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Abstract

Despite the great strides neuroscience has made in recent decades, the underlying principles

of brain function remain largely unknown. Advancing the field strongly depends on the abil-

ity to study large-scale neural networks and perform complex simulations. Simulations in

hyper-real time are of high interest here, as they would enable both comprehensive parameter

scans and the study of slow processes such as learning and long-term memory. Not even the

fastest supercomputer available today is capable of meeting the challenge of accurate and re-

producible simulation with hyper-real acceleration. The development of novel neuromorphic

computing architectures holds out promise, but the high costs and long development cycles for

application-specific hardware solutions makes it difficult to keep pace with the rapid develop-

ments in neuroscience. Commercial off-the-shelf System-on-Chip (SoC) devices, integrating

programmable logic, general-purpose processors, and memory in a single chip, offer an alterna-

tive. This technology is providing interesting new design possibilities for application-specific

implementations while avoiding costly chip development.

The primary aim of this thesis is to develop and evaluate a novel SoC-based architecture for

a neuromorphic compute node intended to operate in a multi-node cluster configuration and

capable of performing hyper-real-time simulations. As a complementary, yet distinct approach to

the neuromorphic developments aiming at brain-inspired and highly efficient novel computing

architectures for solving real-world tasks, the design of the compute node is strictly driven by

neuroscience requirements. These requirements are demanding, as is the process of deriving

appropriate design decisions from them.

Even for domain experts, it is often difficult to judge the correctness of a simulation result.

This leaves some uncertainty when making design decisions and proving the correctness of an

architectural design and its physical implementation. Methods for building credibility, such as

verification and validation, have been developed but are not yet well established in the field of

neural network modeling and simulation. This thesis therefore also outlines a rigorous model

substantiation methodology for increasing the correctness of neural network simulation results in

the absence of experimental validation data. The method was applied during the development and
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Abstract

evaluation of the neuromorphic compute node to build credibility on implementation correctness.

Finally, with the goal of large-scale neuromorphic computing, related technological aspects are

discussed and architectural enhancements for the neuromorphic compute node are presented.

This is accompanied by a workload analysis of two large-scale neural network models used in

neuroscience. Also, a concept for system integration is proposed that incorporates the high-

performance computing (HPC) landscape and takes into account existing tools and workflows for

modeling and simulation in computational neuroscience.

The results presented in this thesis reveal the potential of commercial off-the-shelf SoC technol-

ogy and demonstrate its suitability as a substrate for neuromorphic computing for application in

computational neuroscience. Recent developments in this technology, particularly the integration

of high-bandwidth memory (HBM), promise significant performance improvements. Acceleration

factors on the order of 100 become within reach, even for the simulation of large-scale spiking

neural networks.
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Zusammenfassung

Trotz der enormen Fortschritte, die die Neurowissenschaften in den letzten Jahrzehnten erzielt

haben, sind die grundlegenden Prinzipien der Funktionsweise des Gehirns noch weitgehend

unverstanden. Der Fortschritt auf diesem Gebiet hängt stark von der Fähigkeit ab, großskalige

neuronale Netzwerke untersuchen zu können und komplexe Simulationen durchzuführen. In

diesem Zusammenhang sind Simulationen in Hyper-Echtzeit von großem Interesse, da dies

sowohl umfassende Parameterscans als auch das Studium langsamer Prozesse, wie Lernen und

Langzeitgedächtnis, ermöglichen würde. Doch selbst der leistungsfähigste heute verfügbare

Supercomputer ist nicht in der Lage, die Herausforderung einer genauen, reproduzierbaren

und zugleich signifikant beschleunigten Simulation zu bewältigen. Die Entwicklung neuartiger

neuromorpher Computerarchitekturen ist hier vielversprechend. Dem gegenüber stehen jedoch

hohe Kosten und lange Entwicklungszyklen für anwendungsspezifische Hardwarelösungen, die es

erschweren, mit dem rasanten Tempo der Entwicklungen in den Neurowissenschaften Schritt zu

halten. Eine Alternative bietet hier kommerziell verfügbare System-on-Chip (SoC) Technologie,

die programmierbare Logik, Allzweckprozessoren und Speicher in einem einzigen Chip integriert.

Diese Technologie eröffnet interessante neue Designmöglichkeiten für anwendungsspezifische

Implementierungen, wobei eine kostspielige Chipentwicklung vermieden wird.

Das Hauptziel dieser Arbeit ist die Entwicklung und Evaluierung einer neuartigen SoC-basierten

Architektur eines neuromorphen Rechenknotens, der in einer Clusterkonfiguration betrieben

werden soll und in der Lage ist, Hyper-Echtzeit-Simulationen durchzuführen. Als komplementärer,

aber dennoch eigenständiger Ansatz zu den neuromorphen Entwicklungen, die auf vom Gehirn

inspirierte und hocheffiziente neuartige Computerarchitekturen zur Lösung realer Aufgaben

abzielen, orientiert sich das Design des Rechenknotens streng an den Anforderungen der

Neurowissenschaften. Diese Anforderungen sind anspruchsvoll, ebenso wie der Prozess der

Ableitung angemessener Designentscheidungen daraus.

Selbst für Fachexperten ist es oft schwierig, die Korrektheit eines Simulationsergebnisses zu

beurteilen. Dies führt zu einer Unsicherheit bei Designentscheidungen und beim Nachweis der

Korrektheit eines Architekturentwurfes und dessen technischer Implementierung. Methoden, die
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Zusammenfassung

Sicherheit schaffen, wie z.B. Verifizierungs- und Validierungsverfahren, wurden zwar entwickelt,

sind aber in den Neurowissenschaften im Bereich der Modellierung und Simulation neuronaler

Netzwerke noch nicht gut etabliert.

Ergänzend stellt diese Arbeit daher eine strenge Methodologie zur Modellabsicherung vor, mit

der die Korrektheit von Ergebnissen neuronaler Netzwerksimulationen erhöht werden kann,

wenn keine experimentellen Validierungsdaten zur Verfügung stehen. Bei der Entwicklung und

Evaluierung des neuromorphen Rechenknotens wurde diese Methodik eingesetzt, um Sicherheit

hinsichtlich der Implementierungskorrektheit zu schaffen.

Schliesslich, mit dem Ziel großskaligen neuromorphen Computings, werden hierbei relevante

technologische Aspekte diskutiert und Architekturverbesserungen für den neuromorphen Rechen-

knoten aufgezeigt. Begleitet wird dies von einer Analyse der bei der Simulation großskaliger

Netwerke zu erwartenden Arbeitslast. Hierfür werden zwei in den Neurowissenschaften verwen-

dete großskalige neuronale Netzwerkmodelle herangezogen. Ebenso wird ein Konzept für eine

Systemintegration vorgestellt, welches die High-Performance Computing (HPC) Landschaft

einbezieht und bestehende Werkzeuge und Arbeitsabläufe für die Modellierung und Simulation

berücksichtigt.

Die Ergebnisse dieser Arbeit zeigen das Potential kommerziell verfügbarer SoC-Technologie und

demonstrieren dessen Eignung als Platform für neuromorphes Computing für die Anwendung

in den computergestützten Neurowissenschaften. Aktuelle Entwicklungen dieser Technologie,

insbesondere die Integration von High-Bandwidth-Memory (HBM), versprechen darüber hinaus

deutliche Leistungssteigerungen. Selbst für die Simulation großskaliger spikender neuronaler

Netzwerke rücken damit Beschleunigungsfaktoren in der Größenordnung von 100 in den Bereich

des technologisch Erreichbaren.
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Chapter 1 Introduction

1.1 Motivation

Over the past century, an enormous body of knowledge has been accumulated about the structure

and function of the nervous system and the brain. Our understanding of neurobiology has

become increasingly precise and has been incorporated into neuroscience, which evolved into

an academic discipline in its own right. In 1952, Alan Lloyd Hodgkin and Andrew Huxley

presented a mathematical model that describes how action potentials in neurons of the giant

axon of a squid are initiated and propagated (Hodgkin and Huxley, 1952). The Hodgkin-Huxley

model is central to neuroscience research, and the authors received the 1963 Nobel Prize in

Physiology or Medicine for their work. In 1961, Richard FitzHugh suggested a simplified version

of this model, replacing the four equations of Hodgkin and Huxley by two (FitzHugh, 1961). An

equivalent electrical circuit was presented in 1962 by Jinichi Nagumo (Nagumo et al., 1962).

The model is therefore known as the FitzHugh-Nagumo model. In the same year, Bernard Katz

modeled neurotransmission across nerve cells (neurons) and uncovered fundamental properties of

synapses, the junctions between nerve cells that allow a signal to pass from one neuron to another.

In the 1960s and 1970s, David Hubel and Torsten Wiesel greatly expanded our knowledge

of sensory processing and the development of the visual system in a number of fundamental

studies (Hubel and Wiesel, 2005). Beginning in 1966, Eric Kandel and collaborators studied

biochemical changes in neurons associated with learning and memory in Aplysia and identified

the physiological changes that occur in the brain during the formation and storage of memories

(Kandel, 2007). How learning and information storage is achieved in the brain is still one of the

central questions to neuroscience. Research in this area is heavily influenced by Hebb’s 1949

postulate (Hebb, 1949), which states that a correlated activity of two neurons strengthens their

synaptic connection.

During the second half of the twentieth century, advancements in molecular biology and

technical innovations such as patch-clamp electrophysiology significantly increased scientific

study (Altimus et al., 2020). In particular, the incredible technological progress in computer

technology we have seen over the past five decades has accelerated neuroscience research.

Computerized models of neurons and neural networks have made significant contributions here

– and continue to do so. Computational neuroscience is still a young but rapidly growing area

within the field of neuroscience, involving a variety of disciplines including mathematics, physics,

computer science, and engineering. Supercomputers, with their unprecedented computational

power, have become indispensable tools in today’s neuroscience research with a broad range

of applications. For example, in neuroimaging, which aims to understand the microscopic

organization and detailed anatomy of the brain, supercomputers are used to analyze big data
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sets (e.g., Axer and Amunts, 2022). Research on the principles of brain structure, dynamics,

and function uses supercomputers to simulate large neural networks – networks with millions of

neurons and billions of synapses.

Despite the great strides neuroscience has made in recent decades, the underlying principles

of how the brain works are still largely unknown. Chris Eliasmith notes in his book How to

Build a Brain: ”An answer that picks out the parts of the brain that have increased activity while

reading words, or an answer that describes what chemicals are in less abundance when someone

is depressed, is not what we have in mind. Certainly these observations are all part of an answer,

but none of them traces the path from perception to action ...” (Eliasmith, 2013). The ultimate

goal remains to understand consciousness and the underlying mechanisms by which we perceive,

learn, act, and remember.

The human brain contains nearly 86 billion neurons, with each neuron in the neocortex forming

on the order of 10,000 synapses with other neurons. While the human brain consumes about

the same amount of power as a light bulb, the power consumption of a supercomputer is five

orders of magnitude larger, in the megawatt range. The von Neumann architecture of today’s

computers physically separates computation from storage. In brains, no conceptual or physical

distinction is made here. Data processing and storage are performed in a distributed manner by

complex networks of nerve cells. The brain’s efficiency, computational capabilities, processing

speed, and robustness to noise and malfunction is unique. From the earliest days of computing,

this encouraged engineers to profitably apply brain principles in the design of machines. An early

example is the Mark I Perceptron machine, built in 1957 at the Cornell Aeronautical Laboratory

by Frank Rosenblatt (Cornell Aeronautical Laboratory Inc., 1960). Because of his pioneering

work on artificial neural networks, Frank Rosenblatt is today recognized as one of the fathers of

deep learning (Tappert, 2019).

Since then, a plethora of brain-inspired computers and devices have been built. They are used

to model neuroscience theories and to solve machine learning tasks. The field of neuromorphic

computing, as we are calling it today, is evolving at an incredible pace, where the research on

neuromorphic algorithms and applications is becoming more and more of an important area. The

term neuromorphic emerged in the late 1980s and it is closely associated with Carver Mead,

a pioneer of modern microelectronics, who popularized the term with his 1990 publication

entitled Neuromorphic Electronic Systems (Mead, 1990). Carver Mead also published the first

book on neuromorphic computing, in which he describes electronic analog circuits to mimic

neurobiological architectures found in the nervous system (Mead, 1989). Today, the term

neuromorphic computing or neuromorphic engineering is much more broadly defined. We use

it to refer to brain-inspired analog circuits and devices in the tradition of Carver Mead, such
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as the neuron circuits developed by Giacomo Indiveri and his group (Indiveri et al., 2011), as

well as advanced computer architectures that are inspired by brain principles or are dedicated

to neuroscience simulation, such as the SpiNNaker neuromorphic system (Furber and Bogdan,

2020).

The main driver for most neuromorphic developments is undoubtedly brain-inspired computing

aiming at solving real-world tasks, where it draws inspiration from insights from neuroscience.

The application of neuromorphic computing in neuroscience research, however, is a niche

area, although there is great interest in its application in modeling and simulation. Progress in

neuroscience research depends to a large extent on the ability to study large neural networks

and perform complex simulations. Performing simulations in hyper-real time is of great interest

here, as it would allow comprehensive parameter scans and the study of slow processes such as

learning and long-term memory. However, even the fastest and most advanced supercomputers

available today cannot meet the challenge of significantly accelerating the simulation of a large-

scale network. Neuromorphic computing, leveraging novel technologies and application-specific

hardware architectures, is therefore an attractive option that promises to provide the necessary

tools for this task.

Despite all technological innovations, making neuromorphic computing a useful tool for

neuroscientists is a demanding technical challenge. Neuroscience research employs mathematical

models to gain understanding of the complex dynamics of neural networks. Their simulation

requires numerical accuracy. Judging the correctness of a simulation outcome is often difficult,

even for domain experts. Methods for building credibility, such as verification and validation,

have been developed and are common practice in engineering disciplines, but they are not yet

well established in the field of neural network modeling and simulation. Deriving appropriate

design decisions for the implementation of numerical operations and algorithms can be hampered

by this. Neuroscience simulation also uses a wide variety of neuron and synapse models.

Besides the requirement for accuracy, there is therefore also a need for flexibility. At a technical

level, flexibility conflicts with the objective of achieving efficiency, which is tied to the goal of

accelerated simulation. In addition, a neuromorphic system dedicated to neuroscience must also

integrate with the existing landscape of tools and workflows for modeling and simulation in order

to attain user acceptance.

To date, there is no neuromorphic system available to neuroscientists that can meet all criteria

equally while achieving significant acceleration. A system capable of speeding up the simulation

of a large-scale neural network by a factor of 100 with respect to the biological time domain

would be a major breakthrough.

Developing such a system based on application-specific integrated circuits (ASICs) is a

22



Chapter 1 Introduction

time-consuming and costly process. A promising alternative is commercial off-the-shelf chip

technology, integrating programmable logic, such as field-programmable gate arrays (FPGAs),

along with general-purpose processors and memory in a single device called a System-on-Chip

(SoC). This technology has the potential to provide the substrate to take neuromorphic computing

as a tool for neuroscience to the next level without costly chip development.

The objectives of this thesis are:

• to introduce the concept of model verification and substantiation as a methodology for

accumulating evidence of a model’s plausibility and correctness, even in the absence of

experimental validation data;

• to demonstrate a rigorous model verification and validation process, including an investiga-

tion of the required numerical precision on the SpiNNaker neuromorphic system;

• to develop and evaluate a novel FPGA-SoC-based neuromorphic compute node architecture

capable of performing simulations in hyper-real-time, with the design strictly driven by

neuroscience requirements, as a complementary yet distinct approach to the neuromorphic

developments aiming at brain-inspired novel computer architectures for solving real-world

tasks;

• to explore commercial off-the-shelf FPGA-SoC device technology and investigate its

suitability as substrate for neuromorphic computing for application in computational

neuroscience, in modeling and simulation; and

• to examine the technical requirements for large-scale neuromorphic computing and to pro-

pose a concept for a neuromorphic system integration that incorporates high-performance

computing (HPC), taking into account the existing tools and workflows for modeling and

simulation.

1.2 Spiking Neural Network Simulations in Neuroscience

This section introduces elementary notions of neurobiology and the basic concepts of numerical

simulation of spiking neural networks in computational neuroscience. A comprehensive introduc-

tion to the complex fields is beyond the scope of this thesis. The presentation in this section is

therefore highly selective, focusing on those aspects necessary for further understanding.
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1.2.1 Spiking Neurons

Neurons are the primary functional units of the nervous system. They generate electrical signals

that convey information. There are many different types of neurons, but most of them share

the same main features. A typical neuron can be divided into three distinct parts: a cell body;

dendrites; and an axon. These three parts are anatomically separate and serve different purposes.

A schematic drawing of a neuron is shown in Figure 1.1A. The cell body (Greek soma) performs

the essential life functions of a neuron by supporting all its chemical processes. Dendrites are

projections from the soma, cellular extensions with many branches. Their function is to receive

signals from other neurons or sensory information from the environment. The axon is a cable-like

projection, the component of the neuron that conveys the electrical signals generated by the

neuron and received by other neurons. These signals are all-or-none impulses, called action

potentials or spikes (Figure 1.1B). Axons can vary greatly in length, ranging from 0.1 mm to

3 m (Kandel et al., 2000). Long axons are coated with an insulating sheath of myelin that is

interrupted at regular intervals by the nodes of Ranvier. Action potentials traveling down the axon

regenerate at these uninsulated spots, preventing signal degradation.

The branches of a neuron’s axon form connections to many other neurons, the recipients of

the signals. The point at which two neurons communicate is called a synapse. Accordingly, the

neuron transmitting an action potential is called the presynaptic neuron and the neuron that is

receiving this signal is called the postsynaptic neuron. Figure 1.1C shows a schematic drawing

of a chemical synapse, which is the most common synapse type1. Axon branches end in what

are called presynaptic terminals. They attach to the dendrites (and also the cell bodies) of the

postsynaptic neurons, where they form synapses. At these contact points pre- and postsynaptic

neuron are anatomically separated by a tiny space, the synaptic cleft.

A synapse translates electrical stimuli into chemical signals, i.e., the release of neurotransmit-

ters from the presynaptic terminal into the synaptic cleft. The neurotransmitter molecules are

detected by receptors in the postsynaptic cell membrane, where they open specific channels that

initiate an ionic current flow into the cell. This current flow produces a so-called postsynaptic

potential (PSP) and gradually changes the electrical charge of the neuron. A synapse here can be

excitatory (the change in charge is positive) or inhibitory (the change in charge is negative), where

a neuron forms either excitatory or inhibitory synaptic connections at all of its axonal branches.

This is a consequence of Dale’s principle, after Sir Henry Dale, a British physiologist who, in

1935, stated that a neuron performs identical chemical actions at all of its synaptic connections to

other cells.

1Apart from chemical synapses, some operate purely electrical. These are called gap junctions.
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Figure 1.1 | Structure of a neuron. (A) Structure of a neuron schematically redrawn after Kandel et al.
(2000) and modified. A neuron can be divided into three distinct parts: a cell body (soma), dendrites, and
an axon (see main text for a description of their function). (B) Neurons generate stereotyped, uniform
electrical signals, called action potentials. (C) The branches of a neuron’s axon form communication sites
with many other neurons. The point at which two neurons communicate is called a synapse. Shown here is
a schematic drawing of a chemical synapse.

Synapses are dynamic plastic elements whose behavior is shaped by the previous history of

both presynaptic and postsynaptic activity. Changes in synaptic signal transmission arise from a

number of synaptic plasticity mechanisms, which gives synapses an active role in information

processing (Abbott and Regehr, 2004).

A neuron maintains an electrochemical gradient between the inside and the outside of the cell,

resulting in an electrical charge of the neuron. The synaptic inputs of a neuron continually change

this charge. This can be measured by injecting an electrode into the neuron’s cell body, recording

the voltage across the cell membrane. The sketch in Figure 1.2 illustrates this. At its resting state,

to which a neuron always tends to return, this membrane voltage, or membrane potential, has a

value of approximately −70 mV (Dayan et al., 2005) (see also Figure 1.1B); the cell membrane

here has a strong negative polarization. If the membrane potential exceeds some threshold value,
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Figure 1.2 | Neuronal dynamics. The membrane potential u(t) of a postsynaptic neuron changes
depending on the synaptic input; here an excitatory input from two presynaptic neurons. Each incoming
spike event evokes a postsynaptic potential (PSP), which decays over time. When the membrane potential
exceeds some threshold value ϑ, the neuron generates an action potential; it emits a spike. After a refractory
period, during which the neuron is unable to generate another action potential, the membrane potential
returns to the resting state urest.

i.e., the synaptic input (the superposition of PSPs) is strong enough, the neuron generates an

action potential; the neuron emits a spike. After emitting a spike, the neuron enters a refractory

period during which it is unable to generate another action potential. One could also say that a

neuron integrates incoming excitatory and inhibitory signals into a single cell response.

In the nervous system, billions of neurons work together forming complex communication

networks. To study these networks, computational neuroscience uses mathematical models and

numerical simulations.

1.2.2 Phenomenological Models

Depending on the scientific question, computational neuroscience employs different types of

models with different levels of abstraction and complexity. Figure 1.3 compares three categories

of models that use different abstraction: compartmental neuron models; point neuron models; and

population-based models. Compartmental neuron models include the morphology of neurons, i.e.,

the spatial structure of dendritic trees and axons, which they decompose into many compartments.

They can represent the electrophysiological properties of neurons with a high degree of accuracy,

but due to their intrinsic complexity, their simulation comes at a very high computational cost.

Point neuron models are not morphologically detailed. They are less complex and reduce a

neuron to a single compartment, where the modeling of neuronal dynamics is grounded in
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Complexity of elements Possibility to simulate large networks

Figure 1.3 |Model classes with different levels of abstraction. In computational neuroscience, different
types of models are employed. Here three levels of abstraction and complexity are shown. Compartmental
neuron models are morphologically detailed. Correspondingly, these models are complex. Point neuron
models reduce this complexity by modeling selected phenomenological properties. An even higher level
of abstraction is used in population-based models, which describe the coarse-grained activity of large
populations of neurons sharing the same properties. The computational cost of simulation increases
with the complexity of a model, the amount of detail it contains. Reducing complexity, in turn, reduces
computational cost, allowing the simulation of larger networks.

phenomenological properties. Point neuron models are suited for studies of network dynamics

and memory. The reduction in complexity allows the simulation of larger spiking neural networks.

A high level of abstraction is used in population-based models. These models describe the

coarse-grained activity of populations of neurons sharing the same properties. Population-based

models contain less detail, but allow for the simulation at a large scale.

The variety of models used in computational neuroscience is large (see, e.g., Gerstner et al.,

2014; Dayan et al., 2005), and new models are being added continually. In this thesis, only point

neuron models are considered. The neuromorphic compute node that is presented in Chapter 3

was developed with the objective of hyper-real-time simulation of networks of neurons belonging

to this specific category of models.

In order to give an example of a basic point neuron model, the leaky integrate-and-fire (LIF)

model is presented in the following. In addition, for a more thorough picture, a simple synapse

model is also described, and some technical aspects of simulation are explained. Another point

neuron model, the Izhikevich neuron model, will be described in Section 2.3.1.1.
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Figure 1.4 | Equivalent circuit diagram of the LIF neuron model. The capacitor Cm acts like the cell
membrane. The voltage u(t) across the capacitor is representing the membrane potential. In absence of an
input current I(t), the capacitor charges to the voltage urest. The neuron is then in the resting state, with the
membrane potential u(t) = urest. A positive input current increases the charge of the capacitor. When u(t)
reaches the threshold ϑ, a spike event is generated. Spike events are represented as Dirac pulses δ(t− t f ),
where t f is the time at which a spike event occurs. If the driving current I(t) vanishes, u(t) returns to the
resting value with the time constant RmCm, where Rm represents the neuron’s membrane resistance.

Leaky integrate-and-fire (LIF) neuron model
The concept of the LIF model can be traced back to Louis Lapicque, a French physiologist, who,

in 1907, published a study in which he introduces a model of electrical excitation of nerves that

is based on a capacitor (Lapicque, 1907; Brunel and Van Rossum, 2007b,a). The LIF model is

one of the simplest models and widely used in computational neuroscience.

The model describes neuronal dynamics as an integration process combined with a mechanism to

trigger an action potential when the membrane voltage reaches some threshold. Action potentials

are reduced to events, exploiting the fact that they always have roughly the same stereotyped

shape. The model can be expressed as an RC-circuit. The circuit diagram is shown in Figure 1.4.

Subthreshold dynamics: The LIF model characterizes a neuron by a membrane voltage u(t) that

has a resting value urest (the resting potential of the neuron), a membrane capacitance Cm (the

integrator), and a membrane resistance Rm (the leakage). Synaptic input is represented by an

injected current I(t). By applying Kirchhoff’s law we can write I(t) as

I(t) = IC + IR, (1.1)

where IC is the current that charges the capacitor Cm, and IR is the current that passes through the

resistor Rm. From Equation (1.1), using Ohm’s law and the capacitor equation IC = Cm
du
dt , we

derive

I(t) = Cm
du
dt

+
u(t)−urest

Rm
. (1.2)
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The standard form of the model (see, e.g., Gerstner et al., 2014) rewrites Equation (1.2) as

τm
du
dt

= urest−u(t) + RmI(t), (1.3)

where τm is interpreted as the membrane time constant with τm = RmCm, the time constant of the

leaky integrator. The linear differential Equation (1.3) describes the evolution of the membrane

potential u(t); in electrical terms, it describes the voltage response of the RC-circuit to an input

current.

Threshold and refractory: The generation of action potentials is modeled as an artificial process.

Action potentials are expressed as events that happen at precise times t f , that is, when the

membrane potential u(t) reaches the threshold value ϑ from below. This gives the threshold

conditions for the emission of the f th ( f = 1,2, . . . ) spike at time t f as

t f : u(t f ) ≥ ϑ and t f =
{
t|u(t) ≥ ϑ

}
. (1.4)

When a spike event has occurred, the model enters a refractory period and is reset

∀ f , ∀t ∈
(
t f , t f +τref

]
: u(t) = ureset. (1.5)

In Equation (1.5), τref denotes the absolute refractory time, and ureset is the membrane reset

potential, for which ureset < ϑ has to apply.

Spike events: A spike event is represented as an infinitely tall pulse in the form of the Dirac

δ-function lim
t→t f

δ(t− t f ) =∞. A spike train can thus be denoted as a sequence of spike times

s(t) =
∑

f

δ(t− t f ). (1.6)

The LIF model (Equation (1.3)) describes the voltage response to the time-dependent input

current I(t), the driving synaptic input. As an example of how this input is derived, the following

describes a simple synapse model. This synapse model will use an alpha-function to shape

synaptic inputs.

Current-based alpha-shaped synapse
Generally, synapse models can be divided into two basic types: conductance-based (COBA); and

current-based (CUBA) models. The former respond to a presynaptic spike with a postsynaptic
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potential (PSP), the latter with a postsynaptic current (PSC). The model presented here as an

example is a current-based model frequently used in computational neuroscience.

The model describes the time course of a PSC by the alpha-function

α(t) =
t
τs

e1−t/τsΘ(t), (1.7)

which exponentially rises and decays with the time constant τs, the synaptic time constant. In

Equation (1.7), Θ is the Heaviside step function with Θ(t) = 1 for t > 0 and Θ(t) = 0 else. The

use of an alpha-function here accounts for the low-pass characteristics of synaptic transmission.

The PSC that a spike event evokes in a postsynaptic neuron is derived by multiplying the alpha-

function by a factor. A PSC is then given as

PSCi j(t) = wi jα(t), (1.8)

where the factor wi j determines the amplitude of the PSC, specifying the synaptic weight, i.e., the

strength of the synaptic connection between the presynaptic neuron j and the postsynaptic neuron

i. For a positive wi j, the PSC is positive and the synapse is excitatory; a spike event induces an

excitatory postsynaptic current (EPSC). If wi j is negative, the PCS is negative and the synapse is

inhibitory; a spike event results in an inhibitory postsynaptic current (IPSC). The superposition

of PSCs gives the total synaptic input current of a neuron i, which can be formulated as

Ii(t) =
∑

j

(PSCi j ∗ s j)(t−di j). (1.9)

In Equation (1.9), s j(t) denotes the spike train of the presynaptic neuron j according to Equa-

tion (1.6), di j is the synaptic transmission delay from the presynaptic neuron j to the postsynaptic

neuron i, which accounts for the dendritic and axonal delays of the connection, and “∗ “ is the

convolution operator, which is defined as

(
f ∗g

)
(t) =

∫ ∞

−∞

f (s)g(t− s)ds. (1.10)

The modeling of synapses has a technical aspect that requires explanation, as it is relevant for

digital simulation and thus for the architecture of a neuromorphic accelerator.

Each synapse, i.e., each PSC-kernel, can in principle have a different time constant τs. Techni-

cally, in a simulation, this would require a neuron to maintain a PSC for each of its incoming
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connections, resulting in an enormous computational cost and memory requirement when simu-

lating a large network. Therefore, implementations typically use only two synaptic time constants

per neuron, one for excitatory and one for inhibitory synapses, reducing the number of PSCs to

be maintained to two. This is a generally accepted simplification, which allows a postsynaptic

neuron to lump together the weighted spike trains of all excitatory presynaptic neurons, and lump

together the weighted spike trains of all inhibitory presynaptic neurons. Thus, in a simulation,

synaptic weights can be accumulated at spike arrival time and the combined effect of all synapses

can then be incorporated into the model dynamics (see Rotter and Diesmann, 1999).

We can reformulate Equation (1.9) as two equations that divide the synaptic input current into an

excitatory E component (the superposition of EPSCs)

IE,i(t) = α(t, τs = τE)
∑
j∈E

(wi j ∗ s j)(t−di j), (1.11)

and an inhibitory I component (the superposition of IPSCs)

II,i(t) = α(t, τs = τI)
∑
j∈I

(wi j ∗ s j)(t−di j), (1.12)

where τE and τI denote the synaptic time constants of excitatory and inhibitory synapses, respec-

tively. The total synaptic input current of a neuron i is then given by

Ii(t) = IE,i(t) + II,i(t). (1.13)

LIF models with current-based synapses have an advantage in digital simulations. They allow

exact integration (see, e.g., Rotter and Diesmann, 1999; Morrison et al., 2007). However, this is

generally not the case for the majority of models. The dynamical systems that the mathematical

models of neurons and synapses describe are typically nonlinear and require numerical methods

for their solution.

Mathematical models of neurons and synapses are the basis for the construction of network

models, which arrange neurons into populations, and connect populations to cortical circuits,

and cortical circuits to brain areas, and so forth. These models can be supplemented with further

phenomenological properties, for instance the description of topologies and rules for plasticity

(a spike-timing-dependent plasticity (STDP) rule is described in Section 2.3.1.1). Due to their

nonlinear and complex nature, digital simulation is the tool of choice to study these systems.
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1.2.3 Digital Simulation

Digital simulation plays a key role in gaining insight into the underlying principles of neural

computation. It enables neuroscientists to study the interaction of neurons and synapses and the

complex dynamics that arise when large numbers of them are connected into networks.

When simulating a dynamical system on a digital computer, we generally have to differentiate

between a discrete-time simulation and a discrete-event simulation. In a discrete-time simulation,

the time axis is divided into evenly spaced intervals, a time grid. A continuously evolving

system is then advanced in steps using discrete-time approximation methods – state changes

are considered at specific points in time and not continuously through time. In contrast, in a

discrete-event simulation, the system is advanced when an event occurs, where an event is an

action that affects the state of the system. The two simulation paradigms are also known as

time-driven and event-driven simulation. Both have their advantages and disadvantages. However,

the pros and cons will not be the subject of further discussion here, as they are of secondary

interest.

Software tools for the simulation of spiking neural networks, such as the neural simulation tool

NEST (Gewaltig and Diesmann, 2007), typically use a hybrid simulation scheme. Neuron states

are updated in a time-driven manner, whereas spike events are processed in an event-driven way

(Morrison et al., 2005). This is a reasonable choice: the time-driven scheme allows the network

state to be advanced effectively, and the event-driven scheme is appropriate because between the

occurrence of two successive spike events arriving at a neuron, the weighted synaptic input to the

neuron does not change – the process is inherently event-discrete. The flow diagram in Figure 1.5

illustrates this hybrid simulation scheme.

Notions of time
The system is evaluated in steps where the time axis is divided into intervals

tk ≤ t ≤ tk+1, tk+1 = tk + h. (1.14)

In Equation (1.14), h is the temporal spacing of the grid, i.e., the time resolution of the simulation.

The indices k enumerate the simulation time steps. The simulated time is then given by

T = kh. (1.15)

The term simulated time refers to the biological time domain and is used here to avoid ambiguities

with the term simulation time. The latter is also often used to refer to the duration of a simulation,
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Figure 1.5 | Hybrid simulation scheme. The network state is advanced at evenly spaced time intervals,
i.e., time-driven, whereas spike events are processed as they occur, i.e., event-driven. See main text for
description.

i.e., the physical time elapsed in the system.

State update
In each simulation time step, each neuron is visited and its dynamic behavior is approximated on

the time grid by employing numerical methods. Depending on the type of ordinary differential

equations (ODEs) that describe these dynamics, Euler or Runge-Kutta-Fehlberg methods are

often used here. A state transition from one grid point to the next is based on the current state yyyk

and incorporates the weighted synaptic inputs gggk+1, the summed synaptic weights of all events

arriving at time step k + 1: yyyk+1← F(yyyk,gggk+1). At the grid points, the system is always in a

well-defined state.

Spike events, sk, are processed as they occur, calculating the synaptic inputs that will be

incorporated into the dynamics at subsequent time steps: gggk+d ←W(sk), d ∈ {1,2, ...}. To preserve

the temporal causality of events, the time-driven process may need to wait until the events that

occurred during a state transition are processes.
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This hybrid simulation scheme has proven efficient and is also used by the neuromorphic compute

node presented in Chapter 3.

1.2.4 Methods and Tools

In the process of gaining insight into the underlying principles of neural computation, the methods

and software tools developed and provided by the computational neuroscience community play a

key role. The tools listed below are only a selection with a focus on modeling and simulation.

To conveniently describe the dynamics of neuron and synapse models, domain-specific lan-

guages (DSLs) such as NeuroML (Gleeson et al., 2010), NMODL (Hines and Carnevale, 2000),

and NESTML (Plotnikov et al., 2016) have been developed. These tools allow models to be

formulated in a high-level language, a DSL description, from which tools then generate simulation

code.

Community software for simulation has been developed to run on all scales from laptops to the

largest supercomputers. Examples are the simulation engines NEURON (Hines and Carnevale,

1997), Arbor (Akar et al., 2019), NEST (Gewaltig and Diesmann, 2007), and Brian (Goodman and

Brette, 2008). For convenient graphical user interaction, tools such as NEST Desktop (Spreizer

et al., 2021) are also available.

Network models are often described using a higher-level language such as PyNEST (Eppler

et al., 2009) or PyNN (Davison et al., 2009). PyNN, for example, provides a common user

interface for software-based neural network simulation tools (e.g., NEURON, NEST, and Brian)

and also supports the neuromorphic systems SpiNNaker (Furber et al., 2013) and BrainScaleS

(Schemmel et al., 2010). Here the Python programming language has established as front-end

for user interaction. The language is easy to learn, has a large active community base, and offers

extensive support for numerical calculations and data analytics.

This software landscape is complemented by numerical tools for statistical analysis, such as

the Electrophysiology Analysis Toolkit Elephant2 as well as tool support for model validation

methodologies, for example, the validation framework NetworkUnit3 (Gutzen et al., 2018).

The requirements with respect to efficiency, correctness and the reproducibility of results place

high demands on these tools and the entire software ecosystem. This infrastructure and its

requirements must be taken into account when developing new tools or designing a novel

neuromorphic system if it should be of value for the computational neuroscience community.

2RRID:SCR 003833; http://neuralensemble.org/elephant
3RRID:SCR 016543; https://github.com/INM-6/NetworkUnit
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1.3 Neuromorphic Computing as Tool for Neuroscience

The main driving force behind the developments in neuromorphic computing is undoubtedly

brain-inspired computing, which seeks to apply new technologies and develop novel computer

architectures inspired by the working principles of the brain – although these are not yet fully

understood. The application of neuromorphic computing in computational neuroscience, however,

is still a niche area, but of high interest in the field. As a tool to accelerate simulations, it can help

unlock the secrets of brain function and thus contribute to the theoretical foundations of practical

applications.

When studying neural networks, it is generally desirable to simulate them as fast as possible.

Whereas real-time simulation is interesting because of the possibility of interacting with real-

world applications, hyper-real-time would enable the study of slow processes such as learning

and memory, and permit researchers to perform more comprehensive parameter scans of faster

processes. However, not even the fastest and most advanced supercomputers available today can

meet the challenge of significantly accelerating the simulation of a large-scale spiking neural

network. The use of neuromorphic computing for this purpose, leveraging novel technologies

and application-specific hardware architectures, is therefore highly attractive as it promises to

provide the necessary tools for this task.

1.3.1 Requirements

Despite all technological innovations, making neuromorphic computing a useful tool in computa-

tional neuroscience modeling and simulation is a demanding technical challenge. Neuroscience

research employs mathematical models to gain understanding of the complex dynamics of neural

networks. Their simulation requires numerical accuracy. Simulations must be deterministic with

reproducible outcomes. The plethora of neuron and synapse models used in simulations makes

it difficult to arrive at an architecture design that satisfies all requirements equally. Plasticity

rules and algorithms, which is a rapidly evolving area of research, also require a high degree of

flexibility in algorithmic implementation.

Moreover, there are questions that lack a clear answer, leaving design decisions in a state of

uncertainty. One such question is, for example, the required numerical precision. The answer

here determines the specification of data types and the implementation of arithmetic operations

and algorithms – design decisions that affect implementation complexity, chip area, and power

efficiency. To the best of my knowledge, so far, only a few studies have examined the effects of

numerical accuracy on simulation outcomes (e.g., Pfeil et al., 2012; Gutzen et al., 2018; Dasbach
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SoC technology can bridge the flexibility-gap between programmable logic devices and general-purpose
processors.

et al., 2021; Trensch et al., 2018, and Chapter 2).

A neuromorphic architecture must therefore provide flexibility in model implementation. It

should not be bound to a specific model and should be open to extensions. To achieve high user

acceptance, it must integrate with the existing landscape of tools and workflows for modeling and

simulation. Scalability and the capability of delivering significant acceleration are of course also

key requirements.

Flexibility and efficiency are both essential, yet they are technically conflicting requirements

that constrain the design space and influence the choice of technology and implementation style.

The requirement for numerical accuracy and reproducibility here rules out approaches based on

analog circuits.

1.3.2 Choice of Technology

Flexibility and efficiency are opposing goals in the choice of technology, resulting from the so

called energy vs. flexibility conflict (Noll et al., 2010). This conflict is illustrated in Figure 1.6,

which shows a quantitative comparison of different circuit implementation styles.

While traditional programmable general-purpose processors (GPPs) provide the highest level of

flexibility, a physically optimized application-specific integrated circuit (ASIC) freezes a specific

use case in silicon. Physically optimized ASICs achieve the highest efficiency, but are inflexible.
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Between technologies, energy and area efficiencies here span more than five orders of magnitude.

From Figure 1.6, it can be seen that field-programmable gate arrays (FPGAs) can provide a good

compromise between flexibility and efficiency.

FPGAs have long been the exclusive domain of hardware engineers, primarily used in rapid

prototyping. Software developers often didn’t even know what they were. This has changed,

not least because of advances in the EDA4 tools, which today allow the designer to describe a

hardware design at a higher level of abstraction, for example, in the C language as an algorithmic

description. These High-Level Synthesis (HLS) methods reduced development times and made

the technology accessible to non-hardware experts. This has also set impulses for neuromorphic

computing and led to a number of FPGA-based developments in the field (see Section 1.3.3).

Today’s broader use of FPGAs has also been facilitated by FPGAs empowered with general-

purpose processors, which has also changed the way FPGAs are used. This type of devices

emerged a decade ago. The latest generation of this technology integrates a programmable logic

device together with a complete computer system and large memories in a single chip, a System-

on-Chip (SoC). Since its emergence, commercial off-the-shelf FPGA-SoC technology has gained

popularity, not least because of its ability to combine the flexibility of a general-purpose processor

with the efficiency of application-specific logic. From an application perspective, this technology

mitigates the flexibility vs. efficiency conflict (in Figure 1.6 indicated by the overarching label

FPGA-SoC) and enables novel approaches for architecture designs.

It is specifically these characteristics that make FPGA-SoC devices an interesting substrate for

neuromorphic computing for application in computational neuroscience. The suitability of the

technology for this purpose is the subject of further investigation in this thesis.

1.3.3 Neuromorphic Developments

Neuromorphic computing already has a rich history. The field has received broader attention in

recent years, largely because of its potential to enable low-power machine intelligence and edge

applications that require real-time data processing. The most prominent efforts in this regard are

Intel’s Loihi platform (Davies et al., 2018) and the IBM NorthPole neural inference machine

(Modha et al., 2023a,b), which is IBM’s latest development and the successor to the TrueNorth

chip (Merolla et al., 2014). A complete overview of the field would exceed the scope of this thesis.

Therefore, I will only highlight some developments with a focus on neuroscience simulation and

emphasize aspects that are relevant here. Surveys into to the field can be found in, e.g., Schuman

et al. (2017, 2022).

4Electronic Design Automation

37



Chapter 1 Introduction

BrainScaleS (Heidelberg University) SpiNNaker (University of Manchester)

Figure 1.7 | Large-scale neuromorphic systems developed in the Human Brain Project.

Developed to a large extent within the Human Brain Project5 and dedicated to neuroscience are

the large-scale neuromorphic systems BrainScaleS6 (Schemmel et al., 2010) and SpiNNaker7

(Furber et al., 2013). The systems are shown in Figure 1.7. They are based on two complementary

principles.

The BrainScaleS system and its successor BrainScales-2 (Pehle et al., 2022), which both have

been developed at Heidelberg University, are capable of running simulations three orders of

magnitude faster than real-time. To achieve this, the architecture builds on the physical, i.e.,

analog, emulation of neuron and synapse models (Schemmel et al., 2017) in dedicated mixed-

signal circuits. This is combined with digital plasticity processors (only BrainsScaleS-2; see

Friedmann et al. (2017)). The system uses wafer-scale integration to efficiently interconnect a

large number of analog neurons to accommodate the high speed-up. A single wafer incorporates

about 2 ·105 neurons and 44 ·106 synapses. In the left of Figure 1.7, a 20-wafer machine is shown

that is located at Heidelberg University. Physical, analog emulation restricts the system to its

built-in, silicon-frozen analog models, and use cases where technology-related effects, such as

fabrication tolerances and thermal noise, are acceptable. The very high speed-up, however, makes

it highly suitable to applications that take a very long time in the biological domain.

The SpiNNaker system was developed at the University of Manchester. It is a massively

parallel neuromorphic computing platform based on energy-efficient digital multi-core ARM

chips. It is fully programmable, allowing flexibility in the choice and implementation of numerical

models, and enables large-scale simulations to be performed in real time. The current largest

5The Human Brain Project (HBP) (2013 – 2023) was a European flagship project that pioneered digital brain research.
6BrainScaleS is a contraction of brain-inspired multiscale computation in neuromorphic hybrid systems.
7SpiNNaker is a contraction of spiking neural network architecture.
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SpiNNaker system is a one million core machine located in Manchester (shown in the right of

Figure 1.7). What sets SpiNNaker apart and differentiates it from a normal supercomputer is

its brain-inspired communication fabric, which is optimized for broadcasting large numbers of

small data packets, ideal for conveying spike events. The successor SpiNNaker2 (Höppner et al.,

2021) is developed at TU Dresden. SpiNNaker2 is an evolution of the first generation SpiNNaker

architecture, adding dedicated accelerators and generally increasing system performance.

BrainScaleS and SpiNNaker are milestones behind which are enormous development efforts,

not least because of time-intensive and costly chip developments. Both are integrated into the

landscape of tools and workflows for neuroscience simulation and are accessible through the

European research infrastructure EBRAINS8.

As substrate for neuromorphic computing, FPGAs are becoming increasingly attractive. With

today’s FPGAs, complex designs can be realized quickly and costly chip development can be

avoided. In an early study, Maguire et al. (2007) made an inventory and revealed the challenges

associated with implementing large-scale spiking neural networks using FPGAs. A number of

architectural approaches and implementations for different use cases have since been published.

Below, I just highlight a few selected developments, looking at them from the perspective of

neuroscience simulation.

Bluehive (Moore et al., 2012) is a scalable custom 64-FPGA machine that is dedicated to the

simulation of large-scale networks with demanding communication requirements. On a single

FPGA, Bluehive can simulate 64,000 Izhikevich neurons in real time. NeuroFlow (Cheung et al.,

2016) is a platform that builds on top of Maxeler’s9 Dataflow Engine (DFE) technology. A

6-FPGA system can simulate networks consisting of 600,000 neurons. Real-time performance

is achieved when simulating 400,000 neurons. The simulation of a plastic 1000 neuron two-

population Izhikevich model for 24 h biological time can be completed in 1435 s, thus achieving

an approximately 60-fold acceleration. The platform supports several neuron and synapse model

types and a spike-timing-dependent plasticity (STDP) rule. NeuroFlow also provides a PyNN

interface. In Wang et al. (2014) and Wang et al. (2018) an architecture is proposed that uses a

procedural on-the-fly generation scheme for parameters and connections and can simulate 20

million to 2.6 billion LIF neurons in real time on a single Stratix V FPGA.

In the designs of the above systems, engineers had to make trade-offs with respect to simulation

accuracy and model complexity to achieve the desired system size and performance. For example,

all the above systems advance neuron dynamics in steps of 1.0 ms; this update interval is ten

times larger than the de facto standard used in digital simulations. This significantly reduces

8https://www.ebrains.eu/
9Maxeler Technologies: www.maxeler.com
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computational cost, but also reduces numerical accuracy – especially for neuron models with stiff

equations (Blundell et al., 2018c; Hansel et al., 1998; Morrison et al., 2007; Pauli et al., 2018).

Model complexity was reduced in the architecture proposed in Wang et al. (2014) and Wang et al.

