Kdlner Beitrage zur technischen Informatik
Cologne Contributions to Computer Engineering
Band 2/2022

Ergebnisse der Workshops 2022 des Forschungs-
schwerpunkts Vernetzte intelligente Infrastruk-
turen und mobile Systeme (VIMS)

Technology
Arts Sciences

TH Koln

Der Herausgeberkreis des Forschungsschwerpunkts wird gebildet von:

Rainer Bartz

Andreas Behrend

Andreas Grebe

Tobias Krawutschke (Schriftenleitung)
Hans W. Nissen

Beate Rhein (Schriftenleitung)

René Wdrzberger (Schriftenleitung)
Chunrong Yuan

Impressum:

Forschungsschwerpunkt Vernetzte intelligente Infrastrukturen und mobile Systeme
Technische Hochschule Kéln

Fakultat fir Informations-, Medien- und Elektrotechnik

Betzdorfer Str. 2

D-50679 KdIn

tobias.krawutschke@th-koeln.de

Stand: Dezember 2022

ISSN: 2193-570X

ooce

Die Veréffentlichung von Dokumenten Uber Cologne Open Science erfolgt unter der CC-Lizenz: Namensnennung, keine kommerzielle Nutzung,

keine Bearbeitung.

mailto:tobias.krawutschke@th-koeln.de

Inhaltsverzeichnis
Editorial

Multi-Agent Reinforcement Learning for smart Computing Resource Allocation in the In-
dustry 4.0 (Michael Urlaub, Julia Rosenberger)

Investigations on self-optimizing PID controllers based on neural networks and Implemen-
tation in a process control system (André Wittling)

Visual detection of a charging station and implementation of a docking routine performed
by an autonomous vehicle (David Kliewe)

Development of a Robust Peak Detection Algorithm in Time Series Data (Shezan Hossain
Mahmud, Ender Akcoltekin, Dr. Cyrano Bergmann)

EDITORIAL

Editorial

Mit diesem, zweiten Band im Jahr 2022 wird die Verdffentlichung in der Reihe Kéiner Beitrdge zur
technischen Informatik fortgesetzt. Die Fakultat fir Informations-, Medien- und Elektrotechnik am Insti-
tut flir Nachrichtentechnik erméglicht Master Studierenden nicht nur aus dem Bereich der technischen
Informatik eine Mdglichkeit lhre Forschung zu verdéffentlichen, die im Rahmen von Forschungs- und
Entwicklungsprojekten an der TH K&In und/oder bei Projektpartnern entstand.

Ziel ist es, die Ergebnisse laufender Arbeiten aus den Forschungs- und Entwicklungsaktivitdten des
Forschungsschwerpunkts nach auBBen zu kommunizieren und Informatiker und Informationstechniker
auBerhalb des Forschungsschwerpunkts z.B. aus dem Kdlner Raum einzuladen, neue Ergebnisse aus
Wissenschaft und technischer Anwendung im Rahmen von Cologne Open Science zu publizieren.

In zwei Workshops wurden die hier veréffentlichten Themen diskutiert. Am 10.6.2022 wurden Multi-
Agent Reinforcement Learning for smart Computing Resource Allocation in the Industry 4.0 (Michael
Urlaub, Julia Rosenberger) und Investigations on self-optimizing PID controllers based on neural net-
works and Implementation in a process control system (André Wittling) vorgestellt. Am 25.11.2022 wur-
den Visual detection of a charging station and implementation of a docking routine performed by an
autonomous vehicle (David Kliewe) und Development of a Robust Peak Detection Algorithm in Time
Series Data (Shezan Hossain Mahmud, Ender Akcéltekin, Dr. Cyrano Bergmann) vorgestellt.

Der Herausgeberkreis freut sich, diesen neuen Band der Reihe der Fachoéffentlichkeit zur kritischen
PrGfung und zur méglichen Mitwirkung vorlegen zu kénnen.

Rainer Bartz
Andreas Behrend
Andreas Grebe
Tobias Krawutschke
Hans W. Nissen
Beate Rhein

René Worzberger
Chunrong Yuan

4 Kdlner Beitrage zur technischen Informatik

MULTI-AGENT REINFORCEMENT LEARNING FOR SMART COMPUTING RESOURCE ALLOCATION IN THE INDUSTRY 4.0 (MICHAEL URLAUB, JULIA ROSENBERGER)

Multi-Agent Reinforcement Learning for smart
Computing Resource Allocation in the Industry 4.0

Michael Urlaub
Technische Informatik (Master)
TH Koln
Koln, Germany
michael_martin.urlaub @smail.th-koeln.de

Abstract—The fourth industrial revolution, also called Indus-
try 4.0, describes the digitization process in industry. Data and
information are of high significance as the number of data-driven
business models increases rapidly. To handle the challenging
requirements in data processing, e.g. real-time processing, data
security and economic aspects, edge computing is increasingly
favoured compared to cloud computing. The most limiting factor
for edge computing is the resource limitations of the industrial
edge devices. This study describes an approach to overcome
these limitations using multi-agent reinforcement learning for
allocation of computing resources in the Industrial Internet of
Things to enable edge computing. The focus of the study lays
on the experimental evaluation of the proposed concept and
comparison of different hyperparameter configurations for the
multi-agent-system.

Index Terms—Reinforcement Learning, Multi-Agent-System,
Resource Allocation, Industry 4.0, Industrial Internet of Things

1. INTRODUCTION AND PROBLEM STATEMENT

It is to observe that digitization processes in Industry 4.0
lead to a steady increase in networked devices, resulting in a
high volume of data in the coming years. It is very likely that
the development of recent years will be significantly exceeded.
Researchers predict that the number of connected devices will
increase at an annual growth rate of 12-17% from about 27
billion in 2017 to over 125 billion devices in 2030 [1].

The transfer of data to central cloud architectures is increas-
ingly problematic in this context. The enormous amounts
of data generated in the Internet of Things (IoT) would
require the expansion of the communication infrastructure if
transferred to the cloud [2]. IoT objects typically have limited
resources, making direct interaction with the cloud infeasible.
In addition, modern industrial and IoT infrastructures usually
require very low latency [3], [4]. Besides, the speed, security
of data and data transmission as well as the high demand for
costly bandwidth are challenges that have led to the rethinking
of the centralized architecture. Decentralization in the sense of
an intelligent edge computing system represents one solution
approach [5].

This enables the minimization of latency, the reduction of
data security risks and the improvement regarding bandwidth
bottlenecks. However, since edge devices have little computing
power compared to the cloud architecture, intelligent resource
management on the edge devices is necessary. In this work,

Band 2/2022

Julia Rosenberger
Automation and Electrification Solutions
Bosch Rexroth AG
Lohr am Main, Germany
julia.rosenberger @boschrexroth.de

we want to enable edge computing by optimal usage of the
resources of the edge devices. For industry, we define edge
devices as the devices directly involved in the production
process. We consider devices assigned to the field level and
control level of the automation pyramid. Thus, edge devices
can range from smart sensors up to powerful industrial PCs.

In this work, a representative edge device of medium
performance is considered, namely the industrial control unit
ctrlX CORE from Bosch Rexroth with a 64 bit quad core ARM
CPU, 1GB RAM and 4GB eMMC memory. The resource
overhead by the multi agents has to remain low to ensure that
the agents can be deployed on a variety of edge devices.

In this study, a new approach for decentralized resource
allocation for the Industrial Internet of Things (IIoT) is eval-
uated. The content presented in this study is the result of
a master thesis at the TH Koln in cooperation with Bosch
Rexroth AG. The very basic idea of allocating computational
resources through multiple agents and reinforcement learning
is described in [6]. This work differentiates from the first
sketch [6] in particular in the design of both action and state
space, and the consideration of dynamic network changes in
addition to the varying number of processing algorithms and
data streams. Further developments of the resource allocation
system are described in [7].

II. RELATED WORKS

Agent-systems are of increasing relevance in industry [8],
[9]. Additionally, DRL is increasingly applied for resource
allocation in various fields like transportation [10], job shop
scheduling [11] and network resources [12] and is said to be
an important technology for the Industry 4.0 [13].

The field of computing resource allocation in resource-
limited networks is studied several times in the context of
mobile edge computing, e.g. in [13], [14]. Most existing ap-
proaches are single-agents or centralized Multi-Agent System
(MAS) [14], [15]. As the subject of this study is a fully
decentralized approach, the approaches [16]-[19] are to be
delineated. The most common approach is task offloading from
the limited edge devices to a server as described e.g. in [13],
[14], [16], [17]. In contrast, our approach pursues the goal
to optimally use the existing resources of the high number
of network participants instead of requiring an additional

MULTI-AGENT REINFORCEMENT LEARNING FOR SMART COMPUTING RESOURCE ALLOCATION IN THE INDUSTRY 4.0 (MICHAEL URLAUB, JULIA ROSENBERGER)

server. Another fully decentralized Multi-Agent Reinforce-
ment Learning (MARL) approache is proposed in [19], but
its optimization objective is load balancing for controller in
software-defined networks. In [18], an approach focusing on
resource allocation is presented. Considering both comput-
ing and communication resources, the approach is of higher
complexity than our approach. The Reinforcement Learning
(RL) agents decide about the need for task offloading and
take into account the communication resources, size of the
input data and computational effort for executing the task. As
our main objective for edge computing is the processing of
streaming data, it is to assume that the processing task never
ends. Thus, our approach differs from classical task offloading.
A promising DRL approach that also focuses on distributed
stream data processing is proposed by Li et al. [20]. It differs
from our work mainly in its single-agent architecture.

So far, no work on intelligent, fully decentralized methods
for resource allocation for streaming data processing tasks in
industrial environment is known.

III. BACKGROUND
A. Reinforcement Learning

In RL that is based on the trial-and-error principle, an
agent interacts with an environment and collects experience
values. These experiences are represented in the form of
rewards, which evaluate the last action with respect to the goal
achievement. With the help of the rewards a so-called policy
can be trained, so that future actions are more goal-oriented.
Mathematically, RL can be described with the Markov Deci-
sion Process (MDP). The tuple (S, A, P, R,~) defines a MDP
[21].

e S : set of states, s € .S

o A : set of actions, a € A

o P : transition function P: S x A x S — [0, 1]

e R :reward function R: S x Ax S - R

o ~ : discount factor, v € [0, 1)

B. Multi-Agent Reinforcement Learning

If several independent agents interact in a common environ-
ment, it is called a MAS. Depending on the goal, the agents
compete or cooperate [22]. To define the optimal strategy for
a single agent in advance is very difficult or even impossible,
therefore self-learning methods are helpful.

RL is a Machine Learning (ML) concept that allows the agents
to find their own optimal policy [23]. In this case we speak
of a MARL, which can be defined as Stochastic Game (SG)
[24] or Markov Game (MG) [25].

The tuple (N, S, {A%}ien, P, {R'}icn,y) defines a MG [21]:

e N :setof agents, N ={1,..,n} and n > 1

e S :set of states, s € S

o A’ : set of actions of agent i, A := A’ x ... x A™ and

acA

o P : transition function, P: S x A xS — [0,1]

e R':reward function of agent i, R : S x Ax S — R

o 7 : discount factor, v € [0, 1)

== Environment

Environment

2 Agent 1 sl
—y gen
- (sr) z ‘Agentz ﬁ

9
a"‘ ‘

‘Agentnr

(s,r)

a) Markov Decision Process b) Markov Game

Fig. 1. Comparison of MDP and MG [21].

Figure 1 shows the differences between MDP and MG.
If all agents are homogeneous and exchangeable, it is called
a Team Game or a Multi-Agent Markov Decision Process
(MMDP). In this special case of MG, all reward functions
are equal: R = R' = ... = R" [26].
Problems that can be described with a MDP or MG are
fully observable. This means that the agents can observe all
processes of their environment, i.e. the observation space is
equal to the state space. In partially observable problems, the
agents can only observe a certain area of its environment.
Partially observable problems are the generalization of fully
observable problems. The Partially Observable Markov Game
(POMG) is the generalization of the MG and is defined with
the tuple (N, S, {A'}ien, P, {R'}ien, {Q }ien, {O'}ien, 7)
[27]. These variables extend the MG:

o QF: set of observations of agent 7, := Qf x ...

and o € 2
o O : observation function, O%: S x A x Q — [0,1]

A partially observable MMDP is defined with a Decentralized
Partially Observable Markov Game (Dec-POMP) [26].
Another MG or POMG requirement is parallel execution of all
actions. With an Agent Environment Cycle (AEC), actions can
be executed sequentially. The AEC is defined with the tuple
(N, S, {A }ien AT bien, PAR Fien { R Lien, {2 Lien,
{O"}ien,7,v) [27]. For the AEC, the POMG definitions
apply with the following adaptations:

X Qn

o T": transition function of agent i, T : S x A; — S

P :transition function of environment, P : Sx.S — [0,1]

e« R': set of rewards of agent 1, RICR

o R':reward function of agent i, R® : S x N x A x S x

R — [0,1]

« v : next-agent function, v: S x N x Ax N — [0,1]
According to [27], there is an AEC for each POMG and vice
versa.

Figure 2 illustrates the dependencies of the described markov
processes.

Kdlner Beitrage zur technischen Informatik

MULTI-AGENT REINFORCEMENT LEARNING FOR SMART COMPUTING RESOURCE ALLOCATION IN THE INDUSTRY 4.0 (MICHAEL URLAUB, JULIA ROSENBERGER)

POMG ~ AEC
e MG
g

Fig. 2. Venn-diagram of markov processes [7], [26]: MDP C MMDP C MG
C POMG and MDP C POMDP C POMG and POMG ~ AEC.

