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ABSTRACT

Ageing, Health and Predicting Future
Employment Exits: A Penalised
Regression Approach’

We examine the role of baseline health in predicting future employment exits, alongside
established socioeconomic, job-related and demographic predictors. Using UKHLS, we
track employed respondents over 10 years to assess subsequent employment exits. Baseline
health is captured using an unusually rich set of measures: self-assessed health (SAH), self-
reported diagnosed conditions, psychological distress, allostatic load (composite biomarker
index), and epigenetic biological age. Applying a LASSO penalised regression approach,
we find that epigenetic biological age and SAH, rather than self-reported conditions,
psychological distress, or allostatic load, predict subsequent employment exits, independent
of other predictors. A Shapley-Shorrocks decomposition highlights epigenetic biological
age as a stronger predictor than SAH. Nevertheless, chronological age is the dominant
predictor of future employment exits. Epigenetic biological age measures do allow us to
disentangle the role of chronological age, mainly reflecting institutional structures such as
retirement eligibility and societal norms, from other contributions that capture age-related
health decline that are more directly reflected in epigenetic biological age measures.
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1. Introduction

Ageing populations are having significant impacts on public finances - including
public expenditure, labour tax revenues and social security contributions - as well
as creating pressure on the sustainability of the public pension system (Galasso,
2008; Government Office for Science, 2016; Kim and Dougherty, 2020). In 2022
there were around 12.7 million people (or 19% of the total population) aged 65 or
over in the UK (Barton et al., 2024). Office for National Statistics (ONS) population
projections suggest that by 2072 this could rise to 22.1 million people, or 27% of
the population (Barton et al, 2024). The 2021 Census shows the number of people
aged 65 years and over in England and Wales increased from 9.2 million (or 16.4%
of the population) in 2011 to over 11 million (or 18.6% of the population) in 2021
(ONS, 2023).

Increasing life expectancy, associated with advances in social and economic
development as well as in health care technology, significantly contributes to
demographic change (Crimmins, 2015; United Nations, 2024). Concerns may arise
about whether this reflects disability-free gains in longevity as well as highlights
the need of distinguishing between chronological age and more direct measures
reflecting the viability of the body, such as biological measures of age (Scott, 2020).
It is therefore important to understand whether people are remaining in the
workforce for longer, as opposed to spending more of their adult lifetime in

retirement or other forms of economic inactivity prematurely (e.g., Galasso, 2008).

Enhancing our understanding of the risk factors that predict future decisions to
exit the labour force for those who are currently employed may help us better
characterise the profile of those who are more likely to exit employment
prematurely. For example, existing policies that provide incentives to discourage
earlier employment exits may not be sufficient if individuals cease working due to
health-related issues. In that case, potential policies targeted at improving
workforce health or implementing preventative interventions - such as flexible
working arrangements to retain those experiencing health problems in the labour
force - may be more effective (e.g., Bazzoli, 1985; Garcia Gémez and Lépez Nicolas,

2006; Garcia-Gémez et al., 2010; Jones et al, 2010).



In this study, we explore the predictive role of baseline health in future labour
market exits, while accounting for the potential influence of additional baseline
factors, such as demographics (including chronological age), other human capital
proxies (apart from health), job-related characteristics, and socioeconomic status
measures. We use data from Understanding Society, the UK Household
Longitudinal Study (UKHLS), focusing on respondents who were in employment
(self-employed, in paid employment, or on maternity leave) at baseline (2010-13)
and who were followed up in subsequent waves up to 10 years from baseline
(covering the period from 2010-13 to 2021-22) to track future employment exits.
Capitalising on an unusually wide range of health indicators in the UKHLS, we
employ several measures to proxy baseline health: conventional self-assessed
health (SAH), self-reported diagnosed chronic health conditions, a measure of
psychological distress as well as a composite measure of nurse-collected and blood-
based biomarkers (known as allostatic load) and epigenetic biological age

measures.

There are many empirical studies in the broader literature exploring health and
labour market outcomes (e.g., Bazzoli, 1985; Bound, 1991; Bound et al, 1999;
Chatterji et al., 2017; Datta Gupta and Larsen, 2010; Disney et al., 2006; Garcia
Gomez and Lépez Nicolas, 2006; Garcia-Goémez et al, 2010; Jones et al, 2010;
Lenhart, 2019; Lin et al, 2025; Lindeboom et al., 2016; McGarry, 2004; Riphahn,
1999; Siddiqui, 1997). Most of these studies focus on older individuals and on the
effects of health shocks on retirement decisions (Bazzoli, 1985; Bound, 1991; Bound
et al., 1999; Chatterji et al., 2017; Datta Gupta and Larsen, 2010; Disney et al.,
2006). Fewer studies examine the impact of health shocks on labour market
outcomes employing working samples that also include younger individuals (e.g.,
Garcia Gémez and Lépez Nicolas, 2006; Garcia-Gémez et al., 2010; Lenhart, 2019;
Lindeboom et al, 2016).

Many of the existing studies investigating the relationship between health/health
shocks and labour market outcomes rely on self-reported health measures, such as
the SAH, self-reported diagnosis of certain conditions, and/or self-reported
disability (e.g., Bound, 1991; Bound et al, 1999; Gémez and Lépez Nicolds, 2006;
Garcia-Gomez et al., 2010; Jones et al, 2010; Lindeboom et al, 2016; McGarry,

2004). Some related studies, however, employ more objective measures, such as



date of death (to measure longevity at a certain time period) or registry-based
hospital admissions data (e.g., Bound, 1991; Datta Gupta and Larsen, 2010; Lin et
al., 2025; McGarry, 2004).

It has been shown that measurement error in covariates can significantly affect
the prediction performance of prediction models (e.g., Khudyakov et al, 2015); this
is of relevance to our prediction analysis of future employment exits based on
individuals’ baseline characteristics. There are several reasons to expect
measurement error in self-reported health measures in research on health and
labour marker/retirement outcomes. Self-reported health is inherently subjective,
which limits comparability across individuals (e.g., Bound, 1991; Garcia-Gémez et
al, 2010; Jones et al., 2010). Moreover, individuals may misreport their health for
various reasons: to rationalise being out of the labour force (the so-called
“justification bias” in the economics literature) and/or due to potential financial
incentives that some individuals may face to report ill-health as a means of
obtaining disability benefits (Garcia-Gémez et al, 2010; Jones et al, 2010;
McGarry, 2004).1

More objective health measures used in some studies, while avoiding some of the
subjectivity issues, are also not without limitations for prediction analysis.
Specifically, longevity measures at baseline (based on subsequent mortality data)
or hospitalisation records/diagnosis data do not necessarily capture an individual’s
future capacity to work (Bound, 1991).2 For example, hospitalisation events may
result from accidents, unexpected emergencies, or rapidly developing conditions
that may not impair future employment (e.g., McGarry, 2004). Hospitalisation
records may also reflect temporary health disruptions or routine procedures with

minimal long-term impact on work capacity.

Our study contributes to the existing literature by providing an unusually broad

set of health indicators to proxy health status at baseline and followed up in

! In the UK, individuals in poor health may exit the labour market with relatively minor
financial consequences—a phenomenon referred to as the “disability route” into retirement
(Blundell et al., 2002; Jones et al., 2010).

