
Kölner Beiträge zur technischen Informatik
Cologne Contributions to Computer Engineering
Band 1/2022

Ergebnisse des Workshops vom 26.11.2021 des
Forschungsschwerpunkts Vernetzte intelligen-
te Infrastrukturen und mobile Systeme (VIMS)

Der Herausgeberkreis des Forschungsschwerpunkts wird gebildet von:

Rainer Bartz
Andreas Behrend
Andreas Grebe
Tobias Krawutschke (Schriftenleitung)
Hans W. Nissen
Beate Rhein (Schriftenleitung)
René Wörzberger (Schriftenleitung)
Chunrong Yuan

Impressum:

Forschungsschwerpunkt Vernetzte intelligente Infrastrukturen und mobile Systeme
Technische Hochschule Köln
Fakultät für Informations-, Medien- und Elektrotechnik
Betzdorfer Str. 2
D-50679 Köln
tobias.krawutschke@th-koeln.de
Stand: März 2022
ISSN: 2193-570X

Die Veröffentlichung von Dokumenten über Cologne Open Science erfolgt unter der CC-Lizenz: Namensnennung, keine kommerzielle Nutzung,

keine Bearbeitung.

mailto:tobias.krawutschke@th-koeln.de

Inhaltsverzeichnis
Editorial . 4

Analyzing the latency of a LXI device using a Raspberry Pi (Theodor Fischer) 5

Vulnerability Detection in Source Code Using Machine Learning and Graph Based Repre-
sentations (Feras Zaher Alnaem et. al.) . 12

Design and Evaluation of a Quality Measurement Framework for News and Broadcasting
Applications (Lukas Bluhmki) . 20

EDITORIAL

Editorial

Im Jahr 2021 ist der Forschungsschwerpunkt VIMS aus dem Vorgängerschwerpunkt VMA hervorgegan-
gen. Mit diesem Band wird die Veröffentlichung in der Reihe Kölner Beiträge zur technischen Informatik
fortgesetzt. Die Fakultät für Informations-, Medien- und Elektrotechnik am Institut für Nachrichtentechnik
ermöglicht Master Studierenden nicht nur aus dem Bereich der technischen Informatik eine Möglichkeit
Ihre Forschung zu veröffentlichen, die im Rahmen von Forschungs- und Entwicklungsprojekten an der
TH Köln und/oder bei Projektpartnern entstand.

Ziel ist es, die Ergebnisse laufender Arbeiten aus den Forschungs- und Entwicklungsaktivitäten des
Forschungsschwerpunkts nach außen zu kommunizieren und Informatiker und Informationstechniker
außerhalb des Forschungsschwerpunkts z.B. aus dem Kölner Raum einzuladen, neue Ergebnisse aus
Wissenschaft und technischer Anwendung im Rahmen von Cologne Open Science zu publizieren.

Der Herausgeberkreis freut sich, diesen neuen Band der Reihe der Fachöffentlichkeit zur kritischen
Prüfung und zur möglichen Mitwirkung vorlegen zu können.

Rainer Bartz
Andreas Behrend
Andreas Grebe
Tobias Krawutschke
Hans W. Nissen
Beate Rhein
René Wörzberger
Chunrong Yuan

4 Kölner Beiträge zur technischen Informatik

Analyzing the latency of a LXI device using a

Raspberry Pi

Theodor Fischer

Technische Informatik (Master)

T.H. Köln

Cologne, Germany

theodor.fischer@smail.th-koeln.de

Abstract—The work in this paper focuses on determining the

performance or rather the latency of a LXI capable power

supply. Additionally, different VISA Libraries and the

communication protocols of the LXI standard VXI-11, HiSLIP

and raw TCP sockets are compared. A Raspberry Pi system

combined with an additional microcontroller to provide ADC

capability is used to conduct the measurements. The results of

the tests show that the created system is capable of adequately

analyzing the power supplies latency. Furthermore, the tests

show that in this use case the choice of VISA Library or

communication protocol results in no significant difference in

the delay for a requested voltage.

Keywords—LXI, performance analysis, latency, VISA, VXI-

11, HiSLIP, Raspberry Pi

I. INTRODUCTION

The LXI standard defines many different protocols, each with

its supposed advantages and disadvantages [1]. To be able to

use these protocols from an operating system a Virtual

instrument software architecture (VISA) library is commonly

needed. VISA is an I/O API widely used in the test and

measurement (T&M) industry and is a standard implemented

by many T&M companies like Rohde&Schwarz, Tektronix,

National Instruments and Keysight Technologies [2]. Nearly

all those T&M device manufacturers provide their own VISA

library, which must all follow the official VISA

specifications [3]. The work in this paper focuses on

determining the performance differences of the different

protocols and different VISA libraries by analyzing a

common use case with a LXI complainant power supply.

II. RESEARCH GOALS

The main goal of this project was to analyze the performance

of the LXI power supply and foremost to determine the delay

of requesting a new voltage level. To test this a series of

experiments were devised. Before conducting the tests, a

suitable test environment had to be created. To provide

reliable experiment results every part of the created test

environment should be carefully analyzed to detect potential

points where delays could occur. A further goal in this project

was to analyze if different VISA libraries or the available LXI

communication protocols like VXI-11, HiSLIP or raw TCP

sockets could make a difference in the delay tests.

III. TEST ENVIRONMENT

A. Setup

The main device used in this project is a Raspberry Pi 4,

which handles the Ethernet Communication with the

Rohde&Schwarz NGE100B power supply, and which

collects the experiment test results. Additionally, a NXP K64

microcontroller is used to read the (analogue) voltage on the

channel output of the LXI power supply. The voltage level is

read via an ADC (Analog-to-Digital converter) on the K64

microcontroller and then transmitted to the Raspberry PI

using SPI (Serial Peripheral Interface). The power supply can

deliver up to 32.2V, what would have been too high for the

K64 microcontroller (3.3V) to handle. So, a voltage divider

was made up and used to bring the voltage down to a

maximum of 3.3V. An overview of the hardware setup is

depicted in Fig. 1.

Figure 1. Depiction of the general hardware setup

Due to the inability for the Raspberry Pi to be used as a SPI

Slave it was set as SPI Master and the NXP K64 was set as

SPI Slave [4]. This resulted in the disadvantage that to receive

new ADC data the SPI interface must be constantly polled by

the Raspberry Pi. It also required extra effort to ensure that

the NXP K64 was always ready to transmit, because new SPI

transfer requests could arrive at any time. The SPI data

structure chosen for this setup consists of 5 Byte per

transmission and is depicted in Fig. 2. To ensure data integrity

during transmission a 16-bit CRC error detecting code was

added to the structure.

ANALYZING THE LATENCY OF A LXI DEVICE USING A RASPBERRY PI (THEODOR FISCHER)

Band 1/2022 5

Figure 2. SPI data structure

All investigations were made with self-written Python

programs. All diagrams and plots were created using the

Python package matplotlib [5]. Boxplots are defined as [6]:

• Median: Q2 (50th percentile): middle value of

dataset

• First Quartile: Q1 (25th percentile): median of the

lower half of the dataset

• Third Quartile: Q3(75th percentile): median of the

upper half of the dataset

• Interquartile Range: IQR: distance between upper

and lower quartiles (Q3 – Q1)

• Whisker Maximum: Q3 + 1.5 * IQR: upper range

of values without outliers

• Whisker Minimum: Q1 – 1.5 * IQR: lower range of

value without outliers

Due to using a Raspberry Pi and Python as the programming

language the choice of compatible VISA libraries was limited

to only the official VISA Library for the power supply from

R&S and a third-party library from the open-source python

package PyVisa-Py.

B. Preliminary Investigation

To provide accurate and reliable data resulting from the main

experiments some preliminary work had to be done to

analyze the performance or rather the latency of the

individual components in the test system.

1) Examining SPI & ADC Performance

The first step involved measuring the SPI, and therefore also

the ADC, performance between the Raspberry Pi and the K64

microcontroller. A simple setup was created where a GPIO

pin of the Raspberry Pi was configured as output and

connected to the ADC input of the microcontroller. This setup

is depicted in Fig. 3.

Figure 3. Depiction of simple ADC performance test setup

To minimize delays the microcontroller application was

created with minimal overhead and complexity in mind. It

continuously samples the ADC via an interrupt and stores the

value in a global buffer. The main application loop retrieves

this global value and waits indefinitely for the SPI master, the

Raspberry Pi, to start the SPI transaction.

In its standard configuration the K64’s ADC produced noisy

and therefore unprecise data. To combat this a higher clock

speed as well as a hardware averaging feature of the ADC

was activated. This setting was set to use 32 ADC samples to

generate the final averaged output sample. Additionally, the

so-called “Long sample mode” was also activated and set to

use 20 extra ADCK cycles. Setting this mode changes how

long the ADC waits before sampling a signal. The drawback

to activating these features is an increase in the conversion

time and therefore delay of new ADC data. To reduce this

delay the “High-speed mode” of the ADC was also activated.

It configures the ADC to use an alternative conversion

sequence and allows for lower conversion times.

The resulting ADC data and corresponding delay

measurements before the ADC configuration changes can be

seen in Figure 4. The results after the changes are shown in

Fig. 5. The delay measurements were done in multiple runs

and the resulting data is presented as combination of three

subplots. Two plots show the voltage curve of a single run

and the bottom one is zoomed in closer to the relevant signal

part. The subplot in the top right shows the distribution of the

delay values of all 100 runs. Changing the ADC settings

resulted in a delay increase of about 200µs to 400µs

depending on the request position (3.3V or 0V). At the same

time, the accuracy of the sampled ADC data was greatly

increased. This tradeoff was accepted, because while the

delay is higher than before it is still mostly below 1ms, and

as later tests will show, well below other delay factors in the

system.

Figure 4. ADC performance & delay test (default settings)

ANALYZING THE LATENCY OF A LXI DEVICE USING A RASPBERRY PI (THEODOR FISCHER)

6 Kölner Beiträge zur technischen Informatik

Figure 5. ADC performance & delay test (optimized settings)

2) Examining Timing Accuracy

The standard Raspbian operating system with the standard

kernel is not a real time system, which results in a certain

unpredictability and variance in timing relevant

measurements. And as all timing measurements for the

experiments were to be done directly on the Raspberry Pi, this

timing variance would influence the final results. The

function “perf_counter” of the python “time” package was

used for all python time measurements as it provides a high-

resolution timer value [7]. A simple test setup was devised to

measure the timing variance with the help of the NXP K64

microcontroller. The microcontroller was set up with a 100

µs interrupt-based timer. The python program would collect

this timer via the SPI connection, as it is the SPI Master. This

would be repeated in a loop while at the same time the value

of the “perf_counter” function would be taken. It would then

be calculated how much time passed for both timer values

since the last loop. These resulting two values should then, if

both timers ran at the same speed, be the same. If one timer

has a higher difference it would mean that one timer is

running slower than the other.

