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Abstract

We revisit the classic chain-store paradox by introducing a novel element:

the arrival of exogenous, public signals about the incumbent’s private type over

time. As the horizon lengthens, two opposing forces come into play. On one

hand, standard reputational incentives grow stronger; on the other, the increas-

ing availability of information makes it more difficult to sustain a reputation.

We show that full deterrence can still emerge as the horizon grows arbitrarily

long, though not always, and we provide a complete characterization of the

conditions under which it arises.

Selten (1978) observed that deterrence games can exhibit implausible equilibrium

behavior. He illustrated this with the chain-store game in Figure 1. In the one-

period version of this game, an entrant chooses to stay out or enter. If it enters,

a monopolist chooses to fight or acquiesce. In the unique subgame-perfect Nash
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Figure 1: Selten (1978) chain store game.

equilibrium of any finite repetition of this game—where the monopolist faces a new

entrant in each period—all entrants enter at all histories. Selten argued this prediction

was implausible, asserting that if entrants observed multiple fights by the monopolist

in previous periods, they would adjust their behavior.

Kreps and Wilson (1982) and Milgrom and Roberts (1982) addressed Selten’s

chain-store paradox by introducing a small uncertainty about the monopolist’s ra-

tionality. Their results are obtained in a model where monopolist is either normal,

with the payoffs specified in Figure 1, or tough, in which case it always fights. This

alteration reverses Selten’s prediction in long games: even with a small probability

of a tough monopolist, the unique subgame-perfect equilibrium features full deter-

rence for an arbitrarily large number of initial periods as the time horizon lengthens.

Intuitively, when the game’s end is distant, the value from deterring future entry is

high, so the normal monopolist fights current entry to convince future entrants that

it is tough. The anticipation of such behavior deters current entrants even when the

probability of the monopolist being tough is low.

We provide a new bridge between the extreme predictions from these two settings

by taking the models of Kreps and Wilson (1982) and Milgrom and Roberts (1982)

and introducing a public signal about the monopolist’s type that arrives at the end

of each period. We study perfect Bayesian equilibria and show that there is a unique

equilibrium outcome. We derive conditions under which full deterrence arises as the

time horizon lengthens.

Our first result establishes that all equilibria feature cutoff strategies based on the

posterior probability of the monopolist being tough (its reputation): There is a unique
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sequence of cutoffs ϕ†
t such that in any equilibrium, the period-t entrant enters if the

monopolist’s reputation is below ϕ†
t and stays out above ϕ†

t . We show that deterrence

is higher, i.e. ϕ†
t is lower, in early periods of the game. The monopolist’s continuation

value is therefore monotone increasing in its reputation level and in the number of

periods remaining.

While the value of reputation increases with the horizon length, the signal’s ex-

istence attenuates this growth. Indeed, as shown in Kreps and Wilson (1982) and

Milgrom and Roberts (1982), without a signal, the value of reputation increases sig-

nificantly in the number of periods until the deadline, eventually leading to full de-

terrence — the Stackelberg outcome. The signal introduces a competing force: the

flow of information about the monopolist’s type reduces the monopolist’s incentive

to build reputation in the first place. By standard properties of learning, the nor-

mal monopolist’s reputation becomes arbitrarily close to zero with arbitrarily high

probability at sufficiently late dates.

We show that this second force need not cause deterrence to unravel. In fact, there

can still be asymptotic full deterrence; that is, for any fixed t, ϕ†
t can converge to 0 as

the horizon lengthens to infinity. We show that this is the case if the signal is not too

informative in a precise sense described below. Hence, despite the downward drift

in the monopolist’s reputation, its reputational incentives might remain sufficiently

strong to deter entry even when its reputation is initially low. However, if the signal

is sufficiently informative, there is no asymptotic full deterrence. We provide a sharp

characterization in terms of the cost of fighting, x: there exists a threshold x> 0 such

that asymptotic full deterrence arises if and only if x≤x.

Related literature. Since the work of Kreps and Wilson (1982) and Milgrom and

Roberts (1982), an extensive literature has been devoted to studying reputation in

entry deterrence, reviewed in Wilson (1992). More broadly, reputation building by

long-lived players has been studied in numerous settings, most saliently in infinitely

repeated games (see Mailath and Samuelson, 2006, for a review).
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Our paper examines implications of exogenous news arrival on deterrence.1 The

closest papers to ours in this regard are Wiseman (2009) and Hu (2014). They

study exogenous learning in a simultaneous-move, infinite-horizon game, and provide

lower bounds for the payoff of the long-lived player. Our focus is different: we fully

characterize the unique equilibrium outcome of the finite repetition of the classical

chain-store game and determine the conditions for asymptotic full deterrence. The

finiteness of the horizon is crucial to studying the backward buildup of the value of

reputation from the deadline.2

1 Model

There is a monopolist and a sequence of short-lived entrants. In every period t∈

{0, 1, 2, ..., T}, the stage game depicted in Figure 1 is played. The t-entrant chooses

to enter (E) or stay out (O); at denotes this choice. If the t-entrant enters, the

monopolist chooses whether to fight (F) or acquiesce (A); dt denotes this choice.

The monopolist has a private persistent type θ∈{L,H}, where H is chosen with

probability ϕ0 ∈ (0, 1). We model type H as a behavioral “tough” type that always

fights and type L as a rational “normal” type with payoffs defined below (we will often

just use “monopolist” to refer to the normal monopolist). At the end of each period,

an exogenous public signal st ∈R arrives, which is distributed i.i.d. conditional on θ

and with distribution

st∼Fθ(·) .

In all periods t, the stage game payoffs are as follows. If the t-entrant stays out,

it receives a payoff of 0 and the monopolist obtains a benefit of v > 0. If the t-entrant

enters and the monopolist fights, the t-entrant’s payoff is −c< 0 and the monopolist’s

1Other aspects of deterrence that have been studied include the role of endogenous types (Pitchik,
1993) or nonconstant types (Aoyagi, 1996 and Wiseman, 2008).

2Other work has focused on studying the role of imperfect observation of actions on reputation
(e.g., Cripps et al., 2004, Faingold and Sannikov, 2011, or Dilmé, 2025).
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payoff is −x< 0. If the t-entrant enters and the monopolist acquiesces, the t-entrant’s

payoff is k > 0 and the monopolist’s payoff is 0. The monopolist maximizes the

expected discounted sum of the stage game payoffs with discount factor δ ∈ (0, 1).

Throughout, we focus on the case where x< δ
1−δ

v, as otherwise fighting is a strictly

dominated strategy in any period for any T .

We impose the following assumption on the signal:

Assumption 1. The signal distributions have strictly positive densities fθ(·) on R,

and the log-likelihood ratio, log fH
fL
, is strictly increasing with range R.

This assumption ensures that each period, from any interior belief, the posterior

belief based on the signal is continuously distributed with full support on [0, 1] under

either type.

1.1 Strategies and equilibrium

Histories. For t≥ 0, let ot ∈O := {O, (E,F), (E,A)} denote the outcome of period t

(not including the signal). For t> 0, define ht =(o0, s0, . . . , ot−1, st−1) as the history

of all past actions and signals before period t, and set h0= ∅. For t> 0, define H t =

(O×R)t, H0= {∅}, and H =∪T
t=0H

t.

Strategies. An entrant’s strategy is a function α :H→ [0, 1] mapping histories to en-

try probabilities. Similarly, amonopolist’s strategy is a function q :H→ [0, 1] mapping

histories to fight probabilities conditional on entry.3

Monopolist’s continuation payoffs. Fix a strategy profile (α, q) and a history

ht ∈H. The monopolist’s continuation value, V (ht;α, q), is defined recursively by

V (hT ;α, q)= (1−α(hT )) v+α(hT ) q(hT ) (−x)

3Since the monopolist only moves in period t if an entry occurs, we define q only as a function of
ht, without explicitly appending “A” to the history. Our equilibrium concept will require sequential
rationality for the monopolist after entry.
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in the final period and4

V (ht;α, q)=(1−α(ht)) (v+δ EL
st [V (ht,O, st;α, q)])

+α(ht) q(ht) (δ EL
st [V (ht,E,F, st;α, q)]−x)

+α(ht) (1−q(ht)) δ EL
st [V (ht,E,A, st;α, q)]

for t<T , where EL
st indicates expectation with respect to the signal st under the

type L. The terms on the right side correspond to the monopolist’s continuation

payoff when the t-entrant stays out (first term), when the t-entrant enters and the

monopolist fights (second term), and when the t-entrant enters and the monopolist

acquiesces (third term).