2 Along these lines, a study of heart attack and stroke survivors in Taiwan has shown that
low-income individuals are more likely to remain employed after the health shocks, and
that those who were non-employed at baseline are more likely to start working, which could
be attributed to increased financial needs following the health shocks (Lin et al, 2025).
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subsequent waves — these health indicators span the conventional self-reported
health measure, self-reported diagnosis of chronic conditions, psychological

distress, allostatic load, and, in particular, epigenetic biological ageing measures.

Epigenetic biological ageing reflects the interaction between genes and the
environment through reversible mechanisms that regulate the function of the
genome in response to environmental exposures and, thus, moderate the ageing
process (Bafei and Shen, 2023; Davillas and Jones, 2025; Horvath and Raj, 2018).
Davillas and Jones (2025) argue that biological ageing can be considered a more
direct measure of cumulative adverse health exposures, depreciation over time,
and health-related investments, in line with Grossman’s seminal work (Grossman,
1972). As such, changes in physical functioning and psychological performance,
resulting from the biological ageing process, as well as workplace exposure to
adverse factors (physical, environmental, and organizational), are captured by
biological age measures and, thus, these measures may be relevant to predict

limitations in work capacity (World Health Organization, 1993).

Allostatic load provides a proxy for the “wear and tear" on the body caused by
chronic exposure to stress (Geronimus et al, 2006; McEwen and Seeman, 1999;
Turner et al, 2016); as such, this differs from epigenetic biological age, which
shows how old the body really is at the cellular level. While both allostatic load
and epigenetic biological age measures are influenced by a broad set of
environmental exposures, lifestyle, and stress, they provide complementary

insights into ageing and disease risk.

Given the range of potential predictors available in UKHLS, we use least absolute
shrinkage and selection operator (LASSO) regression analysis to assess which
health measures most accurately predict an individual's employment exits. LASSO
is a supervised machine learning algorithm that performs variable selection and
regularisation to enhance the accuracy and interpretability of the resulting
predictive model for future employment exits (Tibshirani, 1996; Hastie et al,

2015).3

3 LASSO has two major advantages compared to OLS as outlined in the seminal work of
Tibshirani (1996). First, LASSO sets some of the coefficient estimates exactly to zero (due
to the L1 norm constraint) and, thus, removes these particular predictors completely from
the model. As such, LASSO offers a model selection technique and better facilitates model

4



Our forward-looking analysis, that predicts future employment decisions based on
individuals’ baseline characteristics, could provide insights for policy-making. For
example, given the demographic changes towards an older population, a higher
proportion of inactive individuals relative to active workers can put further strains
on public finances and social security systems (Galasso, 2008; Kim and Dougherty,
2020). Over and above these potential fiscal implications, it may be considered as
a human capital loss at the country level if people leave the labour force
prematurely. As such, obtaining more accurate and generalisable predictions of
individuals’ later-life employment decisions that are valid under real-world data
is important. In this study, our adoption of supervised machine learning methods,
particularly LASSO, is useful in this context as it facilitates the identification of
predictors and enables accurate, generalisable predictive analytics of future

employment exits of those in employment at baseline (Padula et al, 2022).

Penalised regression methods predict future employment exits for those who are
active in the labour market at baseline (self-employed, in paid employment, or on
maternity leave), by selecting the subset of predictors from a pool of variables that
minimizes out-of-sample prediction error (e.g., Tibshirani, 1996; Hastie et al,
2015). Specifically, the LASSO estimator minimises the out-of-sample prediction
error, balancing bias and variance to build an accurate predictive model. In other
words, LASSO selects the predictors to be included in the model such that the
fitted model is suitable for making out-of-sample predictions. LASSO, as a
regularisation technique, aims to prevent overfitting and enhance predictive
accuracy. As such, of particular interest is the fact that our analysis allows us to
assess the predictive role of chronological age, after accounting for an unusually
wide set of health proxies at baseline, including biological age measures, as

potential predictors.

Evidence that chronological age is a strong predictor of future employment exits

(over and above the role of other socioeconomic and demographic predictors

interpretation (Ahrens et al, 2020; Tibshirani, 1996). Secondly, in terms of prediction
accuracy, LASSO outperforms OLS. LASSO improves model generalization, i.e., an
increased probability of generalisability of the findings to new data, by limiting the risk of
overfitting and enhanced performance, as well as it offers a deeper insight into the
underlying data generated processes (Padula et al.,, 2022).
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including respondents’ baseline health proxies) may suggest a potential basis for
lifespan-based employment decisions and policy structures, such as those related
to retirement age. Specifically, in this context, identifying a predictive role for
chronological age (net of the contribution of other factors) may reflect policy
structures (like retirement eligibility) and societal norms on future employment
decisions. Conversely, identifying which of our baseline health measures more
accurately predict an individual's health-related work capacity and exits may
provide valuable insights for policymakers on identifying which health dimensions
are better reflected in individuals’ subsequent employment exits, as well as on how
to allocate resources towards facilitating continued work for people with health

problems.

We find that biological age, rather than self-reported chronic health conditions,
psychological distress, or the more objectively measured composite allostatic load
measure, predicts subsequent employment exits. Moreover, in line with existing
studies, the conventional SAH measure is also a consistently selected as a
predictor by LASSO in our future employment exit models. Post-estimation
analysis using Shapley-Shorrocks decompositions allows us to explore which of the
selected predictors are more relevant in shaping individuals’ subsequent labour
market exits. We find that the contribution of biological age is much more
pronounced compared to the role of SAH. However, chronological age exerts the
dominant contribution to predicting subsequent employment exits. Additional
analysis, where the epigenetic biological age measure is omitted from our set of
potential predictors, shows that chronological age alone accounts for nearly all of
the combined contribution of biological and chronological age. After adjusting for
demographic and socio-economic predictors, epigenetic biological age measures
allow us to disentangle the role of chronological age — mainly reflecting
institutional structures such as retirement eligibility and societal norms - from
other contributions that capture age-related health decline, reflected in epigenetic

biological age measures.

2. Data

The UKHLS, also known as Understanding Society, is a nationally representative

longitudinal study, with a design that involves overlapping 2-year waves. Each
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panel member has been interviewed annually since the initial wave (Wave 1)
conducted between 2009 and 2010 (with only a few respondents interviewed up to
March 2011). At UKHLS Wave 2, its predecessor, the British Household Panel
Survey (BHPS), was incorporated into the UKHLS. Given the needs of our study,
one relevant feature of UKHLS is the inclusion of biosocial data — such as nurse-
collected physical health measures, blood-based biomarkers, as well as genetic and

epigenetic markers (Benzeval et al., 2023).4

Physical health measures and non-fasted blood samples were collected at nurse
visits, conducted on average five months after the main Wave 2 interview
(conducted between January 2010 and March 2012) for the UKHLS and similarly
after Wave 3 (conducted between January 2011 and July 2013) for the BHPS
sample. We pooled the UKHLS and BHPS nurse-visits sub-samples (Waves 2 and
3 for the UKHLS and BHPS sub-samples, respectively) to define our baseline, and
we follow these participants in subsequent waves up to ten years from baseline,
ending with UKHLS Wave 13 (where, more than 98% of the respondents were
interviewed between 2021 and 2022). We focus on respondents who are employed
at baseline (self-employed, in paid employment or on maternity leave) and who are
followed up in subsequent waves. In each of the subsequent waves the current

labour force status for each participant is collected.

