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An equilibrium outcome of a game in extensive form is fully self-justifiable if it is supported by

justifiable equilibria (McLennan, 1985) regardless of the order in which actions implausible

under the given outcome are excluded. We show that the set of fully self-justifiable outcomes

is non-empty and contains the set of sequentially stable outcomes (Dilmé, 2024). In signaling

games, fully self-justifiable outcomes pass all the selection criteria in Cho and Kreps (1987).

Full self-justifiability allows for the systematic use of the logic of selection criteria in signaling

games to select equilibria in any finite extensive form game.

Kohlberg and Mertens (1986) introduced (KM-)stable sets of equilibria, a concept that has been

pivotal owing to its desirable features and robust selection power across different classes of games.

Roughly speaking, a set of Nash equilibria is KM-stable if it is minimal with respect to the property

that, for any vanishing sequence of normal-form trembles, there is a sequence of Nash equilibria

approaching the set. KM-stable sets of equilibria exist for all games and have desirable properties

(they satisfy forward induction, iterated dominance, and invariance).

KM-stability is nevertheless difficult to use in practice for two main reasons: proving or disprov-

ing the robustness of a given set of equilibria against all possible perturbations is often difficult,

and set-valued concepts are difficult to manipulate and compare across games or parameter val-

ues. Numerous equilibrium concepts and selection criteria have since been introduced to both

ease the identification of stable equilibria and study the effect of requiring plausibility conditions

on off-path behavior without the need to explicitly consider sequences of perturbations and Nash

equilibria. While some of these concepts are commonly used in some classes of games, such as

signaling games, their relationship to stability is often unclear, and they are often not consistently

applied across different types of games.
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We introduce fully self-justifiable outcomes, a solution concept obtained by combining the se-

lection procedures proposed by Cho and Kreps (1987) for signaling games with the procedure of

McLennan (1985) for obtaining equilibria with justifiable beliefs. We show that fully self-justi-

fiable outcomes satisfy several previously defined selection criteria based on iterated equilibrium

domination (see Figure 1). We use full self-justifiability to extend the signaling-games selection

criteria to all games in extensive form. In addition, we show that all sequentially stable outcomes

(Dilmé, 2024) are fully self-justifiable; thus, fully self-justifiable outcomes exist in all finite games

in extensive form, and provide a powerful tool and a new foundation for the study of stable be-

havior.

We briefly recall the procedure used by McLennan (1985) to obtain justifiable equilibria. In

the first step, one identifies all useless actions—that is, those which are never a weak best response

under any sequential equilibrium (i.e., in each sequential equilibrium there is another action deliv-

ering a strictly higher continuation payoff). In the second step, one looks for second-order useless

actions—that is, those which are never a weak best response under any sequential equilibrium

assigning probability zero to histories that include more useless actions than the other histories

in the same information set. The procedure continues iteratively, with histories compared lex-

icographically according to the orders of uselessness of the actions they contain. A sequential

equilibrium is then justifiable if its belief system satisfies the conditions on the relative likelihoods

of histories that result from this procedure. McLennan shows that justifiable equilibria exist in all

games. Still, justifiability has limited selection power in many games, such as signaling games, as

most actions are weak best responses under some sequential equilibrium.

We define our basic equilibrium selection procedure by combining the procedure of McLennan

(1985) with the tests used by Cho and Kreps (1987) to determine the internal consistency of an

outcome in signaling games. Fixing an outcome ω, in the first step one identifies and excludes

all actions which are useless under ω—that is, those which are never a weak best response under
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any sequential equilibrium with outcome ω. In the second step, one excludes actions which are

second-order useless under ω—that is, those which are never a weak best response under any

sequential equilibrium with outcome ω assigning probability zero to histories that include more

useless actions than the other histories in the same information set. This process is repeated until

no further actions can be excluded. A sequential equilibrium with outcome ω is called self-justi-

fiable if its belief system satisfies the conditions on the relative likelihoods of histories that result

from this procedure (using ω).

We show that all sequentially stable outcomes are self-justifiable (i.e., they are outcomes of

self-justifiable equilibria); hence self-justifiable outcomes exist in all games. We also observe that

self-justifiability often has more selection power than justifiability, but that this is not always the

case: we give an example of a game with a self-justifiable outcome that is not justifiable.

We then impose an additional robustness property: independence from the order in which

implausible actions are excluded.1 We define fully justifiable and fully self-justifiable outcomes

as those supported by justifiable and self-justifiable equilibria, respectively, independently of the

order of exclusion of implausible actions.2 Of all the criteria defined, we show that full self-justi-

fiability has the greatest selection power: fully self-justifiable outcomes are both fully justifiable

and self-justifiable, and they satisfy several other selection criteria that have been proposed in

the literature (see below). (In addition, we show that fully justifiable outcomes are justifiable.)

Moreover, all sequentially stable outcomes are fully self-justifiable; hence every game has a fully

self-justifiable outcome.

Through a series of examples, we illustrate the advantages of studying full justifiability and

full self-justifiability, rather than justifiability and self-justifiability, in applications. Because of the

added flexibility in the exclusion order, it is often easier to rule out the full justifiability or full

self-justifiability of an outcome (and thus its sequential stability) than to rule out its justifiability

or self-justifiability. On the other hand, it may be more difficult to prove that an outcome is fully

justifiable or fully self-justifiable than that it is justifiable or self-justifiable.

As an application of our results, we show how certain forms of reasoning heretofore used in

the analysis of signaling games to identify behavior robust to trembles can be generalized to all

games in extensive form. We first show that in signaling games, while justifiability is of limited

use, self-justifiable and fully self-justifiable outcomes satisfy all of the selection criteria proposed

in Cho and Kreps (1987) and Banks and Sobel (1987). We then discuss two natural ways to

1In the procedure defining self-justifiability, all implausible actions must be excluded at each step. This condition ensures that the

procedure is uniquely defined; however, it is not an essential element of the intuitive reasoning behind the iterated exclusion process.

Independence from the order of exclusion guarantees independence from the manner in which this reasoning is implemented.

2We focus on fully justifiable and fully self-justifiable outcomes, rather than assessments, because the former exist in all games while

the latter may not: different orders of exclusion may lead to different sets of sequential equilibria (see Example 3.1), but we show

that these sets always contain common on-path behavior.
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use the logic behind the exclusion of type–message pairs in the analysis of signaling games to

identify fully justifiable outcomes in any finite game in extensive form. The first way is to apply

this logic directly in the game, but excluding actions instead of type–message pairs. The second is

to transform parts of the game into signaling games, then apply the selection criteria for signaling

games to the latter. This second approach simplifies the analysis of the original game by analyzing

its subgames separately or by replacing some of its players with agents. Such approaches can be

used, for example, to select equilibria in signaling games with multiple senders, multiple receivers,

hidden investment, or preemptive offers.

The framework developed in this paper presents different equilibrium notions that combine in-

tuitiveness and simplicity. In our view, the most appealing of these is full self-justifiability, because

of both its selection power and its usefulness in applications. Our results provide an additional

foundation for the study of sequential stability and constitute tools that make it possible either to

establish or to rule out the sequential stability of an outcome without needing to analyze sequences

of strategy profiles.

Literature review. We see our work as combining the two main approaches used in the literature

to select equilibria with plausible belief systems. The first approach, that of McLennan (1985),

is to iteratively exclude implausible actions without fixing a particular equilibrium.3 The second

is to fix an equilibrium (or outcome) and assess its internal plausibility by excluding actions that

fail a consistency test. For example, Cho (1987) defines forward induction equilibria by excluding

“bad deviations” that are available on the path of a given equilibrium (see Section A.2 for a de-

tailed discussion).4 In signaling games, selection criteria such as the Intuitive Criterion, D1, D2,

and Never-a-Weak-Best-Response (introduced in Cho and Kreps, 1987) consist in excluding from

the support of beliefs the types that are implausible for a given outcome (where the meaning of

“implausible” depends on the criterion; see Dilmé, 2025, for a study of the iterated application of

these criteria). Similarly, Banks and Sobel (1987) define divine and universally divine equilibria

as those possessing belief systems that survive a certain iterative procedure.5

3Similar procedures have been proposed in which actions or strategies are removed from the game rather than excluded (i.e., instead

of being ruled out from plausible equilibrium behavior). For example, rationalizability (Moulin, 1979; Bernheim, 1984; Pearce,

1984) and interim correlated rationalizability (Battigalli and Siniscalchi, 2003; Dekel et al., 2007) are based on the iterated removal

of actions. We discuss the relationship to proper equilibria (Myerson, 1978) in Section A.4.

4Govindan and Wilson (2009) consider a different definition of forward induction, based on a one-step procedure that excludes pure

strategies that are not relevant for any weakly sequential equilibrium with a given outcome. See Section A.3 for a discussion of the

relationship between their concept and that of fully self-justifiable outcomes.

5There are other approaches to equilibrium selection. For example, Grossman and Perry (1986) define perfect sequential equilibria by

first extending the set of strategies to “metastrategies” that specify actions as a function of beliefs. Alternatively, for signaling games,

Mailath et al. (1993) define undefeated equilibria, which are a refinement of pure-strategy sequential equilibria, and study them in a

class of one-dimensional signaling settings.
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Our contribution to this literature is to provide a unifying selection procedure—one that is

simple and yet has significant selection power—and to relate it to other equilibrium concepts.

Notably, we show that full self-justifiability refines the selection criteria in McLennan (1985), Cho

(1987), Banks and Sobel (1987), and Cho and Kreps (1987). That is, a fully self-justifiable out-

come is the outcome of a justifiable equilibrium, a (universally) divine equilibrium, and a forward

induction equilibrium, and also passes (the iterated applications of) the Intuitive Criterion, D1,

D2, and Never-a-Weak-Best-Response (NWBR). We also illustrate how the logic used by Cho and

Kreps (1987) to select equilibria of signaling games can be applied to any game in extensive form.

In addition, our work strengthens the connection between the aforementioned selection cri-

teria and the property of stability against trembles of the players (Kohlberg and Mertens, 1986;

Dilmé, 2024).6 Specifically, some of these criteria have been seen as tools for identifying behav-

ior that is robust to perturbations of the game (see discussions in McLennan, 1985, Cho, 1987,

Banks and Sobel, 1987, and Cho and Kreps, 1987). In this paper we show that sequentially stable

outcomes are fully self-justifiable; hence they pass all of the earlier selection criteria. (Figure 1

summarizes the relationships between all of the criteria considered.) Thus, fully self-justifiable

outcomes not only exist in all games, but also provide a simple way to investigate whether an

outcome is sequentially stable without explicitly using tremble sequences. The fact that sequen-

tially stable outcomes (which are defined by requiring robustness to perturbations of the game)

are fully self-justifiable adds plausibility to the notion of sequential stability (in terms of both

self-consistency and robustness to any process of iterated exclusion).

The rest of the paper is organized as follows. In Section 1, we introduce the notation. In

Section 2, we define self-justifiable outcomes and compare them to the justifiable equilibria of

McLennan (1985). In Section 3, we introduce the process of iterated exclusion of never weak best

responses, define fully self-justifiable and fully justifiable outcomes, and study their main proper-

ties. Section 4 discusses the implications of full justifiability in games with signaling. Section 5

concludes. Appendix A contains a comparison between full self-justifiability and the forward in-

duction criterion in Cho (1987) and Govindan and Wilson (2009), as well as additional examples.

Appendix B contains the proofs of all results.

1 Extensive form, sequential equilibria, and sequential stability

1.1 Games in extensive form

We begin by providing the definition and notation for a game in extensive form with perfect recall.

6Refinements of sequential equilibria are suited to identify sequentially stable outcomes (as they themselves refine sequential equilib-

rium outcomes) than outcomes of KM-stable sets (as they may not exist or be sequential equilibrium outcomes).
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A (finite) game G :=〈A, H,I, N , ι,π, u〉 has the following components: (1) A finite set of actions

A. (2) A finite set of histories H. Here, a history is a finite sequence of actions h≡(h j)
|h|
j=1 (note

that |h| denotes the length of history h), and the set H has the property that if h≡(h j)
|h|
j=1∈H

with |h|>0, then (h j)
|h|−1
j=1 ∈H as well. (In particular, ;=:(h j)0j=1∈H.) The set of terminal histories

is denoted by Z . (3) An information partition I, that is, a partition of H\Z such that there is a

partition {AI |I∈I} of A with the property that, for each I∈I and h∈H, we have (h, a)∈H for

some a∈AI if and only if h∈ I . The elements of I are called information sets.7 (4) A finite set

of players N 630. (5) A player assignment ι :I→N∪{0}, assigning each information set either to a

player or to nature (represented by 0), such that there is perfect recall.8 (6) A strategy by nature

π:∪I∈ι−1({0}) A
I→(0,1] satisfying

∑

a∈AI π(a)=1 for each I∈ι−1({0}). (7) For each player i∈N ,

a (von Neumann–Morgenstern) payoff function ui : Z→R.

A strategy profile is a map σ :A→[0,1] such that
∑

a∈AI σ(a)=1 for all I∈I (i.e., it is a pro-

bability distribution for each set of actions available at each information set) and σ(a)=π(a) for

all a played by nature (i.e., nature plays according to π). We let Σ be the set of strategy profiles.

An outcome ω (of G) is a probability distribution over terminal histories. We use Ω:=∆(Z) to

denote the set of outcomes. Each strategy profile σ∈Σ generates a unique outcome ωσ, where

each terminal history z∈Z is assigned probability ωσ((a j)Jj=1):=
∏|z|

j=1σ(z j)∈[0, 1].

1.2 Sequential equilibria and sequentially stable outcomes

Our analysis will be focused on sequential equilibria and sequentially stable outcomes. We now

briefly review these two concepts.