Entrant’s payoff. The t-entrant’s expected payoff from entering is −c if the mo-

nopolist is tough and

q(ht) (−c)+(1−q(ht)) k

if the monopolist is normal. The payoff from staying out is 0.

Perfect Bayesian equilibria

Note that all history is public except for the realization of the type. Therefore, when

defining perfect Bayesian equilibria, it is enough to focus on beliefs over the type, as

each information set of each entrant contains only two histories.

Definition 1.1. A perfect Bayesian equilibrium consists of a strategy profile (α, q)

and a belief system ϕ :H→ [0, 1] with ϕ(∅)=ϕ0 such that, for all ht ∈H:

1. Entrant optimality: α(ht)= 1 and α(ht)= 0 when

ϕ(ht)(−c)+(1−ϕ(ht))
(
q(ht) (−c)+(1−q(ht)) k

)
4Because there is no risk of confusion and to simplify notation, we use V (ht,E, d, st;α, q) to denote

V ((ht, ((E, d), st));α, q), where (ht, ((E, d), st)) is the history entering period t+1 and d∈{F,A}.
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is positive and negative, respectively.

2. Monopolist optimality: q(ht)= 1 and q(ht)= 0 when

δ EL
st [V (ht,E,F, st;α, q)]−x−δ EL

st [V (ht,E,A, st;α, q)]

is positive and negative, respectively.

3. Bayes consistency: For all (ot, st) we have that ϕ(h
t, ot, st)= ϕ̂st(ϕ(h

t, ot)), where

ϕ̂s(ϕ) :=
ϕ fH(s)

ϕ fH(s)+(1−ϕ) fL(s)
,

where ϕ(ht, ot) is obtained through Bayes’ rule whenever possible, that is,

(a) ϕ(ht,O)=ϕ(ht),

(b) ϕ(ht,E,F)= ϕ(ht)
ϕ(ht)+q(ht) (1−ϕ(ht))

if ϕ(ht) ̸=0 or q(ht) ̸=0,

(c) ϕ(ht,E,A)=0 if ϕ(ht) ̸=1 and q(ht) ̸=1.5

Property 1 of Definition 1.1 states that the t-entrant enters if the expected payoff

from entering is positive and stays out otherwise. Property 2 says that the monopolist

fights if the increase in discounted expected continuation value from fighting exceeds

the fight cost, x, and acquiesces otherwise. Property 3 says that beliefs update within

a period first based on actions (resulting in ϕ̂) and then based on the public signal.

If the entrant stays out, then beliefs update only from the signal. Bayes’ rule always

applies except in two situations: (i) the monopolist acquiesces when ϕ(ht)= 1 or

q(ht)= 1, and (ii) the monopolist fights when both ϕ(ht)= 0 and q(ht)= 0.

5In part 3, we abuse notation by extending the definition of ϕ(·) to histories that include the
action(s) in period t but not the signal.
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2 Equilibrium analysis

In this section, we will characterize equilibrium behavior, which will be unique up to

zero-probability events.

2.1 Last period

It is instructive to first analyze behavior in the last period. Fix an equilibrium

(α, q, ϕ).

To characterize the t-entrant’s behavior, define

G(ϕ̂, q̂) := ϕ̂ (−c)+(1−ϕ̂)(q̂ (−c)+(1− q̂) k) (1)

for all ϕ̂, q̂ ∈ [0, 1]; this is the t-entrant’s expected payoff of entering when the monop-

olist’s reputation is ϕ̂ and the conjectured probability of fight is q̂. From the entrant’s

optimality condition, the entrant enters for sure if G(ϕ(hT ), q(hT ))> 0, and it stays

out for sure if G(ϕ(hT ), q(hT ))< 0. Note that G(ϕ̂, q̂) is decreasing in ϕ̂ and q̂.

In the last period, the monopolist acquiesces against any entry. Thus, the entrant

enters if ϕ(hT )<ϕ and stays out if ϕ(hT )>ϕ, where

ϕ :=
k

c+k

is the unique belief such that G(ϕ, 0)= 0.

It follows that, in any equilibrium, the strategies at time T are uniquely pinned

down by the posterior ϕ(hT ) except if ϕ(hT )=ϕ. This implies that the monopolist’s

continuation value satisfies

V (hT )


=0 if ϕ(hT )<ϕ,

∈ [0, v] if ϕ(hT )=ϕ,

= v if ϕ(hT )>ϕ.

(2)
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2.2 Continuation at extreme beliefs

We now provide a result that will significantly ease our analysis. It establishes that, if

the monopolist loses its reputation (i.e., ϕ(ht)= 0 at some history ht) or if it perfectly

convinces the entrants about its type being tough (i.e., ϕ(ht)= 1), then the continua-

tion play is equal to the unique continuation play of the game when the monopolist’s

type is common knowledge.

Proposition 2.1. If the monopolist has no reputation (i.e., ϕ(ht)= 0), its continua-

tion payoff is 0 (i.e., V (ht)= 0): in all remaining periods, the entrant enters and

the monopolist acquiesces. If the monopolist is instead perceived to be tough for

sure (i.e., ϕ(ht)= 1), no entrant enters in the future and the monopolist’s payoff

is V (ht)= 1−δT−t+1

1−δ
v.

2.3 Existence and uniqueness

Strategies of the following form will play an important role in our analysis.

Definition 2.1. An equilibrium (α, q, ϕ) is in cutoff strategies with cutoffs (ϕt , ϕ
†
t)

T
t=0

if, for all ht ∈H, we have

q(ht)=


1 if ϕ(ht)≥ϕt ,

ϕ(ht)(1−ϕt )

ϕt (1−ϕ(ht))
if ϕ(ht)<ϕt ,

(3)

whenever ϕ(ht) ̸=1, and

α(ht)=

0 if ϕ(ht)>ϕ†
t ,

1 if ϕ(ht)<ϕ†
t .

(4)

Note that Definition 2.1 does not impose any requirement on the monopolist’s

strategy when ϕ(ht)= 1 or on the entrants’ strategy when ϕ(ht)=ϕ†
t . As we shall see,

such flexibility will allow us to establish that all equilibria are in cutoff strategies.
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Note also that because no entrant enters if it believes that the monopolist is tough

for sure, the value of q(ht) when ϕ(ht)= 1 is irrelevant for the equilibrium outcome.

The value of α(ht) when ϕ(ht)=ϕ†
t will only be relevant at time 0 (in the non-generic

case where ϕ0=ϕ†
0) because the probability that ϕ(ht)=ϕ†

t for some t> 0 will be 0

in all equilibria.

In Section 2.1 we established that, in all equilibria, q(hT ) and α(hT ) are of the

form (3) and (4) with cutoffs ϕT =1 and ϕ†
T =ϕ. The following lemma characterizes

each t-entrant’s best reply in an equilibrium in cutoff strategies.

Lemma 2.1. Suppose that in period t, the monopolist’s strategy has the form (3) for

some ϕt > 0. Then the t-entrant’s best response has the form (4), where

ϕ†
t =ϕϕt . (5)

Lemma 2.1 follows from the requirement that the t-entrant is indifferent when

ϕ(ht)=ϕ†
t . This is equivalent to the condition G(ϕ†, q(ht))= 0 (where G is defined in

(1) and q(ht) satisfies (3)). Naturally, ϕ†
t is increasing in ϕt , since the probability of

the monopolist fighting is weakly decreasing in ϕt .

