𝑎𝑎𝑎 90)𝑠𝑠𝑠𝑠 

= ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑡𝑡+ 𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠 . [2] 

We occasionally use the test score gap at different percentiles (e.g., the 90th-10th gap) as the 
outcome.  

What does the student’s within-school rank capture? Using the 2013 and 2017 NAAA 
parental surveys in a subset of schools, Figure 2 illustrates a strong positive correlation between 
student’s rank and socioeconomic background, namely household income (panel A), and father’s 
education (panel B). The income gap between the 90th and 10th percentiles is 1.79 million yen 
(≈17.9K USD), while the gap in fathers’ university education is 30.4 percentage points. Overall, 
we posit that a student’s within-school rank largely indicates their socioeconomic status. 

Finally, we demonstrate that the within-school score variation explains most of the variation 
in scores at the national level. Figure A.6 shows the within-school score distribution by school 
rank, grouping schools into ventiles based on each year’s averages. While higher-ranked schools 
have more compressed score distributions, considerable within-school variations exist across all 
ranks. This addresses the concern that within-school test score variations are small and 
potentially missing larger national-level variations. The decomposition of the variation in test 
scores shows that as much as 91–93% occurs within schools rather than between schools over the 
years, likely due to the relatively uniform quality of public schools compared with private ones. 
Furthermore, the school curriculum is centrally standardized by the MEXT’s Course of Study.  

 

 
8 As discussed in Section 2 (“Conceptual framework”), the alternative approach, unconditional quantile 
regression with individual-level data, cannot differentiate exposure and vulnerability, as shown in panel A of 
Figure 1. For reference, the results of the unconditional quantile regression are available in Appendix Table 
A.6. 
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5. Baseline results 
5.1. Average impacts 

First, we present graphical evidence of the average impacts of cumulative exposure to heat 

and cold on test scores. Figure 3A shows 𝛽𝛽𝑘𝑘 from equation [1] with 95% confidence intervals. 
Test scores are measured in 0.01σ. Highlighting the nonlinear effect of temperature on learning, 
the figure shows that scores decline as hot or cold school days increases, especially for extremely 
hot days at the right end of the figure (>34°C) and extremely cold days at the left end (<6°C). 

This aligns with the well-documented “U-shaped” mortality-temperature relationship (or 
“inverse-U” here, as damage is negative), where both hot and cold days increase mortality 
globally (e.g., Barreca et al. 2016; Carleton et al. 2022; Cohen and Dechezleprêtre 2022; Heutel 
et al. 2021). While some studies have examined the cumulative effects of heat (Cho 2017; Park 
et al. 2020, 2021a) and cold (Johnston et al. 2021) on test scores separately, we are the first to 
show that both extremes in one country impair students’ learning environments and hinder 
teachers’ abilities to teach by causing distractions and concentration loss. 

In terms of magnitude, one additional school day <6°C or >34°C in the previous year 
(compared with 18–22°C) reduces test scores by 0.13% SD and 0.19% SD, respectively (p < 
0.01). These estimates align with prior research on the effects of cumulative exposure to heat or 
cold, as shown in Table A.4.  

 
5.2. Distributional impacts 

Next, we examine whether the negative impacts of extreme temperatures significantly vary 

across score distributions. Figure 3B presents 𝛽𝛽𝑘𝑘 from Equation [2], which shows these negative 
effects are significantly greater for lower-performing students (see Table A.5 for corresponding 
estimates).  

One additional hot day >34°C lowers scores by 0.09% SD for students in the top 10th 
percentile, while the impact on the bottom 10th percentile is 0.30% SD, about three times larger. 
Adverse effects consistently increase as the rank decreases. Similarly, an extra cold day <6°C 
leads to a negligible 0.03% SD reduction for students in the top 10th percentile (not statistically 
significant), while the bottom 10th percentile declines 0.26% SD. Consequently, extreme hot and 
cold conditions widen the 90th–10th score gap by 0.22% and 0.23% SD, respectively. Given the 
strong link between academic performance and SES (Figure 2), these results suggest that 
exposure to extreme temperatures exacerbates pre-existing academic inequality by SES among 
children.  

Source of varying vulnerability—. Importantly, since we compare temperature effects 
within schools, keeping “exposure” at school constant, our results are not driven by school 
resources (e.g., class size, teacher quality, or AC). Instead, they align with panel B of Figure 1, 
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likely reflecting “vulnerability”—individual or household adaptations outside school (e.g., 
private tutoring). This study’s main goal is to uncover the presence of socioeconomic disparities 
in vulnerability to extreme temperatures. Consequently, it is beyond the scope of this study to 
fully explore sources of such heterogeneity in vulnerability owing to limited data on detailed 
student and household behaviors during hot and cold days of the previous summer and winter. 

Nevertheless, Figure A.7 shows that higher-SES students tend to study longer after school, 
spend more money on education, and are more likely to attend cram school. Additionally, Table 
A.7 suggests that longer after-school study may mitigate negative effects of heat exposure.9 
However, other factors such as better baseline health among higher-SES students (Case et al. 
2002), may also contribute to the observed heterogeneity. Understanding specific sources of 
these unequal vulnerabilities is an avenue for future research. 

 

6. The impact of AC 
6.1. AC penetration 

AC is the main technology for adapting to heat (Barreca et al. 2016), but its widespread 
adoption in Japan’s public schools is recent. During the sample period from 2006 to 2018, AC 
coverage in public primary and secondary schools increased from approximately 10% to 50%, 
reaching nearly 100% by 2022.10 

Unfortunately, the government began reporting the school AC penetration at the municipal 
level only in 2017 (MEXT 2024b). Each municipal school council determines AC installation in 
public schools.11 Using this data in 2018, the last year of the sample period, we categorize 
schools into municipalities with 0% (“schools without AC”), 100% (“schools with AC”), or 
intermediate. Thus, schools without AC had no AC throughout the entire period of 2006–2018 
without any measurement error. Conversely, schools with AC only indicate full availability at 
some point during the sample period, likely leading to an underestimation of the positive impact 
of AC on test scores. 

Figure 4A maps municipalities with 100% (“schools with AC”), 0% (“schools without 
AC”), and partial (>0% and <100%) AC penetration. Clearly, schools without AC are more 
common in the cooler northern region, while both types are widely distributed in central Honshu, 
Japan’s main and largest island. 

One concern is that school AC penetration may correlate with factors at the school or 
municipal levels that could directly impact test scores. However, Figure A.8 shows that after 

 
9 Educational spending and cram school attendance data are limited to parental surveys from 2014 and 2017, 
covering only 4.7% of students. Thus, unlike after-school hours from student surveys available for all years, 
they cannot be included as mediators.  
10 Source: https://www.mext.go.jp/content/20240930-mxt_sisetujo01-000013462_02.pdf  
11 A total of 1,724 municipalities exist as of April 1, 2019.  
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controlling the average temperature, the AC penetration rate in 2018 is not strongly linked to 
taxable income per capita or the student-to-teacher ratio, a measure of per-pupil educational 
expenditure. Additionally, Figure A.8 shows that the AC penetration rate in 2018 was not 
associated with average school test scores in 2007, the first year of our sample, when the AC 
penetration was only 10.2%. This suggests that a higher AC rate does not necessarily indicate 
superior schools. Furthermore, Figure A.9 shows that the distributions of test scores in 2007 were 
nearly identical between schools with and without AC. Therefore, the observed differential 
patterns are unlikely due to systematic test score differences between the two groups.  

 
6.2. Average impacts 

We examine the average impact of school AC on test scores. Figure 4B illustrates 𝛽𝛽𝑘𝑘 from 
Equation [1] separately for schools with and without AC. Strikingly, most of the negative heat 
effects occur in schools that lack AC throughout the sample period. Conversely, AC largely 
mitigates the adverse impact on learning if taken causally. 

To assess how effectively school AC mitigates the impact of heat on learning, we conduct a 
regression analysis. Specifically, we interact the cross-sectional measure of AC penetration in 
2018 (“school AC” dummy; 𝐴𝐴𝐴𝐴𝑠𝑠) with the number of school days in each temperature bin and 
include them in baseline specification [1]. To highlight the effect of AC availability, we focus on 
schools in municipalities with either 0% or 100% AC (56.9% of school-year observations). 
However, as Figure A.10 shows, results remain robust when including schools from 
municipalities with partial AC (>0% & <100%) in the “with AC” category.12 Specifically, we 
estimate 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + ∑ 𝛾𝛾𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 ∗ 𝐴𝐴𝐴𝐴𝑠𝑠 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑡𝑡 + 𝜏𝜏𝑡𝑡 ∗ 𝐴𝐴𝐴𝐴𝑠𝑠 +  𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠 , [3] 

where 𝛽𝛽𝑘𝑘 measures the impact of heat on schools without AC, while 𝛾𝛾𝑘𝑘 represents the difference 
in that impact compared to fully air-conditioned schools. Column (1) of Table 1 shows that 
school AC largely offsets negative effects of extreme heat (>34°C). Without AC, test scores drop 
by 0.56% SD, but the interaction with the AC dummy reduces this by 0.41% SD, suggesting that 
AC mitigates approximately 73% of the adverse impact of heat. 