(2018); individual synaptic connection delays are replaced by an axonal delay. This avoids large

memory structures and the computational cost of delaying and accumulating incoming synaptic

events, allowing millions of neurons to be simulated on a single FPGA. However, the limitations

accepted here may well be appropriate for a variety of applications.

FPGA-based systems that aim for accurate and reproducible simulation typically show more

limited system characteristics in terms of the number of neurons per node (FPGA device)

simulated and the achievable acceleration factor. For example, in Pani et al. (2017) a scalable

modular architecture for closed-loop experiments with in vitro cultures is presented. The platform

can simulate small to medium-sized networks in real time and implements (only) 1440 Izhikevich

neurons.

Based on FPGA-SoC technology is the IBM Neural Computer prototype INC-3000 (Narayanan

et al., 2020). A single-cage system clusters 432 AMD Xilinx Zynq SoC devices in a high band-

width 3D mesh communication network. The system is highly flexible and applications can

offload algorithms to programmable logic to accelerate them. In Heittmann et al. (2022), the

INC-3000 system was employed for a simulation of the cortical microcircuit model (Potjans and

Diesmann, 2014), which comprises approximately 0.8 ·105 neurons and 0.3 ·109 synaptic connec-

tions (the model is described in more detail in Section 6.3.2). The simulation was implemented

using High-Level Synthesis (HLS) and required 305 SoC devices on the INC-3000 system, where

only the programmable logic part was used. The simulation achieved a speed-up factor of four

compared to the biological time domain. This speed-up factor is mainly determined (limited) by

the spike exchange times and hop latencies in the INC-3000 systems’ communication network,

which is optimized for bandwidth but not for latency (see Heittmann et al. (2022)). However, at

the time of publication, it was the fastest simulation of this model. In Kauth et al. (2023), an

FPGA cluster that connects 35 NetFPGA SUME boards in a two-hop low-latency communication

network was used to implement a simulation of the same model. This simulation achieved an

acceleration factor of 20. For both microcircuit model implementations, the correctness of the

simulation outcome was validated by the authors against reliable reference data, which sets these

implementations apart from others.

A system that can offer the flexibility of SpiNNaker while significantly accelerating the simu-

lation of large-scale spiking neural networks would be a valuable next-generation platform for

neuroscience research. The above developments point in this direction. However, no such system
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exists yet, to the best of my knowledge.

1.4 Contributions

The contributions of this thesis are of methodological, technical, and conceptual nature.

For the field of neural network modeling and simulation, a reasonable adaptation of the existing

terminology for model verification and validation is proposed that is more explicit and better

expresses the underlying intent in the field. The concept of model verification and substantiation

is introduced as a methodology that allows for the accumulation of evidence of a model’s plau-

sibility and correctness, even in the absence of experimental validation data. The methodology

is demonstrated by conducting a rigorous model verification and validation process, where the

issue of required numerical precision is investigated on the SpiNNaker neuromorphic system. It

is shown that the appropriate choice of the numerical precision is critical for sufficient accuracy

in reproducing model dynamics; even small deviations in the dynamics of individual neurons can

affect the dynamics at the network level.

The main contribution of this thesis is the development and evaluation of a novel FPGA-SoC-based

hybrid hardware and software mixed architecture for a neuromorphic compute node that is capable

to perform simulations in hyper-real time. The design of the compute node is strictly driven by

neuroscience requirements. This distinguishes the development from other efforts in the field,

and presents a complementary yet distinct approach to the neuromorphic developments that

aim at brain-inspired novel computing architectures for solving real-world tasks. Commercial

off-the-shelf FPGA-SoC technology is explored for its suitability as substrate for neuromorphic

computing for application in computational neuroscience modeling and simulation, where the

technology is found to be suitable and holding great potential.

For the systematic assessment of the performance characteristics of the neuromorphic compute

node, a workload model and a performance model are developed, introducing a metric that is

independent of the size of a network and describing the performance-determining aspects of a

hybrid time- and event-driven simulation scheme.

The technical requirements for large-scale neuromorphic computing for accelerated simulation are

examined, and a basic concept for a neuromorphic system integration is proposed that incorporates

the existing HPC landscape.
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1.5 Thesis Outline

This thesis is structured as follows. Chapter 2 presents a rigorous model substantiation methodol-

ogy for increasing the correctness of simulation results in the absence of experimental validation

data. For the field of computational neuroscience a reasonable adaptation of the existing terminol-

ogy for model verification and validation is proposed, and the concept of model verification and

substantiation is introduced. The usefulness of the method, and the application of a systematic

approach in general, is demonstrated by means of a worked example on the SpiNNaker neuro-

morphic system, showing that the appropriate choice of numerical precision and algorithms is

critical for reproducing model dynamics.

In the main part of this thesis, in Chapter 3, a novel FPGA-SoC-based hybrid hardware

and software mixed neuromorphic compute node architecture is presented that is capable to

perform simulations in hyper-real time, where the design of the compute node is strictly driven

by neuroscience requirements. The chapter first describes the setup of the development platform

used for the prototypical implementation and gives a brief introduction to the FPGA-SoC device

technology. This is followed by remarks on the chosen logic design methodology and the

development workflow conducted. The main section of the chapter describes the architecture

of the neuromorphic compute node, divided into a software architecture part and a hardware

architecture part. The underlying principles and conceptual ideas are explained, and the function

and microarchitecture of the main building blocks are described. Where of interest and relevant to

the design, architecture alternatives are evaluated and discussed. Finally, the operating latencies, a

breakdown of the utilized chip resources, and an estimate of the power consumption are presented.

In Chapter 4, the methods proposed in Chapter 2 are applied for a proof of correctness of the

implementation and design of the neuromorphic compute node. The chapter begins by reviewing

the design decisions made with respect to the required numerical precision and describes a

calculation verification task that was conducted to evaluate the accuracy in reproducing the

dynamics of individual neurons. This is followed by a description of the co-verification process

that accompanied hardware-software co-development, and which employed a rather unusual

hardware verification approach, referred to here as in-FPGA verification. This verification

approach exploits the FPGA-SoC device technology to implement a software-driven testbench

in the C language. The technique is briefly explained and compared to the implementation

verification using behavioral simulation at the microarchitecture level. The setup of the testbench

is described and an overview of the hierarchy of hardware-software function tests is given. Finally,

the correctness of the implementation is demonstrated by conducting a substantiation assessment

that compares the dynamics of a selected network state of a simulated test network model with
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two reliable references.

The Chapter 5 presents a systematic assessment of the performance characteristics of the

neuromorphic compute node. To this end, a workload model is developed that introduces a

metric that is independent of the size of a network. This is followed by the presentation of a

precise performance model derived from the microarchitecture, but capturing in a general way

the performance-determining aspects of a hybrid time- and event-driven simulation scheme.

The workload and performance model are then used to evaluate and predict the behavior of the

compute node under varying workload situations and for different configurations and assumptions

in the design space. Described are the assessment of the single-node performance and the

prediction of the performance characteristics for cluster operation.

Looking ahead to a large-scale system, Chapter 6 proposes a number of modifications and

extensions to the architecture presented in Chapter 3, and examines the technical requirements

resulting from the higher workloads generated by large-scale networks. The chapter begins by

reflecting on design decisions made for the neuromorphic compute node architecture with respect

to on-chip memories. Additional parallelization options for spike processing and alternative

architectures using memory partitioning are proposed for performance-critical components,

enabling designs that can cope with high workloads. To derive a definition of these workloads,

two large-scale neural network models widely used in neuroscience are analyzed. Based on this

analysis, estimates for technical requirements and achievable performance are given. Finally, a

basic architectural concept for an integration of a large-scale neuromorphic computing system

into the HPC landscape is presented.

The closing chapter, Chapter 7, summarizes the discussions that conclude each of the chapters

and provides an outlook on future developments.
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Chapter 2

Rigorous Neural Network Simulations

A Model Substantiation Methodology for

Increasing the Correctness of Simulation

Results in the Absence of Experimental

Validation Data

”An expert is someone who knows

some of the worst mistakes that

can be made in his subject,

and how to avoid them.”

Werner Heisenberg
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2.1 Introduction

The reproduction and replication of scientific results is an indispensable aspect of good scientific

practice, enabling previous studies to be built upon and increasing our level of confidence in them.

However, reproducibility and replicability are not enough: an incorrect result will be accurately

reproduced if the same incorrect methods are used.

In computational neuroscience, the setup of a neural network simulation can be complex,

and an incorrect result can have many possible causes. These range from inappropriate model

implementations and data analysis methods, to procedural errors such as weaknesses in simulation

planning, setup, and execution, to errors caused by hardware limitations such as insufficient

numerical precision. Even for domain experts, it is therefore often difficult to judge the correctness

of a result obtained from a complex neural network simulation. Moreover, some of the factors

that affect correctness are beyond the control of the modeler or experimenter.

Credibility can be built by formalizing processes, i.e., following a systematic approach. This

applies to the modeling, implementation, and simulation tasks performed in a particular experi-

ment or study, as well as to their reproduction in a different setting. Correctness is understood

here not as an absolute state of being correct or incorrect, but as a gradual process of refinement,

progressively moving closer to a fully accurate result. Although appropriate methods, such as

verification and validation methodologies, exist, they are not yet well established in the field

of neural network modeling and simulation. One reason for this may lie in the rapid pace of

the developments in the field, which impedes the development of common verification and

validation methods; another is likely to be that the field has yet to absorb knowledge of these

methodologies from fields where they are common practice. This latter aspect is exacerbated by

partly contradicting terminology around these areas.

The first part of this chapter therefore addresses terminology and methodology. A reasonable

adaptation of the existing terminology for model verification and validation is proposed and

applied to the field of neural network modeling and simulation. The concept of model verification

and substantiation is introduced as a methodology that allows for the accumulation of evidence

of a model’s plausibility and correctness, even in the absence of experimental validation data. In

the second part of this chapter, this methodology is then applied to the issue of reproducibility,

demonstrated by a worked example. Specifically, a minimal spiking network model capable

of exhibiting the development of polychronous groups1, as described in Izhikevich (2006), is

quantitatively compared to its reproduction on the SpiNNaker neuromorphic system (Furber et al.,

1A polychronous group is characterized by a reproducible time-locked, spike-timing pattern over a group of neurons
Izhikevich (2006).
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2013). The Izhikevich (2006) study is highly cited as an account of how spike patterns emerge

from network dynamics, and contains a number of non-standard features in its conceptual and

implementational choices that make it a particularly illustrative example for the demonstration

of a rigorous verification and validation process. The choice of the SpiNNaker neuromorphic

system as a target for network reproduction is motivated by the fact that SpiNNaker is subject

to rather different constraints from typical simulation platforms. In particular, the restriction to

fixed-point arithmetic allows the demonstration of different verification problems. By means of a

worked example, an iterative verification and validation process is outlined that demonstrates the

usefulness of a systematic approach and the value of standard software engineering practices.

The insights gained from this process also guided design decisions in the development of the

hybrid neuromorphic compute (HNC) node architecture that will be presented in Chapter 3. In

particular, the results derived from calculation verification tasks, which examined the appropriate-

ness of the choice of numerical precision and algorithms for calculating the dynamics of a test

case model, influenced design decisions. In addition, the methods proposed in this chapter have

also been used in an adapted form to prove the correctness of the implementation of the HNC

node (see Chapter 4 for further details).

Contributions

• A reasonable adaptation of the existing terminology for model verification and validation

is proposed for the field of computational neuroscience modeling and simulation.

• The concept of model verification and substantiation is introduced as a methodology that

allows for the accumulation of evidence of a model’s plausibility and correctness, even in

the absence of experimental validation data.

• A rigorous verification and validation process is described by means of a worked example,

demonstrating the usefulness of a systematic approach and the value of standard software

engineering practices.

• As a result of a conducted calculation verification task, it is shown that for the selected

model numerical precision is critical for sufficient accuracy in reproducing model dynamics;

even small deviations in the dynamics of individual neurons can affect the dynamics at the

network level.
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2.2 Terminology

2.2.1 Reproducibility and Replicability

Reproducibility and replicability are indispensable aspects of good scientific practice. Unfortu-

nately, the terms are defined in incompatible ways across and even within fields.

In psychology, for example, reproducibility may mean completely re-doing an experiment,

whereas replicability refers to independent studies that yield similar results (Patil et al., 2016). For

computational experiments, where a deterministic outcome is typically expected2, reproducibility

is understood as obtaining the same results by a different experimental setup conducted by a

different team (Association for Computing Machinery, 2016). Although attempts were made to

help resolve the ambiguity in the terminology by explicitly labeling the terms or by attempting

to inventory the terminology across disciplines (Barba, 2018), the problem persists. In Plesser

(2018) a brief history of this confusion is given.

In this thesis, the definitions proposed by the Association for Computing Machinery is followed

(Association for Computing Machinery, 2016):

Replicability (Different team, same experimental setup) ”The measurement can be obtained

with stated precision by a different team using the same measurement procedure, the same

measuring system, under the same operating conditions, in the same or a different location

on multiple trials. For computational experiments, this means that an independent group

can obtain the same result using the author’s own artifacts.”

Reproducibility (Different team, different experimental setup) ”The measurement can

be obtained with stated precision by a different team, a different measuring system, in a

different location on multiple trials. For computational experiments, this means that an

independent group can obtain the same result using artifacts which they develop completely

independently.”

To be more specific about the terminology of reproducibility, in this work it is aimed for results

reproducibility (Goodman et al., 2016; see also Plesser, 2018).

Results reproducibility ”Obtaining the same results from the conduct of an independent

study whose procedures are as closely matched to the original experiment as possible.”

2A particular input will always result in the same output. However, this is not always guaranteed, for example
in analog neuromorphic computing. Here, the outcome is not only determined by the initial conditions. Chip
fabrication tolerances and thermal noise add a stochastic component.
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Figure 2.1 | Interrelationship of the basic elements for modeling and simulation. (A) Terminology
for credibility of a modeling and simulation process as introduced by Schlesinger et al. (1979), depicting the
framework with the basic elements and their interrelationships (figure redrawn). (B) Proposed terminology
for modeling and simulation in computational neuroscience, for which a less generic terminology is more
expedient. The adaptation of terms is inspired by the terminology used by Thacker et al. (2004). While the
authors there use the terms reality of interest, mathematical model, and computer model, here the terms
system of interest, mathematical model, and executable model are preferred as they better express the
underlying intent in the field. The framework distinguishes between modeling and simulation activities
(black solid arrows), and assessment activities (red dashed arrows).

2.2.2 Model Verification and Validation

The critical question for all modeling tasks is whether the model provides a sufficiently accurate

representation of the system being studied. Evaluating the results of a modeling effort is a

non-trivial exercise that requires a rigorous validation process.

The term validation, or more generally verification and validation also require a precise

definition, as they have different meanings in different contexts. In software engineering, for

example, verification and validation is the objective assessment of products and processes

throughout the life cycle. Its purpose is to help the development organization build quality into the

system (Bourque and Fairley, 2014). With respect to the development of computerized models,

verification and validation are processes that accumulate evidence of a model’s correctness or

accuracy for a specific scenario (Thacker et al., 2004).

As a cornerstone for establishing credibility of computer simulations, the Society for Com-

puter Simulation (SCS) formulated a standard set of terminology intended to facilitate effective

communication between model builders and model users (Schlesinger et al., 1979). This early

definition is very general and often does not do justice to a particular modeling domain. Therefore,
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domain specific adaptations to the terminology can be found, but having fundamentally the same

meanings. For the field of neural network modeling and simulation the proposed terminology

is shown in Figure 2.1B, amended from Thacker et al. (2004). While Thacker et al. (2004)

uses the terms reality of interest, conceptual model, and computerized model, the terms system

of interest, mathematical model, and executable model are here proposed instead. The terms

are more explicit and better express the underlying intent. In particular, due to the empirical

challenges of neurobiology, spiking neural network models are often not based on a specific

biological network that could be considered reality and from which ground truth behavior can

be recorded, in contrast to, for example, the air flow around a wing. The term system of interest

recognizes that the process of verification and validation can also be applied to systems without

concrete physical counterparts.

The essence of the introduced terminology is the division of the modeling process into three

major elements as illustrated in Figure 2.1A and Figure 2.1B.

Reality or system of interest is an “entity, situation, or system which has been selected

for analysis”. The conceptual or mathematical model is defined as a “verbal description,

equations, governing relationships, or natural laws that purport to describe reality or

the system of interest” and can be understood as the precise description of the modeler’s

intention (Schlesinger et al., 1979). The formulation of the conceptual or mathematical

model is derived in a process called analysis and modeling and its applicability is mo-

tivated in a process termed qualification or confirmation. However, the conceptual or

mathematical model by itself is not able to simulate the system of interest. By means of

applying engineering and development effort it has to be implemented as an computerized

or executable model.

By separating the understanding of a model into a mathematical model and an executable model,

this terminology also expresses the difference between verification and validation.

Verification describes the process of ensuring that the mathematical model is appropriately

represented by the executable model, and improving this fit.

Model verification is the assessment of a model implementation. Neural network models are

mathematical models that are written down in source code as numerical algorithms. Therefore, it

is useful to define two indispensable assessment activities:

• source code verification, which confirms that an implemented functionality works as

intended; and
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• calculation verification, which assesses the level of error that arises from various

sources of error in numerical simulations as well as to identify and remove them

(Thacker et al., 2004). This process mainly involves the quantification and minimization

of errors introduced by the performed calculations.

Only when the executable model is verified it can be reasonably validated.

The validation process evaluates the consistency of the predictive simulation outcome with

the system of interest.

The validation process aims at the agreement between experimental data that defines the ground

truth for the system of interest and the simulation outcomes. This evaluation needs to take

into consideration the domain of intended application of the mathematical model as well as its

expected level of agreement, since any model is an abstraction of the system of interest and only

intended to match to a certain degree and for certain prescribed conditions.

2.2.3 Model Verification and Substantiation: Model Assessment in the
Absence of Experimental Data

For neural network simulations, the ground truth of the system of interest can be provided by

empirical measurements of activity data, for example single unit and multi-unit activity gathered

by means of electrophysiological recordings. However, there are a number of reasons why this

data may prove inadequate for validation. Firstly, depending on the specification of the system

of interest, such data can be scarce. Secondly, even for comparatively accessible areas and

assuming perfect preprocessing (e.g., spike sorting), single cell recordings represent a massive

undersampling of the network activity. Thirdly, for a large range of computational neuroscientific

models, the phenomenon of interest cannot be measured in a biological preparation: for example,

any model relying on the plasticity of synapses within a network.

Consequently, for many neuronal network models, the most that the modeler can do with

the available experimental data is to check for consistency, rather than validate in the strong

sense. Thus, we are left with an incomplete assessment process. However, circumstantial

evidence to increase the credibility of a model can be acquired by comparing models and their

implementations against each other with respect to consistency (Thacker et al., 2004; Savio Martis,

2006). Such a technique can be meaningful in accumulating evidence of a model’s plausibility and

correctness even if none of the models is a validated model that may act as a reliable reference.

51



Chapter 2 Rigorous Neural Network Simulations

Executable
Model

System of Interest 

Mathematical
Model

Analysis & Modeling

Verification

Executable
Model

Verification

Substantiation

Implementation

Simulation Simulation

Implementation

Figure 2.2 |Model verification and substantiation workflow. The workflow is derived from the model
verification and validation process shown in Figure 2.1B, and can be thought of as the combination of two
such processes, but without the validation against the system of interest. Instead, the consistency of the
simulation outcomes of two executable models that share the same system of interest and mathematical
model is evaluated in an assessment activity termed substantiation. Modeling and simulation activities are
indicated by black solid arrows. Assessment activities are indicated by red dashed arrows.

To avoid ambiguity with the existing model verification and validation terminology, the term

substantiation is proposed.

Substantiation describes the process of evaluating and quantifying the level of agreement

of two executable models.

Model verification and substantiation are then processes that accumulate circumstantial evidence

of a model’s correctness or accuracy by a quantitative comparison of the simulation outcomes

from validated or non-validated model implementations. The interrelationship of the modeling,

simulation and assessment activities are shown in Figure 2.2. To this end, the modeler has

to define reasonable acceptance criteria that define the limits within which the process can be

executed.
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2.2.4 Application of the Terminology to Modeling and Simulation

Applying the terminology to the field of neural network modeling and simulation, the terms are

used as follows.

Replication means using the author’s own model, which may consist of the model source code,

scripts for network generation and simulation execution as well as additional hardware and soft-

ware components in a particular version (e.g., if a specific simulation software or hardware system

is used). A replication should aim for bit-identicality. Although computers are deterministic, this

is not always feasible; for example, if the seed of a pseudo-random number generator (PRNG)

has not been recorded, or if the generated trajectory of pseudo-random numbers is dependent on

the software version or underlying hardware. Beyond this, replicable models should have the

property of delivering exactly the same result in successive simulations on the same hardware.

When using random number generators, for example, this entails setting a seed.

A reproduction (or specifically, results reproduction) is then the re-implementation of the

model in a different framework; for example, expressing a model as a stand-alone script using

neural simulation tools, such as NEURON (Hines and Carnevale, 1997), Brian (Goodman and

Brette, 2008), NEST (Gewaltig and Diesmann, 2007), or the SpiNNaker neuromorphic system

(Furber et al., 2013), and getting statistically the same results.

2.3 Worked Example: Reproduction of a Minimal

Two-Population Network Model on the Neuromorphic

System SpiNNaker

In this section, the usefulness of the proposed terminology and the verification and substantiation

methodology is demonstrated by a worked example. To this end, a rigorous model verification

and substantiation workflow is conducted in which: (i) a published model is replicated; and (ii)

reproduced on the SpiNNaker neuromorphic system.

2.3.1 Definition of the Model Verification and Substantiation Entities

According to the model verification and substantiation methodology, to execute the process, we

need to define the entities: system of interest; mathematical model; and for the substantiation

assessment two executable models (see Figure 2.2). We define as the system of interest the

mammalian cortex. A mathematical model of this system has been proposed by Izhikevich

(2006), who demonstrated that this model exhibits the development of polychronous groups.
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𝑤𝑖𝑗 = 6.0 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒, 𝑆𝑇𝐷𝑃

𝑑𝑖𝑗 ∈ {1,… , 20} ms 𝑤𝑖𝑗 = 6.0 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒, 𝑆𝑇𝐷𝑃

𝑑𝑖𝑗 ∈ {1,… , 20} ms

𝑤𝑖𝑗 = −5.0

𝑑𝑖𝑗 = 1 ms

Excitatory population
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External random input

𝑁E = 800
𝐾in = 100

𝑁I = 200
𝐾in = 100

𝑖ext = 20 pA 𝑖ext = 20 pA

Figure 2.3 | Network topology. The minimal two-population spiking neural network described in
Izhikevich (2006) consists of an excitatory and an inhibitory population of neurons, which both are
stimulated by an external random input current. See the main text for description.

A C implementation of this model constitutes one of the executable models targeted in the

verification and substantiation process, hereafter referred to as the C model. The second executable

model is a reproduction of this model on the SpiNNaker neuromorphic system (Furber et al.,

2013), hereafter referred to as the SpiNNaker model.

2.3.1.1 Mathematical Model

The model proposed by Izhikevich (2006) is a plastic minimal two-population spiking neural

network consisting of an excitatory and an inhibitory population, both receiving random input

from an external current source. A schematic representation of the network is shown in Figure 2.3.

Network topology
A population E of 800 excitatory neurons makes random connections to itself and to a populationI

of 200 inhibitory neurons with a fixed in-degree of Kin = 100. The inhibitory population connects

with the same in-degree, but only to the excitatory population. The excitatory connections are

initially set to a synaptic strength of wi j = 6.0 and a conduction delay drawn from a uniform

integer distribution such that di j ∈ {1,2, . . . ,20} ms. The inhibitory connections are initialized

with a fixed synaptic strength and delay of (wi j,di j) = (−5.0,1 ms). Both populations receive

input from an external source X, which injects a current pulse of iext = 20 pA into a randomly

selected neuron every millisecond.

Component dynamics
Each neuron in the network is described by the simple neuron model published in (Izhikevich,
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2003), which can reproduce a variety of experimentally observed firing statistics. The neuron

model dynamics is given by the following ordinary differential equation (ODE) system:

d3
dt

= 0.0432 + 53+ 140−u + I(t), (2.1)

with I(t) = isyn(t) + iext(t), isyn(t) = iexc(t) + iinh(t)

du
dt

= a(b3−u) (2.2)

if 3 ≥ 30mV, then

3← c

u← u + d
(2.3)

Equations (2.1) through (2.3) describe the time evolution of a neuron’s membrane potential 3(t)

and its threshold dynamics u(t). Excitatory neurons are parameterized to show a regular-spiking

behavior: (a,b,c,d) = (0.02,0.2,−65.0,8.0), and inhibitory neurons are parameterized to exhibit

fast-spiking: (a,b,c,d) = (0.1,0.2,−65.0,2.0).

The excitatory connections are plastic and evolve according to an additive spike-timing-

dependent plasticity (STDP) rule:

w←

 w + A+ · exp(−∆t/τ+) : ∆t ≥ 0

w−A− · exp(∆t/τ−) : ∆t < 0
(2.4)

where τ+ = τ− = 20 ms, A+ = 0.1mV, A− = 0.12mV, and ∆t is the difference in time between the

last postsynaptic and presynaptic spikes, i.e., positive on occurrence of a postsynaptic spike and

negative on occurrence of a presynaptic spike. However, the rule has an unusual variant: synaptic

weight changes are buffered for one biological second and then the weight matrix is updated for

all plastic synapses simultaneously. Thus, synaptic weights are constant for long periods, causing

the network dynamics to break down into epochs.

A comprehensive description of the model is provided in Appendix A.

2.3.1.2 Executable Models

C model
Various implementations of the model are available for download from the website3 of the author

of the model: a MATLAB implementation (spnet.m) and two versions of a C/C++ implementation

(spnet.cpp, poly spnet.cpp). They differ slightly in algorithms and functionality, and thus do

3https://www.izhike3ich.org/publications/spnet.htm
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not exhibit bit-identical behavior. All implementations use a grid-based hybrid time- and event-

driven simulation scheme with a temporal resolution of 1 ms. Threshold detection according

to Equation (2.3) is performed only at the grid points. For the numerical integration of the

ODE system, a Forward Euler method is used. From the two available versions of the C/C++

implementation the computationally more precise variant poly spnet.cpp was selected. It uses

double precision data types and also implements an algorithm for the detection of polychronous

groups. The model is implemented as a stand-alone console application.

SpiNNaker model
The SpiNNaker model was implemented in PyNN. The SpiNNaker software stack (Stokes et al.,

2007) provides several neuron and synapse models as well as a model template4 that allows

users to develop custom neuron and synapse models using the event-driven programming model

employed by the SpiNNaker kernel (Rowley et al., 2017). To allow the evaluation of different

algorithms, the Izhikevich neuron model was implemented as a custom model using this template.

SpiNNaker uses the same grid-based hybrid time- and event-driven simulation paradigm with a

temporal resolution of 1 ms as the original C model implementation.

The hardware platform used for the simulation experiments was a SpiNN-3 development

board. The board carries four first generation SpiNNaker chips, each containing 18 ARM968

processing cores (Temple, 2011a). For simulation control and cross-platform development, the

SpiNN-3 board has to be connected to a host system, which communicates with the board using

the Ethernet-based UDP5 protocol (Temple, 2011b).

2.3.2 Definition of the Model Substantiation Assessment

In the absence of specific biological data that can define the ground truth of the system of interest,

we are left with the simulation outcomes of the two executable models. Here, the dynamics

of five selected network states in the C model are considered. Network dynamics are assessed

by applying statistical methods to the network activity data, i.e., the spike trains recorded from

simulations (for the statistical methods, see Section 2.3.2.2).

Note that the emergence of polychronous groups or their statistics is not used to define the

ground truth, as this turns out to be rather sensitive to details not only of the mathematical

model, but also of the implementational choices used to generate the executable model. For a

comprehensive investigation of this aspect, see Pauli et al. (2018).

4The model template is available for download from the SpiNNaker repository on GitHub: https://github.com/
SpiNNakerManchester/sPyNNaker8NewModelTemplate.

5The User Datagram Protocol (UDP) is a minimal message-oriented transport layer protocol.
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Figure 2.4 | Experimental setup. (A) The C model is run with STDP to define the initial conditions
of five selected network states following the procedure: (i) instantiating the network and storing the
connectivity matrix AAA and the delay matrix DDD; (ii) selecting five points in time (here, after 1, 2, 3, 4,
and 5 hours of simulated time) for which the weight matrix WWW(ti) is stored, and simulating the network
while recording its random input III(t). (B) The C model is run without STDP to generate five data sets of
recorded network activity following the procedure: (i) instantiating the network with one of the sets of
initial conditions

{
AAA,DDD,WWW(ti)

}
previously created; (ii) simulating the network for 60 s simulated time and

stimulating the network with the random input III(t) while recording the network activity, i.e., the spike
trains of all neurons; (iii) repeating the procedure for all defined initial conditions. (C) The procedure
of (A) is repeated, but for the SpiNNaker model. The network activity recordings S NM

i (WWW(ti), t) of the
SpiNNaker model are then compared with the network activity recordings S C

i (WWW(ti), t) of the C model and
tested for statistical equivalence of selected features, with the C model defining the ground truth.

2.3.2.1 Experimental Setup

The process of verification and substantiation is iterative and requires the repeated execution

of a number of tasks. This includes preparing and conducting the substantiation assessment.

Figure 2.4 illustrates the workflow, the experimental setup. Performed are a series of simulation

experiments that consist of four steps.

In a first step, the initial conditions for five selected network states are defined. For this purpose,

the C model is initialized with a defined seed for random number generation and is run with

STDP for five hours simulated time. The connectivity matrix AAA and the delay matrix DDD of the

instantiated network are stored. Five points in time are selected (ti : i = (1,2, . . . ,5) (here, after
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1, 2, 3, 4, and 5 hours) for which the weight matrix WWW(ti) is stored. During the simulation,

the synaptic weights change over time according to the STDP rule, resulting in five distinct

weight matrices. The random input III(t) applied to the network is also recorded. In this manner,

five sets of initial network conditions are created:
{{

AAA,DDD,WWW(t1)
}
,
{
AAA,DDD,WWW(t2)

}
, . . . ,

{
AAA,DDD,WWW(t5)

}}
.

Figure 2.4A illustrates this step.

Secondly, the C model is run without STDP to generate five data sets of recorded network

activity. For this, the network is instantiated with a previously created set of initial conditions{
AAA,DDD,WWW(ti)

}
. The network is then simulated for 60 s simulated time while the network activity

data is recorded and the network is stimulated with the random input III(t). The procedure is

repeated for all defined initial conditions. In this way, five data sets of network activity data

are created for the C model:
{
S C

1 (WWW(t1), t),S C
2 (WWW(t2), t), . . . ,S C

5 (WWW(t5), t)
}
. This step is illustrated

in Figure 2.4B. These activity recordings define five dynamic states of the network at different

stages of its evolution, constituting the reference data and fulfilling the role that ground truth data

plays in a classical model validation assessment.

Thirdly, the procedure of the second step is repeated for the SpiNNaker model, resulting in a set

of corresponding network activity recordings:
{
S NM

1 (WWW(t1), t),S NM
2 (WWW(t2), t), . . . ,S NM

5 (WWW(t5), t)
}
.

This step is illustrated in Figure 2.4B.

Finally, the network activity recordings S NM
i of the SpiNNaker model are compared with the

network activity recordings S C
i of the C model, where they are tested for statistical equivalence

of selected features.

Note that although the model parameters and properties of the two-population Inzhikevich model

remain untouched, model implementations may change in successive iterations of the verification

and substantiation process; consequently, so do the reference data.

2.3.2.2 Analysis of Network Spiking Activity

The degree of similarity between the different executable models is performed at the descriptive

level of the population dynamics. Since issues such as the choice of hardware architecture,

numerical precision, compiler options that affect the evaluation order of expressions, or the

choice of a pseudo-random number generator and its seed should not be considered part of the

mathematical model (but they are part of the executable model), it is legitimate and expected that

different implementations will not result in an exact spike-for-spike correspondence (see Pauli

et al. (2018) for a counterexample).

It is therefore resorted to the test for equivalence of statistical features extracted from the

population dynamics. These tests were carried out in an automated, formal framework that
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conducts statistical analysis of parallel spike trains using the standardized implementations found

in the Electrophysiology Analysis Toolkit6 (Elephant, RRID:SCR 003833) as its backend.

When choosing the measures by which to compare the network activity, it is essential to

assess diverse aspects of the dynamics. Besides widely used standard measures to characterize

the statistical features of spike trains or the correlation between pairs of spike trains, this may

also include additional measures that reflect more specific features of the network model (e.g.,

spatio-temporal patterns). Here, tests are applied that compare distributions of three statistical

measures extracted from the population dynamics. They characterize the global dynamics of

network activity and are calculated from the recorded spike trains. Below, these measures are

outlined:

Statistical measures
Average firing rate (FR): The number of spikes nsp that a neuron emits in the interval T gives its

average firing rate

FR =
nsp(T )

T
(2.5)

measured in spks/s. The distribution of the firing rates in a network or population is a measure to

characterize the level of network activity.

Coefficient of variation (CV) and local coefficient of variation (LV): The coefficient of variation

is a standard statistical measure and defined as the ratio of the standard deviation to the mean.

It characterizes the variability in a data series. The measure is applied here to the inter-spike

intervals (ISIs) calculated from the ordered spike times ti

ISIi = ti+1− ti. (2.6)

The coefficient of variation is then calculated as

CVISI =

√
1

n−1

n∑
i=1

(ISIi− ISI)2

ISI
. (2.7)

As an extension to the conventional coefficient of variation, in order to measure local variations,

Shinomoto et al. (2003) introduced the local coefficient of variation defined as

LV =
1

n−1

n−1∑
i=1

3(ISIi− ISIi+1)2

(ISIi + ISIi+1)2 . (2.8)

6http://neuralensemble.org/elephant
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In Equations (2.7) and (2.8) n denotes the number of neurons, and ISI = 1
n

n∑
i=1

ISIi defines the

mean ISI. Both LV and CV analyze the relative variability in the inter-spike intervals and thus

characterize the temporal structure of a spike train.

Pearson’s correlation coefficient (CC): The measure quantifies the temporal correlation between

all spike trains. It is determined by calculating the n×n matrix of the pairwise Pearson’s

correlation coefficient between all combinations of n binned spike trains.

CC[i, j] =
< bi−µi,b j−µ j >√

< bi−µi,bi−µi > · < bi−µi,b j−µ j >
(2.9)

In Equation (2.9), < .., .. > denotes the scalar product of two vectors, where bi and b j are the

binned spike trains, and µi and µ j represent their respective means (Grün and Rotter, 2010).

The above measures are widely used in neuroscience to characterize a network’s spiking activity

(see, e.g., Senk et al., 2017; van Albada et al., 2018; Knight and Nowotny, 2018; Dasbach

et al., 2021; Golosio et al., 2021; Heittmann et al., 2022). They can be regarded as forming a

hierarchical order and evaluate different aspects of the network dynamics: rates consider the

number of observed spikes, whilst ignoring their temporal structure; the coefficient of variation

considers the serial correlations inherent in a spike train, whilst ignoring the relationship between

spike trains; and the correlation coefficient considers coordination across neurons.

It should be noted that this conceptual hierarchy does not imply a hierarchy of failure, i.e., a

correspondence on the highest level (here, the correlation of spike trains) does not automatically

imply correspondence of the other measures. Therefore, it is imperative to independently evaluate

each statistical property. The similarity of the distributions of these measures between simulations

is evaluated using the effect size (Cohen’s d), i.e., the normalized difference between the means

of the distributions (Cohen, 1988). In addition to the substantiation tests selected here, more

intricate comparisons can evaluate the correlation structure and dynamical features of the network

activity in greater detail, as described in Gutzen et al. (2018).

2.3.3 Definition of the Model Verification and Substantiation Workflow

As defined earlier, model substantiation describes the process of evaluating the level of agreement

between two executable models. In this respect, the method is not conclusive as to whether

the model itself is correct, i.e., an appropriate description of an underlying biological reality.

Consequently, the verification and substantiation workflow presented in the following sections

does not evaluate any neuroscientific aspects of the model described in Izhikevich (2006).

Figure 2.5 depicts this workflow with the activities conducted; here shown in a condensed
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Figure 2.5 | Model verification and substantiation workflow as conducted. Condensed view of the
executed workflow with the activities conducted. According to the conceptual illustration of the model
verification and substantiation workflow shown in Figure 2.2, modeling and simulation activities are
indicated by black solid arrows, assessment activities are indicated by red dashed arrows.

form. According to the concept of model verification and substantiation shown in Figure 2.2, it is

an iterative process in which the C model and the SpiNNaker model were subjected to various

implementation and verification activities. For the latter, in Section 2.2.2, two categories of

activities have been defined: source code verification; and calculation verification.

Source code verification: The purpose of source code verification is to confirm that the function-

ality it implements works as intended (Thacker et al., 2004). Unlike commercially developed

production software, scientific source code is used to generate results that form the basis of

scientific conclusions and should, therefore, act as an available reference (Benureau and Rougier,

2017).
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Calculation verification: The purpose of calculation verification is to assess the level of error

that arise from various sources of error in numerical simulations as well as to identify and remove

them. The types of errors that can be identified and removed by calculation verification are, e.g.,

errors caused by inadequate discretization and insufficient grid refinement as well as errors by

finite precision arithmetic. Insufficient grid refinement is typically the largest contributor to error

in calculation verification assessment (Thacker et al., 2004).

In the example presented here, the entire process of model verification and substantiation re-

quired three iterations of the workflow (hereafter referred to as Iteration I, II, and III) before

an acceptable agreement was achieved. A complete and detailed breakdown of the activities is

given in Figure 2.6, which expands on Figure 2.5 and provides a more thorough representation

of the activities conducted. The substantiation activity performed at the end of each iteration is

marked in Figure 2.6 with (I), (II) and (III). A summary of the substantiation assessment results

is provided in Figure 2.11.

In order to be able to reproduce the findings of this work, model source codes, simulation scripts

and the codes used in the verification activities are available on GitHub7.

2.3.4 Application of the Method

In the following sections, for each of the three iterations, the verification activities are described

that identified problems with the executable models, leading to consequent adaptations of the C

and SpiNNaker model implementations.

2.3.4.1 Iteration I: Source Code Verification

The primary objective of the first iteration was to verify the source codes. In the case of the

C model, the emphasis was on evaluating and improving source code quality, whereas the

SpiNNaker model implementation was subjected to functional testing.

C model
The original implementation (poly spnet.cpp), which appears to be derived from MATLAB

programming paradigms, hides the algorithms behind hard-to-read source code. To improve

readability, understand the algorithms, and find potential programming and implementation errors,

7DOI: 10.5281/zenodo.1435831; https://github.com/gtrensch/RigorousNeuralNetworkSimulations
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Figure 2.6 | Model verification and substantiation iterations and activities as conducted. Detailed
view of the activities carried out as part of the model verification and substantiation process. The flow
diagram enrolls the three iterations of the workflow that were performed to achieve agreement in the
substantiation assessment. The model substantiation activity performed at the end of each iteration is
marked with (I), (II), and (III), corresponding to the results summary shown in Figure 2.11.

the source code was subjected to an extensive refactoring8 and code inspection task.

The source code was fully reworked by following clean code heuristics (Martin and Coplien,

2009). Code sections related to data analysis and not part of the model itself were separated from

the model implementation, but kept for functional testing. Throughout this iterative refactoring

and code inspection process, care was taken to ensure that the model remained bit-identical after

each iteration, ensuring replicability. The refactored source code is available on GitHub9.

To support the experimental setup, e.g., the substantiation activities, functionality has been

added to save and reload network states. STDP has also been disabled for generating the

network activity data for use in the substantiation assessments (see also Section 2.3.2.1). For

convenient functional testing and debugging, the implementation was also adapted to allow the

two-population Inzhikevich network model to be scaled down to a 20 neuron test network. This

size was chosen to be small enough for convenient manual debugging, yet large enough to exhibit

spiking behavior and have a non-trivial connectivity matrix.

Performing the refactoring task not only helped to understand the C model implementation and

algorithms, which is essential, but also formed the basis for the implementation of the SpiNNaker

model.

SpiNNaker model
For the initial iteration of the SpiNNaker model, the Izhikevich neuron model implementation that

is provided by the SpiNNaker software stack (Stokes et al., 2007) was used. This implementation

employs an optimized ODE solver, which is described in Hopkins and Furber (2015), and referred

to by the authors as Explicit Solver Reduction (ESR): ”for merging an explicit ODE solver and

autonomous ODE into one algebraic formula, with benefits for both accuracy and speed.”

For network creation, simulation control and execution as well as for functional testing, Python

PyNN scripts were developed that allow to conveniently execute simulations, and perform the

verification and substantiation activities. Additional development work was required to circum-

8Refactoring – a software engineering method that belongs to the area of software maintenance – is source code
transformation that reorganizes a program without changing its behavior. It improves the software structure and the
readability, and so avoids the structural deterioration that naturally occurs when software is changed (Sommerville,
2015).

9DOI: 10.5281/zenodo.1435831; https://github.com/gtrensch/RigorousNeuralNetworkSimulations
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vent a few restrictions of the SpiNNaker system and its software stack, namely:

The SpiNNaker framework does not allow external current injection: During each 1 ms simu-

lation time step, an external current of iext = 20 pA is injected into a randomly selected neuron.

This current injection is emulated by two spike source arrays forming one-to-one connections to

the two populations of the network model. Those connections use static synapses, translating an

external spike event into an injected current.

During the 60 seconds of simulated time, the amount of data to be stored on the SpiNN-3
board becomes too large: To limit the amount of data, a single simulation run is divided into 60

iterations. At the end of each iteration, the simulation is paused, the data is exported, and the

simulation is then resumed.

For the functional testing of the PyNN scripts and the verification of the implementation of the

neuron model, three approaches have been used:

Manual low level debugging on the SpiNNaker system to verify the correctness of state vari-
ables, program flow and algorithms: The SpiNNaker system provides a low level command line

debugging tool called ybug and allows writing log information to an internal I/O buffer. The buffer

is read at simulation termination and is accessible through ybug. This basic debugging technique

was used to verify the internal states of the neuron model, the correctness of the injected current

values as well as the correctness of the program flow of the implemented algorithms.

Verification of neuron dynamics using a PyNN test script that applies an external constant
current to individual neurons and records the state variables: The dynamics of individual

neurons resulting from an injected constant current were recorded and compared with the results

obtained from a stand-alone C console application implementing the same algorithms.

Functional testing using a down-scaled version of the two-population Inzhikevich network: A

down-scaled version of the network (16 excitatory and 4 inhibitory neurons) was used to verify

the functional correctness of the simulation setup. Since the connectivity matrix was derived

from simulations of the C model, it was also used to test the functionality added to support the

activities carried out during the simulation experiments, i.e., exporting the connectivity matrix

from the C model and importing it into the SpiNNaker simulation.

Substantiation assessment
For the C model and the SpiNNaker model, the simulation experiment described in Section 2.3.2.1

was conducted. The network activity recordings of the SpiNNaker model were compared with

the network activity recordings of the C model, testing the equivalence of the statistical features
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described in Section 2.3.2.2.

The results are summarized in the top row of Figure 2.11.The substantiation assessment reveals

a significant discrepancy, most dominantly visible in the distribution of the firing rates (FR) and

the pairwise correlation coefficients (CC). This mismatch, as quantified by the effect size, is

consistently observed for all five reference network states (the data for all five network states is

provided in Appendix B). Therefore, it is concluded that the models do not show an acceptable

agreement and the substantiation assessment failed at the end of Iteration I.

Although the effect size is a very simple measure which only takes into account the means

and standard deviations of the distributions, it provides an intuitive quantification of differences

which is unbiased by the sample size. However, since the effect size cannot detect discrepancies

in the distribution shape, a visual inspection is essential and additional comparison methods, such

as hypothesis tests, may be needed. In Figure 2.11 it is only referred to the measures computed

from 60 seconds of network activity after the fifth hour. For a visual inspection of the computed

measures from the network states after 1, 2, 3, 4 and 5 hours of simulation, see Appendix B,

Figures B1-B5.

2.3.4.2 Iteration II: Calculation Verification

The significant discrepancies in the model substantiation assessment in Iteration I suggest that

there are numerical errors in one or both of the executable models. Therefore, in the second

iteration, calculation verification tasks are conducted that examine the numerical integration

scheme and threshold detection, as well as the 32-bit fixed-point arithmetic used on SpiNNaker.

Numeric integration scheme and threshold detection
When working with ODE systems on digital computers, it is important to make appropriate deci-

sions regarding the choice of a numeric integration scheme. To achieve accurate approximations

of their solutions, it is necessary to consider not only the form of the equations, but also the

magnitude of the variables appearing in them (Dahmen and Reusken, 2005). Depending on these

parameters, some ODEs may become stiff, requiring excessively small time steps for an explicit

numeric integration scheme (i.e., one that uses only the values of variables at preceding time steps)

to achieve acceptable accuracy and avoid numerical instability. Such equation systems require

the use of an implicit scheme (i.e., one that finds a solution by solving an equation involving both

the current values of the variables and their future values). However, implicit methods are more

computationally expensive, resulting in unnecessarily long runtimes when applied to non-stiff

systems (Strehmel and Weiner, 1995). The ODEs used to model neuronal behavior are often
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EVERY MILLISECOND :
−− neuron s t a t e u p d a t e
−− f o r n u m e r i c a l s t a b i l i t y , two i n t e g r a t i o n s t e p s a r e
−− pe r fo rmed f o r 3(t)
3 := 3+ 0.5 · ((0.04 · 3+ 5.0) · 3+ 140.0−u + I)
3 := 3+ 0.5 · ((0.04 · 3+ 5.0) · 3+ 140.0−u + I)
u := u + a · (b · 3−u)
−− t h r e s h o l d d e t e c t i o n and s p i k e d e l i v e r y
IF ( 3 ≥ 30.0 ) :
3 := c
u := u + d
d e l i v e r S p i k e E v e n t ( )

END
END

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 2.1 | C model: algorithm (given as pseudo-code) for updating neuronal dynamics as
implemented in the original C model. The algorithm implements a fixed-step size semi-implicit
symplectic Forward Euler method.

non-stiff, so an explicit numeric integration scheme is sufficient in most cases (Lambert, 1992).