Proposition 2.2. An equilibrium exists. There is a sequence (ϕt , ϕ
†
t)

T
t=0 (unique and

independent of ϕ0) such that for all ϕ0 ∈ [0, 1], all equilibria are in cutoff strategies

with cutoffs (ϕt , ϕ
†
t)

T
t=0.

While Proposition 2.2 establishes the uniqueness of the cutoffs of the equilibrium

strategies, it does not, in general, guarantee that the continuation equilibrium out-

come after each history is unique. The reason is that cutoff strategies do not specify

the behavior of entrants when they are indifferent (i.e., when ϕ(ht)=ϕ†
t).

Nonetheless, the equilibrium outcome (i.e., the ex ante distribution over terminal

histories) is generically unique. To see this, observe that for all t> 0, the probabil-

ity that ϕ(ht)=ϕ†
t is zero. This follows from the fact that ϕ†

t ∈ (0, 1) for all t and

Assumption 1.6 This yields the following result.

6Note that for any ht−1 and ot, either ϕ(ht−1, ot)∈{0, 1} (and then the continuation play is
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Corollary 2.1. The equilibrium outcome is unique unless ϕ†
0=ϕ0.

Equilibrium construction

The proof of Proposition 2.2 recursively shows that there is a unique function Vt :

[0, 1]→ [0, 1
1−δ

v] with the properties that (i) in any equilibrium, V (ht)=Vt(ϕ(h
t)) for

all histories ht such that ϕ(ht) ̸=ϕ†
t , and (ii) Vt(ϕ

†
t)= 0.7 Such a function is the unique

solution to

Vt(ϕ)= Iϕ>ϕ†
t
(v+δ EL

st [Vt+1(ϕ̂st(ϕ))]) , (6)

where VT is fully determined by the right side of (2) with VT (ϕ)= 0 (as ϕ†
T =ϕ). From

Proposition 2.1, we have that Vt(0)= 0 and Vt(1)=
1−δT−t+1

1−δ
v for all t.

If δ Vt+1(1)≤x, the monopolist acquiesces with certainty after entry in period t,

because there is no posterior belief after fighting for which the expected continuation

value would offset the cost of fighting; in this case, the monopolist’s strategy satisfies

(3) with ϕt =1. This occurs, for example, in periods sufficiently close to the deadline.

Otherwise, ϕt is uniquely pinned down by

δ EL
s [Vt+1(ϕ̂s(ϕt ))] =x. (7)

Indeed, q(ht)∈ (0, 1) whenever ϕ(ht)∈ (0, ϕt ), and so the monopolist is indifferent

between acquiescing and fighting. In this case, the posterior after a fight is ϕt . Since

by Proposition 2.1 the monopolist obtains 0 by acquiescing, the continuation value

after fighting (left side of (7)) must be equal to the cost of fighting (right side of (7)).

This occurs, for example, in early periods if the deadline is long enough.8

uniquely pinned down by Proposition 2.1), or ϕ(ht−1, ot)∈ (0, 1) (and then ϕ(ht−1, ot, st) is contin-

uously distributed on [0, 1] by Assumption 1). That ϕ†
t ≤ϕ< 1 for all t follows from equation (5).

That ϕ†
t > 0 for all t is easily derived from the arguments in the proof of Proposition 2.2.

7It is convenient to choose Vt so that Vt(ϕ(h
t)) coincides with the monopolist’s continuation

value in an equilibrium where entrants enter whenever they are indifferent in doing so (which always
exists).

8Because for any given t, δ Vt+1(1) converges to δ
1−δ v >x as T →∞, the condition that
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Based on this logic, equations (5)-(7) fully determine the sequence (Vt, ϕ
†
t , ϕt ),

which is solved from T backwards.

2.4 Monotonicity of the continuation value

The following proposition establishes monotonicity of the main equilibrium objects.

Proposition 2.3. For all t, Vt(ϕ) is increasing in ϕ, and for all ϕ∈ (0, 1), Vt(ϕ) is

decreasing in t. Moreover, ϕ†
t and ϕt are increasing in t.

The proposition first establishes that the monopolist’s value function is increasing

in its reputation level. This is intuitive: the monopolist gets v until entry and 0

thereafter, and from a higher reputation, entry occurs later.

The proposition also establishes that the value function is monotone in t. Intu-

itively, near the deadline, there is less time remaining for the monopolist to benefit

from its reputation through a reduced probability of entry, and hence the continu-

ation value weakly decreases at each belief. Hence, if the monopolist still mixes at

any beliefs, to preserve its indifference, it must induce a higher posterior belief when

it fights, as demonstrated by (7). Through (3), this implies a reduced probability of

fighting. Hence, there is less deterrence near the deadline: the entrant’s threshold

increases in time via (5).

2.5 Example

We now present an example of the equilibrium behavior for a particular signal struc-

ture. Suppose that, for each θ∈{L=0, H =1}, each period’s signal s is normally

distributed with mean θ and variance σ2. Figure 2 shows the continuation value

functions at t∈{0, 10, 20} and the cutoff sequences (ϕt , ϕ
†
t)

T
t=0 for a numerical exam-

ple where the horizon is T =20.

δ Vt+1(1)>x will hold if T is high enough. Note that this condition and (7) imply that ϕ0 < 1

and ϕ†
0 <ϕ for sufficiently large T .
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Figure 2: Equilibrium objects for (k, c, δ, v, x, σ, T )= (1, 1, .95, 1, 5, 2, 20).

3 Long-horizon limit

In this section, we present the main results of the paper. We examine the limit as

T →∞ to understand whether long horizons still ensure deterrence in early periods,

as they do in the model without exogenous news arrival.

Observe that an implication of Proposition 2.3 is that ϕ†
0 and ϕ0 decrease as T

grows, where we use subscript T for the time horizon when appropriate. Let ϕ†
∗ and

ϕ∗ denote the limits of ϕ†
0 and ϕ0 as T →∞, respectively, and let V∗ denote the point-

wise limit of V0 as T →∞, where again the subscript T denotes the horizon length.9

We say that there is asymptotic full deterrence if ϕ†
∗=0. Instead, we say that there

is asymptotic partial deterrence if ϕ†
∗> 0.

Note that the result in the models of Kreps and Wilson (1982) and Milgrom and

Roberts (1982), where there is no exogenous signal, no entrant enters for an arbitrarily

large number of initial periods as the time horizon lengthens for any prior belief, that

is, there is asymptotic full deterrence.10 We will show that with a signal, there is

asymptotic partial deterrence for some parameter values: in this case, if the prior

belief on the type being tough is low enough, the first entrant enters independently

of the length of the horizon.

9These limits exist because ϕ†
0, ϕ0, and V0 are monotone in T by Proposition 2.3 and bounded.

10Recall that we are assuming that x< δ
1−δ v. Recall also that when x≥ δ

1−δ v, fighting is a strictly
dominated strategy regardless of the presence of a signal.
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3.1 Limit equilibrium objects

We now provide asymptotic analogues of the equilibrium conditions (5)-(7) at t=0 (or

any fixed t) by taking T →∞, and later show they characterize the limit equilibrium

objects. These are given by the system of equations

V (ϕ)= Iϕ>ϕ† (v+δ EL
s [V (ϕ̂s(ϕ))]) , (8)

ϕ†=ϕϕ , (9)

δ EL
s [V (ϕ̂s(ϕ ))] =x . (10)

It is not difficult to see that equations (8)-(10) correspond to the equilibrium con-

ditions of stationary equilibria in cutoff strategies with interior cutoffs (ϕ†
∞, ϕ∞)∞t=0

in a model with infinite horizon. The following result relates solutions to equations

(8)-(10) with the asymptotic equilibrium objects as T →∞.

