
ECONtribute
Discussion Paper No. 373

October 2025 www.econtribute.de

Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC 2126/1-390838866 is gratefully acknowledged.

Sequential Equilibria in Mixed Strategies

Francesc Dilmé



Sequential Equilibria in Mixed Strategies

Francesc Dilmé*

A Nash equilibrium of a game in extensive form is a sequential equilibrium in mixed

strategies if it can be approximated through equilibria of close-by games with slightly

perturbed payoffs and small-probability behavioral types. We show that sequential

equilibria in mixed strategies are equivalent to (i) weakly sequential equilibria (Reny,

1992), (ii) normal-form perfect equilibria (Selten, 1975) in games with generic pay-

offs, and (iii) purifiable Nash equilibria (Harsanyi, 1973). A corollary of our results

is that extensive-form perfect equilibria are normal-form perfect equilibria in games

with generic payoffs.

Since its introduction by Kreps and Wilson (1982), sequential equilibrium has been in-

fluential in both theoretical and applied work. Its definition requires considering a belief

system along with a strategy profile, and demands both consistency and sequential ratio-

nality. Nevertheless, Kreps and Wilson offer an insightful equivalent characterization: a

strategy profile is a sequential equilibrium if and only if it is the limit of Nash equilibria

of similar games with perturbed payoffs and mistakes. This characterization lends plau-

sibility to sequential equilibria, as small perturbations of payoffs and mistakes are likely

in practice (and possibly difficult for the econometrician to observe); sequential equilib-

ria are those approximated by equilibria of such perturbed games. Importantly, it also

permits extending the concept of sequential equilibria to strategy spaces beyond behavior

strategies.
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In this paper, we define and analyze sequential equilibria in mixed strategies, using

Kreps and Wilson’s (1982) characterization, but perturbing the space of mixed strategies

instead of behavior strategies. These perturbations are interpreted as small probabilities

of a player’s irrationality (“behavioral types”). We find that sequential equilibria in mixed

strategies are closely related to weakly sequential equilibria; we characterize their rela-

tionship with perfect equilibria; and we show that, remarkably, they coincide with the set

of purifiable Nash equilibria. Let us elaborate.

For our analysis, we fix a game in extensive form. A strategy profile is a sequential

equilibrium in mixed strategies if it is the limit of Nash equilibria of a sequence of perturbed

games converging to the unperturbed game, where players “tremble” in their choice of

strategy and where payoffs are also perturbed. A natural interpretation of the tremble in-

volves behavioral types: at the outset, nature independently decides whether each player is

rational (with the corresponding perturbed payoffs) or behavioral (and plays according to

a prespecified fully mixed strategy).1 Sequential equilibria in mixed strategies differ from

sequential equilibria in that a deviation from equilibrium behavior signals that a player is

irrational rather than that she is rational but has made a mistake.

We first show the equivalence between outcomes of sequential equilibria in mixed

strategies and outcomes of weakly sequential equilibria (Reny, 1992).2 Recall that weakly

sequential equilibria are consistent assessments where a player’s sequential rationality is

not required at her information sets that her strategy cannot reach. Our result is intuitive

given our interpretation of trembles as behavioral types, as Reny’s main motivation is that

deviators should not be perceived as rational players (even though he does not explicitly

consider trembles). It then follows that outcomes of sequential equilibria are outcomes of

sequential equilibria in mixed strategies. We also provide a characterization of sequential

equilibria in mixed strategies that mimics Kreps and Wilson’s (1982) definition: a strategy

profile is a sequential equilibrium in mixed strategies if and only if it is part of a consistent

and weakly sequentially rational conditional assessment, where beliefs at information sets

1Equivalently, we could have many behavioral types (one for each pure strategy of the player) and nature choosing one of them with a

small probability.

2Because weakly sequential equilibria are defined using behavioral strategies and belief systems, it is appropriate to compare the two

concepts through the distributions over terminal histories they induce.
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concern the continuation strategy profile rather than histories.

Next, we define perfect equilibria in mixed strategies as those approximated by Nash

equilibria where players’ strategies are perturbed (but not their payoffs). Their outcomes

coincide with those of perfect equilibria in the normal form of the game. We show that

perfect equilibria in mixed strategies are sequential equilibria in mixed strategies, and that

the two concepts coincide for generic payoffs. This result extends the analogous result by

Kreps and Wilson (1982) for behavior strategies.

A corollary of our results is that outcomes of extensive-form perfect equilibria are

outcomes of perfect equilibria in mixed strategies. This result is intuitive because perfect

equilibria are approximated by perturbed strategy profiles that are sequentially rational

at all information sets, whereas perfect equilibria in mixed strategies require only ex-ante

optimality. However, because the set of perturbations that define them differs, these con-

cepts are not universally ranked: outcomes of perfect equilibria in mixed strategies are not

always outcomes of perfect equilibria, and vice versa.

Finally, we show that sequential equilibria in mixed strategies coincide with the set

of purifiable Nash equilibria (Harsanyi, 1973). Recall that a Nash equilibrium is purifi-

able if it can be approximated by Nash equilibria in a sequence of games where players’

payoffs are independently perturbed according to an atomless distribution with a large

support.3 Hence, while purifiability has a limited effect in normal-form games (where all

Nash equilibria are purifiable), it exerts significant selection power in extensive games, as

all information sets are reached with positive probability.

Overall, we argue that sequential equilibria in mixed strategies are the natural ana-

log of sequential equilibria, both in terms of their definition and properties. They are

equilibria of similar games with small-probability behavioral types; generically coincide

with perfect equilibria; and can be purified by payoff perturbations. Sequential equilibria

in mixed strategies are thus well suited as an equilibrium concept for environments with

small uncertainty about other players’ rationality or payoffs.

3By a “large support” we mean that, for each strategy of a player, there is a payoff in the support where this strategy is strictly dominant.
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The paper is organized as follows. Section 1 provides the notation and basic defi-

nitions for the paper. Section 2 introduces sequential equilibria in mixed strategies and

Section 3 characterizes their relationship with weakly sequential equilibria. Section 4 in-

troduces perfect equilibria in mixed strategies and relates them to sequential equilibria

in mixed strategies. Section 5 establishes the equivalence between sequential equilibria

in mixed strategies and purifiable Nash equilibria. Section 6 concludes. Appendix A in-

troduces ε-sequential equilibria in mixed strategies, a concept useful for the proofs of the

previous results, which are placed in Appendix B. Finally, Appendix C relates our con-

cepts to quasi-perfect equilibria (van Damme, 1984) and normal-form sequential equilibria

(Mailath et al., 1993).

1 Games in extensive form

We define and introduce notation for an extensive-form game with perfect recall. The

definitions are standard and the notation is summarized in Table 1.

A (finite) game G := 〈A, H,I, N , ι,π, u〉 has the following components: (1) A finite set

of actions A. (2) A finite set of histories H. Here, a history is a finite sequence of actions

h≡ (h j)
|h|
j=1 (where |h| denotes the length of history h), and the set H has the property that if

h≡ (h j)
|h|
j=1∈H with |h|>0, then (h j)

|h|−1
j=1 ∈H as well. (In particular, ;=: (h j)0j=1∈H.) The

set of terminal histories is Z . (3) An information partition I, that is, a partition of H\Z such

that there is a partition {AI |I ∈I} of A with the property that, for each I ∈I and h∈H, we

have (h, a)∈H for some a∈AI if and only if h∈ I . The elements of I are called information

sets.4 (4) A finite set of players N 630. (5) A player assignment ι :I→N ∪{0}, assigning each

information set to a player or to nature (represented by 0), and satisfying perfect recall.5

(6) A nature’s probability assignment π :∪I∈ι−1({0}) A
I→ (0,1] satisfying

∑

a∈AI π(a)=1 for

each I ∈ ι−1({0}). (7) For each player i∈N , a (von Neumann–Morgenstern) payoff function

ui : Z→R. For convenience, we set u0(z)=0 for all z∈ Z .

4We assume, without loss of generality, that each action is available at only one information set; actions can always be renamed to

ensure this.

5Perfect recall implies that for all I , I ′ ∈I with ι(I)= ι(I ′) and all h, ĥ∈ I , if (h′, a)�h for some h′ ∈ I ′ and a∈A, then (ĥ′, a)� ĥ for

some ĥ′ ∈ I ′. Here, (h′, a)�h indicates that (h′, a) precedes or equals h.
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i∈N player i si ∈Si i’s pure strategies G(ξ, u) perturbed game

ai ∈Ai i’s actions σi ∈Σi i’s mixed strategies Isi
i si-relevant inf. sets

h∈H histories βi ∈Bi i’s behavior strat. S I
i i’s strategies for

z∈ Z terminal histories µ belief system which I is relevant

I ∈Ii i’s info. sets ξ tremble γ cond. belief syst.

ui i’s payoff Pσ prob. under σ ν payoff prob. measure

Table 1 Notation

A pure strategy for i∈N ∪{0} is a map si that assigns an action si,I ∈AI to each of

i’s information sets Ii ∈Ii. We denote the set of i’s pure strategies by Si, and use S to

denote ×i∈N Si. A mixed strategy for player i∈N is a distribution over her pure strategies,

σi ∈∆(Si). We use Σi to denote the set of i’s mixed strategies. For all s0∈S0, we let π(s0)

denote
∏

I∈ι−1({0})π(s0,I) and let Σ0 denote the set with the only mixed strategy by nature,

{π}. We let Σ :=×i∈{0}∪NΣi to denote the set of mixed strategy profiles.