The Izhikevich neuron model described by the Equations (2.1) through (2.3) is an example of

such a non-stiff ODE system (see Blundell et al., 2018a). Thus, in principle, the choice of an

explicit method is appropriate. Nevertheless, the integration scheme must be applied correctly,

i.e., the step size must be chosen according to the desired maximum error.

The algorithm of the original C model implementation is shown in Listing 2.1. Note the

symplectic, or semi-implicit Forward Euler scheme, i.e., the update of u(t) is based on an already

updated value 3(t). In an unorthodox approach, the variable 3(t) is integrated in two 0.5 ms steps,

whereas u(t) is integrated in one 1.0 ms step. The use of the Forward Euler method is appropriate

here, albeit in a semi-implicit symplectic variant. The (relatively large) chosen step sizes of

h = 0.5 ms for 3(t) and of h = 1.0 ms for the recovery variable u(t), however, are questionable.

More importantly, no error estimation is implemented to ensure that the integration scheme

provides a reasonable approximation to the solution of the ODE system.

The spike onset of an Izhikevich neuron (all types) appears as a steep slope. The large grid-

constrained threshold detection interval of 1.0 ms in the C model leads here to values of 3(t) well

above the threshold value θ = 30mV, where values of up to 3(t) = 1700 mV can be observed.

Figure 2.7 graphically illustrates the error introduced by this coarse approximation. This error

propagates over time. According to the Equations (2.2) and (2.3), the recovery variable u(t)

evolves continuously, propagating the error and increasingly delaying subsequent spike events.

Moreover, the SpiNNaker system uses a non-saturating 32-bit fixed-point arithmetic. The
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EVERY MILLISECOND :
−− neuron s t a t e u p d a t e
REPEAT 3 TIMES :
3 := 3+ 0.333 · ((0.04 · 3+ 5.0) · 3+ 140.0−u + I)
u := u + 0.333 ·a · (b · 3−u)

END
−− t h r e s h o l d d e t e c t i o n and s p i k e d e l i v e r y
IF ( 3 ≥ 30.0 ) :
3 := c
u := u + d
d e l i v e r S p i k e E v e n t ( )

END
END

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 2.2 | SpiNNaker model: algorithm (given as pseudo-code) to demonstrate an arithmetic
overflow. The algorithm implements a Forward Euler scheme similar to the implementation shown in
Listing 2.1, but uses three fixed-size integration steps. The additional step increases the likelihood that
3(t) will take on very large values, which may lead to an arithmetic overflow of the 32-bit fixed-point
data type used on the SpiNNaker system.

available value range may not be sufficient to adequately represent the values of the Izhikevich

model’s state variables. Depending on the algorithmic implementation, the dynamics of the model

can cause fixed-point overflows, resulting in spike artifacts. The effect can be demonstrated by

adding an extra integration step to the algorithm shown in Listing 2.1. This will lead to a numeric

overflows of the state variable 3(t). Listing 2.2 shows this modification. When running this model

implementation on SpiNNaker, the model produces artifacts in the form of bursts of spikes with

high spike rates. Figure 2.8 shows these artifacts in a raster plot of spike events recorded from

this experiment. It should be noted that the ESR implementation on SpiNNaker used in Iteration I

does not produce such artifacts, but fails in adequately reproducing the network states. A more

detailed examination of fixed-point numerical precision is given below.

Accuracy can be increased by adjusting the integration step size to an appropriately smaller

interval – the de facto standard used in discrete-time digital simulations of spiking neural

networks in neuroscience is 0.1 ms. However, this requires a more precise threshold detection.

If threshold detection is performed only at the grid points, i.e., at intervals of 1.0 ms, the steep

slope in the evolution of the membrane potential above threshold will cause 3(t) to quickly reach

values that cannot be represented even with a double precision data type (see Figure 2.7).

To solve this problem, we can combine an exact off-grid threshold detection with a simple

fixed-step size symplectic Forward Euler ODE solver that performs sub-steps. This solver

variant has been implemented. The solver performs sub-steps at intervals of h/16 with regard
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Figure 2.7 | Error caused by grid-constrained threshold detection. In the original C model, membrane
potentials, i.e., values of 3(t), well above threshold can be observed at time of threshold detection. This
introduces an error (here, indicated as 3error) into the Izhikevich neuron model dynamics that accumulates
and propagates over time. This error then gets expressed in delayed spike times. The original C model uses
a grid-constrained threshold detection interval of h = 1.0 ms and a semi-implicit symplectic Forward Euler
method with a fixed-step size of h/2 = 0.5 ms. The red dashed line illustrates the calculated evolution of
the membrane potential 3(t) when using this method. For comparison, the black solid line shows the exact
evolution around threshold for a regular-spiking type Izhikevich neuron stimulated with a constant current
of iext = 5 pA. Note the steep slope at the onset of a spike event.

to the SpiNNaker simulation resolution h = 1.0 ms. Spike events are forced to grid points and

propagated at intervals of h. The choice of the sub-step interval was motivated by the following:

firstly, 1/16 is a power of two and can be represented in fixed-point without causing a numerical

error; and secondly, it is a good compromise between the increased computational cost associated

with smaller steps and the unavoidable increasing overshoot of the membrane potential resulting

from larger steps. The algorithm is given as pseudo-code in Listing 2.3. The threshold detection

is performed in each sub-step. Also note the multiplication with 0.0625, which avoids costly

divisions. Due to the alignment of spike events to grid points, multiple spike events within a single

simulation time step can potentially occur, but here are merged into a single event. However,

this seems to be a very rare occurrence. Pauli et al. (2018) demonstrated that there was only a

very slight change in average firing rate for this network model between a simulation locked to a

1.0 ms grid, as used here, and one carried out at a higher resolution of 0.1 ms. Therefore, this

effect is considered negligible here.
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Figure 2.8 | Spike artifacts caused by fixed-point overflow. Spike raster plot obtained from a
SpiNNaker simulation of the two-population Izhikevich model. Used was a symplectic Forward Eu-
ler integration scheme with a fixed integration step size of 0.333 ms and without a precise threshold
detection. This integration scheme causes large values of 3(t) leading to an overflow of the s15.16 fixed-
point data type. This results in simulation artifacts in the form of short spikes trains with high rates (marked
by blue boxes).

In order to evaluate the accuracy of this improved ODE solver implementation and the ESR

implementation provided by the SpiNNaker framework, simulations of single neurons were

performed and the evolution of the membrane potentials was compared with a Runge-Kutta-

Fehlberg(4, 5) (rkf45) solver implementation using the GNU Scientific Library (GSL)10 – the

working horse of differential equation solvers. The explicit rkf45 method is a good general-

purpose integrator and of a higher order compared to a simple Forward Euler scheme. To serve as

a reliable reference, the rkf45 algorithm was parametrized to integrate with an absolute error of

10−6. The results of the single-neuron simulations are shown in Figure 2.9.

For both the fixed-step size Forward Euler and the ESR solver, spike times lag behind the

rkf45 solver. Due to the accumulation of 3error, the lag becomes larger over time, here reaching

around 20 ms capturing five spike events in 500 ms simulated time. From Figure 2.9 it can also

be seen that higher spike rates lead to larger deviations; thus, the spike times of the fast-spiking

type neuron are less accurate than the spike times of the regular-spiking type neuron. The error in

spike timing also depends on the injected external current iext, as this also affects spike rates (data

not shown). Although simpler than the ESR implementation, the fixed-step size Forward Euler

scheme with sub-stepping and a precise threshold detection achieves better accuracy. However,

the dynamics of the Izhikevich neuron model types are still not properly reproduced. In the

10https://www.gnu.org/software/gsl/

70

https://www.gnu.org/software/gsl/


Chapter 2 Rigorous Neural Network Simulations

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EVERY MILLISECOND :
−− neuron s t a t e u p d a t e
REPEAT 16 TIMES :
3 := 3+ 0.0625 · ((0.04 · 3+ 5.0) · 3+ 140.0−u + I)
u := u + 0.0625 ·a · (b · 3−u)
−− p r e c i s e t h r e s h o l d d e t e c t i o n
IF ( 3 ≥ 30.0 ) :
3 := c
u := u + d
SET s p i k e E v e n t H a s O c c u r r e d

END
END
−− s p i k e d e l i v e r y
IF ( s p i k e E v e n t H a s O c c u r r e d ) :

d e l i v e r S p i k e E v e n t ( )
END

END
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 2.3 | SpiNNaker model: an improved algorithm (given as pseudo-code) for updating neuronal
dynamics. The implementation uses a fixed-step size symplectic Forward Euler method, sub-steps,
and a precise threshold detection.

following, therefore, fixed-point numeric precision is examined.

Fixed-point numeric precision
The SpiNNaker system used here is based on 32-bit ARM processors that do not provide floating-

point hardware support (Furber et al., 2013)11. Arithmetic is implemented as fixed-point, which

does not require any special hardware support. SpiNNaker stores numbers as 32-bit signed fixed-

point values in the s16.15 representation. The s16.15 data type is supported by the SpiNNaker

ARM C compiler toolchain.

To explain the idea of fixed-point numbers, we can state that the meaning of an n-bit binary word

depends entirely on its interpretation. We can divide an n-bit word into an integer part i and a

fractional part f by defining a binary point position, the radix point. Calculations with fixed-point

numbers are performed as if the numbers are simple integers. Negative numbers are represented

as two’s complement. This requires an additional sign bit s; the leftmost bit, which is considered

to have a negative weight. A signed fixed-point number can then be written in the positional

11Here used is the first generation of SpiNNaker hardware. The successor SpiNNaker2 integrates a single-precision
floating-point unit (Höppner et al., 2021).
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Figure 2.9 | Spike timing accuracy: comparison of different ODE solver implementations on
SpiNNaker with a reliable reference. Evolution of membrane potentials 3(t) for different ODE solver
implementations on SpiNNaker, recorded from: (A) a regular-spiking type; and (B) a fast-spiking type
Izhikevich neuron. The neurons were stimulated with the constant current iext = 5pA. Neuron model
dynamics were calculated using: the SpiNNaker ESR ODE solver implementation (blue dashed curves);
the improved fixed-step size symplectic Forward Euler solver with sub-stepping (h/16 = 0.0625 ms) and
precise threshold detection (green solid curves); and the GSL rkf45 ODE solver with an absolute integration
error of 10−6 (black dotted curves), which is considered here as a reliable reference. The reference data
was generated by a C program that implemented the model dynamics in double precision. For both neuron
types, the ESR as well as the fixed-step size Forward Euler solver implementation on SpiNNaker show a
considerable lag in the spike timing compared with the rkf45 reference solver. For the regular-spiking type
neuron, both SpiNNaker implementations show almost the same error in the spike timing. A difference can
be seen for the fast-spike type neuron. Here, the fixed-step size Forward Euler approach with sub-stepping
and a precise threshold detection (green solid curve) shows a substantial improvement in spike timing
accuracy over the ESR implementation (blue dashed curve).

number representation as

B = sbi−1bi−2 . . .b1b0.b−1b−2 . . .b− f , (2.10)

where the value of B is given by

x(B) = −s2i +

i−1∑
k=− f

bk2k. (2.11)

The value range of a fixed-point data type is small compared to a single- or double-precision

float type of the same bit size. For signed fixed-point types, i.e., types of the form si. f , this value
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range is given as

−2i ≤ x(B) ≤ 2i−2− f . (2.12)

Accordingly, the 32-bit s16.15 data format used on SpiNNaker, which uses i = 16 bits for the

integer part, f = 15 fractional bits, and a sign bit, provides the following value range

−216 = −65536 to 216−2−15 = 65535.999969482. (2.13)

This is a very limited range, increasing the likelihood of fixed-point underflow and overflow

conditions. Moreover, arithmetic does not saturate on SpiNNaker (Hopkins and Furber, 2015).

In case of an arithmetic overflow, the value wraps around; i.e., adding two positive numbers

will then result in a negative number. In simulations, this may be seen as spike artifacts (see

Figure 2.8).

Another consequence of the 32-bit fixed-point arithmetic, and an additional source of numerical

inaccuracy, is that not every number can be represented with sufficient precision. For example,

although small, the error in the s16.15 representation of the constant value 0.04 in Equation (2.1)

induces a noticeable delay in the spike timing. This can be demonstrated with a few calculations.

To represent a number in si. f , its value is shifted f bits to the left, i.e., multiplied by 2 f . The

conversion of the value 0.04 into the s16.15 representation gives

0.04 ·215 = 1310.72(s16.15). (2.14)

The SpiNNaker ARM C compiler truncates the fraction and stores the number as a 32-bit value,

which results in (here given as a hexadecimal number)

0x0000051E. (2.15)

This value is used in calculations and is slightly smaller than the original number, as a back

conversion reveals

1310(s16.15) ·2−15 = 0.03997802. (2.16)

In order to demonstrate the effect on the dynamics of the Izhikevich model, for an arbitrary chosen

set of initial values, we can calculate d3/dt using Equation (2.1). We can compare the result

obtained from a calculation using the precise constant value 0.04 with the result obtained from

a calculation using the slightly imprecise s16.15-converted value 0.03997802. As set of values,

we choose 3 = −75 mV, u = 0 mV, and I = 0 pA. The calculation using the exact constant value
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results in

0.04 ·752 + 5 · (−75) + 140 = −10.0000000. (2.17)

Using the s16.15-converted value, the calculation yields

0.03997802 ·752 + 5 · (−75) + 140 = −10.1236357. (2.18)

This slightly more negative values cause threshold crossing to occur later, and thus delay the

times spike events occur. The effect can be mitigated if such critical calculations are performed

using a fixed-point data type that provide higher precision employing a larger number of factional

bits; for example, a data type with f = 23. This reduces the distance between two consecutive

fixed-point numbers; the unit in the last place (ulp). Converting the value 0.04, for example, into

an s8.23 representation gives

0.04 ·223 = 335544.32(s8.23), (2.19)

and converting the value back results in

335544(s8.23) ·2−23 = 0.039999962. (2.20)

Repeating the calculation of d3/dt shows a significant improvement in accuracy

0.039999962 ·752 + 5 · (−75) + 140 = −10.00021375. (2.21)

This approach has two disadvantages. Firstly, the reduced value range of the s8.23 data type,

which is

−28 = −256 to 28−2−23 = 255.999999881. (2.22)

Secondly, the s8.23 data type is not available on SpiNNaker, i.e., it is not supported by the

ARM C compiler toolchain. However, these limitations can be worked around. It will be

demonstrated below that the data type can be mimicked through a few calculations involving

simple type conversions. In addition, by using the proposed fixed-step size symplectic Forward

Euler method with sub-steps and precise threshold detection, as well as using a specific ordering

of the arithmetic operations, it can also be ensured that values stay within the value range of the

s8.23 data type.

The ARM C compiler converts a constant placed in the C code into the s16.15 representation.

Therefore, we must let the value 335544.32(s8.23) (see Equation (2.19)) appear as a s16.15 constant.
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We can write

335544.32(s16.15) = 10.24 ·215. (2.23)

To get the original value, a right-shift operation of 8 bits is required

10.24 ·2−8 = 0.04. (2.24)

Note that 2−8 = 0.00390625 has an exact representation in s16.15. Also note that multiplying

10.24 with the power of two of the membrane potential may cause an arithmetic overflow of the

s16.15 data type. Therefore, the order in which the operations are performed must also be taken

into account. If we apply the proposed type conversion to Equation (2.1), we can rewrite the

equation as
d3
dt

= ((10.24 · 3) ·0.00390625)) · 3+ 5 · 3+ 140−u + I(t). (2.25)

The order of operations here ensures that no numeric overflow occurs. The corresponding

algorithm is shown in Listing 2.4.

The above also applies to the Izhikevich neuron model parameters a and b, which add an error to

the recovery variable u(t). Further, the example ignored that the neuron model state variables 3(t)

and u(t) are themselves fixed-point numbers that add a numerical error.

In the course of the implementation of the Izhikevich neuron model on SpiNNaker, and the

adaptations of the model during the verification and substantiation process, fixed-point data type

conversion was added to all constant values involved in critical calculations; the constant value

0.04 in Equation (2.1) and the neuron model parameters a and b in Equation (2.2). To investigate

the effect, regular-spiking and fast-spiking type Izhikevich neurons with and without fixed-point

data type conversion were simulated. The evolution of the membrane potentials was compared

with equivalent model implementations using the Runge-Kutta-Fehlberg(4, 5) solver from the

GNU Scientific Library (GSL); analogous to the comparison of the different integration schemes

(Figure 2.9). The results are shown in Figure 2.10. For both neuron model types, a substantial

improvement in the spike timing is achieved. The dynamics of the regular-spiking type neuron

is very close to the rkf45-reference when using the solver implementation that employs data

type conversion. Here, the spike timing accuracy of the regular-spiking type neuron still lags

slightly behind the rkf45 reference. This can be explained by the still existing overshoot in 3(t) at

threshold detection (even if it is small), and the higher firing rate of the neuron type. The delay in

spike times propagates over time, and hence increases with the spike rate.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EVERY MILLISECOND :
−− neuron s t a t e u p d a t e
REPEAT 16 TIMES :

A := 10.24 · 3
A := A ·0.00390625
A := A · 3
B := 5.0 · 3+ 140.0−u + I

3 := 3+ 0.0625 · (A + B)
u := u + 0.0625 ·a · (b · 3−u)

−− t h r e s h o l d d e t e c t i o n
IF ( 3 ≥ 30.0 ) :
3 := c
u := u + d
SET s p i k e E v e n t H a s O c c u r r e d

END
END

−− s p i k e d e l i v e r y
IF ( s p i k e E v e n t H a s O c c u r r e d ) :

d e l i v e r S p i k e E v e n t ( )
END

END
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 2.4 | SpiNNaker model: the same algorithm (given as pseudo-code) as shown in Listing 2.3,
but adds fixed-point conversion to the constant 0.04. In order to prevent the compiler from optimizing
the code and perhaps arranging the operations in an inappropriate order, the critical calculations in
the Equation (2.25) are placed in separate lines. Note that suppressing optimization in this way works
for the ARM C compiler (it has been verified through an analysis of the generated assembler source
code), but cannot be generalized.

Substantiation assessment
As the C model was adapted during Iteration II, we can no longer speak of a replication. Therefore,

before performing the model substantiation assessment, it needs to be verified whether the results

of the modified model are compatible with the original, i.e., whether or not result reproducibility

is preserved. For this purpose, the development of polychronous groups in the modified C model

was evaluated using the analysis provided in Izhikevich (2006). This evaluation showed that the

number of polychronous groups is reduced by about 34%. Thus, it still exhibits the behavior

reported in the original manuscript (Izhikevich, 2006), albeit in a weakened form. Since Pauli

et al. (2018) demonstrated that the number of polychronous groups developed by the C model

varies significantly with implementation details, the improvement in numeric precision made here

aligns with this observation. As such, this result is expected and considered to fall within the
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Figure 2.10 | Spike timing accuracy: comparison of two implementations of an ODE solver, with
and without fixed-point data type conversion. Evolution of membrane potentials 3(t) for different
numerically precise versions of an ODE solver, recorded from: (A) a regular-spiking type; and (B) a fast-
spiking type Izhikevich neuron. The neurons were stimulated with a constant current of iext = 5pA. Neuron
model dynamics were calculated using the fixed-step size symplectic Forward Euler implementation with
sub-stepping (h/16 = 0.0625 ms) and a precise threshold detection. The solver was implemented in two
different versions: using the s16.15 fixed-point data type (red dashed curves); and with converting the
s16.15 data type into an s8.23 representation (green solid curves). For comparison, the model dynamics
were also calculated using the GSL rkf45 ODE solver with an absolute integration error of 10−6, which
is considered here as a reliable reference (black dotted curves). For both neuron types, a substantial
improvement in the spike timing accuracy can be observed. For the regular-spiking type neuron, it is even
nearly close to the rkf45 reference.

acceptance criteria.

The change in the C model implementation requires the initial states to be regenerated in

order to perform the substantiation assessment as described in Section 2.3.2. This procedure was

repeated for this iteration. The result of the assessment is shown in the middle row of Figure 2.11.

The improved ODE solver implementation, used in both models, leads to a good match in

the firing rates (FR) and the pairwise correlation coefficients (CC). It is noted, though, that the

distributions are shifted from those expressed by the C model implementation in Iteration I. The

shift of cross-correlation to lower values may well account for the smaller number of polychronous

groups developed. Both the firing rates and the cross correlations also show small effect sizes

after this iteration. In case of the CC distributions, the effect size has to be interpreted with care,

as it assumes Gaussian-like distributions which is clearly violated by the bimodality of the CC

distributions. Nevertheless, in combination with visual inspection and additional comparison

77



Chapter 2 Rigorous Neural Network Simulations

0.0 2.5 5.0 7.5

0

50

100
co
un
t

Iteration

I

FR

C

SpiNNaker

0.5 1.0 1.5

0

25

50

75

LV

C

SpiNNaker

0.00 0.02 0.04

0

1

×105 CC

C

SpiNNaker

1.0

2.0

3.0

eff
ec
t
si
ze

0.0 2.5 5.0 7.5

0

20

40

60

co
un
t

II

0.5 1.0 1.5

0

25

50

75

0.00 0.02 0.04

0

1

2

3

×104

0.0

0.5

1.0

eff
ec
t
si
ze

0.0 2.5 5.0 7.5

FR (Hz)

0

20

40

60

co
un
t

III

0.5 1.0 1.5
LV

0

25

50

75

0.00 0.02 0.04
CC

0

1

2

3

×104

0.2

0.3

0.4

0.5

eff
ec
t
si
ze

Figure 2.11 | Model substantiation assessment based on spike data analysis. Histograms (70 bins
each) of the three characteristic measures computed from 60 s of network activity after the fifth hour of
simulation: left, firing rates (FR); middle, local coefficients of variation (LV); right, pairwise correlation
coefficients (CC). For FR and LV, each neuron enters the histogram, for CC each neuron pair. Results are
shown for three iterations (rows) of the substantiation process of the C model (dark colors) and SpiNNaker
model (light colors), see Figure 2.6. On the far right, the difference between the respective distributions is
quantified by the effect size: the graph shows the mean and standard deviation effect size calculated for
each of the five network states (after 1, 2, 3, 4, and 5 hours of simulation; see also Appendix B).

measures, its application here provides a useful discrepancy quantification.

A discrepancy can still be seen between the distributions of the coefficients of variation (LV).

The distribution for the SpiNNaker model is shifted toward lower values, indicating a higher

degree of regularity than that of the C model. This is confirmed by the consistently high effect

size obtained for the five reference network states. Therefore, it is concluded that there is still a

disagreement in the executable models, and that model substantiation has not been achieved at

the end of Iteration II.

2.3.4.3 Iteration III: Resolving an Implementation Issue

The slight discrepancy in regularity observed in Iteration II allowed to identify systematic

differences in spike timing between the two models, hinting at an error in the numerical integration
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of the single neuron dynamics. Indeed, the visual comparison of the dynamics of individual

neurons on SpiNNaker with a stand-alone C application that implements an identical fixed-step

size symplectic Forward Euler ODE solver, revealed a small discrepancy in the sub-threshold

dynamics, leading to a fixed systematic delay in the spike timing. An implementation issue in the

precise threshold detection algorithm was identified as the cause.

Substantiation assessment
The achieved result after resolving the issue and repeating the SpiNNaker simulations is shown

in the bottom row of Figure 2.11. A close match of all three distributions can be observed,

consistently across the five reference network states (the data is provided in Appendix B, bottom

row in Figures B1-B5). The comparison is not perfect, with the distribution of firing rates showing

the largest discrepancy with only a subtle shift toward higher firing rates for the SpiNNaker

simulation. The small discrepancies between the two implementations are quantified by the

effect size, and demonstrate that a considerable reduction of the mismatch is achieved. All effect

sizes are classified in the range of small to medium according to Cohen (1988). While further

iterations of the model implementation in the verification and substantiation process may further

improve the effect size scores, for the purposes, here the remaining mismatch is judged to be in

the range of acceptable agreement. Therefore, it is concluded that the executable models are in

close agreement at the end of Iteration III.

2.4 Discussion

Terminology
Clear terminology is essential for effective communication. Well defined terminology avoids

ambiguity and is a factor of quality. The proposed terminology adapts the existing ACM

(Association for Computing Machinery, 2016) terminology for reproducibility and replicability,

as it seems most appropriate for the purposes. Alternative definitions exist, and terminology

for research reproducibility is an ongoing theme of a controversial debate. The application of

methodologies from model verification and validation to the field of neural network modeling

and simulation can be of great value, but some adaptations were suggested that may fit the

domain better. In particular, the terms mathematical model and executable model proposed

instead of the terms conceptual model and computerized model, are intended to yield better

separation of the entities they describe, so that, for example, implementation details are not falsely

understood to belong to the mathematical model. This is important, as the classic ’one model –

one code’ relationship does not typically apply to spiking neuron network models. Instead, they
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are implemented using general-purpose neural simulation tools such as NEURON (Hines and

Carnevale, 1997), Brian (Goodman and Brette, 2008) or NEST (Gewaltig and Diesmann, 2007),

which can run many different models. This can also be extended to neuromorphic hardware. In

addition, model simulation codes may be partially generated by other tools (Blundell et al., 2018b).

This scenario abstracts the implementation details away from the modeler, who can focus on

analysis and modeling, and has the further advantage that individual components, such as neuron

and synapse models, can be verified separately and can later serve as reliable references. Further,

the proposed terminology, which aims to better express the underlying intent in the domain

of neuroscience modeling and simulation, may also help pave the way for a more formalized

approach to model verification and validation in this field.

Model verification and substantiation
The introduced concept of model verification and substantiation can be found used in a number

of studies, but without strict definition (see e.g., van Albada et al., 2018; Knight and Nowotny,

2018; Golosio et al., 2021). Here, a definition has been introduced in accordance with the study of

Gutzen et al. (2018). We found the term model substantiation to be an appropriate choice, because

it expresses the intent of creating circumstantial evidence of a model’s correctness with respect

to a reliable reference, i.e., a ground truth to be defined. Consequently, a model substantiation

assessment is not conclusive as to whether a model represents an appropriate description of an

underlying biological reality (the system of interest).

The proposed methodology has a number of advantages. Firstly, from the point of view

of computational neuroscience, simulation results should be hardware independent, at least at

the level of statistical equivalence. In practice, implementations can be sensitive to compilers,

software versions, and also hardware architecture. The physical hardware used to simulate

a model should therefore also be considered part of the model implementation. Applying

the proposed model substantiation methodology allows a researcher to discover and correct

implementation weaknesses. Secondly, in the case of new types of hardware, which includes

novel neuromorphic architectures, the methodology can help build confidence, but also uncover

shortcomings as demonstrated by the worked example. Finally, in neuroscience, models often

function as discovery tools and hypothesis generators in cases where experimental data, against

which a model could be validated, does not exist. Performing a substantiation assessment is

an option to accumulate circumstantial evidence for a model’s plausibility and self-consistency,

although it cannot reveal whether a model reflects reality.
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Worked example
The application of the terminology and methods has been demonstrated by means of a worked

example and the execution of a rigorous workflow. Assessed was the level of agreement be-

tween the C implementation of the spiking network model proposed by Izhikevich (2006) and

a reproduction of its underlying mathematical model on the SpiNNaker neuromorphic system.

The use of this network was motivated by its unorthodox implementation choices, examined in

greater detail in Pauli et al. (2018). These issues make it a particularly illustrative example for

a reproduction on the SpiNNaker neuromorphic system and to demonstrate various aspects of

source code and calculation verification.

In the process of executing the workflow a number of standard methods from software engi-

neering were used. This discipline is concerned with the ”application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of software” (Bourque

and Fairley, 2014). Such methods include, for example, the application of clean code heuristics,

test driven development, continuous integration and agile development methodologies, with the

common goal of building quality into software. The conducted workflow should also be seen

in this context. Despite the increasing recognition of Research Software Engineering (RSE)

as a key discipline, it is noted here that software engineering methods, although critical for

the development of high quality software, are still underutilized in computational science in

general and in computational neuroscience in particular. For the investigated network model, it is

important to emphasize that the awareness of software engineering methodologies was even less

widespread at the time of publication, and so the yardsticks for source code quality applicable

by today’s standards should be considered in their temporal distance. Credit must in any case

be given for the unusual step of publishing the source code, allowing scientific transparency

and making studies such as the current one, that of Gutzen et al. (2018), and Pauli et al. (2018),

possible.

Level of agreement
At the end of the third iteration of the executed workflow, based on the substantiation assessment,

it was concluded that the executable models are in acceptable agreement. This conclusion is

predicated on the domain of application and the expected level of agreement that was defined

for three characteristic measures of the network activity. It should be emphasized here that these

definitions are set by the researcher: further iterations would be necessary, if, for example, a

level of agreement is set requiring a spike-for-spike reproduction of the network activity data, as

applied by Pauli et al. (2018).

We speculate here that the remaining discrepancy in the statistical measures at the end of
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Iteration III can be explained by the loss in precision when converting the C model’s double

precision weight matrix into the fixed-point representation used by the SpiNNaker system. Due

to truncation, the absolute values of synaptic weights after conversion are always slightly smaller

than their higher precision origin; hence increasing the values of negative weights, contributing

to a minimal shift toward higher firing rates (see Figure 2.11).

Both the original C model implementation and the SpiNNaker system use a spike timing

resolution of 1ms. Spikes are propagated at this interval while neuron dynamics are advanced

by performing sub-steps. Here, the substantiation assessment cannot give us any further insight

into whether the temporal resolution of spike propagation is sufficient – both models are affected.

In Section 4.5, this question is re-visited and it is shown that it is sufficient for this model to

propagate spikes at this interval.

Transferability of the method
Although some of the applied verification tasks are closely tied to model implementation details

(e.g., functional testing), the presented methodology is transferable to similar modeling tasks,

where workflows can also be further automated. The quantitative comparison of the statistical

measures carried out in the substantiation assessment was performed using the modular framework

NetworkUnit12 (NetworkUnit, RRID:SCR 016543), an open source Python module, presented

in (Gutzen et al., 2018). NetworkUnit facilitates the formalized application of standardized

statistical test metrics that enable the quantitative validation of network models on the level of

the population dynamics. It is stressed here the importance of using a common tool to extract

the statistical features for both simulation outcomes in the substantiation procedure in order to

prevent distortions in the substantiation results due to discrepancies in the implementations of the

substantiation procedure itself. In addition, making use of methods provided by such open-source

projects greatly contributes to the correctness and replicability of the results.

Adherence to formalized processes fosters transparency and comprehensibility and reduces

the risk of incorrect conclusions. Moreover, simulation tools as well as neuromorphic hardware

platforms can benefit from formalized and automated verification and validation procedures, so

that their reliability can be inherited by user-developed models that are simulated using these

tools and frameworks. Most importantly, such standardized procedures are designed not to place

an additional burden on researchers, but rather to open up simple avenues for computational

neuroscientists to increase the rigor and reproducibility of their models. Simulation and analysis

tools, frameworks and collaboration platforms are part of the research infrastructure on which

scientists base their work, and thus should meet high software development standards. Software

12https://github.com/INM-6/NetworkUnit
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engineering methods, including the model verification and substantiation workflow presented in

the previous sections, as well as verification and validation methods in general, need to become a

mainstream aspect of computational neuroscience.
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Chapter 3

A System-on-Chip Based Hybrid

Neuromorphic Compute (HNC) Node

Architecture for Reproducible

Hyper-Real-Time Simulations of Spiking

Neural Networks

”The enjoyment of the tools one works with

is, of course, an essential ingredient of

successful work.”

Donald Knuth, The Art of Computer Programming, Volume 2
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3.1 Introduction

In recent years, the technology of programmable logic devices and the associated tools for their

application have advanced greatly, benefiting from the continuous developments in semiconductor

technology. In particular, attractive new opportunities for architecture designs have emerged

from developments in field-programmable gate arrays (FPGAs) empowered with general-purpose

processors. These devices integrate a programmable logic device together with a complete

computer system into a single chip, a System-on-Chip (SoC).

Presented in this chapter is a novel FPGA-SoC based hybrid hardware and software mixed

architecture for a neuromorphic compute node (henceforth HNC node) intended to operate in a

multi-node cluster configuration. The HNC node design builds on the AMD Xilinx Zynq-7000

SoC device architecture (AMD Xilinx, 2018), which integrates an ARM-based general-purpose

processor and a powerful FPGA. The proposed architecture leverages both components and takes

advantage of their tight coupling.

The development pursued several objectives, with the primary goal being the design and

prototypical implementation of a neuromorphic compute node that can form the foundation for a

flexible platform that enables accelerated and reproducible simulations of spiking neural networks

in neuroscience. This primary goal defined the boundary conditions for a strictly neuroscience

requirement-driven design. The development is thus to be seen as a complementary yet distinct

approach to the neuromorphic developments aiming at brain-inspired and highly efficient novel

computer architectures for solving real-world tasks.

Design space exploration, the elaboration and evaluation of architecture variants, and trade-off

analysis were central tasks during development, with performance as the key objective. To

achieve best possible performance and push the technology to its limits, component designs have

been optimized for low latency. In this regard, the development has also been an exploration of

commercial off-the-shelf FPGA-SoC device technology and tools.

This chapter is organized as follows. Firstly, the development environment is described. A

brief introduction to the development platform and the Zynq-7000 SoC device architecture is

given, and the development approach and digital design methodology is explained. After this

introductionary part, secondly, the HNC node architecture is presented. This begins with an

introduction to the conceptual ideas and provides an overview of the system architecture. This

is followed by the chapter’s two main sections, which present the software system of the HNC

node and the microarchitecture of hardware blocks. Technical principles and design choices are

explained, and architecture alternatives are discussed and evaluated. Finally, the HNC node’s

timing behavior and operation latencies are described, which build the basis for a systematic
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performance assessment presented in Chapter 5. An overview of chip resource utilization and

power consumption is also provided.

Contributions

• A novel FPGA-SoC-based hybrid hardware and software mixed neuromorphic compute

node architecture is presented. The development was strictly driven by neuroscience re-

quirements and is to be seen as a complementary yet distinct approach to the neuromorphic

developments aiming at brain-inspired and highly efficient novel computer architectures

for solving real-world tasks.

• The development demonstrates the suitability of commercial off-the-shelf FPGA-SoC

technology as a substrate for neuromorphic computing for application in computational

neuroscience. The technology provides a good compromise between flexibility and effi-

ciency, and enables novel architecture designs that can meet the demanding requirements

of neuroscience modeling and simulation.

• The development revealed the technical challenges posed by the field of application and the

aspects that demand special attention, both from an architectural and technological point of

view. Regarding the latter, development and evaluation was also an exploration of com-

mercial off-the-shelf FPGA-SoC technology. It has been found that memory architecture,

which is closely linked to semiconductor technology, plays a key role, imposing design

constraints that largely determine performance and possible system size, i.e., it affects the

scalability of a system.

3.2 Development Environment

3.2.1 Development Platform

The technical implementation of the HNC node prototype was carried out using the AMD Xilinx

Zynq-7000 SoC ZC706 Evaluation Kit. The development board carries an XCZ7045 chip from

the AMD Xilinx Zynq-7000 SoC device family (AMD Xilinx, 2018). The XCZ7045 integrates a

dual-core ARM Cortex-A9 processor and a freely programmable and re-configurable logic device

– a field programmable gate array (FPGA). Both the processor and the FPGA can access a 1GiB

DDR3 external memory. The development board also provides a standard set of peripherals (e.g.,
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Figure 3.1 | Setup of the development and test environment. The ZC706 development board is
connected to a Linux host system. The host system provides the AMD Xilinx Vivado development
environment, a serial console, and the logic analyzer GUI front end.

JTAG1, UART2, PCIe3, Ethernet, etc.) and expansion connectors (e.g., FMC-HPC4 and FMC-

LPC, etc.). Some of these peripherals are used in the development and test environment setup,

where they connect the board to a Linux host system. The setup is shown in Figure 3.1. The Linux

host system provides the software frameworks and tools for development, test, and operation of

the HNC node. For the development process, i.e., hardware-software co-development, design

synthesis, and analysis, the AMD Xilinx Vivado 2019 Design Suite (AMD Xilinx, 2019e) and

the AMD Xilinx Vivado 2019 Software Development Kit (SDK) and embedded system tools

(AMD Xilinx, 2019b) were used. These tools use the JTAG interface of the board to program and

debug the XCZ7045 chip. The implemented design of the HNC node itself requires an Ethernet

connection and a serial UART console interface (TTY5 over serial on USB) for operation and

user interaction. For debugging purposes and timing analysis, the development board was also

connected to an external 34-channel logic analyzer via an FMC-HPC expansion port.

3.2.2 AMD Xilinx Zynq-7000 SoC Device Architecture

The AMD Xilinx Zynq-7000 SoC devices (AMD Xilinx, 2021b) are feature-rich and very

complex. Therefore, in the following, I will only give a brief overview of the fundamental

device architecture and its building blocks, emphasizing the essential aspects needed for further

1JTAG is an industry standard named after the Joint Test Action Group.
2Universal Asynchronous Receiver Transmitter
3Peripheral Component Interconnect Express (PCIe) is a high-speed serial computer expansion bus standard.
4FPGA Mezzanine Card (FMC) is an ANSI standard that defines I/O modules. It allows for two sizes of connectors,

high pin count (HPC) and low pin count (LPC).
5A TeleTYpewriter, or TTY, is a text-only console.
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Figure 3.2 | Basic architecture of an AMD Xilinx Zynq-7000 SoC device. The Zynq-7000 series
devices comprise the two sections: Processing System (PS), and Programmable Logic (PL). The device
architecture is complex. Shown here is a reduced view with the main building blocks. The PS integrates
most components of a computer. Here, the central component is the Application Processing Unit (APU)
featuring a dual-core ARM processor. The PL provides a powerful FPGA. See main text for description.

understanding.

Figure 3.2 shows the basic architecture of such a device. It consists of two main sections:

a Processing System (PS); and a Programmable Logic (PL) part. The PS features a dual-core

ARM Cortex-A9 processor (up to 1GHz) as part of an Application Processing Unit (APU), a fully

integrated memory controller, and multiple peripherals; a selection is shown in Figure 3.2, here

JTAG, UART, and Ethernet. For coupling with the PL, several PS-PL interfaces are provided:

e.g., four 64-bit high-performance ports (HP0 to HP3); and two 32-bit general-purpose ports.

These interfaces follow the AXI6 standard and enable efficient data exchange between PS and

PL. The PS also provides a number of PS-PL and PL-PS interrupt ports, which can be used to

synchronize the operation between the PS, the PL, and the peripherals. A central interconnect

fabric allows all components to communicate and exchange data.

In addition to integrating most of the components of a computer into a single chip, Zynq-

6Advanced eXtensible Interface (AXI) is an open bus architecture standard.
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7000 SoC devices also include an FPGA (the PL section of the chip), which can be freely

programmed with custom logic and re-configured. The basic structure of an FPGA is a matrix of

configurable logic blocks and memories that can be arbitrarily interconnected (illustrated in the

lower half of Figure 3.2). The XC7045 chip here used for the implementation of the HNC node

provides 350,000 configurable logic blocks (CLBs), 218,600 look-up tables (LUTs), 437,200

flip-flops (FFs), 19.2 Mbit of fast static block RAM (BRAM), which can be customized for

different configurations, and 900 digital signal processing (DSP) blocks for the implementation

of arithmetic operations. The resources provided are equivalent to those of a Kintex-7 FPGA

(AMD Xilinx, 2018).

Through the close integration of components and efficient communication interfaces, the

Zynq-7000 SoC SoC architecture achieves a tight coupling between the PL and the PS. Using

the high performance ports, custom logic on the PL can also direct access the external memory

(shown on the right in Figure 3.2) without APU intervention, sharing data with the APU in the

processors address space. The ability of the architecture to offload compute-intensive tasks from

a CPU to programmable logic allows for designs that combine the flexibility of a general-purpose

processor with the efficiency of an application-specific hardware solution.

3.2.3 Co-development and Logic Design Methodology

The HNC node’s design integrates hardware and software components forming a joint system

in which software functions are reliant on hardware implementations and vice versa. This

entails the concurrent development of hardware and software components in a co-development

process. Naturally, this is accompanied by a corresponding co-design process. Additionally,

verification here necessitates combined hardware-software testing, i.e., co-verification. The AMD

Xilinx Vivado tools (AMD Xilinx, 2019e,b) used for development are designed to assist in these

processes. The workflows here are complex and a comprehensive description would go beyond

the scope of this thesis. Therefore, I will constrain the following to an explanation of the chosen

approaches and highlight some aspects.

From the perspective of the top-level design, the co-development process conducted is a

software-driven approach. However, there is a variety of constraints by the capabilities of

the Zynq-7000 SoC device technology where hardware then becomes the driver for software

development.

Throughout the development of the HNC node, co-verification became an important concern.

The HNC node’s software components have been written in the C language, while the majority
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of the hardware design was carried out on the Register Transfer Level (RTL) using the VHDL7

language – a rather error prone approach, which requires extensive testing and functional verifica-

tion. A comprehensive description of the verification strategy, which introduces a rather unusual

software-driven hardware verification approach leveraging the Zynq SoC architecture, is given in

Chapter 4.

Choice of design entry – RTL vs. HLS
The decision to use the more laborious and time-consuming RTL design approach instead of

High-Level Synthesis (HLS) (AMD Xilinx, 2019d) is motivated by the endeavor to maximize

control over microarchitectural details to optimize timing behavior and achieve best possible

performance – a key objective of the HNC node design. Attempts to use HLS for the design

were not successful in this respect. The results did not meet expectations, neither in terms of the

achieved latencies nor in terms of FPGA resource utilization.

The HLS design process takes a behavioral description formulated in a high-level programming

language, such as C. From this, the design tools generate an RTL description guided by synthesis

directives, i.e., code annotations that decorate the high-level description. It takes an understanding

of how HLS works to find the right code style and directives so that the desired hardware

architecture of an algorithm is reflected in the high-level description. At this level of abstraction,

the details of the microarchitecture are almost inaccessible. Although HLS is an attractive

methodology that reduces design times and also has matured the quality of results since introduced,

it does not allow for the full exploitation of a design’s optimization potential. Therefore, RTL-level

block design has been chosen for hardware design entry.

Design flow
Development was conducted using the Integrated Development Environments (IDEs) provided

with the Vivado tools. They bridge hardware and software development processes and provide

the workflows for co-development.

The hardware blocks of the HNC node were developed using a mixture of RTL-level design

and graphical block design. In this approach, RTL modules are integrated into the top-level design

using the IP Integrator (AMD Xilinx, 2019c) of the Vivado Design Suite (AMD Xilinx, 2019e).

The IP Integrator provides a graphical interface that allows the user to work interactively at the

top level of the design. VHDL generics are exposed and can be modified to parameterize modules.

This feature of the VHDL language was extensively used when exploring design alternatives.

7Very high speed integrated circuit Hardware Description Language
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In order to interpret an IP from the processing system’s perspective, hardware definitions are

exported to the Vivado SDK (AMD Xilinx, 2019b) – the design entry for software development.

This export generates a so called Board Support Package (BSP); a collection of software drivers

customized to the provided hardware definitions, e.g., address mappings of PS-PL interfaces.

Hardware-software co-development has always been accompanied by a co-verification process

(see Chapter 4 for further details).

3.3 HNC Node Architecture

3.3.1 Architecture Concept

Conceptually, the HNC node design is centered on FPGA-SoC technology aiming at a hybrid

hardware-software architecture in which hardware and software components are tightly coupled.

Here, the Zynq SoC device technology is exploited, specifically the ability to offload compute-

intensive tasks to programmable logic for acceleration, combining the flexibility of a general-

purpose processor with the efficiency of an application-specific hardware solution.

The underlying algorithms and the functional principle of the approach, however, do not differ

from those that are typically used in pure software implementations for discrete-time simulations

of spiking neural networks of point neuron models. It follows a hybrid strategy where neuron

dynamics progress synchronously, time-driven and at fixed intervals, and synaptic inputs are

processed asynchronously, event-driven, triggered when a presynaptic neuron emits a spike (see

Morrison et al., 2005, and Section 1.2.3).

Figure 3.3 depicts the top-level architecture of the HNC node and illustrates the conceptual

idea. Three main building blocks can be distinguished (from top to bottom): an off-chip external

memory; an Application Processing Unit (APU); and a Programmable Logic (PL) part. Here, the

APU is used to run a software system that prepares and supports the simulations and communicates

with a Linux host system. This software system resides in the external memory. The PL

implements the hardware blocks of a simulation engine.

Performance non-critical and critical tasks
From the perspective of the design goal of accelerated simulation, computational tasks can be

divided into performance non-critical and performance critical tasks. The former would not

benefit from hardware acceleration. It is therefore sufficient to implement these tasks in software

and have them executed by a general-purpose processor. The flexibility that a software solution

here offers is even an advantage and facilitates system integration, for example. Non-critical
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Figure 3.3 | HNC node architecture concept. At the top level, the HNC node architecture comprises
three main building blocks (from top to bottom): an off-chip external memory; an Application Processing
Unit (APU); and Programmable Logic (PL). The APU, as part of the Zynq device Processing Systems (PS),
runs a software system. Its executable resides in external memory, which is also where the connectivity
data of the network to be simulated is located. The actual simulation engine is implemented on the
Programmable Logic (PL) section of the Zynq device. There are two distinct performance-critical tasks
that are offloaded to the PL: the computations performed to advance model dynamics, the model state
update (indicated by the red arrows); and the processing of spike events and synaptic inputs (indicated by
the blue arrows).

are those tasks that are not directly related to the simulation itself. This applies to tasks such

as: the instantiation of neurons and connections on a node; the control of the simulation; and

the post-processing of simulation data. Tasks relevant to a node’s simulation performance, and

therefore offloaded to programmable logic, are: the computations performed to advance model

dynamics (indicated by the red arrows in Figure 3.3); and the processing of spike events and

synaptic inputs (indicated by the blue arrows in Figure 3.3). Since the HNC node is designed
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to operate in a cluster, inter-node spike communication and synchronization between nodes are

additional performance-relevant processes here.