We employ a set of different health measures (including composite biomarker and
epigenetic biological age measures) to capture respondents health at baseline
(Waves 2 and 3). Given the availability of the epigenetic biological age measures,
our potential sample of employed respondents at baseline is restricted to those for
whom the epigenetic biological age measures are recorded (2,080 individuals in
total) — a sub-sample of the pooled Wave 2 (UKHLS sample) and Wave 3 (BHPS
sample) of employed participants at baseline that is restricted (by survey design)
to those for whom nurse visits were conducted, blood samples were taken and the

epigenetic measure of biological ageing was available. Our working sample is

4 Respondents were eligible for nurse visits (where physical health measures were taken
by nurses) and for the collection of blood samples if they were aged 16 or over, lived in
England, Wales or Scotland, were not pregnant, had no clotting or bleeding disorders, and
no history of fits. Participants gave informed written consent for their blood to be taken
and stored for future scientific analysis. Nurse data collection at UKHLS has been
approved by the National Research Ethics Service (10/H0604/2).

7



restricted to follow-up respondents for whom labour market status measures are
collected in at least one of the UKHLS Waves 7-13; this results in a sample of 1,655
respondents. This potential sample is further restricted to 1,089 individuals, after
excluding missing data on our set of additional health measures (with the most
significant reduction attributed to our composite biomarkers measure — allostatic
load). Our final working sample is 1,071 employed respondents at baseline after
excluding missing information on all additional predictors used in our analysis
(demographic characteristics, human capital proxies, job-related factors, and socio-
economic status). Table 1 provides the mean values for the employment exit

outcome and all potential predictor variables included in our models.

To provide evidence on the potential implications of restricting our sample to valid
epigenetic biological ageing and composite biomarker measures, Table A.1
(Appendix) shows comparisons of descriptive statistics between our final working
sample of employed respondents (without missing data on all variables used in our
analysis) and a comparison sample of employed individuals at baseline on whom
we have imposed the same restrictions as our working sample without conditioning
on having valid biological age data and data on our composite biomarker measure.
Despite the considerable difference in the sample sizes between the two samples,
mean values are similar between the two samples. This may suggest that
conditioning on valid epigenetic biological ageing as well as composite biomarker
measures alone (over and above restricting the data to employed participants at
baseline with non-missing data on the remaining explanatory covariates as well
as successive follow-ups at subsequent wave) may have limited impact on the
comparability of our final working sample to the full, nationally representative

UKHLS data.

Employment exits

As we are interested in prediction of subsequent employment exits, we focus on
respondents who are employed (.e., self-employed, in paid employment, or on
maternity leave) at baseline (UKHLS Waves 2 and 3) and are successfully followed
up in subsequent waves. We create a binary variable for employment exit that

takes the value of one when individuals report being out of employment



(unemployed, retired, on long-term disability/sick leave, or in family care) at any

follow-up wave, and zero otherwise.?

We implement certain tasks to ensure that participants who leave employment at
any point after the baseline remain out of employment throughout the period for
which follow up data are available in our sample. Specifically, a few respondents
who exit employment post-baseline and return for one or two short spells of
employment at subsequent waves are treated as out of employment, as we are
interested in their long-term employment outcomes at subsequent waves following
baseline. In contrast, a few respondents (about 180 cases in total) who leave
employment after the baseline but frequently transition in and out of employment

across subsequent waves are excluded from the analysis.®

Health measures at baseline

We employ a large set of measures to proxy respondents physical and mental
health at baseline (UKHLS Waves 2 and 3). Specifically, capitalizing on the
richness of our available data, we use self-reported diagnosis of health conditions,
SAH, GHQ scores to capture psychological distress, a composite biomarker
measure (allostatic load) and epigenetic biological age; Table 1 provides a

description of the relevant variables, along with their mean values.

Diagnosed Health Conditions
We account for pre-existing diagnosed health conditions obtained from self-reports

made before the nurse visits (where biomarkers and blood samples used for

5 It should be noted that although the state pension age in the UK has been 66 for both
men and women since 2020, there is no legal retirement age (with the abolition of
compulsory retirement occurring at almost the same time as our UKHLS baseline Waves
2 and 3). Moreover, individuals can claim the UK state pension while continuing to work,
as there is no earnings test (Cribb, 2023). In other words, employers can no longer force
employees to retire at a particular age (although there are a few exceptions for certain jobs
requiring specific physical abilities or where a mandatory retirement age is already
established for a particular occupation). To further discourage premature retirement, UK
policies focus on incentives for longer working lives, such as through partial and flexible
retirement; this means individuals may reduce their working hours and draw down part
of their pension while still employed. As such, there is no need to restrict our working
sample to any specific upper age limit, as the law does not require compulsory retirement
at any particular chronological age.

6 Additionally, we exclude a few respondents who, despite being employed at baseline,
report being in full-time education, on an apprenticeship, or working in an unpaid family
business at any point after baseline.



estimation of the epigenetic age measures are collected) as part of Waves 2 (for the
UKHLS sample) and 3 (for the BHPS sample). Specifically, we create a
dichotomous variable that takes the value of one if the individual reported any
diagnosis of a long-lasting health condition (asthma, chronic bronchitis, congestive
heart failure, coronary heart disease, heart attack or myocardial infarction, stroke,
cancer or malignancy, diabetes, high blood pressure, arthritis, and liver condition)

before the baseline biomarker measurements were taken, and zero otherwise.

Self-assessed Health (SAH)

SAH measures are widely used in the economics literature (e.g., Currie et al, 2015;
Garcia-Gémez et al, 2010; Johnson, 2010), and known to be a strong predictor of
people’s future mortality risks (e.g., Jylha, 2009). Despite concerns about reporting
biases—such as justification bias due to its self-reported nature—SAH remains a
common measure, either on its own or as a basis for constructing health shock
variables, in studies examining the relationship between health and employment
outcomes (e.g., Bound, 1991, Bound et al, 1999; Dolls and Krolage, 2023; Garcia-
Goémez et al, 2010; Jones et al, 2010; Lenhart, 2019). In the UKHLS the SAH
question collects responses on a five-point scale ranging from 1="“excellent” to
5="“poor” health. We group the worst two SAH categories (due to their small
sample size), giving a four-point scale from 1 =“excellent” to 4 =“fair” or “poor”

health.

The 12-item General Health Questionnaire (GHQ-12)

The GHQ-12 is a widely used measure of non-psychotic psychological distress (e.g.,
Chaudhuri and Howley, 2022; Cornaglia et al, 2015; Davillas and Jones, 2021); it
is characterised by excellent psychometric properties (Bowling, 1991; Goldberg et
al, 1997). The GHQ-12 is based on self-reports of 12 items designed to detect
common psychological distress’; the underlining questionnaire uses a four-
category scale indicating the extent to which participants have recently
experienced particular symptoms or behaviours (‘not at all’, ‘no more than usual’,
‘rather more than usual’ and ‘much more than usual). Employing the Likert

scoring method that sums all 12 dimensions, the continuous GHQ-12 index ranges

7 Specifically, the 12 dimensions of the GHQ include: concentration, loss of sleep, feeling of
playing a useful role, ability to make decisions, coping under strain, overcoming difficulties,
enjoying activities, facing problems, feeling depressed or unhappy, confidence, feelings of
worthlessness, and general happiness.