Proposition 3.1. If ϕ†
∗> 0 then (V∗, ϕ

†
∗, ϕ∗) is the unique solution to (8)-(10). If,

instead, ϕ†
∗=0, then there is no solution to (8)-(10).

Proposition 3.1 provides a direct method for characterizing the long-horizon limits

of finite horizon equilibria: either there is no solution to (8)-(10), in which case there

is asymptotic full deterrence, or there is a unique solution and asymptotic partial

deterrence. Below, we show that these two possibilities are not vacuous.

3.2 Conditions for asymptotic full deterrence

The following result establishes that asymptotic full deterrence is obtained if and

only if the cost of fighting is below a threshold x. That is, independently of the

signal distribution or the discount rate, asymptotic full or partial deterrence can be

obtained depending on the value of x.

Proposition 3.2. There is some threshold x∈ (0, δ
1−δ

v) (independent of x) such that

there is asymptotic full deterrence if and only if x≤x.
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Proposition 3.2 is intuitive: asymptotic full deterrence occurs only if the cost

of fighting is low enough. Importantly, the threshold cost x is positive. That is,

independently of the rest of the parameters, asymptotic full deterrence arises if the

cost of fighting is low enough, and there is asymptotic partial deterrence if the cost of

fighting is high enough. The threshold is strictly lower than the maximum potential

benefit from fighting, δ
1−δ

v.

Using the conditions (8)-(10) that apply in the asymptotic partial deterrence case,

the threshold x is obtained as follows. First, we change variables using the log-

likelihood ratio z≡ log(ϕ/(1−ϕ)) instead of the belief ϕ. Let V (z; z†) denote the

solution to11

V (z; z†)= Iz>z†

(
v+δ EL

s

[
V
(
z+log fH(s)

fL(s)
; z†

)])
, (11)

which is analogous to (8). By changing variables to ẑ≡ z−z†, we have

V (ẑ; 0)= Iẑ>0

(
v+δ EL

s

[
V
(
ẑ+log fH(s)

fL(s)
; 0
)])

. (12)

Note that V (ẑ; 0) does not depend on z†, and corresponds to the monopolist’s payoff

when ẑ0= ẑ and it obtains v in every period until the first period τ where ẑτ ≤ 0 and

zero thereafter. By standard arguments, V (ẑ; 0) is strictly increasing on [0,∞).

The indifference conditions for the entrants and the monopolist ((9) and (10))

imply that

x= δ EL
s

[
V
(
∆(ϕ†)+log fH(s)

fL(s)
; 0
)]

, (13)

where, returning to using beliefs instead of log-likelihood ratios,

∆(ϕ†) := log

(
ϕ†/ϕ

1−ϕ†/ϕ

)
− log

(
ϕ†

1−ϕ†

)
=− log

(
ϕ−ϕ†

1−ϕ†

)
. (14)

11Note that if z(ht)∈R is the log-likelihood ratio at time t and the t-entrant does not enter, then
the updated log-likelihood ratio after signal st is z(h

t)+log(fH(st)/fL(st)) by Bayes’ rule.
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There exists a solution (V, ϕ†, ϕ ) to (8)-(10) with ϕ†> 0 if and only if there is a

value ϕ† ∈ (0, ϕ) such that ∆(ϕ†) satisfies equation (13). Note that ∆(·) is continuous

and strictly increasing, tends to +∞ as ϕ†→ϕ, and tends to − log(ϕ)> 0 as ϕ† → 0.

We then conclude that there is asymptotic partial deterrence if and only if x>x,

where

x := δ EL
s

[
V
(
− log(ϕ)+log fH(s)

fL(s)
; 0
)]

= δ EL
τ

[
1−δτ−1

1−δ
v
]
, (15)

where τ is the first time ẑt reaches 0 when ẑ0=− log(ϕ) under the signal. Note that

because the right side of (15) is bounded above by δ
1−δ

v, we have that x∈ (0, δ
1−δ

v).

Equation (15) proves to be extremely useful, as it immediately allows us to analyze

the comparative statics of x with respect to the input parameters of the model.

Intuitively, full deterrence is more likely to occur when the monopolist’s value from

deterrence is higher (higher δ or v) or when it is easier to deter entrants (higher c or

lower k).

Corollary 3.1. The threshold x is increasing in δ, v, and c, and decreasing in k.

We explore the relationship between signal informativeness and deterrence in Sec-

tion 3.3.

Patient monopolist limit

A remarkable property of our analysis is that the threshold x stays finite and strictly

positive in the limit δ→ 1. That is, even when the monopolist is fully patient (δ=1)—

so the potential value of reputation grows unbounded as the horizon lengthens—there

is a wide range of parameters where the monopolist cannot fully deter entries.

To see why, assume δ=1. The above arguments continue to hold: in this case,

V∗(ẑ; 0) is the expected number of periods until the log-likelihood ratio reaches 0 if

its initial value is ẑ. Because the log-likelihood ratio has a negative drift under type

L, this is a finite value independently of ẑ (but this value increases toward infinity as

ẑ→∞). In particular, this implies that x in (15) remains bounded as δ→ 1.
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3.3 More informative signal

Our results thus far establish that in the presence of exogenous news arrival, there

can still be full deterrence in the long-horizon limit, but there need not be. In this

section, we explore how the informativeness of the signal affects deterrence and the

monopolist’s payoff for long horizons.

To motivate our approach for studying informativeness below, let us comment on

alternative approaches. First, Blackwell dominance is not strong enough to guarantee

lower x. We can see this by examining the last term in (15), which is equal to

the expected discounted time it takes for the log-likelihood ẑt to first cross 0 from

ẑ0=− log(ϕ)> 0. The key is that the realizations s satisfying that log fH(s)
fL(s)

> log(ϕ)

can be garbled to increase the probability that ẑ1≡− log(ϕ)+ fH(s0)
fL(s0)

is lower than

0. Then, if δ is small enough, such garblings make the last term in (15) decrease,

lowering the value of x, thereby shrinking the set of parameters where asymptotic

full deterrence occurs. In other words, making the signal less informative may change

asymptotic full deterrence into asymptotic partial deterrence.

A second approach would be the following. For a fixed signal structure f , one

would look for signal structures g satisfying that the distribution of the likelihood

ratio under g conditional on L first-order stochastically dominates the distribution

of the likelihood ratio under f conditional on L. It is easy to see that, in this case,

the last term in (15) would be higher under g than under f . Nevertheless, such a

condition is vacuous: under Assumption 1, the law of total probability ensures that

only g= f would satisfy this condition.12

To summarize, Blackwell dominance is too weak, while first order stochastic dom-

inance is too strong. To proceed, instead of defining a partial order over signal

structures, we take an asymptotic approach. Given a signal structure with s∼ fθ

for θ∈{H,L}, define the likelihood ratio Λf (s) :=
fH(s)
fL(s)

. We say that a sequence of

12Indeed, note that for h∈{f, g},
∫
R

hH(s)
hL(s) hL(s) ds=

∫
R hH(s) ds=1, whereas the first order

stochastic dominance condition implies EL,g[ gH(s)
gL(s) ]>EL,f [ fH(s)

fL(s) ].
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signal structures with densities fn
θ satisfying Assumption 1 is asymptotically revealing

if Λfn(s)
p−→ 0 under θ=L, where

p−→ denotes convergence in probability. We say that

it is asymptotically uninformative if Λfn(s)
p−→ 1 under θ=L.13 We use ϕ†n

∗ to denote

the value of ϕ†
∗ which depends on n through fn

θ .

Proposition 3.3. Let fn
θ be a sequence of signal structures. If fn

θ is asymptotically

revealing, then: ϕ†n
∗ →ϕ and V n

∗ (ϕ)→ Iϕ≥ϕ v for all ϕ∈ [0, 1]. If fn
θ is asymptotically

uninformative, then for large n, ϕ†n
∗ =0 and V n

∗ (ϕ)= Iϕ>0
1

1−δ
v for all ϕ∈ [0, 1].