The offsetting effect of school AC may reflect other factors correlate with AC availability. 
To address this concern, Table A.9 controls for interactions between temperature bins, 
municipality-level taxable income per capita, student-teacher ratio, and home AC share, but the 
results remain robust.  

 
12 Furthermore, Table A.8 replicates the main results from Table A.1 but classifies schools from municipalities 
with partial air conditioning coverage (>0% and <100%) as “with AC.” The estimated effects are slightly 
attenuated but remain qualitatively similar. 
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Other robustness—. Table A.10 presents additional robustness checks. The estimates for 
days with maximum temperature >34°C and their interaction with the school AC dummy are 
reported due to their greatest relevance to global warming. The estimates remain largely 
unaffected by controlling test-day weather (temperature, precipitation, wind speed, and relative 
humidity), test-day air pollution, test-day pollen, the cumulative weather other than maximum 
temperature, and cumulative minimum temperatures. Notably, Figure A.11—using minimum 
instead of maximum temperatures—shows no discernible effect on test scores, suggesting that 
nighttime heat and associated sleep disruption (Mullins and White 2019) is not the channel 
through which cumulative heat exposure impairs academic performance. Table A.11 also 
confirms robustness to clustering standard errors at the municipality level, as AC availability 
varies at this level or at broader geographic units (prefectures) rather than monitoring station. 

School breaks—. Table A.12 compares our baseline specification to one that additionally 
controls for heat during school breaks and their interaction with school AC. Three key findings 
emerge: (i) the estimated impact of school-day heat is robust after controlling for heat during 
summer breaks; (ii) heat during breaks negatively affects test scores and is statistically 
significant, but the effect is much smaller than in-school heat (-0.178 vs. -0.493), highlighting the 
importance of time in school for learning; and (iii) the interaction between school AC and heat 
during breaks is small and statistically insignificant (0.054 with a standard error of 0.202). This 
supports the validity of our school AC variable, as its effects should be confined to the school 
environment. 

Heterogeneity—. Table A.13 explores heterogeneous effects of heat >34℃ and the 
mitigating role of school AC across grades (6th vs. 9th), subjects (math vs. reading), gender 
(girls vs. boys), question difficulty (basic vs. advanced),13 and climate (cool vs. warm regions). 
Overall, the impact of temperature >34°C and AC’s offsetting effect are consistent across 
contexts, with exceptions: extreme heat affects 6th graders and boys more than 9th graders and 
girls by approximately 50%, suggesting their greater vulnerability. Notably, school AC offsets 
the effect on basic but not advanced questions, aligning with a stronger benefit for lower-
achieving students, as shown next. 

 
6.3. Distributional impact 

Finally, we analyze how school AC availability affects students across score distributions. 

Figures 4C and 4D present 𝛽𝛽𝑘𝑘 from Equation [2] for schools with and without AC separately. In 

 
13 Both math and reading included basic and advanced questions (until 2018), with basic skills practically 
applied to advanced ones. For example, in 6th grade math, a basic question asks for simple multiplication, 
while an advanced one requires using it to find a square’s area (Figure A.12). The two scores are highly 
correlated, with correlations of 0.90 (average), 0.83 (math), and 0.85 (reading) for 6th graders. 
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schools without AC, heat disproportionately harms lower-ranked students, whereas in schools 
with AC, nearly all the negative effects disappear across ranks, yielding larger benefits for low-
achieving students. As expected, extremely cold conditions (<6°C) do not differentially affect 
performance as school AC is meant for heat protection. However, as shown in Figure 4C, 
without school AC, heat is more likely than cold to exacerbate pre-existing academic 
inequalities. 

To assess how school AC mitigates heat-driven inequality in learning, we estimate a variant 
of Equation [3], where the outcomes are z-scores at the 10th, 25th, 50th, 75th, and 90th 
percentiles within schools. The estimates from other percentiles appear in Table A.14.  

Column (2) shows that high temperatures (>34°C) without AC reduce 10th-percentile scores 
by 0.93% SD. Since these schools lack AC, the estimates reflect the “pure” negative impact of 
heat without offsetting effects.14 However, the interaction term is positive and as large as 0.69% 
SD (p<0.01), indicating school AC significantly offsets heat damage. Conversely, column (3) 
shows that high temperatures (>34°C) reduce 90th-percentile scores only by 0.22% SD (p<0.01), 
while the offsetting effect of AC is 0.14% SD, albeit not statistically significant. Consequently, 
column (4) indicates that without AC, extreme heat widens the 90th–10th score gap by 0.71% 
SD, whereas school AC reduces this widening gap by 0.55% SD, suggesting that the benefit of 
school AC is progressive. 

Table A.15 confirms that the impact of school AC on the 90th–10th score gap remains 
robust when controlling for interactions with municipality-level taxable income per capita, the 
student-teacher ratio, and prefecture-level home AC share. Furthermore, Tables A.8, A.9, and 
A.10 confirm robustness to additional checks, alternative clustering, and controls for heat during 
school breaks and their interaction with school AC.15  

We demonstrate that school facilities help reduce the widening test score gap between 
advantaged and disadvantaged students caused by heat. This suggests that the widening gap 
without school AC is not primarily caused by differences in outside-of-school heat exposure 
(e.g., longer commutes for disadvantaged students); if so, we would not expect school AC to 
counteract the widening gap. Simultaneously, school AC did not fully offset the growing gap, 
likely because of measurement errors in AC penetration and/or remaining outside-of-school 
adaptations by socioeconomic background (e.g., access to cram school). 

This finding suggests that public investment in school AC, rather than household-level 
adaptation, can largely reduce heat’s inequality-enhancing effects. Thus, investment in school 
infrastructure can mitigate unevenly distributed damage caused by heat to learning, thereby 

 
14 Conversely, the distributional impact of a cold day (temperature <6°C) is similar for schools with and 
without school AC.  
15 Panel B of Table A.13 presents the heterogeneous effects. 
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promoting both efficiency and equity. This is encouraging because both primary and secondary 
education are mandatory in Japan, as in many other countries, where public investment plays a 
vital role. Moreover, Dechezleprêtre et al. (2025) demonstrate that climate policies that are both 
environmentally effective and distributionally progressive are more likely to garner public 
support. However, it should be emphasized that while school AC largely offsets the widening of 
socioeconomic inequalities, pre-existing socioeconomic disparities persist. 

 

7. Conclusion 
Many studies have investigated the average impact of extreme temperatures, but their 

distributional impact across SES remains poorly understood. Even less explored is how different 
socioeconomic groups adapt to environmental stressors such as heat. Using nationwide exam 
data from Japan for 2007–2019, we find that extreme temperatures disproportionately hinder 
human capital accumulation among low-achieving students, deepening academic and social 
inequalities. However, school AC largely offsets these effects, highlighting the potential for 
public infrastructure investments to reduce heat-related learning disparities. 

This study offers several avenues for future research. First, it is essential to determine 
whether the inequality-enhancing effects of heat exposure on learning persist across contexts and 
environments. Second, although we focus on heat damage because of its relevance to global 
warming, understanding how to mitigate the adverse effects of cold exposure, although smaller, 
may be important in specific situations. Third, while we highlight the presence of social 
disparities in vulnerabilities, understanding the sources of these differentials, supported by more 
comprehensive data on individual and household behaviors, is essential for addressing them. 
Finally, it is important to examine whether the inequality-enhancing effects of heat exposure on 
learning translate into long-term economic disparities, such as wages and income.  
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Figure 1—Heterogeneity in marginal damages from two explanations 
A. Single nonlinear damage functions B. Differing vulnerability 

  

Notes: Adapted from Hsiang et al. (2019, Figure 1), this figure presents two explanations for the empirically observed 
heterogeneity in marginal damages between high and low socioeconomic status (SES): a single nonlinear damage 
function, illustrated in panel A, or different damage functions (i.e., differential vulnerability) related to SES that 
correlate with exposure levels, as shown in panel B. 
 