10



from 0 (least distressed) to 36 (most distressed). Following the existing literature
(e.g., Davillas et al, 2016; Davillas and Jones, 2021), the Likert scoring method

allows GHQ-12 to be treated as a pseudo-continuous measure in our analysis.

Epigenetic Biological Age

DNA methylation-based measures (that are often called epigenetic age measures)
are considered robust biomarkers of biological ageing (e.g., Horvath and Raj, 2018;
Jylhavéa et al, 2017). Methylation is a mechanism that drives human ageing and
varies across people of the same chronological age (Fransquet et al, 2019).
Specifically, the so-called “epigenetic clocks” estimate biological age by using
algorithm-based weighted averages of DNA methylation levels across various
regions of the genome (Benzeval et al, 2023; Institute for Social and Economic

Research, 2025).

Unlike chronological age, which increases at the same rate for everyone, some
people experience a higher or lower biological age than their chronological age.
Despite the correlation between chronological and biological age, biological age
captures the epigenetic interaction of genes and the environment, with DNA
methylation influencing the decline in viability of bodily organs over time (Cavalli
and Heard, 2019). Existing literature shows that higher biological age is associated
with higher mortality and morbidity risks, functional limitations, and cognitive
dysfunction compared to chronological age, or after adjusting for chronological age
(Chen et al, 2016; Faul et al, 2023; Li et al., 2022). In essence, our employment
exit prediction models include epigenetic age measures to capture the predictive
role of a baseline measure of how old participants' bodies really are at the cellular
level, as biological ageing is particularly relevant for researching healthy ageing

(Horvath and Raj, 2018).

Recently released UKHLS data provide epigenetic clocks, based on DNA
methylation analysis of frozen blood samples collected at nurse visits as part of
UKHLS Waves 2 and 3. These epigenetic clocks are estimated for a sub-sample of
participants from whom blood samples were collected and who consented to genetic
analysis of their blood data (Institute for Social and Economic Research, 2025). We
estimate separate employment exit prediction models using two alterative

epigenetic biological age measures: the “PhenoAge” and the “Belsky” biological age

11



measure. “PhenoAge” is an epigenetic biomarker of ageing proposed by Levine et
al (2018). We employ “PhenoAge” as a leading second-generation epigenetic
measure, which outperforms the first-generation biological age proxies and
strongly predicts a variety of ageing outcomes, such as all-cause mortality, cancer,
and physical functioning (Levine et al, 2018; Zavala et al, 2024). Alternatively,
we employ the “Belsky clock” as our measure for capture biological age years in
separate employment exit prediction models estimated using LASSO. This is a
more recently developed — and often considered as a third-generation — biological
age measure proposed by Belsky et al. (2020, 2022).8 Existing studies have shown
that the Belsky epigenetic biological age measures are strong predictors of worse
physical and cognitive functioning, along with other aging outcomes, after

adjusting for chronological age (Belsky et al., 2020, 2022).

Allostatic Load

Allostatic load 1s a composite index of nurse-collected blood-based biomarkers,
which gives an assessment respondents “wear and tear" on the body caused by
chronic exposure to stress (Davillas and Pudney, 2017; Howard and Sparks, 2016;
Seeman et al, 2004). Higher allostatic load values are associated with increased
morbidity and all-cause mortality risks (Parker et al, 2022). Allostatic load is used
as predictor in our employment exit prediction models to proxy chronic
physiological dysregulation at baseline (Waves 2 and 3 for the UKHLS and BHPS
data, respectively). It should be noted here that biological age and allostatic load
assess different dimensions of health — physiological (allostatic load) vs. molecular
(biological age) — and, thus, provide complementary insights into ageing and
illness risks that the respondents experience at baseline (UKHLS Waves 2 and 3),
but from different angles (McCrory et al.,2020).

In line with existing studies (e.g., Davillas and Pudney, 2020; Davillas and Jones,
2025), we create the allostatic load index by combining markers for adiposity
(waist-to-height ratio), systolic blood pressure, resting heart rate, lung function

(forced vital capacity, FVC — the total amount of air forcibly blown out after a full

8 For the purposes of our prediction models on subsequent employment exits estimated
using LASSO, we use the "Belsky clock” to capture biological age (in years), rather than
any Belsky measures that are themselves adjusted for respondents' chronological age.
Chronological age is included as a separate predictor in our prediction models (described
in detail below).

12



inspiration), inflammation (C-reactive protein), blood sugar levels (HbAlc — a
sugar in the blood biomarker which is a validated diagnostic test for diabetes),
cholesterol levels (high-density lipoprotein cholesterol, HDL), liver function
(albumin) and a steroid hormone (dihydroepiandrosterone sulphate, DHEAS).?
These nurse-collected and blood-based biomarkers are collected at nurse visits as
part of our baseline waves (Waves 2 and 3 for the UKHLS and BHPS samples,
respectively). Following existing studies, we convert HDL, FVC, Albumin and
DHEAS to negative values to reflect ill-health rather than good health, then
transform each of the biomarkers into a z-score; these nine z-scores are summed

to produce the composite allostatic load measure at baseline.

Other predictors

We include a set of additional predictors which have been shown to be associated
with respondents’ labour market decisions (e.g., Garcia-Gémez et al., 2010; Jones et
al, 2010; Riphahn et al, 1999). These variables (presented in Table 1) are collected
at baseline, as part of the ULHLS waves 2 (for the UKHLS sample) and Wave 3
(for the BHPS sample).

First and foremost, we account for chronological age. Chronological age is a derived
variable in our dataset capturing completed years from date of birth up to the
nurse visit date (when the biological data used in our study are collected). We
include chronological age to capture the age-related predictive power on future
employment exit decisions. Given that we account for a wide and detailed set of
baseline health measures, the predictive role of chronological age may reflect policy
structures (e.g., retirement eligibility) and societal norms.® Moreover, we also
account for sex, acknowledging differences in labour market behaviours and

trajectories between males and females.

Household income captures the total incomes of all household members; it is
adjusted for inflation (given the within-wave interview dates variations and the

pooling of Waves 2 and 3 to define our baseline), using monthly Retail Price

9 DHEAS is associated with cardiovascular risk and all-cause mortality through psycho-
social mechanisms (Ohlsson et al, 2010).

10 Although we include a comprehensive set of baseline health measures as potential
predictors in our LASSO model, we cannot rule out that chronological age may also still
capture age-related health differences not reflected in these measures.
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Indexes, to facilitate comparisons over time. It is then equivalised (using the
modified OECD equivalence scale) to account for household composition, and log-
transformed. Educational attainment is captured using a dichotomous variable of
whether respondents have completed secondary or below education as opposed to
tertiary education. We also account for housing tenure (non-rented versus a rented

home) as an additional proxy for respondents’ socio-economic position at baseline.

Job-related physical demands may also be important predictors of individuals’
decisions to exit employment, as well as potential confounding factors in the
association between health and subsequent labour market outcomes (Datta Gupta
and Larsen, 2010; Gustman et al, 1995; Sauré et al, 2025). General physical
activity scores —covering both the level and importance of physical activities for
each occupation— are available for each Occupational Information Network
(O*NET) occupational code.!! Specifically, O*NET descriptors provide scores for
general physical activities required on the job, defined as activities involving
considerable use of the arms and legs and movement of the whole body (e.g.,
climbing, lifting, balancing, walking, stooping, and handling materials). Using the
scores for both the level and importance of physical activity for each O*NET
occupational code, we calculate average physical demand scores (for both
"importance" and "level") at the 2-digit O*NET level. These average scores are then
linked to 3-digit SOC occupational codes in the UKHLS.'2 The resulting variables
(“Job physical activities: importance score”, and “Job physical activities: level
score”) capture job-related physical activity in respondents’ current job at baseline

(UKHLS Waves 2 and 3).