An immediate implication of Proposition 3.3 is that making the signals sufficiently

informative (i.e., going sufficiently far along an asymptotically revealing sequence)

hurts the normal monopolist, while making the signals sufficiently uninformative

helps. Intuitively, when the monopolist is normal and signals become very infor-

mative, the entrant learns quickly about the monopolist from exogenous news. This

makes a high reputation more transient for the monopolist, reducing the monopo-

list’s continuation value, leading to entry at lower beliefs and a lower probability of

fighting. In the limit, the normal monopolist’s payoff converges to the payoff in the

static game. In contrast, as signals become very uninformative, these forces act in

the opposite direction, and the monopolist is better off.

The proposition also implies that if the signal is not too informative (i.e., it occurs

sufficiently far along an asymptotically uninformative sequence), there is still asymp-

totic full deterrence. This follows from the convergence of the t-entrant’s cutoff to

ϕ†n
∗ as T →∞, which is 0 for sufficiently large n.

13For example, returning to the specification in Section 2.5, let σn be a sequence of strictly
positive real numbers and define fn

θ to be the PDF of N(θ, σn). The sequence fn
θ is asymptotically

revealing if σn → 0, and it is asymptotically uninformative if σn →∞. Note that for general fn
θ , the

definition of asymptotically revealing implies that Λfn(s)
p−→∞ under θ=H; likewise, the definition

of asymptotically uninformative implies Λfn(s)
p−→ 1 under θ=H.
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4 Discussion

While we have considered a behavioral tough type who fights with certainty for sim-

plicity, our results can be extended in multiple ways. A first possibility would consider

a tough type who fights with a probability less than, but close to, 1. It is not dif-

ficult to see that the arguments above would continue to hold with an appropriate

adjustment in the definition of ϕ. Another possibility would be to let the tough type

be a payoff type instead of a behavioral type. In line with Kreps and Wilson (1982),

this behavioral type would prefer fighting to acquiescing after entry but still prefers

deterrence to entry. In the Online Appendix, we show that our predictions remain

equilibrium predictions with a payoff type.

A Proofs

Proof of Proposition 2.1. Consider an arbitrary PBE (α, q, ϕ). We first show by in-

duction that if ϕ(ht)= 0 for some ht ∈H, then (i) V (ht)= 0, (ii) α(ht)= 1, and (iii)

q(ht)= 0. Clearly, (i)-(iii) hold in the last period: we have q(hT )= 0, so if ϕ(hT )= 0,

then α(hT )= 1 and V (hT )= 0. Now suppose (i)-(iii) hold for all t≥ T̂+1 for some

T̂ ≥ 0. We show that they also hold for t= T̂ . To rule out q(hT̂ )> 0, note that

this would imply that ϕ(hT̂ ,E,F, sT̂ )= 0 for all sT̂ by Bayes’ rule, and therefore

V (hT̂ ,E,F, sT̂ ;α, q)= 0 by the induction hypothesis. But then the monopolist’s op-

timality condition would imply q(hT̂ )= 0, a contradiction. Hence, q(hT̂ )= 0, and

so α(hT̂ )= 1, so the monopolist’s continuation payoff in period T̂ is 0 as desired.

This completes the induction argument. Moreover, note that if ϕ(ht)= 0, then since

q(ht)= 0, Bayes’ rule implies the monopolist’s reputation stays at zero and (i)-(iii)

apply for the remainder of the game.

Next, consider ϕ(ht)= 1. In this case, the entrants stay out every period and the

posterior stays equal to 1. So, the monopolist earns v in all periods t, . . . , T , for a

discounted value of V (ht)= 1−δT−t+1

1−δ
v.
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Proof of Lemma 2.1. Fix a history ht and a monopolist strategy of the form (3) with

fixed ϕt > 0. The t-entrant’s expected payoff from entering is G(ϕ(ht), q(ht)). Using

(3) and simplifying yields

G(ϕ(ht), q(ht))= (ϕ(ht)/ϕt )(−c)+(1−ϕ(ht)/ϕt )k .

This is strictly decreasing in ϕ(ht) on [0, ϕt ] and vanishes when ϕ(ht)= k
c+k

ϕt =ϕϕt .

Thus, any best reply of the entrant satisfies (4) with ϕ†
t =ϕϕt .

Proof of Proposition 2.2. We use an induction argument to derive the sequence of

cutoffs referred to in the proposition and show that any equilibrium must be in cutoff

strategies with these cutoffs. We then establish existence.

Induction hypothesis for arbitrary T̂ ≤T : For all t≥ T̂ , there is a unique thresh-

old ϕ†
t ∈ (0, ϕ] and a function Vt : [0, 1]→R+ such that in all equilibria, (i) the strate-

gies at time t satisfy equations (3), (4), and (5); (ii) V (ht)=Vt(ϕ(h
t)) whenever

ϕ(ht) ̸=ϕ†
t ; and (iii) Vt(ϕ

†
t)= 0. Moreover, (iv) Vt is weakly increasing, Vt(ϕ)= 0 for

all ϕ∈ [0, ϕ†
t), and Vt(ϕ)> 0 for all ϕ∈ (ϕ†

t , 1]. Without loss, we define Vt(ϕ
†
t)= 0.

Base Case: T̂ =T . The result holds for T̂ =T as explained in Section 2.1.

Induction Step: Proof for T̂ ∈{0, . . . , T−1}. Assume that the induction hypoth-

esis holds for T̂+1. For all t= T̂ , . . . , T−1, define

Wt(ϕ) :=EL
st [δ Vt+1(ϕ̂st(ϕ))]

for all ϕ∈ [0, 1] and WT ≡ 0. Because Vt+1 is increasing and non-constant by the

induction hypothesis and the signal distribution is continuous with a log-likelihood

ratio that is strictly increasing and has full support on R, we have that Wt is strictly

increasing and continuous.
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Note that for any history hT̂ , the monopolist’s expected utility from fighting is

−x+WT̂ (ϕ(h
T̂ ,E,F)). (16)

There are two cases:

• Case 1: WT̂ (ϕ)<x for all ϕ∈ [0, 1]. In this case, for any history hT̂ , (16) is

strictly negative, whereas the monopolist can obtain at least 0 by acquiescing.

Hence, the monopolist’s optimality condition implies that q(hT̂ )= 0 for all hT̂ .

Then by the same logic as in Section 2.1, it follows that α(hT̂ )= 1 if ϕ(hT̂ )<ϕ

and α(hT̂ )= 0 if ϕ(hT̂ )>ϕ. Hence, in this case, (3) and (4) are satisfied at t= T̂

with ϕ†
T̂
=ϕ and ϕ

T̂
=1. We define

VT̂ (ϕ) :=

0 if ϕ≤ϕ

v+WT̂ (ϕ) if ϕ>ϕ.

• Case 2: WT̂ (ϕ)≥x for some ϕ∈ [0, 1]. Because WT̂ is strictly increasing and

tends to 0 as ϕ→ 0 by the dominated convergence theorem, there is exactly one

ϕ
T̂
∈ (0, 1] for which WT̂ (ϕT̂

)=x.

We argue that the monopolist plays according to (3) in period T̂ with cutoff

ϕ
T̂
, and we characterize belief updating. Assume ϕ(hT̂ )< 1 (as (3) is only

relevant in this case). First, if ϕ(hT̂ )≥ϕ
T̂
, it must be that the monopolist

fights with probability 1, as in (3). Toward a contradiction, assume the contrary.

Bayes’ rule would imply that ϕ(hT̂ ,E,A)=0, which we have shown implies the

payoff from acquiescing would be 0. Also, Bayes’ rule would imply ϕ(hT̂ ,E,F)>

ϕ(hT̂ )≥ϕ
T̂
, so (16) would be strictly positive. Thus, fighting would be strictly

optimal, a contradiction.