C. MARL characteristics

MARL systems can be assigned to different categories based
on their characteristics, such as agent interaction or MARL
training architectures.

Based on the reward function, the interaction of agents can be
divided into three groups [28]:
o Cooperative: A MARL is cooperative if the agents work
together. If all agents share the same reward function
R' = R? = ... = RN = R this is also called fully
cooperative [23]. This particular function is mapped with
the MMDP. The goal of fully cooperative behavior is to
maximize the team reward [23].

o Competitive: Competitive behavior is said to occur when
each agent tries to be better than the other agents. With
the “zero-sum” MG one describes the special case of
complete competition. It is described by R = 3" | R =
0, i.e. the sum of the rewards of all agents is zero.
Each agent minimizes the rewards of the other agents
by maximizing its own [23].

e Mixed interaction: Mixed interaction is also known
as “general-sum”. It describes problems that are not
uniquely cooperative or competitive. The relationship
between the agents and the reward functions do not follow
a fixed structure [21].

The exponentially growing set of states and actions with
the number of agents poses a challenge for training MARL
systems [23]. One consequence of this is the use of training
architectures. According to [29], the training architectures
describe often used structures. A distinction is made between
training and execution. The training of MARL systems can
again be divided into a distributed and a central approach
[30]. On the other hand, execution takes place centrally
or decentrally [23]. The training architectures are shown in
Figure 3 and are divided as follows:

Environment

L

Environment Environment

1l 1 1

4

| Agent1 (AgentN ’Aomn P f'\)qamN [Agent] © ¢ AgentN
v Update Update Update Update
Update

a) Centralized Training
Centralized Execution

b) Distributed Training
Decentralized Execution

c) Centralized Training
Decentralized Execution

Fig. 3. Training architectures according to [23]

Band 2/2022

Decentralized training:

o Distributed Training Decentralized Execution (DTDE)
describes an architecture in which each agent learns
independently and autonomously. They do not exchange
information, neither in training nor in execution [23].

Centralized training:

o Centralized Training Centralized Execution (CTCE) is
a central architecture in which all agents share a com-
mon strategy. This strategy makes the decision for each
individual agent both during training and execution. It
is assumed that all agents can exchange information
permanently and without limit [23].

o Centralized Training Decentralized Execution (CTDE)
describes an architecture in which each agent has its own
strategy. During training, the agents can exchange infor-
mation that is no longer available at the time of execution.
This concept can again be divided according to the type
of agents. There are heterogeneous and homogeneous
agents. The latter are characterized by similar structures,
for example a same optimization goal. On the contrary,
heterogeneous agents differ in their structure [23].
“Parameter sharing” is called an exemplary method for
homogeneous agents. It allows learning a strategy with
the experience of all agents. Due to the same structures,
the agents can use this strategy as their own during
execution [31].

IV. METHODOLOGY

A connected factory is comparable to a network with
many different components. These can be sensors, buttons
or control units, for example. The network participants can
send data to arbitrarily distant receivers in the network, on
which these data are further processed. This comes along with
the problems that have already been described in SectionI.
Intelligent edge computing depending on resource utilization,
e.g. CPU or RAM, is intended to counteract this problem and
is implemented below in the form of a MARL.

A. Solution approach

The MAS consists of independent subareas, the so-called
agent zones. In these areas a local agent is responsible for
one or more computing units. The agent decides whether
and in which way data is processed. The MARL pursues the
following goals:

« Resource utilization on computing units under specified

threshold

o Uniform utilization of machines

« Maximization of the number of processed data

« Best possible processing of the data

This means that all agents must cooperate to achieve the goals.
For collaboration, the agents communicate with each other
and exchange necessary information. Thus, the decision of
the agents remains local, despite the global objective. The
architecture of the decentralized MARL is shown in Figure 4.

MULTI-AGENT REINFORCEMENT LEARNING FOR SMART COMPUTING RESOURCE ALLOCATION IN THE INDUSTRY 4.0 (MICHAEL URLAUB, JULIA ROSENBERGER)

=
Network zone @ & device running an agent

B device without agent

Agent zone

Data

sources
Target

=1
E devices
Fig. 4. Schematic presentation of the general solution approach [7]

The figure presents an exemplary IIoT network with multi-
ple agent zones. The agent zone consist of an agent and at least
one computing unit, which resources the agent allocates. The
data processing tasks are executed on the edge devices within
the agent zone according to the agents decisions. The data
streams are forwarded and processed in the manner of a multi-
hop approach. Thus, the amount of raw data is increasingly
reduced due to the data processing and information extraction.
The light blue line outlines an exemplary path of the data
through different agent zones to the destination.

B. Boundary Conditions

The described vision of a MARL will be implemented under
the following boundary conditions:

e Agent zones: Agent and computing unit are combined
into one component. It follows that the agent observes
its own resources and the data is processed on the same
hardware.

o Permissions and availability: All data is available
throughout the network and all network components have
permission to read and process the data.

o Algorithms: The data can only be processed with one
algorithm.

o Goals: The goal of each agent is to run its assigned
resource below a specified threshold and balance the
load across all agents. Not considered is the choice of
the algorithm as in this study only one algorithm is
available, and the maximization of the processed data is
only indirectly considered.

« Resources: The agent considers only one resource (CPU)
for optimization.

o Observability: For further problem description it is as-
sumed that the environment is completely observable.

V. CONCEPT

Analogous to ML classification, the original concept [6] was
based on a multi-label approach. To reduce complexity, the
first approach was adapted and led to following concept, which
is comparable to a single-label approach.

Based on its own resource utilization and the utilization of the

other agents, each agent decides locally to start an algorithm
for data processing. The agent cannot stop the data processing
again. All agents try to keep the resource utilization below
the specified threshold g and to achieve a balanced utilization
within the network in cooperation with the other agents. As
all agents have the same tasks and goals, the problem can be
described with a MMDP. Thus, they are homogeneous and
interchangeable. The MMDP is described as follows [7]:

« Environment: The environment of the agents is an IoT
network, because the data is to be processed on edge
devices.

« Agent set: The number of agents varies depending on the
size of the network.

N ={1,2,..,n}and n >1

« State set: The state describes the observed resource uti-
lization and the average resource utilization of all agents.
It holds:

s={sl,s’} with0<s!'<land0<s><1landseS

n

1
and s> = = sbm (1)
« Action set of agents: There are two discrete actions, run
algorithm or do not run algorithm. For action a € A
applies:
A={0,1}

« Reward: All agents have the same reward function.
R(s,a) = R'(s,a) = R*(s,a)... = R"(s,a) (2)

The agent is penalized if it does not perform any actions
or exceeds the threshold g. If it performs an action and
is below the threshold g, it is rewarded.

Penalty ifa=1and s;y; > g
ifa=0and s;41 <g 3)

Reward else

R(s,a) = { Penalty

VI. EXPERIMENTS

For the experiments, the concept was implemented in a
PettingZoo environment. PettingZoo' is a python library for
MARL. The environment is a simulation of edge devices in
an JoT network. A workload variable is defined for each edge
device. The data flow is not simulated. For each data point
a random workload value is defined, which can be added to
the workload variables. The values are between 0 and 1 and
represent in workload in percent. The MMDP was converted
to an AEC that is used in the PettingZoo library. By the
means of Stable-Baselines3 (SB3)?, another python library,
the environment was trained and the results are evaluated in
the experiments. For experiments, the following values apply
unless otherwise specified:

« SB3-MlpPolicy

Uhttps://www.pettingzoo.ml/
Zhtps://stable-baselines3.readthedocs.io/en/master/

Kdlner Beitrage zur technischen Informatik

MULTI-AGENT REINFORCEMENT LEARNING FOR SMART COMPUTING RESOURCE ALLOCATION IN THE INDUSTRY 4.0 (MICHAEL URLAUB, JULIA ROSENBERGER)

Training algorithm: Advantage Actor Critic (A2C)
« Total number of training steps: 1 000 000
Training steps per episode: 100
Learning rate: 0.0007 (A2C) or 0.003 (Proximal Policy
Optimization (PPO))
Number of agents: 2
1st Experiment: In the first experiment, different reward
strategies are evaluated as listed in Tablel.

TABLE I
VALUES OF REWARD FUNCTIONS FOLLOWING EQUATION 3

Ri(s,a) Ra(s,a) R3(s,a)
a=1 & $>0,8 -10 -10 -1
a=0 & $<0,8 -1 -10 -1
else 1 1 1

In Figure5 can be seen that all three reward strategies
motivate the agents to execute algorithms, but none of the
chosen functions cause the agents to keep the CPU load under
the threshold. Moreover, the machines of the first agent are
often overloaded. The reward function R; leads to the largest
fluctuations, either the agents do not execute any algorithm
following the strategy or they overload the machines. Ry and
R3 lead to relatively similar results for the second agent, with
Ry achieving better results for the first agent. For the further
experiments, the reward function R is chosen.

145 ! - | ‘ R
= W L " i 7R2
go 1 ‘\H ~ I ‘ ‘\‘ M
% H 'V Vl \ ’ T H
= WAL A A “
& R HJ HH H

MR A AL

0 20 4‘0 6‘0 80 100
episodes

15[| | — R

— Ry
—n
3} 1
g’ ' J ““xj‘ % ‘ {M J \ A
L AN
@) | \“\ \‘ H V‘ w\ “ ‘m “‘H‘ | L\ U‘\v\‘ H‘HJ \HM HH
6 2‘0 4‘0 6‘0 8‘0 100
episodes

Fig. 5. Final CPU load per episode for different reward functions

Band 2/2022

2nd Experiment: The second experiment compares the best
reward strategy of the first experiment to the policy optimized
with PPO. For the RL algorithm PPO, the same parameter
settings as for the A2C method are chosen. It is trained with
the reward function Ry of the first experiment.

For both learning algorithms selected, the training resulted
in a policy that motivates both agents to execute algorithms
(Figure 6).

1.5
=
go 1
=]
<
<
> 0.5
[~
@}

O T | | | | B
0 20 40 60 80 100
episodes
15[‘ ‘ —A2C
—PPO
~
=
o?:b 1
]
<
2
> 0.5
[
&}
0 | | | | |
0 20 40 60 80 100
episodes

Fig. 6. CPU load per episode for different learning algorithms

The CPU load is either near or above the threshold for
both agents at the end of the episodes. The A2C policy
regularly leads the first agent into overload. Moreover, the
policy leads to a larger fluctuation for both agents. The PPO
method fluctuates less in the result and leads to a much better
result for the first agent. The low peak-to-valley values of the
PPO algorithm are due to its gradient method. For the further
experiments PPO is used.

3rd Experiment: In the third experiment, the episode length
was varied for training and evaluation. Both agents were
trained with 10, 100 and 200 steps per episode.
A comparison of the result is shown in the two diagrams of
Figure 7.

MULTI-AGENT REINFORCEMENT LEARNING FOR SMART COMPUTING RESOURCE ALLOCATION IN THE INDUSTRY 4.0 (MICHAEL URLAUB, JULIA ROSENBERGER)

15[—— 10 steps per episode
—— 100 steps per episode
= —— 200 steps per episode
5 |
o 1 ‘ v 7 ‘
= | [I |
< 0 \ |/ | AR WAL
=] (N\A \ I\ | 0) | M
3 0y ‘ VY|
2 s
> 0.5 | i
[
®)
O | | | | il
0 20 40 60 80 100
episodes
15[10 steps per episode
—— 100 steps per episode
< —— 200 steps per episode
?n 1 Ao N
& I\ *
- I J
< |
2 \ ‘
o 0.5 f
[
|®)
O T l l l l |
0 20 40 60 80 100
episodes

Fig. 7. CPU load per episode for different episode lengths

All policies lead to the execution of algorithms and all
violated the 80% threshold. Furthermore, the episode length
of 10 steps leads to a larger variation in the result and the first
agent overloads more often. From this can be concluded that
the agents cannot learn the long-term effect of their actions
well with this episode length. Increasing the episode length
improved the results. As similar results are achieved for 100
and 200 steps per episode, the episode length of 100 is used
for the further experiments.

4th Experiment: The fourth experiment investigates the
training length. For this purpose, policies were trained with
1 million, 2 million, and 4 million training steps and subse-
quently evaluated over 100 episodes.
The different training lengths lead to similar results in the
evaluation (Figure 8). All learned policies cause the agents to
execute algorithms. For the most part, no agent overloads its
computational unit. If about 30% of the final CPU loads are
still above the threshold for the first agent, more than half are
below the 80% mark for the second agent. Furthermore, it can
be seen that 2 and 4 million training steps significantly reduce
the fluctuations compared to 1 million. Moreover, 4 million
training steps do not improve the policy much compared to 2
million. For this reason, 2 million training steps are used for
the remaining experiments.

10

15[—— 1 million steps

—— 2 million steps

= ——4 million steps
5
&N
<
9
<
2
-}
[
®)

0 | | | | il
0 20 40 60 80 100
episodes

15[! —— 1 million steps

—— 2 million steps

< — 3 million steps
5
£
9
<
2
-}
[
®)

0 T l l l l]
0 20 40 60 80 100
episodes

Fig. 8. CPU load per episode for different training lengths

5th Experiment: Whereas previously the default SB3 PPO
learning rate is used, this is changed in the fifth experiment.
Three strategies, each with 2 million training steps and an
episode length of 100 steps, are trained using the PPO method.
The experiments differ in the learning rate between 0.003,
0.0003 and 0.00003. The evaluation in Figure 9 shows a clear
result. While the two smaller learning rates lead to a policy
that executes algorithms, with the learning rate 0.003 a policy
was learned that does not allow any data processing. Looking
at the evaluation of the first agent, it can also be seen that the
learning rate of 0.00003 is not sufficient to find a similarly
optimal policy for the same number of training steps compared
to the learning rate 0.003.