Each mixed strategy profileσ∈Σ induces an outcome Pσ∈∆(Z), that is, a probability

distribution over terminal histories. We often abuse notation by using u(σ) to denote

u(Pσ)≡
∑

z∈Z P
σ(z)u(z).

A behavior strategy for player i∈N ∪{0} is a map βi that assigns a distribution over the

actions in AI to each of i’s information sets Ii ∈Ii. We use Bi to denote the set of i’s behavior

strategies and B :=×i∈{0}∪NBi to denote the set of behavior strategy profiles. A behavior

strategy profile β is fully mixed if βi(ai)>0 for all i∈N and ai ∈Ai, where Ai :=∪I∈Ii
AI

is the set of actions played by i. Note that pure strategies can be naturally seen as both

mixed and behavior strategies. The outcome generated by a behavior strategy profile β is

denoted Pβ .

As we shall see, some equilibrium concepts are defined using mixed strategies and

others using behavior strategies. Because these are objects living in different spaces, it is

convenient to use their outcomes to compare them. It will be useful to use the following

classical result.

Lemma 1.1 (Kuhn, 1953). The sets of outcomes of mixed and behavior strategies coincide.
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1.1 Sequential equilibria

As we will provide a mixed-strategy analog of Kreps and Wilson’s (1982) concept of se-

quential equilibria, we now revisit it.

Belief systems and consistency: A belief system is a map µ assigning a probability µ(h)∈

[0,1] to each non-terminal history h∈H\Z , in such a way that
∑

h∈I µ(h)=1 for all I ∈I.

An assessment is then a pair (β ,µ). An assessment (β ,µ) is consistent if there is a fully-

mixed sequence (βn)→β such that

µ(h)= lim
n→∞

Pβn(h)
∑

h′∈I Pβn(h′)

for all I ∈I and h∈ I . In this case, (βn) is said to support (β ,µ).

Conditional payoffs and sequential rationality: For a given assessment (β ,µ), define

player i’s continuation payoff at I ∈Ii as

ui(β ,µ|I)=
∑

h∈I

∑

z∈Zh

µI(h)Pβ(z|h)ui(z) ,

where Zh is the set of terminal histories that follow h, and where, for each z∈ Zh, we have

Pβ(z|h) :=
∏|z|

j=J β(z j), with J denoting the index such that (z j)Jj=1=h. For a given i∈N

and I ∈Ii, we say that (β ,µ) is sequentially rational at I if

βi ∈argmax
β̂i∈Bi

ui(β̂i,β−i,µ|I) .

We say that (β ,µ) is sequentially rational if it is sequentially rational at all information sets.

Sequential equilibria: We say that (β ,µ) is a sequential equilibrium assessment if it is

consistent and sequentially rational. We say that β is a sequential equilibrium if there is

some belief system µ such that (β ,µ) is a sequential equilibrium assessment.

2 Sequential equilibria in mixed strategies

Nash equilibria under a perturbation

On our way to defining sequential equilibria in mixed strategies, we define trembles and

Nash equilibria under a perturbed version of a game following Selten (1975).
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Definition 2.1. A tremble ξ assigns to each i∈N and si ∈Si a value ξi(si)∈ (0,1] such that
∑

ŝi∈Si
ξi(ŝi)≤1. A tremble sequence is a sequence (ξn)→0.

We follow Selten (1975) in defining Nash equilibria of perturbed games. As we will

consider both perturbations of mixed strategies and payoffs, we define Nash equilibria for

any game perturbed according to some tremble ξ and payoff function û.

Definition 2.2. σ∈Σ is a Nash equilibrium of G(ξ, û) if, for all i∈N and si ∈Si, (i) σi(si)≥

ξi(si), and (ii) if σi(si)>ξi(si), then ûi(si,σ−i)≥ ûi(ŝi,σ−i) for all ŝi ∈Si.

Selten’s interpretation is that in the game perturbed according to ξ, players tremble

and make mistakes, sometimes choosing a dominated strategy. Analogously to standard

Nash equilibria, a player chooses a strategy with a probability above the tremble only

if the strategy is a best response. As we are perturbing the set of mixed strategies, a

natural interpretation of a mixed tremble is as a small probability that each given player is

a behavioral action type. In this case, a Nash equilibrium of G(ξ, u) can be seen as a Nash

equilibrium of a game with small uncertainty about each player’s rationality.

Sequential equilibria in mixed strategies

An important result in Kreps and Wilson (1982) is that sequential equilibria constitute

the set of strategy profiles that can be approximated by Nash equilibria of games with

perturbed strategies and payoffs.6 We now state an analogous result for mixed strategies.

Definition 2.3. σ∈Σ is a sequential equilibrium in mixed strategies if there is a sequence

(σn,ξn, un)→ (σ, 0, u) such that each σn is a Nash equilibrium of G(ξn, un).

Like the analogous result of Kreps and Wilson (1982) (their Proposition 6), Defini-

tion 2.3 gives plausibility to sequential equilibria in mixed strategies. It defines σ to be

a sequential equilibrium in mixed strategies if, for all ε>0, there is a ε-perturbation of

the game (in terms of payoffs and behavioral types) with a Nash equilibrium ε-close to

σ. Hence, assuming that the econometrician cannot fully determine payoffs or identify

6See also discussions in Blume and Zame (1994) (Proposition A) and Dilmé (2025).
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Figure 1

small probabilities of irrationality, Definition 2.3 requires that the prediction is close to the

prediction of an environment close to the one observed.

The converse implication of Definition 2.3 is that if σ is not a sequential equilibrium

in mixed strategies, then it is fragile: no similar game (with slightly perturbed strategies

and payoffs) has a Nash equilibrium close to σ. Hence, focusing on sequential equilibria

in mixed strategies rules out behavior that ceases to be a Nash equilibrium for any similar

perturbed game. The following result formalizes this observation.

Proposition 2.1. σ is not a sequential equilibrium in mixed strategies if and only if, for all

ε>0, there is some δ>0 such that for all ξ and û with ‖ξ‖+‖û−u‖<δ, no Nash equilibrium

of G(ξ, û) is at a distance less than ε from σ.7

Example 2.1. Throughout, we will use the simple game in Figure 1, which corresponds to

the game in Figure 1 in Reny (1992). This game has two outcomes of Nash equilibria:

one is D1 and the other is (A1, A2, A′1). We will now explicitly show D1 is an outcome of

sequential equilibria in mixed strategies (it is easy to verify that (A1, A2, A′1) is too).

Let (a1, a′1) indicate player 1’s pure strategy specifying playing a1∈{D1, A1} and a′1∈

{D′1, A′1} at the respective information sets. Let (ξn)→0 be such that ξ1,n(A1,D′1)=n−1 and

ξ1,n(s1)=ξ2,n(s2)=n−2 for all s1 6=(A1,D′1) and s2. Then, it is easy to see that, for each n,

the strategy profile (σ1,n,σ2,n) given by

�

(1−2 n−2−n−1) (D1,D′1)+n−2 (D1, A′1)+n−1 (A1, D′1)+n−2 (A1, A′1) ,

(1−n−2)D2+n−2 A2

�

7Here and in the rest of the paper, ‖·‖ denotes the sup norm of the corresponding space.
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is a Nash equilibrium of G(ξn, u) for n≥2.8 Also, it is clear that the outcome of (σ1,n,σ2,n)

converges to D1.

While D1 is not the outcome of a subgame perfect Nash equilibrium, it is plausible

in close-by games with small uncertainty about player 1’s rationality. Indeed, in the game

perturbed according to ξn, the probability of 1’s irrational type playing (A1, D′1) is n times

as high as the probability of any of its other irrational types. As a result, in an equilibrium

where the rational type of player 1 is known to choose D1 in the first information set,

player 2 gets to play only if player 1 is a behavioral type, in which case she is more likely

to choose D′1 than A1, making D2 an optimal strategy for player 2. This makes it optimal

for the rational player 1 to choose D1.

3 Relationship to weakly sequential equilibria

3.1 Weakly sequential equilibria

Reny (1992) introduced weakly sequential equilibria, a weakening of sequential equilibria

obtained by relaxing the requirement of sequential rationality at all information sets. In this

section, we revisit his approach and show that weakly sequential equilibria are equivalent

to sequential equilibria in mixed strategies.

We begin with the concept of relevant information sets for a given strategy, a concept

introduced in Reny (1992). We say that I ∈I is si-relevant if Psi ,s−i(I)>0 for some s−i ∈S−i.

Equivalently, I is si-relevant if it is reached with positive probability under all fully-mixed

strategies by players other than i. We use Isi
i to denote the set of si-relevant information

sets in Ii, respectively. Conversely, we use S I
i to denote the set of i’s pure strategies si for

which I is si-relevant, that is, the i’s pure strategies that do not preclude I . For a given

strategy profile σ, we say that I ∈Ii is σ-relevant if it is relevant for some pure strategy si

played with positive probability under σ.

8In most games, that a strategy profile is a sequential equilibrium in mixed strategies can be shown by considering sequences of games

perturbed only according to trembles (and not payoffs). We will see in Section 4 that, in fact, this is always possible in games with

generic payoffs. Figure 2 provides an example with non-generic payoffs where this is not possible (see Footnote 12).
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Reny (1992) defines an assessment (β ,µ) to be weakly sequentially rational if it is

sequentially rational at all information sets that are β-relevant. That is, the main differ-

ence between sequential rationality and weak sequential rationality is that, in the second

case, the condition that the continuation strategy is optimal is only imposed at β-relevant

information sets. The motivation for this definition is that information sets I ∈Ii that are

not βi-relevant can only be reached if player i has deviated, so the other players need not

assume i is rational anymore. Instead, information sets I ∈Ii that are βi-relevant can be

reached if players other than i have deviated (but not i), so players should continue to

believe that i is rational (and plays according to the prescribed strategy).