Following the existing literature on the potential determinants of individual’s
labour supply and retirement decisions (e.g., Garcia-Gémez et al, 2010; Jones et
al, 2010), we also account for marital status (married/cohabitating vs non-

married/non-cohabiting) and for the number of children in the household at

11 Both the level and importance physical activity scores for each occupational code are, by
design, standardized to a scale ranging from 0 to 100. These scores are available via the
O*NET OnLine website (https!/www.onetonline.org/find/descriptor/result/4.A.3.a.1).
Standardized scores facilitate comparisons of physical activity scores—regarding both level
and importance—across and within different occupations.

12 The crosswalk from the 3-digit SOC 2000 to the 2-digit O*NET classification is available
elsewhere (Burdett et al, 2024, Appendix).
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baseline.’® A dichotomous variable for living in an urban area and a set of regional
dummies (capturing the nine Government Office Regions in England, as well as
Scotland and Wales) are also included in our set of predictors. Finally, we account
for wave dummies to capture time effects as pooled data from Waves 2 and 3 are

used.

13Tt should be noted that the aim of our study is not to examine how labour supply is jointly
determined within couples as a result of health shocks experienced by either spouse (e.g.,
Garcia-Gémez et al, 2013; Fadlon and Nielsen, 2021). Empirical models that assess joint
labour market decisions within couples are beyond the scope of this study. Instead, we
focus not on a sub-sample of married or cohabiting individuals, but on a full sample of
employed individuals at baseline who are followed in subsequent waves to determine their
employment exits.
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Table 1: Summary statistics for the outcome and predictors.

Mean
Employment exit outcome
Employment exitf 0.331
Predictors
PhenoAge 40.537
Belsky clock 46.630
Chronological age 46.713
Initial diagnosed health condition: nonef 0.715
Initial diagnosed health condition: presentt 0.285
Allostatic load -0.175
SAH
Excellent? 0.214
Very goodt 0.426
Goodf 0.289
Fair/poorf 0.071
GHQ 10.444
Job physical activities: importance score 44.592
Job physical activities: level score 40.281
Femalef 0.504
Malet 0.496
Log household income 7.554
Secondary/below educationt 0.577
Tertiary educationf 0.423
Non rented homef 0.857
Rent homef 0.143
Non-married/non-cohabitingt 0.198
Married/cohabitating® 0.802
Number of children in HH 0.660
North Eastt 0.058
North Westt 0.097
Yorkshire and the Humberf 0.077
East Midlandsf 0.097
West Midlandsf 0.091
East of Englandf 0.100
Londonf 0.048
South Eastf 0.128
South Westt 0.104
Walesf 0.092
Scotlandf 0.108
Ruralt 0.289
Urbanf 0.711
Wave 2f 0.602
Wave 3f 0.398
Sample size 1,071

T Dichotomous variable.
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3. Methods

Our objective is to assess which of our detailed set of baseline health measures
play a predictive role in individuals’ future employment decisions (up to a
maximum of 10 years from baseline), along with people’s chronological age and our
baseline predictors (demographic characteristics, human capital proxies, job-
related factors, and socio-economic status). We adopt a model selection approach
based on penalised regressions. As the emphasis is on selecting a sparse set of
predictors, we adopt the standard LASSO (least absolute shrinkage and selection
operator) estimator. LASSO performs variable selection and regularisation,
enhancing the prediction accuracy of the selected model (Tibshirani, 1996; Hastie
et al, 2015). Our interest is to explore which of the baseline health measures are
included as predictors at the selected prediction models of subsequent employment
decisions (of those employed at baseline) over and above the role of chronological

age and other predictors.

For a sample of respondents who are active in the labour market at baseline, we
define a linear model to predict subsequent employment exits (y;), for each
individual i (i = 1,2...,N), using the set of potential predictors (xi,xz,..xp;j =
1,2, ...p). Assuming sparsity, LASSO minimises the mean squared prediction error
subject to the L1 norm constraint on the absolute parameter values — this penalises

the complexity of the model. Specifically, the LASSO estimator 8, of  minimises:
(B =~ 2, (i — XiB)* + 1XE_, || D

where, 1 >0 is a penalty or tuning parameter. The potential predictors are
captured by the vector X in eq. (1); for estimation purposes, these predictors are
standardised so that the selection of predictors does not depend on their
measurement scales. The penalty has the effect of forcing some of the coefficient
estimates to be exactly equal to zero when the A parameter is sufficiently large

LASSO minimises the objective function (eq. 1) for a grid of values of A. The
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algorithm chooses the solution that minimises the out-of-sample prediction error

based on 10-fold cross validation (CV).14

In the employment exit models, we include a set of potential predictors for the
algorithm to select from: a detailed set of baseline health measures (self-reported
long-standing health conditions, SAH, GHQ-12, allostatic load and epigenetic
biological age) along with chronological age and a set of other predictors at baseline
(as described in the Data section); we also include polynomials of biological and
chronological age to capture non-linearities in the association between these
variables and subsequent employment exit decisions. As we experiment with two
alternative (second- and third-generation) epigenetic biological age measures—
“PhenoAge” and the “Belsky clock”—that are frequently used in the medical
literature and show significant advantages over their predecessors (Belsky et al,
2020, 2022; Levine et al, 2018; Zavala et al, 2024), we estimate separate
employment exit prediction models using either “PhenoAge” or the “Belsky clock”
as our epigenetic biological age measure. For estimation purposes, we transform
all our continuous predictors into z-scores, each with a mean of zero and a standard

deviation of one.

Focusing on the selected employment exit models, we further implement post-
estimation analysis. Specifically, Shapley-Shorrocks decompositions (Shorrocks,
2013) of the R-squared are computed to explore the relative contribution of the
selected predictors (as selected by the LASSO) to the explained variance of the
subsequent employment exit outcome. This analysis may help us to identify which
of the selected predictors are more relevant to predicting individuals’ subsequent
labour market exits. It identifies the relative contribution of the LASSO-selected
baseline health measures (from the rich set of health measures included in our
predictor pool), as well as the role of chronological age in predicting future

employment exit decisions.

14 k-fold cross-validation randomly divides the data into k folds. For each fold of the data a
penalized regression is fit on the other nine folds and the mean squared error (MSE) is
computed for that fold. These MSEs are averaged to give the CV mean prediction error. CV
stops when the minimum of the CV function is found, and it sets the selected Acv to the A
that gives the minimum.
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4. Results

4.1 Main results

In this sub-section, we present the main results of our prediction models. As we
experimented with alternative measures of biological ageing, we present our
results separately where “PhenoAge” or the “Belsky clock” are used as our

biological age measures.