15[— Ir=0,003
—— 1r = 0,0003

; ——1Ir = 0,00003
q?:b 1 T y T Y\/\/
= AL
2
> 0.5 N
&
@]

0 \ \ \ \ |

0 20 40 60 80 100
episodes

Kdlner Beitrage zur technischen Informatik

MULTI-AGENT REINFORCEMENT LEARNING FOR SMART COMPUTING RESOURCE ALLOCATION IN THE INDUSTRY 4.0 (MICHAEL URLAUB, JULIA ROSENBERGER)

15[—— Ir= 0,003
—— Ir = 0,0003

o ——Ir = 0,00003
5 1| s
2 |
= |- !
<
<
> 0.5 a
[a W
Q

U \ \ \ \ B

0 20 40 60 80 100
episodes

Fig. 9. CPU load per episode for different learning rates

6th Experiment: In the sixth experiment, the PettingZoo
Environment (PEnv) was trained with five agents. Figure 10
compares the test run of two agents with the test of the five
agents.

1.5 —— Agent 1
]
<
)
=}
[
Q
0 | | | | il
0 20 40 60 80 100
episodes
15[! ! —— Agent 1
—— Agent 2
Agent 3
2 Agent 4
2 | M Agent 5
2 N i VﬁVV“VVVW“¥
! \ AlY
ol \f V\{/
| o

100

episodes

Fig. 10. Evaluation of scalability: CPU load per episode for number of agents

In both tests, the CPU loads fluctuate around the target value
(threshold). The evaluation of the five agents also shows that
all five agents behave similarly. This is primarily due to the
CTDE training architecture.

Band 2/2022

VII. DISCUSSION

The multi-agent implementation was evaluated and opti-
mized with six experiments. Parameters were adjusted for
training and a suitable reward function was found. Looking at
the best result (Figure 11), it is noticeable that the CPU usage
is consistently within the threshold range, but also exceeds
the threshold value a couple of times and lead to overload one
time. The test episode (lower diagram) shows that both agents
quickly allocate the available computing resources and stop
putting further load on the devices as soon as the threshold is
reached.

o
3
=2
=]
[
o
episodes
o
E
]
Z —5004
©
1
-1000
episodes

- 1.0 —_
& ,
=2 /

051/
o] /i
[/
Y oof

0 20 40 60 80 100

episode steps

Fig. 11. Best result in experimental evaluation

The experimental evaluation highlighted the influence of
the chosen hyperparameter values on the overall performance
of the RL system. Finding the best hyperparameter values
is a research field itself. For optimal results, the usage of
hyperparameter optimization methods, e.g. basic methods like
grid or random search or more complex methods like particle
swarm optimization, is recommended.

The evaluation is limited to the training process of the MAS
in a simulated environment. The simulated test environment
is limited to static CPU base loads of the devices and does
not consider any other processes with varying CPU load that
are running on the edge devices. Furthermore, in this setup
only one data processing algorithm is considered in resource
allocation. Thus, the varying complexity of the processing
tasks is not known by the agents yet. Further evaluations in
a real industrial setup are required to make a statement about
the performance in solving the task of resource allocation as
well as the overhead due to the agent system itself and its
applicability on industrial edge devices.

The algorithm itself is limited as it does not consider RAM
or hardware memory usage. The agents are only able to decide
about the execution of a task but not about ending a running
task. Thus, the system is only able to increase the CPU load,
but not to reduce it again.

11

MULTI-AGENT REINFORCEMENT LEARNING FOR SMART COMPUTING RESOURCE ALLOCATION IN THE INDUSTRY 4.0 (MICHAEL URLAUB, JULIA ROSENBERGER)

VIII. CONCLUSION

In summary, this study describes detailed evaluation results
on a new approach that uses MARL for resource allocation
on edge devices in the IIoT. The experiments examine in
particular various hyperparameter settings and show the com-
plexity and relevance of good parameter choices. In the exper-
imental evaluation in the simulated environment, the proposed
method appears to be a promising approach for overcoming
resource limitations and enabling edge computing. Based on
the presented approach and results, two interacting MAS for
the management of computing and communication resources
in the IIoT has been elaborated, which is presented in detail
in [7]. The article confirms the suitability and potential of the
RL based resource allocation for Industry 4.0.

REFERENCES
[1]

[2

I. Markit, “Internet of Things: a movement, not a market.” https://cdn.
ihs.com/www/pdf/loT_ebook.pdf, 2017. Accessed: 2021-12-06.

W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer,
vol. 49, pp. 78-81, 2016.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, MCC *12, (New York,
NY, USA), p. 13-16, Association for Computing Machinery, 2012.

M. Weiner, M. Jorgovanovic, A. Sahai, and B. Nikoli¢, “Design of a
low-latency, high-reliability wireless communication system for control
applications,” 2014 IEEE International Conference on Communications
(ICC), pp. 3829-3835, 2014.

M. De Donno, K. Tange, and N. Dragoni, “Foundations and Evolution
of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog,” IEEE
Access, vol. 7, pp. 150936-150948, 2019.

J. Rosenberger, M. Urlaub, and D. Schramm, “Multi-agent reinforcement
learning for intelligent resource allocation in iiot networks,” in 2021
IEEE Global Conference on Artificial Intelligence and Internet of Things
(GCAIoT), 2021.

J. Rosenberger, M. Urlaub, F. Rauterberg, T. Lutz, A. Selig, M. Biihren,
and D. Schramm, “Deep Reinforcement Learning Multi-Agent System
for Resource Allocation in Industrial Internet of Things,” Sensors,
vol. 22, no. 11, 2022.

B. Vogel-Heuser, ed., Softwareagenten in der Industrie 4.0. De Gruyter
Oldenbourg, 2018.

At Your Command!: Agentenbasiert Zur Smart Factory. Essen: Vulkan
Verlag GmbH, 2020.

K. Manchella, A. K. Umrawal, and V. Aggarwal, “FlexPool: A Dis-
tributed Model-Free Deep Reinforcement Learning Algorithm for Joint
Passengers and Goods Transportation,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 4, pp. 2035-2047, 2021.

L. Wang, X. Hu, Y. Wang, S. Xu, S. Ma, K. Yang, Z. Liu, and
W. Wang, “Dynamic job-shop scheduling in smart manufacturing using
deep reinforcement learning,” Computer Networks, vol. 190, p. 107969,
2021.

N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of Deep Reinforcement Learning
in Communications and Networking: A Survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3133-3174, 2019.

Y. Chen, Z. Liu, Y. Zhang, Y. Wu, X. Chen, and L. Zhao, “Deep Rein-
forcement Learning-Based Dynamic Resource Management for Mobile
Edge Computing in Industrial Internet of Things,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 7, pp. 49254934, 2021.

J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart Resource Allocation for
Mobile Edge Computing: A Deep Reinforcement Learning Approach,”
IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 3,
pp. 1529-1541, 2021.

X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in iot edge computing,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 6, pp. 1133-1146,
2020.

[3]

[4]

[5]

[6

[7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

12

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

X. Liu, J. Yu, Z. Feng, and Y. Gao, “Multi-agent reinforcement learning
for resource allocation in iot networks with edge computing,” China
Communications, vol. 17, no. 9, pp. 220-236, 2020.

Y. Ren, Y. Sun, and M. Peng, “Deep reinforcement learning based
computation offloading in fog enabled industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4978—
4987, 2021.

Z. Cao, P. Zhou, R. Li, S. Huang, and D. O. Wu, “Multiagent deep
reinforcement learning for joint multichannel access and task offloading
of mobile-edge computing in industry 4.0,” IEEE Internet Things J.,
vol. 7, no. 7, pp. 6201-6213, 2020.

P. Sun, Z. Guo, G. Wang, J. Lan, and Y. Hu, “MARVEL: Enabling
controller load balancing in software-defined networks with multi-agent
reinforcement learning,” Computer Networks, vol. 177, p. 107230, 2020.
T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-Free Control for Distributed
Stream Data Processing Using Deep Reinforcement Learning,” Proc.
VLDB Endow., vol. 11, p. 705-718, feb 2018.

K. Zhang, Z. Yang, and T. Basar, “Multi-Agent Reinforcement Learn-
ing: A Selective Overview of Theories and Algorithms,” CoRR,
vol. abs/1911.10635, 2019.

G. Weiss, Multiagent systems: a modern approach to distributed artifi-
cial intelligence. Cambridge: MIT Press, 1999.

S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning:
a survey,” Artificial Intelligence Review, 2021.

L. S. Shapley, “Stochastic Games,” Proceedings of the National Academy
of Sciences, vol. 39, no. 10, pp. 1095-1100, 1953.

M. L. Littman, “Markov Games as a Framework for Multi-Agent Rein-
forcement Learning,” in Proceedings of the Eleventh International Con-
ference on International Conference on Machine Learning, ICML’94,
(San Francisco, CA, USA), p. 157-163, Morgan Kaufmann Publishers
Inc., 1994.

Y. Yang and J. Wang, “An Overview of Multi-Agent Rein-
forcement Learning from Game Theoretical Perspective,” ArXiv,
vol. abs/2011.00583, 2020.

J. K. Terry, B. Black, A. Hari, L. Santos, C. Dieffendahl, N. L. Williams,
Y. Lokesh, C. Horsch, and P. Ravi, “PettingZoo: Gym for Multi-Agent
Reinforcement Learning,” ArXiv, vol. abs/2009.14471, 2020.

L. Busoniu, R. Babuska, and B. De Schutter, “A Comprehensive Survey
of Multiagent Reinforcement Learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 2,
pp. 156-172, 2008.

G. Bono, J. S. Dibangoye, L. Matignon, F. Pereyron, and O. Si-
monin, “Cooperative Multi-agent Policy Gradient,” in Machine Learning
and Knowledge Discovery in Databases (M. Berlingerio, F. Bonchi,
T. Gértner, N. Hurley, and G. Ifrim, eds.), (Cham), pp. 459-476, Springer
International Publishing, 2019.

G. Weiss, “Distributed Reinforcement Learning,” in The Biology and
Technology of Intelligent Autonomous Agents (L. Steels, ed.), pp. 415—
428, Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative Multi-agent
Control Using Deep Reinforcement Learning,” in Autonomous Agents
and Multiagent Systems (G. Sukthankar and J. A. Rodriguez-Aguilar,
eds.), (Cham), pp. 66-83, Springer International Publishing, 2017.

AUTHORS

B. Sc. Michael Urlaub studies in the master program
“Technische Informatik” at TH Koln.

Dipl. Ing. (FH) Julia Rosenberger is doing her doctorate
at Bosch Rexroth AG in the field of “Datenflussoptimierung
in der Industrie 4.0”.

Kdlner Beitrage zur technischen Informatik

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

Investigations on self-optimizing PID controllers
based on neural networks and Implementation in a
process control system

André Wittling
Shell Energy and Chemicals Park Rheinland, Abt. DMR/R3M4 Process Automation
Ludwigshafener Strafle 1, 50389 Wesseling, Germany
TH Koln, Fakultit FO7, Institut fiir Nachrichtentechnik, Betzdorferstr. 2, 50679 Koln
a.wittling@shell.com

Abstract—The system developed in this paper aims at opti-
mizing the control parameters of a PID controller. A neural
network implemented within a process control system performs
the optimization. The basic idea of the approach is based on the
use of a simple neural network structure, which is characterized
by a fast response time. This ensures a fast computation of
the optimal control parameters. The training of the neural
network is based on a numerical backpropagation algorithm
using an advanced Levenberg-Marquardt algorithm. Additional
knowledge about the plant and the control loop model is required
to compute reasonable control parameters. The acquisition of
this additional knowledge is illustrated using an example flow
measurement. Furthermore, the aspect of loss of stability by
adding a subsystem to the control structure based on bounded
input bounded output stability is discussed.

Index Terms—neural network, PID control, Levenberg-
Marquardt algorithm, neural PID, closed-loop model, BIBO
stability, system identification, Honeywell, vortex flow principle,
plant-related asset management

I. INTRODUCTION

Smart Factory is one of the goals being pursued within
the German government’s Industry 4.0 theme complex [1].
Smart Factory describes an intelligent process structure that
manages itself without human intervention. Based on this idea,
an increase in digitalization can be seen within the process
industry. The use of intelligent systems and cheaper hardware
components is leading to the increase in digitalization. The
combination of more intelligent systems and cheaper hardware
also leads to an increased amount of data. This data includes
process data, which today is mostly unused [2]. Considering
the high volume of data and with regard to advantageous
information retrieval, e.g., to be able to make optimizations to
processes, manual execution can be very time-consuming or
too complex for a human. For this reason, a suitable alternative
is to entrust the information retrieval to a machine. Particularly
in recent years, it has become apparent that systems with
implemented artificial intelligence are capable of processing
large volumes of data very quickly and in an optimized
manner.

For this reason, artificial neural networks are used to opti-

Band 2/2022

mize given process control problems, e.g. [3] and [4]. The
implementation of an artificial neural network used for control
purposes comes with the cost of losing stability guarantees
and interpretability of the control structure [5]. Furthermore,
limitations of the process control system have to be considered,
e.g., limited memory. Systems that serve to optimize control
parameters must take these aspects into account. A check is
therefore essential. In continuous processes, different operating
points occur, resulting in different system dynamics. A setting
of the associated control parameters is usually very extensive
and is made for a defined operating point. As a result, optimum
control behavior at varying operating points is not guaranteed.