Definition 3.1 (Reny, 1992). (β ,µ) is a weakly sequential equilibrium if it is consistent and

weakly sequentially rational.

Proposition 3.1. The sets of outcomes of sequential equilibria in mixed strategies and weakly

sequential equilibria coincide.

Proposition 3.1 establishes that sequential equilibria in mixed strategies and weakly

sequential equilibria predict the same behavior. It provides additional foundation for the

use of sequential equilibria in mixed strategies, as it establishes that it can be obtained by

considering equilibria where players are known to be rational, but where deviations are

perceived as a sign of irrationality.

An important step in the proof of Proposition 3.1, which is key to understanding the

result, is the following lemma that connects Nash equilibria of perturbed games with the

condition of weak sequential rationality. In the statement, “si is sequentially rational given

σ−i at I” means that ui(si,σ−i|I)≥ui(ŝi,σ−i|I) for all ŝ∈S I
i .

Lemma 3.1. σ is a Nash equilibrium of G(ξ, u) if and only if for all i∈N, si ∈Si withσi(si)>

ξi(si), and I ∈Isi
i , we have that si is sequentially rational at I given σ−i.

Lemma 3.1 establishes that si is a best response against σ−i if and only if its contin-

uation is a best response against σ−i at all si-relevant information sets. The “if” direction

is clear because the payoff from playing si is determined by the continuation payoffs at all

information sets where i first plays, which are relevant under all her strategies. The “only

10



if” condition follows from a standard argument: if si is not a best response against σ−i,

there must be an si-relevant information set where player i can benefit from choosing a

different continuation play.

From Lemma 3.1, it is straightforward to see that outcomes of sequential equilibria in

mixed strategies are outcomes of weakly sequential equilibria. Intuitively, ifσ is sequential

equilibrium in mixed strategies supported by some sequence (σn,ξn, un), then there is a

corresponding sequence of (βn)n (where each βn has the same outcome as σn) supporting

a consistent and weakly sequentially rational assessment (β ,µ).

That outcomes of weakly sequential equilibria are outcomes of sequential equilibria

in mixed strategies is more involved. The reason is that weakly sequential equilibria are

required to be supported by a sequence (βn) to ensure consistency, but weak sequential

rationality is only imposed in the limit. Sequential equilibria in mixed strategies are instead

supported by a sequence (σn,ξn, un)where now eachσn is a Nash equilibrium of G(ξn, un),

hence (by Lemma 3.1) each si with σi,n(si)>0 is exactly sequentially rational given σ−i,n

at each I ∈Isi
i . We then find an algorithm to obtain a convenient sequence of trembles and

payoffs which, for each n, iteratively adjusts the payoff at histories passing through the

different information sets of each player.

Proposition 3.1 aligns with the interpretation of mixed-strategy trembles: perturbing

the strategy space makes deviations signal irrationality. Indeed, perturbations of the space

of mixed strategies naturally lead to interpreting deviations as a sign of irrationality. For

sequential rationality, instead, actions are perturbed, so deviations are perceived as one-

time mistakes by players who continue to be rational.

Example 3.1. Example 2.1 shows that D1 is the outcome of a sequential equilibrium in

mixed strategies of the game in Figure 1. As Reny (1992) explains, D1 is the outcome

of a weakly sequential equilibrium too. To see this, consider the behavior assessment

(β ,µ) where β1(D1)=β1(D′1)=β2(D2)=1 (the rest of the assessment is uniquely pinned

down). Note that only the first information set by player 1 is β1-relevant, and that player

2’s information set is β2-relevant. It is then clear that (β ,µ) is weakly sequentially rational

(and consistent, as all information sets are singletons).9

9As Reny (1992) poses it, “the reason for this is that once player 1 deviates from ((D1, D′1), D2) by playing A1, player 2 is allowed to
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3.2 Conditional assessments

We now provide a characterization of sequential equilibria in mixed strategies in terms of

conditional assessments, which is an analog of the original definition of sequential equilib-

ria by Kreps and Wilson (1982). Our approach is similar to that of Govindan and Wilson

(2009) in defining weakly sequential equilibria.

A conditional belief system is a map γ that assigns a distribution γI ∈∆(S I
i )×∆(S−i) to

each information set I ∈Ii with Pγ
I
(I)=1. We interpret γI as an external observer’s assess-

ment about the players’ and nature’s choices of pure strategies given that the information

set has been reached. Similarly, we interpret γI
i as i’s continuation strategy at I . Finally, we

interpret γI
−i as the belief that player i holds at information set I about the other players’

pure strategies. Note that γI may not be a strategy profile, as randomizations of players

other than i may not be independent across players.

A conditional assessment is a pair (σ,γ) formed by a strategy profile and a conditional

belief system. We say that (σ,γ) is consistent if there is a fully-mixed sequence (σn)→σ

such that

γI(s)= lim
n→∞

Ps(I)σn(s)
Pσn(I)

for all I ∈I and s∈S. In this case, we say that (σn) supports γ (note that γ{;}=σ). Par-

alleling Reny (1992), we say that (σ,γ) is weakly sequentially rational if for all i∈N and

I ∈Ii that is σ-relevant, we have

γI
i ∈argmax

σ̂i∈∆(S I
i )

ui(σ̂i,γ
I
−i|I) .

An equivalent and often useful definition of weak sequential rationality is the following:

(σ,γ) is sequentially rational if for all i∈N and si ∈Si withσi(si)>0, we have ui(si,γ
I
−i|I)≥

ui(ŝi,γ
I
−i|I) for all I ∈Isi

i , and ŝi ∈S I
i . In words, a strategy si receives a positive probability

only if it is credible, in the sense that it delivers the highest continuation payoff to player

i at each si-information set I given γI
−i.

believe, for instance, that player 1 is ‘crazy’ and if given the chance will choose D2” (p. 634). We believe that the explicit definition of

sequential equilibria in mixed strategies in terms of small probabilities of behavioral types in Example 2.1 makes this intuition clearer.
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Corollary 3.1. A strategy profile is a sequential equilibrium in mixed strategies if and only if

it is part of a conditional assessment that is consistent and weakly sequentially rational.

Corollary 3.1 establishes that we can use conditional assessments to work with se-

quential equilibria in mixed strategies. Doing so is often easier than directly using Def-

inition 2.3, as characterizing Nash equilibria along sequences of games with perturbed

strategies and payoffs is often difficult.

Remark 3.1. Unlike us, Govindan and Wilson (2009) define “beliefs” as a map from each

information set I ∈Ii to the distribution over strategies in S−i, that is, only use γI
−i. As

we shall see, even though γI
i is not necessary to compute player i’s continuation payoff of

a strategy si ∈S I
i at I , γI

i will be useful to verify γ’s consistency through Bayes’ rule (see

Example 3.2). Note that γI
i can be interpreted as the “continuation strategy” of player i at

I .

Example 3.2. Examples 2.1 and 3.1 explicitly show that D1 is the outcome of both a se-

quential equilibrium in mixed strategies and a weakly sequential equilibrium of the game

in Figure 1. We now provide a consistent and weakly sequentially rational assessment

supporting it. Let σ=((D1,D′1), D2) and consider the following conditional belief system10

γ{;}=δ(D1,D′1)
δD2

, γ{A1}=δ(A1,D′1)
δD2

, and γ{(A1,A2)}=δ(A1,D′1)
δA2

,

where δsi
is the distribution degenerate at si (i.e., Dirac’s delta). It is straightforward to see

that (σ,γ) is supported by the sequence (σn) used in Example 2.1. It is also straightforward

to see that it is weakly sequentially rational.

We make two observations. The first is that it is useful to have γ{A1} have information

about player 1’s continuation strategy. The reason is that it helps to assess the consistency

of γ: because {A1} does not belong to player 1, it requires that γ{A1}
1 =γ{(A1,A2)}

1 (in our case,

equal to δ(A1,D′1)
). This conforms to the “no signaling what you do not know” condition often

required in perfect Bayesian equilibria.

The second observation is that conditional beliefs often fail the “never dissuaded once

convinced” condition, which requires the belief about an event that is believed to have

10Henceforth, for a statement P, IP =1 if P is true and IP =0 if P is false.
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probability zero at some history to remain to be assigned probability zero in the future.

For example, γ{;}2 assigns probability zero to A2, but then γ{(A1,A2)}
2 assigns probability one

to A2. This is natural because the information set {(A1, A2)} can only be reached if player

2 has deviated and played A2.

Relationship to sequential equilibria

Ranking tremble-based equilibrium concepts defined in terms of behavior and mixed strate-

gies is often difficult. For example, there are perfect equilibria that are not perfect equilibria

in mixed strategies, and vice versa (in Section 4.1 we show that, nonetheless, they can be

ranked for generic payoffs). The reason is that the sets of trembles against which robust-

ness is required is different. The following result establishes that such a ranking is possible

when sequential equilibria in behavior and mixed strategies are compared.

Corollary 3.2. Outcomes of sequential equilibria are outcomes of sequential equilibria in

mixed strategies. The reverse holds if each player plays at most once along any history.