Different system loads were put on the Raspberry Pi while

the test was running to check if timer differences could be

provoked. The result for a high system load test is shown in

Fig. 6. The results are each divided in to two subplots, where

the upper one shows the timer differences across the whole

test run. The lower subplot shows the distribution of the timer

difference values. In the high system load test the background

task consisted of watching a video in an internet browser in

the background while the test was executing. The data shows

high spikes throughout, but foremost at the beginning and

near the end of, the test. The spikes reach up to 10ms of time

difference between the python and microcontroller

application. Figure 7 shows a test with no, or very little,

background system load (Note the different Y Axis scaling).

Apart from a single spike of about 1.5ms close to the

beginning of the test there are no other significant points of

interest. Comparing these two results shows clearly what an

impact background processes and therefore high system load

can have on time crucial measurements.

Figure 6. Time difference test (high background system load)

Figure 7. Time difference test (low background system load)

In a second test the absolute timing accuracy between the two

timers were measured. The test was run for 20 seconds, and

the results showed a deviation of 50ms between the two

timers. With extrapolation this would result in a deviation of

1 second every 400 seconds.

Together these two tests showed that the operating system

can have a great impact on time measurements done with the

“perf_counter” function. But given a low system load with

minimal background processes it can be said that the

“perf_counter” function can be used to measure timing with

sub-millisecond precision with a small chance of

measurements glitches.

3) Examining Ethernet Delay

To complete the test environment analysis the simple ethernet

connection between the Raspberry Pi and the LXI power

supply was also tested. The two devices are directly

connected with each other. A simple ping test was used,

because only the minimum amount of delay was of interest in

this connection. Bandwidth was not of interest in this project.

The test was conducted multiple times to produce reliable

data and the corresponding boxplot can be seen in Figure 8.

ANALYZING THE LATENCY OF A LXI DEVICE USING A RASPBERRY PI (THEODOR FISCHER)

Band 1/2022 7

The median of the resulting data is at about 210µs and the

data is very closely packed together with the max/min

whisker distance only being about 25µs. There are only a few

data points outside of this range, which, with a repetition

count of 200, suggests a reliable ping delay.

Figure 8. Results of the ping test

IV. LXI EXPERIMENTS

A. Digital I/O Delay

The R&S NGE100 series power supply provides four digital

input and output trigger pins. When set up as output, a pin can

be configured to enable the output when a certain event

occurs, or a condition is fulfilled within the power supply.

There are multiple events available, for example a fuse trip

event or a current level event, which occurs when a preset

current level is exceeded. When set up as an input, an outside

device can trigger a pin and, for example, activate a channel.

The configuration of these digital I/O pins can be done

directly via the buttons on the device or also be set via LXI

messages.

The goal of this experiment was to find and create a setup to

test the minimal possible latency of the different

communication protocols and VISA libraries. The I/O pins

were deemed suitable for this task as they presumably

provided faster switching properties in comparison to the

voltage on the main channel outputs. A test setup was created

where a I/O pin would be configured manually beforehand

directly on the device. It would be configured as output and

active low but with the channel state still deactivated. As a

trigger condition no particular event was chosen. The output

was connected to the ADC input of the K64 microcontroller.

During the test a LXI message would be sent to the power

supply with the instruction to activate the aforementioned

channel. And due to the active low setting and also the trigger

event not being active the output would then immediately

turn to active. This would then be measured at the ADC input

where it would be transmitted to the Raspberry Pi via SPI.

The final delay would then be calculated and stored for later

processing. This test was repeated 500 times for each

configuration of protocol and VISA library. Figure 9 shows

the results of all test configurations in the form of boxplots.

Figure 9. Results of the Digital I/O test (multiple configurations)

Overall, it can be said that the delay times between all

configurations does not differ significantly and that the delay

times are very low with a median of about 11ms.

To confirm the validity of these results an oscilloscope was

used as a second measurement setup. For this the test was

slightly modified. Before sending out the LXI message for

the I/O pin channel activation a GPIO pin on the Raspberry

Pi would be activated. Signal probes of the oscilloscope were

hooked up to this GPIO pin and the digital output pin of the

power supply. The test was then run and automatically

repeated for 100 times. The configuration of R&S VISA

library and VXI-11 connection protocol were used during this

test. Using a function of the oscilloscope the average and

standard deviation of the data was captured and calculated.

The results are shown in Figure 10 and 11.

Figure 10. Digital I/O test validation, Raspberry Pi capture

ANALYZING THE LATENCY OF A LXI DEVICE USING A RASPBERRY PI (THEODOR FISCHER)

8 Kölner Beiträge zur technischen Informatik

Figure 11. Digital I/O test validation, oscilloscope capture

The results of the oscilloscope, in Figure 11, are shown in the

table located near the bottom of the image. The relevant

columns are “+Peak”, “-Peak”, “mu(Avg)” and “StdDev”. In

comparison to the results of Fig. 10 the average is lower by

1,75ms but with practically the same standard deviations of

7,87ms. The highest peak of 57.69ms, seen by the

oscilloscope, can also be seen in the Raspberry Pi

measurement with a higher value of about ~58.5ms, which

falls in line with the average offset between the two

measurements. This shows that while the Raspberry Pi has

higher overall measurement times it still provides reliable

data. It also confirms that the peaks measured by the

oscilloscope and the Raspberry Pi must originate in the power

supply and not the testing equipment.

B. Manual voltage request delay

The main application of this power supply is to provide power

via its three channel outputs. These channels can be

controlled directly via the user interface on the device or by

using LXI messages. In addition to the channel output state,

the voltage level und maximum current level can be

configured as well.

This experiment was supposed to be based on a real use case,

where certain voltage levels would be requested for a certain

time slot. It should be determined how fast the power supply

can switch to a newly requested voltage and how the latency

possibly differs across the whole voltage range. The

experiment was set up as described in chapter III and depicted

in Figure 1. The python test program was designed with the

ability to take a variable test configuration as input. One entry

in the test configuration consists of a voltage value Y and a

time value X. This entry is used by the test program to

determine at what time X, relative to the test starting time, the

voltage Y should be requested from the power supply. The

test configuration can contain any number of time-voltage

entries. To increase the reliability of the data each test

configuration was executed 100 times. Fig. 12 shows a code

snipped of the part where the test configuration is defined.

Figure 12. Code snipped of the test configuration definition

The aforementioned test configuration was executed, and the

results collected and processed. Fig. 13 shows the voltage

curve with time slots and the boxplots of the delay for each

combination of VISA Library and connection protocol. The

results again show no clear difference between all the

different configurations. It can, however, be seen that the

voltage levels all produce different delays. So, that means

when using the device, a consistent delay across different

voltage levels cannot be assumed.

Figure 13. Manual voltage request test. All configurations

C. Alternative voltage request: R&S EasyArb function

The python test program provides the possibility of

requesting a certain voltage at a certain time. However, if

very fast voltage changes are requested in a short period of

time the power supply begins to struggle. This can be seen in

Figure 14 where a voltage change from 5V to 10V, and vice

versa, was requested every 50ms. The requested voltages are

not even reached fully in time before the next voltage is

requested. The first assumption was that some sort of internal

limit of the power supply was reached and that faster voltage

transitions were not possible. The following test, however,

disproved this assumption.

ANALYZING THE LATENCY OF A LXI DEVICE USING A RASPBERRY PI (THEODOR FISCHER)

Band 1/2022 9

Figure 14. Voltage request with fast switching frequency. Limits of manual

voltage request exposed.

In addition to the standard functions of a usual power supply

the R&S NGE 100B it provides a few more advanced

functions. One of the functions is called "EasyArb" and it

provides the ability to define arbitrary waveforms. It takes as

input a voltage level and the duration of how long this voltage

level should be stayed at. Multiple datapoints can be defined

for one waveform and the repetition count of the whole

waveform can be configured as well. All these settings are

fully controllable via LXI messages.

With a slight modification to the python test program from

the previous experiment it was possible to use this feature and

compare it to manual method. The same data points as

previously mentioned were used for this test. Inspecting the

voltage curve, depicted in Figure 15, one can see a much

clearer curve compared to the one previously shown (Fig.

14). All requested values were clearly reached in time and

with a small delay. This disproves the assumption that the

device had reached some internal limit concerning the voltage

curve generation. But it certainly highlights some kind of

limitation when directly and quicky requesting voltage levels

from the power supply.

Figure 15. Voltage request with fast switching frequency using advanced

“EasyArb” function.

Using the same values as in the first voltage request

configuration in the second experiment (Fig. 12) it can be

shown that even in a normal use case the overall delay is

lower than when manually requesting a new voltage. This test

was again carried out for all available combinations of VISA

libraries and connection protocols. The results are shown in

Figure 16. Comparing to the results from the previous

experiment (Fig. 13) there is a clear reduction in delay across

all the configurations visible. Also noteworthy is the sharper

transitions in the voltage graph, especially from 2.4s (15V) to

3.2s (0V).

Figure 16. Voltage request using advanced “EasyArb” function.

V. CONCLUSION

The experiments in this project showed that for the use case

of requesting voltage for a precise time slot the choice of

VISA backend library or the underlying connection protocol

is mostly irrelevant as most of the delay originates from the

power supply itself. It could also be shown that, using some

advanced functions of the LXI power supply, the delay of

voltage requests can be significantly reduced. Furthermore,

apart from the LXI testing, it was also shown that the

Raspberry Pi, with an additional microcontroller for analog-

to-digital signal conversion, can be set up to reliably measure

time critical signals.