Kreps and Wilson (1982) defined a belief system as a map µ assigning a probability µ(h)∈[0,1]

to each non-terminal history h∈H\Z , in such a way that
∑

h∈I µ(h)=1 for all I∈I. They defined

a sequential equilibrium as a pair consisting of a belief system µ and a strategy profile σ that is

consistent (i.e., µ can be obtained as the limit of the beliefs corresponding to a fully-mixed sequence

(σn)→σ) and sequentially rational (i.e., an action a receives positive probability under σ only if it

maximizes the continuation payoff at Ia givenσ and µ). We denote the set of sequential equilibria

with outcome ω by SEω.

Dilmé (2024) defined sequentially stable outcomes as follows. A tremble is a map ξ:A→(0,1]

such that
∑

a∈AI ξ(a)≤1 for all I∈I and ξ(a)≤π(a) for all a such that ι(Ia)=0. An outcomeω is

a sequentially stable outcome if for any tremble sequence (ξn)→0 there exists a sequence of payoff

perturbations (un)→u and outcomes (ωn)→ω such that each ωn is a Nash outcome of the game

7Note that we assume, without loss of generality, that each action is available at only one information set; one can always rename

actions to ensure this.

8Perfect recall means that for all I , I ′∈I with ι(I)=ι(I ′) and all h, ĥ∈ I , if (h′, a)�h for some h′∈ I ′ and a∈A, then (ĥ′, a)� ĥ for some

ĥ′∈ I ′. Here (h′, a)�h indicates that (h′, a) precedes or equals h.
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G(ξn, un).9 Dilmé (2024) also shows that σ is part of a sequential equilibrium if and only if there

is some tremble sequence (ξn)→0 there exists a sequence of payoff perturbations (un)→u and

strategy profiles (σn)→σ such that each σn is a Nash equilibrium of the game G(ξn, un).

Both sequential equilibria and sequentially stable outcomes exist in all games and possess nu-

merous desirable properties. For example, sequential equilibria are subgame perfect and have

consistent beliefs. Sequentially stable outcomes are outcomes of sequential equilibria, satisfy for-

ward induction, and pass all of the selection criteria in Cho and Kreps (1987) and Banks and Sobel

(1987) in signaling games.

2 Justifiable and self-justifiable outcomes

In this section, we revisit the definition of justifiable equilibria and define justifiable outcomes.

We then define self-justifiable outcomes and relate them to both justifiable and sequentially stable

outcomes.

2.1 Justifiable equilibria and justifiable outcomes

Consider the game in Figure 2, which serves as the opening example in McLennan (1985) (cf. Fig-

ure 1 of that paper). McLennan observed that this game has two sequential-equilibrium outcomes,

ω:=T1 and ω̂:=(B1, B2) (i.e., the outcomes assigning probability one to terminal histories T1 and

(B1, B2), respectively). He noted, however, that in all sequential equilibria supporting ω, player 2

assigns probability no lower than 3/4 to M1 (see Example 2.1 below). McLennan argued that such

beliefs are implausible, since player 1’s payoff from playing M1 is strictly lower than her payoff

under ω, regardless of player 2’s response.

To rule out equilibria with such implausible beliefs, McLennan introduced the concept of jus-

tifiable equilibria, defined using the following iterative procedure. We say a∈A is (first-order)

useless if it is not a weak best response in any sequential equilibrium. Let A1
Ω denote the set of

useless actions. Let SE1
Ω be the set of sequential equilibria in which, whenever two histories h and

h′ in an information set are such that h has more useless actions than h′, we have µ(h)=0. We

say a∈A\A1
Ω is second-order useless if it is not a weak best response for any sequential equilibrium

in SE1
Ω. Next, let A2

Ω denote the set of actions that are second-order useless. Let SE2
Ω be the set of

sequential equilibria in which, whenever two histories h and h′ in an information set are such that

h has either more useless actions than h′ or the same number of useless actions but more actions

which are second-order useless, we have µ(h)=0. We iterate this process until we arrive at a step

9σn is a Nash equilibrium of the G(ξn, un) if, for all a∈A, (i) σn(a)≥ξn(a), and (ii) σn(a)>ξn(a) only if a is a best response given

σn and payoffs un. A Nash outcome of G(ξn, un) is the outcome of a Nash equilibrium of the G(ξn, un).
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s at which there are no actions that are sth-order useless. We denote by SΩ the number of steps

needed to reach this point. Note that SΩ< |A|.

A sequential equilibrium is a justifiable equilibrium (or has justifiable beliefs) if it belongs to

SESΩ
Ω . We refer to outcomes of justifiable equilibria as justifiable outcomes.

Definition 2.1. An outcome ω is justifiable if SESΩ
Ω ∩SEω 6=;.

Example 2.1. Let us return to the game in Figure 2. The set of sequential equilibria of this game

is10

{(
σ1
︷︸︸︷

B1 ,

σ2
︷︸︸︷

B2 ,

µ2
︷︸︸︷

B1 )}∪
�

(T1, T2, x M1+(1− x)B1))
�

�x∈(3/4,1]
	

∪
�

(T1, y T2+(1− y)B2, 3
4 M1+

1
4 B1)

�

�y∈[1/3,1]
	

.

As noted earlier, the corresponding sequential-equilibrium outcomes are ω=T1 and ω̂=(B1, B2).

As McLennan (1985) explains, action M1 is the only useless action; hence A1
Ω={M1}. Actions

T1 and T2 are second-order useless because they are never weak best responses under the (unique)

sequential equilibrium in which player 2 assigns probability zero to M1; moreover, they are the

only second-order useless actions. Finally, it is clear that there are no third-order useless actions:

both B1 and B2 are weak best responses under the sequential equilibrium in which player 2 assigns

probability zero to M1. Therefore, the unique justifiable equilibrium is (B1, B2, B1), and the unique

justifiable outcome is (B1, B2).

2.2 Self-justifiable equilibria and self-justifiable outcomes

Cho and Kreps (1987) took a different approach to selecting equilibria with plausible beliefs.

Their selection criteria, applicable to signaling games, were formulated as “tests” to evaluate the

internal consistency of a given outcome. To verify whether a given outcome passes a criterion,

one iteratively excludes type–message pairs that are implausible under that outcome, and finally

10As usual, the name of an action here denotes the distribution assigning probability one to it. For example, (σ1,σ2,µ2)=(T1, 1
2 T2+

1
2 B2, M1) is the assessment where player 1 plays T1 for sure, player 2 plays T2 and B2 each with probability 1/2, and player 2 assigns

probability one to history M1 in her information set.
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verifies the existence of sequential equilibria assigning probability zero to excluded types. The

criteria of Cho and Kreps have been used extensively in both theoretical and applied work.

In this section, we combine the approaches of Cho and Kreps (1987) and McLennan (1985)

to test the internal consistency of equilibria of general games in extensive form. Our procedure is

to iteratively exclude actions that are implausible under a given outcome, then identify equilibria

such that the associated beliefs are justifiable given the order of action exclusion. As we shall

see, requiring justifiability conditional on an outcome makes for greater selection power in many

games.

Fix an outcome ω∈Ω. We define a procedure analogous to the one described in Section 2.1,

except that we consider only sequential equilibria with outcome ω (rather than arbitrary sequen-

tial equilibria). So, for example, the first step of the procedure is as follows. We say that a∈A is

(first-order) useless underω if it is not a weak best response in any sequential equilibrium with out-

comeω. By an abuse of notation, we let A1
ω denote the set of useless actions underω.11 Similarly,

we let SE1
ω be the set of sequential equilibria with outcome ω in which, whenever two histories h

and h′ in an information set are such that h has more useless actions under ω than h′, we have

µ(h)=0. The other steps of the process are analogous. As before, we proceed iteratively until we

reach a step Sω with no actions that are (Sω+1)th-order useless under ω. Note that Sω≤|A|.

We say that a sequential equilibrium (σ,µ) is self-justifiable if it belongs to SESωσ
ωσ (recall that

ωσ is the outcome generated by σ). In words, a sequential equilibrium is self-justifiable if, given

its implied behavior (i.e., its outcome), it survives an iterative process in which, at each step, all ac-

tions that are currently implausible for the given outcome are excluded. Self-justifiable outcomes

are the outcomes of self-justifiable equilibria.

Definition 2.2. An outcome ω is self-justifiable if SESω
ω 6=;.

Example 2.2. Recall that the two sequential-equilibrium outcomes of the game in Figure 2 are

ω=T1 and ω̂=(B1, B2) and that only ω̂ is justifiable. We now show that ω̂ is also the only self-

justifiable outcome. First, observe that all actions except B1 and B2 (which are on path under

ω̂) are first-order useless under ω̂. Since ω̂ is the outcome of a sequential equilibrium in which

history M1 is assigned probability zero, ω̂ is self-justifiable.

Now consider ω. It is easy to see that M1 is the only useless action under ω. Since there is no

sequential equilibrium with outcome ω in which player 2 assigns probability zero to M1, ω is not

self-justifiable.

11In this and similar expressions, we replace Ω by ω to indicate that we are considering equilibria with outcome ω, not all equilibria.
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2.3 Comparison between justifiable and self-justifiable outcomes

We now compare the concepts of justifiable and self-justifiable outcomes. As explained above, the

main difference between them is that justifiable outcomes are obtained by iteratively excluding

actions that are not plausible under any sequential equilibrium, while self-justifiable outcomes

are obtained by fixing an outcome ω and then iteratively excluding actions that are not plausible

given ω.

In the examples in McLennan (1985), all self-justifiable outcomes are justifiable, while the

converse is not true (see Example 2.3). The reason why self-justifiability tends to be a stronger

condition than justifiability is that, for a fixed outcome ω, we have A1
ω⊃A1

Ω; that is, the first step

of the procedure to obtain self-justifiable outcomes reduces the set of plausible actions no less

than the first step of the procedure to obtain justifiable outcomes. For example, in many signal-

ing games, there are no useless actions (because every action is optimal under some sequential

equilibrium); hence all sequential-equilibrium outcomes are justifiable. On the other hand, as we

explain in Section 4.1, the actions excluded by the selection criteria of Cho and Kreps (1987) for a

given outcome are all useless under that outcome; hence self-justifiable outcomes pass all of these

criteria.

Still, one can construct examples of games having self-justifiable outcomes that are not justifi-

able. This is because, in the second step of the respective procedures, there are no restrictions on

the relative probability of useless actions. In Appendix A, we present a game with a self-justifia-

ble outcome ω that is not justifiable (see Example A.3). The game features two actions that are

useless under an outcome ω. In the first step of the procedure for verifying the self-justifiability

of ω, both of these actions are excluded; thus, in the second step, no additional restrictions are

introduced, which is shown to imply that ω is self-justifiable. However, only one of the two ac-

tions is useless (the other is weakly optimal in a sequential equilibrium with an outcome different

from ω). This leads to an additional restriction in the second step of the procedure for obtaining

justifiable outcomes, which leads to ω failing to be justifiable. Providing this example, as well as

the others below, to show that all implications in Figure 1 are strict, is a contribution of this paper.

In Section 3, we will define generalizations of justifiability and self-justifiability that can be

ordered in terms of selection power.

Example 2.3. Consider the game in Figure 3, which corresponds to the game in Figure 6 of McLen-

nan (1985). As McLennan explains, this game has two sequential-equilibrium outcomes,

ω:= 1
2 (T0, B1, T3)+

1
2 (B0, T2, T3) and ω̂:= 1

2 (T0, T1)+
1
2 (B0, B1) . (2.1)

Both outcomes are justifiable: every action is a weak best response under some sequential equi-

librium, so none of the actions are excluded by the procedure for obtaining justifiable equilibria.
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McLennan uses this example to illustrate that justifiability is a weaker condition than strong sta-

bility (Kohlberg and Mertens, 1986), as the outcome ω̂ is not strongly stable. We will now prove

that ω is self-justifiable, and that ω̂ is not.

We first show that ω̂ is not self-justifiable. To see this, note that the set of sequential equilibria

with outcome ω̂ (i.e., SEω̂) is

��

=:σ̂x
0

︷ ︸︸ ︷

1
2 T0+

1
2 B0,

=:σ̂x
1

︷︸︸︷

T1 ,

=:σ̂x
2

︷︸︸︷

B2 ,

=:σ̂x
3

︷ ︸︸ ︷

x T3+(1− x)B3,

=:µ̂x
3

︷ ︸︸ ︷

2
3 (T0, B1)+

1
3 (B0, T1))

� �

� x∈[0, 1
2]
	

.

We use (σ̂x , µ̂x) to denote the sequential equilibrium with outcome ω̂ in which player 3 plays T3

with probability x . When x>2/3, player 1 strictly prefers B1 to T1. When x>1/2, player 2 strictly

prefers T2 to B2. Hence x≤1/2 for all equilibria (σ̂x , µ̂x) in SEω̂.

Note that under (σ̂x , µ̂x), player 1’s payoff from deviating to B1 is 3x , which is strictly smaller

than her equilibrium payoff of 2 for all x∈[0, 1/2]. Thus B1 is useless under ω̂ (i.e., it is never

a weak best response under any sequential equilibrium with outcome ω̂). Because T2 is a weak

best response when x=1/2, it is not useless under ω̂, and so we have that A1
ω̂
={B1}. In any

equilibrium in SE1
ω̂

, player 3 assigns probability zero to (T0, B1), so she optimally chooses T3, but

this makes it optimal for players 1 and 2 to deviate to B1 and T2, respectively. Hence there is no

sequential equilibrium with outcome ω̂ in which player 3 assigns probability zero to (T0, B1) in

her information set. This implies that A2
ω̂
=A\{B1} and SE2

ω̂
=;. Therefore ω̂ is not self-justifiable.

We now show that ω is self-justifiable. Observe that there is only one sequential equilibrium

with outcome ω, which is given by

�

=:σ0
︷ ︸︸ ︷

1
2 T0+

1
2 B0,

=:σ1
︷︸︸︷

B1 ,

=:σ2
︷︸︸︷

T2 ,

=:σ3
︷︸︸︷

T3 ,

=:µ3
︷ ︸︸ ︷

1
2 (T0, B1)+

1
2 (B0, T1))

�

.