II. APPROACH

The approach shown in this paper deals with the optimiza-
tion of a given flow control loop. Based on related work, e.g.,
[5] - [7] an optimized control behavior can be achieved by
extending the structure of the standard closed loop control.
Therefore, a new subsystem is added, which is based on
artificial intelligence (AI). On the one hand, the Al can be
used for actual control of the plant [6], and on the other hand,
it can be used for tuning purposes [5], [7].

= Neural
PID Tuner
—
K Plyﬁ D . ¢
e PID u u
v* Controller ul1 Plant ———

Fig. 1. Control structure with an additional neural network [5]

Fig. 1 shows the standard closed control loop structure con-
sisting of a PID controller and the plant. Additionally, a neural

13

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

PID tuner can be identified. The neural PID tuner describes
the additional Al-subsystem. In this case, the neural PID tuner
handles the optimization of the control parameters during
operation using a neural network. Following the approach of
[5], the development of a neural PID tuner for the given flow
control loop is shown in this paper. As a part of the devel-
opment, each subsystem of the closed control loop requires
its own considerations with respect to the functionality of the
overall system.

III. PID CONTROLLER FUNCTIONALITY
A. Theoretical considerations of PID control

The most common implementation of control strategies is
the PID control [8]. In recent implementations, a PID con-
troller is based on an additive form of three terms. These terms
are the proportional (P), the integral (I) and the derivative
(D) term. Each term shows a different reaction to a control
error e. The value of e is based on a difference between a
reference variable v* and the output of the plant v. The effect
of e can be influenced by three control parameters. These
are Kp, K; and Kp as they are shown in Fig. 1. Kp is
the proportional coefficient of the P term. This determines
whether amplification or attenuation is to be applied based
on the control error. The integration coefficient, K; of the
I term defines a delay time and Kp a reaction time of the
system for the D term. Equations (1) to (3) express the general
relationship between the control difference e and the three
control parameters.

up(t) = Kp *e(t) (1)
ur(t) = Ky * /e(t)dt 2
up(t) = Kp * é(t) 3)

The output of the P, I, and D terms are represented by up, ur,
and up. The final output v of the PID control is calculated by
the sum of all three terms. Fig. 2 shows the detailed scheme
of the PID controller.

up

-~

up

D

Fig. 2. A detailed view of an additive PID controller
Based on the detailed scheme w is calculated by (4).
u(t) = Kp *e(t) + K; */e(t)dt L Kpxélt) @

An alternative calculation is given by a multiplicative com-
bination of the three terms. In older implementations, this

14

combination of a PID control is used [9]. Therefore, a different
scheme is defined for the functionality.

.

TN *s

Ty x s

Fig. 3. Detailed view of a multiplicative PID controller

Fig. 3 shows the modified scheme of the PID controller. From
the figure, the setting of the P term has an influence on the
other two terms, resulting in amplification or attenuation of all
effects on the control error e as a function of K p. In addition,
Fig. 3 shows two different control parameters for the I and the
D term. Based on the quotient between the control parameters
Kj, Kp and Kp the parameters Ty and Ty are defined.

Kp

Ty = —

N= g, (©)
Kp

Ty = 2P 6

V=K, (6)

Equations (5) and (6) show the relationship between the
control parameters with T and 7y in seconds. T defines
the reset time. The reset time is the time that a pure I
controller would have to spend to achieve the same output
value generated by a P controller at a constant control error.
Ty is the derivative time and defines how much faster a pure D
controller can generate the output of a P controller. Following
the principle shown in Fig. 3 the output w is calculated using
the following equation.

ult) = Kp + e(t) + % . / c)dt + Ty 5 é(t)] ()

B. PID Control within the Honeywell DCS

For the development of a self-optimizing PID controller, the
functionality of the used Distributed Control System (DCS)
needs to be known. Investigations regarding this paper are
based on the DCS by Honeywell running on Release 501.6.
The computed equation for the output of a PID controller is
given by [10].

—1 1 T25

CV(t)=K«L'(1+ Tos + [T alhs
Equation (8) shows the calculation of the control variable
CV, which represents a step response for the actual output
of the PID controller. The calculation is shown in the Laplace
domain based on (7), where K represents Kp, T represents
Ty and T35 represents Ty . Two further differences arise
from consideration of (8). The first difference is the use of
controller deviation é. € is formed from the difference between
the process value (PV) and the reference variable, which is
also known as the setpoint (SP). It describes the negative
control error e. The second difference can be seen in the
calculation of the D term. The D term is formed by the Laplace

) (PVs—SPs)] (8)

Kdlner Beitrage zur technischen Informatik

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

transformation of the controller deviation in combination with
a low-pass filter. The low-pass filter uses a constant frequency,
which is equal to a value of a = % = 0.0625. By applying
the Laplace inverse, the calculation of the step response results
in (9).
%
vt = K + (A 4 1ze(yo) - 2840 (g
T 15

The effect of the Dirac pulse ¢ cancels out at any time
where ¢ # 0 . Two further considerations lead to a final
equation for the calculation of the step response. First, the two
control parameters, 7} and 75, must be converted into seconds.
Within the Honeywell DCS, these are specified in minutes.
The second consideration is the relevance of the processing
cycle. Equation (8) is valid only in cases where the processing
cycle is equal to one second. If this differs, the result must be
adjusted accordingly. This is done by multiplication with the

process cycle in seconds.

e(t) 256e(t) e
60 = T} 60 x Ty

The final equation for the step response is shown by (10)
where ., represents the mentioned process cycle time. The
resulting output, u(t + tcycie), is calculated by adding C'V(t)
to u(t). This equation is one of the requirements for the
development of a training algorithm for a neural network that
will optimize the PID controller.

CV(t) = (K * ()) * tcycle (10)

IV. CONTROLLED SYSTEM ANALYSIS

The analysis of the properties of the controlled system leads
to the topic of system identification. System identification
offers different approaches, which represent the properties
of the controlled system by a model. The model is only a
representation of the system’s behavior within defined quality
criteria [11]. Data must be collected through interactions with
the system. A suitable approach must be chosen based on the
data and the background knowledge about the controlled sys-
tem. Investigations for the implementation of a self-optimizing
PID controller require two essential pieces of information
about the controlled system. The first piece of information is
based on the formation of the process variable. This affects the
control difference and thus the controller output variable. Thus,
a relationship between the process variable and the controller
output variable is required. The second piece of information is
used to prove stability. As mentioned in the introduction, the
modification of the control loop does not lead to a guarantee of
a stable system [5]. To prove the stability of the closed control
loop, the transfer behavior between the controlled system and
the PID controller needs to be known.

A. Model based on first principles

If the measurement method of the controlled system is
known, it is possible to determine a model by using mathe-
matical approaches [11]. The controlled system investigated
in this paper is a flow measurement based on the vortex
flow principle. A vortex flow measurement is based on the

Band 2/2022

principle of Kdrman vortex street. This principle states that
a medium behind a disturbance body is formed by counter-
rotating vortices.

: T &) [}
Fluid fow mmp o1 = > 5
—= i

EP

ressure sensor

Fig. 4. Vortex flow measurement [12]

Fig. 4 depicts an example of vortex flow measurement. A
medium inside a pipeline flows towards a disturbance body
with dimensions of d. Behind the disturbance body, turbu-
lences with a wavelength of A occur, which form differen-
tial pressures due to their counter-rotation. The differential
pressures lead to pressure pulses, which can be detected by a
sensor. The sensor accumulates the pressure pulses and forms
a vortex frequency f from them. The wavelength)\ is related
to the dimension of the disturbance body. The relationship
is described by the shape of the oscillating flow. The swirl’s
shape is defined by the Strouhal number S,.. [12].
d
A= 5
The described relationship is illustrated by (11). According to
the approaches from [13], the shape of the vortices is related
to the inertial and viscous forces. These are described by
the Reynolds number R.. The Reynolds number includes the
material properties of the medium, such as its viscosity and
density. Following the principle of traveling waves using the
frequency-velocity-wavelength formula, the medium velocity
is defined by (12).

an

fxd

v S’I‘(RE) (12)
The controlled system under investigation defines the mass
flow of the medium as the process variable. The mass flow
is determined by the flow velocity within a body. This body
is described by a pipeline whose cross-section D corresponds
to the surface of a circle. In addition, when forming a mass
flow, the temperature- and pressure-dependent density p must
be taken into account. The result of these correlations is shown
in (13).

7xD?x fxd
4% S, (Re)

By using this equation and performing a series of measure-
ments, a relationship between the controller output variable
and the process variable can be established. The correlation is
based on the determination of the vortex frequency. The series
of measurements for the investigated control system is given
in table I.

1 = p(T,p) * 13)

15

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

TABLE I
MEASUREMENT RESULTS FOR THE CONTROL SYSTEM

[yin% [mintvd [vinm/s [Re [10°] [S, [finHz |

0 0 0 0 0 0

15 35046 0.59 045 0.197 | 161
20 45839 0.77 0.59 0.197 | 211
35 830.83 41 .08 0.197 | 3383
50 1298.95 2.20 1.63 0.197 | 599
60 1502.82 255 1.95 0.197 | 693
84 12098172 | 3356 272 0.197 | 9.68
100 22674 385 2.94 0.197 | 1046

The table shows the mass flow as a function of the regulating
variable y. In this case, the manipulated variable corresponds
to the controller output variable u. The regulating variable
represents a valve position and shows the percentage value
of the opening. The associated mass flow has been detected.
The measurement series covers a period of 500 days. The
value shown is the mean value of this period. By solving (13)
for the frequency and inserting it into (12), the flow velocity
can be determined. With the help of the flow velocity, the
Reynolds number and, from this, the Strouhal number can be
determined using the approach from [14]. The value of the
Strouhal number in most applications is approximately 0.2,
which is also shown by the results. The vortex frequency is
to be calculated from the determined values.

11 T T T T T T T T T
10

S N 0 ©

fiHz]

=N W e Gt

(=}

I | I | - | I | I | I | I | - | I | I
10 20 30 40 50 60 70 80 90 100
y[%]

Fig. 5. Correlation between the manipulated variable and the vortex frequency

Fig. 5 shows the relationship between the regulating variable
and the determined frequency. The curve is almost linear. For
this reason, linear interpolation and the establishment of a
straight-line equation are acceptable for this controlled system.
The vortex frequency f can thus be defined as a function of
y.

B. Determine the transfer behavior

Various approaches exist for determining the transfer be-
havior, such as the inflectional tangent principle, which e.g.
leads to a PT1 substitute model [9]. The cycle in which the
data is provided by the DCS plays an important role. Based on

16

this cycle, the choice of a suitable procedure must be made.
Under the consideration of the Honeywell DCS, this results in
the provision of data in one-second increments.

1,150 [
1,100 |

1,050 |

—e— Step response

= 1,000 F------- --- Final value |
= --- 0.63K 1
=950 PS]
A, B
900 .
850 .
800 .
) |
750 | I | | | |
0 5 10 15 20 25 30

tls]
Fig. 6. Exemplary step response of the process variable

Fig. 6 shows an exemplary step response of the controlled
system. The shown PV corresponds to the process output v.
Based on the progress of the PV, the system behavior of a
PT1-term can be identified. By means of this observation, a
PT1 substitute model can be used for the representation of
the plant. The calculation rule for the PT1-term in the time
domain is given in (14) [15], where T is the fixed delay time
and Kpg is the proportional factor.

v(t) = Kpg*(1—eT) (14)

Given that Kpg is the step response’s final value, the fixed
delay time 7" must be determined. Because of the functionality
of the PT1 term shown in (14), T' can be determined at the time
when ¢ = T'. Using this relationship, v at this moment corre-
sponds to the value of 0.63K pg. For the example shown in
Fig. 6, this results in a fixed delay time of 7" of approximately
7.66 seconds. The investigations of the controlled system by
various step responses lead to comparable results. In these
results, T' is equivalent to a time span of 7.98 seconds on
average.

Using the PT1 substitute model, the transmission behavior
of the closed control loop can be determined. Therefore, the
calculation rule of the PTI-term in the Laplace-domain is
needed, which is shown by (15).
Kps

Vis) = 1+7Ts
The transmission behavior of the closed control loop is gen-
erally described by

15)

Ge(s) * Gr(s)
14+ Ge(s) * Gr(9)
where G is the transmission behavior based on G. and
G,. The derived substitute model G, is given by (15). G,

G(s) = (16)

Kdlner Beitrage zur technischen Informatik

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

represents the behavior of the used controller. For the system
under consideration, this is given by the behavior of the PID
controller in (8). Substituting the two equations into (16) yields
a final equation for the transmission behavior

82*b2+8*b1+b0

G(s) = 17
(s) s3xa3+s2xag+s*xay+ag an
where each coefficient is given by table II.
TABLE 11
COEFFICIENTS OF THE TRANSMISSION FUNCTION
[Coefficient [Value

bo KpsK x (aThTo + T1T»)
b1 KpsK*(Tl +0¢T2)
bo KpsK
a3 aTlTQT
az o'l +ThT +aKpsKThTo + KpsKTh T
a Th+ KpsKT1 +aKpsKT»
ap KPsK

V. THE ARTIFICIAL NEURAL NETWORK

Due to the previous considerations, all the necessary infor-
mation about the process is already known. This information
can be used to choose an approach for an artificial neural
system. The choice of the approach depends on the possibility
of performing online or offline training of the system. By
performing online training, the artificial neural system acts
directly with the PID controller. Possible approaches of this
type are, e.g., a single neuron PID controller [6] or the
combination of a fuzzy system with an artificial neural network
[7]. On the one hand, these use the discovered properties of the
PID controller to take over the actual control or to optimize the
control parameters. For the investigated flow measurement, the
application of online training is not possible due to the effects
on the overall process. For this reason, only the possibility of
an artificial neural system for a self-optimizing PID controller
based on an offline training approach is given.