Model state update – locality of data and operations
By implementing an algorithm in hardware locality of data and operations can be achieved, alle-

viating the inevitable limitations of traditional general-purpose architectures, i.e., the limitations

imposed by the von Neumann bottleneck. Moreover, hardware is parallel by nature. Latency

can be reduced and throughput increased by hardware-level parallelization. The HNC node

implements 16 parallel processing units (P1 through P16) and also pipelines operations, where

pipelining provides hardware parallelism at the operation level. This maximizes throughput; the

work that is performed per unit time.

Each of the HNC node’s processing units is capable of performing the computation of NP = 64

neurons. A HNC node is thus capable of simulating NM = 1024 neurons. The operations to

calculate the dynamics of the NM neurons are performed by the ODE solver pipelines, where the

neuron’s state vectors yyyk are stored in the state variables buffers (SVBs). The data paths involved

in this processing are indicated by the red arrows in Figure 3.3. Neuron states are updated at

intervals of 0.1 ms – the temporal resolution of the simulation in the biological time domain. The

SVBs are implemented as fast on-chip BRAM memories which creates the aforementioned data

locality. However, technical constraints and functional requirements did not always allow for

close proximity of data and operations in the HNC node design, as elaborated later in this section.

Network connectivity data and processing of synaptic inputs
The HNC node represents a network’s connectivity as lists of synaptic connections, with one list

maintained for each presynaptic neuron that has at least one postsynaptic neuron on the node.

A list item contains information about the postsynaptic neuron, the synaptic weight, and the

synaptic transmission delay of the connection. From this data the synaptic inputs to neurons are

derived. These lists of synaptic targets form the Network Connectivity Data, which is stored in

the off-chip external memory (top in Figure 3.3). This undermines the concept of data locality to

some extent and is a decisive system performance limiting factor. There are two constraints that

led to this design decision.

The first is a resource limitation. Storing the connectivity data in fast on-chip BRAM memories

would be ideal, but BRAM is a limited FPGA resource and the memory requirement for storing

a network’s connectivity is demanding. For example, assuming a 64-bit data item to represent

a synaptic connection, a network model, such as the cortical microcircuit model (Potjans and

Diesmann, 2014), which comprises 0.8 ·105 neurons and 0.3 ·109 synapses, will require 2.4 GB
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of memory in total. That is 24 MB per compute node if a single node processes 103 neurons. The

XC7045 chip provides 19.2 Mbit of BRAM. This is ten times less memory than required.

The second constraint comes from a functional requirement. Although plasticity functionality

was not in the focus of the design, in order to be able to cope with synaptic and structural

plasticity algorithms in the future, network connectivity and the state of synapses need to be

stored in an accessible and modifiable way. For static networks, performance efficient solutions

have been developed that use procedural connectivity generation (see, e.g., Knight and Nowotny,

2021; Heittmann et al., 2022); instead of having to retrieve the synaptic connections from a

memory, they are determined algorithmically during the runtime of a simulation. Due to the

aforementioned requirement for plasticity functionality, such a solution was excluded and a

compromise is made here in terms of achievable performance. The connectivity data is stored in

external memory accessible by both the APU and the PL.

The HNC node parallelizes the processing of synaptic inputs. A received spike event triggers

the retrieval of the list of synaptic targets of the presynaptic neuron that emitted the spike. This list

is read from external memory and list items are distributed to the processing units (in Figure 3.3

indicated by the blue dashed lines). The data is passed through the ring buffer (RB) pipelines,

which accumulate the synaptic inputs in the RB memories. The content of the RBs then constitutes

the synaptic inputs (excitatory, iexc, and inhibitory, iinh) to the postsynaptic neurons.

The processing of postsynaptic spike events is less computationally intensive, but is also

implemented on the PL to keep overall latencies low. The associated component is shown at the

bottom of Figure 3.3, where it is labeled Spike Events Processing. The spike events are serialized

and packed for communication and recording.

The conceptual ideas behind the HNC Node design can be summarized as follows: leveraging the

flexibility of a general-purpose processor tightly coupled with programmable logic; offloading

performance-critical tasks to programmable logic to establish data locality; parallelizing algo-

rithms at the hardware level to reduce latency; and pipelining operations in hardware to increase

throughput. Together, these principles enable efficient and high-performance processing.

3.3.2 System-Level Architecture

The previous section described the technical concept and explained the motivation behind some

of the design choices. This section breaks this down further. Figure 3.4 shows the system-level

view of the HNC node architecture design with the major building blocks, their interactions and

functional assignments. The dashed frames enclose the on-chip components, PS (upper dashed

frame) and PL (lower dashed frame). Central component of the PS is the Application Processing
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Caption overleaf.

96



Chapter 3 A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture

Figure 3.4 | System-level view of the HNC node hardware architecture. Shown are the main building
blocks. The dashed frames enclose the on-chip components: Processing System (PS) (upper dashed frame);
and the modules implemented in Programmable Logic (PL) (lower dashed frame). Attached to the PS
is a 1GiB off-chip external memory (upper right). It stores the executable of the software system that
orchestrates the operation of the HNC node. The external memory also stores the data structures required
for operation, i.e., the state variables (a copy of the SVBs on the PL) and the network connectivity data,
and is used to buffer the data recorded from simulations. The PS is connected to a Linux host system
(upper left). The host system runs the development environment, a serial console, and a TCP/IP server to
which the recorded simulation data is transferred. The functional assignment of the hardware blocks is
marked on the right: presynaptic data distribution; presynaptic data processing; neuron and synapse model
update; and spike events processing. For a description of the components, see the main text.

Unit (APU) which runs the HNC node software system. The simulation engine’s core components

are realized in programmable logic utilizing the PL section of the device. Functionally, hardware

blocks can be assigned to the following four distinct tasks performed in a simulation step (marked

on the right in Figure 3.4): (i) presynaptic data distribution; (ii) presynaptic data processing; (iii)

neuron and synapse model update; and (iv) spike events processing.

Presynaptic data distribution: The main building block here is the PS/PL Data Transfer Module.

Its operation is triggered by incoming spike events. Upon the occurrence of a spike event, the

module initiates a sequence of read operations from external memory to obtain the node-local

postsynaptic connections of the presynaptic neuron that has emitted the spike, i.e., the list of

synaptic targets of the presynaptic neuron. This data is referred to here as the presynaptic data.

To optimally use the available memory read bandwidth, the module is connected to the PS via

a pair of high-performance ports. The presynaptic data items are then distributed to the 16

processing units according to where the corresponding postsynaptic neurons are being processed.

To compensate for latencies, a series of first-in-first-out (FIFO) buffers (in Figure 3.4 labeled RB

FIFO) connect the PS/PL Data Transfer Module to the processing units.

Presynaptic data processing: From the presynaptic data, the synaptic inputs are derived. The

building blocks here are the ring buffers (RBs) and the ring buffer pipelines (RB pipelines) as part

of the processing units. The presynaptic data items are fetched from the RB FIFOs and passed

through the RB pipelines. The RB pipelines accumulate the presynaptic inputs, lumping together

a neuron’s excitatory synaptic inputs iexc, and inhibitory synaptic inputs iinh, respectively, and

store the resulting values in the RBs. The RBs provide these weighted synaptic inputs to the ODE

solver pipelines, while also realizing the synaptic transmission delays.

Neuron and synapse model update: The processing unit’s ODE solver pipelines implement the

functional blocks that compute the neuron and synapse model dynamics. They receive input
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from the RBs and update the model state vectors yyyk, which are stored in the state variables

buffers (SVBs). An additional external random input {iP1
ext, .., i

P16
ext } to neurons can be provided by a

pseudo-random number generator (PRNG). When a neuron emits a spike, the event is pushed

into the Parallel Spike Events FIFO (shown at the bottom of Figure 3.4). Here, due to the parallel

operation of the processing units, also multiple spike events can occur in the same clock cycle.

Spike events processing: Spike events are serialized and packed for local (intra-node) and global

(inter-node) spike communication as well as for recording. The main building block here is

the Serializer and Encoder Module. It fetches the spike events from the Parallel Spike Events

FIFO, processes the events, and stores the encoded events in two FIFO buffers, the Spike FIFO

and the Recording FIFO. The Spike FIFO compensates the latencies of the intra-node spike

communication. The Recording FIFO buffers the spike recordings. It is read asynchronously by

the Spike Recording Module, which writes the data to the external memory, where the recordings

are buffered again before being transferred to the Linux host system (shown at the upper left in

Figure 3.4).

To orchestrate the above processes, additional components are required to manage control flows,

configure modules, enable the APU to access on-chip resources, and synchronize processes.

A set of 32-bit registers store configuration and status information (shown in the mid left of

Figure 3.4; a description of the registers can be found in Appendix C). Their settings steer the

operation of a finite state machine (FSM) (labeled Main Control FSM in Figure 3.4). This FSM

generates the control signal sequences for the different HNC node operations, such as the loading

and unloading of state variables and the execution of a simulation. The registers are mapped into

the APU’s address space and are thus accessible by the HNC node software system.

In order for the APU to perform software-controlled read and write operations on memories

on the PL, in particular to access SVBs for loading and unloading state variables, all processing

units are chained to one another and connected to a direct memory access (DMA) controller. This

enables efficient data exchange between the APU and the processing units.

To guarantee the temporal causality of spike events and a coherently evolution of algorithmic

time in a cluster, a node-internal (intra-node) synchronization and a synchronization between

nodes (inter-node) is required. For this purpose a synchronization logic (shown at the lower left

in Figure 3.4) monitors the operating status of all modules as well as the status of the cluster.

Technically, it implements a barrier mechanism that synchronizes the overall processing at the

end of each simulation time step.
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3.3.3 Software System

The entire function of the HNC node is controlled by its software system. In order to minimize

the resources footprint and achieve the best possible performance, its implementation was done in

the C language as a bare-metal application; i.e., the executable runs natively on the APU without

the use of an underlying operating system.

3.3.3.1 Software System Architecture

The HNC node software system design uses a tiered software architecture style. Figure 3.5

outlines the architecture. At the lowest level, a hardware abstraction layer (Figure 3.5A) provides

basic routines fundamental to drive the functions of hardware components, and hides the technical

details of hardware implementations. This abstraction layer implements the functions for initializ-

ing the hardware blocks on the PL, establishing a basic serial console and TCP/IP communication

with the host system, performing PS-PL DMA transfers, and handling interrupts. A layer of

service routines (Figure 3.5B) builds on top of the hardware abstraction layer providing system

low-level functionality. It implements, for example, an interface that provides convenient access

to the processing units on the PL for the loading and unloading of state variables. This interface

consists of a DMA driver wrapper that is aware of the processing unit’s microarchitecture. Other

service functions that the layer implements provide routines for data type conversion and the

assignment of neurons to hardware resources. These services are called by higher-level simulator

functions, such as the functions of the Neuron Manager, the Connection Manager, the Recording

Client (Figure 3.5C), and the functions that control node operation (Figure 3.5D).

Neuron Manager, Connection Manager, and Recording Client constitute the central part of the

HNC node software system. They serve the following purposes:

The Neuron Manager is responsible for the instantiation of neurons. It invokes lower-level

functions to assign a neuron a processing unit and a relative position in the sequence of the ODE

solver pipeline processing. It also initializes the associated SVB memory structures and sets up

neuron parameters and initial states.

The Connection Manager creates the synaptic connections, which amounts to creating the

network’s connectivity data and setting up lists of synaptic targets in memory.

The Recording Client reads the buffered spike recordings from external memory and transfers

the packed data to a TCP/IP server that runs on the Linux host system.

At the highest level (Figure 3.5E), a C-API provides three function calls – the minimum required

to instantiate and simulate a network. These function calls are: Create(..); Connect(..);
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User Interfaces
Simulator High-Level C-API

Create(..), Connect(..), 

Simulate(..) 

Console Interface

Recording 
Client

Connection
Manager

Neuron
Manager

Data Structures in External Memory

DMA Buffers 
State Variables

Connectivity 
Data

Recording 
Buffer

Simulator

Spike 
Injection

SVB BRAM
Load and
Unload

RB BRAM 
Load and 
Unload

Hardware 
Resources
Mapping

Data Type
Conversion

TCP/IP
Stack

Interrupt
Handler

DMA 
Driver

Control 
Register
Mapping

Console 
Driver

Configuration

Simulation Control

System Tests

Service 
Routines

Hardware
Abstraction

System Operation

A

B

C

E

D

Figure 3.5 | HNC node software system architecture. The tiered architecture provides abstraction at
different functional levels. At the lowest level, a hardware abstraction layer (A) hides technical details
about the implemented hardware components. A set of low-level routines (B) builds directly on the
hardware abstraction layer and provides service routines for the higher-level modules and functions of the
Neuron Manager, the Connection Manager, the Recording Client (C), and for system operation (D). At
the highest level (E), a C-API exposes functions to instantiate and simulate a network. For user interaction,
a command-line console interface is provided. The arrows indicate the dataflow between modules – they
do not reflect the function call hierarchy, which is strictly from higher-level layers to lower-level layers.

and Simulate(..). For user interaction, also a command-line console interface is provided.

The HNC node software system is completed by a set of supervisory routines (Figure 3.5D)

that implement functions for the user-interactive control of node operation and to support system

testing and debugging.

3.3.3.2 Technical Concepts

There is a variety of technical details in the HNC node implementation concepts intended to

foster efficient resource management and resource utilization. Four of these underlying technical

concepts are briefly explained in the following, as they are necessary for further understanding.

Node-local neuron-id
To identify a neuron in a network, neurons are typically numbered sequentially, with each neuron

being assigned a unique id, a neuron-id. In a cluster of nodes, a neuron-id can be decomposed into
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a node-id and a node-locally unique identifier. The HNC node uses such a node-local identifier;

here referred to as the local neuron-id of a neuron denoted as nloc.

Hardware resources identifier
The hardware resources with which a neuron gets associated on the PL are identified by a

hardware resources identifier (HwResId). A HwResId is represented by a data structure that

stores information about the assigned processing unit, the neuron’s position in the sequence of

the ODE solver pipeline processing as well as information about the associated PS-PL data path

and the related RB FIFO buffers. The service routines layer provides the functions to assign these

resources, mapping a local neuron-id to a HwResId, where a HwResId is always unique. For an

instantiated network and during a simulation, the assignment is static, and exactly one HwResId

per local neuron-id exists.

State variables and data type conversion
There are two types of SVB resources: the hardware SVBs of the processing units on the PL, and

a copy of it in external memory maintained by the Neuron Manager; in the following referred

to as SVBNM. Neuron states are stored in the SVBs as generic 128-bit data words (see also

Section 3.3.4.4). The exact data format depends on the model-specific implementation of the

ODE solver pipelines. Setting up state variables therefore requires a model-specific data type

and endianness conversion. The APU’s ARM processor cores use Little-Endian and provide

32-bit floating point single precision. The data paths on the PL are laid out in Big-Endian byte

order. Depending on the model’s demands in terms of required numerical precision, different

data types may be needed. In this respect, the hybrid architecture of the HNC node provides a

level of flexibility that allows any user-defined data type to be implemented.

Presynaptic data representation – network connectivity data
The HNC node represents connections (synapses) on the same node as their postsynaptic neuron,

where connections are stored as lists of quadruples, referred to here as lists of synaptic targets

LST j = {(nloc,i,wi j,di j, si), .., ()}. (3.1)

In Equation (3.1), j identifies the presynaptic neuron to which an LST belongs, nloc,i specifies

the node-local id of a postsynaptic target neuron i, wi j and di j denote the synaptic weight and

delay of a connection, and si is a hardware control value derived from the postsynaptic neuron’s

HwResId. An illustration of a neuron’s connections is shown in Figure 3.6.

These LSTs are maintained by the Connection Manager, where for each presynaptic neuron

j that has at least one postsynaptic target on the node a list LST j is being held. In this concept,
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Figure 3.6 | Synaptic target connections. Synaptic connections of a presynaptic neuron n j to its
postsynaptic targets {n0,n1, ..,ni}.

global connectivity is implicitly encoded by the location of an LST in memory. A single element

within an LST is represented in memory by a 64-bit data structure. The data format is outlined

in Appendix D. This data structure is determined by the microarchitecture of the PS/PL Data

Transfer Module (see Section 3.3.4.2), as well as the microarchitecture of the RBs and RB

pipelines (see Section 3.3.4.3). These hardware blocks process the elements of an LST and

perform the calculations using a 40-bit fixed-point data type for synaptic weights and a 9-bit

unsigned integer data type for synaptic delays. All LSTs of all nodes together represent a

network’s connectivity data. To distinguish between the raw data stored in the LSTs and the

processed weighted synaptic inputs to a neuron, the data stored in the LSTs is here also referred

to as the presynaptic data, and an LST element is referred to as presynaptic data item.

The current HNC node prototype is capable of simulating 1024 neurons per node, where a

presynaptic neuron can connect with up to 128 postsynaptic neurons on a node. This is a sufficient

number of connections, as it aligns with the connection probability value of approximately ε = 0.1

observed by Braitenberg and Schüz (1998) in cortical tissue. It holds

CM
max > εNM, (3.2)

where CM
max denotes the maximum number of postsynaptic target connections per presynaptic

neuron and node, and NM is the number of neurons per node; a value of CM
max > 102 is therefore

sufficient here.

A typical cortical neuron connects to between 103 and 104 other neurons. A network of

N = 105 neurons, with each neuron forming 104 connections, thus represents an upper limit on

the number of synapses per node. For network sizes N > 105, the total number of synapses in a

network scales linearly with network size; below this size, it scales quadratically. The amount of
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memory required on a node to store a network’s connectivity data is then given by

S M
conn =


εNMNwlen,LST if N ≤ 105

104

M
Nwlen,LST otherwise,

(3.3)

where wlen,LST is the word length of an LST element (here, 64 bit), and M specifies the number

of nodes required to simulate a network of size N for a given number of neurons per node NM.

To give an an order of magnitude for the memory requirement S M
conn, depending on the number

of neurons simulated per node, a large-scale network with a few million neurons would require

approximately several hundred megabytes of memory per node, assuming each connection is

represented by a 64-bit data word.

3.3.3.3 Node-Local Network Instantiation

A network is instantiated on the HNC node by a sequence of C-API Create and Connect

function calls. These are processed by the Neuron Manager and the Connection Manager,

respectively. A Create call instantiates a single neuron. A Connect call creates a single synaptic

connection. Both the instantiation of a neuron and the creation of a synaptic connection require the

allocation of various system resources. These resources are maintained by the Neuron Manager

and the Connection Manager, as described in the previous section.

Create: The Create call takes as its arguments a neuron model type, a local neuron-id, and

the initial values of the neuron’s state variables. The call is processed by the Neuron Manager.

The sequence diagram in Figure 3.7A shows the interaction between the software layers and

functions invoked. The processing of a Create call comprises two steps. Firstly, the Neuron

Manager invokes a service routine to locate the position of the neuron’s state variables in the

SVBNM in external memory. This position is derived from the HwResId assigned to the neuron’s

local neuron-id. Secondly, the Neuron Manager builds the data structure in memory setting up

model parameters and initializing state variables, i.e., setting the initial state of the neuron. This

includes the conversion of data types into the data formats and endianness used by the neuron

and synapse model-specific hardware blocks of the ODE solver pipelines.

Connect: The Connect call expects in its argument list a local neuron-id of a presynaptic neuron

(in a multi-node system this is extended by the node-id), a local neuron-id of a postsynaptic neuron,

a synaptic weight, and a synaptic delay value. The call is processed by the Connection Manager.

Figure 3.7B shows the sequence diagram. The processing of a Connect call also requires two

steps. First, the HwResId of the presynaptic neuron and the HwResId of the postsynaptic neuron
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Figure 3.7 | Sequence diagram. Interaction of software layers and functions invoked by the Neuron
Manager and the Connection Manager when processing: (A) a Create; and (B) a Connect C-API
function call.

are obtained by invoking a service routine. In a second step, an LST element (nloc,i,wi j,di j, si)

is created and appended to the presynaptic neuron’s list of node-local target connections, LST j.

Data type conversion and managing byte order are also necessary here; weights are specified

in 32-bit floating point but stored in RBs and processed by the RB pipelines using a 40-bit

fixed-point format.

Note that the function calls Connect and Create do not require any component on the PL part

of the HNC node. They are executed solely by the APU.

3.3.3.4 Simulation

A simulation is launched with a Simulate function call. It prepares the processing units on the

PL and triggers the hardware blocks to run the simulation.

Simulate: The Simulate function call takes as its only argument the duration for which a
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C-API
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Interrupt
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Service Routines

Figure 3.8 | Sequence diagram. Shown is the interaction of software layers and the functions invoked
when processing the Simulate C-API function call.

network is to be simulated, i.e., the simulated time. The execution of the Simulate function call

requires the simulation layer to perform four steps, shown in the sequence diagram in Figure 3.8.

These steps are: copy the state variables from the SVBNM in external memory to the processing

unit’s SVBs on the PL; set the simulated time; trigger the simulation run, i.e., the main FSM

on the PL; and finally, when the simulation has completed, copy the state variables back from

the SVBs to the SVBNM. Setting the simulated time and starting a simulation are simple write

operations to control registers (a description of the registers is provided in Appendix C). More

complex is the transfer of the state variables between the SVBNM and the processing unit’s SVBs.
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Here, a DMA controller is used for which the service routines layer provides an interface that

encapsulates its function. The DMA functions are aware of the SVB microarchitecture, as does

the Neuron Manager, which maintains the SVB data structures.

The current implementation of the HNC node also provides functions to advance a simulation

for a specified time interval, halt, and resume it later as well as to perform a simulation in a

step-wise manner. Also implemented is an operation mode that allows the processing units on

the PL to be operated in closed-loop with the APU (see Section 3.3.4.4.1). From the perspective

of the software system, these functions are just variations of the sequence of operations of the

Simulate call shown in Figure 3.8.

There are two technical aspects related to performance worth mentioning here: DMA latency;

and the use of the external memory by the APU and the hardware blocks on the PL.

DMA latency: In the current implementation, an AMD Xilinx AXI DMA soft-IP core is used

(AMD Xilinx, 2019a). The DMA transfer of the state variables takes approximately 30µs8,

transferring 16 KiB (1024 x 128bit) of data, where the DMA controller raises an interrupt request

notifying the APU when a transfer is completed. This latency is relevant for APU closed-loop

operation and when recording state variables (see next section).

Use of external memory: During simulation, the APU does not access external memory, allowing

the components on the PL to make optimal use of the available memory read bandwidth when

processing incoming spike events.

3.3.3.5 Recording

In simulations of spiking neural networks, the data of interest are the recordings of the neurons’

spike trains, but also the evolution of the model dynamics (e.g., membrane potentials) is data that

is often subject to analysis. The HNC node allows recording of both the spike trains of neurons

and their state variables.

Spike events
The recording of spike events is a fully asynchronous process that runs in parallel and decoupled

from simulation. During a simulation, spike events are grouped together and packed into 64-bit

binary values. These are buffered in the Recording FIFO (shown at the bottom in Figure 3.4)

before being written to external memory. In external memory, the HNC node maintains a 60 MiB

recording buffer capable of caching approximately 15 million spike events. The buffer is written

in a round-robin fashion by the Spike Recording Module which uses a high-performance port for

8The value was measured on the APU using a hardware timer.
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the transfer (the write data channel of HP3). After a simulation has completed, the Recording

Client (Figure 3.5C) streams the data to a TCP/IP server running on the Linux host system, where

the spike events are unpacked. To establish the TCP communication, the Recording Client uses

the open-source lightweight IP9 (lwIP) TCP/IP stack that comes with the AMD Xilinx board

support package included in the Vivado SDK.

Parallel access to the external memory when writing spike recordings and reading presynaptic

data simultaneously carries the risk of memory read-write contention. This has been investigated

by comparing the runtimes of simulations when spike recording is turned on and when it is turned

off. Even when all neurons were forced to exhibit very high spike rates, no major differences in

runtimes were observed.

State variables
State variables are stored in the processing unit’s SVBs. For recording, the entire contents

of the SVBs are copied to external memory. The copy operation is performed using a DMA

transfer, which requires a simulation to be paused. Consequently, recording neuron states

significantly slows down a simulation – as stated earlier, a DMA operation takes approximately

30 µs. Nevertheless, the DMA transfer provides an efficient method to capture all state variables

at once and at any desired interval.

3.3.3.6 Interactive User Console Interface

The HNC node provides a serial console communication interface. It is established at startup,

where it is used to log the startup sequence. During this sequence, the HNC node software system

performs a series of internal tests, initializes data structures, and sets the hardware blocks on

the PL to a defined state. The console interface also allows the user to work interactively with

the system. It provides low-level access for system administration, allowing, for example, status

and configuration information to be queried and system operation to be monitored. For this

purpose, the software system provides a number of functions such as: reset and initialize the HNC

node; view configuration and status registers; set configurations; print RB and SVB memories;

perform functional tests; create neurons and connections; look up connections, including a reverse

look-up; load a network from a set of configuration parameters; and run a simulation.

3.3.4 Hardware Microarchitecture

The HNC node software system interacts with the simulator hardware blocks and controls all

node operations. There is a tight coupling between the two, not only in terms of the physical

9http://savannah.nongnu.org/projects/lwip/
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coupling of PS and PL on the SoC device, but also logically at the level of data structures and

functionality. This is reflected in the design of the node software as well as in the hardware

microarchitecture; data structures are determined by microarchitecture details, and hardware

blocks serve software functions.

The following sections describe the functional principles and microarchitecture of the most

relevant hardware blocks and their interrelationships. Design decisions and their motivation are

discussed, and where of thematic interest, designs are evaluated and architecture alternatives

are presented. The order in which the hardware blocks are presented follows the order of

their functional assignment to the processes of: presynaptic data distribution; presynaptic data

processing; neuron and synapse model update; and spike events processing (see Section 3.3.2).

Also described are the generation of random numbers and the synchronization processes that the

HNC node performs at the end of each simulation time step.

3.3.4.1 Technical Concepts

Analogous to the description of the concepts underlying the software system, an insight into the

technical principles and concepts underlying the hardware architecture is provided below. The

functional principle of a ring buffer, the byte order used by hardware blocks on the PL, and some

design decisions regarding the choice of data types are explained.

Ring buffer working principle
A ring buffer (RB) stores the weighted synaptic inputs of a set of postsynaptic neurons and

also realizes the synaptic transmission delays. For this purpose, an RB implements multiple

circular memory structures, the circular buffers. A neuron is assigned two of these structures,

each of which is used to lump together a neuron’s excitatory and inhibitory inputs, respectively

(see Section 1.2.2 for an explanation). An RB thus consists of 2NRB circular buffers, where

NRB denotes the number of neurons it serves. The working principle is illustrated in Figure 3.9,

where Figure 3.9A shows only one of the two memory structures assigned to a neuron; to both

excitatory and inhibitory inputs, the same working principle applies. An RB is divided into

segments (Figure 3.9B). A single segment stores the weighted synaptic inputs of NRB neurons

that is valid in a particular time step k.

When a presynaptic data item is received – henceforth this process is referred to as a synaptic

event – it conveys information about the postsynaptic neuron, the synaptic weight, and the

transmission delay of the connection, held in an LST. In the following, synaptic events will be

denoted as (N, J,D), where N specifies the postsynaptic neuron, J is the synaptic weight, and D
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Weighted synaptic inputs 

RB segment entry

RB segment

A B

Figure 3.9 | Ring buffer working principle. (A) A circular buffer structure is employed to accumulate
the synaptic inputs J of a postsynaptic neuron N and to delay their delivery according to the synaptic
transmission delays D. Each neuron is assigned two circular buffers, one for excitatory inputs and one for
inhibitory inputs (only one is shown). (B) A ring buffer (RB) consists of 2NRB circular buffers and stores
the weighted synaptic inputs of NRB neurons. An RB is divided into segments. When the simulation time
is advanced to the next time step k + 1, the structure is rotated by one segment, so that the synaptic input
G(k) of a neuron always corresponds to the simulation time.

is the transmission delay of the connection.

When a synaptic event is processed, first, the circular buffer that corresponds to the postsynaptic

neuron N is selected, and from the current simulation time step k and the synaptic delay value D

an offset into this buffer is calculated as k + D. This determines the RB segment entry G(N,k + D)

that is associated with the synaptic event. Second, the content of this segment entry is taken and

the synaptic weight J is added to it. This is repeated for all synaptic events received in a simulation

time step k. Finally, when the simulation time is advanced to time step k + 1, the structure is

rotated by one segment (i.e., G(k)←G(k + 1), G(k + 1)←G(k + 2), ...), so that the synaptic input

G(k) of a neuron always corresponds to the simulation time. In this manner, synaptic inputs are

accumulated and their delivery is delayed according to the synaptic transmission delays.

After a complete rotation of the structure, segment entries are reused. The number of segments

KRB thus defines the maximum possible synaptic delay, which is given by Dmax = h(KRB−1),

where h is the temporal resolution of the simulation.

The concept of accumulating a neuron’s synaptic inputs using a circular buffer structure is
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Figure 3.10 | Byte order. Little-Endian and Big-Endian byte order for a 128-bit compound data type.

well known from software simulators, such as the neural simulation tool NEST (Gewaltig and

Diesmann, 2007; Morrison et al., 2005). This approach provides an efficient mechanism to process

synaptic events. Nonetheless, its algorithmic implementation on von Neumann architectures

is a non-trivial exercise, and has significant impact on the overall system performance. In

simulations of large-scale networks, a compute node has to perform thousands of RB updates

per simulation time step. The irregular memory access patterns lower a CPU’s cache hit ratio,

leading to additional memory access latencies and thus impeding efficient execution (see, e.g.,

Pronold et al., 2022). The hardware blocks of the HNC node that are associated with presynaptic

data distribution and processing are therefore key components with a high impact on system

performance.

Byte order
The 32-bit ARM processor cores of the APU use Little-Endian byte order. For the hardware

blocks on the PL, it is technically more convenient to operate with Big-Endian. The use of

Big-Endian has an advantage especially when user-specific data types or compound data types10

cross 32-bit word boundaries. In Big-Endian, bits are always sorted according to their significance,

which simplifies hardware design. Figure 3.10 shows an example of the reordering of the 32-bit

data words for a 128-bit compound data type. Such a data type is used to store the state variables

in the SVBs on the PL. The necessary endianness and type conversion can be done conveniently

in software, and only needs to be done once when instantiating a network.

Data types
Flexibility in model implementation, numerical accuracy, and the reproducibility of simulation

results are key requirements. This led to three design decisions regarding the data types used in

hardware blocks: (i) for state vectors, a generic 128-bit data word is used; (ii) synaptic delay

values are represented as unsigned integers; and (iii) for synaptic weights and synaptic inputs an

10A compound data type is a data type that consists of more than one element, where elements can be of any other
data type.
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s16.23 representation, i.e., a 40-bit fixed-point data type, is used. The reasons for these design

choices are as follows.

Generic 128-bit state vectors: The use of a generic data type aims at flexibility in the model

implementation. The exact format of the 128-bit word is defined by the model-specific ODE

solver pipeline implementation and its software counterparts, i.e., the corresponding Neuron

Manager functions. This concept allows flexibility in the number of state variables, their data

types, and the numerical precision required by the model. This also allows for mixed-precision.

Unsigned integer delay values: In order to avoid rounding errors for synaptic delay values, APU

and hardware blocks store them as unsigned integers (32-bit on the APU and 9-bit on the hardware

blocks), where the value represented by the least significant bit corresponds to a delay value of

0.1 ms – the temporal resolution at which the HNC node performs simulations.

Fixed-point synaptic weight values in s16.23: The use of signed fixed-point numbers for synaptic

weights aims at the replicability of simulation results. Generally, floating-point operations deliver

results with a rounding error that usually cannot be guaranteed to be strictly less than the value

represented by the least significant bit if it is 1; the unit in the last place (ulp). As a consequence,

addition and multiplication become non-commutative operations. In simulations, a changed order

in the sequence of spike events can therefore potentially result in differences in the accumulated

synaptic inputs. In this respect, inadequate numerical accuracy can hinder replicability, that is,

in repeated simulations, the results are no longer spike-for-spike identical. When using fixed-

point numbers for the representation of synaptic weights, this can be avoided. Their addition is

commutative. A change in the order of the spike events will not have any effect on the synaptic

inputs. The use of the 40-bit s16.23 data type is motivated by the results obtained from the

calculation verification tasks described in Section 2.3.4.2. This data type provides the numerical

precision and value range that is needed to achieve sufficient simulation accuracy.

3.3.4.2 Presynaptic Data Distribution – PS/PL Data Transfer Module

The purpose of the PS/PL Data Transfer Module (DTM) is to efficiently retrieve the presynaptic

data from the external memory and distribute it to the processing units. The microarchitecture of

the module and how it interacts with the PS and the external memory is shown in Figure 3.11.

The components of the DTM are framed by the dashed line.

To optimally utilize the read bandwidth of the external memory, the module bundles two

high-performance ports to connect to the PS. For this purpose, it implements two 64-bit AXI

master stream interfaces. The two high-performance ports have been selected such that they can

operate in parallel and independently of one another; here HP1 and HP3 are used. The use of

111



Chapter 3 A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture

Figure 3.11 | PS/PL Data Transfer Module microarchitecture and interaction of components. The
purpose of the PS/PL Data Transfer Module (framed by the dashed line) is to efficiently retrieve the
presynaptic data from the external memory (upper right). Arriving spike events are first queued in the
Spike FIFO buffer (lower right) and then processed sequentially. Each spike event triggers a sequence of
read operations from external memory. To access the external memory, the module implements two 64-bit
AXI master stream interfaces. These are connected to two high-performance ports, HP1 and HP3. This
allows two independent data streams to be created and the available memory bandwidth to be optimally
utilized. The two data streams are indicated by the red and blue arrows labeled S1 and S2. A presynaptic
neuron’s list of postsynaptic targets is split in memory into two lists, LSTS1

j and LSTS2
j , each associated

with one of the two streams (upper right). Two demultiplexer (DMUX) circuits control the data paths of
the streams and distribute the LST elements to the processing units. See also the description in the main
text.

two ports instead of one allows data to be retrieved as two independent streams, maximizing

memory read efficiency. The two streams are indicated in Figure 3.11 by the red and blue arrows
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labeled with S1 and S2. This design splits a presynaptic neuron’s list of postsynaptic targets,

LST j (see Section 3.3.3.2), into the two lists LSTS1
j and LSTS2

j , each assigned to one of the two

data streams (shown in the upper right)

Arriving spike events are first queued in the Spike FIFO buffer (shown in the lower right

of Figure 3.11). They are processed sequentially. Each spike event triggers the AXI master

interfaces to perform a sequence of read operations, which retrieve the lists LSTS1
j and LSTS2

j

from external memory in parallel. Note that accessing external memory here does not require the

APU. The addresses at which the two lists are located in memory are calculated in two steps.

First, from the presynaptic neuron’s node-id m j and local neuron-id nloc, j a relative offset

position in memory is derived as

offset(LST j)← offset(m j,nloc, j) lenS
LST, (3.4)

where lenS
LST denotes the length of a list associated with a stream. In a second step, this offset is

then added to the memory base addresses of the two streams as

addr(LSTSx
j )← addrSx

base + offset(LST j) ∀ Sx ∈ {S1,S2}, (3.5)

where addrSx
base are the addresses at which the first list associated with S1 and S2, respectively, in

memory begins. In the prototypical implementation, the lists are padded to have the fixed length

lenS
LST =

1
2

wlen,LST CM
max, (3.6)

where CM
max is the maximum number of a presynaptic neuron’s postsynaptic targets on a node,

and wlen,LST is the word length of an LST element. With CM
max = 128 and wlen,LST = 64 bit (see

Section 3.3.3.2), lenS
LST results in 512 bytes. Thus, for each spike event, the DTM retrieves 1 KiB

from external memory.

The memory base addresses of the two streams and the AXI transmission protocol properties

are module configuration parameters. They are stored in control registers (see Appendix C). Their

values are set during HNC node initialization. This allows (the software system) to relocate the

data in memory and also to adjust the list length if necessary.

Each LST element also carries a 4-bit data path control value, sSx
i . It encodes the processing

unit to which a data item is to be distributed, according to the assignment of the postsynaptic

neuron to a processing unit (the encoding of sSx
i can be found in Appendix D). The value controls

the demultiplexer (DMUX) circuits which set the data paths. The demultiplexers alternate in

connecting the data paths to the RB FIFO buffers, which are attached to the processing units.
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Figure 3.12 | AXI stream protocol implementation. The implemented protocol bundles two high-
performance AXI stream port interfaces, HP1 and HP3. Each incoming spike event initiates the transfer of
a sequence of four data bursts on each of the two read data channels, where a data burst consists of 16
64-bit data words. The memory read base addresses of the four bursts are transmitted on the read channels
in one single block. Subsequent transfers are already initiated without waiting for the preceding transfer to
complete. This creates two continuous data streams and optimally utilizes the available external memory
read bandwidth. The data streams are indicated by the red and blue arrows labeled with S1 and S2.

Connecting the units in an alternating fashion is an architecture detail that preserves a balanced

load on the high-performance ports when the number of processing units is changed in the design.

AXI stream protocol implementation
The high-performance port interfaces follow the Advanced eXtensible Interface11 (AXI) standard

(Arm Limited, 2021); more precisely, they provide 64-bit AXI3 interfaces. The implementation

of the AXI master interfaces of the DTM was tailored to efficiently read the LSTs from external

memory and transfer the presynaptic data. The AXI protocol is based on so-called data bursts and

beats, and it defines several channels for read and write signals. The implemented protocol uses

two of these channels: the read address channel and the read data channel. Figure 3.12 illustrates

this protocol showing the transmission of the presynaptic data for two spike events.

A complete LST is transmitted in two parallel sequences of four bursts, i.e., four bursts on each

port, where a burst carries 16 x 64-bit data words, transmitted in 16 beats. The read address

11The Advanced eXtensible Interface (AXI) standard is an extension of the Advanced Microcontroller Bus Architecture
(AMBA), which is an open standard.
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channels describe the address and control information of the data bursts transferred on the read

data channels. The implemented protocol aims to create streams of data that are as continuous as

possible in order to make the best use of the available DDR memory bandwidth. The memory

read base addresses of four data packet bursts are therefore transmitted in one single block and

new transfers are initiated without waiting for the previous transfer to complete. Nonetheless,

access latencies caused by arbitration and scheduling in the DDR memory controller can only be

partially hidden. This is examined in more detail below.

External memory read efficiency
The theoretical maximum throughput (or bandwidth12) of the DTM is determined by the word

length of the data streams S1 and S2, and the PL clock frequency. It can be calculated by

BDTM,max = 2wS fclk, (3.7)

where wS denote the word length of a single stream and fclk is the PL clock frequency. The

maximum clock frequency at which the HNC node design can still meet the timing constraints is

200 MHz. At this clock frequency, and with wS = 64 bit, the maximum throughput results in

BDTM,max = 16 B ·200 ·106 s−1 = 3200 MB/s. (3.8)

In practice, this is not achieved. A single spike event triggers the transfer of a 1KiB data packet.

The transfer time measured here is approximately 550 ns13. This corresponds to 1862 MB/s and

is the bandwidth utilized and seen by the RB FIFO buffers.

The DDR314 memories that the ZC706 development board carries can provide a theoretical peak

memory bandwidth of BDDR = 4264 MB/s. The memory is organized as 4 x 256 Mbit x 8 bit

(1 GiB) and clocked at 533 MHz. This results in a data rate of 1066 MT/s14 (Micron, 2006) and

the aforementioned peak memory bandwidth – 4 bytes can be transferred on each falling and

rising edge of the clock signal.

The achieved external memory read efficiency is thus 43.7%, and the DTM can only utilize

58.2% of its possible bandwidth. Table 3.1 lists the calculated and measured bandwidths of the

DTM for the three PL clock frequencies 100 MHz, 150 MHz, and 200 MHz, and shows the

resulting bandwidth utilization efficiencies for the external memory and the DTM itself. At all

12The terms bandwidth and throughput are used interchangeably here.
13The time was measured using an external logic analyzer.
14Double Data Rate. DDR memories transfer data on both the rising and the falling edge of the clock signal. The

measurement for the effective data rate is megatransfers per second (MT/s).
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External DDR3 PL clock frequency PS/PL Data Transfer Module Efficiency

BDDR fclk BDTM,max BDTM,meas DDR3 DTM

100 MHz 1600 MB/s 1280 MB/s 30.0% 80.0%

4264 MB/s 150 MHz 2400 MB/s 1707 MB/s 40.0% 71.1%

200 MHz(*) 3200 MB/s 1862 MB/s 43.7% 58.2%
(*) The maximum clock frequency at which the HNC node design can still meet timing constraints.

Table 3.1 | PS/PL Data Transfer Module and external DDR memory data transfer efficiencies.
Listed are the calculated and measured bandwidths of the PS/PL Data Transfer Module (DTM) for three
different PL clock frequencies, and the resulting efficiencies of the bandwidth utilization for: DDR3, the
measured DTM bandwidth BDTM,meas with respect to the theoretical DDR3 memory peak bandwidth BDDR;
and DTM, the measured DTM bandwidth BDTM,meas with respect to the module’s theoretical maximum
bandwidth BDTM,max. At all three clock frequencies, the efficiency of the external memory stays below
expectations and the DTM cannot utilize the theoretically possible bandwidth.

three clock frequencies, the efficiency of the external memory stays below expectations and the

DTM cannot utilize the theoretically possible bandwidths.

These differences in measured and theoretical values can be attributed to latencies caused

by arbitration and scheduling in the DDR memory controller of the XC7045 chip. These add

approximately 200 ns to 250 ns to the transfer of a 1 KiB data packet. Nevertheless, the DTM

achieves higher throughput than achievable using two (one per data stream) AMD Xilinx AXI

DMA soft-IP cores (AMD Xilinx, 2019a) – the common solution here. The throughput of a single

DMA soft-IP core is specified with 399.04 MB/s at 100 MHz clock frequency (AMD Xilinx,

2019a); hence two AXI DMA soft-IP cores clocked at 200 MHz would achieve approximately

1600 MB/s, i.e., 86.0% of the measured throughput of the DTM.

3.3.4.3 Presynaptic Data Processing – Ring Buffers

The ring buffers (RBs) are a key component of the HNC node. In the RBs, the synaptic inputs of

neurons are accumulated (see Section 3.3.4.1 for the working principle). This input is derived

from the presynaptic data that is processed in the RB pipelines. This processing is critical to

performance and design decisions must be well thought out. Therefore, this section provides a

more thorough architecture exploration. The functional relationships between RB, RB pipeline,

and the components of a processing unit are described, and architecture alternatives are discussed.

In Figure 3.13A, the high-level architecture of a processing unit is shown, illustrating the

interaction of its components. The RB pipeline fetches the presynaptic data items from the

RB FIFO and accumulates them in the RB. The ODE solver pipeline retrieves these weighted

synaptic inputs (iexc and iinh) from the RB and incorporates them into the computation of the
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model dynamics, updating the neurons state vectors (yyyk← yyyk−1) stored in the state variables buffer

(SVB). The scheduling of the read and write operations performed here on the RB and SVB

memories is relevant to data consistency as well as performance.

For example, both the RB and the ODE solver pipeline perform simultaneous read/write

operations on RB and SVB, respectively (Figure 3.13B). In the case of the RB pipeline, reading

an RB entry poses a risk of potentially missing previous RB update operations. In the following

this is called a read-before-write conflict. The parallel execution of the two pipelines introduces

concurrent RB read operations resulting in read contention (Figure 3.13C1). Also, the validity

of an RB entry is an issue. The RB is written in a round-robin fashion and segments are reused,

leaving RB entries in an invalid state.

These aspects need to be considered in the design. The functional requirements and technical

characteristics of the selected FPGA-SoC technology here define the boundary conditions of the

design space.

3.3.4.3.1 Architecture Exploration

For an architecture exploration, in the following, four aspects are considered and discussed: (i)

simultaneous read/write operation; (ii) concurrent read access and read contention; (iii) potential

read-before-write conflicts; and (iv) the validity of RB entries, i.e., synaptic inputs.

Simultaneous read and write operation
The processing units derive their ability to accelerate computations primarily from the pipelined

operation and the locality of the data stored in fast on-chip BRAM memories. The RB pipeline

and the ODE solver pipeline both perform simultaneous read/write operations on RB and SVB,

respectively. This is illustrated in Figure 3.13B. Using single-port memory here will create a

read-write contention problem. The sequential execution of reads and writes requires additional

wait clock cycles to be included in pipeline operations. This increases a pipeline’s initiation

interval. The initiation interval is defined as the number of clock cycles elapsed between two

consecutive iterations of a pipeline. It is of interest in a design because it determines the

throughput of a pipeline. A pipeline with an initiation interval equal to 1 provides a maximum

throughput and will deliver a result at its output every clock cycle.

To achieve this, we can take advantage of the true dual-port feature of the BRAM blocks. Read

and write operations on BRAMs can be performed totally independent, sharing only the stored

data. RB and SVB are therefore implemented using this type of memory allowing both the RB and

the ODE solver pipeline to achieve an initiation interval equal to 1. However, similar throughput

can also be achieved with single-port memory. This topic will be revisited in Chapter 6.
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Figure 3.13 | Interaction of a processing unit’s components. (A) High-level architecture of a process-
ing unit and interaction of its components: The RB pipeline fetches the presynaptic data from the RB FIFO
and accumulates the synaptic inputs in the RB. During a simulation time step, the ODE solver pipeline
reads an entire RB segment to retrieve the weighted synaptic inputs iexc and iinh of all its assigned neurons
and updates their states (yyyk← yyyk−1) stored in the SVB. For optimal pipeline throughput, both RB and SVB
use fast on-chip BRAM memories leveraging their true dual-port capability. (B) Shows the simultaneous
read/write operations performed by the RB pipeline and the ODE solver pipeline on the RB and SVB
memories (marked by read arrows). For the executed RB pipeline algorithm, these operations introduce
the risk of potential read-before-write conflicts. (C1) Illustrates the problem of concurrent RB and ODE
solver pipeline read operations (marked by read arrows), which introduces read contention on the RB. (C2)
Shows a technical solution to the contention problem illustrated in (B1); here, a simple mirroring of the
RB content. See the main text for explanation.