The first part of Corollary 3.2 follows from Proposition 3.1 and the fact that weakly

sequential equilibria are a weakening of sequential equilibria. The second statement fol-

lows because, if each player plays at most once along any history, all information sets are

relevant under any strategy (no own earlier move can preclude reaching a later own in-

formation set). Hence, in this case, weak sequential optimality coincides with sequential

optimality.

4 Perfect equilibria in mixed strategies

Selten (1975) introduced the concept of (trembling hand) perfect equilibria, both for a

game in extensive form and a game in normal form. For games in extensive form, Kreps and

Wilson (1982) showed that perfect equilibria and sequential equilibria are closely related:

sequential equilibria are perfect equilibria, and the two concepts coincide in games with

generic payoffs. We will now show that similar results hold when we use mixed instead of

behavior strategies.

14



We begin extending the concept of perfect equilibria to mixed strategies.

Definition 4.1. σ is a perfect equilibrium in mixed strategies if there is a tremble sequence

(ξn)→0 and a sequence (σn)→σ such that each σn is a Nash equilibrium of G(ξn, u).

It is easy to see that perfect equilibria in mixed strategies and perfect equilibria of the

normal form of the game coincide. That is, the set of perfect equilibria in mixed strategies

of a game coincides with the set of perfect equilibria of the simultaneous-move game where

the set of actions of each player i is Si.

Lemma 4.1. Perfect equilibria in mixed strategies are sequential equilibria in mixed strategies.

This result trivially follows from using the constant sequence (u, u, ...) in the definition

of sequential equilibria in mixed strategies. That is, sequential equilibria in mixed strate-

gies are strategy profiles approximable through both sequences of trembles and payoff

perturbations, while perfect equilibria in mixed strategies are only approximable through

sequences of trembles. Note that the result is also implied by the result in Reny (1992) that

outcomes of normal-form perfect equilibria are outcomes of weakly sequential equilibria

(see his Proposition 1).

Lemma 4.1 allows our characterizations of sequential equilibria in mixed strategies

in Proposition 3.1 and Corollary 3.1 to identify candidates to perfect equilibria in mixed

strategies or, alternatively, to rule out other candidates. Indeed, in the same way that

Kreps and Wilson (1982) point out, “It is vastly easier to verify that a given equilibrium is

sequential than that it is perfect” (p. 264), our characterizations of sequential equilibria in

mixed strategies using assessments are easier to use than using sequences of trembles and

corresponding Nash equilibria.

4.1 Generic equivalence with perfect equilibria in mixed strategies

Lemma 4.1 establishes that sequential equilibria in mixed strategies is a weakening of the

concept of perfect equilibria in mixed strategies. An important result in Kreps and Wilson

(1982) is that this weakening is “minimal” for behavioral strategies: the sets of perfect and
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sequential equilibria coincide in games with generic payoffs. We now extend this result to

mixed strategies.

Proposition 4.1. Generically in payoffs, the sets of perfect equilibria in mixed strategies and

sequential equilibria in mixed strategies coincide.

The proof follows Blume and Zame (1994)’s analogous result for behavior strategies.

In their proof, a key step is to establish that sequential equilibria can be approximated

by sequences of Nash equilibria of close-by games perturbed according to extensive-form

trembles and payoff perturbations. For sequential equilibria in mixed strategies, such a

property is guaranteed by definition (Definition 2.3).11 Remarkably, the rest of the proofs

turn out to be identical because the graphs of the equilibrium correspondences can be

described using the same expressions, but using mixed instead of behavioral strategies

and trembles.

4.2 Relationship to perfect equilibria

Selten (1975) defined two versions of perfect equilibria. The first is normal-form perfect

equilibria, as described above, which is equivalent to perfect equilibria in mixed strategies.

The second is extensive-form perfect equilibria (often referred to as just perfect equilibria),

which are limits of sequences of Nash equilibria along sequences of perturbed games where

players tremble in their choices of the actions instead of strategies. It is not difficult to see

that the two concepts coincide when one considers the agent-normal form game.

As we explain in Section 3.2, there are (extensive-form) perfect equilibria that are not

perfect equilibria in mixed strategies, and vice versa. For example, the arguments used in

Example 2.1 can be used to show that D1 is the outcome of a perfect equilibrium in mixed

strategies. Nevertheless, it is clearly not the outcome of a perfect equilibrium, as it is not

subgame perfect. Conversely, consider the game in Figure 2, which corresponds to Figure

6.4.2 in van Damme (1991). From van Damme’s discussion it follows that (B1, T2) is the

outcome of a perfect equilibrium, but not the outcome of a perfect equilibrium in mixed

11As explained after Proposition 3.1, the difficulty in our approach is to then establish the equivalence between sequential equilibria in

mixed strategies and their characterizations as assessments (such as Proposition 3.1 and Corollary 3.1).
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strategies. Indeed, note that this is the unique limit of Nash outcomes along a sequence

of perturbed games where player 2 trembles less than player 1. Still, for any fully mixed

strategy σ2∈Σ2,

u1((T1, T′1),σ2)=1>σ2(T2)=u1((B1, T′1),σ2)= max
s1∈S1\{(T1,T′1)}

u1(s1,σ2) .

Intuitively, in an extensive-form perfect equilibrium, player 1 takes into account that she

may tremble in a subsequent information set of hers, but she does not do that in a normal-

form perfect equilibrium. Such a conclusion is nevertheless fragile to small changes in the

payoffs.12

As the following result states, an implication of Proposition 4.1 and Corollary 3.2 is

that, generically in payoffs, the set of outcomes of perfect equilibria is a subset of the set

of outcomes of perfect equilibria in mixed strategies.13

Corollary 4.1. Generically in payoffs, outcomes of perfect equilibria are outcomes of perfect

equilibria in mixed strategies.

5 Purification

Harsanyi (1973) asked which strategy profiles could be purified, that is, obtained as limits

of Nash equilibria of nearby games with a small amount of payoff uncertainty. His answer

was that, in games in normal form, all and only Nash equilibria could be obtained that

12All outcomes assigning probability one to {(T1, T′1), (B1, T2)} are the outcomes of sequential equilibria and the outcomes of sequential

equilibria in mixed strategies. Indeed, any such outcomes can be approximated through Nash outcomes of G(ξn, un) where each ξn is

a uniform tremble ξi,n(si)=n−1 for all i and si and the payoff sequence un(z)=u(z) for all z 6=(B1, T2) and un(B1, T2)=(1−n−1)−1.

13Note that van Damme (1984) introduces the concept of quasi-perfect equilibria, which is defined like extensive-form perfect equilibria

except that players do not take into account their own future tremble probabilities.
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way, providing a justification for mixed strategy equilibria. We now show that if one asks

the same question for games in extensive form, all and only sequential equilibria in mixed

strategies can be purified.

To state and prove our result, we first provide a bit of notation. For each i∈N , let

Ui⊂RZ be an open and bounded set of payoffs that includes ui and, for each si, a payoff

function that makes si a strictly dominant strategy.

We let∆∗(Ui) be the space of probability measures on Ui without atoms and with full

support.14 For each si ∈Si, let Ssi
i be the set of player i’s strategies ŝi satisfying that ŝi,I = si,I

for all I ∈Isi
i . Note that all strategies in Ssi

i are strategically equivalent:

Psi ,σ−i(z)=Pŝi ,σ−i(z)

for all z∈ Z , ŝi ∈Ssi
i , and σ−i ∈Σ−i. We let ×i∈N∆

∗(Ui) be the space of product probability

measures. Note that for all νi ∈∆∗(Ui), si, ŝi ∈Si, and σ−i ∈Σ−i,

νi

�

{ ûi ∈Ui | ûi(si,σ−i)= ûi(ŝi,σ−i)}
�

=0

if and only if ŝi /∈Ssi
i . That is, the probability that player i is indifferent between two of its

pure non-strategically equivalent strategies is zero.

We now introduce the notion of Nash equilibria perturbed according to some payoff

distribution. It requires that, for each player i and si ∈Si, the value σi(S
si
i ) corresponds to

the mass of payoff types for whom si (or any strategy strategically equivalent to si) is a best

response against σ−i.

Definition 5.1. Fix some ν∈×i∈N∆
∗(Ui). Then, σ∈Σ is a Nash equilibrium of G(ν) if for

all i∈N and si ∈Si,

σi(S
si
i )=νi

�

{ ûi ∈Ui | ûi(si,σ−i)≥ ûi(ŝi,σ−i) ∀ŝi ∈Si }
�

.

We use (νn)→δu to denote that (νn) converges in probability to the probability mea-

sure degenerate at u (i.e., the Dirac measure δu). That is, (νn)→δu if, for all ε>0 and

14Following Harsanyi (1973), we assume that the distribution of payoffs in the perturbed game has no atoms. This assumption simplifies

the analysis, but it is not necessary: similar results can be obtained as long as the assumption of full support is maintained.
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i∈N , we have

νi,n

�

{ûi ∈Ui | ‖ûi−ui‖>ε}
�

→0 as n→∞

(recall that we use the sup-norm). We now define the concept of purifiable strategy profile,

following Harsanyi (1973)’s definition.

Definition 5.2. We say that σ is purifiable if there exists a sequence (νn)→δu and corre-

sponding sequence (σn)→σ, where each σn is a Nash equilibrium of G(νn).

Proposition 5.1. σ is purifiable if and only if it is a sequential equilibrium in mixed strategies.

Remarkably, Proposition 5.1 characterizes sequential equilibria in mixed strategies in

terms of only payoff perturbations. This characterization is conceptually different from the

robustness property required in the definition of sequential equilibrium in mixed strategies.