REFERENCES

[1] LXI Standard, “LXI Protocols”, Url:

https://www.lxistandard.org/About/LXI-Protocols.aspx

[2] W. Cheng, F. Wang, H. Ma, „Remote Automatic Test System based on
MATLAB using VISA over LAN”, Shandong Academy of Sciences,
2015

ANALYZING THE LATENCY OF A LXI DEVICE USING A RASPBERRY PI (THEODOR FISCHER)

10 Kölner Beiträge zur technischen Informatik

[3] IVI Foundation, “The VISA Library”, Url:
https://www.ivifoundation.org/downloads/Architecture%20Specificati
ons/vpp43_2020-11-20.pdf

[4] Raspberry Pi Documentation, “SPI”, Url:
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/
README.md

[5] Python Package, “matplotlib”, Url: https://matplotlib.org/

[6] J.W. Tukey, “Exploratory Data Analysis”, Princeton University and
Bell Telephone Laboratories, 1977

[7] Python function, “time.perf_counter()”, Url:
https://docs.python.org/3/library/time.html#time.perf_counter

ANALYZING THE LATENCY OF A LXI DEVICE USING A RASPBERRY PI (THEODOR FISCHER)

Band 1/2022 11

Vulnerability Detection in Source Code Using
Machine Learning and Graph Based Representations

1st Feras Zaher Alnaem
TH Köln - University of Applied Sciences

Cologne, Germany
feras.zaher alnaem@smail.th-koeln.de

2nd Jonas Kaltenbach
inovex GmbH

München, Germany
jkaltenbach@inovex.de

3rd Marisa Mohr
inovex GmbH

Hamburg, Germany
mmohr@inovex.de

4th Chunrong Yuan
TH Köln - University of Applied Sciences

Cologne, Germany
chunrong.yuan@th-koeln.de

Abstract—Due to the increasing number of end-user devices
and the complexity of modern software projects, organizations
need to continuously expand and improve their cybersecurtiy
measures. There is a growing interest in using algorithms as
a software-based methodology for the development of trust-
worthy software systems. Particularly, Machine Learning (ML)
algorithms have the potential for uncovering security defects,
minimizing disruptions and reducing development costs, since
they can be applied during the early lifecycle of software
development, even before the code is executed. By integrating
graph-based representations and data-driven ML models, we
have developed in this work a new methodology for the detection
of software vulnerabilities. We have proposed two approaches
for the learning of graph embeddings from source code. In
the first approach, each graph is represented as a fixed length
feature vector. Using this feature vector as input, classical ML
models such as Support Vector Machine (SVM) and Multi-Layer
Perceptron (MLP) have been applied for the classification of the
code as vulnerable and non-vulnerable. The second approach is
based on the use of Graph Neural Networks, which provide an
end-to-end capability for node-, edge- and graph-level embedding
and predictions. It has been shown through comparative study
that both approaches achieve state-of-the-art performance, with
the first having a better generalization capability and the second
having a better accuracy in vulnerability detection.

Index Terms—machine learning, graph representation, graph
neural network, source code analysis, vulnerability detection

I. INTRODUCTION

It is no longer possible to imagine our daily lives without
software systems, which are used in various areas such as
healthcare, energy supply, transport and, in general, all devices
connected to the internet. Developing software systems is
costly as software engineers have to handle the complexity of
developing a software and deliver highly functional software
products on schedule while at the same time avoiding bugs and
vulnerabilities. A software vulnerability is a fault or weakness
in the design, implementation or operation of a software which
can be exploited by a threat actor, such as a hacker, leading to
unauthorized actions on a system [1]. Security vulnerabilities
often arise during the coding stage of the software develop-
ment life cycle [2]. Thus, it is important to identify vulnerable
components in the early stages of software development, as

the cost for finding and fixing errors increases dramatically
as the development progresses. Achieving early identification
of vulnerable components can thus help programmers build
highly secure and robust software products from the ground
up [3].

In order to prevent security breaches and detect vulnera-
bilities in source code during development, different analysis
techniques can be applied. Both static and dynamic analyzers
are able to uncover common vulnerabilities in software [2].
Static analyzers examine software by taking into consideration
its form, structure, content, or documentation without the
execution of programs. Dynamic analyzers repeatedly execute
programs with many test inputs on real or virtual processors
to identify weaknesses. However, both static and dynamic
analyzers are rule-based tools and thus limited to their hand-
engineered rules. They are not able to guarantee full test
coverage of code bases [4]. Moreover, these tools can not
handle incomplete or incorrect information very well – data
that does not have an associated rule can be ignored [5].

Alternatively, models and algorithms from the field of Ar-
tificial Intelligence (AI), especially Machine Learning (ML),
can be used for this purpose. ML techniques can be used
both for the intelligent analysis of huge amounts of data and
for the automation of different application processes [6]. A
useful property of many data-driven AI systems lies in the
automatic extraction of relevant features which are not obvious
to humans. For example, deep learning techniques have been
proved to be particularly useful for extracting relevant features
together with the building of effective data-driven models.
Currently, many cybersecurity companies try to build advanced
ML solutions for early threat detection. For example, ML
methods have been successful applied for the prevention of
personal information leakage [7]. A recent survey on the ML
based vulnerability analysis can be found in [8].

The problem to be solved in this work is the detection of
vulnerabilities in source code using ML. In order to develop
a data-driven model, we need a proper representation of the
source code. In this work, we focus on the study of graph-
based representations of source code and their ability in han-

VULNERABILITY DETECTION IN SOURCE CODE USING MACHINE LEARNING AND GRAPH BASED REPRESENTATIONS (FERAS ZAHER ALNAEM ET. AL.)

12 Kölner Beiträge zur technischen Informatik

dling errors in the syntax, structure and semantics of computer
programs. We have studied two different graph embedding
approaches. The first approach makes use of graph2vec for
creating graph embedding vectors. The generated graph em-
beddings are then classified by models such as SVM or
MLP. The second approach is based on the use of Graph
Neural Networks (GNNs) for both graph-level embedding and
vulnerability classification.

The rest of the paper is organized as follows. In Section II, a
review of some related noteworthy works is provided. Then, in
Section III, the project pipeline is presented, with detail expla-
nation and description of the proposed approaches. Section IV
demonstrates the experiments carried out for the evaluation of
different approaches. Finally, Section V summarizes the whole
paper.

II. RELATED WORK

In the fields of vulnerability detection and program analysis,
there exist various methods for the representation of source
code. One possibility is based on the extraction of software
metrics. Most commonly used metrics are size of the code,
complexity, code churn, developer activity and number of line
changes during code reviews, etc. For example, in [9]–[11], the
authors use manually designed metrics obtained from source
code and development history to predict whether a code base
is vulnerable. Although these metrics can be used successfully
to detect vulnerabilities, they do have some problems. For
example, two pieces of source code may have the same metric,
such as complexity, but have different behavior, resulting in
misclassification. In addition, these metrics cannot adequately
capture both the semantic and syntactic representation of the
source code, which is an important prerequisite for building
accurate predictive models [12].

Alternative approaches that are based on text mining can
be found in [4], [12], [13], where text mining and deep
learning approaches have been used for the automation of
threat detection. In these studies, source code are treated as
plain text sequences, and the potential use of natural language
processing (NLP) techniques has been explored for the pur-
pose of vulnerability detection. These approaches are based
on the assertion that programming languages have predictable
statistical properties that can be captured in statistical language
models. However, they have limitations in the expression of
logic and structures in source code.

In order to be able to capture semantic information in source
code, graph-based representations have been investigated in
[5], [14], [15]. Each source code fragment is transformed into a
graph model, e.g., in the form of an abstract syntax tree (AST),
control flow graph (CFG), data dependency graph (DDG), or
code property graph (CPG). For instance, the authors in [5] ex-
tract and convert the AST of a given source code fragment into
a binary AST and then into a numerical array. This approach
preserves structural and semantic information contained in
the source code. Based on this array representation and by
using a Convolutional Neural Network (CNN), vulnerability
prediction has been carried out.

III. APPROACH

Since graph representations are useful for capturing compre-
hensive program semantics, we decide to use representations
based on AST. Similarly to [5], we extract AST from each
piece of program code. However, different to [5], which gener-
ates hand-crafted features by converting graphs into numerical
arrays, we use embedding methods such as graph2vec and
GNN that are capable of generating automatically learned
features [16]

Fig. 1 visualizes the entire pipeline of our approach, includ-
ing both the learning of graph embedding and vulnerability
detection. First, source codes are taken as input. After a data
processing step, ASTs are extracted for representing source
codes as graphs. In order to generate graph embeddings from
the extracted ASTs and classify them, two approaches are
considered. The first approach is based on the use of a
transductive method1, namely graph2vec, which takes a graph
as input and transforms it into a lower dimension embedding
vector. The vector is then classified by ML models such as
SVM and MLP. Both act as binary classify and output a
prediction label, with 1 for vulnerable and 0 for non-vulnerable
code. The second approach is based on the use of an inductive
method 2, namely GNN for the generation of graph-level
embeddings as well as the binary classification.

A. Data Preprocessing

Data preprocessing is necessary for the analysis of source
code samples existed in a large multi-class dataset and make
proper preparations before using them for the training of ML
models. Since there exists different types of software vulnera-
bilities and their frequencies of occurrences are different, the
numbers of available samples in the different vulnerability
types are varying. This means, the dataset is imbalanced.
An ML model trained with imbalanced dataset has a biased
behavior, performing better for classes with more samples
and worse for classes with fewer samples. There are various
approaches to deal with this problem, e.g. via undersampling,
oversampling or generating synthetic data [17]. We use un-
dersampling to create balanced datasets of vulnerable and
non-vulnerable samples. The basic idea of it is to randomly
eliminate instances of the majority class so as to match the
number of instances with the minority class.

B. Extracting AST

The AST is a tree type data structure that represents the
semantic structure of a source code written in a formal
language. Each node of the tree denotes a construct occurring
in the text [18]. By using a parser called Clang available in
the clang index library (Cindex) [19], one can generate ASTs
from source codes.

1Transductive methods compute embeddings for a fixed set of graphs in
form of a lookup table or an embedding matrix. From a deep learning
perspective, these embedding methods are “shallow” in that they are not deep
models and optimise the output vectors directly [16].

2Inductive methods are more complex models that represent functions of
neighborhood aggregation to embed arbitrary graphs without the need of
reducing dimensionality or changing the structure of the graphs [16].

VULNERABILITY DETECTION IN SOURCE CODE USING MACHINE LEARNING AND GRAPH BASED REPRESENTATIONS (FERAS ZAHER ALNAEM ET. AL.)

Band 1/2022 13

Fig. 1. Project pipeline

Listing 1 shows an example of source code taken from
the Draper VDISC dataset [4]. The first three lines of it are
converted into a sequence of tokens, as is shown in Listing 2.

Listing 1. A source code from Draper VDISC dataset
GetFileType(gpointer handle)
{

WapiHanldeType type;
if(!_WAPI_PRIVATE_HAVE_SLOT (handle)) {

setLastError (Error_INVALID_HANDLE);
return(FILE_TYPE_UNKNOWN);

}
type = _wapi_handle_type (handle);
if (io_ops[type].getfiletype == NULL) {

SetLastError (ERROR_INVALID_HANDLE);
return(FILE_TYPE_UNKOWN);

}
return(io_ops[type].getfiletype ());

}

Listing 2. Example of a tokenized source code
"GetFileType": IDENTIFIER
"(": PUNCTUATION
"gpointer": IDENTIFIER
"handle": IDENTIFIER
")": PUNCTUATION
"{": PUNCTUATION
"WapiHandleType": IDENTIFIER
"type": IDENTIFIER
";": PUNCTUATION

After this step, the tokens are converted into a data structure
that yields an AST representation of the given source code,
as is shown in Fig. 2. Here, each graph node stands for
a corresponding functional construct existed in the C pro-
gramming language. It starts with the name of the code and
then defines a function declaration ”FUNCTION DECL” ,
which is the main function of that code sample. This main
function has two children, the first one is a parameter decla-
ration ”PARM DECL” and the second one is a compound
statement ”COMPOUND STMT”, which is a combination

Fig. 2. An extracted AST using Clang

of two or more simple statements. IF statements are de-
noted in this AST as ”IF STMT”. Unexposed expressions
”UNEXPOSED EXPR” refer to expressions whose location,
information, and children could be extracted, but the specific
kind operations is not exposed.