A. Definition of a network structure

As an approach for the implementation, the idea of the
neural PID tuner [5] from Fig. 1 has been followed. The
neural PID tuner, proposed in [5], consists of a General
Dynamic Neural Network (GDNN), which belongs to the type
of feedback networks.. The recurrent connections are delayed
by one time step and are randomly generated. They are used
for learning non-linearity and representing system dynamics.
In its basic structure, the GDNN describes a simple multi-layer
perceptron (MLP) with one hidden layer. Simple in this context
means that the number of neurons in the hidden layer is very
small. The neural network’s inputs are the control difference
e and the process variable v, as shown in Fig. 1. The outputs
correspond to the control parameters. This results in an input
layer of two neurons and an output layer of three neurons.
A property of recurrent connections is that they need some
time steps to reach a steady state. This does not guarantee the
required stability of the neural network [9].

Band 2/2022

A modified approach has been chosen to avoid this behavior.
This approach does not consider the system dynamics of the
recurrent connections. This means that the artificial neural
network of the PID Tuner is described by a simple, fully
connected MLP.

Hidden
Input

Output

Fig. 7. Exemplary artifical neural network for the PID Tuner

Fig. 7 shows a possible MLP that can be used to implement
a neural PID tuner. Each neuron corresponds to the structure
of an MPC neuron [16]. The hidden layer consists of four
neurons. This small number allows a fast computation of the
network outputs. These are shown with two neurons. The
omission of the third neuron is due to Schlitt’s adjustment rules
[17]. These adjustment rules state that the use of a PI controller
is sufficient for controlling a flow. Furthermore, typical setting
ranges for the control parameters are defined.

The activation functions of the neurons are different for each
layer. According to the approach of the GDNN, the activation
function of the neurons in the input layer is the identity
function [5]. The activation function of the hidden layer is
chosen as tangent hyperbolic [18]. The operation of the PID
controller is crucial for the choice of the activation function
of the output layer. Based on the considerations for the
Honeywell DCS, a multiplicative combination of the control
parameters occurs. This means that the control parameters
of the I and D terms are defined as times. These can’t be
negative numbers. For this reason, the absolute value function
is used for the activation function of the output layer. The
implementation within the DCS is carried out in two steps. The
training and testing phases of the system are to be performed
separately from the DCS. The background of this separation
is the higher computational load and needed storage, which
are necessary for the execution of the subsequent epochs.
The goal of the first step is to obtain a neural network that
provides reasonable control parameters. The second step is the
implementation within the DCS.

17

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

B. Execution of the offline training

The basis of offline training is the Levenberg-Marquardt
(LM) algorithm [19]. This method describes a training method
based on backpropagation. The mode of operation is based on
the gradient descent method and the Gauss-Newton method
and describes the updating of the weights of the neural network
by

W1 = wp — (JL * Ty + X)7L 5 Jp, * By, (18)

where w defines the weights of the neural network, .J the
Jacobian matrix, [the identity matrix, £ the error function and
k a discrete moment in time. A defines a damping factor, which
determines to which method the LM algorithm converges. If
A < JF * Ji, the LM algorithm will converge to the Gauss-
Newton method. Otherwise, if A > JkT * Ji, the LM algorithm
will converge to the gradient descent method. As it can be seen
from (18), the Jacobian matrix must be determined to calculate
the new weights. The elements of this matrix contain the first
partial derivative of the network error after each weight of the
neural network, considering each training pattern. This results
in time-consuming computations, depending on the number of
training patterns and network outputs [20]. To minimize the
computation time, an approximated Jacobian matrix J can be
obtained using finite difference [21]. Each element of J is
calculated by

v(x,w) —v(z, w — he(w;))
5(7_02)

Ji = 19)
where j; is the i-th Jacobian element of J, v is the process
variable as a function of weights and a given input z, and € is
the step size for the i-th weight w;. h describes a column vector
containing the values zero and one. This allows a controlled
weight modification of w using e(wi). To create a finite
difference, the step size must be as small as possible. For this
purpose, the significand precision value for double precision
numbers can be used, which is approximately 1.1x10716 [22].
From (19) emerges another essential aspect for the training of
the neural network. As mentioned before, the general Jacobian
matrix in the context of the LM algorithm includes the partial
derivative of the network errors according to the weights.
The network error is composed of the difference between
the expected value and the network output when using the
backpropagation algorithm. In the case of the PID controller,
this means that the optimal control parameters must be known.
Since these are not known, the backpropagation algorithm
must be modified. This leads to a numerical consideration
in which training is not based on the network error but on
the control difference. The control difference is defined as the
difference between the PID controller’s given setpoint and a
calculated process variable v as a function of the weights
w and network inputs combined into the input vector x.
The calculation of v(z,w) can be done by using (10) and
(13). Based on the control parameters, which correspond to
the outputs of the neural PID tuner, a weighted y must be
calculated. Based on Fig. 5, the vortex frequency f can be

18

defined as a function of y. By means of this relationship, the
resulting frequency in (13) yields v(z, w).

The last required consideration is based on providing the
system dynamic. A system dynamic is essential for training
of the time-relevant control parameters. For this reason, the
training is performed over a growing sequence of training
patterns, which is generated during the training process. Static
processing of the training patterns leads to the fact that the
system tries to compensate the control error only with a pure
P-controller. The computation of the offline training can be
organized as pseudocode, as shown in Fig. 8.

/I Start of the training algorithm
init neural network
/I Iteration over training data
for each entry in training data
add entry to training sequence seq
/I Training of the neural network over ep epochs
for ep epochs
calculate pidgains using neural network
calculate v(x,w) using (13)
for each entry in seq
for i weights
calculate j; using (19)
end for i weights
modify weights using (18)
if Yo (v(z,w) — SP)? <Y (PV — SP)?
transfer weights to neural network
modify A by A = 3
else
modify A by A = A %2
end for each entry in seq
end for ep epochs
end for each entry in training data
/I End of the training algorithm

Fig. 8. Pseudocode of numerical backprogation for a neural PID Tuner

C. Execution within the Honeywell DCS

The realization of the trained neural network within the
DCS is done in a Custom Algorithm Block (CAB). A CAB
describes a user-defined function block, which in this case
consists of three steps. The first step is the initialization of the
neural network. For this purpose, the weights of the offline
training that have been identified as optimal have to be stored.
The weights also determine the structure of the network. The
second step is the calculation of the network outputs, which
leads to the new optimal control parameters by transferring
the controller deviation and the process value. The third step
takes up the observations of the transmission behavior of the
closed loop in regards to the stability of the overall system. For
the proof of bounded input bounded output (BIBO) stability,
the Routh criterion is used for this application [23]. The
routh criterion can be verified using the coefficient of the
characteristic polynomial of the transfer function. Based on

Kdlner Beitrage zur technischen Informatik

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

(17), an associated Routh scheme is obtained, which is shown
in table III.

TABLE III
ROUH SCHEME FOR THE PROOF OF BIBO STABILITY
ag az | 0
ay az | 0
ap¥aj—ag*ag
e 0]0
as 0 0

By using the coefficients from table II, the computation of
the Routh scheme depends on the control parameters. After
a performed computation of the new control parameters, the
elements of the first column of the Routh scheme must be
assessed. The system is considered stable if all its elements
are not negative. The control parameters are accepted only if
stability is given [23].

VI. RESULTS OF THE OFFLINE-TRAINING AND
TESTING

During offline training, different structures of the neural
network have been investigated. The different structures are
based on a variation in the number of neurons in the hidden
and output layers. With respect to the output layer, this
results in training sessions for a PID and a PI controller.
The variation of the neurons in the hidden layer served to
determine a network structure that could reproducibly generate
reasonable setting ranges of the control parameters for the
given controlled system. For the system under consideration,
five neurons are to be used in the hidden layer. The results of
the training depending on the training patterns and the epochs
for an example neural network are shown in table IV.

TABLE IV
RESULTS OF THE TRAINING PHASE OF A NEURAL NETWORK
patterns | epochs K Ty T>

10 20 0.03...1.53 | 0.02...0.7 0.02...0.17
100 10 0.07 ...0.93 | 0.18 ...0.71 | 0.09...0.13
100 20 0.12...0.51 | 0.11...0.62 | 0.06...0.11
1000 10 0.13...0.89 | 0.09...0.59 | 0.06...0.10
3743 5 0.11...0.72 | 0.14 ...0.51 | 0.004 ...0.08

Two different criteria must be evaluated to assess the results
in table IV. The first criterion is that the results are within
or close to the setting range given by Schlitt [17]. For a flow
control, a typical value for K is between 0.5 and 1.0 and the
value for T3 is between 0.1 and 0.5 minutes. From [17], it
follows that the setting of a D-term is not useful. The second
criterion is a similar setting to the existing PID controller.
This has very good performance at the operating point. The
corresponding settings are K = 0.22 and 77 = 0.2 minutes.

If this is considered, the displayed setting ranges already
assume meaningful values for a small number of training
patterns and epochs. The setting ranges shown in table IV
represent the determined minimum and maximum value for

Band 2/2022

each individual control parameter based on the training pat-
terns. It follows from the results that by using a larger number
of training patterns, the network learns for the training of a
PID controller that the D term is not useful. This results in a
convergence towards zero for 75. Based on these observations,
it is sufficient to implement a neural PI tuner for the given
controlled system. The reasonable adjustment ranges are due
to the iteration of the epochs. Due to the steadily increasing
sequence of training patterns and the subsequent execution of
the epochs, a high total number of iterations by which the
neural network can adapt to the system dynamics is shown.
The total number of iterations is given by

N
In:Zn*ep
n=1

where I, represents the number of iterations, n represents the
number of training patterns, and ep represents the number of
epochs. For the last entry in table IV, this results in a training
consisting of 35034480 iterations.

(20)

The test phase is used to identify possible configurations
to be considered for implementation within the DCS. For
this purpose, the extreme values of the networks are to be
determined, which define the possible setting range of the
control parameters. If possible, the test patterns should include
the complete measuring range of the associated control system.
In a log file, all network configurations are stored with the
related weight factors and possible adjustment ranges, as
shown in Fig. 9.

Weights:

[0.2642528 -0.24353593 0.01985194 0.20896227 0.19065475 -0.1238825
0.0885282 -0.20980556 -0.19545562 -0.25471893 -0.00380722 0.16504 383
0.09048049 -0.04402695 0.2191904 0.01452629 0.42961403 -0.16358957
-0.26062988 -0.17386749]

Kmin= 0.2927440032704005 Kmax— 0.37676436117322215

Tlmin= 0.11385999 Tlmax— 0.2048214501514961

Fig. 9. Sample of the Log-File with the configuration of the neural PI
controller

As a result of the test phase, various configurations have been
identified as useful.

VII. RESULTS OF THE OPERATION PHASE

The goal of the operation phase is to compare the perfor-
mance of the fixed-parameter PI controller with that of the
neural PID tuner under similar conditions. For this reason,
the neural PI tuner needs to be evaluated in terms of its per-
formance during normal closed-loop operation. The operation
phase of each individual Al-subsystem covers five consecutive
days.

A. Evaluation criteria

During the five-day operation phase, data in one-second
time steps has been logged. Each data entry consists of the

19

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

date and time as well as the PV and the SP. To evaluate the
performance of the fixed PI controller and the neural PI tuner,
two criteria were checked during the investigations. The first
criteria is the mean squared error (MSE) of the day. The MSE
is calculated by

M
1 * \2
MSE = 7k mE:I(vm —or) 21)

where M is equal to the sample size. For one day, M equals
86400 samples. A low value for the MSE indicates good
performance of the controller.

The second criterion is based on a valuation method linked to
the theme complex of plant-related asset management (AM).
As part of the plant-related AM, process values or technical
documents are assessed to ensure value-preserving and value-
enhancing maintenance [24]. One component of the AM is the
verification of a controller’s performance using control perfor-
mance monitoring (CPM) methods. CPM methods are used by
various DCS-system vendors, e.g., Siemens or Emerson [25].
In this method, the control performance of the closed loop is
evaluated using various dimensional numbers. These dimen-
sional numbers can be calculated using the current process
value over time. The first dimensional number describes the
variance ¢? of the PV, which is given by

1 Q
c2:Q71* (vg — 7)? (22)
q=1
o1
=5 * Zl g (23)
o

where v equals the PV, ¥ is the average of v calculated by (23)
and @ is the evaluation period. Since in normal operation, a
dynamic for the SP can be identified, the evaluation horizont
Q@ equals 300. This represents a time span of five minutes.
For the determination of good control quality, the variance
needs to be compared to a control loop, which is represented
by a small variance. Those control loops are described as
minimum variance controller (MV-controller) [26]. In theory,
a MV-controller is based on a high-order system model, which
results in high requirements for a mathematical model of the
plant. For this reason, the MV-controller has not received much
relevance in industrial practice [9]. Instead, an approximation
of a control loop with MV-controller can be made by the
process value of the real system [27]. The approximated
control loop’s variance c3,y is defined as

(24)

2
C5.

2 2 diff

CMVN%iff*@*iég)

where ¢2; ¢ describes the variance between two adjacent time
steps of v. The calculation includes all samples from the
evaluation horizon and is defined by (25).
1 Q
2 2
Chirf=—————<x Y (vg—v4-1)
ST CENRPC S

(25)

20

On the basis of the dimensional numbers, the control perfor-
mance can be evaluated by the computation of the control
performance index (CPI). By using the results of (22) and
(24), the CPI is computed as follows:

cvv + Ac

+ Ac
In this calculation rule, Ac represents numerical stability in
relation to the measuring range. The value is fixed and equals
the value of 22 t/d for the following evaluation. This value
represents 0.1% of the measuring range. A low CPI indicates
good control quality with regard to MV-control.