Figure 1 presents the cross-validation plots for our LASSO estimates. These
graphs illustrate that cross-validation chooses the model that minimizes the CV
mean prediction error over the search grid for A (the penalty parameter). For the
case when “PhenoAge” is used to proxy biological age, the selected A (\v) that gives
the minimum is Aev=0.0099 (corresponding to a model with 14 selected predictors).
Specifically, Figure 1 (Panel a) shows that the CV mean prediction error decreases
as the penalty A decreases until A~=0.0099, after which it increases again
reflecting the trade-off between bias and precision. As expected, a similar pattern
is observed when the “Belsky clock” is used instead as a predictor to proxy
biological ageing (Figure 1, Panel b). The relevant plot (Figure 1, Panel b) shows
that the A that minimises the CV mean prediction error is practically identical to
the model that employs “PhenoAge” as a biological age predictor (Aev=0.009),

corresponding to 15 selected predictors.
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Figure 1: Cross-validation function over the search grid for the penalty
parameter lambda — separate models accounting for: a) the “PhenoAge”, and b)
the “Belsky clock”.

Predictor: “PhenoAge” (a)

Acv

N
N -

16 .18

Cross-validation function
14

A2

1 01 001 0001
A

Acv Cross-validation minimum lambda. A=.0099, # Coefficients=14.

Predictor: “Belsky clock” (b)

)\CV

16 .18

Cross-validation function
14

A2

N .01 .001 .0001
A

Acv Cross-validation minimum lambda. A=.009, # Coefficients=15.
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Tables 2 and 3 show the values of lambda (1) at which predictors are selected
(knots), along with the corresponding CV mean prediction errors for our models
predicting future employment exit. The value of A that minimizes the CV mean
prediction error (Acy) is indicated in the tables with a star. For comparison, and to
confirm that the CV mean prediction error increases lambdas lower than the Ay,
two subsequent knots that come after the A;, are also presented in Tables 2 and 3.
It should be explicitly noted that the predictors corresponding to each of the knots
up to Agy (the value of lambda indicated with a star in Tables 2 and 3) constitute

the final set of predictors selected by LASSO in the resulted prediction models.

For the case of the model that uses “PhenoAge” to proxy biological age (Table 2),
chronological age and chronological age squared are among the predictors that are
selected in the first knots. Moreover, the number of children in the household at
baseline and being a female contribute to the prediction of future employment exit,
selected as early as in the second and fifth knot, respectively. Turning to our set of
baseline health measures included in our set of predictors, only SAH (and
particularly the “Fair/poor” and the “Excellent” category) and biological age
(proxied by “PhenoAge”) are selected as predictors by LASSO. Household income
and educational attainment (Secondary/below education) are the selected SES
predictors. Finally, some regional dummies, an urbanisation indicator and a wave
dummy are selected as predictors; in line with existing literature, these capture
regional variations in the labour market and employment exits decisions (Garcia-
Goémez et al,, 2010; Jones et al., 2010) as well as wave dummies, given that pooled

Wave 2 and 3 data are used for the baseline.

These results suggest that the predictive power of chronological age on future
employment exits may be independent of health-related influences as baseline
health measures are also selected as predictors by the LASSO. Moreover, the fact
that, among our set of potential predictors capturing different health aspects at
baseline, biological age is selected over and above the predictive role of SAH. This
suggests that biological age and SAH rather than baseline mental health and pre-
existing health conditions (which are also included in the pool of potential

predictors) are the key predictors of subsequent labour market exits.
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Turning to the model that employs the “Belsky clock” as a proxy for biological age,
a similar set of predictors is selected (Table 3). Specifically, chronological age (and
its square), baseline biological age (as measured by the “Belsky clock”), and self-
assessed health (SAH) at baseline contribute to predicting future employment
exits, over and above a set of demographic and socioeconomic characteristics, which
include gender, number of children in the household, marital status, household

income, education, and regional, urbanisation, and wave dummies.

Table 2: CV mean prediction error and selected predictors across knots — when
“PhenoAge” is used for biological age.

No. of CV mean
Lambda ) prediction Selected predictors
nonzero coef.
error
0.2572 1 0.208837 Chronological age
0.1014 3 0.151862 Number of children in HH;
Chronological age squared
0.0365 4 0.131479 SAH: Fair/poor
0.0332 5 0.130960 Log household income
0.0276 7 0.129780 SAH: Excellent;
Female
0.0229 8 0.128598 PhenoAge
0.0190 9 0.127810 South East
0.0173 10 0.127567 North West
0.0158 12 0.127404 Rural;
Secondary/below education
0.0131 13 0.127171 Yorkshire and the Humber
0.0119 14 0.127032 Wave 2
*0.0099 14 0.126849
0.0090 15 0.126850 Non-married/non-cohabitating
0.0062 16 0.127126 South West

Note: The parameters in bold (*) correspond to the lambda selected by cross-
validation. Estimation sample size: 1,071.
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Table 3: CV mean prediction error and selected predictors across knots — when
“Belsky clock” is used for biological age.

No. of CV mean
Lambda ) prediction Selected predictors
nonzero coef.
error

0.2572 1 0.2088 Chronological age
0.1113 2 0.1552 Belsky clock
0.1014 4 0.1521 Number of children in HH;

Chronological age squared
0.0365 5 0.1318 Log household income
0.0332 6 0.1313 SAH: Fair/poor
0.0276 8 0.1301 SAH: Excellent;

Female
0.0209 9 0.1285 South East
0.0173 11 0.1279 Secondary/below education;
North West
0.0158 12 0.1277 Rural
0.0131 13 0.1275 Wave 2
0.0119 14 0.1273 Yorkshire and the Humber
*0.0090 15 0.1271 Non-married/non-cohabitating
0.0062 17 0.1274 South West;
Initial diagnosed health conditions: none

0.0057 18 0.1276 East Midlands

Note: The parameters in bold (¥) correspond to the lambda selected by cross-
validation. Estimation sample size: 1,071.

Figure 2 presents the penalised LASSO coefficient estimates for the selected
predictors (as outlined in Tables 2 and 3). Overall, across both prediction models,
using “PhenoAge” or “Belsky clock” to proxy biological age (Figure 2, Panels a and
b), the coefficient signs are as expected. For example, baseline chronological age
(and age squared) has a positive sign for employment exits, suggesting that higher
chronological age positively predicts employment exits, with non-linearities
suggesting a more pronounced predictive role for chronologically older respondents
(Figure 2, Panel a and b). Turning to the baseline SAH measure, the “Fair/poor”
SAH category has a positive sign, while the “Excellent” SAH category has a
negative sign with subsequent employment exits (Figure 2, Panels a and b).
Moreover, our biological age measures (either “PhenoAge” or “Belsky clock”) at
baseline, with higher values suggesting a lower viability of the body, have a
positive sign across the models (Figure 2, Panels a and b). Higher household

income, indicative of higher socioeconomic status at baseline, has a positive sign
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in the models predicting subsequent employment exits, while lower educational
attainment (“Secondary/below education” versus “Tertiary education”) is
negatively associated with future employment exits. Regarding family-related
predictors, the number of children in the household has a negative sign, while
being non-married/non-cohabitating has a coefficient with a positive sign (as
marital status is a selected predictor only in the model that includes the “Belsky

clock” as biological age measure; Figure 2, Panel b).
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Figure 2. Penalised coefficients for the (standardized) predictors — separate
models accounting for: a) the “PhenoAge”, and b) the “Belsky clock”.