Figure 2—Within-school student rank and socioeconomic status  
A. Household income B. Father’s education: ≥University graduate 

  
Notes: The data are obtained from parent surveys in 2013 and 2017 NAAA. The bin scatter plot illustrates the 
relationship between within-school student rank and various measures of students’ socioeconomic status, net of 
school fixed effects, specifically household income (panel A), and the proportion of fathers with education at or above 
a 4-year university/college degree (panel B). Household income (panel A) is reported in hundreds of thousands of 
yen, with US$1 equal to approximately 100 yen. We transform the median of each household income bin into a 
continuous variable.  
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Figure 3—Cumulative heat/cold exposure and test performance  
A. Average impacts 

 

 
B. Distributional impacts 

 

 
Notes: Panel A plots 𝛽𝛽𝑘𝑘 from an estimating Equation [1], where the average z-score (measured in 0.01𝜎𝜎) is regressed 
on the number of school days within a given maximum temperature bin in the year prior to the test date, along with 
the 95% confidence intervals. Panel B plots 𝛽𝛽𝑘𝑘 from an estimating Equation [2], where z-scores at the 10th, 25th, 
50th, 75th, and 90th percentiles within schools (measured in 0.01𝜎𝜎) are regressed separately on the number of school 
days within a given maximum temperature bin from the year prior to the test date, along with the 95% confidence 
intervals. The omitted category is the temperature range between 18–22°C. 
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Figure 4—The impact of school AC 
A. Map of the school AC penetration B.  Average impacts 

  
C. Distributional impact without school AC D. Distributional impact with school AC 

  
Notes: Panel A displays the locations of municipalities according to the degree of school AC penetration rate. Using school AC penetration rates for public primary and 
secondary schools at the municipal level in 2018 (the last year of the sample period), schools are categorized into municipalities with a 0% share (in blue), a 100% share (in 
dark gray), and the remaining (in light gray) of school AC penetration as of 2018. Panel B plots 𝛽𝛽𝑘𝑘 from an estimating Equation [1]. Panels C and D plot 𝛽𝛽𝑘𝑘 from an 
estimating Equation [2], separately for schools without AC and with AC in 2018, respectively, along with the 95% confidence intervals. The omitted category is the 
temperature range between 18–22℃. 
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Table 1—The impact of school AC 
  (1)   (2)   (3)   (4) 

Outcomes: Average Z-score  10th percentile score  90th percentile score  90th-10th score gap 

  × school AC   × school AC   × school AC   × school AC 

Days 6℃≤ -0.216*** 0.068   -0.320*** 0.040   -0.099** 0.050   0.222** 0.011 
  (0.069) (0.090)   (0.101) (0.124)   (0.047) (0.076)   (0.086) (0.110) 

Days 6-10℃ -0.158*** 0.114   -0.207** 0.088   -0.075* 0.104*   0.132* 0.016 
  (0.053) (0.076)   (0.083) (0.103)   (0.040) (0.059)   (0.078) (0.089) 

Days 10-14℃ -0.098* 0.046   -0.196** 0.043   -0.047 0.067   0.149** 0.025 
  (0.054) (0.084)   (0.082) (0.108)   (0.035) (0.053)   (0.074) (0.088) 

Days 14-18℃ -0.040 0.031   -0.027 -0.039   -0.046 0.067   -0.019 0.106 
  (0.041) (0.057)   (0.062) (0.083)   (0.030) (0.042)   (0.052) (0.078) 

Days 22-26℃ -0.024 -0.043   -0.034 -0.070   -0.000 -0.042   0.034 0.028 
  (0.039) (0.063)   (0.057) (0.083)   (0.026) (0.043)   (0.050) (0.068) 

Days 26-30℃ -0.134*** 0.050   -0.218*** 0.075   -0.030 -0.024   0.188*** -0.099 
  (0.046) (0.066)   (0.063) (0.087)   (0.035) (0.046)   (0.053) (0.075) 

Days 30-34℃ -0.177*** 0.097   -0.271*** 0.136   -0.065 0.020   0.207*** -0.116 
  (0.061) (0.073)   (0.085) (0.102)   (0.049) (0.058)   (0.076) (0.094) 

Days 34℃> -0.562*** 0.413***   -0.932*** 0.690***   -0.223*** 0.139   0.709*** -0.551*** 
  (0.112) (0.145)   (0.176) (0.201)   (0.085) (0.108)   (0.170) (0.184) 
                        

R-squared 0.751    0.669    0.603    0.552  
Observations 190,210    190,210    190,210    190,210  

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the school-year. Column (1) presents the estimates from Equation 
[3] where the outcome is the average test score at the school-year level (measured in 0.01σ). Columns (2) and (3) present the estimates from the variant of Equation [3], 
where the outcomes are z-scores at the 10th and 90th percentiles within schools (measured in 0.01σ). School AC is a dummy variable that equals one if an air conditioner was 
available at the school in 2018. Figure 4A shows the locations of the schools within each AC penetration category. The complete table showing the results for the other 
percentiles is presented in Table A.14. Column (4) presents the estimate of the score gap between the 90th and 10th percentiles within the school (measured in 0.01σ). Standard 
errors are clustered at the weather station level in parentheses. The estimates are weighted by the number of students in each school-year. The omitted category is the 
temperature range between 18 and 22℃. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Appendix A: Additional figures and tables 
 

Figure A.1—Location of schools 
A. Primary schools (grade 6) B. Secondary schools (grade 9) 

  
Notes: Panels A and B illustrate the locations of primary (grade 6) and secondary (grade 9) schools as of April 2019. 
There are 19,304 primary schools and 9,776 secondary schools. 
 
 

Figure A.2—Weather stations 
A. Location of weather stations B. Distance to the weather stations 

 
 

Notes: Panel A displays the locations of all 899 weather stations as of 2019. Panel B shows the cumulative distribution 
of the distances from schools to the nearest weather stations. The mean (median) distance from the weather stations 
is 6.95 (6.48) km. 
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Figure A.3—School days by region  

 
Notes: The figure displays the academic calendar of the prefectural capital in the school’s prefecture for 2018. Japan 
is divided into 47 prefectures. The academic calendar mostly comprises three terms: spring, fall, and winter.  
 
 

Figure A.4—Spatial and temporal variations in prior year temperature 
A. Average temperature B. Number of school days 

 

 

 
Notes: The figures illustrate the spatial variations in the mean daily maximum temperature in the year preceding the 
test year (panel A) and temporal variations in the number of school days within a given maximum temperature bin 
from last April to March of the test year, as experienced by students on school days (panel B). 
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Figure A.5—Identifying variations in prior year temperature 
A. Number of days below 6°C B. Number of days above 34°C 

By prefecture By prefecture 

  
By year By year 

  
Notes: This figure illustrates the interquartile and interdecile ranges of the residual variation, net of school fixed 
effects, in the number of school days below 6°C in the year prior to the test date (panel A) and the number of school 
days above 34°C in the year prior to the test date (panel B), by prefecture and year. Japan has a total of 47 prefectures. 
The estimates are weighted by the number of students in each school. 
 

Figure A.6—Within-school score distribution across school ranks  

 
Notes: This figure illustrates the variations in within-school score distribution across school ranks based on the 
average school scores. Specifically, we group schools into ventiles based on their average scores each year and plot 
the average interquartile and interdecile ranges of the within-school score distribution for every ventile. 
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Figure A.7—Socioeconomic status and studying after school 
A. Household income and studying after school 

 
B. Household income and education expenses C. Household income and cram school 

  
Notes: The data are obtained from parent surveys in the 2013 and 2017 NAAA, except for the fraction of students 
who study for more than 1 or 2 hours in panel A, which is obtained from student surveys in the 2013 and 2017 NAAA. 
The binscatter plot illustrates the relationship between students’ socioeconomic status, as indicated by household 
income, and various study-related variables after school, net of school fixed effects. Specifically, it shows the 
proportion of students studying after school for more than 1 or 2 hours (panel A), monthly education expenses (panel 
B), and the proportion of students attending cram schools (panel C). Household income (panels A-C) is presented in 
hundreds of thousands of yen, while monthly education expenses (panel B) are presented in thousands of yen, with 
US$1 being approximately equal to 100 yen. For both variables, we use the median of each household 
income/monthly education expense bin to transform them into continuous variables. 
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Figure A.8—Correlation with school AC penetration rates 
A. Taxable income per capita B. Student-teacher ratio 

  
C. Average test scores 

 
Notes: The binscatter plot illustrates the cross-sectional relationship between school AC penetration rates at the 
municipality level in 2018 and the average taxable income per capita between 2006 and 2018  (panel A), the average 
student-teacher ratio between 2006 and 2018 (panel B), and the municipality-average test scores in 2007, the first 
year of our sample period, when the AC penetration rate was only 10.2% (panel C), after controlling for the average 
temperature between 2006 and 2018.  
 