A further step is to obtain structural features from each
extracted AST, i.e., information about connections, indices and
degrees of each node in the graph. Here, the degree indicates
the depth of the node, i.e., the number of children it has.
The format for describing these structural features is shown in
Listing 3.

Listing 3. Structural representation of AST
edge= [start node, destination node]

feature= {"node index": degree}

For the AST shown in Fig. 2, its final AST with structural
representation is visualized in Listing 4:

VULNERABILITY DETECTION IN SOURCE CODE USING MACHINE LEARNING AND GRAPH BASED REPRESENTATIONS (FERAS ZAHER ALNAEM ET. AL.)

14 Kölner Beiträge zur technischen Informatik

Listing 4. The final structure of an extracted AST of a source code
{"edges": [[1, 2], [2, 3], [2, 4], [4, 5], [5, 6],
[5, 7], [4, 8], [8, 9], [8, 10]],
"features": {"1": 1, "2": 2, "3": 0, "4": 2, "5": 2,
"6": 0, "7": 0, "8": 2, "9": 0, "10": 0}}

C. graph2vec

Graph2vec is a neural embedding framework proposed by
Narayanan et al. in [20], where graph embeddings are learnt
in an unsupervised manner. The learning method is data-
driven. Hence it requires a fairly large set of graphs to learn
graph representations. It has the ability to capture structural
similarity, i.e., vectors representing structurally similar graphs
lie closely in space.

In order to build embedding vectors, the graph2vec model
of [21] has been used. It takes input files in JSON format. Each
file represents a graph and consists of two keys. The first key
is called ”edges” which corresponds to the edge list of the
graph, while the second key is ”features” which corresponds
to the node features. In this way, each file is organized in a
similar way as our structural AST representations, as is shown
in Listing 4.

Using a training dataset, the graph2vec model is hence
able to learn a vector embedding for each AST graph. This
means, each AST graph can be represented as a corresponding
embedding vector of size 128.

D. ML Classifiers

The generated embedding vectors can hence be classified by
an ML model for binary classification. Two models have been
studied. The first model is a linear SVM , which can deliver a
”best fit” decision to provided data [22]. The sklearn library is
used to build and train a linear support vector classifier with a
default regularization parameter C = 1 and a standard SVM
loss function called ”hinge”.

Fig. 3. MLP model

The second model is an MLP, which is an artificial neural
network trained with back-propagation. The architecture of our
MLP model is shown in Fig. 3. Training of the MLP is done by
using the PyTorch library. It contains three layers. The input

layer has 128 neurons which can take an embedding vector
with the size of 128. The hidden lay has a similar structure,
also with 128 neurons. The output lay has a single neuron.
The activation functions used are ReLU in the first two layers
and Sigmoid in the last layer.

E. GNN

Alternative to the graph2vec method, we have applied a
state-of-the-art GNN framework for node-, edge- and graph-
level embedding and prediction. As a deep learning model,
it uses a form of neural message passing in which vector
messages are exchanged between nodes [23]. Our GNN model
is built using the PyTorch Geometric library. Its architecture
can be seen in Fig. 4.

The GNN takes directly a graph as input and computes
its node-level embedding with an embedding size of 128.
It consists of three graph convolutional layers [24] with
ReLU as the activation function. In this way, each node can
learn features from its three-hop neighborhood and creates
its embedding vector. In order to create embedding at the
graph-level, two pooling layers are applied. The first layer is a
global mean pool layer, which returns graph-level-outputs by
averaging node features across the graph. This means, for a
single graph Gi, its output is computed as follows:

ri =
1

Ni

Ni∑

n=1

Xn, (1)

where X is the node feature matrix and N represents the
number of nodes.

The second layer is a global max pool layer, which returns
graph-level-outputs by taking the channel-wise maximum
across the node dimension. This means, for a single graph,
its output is computed as follows:

ri = maxNi
n=1Xn. (2)

As the output of the above illustrated embedding process,
an embedding vector of size 256 is created. For the purpose
of performing vulnerability detection based on this embedding
vector, the GNN model attaches three full-connected layers on
its top and they act as a binary classifier. This classifier has
the same structure of the MLP model described in Section
III-D. The only difference is that its input size is 256. During
the back-propagation process, all embeddings as well as the
weights of upper layers in the GNN model are trained toward
achieving the best prediction results on the training dataset.

For the training of both the GNN and MLP models, we
use the Binary Cross Entropy (BCE) as loss function and the
Adam optimizer is initialized with a learning rate of 0.01.

IV. EXPERIMENTAL EVALUATIONS

For the experimental evaluation of the proposed approaches,
we use a public dataset called Draper VDISC [4], which
contains 1.27 million of synthetic and real function-level
samples of C and C++ code mined from open source software.
The samples have been labelled via static analysis for potential
vulnerabilities. The dataset contains various vulnerability types

VULNERABILITY DETECTION IN SOURCE CODE USING MACHINE LEARNING AND GRAPH BASED REPRESENTATIONS (FERAS ZAHER ALNAEM ET. AL.)

Band 1/2022 15

Fig. 4. GNN model

defined by CWE (Common Weakness Enumeration). Based on
the CWE types, we split the whole dataset into five groups.
Table I shows the distributions of samples in all five groups
of CWE vulnerabilities.

As can be observed from the table, the Draper VDISC
dataset is highly imbalanced as the number of positive (i.e.
vulnerable) samples is far less than the number of negative
(non-vulnerable) samples due to the fact that they are collected
from real projects. Using the undersampling method described
in Section III-A, this problem is fixed by making two config-
urations. One of them is to create per-vulnerability models to
be trained only on samples containing the same vulnerability
type so as to measure the detectability of different vulnerability
types in a consistent manner. The second configuration is to
create a new category (named as CWE-COMBINED) which
contains vulnerable samples of all vulnerability types and non-
vulnerable samples of any vulnerability type. In this setting,
a sample code will be classified as being vulnerable or not
without differentiating the exact type of vulnerability.

As a consequence, we have now arrived at six balanced
datasets. They are CWE-119, CWE-120, CWE-469, CWE-
476, CWE-OTHERS, CWE-COMBINED, with each having
the same number of positive and negative samples. For exam-
ple, the CWE-120 category contains 47660 ”vulnerable” and
the same amount ”non-vulnerable” samples after performing
under-sampling. Table II shows the amount of samples belong-
ing to each of the six datasets after performing under-sampling.

For the training of the MLP and GNN models, each dataset
has been divided into three disjoint subsets for training, vali-
dation and test purpose. The distribution is 80% for training,
10% for validation, 10% for test.

We use the learning curve as an estimate of the general-
ization capability of a model. During the training process, we
apply a form of early-stopping [22]. The purpose is to prevent
over-fitting. If there is no improvement in the validation loss
after five epochs, training will be stopped.

Fig. 5 shows the learning curves resulted from the training

of MLP and GNN on the balanced CWE-120 dataset. As
can be observed, for the MLP model, both training loss and
validation loss start at high values (train loss = 0.694,
val loss = 0.685) and go down until the validation loss starts
to increase again and does not improve anymore (at the 50th
epoch). So the training stops at 55th epoch. As contrast, the
GNN model tends to over-fit the data faster than the MLP does
and it stops after 6 epochs, since the validation loss already
starts to increase from 0.564 after the first epoch and continues
to swing later until it stops at 0.599.

Fig. 5. Learning curves of (a) MLP and (b) GNN models on CWE-120

A similar behavior happens when training both models on
the rest of vulnerability categories, which can be seen in Fig.
6, 7, 8, 9 and 10 in the Appendix. These figures show that the
MLP takes more epochs to obtain the lowest possible train−
loss compared to the GNN model. The val − loss starts to
fluctuate in the case of GNN, whereas it is more stable by in
the case of MLP. This indicates that GNN can be trained faster
and generalizes better, while it tends to over-fit the training
data sooner (i.e. within fewer epochs) than MLP.

VULNERABILITY DETECTION IN SOURCE CODE USING MACHINE LEARNING AND GRAPH BASED REPRESENTATIONS (FERAS ZAHER ALNAEM ET. AL.)

16 Kölner Beiträge zur technischen Informatik

TABLE I
THE DISTRIBUTION OF SAMPLES TO EACH VULNERABILITY TYPE IN DRAPER VDISC DATASET

CWE ID Frequency % Description
CWE-120 38.2% Buffer copy without checking size of input (’Classic Buffer Overflow’)
CWE-119 18.9% Improper restriction of operations within the bounds of a memory buffer
CWE-469 2.0% Use of pointer subtraction to determine size
CWE-476 9.5% NULL pointer dereference
CWE-Other 31.4% Improper input validation, use of uninitialized variable, buffer access with incorrect length value, etc.

TABLE II
NUMBER OF POSITIVE AND NEGATIVE SAMPLES BELONGING TO EACH

CATEGORY AFTER UNDER-SAMPLING

Class Vulnerable Non-vulnerable
CWE-120 47660 47660
CWE-119 24157 24157
CWE-469 2625 2625
CWE-476 12094 12094
CWE-OTHERS 35028 35028
CWE-COMBINED 82411 82411

In order to evaluate how well the models can detect vulnera-
bility, we use the following performance metrics: classification
accuracy, precision, recall and F1-score, all calculated using
only the test samples of each CWE dataset. The results are
shown in Table III.