CPI=(1-) % 100% (26)

B. Evaluation Results

During the evaluation, three different configurations of the
neural PI tuner were investigated. As mentioned above, the
evaluation period includes five consecutive days. The same
evaluation period of the fixed PI controller has been taken into
account. One of the best five-minute segments of the fixed PI
controller is shown in Fig. 10.

mlt/d)

L L | L L | L | L
0 50 100 150 200 250 300

t[s]
Fig. 10. Time trace of the fixed PI controller

As it can be seen in Fig. 10, the PV mostly overshoots
the desired SP with an average of 2 t/d. Besides that, a
small segment in the time interval of 130..200 seconds can
be noticed, where the controller has an acceptable control
performance with a control error of 1 t/d as a maximum. The
MSE of the whole segment results in 4.62 t2/d?. The MSE for
this segment is low overall, as is the CPI, which is 4.6915 %.
By definition, the control quality of this segment is acceptable
for proper control functionality.

In comparison, the average settings of the control parameters
as well as the MSE and the CPI of each individual PID tuner
can be seen in table V.

TABLE V
SETTING RANGES AND BEST PERFORMANCES OF THE PID TUNER
PID tuner K Ty in min | MSE in ¢?/d? | CPLin %
1 0.26924 0.77156 1.28 3.9321
2 0.26129 0.58968 0.93 3.5084
3 0.25174 0.30845 0.64 1.8559

Kdlner Beitrage zur technischen Informatik

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

The shown values represent the best five-minute segments
during the investigation. The associated time traces can be
seen in Fig. 11 to 13.

501 T T T T T

499

498

mt/d]

497

4 4 L | L |
o 0 50 100

| | |
150 200 250 300

t[s]

Fig. 11. Time trace of the first neural PI tuner

mt/d]

| |
0 50 100 150 200 250 300

Fig. 12. Time trace of the second neural PI tuner

mt/d)

| | |
0 50 100 150 200 250 300

t[s]
Fig. 13. Time trace of the third neural PI tuner

Within the time traces, an improvement in the control quality
can be noticed by a decreasing control error in comparison
to the time trace shown in Fig. 10. This is proven by the

Band 2/2022

values of the MSE and CPI given by table V. But to prove
an improvement in the control quality by extending the closed
control loop with a neural network, the overall performance
of the five-day operation phase needs to be compared. The
results are shown in table VI.

TABLE VI
RESULTS OF THE OPERATION PHASE

Day fixed Tuner 1 Tuner 2 Tuner 3
CPI | MSE CPI | MSE CPI | MSE CPI | MSE
1 11.3 18.3 10.7 | 11.8 8.2 11.5 11.8 14.3
2 1.1 | 309 10.5 16.8 10.5 | 13.7 10.1 9.9
3 183 | 36.3 9.1 11.0 114 | 169 102 | 10.5
4 17.5 | 30.9 10.5 13.0 10.6 | 11.7 9.0 9.3
5 14.0 | 20.3 10.5 15.6 9.8 11.2 106 | 11.3

[Av. || 144 | 252]| 103 | 136 || 101 | 130 || 100 | IL.I |

As it can be seen within the results, each neural PI tuner
provides a comparable CPI to the fixed PI controller. The
increase in the control quality is shown by the five-day
average in the last row of table VI. For all neural systems,
the improvement is approximately 3%. On the other hand,
a big decrease of the MSE can be noticed. This means that
the small improvement of the CPI leads to an overall better
control performance. In comparison, the average CPI of each
neural PI tuner is approximately equal. Based on the MSE, the
third PI tuner can be established as the control system with
the best control performance. In addition, this result proves
the assumption that an improvement in the overall control
performance can be achieved by extending the closed control
loop with a trained neural network based on archived data.

VIII. CONCLUSION

The approach described in this paper shows an attempt to
identify optimal controller settings based on unused process
data. The presented implementation shows that a neural net-
work can learn a system dynamic from only a few data sets.
The resulting optimal controller settings describe reasonable
ranges that correspond to a typical setting. Due to the operating
phase within the actual DCS, those reasonable setting ranges
have been proven to be a valid solution for the increase of the
control performance. In addition, the execution of the reduced
algorithm of the CAB proves to be neither time-intensive nor
does it necessitate a large amount of data storage. This means
the shown approach is suitable for implementation within a
DCS system. Ensuring system stability is possible by deriving
from the closed loop transmission behavior. By calculating the
Routh scheme, a safe adaptation between the PID controller
and the neural network is given.

With a view to further work, this approach is to be tested
for more complex systems, which e.g., include non-linearities.
Here, a decisive factor is whether the necessary information
from the controlled system can be derived.

Due to the easy extensibility of the algorithm, it is possible to
optimize systems consisting of different PID controllers, e.g.,

21

INVESTIGATIONS ON SELF-OPTIMIZING PID CONTROLLERS BASED ON NEURAL NETWORKS AND IMPLEMENTATION IN A PROCESS CONTROL SYSTEM (ANDRE WITTLING)

controller cascades. Another approach is to conduct further
training phases. The newly acquired data from the operation
phase is to be used as the data basis. Thus, a new generation of
artificial intelligence can be trained based on the best control
performance.

IX. ACKNOWLEDGMENTS

First, I would like to thank Prof. Dr. Bartz for the continuous
support, for sharing his expertise, and for his intellectual
guidance during this work. I am grateful for the opportunity
he has provided me.

Second, I would like to thank Mr. Meyer for sharing his
knowledge and the helpful discussions.

I also want to express my gratitude to Mr. Frie from Shell
Energy and Chemicals Park Rheinland for providing the
investigated control system and for making the data acquisition
and operating phase possible.

REFERENCES

[1] bmbf.de, Industrie 4.0, [Online], accessed 05-2022, Available:
https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-
gesellschaft/industrie-4-0/industrie-4-0.

[2] welt.de, Kiinstliche Intelligenz: Industrie sieht

bereits abgehidngt, [Online], accessed 11-2021,

https://www.welt.de/wirtschaft/article191212599/Kuenstliche-

Intelligenz-Industrie-sieht-Deutschland-bereits-abgehaengt.html.

IK. Pirabakaran and V. M. Becerra, PID autotuning using neural net-

works and model reference adaptive control: International federation of

automatic control, 2002.

[4] J. de Jesis Rubio, Discrete time control based in neural networks for
pendulums, Applied Soft Computing Journal, vol. 68, pp. 821-832, 2018.

[5] J. Giinther, E. Reichensdorfer, P. M. Pilarski, and K. Diepold, Inter-
pretable pid parameter tuning for control engineering using general
dynamic neural networks: An extensive comparison., PLoS ONE, vol.
15, no. 12, pp. 1-17, 2020-12-10.

[6] J. Liu, On a method of single neural pid feedback compensation control.

online, 2016.

Y. Yongquan, H. Ying, and Z. Tao, To tune the dynamic parameters

of neural pid controller by the intelligent learning algorithm, in IEEE

International Conference Mechatronics and Automation, 2005, vol. 3,

pp. 1521-1526 Vol. 3, 2005.

[8] Ang KH, Chong G, Li Y. PID control system analysis, design,
and technology. IEEE Transactions on Control Systems Technology.
2005;13(4):559-576.

[9]1 N. GroBe, W. Schorn, R. Bartz, N. Becker, and M. Kluge, Taschenbuch

der praktischen Regelungstechnik: mit 44 Tabellen. Miinchen [u.a.]:

Fachbuchverl. Leipzig im Carl-Hanser Verl., 2006.

H. I. Sarl, Control Builder Components Theory. Honeywell Honeywell

International Sarl, Feb. 2018.

L. Ljung, System identifcation: theory for the user. Prentice Hall

information and system sciences series, Upper Saddle River, NJ: Prentice

Hall, 2. ed. ed., 1999.

instrumentationtools.com, What is a Vortex Flow Meter? [Online],

accessed 05-2022. Available: https://instrumentationtools.com/what-is-a-

vortex-flowmeter/

E. Achenbach and E. Heinecke, On vortex shedding from smooth and

rough cylinders in the range of Reynolds numbers 6x103 to 5x106,

Journal of Fluid Mechanics, vol. 109, p. 239-251, 1981.

B. Sundan, Vortex Shedding. [Online], accessed 05-2022, Feb. 2011.

Available: https://thermopedia.com/de/content/1247/

G. Schwarze, Bestimmung der regelunsgtechnischen Kennwerte von P-

Gliedern aus der Ubergangsfunktion ohne Wendetangentenkonstruktion,

messen-steuern-regeln Heft 5, S. 447-449, 1962, 1962.

W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent

in nervous activity, Bulletin of Mathematical Biology, vol. 52, no. 1-2,

pp. 99-115, 1990.

V. Schlitt, Herbert, Regelungstechnik in Verfahrenstechnik und Chemie,

1978.

Deutschland
Available:

3

[7

[10]

[11]

[12]

[13]

[14]

[15]

(1e]

[17]

22

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

B. Kalman and S. Kwasny, Why tanh: choosing a sigmoidal function.
online, 1992.

D. W. Marquardt, An algorithm for least-squares estimation of nonlinear
parameters, Journal of the Society for Industrial and Applied Mathemat-
ics, vol. 11, no. 2, pp. 431-441, 1963-06-01.

B. Wilamowski and H. Yu, Improved computation for levenberg-
marquardt training, IEEE Transactions on Neural Networks, vol. 21,
no. 6, pp. 930-937, 2010-06-01.

K. Zhou, J. Hou, H. Fu, B. Wei, and Y. Liu, Estimation of relative
permeability curves using an improved levenberg-marquardt method
with simultaneous perturbation jacobian approximation, Journal of Hy-
drology, vol. 544, pp. 604-612, 2017.

IEEE, Iso/iec/ieee international standard - foating-point arithmetic. on-
line, 2020-05-08.

V. Unbehauen, Rolf, Systemtheorie. Miinchen [u.a.]: Oldenbourg
[Neubearb. ab 7. Aufl.]., 1997.

NE 129: Plant Asset Management. NAMUR, Leverkusen 2009
Becker, N., Grimm, W. M., Piechottka, U.: Aspekte des Real Time (Pro-
cess Equipment) Performance Monitoring (RTPM). Automatisierung-
stechnische Praxis (atp) 46(2004), S. 24-30.

Unbehauen, H.: Regelungstechnik III. Vieweg Verlag, Braunschweig
1993.

Blevins, T., McMillan, L., Wojsznis, K., Brown, W. K.,: Advanced
Control Unleashed. ISA, Research Triangle Park 2003.

Kdlner Beitrage zur technischen Informatik

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

Visual detection of a charging station and
implementation of a docking routine performed by
an autonomous vehicle

David Kliewe
Computer Engineering - Communications Engineering
TH Koln - Cologne University of Applied Sciences
Cologne, Germany
david.kliewe @ gmail.com

Abstract—This paper was written in the scope of a research
project which was executed to investigate the visual detection
of landmarks in camera-captured images. The OpenCYV library,
which provides functions for computer vision, was used to per-
form image processing on an already implemented Raspberry Pi
of a vehicle. Therefore a PiCamera was added to the vehicle and
connected to the Raspberry Pi. A charging station, represented
by a green rectangle visual landmark, should be recognized in
wide range via image-processing and steering actions as well as
motor outputs should be adjusted to position the car towards the
charging station. In the near-field docking process, an already
developed infrared LED-Phototransistor system is reused to
provide information about the angle of the car with regard to
the station. The car should center its alignment to the charging
station and perform the docking process autonomously. When the
battery of the car is connected to the charging station successfully,
a CAN-Message is sent to the integrated CAN-Bus to inform all
other components.

I. INTRODUCTION

According to a Deloiette study, autonomous driving will
become established in 2035 [1]. But even today, it is already
possible to have autonomous motor vehicles participate in
public road traffic on certain defined routes. In addition, the
amount of battery-powered vehicles increased over the last
years and will increase in the future [2]. Indeed, all vehicles
have to be manned when participating the public roads and
the pilot also is responsible for the batteries to be charged.
But there are different sectors where the usage of unmanned
autonomous driving battery-powered vehicles increases (e.g.
warehouse operation, deliveries).

The combination of unmanned autonomous vehicles which
are batterie-powered leads to the problem, that the vehicles
are responsible for their batteries to be charged timely to
prevent themselves from becoming incapable of acting.
Conclusively, in this research project a vehicle is to be
extended, which is to be able to detect a charging station and
to adjust its steering and driving actions to connect its battery
to the charging station. For this purpose, different signals and
information are used for the wide- and close-range docking
process. In the following report, the implemented code, which
includes the usage of OpenCV for image processing and

Band 2/2022

charging station detection, is shown partly. Furthermore the
necessary hardware extensions that were made as well as the
results achieved during the project are presented.

II. EXISTING AUTONOMOUS VEHICLE AND ITS
COMPONENTS

The existing vehicle as shown in Figure 1 is the main object
of investigation in this project. The modular construction of
the vehicle allows students to realize different projects and
theses. The vehicle consists of four different Printed Circuit
Boards (PCBs), which all have their own spectrum of tasks.
One PCB acts as a power-management and provides various
voltage levels for ICs, actors and sensors.