Second, if 0<ϕ(hT̂ )<ϕ
T̂
, a similar contradiction arises if ϕ(hT̂ ,E,F)>ϕ

T̂
; and

if ϕ(hT̂ ,E,F)<ϕ
T̂
, we would have q(hT̂ )= 0, but then ϕ(hT̂ ,E,F)=1>ϕ(hT̂ ),

again a contradiction. Hence, it must be that ϕ(hT̂ ,E,F)=ϕ
T̂
, and Bayes’
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rule implies q has the form in (3). Third, if ϕ(hT̂ )= 0, Proposition 2.1 already

establishes that q(hT̂ )= 0, consistent with (3).

Given ϕ
T̂
, by Lemma 2.1, the entrant plays according to (4) with ϕ†

T̂
=ϕϕ

T̂
. In

this case, define

VT̂ (ϕ) :=

0 if ϕ≤ϕ†
T̂
,

v+WT̂ (ϕ) if ϕ>ϕ†
T̂
.

We now establish properties (ii) and (iv) of the induction hypothesis for T̂ . Fix

any history hT̂ . If ϕ(hT̂ )<ϕ†
T̂
, then entry occurs for sure, and since ϕ†

T̂
<ϕ

T̂
, the

monopolist is willing to concede as q(hT̂ )< 1, so the monopolist’s continuation payoff

is equal to its payoff when it acquiesces, which is 0; thus V (hT̂ )= 0 if ϕ(hT̂ )<ϕ†
T̂
.

Also, if ϕ(hT̂ )>ϕ†
T̂
, we have

V (hT̂ )= v+δ EL
sT̂
[V (hT̂ ,O, sT̂ )] = v+δ EL

sT̂
[VT̂+1(ϕ̂sT̂

(ϕ(hT̂ )))] = v+WT̂ (ϕ(h
T̂ )),

where the second equality holds by the induction hypothesis for T̂+1. In summary,

V (hT̂ )=

0 if ϕ(hT̂ )<ϕ†
T̂
,

v+WT̂ (ϕ(h
T̂ )) if ϕ(hT̂ )>ϕ†

T̂
,

It is then clear that, for either Case 1 or Case 2 above, VT̂ is the unique function

satisfying V (hT̂ )=VT̂ (ϕ(h
T̂ )) for all hT̂ ∈H T̂ such that ϕ(hT̂ ) ̸=ϕ

T̂
and VT̂ (ϕ

†
t)= 0.

Moreover, VT̂ is weakly increasing, and it satisfies VT̂ (ϕ)= 0 for all ϕ∈ [0, ϕ†
T̂
] and

VT̂ (ϕ)> 0 for all ϕ∈ (ϕ†
T̂
, 1]. This completes the induction argument.

Existence: The previous argument establishes that equilibria are in cutoff strate-

gies. Furthermore, the sequence of cutoffs (ϕt , ϕ
†
t)

T
t=0 pins down those strategies as a

function of beliefs except at histories where ϕ(ht)=ϕ†
t or ϕ(h

t)= 1. To establish exis-

tence, we need only to specify the belief system and to specify the strategies and verify
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their optimality at ϕ(ht)=ϕ†
t or ϕ(h

t)= 1. Whenever ϕ(ht)=ϕ†
t , set α(h

t)= 1; since

the entrant is indifferent at its cutoff, this is optimal. When ϕ(ht)= 1, set q(ht)= 0

if T−t< t̃ and q(ht)= 1 if T−t≥ t̃, where t̃ > 0 is defined as the unique solution

to δ 1−δt̃

1−δ
v=x. We define the belief system recursively going forward in time from

ϕ(∅)=ϕ0. Given any ϕ(ht), set ϕ(ht,E,A)=0; note that this is implied by the Bayes’

Consistency property when ϕ(ht) ̸=1 or q(ht) ̸=1. Set ϕ(ht,E,F) according to the

Bayes’ Consistency property when q(ht) ̸=0 or ϕ(ht) ̸=0, and set ϕ(ht,E,F)=0 when

(ϕ(ht), q(ht))= (0, 0). The monopolist’s strategy is optimal by construction whenever

ϕ(ht) ̸=1. When ϕ(ht)= 1, note that under the given belief system, the monopolist’s

payoff from acquiescing is 0, but if it fights, it pays a cost −x and continues with a

belief of 1 in period t+1, for a discounted continuation payoff of δ 1−δT−(t+1)+1

1−δ
v by

Proposition 2.1. Hence, fighting is optimal if and only if T−t≥ t̃.

Proof of Corollary 2.1. The proof follows directly from Proposition 2.2 and the argu-

ment in the main text.

Proof of Proposition 2.3. In this proof, we will use the functions {Vt,Wt : [0, 1]→

R|t=0, ..., T} defined and used in the proof of Proposition 2.2. Recall that all Vt

satisfy that Vt(ϕ)= 0 for all ϕ≤ϕ†
t , Vt(ϕ)> 0 for all ϕ>ϕ†

t , and Vt is weakly increas-

ing. Recall also that all Wt are strictly increasing and continuous, and satisfy that if

ϕt ∈ (0, 1), then Wt(ϕt )=x. We will use the following equality, which is valid for all

t∈{0, ..., T−1} and ϕ∈ [0, 1],

Wt(ϕ)=EL
st

[
Iϕ̂st (ϕ)>ϕ†

t+1
δ (v+Wt+1(ϕ̂st(ϕ)))

]
.

We proceed by induction.

Induction hypothesis for T̂ : For all t∈{T̂ , ..., T−1}, we have (i) Vt(ϕ)≥Vt+1(ϕ)

and Wt(ϕ)>Wt+1(ϕ) for all ϕ∈ (0, 1), (ii) ϕt ≤ϕt+1 and ϕ†
t ≤ϕ†

t+1.

Part 1. We prove the result for T̂ =T−1. First, observe that ϕT−1≤ 1=ϕT , which

implies ϕ†
T−1=ϕϕT−1≤ϕ=ϕ†

T . Also, because VT (ϕ) is positive for all ϕ>ϕ, we
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have that WT−1(ϕ)> 0=WT (ϕ) for all ϕ> 0. Finally, note that for ϕ≤ϕ†
T , VT (ϕ)=

0≤VT−1(ϕ) and for ϕ>ϕ†
T ≥ϕ†

T−1, we have VT (ϕ)= v+δ WT (ϕ)≤ v+δ WT−1(ϕ)=

VT−1(ϕ).

Part 2. Assume the induction hypothesis holds for T̂+1 where T̂+1≤T−1. This

implies that for all ϕ> 0

WT̂ (ϕ)=EL
st

[
Iϕ̂s

T̂
(ϕ)>ϕ†

T̂+1

δ(v+WT̂+1(ϕ̂sT̂
(ϕ)))

]
>EL

st

[
Iϕ̂s

T̂
(ϕ)>ϕ†

T̂+2

δ(v+WT̂+2(ϕ̂sT̂
(ϕ)))

]
=WT̂+1(ϕ) .

The inequality holds for two reasons: ϕ†
T̂+2

≥ϕ†
T̂+1

(which shrinks the range where

the integrand is non-zero) and, by assumption, WT̂+2(ϕ̂sT̂
(ϕ))<WT̂+1(ϕ̂sT̂

(ϕ)).

Since WT̂ (ϕ)>WT̂+1(ϕ) for all ϕ∈ [0, 1], we have that ϕ
T̂+1

≥ϕ
T̂
and so ϕ†

T̂+1
≥

ϕ†
T̂
.14 It is also clear that VT̂ (ϕ)≥VT̂+1(ϕ) for all ϕ∈ [0, 1].

Proof of Propositions 3.1 and 3.2. We divide the proof into parts.