Indeed, we define sequential equilibria in mixed strategies by requiring approximability

through close-by games satisfying that (i) there is a small probability that each player is

irrational, and (ii) players know with certainty the payoffs of the other players’ rational

types (for some payoffs close to the non-perturbed ones). Instead, Proposition 5.1 estab-

lishes approximability through close-by games satisfying that (i) players are known to be

rational, and (ii) players do not know the payoffs of the other players. It then bridges

two important sources of strategic uncertainty: uncertainty about the rationality of other

players and uncertainty about their payoffs.

Proposition 5.1 can also be viewed as providing a simple way of obtaining behavior

robust to payoff perturbations. Even in simple examples such as the game in Figure 1,

explicitly proving that a given equilibrium is purifiable is difficult. Hence, using sequential

equilibria in mixed strategies simplifies the identification of sensible behavior in settings

where players are slightly uncertain about other players’ payoffs.

It is important to note that we are considering payoff perturbations of the payoff func-

tion, that is, the players’ payoffs at the terminal nodes. This is different from perturbing

their payoffs in the normal form of the game, where Harsanyi (1973)’s result establishes

that all and only Nash equilibria are purifiable. Such a difference highlights the difference

between working with mixed strategies in the game in extensive form and the correspond-

ing normal form.
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Remark 5.1. In recent work, Bhaskar and Stinchcombe (2024) study purification and strong

purification (requiring purification along all payoff perturbations) in extensive games with

perfect information and signaling games. Consistent with our results, they obtain that in

simple trees with generic payoffs (each player moves at most once on any path), only the

unique backward-induction equilibrium is strongly purifiable, and is the only one that can

be purified. When a player moves more than once, the unique backward-induction equi-

librium is not strongly purifiable, and purifiable equilibria may not be subgame perfect.

They also study symmetric purifiability in signaling games (with i.i.d. payoff shocks across

a player’s terminal nodes), where they show that the quiche outcome is not symmetrically

purifiable. Our work complements theirs in showing that all and only sequential equilibria

in mixed strategies are purifiable.

6 Conclusions

Our paper contributes to the study of games by characterizing behavior that is robust to a

small uncertainty about other players’ rationality. We parallel the approaches in seminal

work of Selten (1975) and Kreps and Wilson (1982), focusing on mixed instead of behavior

strategies.

Our results show the equivalence between behavior that is robust to a small uncer-

tainty about other players’ rationality and behavior that is robust to low-probability payoff

perturbations. Such equivalence adds plausibility to sequential equilibria in mixed strate-

gies, especially in environments where such small perturbations are likely to affect equi-

librium outcomes. The equivalence with weakly sequential equilibria simplifies obtaining

and manipulating such robust behavior in practice.

While Reny (1992) and Govindan and Wilson (2009) suggest refinements to the con-

cept of weakly sequential equilibria (termed explicable equilibria and outcomes that satisfy

forward induction), we abstain from doing so in this paper. In a companion paper, we pro-

pose the concept of sequentially stable in mixed strategies outcomes, which refines the set

of outcomes of sequential equilibria in mixed strategies (and satisfies forward induction).

There is some additional work related to our analysis. In Section C.1, we relate our
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analysis to the concept of quasi-perfect equilibria (van Damme, 1984), and we establish

the equivalence between perfect equilibria in mixed strategies and weakly quasi-perfect

equilibria. In Section C.2, we relate our analysis to the analysis of sequential equilibria in

normal-form games in Mailath et al. (1993).

A ε-Sequential equilibria in mixed strategies

In this section, we introduce the concept of ε-sequential equilibria in mixed strategies. This

concept is analogous to the concept of sequential ε-equilibria (Dilmé, 2024). We will then

provide a characterization of sequential equilibria in mixed strategies in terms of sequences

of ε-sequential equilibria in mixed strategies as ε→0. This characterization will be very

useful in the proofs of the previous results, and so we place its proof before them.

Definition A.1. σ is an ε-sequential equilibrium in mixed strategies under ξ if, for all i∈N

and si ∈Si, (i) σi(si)≥ξi(si), and (ii) if σi(si)>ξi(si), then ui(si,σ−i|I)≥ui(ŝi,σ−i|I)−εn

for all I ∈Isi
i and ŝi ∈S I

i .

The following result is a mixed-strategies analog to Proposition 3.1 in Dilmé (2024),

which characterizes sequential equilibria in terms of sequences of sequential ε-equilibria.

Proposition A.1. σ is a sequential equilibrium in mixed strategies if and only if there is some

(σn,εn,ξn)→ (σ, 0, 0) such that each σn is a εn-sequential equilibrium in mixed strategies

under ξn.

Note the difference between Proposition A.1 and the definition of sequential equilib-

ria in mixed strategies (Definition 2.3). The first involves limits of εn-sequential equilibria

in mixed strategies, while the second involves limits of 0-sequential equilibria in mixed

strategies along games with perturbed payoffs (note that Lemma A.1 below shows that 0-

sequential equilibria in mixed strategies under ξ are Nash equilibria of G(ξ, u)). Then, the

“if” part of Proposition A.1 is straightforward: by setting εn :=‖u−un‖/2, a 0-sequential

equilibrium in mixed strategies under ξn of G(un) is an εn-sequential equilibrium in mixed

strategies under ξn (of G(u)).
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The proof of the “only if” part of Proposition A.1 is more involved. For each (σn)

such that each σn is an εn-sequential equilibrium in mixed strategies under ξn, we want

to find some (un)→u such that each σn is a Nash equilibrium of G(ξn, un). Nevertheless,

ensuring the “exact” optimality of all si with σn(si)>0 is difficult, as changes in the payoff

of a terminal history affect the payoff from different strategies in different ways. In the

proof, we construct an algorithm that constructs each desired payoff sequence by iteratively

adjusting the payoff at histories passing through the different information sets of each

player (such an algorithm is also useful to prove the equivalence between weakly sequential

equilibria and sequential equilibria in mixed strategies).

Proposition A.1 is useful because, in many cases, proving the existence of (σn,εn,ξn)→

(σ, 0, 0) with the above properties is easier than proving the existence of (σn, un,ξn)→

(σ, u, 0) with the properties in Definition 2.3. The reason is that the constraints in the first

case are inequalities, while the constraints in the second case are equalities.

Proof of Proposition A.1

Proof. We begin the proof with a result establishing the equivalence between Nash equi-

libria with 0-sequential equilibria in mixed strategies.

Lemma A.1. Fix a tremble ξ. Then, Nash equilibria of G(ξ, u) and 0-sequential equilibria in

mixed strategies under ξ coincide.

Proof. Assume first that σ is a 0-sequential equilibrium in mixed strategies under ξ. This

implies that σi(si)≥ξi(si) for all i∈N and si ∈Si. Fix some si ∈Si with σi(si)>ξi(si) and

assume for a contradiction that there is some ŝi ∈Si such that ui(ŝi,σ−i)>ui(si,σ−i). By

the same argument as in the proof of Lemma 3.1, there must be some I ∈Isi
i ∩I

ŝi
i such that

ui(si,σ−i|I)<ui(ŝi,σ−i|I). This contradicts that σ is a 0-sequential equilibrium in mixed

strategies under ξ.

Assume now that σ is a Nash equilibrium of G(ξ, u). Assume for a contradiction that

there is some si with σi(si)>ξi(si), some I ∈Isi , and some ŝi ∈S I
i such that ui(si,σ−i|I)<

ui(ŝi,σ−i|I). Let ŝ′i be the strategy coinciding with si in all information sets except I and

all that succeed it, where it coincides with ŝi. Note that ŝ′i ∈S I
i and that ui(ŝ′i,σ−i|I)=
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ui(ŝi,σ−i|I). Now we have

ui(si,σ−i)−ui(ŝ
′
i,σ−i)=

∑

z∈Z I

Psi ,σ−i(z)ui(z)−
∑

z∈Z I

Pŝ′i ,σ−i(z)ui(z)

=Psi ,σ−i(I) (ui(si,σ−i|I)−ui(ŝ
′
i,σ−i|I))<0 ,

where Z I is the set terminal history that pass through I . This contradicts that σi(si)>0

and σ is a Nash equilibrium of G(ξ, u).

(End of the proof of Lemma A.1. The proof of Proposition A.1 continues.)

Proof of the “if” part of Proposition A.1. Assume that σ is such that there is a sequence

(σn,ξn, un)→ (σ, 0, u) such that each σn is a 0-sequential equilibrium in mixed strategies

under ξn of the game G(un). For each n∈N define εn :=‖un−u‖/2, and note that εn→0.

Fix some n∈N, i∈N , si ∈Si such that σi,n(si)>ξi,n(si), I ∈Isi
i , and ŝi ∈S I

i . Note that

0≤ui,n(si,σ−i,n|I)−ui,n(ŝi,σ−i,n|I)≤ui(si,σ−i,n|I)−ui(ŝi,σ−i,n|I)+εn .

It is then clear that σn is a εn-sequential equilibrium in mixed strategies under ξn (in G),

and so σ is a sequential equilibrium in mixed strategies.

Proof of the “only if” part. Using Lemma A.1, this part of the proof follows from the

following lemma.

Lemma A.2. Let (σn,εn,ξn)→ (σ, 0, 0) be such that each σn is a εn-sequential equilibrium

in mixed strategies under ξn. Then, there is a sequence (un)→u such that each σn is a 0-

sequential equilibrium in mixed strategies under ξn in G(un).