TABLE III
SOURCE CODE VULNERABILITY CLASSIFICATION PERFORMANCE ACROSS

EACH VULNERABILITY CLASS AND BASED ON DIFFERENT ML MODELS

Model Accuracy Precision Recall F1

CWE-120
SVM 0.665 0.667 0.677 0.672
MLP 0.681 0.682 0.686 0.684
GNN 0.671 0.637 0.779 0.701

CWE-119
SVM 0.704 0.697 0.715 0.706
MLP 0.719 0.721 0.723 0.722
GNN 0.731 0.716 0.779 0.746

CWE-469
SVM 0.693 0.732 0.631 0.678
MLP 0.660 0.634 0.776 0.698
GNN 0.746 0.752 0.761 0.756

CWE-476
SVM 0.559 0.582 0.423 0.490
MLP 0.562 0.573 0.574 0.574
GNN 0.543 0.532 0.660 0.589

CWE-OTHERS
SVM 0.621 0.627 0.601 0.614
MLP 0.640 0.663 0.598 0.629
GNN 0.625 0.620 0.657 0.638

CWE-COMBINED
SVM 0.631 0.636 0.615 0.625
MLP 0.643 0.637 0.675 0.655
GNN 0.638 0.621 0.708 0.661

Looking at the obtained F1-scores in Table III, it can be
observed that SVM, MLP and GNN models all have obtained
better F1-scores on the detection of vulnerability tpyes of
CWE-120, CWE-119 and CWE-469 than on the rest CWE

types. The GNN model wins by achieving the best F1-score
on each CWE dataset.

Shown in Table IV is the comparison of our approach with
[5]. Both use the Draper VDISC Dataset for model learning.
The only difference lies in the number of samples available.
Because they use only codes written in C language, whereas
we use both C and C++ codes, our dataset is larger. Although
the absolute number of samples used by us is bigger, the
distribution of training, validation and test data is the same,
i.e., 80%:20%:20%. Shown in Table IV is the performance
comparison of vulnerability detections based on F1-scores. An
obvious increment of F1-score for nearly all CWE datasets has
been achieved by our approach, with the only exception on the
CWE-476 dataset.

TABLE IV
PERFORMANCE COMPARISON BASED ON F1-SCORES

Related work [5] Our work
Model CNN SVM MLP GNN

CWE-120 0.427 0.672 0.684 0.701
CWE-119 0.509 0.706 0.722 0.746
CWE-469 0.090 0.678 0.698 0.756
CWE-476 0.598 0.490 0.574 0.589
CWE-OTHERS 0.270 0.614 0.629 0.638

V. CONCLUSION

In this work, we have used several ML algorithms to learn
vulnerability patterns in C/C++ source code based on Draper
VDISC dataset. First we generate ASTs which converts source
code as a graph representation with detail structural informa-
tion. Then we have proposed two approaches for the learning
of graph embeddings, leading to vector-based representations
of the input space. The first approach uses graph2vec as
the embedding method, which takes a graph as input and
transforms it into a lower dimension embedding vector. The
embedding vectors can then be classified using either SVM
or MLP for vulnerability detection. The second approach uses
a GNN model to achieve a graph-level embedding as well
as a binary classification. The second approach converges
faster and performs better detection than the first one. Based
on experimental results and comparative studies, it has been
shown that the proposed approaches are able to effectively
generate graph embeddings, detect vulnerability in source
codes, and achieved improvement in detection accuracy over
the state-of-the-art research work.

VULNERABILITY DETECTION IN SOURCE CODE USING MACHINE LEARNING AND GRAPH BASED REPRESENTATIONS (FERAS ZAHER ALNAEM ET. AL.)

Band 1/2022 17

REFERENCES

[1] X. Sun, Z. Pan, and E. Bertino, Artificial Intelligence and Security,
1st ed. Essex, England: Springer, Cham, 2019, eBook ISBN 978-3-
030-24268-8.

[2] K. Filus, P. Boryszko, J. Domańska, M. Siavvas, and E. Gelenbe,
“Efficient feature selection for static analysis vulnerability prediction,”
Sensors, vol. 21, no. 4, 2021.

[3] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras, “Static
analysis-based approaches for secure software development,” in Security
in Computer and Information Sciences, E. Gelenbe, P. Campegiani,
T. Czachórski, S. K. Katsikas, I. Komnios, L. Romano, and D. Tzovaras,
Eds. Cham: Springer International Publishing, 2018, pp. 142–157.

[4] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” 12 2018, pp. 757–
762.

[5] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, and
L. Karaçay, “Vulnerability prediction from source code using machine
learning,” IEEE Access, vol. 8, pp. 150 672–150 684, 2020.

[6] I. H. Sarker, “Machine learning: Algorithms, real-world applications
and research directions,” SN Computer Science, vol. 2, no. 12, 03 2021.
[Online]. Available: https://doi.org/10.1007/s42979-021-00592-x

[7] S. Halder and S. Ozdemir, Hands-On Machine Learning for
Cybersecurity. Packt Publishing, 2018. [Online]. Available: https:
//books.google.de/books?id=2bj7uQEACAAJ

[8] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey,” ACM Comput. Surv., vol. 50, no. 4, Aug. 2017. [Online].
Available: https://doi.org/10.1145/3092566

[9] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6,
p. 772–787, Nov. 2011. [Online]. Available: https://doi.org/10.1109/
TSE.2010.81

[10] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying
the characteristics of vulnerable code changes: An empirical study,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 257–268.
[Online]. Available: https://doi.org/10.1145/2635868.2635880

[11] Y. Shin and L. Williams, “An empirical model to predict security
vulnerabilities using code complexity metrics,” in Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 315–317. [Online].
Available: https://doi.org/10.1145/1414004.1414065

[12] H. Dam, T. Tran, T. Pham, S. Ng, J. Grundy, and
A. Ghose, “Automatic feature learning for predicting vulnerable
software components,” IEEE Transactions on Software
Engineering, vol. 47, no. 1, pp. 67–85, 2021, cited By 17.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85056740888&doi=10.1109%2fTSE.2018.2881961&partnerID=
40&md5=14503f1ab61cc464c87cf150bafa5bb1

[13] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
and Y. Zhong, “Vuldeepecker: A deep learning-based system for
vulnerability detection,” Proceedings 2018 Network and Distributed
System Security Symposium, 2018. [Online]. Available: http://dx.doi.org/
10.14722/ndss.2018.23158

[14] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari, “Learning to
map source code to software vulnerability using code-as-a-graph,” 2020.

[15] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign:
Effective vulnerability identification by learning comprehensive
program semantics via graph neural networks,” vol. 32, 2019,
cited By 36. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85089940996&partnerID=40&md5=
360e4ac4b80f50a82fbee08b6e8712d6

[16] M. Grohe, “Word2vec, node2vec, graph2vec, x2vec: Towards a theory
of vector embeddings of structured data,” in Proceedings of the 39th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, ser. PODS’20. New York, NY, USA: Association for Com-
puting Machinery, 2020, p. 1–16.

[17] J. Brownlee. (2020, 01) Random oversampling and undersampling
for imbalanced classification@ONLINE. Last accessed 18 September

2021. [Online]. Available: https://machinelearningmastery.com/random-
oversampling-and-undersampling-for-imbalanced-classification/

[18] P. D. Thain, Introduction to Compilers and Language Design, 2nd ed.,
2021, iSBN 979-8-655-18026-0.

[19] (2021, 04) Clang indexing library bindings.
Last accessed 5 July 2021. [Online]. Avail-
able: https://libclang.readthedocs.io/en/latest/index.html?highlight=
expression#clang.cindex.CursorKind.is expression

[20] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning distributed representations
of graphs,” CoRR, vol. abs/1707.05005, 2017. [Online]. Available:
http://arxiv.org/abs/1707.05005

[21] B. Rozemberczki, “A parallel implementation of ”graph2vec: Learning
distributed representations of graphs” (mlgworkshop 2017).” 2017.
[Online]. Available: https://github.com/benedekrozemberczki/graph2vec

[22] A. Geron, Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems,
1st ed. O’Reilly Media, Inc., 2017.

[23] J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl, “Neural
message passing for quantum chemistry,” vol. 3, 2017, pp. 2053–
2070, cited By 387. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85045254838&partnerID=40&md5=
2752da1248c5ee0e4ce7c3d3d0b7c0f3

[24] T. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” 2017, cited
By 2519. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85086180249&partnerID=40&md5=
de472b43f496c76073ce3493990482e3

APPENDIX

Fig. 6. Learning curves of (a) MLP and (b) GNN models on CWE-119

VULNERABILITY DETECTION IN SOURCE CODE USING MACHINE LEARNING AND GRAPH BASED REPRESENTATIONS (FERAS ZAHER ALNAEM ET. AL.)

18 Kölner Beiträge zur technischen Informatik

Fig. 7. Learning curves of (a) MLP and (b) GNN models on CWE-469

Fig. 8. Learning curves of (a) MLP and (b) GNN models on CWE-476

Fig. 9. Learning curves of (a) MLP and (b) GNN models on CWE-OTHERS

Fig. 10. Learning curves of (a) MLP and (b) GNN models on CWE-
COMBINED

VULNERABILITY DETECTION IN SOURCE CODE USING MACHINE LEARNING AND GRAPH BASED REPRESENTATIONS (FERAS ZAHER ALNAEM ET. AL.)

Band 1/2022 19

Design and Evaluation of a Quality
Measurement Framework for News and

Broadcasting Applications

Lukas Bluhmki
Matric Number: 11135342

Dept. of Comm. Sys. & Networks
University of Applied Sciences Köln

Cologne, Germany
Lukas.Bluhmki@smail.th-koeln.de

In Cooperation With:

Westdeutscher Rundfunk
Department of Program Delivery

Appellhofplatz 1, 50667
Cologne, Germany

Abstract— In order to cope with the growing demands of
commissioning, maintaining, and monitoring large network
infrastructures, modern broadcasting companies such as
Westdeutscher Rundfunk need tools for rapid troubleshooting.
Using the software-based measurement system vNet Fusion, a
measurement framework could be designed that provides a tool
for rapid troubleshooting. To control the software by means of
an additional web framework, the NETCONF and YANG API
was leveraged. The front and back end stack was designed using
the Django framework. Thus, the basis for a powerful tool could
be created, which will be available for all employees of
Westdeutscher Rundfunk.

Keywords— Network Measurements, vNet Fusion, LMAP,
NETCONF, YANG, Django

I. INTRODUCTION
The increasing influence of digitization with the

roll-out of Ethernet and IP infrastructures is also
gaining the upper hand in the field of broadcasting.
A modern broadcasting company is faced with the
task of developing large-scale troubleshooting
methods in addition to the in-depth knowledge
required to operate these structures. Distributing
audio & video (AV) streams over large networks,
locations and infrastructures requires trained
personnel and good preparation.

While modern companies are pioneers in
moving to routed, packet-switched networks, WDR
still operates many hybrid solutions of conventional
transmission methods and IP transmissions. This is
due to the fact that technical approaches for
software-defined networking are only gradually
finding their way into the many special solutions
used by broadcasters. However, with developments
in the area of "Everything as a Service" or cloud
environments, the shift to virtual environments in
broadcasting is also being driven forward.