Concurrent read access and read contention
A concurrent execution of the RB pipeline and the ODE solver pipeline will cause read contention

on the RB’s read port because they both share this resource. Figure 3.13C1 illustrates this. A

possible solution to avoid this contention is to use memory mirroring, where the RB pipeline

maintains a copy of the RB content. The idea is illustrated in Figure 3.13C2. The second read

port that is created in this way allows both pipelines to have independent read access. However,

by implementing this architecture variant and comparing the achieved acceleration factors with

and without serializing the RB pipeline and ODE solver pipeline RB read operations, it has been

found that it is sufficient to execute operations sequentially. Without an asynchronous external

spike input and high ODE pipeline iteration latency, which is not given (see Section 3.3.4.4), the
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effect on performance is minimal. When presynaptic data items are placed into the RB FIFOs,

only an early arriving spike event may find RB pipelines stalled due to RB contention. The

additional latency is minimal, on the order of a few clock cycles per simulation time step, and

thus negligible. Moreover, a minimal gain in performance is opposed here to a resource-intensive

solution; mirroring the RB content doubles the size of the required BRAM blocks, which is a

scarce resource. Note that the dual-port feature of the BRAM blocks remains valuable in the RB

implementation, enabling efficient operation of the RB pipelines.

Potential read-before-write conflicts
There are two potential sources of RB read-before-write conflicts: (i) the ODE solver pipeline

misses an RB pipeline update for an RB entry; and (ii) the RB pipeline itself misses an own RB

update operation.

The ODE solver pipeline misses an RB update: In a simulation time step, the ODE solver

pipeline of a processing unit processes an entire RB segment; the segment that is associated with

the current time step k. The RB pipeline never addresses this segment when updating RB entries.

The RB segment in which an entry is to be updated is derived from the synaptic delay value D as

k + D, where D is a multiple of h and greater null, hence they are never the same. Nevertheless,

the ODE solver pipeline may miss RB updates performed in the previous time step k−1. This

has the following reason.

In order to keep the pipeline always filled, the first part of the segment processed in the kth

time step is already fetched into the pipeline at the end of the previous time step k−1 – the

number of entries prefetched corresponds to the depth of the pipeline. Late updates in this part

of the segment may therefore be missed by the ODE solver pipeline. This can only occur for

synaptic events with D = h, i.e., RB updates targeting the subsequent time step k + 1. Such an

event invalidates the ODE solver pipeline, which then must be reset and restarted. This adds an

additional latency to the processing, where the latency value depends on the depth of the pipeline

and is thus model-specific.

Technically, the RB pipeline could determine whether a restart condition exists at the time a

synaptic event is processed. There is another option, which requires minimal hardware support

and a few software system enhancements. During connection setup, the Connection Manager can

identify synaptic connections that might trigger a restart condition. This can be determined based

on the synaptic delay value and the hardware resource assigned to the postsynaptic neuron, i.e.,

its position in the pipeline processing sequence. The HNC node has implemented this solution

and encodes the restart trigger in the presynaptic data (see Appendix D). This information is

extracted by the RB pipeline and passed to the main control FSM, which then initiates a restart of
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Figure 3.14 | Architecture alternatives to guarantee the validity of synaptic inputs. (A) The ODE
solver pipeline deletes an RB segment entry immediately after it is processed. The values of iexc and iinh
are set to zero and the entry can be reused. (B) In a simulation time step, the previous segment is deleted
just before it is reused. (C) Each RB entry is associated with a timestamp that indicates the RB cycle for
which the entry contains a valid synaptic input. The red outlines highlight the architectural differences.
See the main text for detailed descriptions of the architecture alternatives.

the ODE solver pipeline.

The RB pipeline misses an RB update: It takes several clock cycles for a presynaptic data item

to pass through the RB pipeline. While an RB entry for one data item is being written, the entry

for the subsequent data item is already being read. If both the write and read operations access the

same RB segment entry, the read operation will miss the previous update, resulting in an incorrect

value. This can only occur if successive presynaptic data items target the same postsynaptic

neuron and have the same synaptic delay. Therefore, only multapses15 can run into this problem.

By rearranging the corresponding elements in the LST during network instantiation, the issue can

be solved in software.

Validity of RB entries and synaptic inputs
During a simulation time step, the ODE solver pipeline reads an entire RB segment to retrieve the

synaptic inputs of all neurons assigned to the corresponding processing unit. After k + KRB time

15A synapse can be a multapse, which is a property of a synaptic connection that allows multiple synapses from a
presynaptic to a postsynaptic neuron.
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steps, i.e., a complete RB cycle, a segment is reused while the accumulated synaptic inputs from

the previous cycle remain in the segment entries. These are now invalid. Figure 3.14 shows three

architectures realizing different approaches to guarantee the validity of the RB entries. These

approaches are: (i) delete an RB segment entry immediately after it is processed (Figure 3.14A);

(ii) delete an entire RB segment before it is reused (Figure 3.14B); and (iii) mark an RB segment

entry as valid for a specific time step when it is updated (Figure 3.14C). The technical advantages

and disadvantages of the different solutions are discussed in the following.

Delete an RB segment entry immediately after it is processed: A resource-saving and probably

the most obvious solution is to delete an RB segment entry immediately when it has been

processed by the ODE solver pipeline. This is illustrated in Figure 3.14A. The downside of this

solution is a higher processing latency. In each simulation time step, the ODE solver pipeline

reads through an entire RB segment. This requires NRB additional RB write operations, leading

to contention on the RB write port for early arriving spike events. The deletion of the kth segment,

i.e., the segment associated with the current time step, also destroys the restart capability (see

above). As a consequence, RB and ODE solver pipeline processing needs to be strictly serialized.

The number of clock cycles that this serialization adds to the processing corresponds to the depth

of the ODE solver pipeline.

Delete an entire RB segment before it is reused: There is no need to delete an RB entry

immediately after it is processed. It is sufficient to delete a segment before it is reused. In time

step k, this is the segment that was processed by the ODE solver pipeline in time step k−1. This

solution has the advantage that the current segment remains intact, which preserves the restart

capability. The disadvantage of this solution is again a higher latency. Sequential deletion of

segment entries adds NRB clock cycles to the processing. The segment to be deleted is also

inaccessible to RB updates, which reduces the maximum possible synaptic transmission delay to

Dmax = h(KRB−2).

Mark an RB segment entry as valid for a specific time step when it is updated: When read by

the ODE solver pipeline, a segment is only valid for a specific time step. This is exploited by

the architecture variant shown in Figure 3.14C. Each RB segment entry is associated with a

timestamp that indicates the RB cycle for which an entry contains a valid synaptic input. This

valid timestamp kval is set when an entry is updated by the RB pipeline and verified when the

entry is read by the ODE solver pipeline. The timestamp is derived from the calculated target

simulation step as k + D excluding the lower log2(KRB) digits. The timestamp is thus counting

the RB cycles. In order to verify the validity of an entry before it is passed to the ODE solver

pipeline, the value of kval is compared with the corresponding bits of k. If they are equal, iexc and
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iinh represent valid synaptic inputs. Otherwise, iexc and iinh are set to zero.

This solution preserves the ability to restart the ODE solver pipeline, and avoids additional

RB write operations to clear segment entries. Comparing the three architecture alternatives, this

solution achieves the best performance. The disadvantage of its implementation is that it entails

a higher BRAM memory requirement to store the timestamps. The amount of this additional

memory is determined by the timestamp’s word length wlen,kval, which must be large enough

so that no overflow can occur until all entries in an RB have received an update. If wlen,kval is

chosen such that the timestamp can cover the entire simulated time Tsim, an overflow becomes

impossible. This word length can be calculated by

wsim
len,kval = dlog2

Tsim

hKRB
e. (3.9)

As an example, for 20 minutes simulated time, a simulation resolution of h = 0.1 ms, and an

RB depth of KRB = 256, i.e., Dmax = 25.5 ms, the resulting word length is wsim
len,kval = 16 bit. In

practice, this many bits are not needed.

To get a better sense of what word length is required and sufficient, we can also calculate the

number of RB cycles that are expected to update all of the RB entries of a single RB at least once.

If we further make the assumption that each incoming synaptic event updates an arbitrary RB

entry and that entries are equally likely selected with the probability 1/KRB, we can ask for the

expected number of events needed here. This question is equivalent to the question posed by the

classic Coupon Collector’s Problem16. The expected number of synaptic events needed to update

each RB entry at least once can thus be calculated by

E(X) = KRB

KRB∑
n=1

1
n
. (3.10)

The frequency of updates determines the number of RB cycles and depends on the characteristics

of the network model to be simulated, i.e., the firing statistics and number of synaptic connections.

Using Equation (3.10), an estimate for the word length of the timestamp can be given as

west
len,kval = dlog2(

1
ν̄K̄inh

KRB∑
n=1

1
n

)e, (3.11)

where ν̄ denotes the average firing rate of the neurons in the network, and K̄in is the neurons

16In probability theory, the Coupon Collector’s Problem asks how many coupons you have to draw with replacements
before each coupon is drawn at least once.
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average in-degree. Referring to the example above and assuming an average firing rate of

ν̄ = 10 spks/s and a small network with an average in-degree of K̄in = 100, the word length of

the timestamp results in west
len,kval = 6 bit. This is a far lower value than calculated for wsim

len,kval in

the above example, and of course not sufficient. However, Equations (3.9) and (3.11) give us an

estimation for a value range, based on which one can make a reasonable design decision. This

range is defined by

west
len,kval < wlen,kval ≤ wsim

len,kval. (3.12)

In practice, 10 bits proved to be sufficient for a small network with K̄in = 100. This has been

verified by conducting a series of replicability tests. In these tests, a number of identical

simulations were performed with the value of wlen,kval systematically varied. The results were

then compared for spike-for-spike identicality. The number of RB segments here was set to

KRB = 128, which corresponds to a maximum synaptic delay of Dmax = 12.7 ms.

Note that a small network creates low workload (see also the workload model introduced in

Section 5.2.1). For large networks much higher RB update frequencies are to be expected, which

further reduces the required word length of the timestamp.

3.3.4.3.2 The Implemented Architecture Design

With respect to the design objective of achieving best possible performance, the ring buffers

are a critical component. Accordingly, and with regard to value and resource requirements, the

following design decisions were made:

• RB memories are implemented as true dual-port BRAMs. This allows simultaneous read

and write operations for optimal RB pipeline throughput.
• The operation of the RB pipeline and ODE solver pipeline is serialized. The design decision

here is to accept RB read contention as the impact on performance is negligible.
• In order to ensure the validity of synaptic inputs, but not to introduce any additional

latencies, the architecture variant that uses a timestamp was selected. The word length of

the timestamp, wlen,kval, was set to 10 bits.
• To achieve sufficient accuracy and deterministic results, synaptic inputs are stored using

the s16.23 fixed-point data type.
• In the current prototype, it is not exploited that transmission delays of inhibitory synaptic

connections are typically shorter. No distinction is made regarding the number of RB

segments for excitatory and inhibitory synaptic inputs. Circular buffers are all the same

size KRB. This was more of a practical decision to avoid an unnecessarily complex design.

It has no impact on performance.
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Figure 3.15 | RB architecture as implemented for the HNC node prototype. (A) RB memory layout.
The RB memory is divided into KRB segments. Each segment stores the weighted excitatory iexc and
inhibitory iinh synaptic inputs of the NP neurons assigned to a processing unit. Each pair of excitatory and
inhibitory inputs is assigned a timestamp value kval indicating its validity. (B) Architecture as implemented.
RB and ODE solver pipeline read operations are serialized. The demultiplexer (DEMUX) selects the data
path depending on whether the RB pipeline or the ODE solver pipeline requests read access to the RB.
When the ODE solver pipeline reads an RB segment, its entries are tested for validity. For this purpose,
the comparator (COMP) compares the current value of the time step k with the timestamp value kval. If
they are equal, the multiplexer (MUX) passes the synaptic inputs to the ODE solver pipeline, otherwise it
sets them to zero.

The RB design as finally implemented is shown in Figure 3.15, where Figure 3.15A depicts the

RB memory layout and Figure 3.15B details the microarchitecture. The RB pipeline works purely

event-driven. If processing is not halted and the RB pipeline not stalled by concurrent ODE solver

pipeline read operations, data items are immediately fetched from the RB FIFO and processed.

The algorithm that the RB pipeline executes here is shown in the flow diagram in Figure 3.16.

RB pipeline throughput
In the implemented architecture, the RB pipeline has an initiation interval equal to 1. The

throughput of an RB pipeline thus yields

BRB = fclkwlen,LST, (3.13)
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Figure 3.16 | RB update algorithm. Algorithm as implemented for the RB architecture shown in
Figure 3.15. To simplify the illustration, the flow diagram shows the algorithm for unshaped synapses,
where no distinction needs to be made between excitatory and inhibitory inputs – they can be lumped
together. The full algorithm expands according to the table in the upper right, distinguishing between
excitatory and inhibitory synaptic inputs.

where fclk denotes the PL clock frequency, and wlen,LST is the word length of an LST element,

i.e., the data size of a presynaptic data item. At a PL clock frequency of fclk = 200 MHz and with

wlen,LST = 64 bit, this results in a throughput of BRB = 1600 MB/s. Two processing units would

therefore be sufficient to handle the bandwidth provided by the DTM, which was measured as

BDTM,meas = 1862 MB/s (see Section 3.3.4.2).

In order to keep the overall processing latency low, the HNC node parallelizes neuron state
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updates using 16 processing units, each with its own RB and RB pipeline. Technically, all

pipelines together would thus be capable of providing a total throughput of

BRB,total = PBRB, (3.14)

where P is the number of processing units. This yields BRB,total = 25.6 GB/s, which corresponds

to the processing of 32 ·104 RB update operations per 0.1 ms time step. This throughput would be

sufficient to handle the workload produced by larger networks and still accelerate their simulation

significantly. However, the HNC node prototype is here limited by the bandwidth of the external

memory.

RB memory requirements
The RB memory accounts for most of the required BRAM resources. The size required for a

processing unit’s RB can be determined by

S RB = NPKRB(wlen,kval + 2wlen,s16.23), (3.15)

where NP denotes the number of neurons associated with a processing unit and wlen,s16.23 is the

word length of the s16.23 data type (40 bits). Accordingly, the total amount of RB memory

required is given as

S RB,total = PS RB, (3.16)

where P is the number of processing units. For example, the configuration {P = 16, NP = 64,

wlen,kval = 10 bit, KRB = 128} results in a total RB memory requirement of S RB,total = 11.25 Mbit.

The XC7045 chip used in the prototypical implementation provides 19.2 Mbit of BRAM.

3.3.4.4 Neuron and Synapse Model Update – ODE Solver Pipelines

The core task of a simulation is to compute the model dynamics, i.e., to solve the ODE systems of

many neurons. This task is performed by the ODE solver pipelines embedded in the processing

units. In the following, the interrelationships of the components involved are described and

the relevant architectural parts of a processing unit are detailed. In addition, an exemplary

implementation of an ODE solver pipeline module is presented, specifically a module that

implements the Izhikevich neuron model types.

3.3.4.4.1 Processing Unit Modes of Operation

The design of the HNC node is largely modular and component designs can be parametrized
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using VHDL generics. For instance, the number of processing units is configurable. Within the

processing units, ODE solver pipelines are implemented as RTL-modules and are exchangeable.

A wide variety of neuron and synapse models can thus be supported. This flexibility in model

implementation is also fostered by the use of generic data types and a model-independent interface.

Figure 3.17A details the data input and output ports of an ODE solver pipeline module. Synaptic

inputs use a 40-bit fixed-point data format, as explained earlier. State vectors, yyy, are treated as

generic 128-bit data words (larger word lengths are possible). Their interpretation is defined by

a model-specific compound data type. This data type is determined by the model’s properties,

primarily the number of state variables and their required numerical precision – an approach that

also allows for mixed precision.

Figure 3.17B illustrates how an ODE solver pipeline module is embedded in a processing unit.

Two multiplexers (MUX) allow for the selection of different input and output data paths of the

state vectors, thus providing four selectable operating modes for the processing units: (i) load

state variables into SVB memories; (ii) unload state variables from SVB memories; (iii) run a

simulation; and (iv) closed-loop operation of the ODE solver pipelines with the APU. The four

operating modes are listed in the truth-table in Figure 3.17C. The truth-table shows how data

paths are set depending on the multiplexers’ select signals SEL1 and SEL2. The sequences of

operations that the processing units perform in the different modes are steered by the main control

FSM (not shown), which in turn is controlled by the HNC node software system. In the following,

the four modes of operation are briefly described.

Load and unload state variables
For the data transfer between the APU and the processing units, a DMA controller is used; in

particular, the AMD Xilinx DMA soft-IP core described in AMD Xilinx (2019a). The input

and the output data paths of the state vectors are buffered in a series of interconnected registers.

They form two 32 x 64-bit shift-registers (SHIFT REG) that chain the processing units together

(Figure 3.17B). These registers are connected to the input and output ports of the DMA controller

via two AXI streaming interfaces. When loading the state variables, the DMA controller copies

the data of all neurons from external memory to the SVBs of all processing units, where the

multiplexer settings are such that the ODE solver pipeline modules are bypassed. To unload the

state vectors, the DMA controller transfers the data from the processing units’ SVBs back to the

external memory. The use of a DMA controller provides here an efficient way for copying the

state variables to and from external memory. It also allows for a fast initialization of the BRAM

memories in the FPGA. The entire DMA operation is controlled by the HNC node software

system, as explained in Section 3.3.3.4.
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Figure 3.17 | Chained processing units and interaction of components. (A) ODE solver pipeline
module data input and output ports. (B) ODE solver pipeline module as it is embedded in a processing unit.
The processing units are chained together via two shift registers that are connected to a DMA controller
for efficient data transfer with the PS. The state vectors yyy can be directed through different data paths
depending on the configurations of the multiplexers (MUX) and the setting of the select signals (SEL1,
SEL2). This allows four distinct modes of operation. (C) Truth table showing the combinations of SEL1
and SEL2 and the corresponding mode of operation.

Running a simulation
When running a simulation, data paths are set such that the SVBs are attached to the ODE solver

pipelines. The SVBs are implemented as fast true dual-port BRAM memories; read and write

operations of state vectors are performed concurrently, as explained earlier. In a single simulation

time step, an ODE solver pipeline iterates over NP = 64 neurons updating their state vectors

(yyyk← yyyk−1) stored in the SVB.

APU closed-loop operation
The fourth mode of operation allows the ODE solver pipelines to run in a closed-loop with the

APU. For this purpose data paths are configured such that the shift-registers connect to the input

and output ports of the ODE solver pipelines. The SVBs are not required in this setup. Instead, the

DMA controller passes the state vectors directly through the ODE solver pipelines. In this mode

of operation, the APU is included in the simulation, with the ODE solvers acting as hardware

accelerators.
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SVB memory requirements
Compared to the BRAM resource requirements of RBs, only a moderate number of BRAM

blocks are required to implement the SVBs. The amount of memory is determined by the word

length of the state vectors wlen,yyy and the number of neurons processed on a node. It is given by

S SVB = PNPwlen,yyy, (3.17)

where P denotes the number of processing units, and NP is the number of neurons per processing

unit. For the prototype, with P = 16, NP = 64, and wlen,yyy = 128 bit, the required BRAM memory

size is S SVB = 16 KiB.

3.3.4.4.2 Example Implementation: Izhikevich Neuron Model

As an example of an ODE solver pipeline module, an implementation of the Izhikevich neuron

model (Izhikevich, 2003) is presented in the following. A description of the model was given

earlier in Section 2.3.1.1 (see also Appendix A).

The results of the rigorous verification and validation process presented in Chapter 2 have been

used as the foundation for the design decisions made for the implementation. In particular, the

choice of the data type used for state variables and the selection of a suitable integration scheme

are motivated by the results of the calculation verification tasks conducted on the SpiNNaker

system.

The arithmetic is implemented as 40-bit fixed point and uses the s16.23 data type for number

representation. To solve the dynamics of the Izhikevich model ODEs, an explicit Forward Euler

integration scheme with an integration step size of h = 0.1 ms is used. These design choices have

been shown to meet the requirements in terms of numerical precision needed to achieve sufficient

simulation accuracy (see Section 2.3.4.2).

For the implementation, we first need to define a suitable data format that maps the model’s state

variables to the generic 128-bit vector used in the ODE solver pipeline interface. Here, we define

the following format:

The state variables i(t), u(t), and 3(t) are stored in three 40-bit fields in the s16.23 representation.

The higher-order byte of the 128-bit vector is used to encode the selected set of Izhikevich
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FOR EACH SIMULATION TIME STEP k :
FOR EACH NEURON n :
−− I n p u t c u r r e n t s , s t a g e s : S1 , S2 −−
In(tk) := iexc,n(tk) + iinh,n(tk) + iext,n(tk)
in(tk) := in(tk−1)

−− Forward Eule r , s t a g e s : S2 , S3 , . . . , S10 −−
3n(tk) := 3n(tk−1) + h · [ 0.0432n(tk−1) + 5.03n(tk−1) + 140.0−un(tk−1) + in(tk−1) + In(tk) ]
un(tk) := un(tk−1) + h · [ ab3n(tk−1)−aun(tk−1) ]

−− T h r e s h o l d d e t e c t i o n , s t a g e s : S11 , S12 −−
IF ( 3n(tk) ≥ 30.0 ) :
3n(tk) := c
un(tk) := un(tk) + d

s p i k e E v e n t : δ(t− t f
k )n

END
END

END
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 3.1 | Algorithm (given as pseudo-code) corresponding to the hardware implementation of the
ODE solver pipeline module shown in Figure 3.18. The algorithm implements the Izhikevich neuron
model and uses a simple explicit Forward Euler integration scheme to solve the model dynamics.

model parameters, the neuron type. This data format is represented by a compound data type

that consists of four components; an 8-bit unsigned integer and three s16.23 fields, which are

themselves a custom data type. Based on this definition, the model can be made available to the

HNC node software system by a corresponding extension of the Neuron Manager. This includes

supporting routines for data type and endianness conversion. Data type definitions and supporting

software components provide the basis for hardware design and implementation, and also the

framework for verification to ensure that the ODE solver pipeline module interfaces correctly

with the software system.

The design choices that have been made allow for an efficient implementation of the Izhikevich

model. This is largely due to the use of fixed-point arithmetic, which does not introduce

multi-cycle pipeline operations. The microarchitecture of the implemented module is shown in

Figure 3.18. The design requires 6 multipliers (MULT), 8 adders (ADD), 2 subtractors (SUB), 1

comparator (COMP), 2 multiplexers (MUX), and 4 look-up tables (LUT). The corresponding

algorithm is shown in Listing 3.1.

This implementation achieves a pipeline initiation interval equal to IIODE = 1. The number of

pipeline stages, or stage count, is SC = 12. Advancing the states for all neurons by one simulation
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Figure 3.18 | Microarchitecture of the ODE solver pipeline module implementing the Izhikevich
neuron model with static synapse. The gray bars indicate the pipeline registers. labeled S1 through
S12 The pipeline achieves an initiation interval of IIODE = 1. The corresponding algorithm is shown in
Listing 3.1.
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Figure 3.19 | Reproduction of the Izhikevich neuron model firing patterns. Shown are the different
firing patterns of the Izhikevich neuron model reproduced on the HNC node with different choices of the
model parameters (a,b,c,d) (parameters are shown at the bottom). The neurons were simulated for 450 ms
while recording membrane potentials (shown for each neuron type in the upper panels) and stimulating the
neurons with externally injected step currents and current pulses (shown for each neuron type in the lower
panels). The results are in agreement with the firing patterns originally described in Izhikevich (2003).

132



Chapter 3 A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture

time step requires

LODE = SC + IIODENP (3.18)

clock cycles. In Equation (3.18), NP specifies the number of neurons associated with a processing

unit. At a clock frequency of fclk = 200 MHz and with NP = 64, a complete state update of all

neurons on a node takes only 380 ns.

The model implements a simple synapse with no shaping of the synaptic current i(t) – the value

is simply passed through the pipeline stages. The 8-bit parameter value (param) allows different

sets of the Izhikevich model parameters (a,b,c,d) to be selected from the look-up tables. In this

manner, one of the seven intrinsic firing patterns described in Izhikevich (2003) can be selected

for each individual neuron. These patterns are: regular spiking (RS), intrinsically bursting (IB),

chattering (CH), fast spiking (FS), thalamo-cortical (TC), resonator (RZ), and low-threshold

spiking (LTS). The reproduction of these firing patterns on the HNC node is shown in Figure 3.19.

To create the firing patterns, the neurons were stimulated with externally injected step currents and

current pulses. These were generated by the software system, which intercepted and suspended

the simulation, applied the external offset current, and then resumed the simulation.

A proof of correctness of this model implementation is given in Chapter 4.

3.3.4.5 Spike Events Processing – Serializer and Encoder

The HNC node uses an Address Event Representation (AER; Mahowald, 1992) to encode spike

events. AER-based communication is well established in neuromorphic computing and the basis

for efficient, low-latency spike-communication. In AER, a spike event is described by two values:

the spiking neuron’s location, i.e., its address, and the time the spike event occurred. In case of

the HNC node, the location is defined by the node-id m j and the local neuron-id nloc, j, the time

is given by the simulation time step k in which the event occurred, or is represented by itself,

respectively.

Due to the parallel running processing units up to P = 16 spike events can occur in a single

clock cycle. In practice, such multiple events may happen only occasionally – more likely when

higher firing rates are observed in the network. The spike events are stored as 16-bit vectors,

here denoted as b f . In a single simulation time step, a processing unit processes NP number of

neurons; accordingly, up to NP vectors may need to be processed here.

Figure 3.20A shows the high-level architecture with the components involved in this processing.

The spike vectors b f are first stored in a FIFO buffer (top left) along with the firing neurons

position in the pipeline npipe and the current time step value k. As a data item is fetched from the

FIFO buffer, the contained spike events are serialized while their corresponding processing unit
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Figure 3.20 | Spike events processing. Spike events are serialized and encoded for further processing in
recording and communication. Shown is: (A) the high-level architecture with the components involved;
and (B) the schematic of the serializer and encoder circuit. See main text for description.
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numbers are encoded as part of the local neuron-id of the spiking neurons: (b f ,npipe)→ nloc,i.

From the serialized events, for each event, two data items are created: one data item for use in

spike recording; and one data item for use in communication. They are stored in separate FIFO

buffers (top right). For communication, time is represented by itself. It is therefore sufficient to

represent an event only by its location, i.e., the node-id m, and the neuron’s local node-id nloc,i.

For recording, the node-id can be omitted, but the time of the event is a mandatory part of the

information; here this is stored as (k,nloc,i).

The latency of the spike processing is primarily determined by the serialization of events.

The design has been optimized here, which resulted in a sequential circuit that works partially

asynchronously. The circuit is shown in detail in Figure 3.20B. Its function is based on the use of

two types of D-flip-flops (D-FFs): a D-FF type with asynchronous reset (marked blue); and a

D-FF type with synchronous reset (marked red). The circuit operates as follows.

When a vector of spike events is fetched from the FIFO buffer, it is stored in the Spike Vector

Register (marked blue), which is composed of 16 D-FFs with an asynchronous reset. Asserted

outputs – the spike events – are selected by the logic gates bit by bit (FFs from top to bottom in

Figure 3.20B) and passed to the 16-to-4 encoder circuit and the D-FFs on the right (marked red).

The purpose of these D-FFs is to generate a signal that resets the corresponding bit in the spike

vector. This repeats as many times as there are bits set in the spike vector. The asynchronous reset

allows a bit in the spike vector to be cleared in the same clock cycle. The number of clock cycles

required for the serialization and encoding process is then equal to the number of parallel spike

events plus one clock cycle for loading the spike vector – the lowest possible latency achievable

here.

3.3.4.6 Synaptic Delay Resolution – Address Counters

The HNC node always performs a simulation with the time resolution h = 0.1 ms. This value

represents the temporal resolution of the simulation in the biological time domain, and is the

de facto standard used in digital simulations of spiking neural networks in neuroscience. The

HNC node updates neuron states and propagates spike events at this interval. The same time

resolution is provided for synaptic transmission delays. However, not all network models require

this resolution of synaptic delays. For example, the synaptic delay values in the two-population

Izhikevich network model described in Section 2.3.1.1 have a resolution of 1 ms. When simulating

this network, it would be sufficient to advance RB segments in steps of 10h instead of h.

The HNC node offers four different resolutions for synaptic delays, realized through different

configurations of the RB segment address generation. The central components here are two
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Figure 3.21 | RB and SVB address generation. Depending on the settings of the switches S1 and S2,
the RB segment address, which is derived from the 8-bit RB Segment Counter, is advanced in steps of
h, 2h, 10h, or 20h – a complete cycle of the 6-bit Neuron Counter corresponds to the interval h. This
allows four different configurations of the minimum and maximum supported synaptic transmission delays
[Dmin,Dmax]. The configurations and possible values are listed in the table, where the configuration marked
red corresponds to the setting of the switches S1 and S2 as shown.

counters that generate the SVB and RB addresses and also advance the Simulation Step Counter.

Figure 3.21 shows these components and illustrates their principle of operation.

In the interval h, the Neuron Counter performs a full cycle addressing all of the NP = 64

neurons of a segment – this corresponds to a complete iteration of the ODE solver pipeline.

Depending on whether the Modulo-10 Counter is on or off and which bits of the RB Segment

Counter are selected, the RB segment address is advanced in steps of h, 2h, 10h, or 20h. In

this way, different values for Dmin and Dmax can be realized, where the resolution of synaptic

delays is Dmin. The table in Figure 3.21 lists the possible configurations. Note that the Simulation

Step Counter is coupled to the RB Segment Counter. Therefore, when the Modulo-10 Counter is

enabled, one simulation time step k corresponds to 10h; ten iterations of the ODE solver pipelines.

The ODE solvers then perform sub-steps where spike events are still propagated at the interval h.

The coupling of the Simulation Step Counter to the RB Segment Counter also avoids rounding

errors when calculating a synaptic event’s RB target segment.

This feature allows the HNC node to be configured to accept larger synaptic delay values (up to

Dmax) without the need for an increase in the number of RB segments. This comes at the price of

a reduced delay resolution, but can compensates to some extent for the confined RB size, which

is limited by the number of available BRAM blocks.
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3.3.4.7 Pseudo-Random Number Generation

Random numbers are a necessary part of most neural network simulations and have a variety of

uses. At network generation time, random numbers are often used to select and parameterize

the connections to be created – it is common to describe network connectivity in the form

of probabilities and probability functions. During simulation, random numbers are needed to

generate stochastic network stimuli, e.g., in the form of Poisson spike trains or randomized input

currents. Neuroscience simulations must be accurate and reproducible. Here, poorly generated

random numbers can affect simulation outcomes. Therefore, high-quality random numbers that

can be reproduced on demand are required.

Deterministic sequences of numbers that appear random are produced by pseudo-random

number generators (PRNGs); deterministic algorithms of which a wide variety of types exist.

PRNGs vary in complexity and the quality of the numbers generated. The characteristics that

classify a PRNG as a high-quality number generator include, for instance: the uniformity of the

generated numbers, i.e., numbers are equally probable; the ability to generate large sequences of

numbers before a sequence is repeated; and that there is no correlation between subsequences. A

classification of PRNGs and an empirical analysis of their quality was published, for example, in

Bhattacharjee and Das (2022).

LFSR based PRNGs
For hardware implementation, the class of linear feedback shift register (LFSR) based PRNGs is

particularly interesting. Introduced by Tausworthe (1965), its function is based on modulo-2 linear

recurrence. LFSR PRNGs can produce long pseudo-random sequences and can be efficiently

implemented in hardware. They achieve very high speed with very simple logic (see, e.g., Alfke,

1996; George and Alfke, 2007).

An LFSR PRNG can be implemented as a shift register consisting of m number of memory

elements (flip-flops), where the outputs of some flip-flops – called taps – are XORed (or XNORed)

and fed back as input to the register. Below an example of an LFSR with m = 3 memory elements

and two taps is shown.

The configuration of the taps of an LFSR can be expressed as a polynomial modulo-2; the
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coefficients are either 0 or 1. For the example above, the polynomial has the form P(z) = 1 + z2 + z3.

The arrangement of the taps also determines the maximum sequence length. An m-bit maximum-

length LFSR has a period of 2m−1, which is the maximum length sequence of numbers it can

produce.

PRNG implementation tailored for the HNC node
For the HNC node, a 111-bit maximum-length LFSR based PRNG was implemented, where the

design was tailored to the simulation of the two-population Izhikevich network (see Section 2.3.1.1),

i.e., to randomly select one neuron from the network at each simulation time step in order to

supply it with an external input current. The architecture of the PRNG implementation is shown

in Figure 3.22. For a maximum-length period, i.e., 2111−1, the taps of the LFSR are 101 and 111

(according to George and Alfke (2007), Table 1). Instead of XOR, the LFSR uses XNOR in the

feedback loop – the states of an XNOR-LFSR are the complement of the states of an XOR-LFSR

resulting in an equivalent counter. The XNOR variant has the advantage that the LFSR will not

lock up if the seed is zero.

The LFSR is used to address a 64K table, each entry of which is initialized with an integer value

representing a local neuron-id nloc,i. The values were drawn from a uniform integer distribution

such that nloc,i ∈ {1,2 . . . ,1000}. For this initialization, the Mersenne-Twister (mt19937) PRNG

provided by the C++ Standard Library was used. The table serves two purposes: first, it translates

the random LFSR bitstream into neuron-ids while limiting the range of values; and second, it

adds additional randomness to the sequence.

The quality of this PRNG implementation has not been investigated further, e.g., by performing

statistical tests such as those provided by the Diehard test battery (Marsaglia, 1995). Nevertheless,

this implementation of a PRNG has proven to be sufficient for the task (see the substantiation

assessment described in Section 4.5).

3.3.4.8 Synchronization

In a simulation, the temporal causality of spike events must be guaranteed. All spike events

generated in a simulation time step k must have been delivered, and at least the RB updates

must have completed for those synaptic events that have a delay value equal to the minimum

temporal resolution, i.e., the events with D = Dmin. This entails a synchronization of node-local

processes before the next simulation time step k + 1 can be initiated. Apart from this, the nodes

in a cluster are globally asynchronous. Their clock domains are not synchronized, and also

individual update times may vary due to different load profiles (e.g., caused by differences in the
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Figure 3.22 | Architecture of the implemented LFSR based PRNG. An 111-bit maximum-length
LFSR (i.e., it has the period 2111−1) with the characteristic polynomial P(z) = 1 + z101 + z111 produces a
random bitstream. The LFSR connects to a 64K x 10bit memory that acts as a look-up table, mapping a
16-bit value to a 10-bit local neuron-id nloc,i. The look-up table was initialized using a Mersenne-Twister
PRNG. The LFSR can also be initialized with a seed.

number of connections processed per spike event); hence, in a cluster, algorithmic time does not

advance coherently. To achieve this, a synchronization at cluster level is also required.

Traditional approach
It is imperative that the above be considered in the design of a system that aims for accurate,

reproducible, and even replicable simulations. The design choices made here are also relevant to

performance. Trade-offs can be made if a certain degree of inaccuracy can be tolerated by the

intended applications. The first generation SpiNNaker system (Furber et al., 2013), for example,

does not have a global synchronization mechanism in place. The SpiNNaker update scheme

rather ”enforces a finite minimum spike transit time” (Furber and Bogdan, 2020, p. 110). This

can lead to timeouts, especially at higher workloads, resulting in packets being dropped, und

thus spike losses (see, e.g., van Albada et al., 2018). However, the field has evolved since, and
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previous design decisions appear in a new light: ”In hindsight, this was a questionable (design)

decision since computational neuroscientists can be more protective about their simulations!”

(Furber and Bogdan, 2020, p. 34 ).

A common solution to manage synchronization and guarantee the correct order of operations

in multi-node systems is to use a barrier mechanism. Software simulators such as NEST

(Gewaltig and Diesmann, 2007) use, for example, MPI17 barrier message function calls for this

purpose. The function blocks the calling process until all processes involved in the communication

have also called it. The concept has also been adopted for neuromorphic hardware, where

dedicated synchronization messages are sent over the same network over which spike events are

propagated. For example, in Heittmann et al. (2022) the authors describe a message-based global

synchronization scheme that is used in an implementation of the cortical microcircuit model

(Potjans and Diesmann, 2014) on the IBM Neural Computer INC-3000 (Narayanan et al., 2020).

The implementation uses a dedicated compute node (CN) that acts as a master node (MN) and

central point to manage synchronization. The CNs in the system produce barrier messages that

are sent to the MN. Once all CNs have reached the barrier, i.e., the MN has received a barrier

message from all CNs, the MN broadcasts a synchronization message to release the CNs and

allow them to proceed to the next simulation time step.

In Kauth et al. (2023), a synchronization scheme is proposed that the authors describe as

neighbor-to-neighbor synchronization. It is applied to a similar implementation of the cortical

microcircuit model, but uses a cluster of NetFPGA SUME boards. The described neighbor-to-

neighbor scheme exploits the topology of the cluster, i.e., a two-hop worst-case latency. It also

uses two events, but does not require a central synchronization point or master node.

The HNC node approach
Mixing barrier messages with spike communication puts a strain on the communication network.

The HNC node design separates these two concerns, enabling solutions tailored to the task at hand.

The solution proposed and implemented here retains the barrier principle, but uses dedicated

hardware and barrier signals instead of a communication network over which barrier messages

are sent.

There are two synchronization processes performed by the HNC node that need to be distin-

guished: (i) an intra-node synchronization process; and (ii) an inter-node synchronization process.

For the latter, only a description of the conceptual idea is provided here, as only a single HNC

node prototype currently exists. Technically, however, the necessary functionality to synchronize

processes has been implemented for the HNC node, including synchronization at the cluster level.

17Message Passing Interface, https://www.mpi-forum.org/
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Figure 3.23 | Intra- and inter-node synchronization. An HNC node performs two synchronization
processes at the end of a simulation time step: a node-local (intra-node) synchronization process; and a
synchronization process at the cluster level (inter-node). For this purpose, a combinational circuit (box
labeled Synchronization Logic) monitors the operation status of components and maintains two barrier
signals; indicated by the gray bold lines labeled Local Barrier and Global Barrier. If asserted, the Main
Control FSM is placed in a wait state, which prevents a HNC node to advance to the next simulation time
step; illustrated by the red arrows. Only when all nodes in the cluster have completed operation, barriers
are released and simulation time advances.

Figure 3.23 illustrates the working principle.

Intra-node synchronization: A combinational circuit continuously monitors the operating status

of the components of an HNC node (in Figure 3.23, marked by the box labeled Synchronization

Logic). It creates a node-internal local barrier signal (represented by the bold line labeled Local

Barrier). If it is asserted, the HNC node’s Main Control FSM will be placed in a wait state at

the end of a simulation time step, preventing the node from proceeding to the next simulation

time step (illustrated by the red dashed arrows). This barrier is released when all pipelines and

modules have completed their operation, all spike events have been delivered, no RB updates are

pending, and all FIFO buffers are empty. In this way, hardware blocks and processes synchronize

within a node.

Inter-node synchronization: In a cluster of nodes, a similar mechanism is established by a global

barrier signal (in Figure 3.23, represented by the bold line labeled Global Barrier) that ensures

that simulation time advances coherently for all nodes. This barrier is released when all nodes

in the cluster have completed intra-node synchronization. For this purpose the Synchronization
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Logic also generates a signal that indicates when node operation is in progress and not completed.

Compared to message passing, this approach provides a very lean solution that also promises low

latency. Technically, the global barrier signal could be realized by a simple wired-OR; in a larger

cluster of nodes, by a hierarchical network to limit fan-in and fan-out.

3.3.5 Operating Latencies

An essential part of the design work was the optimization of the microarchitecture to minimize

latencies for best possible performance. In order to further investigate the design on system level

in this respect, the operating latencies are extracted from the microarchitecture in the following.

This forms the basis for the formulation of an accurate performance model, which will allow to

systematically evaluate the performance characteristics of the HNC node for arbitrary workload

situations, but also to predict the behavior of a cluster system (see the performance assessment

presented in Chapter 5).

There are basically two different sequences of operations performed by the HNC node in a

simulation time step that need to be considered for simulation performance: the sequence of

operations performed when no spike event occurs; and the sequence of operations performed

when spike events occur. The first consists mainly of the operation of the ODE solver pipelines

and the node-local synchronization process at the end of a simulation time step. The sequence

is shown in the timing diagram in Figure 3.24A. This sequence expands as spike events occur

and get processed. The serialization of node-local spike events, the reading of the presynaptic

data from external memory, and the processing of the spike events in the RB pipelines introduce

additional latencies here. The sequence is shown in Figure 3.24B. The table in Figure 3.24C

gives a summary of the latencies, their values in number of clock cycles, and provides a brief

description of their meanings.

At simulation start (and also at ODE solver pipeline restart), the ramp-up of the ODE solver

pipelines introduces two latencies: LRD, which is a single clock cycle to initially read memory;

and LODE,LL, which is the latency caused by filling the ODE solver pipelines. The value of

LODE,LL depends on the number of pipeline stages, and is thus a model-dependent latency. In

a simulation time step, an ODE solver pipeline iterates over the NP neurons associated with a

processing unit. This results in the pipeline iteration latency LODE,IL, which is given by

LODE,IL = IIODENP, (3.19)

where IIODE denotes the initiation interval of the ODE solver pipeline. At the end of a simulation
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Figure 3.24 | Operating latencies. The timing diagrams show the two basic sequences of operations:
(A) simulation time steps in which no spike event occurs; and (B) simulation time steps in which spike
events occur. The latter introduces additional latencies caused by the processing of spike events. (C)
Overview and brief description of operating latencies, listing the number of required clock cycles. See also
the main text for description.

time step, a number of clock cycles are required for synchronization, which is described by the

latency LSYNC.

Spike events can occur on any clock cycle during ODE solver pipeline operation. They are

serialized, where two events are packed together. The latencies introduced by this process are

summarized in LSE. The table in Figure 3.24C breaks this down further. Each spike event initiates

a sequence of operations in which the presynaptic data is retrieved from external memory and

passed through the RB pipelines. This introduces the latencies LIS, LS, and LRB. Here, the value

of LS cannot be derived from the microarchitecture. The latency LS describes the per spike data

stream latency, which is the average number of clock cycles required to read the presynaptic data

of a single spike event, i.e., to retrieve an LST from external memory. We can derive this latency

from the measured bandwidth of the PS/PL Data Transfer Module (DTM) (see Section 3.3.4.2) as

LS = CM
maxwlen,LST

fclk

BDTM,meas
, (3.20)

where BDTM,meas is the measured bandwidth of the DTM at the PL clock frequency fclk, CM
max de-

notes the maximum number of local target connections of a presynaptic neuron, and wlen,LST is the

word length of an LST element, that is, the data size of a presynaptic data item (see Section 3.3.3.2).

At the end of a simulation time step in which spike events have been processed, there may

still be data items remaining in the RB pipelines. These pending RB updates must be completed,

which requires additional time for the node-local synchronization and introduces the latency

LSE
SYNC. In a multi-node system, the additional time required for inter-node synchronization would

also add to the total latency. This is not explicitly included in the timing diagrams, but it is

indicated in Figure 3.24 by the barriers marked by red dashed lines.

3.3.6 Breakdown of FPGA Resources and Power Consumption

On the left side of Figure 3.25 a breakdown of the FPGA logic resources utilized by the HNC

node prototype implementation is shown. Immediately noticeable is that the implementation uses

more than 80% of the BRAM blocks. This is primarily due to the memory requirements of the

RBs, which have been sized to maximize the supported synaptic delay. The 368 DSP blocks are
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Resource Utilization Available Utilization %

LUT 39174 218660 17.92

LUTRAM 9363 70400 13.30

FF 49092 437200 11.23

BRAM 454 545 83.30

DSP 368 900 40.89

Total On-Chip Power: 4.186 W

Figure 3.25 | Resources utilization and power report. Utilization of the programmable logic part of
the XCZ7045 AMD Xilinx Zynq SoC device for the implemented HNC node prototype (left), and the
AMD Xilinx Vivado on-chip power report for a PL clock frequency of fclk = 200 MHz (right).

Figure 3.26 | Chip layout of the HNC node implementation on the XC7045.

solely used by the Izhikevich neuron model implementation of the ODE solver pipelines (see

Section 3.3.4.4.2). Nevertheless, the design uses only about 14% of the available LUT, LUTRAM

and FF resources. The chip layout with the area footprint is shown in Figure 3.26.

On the right-hand side of Figure 3.25, the power analysis report is displayed as generated by

the AMD Xilinx Vivado design tools. It shows that 86% of the energy consumption is accounted

for by on-chip memories and the Processing System, and this in roughly equal parts. For the total
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on-chip power consumption the Vivado tools estimated 4.166 W. Note that this estimate is based

on the XC7045 chip resources utilized and has a lower confidence level than an actual power

measurement. The power report also does not include the power consumption of the external

memory.

3.4 Discussion

Making neuromorphic computing a useful tool for neuroscientists is a demanding technical

challenge, not only because of the conflicting requirements of efficiency and flexibility, but also

due to the need for numerical accuracy and reproducibility. The prototyping of the HNC node

revealed where the technical challenges lie and which aspects demand special attention from

both an architectural and a technological point of view. Regarding the latter, the development

was also an exploration of commercial off-the-shelf FPGA-SoC technology. It has been found

that memory architecture, closely linked to semiconductor technology, plays a crucial role here,

imposing design constraints that largely determine performance and possible system size, i.e., it

affects the scalability of a system (for these aspects, see also Chapter 5 and Chapter 6).

Nevertheless, the development also demonstrates the great potential that FPGA-SoC technology

holds as a substrate for neuromorphic computing. Design space exploration, the elaboration and

evaluation of architecture variants, and the optimization of designs were central development tasks.

The preceding sections reflected on these efforts, detailing an architecture of a neuromorphic

compute node that can meet the demanding requirements of neuroscience simulation.