Fig. 1: Topview of vehicle and its modular structure

23

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

One acts as a sensor-PCB and processes all output-signals
of different sensors attached to it. Corresponding to the sensor-
PCB there is one actor-PCB, which manages the communica-
tion with motor drivers for steering- and drive-motors.

The fourth PCB is the so called RosPi-PCB. This PCB got its
name from a set of software libraries called Robot Operating
System (ROS) and its built in Raspberry Pi. This PCB enables
the wireless communication to the vehicle. All PCBs can be
modified and replaced according to different projects.

The autonomous vehicle is equipped with a CAN-Bus and all
PCBs of the vehicle participate in the CAN-communication.
They share information of sensor-signals and steering actions
on the CAN-Bus and react to messages with certain identifiers.
CAN-messages can be sent from external participants, either
by external wire-interface, or by being sent to the Raspberry
Pi via wireless LAN using the WebROS application. The
Raspberry Pi acts as a gateway and forwards the received
information to the CAN-Bus.

III. COMPARISON OF RASPBERRY PI AND JETSON NANO

Since the visual detection of a charging station is the main
part of this research project, it is relevant to implement a
processing unit which is capable of image capturing and image
processing. The most common single-board computers which
can be used for this are the Raspberry Pi 4 as well as the
NVIDIA Jetson Nano. TABLE I shows the main features of
both single-board computers.

Feature Raspberry Pi Jetson Nano
CPU Quad core 64-bit Quad-Core 64-bit
ARM-Cortex A72 ARM-Cortex A57
1.5GHz 1.43GHz
GPU / 128-core GPU
921 MHz
RAM max. 4GB DDR4 max. 4 GB DDR4
Power- 3-5W 5-10W
consumption
Networking Ethernet Ethernet
WLAN
Bluetooth 5.0, BLE

TABLE I: Comparison of Raspberry Pi and Jetson Nano [6]
(71

Both include UART-, 12C- and SPI-Interfaces, as well as
GPIOs with PWM functionalities. They also include a 2-lane
MIPI CSl-Interface for the attachment of a Raspberry Pi
camera [6] [7]. Although the Jetson Nano has an onboard
GPU which is useful for training and execution of ANNs and
image processing, the hardware advantages including the low
power-consumption of the Raspberry Pi in combination with
the already built RosPi and implemented WebRos outweigh
the features of the Jetson Nano. The RosPi-PCB is relevant
for wireless communication which makes testing and error
handling more easy than with an attached cable. By using the
Raspberry Pi it is possible to attach a camera to the vehicle,
to capture images of the environment and to process the

24

images with OpenCV in an acceptable amount of time.

IV. SENSORS AND SYSTEMS FOR DOCKING PROCESS
A. Camera: Rasp Cam v2

The main sensor for the visual detection approach is the
Raspberry Pi camera. The Raspberry Pi camera module in-
cludes a resolution of 8-megapixel. The maximum image
transfer rate is 30 fps for 1920 x 1080 pixels, 60 fps for 1280
x 720 pixels and 60 fps for 640 x 480 pixels [8]. The most
fluid image-stream is provided when using the resolution of
640 x 480 pixels. The horizontal field of view of the camera
Module v2 is 62.2 degrees. The vertical field of view is 48.8
degrees [8].

,L=; e a= ;*sin(a)
sin (@) sin (y) sin (y)

horizontal
field of
view /2
(a)
sight (c)

position
horizontal

field of
view

7\ fov=622°
a=311°
B =90
y=589°
D =

Fig. 2: Horizontal field of view of Raspberry Cam v2

Referring to Figure 2, the camera covers a horizontal area
of 6 meters when capturing objects in a distance of 5 meters:
= 751?:(7) * sin(a) = 752‘71%%,9) x sin(31,1)
Changing degrees-unit to radiant:
a= ey * sin(a) = ity * sin(0, 5427973974) = 3m

horizontal fieldofview = 2% a = 2% 3m = 6m

The camera is mounted and elevated at the front of the
vehicle by a small 3D-printed holder for capturing images of
the environment (see Figure 8). The camera is connected to
the MIPI-CSI-Interface of the Raspberry Pi at the RosPi-PCB
using a Raspberry Pi Camera flexcable.

The graphical user interface for the operating system “Rasp-
bian GNU/Linux 10 (buster)” running on the Raspberry Pi is
installed via ssh. Therefore, the RosPi-PCBs powerconnection
is established and the wireless network named “"ROSnet” is
joined. The ssh connection to the Raspberry Pi is established
via ssh-terminal (see Figure 3).

The sequence of commands shown in Listing 1 is executed
on the Raspberry Pi via ssh.

Kdlner Beitrage zur technischen Informatik

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

SMP Wed Oct

es with
e law

Fig. 3: Establishing ssh connection

t2 = cv2.getTickCount()

timel = (t2—tl)/freq

frame_rate_calc= 1/timel
return image

while True:
image=getlmg(True, True)

sudo apt—get install update

sudo apt—get install upgrade

sudo apt—get install lightdm

sudo apt—get install raspberrypi—ui—mods
sudo apt—get install xrdp

Listing 1: Installation of GUI for Linux-OS

In addition to the installed desktop version, display-
manager and user interface, the graphical login needs to be
enabled by executing

sudo raspi-config.

Using the Remote Desktop Connection on a windows-
computer, a RDP-connection to the Raspberry Pi can be
established by connecting to the IP-address of the Pi (10.0.0.1)
after joining the ROSnet wireless network. The installation
of the GUI simplifies the implementation of the Raspberry Pi
camera and is useful for upcoming debugging purpose. The
next step for image capturing is the installation of python
3.7.3 and OpenCV 4.53 on the Pi. OpenCV provides a
real-time optimized Computer Vision library and many useful
tools, that can be used for image-capturing, image-processing
and image-output operations.

import cv2
import time

Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()

Open a camera for video capturing
cap = cv2.VideoCapture(0)

def getImg(displaylmage=False, displayFps=False):
global 2
global frame_rate_calc
Start timer (for calculating frame rate)
tl = cv2.getTickCount()
success, image = cap.read()
if displayFps:
Draw framerate to corner of frame
cv2.putText(image, FPS:_{0:.2f} format(
< frame_rate_calc),(30,50),cv2.
— FONT_HERSHEY_SIMPLEX,1,(0,0,0)
— ,1,cv2.LINE_AA)
if displaylmage:
cv2.imshow("Image”, image)
cv2.waitKey(1)
Calculate framerate

Band 2/2022

Listing 2: Capture-Image function

The defined getlmg() function (see Listing 2) consists
of 2 input parameters. One parameter controls wether the
captured image is displayed in a window or not. The second
parameter controls wether the framerate should be calculated
and displayed on the captured image or not. The function
also returns the captured image for further processing. When
setting both parameters to True and calling the function
continously, captured images are displayed with about 30 fps.

B. Ultrasonic Distance Sensor

The HC-SRO4 ultrasonic module is suitable for distance
measurement in the range between 2cm and approximately 3m
with a resolution of 3mm [9]. It’s use is obstacle detection in
the area. The measurement and thus the detection of an object
has to be configured accordingly.

aU(d [EIEEm S.00

Time

Fig. 4: Trigger Signal Ultrasonic Distance Sensor

Single Shot Mode: Figure 4 shows a single measurement.
Channel 2 represents the trigger signal and channel 1
represents the output/input of the ultrasonic-signal. Setting
the signal-level of channel 2 from HIGH to LOW initiates a
measurement. After sending out echo-signals, the signal-level
of channel 1 goes HIGH. After receiving the reflected
ultrasonic-signals, the level on channel 1 goes LOW. The
transit time of the ultrasonic burst in this measurement is
about 600us (200us/div). The displayed time of 456pus is
composed of from the 250us delay after triggering and the
subsequent 200us burst.

Evaluation of the measurement: The speed of sound in
air of 343 m/s (at 20°C) is now used to calculate the distance
to the measurement object. 343 m/s corresponds to 34.3 cm
per millisecond. The measurement in Figure 4 shows 600us

25

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

(0.6 ms) between sent ultrasonic-signals and the received
echo.
W - 0,6ms results in a signal-travel-distance of 20.6
cm. Since it is an echo, the distance is traversed twice,
which is why the value needs to be divided by 2. For further

information: [9].

There is one HC-SR04 ultrasonic module mounted at the
front and at the back of the vehicle. For each sensor, a
measurement is taken every 60 ms. This is the max. trigger
frequency for the signals to not being influenced by a returning
echo signal [10]. The ultrasonic-distance-measurement in the
front and the back of the car is initiated by the sensor-
PCB. The sensor-PCB calculates the distances and provides
the information on the CAN-Bus. The SensDistanceUS-CAN-
message with the Identifier 0x38 includes data of the distance
to obstacles in the back of the car and in the front of the car
in cm (see Figure 5).

Identifier Sender DLC |Data0 Datal Data2

MSB MsB MsB

0x038=56 Sens. 3

X Reserved
x Reserved
X Reserved

X Reserved

x Reserved

X Reserved

X Reserved

X Reserved

MxxXXXXL Distance front; in cm; OxFF: »=255cm

M xxxxxxL| Distance back; in cm; OxFF: >=255cm

Fig. 5: SensDistanceUS-CAN-message

The messages provided on the CAN-Bus can be viewed
using PCAN-View (see Figure 6).

CAN-ID Type
038h 3

Length Data Cycle Time
000 087 056 60.0

Fig. 6: PCAN-View showing distances of front and back US-
Sensors in cm

C. Actuators

The vehicle is able to perform movements due to its
drive-motor which is controlled by a MDO03 - 24Volt 20Amp
H Bridge Motor Drive. The microcontroller TMS320F28335
on the actor-PCB uses I?C-communication to write and read
the register of the motor driver [11]. The 12 V DOGA DC
Motor DO16941132B09/3060 attached to the motor driver
then rotates and moves the vehicle corresponding to the
output of the motor driver.

Steering actions are controlled by AMIS-30543 Micro-
Stepping Motor Driver. The Motor Driver outputs signals to
the SANYO DENKI steppermotor 103H7123-0140 which is
attached to the steering axis with a drivebelt. The motordriver
for steering actions is controlled by the microcontroller
TMS320F28335 on the actor-PCB via SPIL.

26

D. Charging station

Fig. 7: Docking Station [5]

Figure 7 shows the construction of the already developed

parts of a docking station. The red part is connected to the
front of the vehicle, whereas the green part is connected to the
charging system and has a fixed location. To be able to create
a charging-connection, it needs to be ensured, that both parts
of the docking station have the same road clearance. In order
to make docking smoother, both parts include suspensions in
different directions [5].
For the wide range detection and localization of the charging
station, a green rectangle displayed on a tablet-pc is mounted
on top of the charging station. For the short range detection and
localization, infrared-LEDs are added to the charging station
(see Figure 9). By amplifying and interpreting signals of
photodiodes mounted at the front of the vehicle, it is possible
to detect the distance and position of the vehicle towards the
charging station (see Figure 8) [5].

Raspberry Pi Camera
UltraSonic Distance Sensor
IR-Photodiodes

CAN-Bus-Connectors

Charging-Connectors

Fig. 8: Vehicle Front Sensors

The IR-LEDs of the charging station are controlled by the
microcontroller TMS320F28335. In a period of 20 ms, the
LEDs emit pulses with following sequence (see Figure 10
a)):

1) All LEDs emit pulse for 5 ms
2) All LEDs turned off for 3 ms

Kdlner Beitrage zur technischen Informatik

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

Visual Landmark

TMS320F28335

IR-LEDs
CAN-Bus-Connectors

Charging-Connectors

Fig. 9: Charging Station

3) Left LED (red) emits pulse for 1 ms

4) All LEDs turned off for 3 ms

5) Mid LED (blue) emits pulse for 1 ms
6) All LEDs turned off for 3 ms

7) Right LED (green) emits pulse for 1 ms
8) All LEDs turned off for 3 ms

[

>3 | |
< |
C4 f— |
o |
€20 9 ir
: T
g i I | e
0 1 oy 1 5 | S

03 “

¢« s m B ™ s 5 wm B ™ 0 5 ® ® % ¢ 3 B 5 &
a) b) zeitinms c) d)

Fig. 10: IR-LED Output Sequence [5]

The mid-photodiode mounted on the front of the vehicle
receives and amplifies the signals. As one can see in Figure
10 b), ¢), d), the values of the pulses vary depending on the
orientation towards the charging station. The distance between
vehicle and charging station is 30 cm for b) ¢) and d) [5]. The
orientation in b) is 6 cm lateral to the right and the angle is
15° towards the charging-station, the orientation in c) is no
lateral shift and the orientation in d) is 6 cm lateral to the left
and the angle is 15° towards the charging-station (see Figure
11). The signals of the mid-photodiode are processed by the
sensor-PCB and the information is then sent to the CAN-Bus
for the near field docking process (see section VI-B).

b) | d)

6cm 30
cm| cm|
157 15

Fig. 11: Alignment of vehicle towards charging station

Band 2/2022

V. VISUAL DETECTION
A. Image processing using OpenCV

After capturing an image with the camera (see section
IV-A), the image needs to be processed in a manner that
the landmark (green rectangle) of the charging station can be
recognized. Therefore the OpenCV library and its functions
are used:

while True:
image=getImg(False, False)
#process image with opencv
#convert image to hsv
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

#set boundaries of hsv values
lower_green = np.array([50, 70, 25])
upper_green = np.array([80, 255, 255])
#create mask with boundaries
mask_green = cv2.inRange(hsv, lower_green, upper_green)
#bitwise and captured image and green area
result_green = cv2.bitwise_and(image, image, mask=
— mask_green)

cv2.imshow(”Image_thresh”, result_green)
cv2.imshow(”Image”, image)
cv2.waitKey(1)

Listing 3: Detect green pixels in captured image

First, the BGR-image is converted into an HSV-image,

where HSV is the abbreviation for Hue, Saturation, Value (or
Brightness). For more information see [14].
A lower- and an upper-boundary with one value for Hue,
Saturation and Value in each boundary is specified. Referring
to Figure 12, the lower boundary with [50,70,25] and the upper
boundary with [80,255,255] is selected to match the respective
values for the green landmark.