Proof. Let (σn,εn,ξn)→ (σ, 0, 0) be such that each σn is a εn-sequential equilibrium in

mixed strategies under ξn. We assume without loss (i.e., taking a subsequence if necessary)

that the set S∗i of si such that σi,n(si)>ξi,n(si) remains fixed along the sequence.15 We

assume that (σn) supports some conditional belief system γ. Note that γ is consistent.

Note also that if I ∈Ssi
i for some si ∈S∗i , then for all ŝi ∈S I

i we have

lim
n→∞

�

ui(si,σ−i,n|I)−ui(ŝi,σ−i,n|I)
�

≥ lim
n→∞

εn=0

15Note that the statement of Lemma A.2 applies to all sequences (not subsequences). Nevertheless, the claim can then be applied to

each subsequence defined by the different possible values of S∗i .
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Hence, we have that

ui(si,γ
I
−i|I)=max

ŝi∈S I
i

ui(ŝi,γ
I
−i|I) .

Let I∗i denote ∪si∈S∗i
Isi

i .

Note that there is a transitive “precedence” relationship ≺ for the elements in Ii

defined by

I≺ I ′ ⇔ for all h′∈ I ′ there is some h∈ I such that h≺h′ .

For all pairs of distinct information sets I , I ′∈Ii, either I≺ I ′, or I ′≺ I , or there is no termi-

nal history that passes through both of them. Note that if I≺ I ′ then there is some ai ∈AI

such that for all h′∈ I ′ there is some h∈ I such that (h, ai)�h′.

We now suggest an algorithm to obtain the desired sequence of payoff functions. We

initialize û0≡u. In the first step, we let I1
i be the set containing all information sets I ∈I∗i

with the property that there is no I ′� I with I ′∈I∗i . Fix some I ∈I1
i and some ai ∈AI such

that si,I = ai for some si ∈S∗i ∩S I
i . Then, take some si ∈S I

i such that si,I = ai and σi,n(si)>

ξi,n(si). For all z∈ Z ai (where recall Z ai denotes the set of terminal histories containing ai),

define16

û1
i,n(z) := û0

i,n(z)+ui(si,γ
I
−i|I)− û0

i,n(si,σ−i,n|I) ,

If instead ai ∈AI is such that there is no si ∈S∗i ∩S I
i with si,I = ai, we define

û1
i,n(z) := û0

i,n(z)+ max
si∈S I

i \S
∗
i

�

ui(si,γ
I
−i|I)− û0

i,n(si,σ−i,n|I)
�

(A.1)

for all z∈ Z ai . For the rest of the terminal histories z (i.e., those that do not pass through

any of the information sets in I1
i ), we define û1

i,n(z) := û0
i,n(z). Note that, for all si ∈S∗i ∩S I

i

and ŝi ∈S I
i , we have

û1
i,n(si,σ−i,n|I)=ui(si,γ

I
−i|I)≥ui(ŝi,γ

I
−i|I)= û1

i,n(ŝi,σ−i,n|I) .

Clearly, ‖û1
i,n− û0

i,n‖→0 as n→∞.

16Importantly, because player i does not play after I , the right side of expression (A.1) only depends on si through si,I (i.e., if ŝi ∈S I
i

and ŝi,I = si,I , then the right side of (A.1) is the same for both si and ŝi). Hence, the value of û1
i,n(z) is independent of the choice of si .
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We now proceed iteratively in j. Let I j
i be the set containing all information sets

I ∈I∗i with the property that there is no I ′� I with I ′∈I∗i \∪
j−1
̂=1I

̂

i . Fix some I ∈I j
i . Note

first that if si, ŝi ∈S∗i ∩S I
i and si,I = ŝi,I , then

û j−1
i,n (si,σ−i,n|I)= û j−1

i,n (ŝi,σ−i,n|I) .

The reason is that both induce the same distribution over information sets in I j−1
i and, by

the definition of û j−1
i,n , they achieve the same continuation payoff in each of them. Fix some

ai ∈AI such that si,I = ai for some si ∈S∗i ∩S I
i . Then, take some si ∈S I

i such that σi,n(si)>

ξi,n(si). For all z∈ Z ai , define17

û j
i,n(z) := û j−1

i,n (z)+ui(si,γ
I
−i|I)− û j−1

i,n (si,σ−i,n|I) , (A.2)

If instead ai ∈AI is such that there is no si ∈S∗i ∩S I
i with si,I = ai, we define

û j
i,n(z) := û j−1

i,n (z)+ max
si∈S I

i \S
∗
i

�

ui(si,γ
I
−i|I)− û j−1

i,n (si,σ−i,n|I)
�

for all z∈ Z ai . For the rest of the terminal histories z (i.e., those that do not pass through

any of the information sets in I j
i ), we define û j

i,n(z) := û j−1
i,n (z). Note also that, for all si, ŝi ∈

S∗i ∩S I
i , we have

û j
i,n(si,σ−i,n|I)= û j

i,n(ŝi,σ−i,n|I) .

Hence, for all si ∈S∗i ∩S I
i and ŝi ∈S I

i , we have

û j
i,n(si,σ−i,n|I)=ui(si,γ

I
−i|I)≥ui(ŝi,γ

I
−i|I)= û j

i,n(ŝi,σ−i,n|I) .

Clearly, ‖û j
i,nû j−1

i,n ‖→0 as n→∞.

Let un be the result of applying the previous algorithm to all players. Note that for

all i∈N , I ∈I∗i , si ∈S∗i ∩S I
i , and ŝi ∈S I

i , we have

ui,n(si,σ−i,n|I)=ui(si,γ
I
−i|I)≥ui(ŝi,γ

I
−i|I)=ui,n(ŝi,σ−i,n|I) .

Hence, σn is a 0-sequential equilibrium in mixed strategies under ξn of G(un).

Then, by Lemma A.1, the “only if” part of the statement of Proposition A.1 holds.

17Note that, again, the right side of expression (A.2) only depends on si through si,I . Hence, the value of û j
i,n(z) is independent of the

choice of si .
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B Proofs

This appendix contains the proofs. Note that some of the proofs follow from Proposition

A.1 (and Lemmas A.1 and A.2), which does not follow from any of the other results.

Proof of Proposition 2.1

Proof. Proposition 2.1 follows straightforwardly from Definition 2.3.

Proof of Proposition 3.1 and Lemma 3.1

Proof. Proof of Lemma 3.1. Assume σ is a Nash equilibrium of G(ξ, u). Assume for a

contradiction that there is some si with σi(si)>ξi(si), some I ∈Isi , and some ŝi ∈S I
i such

that ui(si,σ−i|I)<ui(ŝi,σ−i|I). Let ŝ′i be the strategy coinciding with si in all information

sets except I and all that succeed it, where it coincides with ŝ. Note that ŝ′i ∈S I
i and that

ui(ŝ′i|I ,σ−i)=ui(ŝi,σ−i|I). Now we have

ui(si,σ−i)−ui(ŝ
′
i,σ−i)=

∑

z∈Z I

Psi ,σ−i(z)ui(z)−
∑

z∈Z I

Pŝ′i ,σ−i(z)ui(z)

=Psi ,σ−i(I) (ui(si,σ−i|I)−ui(ŝ
′
i,σ−i|I))<0 .

This contradicts that σi(si)>ξi(si) and σ is a Nash equilibrium of G(ξ, u).

Assume now that for all i∈N , si ∈Si with σi(si)>ξi(si), and I ∈Isi
i , we have that si

is sequentially rational at I . Let I∗i be the set of player i’s information sets that are not

preceded by any other information set by player i. Note that I∗i ⊂Isi
i for all si ∈Si. Then,

we have that, for all si ∈Si,

ui(si,σ−i)=
∑

I∈I∗i

Psi ,σ−i(I)ui(si,σ−i|I) .

Note that Psi ,σ−i(I) is independent of si. Assume for a contradiction that σ is not a Nash

equilibrium of G(ξ, u). Fix some si, ŝi ∈Si with σi(si)>ξi(si) and ui(si,σ−i)<ui(ŝi,σ−i).

Note that, by our assumption, si is sequentially rational at all I ∈Isi
i . It then follows that

ui(si,σ−i)−ui(ŝi,σ−i)=
∑

I∈I∗i

Psi ,σ−i(I) (ui(si,σ−i|I)−ui(ŝi,σ−i|I)) .
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Then, the assumption that ui(si,σ−i)<ui(ŝi,σ−i) implies that ui(si,σ−i|I)<ui(ŝi,σ−i|I) for

some I ∈I∗i , but this contradicts that si is sequentially rational for all I ∈Isi
i .

Proof that outcomes of sequential equilibria in mixed strategies are outcomes of

weakly sequential equilibria. Let σ be a sequential equilibrium in mixed strategies. Let

(σn, un,ξn)→ (σ, u, 0) such that each σn is a Nash equilibrium for G(ξn, un). Let β denote

the behavior strategy with the same outcome as σ. Similarly, for each n, let βn denote the

behavior strategy with the same outcome as σn. Without loss of generality, assume that

(σn) supports an assessment (β ,µ).

Assume for a contradiction that (β ,µ) is not a weakly sequential equilibrium. Let

i∈N , I ∈Ii, and ŝi ∈S I
i , be such that I is βi-relevant and ui(ŝi,β−i,µ|I)>ui(β ,µ|I). Note

that, for all si ∈S I
i ,

ui,n(si,σ−i,n|I)=ui,n(si,β−i,n|I)−−−→n→∞
ui(si,β−i,µ|I) .