Now, the actions T1, B2, and B3 are useless underω, and there are no second-order useless actions

under ω. Hence the unique sequential equilibrium with outcome ω is self-justifiable, and so ω is

self-justifiable.

We conclude that the game in Figure 3 has two justifiable outcomes, but only one of them is

self-justifiable. Hence, in this game, self-justifiability has greater selection power than justifiability.
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2.4 Justifiability, self-justifiability, and sequential stability

Like McLennan (1985) and Cho and Kreps (1987), we are interested in the relationship between

self-justifiability and stability.12 In this section, we show that the use of self-justifiability can help

in identifying stable behavior. We focus on relating self-justifiable outcomes to sequentially stable

outcomes (as introduced in Dilmé, 2024, and defined in Section 1.2). The reason is that sequen-

tially stable outcomes exist in all games (without the requirement of “generic payoffs”) and are

defined in terms of behavioral trembles, which makes them easier to compare with concepts based

on the iteration exclusion of actions instead of pure strategies. Furthermore, as shown in Dilmé

(2024), sequential stability is closely related to Kohlberg–Mertens stability.

Our first result is the following.

Proposition 2.1. Every sequentially stable outcome is both justifiable and self-justifiable.

Because all finite games have sequentially stable outcomes, Proposition 2.1 implies that all

finite games have outcomes that are both justifiable and self-justifiable (recall that McLennan,

1985, already proved the existence of justifiable outcomes in all finite games). Another impli-

cation of Proposition 2.1 is that if ω is a sequentially stable outcome, then there is a sequential

equilibrium with (self-)justifiable beliefs with outcome ω, a fact that strengthens the foundation

for sequential stability. Finally, Proposition 2.1 establishes both justifiability and self-justifiability

as powerful tools for obtaining sequentially stable outcomes without using sequences of strategy

profiles: if an outcome is shown not to be justifiable (or not to be self-justifiable), then it is not

sequentially stable, while if it is the unique justifiable (or self-justifiable) outcome, it is also the

unique sequentially stable outcome.

The proof of Proposition 2.1 proceeds as follows. Take some sequences (ξn), (σn), and (εn)

satisfying ξn→0, εn→0, ωσn→ω, and each σn is a sequential εn-equilibrium given ξn. We first

observe that if â is the only useless action under ω, then it must be that σn(â)=ξn(â) for n

large enough. Intuitively, in any sequential equilibrium (σ,µ) supported by a subsequence (σkn
),

â becomes increasingly suboptimal as n increases, which implies that σkn
(â)=ξkn

(â) for n large

enough. Consequently, if ξn(â) tends to zero much faster than for any other action, the probability

of any history containing â will tend to zero faster than any history not containing it. As a result,

(σ,µ)∈SE1
ω, that is, ω is robust to (ξn) only if SE1

ω 6=;.

12McLennan (1985) discusses the usefulness of justifiability in identifying strongly stable sets of Nash equilibria (as defined by Kohlberg

and Mertens, 1986), when these exist. He says, “Unfortunately, it is usually not easy to verify that a component of Nash equilibria

is strongly stable, but the notion of justifiability may prove helpful in this respect. Specifically, if an isolated equilibrium path is

supported by a strongly stable set of Nash equilibria, it must also be supported by a sequential equilibrium with justifiable beliefs”

(p. 895). Similarly, Cho and Kreps (1987) say, “Besides posing ‘intuitive tests’ of equilibrium outcomes in signaling games, we follow

the program above in order to relate our tests to Kohlberg–Mertens stability. We seek, in general, to show that any equilibrium

outcome that fails any of the tests we construct fails as well to be a stable equilibrium outcome” (p. 198).

12



This argument can be applied iteratively. Now, assume that ω is not self-justifiable. Consider

the tremble sequence defined by

ξn(a):=







e−nSω−s+2
if a∈As

ω for some s∈{1, ..., Sω},

e−n otherwise.
(2.2)

This tremble sequence has the property that the relative probability of two histories is lexico-

graphically determined by the uselessness orders of their actions under ω, as required to obtain

self-justifiable beliefs. Hence, as n increases, the probability that ξn assigns to actions of lower

orders of uselessness under ω decreases to 0 much faster than the probability it assigns to actions

of higher orders of uselessness under ω. Applying the previous argument iteratively, the proof

argues that because SESω
ω =; (since ω is not self-justifiable), there are no sequences (un)→u and

(ωn)→ω where each ωn is a Nash equilibrium outcome of G(ξn, un). This implies that ω is not

sequentially stable.

Example 2.4. McLennan (1985) shows that in the game in Figure 3, the outcome ω defined in

Example 2.3 is not the outcome of a stable set of equilibria. We obtain an analogous result:

because ω is not self-justifiable (as shown in Example 2.3), it is not sequentially stable. Since

self-justifiable outcomes always exist (by Proposition 2.1), it follows that the outcome ω̂ is self-

justifiable (as explicitly shown in Example 2.3), and therefore it is also the unique sequentially

stable outcome of the game.

3 Fully justifiable and fully self-justifiable outcomes

In this section, we introduce full justifiability and full self-justifiability. These concepts fulfill three

key objectives. First, they ensure the robustness of equilibrium behavior under any process of

iterated exclusion, not just under the sequences specified in the procedures defining justifiability

and self-justifiability. Second, they can be clearly ranked in terms of selection power. Third, as

we will demonstrate, they provide stronger and more flexible tools for verifying or ruling out the

sequential stability of an outcome.

3.1 Generalizing justifiability

In each step of the procedures for obtaining justifiable and self-justifiable outcomes (described in

Sections 2.1 and 2.2, respectively), the set of remaining plausible actions is reduced by excluding

all actions that are not weak best responses under any sequential equilibrium that is plausible given

the previous exclusions. While such a requirement is convenient in that it uniquely determines the

procedure, it may seem ad hoc: the internal logic of the iterated exclusion of implausible actions

13



seems independent of the fact that all currently implausible actions have to be excluded in each

step. Also, in practice, to exclude all actions that are never weak best responses under a certain

collection of sequential equilibria, one often needs to compute the whole set of such equilibria,

and this may be difficult in applications.

The equilibrium selection criteria that we introduce in this section, full justifiability and full

self-justifiability, are defined similarly to justifiability and self-justifiability, but without the require-

ment that all useless actions be excluded in each step. As we shall see, these criteria are stronger

and more flexible to use than the earlier ones. However, to define them, we need to deal with the

different possible orders in which actions may be excluded.

We begin by generalizing the definition of justifiability.

Definition 3.1. Fix some non-intersecting sequence (As)Ss=1.13 A sequential equilibrium (σ,µ) is

(As)Ss=1-justifiable if, for each pair of histories h and h′ belonging to the same information set, we

have µ(h)=0 whenever there is some ŝ such that (i) h and h′ have the same number of actions in

As for all s< ŝ, and (ii) h has more actions in Aŝ than h′ does.

For a given outcome ω∈Ω and non-intersecting (As)Ss=1, we use SEω((As)Ss=1) to denote the

set of (As)Ss=1-justifiable equilibria with outcome ω (note that SEω((As)Ss=1) may be empty). Con-

sistently with our previous notation, we let SEΩ((As)Ss=1) indicate the set of all (As)Ss=1-justifiable

equilibria; that is, SEΩ((As)Ss=1):=∪ω∈ΩSEω((As)Ss=1).

Definition 3.1 generalizes the definitions of justifiability and self-justifiability in Sections 2.1

and 2.2, respectively, by allowing the sequence of sets of excluded actions to be exogenously given.

Indeed, note that SEs
Ω is the set of (Aŝ

Ω)
s
ŝ=1-justifiable equilibria, and SEs

ω is the set of (Aŝ
ω)

s
ŝ=1-

justifiable equilibria with outcome ω (where (SEs
Ω, As

Ω) and (SEs
ω, As

ω) are as defined in Sections

2.1 and 2.2, respectively). Visual inspection of the procedure defining self-justifiability confirms

that actions in As in Definition 3.1 play the same role as sth-order useless actions in the earlier

definitions: µ(h)=0 whenever h has more actions in A1 than h′, or when h has the same number

of actions in A1 as h′ but more actions in A2, or when h has the same number of actions in A1 and

in A2 as h′ but more actions in A3, etc.

For a given ω∈Ω∪{Ω}, we use NWBRω((As)Ss=1) to denote the set of actions that are never a

weak best response for any sequential equilibrium in SEω((As)Ss=1). Note that if SEω((As)Ss=1)=;

(i.e., if there is no (As)Ss=1-justifiable sequential equilibrium with outcomeω), then NWBRω((As)Ss=1)=

A (i.e., there is no action which is a weak best response for some (As)Ss=1-justifiable sequential equi-

librium with outcome ω).

13A sequence (As)Ss=1 is non-intersecting if As 6=; and As∩As′=; for all s, s′∈{1, ..., S} with s 6=s′. We take (As)0s=1 to be ;.

14



3.2 Iterated exclusion through NWBR

We now introduce a procedure we call “iterated exclusion through NWBR”. This is a generalization

of the procedures described in Sections 2.1 and 2.2.

Definition of IENWBRω

For a fixedω∈Ω∪{Ω}, a process of iterated exclusion through NWBR underω (denoted by IENWBRω)

consists of the iterated exclusion of actions that are deemed implausible according to NWBRω.

More formally, in the first step of the process, a non-empty set A1⊂NWBRω((As)0s=1) of implau-

sible actions is excluded, if such A1 exists (otherwise the process ends), where (As)0s=1≡;. In

the second step of the process, a non-empty set A2⊂NWBRω((As)1s=1)\A1 of implausible actions is

excluded, if such A2 exists (otherwise the process ends). And so on.

Note that, unlike the processes described in Sections 2.1 and 2.2, a process of IENWBRω may

not be unique, because the set of actions excluded in each step s need not be maximal: it may be

a strict subset of NWBRω((Aŝ)s−1
ŝ=1)\∪

s−1
ŝ=1Aŝ. Because IENWBRω is not unique, we now define the

concept of implementations of IENWBRω.

Definition 3.2. Fix ω∈Ω∪{Ω}. A non-intersecting sequence (As)Ss=1 is an implementation of

IENWBRω if As⊂NWBRω((Aŝ)s−1
ŝ=1) for all s. It is complete if NWBRω((As)Ss=1)=∪

S
s=1As.

That is, an implementation of IENWBRω is a non-intersecting sequence of sets that is consistent

with the iterated exclusion procedure described above. Note that if (As)Ss=1 is an implementation

of IENWBRω, then S≤|A|; hence all implementations are finite (and the set of implementations

is finite). Note also that, because the number of constraints on the equilibria in SEω((Aŝ)sŝ=1)

increases with s, we have

SEω((Aŝ)
s
ŝ=1)⊂SEω((Aŝ)

s−1
ŝ=1) (3.1)

for all s=1, ..., S; that is, the set of sequential equilibria which remain plausible shrinks after each

step. This implies that

NWBRω((Aŝ)
s
ŝ=1)⊃NWBRω((Aŝ)

s−1
ŝ=1) ; (3.2)

that is, the set of implausible actions grows with each step. In particular, the set of implausible ac-

tions at a given step includes all of the actions excluded at previous steps; that is, NWBRω((Aŝ)sŝ=1)⊃

∪s
ŝ=1Aŝ for all s. An implementation is thus complete if no actions remain to be excluded in step

S. Note that if SEω((Aŝ)sŝ=1)=; for some s, then NWBRω((Aŝ)sŝ=1)=A.
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3.3 Full justifiability and full self-justifiability

We now define the concepts of fully justifiable and fully self-justifiable outcomes. These defini-

tions are analogous to the definitions of justifiable outcomes (Definition 2.1) and self-justifiable

outcomes (Definition 2.2) but require the corresponding conditions for all implementations.

Definition 3.3. Fix an outcome ω∈Ω.

(i) ω is fully justifiable if SEΩ((As)Ss=1)∩SEω 6=; for all implementations (As)Ss=1 of IENWBRΩ.

(ii) ω is fully self-justifiable if SEω((As)Ss=1) 6=; for all implementations (As)Ss=1 of IENWBRω.

Note that, as explained above, full justifiability and full self-justifiability require an additional

degree of plausibility relative to justifiability and self-justifiability, respectively, since they require

an outcome to be supported by a plausible equilibrium independently of the order of exclusion

of implausible actions. Consequently it is often easier to prove, for example, that an outcome is

not fully self-justifiable than that it is not self-justifiable, since, for the former, it suffices to find

a single implementation (As)Ss=1 of IENWBRω for which SEω((As)Ss=1)=;. This fact is particularly

useful because the full self-justifiability of an outcome can often be proven by showing that no

other sequential-equilibrium outcome is fully self-justifiable.

More concretely, in a large game, it may be difficult to compute the complete set of sequential

equilibria, but it is often easy to show that a given action is never a weak best response under any

sequential equilibrium. For example, if an action that is strictly dominated by another action is

never a weak best response. Similarly, by identifying the set of sequential equilibria in a subgame,

one can identify the actions in this subgame that are never a weak best response under any se-

quential equilibrium of the big game. The procedure defining full self-justifiability allows one to

exclude easily-identifiable actions first, which in turn makes it easier to exclude further actions,

and so on (see Examples (3.2) below).

Proposition 3.1. If an outcome is fully (self-)justifiable, then it is (self-)justifiable.

Proposition 3.1 establishes that, in addition to being more flexible in their application, full jus-

tifiability and full self-justifiability are respectively stronger than justifiability and self-justifiability.