Development environment and logic design methodology
The HNC node design integrates hardware and software components whose functions are interde-

pendent. This increases the complexity of the development process. The setup using the ZC706

development board here proved to be an effective and practical development platform, providing

the tools necessary for efficient hardware-software co-development and co-verification. The

chosen logic design methodology – a combination of RTL-level design and graphical block design

– allowed the Zynq-7000 SoC architecture to be fully exploited and designs to be optimized at the

lowest architectural level. The implementation in VHDL at the RTL level is rather error-prone.

Therefore, hardware-software co-development has always been accompanied by a co-verification

process. A comprehensive description of the verification approach is given in Chapter 4.

Flexibility
Flexibility and efficiency are opposing goals. Both are key requirements for a neuromorphic

146



Chapter 3 A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture

platform dedicated to neuroscience simulation. The hybrid concept of the HNC node offers a

good compromise here, taking advantage of the Zynq-7000 SoC device technology. The tight

coupling of a general-purpose processor with a programmable logic device in a single chip

allows an application to combine the flexibility of a software-based solution with the efficiency of

application-specific hardware. In this regard, the HNC node can provide a level of flexibility that

allows the system to adapt to changing requirements and cope with the rapid developments in

neuroscience.

The need for flexibility arises mainly from modeling. A plethora of neuron and synapse models

exist and new models are being formulated. Domain-specific languages (DSLs) such as NeuroML

(Gleeson et al., 2010), NMODL (Hines and Carnevale, 2000), and NESTML (Plotnikov et al.,

2016) have been developed to conveniently describe the dynamics of neuron and synapse models,

where tools then generate simulation codes from a DSL description. The use of generic data

types and the modularity in the hardware and software architecture design of the HNC node

takes into account the requirements of these tools and workflows. This provides the technical

prerequisites to make the system amenable to existing code generation techniques (see, e.g.,

Blundell et al., 2018a); here the generation of hardware descriptions for the ODE solver pipelines,

and corresponding codes for Neuron Manager functions. The use of a High-Level Synthesis

(HLS) description as code generation target appears to be an attractive option here. Not only can

this be seamlessly integrated with existing tools, but such an approach could also take advantage

of HLS’ ability to find non-obvious pipelining scheduling schemes. By this means a wide variety

of neuron and synapse models can be supported.

The HNC node architecture is open to extensions. Such an extension can be, for example,

plasticity algorithms. Although plasticity models were deliberately omitted from the current

HNC node prototype, they were considered when making design decisions. To enable the

implementation of spike-based plasticity rules (Morrison et al., 2008), synaptic weights as well

as spike events are stored in external memory accessible by both the APU and the programmable

logic. The conceptual idea behind this is to use the APU’s processor cores as dedicated plasticity

processors that can also be combined with supporting accelerator hardware blocks. Plasticity

rules and algorithms require a high degree of flexibility in algorithmic implementation, as this is

a rapidly evolving area of research. Using general-purpose processors for this task is therefore a

reasonable choice. The HNC node here can provide a flexible platform for fast prototyping and

the exploration of novel architecture designs and algorithms.

Cluster operation
A goal of the HNC node development was to provide a scalable architecture, including the ability
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to cluster multiple HNC nodes to form a neuromorphic computing system. Since only a single

node prototype exists at this time, some concepts are not fully developed, such as an architecture

for an efficient inter-node communication network. Nevertheless, cluster operation has guided

design decisions and conceptual ideas, especially those related to spike communication and

synchronization. Both are relevant to performance.

The HNC node design considers three types of communication with different latency and

bandwidth requirements. These communication types are: inter-node spike communication,

inter-node synchronization, and external communication. Inter-node spike communication and

synchronization require ultra-low latency communication, but not high bandwidth. For external

communication, high bandwidth is a desirable feature to minimize system setup time, e.g., when

loading a network’s connectivity data. Technically, modern FPGA-SoC devices offer a variety of

standard peripherals that enable efficient chip-to-chip communication. These peripherals include

high-speed serial gigabit transceivers (GTX/GTH), PCI Express, and low-voltage differential

signaling (LVDS) user I/Os.

Conceptually, the HNC node separates the different communication concerns by targeting three

different solutions tailored to each communication task.

Inter-node spike communication: A number of concepts and solutions exist for low latency

inter-node spike communication, with the use of an AER communication protocol being the

standard approach. This protocol is also used by the HNC node.

A concept for a balanced multi-hop communication architecture, which considers the require-

ments of large-scale neuroscience simulations, is presented in Kauth et al. (2020). In Moore et al.

(2012) a 64-node FPGA cluster is described that uses high-speed serial links. The communication

network of the cluster, which is organized in a 3D torus topology, achieves a hop-latency of

50 ns. A 35-node FPGA cluster with a network topology that has a two-hop worst-case latency is

described in Kauth et al. (2023).

Inter-node synchronization: The HNC node provides a one-wire barrier signal solution for

inter-node synchronization that does not require barrier messages to be exchanged between nodes.

This is, to the best of my knowledge, a novel approach.

External communication: For external communication, the HNC node uses the 10/100/1000

Mb/s tri-speed Ethernet PHY provided by the Zynq-7000 SoC device and the TCP protocol. In

the current prototype, this interface is only used to stream the recorded simulation data to a host

system.
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System integration
The architecture design of the HNC node also aims for seamless system integration, facilitated by

modularity and the provision of software interfaces. Tools such as PyNN (Davison et al., 2009)

and PyNEST (Eppler et al., 2009), which allow convenient network description, can be easily

integrated. This has already been used during development to conduct joint hardware-software

co-verification tasks (see Section 4.3). To prepare these tasks, the connectivity data of a test

network was generated using PyNEST. This data was then imported into the HNC node where

Neuron Manager and Connection Manager instantiate the network and allocate the necessary

hardware resources.

The hybrid design provides the flexibility needed to integrate a neuromorphic system built

from HNC nodes into complex simulation pre- and post-processing workflows. A thorough

discussion on system integration, including the presentation of a concept for the integration into

the high-performance computing (HPC) landscape, is given in Section 6.4.

The development has shown that commercial off-the-shelf FPGA-SoC technology has great

potential as a substrate for neuromorphic computing. The reconfigurable logic allows extensive

freedom in the implementation of numerical models, while the general-purpose processor cores

provide an elegant way to execute performance non-critical tasks and allow for seamless system

integration.
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4.1 Introduction

The HNC node has a hybrid hardware and software mixed architecture. Hardware and software

components form a joint system whose design and implementation require hardware-software co-

development. The same applies to the verification of hardware and software components as well

as the validation at system level. The co-development process needs to be accompanied by a co-

verification process. Tasks are very different here. Developing and testing a software component is

fairly different from, for example, maintaining a finite-state machine model throughout hardware

development.

The HNC node software system is written in C and almost all hardware components are

developed in VHDL. In contrast to a High-Level Synthesis (HLS) approach, where a hardware

design is formulated at the algorithmic level, e.g. in C, and the synthesis toolchain generates

a hardware description in a reliable process, the implementation in VHDL at the RTL level is

rather error-prone. A well thought-out test strategy is therefore essential. It must consider the

verification of the correctness of the technical implementation of the hardware and software

components, their correct interplay, as well as the validation of the entire system function; here it

is the correctness of the outcome of the simulations performed on the HNC node. These activities

must accompany the development work and be carried out as part of the co-development process.

In this chapter, the verification and validation methods described in Chapter 2 are revisited and

applied to the HNC node to provide a proof of correctness. First, some calculation verification

tasks are presented that were conducted to ensure the appropriateness of the design decisions made

regarding the implementation of numerical algorithms. Second, the strategy that has been used for

the functional verification of hardware components is described. Here I present a rather unusual

approach that will be referred to as in-FPGA verification. This approach takes advantage of the

FPGA-SoC architecture to construct a fully software-driven testbench. Finally, a substantiation

assessment is performed. For this proof of correctness, the minimal two-population Izhikevich

network, which has already been used in Chapter 2 to demonstrate a rigorous verification and

validation workflow, serves as a test-case model.

Contributions

• The verification and validation methods presented in Chapter 2 and demonstrated by

conducting a rigorous model verification and validation process are applied to the develop-

ment of the HNC node, a novel neuromorphic architecture, to ensure and demonstrate the

correctness of the implementation.
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• An approach to hardware verification is presented that leverages the FPGA-SoC device

architecture to implement a software-driven testbench. This approach is referred to here as

in-FPGA verification. Methods and practices well established in software development,

such as continuous testing and test-driven development, can thus be applied to the hardware-

software co-development and co-verification processes without much effort.

4.2 Calculation Verification

The arithmetic operations for processing the synaptic inputs and for computing the neuron

model dynamics are realized in programmable logic and work with custom data types, where

the arithmetic is implemented as fixed point. The corresponding components, i.e., RB pipelines

(Section 3.3.4.3) and ODE solver pipelines (Section 3.3.4.4), therefore require special attention

with regard to their level of numerical error. Value range and numerical precision of a data type,

algorithms, and the technical implementation are critical and a potential source of errors.

4.2.1 Value Range and Numerical Precision

The calculation verification task conducted in Section 2.3.4.2 revealed that a 32-bit signed fixed-

point data type in an s16.15 representation does not provide the necessary numerical precision to

capture the dynamics of the Izhikevich neuron model (Izhikevich, 2003) with sufficient accuracy.

While this can be overcome by a higher precision s8.23 representation, it comes at the cost

of a very limited value range. This motivated the use of the 40-bit data type in the s16.23

representation. The data type combines the value range of s16.15 with the precision of s8.23.

The value range of the s16.23 data type is

−216 = −65536 to 216−2−23 = 65535.999999880. (4.1)

This is sufficient to cover the value ranges of synaptic currents, state variables, and intermediate

results of arithmetic operations when calculating the model dynamics of the Izhikevich neuron

model. By providing eight additional fractional bits – compared to the s16.15 data type –

calculations can be performed with sufficient accuracy (see Section 2.3.4.2).

4.2.2 Numeric Integration Scheme

Also the choice of the integration scheme is motivated by the results of the calculation verification

task described in Section 2.3.4.2. An explicit numerical integration scheme is adequate for the
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Figure 4.1 | Spike timing accuracy: comparison of the HNC node hardware ODE solver imple-
mentation with a reliable reference. Evolution of membrane potentials 3(t) recorded from: (A) a
regular-spiking type; and (B) a fast-spiking type Izhikevich neuron. The neurons were stimulated with
the constant current iext = 5pA. Neuron model dynamics were calculated using: the HNC node hardware
implementation (green solid curves); and the GSL rkf45 ODE solver with an absolute integration error of
10−6 (black dotted curves), which is considered here as a reliable reference. A close match in the calculated
dynamics is achieved for the regular-spiking type neuron. For the fast-spiking type neuron, a minimal
delay in spike times is observed, which increases slightly over time.

non-stiff Izhikevich ODE system. Sufficient accuracy can be achieved with an explicit Forward

Euler method – although it is the simplest numerical method available.

Nevertheless, the HNC node ODE solver implementation differs from the SpiNNaker variant.

The ODE solvers of the HNC node use a fixed integration step size of h = 0.1 ms, which corre-

sponds to the simulation resolution and the interval at which spike events are propagated. The

SpiNNaker system instead propagates spike events at intervals of 1 ms, where ODE solvers need

to perform sub-steps of h = 1/16 ms in order to achieve sufficient accuracy (see Listing 2.4).

In order to assess the accuracy of the HNC node ODE solver implementation, single neuron

simulations were performed – analogously to the calculation verification task carried out in

Section 2.3.4.2. The evolution of the membrane potentials were recorded and compared with

a reliable reference, namely a software implementation of the models using a Runge-Kutta-

Fehlberg(4, 5) (rkf45) ODE solver from the GNU Scientific Library (GSL)1. The results are

shown in Figure 4.1. A close match in the calculated dynamics is achieved for the regular-spiking

1https://www.gnu.org/software/gsl/
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type neuron (Figure 4.1A). The fast-spiking type neuron shows a small deviation, a delay in

spike times, which increases slightly over time (Figure 4.1B). This result is consistent with the

improved SpiNNaker implementation (see Figure 2.10), where this range of variation was found

to be acceptable because the dynamics at the network level remain reproducible.

4.3 Implementation Verification

A common method to verify functionality and behavior of a logic design – i.e., verifying that it

conforms to its functional specification – is simulation at the microarchitecture register-transfer

level (RTL). For this purpose, the design to be verified is embedded in an HDL testbench;

the design is then called Design Under Test (DUT). A testbench applies inputs to the DUT to

verify whether correct outputs are produced. RTL simulation does not require a synthesis of the

design. This is an advantage since the synthesis process is computationally intensive and time

consuming. On the other hand, RTL simulation does not provide any information on whether

timing constraints are met, and, when simulating a large design with complicated behavior, RTL

simulation can be very time consuming too.

Here I propose a different and rather unusual approach to functional verification that takes

advantage of the FPGA-SoC technology. Before it is explained in the next section, a note on the

terminology in digital hardware development must be given: we need to distinguish between the

terms design and implementation. While the term design refers to the textual HDL description,

the latter is used to describe the processes of translate, map, and place and route performed by the

synthesis tools to create a netlist. In the following, therefore, the use of the term implementation

shall be understood as a synthesized design that can be loaded into an FPGA.

4.3.1 The Approach: In-FPGA verification

FPGAs powered by general-purpose processors have changed the way FPGAs are used. Here,

hardware verification is rethought. For the functional verification of the HNC node’s hardware

components, an alternative strategy to an HDL testbench was used in which the target for

verification is not the design, but its implementation. This approach exploits the Zynq-7000

SoC architecture to construct a fully software-driven testbench where the implementation to be

verified, i.e., the DUT2, is loaded into the FPGA of the SoC device.

With this in-FPGA verification, inputs to the DUT as well as the verification of its outputs,

can be formulated in the C language, allowing complex verification tasks to be carried out

2In RTL simulation, DUT refers to a design. Here the term is also used for an implementation to be verified.
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Figure 4.2 | Testbench. The testbench setup exploits the AMD Xilinx Zynq-7000 SoC device architecture.
It makes use of the Application Processing Unit (APU) to set up a software-controlled test environment.
The hardware component to be tested – the device under test (DUT) – can be connected to a register file as
well as a streaming interface. For timing analysis and debugging purposes, a 34-channel logic analyzer
interface is provided, which allows for probing any signal.

conveniently. This includes joint testing of the system’s hardware and software components in

the sense of functional hardware-software co-verification.

The testbench architecture as used for the functional verification of the HNC node is shown

in Figure 4.2. Almost all hardware component function tests included this setup. The basic

environment provides several supporting hardware blocks to which the DUT can be connected: a

register file; a data stream interface; and a logic analyzer interface. A set of 16 32-bit registers
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can be used to apply test-vectors and to read out internal states of the DUT. The register file is

mapped into the APU’s address space, and is thus accessible by the testbench software through

simple memory read and write operations. Two chains of 32 x 64-bit shift-registers connected

to a DMA soft-IP core build an interface to a streaming data path. This data path is used to put

the DUT in a closed-loop operation with the APU to apply a stream of test-vectors. For timing

analysis and debugging, the setup is complemented by a 34-channel logic analyzer interface3.

During the development of the HNC node, the testbench was successively expanded with sup-

porting logic, for example, for writing and reading on-chip BRAM memories and to trace content

and utilization of FIFO buffers. These developments were accompanied by the development of

the corresponding testbench software components.

4.3.2 Hierarchical Function Tests

Just as the development of the hardware and software components of the HNC node cannot be

separated, neither can their verification be completely independent of each other. In the HNC node

software system, higher-level functions build and depend on lower-level functions (see Figure

3.5). At the lowest level, the hardware abstraction layer, all routines have a hardware counterpart.

While the high-level functions can be tested independently of the hardware blocks, this is not

the case for low-level functions such as the DMA driver. Therefore, tests are built hierarchically

from basic hardware and software tests to complex function, system and integration tests – just in

the same way as it is common in pure software testing.

A comprehensive description of all component implementation tests and testbench setups

would go beyond the scope of this thesis. Instead a selection and brief overview of the most

relevant function tests and verification tasks conducted is given in Table 4.1, with the order of

tests forming a hierarchy reflecting their dependencies.

4.4 Results Replicability

Simulation outcomes are expected to be replicable, that is, one expects spike-for-spike identical

results in repeated simulations. To avoid that changes in the order of spike events result in changes

in the accumulated synaptic inputs, the HNC node represents weights as fixed-point numbers.

The additions performed in the RB pipelines are thus commutative. In this respect, spike order do

not pose a problem for replicability. However, various reasons can be imagined that may also

3The interface was implemented for use with an Intronix LA1034 logic analyzer. (https://www.
pctestinstruments.com/)
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Component Verification of Description Type of Test

AXI DMA low-level driver and • send and receive data packets in a closed-loop with the APU function test
soft-IP core interrupt handler • perform pattern-tests joint hw/sw

• base test to also verify the function of the testbench basic

Data type correctness of • perform basic mathematical operations with custom data types function test
conversion fixed-point custom and verify results after backward conversion, for example: sw

data type conversion single float→ s16.23→ add/sub/mult/div→ single float basic

ODE solver main control FSM and • send and receive test data in a closed-loop with the APU function test
ODE solver pipeline • main control FSM is connected to the testbench register file hw

to control operation and monitor states advanced

ODE solver accuracy of neuron • record membrane potentials and compares model dynamics to calc. verif. test
and synapse model a reference, i.e., the results obtained from an rkf45 solver hw

• requires data type conversion advanced

Neuron correctness of • generate SVB content in external memory and verify the function test
Manager in-memory neuron correctness of the created structures sw

instantiation • requires data type conversion basic

SVB SVB addressing • perform write and read operations using address-patterns to function test
and endianness test correctness of addressing and endianness conversion hw
conversion (FPGA: 128-bit Big-Endian; APU: 128-bit Little-Endian) basic

SVB correctness of • perform a joint test of Neuron Manager and hw SVB to verify function test
hw resources the assignment of neuron-ids to hw resources joint hw/sw
assignment • requires data type conversion and the Neuron Manager advanced

Connection correctness of • generate synaptic target lists in memory and verify the function test
Manager synapse correctness of the created structures sw

instantiation • requires data type conversion basic

PS/PL read lists of • initiate read operations from external memory to transfer function test
Data Transfer synaptic targets synaptic target lists into FIFO buffers on the FPGA joint hw/sw
Module from ext. memory • requires data type conversion and the Connection Manager advanced

• testbench extension: read FIFO buffers

RB and RB RB pipeline and • inject defined spike events and read the content of RBs function test
pipeline placement of to verify the correctness of the content joint hw/sw

events in RB • requires data type conversion, the Connection Manager, advanced
and the PS/PL Data Transfer Module
• testbench extension: software-programmable spike injection

Serializer and serialization of • apply test-vectors and verify the correctness of encoded function test
Encoder spike events and • spike events collected in the FIFO buffer hw

AER encoding • testbench extension: read FIFO buffers basic

Intra-node synchronization of • system test to verify the interplay of components integration test
synchronization ODE solvers, RBs and • uses a small test networks and analyzes spike events joint hw/sw

spike communication • requires all components complex

Table 4.1 | Function tests. Listed is a selection showing the most relevant function tests and conducted
verification tasks. The order of tests forms a hierarchy.

hinder replicability; for example, functional incorrectness of the RB algorithm implementation,

or issues in the synchronization of hardware blocks.

To verify whether the HNC node produces replicable outcomes, spike recordings from repeated

simulations of the two-population Izhikevich network were compared. The spike events were

recorded from 20 minutes simulated time. To strengthen the test, neuron-ids were logically shifted

158



Chapter 4 HNC Node Implementation Correctness

Figure 4.3 | Example output of the spike-diff utility. The spike-diff tool compares two data sets of
spike recordings and visualizes their differences in spike raster plots. Shown is an example of a failed
comparison. Differences in spike times and spike events are marked in red in the upper panel (Diff A, B),
while matching events are indicated in green. Here, spike events from two simulation runs, recorded from
the first 100 neurons, are compared within the interval 100 ms to 140 ms. Raster plots (A) and (B) display
the spike events in each of the two data sets. Some spike events are shifted by one simulation time step, as
shown in the inset and marked by the red arrow. Here, this difference in spike timing was caused by an
intra-node synchronization issue, which led to an incorrect placement of spike events in the ring buffers.

from simulation run to simulation run. This procedure reassigned neuron-ids to different hardware

resources, forcing a different spike order and scheduling of operations on each simulation run.

For the data sets that were obtained from the multiple repetitions, a spike-for-spike comparison

was performed.

In order to be able to carry out this comparison practically, a spike-diff utility was developed.

It compares two data sets of spike recordings and detects differences in spike events and spike

times. The tool allows the selection of a time window and a range of neurons, and visualizes the

result in raster plots. An example of a failed test is given in Figure 4.3.

The replicability test uncovered several difficult-to-detect implementation issues. All of them

were resolved, and the HNC node successfully passed the test.
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4.5 Substantiation Assessment

In order to verify the HNC node’s ability to meet the requirement for accurate and reproducible

simulations, a model substantiation assessment, as introduced in Chapter 2, was performed.

As test case network, the same two-population Izhikevich network model was used here. The

assessment compared the dynamics of a selected network state obtained from a reliable reference

C implementation of the network model with a reproduction of the model on the HNC node. To

increase credibility, a second reference was included, namely a reproduction using the NEST

simulator. For the comparison, the agreement between the three simulation outcomes was

evaluated with respect to three selected statistical features of the network activity: firing rates,

inter-spike intervals, and correlations.

4.5.1 Definition of the Substantiation Entities

The two-population Izhikevich network model has already been used in Section 2.3 to demon-

strate a rigorous verification and validation workflow. For the definition and a description of the

substantiation methodology entities system of interest and mathematical model, therefore, refer-

ence is made to Section 2.3.1 here. Furthermore, the different implementations of the Izhikevich

network have also been subjected to various verification and validation tasks (see Section 2.3;

and Gutzen et al., 2018; Pauli et al., 2018). The C and NEST executables can thus be considered

as reliable references for defining the ground truth.

The substantiation assessment compared three executable models: (i) a first reference, an

implementation in C; (ii) a second reference, an implementation in the NEST simulator; and (iii)

the substantiation target, an instantiation of the Izhikevich network on the HNC node. In the

following the three models are referred to as C model, NEST model, and HNC node model.

The technical conditions of the three models are different, so aspects of the simulation setup differ

and require explanation.

C model
The model is constituted by the C implementation used throughout Section 2.3.4. This implemen-

tation has undergone a rigorous refactoring and a number of calculation verification tasks and is

considered a reliable reference.

NEST model
To increase credibility, an implementation of the model in NEST is used as a second reference.
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The model required a modification of the NEST source code and the built-in Izhikevich neuron

model. The reason for this is as follows.

The Izhikevich network receives input from an external current source injecting an impulse

into one randomly chosen neuron in each millisecond time step (see Section 2.3.1.1). In order

to technically simplify the generation of such impulses, the NEST simulation was configured

with a simulation resolution of 1 ms. This results in the ODE solver having to perform sub-steps

to achieve sufficient accuracy. The C source code of the Izhikevich neuron model in NEST has

been adapted such that the dynamics of the model progresses with a fixed integration step size of

h = 0.1 ms, performing sub-steps with respect to the simulation resolution (see also Pauli et al.,

2018). Note that spike events are communicated at intervals that correspond to the simulation

resolution and forced to a grid point. The interval must be less or equal to the minimum synaptic

delay in the network. This is given for the Izhikevich network, which has a minimum synaptic

delay of 1 ms.

The NEST model was implemented using PyNEST4. Script and source code change are

available on GitHub5.

HNC node model
Network models on the HNC node are instantiated by a series of C-API Create and Connect

calls, where an external C application generates the corresponding statements based on the

model’s connectivity data (e.g., exported from a PyNEST/NEST-generated network connectivity).

Here, the connectivity of the Izhikevich model was exported from the C model, converted, and

imported into the HNC node model. It should be noted that the HNC node model executable is

formed by this instantiation as well as the HNC node hardware and software system.

All models use an explicit fixed-step size Forward Euler integration scheme with an integration

step size of h = 0.1 ms, but differ in the following respects:

• While the HNC node model propagates spike events at 0.1 ms intervals, the C model and

the NEST model use 1 ms intervals.

• The models use different random inputs to stimulate the Izhikevich network, which is a

limitation caused by different PRNG implementations.

4PyNEST is a convenient Python interface to the NEST simulator.
5DOI: 10.5281/zenodo.6591552; https://github.com/gtrensch/RigorousNeuralNetworkSimulations
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Figure 4.4 | Quantitative comparison of statistical measures. Upper two rows from left to right:
probability distribution of average firing rate (FR), coefficient of variation (CV ISI), and Pearson’s
correlation coefficient (CC) for the excitatory (EXC) and the inhibitory (INH) population. The measures
were calculated from 30 minutes simulated time. For the calculation of CC, spike trains were binned at
2 ms. The bottom row shows the Kolmogorov-Smirnov statistics calculated from the raw samples of the
calculated statistical measures. All measures are in close agreement and show statistical equivalence.

4.5.2 Quantitative Comparison of Statistical Measures

In order to perform the assessment, a similar experimental setup was used as described in

Section 2.3.2.1. Here, instead of employing five network states, only one network state is used

– a decision justified by the absence of significant variations in the assessment across network

states (see Section 2.3.2.1 and Appendix B).

Firstly, to create the reference network state, the ground truth, the C model was trained for

one hour biological time using a spike-timing-dependent plasticity (STDP) rule. After one hour

of simulated network time, the network connectivity was stored, that is, the initial condition of

the network state. This connectivity data was then imported back into the C model. With the

STDP rule deactivated, from 30 minutes simulated time, the spike events were recorded while the

network was stimulated with a random input. This activity recording defined the ground truth –

the dynamic state of the network after one hour of its evolution.

Secondly, the stored connectivity data was imported into the HNC node model. From 30

minutes simulated time, the spike events were recorded while the network was stimulated with
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a different random input. To provide further evidence – to substantiate the correctness of the

simulation result generated by the HNC node model – the procedure was repeated with the NEST

model.

Finally, from the three obtained data sets of network activity, the probability distribution of the

firing rates (FR), the coefficient of variation (CV ISI), and the Pearson’s correlation coefficient

(CC) were calculated and compared (see Section 2.3.2.2 for a description of the statistical

measures). The result of the comparison is shown in Figure 4.4. For the calculation of CC, spike

trains were binned at 2 ms. To derive the probability distributions from the calculated measures,

the Freedman-Diaconis rule was applied to select the width of the bins of the distribution

histograms. A Gaussian kernel was used for density smoothing. Also shown in Figure 4.4

(bottom row) is the Kolmogorov-Smirnov statistics calculated from the raw samples of the

calculated statistical measures. The Kolmogorov-Smirnov test computes the supremum of the set

of distances of two cumulative distribution functions, DKS, and quantifies the discrepancy in the

distributions by a p-value.

All measures are in close agreement and show statistical equivalence. Thus, we can conclude

with a high degree of credibility that the implementation is correct.

4.6 Discussion

The design on RTL level in the VHDL language is very time consuming and error-prone. All the

more attention must be paid to rigorous verification and validation. By following a systematic

approach, rigor is brought to processes that build quality into implementations. The risk of imple-

mentation issues can be reduced and problems identified early in the design and implementation

process. The verification and validation methods presented in Chapter 2, as well as the in-FPGA

verification approach introduced, have proven to be very useful and expedient here.

Credibility of the correctness of the implementation
A high degree of credibility in the correctness of the implementation is created by the various

verification tasks and the substantiation assessment that have been conducted. The selection of

these activities was based on the work presented in Chapter 2.

Among the verification tasks, the replicability test is particularly noteworthy. It has proven

to be extremely useful as it revealed issues on system-level that could not be detected by other

functional tests; thus, the test complemented the simpler verification tests on component level.

The substantiation task was performed analogously to the worked example presented in

Section 2.3, but with a few modifications to improve the quality of this assessment. The time
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for which the network is simulated and network activity data is recorded has been increased

from 5 minutes to 30 minutes. The longer spike trains allow better convergence of the pairwise

Pearson’s correlation coefficient (CC). The local coefficient of variation (LV) has been replaced

by the standard coefficient of variation of inter-spike intervals (CV ISI). This is justified by the

uniformity of the individual spike trains from which the measure is calculated; the oscillations

that the network dynamics show are a population effect. For the comparison, the two populations

of the network have been separated, and instead of histograms, the probability density functions

of the measures were compared and their discrepancy quantified using a Kolmogorov-Smirnov

test.

Although the models use different intervals at which spike events are communicated, the

result of the assessment shows a very close agreement between them. However, one should

consider that this proof of correctness of the HNC node implementation was demonstrated with

an exemplary model. The assessment needs to be repeated as other neuron model types are added

and algorithms change. Arguments for choosing the Izhikevich model have already been given in

this work. Here, it should only be emphasized that the dynamics of the Izhikevich neuron model

propagate numerical errors over time, which is not the case with other models where the model

dynamics are reset after each spike event. In this respect, the Izhikevich neuron model places

higher demands on the hardware implementation than, for example, a LIF neuron model.

In-FPGA verification
The in-FPGA verification approach has efficiently accompanied hardware-software co-development

and well integrates with the AMD Xilinx Vivado tools. The software-driven approach has been

effective for rapid creation of tests, test sequences, and even automation.

A central issue in design space exploration and the exploration of the FPGA-SoC technology

was the achievable performance. Optimization was therefore a key development task. This

refers to architecture, but also to the optimization of the designs in terms of latency. In this

regard, the in-FPGA verification strategy allowed to accompany the development and testing of a

component with an in-depth timing analysis. As a result, the critical timing-path that determines

the maximum clock frequency of the HNC node design lies in a DSP slice – inaccessible for

further optimization.

Moreover, a number of improvements in the HNC node design resulted from this approach.

Several verification tests required additional hardware and software components to be added to

the testbench in order to perform the tasks. Some of these extensions showed to be useful also in

HNC node operation. Their functionality were therefore integrated into the prototype. These are

in particular the following enhancements:
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Software-programmable spike injection: As part of the functional verification of the PS/PL Data

Transfer Module and the RB and RB pipelines, software-programmable spike injection was

implemented to generate defined test-inputs. The functionality was integrated into the HNC node

because it can also be used to provide a network with an external, software-generated stimulus.

Read and write access to FPGA memory resources by the APU: Originally implemented to

manipulate and verify the content of on-chip BRAM memories and for convenient hardware

debugging, it still serves these purposes. It allows access to FIFO buffers, RBs, and SVBs.

Integrated into the HNC node, it is also used during node start up to bring all FPGA memory

resources into a defined initial state. APU read and write access to RB and SVB memories is also

a prerequisite for checkpointing functionality, i.e., suspending a simulation and saving its entire

state so that a simulation can be restored and resumed at a later time. This is a feature frequently

requested by users of software simulation tools.

Isolated operation of ODE solver pipelines in closed-loop with the APU: Technically, the cor-

rectness of the Izhikevich model and ODE solver implementation was verified by operating an

ODE pipeline in a closed-loop setup with the APU. This turned out to be a very useful feature

when implementing and testing new synapse and neuron models. Therefore, the functionality

became a separate mode of operation of the HNC node.

The additional times that the in-FPGA verification approach require for design synthesis, i.e.,

translate, map, and place and route, have been found to be acceptable. A complete design run of

the HNC node prototype takes approximately 15 minutes6. Synthesis time is significantly less for

most hardware verification and development tasks since they typically do only include selected

hardware modules – the amount of time it takes to run a design is highly dependent on the size of

the design. The development and verification processes also benefit here from the modularity of

the HNC node architecture design, i.e., the flexibility in the number of processing units included.

In this manner, the HNC node was built with the RTL modules successively developed, tested,

and integrated into the block design of the system.

6The time is observed for the AMD Xilinx Vivado 2019 toolchain running on an Ubuntu workstation equipped with
an Intel(R) Core(TM) i7-7700K CPU 4.20 GHz.
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HNC Node Performance

”You can’t always get what you want

But if you try sometimes you just might find

You get what you need ”

The Rolling Stones
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5.1 Introduction

Simulation tools like NEST (Gewaltig and Diesmann, 2007) are continually being developed to

extend and improve their functionality. The developers of these tools invest considerable effort in

optimizing codes, algorithms, and data structures to achieve the best possible performance and

simulation efficiency (see, e.g., Kunkel et al., 2014; Pronold et al., 2022). These developments

are accompanied by performance measurements to assess the effectiveness of code changes and

to detect changes in runtime, scaling behavior, or resource utilization. These benchmarks are

typically based on common network models.

One model used in the development of the NEST simulator, for example, is the balanced

random network model described in Brunel (2000). The developers use it to perform strong-

scaling1 and weak-scaling2 benchmarks on high performance computing (HPC) systems (see

Kunkel et al., 2014). These benchmarks assess simulation real time factor (RTF)3, network

building time, simulation efficiency measured as energy per spike event, and resource utilization,

i.e., memory consumption. By applying different sets of parameters that vary network size,

connectivity, and number of processors (i.e., number of compute nodes, MPI processes, and

threads), different workload situations are created. Conducting such benchmarks requires special

attention to setup and parameterization in order to be comparable. For example, when performing

weak-scaling benchmarks, the average firing rates in the network must be preserved; higher or

lower firing rates will change the computational cost and skew the results. In this respect, the

Brunel model is scalable, generating a computational cost that increases with network size.

Another example of a network model that has recently become popular as a reference for

comparing architectures and even implementations on neuromorphic hardware is the cortical

microcircuit model introduced by Potjans and Diesmann (2014) (see also Section 6.3 for a

description of the model). It has been used in several studies to evaluate and demonstrate

the performance of implementations and hardware systems, for example: in a performance

comparison of the SpiNNaker neuromorphic system and the neural simulation tool NEST (van

Albada et al., 2018); to evaluate the performance of simulation codes on GPUs (Golosio et al.,

2021; Knight and Nowotny, 2018); to investigate the performance of the neural simulation

tool NEST on a specific many-core hardware architecture (Kurth et al., 2022); to evaluate and

demonstrate the performance of an implementation employing the IBM INC-3000 prototype

FPGA-based neural computer (Heittmann et al., 2022); and to benchmark an FPGA-cluster

comprising 35 NetFPGA SUME boards (Kauth et al., 2023).
1In strong-scaling benchmarks, the number of processors is increased while the problem size remains constant.
2In weak-scaling benchmarks, both the number of processors and the problem size are increased.
3The RTF is defined as wall clock time divided by simulated time and is the inverse of the acceleration factor.
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A specific benchmark model provides a specific insight into a system’s performance behavior; a

node’s workload depends on network size and network dynamics, which are tightly coupled to

the model. A benchmarking approach that allows workloads to be varied irrespective of network

size would be very valuable here, as it can provide a more comprehensive view of a system’s

performance characteristics.

In this chapter, such an approach is presented and used to systematically assess the performance

characteristics of the HNC node. To this end, first, a workload model is developed that defines

workload as the number of spike events per simulation time step, introducing a network size

independent metric. Second, the knowledge about the HNC node microarchitecture and the

latencies introduced by the components is exploited to derive an accurate performance model.

Finally, the workload model and the performance model are then used to evaluate and predict

the HNC node’s behavior under varying workload situations and for different configurations and

assumptions in design space. For the assessment, the minimal two-population Izhikevich network

model is used as a workload generator.

Contributions

• A workload model is developed that defines a node’s workload as the average number of

spike events processed per simulation time step. For network sizes up to 105 neurons, the

model introduces a metric that is independent of the number of neurons simulated.

• From the HNC node microarchitecture, an accurate performance model is derived. Although

its formulation is specific to the HNC node, it captures in a general way the performance-

determining aspects of the hybrid time- and event-driven scheme typically used in spiking

neural network simulations of point neuron models.

• It is shown that by using a workload and performance model, the performance characteris-

tics of the HNC node prototype can be predicted as a stand-alone compute node, as well

as when operating in a cluster and under varying assumptions regarding workload and

hardware design choices. This allows bottlenecks to be identified and future developments

to be guided.

5.2 Methods and Materials

5.2.1 Workload Model

The number of neurons an HNC node can simulate is a hardware design parameter and is fixed.

Therefore, the computational cost of advancing neuron states does not vary between simulation

169



Chapter 5 HNC Node Performance

time steps, introducing a constant latency to the processing. In contrast, the computational

cost of processing spike events varies and depends on the firing statistics of neurons and their

connectivity. It introduces a latency to operation that depends on the number of spike events

arriving at a node in a simulation time step, as well as the number of synapses on the node that

connect the firing neurons to their postsynaptic neurons. It is thus determined by the number of

presynaptic data items to be processed, that is, the number of synapse updates performed. The

above can be used to derive a convenient metric for a node’s workload.

For a given number of neurons per node NM, a certain number of nodes M is required to simulate

a network of size N. The connection probability ε of the network (here assumed to be uniform

across the network) determines the average in/out-degree K̄in/out = εN, i.e., the number of in- and

outgoing synaptic connections of a neuron. The in/out-degree K̄in/out grows with the network

size, but has an upper limit. A typical cortical neuron connects to between 103 and 104 other

neurons. Given a connection probability value of approximately ε = 0.1 observed in Braitenberg

and Schüz (1998) for neural connectivity, a network of 105 neurons, where each neuron forms

104 connections, represents this upper limit. For network sizes up to this scale, we can define a

metric that is independent of the number of neurons simulated.

Assuming uniform network connectivity and evenly distributed connections across nodes, the

average number of postsynaptic targets per presynaptic neuron per node is given by the mean

out-degree divided by the number of nodes. This can be written as

C̄M =


εNM if N ≤ 105

104 NM

N
otherwise.

(5.1)

For N ≤ 105, C̄M does not depend on the network size. It is a constant determined by the number

of neurons per node NM and the connection probability ε in the network. Thus, the number of

synapse updates to be performed on a node per spike event is also constant on average. It is

therefore practical to consider as an indicator of a node’s workload the average number of spike

events processed per simulation time step k, which can be formulated as

ν̄k = Nν̄h, (5.2)

where ν̄ denotes the average firing rate calculated over all neurons in the network by

ν̄ =
1
N

N∑
i=1

nsp
i (T )
T

. (5.3)
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In Equation (5.3), nsp
i (T ) is the total spike count of neuron i in the interval T , and h defines the

temporal resolution of the simulation. From the Equations (5.2) and (5.3), and the definition of

the firing rate (Equation (2.5)), we derive

ν̄k = h
N∑

i=1

FRi, (5.4)

where FRi is the firing rate of neuron i.

Up to a network size of 105 neurons, we can use this metric to simulate the workload of a node

regardless of the real network size: from a single node’s perspective, the workload that a small

network of neurons with high average firing rates generates is equivalent to a large network where

neurons have low firing rates; the node sees the same workload.

Since the number of synapses formed by a neuron cannot become arbitrarily large, C̄M does not

remain constant beyond a certain network size. When the network has reached a natural density,

C̄M decays with the network size, i.e., with the number of nodes M = N/NM. In this respect, and

from the perspective of a node, a network of approximately 105 neurons represents an upper

bound on the workload generated: while the number of incoming spike events increases with

network size, the number of synapse updates per spike event and node decreases accordingly.

5.2.2 Performance Model

In Section 3.3.5, the operating latencies have been extracted from the HNC node microarchitec-

ture. This knowledge is exploited in the following to derive a performance model that allows

conclusions to be drawn about the performance characteristics of the HNC node, its behavior

under different workload situations, and with regard to design and technology parameters. The

workload metric that was introduced in the previous section will be used here.

Single node
The time span to perform a single simulation step becomes minimal if no spike event occurs, and

is predominantly determined by the number of serially processed neurons assigned to an ODE

solver pipeline. This is reflected in the ODE solver pipeline iteration latency LODE,IL. Together

with the synchronization latency LSYNC, it sets the upper bound for the single-node acceleration

factor FMAX
S at a given clock frequency fclk. From the timing diagram in Figure 3.24A, we derive

FMAX
S =

kh fclk

LRD + LODE,LL + k(LODE,IL + LSYNC)
, (5.5)
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where k denotes the number of simulation steps, and h specifies the temporal resolution of the

simulation. For k� 1 this simplifies to

FMAX
S =

h fclk

LΣ

with LΣ = LODE,IL + LSYNC. (5.6)

In Equation (5.6), LΣ summarizes the processing latencies for the non-spiking case. Similarly,

latencies from processing spike events can be summarized according to the timing diagrams and

process scheduling shown in Figure 3.24A and Figure 3.24B. This sum includes the latencies of

spike events serialization and buffering (LSE = LSEP + LSES + LSEF), the latencies incurred by the

initiation of the data streams S1 and S2 (LIS = LISCAL + LISADR), and the latencies resulting from

the RB processing of pending data items at the end of a simulation time step (LRB = LRBF + LRBP).

The number of clock cycles of each of the latencies as well as a description, can be found in

Figure 3.24C. Altogether, this results in

LSE
Σ = LRD + LODE,LL +

LODE,IL

2
+ LSE + LIS + LRB + LSE

SYNC. (5.7)

The term LODE,IL/2 in Equation (5.7) expresses the assumption that, on average, spike events

occur in the middle of an ODE solver pipeline iteration – a simplification justified here by the

round-robin assignment of neurons to processing units and pipelines, ensuring an even distribution

of spike events across the clock cycles during pipeline operation.

For an isolated node with no inter-node communication, the acceleration factor as a function of

the workload ν̄k, can then be formulated as

FS(ν̄k) =


h fclk

ν̄k(LSE
Σ

+ LS) + (1− ν̄k)LΣ

if ν̄k < 1

h fclk

LSE
Σ

+ ν̄kLS
otherwise.

(5.8)

For workloads ν̄k < 1, the denominator in Equation (5.8) consists of two terms corresponding

to the spiking (ν̄k(LSE
Σ

+ LS)) and the non-spiking ((1− ν̄k)LΣ) case, where LS denotes the per

spike event data stream latency, i.e., the number of clock cycles required to retrieve a single

list of synaptic targets (LST). The two branches are equal if ν̄k = 1. In the absence of spike

events, FS(0) = FMAX
S applies (Equation (5.6)). Note that Equation (5.8) does not consider C̄M,

the average number of postsynaptic targets per presynaptic neuron per node. The value of C̄M

determines the value of LS, which cannot be derived from the microarchitecture and was therefore

measured. Furthermore, it is ignored that a data transfer could be completed before all neurons

172



Chapter 5 HNC Node Performance

have been processed, i.e., LODE,IL/2−LS > 0. To account for this, the value of LSE
Σ

would have to

be corrected by adding the latency LODE,IL/2−LS. However, an effect can only be seen at very

low spike rates, because it holds: ν̄kLS� LODE,IL/2−LS. Equation (5.8) therefore allows for the

calculation of a good estimate of the acceleration factors achievable at different workloads.

Cluster node
By extending the model to include inter-node communication latencies, the performance char-

acteristics of a multi-node system can also be described. Note, that the model can only provide

an estimate here, as communication latencies cannot be derived from the single-node prototype.

Strongly simplifying the complex effects of communication network topologies and protocols,

three basic assumptions are made:

• Spike events are broadcast, i.e., communicated to all nodes.

• Inter-node connections all have the same and fixed transmission latency time TCOM, which

adds to every simulation step.

In addition to the times needed to communicate the spike events, TCOM also includes

inter-node synchronization latency.

• Every spike event adds an additional latency to communication.

This takes into account that inter-node communication times increase with workload. This

latency should be defined as ν̄kαTCOM, where αTCOM specifies a small fraction of the

transmission latency time, i.e., α < 1.

Extending the Equation (5.8) accordingly results in

FC(ν̄k) =


h fclk

ν̄k(LSE
Σ

+ LS +αLCOM) + (1− ν̄k)LΣ + LCOM
if ν̄k < 1

h fclk

LSE
Σ

+ ν̄k(LS +αLCOM) + LCOM
otherwise,

(5.9)

where LCOM denotes the transmission latency in clock cycles derived from the transmission

latency time, i.e., LCOM = fclkTCOM. Note that LCOM in Equation (5.9) does not vanish even in

the absence of spike events. This takes into account inter-node synchronization times. According

to Equation (5.5), the upper bound for the acceleration factor with inter-node communication

then becomes

FMAX
C =

h fclk

LΣ + LCOM
. (5.10)
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For a performance analysis it is convenient to calculate the total relative performance loss in

percent with respect to the maximum achievable acceleration factor. It can be estimated for

different workloads as

PTOT(ν̄k) = PS + PC =

(
1−

FC(ν̄k)
FMAX

S

)
·100%. (5.11)

This can be further subdivided into the loss caused by the processing of spike events

PS(ν̄k) =

(
1−

FS(ν̄k)
FMAX

S

)
·100%, (5.12)

and the loss caused by inter-node communication

PC(ν̄k) =
FS(ν̄k)−FC(ν̄k)

FMAX
S

·100%. (5.13)

5.3 Results

Several tasks were performed to systematically assess the performance characteristics of the

HNC node. First, the achievable acceleration factors under varying workload situations were

measured. The two-population Izhikevich network model (see Section 2.3.1.1) was used here

as a workload generator. As a reference and benchmark, the results were compared with the

acceleration factors achieved in comparable simulations performed with the neural simulation

tool NEST. Second, in order to verify the correctness of the HNC node performance model,

the measured acceleration factors were compared with the acceleration factors predicted by the

model. Finally, the performance model was then used to evaluate the performance characteristics

of the HNC node as a stand-alone compute node and when operating in a cluster, examining the

effect of additional synchronization and communication latencies, and under varying assumptions

regarding workload and hardware design choices. To this end, four different sets of hardware

design parameters were selected for an investigation.

5.3.1 Single Node Performance

To measure the acceleration factors under varying workload situations, the two-population Izhike-

vich network was run multiple times, with each run creating a different workload situation. In

simulations of 300 s simulated time, the network was stimulated with an external input current,

iext. From simulation run to simulation run, iext was systematically varied from iext = −3.0 pA to

100.0 pA. This caused the network to run through a wide range of activity, from quiescence up to
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Figure 5.1 | Acceleration factors achieved by the HNC node and the simulation tool NEST. Accel-
eration factor (simulated time divided by wall clock time) achieved under different workloads (spike events
per simulation time step) for: (A) the HNC node at a PL clock frequency of fclk = 200 MHz; and (B) the
neural simulation tool NEST on an Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (Kaby Lake architecture).
The inset in (A) gives a log-lin representation.

an average firing rate of ν̄ = 300 spks/s. According to the workload model (Equation (5.4)), this

resulted in an average number of spike events per simulation time step of ν̄k = {0, . . . ,30} spks/h.