Figure A.9—Test score distributions between schools with and without AC in 2007 

 
Notes: This figure plots the average test scores at 5-percentile increments in 2007 (the first year of our sample period), 
when the AC penetration was only 10.2%, separately for schools with and without AC. These averages were obtained 
by first calculating test scores at each 5th percentile within schools, then averaging across schools within each group. 
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Figure A.10—Cumulative heat/cold exposure and test performance 
(school AC 0% vs. AC>0%) 

 
Notes: The figure displays 𝛽𝛽𝑘𝑘  from an estimating Equation [1], separately for schools in municipalities with a 
positive share of AC and those in municipalities with 0% AC availability in 2018, along with the 95% confidence 
intervals. The omitted category is the temperature range between 18 and 22℃. Figure 4A shows the locations of 
schools for each school AC penetration category.  
 

Figure A.11—Minimum temperature and test performance (average impacts) 
A. All schools 

 

 
B. Schools with vs. without AC 
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Notes: Panel A plots 𝛽𝛽𝑘𝑘 from an estimating Equation [1], where the average z-score (measured in 0.01𝜎𝜎) is regressed 
on the number of school days within a given minimum temperature bin in the year prior to the test date, and panel B 
plots 𝛽𝛽𝑘𝑘 separately for schools with and without AC in 2018, along with the 95% confidence intervals. The omitted 
category is the temperature range (8–12℃). 

Figure A.12—Examples of basic and advanced questions (math for grade 6)  
Basic Advanced 

  
Notes: The examples are from mathematics for grade 6 in the NAAA.  
 
 

Table A.1—Number of participating schools and students in NAAA 
  N of schools   N of students 

Year Total Grade 6 Grade 9   Total Grade 6 Grade 9 
2007 31,899  21,523  10,376    2,203,309  1,115,808  1,087,501  
2008 32,095  21,670  10,425    2,243,391  1,162,311  1,081,080  
2009 31,835  21,498  10,337    2,264,473  1,153,059  1,111,414  
2010 9,866  5,421  4,445    708,995  271,004  437,991  
2011 - - -   - - - 
2012 9,545  5,177  4,368    703,244  262,114  441,130  
2013 30,560  20,468  10,092    2,207,777  1,124,018  1,083,759  
2014 30,233  20,221  10,012    2,162,765  1,097,584  1,065,181  
2015 29,962  20,030  9,932    2,136,316  1,076,832  1,059,484  
2016 29,125  19,397  9,728    2,076,404  1,037,066  1,039,338  
2017 29,174  19,375  9,799    2,047,892  1,018,505  1,029,387  
2018 29,248  19,431  9,817    2,012,527  1,041,474  971,053  
2019 28,989  19,252  9,737    2,025,844  1,046,722  979,122  
Total 322,531  213,463  109,068    22,792,937  11,406,497  11,386,440  

Notes: This table shows the number of schools and students participating in the National Assessment of Academic 
Ability (NAAA) each year. We exclude schools that are observed only once during the sample period, along with 
their corresponding students, and those without math and reading scores (0.24% of schools and 1.59% of students). 
The NAAA has been conducted annually across the nation by the Ministry of Education, Culture, Sports, Science, 
and Technology (MEXT) since 2007. Exceptions occurred in 2011, when the NAAA was entirely canceled because 
of the Great East Japan Earthquake, and in 2010 and 2012, when it was administered to a random subset of schools: 
approximately 25% of sixth graders and 40% of ninth graders. 
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Table A.2—Descriptive statistics 
Variable: N of 

schools Mean Std. 
dev. Min Max N of 

station 
Available 

period 
Panel A. Student information               
Student survey:               
  Female 301,821 0.48 0.08 0 1 - 2007-2019 
  Study time after school: >1 hour 323,144 0.65 0.13 0 1 - 2007-2019 
  Study time after school: >2 hours 323,144 0.31 0.13 0 1 - 2007-2019 
Parent survey:               
  Household income 2,624 62.26 31.68 10  150  - 2013, 2017 
  Father’s educ: ≥University graduate 2,779 0.31 0.46 0  1  - 2013, 2017 
  Education expenses 2,628 17.03 14.48 0  50  - 2013, 2017 
  Attending a cram school 1,952 0.33 0.47 0  1  - 2017  
Regional information:               

  School AC 322,962 0.60 0.46 0 1 - 2018  
  Taxable income per capita 323,153 32.29 5.86 18.89 126.67 - 2007-2019 
  Student-teacher ratio 321,263 15.63 3.06 0.09 25.05 - 2007-2019 
  Home AC 323,153 0.90 0.15 0.27 0.99 - 2014  

                  
Panel B. Weather conditions               
Number of school days               
  6℃≤ 322,531 11.02 16.83 0 194 891 2007-2019 
  6-10℃ 322,531 22.59 8.37 0 53 891 2007-2019 
  10-14℃ 322,531 30.93 8.78 0 60 891 2007-2019 
  14-18℃ 322,531 27.20 5.80 0 58 891 2007-2019 
  18-22℃ 322,531 32.42 6.34 0 71 891 2007-2019 
  22-26℃ 322,531 38.37 8.51 0 88 891 2007-2019 
  26-30℃ 322,531 32.95 9.58 0 97 891 2007-2019 
  30-34℃ 322,531 14.87 8.90 0 79 891 2007-2019 
  34℃> 322,531 2.25 2.95 0 20 891 2007-2019 
Mean precipitation (mm) 322,531 4.53 1.37 0.82 21.48 1,165  2007-2019 
Mean wind speed (m/s) 322,531 2.51 0.91 0.26 8.75 887 2007-2019 
Mean relative humidity 322,531 68.44 4.92 58.39 82.94 153 2007-2019 

Notes: Panel A provides descriptive statistics of student information aggregated at the school level. Gender 
information for grade 6 was not collected in 2015. Household income is presented in hundreds of thousands of yen, 
while monthly education expenses are shown in thousands of yen, with US$1 being approximately equal to 100 yen. 
For both variables, we calculate the median household income and monthly education expense bin to convert them 
into continuous variables. For school and home AC, data from 2018 and 2014, respectively, are applied to all years. 
Panel B displays the descriptive statistics of the cumulative weather conditions from last April to March of the test 
year, as experienced by students on school days.  
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Table A.3—Cumulative heat/cold exposure and test attendance rates 
  (1) (2) 
Outcomes: Test attendance rates 

      
Days 6℃≤ -0.008 -0.008 
  (0.005) (0.006) 

Days 6-10℃ -0.005 -0.006 
  (0.005) (0.005) 

Days 10-14℃ -0.005 -0.004 
  (0.004) (0.004) 

Days 14-18℃ -0.002 -0.003 
  (0.003) (0.004) 

Days 22-26℃ 0.004 0.005* 
  (0.003) (0.003) 

Days 26-30℃ 0.004 0.006 
  (0.004) (0.004) 

Days 30-34℃ 0.000 0.001 
  (0.004) (0.005) 

Days 34℃> 0.007 0.006 
  (0.006) (0.007) 
      

Weight Number of  Number of  
test takers students enrolled 

Joint Test:     
   F-stats 1.401 1.407 
   p-value 0.192 0.189 
Mean (%) 95.194 94.967 
R-squared 0.349 0.352 
Observations 242,322 242,322 

Notes: The data come from the NAAA (2009–2019), Basic School Survey (2009–2019), and AMeDAS (2008–2018), 
as the Basic School Survey is only available from 2009–2019. The unit of observation is the school-year. The table 
presents estimates from a variant of equation [1], in which the outcome is replaced with test attendance rates. Test 
attendance rates are calculated by dividing the number of NAAA test takers by the number of students enrolled as of 
May 1, as reported in the Basic School Survey. The estimates are weighted by the number of test takers in each 
school-year in column (1) and by the number of enrolled students in each school-year in column (2). Standard errors 
are clustered at the weather station level in parentheses. The omitted category is the temperature range between 18 
and 22℃. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
 



 
33 

 

Table A.4—Comparison with previous studies of cumulative exposure to heat or cold on test scores 
Study Country 

(period) 
Exam type Stakes Grades Representation Exam Days Effect size by one additional day 

Our Study Japan 
(‘07-’19) 

Achievement 
test 

Low G6 and G9 All students in 
public schools 

3rd or 4th 
Tuesday in 
April 

Reference: 18–22°C 
Above 34°C 
↓ 0.19% SD 
Below 6° 
↓ 0.13% SD 

Cho  
(2017) 

Korea 
(‘09-’13) 