This result follows from the observation that the sequence of sets used to determine justifiability

or self-justifiability (namely, (As
ω)

S
s=1, for ω∈Ω∪{Ω}) is an implementation of IENWBRω. Hence,

if, for example, ω is fully justifiable, it is also justifiable. Example A.1 in the appendix shows that

in some games, full self-justifiability has strictly more selection power than self-justifiability; that

is, there are self-justifiable outcomes that are not fully self-justifiable. (For this reason, full self-jus-

tifiability will turn out to be a more effective criterion to use in characterizing sequentially stable

outcomes.) Similar examples show that full justifiability is strictly stronger than justifiability.
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Although, by definition,ω∈Ω is fully self-justifiable if SEω((As)Ss=1) 6=; for all implementations

(As)Ss=1 of IENWBRω, one may wonder whether it suffices to check this condition for a single

complete implementation. In fact, as we explain below, the desired property is independent of

the choice of complete implementation of IENWBRω in signaling games. However, this is not the

case in general. Example A.2 in the appendix presents a game with an outcome ω and complete

implementations (As)Ss=1 and (A′s)
S′
s=1 of IENWBRω such that SEω((As)Ss=1) 6=; and SEω((A′s)

S′
s=1)=;.

Remark 3.1. As previously noted, the procedures for obtaining fully justifiable and fully self-justi-

fiable outcomes are more flexible than those for obtaining justifiable and self-justifiable outcomes,

because they do not require the exclusion of all implausible actions at each step—a task for which,

in many cases, one would need to identify all surviving sequential equilibria. However, establish-

ing full justifiability or full self-justifiability still requires showing that a supporting sequential

equilibrium exists for all implementations, which may be difficult. This difficulty can often be cir-

cumvented as follows. Because fully self-justifiable outcomes always exist (see Proposition 3.3),

if one can use the procedure to rule out the full self-justifiability of all sequential-equilibrium out-

comes but one, the remaining outcome is guaranteed to be fully self-justifiable. In many games,

the set of sequential-equilibrium outcomes is small and easy to characterize (unlike the set of se-

quential equilibria), and ruling out the full self-justifiability of all outcomes but one is also not

difficult. Similarly, if there is a unique outcome passing the procedure defining full self-justifiabi-

lity for a given implementation, then this is guaranteed to be the unique fully self-justifiable (and

sequentially stable) outcome.14

Full self-justifiability is stronger than full justifiability

In Section 2.1, we observed that while self-justifiability tends to be stronger than justifiability (see

Example 2.3), it is not stronger in all games. As explained above, the reason is that although the

procedure defining self-justifiability may exclude more actions in the initial step, this procedure

does not impose any condition on the relative likelihoods of actions which are excluded in the

same step. By contrast, full self-justifiability is stronger than full justifiability.

Proposition 3.2. Every fully self-justifiable outcome is fully justifiable.

Proposition 3.2 is proved by showing that if (As)Ss=1 is an implementation of IENWBRΩ, then

14A further advantage of full justifiability is that the procedure defining it, unlike the procedure defining justifiability, does not require

one to know the set of sequential equilibria of the game. For example, in a given step, one can often show that an action is dominated

independently of the continuation play, given the current restrictions on the beliefs. In the game in Figure 2 (discussed in Example

2.1), action M1 is strictly dominated by T1, so because (B1, B2) is the unique sequential-equilibrium outcome in which player 2

assigns probability one to B1, this outcome is the unique fully justifiable outcome. See also Example 3.2.
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it is also an implementation of IENWBRω. Intuitively, in each step s, we have

SEω((Aŝ)
s
ŝ=1)⊂SEΩ((Aŝ)

s
ŝ=1) ,

as SEω((Aŝ)sŝ=1) is equal to the intersection between SEΩ((Aŝ)sŝ=1) and SEω. As a result, NWBRω((Aŝ)sŝ=1)⊃

NWBRΩ((Aŝ)sŝ=1). Hence, if SEω((As)Ss=1) 6=; for all implementations of IENWBRω, then SEΩ((As)Ss=1) 6=

; for all implementations of IENWBRΩ.

An important implication of Proposition 3.2 is that, when studying a game, one can first check

which outcomes are fully justifiable (or justifiable). Then, if more than one outcome is fully justi-

fiable, one can check whether each of them is fully self-justifiable.

The fact that full self-justifiability can have strictly more selection power than full justifia-

bility can be seen from Example 2.3 above. In that example, because every action is a weak

best response under some sequential equilibrium, no action is excluded under IENWBRΩ, and

hence both sequential-equilibrium outcomes are fully justifiable. Furthermore, because one of the

justifiable outcomes is not self-justifiable, Proposition 3.1 implies that it is also not fully self-justi-

fiable.

3.4 Full self-justifiability and sequential stability

In this section, we show that sequentially stable outcomes are fully self-justifiable (and therefore

fully justifiable).

Proposition 3.3. Every sequentially stable outcome is fully self-justifiable.

Proposition 3.3 generalizes Proposition 2.1. It implies that fully self-justifiable outcomes exist

in all finite games. It also establishes full self-justifiability as a useful tool for identifying sequen-

tially stable outcomes without using sequences of strategy profiles: if an outcome ω is not fully

self-justifiable, then it is not sequentially stable, while if ω is the unique fully self-justifiable out-

come, then it is the unique sequentially stable outcome. For example, each of the games studied in

Examples 2.3, A.1, and A.2 has a unique fully self-justifiable outcome, which is therefore its unique

sequentially stable outcome. Note that Propositions 3.1–3.3 are jointly summarized in Figure 1.

The proof of the result uses the same logic described after Proposition 2.1.

While full self-justifiability is a strong condition, it is weaker than sequential stability. The

intuitive reason is that when an outcome ω fails to be fully self-justifiable, the corresponding iter-

ated exclusion procedure can be seen as identifying a tremble sequence that destabilizes ω. (For

details, see the argument concerning self-justifiability following the statement of Proposition 2.1.)

Such tremble sequences assign extreme values to the relative asymptotic likelihoods of excluded

actions: the tremble probability of an action excluded earlier in the process vanishes much faster
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than the tremble probability of an action excluded later. However, some games feature outcomes

that are stable against tremble sequences with extreme relative asymptotic likelihoods (and so

are fully self-justifiable), but that are fragile to some tremble sequences with comparable relative

tremble probabilities (and so are not sequentially stable). Example A.4 below presents one such

game.

3.5 Outcomes versus strategy profiles

Our analysis of full justifiability and full self-justifiability has been focused on outcomes rather than

on equilibria (i.e., equilibrium strategy profiles). The reason is that, unlike justifiable and self-jus-

tifiable equilibria, fully justifiable and fully self-justifiable equilibria may not exist in all games.15

That is, as shown in Example 3.1 below, there are games with no sequential equilibrium that be-

longs to SEΩ((As)Ss=1) (resp. SEω((As)Ss=1)) for all implementations of IENWBRΩ (resp. IENWBRω).

The lack of existence of sequential equilibria surviving all implementations is expected: a sim-

ilar lack of existence occurs in the study of stable behavior, where robustness against all trembles

is required.16 However, if an outcome is fully self-justifiable, then not only is it supported by a self-

justifiable equilibrium, but also, independently of the specific iterative process by which actions

are excluded, it is also supported by a sequential equilibrium with beliefs that are justifiable ac-

cording to this process. We believe that this additional form of robustness strengthens the concept

of fully self-justifiable outcomes.

Example 3.1. This example shows that SEω((As)Ss=1) may depend on the implementation (As)Ss=1.

15Here we are considering the natural definitions: (σ,µ) is a fully justifiable (resp. fully self-justifiable) equilibrium if (σ,µ)∈
SEΩ((As)Ss=1) (resp. (σ,µ)∈SEωσ ((As)Ss=1)) for all implementations of IENWBRΩ (resp. IENWBRωσ ). Note that Proposition 2.1

trivially implies the existence of self-justifiable equilibria, while McLennan (1985) proved the existence of justifiable equilibria.

16Equilibria robust to trembles, called strictly perfect equilibria (Okada, 1981), do not exist in many games of interest. This fact has

motivated the development of set-valued equilibrium concepts (e.g., stable sets of equilibria, introduced by Kohlberg and Mertens,

1986) and outcome-valued equilibrium concepts (e.g., the sequentially stable outcomes of Dilmé, 2024).
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Figure 5

Consider the game in Figure 4. The set of sequential equilibria (σ1,σ2,µ2) of this game is

{(L1, x T2+(1− x)B2, 1/3T1+2/3 B1)|x∈[0,1]}

∪{(L1, T2, y T1+(1− y)B1)|y∈[0,1/3]}

∪{(L1, B2, y T1+(1− y)B1)|y∈[2/3,1]} .

Since all of these equilibria have the same outcome (namely, L1), this outcome is both fully jus-

tifiable and fully self-justifiable. Note that both T1 and B1 are useless. In an implementation of

IENWBRΩ where B1 is excluded first, the only remaining equilibrium is (L1, T2, T1). In an imple-

mentation where T1 is excluded first, the only remaining equilibrium is (L1, B2, B1). Hence this

game has no fully justifiable or fully self-justifiable equilibrium. (However, all of its sequential

equilibria are both justifiable and self-justifiable.)

3.6 Further examples

Example 3.2. This example illustrates that fully justifiable outcomes are often easier to obtain than

justifiable outcomes. Consider the game in Figure 5 (which corresponds to the game in Figure 3

in McLennan, 1985). We can find the justifiable outcomes of this game as follows. First, it is clear

that M1 is a useless action: by playing L1, player 1 obtains a strictly higher payoff regardless of

what player 2 does. However, even in this simple example, it is not obvious whether any other

action is useless.17 McLennan (1985) shows that none of the other actions is useless and that

the second-order useless actions are T1 and T2. From this he concludes that the only justifiable

equilibrium has outcome (B1, B2).

It is considerably easier to find the fully justifiable outcomes: one can first exclude M1 (without

needing to compute any sequential equilibria), then T2, and finally L1 and M2. Since (B1, B2) is

17It is often possible to show that an action is not useless “by example”, that is, by exhibiting a sequential equilibrium in which the

action is a weak best response. To show that an action is useless, it is typically necessary either to find another action that strictly

dominates it (for example, in the game in Figure 5, L1 dominates M1), to use arguments like those mentioned at the end of Section

4.1, or to characterize the whole set of sequential equilibria.
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the unique sequential-equilibrium outcome consistent with these exclusions, it is fully justifiable

(and hence justifiable as well).

Example 3.3. This example further illustrates the advantages of full justifiability over justifiability,

especially in big games. We now consider a T -repetition of the game in Figure 5, for some T ∈N,

where payoffs are aggregated using discount factors δ1,δ2∈(0, 1]. As the stage game has multiple

sequential equilibria, for high values of δi it follows that the repeated game has a very large

number of sequential equilibria. This makes it difficult to determine whether a given action in a

given period is useless (or to find its order of uselessness), because doing so would require one

to compute the full set of sequential equilibria of the repeated game. Consequently, it is difficult

to identify justifiable outcomes, as the procedure defining these requires the elimination of all

implausible actions at each step. We now argue that fully justifiable outcomes are much easier to

identify, because one can proceed backward in an intuitive way.

We use H t to indicate the set of histories ht containing the actions played in periods 1, ..., t−1

(with h0≡;). For a given history ht∈H t , we let a(ht) denote the action corresponding to a∈

{L1, T1, M1, B1, T2, M2, B2} at time t given the previous history.18 In the last period, for each given

hT , we can exclude action M1(hT ) and then M2(hT ), which leaves (B1(hT ), B2(hT )) as the only

justifiable outcome. Defining

A1 :=∪hT∈HT {M1(h
T )} and A2 :=∪hT∈HT {M2(h

T )} ,

we have that all sequential equilibria (σ,µ) that are (As)2s=1-justifiable satisfyσ(B1(hT ))=σ(B2(hT ))=

1 for all hT . Now, in the period before the last, we can use the same argument to rule out M1(hT−1)

and then M2(hT−1) for all hT−1∈HT−1. Again, defining

A3 :=∪hT−1∈HT−1{M1(h
T−1)} and A4 :=∪hT−1∈HT−1{M2(h

T−1)} ,

we have that all sequential equilibria (σ,µ) that are (As)
4
s=1-justifiable satisfyσ(B1(hT−1))=σ(B2(hT−1))=

1 for all hT−1. Iterating this argument, we conclude that the only fully justifiable outcome (and

hence the unique sequentially stable outcome) of the repeated game is the repetition of the unique

justifiable outcome of the stage game.

4 Full self-justifiability in games with signaling

Since the work of Spence (1973), signaling games have played a central role in the analysis of

games with private information. Because signaling games often exhibit high equilibrium multi-

plicity, a number of equilibrium selection criteria have been proposed for them, often accompanied

18Note that our definition of a game in Section 1 requires each action to be played in a single information set. Hence it is necessary

to distinguish between analogous actions played in different information sets depending on the histories that give rise to them.
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by intuitive arguments to facilitate analysis. However, the usefulness of these selection criteria is

limited by the narrow class of games to which they apply: while many games of interest include

some form of signaling, they rarely adhere fully to the definition of a signaling game (e.g., games

featuring prior investment, multiple receivers).

In applications involving such non-signaling games, researchers have sometimes used intuitive

reasoning to select outcomes “in the spirit of” a given selection criterion. These arguments tend

to be ad hoc and are not applied consistently across different models. For example, the version of

the Spence model used in Cho and Kreps (1987) to illustrate the selection power of D1 is not a

signaling game under their definition, as two receivers act after the receiver’s signal choice.19 In

this section, we give a natural, systematic way to extend the intuitive reasoning behind Cho and

Kreps’s selection criteria to general games. In particular, we argue that this intuitive reasoning

can be naturally extended and systematically applied to obtain fully self-justifiable outcomes in

general games in extensive form.

4.1 Full self-justifiability in signaling games

We begin by investigating the implications of full self-justifiability in signaling games.

The players in a signaling game are a sender and a receiver. The game proceeds as follows:

first nature decides the sender’s type, then the sender sends a message, and finally the receiver

takes an action. Justifiability is of limited use as a selection criterion in signaling games, because it

only allows for the exclusion of type–message pairs where the message is not a weak best response

for the type in any sequential equilibrium. In most of the examples discussed in Cho and Kreps

(1987), all sequential-equilibrium outcomes are justifiable. For instance, in their beer–quiche

game, every action is a weak best response under some sequential equilibrium, and so both the

beer outcome and the quiche outcome are justifiable.