Hence, there is some si ∈Si such that σi(si)>0 and ui(si,β−i,µ|I)≤ui(β ,µ|I). Then, we

have

0<ui(ŝi,β−i,µ|I)−ui(β ,µ|I)≤ui(ŝi,β−i,µ|I)−ui(si,β−i,µ|I)

= lim
n→∞

�

ui,n(ŝi,σ−i,n|I)−ui,n(si,σ−i,n|I)
�

≤0 ,

where the last inequality holds because, sinceσi,n(si)>ξi,n(si) for n large enough, we have

that ui,n(ŝi,σ−i,n|I)≤ui,n(si,σ−i,n|I) for n large enough (by Lemma 3.1).

Proof that outcomes of weakly sequential equilibria are outcomes of sequential equi-

libria in mixed strategies. Let (β ,µ) be a weakly sequential equilibrium and let (βn)

support it. Let σ denote a mixed strategy with the outcome as β . Similarly, for each n, let

σn denote a mixed strategy with the outcome as βn such that σn→σ. Define

ξi,n(si) :=







σi,n(si) if σi(si)=0,

2−nσi,n(si) otherwise,

for all n∈N, i∈N , and si ∈Si. We will show that there is a sequence (εn)→0 such that

each σn is a εn-sequential equilibrium in mixed strategies under ξn (as defined in Section
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A). By Proposition A.1, we will then deduce that σ is a sequential equilibrium in mixed

strategies.

Fix some i∈N , si ∈Si with σi(si)>0, and I ∈Isi
i . Note that

ui(si,σ−i,n|I)=ui(si,β−i,n|I)−−−→n→∞
ui(si,β−i,µ|I) .

Then, for all ŝi ∈S I
i , we have

lim
n→∞

(ui(si,σ−i,n|I)−ui(si,σ−i,n|I)=ui(si,β−i,µ|I)−ui(ŝi,β−i,µ|I)≥0 ,

where the last inequality holds because (β ,µ) is a weakly sequential equilibrium. It then

follows that there is a sequence (εn)→0 such that each σn is a εn-sequential equilibrium

in mixed strategies under ξn.

Proof of Corollary 3.1

Proof. Proof of the “if” part of Corollary 3.1. Let σ be part of a consistent and weakly

sequentially rational conditional assessment (σ,γ). Let (σn) support (σ,γ). For all n∈N,

i∈N and si ∈Si, define

ξi,n(si) :=







σi,n(si) if σi(si)=0,

2−nσi,n(si) otherwise.

Note that σi,n(si)≥ξi,n(si), and σi,n(si)>ξi,n(si) if and only if σi(si)>0. Let i∈N and

si ∈Si be such that σi(si)>0. Then, for any I ∈Isi
i and ŝi ∈S I

i , we have

lim
n→∞

�

ui(si,σ−i,n|I)−ui(ŝi,σ−i,n|I)
�

=ui(si,γ
I
−i|I)−ui(ŝi,γ

I
−i|I)≥0 .

As a result, there is a sequence (εn)→0 such that, for all n∈N, if σi,n(si)>ξi,n(si) then

ui(si,σi,n|I)≥ui(ŝi,σi,n|I)−εn for all I ∈Isi
i and ŝi ∈S I

i . This implies that each σn is an εn-

sequential equilibrium in mixed strategies under ξn. By Proposition A.1, σ is a sequential

equilibrium in mixed strategies.

Proof of the “only if” part of Corollary 3.1. Let σ be a sequential equilibrium in mixed

strategies. Let (σn, un,ξn)→ (σ, u, 0) such that each σn is a Nash equilibrium of G(ξn, un).
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Assume without loss that (σn) supports a conditional assessment (σ,γ). Note that (σ,γ)

is consistent. Assume for a contradiction that (σ,γ) is not weakly sequentially rational.

Then, there is some i∈N , si ∈Si, I ∈Isi
i , and ŝi ∈S I

i such that

ui(si,γ
I
−i|I)<ui(ŝi,γ

I
−i|I) .

This implies that

0>ui(si,γ
I
−i|I)−ui(ŝi,γ

I
−i|I)= lim

n→∞

�

ui,n(si,σ−i,n|I)−ui,n(ŝi,σ−i,n|I)
�

,

and so ui,n(si,σ−i,n|I)<ui,n(si,σ−i,n|I) for some n. By Lemma 3.1, this contradicts that σn

is a Nash equilibrium of G(ξn, un).

Proof of Corollary 3.2

Proof. As explained in the main text, the proof is straightforward.

Proof of Lemma 4.1

Proof. As explained in the main text, the proof is straightforward.

Proof of Proposition 4.1

Proof. The key step in Blume and Zame (1994) is to show that for any sequential equilib-

rium β there is a sequence (βn,ηn, un)→ (β , 0, u) such that each βn is a Nash equilibrium of

G(ηn, un) (their Proposition B). Given Definition 2.3, the analogous property holds trivially

for sequential equilibria in mixed strategies.

We first define the graph of the perturbed game equilibrium in mixed strategies corre-

spondence (GPNE) as18

GPNE=
�

(u,ξ,σ)∈U×RS
++×Σ

�

�σ∈Σ(ξ) ∀i ∀σ̂i ∈Σi(ξ),

vi(σ̂i,σ−i, u)≤ vi(σi,σ−i, u)
	

,

18Blume and Zame (1994) also define the perturbed game equilibrium correspondence (PNE), and then GPNE is its graph. Nevertheless,

for the argument here, we only need the graph.
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where we use vi(σ, u) :=ui(σ) to follow Blume and Zame’s notation more closely, and

where U≡RN×Z and Σ(ξ)≡{σ∈Σ|σ≥ξ}. Note that GPNE is the set of triples (u,ξ,σ)

whereσ is a Nash equilibrium of G(ξ, u). We now define the graph of the perfect equilibrium

in mixed strategies correspondence (GPE) as

GPE=
�

(u,σ)∈U×Σ
�

�∀ε>0 ∀δ>0 ∃ξ∈RS
++ ∃σ

′∈Σ(ξ)

(u,ξ,σ′)∈GPNE ∧ ‖ξ‖<δ ∧ ‖σ−σ′‖<ε)
©

.

Now, from Definition 4.1, we have that GPE is the set of pairs (u,σ) where σ is a perfect

equilibrium in mixed strategies when the payoff is u. Finally, we define the graph of the

sequential equilibrium in mixed strategies correspondence (GSE) as

GSE=
�

(u,σ)∈U×Σ
�

�∀ε>0 ∀δ>0 ∃u′∈U ∃ξ∈RS
++∃σ

′∈Σ(ξ)

(u,ξ,σ′)∈GPNE ∧ ‖ξ‖<δ ∧ ‖u−u′‖<δ ∧ ‖σ−σ′‖<ε
	

.

Now, from Definition 2.3, we have that GSE is the set of pairs (u,σ)whereσ is a sequential

equilibrium in mixed strategies when the payoff is u.

The key for the rest of the proof is to realize that the expressions GPNE, GPE, and

GSE coincide exactly with the analogs in Blume and Zame (1994). The difference is that

our spaces of strategies and trembles are set in mixed strategies, while their spaces of

strategies and trembles are those set in behavior strategies. Nonetheless, this difference is

irrelevant in the proof of their result establishing the generic equivalence between perfect

and sequential equilibria for generic payoffs (their Theorem 4). Our proof is then complete.

Proof of Proposition 5.1

Proof. The proof is divided into two parts.

Part 1. Let σ be purifiable. Let (νn)→δu and (σn)→σ be such that each σn is a Nash

equilibrium of G(νn). Let (εn,ε′n)→ (0, 0) be such that

νi,n

�

{ûi ∈Ui | ‖ûi,n−ui‖<εn}
�

≥1−ε′n
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(which exist because (νn)→δu). For each i∈N and si ∈Si, let (ξn) be such that

ξi,n(si)=







σi,n(si) if σi(si)=0,

2−nσi,n(si) if σi(si)>0,

for all i∈N , si ∈Si, and n∈N. We want to show that there is some ε′′n such that σi(si)>0

only if ui(si,σ−i,n)≥ui(ŝi,σ−i,n)−ε′′n for all ŝi ∈Si and then use Proposition A.1.

Take some i∈N and si ∈Si such that σi(si)>0. Note that if n is high enough, then

σi,n(si)>ε′n. For each si, let Ui,n(si) be the set of payoffs ûi,n such that si is optimal against

σ−i,n. Then, we have that there is some ûi ∈Ui,n(si) such that ‖ûi−ui‖≤εn. Then, an

argument similar to the one in the proof of Lemma 3.1 implies that

ûi(si,σ−i,n|I)≥ ûi(ŝi,σ−i,n|I)

for all I ∈Isi
i and ŝi ∈S I

i . This implies that

ui(si,σ−i,n|I)≥ui(ŝi,σ−i,n|I)−2εn

for all I ∈Isi
i and ŝi ∈S I

i ; that is, ε′′n =2εn. Then, by Proposition A.1, σ is a sequential

equilibrium in mixed strategies.