College 
entrance exam 

High G12   Takers of 
university 
entrance exam 

2nd Thursday 
in November 

Reference: 28–30°C 
Above 34°C 
↓ 0.42% SD (Math)  
↓ 0.64% SD (English) 

Park et al.  
(2020) 

US 
(’01-’14) 

PSAT Intermediate G10 or G11 Takers of PSAT at 
least twice 

3rd week of 
October 

Reference: 60–69°F (15.6-20.6°C) 
Above 100°F (37.8°C) 
↓ 0.07% SD 
Above 90°F (32.2°C)  
↓ 0.05% SD 

Park et al.  
(2021) 

US 
(’09-’15) 

State-specific 
exams 

Intermediate G3 to G8 12,000 US school 
districts 

Spring (differ 
by state) 

Reference: 60–69°F (15.6-20.6°C) 
Above 80°F (26.7°C)  
↓ 0.10% SD (G3–G5) 
↓ 0.03% SD (G6–G8) 

Johnston et al. 
(2021) 

Australia 
(’09-’18) 

Achievement 
test 

Low G3, G5, G7 
and G9 

All students in 
public schools in 
New South Wales 

2nd week of 
May 

Reference: 65–75°F (18.3-23.9°C) 
Below 60°F (15.6°C) 
↓ 0.15% SD 

References: 
Cho, Hyunkuk. 2017. “Effect of Summer Heat on Test Scores: A Cohort Analysis.” Journal of Environmental Economics and Management, 83: 185–196. 
Park, R. Jisung, Joshua Goodman, Michael Hurwitz, and Jonathan Smith. 2020. “Heat and Learning.” American Economic Journal: Economic Policy, 12(2): 306–339. 
Park, R. Jisung, A. Patrick Behrer, and Joshua Goodman. 2021. “Learning is Inhibited by Heat Exposure, both internationally and within the United States.” Nature Human 

Behaviour, 5: 19–27. 
Johnston, David W., Rachel Knott, Silvia Mendolia, and Peter Siminski. 2021. “Upside-Down Down-Under: Cold Temperatures Reduce Learning in Australia.” 

Economics of Education Review, 85: 102172. 
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Table A.5—School-level analysis of 
distributional impact of cumulative heat/cold exposure 

  (1) (2) (3) (4) (5)   (6) (7) (8) 

Outcomes:  10th  25th  50th  75th  90th    Resulting score gap 

  percentile percentile percentile percentile percentile   90th-10th 90th-50th 50th-10th 

Days 6℃≤ -0.260*** -0.185*** -0.117** -0.066 -0.028   0.231*** 0.089*** 0.142*** 
  (0.053) (0.052) (0.050) (0.042) (0.032)   (0.042) (0.026) (0.036) 

Days 6-10℃ -0.177*** -0.144*** -0.105** -0.050 -0.008   0.169*** 0.097*** 0.072** 
  (0.047) (0.046) (0.044) (0.037) (0.027)   (0.037) (0.023) (0.032) 

Days 10-14℃ -0.187*** -0.133** -0.074 -0.028 -0.007   0.180*** 0.067*** 0.113*** 
  (0.049) (0.052) (0.048) (0.037) (0.026)   (0.036) (0.026) (0.027) 

Days 14-18℃ -0.079** -0.047 -0.033 -0.028 -0.018   0.060* 0.015 0.046* 
  (0.037) (0.036) (0.031) (0.027) (0.021)   (0.036) (0.019) (0.027) 

Days 22-26℃ -0.075* -0.062 -0.052 -0.036 -0.028   0.047 0.024 0.022 
  (0.040) (0.039) (0.035) (0.030) (0.022)   (0.031) (0.019) (0.023) 

Days 26-30℃ -0.108*** -0.089** -0.068* -0.041 -0.034*   0.074** 0.033 0.040* 
  (0.041) (0.041) (0.035) (0.029) (0.021)   (0.034) (0.021) (0.024) 

Days 30-34℃ -0.124** -0.118** -0.095** -0.063* -0.032   0.092** 0.063** 0.029 
  (0.051) (0.050) (0.045) (0.035) (0.027)   (0.043) (0.027) (0.029) 

Days 34℃> -0.303*** -0.231*** -0.209*** -0.120* -0.087**   0.216*** 0.123*** 0.093** 
  (0.079) (0.080) (0.075) (0.062) (0.044)   (0.062) (0.043) (0.047) 
                    

R-squared 0.648 0.687 0.691 0.647 0.573   0.531 0.532 0.359 
Observations 322,531  322,531  322,531  322,531  322,531    322,531  322,531  322,531  
Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the 
school-year. Columns (1)–(5) present the estimates from Equation [2], where the outcome is the z-scores at the 10th, 
25th, 50th, 75th, and 90th percentiles within school (measured in 0.01𝜎𝜎), along with standard errors clustered at the 
weather station level in parentheses. Columns (6), (7), and (8) present the estimate of the score gap between the 90th 
and 10th percentiles, 90th and 50th percentiles, and 50th and 10th percentiles within the school, respectively, measured 
in 0.01𝜎𝜎. The estimates are weighted by the number of students in each school-year. The omitted category is the 
temperature range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table A.6—Student-level analysis of 
distributional impact of cumulative heat/cold exposure 

  (1) (2) (3) (4) (5) 

Outcomes:  10th  25th  50th  75th  90th  
  percentile percentile percentile percentile percentile 

Days 6℃≤ -0.208*** -0.160*** -0.122*** -0.065*** -0.036*** 
  (0.021) (0.019) (0.015) (0.012) (0.009) 

Days 6-10℃ -0.167*** -0.132*** -0.100*** -0.054*** -0.018** 
  (0.019) (0.015) (0.011) (0.009) (0.007) 

Days 10-14℃ -0.170*** -0.126*** -0.065*** -0.018** -0.019*** 
  (0.017) (0.014) (0.011) (0.007) (0.006) 

Days 14-18℃ -0.068*** -0.044*** -0.027*** -0.017** -0.023*** 
  (0.015) (0.012) (0.007) (0.007) (0.006) 

Days 22-26℃ -0.087*** -0.073*** -0.049*** -0.018*** -0.014*** 
  (0.014) (0.010) (0.008) (0.006) (0.004) 

Days 26-30℃ -0.112*** -0.093*** -0.076*** -0.035*** -0.016*** 
  (0.016) (0.011) (0.008) (0.006) (0.005) 

Days 30-34℃ -0.118*** -0.124*** -0.112*** -0.044*** -0.020*** 
  (0.018) (0.015) (0.010) (0.008) (0.007) 

Days 34℃> -0.252*** -0.259*** -0.226*** -0.114*** -0.073*** 
  (0.031) (0.023) (0.019) (0.015) (0.012) 
            

R-squared 0.022 0.037 0.052 0.059 0.052 
Observations 22,792,937 22,792,937 22,792,937 22,792,937 22,792,937 

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is each 
individual. Columns (1)–(5) present the estimates of unconditional quantile regression with school and year FEs, 
where the outcome is the z-scores at the 10th, 25th, 50th, 75th, and 90th percentiles (measured in 0.01𝜎𝜎), along with the 
bootstrapped standard errors clustered at the weather station level with 100 repetitions in parentheses. The omitted 
category is the temperature range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table A.7—The impact of studying after school  
  (1)  (2) 
Outcomes: Average Z-score  Average Z-score 

    
× study  

more than 1 
hour   

× study  
more than 2 

hours 

Days 6℃≤ -0.117*** 0.151***   -0.126*** -0.042 
  (0.041) (0.038)   (0.041) (0.049) 

Days 6-10℃ -0.064* 0.376***   -0.095** 0.599*** 
  (0.036) (0.047)   (0.037) (0.060) 

Days 10-14℃ -0.080** 0.331***   -0.084** 0.316*** 
  (0.039) (0.053)   (0.039) (0.058) 

Days 14-18℃ -0.052** 0.415***   -0.047* 0.188** 
  (0.026) (0.063)   (0.025) (0.080) 

Days 22-26℃ -0.053 0.039   -0.047 0.007 
  (0.032) (0.040)   (0.031) (0.045) 

Days 26-30℃ -0.075** 0.288***   -0.077** 0.212*** 
  (0.030) (0.042)   (0.030) (0.051) 

Days 30-34℃ -0.094** 0.248***   -0.101*** 0.149** 
  (0.037) (0.069)   (0.038) (0.070) 

Days 34℃> -0.186*** 0.403**   -0.206*** 0.150 
  (0.060) (0.170)   (0.062) (0.201) 
            