Cho and Kreps proposed four selection criteria for signaling games: the Intuitive Criterion (IC),

D1, D2, and Never a Weak Best Response (NWBR). Like self-justifiability, these criteria are based

on testing whether a given outcome ω is internally consistent by excluding all actions that are

implausible under all sequential equilibria with outcomeω. The following proposition establishes

that self-justifiable outcomes pass all these criteria, as well as divinity and universally divinity

(Banks and Sobel, 1987).

Proposition 4.1. In signaling games, all self-justifiable outcomes are fully self-justifiable, pass IC,

D1, D2, and NWBR, and are divine and universally divine.

19Note also that the game they study is infinite, but it can be easily discretized. See, for example, variations of NWBR in Noldeke and

van Damme (1990), Swinkels (1999), and Ekmekci and Kos (2023). Belief monotonicity requirements in Daley and Green (2012)

and Dilmé (2019), or divinity in Kremer and Skrzypacz (2007) play a similar role.
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The proof of Proposition 4.1 is as follows. Fix someω∈Ω and an off-path message m. Assume

that ω is self-justifiable. Recall that NWBR is the strongest among the criteria of Cho and Kreps

(1987); that is, a type–message pair is excluded by one of the other criteria only if it is excluded

under NWBR. Recall also thatω passes (the one application of) NWBR only if there is a sequential

equilibrium in which, upon receiving m, the receiver assigns probability zero to the sender types

for which sending m is never a weak best response for any sequential equilibrium with outcome

ω—that is, the types for which m is a first-order useless action. The exclusion of these types is

equivalent to the first step in the iterative procedure defining self-justifiability (as described in

Section 2.2).

Note that self-justifiability requires further exclusions of actions in later steps. It is easy to see

that, in a signaling game, an outcome is self-justifiable if and only if it passes the iterated exclu-

sion of implausible types through NWBR (i.e., IENWBR), as defined in Dilmé (2025). Since the

assessment of IENWBR is independent of the order of exclusion, self-justifiable outcomes are fully

self-justifiable in signaling games. In particular, because outcomes passing the iterated application

of NWBR also pass the criteria of Banks and Sobel (1987) for divinity and universal divinity (as

shown in Dilmé, 2025), self-justifiable outcomes are both divine and universally divine.

4.2 Extending the logic of Cho and Kreps (1987) to games in extensive form

We now illustrate how the logic behind the selection criteria of Cho and Kreps (1987) can be used

in obtaining self-justifiable outcomes in games in extensive form. We first present some definitions

and a result, and then relate them to the selection criteria of Cho and Kreps.

Fix an outcome ω∈Ω. Let ASω be the set of assessments with outcome ω, and let A0(ω) be

the set of actions available on the path of ω but played with probability zero under ω. For each

I∈I reached with positive probability under ω, let u(I |ω) be the payoff of player ι(I) under ω

conditional on I being reached. Similarly, for each action a∈A and assessment (σ,µ), let u(a|σ,µ)

be player ι(Ia)’s payoff from playing a.20

Proposition 4.2. Fix some ω∈Ω and a∈A0(ω). Let SE′⊂SEω and AS′⊂ASω be sets of sequential

equilibria and assessments, respectively, satisfying SE′⊂AS′. Assume that for each (σ,µ)∈AS′ with

u(a|σ,µ)=u(Ia|ω), there is some a′∈A0(ω) with u(a′|σ,µ)>u(Ia′ |ω). Then a is not a weak best

response under any (σ,µ)∈SE′.

20Note that u(I |ω) is uniquely defined as
∑

z∈Z I ω(z)uι(I)(z)/
∑

z∈Z I ω(z), where Z I is the set of terminal histories succeeding some

history in I . Similarly, u(a|σ,µ) is uniquely defined as

u(a|σ,µ)=
∑

h∈Ia

∑

z∈Z(h,a)

µ(h)σ(z|(h, a))uι(Ia)(z) ,

where Z (h,a) is the set of terminal histories that succeed or are equal to (h, a), and for each z∈Z (h,a) we set σ(z|(h, a)):=
∏|z|

j=J+1σ(z j), with J denoting the index such that (z j)Jj=1=(h, a).
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Note that the NWBR condition of Cho and Kreps is based on applying Proposition 4.2 with

SE′=SEω and letting AS′ be the set of assessments with outcome ω in which the receiver best-

responds to some belief after message m.21

The Intuitive Criterion, D1, and D2 are defined using weaker conditions than NWBR. For each

of these conditions, one can state a result analogous to Proposition 4.2 to extend the exclusion logic

to all games. For example, the extended Intuitive Criterion (applied to a set AS′) can be defined

as requiring an action a to be excluded if a∈A0(ω) and, for any (σ,µ)∈AS′, we have u(a|σ,µ)<

u(Ia|ω). Similarly, a can be excluded “in the spirit of D1” applied to AS′ if a∈A0(ω) and there

is some a′∈A0(ω) such that, for each (σ,µ)∈AS′ with u(a|σ,µ)≥u(Ia|ω), we have u(a′|σ,µ)>

u(Ia′ |ω).22 For example, our approach can be used to formalize Cho and Kreps (1987)’s analysis

of the Spence model: one can exclude type-message pairs (θ , m) satisfying that there is some type

θ ′ such that, when the competing price offers are such that θ prefers deviating to m, θ ′ strictly

benefits from that. Since only the Riley outcome has this property, it is the only fully self-justifiable

outcome.

Proposition 4.2 is useful in obtaining self-justifiable outcomes because, in each step s of the

procedure, one can exclude actions by choosing SE′=SEs
ω and some AS′⊃SEs

ω and verifying the

property in the statement of Proposition 4.2 (or any of the weaker versions described above). For

example, one can let AS′ be the set of assessments respecting the relative order of uselessness of

histories (as well as satisfying the necessary conditions for them to be sequential equilibria).23

Example 4.1. Let us again consider the game in Figure 3. Note that while this game is not a

signaling game, it is similar to one in structure. In Example 2.3 we showed that the outcome

ω̂:= 1
2 (T0, T1)+

1
2 (B0, B1) is not self-justifiable. We now use the extension of the D1 criterion to

games in extensive form to prove the same thing. Observe that under ω̂, regardless of player

3’s strategy, if player 1 weakly prefers to choose B1, then player 2 strictly prefers to choose T2.

Hence, from the extended D1 criterion, there is no sequential equilibrium with outcome ω̂ in

which B1 is a weak best response; that is, B1 is useless under ω̂. Now note that (i) T2 is a weak

best response under a sequential equilibrium with outcome ω̂, (ii) the unique best response to

21Recall that a type–message pair (θ , m) is excluded according to NWBR (for some outcome ω and off-path message m) if, whenever

the receiver’s response to m makes θ indifferent between the on-path message and m, there is a type that strictly prefers to send

m. Because in signaling games all types occur with positive probability, all pairs (θ , m) that do not occur with positive probability

under ω belong to A0(ω).

22D2 can be extended as well by excluding an action a if a∈A0(ω) and, for each (σ,µ)∈AS′ with u(a|σ,µ)≥u(Ia|ω), there is some

a′∈A0(ω)\{a} with u(a′|σ,µ)>u(Ia′ |ω).
23Choosing AS′ strictly bigger than SEs

ω makes it easier to check the condition in Proposition 4.2 (as in that case we need not compute

SEs
ω), but it reduces the set of actions that can be excluded. In Cho and Kreps (1987), for example, the set of assessments used for

the Intuitive Criterion is bigger than that used for NWBR (the latter coincides with SEω), which makes the Intuitive Criterion less

powerful but easier to apply. See Section A.2 in the appendix for a discussion of forward induction equilibria (Cho, 1987), which

are obtained through a procedure resembling the one we use to extend the Intuitive Criterion to games in extensive form.
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assigning probability zero to (T0, B1) is T3, and (iii) if player 3 plays T3, player 1 strictly prefers to

choose B1. Therefore ω̂ is not self-justifiable.24

Example 4.2 (Selten’s horse). Consider the game in Figure 6, which is a version of Selten’s horse

(see Figure 1 in Selten, 1975, where the two fives are replaced by two threes). This game has

two sequential-equilibrium outcomes: ω:=(D1, L3) and ω̂:=(R1, R2). We now show that ω̂ is not

self-justifiable. Note that, under ω̂, whenever a strategy by player 3 is such that D2 is a weak best

response for player 2, D1 is a strict best response for player 1. Thus D2 can be excluded “in the spirit

of D1”. Since L3 is a best response by player 3 to the belief assigning probability zero to (R1,D2),

there is no sequential equilibrium with outcome ω̂ with this belief, so ω̂ is not self-justifiable. As

a result, ω is the unique fully self-justifiable (and sequentially stable) outcome.

4.3 Transforming games with signaling into signaling games

In this section we present another way to study non-signaling games using the equilibrium se-

lection criteria defined for signaling games. Broadly, the technique is to transform part of a non-

signaling game into an “equivalent” signaling game, then apply the signaling game criteria for this

part. If an outcome fails to pass a given selection criterion in the signaling game, we conclude

that it is not fully self-justifiable in the main game.

On-path subforms

We first provide a result that permits checking the full self-justifiability of an outcome by checking

its full self-justifiability in continuation plays. To provide a more useful result, we will use the

concept of subforms, introduced in Kreps and Wilson (1982), which is a generalization of the

concept of subgames.

A subform is a collection of histories H ′⊂H that is closed under succession and preserves

information sets; that is, for all I ′∈I and h′∈ I ′, if h′∈H ′, then (i) h′′∈H ′ whenever h′′�h′, and

(ii) I ′⊂H ′. Given a subform H ′, we let H ′0 denote the set of its minimal histories, that is, the set

24Note that the argument is even simpler when we analyze full self-justifiability, because then one does not need to verify that there

is a sequential equilibrium with outcome ω̂ in which T2 is a weak best response.

25



of all h′∈H ′ such that there is no h′′∈H ′ satisfying h′′≺h′. For example, a subgame is a subform

H ′ with |H ′0|=1. Given a subform H ′ and a distribution π0∈∆(H ′0) with full support, G(H ′,π0)

denotes the game constructed by letting nature initially choose a minimal history in H ′ according

to π0, and then proceeding as in G. We say that H ′ has full support under ω if all h′∈H ′0 occur

with positive probability under ω.

Our first result is that the restriction of a fully self-justifiable outcome to an on-path subform is

fully self-justifiable. This is important in games with private information, as subforms often have

the structure of a signaling game.

Proposition 4.3. An outcome ω is fully self-justifiable if and only if its continuation in G(H ′,ω|H ′0)

is fully self-justifiable for any subform H ′ with full support under ω.

Proposition 4.3 provides a systematic procedure to rule out the full self-justifiability of an

outcome by proving it is not fully self-justifiable in an on-path subform. For example, if a player

observes the history h′0∈H ′0 and plays afterward, then h′0 can be interpreted as its type in the

continuation game. If such a continuation game is a signaling game (or can be transformed into

a signaling game using the results below), then the continuation outcome must pass all selection

criteria in Banks and Sobel (1987) and Cho and Kreps (1987). The proof takes advantage of

the flexibility in the implementations’ construction in the definition of full self-justifiability (with

respect to self-justifiability): any implementation of IENWBRω′ in G(H ′,ω|H ′0) (where ω′ is the

continuation outcome in H ′) is an implementation of IENWBRω in G.

Subgame replacement

Subgame perfection (Selten, 1965) lends plausibility to equilibrium behavior by ensuring that

players continue playing mutual best responses even off the path of play. Fully self-justifiable out-

comes inherit this plausibility, as they are supported by sequential equilibria, which are subgame

perfect. Here we exploit another advantage of subgame perfection: it enables backward induction

arguments to simplify game analysis.

Recall that for a given history ĥ∈H, Z ĥ denotes the set of terminal histories succeeding ĥ. For

any outcomeω, we letωĥ assignω(z) to any z /∈Z ĥ and assignω(Z ĥ) to ĥ. Our second result gives

conditions under which one can analyze outcomes in a simplified game, where certain subgames

are replaced by payoff profiles.

Proposition 4.4. Let Ĝ be a subgame of G starting at history ĥ with a unique sequential-equilibrium

outcome ω̂. Let G′ be the game obtained by removing Ĝ from G and setting u′(ĥ):=u(ω̂). Then ω

is fully self-justifiable if and only if ωĥ is fully self-justifiable in G′ and, if ĥ is on the path of ω, the

continuation outcome after ĥ coincides with ω̂.
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Proposition 4.4 allows simplifying the game by replacing subgames with the corresponding

sequential equilibrium payoffs. We focus on subgames instead of subforms because subforms may

contain degenerate distributions over their initial nodes, which our definition of a game does not

allow.

Agent-equivalence

Signaling games feature exactly two players (the sender and the receiver), who have multiple

information sets. This structure is appropriate for applications in which a sender’s type is private

information and the sender interacts with the same receiver regardless of this information. In other

applications, however, the sender’s type may indicate an intrinsic characteristic (e.g., ability), so

that it is more natural for different types to correspond to different players. Similarly, while in

some applications the receiver is the same player regardless of what message is sent, in other

applications the message may be more naturally interpreted as the choice of the sender to interact

with one receiver rather than another. We now establish that replacing a player by multiple agents

having the same payoff (each playing in a different information set) does not affect the set of fully

self-justifiable outcomes.

Definition 4.1. We say that G and Ĝ are agent-equivalent if H= Ĥ, ι−1(0)= ι̂−1(0), π=π̂, and

uι(a)(z)= ûι̂(a)(z) for all a∈A and z∈Za≡{z∈Z |∃ j, z j=a}.

Proposition 4.5. If Ĝ and G are agent-equivalent, they have the same set of fully self-justifiable

outcomes.