This is where the software-based measurement
system vNet Fusion [1] developed by Viavi
Solutions comes in. It is based on the concept of
distributing virtual machines and instances to build

networks of measurement points. With the help of
a controller and collector, these are orchestrated and
managed. The architecture of this system is based
on the Large-Scale Measurement of Broadband
Performance (LMAP) framework [2]. This means
that the measurement points act autonomously as
individual instances and can be activated by
instructions from the controller. In addition, the
collected measurement data is communicated to the
collector, which then processes it.

VIAVI's technical solutions are aimed at
network engineers and technicians who want to
solve complex problems with great expertise. In
this work, however, the goal was to develop a tool
that offers numerous employees from different
areas a way to troubleshoot. This should support the
daily work and simplify processes. Both the
specifics and peculiarities of a broadcasting
company were to be taken into account. In order to
meet these requirements, an analysis of the
environment had to be carried out before
development could start. The basis for this project
was the software vNet Fusion, the provided
NETCONF & YANG API and the web framework
Django.

II. FUNDAMENTALS
A. VIAVI vNet Fusion

VIAVI's vNet Fusion enables software-based
lifecycle management on different OSI layers. This
is done on the basis of the standards Y.1564
(EtherSAM) [3], RFC 6349 (TrueSpeed) [4] or
RFC 5357 (TWAMP) [5]. Fusion seamlessly
integrates into the rest of the environment of the
VIAVI devices and can thus be seen as a platform
for measurements of various kinds.

The virtual machines provided by Fusion act as
measurement points and can communicate with

DESIGN AND EVALUATION OF A QUALITY MEASUREMENT FRAMEWORK FOR NEWS AND BROADCASTING APPLICATIONS (LUKAS BLUHMKI)

20 Kölner Beiträge zur technischen Informatik

each other as well as with hardware devices. This
approach is clearly illustrated in Fig. 1. Here, the
architecture is divided into a so-called Control
Plane and a Data Plane. While the control plane
contains all processes and instances for
configuration, orchestration and management, the
actual measurements take place on the data plane.

Fig. 1. The vNet Fusion Framework With Test Support Regarding to a)
Y.1564 b) RFC 6349 c) RFC 5357 [1]

Fig. 1 also shows that the controller and collector
can be accessed via the NETCONF & YANG and
the KAFKA API. The Fusion internal Web UI
enables all processes to be controlled and managed.
The virtual machines (VMs) can be found in the
data plane. In addition, the system provides a client
software that can be used as a measuring point on
one of the common operating systems. The left side
of the data plane contains the hardware-supported
devices: Beside the intelligent SFP, which was
titled as JMEP, in addition the devices MTS and
NSC. The relationships listed at the bottom of the
figure show the interoperability of the instances
with respect to their measurement methods.
B. NETCONF & YANG

The Network Configuration (NETCONF)
protocol [6][7] is designed to meet complex
requirements for the configuration, management,
and operation of network devices. The
communication protocol is based on a layer
principle. At the top level, information is packed
into a secure transport layer initiated by SSH or
similar protocols. The remaining layers (messages,
operations, and content) are filled with information
according to an XML structure. The content can be
transported in the form of XML or JSON.

The communication is initiated between the
client (initiator) and the server (responder). The
NETCONF server is implemented on the device to
be controlled. The data exchange takes place via
Remote Procedure Calls (RPCs). In addition to the
status display, these also enable the transmission of
parameters to be configured or tasks to be

performed. The server responds to an RPC request
either with a reply, an error or a simple OK.

For the communication with the vNet Fusion
System, VIAVI has defined a special RPC
operations. These include Login, renewToken,
startMATest, getReports or Logout. [8]

In order to have a standardized structure
specification for the control and configuration data
to be transmitted, the modeling language YANG
[9][10] is used. In YANG, data is organized in a
hierarchical tree structure whose individual
components are referred to as nodes. Each
component can contain further nodes. The YANG
models are defined by the manufacturer of the
devices API, so that they can be controlled
according to prescribed standards.
C. Django Web Framework

The Django Web Framework is python-based
and was released as free and open-source software.
It provides a framework that simplifies the
development of web applications. It is possible to
start the application via the integrated web server.
To make the process of development efficient, the
software provides classes, functions, and various
tools [12].

Fig. 2. Django Framework Model-View-Controller Architecture [11]
[modified]

To understand how Django works, the Model-
View-Controller (MVC) architecture can be
considered (Fig. 2) [12]. The client calls the web
application by sending an HTTP request. The called
URL is evaluated by the URL.py script and
forwarded to the backend logic in Views.py.
Communication to dynamic content in databases
can also take place there. This communication is
done via an object-relational mapping (Model.py).
Once processing is complete, the information is
forwarded to the templates. These contain
information about the front end (HTML,
JavaScript, etc.) and return the collected, produced
data to the client via the HTTP Response.

 -+-
 +------------------------+ |
 | Fusion Web UI | |
 [API] +------------+-----------+ [API] | Control
 NETCONF/ <--> | Controller | Collector | <--> KAFKA | Plane
 YANG +------------------------+ Export |
 | |
 +---------+---------+---+----+--------+-----------+ ---
 | | | | | | |
 +---+--+ +--+--+ +--+--+ +-+--+ +-+--+ +----+------+ |
 | JMEP | | MTS | | NSC | | VM | | VM | | Client SW | |
 +------+ +-----+ +-----+ +----+ +----+ +-----------+ | Data
 | Plane
 <-----------------><-------> |
 a)b) a)b)c) |
 <-------> <-----------> |
 a)b)c) a)b) |
 <----------------------------> |
 a)c) -+-

 +-----------+ -+-
 |Web Browser| |
 +-----------+ | Client
 ^ | |
 [HTTP RESPONSE] | | [HTTP REQUEST] ---
 | v |
+-----------+ +-----------+ +-----------+ |
|Templates |---->|Controller |---->|URL.py | |
+-----------+ +-----------+ +-----------+ |
 ^ | |
 | +-----------+ | | Django
 +------------|Views.py |<----------+ | Framework
 +-----------+ |
 ^ | |
 | | [Object r/w] |
 | v |
 +-----------+ |
 |Model.py | |
 +-----------+ -+-

DESIGN AND EVALUATION OF A QUALITY MEASUREMENT FRAMEWORK FOR NEWS AND BROADCASTING APPLICATIONS (LUKAS BLUHMKI)

Band 1/2022 21

III. REQUIREMENTS ENGINEERING
A suitable requirements engineering is

indispensable for the success of a modern software
project. In this context, it is useful to apply a model
for the orderly execution of these processes. In this
case, the Twin Peaks model [13] was chosen, which
is characterized by the fact that both requirements
and architecture are in an agile relationship to each
other. Continuous immersion in the subject matter
results in a more pronounced picture of both the
requirements and the architecture of the system.
This increase in the level of detail leads to the
completion of the system.

In order to clearly define the requirements to be
considered, they were divided into four topics: Test
Procedure, Results Handling, User Interface Design
and Workflow Integration. The identification of
these requirements was gathered through a variety
of field reports and analysis of problem scenarios.
A. Test Procedures

The examination of the test requirements
revealed that common troubleshooting scenarios
can be located in the area of service provisioning as
well as monitoring. In addition, the tests should take
into account the analysis of a committed
information rate (CIR) as well as the measurement
parameters packet loss, latency and jitter. In
addition to the comparison of common protocols of
the Ethernet, IP, TCP and UDP stack, it would also
be desirable to be able to analyze newer
developments such as UDT [14] and QUIC [15].
Since the development should be clearly optimized
for use in a broadcast environment, an
implementation of measurements of AV protocols
like SIP, RTP, RTMP, SRT, or RIST would be
appreciated.
B. Results Handling

Another important point is the processing of the
determined results in the form of data sets. These
should be stored in a suitable format and
permanently available. In addition, this storage
should allow both the display of detailed
information in a user interface and be exportable for
other purposes. This could be ensured with an API.
The data sets should also be available in a multi-
user environment and be able to be provided with
meta data.
C. User Interface Design

The success of the tool to be developed will be
largely determined by how intuitive and easy to use
the user interface is. For the wide range of different

users, it would therefore be conceivable to provide
different modes (Beginner and Expert) that vary in
the complexity of the available functions. As shown
in Fig. 3, the user interface should provide visual
feedback on the measurement that is easy to
understand.

Fig. 3. Schematic Sketch of the User Interface

The data should be visualized in a diagram and
an easy-to-understand signal should provide
information about the suitability of the measured
service. As can be seen in the upper right of Fig. 3,
the user interface could use various links in a
navigation to forward to the results and the creation
of predefined templates. It would also be desirable
if the user interface could be found in the corporate
design of Westdeutscher Rundfunk (WDR), in
order to enable seamless integration into the
existing environment.
D. Workflow Integration

WDR has a technical infrastructure that places
certain requirements on the new tool to be
developed. Since the internal network extends over
many locations, providers, and even national
borders, it is necessary to develop an easily scalable
and distributable system. In the best case, the user
should get along without the use of additional
technology or devices. This ensures mass
compatibility. In addition, the measurement tool
should be universally and decentralized applicable.
Since the average employee owns both a company
cell phone and a laptop, it would make sense to use
these devices to run tests.

IV. DESIGN

A. Overview
To get an overview of how the different

components were put together to form a new
measurement framework, Fig. 4 provides
information. The Quality Measurement Framework
results from from the LMAP Framework, which is
represented by vNet Fusion, and the Django Web
framework. The Quality Measurement Framework
(QMF) Orchestrator can be seen as an instance that
combines the different services into a composition.
These services include e.g. views, templates and

 WDR Netztest [Run Test] [Results] [Templates]
.

 ^ Values +--Feedback--+
 | _/\ | _ |
 | /\ / \ /\ | (_) green |
 | / _/ \/ \ ==> | (_) yellow |
 | / \ | (_) red |
 | | |
 +-------------------> Time +------------+

DESIGN AND EVALUATION OF A QUALITY MEASUREMENT FRAMEWORK FOR NEWS AND BROADCASTING APPLICATIONS (LUKAS BLUHMKI)

22 Kölner Beiträge zur technischen Informatik

models of the Django framework, the RPC &
Netconf library and the web server functionality.

 The control protocols that are responsible for
the exchange of configuration data can also be
identified. Looking at the framework from an SDN
perspective, the communication via NETCONF
between Orchestrator and vNet Fusion can be seen
as a northbound API. The internal data exchange
between Controller & Collector and test points via
RESTCONF, on the other hand, represents the
southbound API. The transported configurations
according to the YANG modelling models are
identical. Communication between the access
device and the orchestrator takes place by default
using HTTP. As described in Fig. 3, the test point
can be a VM, client software, as well as a hardware
device such as JMEP, MTS, or NSC.