Part 0. We first formalize several preliminary results from the discussion following

Proposition 3.2. First, we note that there is a unique function V (·; 0) satisfying

equation (12).15 Indeed, the functional

V̌ 7→
(
ẑ 7→ Iẑ>0

(
v+δ EL

s

[
V̌
(
ẑ+log fH(s)

fL(s)

)]))
is a contraction in the space of functions from R to [0, 1

1−δ
v] equipped with the sup

norm. Note that V (ẑ; 0) is equal to the payoff obtained by the monopolist if (i) the

log-likelihood of the initial belief is ẑ, (ii) the posterior evolves only according to the

signal, and (iii) the monopolist obtains v each period until the first period where

14Recall that, for all t<T , (i) if Wt(1)>x then Wt(ϕt)=x, (ii) if Wt(1)≤x then ϕt =1, and (iii)

ϕ†
t =ϕϕt .
15For ease of exposition, we do not introduce equation (12) until Section 3.2, but there is no

circularity in our arguments.
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ẑ≤ 0, and obtains zero afterwards.

Also, for the reasons provided in the main text, there is some ϕ† > 0 satisfying

equations (13) and (14) if and only if x>x, where x is defined in equation (15). Also,

if x>x, ϕ† is unique, as the right hand side of (13) is strictly increasing in ϕ†.

Part 1. We now consider the equilibrium behavior as T grows. Let (ϕ†
T,t)

T
t=0 denote

the entrants’ thresholds in the model with deadline T . Note that ϕ†
T,t=ϕ†

T−t,0 for all

T ∈Z+ and t≤T . Note also that ϕ†
T,t is increasing in t. For a fixed T , note that

VT,0(ϕ0)=
EL

τT,0
[1−δτT,0 |ϕ0]

1−δ
v ,

where τT,0 is the first time t′ such that ϕ(ht′)≤ϕ†
T,t′ . Because ϕ

†
T,0 is decreasing in T ,

it converges to some ϕ†
∗≥ 0 as T →∞.

Part 2. We analyze the case where ϕ†
∗> 0. In this case, as T →∞, using that by

Assumption 1 the signal and posterior distributions are continuous, we have that for

all ϕ0 ∈ [0, 1], VT,0(ϕ0) converges to
16

EL
τ∗ [1−δτ∗|ϕ0]

1−δ
v,

where τ∗ is defined as the first time t′ such that ϕt′ ≤ϕ†
∗ (and τ∗=+∞ if ϕt′ >ϕ†

∗

for all t′); note that by definition, this equals V (z0−z†∗; 0) defined in the main body.

And since limT→∞ VT,0(ϕ0)=V∗(ϕ0) for all ϕ0 ∈ [0, 1] by definition, we have V∗(ϕ0)=

V (z0−z†∗; 0) for all ϕ0 (where z0= log( ϕ0

1−ϕ0
)).

By footnote 8, ϕT,0< 1 for all sufficiently large T , and the following indifference

condition must hold:

x= δ EL
s [VT−1,0(ϕ̂s(ϕT,0))].

16Note that, because ϕ†
T,0 is decreasing in T and each VT (ϕ)= 0 for all ϕ≤ϕ†

T,0, we have that

limT→∞ VT,0(ϕ)= 0 for all ϕ≤ϕ†
∗.
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Taking T →∞ yields x= δ EL
s [V∗(ϕ̂s(ϕ∗))]. Also, after a log-likelihood transformation,

ϕ̂s(ϕ∗) becomes z∗+log fH(s)
fL(s)

, so V∗(ϕ̂s(ϕ∗))=V
(
z∗+log fH(s)

fL(s)
−z†∗; 0

)
, which in turn

equals V
(
∆(ϕ†

∗)+log fH(s)
fL(s)

; 0
)
.

Putting these together, we have

x= δ EL
s

[
V
(
∆(ϕ†

∗)+log fH(s)
fL(s)

; 0
)]

,

which is (13) with ϕ†
∗ playing the role of ϕ

†. Because ϕ† denotes the unique solution to

(13), we have ϕ†
∗=ϕ†, and (V∗, ϕ

†
∗, ϕ∗) is the unique solution to (8)-(10). Also, recall

that a solution with ϕ† > 0 exists if and only if x>x.

Part 3. We now analyze the remaining case ϕ†
∗=0. Note that ϕ†=0 cannot be part

of a solution to (8)-(10).17 Toward a contradiction, suppose there is a solution with

ϕ†> 0=ϕ†
∗. Then, moving to log-likelihood space, there must be some T such that

z†T,0<z†≤ z†T−1,0. It is clear that VT−1,0(z)<V (z; z†) for all z > z†.18 Then,

x= δ EL
s

[
VT−1,0

(
zT,0+log fH(s)

fL(s)

)]
<δ EL

s

[
V
(
zT,0+log fH(s)

fL(s)
, z†

)]
.

Because the right side of the inequality is increasing in zT,0 and is equal to x when

zT,0= z , we have zT,0>z , which implies z†T,0>z†. This contradicts that z†T,0<z†.

We conclude that (when ϕ†
∗=0) there is no solution to (8)-(10). Hence, it must

be that x≥x. In this case, we have VT,0(ϕ)→ Iϕ>0
1

1−δ
v pointwise as T →∞.

Proof of Corollary 3.1. Recall the last expression in (15). The result with respect to

v is then trivial, and the result for δ is also immediate by differentiation. For c and

k, observe that from (15), x is increasing in τ . Now τ is increasing in − log(ϕ), which

in turn is increasing in c and decreasing in k, proving the results for c and k.

Proof of Proposition 3.3. Fix a sequence of signal structures fn
θ . For each n, let

(V n
∗ , ϕ

†n
∗ , ϕ

n
∗ ) limits of (V0, ϕ

†
0, ϕ0) as T →∞ under signal structure fn

θ . Recall from

17If there were a solution to this system with ϕ =0, but then ϕ̂s(ϕ )= 0. Since V (0)= 0 from (8),
the left hand side of (10) would also be 0, which cannot equal x.

18Indeed, because z†T−1,t is increasing in t, we have that z†T−1,t >z†∗ for all t=0, ..., T−1.
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Section 3.2 that if ϕ†n
∗ > 0, then in the space of log-likelihood beliefs,

x= δ EL
s

[
V n
∗
(
∆(ϕ†n

∗ )+log(Λfn(s)); 0
)]

. (17)

Part 1. Suppose the sequence fn
θ is asymptotically revealing. Fix any ẑ > 0. By

definition, for any ϵ> 0, there exists N such that for n≥N , Λfn(s)<ϵ with probabil-

ity at least 1−ϵ under θ=L. Choose ϵ> 0 sufficiently small that Λfn(s)<ϵ implies

ẑ+log(Λfn(s))< 0. Also, note that V n
∗ (·; 0)∈ [0, v

1−δ
]. Hence, for n≥N , δ EL

s

[
V n
∗ (ẑ+

log(Λfn(s)); 0)
]
≤ ϵ δ v

1−δ
. Therefore, δ EL

s

[
V n
∗ (ẑ+log(Λfn(s)); 0)

]
→ 0 pointwise in ẑ

as n→∞.

This fact has three implications. First, by setting ẑ=− log(ϕ), we get that xn

in (15) tends to 0 as n→∞. Hence, by Proposition 3.2, for all sufficiently large n,

we have ϕ†n
∗ > 0; there is asymptotic partial deterrence. Second, and moreover, we

must have ϕ†n
∗ →ϕ. Toward a contradiction, if this were not true, then there would

exist a subsequence of signal structures along which ϕ†n
∗ is bounded away from ϕ

and therefore ∆(ϕ†n
∗ ) is also bounded above by some M > 0. But then setting ẑ=M

and taking n sufficiently large, we have δ EL
s

[
V n
∗ (ẑ+log(Λfn(s)); 0)

]
<x, and since V n

∗

and ∆ are nondecreasing, (17) cannot be satisfied for any ϕ†n
∗ along this subsequence.

From this contradiction, we conclude that (along the original sequence) ϕ†n
∗ →ϕ.