Proposition 4.5 is useful because it allows us to treat similar games consistently. For example,

two players who never play along the same history can always be interpreted as agents of the same

player. As a result, the set of fully self-justifiable outcomes of a signaling game is independent of

whether each sender type represents a different player, or whether the receiver is the same after

each message or not.25

Example

Example 4.3. We now apply the previous results to construct a signaling game that is equivalent

to the game in panel (a) of Figure 7, which coincides with Figure 3. First, we use Proposition

4.5 to merge players 1 and 2 into a single player, denoted by player 1′, who acts as the sender.

Second, using Proposition 4.4, we can add a move for player 3 to play after T1 and B2; player 3

can thus be viewed as the receiver. Panel (b) of Figure 7 depicts the resulting signaling game. In

25For example, Kohlberg and Mertens (1986) use the beer–quiche game of Cho and Kreps (1987) but assume that the two sender

types represent different players (see Figure 14 in their paper).

27



3

1

2

2,0,0

0,1,0

3

3,0,2
0,0,3

0,0,0
0,2,2

T0

B0

{.5}

{.5}

T1

B1

T2

B2

T3

B3

0

1′

1′

2,0
3

1,0
3

3

3,2
0,3

0,0
2,2

T0

B0

{.5}

{.5}

T1

B1

T2

B2

T3

B3

0

(a) (b)

Figure 7

this game, the outcome ω̂ defined in (2.1) fails D1: for any best response of player 3 where B1 is

weakly optimal, T2 is strictly optimal, so B1 can be excluded according to the D1 criterion. Since

no other action can be excluded, and there is no sequential equilibrium with outcome ω̂ in which

player 3 assigns probability zero to (B0, T2), ω̂ is not self-justifiable.

4.4 Signaling games with prior investment

In this section, we apply our analysis to signaling games with prior investment. These are games

where prior to sending the message, a player chooses an investment, which endogenously deter-

mines the type distribution. We will show that while these are not signaling games, Cho and Kreps

(1987)’s criteria are useful to identify fully self-justifiable and sequentially stable outcomes.

We consider the following signaling game with prior investment. First, an investor chooses an

investment k∈{1, ...., K}. From the chosen investment k, nature draws a type θ ∈Θ using a full-

support distribution πk∈∆(Θ). Then, a sender observes the investment and the type, and chooses

a message m∈Mθ . Finally, the receiver, having only observed m, chooses a response r∈Rm. We

assume that the sender and receiver’s payoffs depend additively on a term that depends on (θ , k)

and another that depends on (θ , m, r).

Note that numerous economic settings can be studied using signaling games with prior invest-

ment. For example, in education signaling, parents typically make the initial educational decisions

regarding their children, while the children make their own decisions when they become adults.

Additionally, in education signaling, adults may undertake non-observable “investment” decisions

(such as time spent studying or engaging in healthy activities) and observable signaling actions

(such as pursuing education); our results also apply to the case where the investor and the sender

are the same player.

Given an outcomeω of a signaling game with prior investment, we refer to the corresponding

signaling outcome ωsig as the implied joint distribution over types, messages, and responses. We
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use Gsig to denote the signaling game obtained by removing the investment and where each type

receives the same probability as it receives under ω.26

Proposition 4.6. If ω is fully self-justifiable in G, then ωsig is fully self-justifiable in Gsig.

Proposition 4.6 allows the use of standard selection criteria in signaling games with prior

investments. In particular, if a message-type pair is excluded for some criterion, then ω is fully

self-justifiable (or sequentially stable) only if it is supported by a sequential equilibrium where

the receiver assigns a probability zero to it.27 Note that Proposition 4.6 does not follow from

Proposition 4.3 because, except if the investor fully mixes, there is no subform in the signaling

game with full support. Still, the logic is similar: if (Asig
s )Ss=1 is an implementation of IENWBRωsig

in Gsig, then it is also an implementation of IENWBRω in G. The same logic can also be generalized

to other games where the sender does not observe the investment or where the receiver observes

the investment.

5 Conclusions

We have introduced several new equilibrium concepts based on the idea of justifiable beliefs

(McLennan, 1985)—that is, on the selection of behavior that is robust to the iterated exclusion of

actions that are never weak best responses.

The first concept, self-justifiability, requires that behavior be internally consistent. More con-

cretely, a self-justifiable outcome is supported by behavior consistent with the exclusion of actions

that are never weak best responses in sequential equilibria compatible with the outcome. The sec-

ond concept, full justifiability, requires that behavior be consistent independently of the exclusion

procedure used. That is, a fully justifiable outcome is robust to changes in the order of exclusion

of actions that are never weak best responses.

The combination of these plausibility requirements (internal consistency and independence

from the choice of exclusion procedure) yields the concept of full self-justifiability. Full self-justi-

fiability is a relatively strong selection criterion, in that it implies many previously defined selection

criteria. It is also highly flexible (since it can be verified by excluding implausible actions in any

order), making it a useful tool in applications. In particular, as we show, our results concerning full

self-justifiability make it possible to extend certain intuitive arguments used for signaling games

to general games in extensive form. Furthermore, full self-justifiability is implied by sequential

stability; hence it provides a way to identify sequentially stable outcomes without considering

26More formally, Gsig is the signaling game where nature chooses each θ with probability ω(Zθ ), where Zθ is the set of terminal

histories containing θ .

27Recall that type-message pairs excluded by the selection criteria of Cho and Kreps (1987) and Banks and Sobel (1987) are indepen-

dent of the distribution of types, as long as it has full support.

29



sequences of strategy profiles, and thus creates an additional foundation for arguments involving

stability in applications.

Overall, our work illuminates the relationships between a number of different equilibrium

concepts used in the literature. It provides a unifying framework for these concepts and simplifies

many aspects of their analysis, enabling more effective and consistent equilibrium selection across

various applications.

In future research, it would be interesting to apply similar plausibility requirements to other

base equilibrium concepts. For example, in the iterative procedure defining fully self-justifia-

ble outcomes, one might exclude actions that are never weak best responses under any perfect

Bayesian equilibrium (Fudenberg and Tirole, 1991) or any weakly sequential equilibrium (Reny,

1992). While a criterion derived from a weaker base equilibrium concept may have less selection

power than ours, it may also be easier to apply and capture richer behavior.

A Additional discussion

A.1 Refinements of implementations

There are many ways to implement IENWBRω for a given ω∈Ω∪{Ω}. As explained in Section

3.2, the procedure is to iteratively exclude actions until only plausible actions remain; however, it

is not specified which actions, or how many, should be excluded in each step. In this section, we

argue that implementations in which smaller sets of actions are excluded in each step are more

powerful in selecting outcomes.

Given two non-intersecting sequences (A′s)
S′
s=1 and (As)Ss=1, we say that (A′s)

S′
s=1 is a refinement

of (As)Ss=1 if for every ŝ∈{1, ..., S} there is some ŝ′ such that ∪ŝ′
s=1A′s=∪

ŝ
s=1As. Such a sequence

(A′s)
S′
s=1 refines (As)Ss=1 in the sense that in the corresponding iterated exclusion procedure, the set

of actions excluded in each step is smaller. Note that if an action a is excluded earlier than a′

under (As)Ss=1, then a is excluded earlier than a′ under (A′s)
S′
s=1 as well.

Proposition A.1. Letω∈Ω∪{Ω}. If (A′s)
S′
s=1 is a refinement of an implementation (As)Ss=1 of IENWBRω,

then (A′s)
S′
s=1 is also an implementation of IENWBRω and SEω((A′s)

S′
s=1)⊂SEω((As)Ss=1).

The intuition for Proposition A.1 is the following. Let (As)Ss=1 be an implementation of IENWBRω.

Fix some step ŝ∈{1, ..., S} and some action â∈A that is excluded in the ŝth step; that is, â∈Aŝ

(and hence â∈NWBRω((As)ŝ−1
s=1)). Let (A′s)

S′
s=1 be a refinement of (As)Ss=1, let ŝ′ be such that

∪ŝ′−1
s=1 A′s=∪

ŝ−1
s=1As, and let ŝ′′≥ ŝ′ be such that â∈A′ŝ′′ . It then follows that

NWBRω((A
′
s)

ŝ′′−1
s=1 )⊃NWBRω((A

′
s)

ŝ′−1
s=1 )⊃NWBRω((As)

ŝ−1
s=1) .
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The first containment (⊃) holds because, as explained in Section 3.2, the set of never weak best

responses increases along any non-intersecting sequence. The second containment follows from

Definition 3.1, which implies that if (A′s)
ŝ′−1
s=1 is finer than (As)ŝ−1

s=1, then SEω((A′s)
ŝ′−1
s=1 )⊂SEω((As)ŝ−1

s=1).

Therefore, we have that â∈NWBRω((A′s)
ŝ′′−1
s=1 ). It then follows that A′ŝ′⊂NWBRω((A′s)

ŝ′−1
s=1 ) for all

ŝ′, and so (A′s)
S′
s=1 is an implementation of IENWBRω.

Maximal and finest implementations

As we explained in Section 3.3, full self-justifiability is stronger than self-justifiability. This is be-

cause the procedure for checking the self-justifiability of an outcomeω corresponds to the maximal

implementation of IENWBRω, where all excludable actions are excluded in each step. (That is, the

self-justifiability ofω is verified using the implementation (As)Ss=1 where As=NWBRω((As′)s−1
s′=1)\∪

s−1
s′=1

As′ for all s.)

Opposite to the maximal implementation are implementations in which only one action is

excluded in each step. Formally, we say an implementation (As)Ss=1 of IENWBRω is finest if |As|=1

for all s. The following corollary of Proposition A.1 says that to show thatω is fully self-justifiable,

it suffices to verify that SEω((As)Ss=1) 6=; for all complete and finest implementations.

Corollary A.1. An outcome ω is fully self-justifiable if and only if SEω((As)Ss=1) 6=; for all complete

and finest implementations of IENWBRω.

Example A.2 illustrates that, even for complete and finest implementations, the choice of im-

plementation (As)Ss=1 (i.e., the order of exclusion of actions) may affect whether SEω((As)Ss=1) is

empty or not.

Remark A.1. We have defined full (self-)justifiability by requiring (self-)justifiability for all exclu-

sion orders. As we have argued, this increases the selection power and eases ruling out outcomes,

but demonstrating that a given outcome is fully (self-)justifiable becomes more difficult. One could

define partial (self-)justifiability by requiring (self-)justifiability for some exclusion order. This con-

cept would be weaker than (self-)justifiability, easier to demonstrate for a given outcome, but more

difficult to disprove. A further alternative would be to require (self-)justifiability by some finest

implementation. By Corollary A.1, this alternative would be a compromise: it would be stronger

than (self-)justifiability, but weaker than full (self-)justifiability. We leave it to future research to

analyze the usefulness of these approaches.

A.2 Forward induction equilibria (Cho, 1987)

In this section, we briefly review the concepts of introspective consistency and forward induc-

tion equilibria, introduced by Cho (1987). We also show that any fully self-justifiable outcome is
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supported by a forward induction equilibrium.

We recall Cho’s definitions using our notation. Let I∈I be an information set. We define

BRI⊂∆(AI) as follows: σI ∈BRI if there exist a belief system µ and a strategy profile σ̃∈Σ such

that

E(σ̃−I ,σI )[uι(I)(z)|µ, I]≥E(σ̃−I ,σ
′
I )[uι(I)(z)|µ, I] for all σ′I ∈∆(A

I) .

For each a∈A,

Ia :=
�

I ′∈I
�

� there are h∈ Ia and h′∈ I ′ such that h�h′
	

,

where Ia is the (unique) information set where a is available. That is, Ia is the set of information

sets that can be reached if a is played. Given σ∈Σ, we say a is a bad deviation from σ if σ(a)=0

and, for all (σ̃I ′∈BRI ′)I ′∈Ia , we have

E((σI )I 6∈Ia ,a,(σ̃I )I∈Ia\{Ia})[uι(I)(z)]<Eσ[uι(I)(z)] .

We denote by BAD(σ) the set of all bad deviations from σ. Finally, for each I∈I and σ∈Σ, we

define

J(I |σ):=
�

h∈ I
�

�h j∈BAD(σ) for some j∈{1, ..., |h|}
	

.

Cho (1987) defines an assessment (σ,µ) as introspectively consistent if there is some sequence

of fully mixed strategy profiles (σn), with a corresponding sequence of belief systems (µn), such

that (σn,µn)→(σ,µ) as n→∞, and

µn(J(I |σ)|I)→0 as n→∞ (A.1)

whenever J(I |σ) is a proper subset of I . An assessment (σ,µ) is a forward induction equilibrium

if it is sequentially rational and introspectively consistent.

Proposition A.2. If an outcome is fully self-justifiable, then it is the outcome of a forward induction

equilibrium.

A.3 Outcomes that satisfy forward induction (Govindan and Wilson, 2009)

Govindan and Wilson (2009) introduce the concept of outcomes that satisfy forward induction.

Their main result is that the outcome of a two-player game with perfect recall and generic payoffs

satisfies forward induction if it is invariant (in a sense that they define) for the solution concept

of sequential equilibrium. Because their approach differs significantly from ours, we only briefly

review their definition here, then observe that it resembles the first iteration of our process for

obtaining self-justifiable outcomes.
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To define forward induction, Govindan and Wilson use the concept of weakly sequential equi-

librium (Reny, 1992), a weakening of sequential equilibrium in which sequential rationality is

imposed only in on-path information sets, and which includes a belief system over the other play-

ers’ pure strategies at every information set. They define relevant pure strategies with respect to an

outcomeω.28 Next they define a relevant information set forω as one that is not excluded by every

profile of strategies that are relevant for ω. Finally, they say that ω satisfies forward induction if it

results from a weakly sequential equilibrium in which, at every information set that is relevant for

ω, the support of the belief of the player acting there is confined to profiles of nature’s strategies

and other players’ strategies that are relevant for ω.