Fig. 4. The Composition of the Quality Measurement Framework From
Fusion and Django Including Used APIs and Protocols

The web application to be designed will
henceforth be given the working title "Netztest",
engl. net(work) test. With vNet Fusion pre-
integrated into the environment, the focus was on
developing the back and front end using Django.
The decision to use the Django web framework
came about for a variety of reasons. The server-side
framework offered the greatest compatibility with
the requirements of the tool.
B. Back End Stack

The central link between the frameworks is the
library Netconf-Client [16]. It was selected after
evaluating many different libraries from different
programming languages. Since vNet Fusion uses its
own NETCONF operations, these also had to be
configurable via the library. The most intuitive way
to implement this was via the Netconf-Client
library. An SSH connection is established via the
connect_ssh function. This can transfer
customizable RPCs using the manager() class.

To be able to call the RPC operations provided
by Fusion such as Login, renewToken, startMATest,
getReports or Logout in the backend [8], a library

was designed. The architecture of this library can be
seen in Fig. 5. The upper half of the image describes
the built of the RPC frame, while the lower half
contains operations, content, and results processing.

Fig. 5. Architecture of the Designed RPC Library

Most functions use the function rpcRequest() to
build the RPC. These include rpcLogin(),
rpcLogout(), getTokenDetails(), stopTest(),
getMAList(), getLatestReport(), and
getFullReport(). An exception applies to the
startTest() operation. Since this has a certain
complexity due to the transfer of numerous
configuration parameters and varies greatly
depending on the test type (Y.1564 or RFC 6349),
it was decided not to build the RPC using
rpcRequest(). Instead, XML files are available for
each test type, which represent the basic structure
of the call. The configuration parameters are written
into these files and sent as a whole. Listing 1 shows
how a valid RPC is assembled from the operation
and then submitted via the manager (mgr) and the
dispatch() function.

Listing 1. RPC Request Function Design Code Example from rpc.py

The central framework logic can be found in the
Django Views. This is where the processes for the
individual pages are processed and the content is
generated. The views start RPCs, accept HTTP
POST & GET values, read & write the dynamic
data of the databases via models and pass the results
to the templates. The developed framework has
seven different views and corresponding templates.
• The Login & Logout View uses the

authentication tools of the Django
framework. It compares the user data sent by
the template via HTTP POST with database

 -+-
+-----------------------------+ +--------------+ |
| QMF Orchestrator +--------+ Access | | Django
| (Django, RPC & Netconf Lib) | HTTP | Device | | Web
+-----------------------+-----+ +--------------+ | Framework
 NETCONF | |
 (Northbound API) | ---
+-----------------------+-----------------------------+ |
| Controller & Collector | |
+-----------------------+--+--+-----------------------+ |
 RESTCONF | | | | LMAP
 (Southbound API) | | | | Framework
 +------------------+ | +-------//---------+ | (vNet
 | | | | Fusion)
+----+----+ +----+----+ +----+----+ |
| Test | | Test | .. | Test | |
| Point 1 | | Point 2 | | Point n | |
+---------+ +---------+ +---------+ |
 -+-

 RPC +-----------------------------+ +-------------+
 Framework | rpcRequest() | | Test XML |
 Build +-----------------------------+ | File |
.|. .|. .|. .|. .|. .|. .|. . .|.|. .
 | | | | | | | | |
 +--+---+---+---+---+---+---+--+ | |
 Operations, | rpcLogin(), rpcLogout(), | +-------------+
 Content | getTokenDetails(), | | | | |
 & Results | stopTest(), getMAList(), | +-------------+
 Processing | getLatestReport(), | | startTest() |
 | getFullReport() | | |
 +-----------------------------+ +-------------+

def rpcRequest(operation):

 rpc = """
 <action xmlns="http://tail-f.com/ns/netconf/actions/1.0">
 <data>
 <""" + operation[0] + """
xmlns="http://viavisolutions.com/ns/yang/vtest">"""

 for i in operation[1]:
 rpc = rpc + "\n<" + i[0] + ">" + i[1] + "</" + i[0] + ">"

 rpc = rpc + "\n</" + operation[0] + """>
 </data>
 </action>"""

 return mgr.dispatch(rpc)

DESIGN AND EVALUATION OF A QUALITY MEASUREMENT FRAMEWORK FOR NEWS AND BROADCASTING APPLICATIONS (LUKAS BLUHMKI)

Band 1/2022 23

entries and manages sessions to log the user
in or out.

• The Home View has no task except to output
the associated template and provide static
information. No processing of dynamic data
takes place.

• With the Templates View the user has the
possibility to create and edit templates for
recurring troubleshooting scenarios. This is
the basis to start network tests quickly and
easily without having to make recurring
configurations. Besides the CIR, there is the
possibility to specify a duration and to name
the test. The configuration options were
deliberately kept simple.

• The network measurements are started and
performed using the TestAdd, Test, and
TestRefresh Views. The functionality
includes the selection of the network
connection to be measured, as well as the
selection of a template. Once the test is
started, the data is visualized live and
refreshed using a jQuery command.

• The Result View allows the user to view or
evaluate measurements that have already
been performed. In addition to the overview,
a detailed view with extended information is
also provided.

All views have corresponding templates which
contain the frontend for user interaction. These
have been designed and developed to be easy to use
without the need for in-depth network engineering
knowledge.

The final link in the Django architecture (Fig. 2)
is formed by the so-called models, which represent
tables in a database. Two tables have been created.

The Templates table contains the configuration
data generated by the user to start tests. For this
purpose, the fields Title, Type, CIR, and Duration
have been created. The more complex Results table
contains several fields. Besides date, template
parameters, and selected measurement agents,
fields for the measurement data were created. These
include the bidirectional values for the data rate and
the Round Trip Time (RTT). Furthermore, the
model contains functions that calculate the mean of
the measured values and determine a KPI for the
visual feedback of the suitability of the connection.
The functions are also mapped to the objects and
can be used like field entries.

To understand the interaction between Model,
Template, View, RPCs and Static Content, the
flowchart in Fig. 6 can be consulted.
C. Front End Stack

A useful tool needs a well-designed user
interface. Even if the focus of this work is based on
the development of the backend functionality, care
was taken to meet the requirements of the user
interface.

Django Templates offer the possibility to link
the HTML, CSS, JavaScript and dynamic content
using the Django Template Language (Python)
[17]. The front end was created with the help of the
CSS framework Bootstrap [18]. The framework
offers a responsive design by default, which meets
the requirements of device compatibility. In
addition, care was taken to take into account the CI
of WDR. In the test and results templates, the
Javascript library Chart.js [19] was applied to
visualize the results. Also Javascripts that were
already integrated in the Bootstrap framework have
been used to simplify the interaction.
D. Full Stack

Fig. 6 illustrates the interaction of the
frameworks components. If the flowchart is viewed
from bottom to top, the models, the various RPC
functions, the views, the templates and the static
content can be identified.

Fig. 6. Model, View, Template, RPC and Static Content Interaction of the
Quality Measurement Framework

It can be seen that the two models are used in the
views "templates()", "test()" and "results()". The
implemented functions of the models are also listed
in the right-hand area of the fields. In addition, it
can be seen in the RPC Library that, with the
exception of "startTest()", all functions refer to the

DESIGN AND EVALUATION OF A QUALITY MEASUREMENT FRAMEWORK FOR NEWS AND BROADCASTING APPLICATIONS (LUKAS BLUHMKI)

24 Kölner Beiträge zur technischen Informatik

basic function "rpcRequest()". Additionally, the
information exchanged between the templates and
views via HTTP POST, GET and the function
parameters is illustrated. It is also made clear that
the templates are all based on the "base.html"
template, which provides the framework for the
frontend. The CSS files, images and test
configuration XML files can be considered static
content.

V. EVALUATION
In order to evaluate the suitability and

consideration of previously established
requirements, a test environment was built. This
was mainly used to perform series of measurements
to verify the functionality of the test procedures.
Other requirements like the result handling, the user
interface design or the workflow integration could
be evaluated in a different way.

Fig. 7 shows that the measurement was
performed between two buildings of the
headquarters in Cologne. The first virtual test agent
(vTA) was located on the host server, which also
hosted both the vNet Fusion Controller and the
Netztest VM. The second VM was hosted on a mini
PC in another building. Both management and test
connections passed through the WDR network and
were not logically separated. Since the focus was on
triggering the functions implemented in the
backend and not on the measurement itself, there
was nothing preventing this approach.

Fig. 7. Test Environment for the Prototype Evaluation

The central link of the Measurement Framework
is the visual feedback within the measurement
process. This is done via diagram and in a
simplified form, after completion of the test as a
traffic light. The measurement process checks the
connection for the previously set CIR and provides
the user with feedback as to whether this has been
achieved or not. To test this function a traffic
control (Fig. 7: TC) was implemented at the
physical ingress interface of the Mini PC using the

Linux package Iproute2 [20]. Three test runs took
place:

1. No Traffic Shaping
Max Bandwidth: As provided

2. Light Traffic Shaping
Max Bandwidth: 5 Mbps

3. Heavy Traffic Shaping
Max Bandwidth: 100 kbps

Listing 2 shows how the traffic control (tc) was
applied. For this purpose, a classless queuing
discipline (qdisc root) was assigned to the virtual
bridge "Test" (virbrTE) as a substitute for the
physical interface eth1 of the Mini PC. The token
bucket filter (tbf) was applied with a maximum data
rate of 5 Mbps and a burst size of 32 kbit. In
addition, all packets remaining in the queue for
more than 400 ms are discarded.

Listing 2. Light Traffic Control for virbrTE with 5 Mbps Traffic Shaping

The various test runs were performed using the
TrueSpeed test according to RFC6349. A template
was selected which specifies 10 Mbps as the CIR.
The results showed that the visual feedback was
displayed as desired. As long as the traffic shaping
was switched off, the traffic light was green. This
meant that the actual throughput was above 10
Mbps. When light traffic shaping was enabled, the
traffic light turned yellow. This meant that the
connection was functional, but offered less than the
agreed 10 Mbps. With heavy traffic shaping, the
traffic light was red. Since the available throughput
was 100 kbps here, this was considered an unusable
connection. Once the throughput is below 5% of the
CIR (10 Mbps * 0.05 = 500 kbps), this is indicated.

Fig. 8 gives an overview of the visualization of
the measurement results. The case of light traffic
shaping can be seen, where the traffic light turns
yellow. Also shown are the curves for the RTT, and
the throughputs in both directions. Thus, this figure
also confirms that many requirements have been
taken into account. Both the visualization of the
determined measurement data and the simple
comprehensibility of this are propagated.