In this way, an increasing workload was generated and different workload scenarios were simu-

lated for the HNC node. The durations of the simulations were measured and the acceleration

factors were calculated as the quotient of the simulated time and the measured physical wall clock

time. The result of these measurements is shown in Figure 5.1A.

For comparison, the simulations were repeated using the simulation tool NEST. For this

purpose, the model was implemented in NEST 2.20.1 (Fardet et al., 2020). The simulations were

performed on a desktop computer powered by an Intel(R) Core(TM) i7-7700K CPU 4.20 GHz

(Kaby Lake architecture). The measured acceleration factors are shown Figure 5.1B.

For low workloads, up to a few spike events per simulation time step, the HNC node outper-

forms the NEST simulations on the Intel Kaby Lake CPU. A low workload is generated, for

example, when the Izhikevich network is not stimulated with an additional external offset current

(iext = 0 pA). The average firing rate in the network is then ν̄ = 7.0 spks/s, which corresponds to

an average number of spike events processed per simulation time step of ν̄k = 0.7 spks/h. For this

workload, the acceleration factor achieved by the NEST simulator is 8.4, whereas the HNC node

reaches a factor of 127. Here, the HNC node can take full advantage of hardware parallelism,

hardware pipelining, and data locality. As the workload increases, the HNC node experiences

rapid performance deterioration. Spike processing shifts the cost of computation. Data access

latency and the limited bandwidth of the external memory decelerate processing. A similar

behavior can be observed for NEST on the CPU, although not as pronounced since the base
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Figure 5.2 | Acceleration factors achieved by the HNC node at different PL clock frequencies and
in comparison with the simulation tool NEST. (A) Acceleration factors achieved by the HNC node
(blue markers) as a function of workload and at three different PL clock frequencies in log-lin (A1) and
linear (A2) representation. The gray curves show the acceleration factors predicted by the performance
model. (B) as in (A), but compares the acceleration factors achieved by the HNC node running at a PL
clock frequency of fclk = 200 MHz with those achieved by a NEST simulation of the same model when
using one or four threads of an Intel(R) Core(TM) i7-7700K CPU 4.20 GHz.

acceleration is much lower.

The NEST simulator is a runtime-optimized, flexible tool for neural network simulations and

represents a good reference in this regard. Clearly, a CPU-optimized implementation of the

specific network model could achieve even better results4. However, the difference in perfor-

mance and efficiency is such that the HNC node performance is beyond the reach of any CPU

implementation.

In order to verify the correctness of the HNC node performance model, the performance measure-

ments carried out on the HNC node were repeated at the three different PL clock frequencies:

100 MHz; 150 MHz; and 200 MHz. The measured acceleration factors were then compared

with the acceleration factors predicted by the performance model using Equation (5.8). This

4A C implementation of the network model is provided on GitHub: https://github.com/gtrensch/
RigorousNeuralNetworkSimulations
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comparison is shown in the upper panels, A1 and A2, of Figure 5.2. The predicted acceleration

factors are in almost perfect agreement with the measured values.

Memory access latency is a major performance determining factor. In Equation (5.8), this is

expressed by the term ν̄kLS, where LS is the number of clock cycles required to read an LST

from external memory. This latency cannot be compensated by a higher PL clock frequency.

However, an acceleration factor of approximately 100 is achieved for moderate workloads, i.e.,

ν̄k ≈ 1 spks/h. Such a workload is created, for example, by a network consisting of N = 5000

neurons with an average firing rate of ν̄ ≈ 2 spks/s.

Also shown in Figure 5.2 (lower panels, B1 and B2) is a comparison of the acceleration factors

measured for the HNC node at a PL clock frequency of fclk = 200 MHz with equivalent simula-

tions in NEST performed on a quad-core Intel CPU. Even at high workloads, a single HNC node

performs substantially better than a single state-of-the-art processor core.

The high workloads generated here are realistic scenarios in large-scale simulations and are not

only of theoretical interest for benchmarking tasks. For example, in simulations of the cortical

microcircuit model (Potjans and Diesmann, 2014), which consists of N ≈ 0.8 ·105 neurons, a value

of ν̄k ≈ 25 spks/h can be observed (see Section 6.3). At this workload the HNC node achieves an

acceleration factor of approximately 7, whereas for a single-threaded NEST simulation a factor

of approximately 2 was measured. When distributing workload using all four cores of the Intel

CPU, the NEST simulation is nearly as fast as a single HNC node. Note that this is derived from

the performance model. The single HNC node prototype cannot accommodate a network as large

as the cortical microcircuit model.

Although power efficiency is not a central theme of this work, it is worth noting that the power

consumption of the HNC node SoC device is on the order of a few watts (see the power report

in Section 3.3.6) and thus achieves a much higher simulation efficiency than the Intel core, for

which a power consumption of several tens of watts is to be expected.

5.3.2 Performance Characteristics for Different Sets of Design Parameters

The design space is complex, and it is not always obvious what the appropriate design choices are.

In a high workload scenario, reducing the number of processing units may improve simulation

efficiency even though it increases the number of neurons processed by a processing unit (given

a fixed number of neurons per node). This may seem like a contradiction, but the reasoning

becomes apparent when analyzing the performance behavior for varying workloads. In a cluster,

the adverse effect that inter-node communication has on performance also needs to be considered

in finding an optimal node setup.
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To illustrate this, the HNC node’s performance characteristics are examined for the following

four different sets of design parameters:

• Prototype

This set of parameters corresponds to the prototypical HNC node implementation with

which the measurements have been carried out. The parameter set defines: P = 16 process-

ing units; NP = 64 neurons per processing unit; and S = 2 data streams (see Figures 3.11

and 3.12).

• High data stream parallelism

Similar to the prototype parameter set, but assumes that each processing unit is assigned

a data stream, providing an eightfold reduction in external memory access latency. The

parameter set defines: P = 16; NP = 64; S = 16.

• High processing units parallelism

As for the high data stream parallelism parameter set, but implementing twice the number

of processing units in order to halve the ODE solver pipeline latency LODE,IL, and increase

the maximum achievable single-node acceleration factor. The parameter set defines: P = 32;

NP = 32; S = 16.

• Low processing units parallelism

The parameter set implements the opposite of High processing units parallelism reducing

the number of processing units. The parameter set defines: P = 8; NP = 128; S = 16.

The number of neurons per node (NM = PNP) is the same for all parameter sets. Note that the

parameter sets, with the exception of the prototype configuration, have not been implemented and

applied to the HNC node. The selected SoC device is here limited to the prototype configuration

in terms of the number of data streams, i.e., the external memory bandwidth. In the following,

the performance model introduced in Section 5.2.2 is used to derive estimates of the performance

characteristics.

To describe the effect of inter-node communication on performance, the performance model

introduces the two parameters: transmission latency time TCOM; and a per spike event transmission

latency factor α (for a description of the parameters see Section 5.2.2). Their values were set

to TCOM = 500 ns and α = 0.05. They are the same for all parameter sets. The choice for the

transmission latency time is motivated by the temporal resolution of h = 0.1 ms and an envisioned

acceleration factor of 100, which would be a major breakthrough. This assigns TCOM half of

the wall clock time that would be available to complete a single simulation step. The value of
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Figure 5.3 | Performance characteristics estimation. Performance characteristics of the HNC node
calculated using the performance model (Section 5.2.2) for the parameter sets prototype; high data stream
parallelism; high processing units parallelism; low processing units parallelism. See main text and
Table 5.1 for a description of the parameter sets. The upper panels show the achievable acceleration
factors as a function of workload with inter-node communication FC(ν̄k) (dashed curves) and without
inter-node communication FS(ν̄k) (solid curves); the lower panels show the stacked plots of the respective
contributions to the loss of performance with respect to the maximum achievable single-node acceleration
factor FMAX

S of the inter-node communication PC(ν̄k) (green) and presynaptic data distribution PS(ν̄k)
(blue).

the per spike event transmission latency factor α was arbitrarily chosen and corresponds to five

additional clock cycles per spike event at the PL clock frequency fclk = 200 MHz.

The estimated performance characteristics for the four parameter sets are shown in Figure 5.3.

The upper panels displays the acceleration factors with and without inter-node communication as

a function of workload, calculated using the Equations (5.8) and (5.9). The lower panels provide

an alternative view, illustrating the respective proportion of the performance loss in percent

with respect to the maximum achievable single-node acceleration factor for the corresponding

parameter set. Shown are the performance losses caused by inter-node communication, and

by the process of presynaptic data distribution, which includes external memory access times.

These characteristics are derived from the Equations (5.12) and (5.13) of the performance model.
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High High Low
Prototype Data Stream Processing Units Processing Units

Parameter Parallelism Parallelism Parallelism

Number of parallel data streams, S 2 16 16 16
Data stream latency, LS 110 14 14 14
Number of processing units, P 16 16 32 8
Number of neurons per processing unit, NP 64 64 32 128
ODE pipeline iteration latency, LODE,IL 64 64 32 128

Acceleration Factors w/o Communication (Single Node)

Maximum, FMAX
S = FS(ν̄k = 0) 298.5 298.5 571.4 152.7

Low workload, FS(1.0) 104.7 177.0 246.9 113.0
Medium workload, FS(10.0) 16.9 84.5 97.7 66.5
High workload, FS(20.0) 8.8 52.4 58.4 45.6

Acceleration Factors with Communication (Cluster)

Maximum, FMAX
C = FC(0) 119.8 119.8 148.1 86.6

Low workload, FC(1.0) 67.6 91.7 107.5 70.9
Medium workload, FC(10.0) 15.0 51.7 56.4 44.4
High workload, FC(20.0) 8.1 34.8 36.9 31.3

Table 5.1 | Acceleration factors for four different parameter sets. Listed are the achievable accelera-
tion factors for four different parameter sets: prototype; high data stream parallelism; high processing
units parallelism; low processing units parallelism, and for three different workload situations: low;
medium; high as well as with and without inter-node communication. The number of neurons per node
NM = PNP = 1024, the PL clock frequency fclk = 200 MHz, the transmission latency time TCOM = 500 ns,
and the per spike event transmission latency factor α = 0.05 (see main text) are the same for all parameter
sets. The acceleration factors have been calculated using the performance model described in Section 5.2.2.

Table 5.1 lists the calculated acceleration factors achieved by the different setups for low, medium,

and high workload.

It requires no explanation that inter-node communication latency de facto reduces the maximum

achievable acceleration factors. For the prototype configuration (Figure 5.3, prototype, upper

panel), for example, the acceleration factor decreases from 298.5 to 119.8 (Table 5.1). As the

workload increases, the effect becomes progressively smaller. For low workload, the factor

decreases by 35.5%, for medium workload by 11.2%, and for high workload by 7.9%. For low

workload, the achievable acceleration is determined by inter-node communication latency, but

toward higher workload external memory access time is the main contributor to performance

degradation (Figure 5.3, prototype, lower panel).

In the high data streaming parallelism configuration, each processing unit has a data stream

assigned, and by this means, an eight times higher parallelism in the presynaptic data distribution

is introduced; the two data streams S1 and S2 (Figure 3.11) are each split into eight streams,

thus reducing external memory access times by a factor of eight. Figure 5.3 (high data stream

parallelism, upper and lower panel) illustrates the effect. For medium workload and with inter-
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node communication, the acceleration factor increases from 15.0 (for the prototype configuration)

to 51.7, i.e., by a factor of 3.4.

We can try to further improve performance by increasing the parallelism in the computation

of the model dynamics by adding processing units. The high processing units parallelism

configuration doubles the number of processing units. This configuration achieves a very high

maximum acceleration factor of 571.4 for the single node without inter-node communication. In

a cluster such high acceleration cannot be realized, even for low workload. Bound by inter-node

communication latency, the performance loss in relation to the maximum acceleration is 74%,

and for low workload 81.2%. However, for high workload, external memory access time is still

the main limiting factor (Figure 5.3, high processing units parallelism, upper and lower panel). In

addition, this setup doubles the hardware footprint of the ODE solver pipelines. Minimizing the

hardware footprint is always a concern in a design as it reduces power consumption.

The low processing units parallelism configuration implements half of the processing units of

the prototype configuration (Figure 5.3, low processing units parallelism, upper and lower panel).

For low workload, and in comparison with the high processing units parallelism configuration, the

acceleration factor decreases from 107.5 to 70.9, i.e., by 34%. For high workload, the acceleration

factor decreases from 36.9 to 31.3. This is a loss of 15.2% and may be an acceptable degradation

when making design decisions oriented toward a high workload scenario, considering that it can

save 75% of ODE solver pipeline hardware resources, namely DSP units.

Depending on the workload being processed and the design goal, different setups may be appro-

priate, with available memory bandwidth also determining the degree of reasonable processing

parallelism.

5.4 Discussion

The HNC node is designed to operate in a cluster. Here, the workload and performance model

can predict the performance characteristics and enable the study of the performance behavior

under varying workload situations and for different sets of design parameters. This is of value as

it provides guidance for design decisions and future development, as well as the ability to identify

bottlenecks and pinpoint areas of constraint.

Workload model and workload generation
The proposed workload model has proven to be very practical. Since the introduced metric is

independent of network size, large workloads can be simulated and scenarios that only occur

in simulations of large networks can be studied in a small setup. By using the minimal two-
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population Izhikevich network as a workload generator, a wide range of workload situations can

be created. This also includes unrealistically high spike rates, which have found practical use in

system verification; for example, in a stress test where the HNC node’s spike communication

and recording hardware is pushed to its limits to verify that no spike losses occur under high

workloads.

Nonetheless, the Izhikevich network is not an ideal choice to be used in such a way. Attempts to

scale the network to several thousand neurons to perform measurements on traditional multi-node

systems failed. Network dynamics become unstable and network activity cannot be adjusted

anymore by an external offset current. A possible solution here is to employ a stochastic neuron

model that allows control of its firing statistics.

Performance model
The ability to describe the performance characteristics of the HNC node and predict its be-

havior for different parameter sets and under varying workload conditions is highly valuable.

The model has proven to be highly accurate, with its formulation made possible by the RTL-

level design methodology, which exposes detailed insights into the latencies of the HNC node

microarchitecture.

Accompanied by performance measurements, the performance model allowed a verification of

the implementation in terms of expected performance, as well as it quantifies the performance-

determining processes. By extending the model to include the additional communication and

synchronization latencies occurring in a multi-node system, conclusions could also be drawn

for cluster operation. To this end, several simplifying assumptions were made, in particular,

simplifications with regard to inter-node communication latency values. The value of 500 ns

assumed for the transmission latency time is ambitious – network technologies are typically

optimized for throughput, but not for latency. However, these choices are sufficient to demonstrate

the effect of inter-node communication as a performance-determining factor, as illustrated in

Figure 5.3 in the respective contributions of the related processes to the loss of performance. Irre-

spective of this, the model also reveals that external memory access is the dominant performance

determining factor.

For the selected technology – the AMD Xilinx Zynq-7000 SoC device family – the performance

model estimates an acceleration factor on the order of 10 to 50 for medium and small workloads.

Such a workload is created, for example, by a network consisting of N = 10,000 neurons, where

the neurons have an average firing rate of ν̄ ≈ 2 . . .10 spks/s. To simulate such a network, 10 HNC

nodes would need to be clustered. The performance model here also reveals that the achievable

acceleration and the reasonable size of a cluster are limited by the external memory bandwidth.
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Model Parameter NetFPGA Value Comment
fclk 189.383 MHz clock frequency

h 0.1 ms simulation resolution

ν̄k ≈ 25 spks/h workload generated by the microcircuit model
(see Section 6.3.2)

LSE
Σ

≈ 285 clock cycles ODE solver latency (≈ 1.5 µs, neurons per worker 255,
pipeline stage count 30)

LS ≈ 8 clock cycles data read latency retrieving a single list of synaptic targets;
the value is estimated as LS = ( fclkKtotalwlen)/(BMN)
based on:
• the achieved memory bandwidth, B ≈ 20 GB/s

(taken from Kauth et al. (2023), Figure 8)
• the word length of a synaptic data item, wlen = 56 bit
• the number of NetFPGA nodes, M = 35
• the number of neurons simulated, N = 77,169, and
• the number of synapses, Ktotal ≈ 299 ·106

(see also Section 6.3.2)

LCOM ≈ 406 clock cycles communication latency (≈ 2.144 µs, synchronization time)

α 0 not given

Table 5.2 | NetFPGA latency values and corresponding performance model parameters. Hard-
ware parameters and measured latencies were derived from the descriptions given in Kauth et al.
(2023).

Although the formulation of the performance model is specific to the HNC node, it captures in

a generic way the performance-determining aspects of discrete-time neural network simulations

of point neuron models. Thus, the idea can be adapted and applied to other simulation engines of

this kind, as the following example may show.

In Kauth et al. (2023), a simulation of the cortical microcircuit model implemented on a cluster

of 35 NetFPGA SUME boards is presented. Based on the simulation engine’s hardware properties

and the workload that is generated by the simulated model, the performance model can provide a

good estimate of the achievable acceleration factor. Table 5.2 summarizes the relevant latencies of

the NetFPGA cluster implementation derived from the descriptions given in Kauth et al. (2023).

Also shown are the corresponding performance model parameters. From these parameters and

using Equation (5.9) we derive

FC(ν̄k) =
h fclk

LSE
Σ

+ ν̄k(LS +αLCOM) + LCOM
=

0.1 ms ·189.383 MHz
285 + 25 ·8 + 406

≈ 21. (5.14)

This is in agreement with the acceleration factor of about 20 that the authors have measured.
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Guiding design decisions – options for performance improvements
By offloading performance-critical tasks to programmable logic, the HNC node design aims to re-

move limitations that are a consequence of the von Neumann bottleneck in conventional computer

architectures. The close proximity of data and operations, hardware-level parallelization, and

pipelining are the ingredients from which the HNC node derives its performance. This is under-

mined to some extend by storing the network connectivity data in an external memory – a design

decision that was based on technical constraints and application requirements (see Section 3.3.1).

It revealed to largely determine performance. Toward higher workloads, performance becomes

bound by the access latency and limited bandwidth of this external memory.

The evaluations conducted suggest a number of improvements and approaches that can mitigate

the negative effects:

Reducing data sizes: All numbers are stored in a 40-bit fixed-point data format to provide suffi-

cient numerical accuracy. This decision can certainly be questioned. While the state variables and

constants of the Izhikevich neuron model require this precision (see Section 2.3.4.2), the values

of synaptic weights may not and can probably be stored using a less precise format. There is

evidence that 32-bit fixed point is already sufficient – the result achieved at the end of Iteration III

of the worked example (see Section 2.3.4.3) can be interpreted in this manner. This would reduce

the size of an LST element by 12.5% and correspondingly reduce the required external memory

bandwidth. Depending on the neuron and network model, a further reduction in precision may

even be possible (see, e.g., Dasbach et al., 2021). There is still a debate in the neuromorphic

community about how numerical precision affects neuron model dynamics and the results of

neural network simulations, and what numerical precision is required. A conclusive answer to

these questions has not yet been given.

Data compression is also an option and could be done conveniently in hardware. Applied

to all LSTs, it can significantly reduce the amount of data read from external memory. From

the performance model, we can derive that a 50% reduction (LS→ LS/2), for example, will

increase performance by 80% for high workload. According to Equation (5.9) and the prototype

parameter set (see Table 5.1), for cluster operation and depending on workload, the following

acceleration factors can be expected: low workload, FC(ν̄k = 1) = 83 (+23%); medium workload,

FC(10) = 25.6 (+70%); high workload, FC(20) = 14.5 (+80%).

Hiding latencies: The HNC node design does not exploit that the processing of synaptic events

with D > Dmin can be delayed, and only events with D = Dmin need to be processed in the

current simulation time step. This provides an option to hide memory access latency behind

communication latency. A performance improvement would be seen at medium workloads. For
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high workloads, the effect would be minimal because memory access latency dominates.

Exploiting advances in device architecture and technology: The performance of the HNC node

is bound by memory latency. Migrating the design to a more powerful SoC architecture that

provides higher memory bandwidth is therefore an attractive option. There is a variety of device

families and options available. Here are two examples: the AMD Xilinx Zynq UltraScale+ device

family (AMD Xilinx, 2023c); and the AMD Xilinx Versal HBM adaptive SoC series (AMD

Xilinx, 2023a).

The AMD Xilinx Zynq UltraScale+ device family builds on the Zynq-7000 architecture,

which is an advantage for migrating the design. The devices support high-performance external

memories. The memory bandwidth for this technology is specified as 19.2 GB/s (AMD Xilinx,

2023d), which is more than eight times the bandwidth that the HNC node prototype practically

could utilize (see Section 3.3.4.2). The UltraScale+ device architecture also comprises a 64-bit

ARM Cortex-A53 quad-core application processing unit with an advanced SIMD and floating-

point extension. The hardware and software mixed HNC node architecture can benefit from these

features, e.g., for the implementation of plasticity algorithms.

As a recent development in FPGA-SoC technology, the AMD Xilinx Versal HBM adaptive

SoC series integrates high-bandwidth memory (HBM) technology that allows up to 819 GB/s

of memory bandwidth (AMD Xilinx, 2023b). These devices also provide a large amount of

programmable logic resources and a powerful ARM-based processing system (AMD Xilinx,

2024).

Migrating and adapting the HNC node design to more advanced SoC technology is certainly the

most attractive of the options outlined above. In particular, the integration of HBM technology

holds great potential and promises to enable architectures capable of substantially accelerating

simulations, even on a large scale and high workloads (see Chaper 6).
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6.1 Introduction

The HNC node architecture provides flexibility in the algorithmic implementation of models, is

open to extensions, and is capable of delivering significant acceleration – key requirements for a

neuromorphic platform dedicated to neuroscience simulation. Equally important is scalability.

Here, the Zynq-7000 SoC device chosen to implement the HNC node prototype imposes a limit on

the number of neurons per node as well as the achievable acceleration. Both are bound to memory,

limited by memory size (on-chip) and memory bandwidth (off-chip). This restricts the size of a

network for which significant acceleration can be achieved. Acceleration factors of 10 to 50 can

be realized in simulations of networks with several tens of thousands of neurons, but hardly more

(see Chapter 5). Advances in FPGA-SoC technology, the integration of high-bandwidth memory

(HBM) and the availability of large on-chip memories promise to overcome these limitations,

enabling larger system sizes and allowing for higher acceleration factors.

Scaling up system size for the simulation of large-scale networks – networks with hundreds

of thousands or even millions of neurons – requires a higher neuron density per node to keep

the system size manageable. This increases the amount of memory needed on a node. In this

regard, the use of true dual-port block RAM in the HNC node design needs to be reconsidered, as

it is typically not available in the required size. In addition, larger networks and a higher number

of neurons per node both increase the computational load on a node. To cope with these higher

workloads, further parallelization strategies need to be devised to keep latencies low.

As an extension to the HNC node design, additional parallelization options are presented in this

chapter. Alternative ring buffer memory architectures that do not rely on true dual-port memory

but achieve similar throughput are discussed. For the proposed architectural enhancements,

estimates of the achievable performance are presented. These estimates are based on a workload

analysis of two large neural network models used in neuroscience.

At the intended scale, system integration also becomes an important aspect that affects overall

system performance. For example, large amounts of data need to be moved efficiently; into the

system in the form of connectivity data, and out of the system in the form of simulation data.

Therefore, aspects of system integration are finally discussed and a basic architecture concept for

an integration of a neuromorphic computing (NC) system into the high-performance computing

(HPC) landscape is presented.

Contributions

• Additional parallelization options and alternative ring buffer memory architectures are

presented that enable designs capable of coping with the high workloads generated by
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large-scale networks.

• Presented is a workload analysis of two neural network models widely used in neuroscience,

the microcircuit model (Potjans and Diesmann, 2014), and the multi-area model Schmidt

et al. (2018a,b); Schuecker et al. (2017).

• Based on this workload analysis, performance estimates for the proposed architectural

enhancements are provided, and it is shown that recent commercial off-the-shelf FPGA-

SoC technology is a suitable substrate capable of delivering significant acceleration even

for large-scale workloads.

• A basic architectural concept for an integration of an NC system into the HPC landscape is

proposed.

6.2 Architectural Enhancements

6.2.1 Further Parallelization Options

The most compute-intensive part of a simulation is the processing of incoming spike events. The

computational load that a large network with natural dense connectivity here generates is on the

order of several thousand synapse updates per simulation time step and compute node. The HNC

node parallelizes these computations and distributes the workload over multiple processing units.

Within a processing unit, excitatory and inhibitory synaptic events are processed sequentially as

they are passed through the ring buffer (RB) pipeline. To achieve significant acceleration, the

latency of this processing must be as low as possible. This latency can be reduced by further

increasing the degree of parallelism. An option to achieve this is a parallelization of the processing

at the level of spike events. We can process excitatory and inhibitory events simultaneously,

exploiting that a neuron forms either excitatory or inhibitory synaptic connections at all of its

axonal branches – a functional consequence of Dale’s principle1. Note that the RB architecture

already separates a neuron’s excitatory and inhibitory synaptic inputs (see Section 3.3.4.1).

Figure 6.1A illustrates the idea. The lists of synaptic targets (LSTs) in memory are divided into

two groups, LSTs of excitatory presynaptic neurons and LSTs of inhibitory presynaptic neurons.

Within a processing unit, each of the two LST types is assigned its own RB pipeline and RB

memory to enable their simultaneous processing. The structure formed by an RB pipeline and an

RB memory is hereafter referred to as an RB block (RBB), where a processing unit then contains

two RBBs that form an RB unit (RBU) (indicated by the dashed frames in Figure 6.1A). Although

the number of excitatory connections dominates the number of inhibitory connections in neural

1The principle states that a neuron performs identical chemical actions at all of its synaptic connections to other cells.
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Figure 6.1 | Parallelization of the processing of incoming spike events. To further parallelize spike
processing, two architectural enhancements are proposed: (A) excitatory and inhibitory spike events
are processed simultaneously exploiting that a neuron forms either excitatory or inhibitory synaptic
connections at all of its axonal branches; and (B) presynaptic data items (stored in the LSTs) that need to
be processed in the current simulation time step, i.e., synaptic events with D = Dmin, are held on-chip in
fast memory to allow their immediate processing while reading the data items with D > Dmin from off-chip
external memory in parallel. In this way, external memory access latency can partially be hidden.

network models, the workload for a processing unit’s RBBs is not necessarily unbalanced because

inhibitory neurons usually have higher firing rates. The size of the RB memory of a processing

unit remains the same, but it is now divided between the two RBBs within an RBU.

This architectural enhancement requires support from the spike communication fabric, which

must provide excitatory and inhibitory spike events in parallel and indicate the type of a spike

event. To be effective, the additional parallelism also requires a higher memory bandwidth.

Not only is memory bandwidth an issue, arbitration and scheduling of memory requests introduces

an access latency. This memory access latency can be mitigated by taking advantage of the

fact that only the presynaptic data items of connections with D = Dmin must be processed in the

current simulation time step; all others can be delayed. If these data items are held on-chip in
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Figure 6.2 | Timing diagram of RB update sequences. Without true dual-port capability, RB read and
write operations (marked yellow) serializes. Shown are two sequences of RBU operations: (A) a sequence
of reads and writes at the end of a simulation time step (here, the (k−1)th time step) provides the ODE
solver(s) with the weighted synaptic inputs and clears the entire segment for reuse in the next simulation
time step; and (B) a possible sequence of RB pipeline operations processing the presynaptic data and
updating RB entries. Due to the serialization of reads and writes, the RB pipeline has to include wait
cycles. In sequence (A), Lrw,seg denotes the latency introduced by the operations in number of clock cycles.

fast memories, external memory access latencies can be hidden. Connections with D = Dmin

can then be processed without delay, while connections with D > Dmin can be read in parallel,

buffered and processed later. This divides an LST, in an on-chip and an off-chip part. Figure 6.1B

illustrates this.

The additional on-chip memory required remains moderate. For instance, in the cortical

microcircuit model (Potjans and Diesmann, 2014), 1.33%2 of the connections have a delay of

D = Dmin. The model is biologically plausible and exhibits naturally dense connectivity. Given

this, a compute node capable of processing 4000 neurons – each forming 10,000 connections

– would require approximately 4.3 MB of additional on-chip memory, assuming a 64-bit word

length for an LST element.

6.2.2 Memory Partitioning

The HNC node design leverages the true dual-port feature of BRAMs to achieve the best possible

RB pipeline throughput, i.e., a pipeline initiation interval equal to 1. The use of true dual-port

memory is a problematic choice when aiming for a large-scale system where neuron density

per node needs to be increased to keep system size manageable and communication latency low.

Increasing the number of neurons per node results in the need for larger amount of BRAM, which

is a limited resource in an FPGA. True dual-port BRAMs are built from dual-port SRAM cells,

2This value was derived by extracting the connectivity from a NEST simulation of the model.
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which require more transistors per bit and thus more chip area. Therefore, their memory sizes are

smaller and the number of blocks is limited. However, similar RB pipeline throughput can also

be achieved with RB memories that are implemented as single-port.

A single-port memory allows only one write or read operation at a time. This requires wait cycles

to be included in the pipeline operation when accessing RB memory. Thus, we need to reconsider

the sequence(s) of operations performed by both the RB pipeline and the ODE solver pipeline.

We will base this on the RB architecture variant presented in Section 3.3.4.3, Figure 3.14B (delete

an entire RB segment before it is reused).

Figure 6.2 shows the timing diagram of two sequences of access patterns for a serialized RB

memory access in one possible order. In each clock cycle, a memory read or write operation is

performed (indicated by the yellow boxes). A number of clock cycles Lrw,seg is required to transfer

the content of an entire RB segment to the ODE solver pipeline(s) and to clear the segment for

reuse. The sequence is shown in Figure 6.2A. The operations are listed on the left side of the

figure. Figure 6.2B shows a possible sequence of operations that an RB pipeline performs when

processing presynaptic data items (items are numbered 1 through 6).

It is obvious that due to the serialization of reads and writes the initiation interval of the RB

pipeline is 2 – regardless of the order of the operations. This halves the pipeline throughput and

that of an RBB, respectively. In addition, sequentially reading and writing an entire RB segment

adds the latency Lrw,seg. Both pipeline throughput and sequential read/write access latency can

be optimized by using memory partitioning and by considering access patterns in the memory

configurations.

Architecture alternatives
We can reduce the initiation interval of an RB pipeline or RBB, respectively, by partitioning the

RB memory. A sensible approach here is to subdivide the groups of neurons associated with an

RBU and assign each group its own memory partition, i.e., we subdivide RB segments.

The following discusses four architecture alternatives with different arrangements of pipelines

and memory partitions: (i) single memory; (ii) partitioned memory with interleaved access; (iii)

partitioned memory with parallel access and (two) parallel pipelines; and (iv) partitioned memory

with parallel access and a single pipeline. The four architecture variants are shown in Figure 6.3.

They vary in the following aspects:

Single Memory: This architecture variant is the non-partitioned case with a single memory block

assigned to a single pipeline. It serves here as reference. Pipeline operation corresponds to the

sequence of operations outlined in Figure 6.2B for which an initiation interval of II = 2 applies.
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Figure 6.3 | Partitioning of RB memory. Alternative ring buffer block (RBB) architectures and assign-
ment of RB memory to RB pipelines: (A) non-partitioned case with a single memory block assigned to a
single pipeline; (B) single pipeline, where memory is divided into two memory partitions (RB 1 and RB 2)
that are accessed in an interleaved fashion; (C) two pipelines, each assigned to one memory partition for
parallel, independent access; and (D) similar to (C), but moves the FIFO buffers to the write paths of the
partitions, saving a pipeline. See also the main text for description.

Partitioned Memory with Interleaved Access: RB memory is divided into two partitions. Both

share a processing pipeline. Partitioning is done such that segments can be accessed in an

interleaved fashion. Presynaptic data items are buffered in a FIFO-lane. The next item in a

sequence is fetched if the corresponding memory partition is not blocked. There is a 50%

probability that this is the case. We can thus expect a 25% reduction in latency in comparison

with the single memory variant, i.e., we can expect an initiation interval of II = 1.5.

Partitioned Memory with Parallel Access and (two) Parallel Pipelines: RB memory is divided

into two partitions with each assigned its own processing pipeline. This architecture alternative

allows parallel and independent access to two RB segments.

Partitioned Memory with Parallel Access and Single Pipeline: Parallel access to segments can

also be achieved with a single pipeline by moving the FIFO buffers into the write paths of the

memory partitions. The working principle is the following. Read operations have priority over

write operations and can always be executed without delay. A buffering of presynaptic data

items on entry of the processing pipeline is therefore not necessary. Write operations are queued

in FIFO-lanes and executed when the memory partition they are connected to is not blocked

by a read operation. A disadvantage of this solution is the increased likelihood of potential
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Partitioned Memory with Interleaved Access

Partitioned Memory with Parallel Access and Parallel Pipelines

Partitioned Memory with Parallel Access and Single Pipeline

aver. II = 1.498

aver. II = 1.026

aver. II = 1.044

Figure 6.4 | Monte Carlo simulations. The initiation intervals II of the three architectures that use
memory partitioning have been determined by subjecting software models of the architecture variants to
Monte Carlo simulations. For each architecture variant, II was determined from 1500 Monte Carlo trials.
In each Monte Carlo trial, 2500 data items were passed through the RBB pipeline(s) and evenly distributed
over memory partitions. The left panels show the plots of the Monte Carlo trials performed for each of
the three architecture variants. The right panels display the corresponding probability distributions of II,
where the red dashed lines mark their calculated average values.

read-before-write conflicts because write operations are delayed.

Monte Carlo simulations
Except for the Single Memory variant (Figure 6.3A), the initiation intervals are not constant and

depend on the distribution of data items across memory partitions. In order to determine the

behavior of the different architectures, their processing logic was implemented in software. The

initiation intervals were then derived from Monte Carlo experiments. The results of the Monte

Carlo simulations are shown in Figure 6.4.
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Figure 6.5 | Partitioned RB memory addressing. Memory blocks are concatenated across memory
partitions (RB1 and RB2). This allows two addressing schemes: a complete memory row can be addressed
(indicated by the red arrows, addr 1) to read and write an entire RB segment, or a larger part of it, at once;
and two RB entries, one in each partition, can be addressed simultaneously (indicated by the blue arrows,
addr 2 and addr 3).

The Interleaved Partitioned Memory variant (Figure 6.3B) achieves an initiation interval close

to II = 1.5 – as we had expected. The architecture alternatives that implement parallel access

(Figure 6.3C and D) both reach an average initiation interval close to the ideal value, i.e., II = 1.

Further partitioning of the memory is therefore not useful. The architectures that implement

parallel access differ only in the resources required, where the advantage of having only one

pipeline is opposed by the need for larger FIFO buffer sizes. The FIFO buffer utilization – the

maximum required size – was also estimated by the Monte Carle simulations. The complete data

set can be found in Appendix E.

Memory configurations
From the two sequences displayed in Figure 6.2, two different memory access patterns can be

observed: a regular, sequential access pattern (Figure 6.2A); and an irregular access pattern

(Figure 6.2B). The first introduces the latency Lrw,seg. This latency is significant. Sequentially

reading and writing all entries of an RB segment requires 2NRBU clock cycles, i.e., two times

the number of neurons associated with an RBU. The second sequence updates RB entries on a

stochastic basis across RB segments. Here, latency depends on workload.

Latency can be reduced by considering these memory access patterns in the architecture

and configuration of the RB memories. Figure 6.5 shows a possible arrangement of memory

blocks and partitions that takes this into account; here, using 256 Kbit memory blocks in a

4096 bit x 64 bit organization (similar sizes are provided by FPGAs)3. The setup allows for two

addressing schemes: (i) the addressing of an entire RB segment, or a larger part of it, at once;

3The AMD Xilinx UltraScale architecture provides memory primitives in a 4096 bit x 72 bit configuration, for
example (AMD Xilinx, 2021a).
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Parameter Value
Number of neurons per node, NM 4096

Minimum synaptic transmission delay, Dmin 0.1 ms

Maximum synaptic transmission delay, Dmax 51.1 ms

Simulation resolution, and resolution of delays, h 0.1 ms

Word length of synaptic inputs, wlen,J 32 bit

Organization of memory blocks 4096 bit x 64 bit

Word length of a synaptic target list element, wlen,LST 64 bit

Clock frequency, fclk 200 MHz

Table 6.1 | Defined set of node parameters.

and (ii) the addressing of two individual RB entries in the two partitions simultaneously. The

first serves the sequential access pattern. Memory blocks are concatenated across partitions

maximizing the accessible word length. Addressing a complete row (in Figure 6.5 indicated by

the red arrows, addr 1) avoids having to read the entries of an entire RB segment sequentially,

hence reducing the latency Lrw,seg. The second serves the irregular access pattern of RB updates.

In each partition, an RB entry can be addressed simultaneously by its row and column address (in

Figure 6.5 indicated by the blue arrows, addr 2 and addr 3).

In order to demonstrate the effect of different memory configurations on the latency Lrw,seg, we

define a set of node parameters. The parameter set is shown in Table 6.1 and represents a realistic

specification with regard to the design space. From this specification, a node’s total amount of

RB memory can be calculated by

S RB,total = NMKRB2wlen,J, with (6.1)

KRB =
Dmax

h
+ 1, (6.2)

where KRB is the number of RB segments, which is determined by the maximum supported

synaptic transmission delay Dmax and the resolution h of the delay values. In Equation (6.1), NM

denotes the number of neurons per node, and wlen,J is the word length of synaptic inputs (excitatory

and inhibitory). For the defined parameter set, the calculation yields S RB,total = 128 Mbit.

This memory is distributed among the RBUs. Note, that an RBU consists of two RBBs (see

Figure 6.1), where an RBB comprises two partitions of chained memory blocks. Depending on

the number of RBUs, this results in different memory configurations and different accessible RB

memory word lengths. Table 6.2 lists the resulting configurations, values of Lrw,seg, and clock
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RBUs Neurons Memory Memory Blocks Organization Lrw,segLrw,segLrw,seg Clock Cycles
per RBU per RBU per Partition of Partition (clock cycles) Saved

8 512 16 Mbit 16 4096 bit x 1024 bit 16 1008

16 256 8 Mbit 8 4096 bit x 512 bit 16 496

32 128 4 Mbit 4 4096 bit x 256 bit 16 240

64 64 2 Mbit 2 4096 bit x 128 bit 16 112

128 32 1 Mbit 1 4096 bit x 64 bit 16 48

Table 6.2 | RB memory configurations. RB memory configurations for different numbers of RBUs and
clock cycles saved per simulation time step for the given set of node parameters listed in Table 6.1.

cycles saved for different numbers of RBUs.

The number of clock cycles to read and write an entire RB segment here results in Lrw,seg = 16

and is the same for all configurations – the number of concatenated memory blocks per partition

grows with the number of neurons assigned to an RBU, keeping Lrw,seg constant. The number of

clock cycles that can be saved compared to sequential read and write is two times the number of

neurons assigned to an RBU minus 16. The value decreases with the number of RBUs, but is still

considerably 48 clock cycles for a configuration that comprises 128 RBUs.

6.3 Performance Estimation

To examine the effectiveness of the proposed architectural enhancements and their ability to

deliver substantial acceleration under the workloads generated by large-scale networks, it is

necessary to have a definition of these workloads. This includes defining an appropriate workload

measure and range of values that represents the workloads.

6.3.1 Measure of Workload

At the intended scale, the metric introduced by the workload model in Section 5.2.1 cannot be

applied. The average number of postsynaptic targets per presynaptic neuron on a node is no

longer independent of network size, nor can we assume a uniform distribution of connections.

A measure of workload must therefore take connectivity into account. Instead of the number

of spike events per simulation time step, we here define as a measure of a node’s workload

the average number of presynaptic data items (synaptic events) that a node has to process in a

simulation time step, denoted ŪM in the following.
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Figure 6.6 | Microcircuit model. The model is organized into four layers (L2/3, L4, L5, and L6),
each consisting of two populations, an excitatory (E) and an inhibitory (I) population. The model
comprises 77,169 LIF neurons and approximately 299 million synapses. For connections, only those
with a probability of at least 4% are shown, where pointed arrowheads indicate excitatory connections,
and endpoints represent inhibitory connections. The model receives background input from a stationary
Poisson point process with constant rate.

6.3.2 Workloads of Large-Scale Networks

A value or value range that reflects representative workloads can be estimated by studying

networks of the relevant scale. To this end, two neural network models widely used in neuro-

science are considered. A model of early sensory cortex published by Potjans and Diesmann

(2014), also known as the microcircuit model, is examined in this regard. The results are then

extrapolated to a model of the macaque visual cortex described in Schmidt et al. (2018a,b);

Schuecker et al. (2017), hereafter referred to as multi-area model.

Microcircuit model
The microcircuit model represents the cortical network beneath a 1 mm2 surface of early mam-

malian sensory cortex and features full natural dense connectivity. The model comprises 77,169

LIF neurons and about 299 million synapses, and is organized into four layers (L2/3, L4, L5, and

L6). Each layer consists of two populations, an excitatory (E) and an inhibitory (I) population,

resulting in eight distinct populations. A sketch of the model is shown in Figure 6.6. Synaptic

connections between populations are defined by connection probabilities. Synaptic strengths and

propagation delays, which are drawn from uniform distributions, are not relevant for estimating

workload and are therefore not considered further.
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Population L2/3E L2/3I L4E L4I L5E L5I L6E L6I

Population size, NX 20 683 5834 21 915 5479 4850 1065 14 395 2948

Average firing rate, ν̄X 0.903 2.965 4.414 5.876 7.596 8.633 1.105 7.829

Table 6.3 |Microcircuit population sizes and average firing rates. Population sizes accord-
ing to Potjans and Diesmann (2014), and population-specific average firing rates obtained from
a NEST simulation using the implementation of van Albada et al. (2018).

The workload that a simulation of the microcircuit model places on a compute node can be

estimated by examining the model’s connectivity and firing statistics. I present two approaches

here to determining this workload: (i) a calculation that takes into account the connectivity

between populations and the population-specific firing statistics; and (ii) a simplified calculation

that assumes uniform connectivity across populations and uses the average firing rate over all

neurons in the network. I demonstrate that, for the microcircuit model, both approaches yield the

same result.

Workload estimation considering the connectivity between populations
For a workload estimate, the following network properties need to be known: the population sizes;

the average firing rate of the neurons in each population; and the number of synapses between

populations. The population sizes are given in Table 6.3 according to Potjans and Diesmann

(2014). Also shown are the population-specific average firing rates of neurons, which have been

obtained from a NEST simulation using the implementation of van Albada et al. (2018). The

absolute number of synapses between a pair of populations KYX can be calculated from their

connection probability CYX . Connection probability and number of synapses are related as (see

Potjans and Diesmann, 2014)

CYX = 1−
(
1−

1
NXNY

)KYX

, (6.3)

where NX and NY denote the number of neurons of the presynaptic (X) and postsynaptic (Y)

population with {X,Y} ∈ {L2/3, L4, L5, L6}× {E,I}.

The absolute number of synapses between a pair of populations is then given by

KYX =
ln(1−CYX)
ln(1− 1

NX NY
)
. (6.4)

Table 6.4 shows the complete connectivity map of the microcircuit with the connection probabili-

ties and the resulting absolute synapse counts.
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From XXX
L2/3E L2/3I L4E L4I L5E L5I L6E L6I

L2/3E 0.1009 0.1689 0.0437 0.0818 0.0323 0.0 0.0076 0.0
45 499 804 22 323 576 20 253 647 9 670 918 3 293 577 0 2 271 403 0

L2/3I 0.1346 0.1371 0.0316 0.0515 0.0755 0.0 0.0042 0.0
17 443 694 5 018 762 4 105 338 1 690 073 2 221 212 0 353 460 0

L4E 0.0077 0.0059 0.0497 0.135 0.0067 0.0003 0.0453 0.0
3 503 669 756 561 24 482 849 17 413 575 714 524 7002 14 624 431 0

To YYY L4I 0.0691 0.0029 0.0794 0.1597 0.0033 0.0 0.1057 0.0
8 114 253 92 831 9 933 537 5 223 271 87 836 0 8 810 905 0

L5E 0.1004 0.0622 0.0505 0.0057 0.0831 0.3726 0.0204 0.0
10 613 575 1 817 058 5 507 804 151 900 2 040 738 2 407 889 1 438 969 0

L5I 0.0548 0.0269 0.0257 0.0022 0.06 0.3158 0.0086 0.0
1 241 436 169 424 607 666 12 851 319 601 430 443 132 414 0

L6E 0.0156 0.0066 0.0211 0.0166 0.0572 0.0197 0.0396 0.2252
4 681 225 556 108 6 727 569 1 320 233 4 112 224 305 028 8 372 649 10 827 677

L6I 0.0364 0.001 0.0034 0.0005 0.0277 0.008 0.0658 0.1443
2 260 836 17 207 220 032 8078 401 637 25 217 2 888 426 1 354 319

Table 6.4 | Microcircuit connectivity map. Connection probabilities CYX between presynaptic X and
postsynaptic Y populations (upper rows) according to Potjans and Diesmann (2014), and resulting absolute
number of synapses KYX between any pair of populations (lower rows).

If the average firing rates within populations are known, we can calculate the average number of

synapse updates per simulation time step for each of the populations, i.e., the workload arriving at

a population Y ∈ {L2/3, L4, L5, L6}× {E,I}. We will divide the workload of a population into an

excitatory and an inhibitory component here, as this separation is needed later in the performance

estimation of the architecture variants. The excitatory workload arriving at a population can be

formulated as

ŪPOP
exc,Y = h

∑
X

ν̄XKYX ∀ X ∈ {L2/3, L4, L5, L6}× {E},

∀ Y ∈ {L2/3, L4, L5, L6}× {E,I}, (6.5)

and the inhibitory workload accordingly as

ŪPOP
inh,Y = h

∑
X

ν̄XKYX ∀ X ∈ {L2/3, L4, L5, L6}× {I},

∀ Y ∈ {L2/3, L4, L5, L6}× {E,I}, (6.6)

where ν̄X is the average firing rate of the neurons in population X, KYX is the number of synapses

from population X to Y , and h specifies the resolution of the simulation. The total workload that
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Population L2/3E L2/3I L4E L4I L5E L5I L6E L6I

ŪPOP
exc,Y 15 798 5113 13 279 6155 5098 636 7439 925

ŪPOP
in,Y 12 300 2481 10 462 3096 2705 428 9678 1090

ŪPOP
Y 28 098 7594 23 741 9251 7803 1064 17 117 2015

Table 6.5 |Microcircuit population workload. Average number of synapse updates per
simulation time step specific to each population.