Part 2. Let σ be a sequential equilibrium in mixed strategies. Let (σn,ξn, un)→ (σ, 0, u) be

such that eachσn is a Nash equilibrium of G(ξn, un). We assume, without loss of generality,

that (i) σi,n(si)>ξi,n(si) for all n whenever σi(si)>0, and (ii) σi,n(si)=ξi,n(si) for all n

whenever σi(si)=0. As before, for each si, let Ui,n(si) be the set of payoffs ûi,n such that si

is optimal against σ−i,n. We will treat {Ui,n(si)|si ∈Si} as a partition of Ui.
19

We now define the distribution νi,n. We assume that νi,n is absolutely continuous,

and we let fi,n denote its density. We will define fi,n in each of the elements of Ui, and then

argue it integrates to 1. We consider two types of elements Ui(si):

1. Consider first some si such thatσi(S
si
i )=0. In this case, for all ûi,n∈Ui,n(si), we define

fi,n(ûi,n) :=
σi,n(si)

‖Ui,n(si)‖

19Technically, {Ui,n(si)|si ∈Si} is not a partition of Ui because its elements may intersect for payoff functions where player i is indifferent

between two or more strategies. Nevertheless, because these intersections will have probability zero, we will dismiss them in our

analysis. Note also that Ui,n(si)=Ui,n(ŝi) whenever ŝi ∈Ssi
i .
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for all ûi,n∈Ui,n(si), where ‖Ui,n(si)‖ indicates the Lebesgue measure of Ui,n(si)⊂RZ .

2. Consider now the case whereσi(S
si
i )>0. Becauseσn is a Nash equilibrium of G(ξn, un)

andσi,n(ši)>ξi,n(ši) for some ši ∈Ssi
i , we have that ui,n(si,σ−i,n)≥ui,n(ŝi,σ−i,n) for all

ŝi ∈Si. This implies that, for all ε>0, we have

int(Ui,n(si)∩Bε(ui,n)) 6=; ,

where Bε(ui,n)⊂RZ indicates the ball of radius ε around ui,n. To see this, let Z si ,σ−i,n in-

dicate the set of terminal histories achieved with positive probability under (si,σ−i,n).

Note that, for each z∈ Z si ,σ−i,n , we have that Psi ,σ−i,n(z)≥Pŝi ,σ−i,n(z) for all ŝi ∈Si. Then,

let vi ∈RZ denote a vector satisfying that vi,z>0 if z∈ Z si ,σ−i,n and vi,z<0 if z /∈ Z si ,σ−i,n .

Hence, we have that

(ui,n+ε
′ vi)(si,σ−i,n)≥ (ui,n+ε

′ vi)(ŝi,σ−i,n)

for all ε′>0 and ŝi ∈Si. In particular, if ε′ is small enough, we have (ui,n+ε′ vi)∈

Bε(ui,n). Take now a sequence (εn)→0. Define

fi,n(ûi,n) :=(1− e−n)
σi,n(si)

‖Ui,n(si)∩Bεn
(ui,n)‖

if ûi,n∈Ui,n(si)∩Bεn
(ui,n), and

fi,n(ûi,n) := e−n
σi,n(si)

‖Ui,n(si)\Bεn
(ui,n)‖

if ûi,n∈Ui,n(si)\Bεn
(ui,n), where each εn>0 is taken small enough that the denomi-

nators in the previous expressions are positive.

It is clear that fi,n integrates to 1 over Ui. Note also that, by construction, σn is a Nash

equilibrium for νi,n. Furthermore, note that the probability under νi,n that ûi is at distance

higher than εn from un is

∑

si |σi,n(si)=0

σi(si)+
∑

si |σi,n(si)>0

e−nσi,n(si) ,

which tends to 0 as n→∞. Because ui,n→ui as n→∞, we have that (νi,n)→δui
, hence

the proof is complete.
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C Other derivations

C.1 Quasi- and weakly quasi-perfect equilibria

In this section, we provide a characterization of perfectness in mixed strategies using be-

havioral strategies. To do so, we first recall the concept of quasi-perfect equilibria, intro-

duced in van Damme (1984).20

Definition C.1 (van Damme, 1984). β is a quasi-perfect equilibrium if there is a fully-mixed

sequence (βn)→β such that, for each i∈N and I ∈Ii, βi is sequentially rational at I given

β−i,n.

As explained by van Damme (1984), “the difference between this concept and Sel-

ten’s perfectness concept is that the latter requires that each player at every information

set takes a choice which is optimal against mistakes of all players (including the player

himself), whereas the quasi-perfectness concept requires that at every information set a

choice is taken which is optimal against mistakes of the other players” (p. 2). That is,

in the perturbed games used to approximate perfect equilibria, players take into account

their own future mistakes when assessing the optimality of playing a given action (recall

the discussion of Figure 2 in Section 4.2, while players only take into account other play-

ers’ mistakes when approximating quasi-perfect equilibria. van Damme (1984) shows that

a proper equilibrium of a normal form game induces a quasi-perfect equilibrium in every

extensive form game having this normal form.

The following proposition shows that quasi-perfectness is stronger than perfectness

in mixed strategies in all games (recall that Corollary 4.1 establishes that an analogous

result for perfectness for games with generic payoffs).

Proposition C.1. Outcomes of quasi-perfect equilibria are outcomes of perfect equilibria in

mixed strategies.

We now define the concept of weakly perfect equilibria, which is analogous to quasi-

perfect equilibria but requires sequential rationality only on relevant information sets.

20In the statement, recall that (βi ,β−i,n) is sequentially rational at I if βi maximizes u(β̂i ,β−i,n|I) for all β̂i ∈Bi , where such conditional

payoff is well defined because β−i,n has full support.
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Definition C.2. β is a weakly quasi-perfect equilibrium if there is a fully-mixed sequence

βn→β such that, for each i∈N and I ∈Ii that is βi-relevant, we have (βi,β−i,n) is sequen-

tially rational at I .

It is clear that quasi-perfect equilibria are weakly quasi-perfect, because they only

require sequential rationality in some information sets instead of all. The following propo-

sition provides a characterization of perfect equilibria in mixed strategies in terms of be-

havior strategies. Note that it is analogous to Proposition 3.1.

Proposition C.2. The sets of outcomes of weakly quasi-perfect equilibria and perfect equilibria

in mixed strategies coincide.

Proofs of Propositions C.1 and C.2

Proof of Propositions C.1 and C.2. Because quasi-perfect equilibria are weakly quasi-perfect,

Proposition C.1 follows from Proposition C.2.

Proof that outcomes of weakly quasi-perfect equilibria are outcomes of perfect equi-

libria in mixed strategies. Fix a weakly quasi-perfect equilibrium β . Let (βn) support β .

Let σ and σn have the same outcome as β and βn, respectively. Define the sequence (ξn)

as

ξi,n(si) :=







σi,n(si) if σi(si)=0,

2−nσi,n(si) otherwise.

Fix some si ∈Si with σ(si)>0. Assume for a contradiction that there is some n and ŝi ∈Si

such that ui(si,σ−i,n)<ui(ŝi,σ−i,n). From the proof of Lemma 3.1, we have that there must

be some I ∈Isi
i ∩I

ŝi
i where

ui(si,σ−i,n|I)<ui(ŝi,σ−i,n|I) .

We then have thatσi is not sequentially at I givenσ−i,n, which implies βi is not sequentially

rational at I given β−i,n, a contradiction.

Proof that outcomes of perfect equilibria in mixed strategies are outcomes of weakly

quasi-perfect equilibria. Fix a perfect equilibrium in mixed strategies σn. Let (σn,ξn)

34



support σ. Let β and βn have the same outcome as σ and σn, respectively, and note that

βn→β . Assume for a contradiction that there is some βi-relevant information set I ∈Ii

and some ŝi ∈S I
i such that

ui(ŝi,β−i,n|I)>ui(βi,β−i,n|I) .

This implies that there is some si ∈S I
i such that σi(si)>0 and

ui(si,σ−i,n|I)=ui(si,β−i,n|I)≤ui(σi,β−i,n|I)<ui(ŝi,β−i,n|I)=ui(ŝi,σ−i,n|I) .

By the same argument in the proof of Lemma 3.1, this implies that σn is not a Nash equi-

librium of G(ξn, u), a contradiction.

C.2 Relationship to Mailath et al. (1993)

Mailath et al. (1993) investigate whether we can reproduce extensive-form reasoning (like

sequential equilibrium) inside the normal form. In their answer, they define normal-form

sequential equilibria, a concept we will now describe and compare to sequential equilibria

in mixed strategies.

Mailath et al. first define normal-form information sets as product blocks of the strat-

egy space that capture strategic independence. Beliefs on each block come from conditional

limits of completely mixed profiles (conditionally convergent sequences). A normal-form

sequential equilibrium (NFSE) requires best responses on every normal-form information

set with respect to those conditional beliefs.

They prove existence by linking proper equilibria to their concept: a proper equilib-

rium is an NFSE. They also prove a bridge to the extensive form: any normal-form se-

quential equilibrium of a pure-strategy reduced normal form (PRNF, where obtained after

collapsing duplicate pure strategies) induces a sequential equilibrium in every extensive-

form game with that PRNF. The converse holds if the same supporting sequence induces se-

quential equilibrium in every such extensive form. Extending these equivalences to MRNF

(mixed-strategy reduced normal form, where obtained after collapsing strategies that are

equivalent to mixed combinations of others) is delicate: a single MRNF profile need not

work across all extensive forms with that MRNF.
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Mailath et al. and our approaches differ in primitives. Our construction stays in the

extensive form and selects limits of Nash equilibria of nearby perturbed games, highlight-

ing the role of uncertainty about rationality and payoffs in equilibrium selection. Their

construction, instead, allows sequential reasoning inside the normal form via blockwise

optimality and conditional limits. The former emphasizes approximability and selection

through perturbations; the latter emphasizes strategic independence and mapping be-

tween PRNF and extensive-form.
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