Third, for all fixed ẑ, we have V n
∗ (ẑ; 0)→ Iẑ>0(v+0)= Iẑ>0 v by (12). Using this

fact, we now prove the claim that V n
∗ (ϕ)→ Iϕ≥ϕ v. Fix any z≥ z and any ϵ> 0. For

sufficiently large, n, we have z−ϵ< z†n∗ <z≤ z, where the first inequality follows from

z†n∗ → z, and where z†n∗ <z follows from footnote 8. That is, for all n and any finite

horizon, z†n0 <z, and since z†n0 is decreasing in T , we have z†n∗ = limT→∞ z†n0 <z. Thus,

since V n
∗ (·; 0) is weakly increasing, V n

∗ (z; z
†n
∗ )=V n

∗ (z−z†n∗ ; 0)≤V n
∗ (z−(z−ϵ); 0)→ v.

Also, since z≥ z > z†n∗ , we have V n
∗ (z; z

†n
∗ )≥ v by (11) under signal structure fn

θ .

Combining these facts gives V n
∗ (z; z

†n
∗ )→ v. And for any z < z and ϵ< z−z, for suf-

ficiently large n, z†n∗ >z−ϵ> z. Thus, for z < z and sufficiently large n, V n
∗ (z; z

†n
∗ )=

V n
∗ (z−z†n∗ ; 0)= 0.
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Part 2. Next, suppose the sequence fn
θ is asymptotically uninformative. Clearly

V n
∗ (ϕ)= 0 when ϕ=0; we now show that V n

∗ (ϕ)→ v
1−δ

for all ϕ> 0. To that end,

we first prove that ϕ†n
∗ =0 for all sufficiently large n; equivalently, we show that

z†n∗ =−∞ for all sufficiently large n. By way of contradiction, suppose not, and pass

to a subsequence with z†n∗ >−∞ for all n. Recall the change of variables from z

to ẑ= z−z†n∗ so that V n
∗ (ẑ; 0)=V n

∗ (z; z
†n
∗ ). Now fix any value ẑ > 0, and recall that

V n
∗ (ẑ; 0) solves

V n
∗ (ẑ; 0)= Iẑ>0 (v+δ EL

s [V
n
∗ (ẑ+log(Λfn(s)); 0)]) . (18)

Since V n
∗ (·; 0) is continuous on (0,∞), for any ϵ> 0, there exists η > 0 such that

|V n
∗ (y; 0)−V n

∗ (ẑ; 0)| ≤ ϵ for all y ∈ (ẑ−η, ẑ+η). In turn, there exists N such that n≥

N implies | log(Λfn(s))|<η with probability at least 1−η by the continuous mapping

theorem and the fact that Λfn(s)
p−→ 1. Thus, choosing ϵ< 2v

1−δ
, we have for large n

∣∣V n
∗ (ẑ; 0)−EL

s [V
n
∗ (ẑ+log(Λfn(s)); 0)]

∣∣≤ (1−η)ϵ+η 2v
1−δ

,

which is in o(ϵ) for sufficiently small η. Thus, for any ẑ > 0,

V n
∗ (ẑ; 0)= v+δ V n

∗ (ẑ; 0)+o(ϵ). (19)

This implies that for any ẑ > 0, we have V n
∗ (ẑ; 0)→ v

1−δ
.

Then from (15) and (18), with − log(ϕ) playing the role of ẑ, it follows that

xn := δ EL
s

[
V n
∗

(
− log(ϕ)+log(Λfn(s)); 0

)]
=V n

∗ (− log(ϕ); 0)−v→ δ v
1−δ

>x ,

which implies ϕ†n
∗ =0 by Proposition 3.2, a contradiction. We conclude that, indeed,

ϕ†n
∗ =0 for all sufficiently large n. This implies that for all ϕ> 0, for all sufficiently

large n, along the equilibrium path, there is no entry and the monopolist’s reputation

never hits zero, so V n
∗ (ϕ)=

v
1−δ

.
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B Online Appendix

B.1 Extension: payoff type

In this section, we extend our results to the case where the tough monopolist is a payoff

type instead of an action type. Following Milgrom and Roberts (1982), we now assume

that the tough monopolist is strategic. In each given period, the stage payoff of the

tough monopolist coincides with that of the normal monopolist except if the entrant

enters and the monopolist fights, in which case the tough monopolist’s payoff is xH ∈

(0, v) instead of −x. Hence, like the L-monopolist, the tough monopolist prefers

that the entrant does not enter, but unlike the L-monopolist, the tough monopolist

myopically prefers fighting to acquiescing after the entrant enters.19 The discount

rate of the tough monopolist is δ ∈ (0, 1).

Strategies are defined as in our base model — on the same set of histories with same

set of feasible actions at each history. We now differentiate between qL (the strategy

of the normal monopolist) and qH (the strategy of the tough monopolist). A perfect

Bayesian equilibrium is defined as in Definition 1.1 except for two modifications.

The first is the additional optimality condition for the H-monopolist: qH(h
t)= 1 and

qH(h
t)= 0 when

δ EH
st [V

H(ht,E,F, st;α, q)]−xH−δ EH
st [V

H(ht,E,A, st;α, q)]

is positive and negative, respectively. The second is that the Bayes consistency prop-

erties (b) and (c) are now

(b) ϕ(ht,E,F)= ϕ(ht)qH(ht)
ϕ(ht)qH(ht)+(1−ϕ(ht))qL(ht)

if ϕ(ht)qH(h
t)+(1−ϕ(ht))qL(h

t) ̸=0

(c) ϕ(ht,E,A)= ϕ(ht)(1−qH(ht))
ϕ(ht)(1−qH(ht))+ (1−ϕ(ht))(1−qL(ht))

if ϕ(ht)(1−qH(h
t))+ (1−ϕ(ht))(1−

qL(h
t)) ̸=0.

19Note that this does not immediately imply fighting is always optimal; if the continuation payoff
after acquiescing is higher than that after fighting, the total payoffs must be compared.
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The following result demonstrates how our equilibrium outcome survives in the

model with a strategic tough monopolist.

Proposition B.1. For all ϕ0 ̸=ϕ†
0, there exists an equilibrium with the same outcome

as that of the model with a behavioral tough monopolist. Moreover, if xH is sufficiently

close to v, this is the unique equilibrium outcome.

Proof. For the existence claim, consider any strategy profile and belief system of the

original model supporting the unique outcome, and augment it with qH(h
t)= 1 for

all ht. Additionally, specify that (i) the belief immediately after acquiescing is 0,

and (ii) if the belief ever reaches 0, it remains 0 for the rest of the game. Note

that these properties are consistent with the Bayes Consistency requirements of the

equilibrium concept. We need only show that the tough monopolist’s strategy is

indeed optimal. Since the strategies and beliefs are Markovian, there exists V H
t such

that V H(ht)=V H
t (ϕ(ht)) for all ht. As before, define WH

t (ϕ) :=EH
st [δ V

H
t+1(ϕ̂st(ϕ))] for

all ϕ, where V H
T+1(ϕ) := 0. Then the IC condition is

xH+WH
t (ϕ(ht,E,F))≥ 0+WH

t (ϕ(ht,E,A)). (20)

This is trivial in period T , so assume t<T . The left side is at least xH(1+δ+· · ·+

δT−t) by fighting against all entries in the remaining periods. The right side is at most

xH(δ+· · ·+δT−t), since ϕ(ht,E,A)=0 and ϕ(ht′)= 0 for all t′>t, and therefore the

entrants enter in all remaining periods regardless of the monopolist’s actions. Hence,

the IC condition holds.

For uniqueness of outcome, note that for any ϕ∈ [0, 1], we have δ 1−δT−t

1−δ
xH ≤

WH
t (ϕ)≤ δ 1−δT−t

1−δ
v. This follows from the fact that v is the maximum feasible payoff

in any period, and that, as argued above, the tough monopolist can guarantee at least

xH every period by fighting against all entries. Hence, the left side of (20) is at least

xH+δ 1−δT−t

1−δ
xH , while the right side is at most δ 1−δT−t

1−δ
v. For xH sufficiently close to

v, the former is strictly larger, so the tough monopolist strictly prefers to fight every

period.
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