L2/3E L2/3I L4E L4I L6EL5IL5E L6I

Node

Figure 6.7 | Distribution of workload. Calculated distribution of workload on a cluster of 24 nodes
when simulating the cortical microcircuit model, where each node is capable of processing 4096 neurons.
Populations are assigned to distinct nodes. The data has been acquired twice: from a NEST simulation
(single node), here derived from the exported connectivity data and the spike recordings of 60 second
simulated time; and calculated based on the Equations (6.5) and (6.6). Both resulted in nearly identical
charts. The one shown is based on the NEST simulation.

is arriving at each population is then given by

ŪPOP
Y = ŪPOP

exc,Y + ŪPOP
inh,Y ∀ Y ∈ {L2/3, L4, L5, L6}× {E,I}. (6.7)

The calculated values are summarized in Table 6.5. These values show that the workload generated

by the microcircuit is not uniform across populations, nor is there a perfect balance between

excitatory and inhibitory events. The chart diagram in Figure 6.7 illustrates this. It shows how the

workload would be distributed in a cluster of 24 nodes, where each node is capable of simulating

4096 neurons, and nodes are assigned to distinct populations. In this setup, node 15, which is

assigned to population L4I, has a much higher workload to process than any other node and will

therefore determine the speed of the simulation.

By shuffling populations and assigning neurons to nodes in a round-robin fashion, for example,
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workload can be balanced and simulation runtime can be reduced. Note that assigning neurons to

nodes in such a manner here will not significantly change the number of spike events commu-

nicated between nodes – each population of the microcircuit forms connections with all others

(with few exceptions; see Table 6.4).

The average number of spike events propagated between nodes in a simulation time step can

be calculated from the population sizes NX and the average firing rates ν̄X of the neurons in the

populations by

ν̄k = h
∑

X

ν̄XNX ∀ X ∈ {L2/3, L4, L5, L6}× {E,I}. (6.8)

For the microcircuit model, this calculation yields ν̄k ≈ 25.

If workloads are balanced, i.e., if they do not vary much between nodes, then a node’s excitatory

and inhibitory workloads can be estimated from the population-specific workloads as

ŪM
exc =

1
M

∑
Y

ŪPOP
exc,Y ∀ Y ∈ {L2/3, L4, L5, L6}× {E,I}, (6.9)

ŪM
inh =

1
M

∑
Y

ŪPOP
inh,Y ∀ Y ∈ {L2/3, L4, L5, L6}× {E,I}. (6.10)

In Equations (6.9) and (6.10), M denotes the number of nodes given by M = N/NM, where N is

the number of neurons simulated, and NM specifies the number of neurons per node.

The total workload of a node is then given by

ŪM = ŪM
exc + ŪM

inh. (6.11)

Based on the population-specific workloads of the microcircuit (Table 6.5), the number of neurons

in the network N =
∑

X NX = 77,169, and the number of neurons per node NM = 4096 (defined

as a node parameter; see Table 6.1), we derive the following workload estimates expressed in

average number of synapse updates per simulation time step and node:

ŪM
exc = 2890, ŪM

inh = 2242, ŪM = 5132.

The above calculation takes into account the specific connectivity between populations and the

different average firing rates within populations. For ŪM, the same value can be derived by

assuming uniform connectivity across populations, which simplifies the calculation.
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Workload estimation assuming uniform connectivity
We can express the assumption of uniform connectivity by an average mean out-degree calculated

over all neurons in the network as

K̄out =
K
N
, (6.12)

where K denotes the total synapses count in the network, and N is the number of neurons. It

should be noted that K̄out is also included in the Equations (6.5) and (6.6), but considered with its

population-specific values as ν̄XKXY = ν̄XNX(KXY/NX).

According to the workload definition, we can formulate the workload of a node for uniform

connectivity as

ŪM
uni = C̄Mν̄k, (6.13)

where C̄M denotes the average number of postsynaptic targets per presynaptic neuron and node,

and ν̄k is the average number of spike events processed per simulation time step k.

By adapting Equation (5.1) from the workload model (see Section 5.2.1) using the relationship

K̄out = εN, we can derive C̄M by

C̄M = K̄out
NM

N
, (6.14)

where NM specifies the number of neurons per node. Note that the workload model is applied

here to network sizes of N > 105, for which a uniform connection probability ε across the network

is now assumed.

From the Equations (6.12) to (6.14) and using Equation (5.2) we derive

ŪM
uni = hν̄K

NM

N
, (6.15)

where h is the simulation resolution, and ν̄ is the average firing rate over all neurons in the

network, which can be calculated from the population firing rates and population sizes by

ν̄ =
1
N

∑
X

ν̄XNX ∀ X ∈ {L2/3, L4, L5, L6}× {E,I}. (6.16)

For the microcircuit model, this results in a calculated average firing rate of ν̄ = 3.24 spks/s.

The microcircuit has a total synapse count of K = 298,880,941 and comprises N = 77,196

neurons. Using the Equation (6.15) and the defined set of node parameters (see Table 6.1) with

h = 0.1 ms and NM = 4096, the estimated workload of a compute node for an assumed uniform

connectivity yields ŪM
uni = 5137. This is almost the same result as when population connectivity
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is included, i.e., it is ŪM ≈ ŪM
uni.

This finding is unexpected and implies that for the microcircuit model the following relation holds

ν̄K ≈
∑

Y

∑
X

ν̄XKYX ∀ X,Y ∈ {L2/3, L4, L5, L6}× {E,I}. (6.17)

I can only speculate that this property of the microcircuit model arises from specific connectivity

determining the features of network activity, rather than being so dependent on synaptic weights.

This finding can be exploited to derive a workload estimate for the multi-area model.

Multi-area model
The multi-area model connects 32 microcircuits (256 populations), each representing one of

32 vision-related areas within one hemisphere of the macaque cortex. The model adapts the

population sizes of the microcircuits for each area and the area’s local connectivity, and adds a

cortico-cortical connectivity, the connectivity between the areas. The multi-area model consists

of 4.1 million neurons and 24 billion synapses.

Although the model adapts the microcircuits, there is no need for complex calculations to

derive a reasonable workload estimate. We can use Equation (6.15) here. This is justified for

the following reasons: for local connectivity, population pairs have the same relative in-degrees

as in the microcircuit model; and the relative amount of local synapses is constant across areas

(see Schmidt et al., 2018a). The model here ”preserves a defining characteristic of the local

circuit” (Schmidt et al., 2018b). We can therefore assume that the observed property expressed

by Equation (6.17) is also preserved for the up-scaled microcircuits, and thus for the multi-

area model. This also includes average firing rates; both models feature a biologically realistic

network activity. Thus, we can extrapolate the workload that the multi-area model imposes on a

compute node from the characteristics and calculated workloads of the microcircuit model using

Equation (6.15).

For the multi-area model, with a network size of N = 4.1 ·106 neurons, a total synapse count

of K = 24 ·109, an average firing rate of ν̄ = 3.24 spks/s, and the defined set of node parameters

(see Table 6.1), the estimated workload of a compute node results in

ŪM = 7768.

This workload value falls within the range expected here. Although both models feature a

natural dense connectivity, approximately 50% of the synaptic inputs of the microcircuit are

external inputs, which do not account for workload. In case of the multi-area model, there are
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Microcircuit Model Multi-Area Model
Excitatory, ŪM

exc (65,3%) 2890 5073

Inhibitory, ŪM
inh (43,7%) 2242 3395

Total, ŪM 5132 7768

Table 6.6 | Estimated workloads. Average number of synapse updates that a com-
pute node has to process per simulation time step when simulating the microcircuit
model and the multi-area model, respectively. The values have been estimated for the
set of node parameters listed in Table 6.1, i.e., a simulation resolution of h = 0.1, and
a number of neurons per node of NM = 4096.

approximately 32% external inputs to each neuron in the network (see Schmidt et al., 2018a). The

higher workload of the multi-area model is hence a consequence of the increased in-degrees. The

magnitude of the increase in workload is therefore plausible, as it corresponds to the reduction in

external inputs.

Unlike the microcircuit model, when simulating the multi-area model, the assignment of neurons

to nodes affects the number of spikes communicated between nodes. An area only connects to

a subset of areas. Therefore, the populations of an area should be kept close together, when

assigning neurons to nodes. Optimizing spike communication between nodes is an aspect of

network generation. However, it is not discussed further here, as it is not relevant to a node’s

workload – at least as long as workload is balanced among nodes.

Table 6.6 summarizes the estimated workloads for both models. For the excitatory and inhibitory

workload components of the multi-area model, it was assumed that their ratio is also a property

of the microcircuit model that is preserved. Their values were calculated accordingly based on

the total workload.

These workload estimates are used in the next section to investigate the effectiveness of the

proposed architecture enhancements.

6.3.3 Achievable Acceleration and Required Memory Bandwidth

The proposed enhancements and architecture alternatives differ in their effectiveness. This

is analyzed in the following by examining the achievable acceleration factors with respect to

workload and degree of processing parallelism. Specifically considered is the number of RBUs

and whether excitatory and inhibitory spike events are processed simultaneously or in a serial

fashion. Also determined is the required memory bandwidth for a given degree of parallelism

and workload.
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The following RBB architecture variants are considered:

• without memory partitioning (Figure 6.3A),

• with memory partitioning and interleaved RB memory access (Figure 6.3B), and

• with memory partitioning and parallel RB memory access (Figure 6.3C and D).

Not considered is the parallelization option in which connections with short transmission delays

are stored on-chip (see Figure 6.1B). The impact on performance is expected to be small compared

to parallelizing the processing using multiple RBUs and is also difficult to assess without precise

knowledge of the memory technology used. Therefore, this option is not further investigated.

The average number of clock cycles that an RBU requires per simulation time step to process a

given workload can be calculated by

LRBU = II
ŪM

eff

nRBU
+ Lrw,seg, with (6.18)

ŪM
eff =

ŪM
exc + ŪM

inh if spike processing is serialized

ŪM
exc otherwise.

(6.19)

In Equation (6.18), II denotes the initiation interval achieved by a specific RBB architecture

variant, nRBU represents the number of parallel RBUs, Lrw,seg corresponds to the RB segment

read/write latency (see Table 6.2), and ŪM
eff

specifies a node’s effective workload. It considers

whether a specific architecture variant processes excitatory and inhibitory spike events serially

or in parallel, as expressed by Equation (6.19). Architecture variants with simultaneous spike

processing feature two RBBs per RBU (see Figure 6.1A), one RBB for each type of events.

For these architectures, RBU latency is determined by the RBB that has to process the higher

workload, which is the excitatory workload (see Table 6.6). In contrast, for the architecture

variants with serialized spike processing, the workload is the sum of the excitatory and inhibitory

workloads.

In order to achieve the best possible performance, the available memory bandwidth must be

sufficiently large to serve the RBUs. The required memory bandwidth here depends on the RB

pipeline throughput, the degree of parallelism, and the workload. It can be calculated as

BRBU,total =
fclk

LRBU
(ŪM

exc + ŪM
inh)wlen,LST, (6.20)

where fclk denotes the clock frequency at which the RBUs operate, and wlen,LST is the word length

of an LST element.
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Figure 6.8 | Number of RBU clock cycles and required memory bandwidth for different architec-
ture variants under large-scale workloads. Comparison of the architecture variants corresponding to
Figure 6.3 with respect to achievable acceleration, required memory bandwidth, and degree of parallelism
(number of RBUs). For different numbers of RBUs, the number of RBU clock cycles per simulation
time step and the required memory bandwidth to process the workload generated by the microcircuit
model (upper panels) and the multi-area model (lower panels) are shown. The black solid lines indicate
architecture variants that simultaneously process excitatory and inhibitory spike events, while the black
dashed lines represent those that do not. The red dashed lines mark the number of clock cycles correspond-
ing to acceleration factors of 50, 100, and 200, relative to a clock frequency of 200 MHz. The required
memory bandwidths are calculated assuming a 64-bit word length for an LST element. The green dashed
lines represent the required memory bandwidth to achieve an RBU acceleration factor of 200 for both the
microcircuit model (upper panels) and the multi-area model (lower panels), and indicate the number of
RBUs that the architecture variants must implement to process the workload.

Figure 6.8 compares the different architecture variants based on the estimated workloads (see

Table 6.6). Shown is the number of RBU clock cycles as a function of the number of RBUs, ac-

cording to Equations (6.18) and (6.19), along with the corresponding required memory bandwidth

(Equation (6.20)) for the workloads generated by the microcircuit model (upper panels) and the

multi-area model (lower panels). The black solid lines represent architectures that simultaneously

process excitatory and inhibitory spike events, while the black dashed lines represent those that do

not. The red dashed lines mark the number of clock cycles that correspond to acceleration factors

of 50, 100, and 200, relative to a clock frequency of 200 MHz. Note that acceleration here solely

refers to RBU performance and does not account for latencies from neuron state propagation,

spike communication, or inter-node synchronization. Assuming these latencies sum to 500 ns,

the RBUs must be capable of delivering an acceleration factor of 200 to achieve a system-level

acceleration of 100. All synaptic events must therefore be processed within 100 clock cycles.

The green dashed lines mark the required memory bandwidths necessary to achieve an RBU ac-

celeration factor of 200 for the microcircuit model (upper panels) and the multi-area model (lower

panels), and also indicate the number of RBUs that the architecture variants must implement to

process the workload. The bandwidths are calculated for a clock frequency of fclk = 200 MHz

and an LST element word length of wlen,LST = 64 bit.

While all architecture variants can cope with the workload generated by the microcircuit and

achieve high acceleration, for the workload of the multi-area model, only the variants that use

memory partitioning are capable of achieving an RBU acceleration factor of 200. Nevertheless, a

high degree of processing parallelism is required here. For example, 56 RBUs (112 RBBs) are

required for the partitioned memory variant with parallel memory access and the simultaneous

processing of excitatory and inhibitory spike events.

The memory bandwidth requirements are demanding. To achieve an overall acceleration factor
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of 100, about 80 GB/s of memory bandwidth is required for the simulation of the microcircuit

model. The multi-area model requires approximately 120 GB/s. However, recent FPGA-SoC

technology is capable of providing even higher memory bandwidths. An example of such a

device is given in the discussion in Section 6.5.

6.4 System Integration

The computational neuroscience community has developed a variety of software tools, toolchains,

and workflows for neural network modeling, simulation, and analysis. To achieve high user

acceptance and to make neuromorphic computing a useful tool for neuroscientists, an NC

system must integrate well with this infrastructure. Moreover, to perform the compute-intensive

simulation tasks, often high-performance computing (HPC) systems are used, where the trend

goes toward heterogeneous systems and a Modular Supercomputing Architecture (MSA) – a

concept developed at the Jülich Supercomputing Centre (Suarez et al., 2019, 2021). The idea of

the MSA concept is to provide and integrate components tailored to the different computational

behaviors of parts of a complex task or workflow to make computing more cost-effective. Rather

than operating as a standalone system, it is therefore desirable for an NC system to also be

integrated into this landscape.

In a large-scale simulation experiment, there is a number of tasks performed (e.g., pre- and

post-processing steps) that can benefit from such heterogeneous architecture. Before a network

can be simulated, it needs to be generated. For large networks, this is a compute-intensive process

that creates a vast amount of connectivity data. For example, assuming a 64-bit value is used

to represent a synaptic connection, the connectivity data of the multi-ara model comprising 24

billion synapses amounts to approximately 192 GB of data. Also computationally intensive is the

analysis of simulation data. One example is the calculation of correlations between spike trains

(see Section 2.3.2.2). These are just two exemplary tasks that can be conveniently performed

on traditional compute clusters. They are less suitable – or even unsuitable – for execution

on neuromorphic compute nodes, which are specifically designed to accelerate the simulation

itself. Furthermore, a simulation must also be set up, which involves administrative tasks such as

operation control and data management.

A possible concept for coupling an NC system with an HPC system, which separates these

concerns, is shown in Figure 6.9. The HPC system here is intended to be used to perform

simulation pre- and post-processing steps and to execute complex workflows. In order to be

able to transfer the data to and from the NC system in an efficient way, the coupling of the two

systems requires a high-bandwidth connection. A set of conventional compute nodes – here,
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Figure 6.9 | High-level architecture concept of an HPC and NC system integration. A cluster of
neuromorphic compute nodes (NCNs) is coupled to an HPC system through a number of control and data
nodes (CDNs). This architecture concept considers the different concerns regarding the computational
behavior and technical requirements of complex simulation tasks and workflows. Simulation pre- and
post-processing can be performed conveniently on the HPC system. Data management and simulation
control is delegated to the CDNs. The cluster of NCNs performs the simulation. See also the main text for
description.

called control and data nodes (CDNs) – connect the HPC system to a cluster of neuromorphic

compute nodes (NCNs). The CDNs are intended for local data management and for controlling

the operation of the accelerator, for setting up the NCNs, as well as for monitoring simulations

and collecting simulation data, such as spike recordings. Another use case of the CDNs can be

checkpointing – that is, saving an interim state of a simulation in order to resume this simulation

at this checkpoint at a later time. To enable a fast setup of the NCNs, the CDNs also allow

to parallelize the configuration process by means of a parallel data move strategy. Network

instantiation – the allocation of hardware resources on a node – is then also performed in a parallel

fashion, node-local on the NCNs.

While high bandwidth is required to efficiently exchange large amounts of data with the HPC

system, ultra-low latency interconnects within the cluster of NCNs are essential for simulation

performance to achieve high acceleration. Here, dedicated communication networks tailored to
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the respective task were proposed for the HNC node architecture, separating spike communication

and inter-node synchronization (not shown in Figure 6.9; see also Section 3.3.4.8). In addition,

to support forms of plasticity that are globally modulated, one could also imagine a separate

communication network dedicated to plasticity.

Finally, it is worth noting that also the integration of the NC components into the HPC software

infrastructure (e.g., the user and resources management of an HPC system) is crucial, in addition

to the physical coupling. Providing a convenient, user-friendly system access fosters usability

and user acceptance.

6.5 Discussion

Scaling up system size to enable the simulation of large-scale networks consisting of hundreds

of thousands or even millions of neurons imposes additional design constraints. The higher

workload placed on a compute node requires a higher degree of processing parallelism to keep

latencies low and also entails a significant increase in the required memory bandwidth. Some of

the decisions made for the HNC node architecture have therefore been reconsidered. A workload

analysis based on two popular neuroscience models – the microcircuit model and the multi-area

model – showed that in a realistic large-scale scenario, approximately 8000 synapse updates per

simulation time step need to be performed by a single compute node capable of simulating 4096

neurons.

Based on the HNC node design presented in Chapter 3, proposals for additional parallelization

options and alternative RB architecture designs utilizing partitioned memory were presented. A

performance estimate showed that these architectural improvements are effective in providing sig-

nificant acceleration, even under the high workloads expected for a large-scale system. However,

the scale-up to the intended system size is a demanding technical challenge. Assuming a node

specification according to the defined set of node parameters listed in Table 6.1, 1000 compute

nodes are required to simulate the multi-area model. If we further assume that latencies for neuron

state propagation, spike communication, and inter-node synchronization do not exceed 500 ns,

a compute node must implement a minimum of about 56 RBUs to reach an acceleration factor

of 100. The required memory bandwidth for this setup then results in approximately 120 GB/s.

For comparison, the available memory bandwidth provided by the Zynq-7000 device used to

implement the HNC node prototype was measured to be 1.862 GB/s (see Section 3.3.4.2).

In the pursuit of high simulation acceleration, memory technology, in terms of memory

size, latency, and bandwidth, is a critical aspect of the design. Recent advances in FPGA-SoC

technology hold promise here. For example, the AMD Xilinx Versal HBM adaptive SoC series
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(AMD Xilinx, 2023b) is specifically designed for memory-bound, compute-intensive applications

and integrates high-bandwidth memory (HBM) technology. This technology enables up to

819 GB/s memory bandwidth for these devices, with memory sizes of up to 32 GiB. Such

performance is achieved through an integration of the DRAM memory dies with the SoC device

die using a silicon interposer (AMD Xilinx, 2023a). The devices also provide a large amount of

programmable logic resources, on-chip memory, and a powerful ARM-based processing system

(AMD Xilinx, 2024).

Scaling the HNC node design to the size discussed here – i.e., a degree of processing paral-

lelism that enables a speed-up factor on the order of 100 in a large-scale simulation – would

require 2576 DSP blocks to implement the ODE solver pipelines of the 56 RBUs (112 RBBs)

needed here. The Versal HBM adaptive SoC series devices provide up to 10,848 DSPs (AMD

Xilinx, 2024), which is more than four times the number of resources required.

With recent commercially available FPGA-SoC and HBM technology, a large-scale neuromor-

phic computing system that can deliver significant acceleration while meeting the demanding

requirements of neuroscience simulation becomes within reach; although building such a system

remains a demanding technical challenge. The integration of neuromorphic computing into the

HPC landscape – linking hard- and software components at the system level – can here enable a

much broader spectrum of use cases than a standalone NC system. It will allow neuromorphic

computing to be included in complex workflows, for example, those performed in multiscale

co-simulations (Kusch et al., 2022). Furthermore, the FPGA-SoC technology is highly adaptable.

Although the proposed concept aims at a large-scale NC system and research facility intended as a

tool for neuroscientists, such a system can also provide a flexible hardware platform to accelerate

applications from other domains with similar requirements.
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7.1 Conclusions

Progress in neuroscience research depends to a large extent on the ability to study large neural

networks and perform complex simulations. Performing simulations in hyper-real time is of

great interest here, as it would allow comprehensive parameter scans and the study of slow

processes such as learning and long-term memory. Even the fastest supercomputers available

today cannot meet the challenge of significantly accelerating the simulation of a large-scale

network. Neuromorphic computing, leveraging novel technologies and application-specific

hardware architectures, is therefore an attractive option that promises to provide the necessary

tools for this task.

Despite all the technological innovations, making neuromorphic computing a useful tool for

neuroscientists is a demanding technical challenge. Neuroscience research employs mathematical

models to gain understanding of the complex dynamics of neural networks. Their simulation

requires numerical accuracy, and simulation outcomes must be deterministic and reproducible.

The plethora of models demands a high degree of flexibility for their algorithmic implementation.

In addition, to bring neuromorphic computing to users, the existing infrastructure and complex

landscape of tools for modeling and simulation must also be taken into account.

On a technical level, flexibility and efficiency are conflicting goals, making it difficult to satisfy

all requirements equally. Traditional general-purpose processors offer a high degree of flexibility,

but their efficiency is low. Physically optimized ASICs achieve high efficiency, but are inflexible

and chip development is expensive. Commercial off-the-shelf FPGA-SoC technology offers a

good compromise here. The tight coupling of general-purpose processors with a programmable

logic device in a single chip allows an application to combine the flexibility of a software-based

solution with the efficiency of application-specific hardware. In this regard, the HNC node’s

hybrid hardware and software mixed architecture can provide a level of flexibility that allows

the system to adapt to changing requirements and keep pace with the rapid developments in

neuroscience, while delivering significant acceleration.

The design space exploration, workload analysis, and performance evaluations that accom-

panied the development of the HNC node identified memory technology as a critical factor,

imposing design constraints that largely determine system performance and size. Recent advances

in FPGA-SoC technology, particularly the integration of HBM technology, are promising in

this regard, as they address compute-intensive, memory-bound applications and enable high

acceleration even for heavy workloads.

Commercial off-the-shelf FPGA-SoC technology has the potential to provide the substrate to

take neuromorphic computing as a tool for neuroscience to the next level, without the need for
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costly chip development. This potential arises from the convergence of computation, memory,

and connectivity that the technology provides. Acceleration factors on the order of 100 are within

reach, even for the simulation of large-scale spiking neural networks. However, building such a

system, bringing it to the desired scale, and making it available to users remains a major technical

and economic challenge.

7.2 Summary and Discussion

Neuroscience requirement-driven design
The design of the HNC node has been strictly driven by the requirements of computational

neuroscience modeling and simulation. This distinguishes this development from other efforts in

the field as a complementary yet distinct approach to the neuromorphic developments that aim at

brain-inspired novel computing architectures for solving real-world tasks. The requirements are

demanding. Numerical accuracy, flexibility in model implementation, and the ability to deliver

significant acceleration are the key requirements that define the boundary conditions of the design.

Numerical accuracy and implementation correctness
Even for domain experts, it can be difficult to judge the correctness of a simulation outcome.

Credibility can be built by formalizing processes. This applies to the modeling, implementation,

and simulation tasks performed in an experiment. Although appropriate methods, such as

verification and validation methodologies, exist, they are not yet well established in the field

of neural network modeling and simulation. Here, a clear terminology is essential for effective

communication. It avoids ambiguity and is a factor of quality.

A reasonable adaptation of the existing terminology for model verification and validation

was proposed that is more explicit and better expresses the underlying intent in the field of

computational neuroscience. The concept of model verification and substantiation was introduced

as a methodology that allows for the accumulation of evidence of a model’s plausibility and

correctness, even in the absence of experimental validation data. Applying this method and

following a systematic approach has proven to be of great value. It not only created a high level

of credibility for correctness, but also guided design decisions. For example, the choices made

with regard to numerical precision, data types, and algorithms are based on the results of a series

of calculation verification tasks that have been conducted.

The selection of the test case model – the minimal two populations Izhikevich network model

– can certainly be questioned here, as the model is less relevant to the field. I have argued that the

model contains a number of non-standard features in its conceptual and implementational choices
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that make it a particularly illustrative example for the demonstration of a rigorous verification and

validation process. However, more importantly, this model places higher demands on a hardware

implementation than, for example, a leaky integrate-and-fire (LIF) neuron model. In this respect,

the requirements are defined more stringent than would typically be needed, which provides an

additional level of confidence. In this context, the co-verification process that accompanied the

hardware-software co-development of the HNC node must also be seen as a process designed to

bring rigor to verification with the goal of building quality into implementations.

While verification ensures appropriate implementation, validation evaluates the consistency

of the simulation outcome with the system of interest. By carrying out a substantiation assess-

ment that compared the HNC node’s simulation outcome with reliable references – testing the

equivalence of statistical features – a high degree of credibility in correctness has been achieved.

Flexibility
The need for flexibility arises mainly from modeling. A plethora of neuron and synapse models

exist and new models are being formulated. The hybrid hardware and software mixed architecture

of the HNC node, its modularity, and the use of generic data types address this requirement and

provide the technical prerequisites to make the system amenable to existing code generation

techniques.

The HNC node architecture is open to extensions, such as the integration of plasticity algo-

rithms. Plasticity rules and algorithms is a rapidly evolving area of research that requires a high

degree of flexibility in algorithmic implementation. The HNC node stores synaptic weights as

well as spike events in external memory accessible by both the application processing unit and

the programmable logic part. This enables spike-based plasticity rules to be implemented in

software and then run on a dedicated plasticity processor, which can be supported by hardware

accelerators.

The FPGA-SoC technology here has an advantage over a pure FPGA solution because it

integrates general-purpose processors in a very powerful setup, typically multi-cores combined

with vectorization units and real-time processors. The ability to implement tasks in software also

facilitates system integration. The HNC node takes advantage of this and provides a basic C-API.

Performance
The performance of tools and hardware employed for simulations is typically evaluated using ded-

icated benchmark models that serve as a reference and make results comparable. Deriving general

statements about the behavior of a system from these benchmarks is difficult. A benchmarking

approach that allows workloads, and thus compute costs, to be varied independent of network
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size is of great value and can provide a more comprehensive view of a system’s performance

characteristics. Therefore, for the purpose of a systematic performance assessment of the HNC

node, a workload model was developed that defines a node’s workload as the average number

of spike events processed per simulation time step. For network sizes up to 105 neurons, the

model introduces a metric that is independent of the number of neurons simulated. In addition,

an accurate performance model has been formulated for the HNC node that, although specific to

the HNC node architecture, captures in a general way the performance-determining aspects of the

hybrid time- and event-driven scheme used in digital simulations of spiking neural networks.

Accompanied by performance measurements, the performance model allowed a verification of

the implementation in terms of expected performance, as well as it quantifies the performance-

determining processes. For the single node prototype, this approach also allowed to simulate

workloads that are to be expected for cluster operation. The performance characteristics of the

single HNC node, as well as when operated in a cluster, could thus be predicted for varying

assumptions regarding workload and hardware design choices. It could be shown that depending

on the workload situation and the design goal, different hardware setups may be appropriate to

achieve best performance.

Scalability
Scaling up the system size to enable the simulation of large-scale networks imposes additional

design constraints. The higher workload requires a higher degree of processing parallelism

to retain system performance, and also entails a significant increase in the required memory

bandwidth. This has led to the introduction of additional parallelization options and the reconsid-

eration of some design decisions regarding the architecture of the ring buffer memories. These

architectural enhancements have been evaluated for their ability to deliver significant acceleration

at large-scale workloads. The definition of these workloads was derived from an analysis of the

connectivity and firing statistics of two biologically realistic neural network models with natural

dense connectivity.

The proposed enhancements showed to be effective in achieving an acceleration factor on the

order of 100. Once again, memory technology plays a critical role here. The memory bandwidth

requirements are demanding and have been estimated at approximately 120 GB/s. However,

recent FPGA-SoC technology is capable of providing this bandwidth.

System integration
To make neuromorphic computing a useful tool for computational neuroscience, a neuromorphic

computing system must integrate well with the existing landscape of tools and workflows. This
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includes the HPC landscape used by computational neuroscientists to perform the compute-

intensive simulations. Therefore, this thesis also briefly discussed aspects of system integration

and presented a basic high-level architecture concept for an HPC integration.

7.3 Outlook

The landscape of neuromorphic computing is broad, and even subareas such as the field of

computational neuroscience modeling and simulation, which is the subject of this thesis, already

span a wide range of topics and aspects. Therefore, not all ideas and concepts presented in this

work are fully developed. Some questions remain unanswered, require further investigation, and

may even change in the rapidly evolving field.

I deliberately left out the complex topic of plasticity rules and algorithms, although their require-

ments were taken into account in the design of the HNC node. The computational cost of these

algorithms and their exact impact on performance is unclear, but is expected to be significant.

Synaptic plasticity changes synaptic weights, structural plasticity creates and deletes synaptic

connections. Both change the connectivity data of a network and cause additional memory read

and write operations. This makes it all the more important that a neuromorphic architecture can

deliver a high base acceleration and being prepared for this shift in computational cost. Here, the

HNC node can serve as a practical and convenient platform for hardware prototyping to explore

plasticity algorithms and to find efficient implementations.

The ability of the proposed architecture to scale to larger system sizes was evaluated based

on a performance model, which was derived from the microarchitecture of the prototypical

implementation. Although this model has been shown to accurately describe the performance

characteristics of a single HNC node, this approach leaves an element of uncertainty because

it makes simplifying assumptions about the inter-node communication in a cluster. Ultra-low

latency solutions for efficient spike packet communication exist (see the introduction Section 1.3.3

and the discussion in Section 3.4), but need to be proven practical and effective for the HNC node

architecture.

Building a large-scale neuromorphic system – even when based on commercial off-the-shelf

technology – requires sustantial technical and economic effort. However, the vast majority of

current spiking neural network modeling studies use models at the scale of up to a few tens of

thousands of neurons. For these applications, a smaller neuromorphic system comprising a few

tens of nodes and capable of delivering significant acceleration would also be attractive. Such a

system could also serve as an ideal platform and practical tool for exploring algorithms and novel
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architectures, and would be an intermediate step toward a next-generation neuromorphic system

and neuroscience simulation platform.
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Appendix A

Two-Population Izhikevich Network Model

Tables A1 and A2 provide a comprehensive description of the minimal two-population Izhike-

vich neural network model. The model is used in Chapter 2 to demonstrate a rigorous model

verification and substantiation workflow, in Chapter 4 to verify and validate the correctness of the

HNC node software and hardware implementation, and in Chapter 5 to examine the HNC node

performance characteristics.

The neuron model by Izhikevich was originally published in Izhikevich (2003), the two-population

network model in Izhikevich (2006).

The format of the tabular and graphical representation of network connectivity, network parame-

ters, and simulation setup follows the proposed methods described in Nordlie et al. (2009) and

Senk et al. (2022).

A.1 Network Description

Summary
Populations excitatory population, inhibitory population

Connectivity random, independent with fixed in-degrees, respecting Dale’s principle

Neuron model Izhikevich neuron model, regular-spiking and fast-spiking neuron model type

Synapse model plastic synaptic weights (static for reproduction of network state), fixed delays

Input random input

Populations
Name Elements Size
E Izhikevich, regular-spiking NE = βN

I Izhikevich, fast-spiking NI = N −NE = N −βN
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Connectivity
Source Target Pattern
E∪I E random, independent, fixed in-degree Kin = εN, autapses and multapses prohibited (�A,

��M), excitatory connection weight wE, distributed excitatory connection delay dE ∼D,

constant inhibitory connection weight w̄I, constant inhibitory connection delay d̄I

E I random, independent, fixed in-degree Kin = εN, multapses prohibited (��M), constant

inhibitory connection weight w̄I, constant inhibitory connection delay d̄I

X E∪ I one-to-one δ, external input iext

𝐴,𝑀,𝐾𝑖𝑛, 𝑤𝐸 , 𝑑𝐸~Ɗ

𝑀,𝐾𝑖𝑛, 𝑤𝐸 , 𝑑𝐸~Ɗ

𝑀,𝐾𝑖𝑛, 𝑤𝐼 , 𝑑𝐼

𝛿 𝛿

Neuron
Type Izhikevich model

Description

• dynamics of membrane potential 3i(t) (i ∈ {1, . . . ,N})

d3i
dt

= 0.0432i + 53i + 140−ui + Ii(t) with Ii(t) = iexc(t) + iinh(t) + iext(t)

dui

dt
= a(b3i−ui)

if 3i ≥ θ, then

3i← c

ui← ui + d

• spike emission at ti
k if 3i(ti

k) ≥ θ

• initial values: 3i(t = 0) = V0, ui(t = 0) = U0
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Plasticity
Type additive spike-timing-dependent plasticity (STDP) rule
Description excitatory connections are plastic according to the STDP rule:

wE←

wE + A+ · exp(−∆t/τ+) : ∆t ≥ 0

wE−A− · exp(∆t/τ−) : ∆t < 0

• update rule: synaptic weight changes are buffered for one biological second and
then the weight matrix is updated for all plastic synapses simultaneously

Input
Type input of a constant current into a single neuron
Description input to the network is a constant current iext into a single neuron n ∈ (E∪ I) randomly

selected in the interval ∆text

Table A1 | Two-population Izhikevich network model description.

A.2 Network Parameters

Connectivity
Name Value Description
N 1000 total number of neurons (NE + NI)

β 0.8 relative size of excitatory population

ε 0.1 connection probability

NE βN = 800 number of excitatory neurons

NI N −NE = 200 number of inhibitory neurons

Kin εN = 100 number of synapses per neuron

Neuron
Name Value Description
(a,b,c,d) (0.02,0.2,−65.0,8.0) model parameters: regular-spiking neuron type

(a,b,c,d) (0.1,0.2,−65.0,2.0) model parameters: fast-spiking neuron type

V0 −65.0 mV initial membrane potential 3i(t = 0)

U0 0.2V0 = −13.0 mV initial value of recovery variable ui(t = 0)

θ 30 mV spike threshold

Synapse
Name Value Description
wE 6.0 initial excitatory synaptic weight (plastic)

wI −5.0 inhibitory synaptic weight

dE [1,2, ...,20] ms excitatory synaptic transmission delay, drawn from a
uniform integer distribution

dI 1 ms inhibitory synaptic transmission delay
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Plasticity
Name Value Description
τ+ 20 ms time constant, potentiation
τ− 20 ms time constant, depression
A+ 0.1 mV amplitude, potentiation
A− 0.12 mV amplitude, depression

Input
Name Value Description
iext 20 pA external input current
∆text 1 ms external input current interval

Simulation
Name Value Description
∆t 0.1ms time resolution

Table A2 | Two-population Izhikevich network model parameters.
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Model Substantiation Assessment

To demonstrate the stability of the effect size measure in the data, the computed measures and

effect sizes were collected from the network states after 1, 2, 3, 4, and 5 hours of simulation

for visual inspection and comparison, corresponding to Figures B1-B5. The figures show the

histograms (70 bins each) of the three characteristic measures computed from 60 seconds of

network activity: left, firing rates (FR); middle, local coefficients of variation (LV); right, pairwise

correlation coefficients (CC). For FR and LV, each neuron enters the histogram, for CC each

neuron pair. Results are shown for three iterations (rows) of the substantiation process of the

C model (dark colors) and SpiNNaker model (light colors). On the far right, the difference

between the respective distributions is quantified by the effect size.
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Figure B1 | Characteristic measures computed from 60 seconds of network
activity after 1 hour of simulation.
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Figure B2 | Characteristic measures computed from 60 seconds of network
activity after 2 hours of simulation.
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Figure B3 | Characteristic measures computed from 60 seconds of network
activity after 3 hours of simulation.
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Figure B4 | Characteristic measures computed from 60 seconds of network
activity after 4 hours of simulation.
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Figure B5 | Characteristic measures computed from 60 seconds of network
activity after 5 hours of simulation.
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Control Registers

Configuration and status information of the HNC node hardware blocks are stored in a number

of 32-bit registers. This register file is mapped into the APU’s address space and is used by the

software system to control hardware functions and monitor the operation of hardware blocks.

Component Register Description Access Type

Core Module 
FSM

PRNG

SC_0 HNC node configuration, commands and status read/write

SC_1 Steps to simulate, 𝑘 write

SC_2 Steps simulated read

SC_3 RB segment address (debug) write

SC_4 PRNG configuration write

SC_5 System information, 𝑃,𝑁P read

SC_6 Spike count read

SC_7 unused read/write

PS/PL
Data

Transfer
Module

TM_0 Configuration write

TM_1 HP1 read base address (S1) write

TM_2 HP1 write base address (read out of FIFOs for debug) write

TM_3 HP3 read base address (S2) write

TM_4 HP3 write base address (spike recording) write

TM_5 HPx read/write beats and bursts configuration write

TM_6 unused read/write

TM_7 FIFO select (debug) write

Serializer
Module

SM_0 Configuration write

SM_1 APU spike injection write

SM_2 unused read/write

SM_3 unused read/write

Table C1 | HNC node configuration and status registers.
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Connection Data Structure

The HNC node stores a network’s connectivity by assigning each neuron in the network a list of

the synaptic targets (LST) that the neuron has on the node. Each element in these lists encodes

the synaptic weight, delay, and node-local id of the postsynaptic neuron for a single connection,

using a 64-bit data structure. The data format is detailed in Table D1. The node-local id consists

of a 6-bit value indexing the neuron’s position in the pipeline and a 4-bit hardware control value

sSx
i that determines the data path to the ring buffer (RB) and processing unit associated with

the postsynaptic neuron. Setting sSx
i = b′1111′ broadcasts an LST element to all RBs, enabling

software-controlled parallel reset and RB testing, such as the execution of memory write-read

pattern tests. In addition, two control flags allow software control of pipeline operations.

Bits Data Type Description

39:00 40-bit signed fixed-point s16.23 Synaptic weight, 𝑤𝑖𝑗

48:40 up to 9-bit unsigned integer Synaptic delay, 𝑑𝑖𝑗, in steps of 0.1𝑚𝑠

54:49 6-bit unsigned integer Target neuron index within a processing unit, n = {0,1, . . , 𝑁P− 1}, 𝑁max
P = 64

59:55 boolean Control flags

Bit Description

56 Reset RB segment

57 Set if 𝑑𝑖𝑗 = 𝐷min (restart ODE solver pipeline flag)

63:60 4-bit binary Encodes the ring buffer FIFO index from which DMUX SEL is derived, 𝑠𝑖
S1 , 𝑠𝑖

S2

Value Selected FIFOs Processing Units

Assigned to HP1  (S1) Assigned to HP3  (S2)

b’0000’ none none none

b’1111’ F1, F2, F3, F4, F5, 
F6, F7, F8

P1, P3, P5, P7, P9, P11, 
P13, P15

P2, P4, P6, P8, P10 , P12, 
P14, P16

b’0001’ F1 P1 P2

b’0010’ F2 P3 P4

…

b’1000’ F8 P15 P16

Table D1 | Synaptic target list item data structure.
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Monte Carlo Simulations

To determine the throughput of the RBB architectures that use memory partitioning, as well as

the FIFO buffer sizes required by the different architecture variants, models of their architectures

were implemented in software in the C++ language. By means of Monte Carlo simulations, the

achievable initiation intervals (see Section 6.2.2), the average number of RBU clock cycles, as

well as the maximum utilization of the FIFO buffers were determined for different workloads and

numbers of RBUs. The simulations were performed each with a simulation count of 1,000,000.

The tables below show the results of the Monte Carlo experiments for the architecture variants

that serially process excitatory and inhibitory spike events.

E.1 Architecture Alternative: Partitioned Memory Interleaved Access

Workload, W 5000 10000

Number of RBUs, nRBU 16 32 64 128 16 32 64 128

Average RBU clock cycles, LRBU 467 233 116 57 936 467 233 116

FIFO max utilization 126 66 36 19 241 125 67 36

Table E1 |Monte Carlo simulation results. RBB architecture: Partitioned Memory Interleaved
Access. The architecture variant is shown in Figure 6.3B.
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E.2 Architecture Alternative: Partitioned Memory Parallel Access Parallel
Pipelines

Workload, W 5000 10000

Number of RBUs, nRBU 16 32 64 128 16 32 64 128

Average RBU clock cycles, LRBU 324 164 83 42 643 324 164 83

FIFO max utilization 44 30 22 16 69 45 33 20

Table E2 | Monte Carlo simulation results. RBB architecture: Partitioned Memory Parallel
Access Parallel Pipelines The architecture variant is shown in Figure 6.3C.

E.3 Architecture Alternative: Partitioned Memory Parallel Access Single
Pipeline

Workload, W 5000 10000

Number of RBUs, nRBU 16 32 64 128 16 32 64 128

Average RBU clock cycles, LRBU 333 171 88 46 655 333 171 88

FIFO 1 max utilization 84 60 42 29 130 85 59 40

FIFO 2 max utilization 91 62 44 29 125 82 61 46

Table E3 | Monte Carlo simulation results. RBB architecture: Partitioned Memory Parallel
Access Single Pipeline The architecture variant is shown in Figure 6.3D.
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Nomenclature

Acronyms
ACM Association for Computer Machinery

APU Application Processing Unit

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction set Processor

AXI Advanced eXtensible Interface

BRAM Block RAM

CLB Configurable Logic Block

COBA COnductance-BAsed

CUBA CUrrent-BAsed

DDR Double Data Rate

DFE DataFlow Engine

DMA Direct Memory Access

DSL Domain-Specific Language

DSP Digital Signal Processor

DTM Data Transfer Module

DUT Device Under Test

EDA Electronic Design Automation

eFPGA embedded FPGA

EPSP Excitatory PostSynaptic Potential

FPGA Field Programmable Gate Array

FSM Finite State Machine
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Nomenclature

GPP General-Purpose Processor

GPU Graphics Processing Unit

GUI Graphical User Interface

HBM High-Bandwidth Memory

HLS High-Level Synthesis

HNC node Hybrid Neuromorphic Compute node

HP High-Performance Port

HPC High-Performance Computing

IPSP Inhibitory PostSynaptic Potential

LFSR Linear Feedback Shift Register

LIF Leaky Integrate and Fire

LST List of Synaptic Targets

LUT Look-Up Table

MSA Modular Supercomputing Architecture

NC Neuromorphic Computing

NEST NEural Simulation Tool

ODE Ordinary Differential Equation

PL Programmable Logic

PRNG Pseudo-Random Number Generator

PS Processing System

PSC PostSynaptic Current

PSP PostSynaptic Potential

RAM Random Access Memory

RB Ring Buffer

RBB Ring Buffer Block

RBU Ring Buffer Unit

RTF Real-Time Factor
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Nomenclature

RTL Register-Transfer Level

SCS Society for Computer Simulation

SNN Spiking Neural Network

SoC System-on-Chip

SRAM Static RAM

STDP Spike-Timing-Dependent Plasticity

SVB State Variables Buffer

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

VHDL Very high speed integrated circuit Hardware Description Language

Symbols
ν̄k Average number of spike events per simulation time step

ν̄ Average number of spike events per second

C̄M Average number of postsynaptic targets per presynaptic neuron and node

ŪM
eff

Effective workload of a node

ŪM
exc Excitatory workload of a node

ŪM
inh Inhibitory workload of a node

ŪM Workload of a node: the average number of synapse updates per simulation time
step a node has to perform

CC Pairwise Pearson’s correlation coefficient

CV Coefficient of variation

FR Firing rate

II Initiation interval

LV Local coefficient of variation

B Bandwidth

CM
max Maximum number of postsynaptic targets per presynaptic neuron and node

C Connection probability
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Nomenclature

D or d Synaptic delay

fclk Clock frequency

F Acceleration factor

G or g Weighted synaptic input

h Simulation resolution

J or w Synaptic weight

KRB Number of ring buffer segments

K Synapse count

k Simulation time step

L Latency

M Number of nodes

NP Number of neurons per processing unit

NRB Number of neurons per ring buffer

nsp Number of spikes of a neuron

N Number of neurons

n Neuron number

P Number of processing units or performance loss

S Memory size

wlen Word length

Units of Measurement
A Ampere, measure of electric current

GB Gigabyte, 1GB = 109 Bytes

GiB Gibibyte, 1GiB = 230 Bytes

Hz Hertz, measure of frequency, expressed in s−1

MB Megabyte, 1MB = 106 Bytes

MB/s Megabytes per second
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MOPS Million operations per second

MT/s Megatransfers per second
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