We see weakly sequential equilibrium outcomes as the natural analogue to outcomesω satisfy-

ing that SE1
ω 6=;, but excluding pure strategies instead of actions. Indeed, the one-step procedure

defining weakly sequential equilibrium outcomes prescribes to identify pure strategies that are

implausible given ω (non-relevant pure strategies, in their language), and look for weakly se-

quential equilibria with outcome ω assigning probability zero to these actions. The first step of

the definition of self-justifiable outcomes does the same for implausible actions given ω and se-

quential equilibria with outcome ω. In fact, it is not difficult to see that if G coincides with its

agent-extensive form, then any self-justifiable outcome satisfies forward induction.

We believe that our approach offers several advantages. First, our definitions use actions in-

stead of pure strategies, which makes them significantly easier to work with. Second, by allowing

actions to be excluded iteratively, we increase the robustness and selection power of our solution

concepts. Third, we are able to show that self-justifiable outcomes exist in all games, and to gen-

eralize self-justifiability to full self-justifiability, which satisfies additional plausibility properties.

Finally, we are able to provide a clear connection between our equilibrium concepts and several

others, such as (sequential) stability.

A.4 Proper equilibria (Myerson, 1978)

In this section, we relate fully self-justifiable outcomes with the concept of proper equilibria, which

was proposed by Myerson (1978) for normal form games.

For each ε>0, a fully mixed strategy profileσ of a normal-form game is an ε-proper equilibrium

if it satisfies that if a pure strategy si gives a player a strictly lower payoff than another strategy

s′i , then σi(si)≤εσi(s′i). Then, σ is a proper equilibrium if it is the limit of ε-proper equilibria as

28Govindan and Wilson (2009) define a pure strategy as relevant with respect to ω if there is a weakly sequential equilibrium with

outcome ω for which the strategy is weakly optimal, in the sense that, at every information set it does not exclude, it prescribes

an optimal continuation given the player’s equilibrium belief over the other players’ pure strategies there. Note that if one replaces

“weakly sequential equilibrium” by “sequential equilibrium” and “pure strategy” by “action”, then the definition resembles the

opposite of the definition of a useless action given ω.
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ε→0. Myerson shows that for any proper equilibrium outcome of the normal form game G, there

is an equivalent sequential equilibrium outcome in any extensive form game with normal form G.

Because of the different approaches in their definitions, it is difficult to compare the concepts

of proper equilibria and fully self-justifiable outcomes. Still, we believe that characterizing fully

self-justifiable outcomes is in general simpler, which is especially helpful in characterizing stability.

Indeed, showing properness requires guessing a sequence of fully mixed strategy profiles (of the

normal form game) converging to the candidate strategy profile and verifying that it satisfies the

corresponding conditions for an appropriate sequence (εn)→0.29 Instead, our procedure is set

in the limit and defined in terms of actions (instead of contingent plans), hence the reasoning in

excluding actions is often intuitive and does not require using sequences of strategy profiles.

The requirement of properness can be used to identify useless actions in the process of ob-

taining fully self-justifiable outcomes. For example, if there are two actions a, a′∈AI satisfying

that a gives a strictly lower payoff than a′ for all sequential equilibria with outcome ω, then a is

never a weak best response, hence a is useless (this argument can be applied at any iteration of

the IENWBRω). As a result, if ω is fully self-justifiable, it satisfies a version of properness: it is

supported by a sequence of Nash equilibria of perturbed games where the asymptotic probability

of a is infinitely smaller than the asymptotic probability of a′ (e.g., of the form (2.2)).

A.5 Further examples

Example A.1. This example shows that full self-justifiability is stronger than self-justifiability. We

study the game in Figure 8, nicknamed the “big fish.” Consider the outcome ω:= 1
2 (T0, T1)+

1
2 (B0, B′1). This outcome is sequential: for example, there is a sequential equilibrium with outcome

ω in which player 2 plays T2, player 3 plays T3, player 4 plays the middle action, and player 2

believes that each of the histories in her information set is equally likely (the other beliefs are

obtained through Bayes’ rule). We will show that ω is self-justifiable but not fully self-justifiable.

Our argument runs as follows: we prove that (i) the off-path actions B1 and T′1 are both useless

under ω, (ii) when B1 is ruled out first, there is a surviving sequential equilibrium with outcome

ω, and (iii) when T′1 is ruled out first, there is no such sequential equilibrium. The difficulty in

constructing such an example is that B1 and T′1 will be profitable deviations under any continuation

play consistent with beliefs where T′1 is ruled out first, while are not weak best responses in any

sequential equilibrium with outcome ω when B1 is ruled out first. In many games, this would

imply that there is a belief system (assigning comparable probabilities to histories after B1 and

29Note that the requirement of εn-properness of each element σn approaching the candidate σ is self-referential: pure strategies

giving a low payoff under σn must receive a low probability under σn. Such a requirement is imposed even for pure strategies that

give the same payoff in the limit, because their payoff may be slightly different along the sequence.
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Figure 8

histories after T′1) in which one of the actions is suboptimal and the other is a weak best response,

but in such cases it would be impossible for both B1 and T′1 to be useless under ω. In the game in

Figure 8, however, the equilibrium payoff correspondence of the continuation game is not lower-

hemicontinuous in the relative probability of histories after B1 and histories after T′1.

To begin, we fix a sequential equilibrium (σ,µ) and let x denote the probability with which

player 4 plays the middle action. The continuation payoffs of players 2 and 3 at their information

sets, given in Table 1, depend only on x (and not on their beliefs regarding whether player 1

has chosen B1 or T′1). For x<1/2, the game in Table 1 has a unique Nash equilibrium, which we

denote by E1. In this equilibrium, players 2 and 3 play B2 and B3, respectively, and both obtain

1, so that player 1 obtains 5. For x=1/2, there are two Nash equilibria: E1 (as just described),

and another, denoted by E2, in which players 2 and 3 play T2 and T3, respectively, so that player

1 obtains 0. For x>1/2, there are three Nash equilibria: E1, E2, and another one, denoted by E3,

in which players 2 and 3 randomize according to

� 1
2x T2+

2x−1
2x B2, 1

2x T3+
2x−1

2x B3

�

.

The latter gives players 2 and 3 each a payoff of 3/(2x)∈[3/2, 3), while player 1 obtains 5 (1−

1/(4x2))∈(0, 15/4]. Panel (a) of Figure 9 depicts, for the game in Table 1, the equilibrium prob-

abilities with which T2 is played (which are the same as the probabilities with which T3 is played),

as functions of x . Panel (b) depicts player 1’s payoffs in the equilibria of the subform beginning

at player 2’s information set as functions of x . Panel (c) depicts player 1’s payoffs in the equilibria

of the subform in relation to the probability player 2 assigns to (T0, B1).

We see that, for (σ,µ) to be a sequential equilibrium with outcomeω, either E2 or E3 must be

played in the continuation play when player 1 chooses B1 or T′1 (since player 1 obtains 5>4=u1(ω)

under E1). This implies that x≥1/2. Hence player 1’s payoff from choosing B1 after T0 or choosing

35
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Table 1

x

σ∗(T2)
1

11/2 x

u1(ω∗)
5
4

11/2 µ(T0, B1)

u1(ω∗)
5
4

11/3 2/3

(a) (b) (c)

Figure 9

T′1 after B0 is either 0 or 5 (1−1/(4x2))≤15/4<4, which makes it strictly optimal for her to choose

either T1 or B′1.

These observations imply that B1 and T′1 are never weak best responses of sequential equilibria

with outcomeω. Hence they are excluded in the first step of the procedure for verifying self-justi-

fiability. Since no other actions can be excluded in later steps, and since the sequential equilibrium

with outcome ω described above has justifiable beliefs, we conclude that ω is self-justifiable.

To see thatω is not fully self-justifiable, suppose we exclude B1 first. Then, in every sequential

equilibrium in SEω({B1}), player 4 must assign probability 0 to (T0, B1, T2, B3) and (T0, B1, B2, T3),

which implies that x=0. But, as we argued above, there is no such sequential equilibrium with

outcome ω. (Note that the same argument applies if T′1 is excluded first.) It is easy to see that the

unique fully self-justifiable outcome (and hence the unique sequentially stable outcome) is one in

which player 1 chooses B1 and T′1, player 2 chooses B2, and player 3 chooses B3.

Observe that every action of player 1, 2, or 3 is a best response under some sequential equi-

librium, which implies that ω is fully justifiable. This shows that a game may have outcomes that

are both fully justifiable and self-justifiable, but are not fully self-justifiable.

Example A.2. This example shows that, even for complete and finest implementations of IENWBRω,

the choice of implementation (i.e., the order of exclusion of actions) may affect whether the set

of justifiable equilibria resulting from the exclusion procedure is empty or not. Consider the game

in Figure 10(a) with y=5. Let ω be the outcome assigning probability one to L1. Note that there

is a sequential equilibrium with such an outcome—for example, one in which player 2 chooses

T2, player 3 chooses T3, player 4 chooses T4, and player 2 assigns probability one to T1 (the other
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beliefs are pinned down by Bayes’ rule).

Fix a sequential equilibrium with outcome ω=L1. Let x denote the probability with which

player 4 chooses T4 in this equilibrium. The expected payoffs of players 2 and 3 conditional

on player 1 not playing L1 are given by Table 1; these payoffs are independent of the beliefs of

players 2 and 3 concerning the action played by player 1. As discussed in Example A.1, if x<1/2,

then player 1’s payoff from choosing T1 or B1 is 5; but then player 1 has a strict incentive not to

choose L1. So it must be that x≥1/2. If x≥1/2 and if player 1 chooses T1 or B1, then under any

continuation play she obtains either 0 or 5 (1−1/(4x2))∈(0,15/4]. Thus, neither T1 nor B1 is a

weak best response in any sequential equilibrium with outcome ω.

Now consider the following two implementations of IENWBRω. In the first implementation, T1

is excluded in the first step, which corresponds to x=0. Since there is no sequential equilibrium

with outcomeω in which x=0, we have SEω({T1})=;; that is,ω fails this implementation. In the

second implementation, B1 is excluded first, which corresponds to x=1; that is, player 4 chooses

T4 for sure. Next we exclude B4, and finally T1 (no other action can be excluded). Note that

SEω(({B1}, {B4}, {T1}))

is non-empty: it contains the sequential equilibrium described at the beginning of this example.

Hence ω passes this implementation of IENWBRω.

Example A.3. This example shows that a game may have outcomes that are self-justifiable but not

justifiable. Consider the game in Figure 10(a) with y=0. Note that (B1, B2, B3, B4) is a sequential-

equilibrium outcome, as is L1; the latter is sustained by a belief system assigning probability one

to T1, with players 2, 3, and 4 playing T2, T3, and T4, respectively, with probability one.
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We first prove that (B1, B2, B3, B4) is the unique justifiable outcome. To see this, note that T1

is strictly dominated by L1 (since y=0). Because each of the other actions is played under some

sequential equilibrium, T1 is the unique useless action. Now note that player 4 plays B4 with

probability one in all equilibria with µ(T1)=0. Hence, as we argued in Example A.2, (B2, B3, B4) is

the unique continuation outcome if player 1 does not choose L1, which proves that (B1, B2, B3, B4)

is the unique justifiable outcome. Now, the continuation payoff of player 1 upon entering in any

equilibrium of the continuation game as a function of the belief on B1 is depicted in Figure 10(b).

We now show that L1 is self-justifiable. Indeed, the arguments in Example A.2 imply that both

T1 and B1 are useless under L1, and there are no other (higher-order) useless actions. Therefore,

because SE1
L1
=SEL1

6=;, we have that L1 is self-justifiable.

Example A.4. We now provide an example of a fully self-justifiable outcome that is not a sequen-

tially stable outcome. Consider the game in Figure 11, which is based on Figure 3 in Banks and

Sobel (1987). Fix the outcomeω:= 1
2 (T0, T1)+

1
2 (B0, B′1). We first observe that there are no useless

actions under ω. Indeed, the following are two equilibria with outcome ω:

(σ,µ):=
�

σ0
︷ ︸︸ ︷

1
2 T0+

1
2 B0,

σ1
︷ ︸︸ ︷

T1, B′1,

σ2
︷ ︸︸ ︷

1
2 T2+

1
2 t2,

µ2
︷ ︸︸ ︷

2
3 (T0, B1)+

1
3 (B1, T2)

�

and

(σ̂, µ̂):=
�1

2 T0+
1
2 B0, T1, B′1, 1

2 b2+
1
2 B2, 1

3 (T0, B1)+
2
3 (B1, T′1)

�

.

Note that T′1 is a weak best response under (σ,µ) and B1 is a weak best response under (σ̂, µ̂).

Hence ω is fully self-justifiable. However, as Banks and Sobel show, ω is fragile to a tremble

sequence that induces a posterior (0.49 (T0, B1)+0.51 (B0, T′1)) in player 2’s information set.

This example illustrates the fact that outcomes that can only be destabilized with tremble

sequences inducing positive posteriors over more than one history are not sequentially stable but

may be fully self-justifiable.
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B Proofs

Proof of Proposition 2.1

Proof. The proof follows from Propositions 3.1 and 3.3 (note that results in Section 3 do not build

on the results in Section 2).

Proof of Proposition 3.1

Proof. The proof follows from the arguments in the main text.

Proof of Proposition 3.2

Proof. Assume ω is fully self-justifiable. Let (As)Ss=1 be an implementation of IENWBRΩ. We note

that, for all s, we have

SEω((As′)
s−1
s′=1)⊂SEΩ((As′)

s−1
s′=1) .

This implies that

NWBRω((As′)
s−1
s′=1)⊃NWBRΩ((As′)

s−1
s′=1) .

Hence, we have that As⊂NWBRω((As′)s−1
s′=1) and As 6=; for all s< ŝ. Therefore, (As)Ss=1 is an im-

plementation of IENWBRω. Since ω is fully self-justifiable, we have that SEω((As)Ss=1) 6=;, which

implies that SEΩ((As)Ss=1) 6=;. Since this applies to all implementations of IENWBRΩ, we have that

ω is fully justifiable.