R-squared 0.748    0.737  
Observations 322,523    322,523  

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the 
school-year. The outcome is the average test score at the school-year level, measured in 0.01𝜎𝜎. Estimates from a 
variant of Equation [1], which additionally includes the interaction between the fraction of students studying after 
school for more than 1 hour (column 1) and for 2 hours (column 2), with the number of days in each temperature bin 
during school days from the previous year, are reported along with standard errors clustered at the weather station 
level in parentheses. Note that both fractions of students studying after school for more than 1 (column 1) and 2 
(column 2) hours are demeaned by the average for the NAAA between 2007 and 2019. The interaction terms in 
columns (1) and (2) reflect the offsetting effect of studying after school, as the fraction of students studying for more 
than 1 or 2 hours after school increased from 0% to 100%. The estimates are weighted by the number of students in 
each school-year. The omitted category is the temperature range (18–22℃). Significance levels: *** p<0.01, ** 
p<0.05, * p<0.10. 
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Table A.8—The impact of school AC (school AC 0% vs. AC>0%) 
  (1)   (2)   (3)   (4) 

Outcomes: Average Z-score  10th percentile score  90th percentile score  90th-10th score gap 

  × school AC   × school AC   × school AC   × school AC 

Days 6℃≤ -0.103 -0.016   -0.201* -0.060   -0.024 0.003   0.178* 0.062 
  (0.067) (0.075)   (0.104) (0.116)   (0.049) (0.057)   (0.092) (0.105) 

Days 6-10℃ -0.118** 0.011   -0.178** -0.013   -0.047 0.020   0.130* 0.033 
  (0.055) (0.060)   (0.084) (0.091)   (0.041) (0.045)   (0.078) (0.083) 

Days 10-14℃ -0.117** 0.019   -0.213** 0.005   -0.061* 0.042   0.152** 0.037 
  (0.056) (0.062)   (0.086) (0.092)   (0.034) (0.037)   (0.075) (0.079) 

Days 14-18℃ -0.046 -0.001   -0.027 -0.069   -0.051* 0.029   -0.024 0.098 
  (0.042) (0.046)   (0.064) (0.071)   (0.030) (0.033)   (0.053) (0.061) 

Days 22-26℃ 0.006 -0.059   0.014 -0.090   0.013 -0.041   -0.001 0.049 
  (0.039) (0.049)   (0.059) (0.070)   (0.026) (0.032)   (0.053) (0.059) 

Days 26-30℃ -0.065 0.033   -0.121* 0.064   0.004 -0.021   0.125** -0.085 
  (0.042) (0.049)   (0.062) (0.071)   (0.031) (0.036)   (0.057) (0.065) 

Days 30-34℃ -0.079 0.031   -0.154* 0.083   -0.015 0.003   0.139* -0.080 
  (0.059) (0.063)   (0.086) (0.093)   (0.046) (0.049)   (0.081) (0.087) 

Days 34℃> -0.444*** 0.363***   -0.803*** 0.667***   -0.155** 0.119   0.648*** -0.549*** 
  (0.110) (0.123)   (0.182) (0.196)   (0.079) (0.089)   (0.178) (0.191) 
                        

R-squared 0.731   0.649   0.574   0.532 
Observations 322,341    322,341    322,341    322,341  

Notes: Table A.7 replicates the main results from Table A.1, but classifies schools from municipalities with partial air conditioning coverage (>0% and <100%) as “with AC.” 
The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the school-year. Column (1) presents the estimates from Equation [3] 
where the outcome is the average test score at the school-year level (measured in 0.01σ). Columns (2) and (3) present the estimates from the variant of Equation [3], where 
the outcomes are z-scores at the 10th and 90th percentiles within schools (measured in 0.01σ). School AC is a dummy variable that equals one if an air conditioner was 
available at the school in 2018. Figure 4A shows the locations of the schools within each AC penetration category. Column (4) presents the estimate of the score gap between 
the 90th and 10th percentiles within the school (measured in 0.01σ). Standard errors are clustered at the weather station level in parentheses. The estimates are weighted by 
the number of students in each school-year. The omitted category is the temperature range between 18 and 22℃. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Table A.9—Robustness: The average impact of school AC 
  (1)   (2)   (3) 
Outcomes: Average Z-score  Average Z-score  Average Z-score 

  × school AC   × school AC   × school AC 

Days 6℃≤ -0.216*** 0.068   -0.235*** 0.061   -0.080 -0.109 
  (0.069) (0.090)   (0.077) (0.097)   (0.061) (0.082) 

Days 6-10℃ -0.158*** 0.114   -0.111** -0.007   -0.063 0.010 
  (0.053) (0.076)   (0.056) (0.074)   (0.052) (0.074) 

Days 10-14℃ -0.098* 0.046   -0.082 -0.059   -0.041 -0.044 
  (0.054) (0.084)   (0.059) (0.073)   (0.047) (0.082) 

Days 14-18℃ -0.040 0.031   -0.020 -0.040   0.043 -0.080 
  (0.041) (0.057)   (0.050) (0.064)   (0.043) (0.053) 

Days 22-26℃ -0.024 -0.043   -0.042 0.019   -0.115*** 0.069 
  (0.039) (0.063)   (0.043) (0.057)   (0.042) (0.081) 

Days 26-30℃ -0.134*** 0.050   -0.140*** 0.125*   -0.243*** 0.187*** 
  (0.046) (0.066)   (0.050) (0.067)   (0.048) (0.069) 

Days 30-34℃ -0.177*** 0.097   -0.209*** 0.202*   -0.298*** 0.310*** 
  (0.061) (0.073)   (0.071) (0.113)   (0.065) (0.084) 

Days 34℃> -0.562*** 0.413***   -0.565*** 0.476***   -0.623*** 0.501*** 
  (0.112) (0.145)   (0.121) (0.141)   (0.107) (0.153) 
                  

Interaction with       
taxable income   X   
student-teacher ratio   X   
home AC share     X 

R-squared 0.751    0.752    0.751  
Observations 190,210    188,911   190,210  

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the 
school-year. The outcome is the average test score at the school-year level, measured in 0.01𝜎𝜎. The estimates from 
Equation [3] are reported, along with standard errors clustered at the weather station level in parentheses. School AC 
is a dummy variable that equals one if an air conditioner was available at the school in 2018. Figure 4A shows the 
locations of the schools within each AC penetration category. Column (1) replicates column (1) of Table 1 for 
reference. Column (2) adds to column (1) the interaction of municipality-level taxable income per capita and the 
student-teacher ratio in 2018 with the number of school days within a given maximum temperature bin in the year 
prior to the test date. Column (3) adds to column (1) the interaction of prefecture-level home AC shares in 2014 with 
the number of school days within a given maximum temperature bin in the year before the test date. The estimates 
are weighted by the number of students in each school-year. The omitted category is the temperature range (18–22℃). 
 
  



 
39 

 

Table A.10—Other robustness 
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Panel A: Average Z-score                     
  Days above 34℃ -0.562*** -0.568*** -0.557*** -0.297*** -0.278*** -0.409*** -0.381*** -0.503*** -0.552*** -0.551*** 
    (0.112) (0.113) (0.111) (0.106) (0.105) (0.112) (0.107) (0.113) (0.120) (0.123) 
  Days above 34℃ × school AC 0.413*** 0.425*** 0.421*** 0.400*** 0.401*** 0.359*** 0.335** 0.363** 0.316* 0.440*** 
    (0.145) (0.145) (0.139) (0.130) (0.126) (0.139) (0.135) (0.146) (0.190) (0.150)             
  R-squared 0.751 0.751 0.751 0.772 0.772 0.761 0.761 0.751 0.751 0.759 

            

Panel B: 90th-10th score gap                     
  Days above 34℃ 0.709*** 0.700*** 0.702*** 0.586*** 0.564*** 0.536*** 0.544*** 0.681*** 0.685*** 0.729*** 
    (0.170) (0.169) (0.170) (0.187) (0.188) (0.174) (0.176) (0.174) (0.183) (0.200) 
  Days above 34℃ × school AC -0.551*** -0.548*** -0.548*** -0.542*** -0.518** -0.472** -0.481** -0.525*** -0.464** -0.580*** 
    (0.184) (0.184) (0.185) (0.201) (0.201) (0.185) (0.187) (0.187) (0.208) (0.217)             
  R-squared 0.552 0.552 0.552 0.573 0.573 0.563 0.563 0.552 0.552 0.568 

            

Observations 190,210  190,210  190,210  145,769  145,769  165,323  165,323  190,210  190,210  141,733  
Sample period Full Full Full 2009-2019 2009-2019 2008-2019 2008-2019 Full Full Full 
Baseline  X     X   X         
Temperature (test day)   X                 
Weather (test day)     X               
Pollution (test day)         X           
Pollen (test day)             X       
Weather (cumulative)               X     
Minimum temperature (cumulative)                 X   
Sensor within 10 km                   X 