A closer look reveals irregularities in the
duration of the tests. The test is configured to last
15 seconds. It can be seen that the throughput of

 : :
 Building A : Miscellaneous : Building B
 Host Server : Devices : Mini PC
 : :
+--------------+ +-+ +---------+ +-+
|Cont/Coll|eth0+---------+ | | | | |
+--------------+ |M| | | |M|
 |G+----+ +----+G|
+--------------+ |M| | | |M|
|Netztest |eth0+---------+T| | | |T+-----+
+--------------+ +----+ | | | | | | +--------------+
 | +-+ | WDR | +-+ +---+eth0| |
+--------------+ | : | Network | : +----+ vTA-S |
| |eth0+----+ +-+ | | +-+ +---+eth1| |
| vTA-S +----+ | | | | | | | +--------------+
| |eth1+---------+T| | | |T+-----+
+--------------+ |E| | | |E|
 |S+----+ +---0|S| | | |
 |T| | | / |T|
 | | | | TC | |
 +-+ +---------+ +-+
 : :

tc add dev virbrTE \
 root qdisc \
 tbf \
 rate 5mbit \
 burst 32kbit \
 latency 400ms

DESIGN AND EVALUATION OF A QUALITY MEASUREMENT FRAMEWORK FOR NEWS AND BROADCASTING APPLICATIONS (LUKAS BLUHMKI)

Band 1/2022 25

A>B is measured for 5 seconds and the throughput
of A<B for 8 seconds. This error is due to the
northbound API via NETCONF and does not
correspond to the actual measurement result.
Inspection of the measured data in the Fusion UI
indicates that all data has been successfully
collected via the RESTCONF API. However, the
transport via NETCONF could not be implemented
successfully until the end of the project, despite
assistance from the manufacturer.

Fig. 8. Measurement Results With Traffic Light Visualization and
Diagrams

With regard to the test procedures specified in
the requirements, a mixed summary can be drawn.
The available measurement procedures are limited
to the functional scope provided by vNet Fusion. In
addition to Y.1564 (EtherSAM) and RFC6349
(TrueSpeed), this also includes RFC 5357
(TWAMP). These measurements support
troubleshooting on layer 2-3 and the usual protocols
of the Ethernet, IP, UDP, and TCP stack.
Unfortunately, no application protocols for media
applications are supported (RTP, SRT, RIST) or the
API required for this is not provided (SIP). Modern
developments such as UDT and QUIC are also not
taken into account in vNet Fusion at the current
time. Therefore, it was not possible to integrate
measurement methods in the network test
application for these protocols.

Measurements using TrueSpeed are reliably
implemented in the Measurement Framework,
whereas EtherSAM still requires further bug fixes.
The consideration of possible network parameters
such as packet loss, delay and jitter varies
depending on the test method. At the current state,
the assessment of the connection is based only on
the parameter of the CIR, which can be further
expanded in the future.

The determined measurement data are stored in
the form of lists in the SQLite database table. This
enables further processing. In addition, it is

conceivable to implement an API that can export
this data.

With regard to the requirements for the user
interface design, almost all requirements could be
met. The user can easily navigate through the page
and finds explanations at numerous points to be
introduced to the topic. For the full validation of
usability, extensive usability testing with numerous
participants could still be done in the future.

In addition, emphasis was placed on seamlessly
integrating the framework into the WDR
environment. To this end, the decentralized nature
of availability was taken into account. This means
that the web application can be accessed from any
device with a web browser as long as it is in the
WDR network.

In addition, both vNet Fusion and the web
application developed with Django are hosted on
virtual machines, which allows numerous
possibilities for system integration. A scalable and
easily deployable system has been developed.
Currently, however, it operates only in the DMZ
and cannot yet be accessed outside via a proxy.
Especially for connections that find access to the
WDR via an external DSL, this feature would be
recommendable.

VI. CONCLUSION & OUTLOOK
The idea of designing a Quality Measurement

Framework had the goal in mind to simplify the
work of a broadcast engineer and to expand areas of
competence with the help of a tool. The aim was to
combine the two worlds of broadcasting and the
ever-increasing spread of IP environments. The
developed framework and the resulting tool fulfill
almost all of the previously identified requirements.
At the same time, however, it forms the basis for
future developments and enables expansion into
many different areas.

With the integration of tests according to Y.1564
and RFC 6349, powerful troubleshooting
approaches are available to the user. Nevertheless,
it would be desirable if in the future these
techniques could be adapted to broadcast-specific
use cases. This could be done by implementing AV
transport protocols or codecs. However, since these
are also transported on the common layers of the
Ethernet, IP, UDP, TCP stack, the measurement
methods already implemented are both informative
and powerful.

The manufacturer VIAVI also gave an outlook
on further developments in the direction of

DESIGN AND EVALUATION OF A QUALITY MEASUREMENT FRAMEWORK FOR NEWS AND BROADCASTING APPLICATIONS (LUKAS BLUHMKI)

26 Kölner Beiträge zur technischen Informatik

containerization, the full implementation of
RESTCONF and the simplification of existing
structures. Furthermore, the functionality is
extended by 10 Gbps and even 100 Gbps support.
These transmission rates are especially interesting
for the WAN area. Future developments will thus
also have a significant influence on Netztest's own
development and offer new possibilities. This could
also happen with respect to new protocols and test
methods.

During the development, the progress was partly
hampered by the incomplete documentation, as
well as repetitive errors and bugs in the vNet Fusion
software and API. It remains to be hoped that these
vulnerabilities will be optimized in the future so that
communication via the API can be more reliable.

In summary the quality measurement framework
forms the basis for the future optimization of
troubleshooting processes. WDR now has a tool
that takes the company to a new level of
maintenance and support of large network
structures. Future success will depend not only on
the technical development but also on the
dissemination among colleagues and the creation of
awareness for this tool.

REFERENCES
[1] Viavi Solutions Inc. Virtual Service Activation and Performance

Management. 2018. url: https://www.viavisolutions.com/ru-ru/
literature/nitro-vnet-fusion-product-solution-briefs- en.pdf (visited on
11/05/2020)

[2] P. Eardley et al. A Framework for Large-Scale Measurement of
Broadband Performance (LMAP). RFC 7594. Sept. 2015. doi:
10.17487/RFC7594

[3] ITU-T. “Ethernet service activation test methodology”. In: ITU-T
Y.1546 (Feb. 2016). url: https://www.itu.int/rec/T-REC-
Y.1564/en	(visited on 07/13/2021)

[4] R. Schrage et al. “Framework for TCP Throughput Testing”. In:
Request for Comments 6349 (Aug. 2011). doi: 10.17487/RFC6349

[5] J. Babiarz et al. A	 Two-Way	 Active	 Measurement	 Protocol	
(TWAMP). RFC 5357. Oct. 2008. doi: 10.17487/RFC5357

[6] R. Enns. NETCONF Configuration Protocol. RFC 4741. Dec. 2006.
doi: 10.17487/RFC4741. url: https://rfc-editor.org/rfc/rfc 4741.txt

[7] R.	 Enns	 et	 al.	 Network	 Configuration	 Protocol	 (NETCONF).	 RFC	
6241.	 June	 2011.	 doi:	 10.17487/RFC6241.	 url:	 https://rfc-editor.
org/rfc/rfc6241.txt.	

[8] Viavi Solutions. Controller	and	Collector	APIS	-	Version	6.0. 1-844-
468- 4284. Nov. 2019.

[9] M.	Bjoerklund.	YANG - A Data Modeling Language for the Network
Con- figuration Protocol (NETCONF).	 RFC	 6020.	 Oct.	 2010.	 doi:	
10.17487/	RFC6020.	url:	https://rfc-editor.org/rfc/rfc6020.txt.	

[10] M.	Bjoerklund.	The	YANG	1.1	Data	Modeling	Language.	RFC	7950.	
Aug.	 2016.	 doi:	 10.17487/RFC7950.	 url:	 https://rfc-editor.org/
rfc/rfc7950.txt.	

[11] D.	 Savić	 et	 al.	 “Simulation	 Data	 Exchange	 -	 Web	 Interface	 for	
CostGlue	 Application”.	 In:	 (Mar.	 2008),	 p.	 8.	 url:	
https://www.researchga te . net / publication / 297264757 _ Simulation
_data_exchan ge_-_web_interface_for_CostGlue_application (visited	
on	07/14/2021).	

[12] N. George. Django’s	 Structure—A	Heretic’s	 Eye	View. July 2021.
url: h	 ttps://djangobook.com/mdj2-django-structure/	 (visited on
07/15/2021).

[13] B. Nuseibeh. “Weaving together requirements and architectures”. In:
Com-	puter	34.3 (2001), pp. 115–119. doi: 10.1109/2.910904.

[14] Y. Gu. UDT:	UDP-based	Data	Transfer	Protocol. Internet-Draft draft-
gg- udt-03. Work in Progress. Internet Engineering Task Force, Apr.
2010. 19 pp. url: https://datatracker.ietf.org/doc/html/draft-gg-	
udt-03	(visited on 06/12/2021).

[15] J. Iyengar and M. Thomson. QUIC:	A	UDP-Based	Multiplexed	and	
Secure	Transport. RFC 9000. May 2021. doi: 10.17487/RFC9000.

[16] I.	ADTRAN.	netconf-client - A NETCONF client for Python 2.7 and 3+.	
Jan.	 2019.	 url:	 https://github.com/ADTRAN/netconf_client	
(visited	on	06/02/2021).	

[17] D.	S.	Foundation.	Django	Documentation	 -	Release	3.2.6.dev.	 July	
2021.	 url:	 https://buildmedia.readthedocs.org/media/pdf/djan
go/3.2.x/django.pdf (visited	on	07/15/2021)	

[18] Mark Otto et al. Bootstrap – Release 5.1, July 2021 . url:
https://getbootstrap.com/ (visited on 07/02/2021)

[19] E.	Timberg.	Chart.js - Simple HTML5 Charts using the <canvas> Tag.	
Mar.	 2013.	 url:	 https://github.com/chartjs/Chart.js	 (visited	 on	
07/27/2021).	

[20] L.	Foundation.	Iproute2 - A collection of Utilities for Controlling TCP
/ IP Networking and Traffic Control in Linux.	Apr.	1999.	url:	https://	
wiki.linuxfoundation.org/networking/iproute2	 (visited	 on	
07/29/2021).	

DESIGN AND EVALUATION OF A QUALITY MEASUREMENT FRAMEWORK FOR NEWS AND BROADCASTING APPLICATIONS (LUKAS BLUHMKI)

Band 1/2022 27

	Editorial
	Analyzing the latency of a LXI device using a Raspberry Pi (Theodor Fischer)
	Vulnerability Detection in Source Code Using Machine Learning and Graph Based Representations (Feras Zaher Alnaem et. al.)
	Design and Evaluation of a Quality Measurement Framework for News and Broadcasting Applications (Lukas Bluhmki)