Predictor: “PhenoAge” (a)

Chronological age I 2609
Chronological age squared I 0958
Number of children in HH |-.0339 [l
Log household income Il 0292
SAH: Fair/poor M .0241
Female M 0212

SAH: Excellent| -.0191
North West| -.0083 1

PhenoAge 1.0079
South East 1.0073
Rural| -.0072 1
Secondary/below education| -.0067 |
Yorkshire and the Humber| -.0036 |
Wave 2 |.0022
-1 0 A 2 3

Predictor: “Belsky clock” (b)

Chronological age I 2219
Chronological age squared I 0963
Belsky clock I 0488
Number of children in HH | -.0334 Il
Log household income Il .0303
SAH:Poor/fair Il .0244
Female Il .0231

SAH:Excellent| -.0193 W
North West -.00951

Secondary/below education -.0091 1

Rural -.00811
South East 1.0078

Yorkshire and the Humber -.0036 |
Wave 2 1.0036
Non-married/non-cohabitating .0005
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Typically, the use of LASSO for prediction analysis does not focus on the
magnitude of the penalised coefficients. Thus, we employ post-estimation analysis
using Shapley-Shorrocks decompositions (Shorrocks, 2013) of the R-squared for
models that use the set of predictors selected by LASSO. This analysis allows us
to explore which of the selected predictors are more relevant in predicting

individuals’ subsequent labour market exits.

The results from the Shapley-Shorrocks decomposition analysis of the resulting
models are presented in Table 4, separately for the two alternative measures of
biological age used in our analysis: “PhenoAge” (Panel a), and “Belsky clock” (Panel
b). Chronological age exerts the dominant contribution to the predicting
subsequent employment exits — this suggests that chronological age plays a major
predictive role in future employment exits, which is of particular importance as it
is over and above baseline measures of health (along with all other socio-economic
and demographic predictors accounted for in our prediction models). Turning to
baseline health measures, biological age proxies (either using the “PhenoAge” or
the “Belsky clock”) make the most pronounced contribution of all the predictor
included apart from chronological age. Of particular interest, the contribution of
biological age is much more pronounced compared to the role of SAH (with the role
of SAH being around 2%). Among the remaining predictors, the number of children
in the household makes the most pronounced contribution (approximately 11%),

while the others each contribute significantly less (below 2%).

Overall, Table 4 (Panels a and b) shows that the combined contribution of
chronological age and biological age is around 83% (either when the PhenoAge or
the Belsky clock is used). An important caveat to this finding is shown in Table 4,
Panel ¢, which repeats the post-estimation decomposition analysis based on the
selected models by LASSO without biological age included in the set of potential
regressors; the overall R-squared is unaffected, at 0.453, and the percentage
contribution attributable to chronological age increases to 79.28%. So, including
biological age, which is highly collinear with chronological age, does not add to the
overall goodness of fit of the regressions. Nevertheless, these results suggest that
the decomposition into epigenetic age and other aspects of age may offer useful

insights that would have been masked in the absence of epigenetic measures of
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biological age. However, collecting information on biological age comes at
considerable cost, including a reduced sample size compared to an analysis that
could be done using the remaining health measures and chronological age in

UKHLS.

Table 4. Shapley decomposition of R2 for post-selection linear regressions
— accounting for: a) “PhenoAge”, b) the “Belsky clock”, ¢) without biological

age.
(a) (b) (c)

Chronological age 55.37% 47.97% 79.28%
PhenoAge 27.24% - -
Belsky clock - 35.00%
SAH 2.31% 2.29% 2.55%
Log Household Income 1.63% 1.61% 1.56%
Educational attainment 0.23% 0.31% 0.18%
Gender 0.57% 0.69% 0.55%
Marital Status - 0.24% 0.27%
Number of children in the HH 11.41% 10.59% 14.48%
Region of residency 0.85% 0.84% 0.84%
Urbanisation level 0.24% 0.26% 0.21%
Wave dummaies 0.15% 0.20% 0.08%

Total 100.00% 100.00% 100.00%

R2 0.453 0.454 0.453

4.2 Robustness checks

Our employment exit outcome, measured up to ten years from baseline (.e., up to
UKHLS Wave 13), includes part of the COVID-19 period (2020-2022). We conduct
a sensitivity analysis defining employment exits based on data up to UKHLS Wave
10 (with 98% of the respondents’ interviews conducted between 2018 and 2019) —
a period that excludes the COVID-19 outbreak in the UK. The results of this
sensitivity analysis (Table A2, Appendix) do not differ substantially from our base-

case results presented in Tables 2 and 3 (in terms of the selected predictors).
Moreover, we also perform sensitivity analysis for the number of folds used for the

k-fold cross-validation. It has been argued that the most commonly used in

empirical research, 10-fold (as in our base-case analysis), provides a good balance
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between bias and variance (Cameron and Trivedi, 2022).15 Robustness checks
using 5 or 20 CV folds suggest no changes to selected predictors, at least as far as
the key demographic and socioeconomic predictors as well as chronological age and

the baseline health measures.

As additional sensitivity analyses, we re-ran our prediction models using probit
LASSO, rather than the linear models in our base-case analysis, as well as
adaptive LASSO, rather than the CV used in the base-case analysis, to select the
tuning parameter (Tables A3 and A4, Appendix). These sensitivity analyses do not
affect the key selected predictors as compared to the base-case models presented
in the study (Tables 2 and 3); specifically, chronological age (and chronological age
squared), baseline SAH and biological age measures, along with baseline
socioeconomic position and regional/urban dummies. We note however that our
main results remain based on prediction models estimated using CV LASSO,
rather than adaptive LASSO, because CV LASSO is a widely employed estimation

method when the goal is prediction, which is the main scope of this study.

5 Conclusion

In this study, we use supervised machine learning techniques, in particular the
LASSO, to examine the predictive role of individuals’ baseline health in future
employment exits, while also accounting for the potential influence of additional
baseline factors affecting labour force decisions. Using longitudinal data from a
nationally representative UK dataset - Understanding Society- the UK Household
Longitudinal Study (UKHLS) - we focus on individuals who were employed at
baseline (specifically, self-employed, those in paid employment, or on maternity
leave) and were followed for up to 10 years to track subsequent employment exits.
Drawing on an unusually wide range of health indicators, we employ several
measures to proxy respondents’ baseline health: conventional self-assessed health

(SAH), self-reported diagnosed chronic conditions, a measure of psychological

15 A larger number of folds implies that the training set size increases and, thus, bias
decreases; at the same time however, the fitted models are more likely to overlap and, thus,
the test set predictions are more correlated leading to greater variance in the estimate of
the expected prediction error.
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distress, and a composite indicator of nurse-collected and blood-based biomarkers

(allostatic load), as well as epigenetic biological age measures.

Unlike self-reported diagnosed chronic conditions or the more objectively
measured composite allostatic load measure, we find that the combination of
epigenetic biological age, and - as expected - chronological age, predict subsequent
employment exits over and above other predictors. SAH is selected by LASSO in
our models predicting future employment exits. This result is broadly in line with
existing studies suggesting that subjective health measures retain predictive
power in labour force participation models, even after accounting for more objective
measures of health (McGarry, 2004). We argue that the inherently subjective and
contextual nature of self-rated health may capture health-related predispositions
or bodily sensations that influence subsequent employment decisions (Jylha,

2009).