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the school-year. The outcomes in panels A and B are the average 
test score at the school-year level and the gap between the 90th and 10th percentile scores within the school, measured at 0.01𝜎𝜎, respectively. The estimates for the number of 
school days above 34℃ and their interaction with the school AC dummy are reported along with the standard errors clustered at the weather station level in parentheses, 
while the estimates for days in other temperature ranges are omitted for expositional purposes. School AC is a dummy variable that takes the value of one if an AC was 
available at the school in 2018. Figure 4A shows the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in 
each school year. The omitted category is the temperature range (18–22℃). The full sample period is from 2007 to 2019. Column (1) presents the baseline estimate without 
any controls other than school and year fixed effects, as reported in columns (1) and (4) of Table 1. Column (2) adds the test-day temperature and column (3) includes 
additional test-day weather conditions (precipitation, wind speed, and relative humidity). Column (4) replicates the baseline for the 2009-2019 period, as pollution data are 
only available for this period and column (5) includes test-day air pollution (SO2, NO, NO2, CO, OX, and PM10). Column (6) replicates the baseline for the 2008-2019 period, 
as pollen data are only available for this period and column (7) includes test-day pollen counts. Columns (8) and (9) include other cumulative weather conditions (precipitation, 
wind speed, and relative humidity) and the number of days within a given minimum temperature bin from the year prior to the test date, respectively. Column (10) restricts 
the sample to schools located within 10 km of the weather stations. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table A.11—Different levels of clustering 
  (1)   (2) Clustering  Number of  
Outcomes: Average Z-score   90th-10th score gap variables clusters 

Days above 34℃ -0.562      0.709        
  (0.112) ***   (0.170) *** Station 816  
  (0.194) **   (0.186) *** Municipality 1,571  
  (0.108) ***   (0.267) ** Prefecture 47  

Days above 34℃ × school AC 0.413      -0.551        
  (0.145) ***   (0.184) *** Station 816  
  (0.206) *   (0.198) *** Municipality 1,571  
  (0.124) ***   (0.272) ** Prefecture 47  

        

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the 
school-year. The outcomes in columns (1) and (2) are the average test score at the school-year level and the gap 
between the 90th and 10th percentile scores within the school, measured at 0.01𝜎𝜎, respectively. The estimates for the 
number of school days above 34℃ and their interaction with the school AC dummy are reported, while the estimates 
for days in other temperature ranges are omitted for expositional purposes. School AC is a dummy variable that takes 
the value of one if an AC was available at the school in 2018. Figure 4A shows the locations of the schools within 
each AC penetration category. The estimates are weighted by the number of students in each school year. The omitted 
category is the temperature range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
 

Table A.12—Controlling for school breaks 
  (1) (2)   (3) (4) 

Outcomes: Average Z-score   90th-10th score gap 

Days above 34℃ -0.562*** -0.493***   0.709*** 0.650*** 
  (0.112) (0.105)   (0.170) (0.173) 

Days above 34℃ × school AC 0.413*** 0.386***   -0.551*** -0.545*** 
  (0.145) (0.130)   (0.184) (0.190) 

Days above 34℃ during school break    -0.178**     0.244* 
    (0.086)     (0.132) 

Days above 34℃ during school break × school AC   0.054     -0.002 
    (0.202)     (0.217) 
      

R-squared 0.751 0.751   0.552 0.553 
Observations 190,210  190,210    190,210  190,210  

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the 
school-year. The outcomes in columns (1) and (2) are the average test score at the school-year level (measured at 
0.01𝜎𝜎) and the outcomes in columns (3) and (4) are the gap between the 90th and 10th percentile scores within the 
school (measured at 0.01𝜎𝜎 ). Compared to the odd-numbered columns (baseline), the even-numbered columns 
additionally include the number of days during the school break within a given maximum temperature bin in the year 
prior to the test date and their interactions with the school AC dummy. The estimates for the number of days above 
34℃ and their interaction with the school AC dummy are reported, while the estimates for days in other temperature 
ranges are omitted for expositional purposes. School AC is a dummy variable that takes the value of one if an AC 
was available at the school in 2018. Figure 4A shows the locations of the schools within each AC penetration category. 
The estimates are weighted by the number of students in each school year. The omitted category is the temperature 
range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Table A.13—Heterogeneous impacts of heat 
    (1) (2)   (3) (4)   (5) (6)   (7) (8)   (9) (10) 
    By grade   By subject   By gender   By difficulty   By region 
    6th 9th   Math Reading   Girls Boys   Basic Advanced   Cool Warm 
Panel A: Average Z-score                             

  Days above 34℃ -0.731*** -0.443***   -0.523*** -0.504***   -0.467*** -0.755***   -0.588*** -0.465***   -0.530*** -0.520*** 
    (0.180) (0.109)   (0.111) (0.118)   (0.123) (0.145)   (0.123) (0.108)   (0.128) (0.178) 

  Days above 34℃ × school AC 0.378* 0.495***   0.309** 0.431***   0.356** 0.581***   0.395*** 0.132   0.470*** 0.312 
    (0.210) (0.148)   (0.145) (0.142)   (0.153) (0.176)   (0.153) (0.141)   (0.142) (0.220) 

                                

  R-squared 0.682 0.807   0.742 0.712   0.676 0.679   0.741 0.753   0.721 0.778 
                                

Panel B: 90th-10th score gap                             

  Days above 34℃ 1.110*** 0.493***   0.590*** 0.654***   0.669*** 0.767***   0.819*** 0.378**   0.746*** 0.462 
    (0.234) (0.190)   (0.147) (0.228)   (0.206) (0.195)   (0.258) (0.176)   (0.198) (0.317) 

  Days above 34℃ × school AC -0.776*** -0.505**   -0.407** -0.626***   -0.575*** -0.588***   -0.584** -0.297   -0.591** -0.284 
    (0.256) (0.211)   (0.170) (0.241)   (0.219) (0.215)   (0.274) (0.198)   (0.243) (0.324) 

                                

  R-squared 0.377 0.678   0.536 0.518   0.427 0.475   0.557 0.488   0.507 0.594 
                                

Observations 115,312  74,898    190,210  190,210    176,297  176,169    173,005  173,005    105,672  84,538  
Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the school-year. The outcomes in panels A and B are the average 
test score at the school-year level and the gap between the 90th and 10th percentile scores within the school, measured at 0.01𝜎𝜎, respectively. The estimates for the number of 
school days above 34℃ and their interaction with the school AC dummy are reported along with the standard errors clustered at the weather station level in parentheses, 
while the estimates for days in other temperature ranges are omitted for expositional purposes. School AC is a dummy variable that takes the value of one if an AC was 
available at the school in 2018. Figure 4A shows the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in 
each school-year. The omitted category is the temperature range (18–22℃). Columns (1) and (2) present the estimates by grade (grade 6 vs. grade 9). Columns (3) and (4) 
show estimates by subject area (math vs. reading). Columns (5) and (6) show estimates by student gender (girls vs. boys). Columns (6) and (7) present the estimates based 
on the difficulty of the test questions (basic vs. advanced). Finally, Columns (9) and (10) divide the sample into cool and warm regions based on the national median of the 
average temperature from 2006 to 2018. Note that the number of observations is at the school-year level; therefore, we observe the average test score of each school-year for 
each subject, gender, and question difficulty, while we observe only one test score for each grade and each region, as they are mutually exclusive. Thus, the sum of the 
observations in columns (1) and (2) and the sum of the observations in columns (9) and (10) is 190,210, which is equal to the number of school-years in columns (3) and (4). 
The slightly smaller observations for columns (5) and (6), compared with columns (3) and (4), are because gender information was not collected for grade 6 in 2015. Similarly, 
the slightly smaller observations in columns (7) and (8) compared to those in columns (3) and (4) are due to the absence of such a distinction in 2019. Significance levels: 
*** p<0.01, ** p<0.05, * p<0.10. 