Proof of Proposition 3.3

Proof. Assume that ω is sequentially stable. We will prove that it is fully self-justifiable; hence,

by Propositions 3.1 and 3.2, it is also justifiable, self-justifiable, and fully justifiable. Assume, for

the sake of contradiction, that ω is not fully self-justifiable, hence it does not pass IENWBRω.

Let (As)Ss=1 be an implementation of IENWBRω such that SEω((As)Ss=1)=;. Consider a tremble

sequence (ξn) defined as follows

ξn(a):=







e−nS−s+2
if a∈As for some s∈{1, ..., S},

e−n otherwise,

for all a∈A and n∈N. Let (un)→u and (σn) be two sequences satisfying that each ωσn is a Nash

equilibrium outcome of G(ξn, un) and ωσn→ω (which exist because ω is sequentially stable).
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Let (n̂n)→∞ satisfy that (i) for each a, either σn̂n
(a)>ξn̂n

(a) for all k or σn̂n
(a)=ξn̂n

(a) for

all n, and (ii) (σn̂n
) supports some assessment (σ,µ) (which has outcome ω). By Proposition 2.1

in Dilmé (2024), (σ,µ) is a sequential equilibrium. There are two possibilities.

1. The first possibility is that all actions in ∪S
s=1As are not weak best responses under (σ,µ). In

this case it must be that σn̂n
(a)=ξn̂n

(a) for all n∈N and a∈∪S
s=1As. We argue that neces-

sarily (σ,µ)∈SEω((As)Ss=1), which will contradict the assumption that SEω((As)Ss=1)=;. To

see that, let s̃(a) be the value s such that a∈As if such value exists, and S+1 if no such value

exists. For each history h∈H, let #s̃s(h) be the number of actions in h that have an order of

uselessness under ω equal to s. Take two histories h, h∈H ′, and assume that there is some

ŝ≤S such that #s̃s(h)=#s̃s(h′) for all s> ŝ and #s̃ŝ(h)>#s̃ŝ(h′) (i.e., they are ordered in the

sense of Definition 3.1). Then,

log
�

σn(h)
σn(h′)

�

=−
S
∑

s=1

nS−s+2 (#s̃s(h)−#s̃s(h
′))+log

�

∏

j|s̃(h j)=S+1σn(h j)
∏

j|s̃(h′j)=S+1σn(h′j)

�

.

The first term on the right side tends to −∞ at rate nS−ŝ+2, while the second term grows at

most linearly in n. Because S− ŝ+2>1, it follows that µ(h)=0. This implies that (σ,µ)∈

SEω((As)Ss=1), a contradiction.

2. The second possibility is that some actions in ∪S
s=1As are best responses under (σ,µ). In

this case, let ŝ∈{1, ..., S} be the smallest value such that there is some aŝ∈Aŝ that is a

weak best response under (σ,µ). This implies that (σ,µ)∈SEω((As)ŝs=1). Still, that aŝ∈

NWBRω((As)ŝs=1) implies that there is no sequential equilibrium SEω((As)ŝs=1) where aŝ is a

weak best response. Again, we have a contradiction.

Proof of Proposition 4.1

Proof. The proof follows from the argument in the main text that follows the proposition.

Proof of Proposition 4.2

Proof. Fix some ω∈Ω and a∈A0
ω, and let SE′⊂SEω and AS′⊃SE′. Assume that, for each (σ,µ)∈

AS′ where u(a|σ,µ)=u(Ia|ω), there is some a′∈A0
ω such that u(a′|σ,µ)>u(Ia′ |ω). Assume,

on the way to a contradiction, that a is a weak best response under some (σ,µ)∈SE′, that is,

u(a|σ,µ)=u(Ia|ω). Then, because (σ,µ)∈AS′, there is some a′∈A0
ω such that u(a′|σ,µ)>u(Ia′ |ω),

but this contradicts that (σ,µ) is sequentially rational (because ωσ=ω and so sequential ratio-

nality implies that u(a′|σ,µ)≤u(Ia′ |ω) for all a′∈A0
ω).
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Proof of Proposition 4.3

Proof. The “if” direction is trivial when the condition is applied to the subform initiated at the

empty history. To prove the “only if” direction, let ω be fully self-justifiable. Let H ′ be a subform

such that all h′∈H ′0 occur with positive probability under ω. Let ω′ denote the continuation

outcome of ω in G(H ′,ω|H ′0). Assume for a contradiction that ω′ is not fully self-justifiable in

G(H ′,ω|H ′0). Then, there is some implementation (A′s)
S
s=1 of IENWBRω′ such that SEω′((A′s)

S
s=1)=;.

Nevertheless, this implies that SEω((A′s)
S
s=1)=; because for any (σ,µ)∈SEω((A′s)

S
s=1) it must be

that the continuation outcome in G(H ′,ω|H ′0) is a sequential-equilibrium outcome of G(H ′,ω|H ′0)

which is (A′s)
S
s=1-justifiable. This contradicts that ω is fully self-justifiable.

Proof of Proposition 4.4

Proof. Let ω be a fully self-justifiable outcome of G. Note that, in all sequential equilibria, the

continuation play in Ĝ coincides with ω̂. It is then easy to see that (σ,µ) is a sequential equilibrium

of G if and only if (σ|A′ ,µ|H ′) is a sequential equilibrium of Ĝ and the continuation outcome of

(σ,µ) in G′ is equal to ω′. The result then follows immediately from this observation.

Proof of Proposition 4.5

Proof. The statement follows from the fact that the sets of sequential equilibria satisfying the same

belief restrictions are identical in agent-equivalent games. Hence, Ĝ and G are agent-equivalent.

They have the same set of implementations of IENWBRω and, for any implementation (As)Ss=1 of

IENWBRω, ω is either (As)Ss=1-justifiable in both games or none.

Proof of Proposition 4.6

Proof. In this proof, we fix some fully self-justifiable outcome ω of the signaling game with prior

investment G. To ensure that each action is played in a single information set, we use the following

notation. We use ak,θ to denote the action of nature choosing θ after k (note that nature’s informa-

tion set is different after each investment level k). Also, we use ak,θ ,m to denote the sender’s choice

of message m∈Mθ after investment k and type θ . Finally, we use am,r to denote the receiver’s

choice of response r∈Rm after investment k, type θ , and message m.

We use a similar notation for the corresponding signaling game Gsig, that is, we use asig
θ

, asig
θ ,m,

and asig
m,r denote actions in this game. For each asig∈Asig, we let Aasig :={(k, a)|k=1, ..., K}; that is,

Aasig :={(k, a)|k=1, ..., K} contains the actions in the signaling game with prior investments with

the same type, message, and response as asig. Note that in Gsig, nature chooses each type θ with

probability ω(Zθ ).
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Assume for a contradiction that ωsig is not fully self-justifiable in Gsig. This implies that there

is some (Asig
s )Ss=1 of IENWBRsig

ωsig with SEsig
ωsig((A

sig
s )Ss=1)=;. For each s=1, ..., S, define

As :=∪asig∈Asig
s

Aasig .

We will now show that (As)Ss=1 is an implementation of IENWBRω (in G). Note that (As)Ss=1 is non-

intersecting. Assume for a contradiction that there is some s, â∈As, and an equilibrium (σ,µ)∈

SEω((Aŝ)s−1
ŝ=1) where â is a weak best response. Let âsig∈Asig

s be such that â∈Aâsig , and note that it

must be that âsig∈Asig
s . Define for all θ ∈Θ, m∈Mθ , and r∈Rm,

σsig(asig
θ
):=

∑

k∈Kω(Z
k)σ(ak,θ )

∑

k∈Kω(Zk)
, σsig(asig

θ ,m):=

∑

k∈Kω(Z
k)σ(ak,θ )σ(ak,θ ,m)

∑

k∈Kω(Zk)σ(ak,θ )
,

and σsig(asig
m,r):=σ(am,r), where Zk is the set of terminal histories that contain k. Define also, for

all θ ∈Θ and m∈M ,

µsig(asig
θ

, asig
θ ,m)=

K
∑

k=1

µ(k, ak,θ , ak,θ ,m) .

It is not difficult to see that (σsig,µsig)∈SEsig
ωsig((A

sig
ŝ )

s−1
ŝ=1), but this contradicts that âsig∈Asig

s . Hence,

(As)Ss=1 is an implementation of IENWBRω.

Finally, because (As)Ss=1 is an implementation of IENWBRω, there is some sequential equilib-

rium (σ,µ) in SEω((As)Ss=1). Using the previous procedure, we can obtain a sequential equilibrium

(σsig,µsig) in SEsig
ωsig((A

sig
s )Ss=1). This contradicts that SEsig

ωsig((A
sig
s )Ss=1)=;. Hence, ωsig is fully self-

justifiable in Gsig.

Proof of Proposition A.1

Proof. Fixω∈Ω∈{Ω} and let (A′s′)
S′
s′=1 be a refinement of an implementation (As)Ss=1 of IENWBRω.

Assume for a contradiction that (A′s′)
S′
s′=1 is not an implementation of IENWBRω. Let ǎ and š be

such that (i) ǎ∈A′š and ǎ /∈NWBRω((A′s)
š−1
s=1), and (ii) there is no ǎ′ and š′ with š′< š such that

ǎ′∈A′š′ and ǎ′ /∈NWBRω((A′s)
š′−1
s=1 ). Let ŝ be such that â′∈Aŝ, and let ŝ′≥ š be such that A′ŝ′−1=Aŝ−1

(which exists because (A′s′)
S′
s′=1 is a refinement of (As)Ss=1). Note that

NWBRω((As)
ŝ−1
s=1)⊂NWBR((A′s)

ŝ′−1
s=1 )

because (A′s)
ŝ′−1
s=1 -justifiability imposes more conditions than (As)ŝ−1

s=1)-justifiability. Hence, we have

that

ǎ∈NWBRω((As)
ŝ−1
s=1)⊂NWBR((A′s)

ŝ′−1
s=1 )⊂NWBR((A′s)

š−1
s=1) ,

where the last inclusion holds because š≥ ŝ. This clearly contradicts our earlier assumption that

ǎ /∈NWBRω((A′s)
š−1
s=1).
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Proof of Corollary A.1

Proof. The “only if” implication is trivial. To prove the “if” implication, assume ω is such that

SEω((Ãs)S̃s=1) 6=; for all complete and finest implementations (Ãs)S̃s=1. Let (As)Ss=1 be an imple-

mentation of IENWBRω, not necessarily complete or finest. Let s̃ be the number of actions in

∪S
s=1As (that is, the total number of actions that the implementation excludes). Let (as)s̃s=1 be a

sequence satisfying that (i) as 6=as′ for all s, s′, (ii) as∈∪S
s′′=1As′′ for all s, and (iii) if s<s′, as∈As1

,

and as′∈As2
, then s1≤s2. That is, (as)s̃s=1 is a sequence of actions satisfying that, if s<s′, then as

is excluded at a weakly earlier step than as′ under (As)Ss=1. Define, for all s=1, ..., s̃, A′s :={as}. We

now note that

A′s={as}⊂NWBRω((As′)
s−1
s′=1)

for all s=1, ..., ŝ, so (A′s)
S
s=1 is an implementation of IENWBRω. Becauseω is such that SEω((Ãs)S̃s=1) 6=

; for all complete and finest implementations (Ãs)S̃s=1, we have that SEω((A′s)
s̃
s=1) 6=;.

We finally argue that

SEω((A
′
s)

s̃
s=1)⊂SEω((As)

S
s=1) .

This follows from the fact that the restriction of belonging to SEω((A′s)
s̃
s=1) is more restrictive than

that of belonging to SEω((As)Ss=1).

Proof of Proposition A.2

Proof. Let ω be fully self-justifiable. We let A1 be the set of actions a∈A satisfying that (i) Ia is

on the path of ω, and (ii) a is never a weak best response for any sequential equilibrium in with

outcome ω. Note that A1 is an implementation of IENWBRω. Because ω is fully self-justifiable,

there is some sequential equilibrium (σ,µ) in SEω((As)1s=1).
30

Note that if BAD(σ)=;, then (σ,µ) is a forward induction equilibrium with outcome ω, so

the result is proven. Hence, assume that BAD(σ) 6=; then (σ,µ). We first argue that all actions

in BAD(σ) are in A1. Take some a∈BAD(σ) and assume, for the sake of contradiction, that there

is some (σ′,µ′) with outcome ω under which a is a best response. Note that, because σ′ and σ

have the same outcome, we have Eσ
′
[uι(I)(z)]=Eσ[uι(I)(z)] and

E((σ
′
I )I 6∈Ia ,a,(σ̃I )I∈Ia\{Ia})[uι(Ia)(z)]=E((σI )I 6∈Ia ,a,(σ̃I )I∈Ia\{Ia})[uι(Ia)(z)]

for all (σ̃I ′∈BRI ′)I ′∈Ia . Furthermore, we have σ′(a)=0 and, because σ′I ∈BRI for all I∈I, we also

have

E((σI )I 6∈Ia ,a,(σ′I )I∈Ia\{Ia})[uι(I)(z)]<Eσ[uι(I)(z)] .

30Note that if SEω((As)1s=1) was empty, then SEω((As
ω)

1
s=1) would be empty as well, and so would be SEω((As

ω)
Sω
s=1) (recall that

SEω((As′
ω)

s
s′=1)⊂SEω((As′

ω)
s−1
s′=1)) for all s), but that would contradict that ω be fully self-justifiable.

43



Hence, a is not a weak best response in any equilibrium in SEω((As)1s=1).

Now, consider the non-intersecting sequence (BAD(σ), A1\BAD(σ)). Because this is a re-

finement of (As)1s=1, Proposition A.1 ensures that (BAD(σ), A1\BAD(σ)) is an implementation of

IENWBRω. Take some (σ̂, µ̂)∈SEω(BAD(σ), A1\BAD(σ)). It is clear that BAD(σ̂)=BAD(σ) and

that condition (A.1) is satisfied. Hence, (σ̂, µ̂) is a forward induction equilibrium and its outcome

is ω.
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