Post-estimation analysis using Shapley-Shorrocks decompositions allows us to
explore which of the selected predictors are most relevant in shaping individuals’
subsequent labour market exits. Our results highlight that although both
epigenetic biological age and SAH are selected predictors by LASSO, the
contribution of biological age is much more pronounced compared to SAH. This
suggests that biological age provides strong additional predictive power over and
above SAH (along with other demographic, socioeconomic, and human capital
predictors included in the model). In this context, epigenetic biological age may
capture the underlying physiological decline that influences a person’s capacity to
work or their health-related decision to exit the labour force. On the other hand,
the dominant contribution of chronological age suggests that chronological age
plays a major predictive role over and above baseline health measures. Additional
analysis when epigenetic biological age measure is omitted from our set of
potential predictors, shows that chronological age accounts for nearly all of the
combined contribution of biological and chronological age. However, the
availability of epigenetic biological age measures allows us to disentangle between
the role of chronological age that reflects institutional structures, such as
retirement eligibility, and societal norms from other contributions reflecting age-
related decline in health status that are relevant to epigenetic biological age

measures. Technical improvements, such as using dried blood spots collected on
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filter paper instead of the conventional venipuncture procedure, may reduce the
(administrative) cost of obtaining epigenetic ageing measures (Ryan, 2021). As
such, epigenetic biological ageing may inform more precise tailored interventions
- such as job redesign, medical support, or flexible schedules - to slow functional

decline and delay premature employment exit.
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Table Al: Summary statistics for the predictors

Estimation sample# Comparison sample
(without conditioning on
allostatic load and biological

age)H
Mean Obs. Mean Obs.

PhenoAge 40.537 1,071 - -
Belsky clock 46.630 1,071 - -
Chronological age®# 46.713 1,071 44.961 8,323
Initial diagnosed health condition: nonef 0.715 1,071 0.689 15,245
Initial diagnosed health condition: presentt 0.285 1,071 0.311 15,245
Allostatic load -0.175 1,071 - -
SAH 1,071

Excellent 0.214 1,071 0.180 15,245

Very good 0.426 1,071 0.414 15,245

Good 0.289 1,071 0.312 15,245

Fair/poor 0.071 1,071 0.094 15,245
GHQ score 10.444 1,071 10.535 15,245
Job physical activities: importance score 44.592 1,071 45.787 15,245
Job physical activities: level score 40.281 1,071 41.095 15,245
Femalef 0.504 1,071 0.522 15,245
Malef 0.496 1,071 0.478 15,245
Log household income 7.554 1,071 7.521 15,245
Secondary/below educationt 0.577 1,071 0.572 15,245
Tertiary educationf 0.423 1,071 0.428 15,245
Non rented homef 0.857 1,071 0.790 15,245
Rent homet 0.143 1,071 0.210 15,245
Non-married/non-cohabitingt 0.198 1,071 0.246 15,245
Married/cohabitatingf 0.802 1,071 0.754 15,245
Number of children in HH 0.660 1,071 0.666 15,245
North Eastt 0.058 1,071 0.041 15,245
North Westf 0.097 1,071 0.115 15,245
Yorkshire and the Humbert 0.077 1,071 0.079 15,245
East Midlandst 0.097 1,071 0.085 15,245
West Midlandst 0.091 1,071 0.079 15,245
East of Englandf 0.100 1,071 0.099 15,245
Londonf 0.048 1,071 0.067 15,245
South Eastf 0.128 1,071 0.147 15,245
South Westt 0.104 1,071 0.097 15,245
Walest 0.092 1,071 0.082 15,245
Scotlandf 0.108 1,071 0.109 15,245
Ruralf 0.289 1,071 0.255 15,245
Urbant 0.711 1,071 0.745 15,245
Wave 2f 0.602 1,071 0.772 15,245
Wave 3f 0.398 1,071 0.228 15,245

T Dichotomous variable.

I Estimation sample as in Table 1; represents the pooled sample of Wave 2 (UKHLS)/ Wave 3 (BHPS) respondents who
are currently in employment (self-employed, in paid employment or on maternity leave) and are followed up at subsequent
waves to track future employment exits, and are constrained to having non-missing information on all the utilised
predictors (including allostatic load and biological age measures).

# Pooled sample of Wave 2 (UKHLS)/ Wave 3 (BHPS) respondents who are currently in employment (self-employed, in
paid employment or on maternity leave) and are followed up at subsequent waves to track future employment exits, and
are constrained to having non-missing information on all utilised predictors except allostatic load and biological age
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measures. As opposed to the estimation sample, this sample does not condition on the availability of biological age data
or allostatic load.

## The mean chronological age for the comparison sample is available only for respondents who participated in the nurse
visits, which were conducted an average of five months after the corresponding main Waves 2/3; this allows for direct
comparison of chronological age with biological age measures as biological age measures are based on blood samples
collected during those nurse visits.

Table A2. Selected predictors in order of selection:
excluding the COVID-19 UKHLS waves in defining

employment exits.

Predictor: “PhenoAge”

Predictor: “Belsky clock”

Chronological age
Number of children in HH;
Chronological age squared

Log household income
SAH: Fair/poor
SAH: Excellent

Female;
South East
PhenoAge
Wave 2
Yorkshire and the Humber
North West
Rural
Secondary/below education

Chronological age
Belsky clock;
Number of children in HH;
Chronological age squared
Log household income
SAH: Fair/poor
SAH: Excellent
Female;

South East
Wave 2
Yorkshire and the Humber
North West
Secondary/below education
Rural
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Table A3: Selected predictors in order of selection by LASSO: when “PhenoAge” is used.

5 CV folds 20 CV folds Probit LASSO Adaptive LASSO
Chronological age Chronological age Chronological age Chronological age
Number of children in HH;  Number of children in HH;  Number of children in HH Chronological age squared

Chronological age squared
SAH: Fair/poor
Log household income
SAH: Excellent;
Female
PhenoAge

South East
North West

Rural;
Secondary/below education
Yorkshire and the Humber

Chronological age squared
SAH: Fair/poor
Log household income
SAH: Excellent;
Female
PhenoAge

South East
North West

Rural;
Secondary/below education
Yorkshire and the Humber

Wave 2

Non-married/non-
cohabitating

Chronological age squared
SAH: Fair/poor
Log household income;
PhenoAge
SAH: Excellent;
Female
South East
North West;
Yorkshire and the Humber
Secondary/below education

Rural
Non-married/non-
cohabitating
London

Number of children in HH
SAH: Fair/poor
Log household income

SAH: Excellent

PhenoAge
Female

North West;
South East
Yorkshire and the Humber

Table A4: Selected predictors in order of selection by LASSO: when “Belsky clock” is used.

5 CV folds 20 CV folds Probit LASSO Adaptive LASSO
Chronological age Chronological age Chronological age Chronological age
Belsky clock Belsky clock Belsky clock Chronological age squared
Number of children in HH;  Number of children in HH; Number of children in HH Number of children in HH
Chronological age squared  Chronological age squared
Log household income Chronological age squared Belsky clock

Log household income
SAH: Fair/poor
SAH: Excellent;

SAH: Fair/poor
SAH: Excellent;

SAH: Fair/poor
Log household income

SAH: Fair/poor
Log household income

Female Female
South East South East Female SAH: Excellent
Secondary/below education; Secondary/below education; SAH: Excellent Female
North West North West
Rural Rural South East South East
Wave 2 Wave 2 Secondary/below education; North West
South West;
Yorkshire and the Humber
Yorkshire and the Humber Rural Yorkshire and the Humber
Non-married/non- Non-married/non- Secondary/below education
cohabitating cohabitating
London London
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