 
42 

 

Table A.14—Distributional impact of school AC (at the five key percentile scores) 
  (1)   (2)   (3)   (4)   (5) 

Outcomes: 10th percentile score  25th percentile score  50th percentile score  75th percentile score  90th percentile score 

  × school AC   × school AC   × school AC   × school AC   × school AC 

Days 6℃≤ -0.320*** 0.040   -0.293*** 0.112   -0.257*** 0.143   -0.152** 0.044   -0.099** 0.050 
  (0.101) (0.124)   (0.092) (0.113)   (0.080) (0.107)   (0.062) (0.090)   (0.047) (0.076) 

Days 6-10℃ -0.207** 0.088   -0.187*** 0.098   -0.206*** 0.166*   -0.124** 0.115   -0.075* 0.104* 
  (0.083) (0.103)   (0.072) (0.097)   (0.061) (0.091)   (0.051) (0.076)   (0.040) (0.059) 

Days 10-14℃ -0.196** 0.043   -0.113 0.001   -0.117* 0.081   -0.059 0.064   -0.047 0.067 
  (0.082) (0.108)   (0.074) (0.109)   (0.065) (0.102)   (0.049) (0.077)   (0.035) (0.053) 

Days 14-18℃ -0.027 -0.039   -0.009 -0.017   -0.047 0.050   -0.053 0.064   -0.046 0.067 
  (0.062) (0.083)   (0.057) (0.080)   (0.045) (0.067)   (0.037) (0.053)   (0.030) (0.042) 

Days 22-26℃ -0.034 -0.070   -0.044 -0.049   -0.045 -0.019   -0.013 -0.036   -0.000 -0.042 
  (0.057) (0.083)   (0.054) (0.082)   (0.049) (0.075)   (0.037) (0.061)   (0.026) (0.043) 

Days 26-30℃ -0.218*** 0.075   -0.187*** 0.056   -0.150*** 0.077   -0.083* 0.041   -0.030 -0.024 
  (0.063) (0.087)   (0.061) (0.089)   (0.056) (0.079)   (0.047) (0.065)   (0.035) (0.046) 

Days 30-34℃ -0.271*** 0.136   -0.274*** 0.149   -0.187** 0.108   -0.110* 0.057   -0.065 0.020 
  (0.085) (0.102)   (0.081) (0.097)   (0.074) (0.090)   (0.062) (0.074)   (0.049) (0.058) 

Days 34℃> -0.932*** 0.690***   -0.813*** 0.624***   -0.610*** 0.461***   -0.341*** 0.262*   -0.223*** 0.139 
  (0.176) (0.201)   (0.151) (0.186)   (0.133) (0.171)   (0.113) (0.149)   (0.085) (0.108) 
                              

R-squared 0.669    0.708    0.714    0.673    0.603  
Observations 190,210    190,210    190,210    190,210    190,210  

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the school-year. Columns (1)–(5) present the estimates from the 
variant of Equation [3], where the outcomes are z-scores at the 10th, 25th, 50th, 75th, and 90th percentiles within schools (measured in 0.01σ), along with standard errors 
clustered at the weather station level in parentheses. School AC is a dummy variable that equals one if an air conditioner is available at the school in 2018. Figure 4A shows 
the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in each school-year. The omitted category is the 
temperature range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table A.15—Robustness: The impact of school AC on academic inequality 
  (1)   (2)   (3) 
Outcomes: 90th-10th score gap  90th-10th score gap  90th-10th score gap 

  × school AC   × school AC   × school AC 

Days 6℃≤ 0.222** 0.011   0.225*** 0.025   0.154 0.107 
  (0.086) (0.110)   (0.086) (0.110)   (0.094) (0.123) 

Days 6-10℃ 0.132* 0.016   0.121 -0.015   0.052 0.122 
  (0.078) (0.089)   (0.077) (0.089)   (0.086) (0.102) 

Days 10-14℃ 0.149** 0.025   0.134* 0.065   0.115 0.081 
  (0.074) (0.088)   (0.074) (0.088)   (0.079) (0.099) 

Days 14-18℃ -0.019 0.106   -0.054 0.130*   -0.051 0.146 
  (0.052) (0.078)   (0.056) (0.078)   (0.063) (0.089) 

Days 22-26℃ 0.034 0.028   0.029 0.037   0.063 -0.008 
  (0.050) (0.068)   (0.053) (0.070)   (0.057) (0.078) 

Days 26-30℃ 0.188*** -0.099   0.185*** -0.137*   0.233*** -0.154* 
  (0.053) (0.075)   (0.054) (0.072)   (0.058) (0.081) 

Days 30-34℃ 0.207*** -0.116   0.213*** -0.143   0.257*** -0.213** 
  (0.076) (0.094)   (0.078) (0.098)   (0.082) (0.107) 

Days 34℃> 0.709*** -0.551***   0.629*** -0.402**   0.714*** -0.584*** 
  (0.170) (0.184)   (0.172) (0.191)   (0.169) (0.199) 
                  

Interaction with       
taxable income   X   
student-teacher ratio   X   
home AC share     X 

R-squared 0.552    0.553    0.552  
Observations 190,210    188,911   190,210  

Notes: The data come from the NAAA (2007–2019) and AMeDAS (2006–2018). The unit of observation is the 
school-year. The outcome is the gap between the 90th and 10th percentile scores within the school, measured at 0.01𝜎𝜎. 
Columns (1)–(3) present the estimates from the variant of Equation [2], which additionally includes the interaction 
of the number of school days within a given maximum temperature bin in the year prior to the test date and the school 
AC dummy, along with standard errors clustered at the weather station level in parentheses. School AC is a dummy 
variable that equals one if an air conditioner is available at the school in 2018. Figure 4A shows the locations of the 
schools within each AC penetration category. Column (1) replicates the estimates in column (3) of Table 2. The 
estimates are weighted by the number of students in each school-year. The omitted category is the temperature range 
(18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Appendix B: Data Appendix 
 

Data Source 
National 
Assessment of 
Academic 
Ability 
(NAAA) 

Years: 2007–2019 
Data description: Reading and math scores for grades 6 and 9, after-school study 
participation (student survey), and students’ socioeconomic status (parent survey, 
conducted only in 2013 and 2017) 
Source: The National Institute for Educational Policy Research 
https://www.nier.go.jp/kaihatsu/zenkokugakuryoku.html  
 

Weather Years: 2006–2019 
Data description: daily temperature (maximum, average, minimum), precipitation, 
wind speed, and relative humidity 
Source: Japan Automated Meteorological Data Acquisition System (AMeDAS)  
operated by the Japan Meteorological Agency (JMA) 
https://www.data.jma.go.jp/obd/stats/etrn/ 
 

Pollution Years: 2009 April–2019 March 
Data description: hourly SO2, NO, NO2, CO, OX, PM10 
Source: National Institute for Environmental Studies 
https://tenbou.nies.go.jp/download/  
 

Pollen Years: 2008–2019 
Data description: hourly pollen counts from 120 stations (February to May except for 
Hokkaido, where the pollen season is March to June). 
Source: Ministry of the Environment (MOE), Pollen Monitoring System “Hanako-
san” 
https://tenki.jp/pollen/  
 

School 
enrollment 

Years: 2009–2019 
Data description: the number of students enrolled at each school as of May 1  
Source: School Basic Survey 
https://www.mext.go.jp/b_menu/toukei/chousa01/kihon/1267995.htm 
 

Taxable 
income 

Years: 2006–2018 
Data description: taxable income per capita at the municipality level 
Source: Survey on Municipal Taxation Status (Shichōsonzei kazeijōky tou no shirabe) 
https://www.soumu.go.jp/main_sosiki/jichi_zeisei/czaisei/czaisei_seido/ichiran09.html 
 

Student-
teacher ratio 

Years: 2006–2018 
Data description: student-teacher ratio at the municipality level 
Source: School Basic Survey 
https://www.mext.go.jp/b_menu/toukei/chousa01/kihon/1267995.htm 
 

School AC 
penetration 
rate 

Year: 2018 
Data description: school AC penetration rate for public primary and secondary schools 
at the municipality level 
Source: Survey of Air Conditioning Installation Status in Public School Facilities 
https://www.mext.go.jp/a_menu/shotou/zyosei/mext_01278.html 
 

Home AC 
share 

Year: 2014 
Data description: home AC share at the prefecture level 
National Survey of Family Income and Expenditure 
https://www.stat.go.jp/data/zensho/2014/index.html  

 

https://www.nier.go.jp/kaihatsu/zenkokugakuryoku.html
https://www.data.jma.go.jp/obd/stats/etrn/
https://tenbou.nies.go.jp/download/
https://tenki.jp/pollen/
https://www.mext.go.jp/b_menu/toukei/chousa01/kihon/1267995.htm
https://www.soumu.go.jp/main_sosiki/jichi_zeisei/czaisei/czaisei_seido/ichiran09.html
https://www.mext.go.jp/b_menu/toukei/chousa01/kihon/1267995.htm
https://www.mext.go.jp/a_menu/shotou/zyosei/mext_01278.html
https://www.stat.go.jp/data/zensho/2014/index.html
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