Fig. 12: Hue Saturation Value Cone [13]

The cv2.inRange()-function returns an image that shows
pixels with value 255 (white), where the pixels of the
HSV-image are inbetween the specified boundaries. All other
pixels are set to O (black). For more information see [14].
The bitwise_and()-function of OpenCV connects the original
image with the returned image of the cv2.inRange()-function.

27

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

The bitwise_and()-function “calculates the per-element bit-
wise logical conjunction for two arrays when srcl and src2
have the same size” [14].

Figure 13 shows the result of the implementation.

Imagetresh

Fig. 13: Original and thresholded image

The darker the environment, the better the recognition,
because the display of the tablet mounted on the charging
station mirrors and reflects incident light.

The steps for thresholding are outsourced to the function
thresholdImg().

The next step after extracting the pixels that belong to the
charging station is to determine where the charging station is
located in the image. As this information is used to approach
the charging station, it needs to be processed to drive left,
right or straight.

cv2.waitKey(1)

while True:
#Step 01: Capture Image
image=getImg(False, False)

#Step 02: Process image with OpenCV
result_green = thresholdImg(image)

#Step 03: Greyscale and blur image ——> reduce noise
gray = cv2.cvtColor(result_green, cv2.
<> COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(blurred, 130, 255, cv2.
< THRESH_TOZERO)[1]

#Step 04: find contours in the thresholded image

cnts, hierarchy = cv2.findContours(thresh.copy(), cv2.
— RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

for c in cnts:

compute the center of the contours

M = cv2.moments(c)

if M[”m00] != 0.0:
cX = int(M[’m10”] / M[”’m00”]))
cY = int(M[’mO01”] / M[”’m007]))
cv2.circle(image, (cX, cY), 7, (0, 0, 255)

— , =1)

draw the contours on the image

¢ = c.astype(”int”)

cv2.drawContours(image, [c], —1, (0, 0, 255), 2)

cv2.imshow("Image”, image)

28

Listing 4: Calculate x-position of recognized charging station

Some preprocessing is performed to the extracted pixels in
step 03 before the midpoint will be calculated (see Listing
4). Preprocessing reduces noise and makes the data more
reliable. For preprocessing, the image is grayscaled first using
the cv2.cvtColor()-function of OpenCV [14]. Next step is to
blur the image using the cv2.GaussianBlur()-function and
then threshold the blurred image to drop all pixels which
have a value lower 130 using the cv2.threshold()-function.
For more details see [14].

In step 04 different OpenCV functions are used to find
contours in the thresholded image (see Listing 4). The function
cv2.findContours() finds “the continuous points (along the
boundary), having same color or intensity. The contours are
a useful tool for shape analysis and object detection and
recognition” [14]. For more information see [14].

The found and returned contours and hierarchy are stored in
the variables cnts and hierarchy. The variable hierarchy is
currently not further used.

Next, the variable c is iterated and represents the found con-
tours in each iteration. The moments for one contour, which
include information about the weighted average of image pixel
intensities, are stored and can be accessed in variable M. By
accessing attributes of variable M, it is possible to calculate
the x- and y-coordinate for the center of the respective contour
[14].

Using the cv2.circle() and cv2.drawContours() functions, the
found and calculated contours and the gravity-center of each
contour are added to the originally captured image. Figure 14
shows the result of the implemented and described OpenCV-
functions.

Image

Fig. 14: Detected contour and midpoint

The cX-value provides the horizontal location of the
charging-station-center. With an image-width of 640 pixel,
it is possible to calculate wether the charging-station-center
is in the right, in the left or in the middle of the picture by

Kdlner Beitrage zur technischen Informatik

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

applying following substraction:

xValue = ¢X-320.

The detected and calculated value is now in the range of
-320 to 320. The Raspberry Pi preprocesses the calculated
x-value of the mid-point of the detected charging station by
multiplying it with the factor 255/320. The gained value in
the range of -255 to 255 is then sent to the CAN-Bus as a
message with CAN-ID 0x103. Sending a CAN-message with
the ID 0x103 to the CAN-Bus implies that a charging station
was detected.

Since the visual detection is used for the wide-range
detection of the charging station, the maximum distance
that still provides a reliable detection has been investigated
and results in 6 m in a dark environment without overhead
lighting. The maximum distance in an environment with
overhead lighting is 4 m.

B. CAN Communication

The PCBs of the vehicle communicate via CAN-messages
among each other.
The x-value of the detected station as well as some other
sensor-information provided on the CAN-Bus allow the imple-
mentation of an algorithm for autonomous driving behaviour
of the car. The messages provided by the Raspberry Pi and
the sensor PCB as well as externally sent CAN-AktDriveSet-
and AktSteerSet-messages are read by the actor-PCB and
corresponding to the data sent with these messages, the driving
and steering actions are performed. Table II shows the CAN-
messages and their Identifier used for the communication in
this research-project.

Identifier | Name Description
0x00 NOTHALT Emergency Stop
0x38 SensDistanceUs US Distance
front and back
0x52 AktStop Stops the actors
0x53 AktDriveSet Contains parameters
for drive-motor
0x55 AktSteerSet Contains parameters
for steering-motor
0x99 AutonomModeOff | Turn Off Autonomous
Mode
0x100 AutonomMode Turn On Autonomous
Toggle Mode
0x103 ChargingStation Turn On Wide_Range
Detected Approaching Mode
0x104 DockingStation Turn On Close_Range
Detected Approaching Mode

TABLE II: CAN-Message Overview

The hardware and software implementation of the near-field
docking process using the IR-LEDs and the photodiode is
based on the work of Philip Meifiner (see [5]). In his work,
MeiBiner implemented CAN-messages with identifier 0x101

Band 2/2022

which is sent from the docking station as a docking “heart-
beat”. When the docking and charging process is completed,
the docking-system sends a CAN-message with ID 0x102 to
the CAN-Bus [5]. Implementing the communication to the
docking station will not be part of this research-project, as the
main focus of this project was the procedure for approaching
the docking station. Therefore the CAN-message with ID
0x103, which provides information about the location of the
charging-station for the wide range docking process and the
CAN-message with the ID 0x104, which provides information
about the location of the charging-station using the photodiode
for the close range docking process are implemented.

VI. REALIZATION OF DOCKING PROCESS

As there are different steps for the vehicle to approach the
charging station in the correct orientation, the finite state ma-
chine, which is implemented on the actor-PCB-microcontroller
TMS320F28335, will be split up to ease its understanding.
Furthermore the output-vector [DriveMotor, SteerMotor] is
simplified. 1 means, that the respective motor performs an
action. 0 means, that the motor is not actuated. Figure 15
shows the basic implementation of the manual mode, which
is activated when the vehicle starts. Steering and driving
actions are only performed, when the respective messages
are sent to the CAN-Bus from the Raspberry Pi or from
an external participant connected with a cable. By sending
a CAN-Message with the ID 0x100, the autonomous mode of
the vehicle is activated and the vehicle begins a sequence of
steps for finding a charging station (see Figure 16). As shown
in Figure 16, the sequence is just drive straight forward, until
there is no more space in front of the vehicle and then drive
straight backwards, until there is no more space in the back
of the vehicle. This routine for finding a charging station is
considered to be sufficient in this project.

Manual Mode
Outputvector: [DriveMotor, StesrMotor]

0 ox100
0x00
Ox53

0x55 AktDriveSet

driving_direction == idle

AktSteerSet

0.1 driving_direction I= idle 1.0

nxun. ’m
~— 00 7

Fig. 15: StateMachine Manual Mode

A. Wide range

As soon as a charging station is detected, the Raspberry
Pi provides the location of the charging station by sending
a message with Identifier 0x103. When the vehicle is in

29

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

Autonomous Mode
Outputvector: [DriveMotor, Steertotor]
0:38_Front < 40 ¢m &8 0:38_Back < 40 cm

0x38_Front < 40 cm && 0x38-63

0x38_Fper 0x38_Front < 40tm-& Y
Ox103
899
0x38_Front < 40 cm R& 0x38_Back == 40 ¢

BriveBackward
0438 Frant= 40 em b2 0638 Back<40cm_~~ 10—

Fig. 16: StateMachine Autonomous Mode

Autonomous Mode and a CAN-message with ID 0x103 is
received, the routine for the wide range docking process will
be started.

)

BATTEXD W7 WA Of » JU0IS BEXD

P

PIBMIO 4133]1S PUYAALIQ

[iojopaais ojoWaniql J03smnding 300N, (WAL aBuBHapIAL, T8NL

S 1< £01X0j J0) AL,

S 1< £0 o) awn |l (wag) =

= U014 BEX) 99 £0140

0 ==<1U015 8EX0 %9 £01X0
LT EENIN

wa oy

2004 =<)9ed BEXD §9 WA OF > U014 BEXD 3 £0 LX)

rORD

]

0137 BEX0 79 £04X0

alp"abUEYas0|)

W LUBIENS PIEMYIBGENIQ
S < £0Li10) BRIl (W3 00} > %0BE BEXD $7 WI0F = JU0I4 BEXD)

Fig. 17: StateMachine Autonomous Wide Range Mode

Therefore, the steering angle will be adjusted according to
the x-value of the charging station continuously (see Figure

30

17). Also the vehicle lowers its speed and checks the distance
in the front. When the distance is less than 40 cm and there
is no sufficient signal from the IR-LEDs to perform the close
range docking process, which would be indicated by a message
with identifier 0x104 from the sensor-PCB, the vehicle moves
back for 1 meter with straight steering direction while moving
backwards (see Figure 17). Then the vehicle starts to approach
the charging station again. When the front-distance of less
than 40 cm is reached and there is sufficient signal from
the IR-LEDs, the close range docking process will start. The
information about the IR-LED-signals are provided in the
CAN-message with ID 0x104 from the sensor-PCB (see Figure
17).

When there is no CAN-message with Identifier 0x103
received for more than one second, the vehicle switches back
from wide range docking process to autonomous mode and
processes steps for finding a charging station (see Figure 16).

B. Close range

Since the wide range approach was implemented success-
fully and ends when there is sufficient signal from the IR-
LEDs, the vehicle just stops at this point and the close
range approach is to be continued in another project. While
testing, it was noticable that there were some issues with the
alignment of the IR-LEDs at the charging-station. It should
be considered to design a PCB for the docking station to
make the system reliable and insensitive towards touching and
unintended bending of the IR-LEDs which leads to deviating
pulse-information at the photodiode. Furthermore, a PCB helps
to reduce the amount and length of the wires. This could
improve the safety while charging the battery and ensures a
sound CAN-communication amongst the charging-station and
the vehicle.

VII. EXISTING PROBLEMS AND DIFFICULTIES

While developing the manual and autonomous driving ap-
proach of the vehicle, it has been jacked up on a table to
prevent it from driving. The testing and evaluation of the
behavior of steering and driving motor was successful. The
final tests were made in an actual environment of the vehicle
without jacking it up. Unfortunately while driving on the floor,
problems with the steering of the vehicle occured. The front
of the vehicle is too heavy and the weight in addition with
the rubber material of the wheels prevent the wheels from
showing expected steering behaviour on the ground. Especially
when starting in straight mode, the first steering action to
the left or right is performed fine, but going back to straight
in manual mode can evoke faulty steering angles, although
the PWM signals are sent to the motor-driver. Since the
PWM signals are sent, the PWM interrupts, which control the
inner counter of the microcontroller to calculate the steering
direction, occur. So the calculated steering direction and the
actual steering direction of the car do not correspond. To
correct this misbehaviour, the mid-part of the vehicle has been
extended to distribute the weight and to relieve the front axis.
Furthermore, a one Ampere steppermotor was substituted with

Kdlner Beitrage zur technischen Informatik

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

a three Ampere steppermotor. To ensure the driving belt to be
adjusted solid without any margin, a 3D-guide role was printed
and integrated in the vehicle. Nevertheless, the weight of the
car should be reduced as much as possible in the future and
the steering mechanism needs to be overhauled. Indeed, a slide
potentiometer to provide feedback about the steering angle is
already built in, but the ADC connection of the sensor-pcb
is used to connect the photodiode for close-range-detection.
So when implementing the delevoped system permanently,
the sensor-pcb as well as the steering mechanism need to be
overhauled.

Another difficulty noticed while testing was the reflection of
light at the surface of the tablet, which is used to display the
visual landmark. Overhead light or a bright environment in
combination with an inconvenient angle of the tablet could
lead to a superposition of the environment light and the
green rectangle, which is used as visual landmark. To prevent
this, anti-mirrorfoil could be used. In this project, the vehicle
was tested in a dark environment, which results in a good
recognition of the visual landmark from up to 5 m. When
running the system in different environments with different
lighting conditions, it is possible, that the rectangle shown on
the display does not match the predefined HSV-value anymore.
So for different environments, the lower and upper HSV
threshold has to be checked and matched for the system to
show desired behaviour.

In addition to that, the visual landmark is not recognizable
anymore when the angle of view is lower than 30° (see red
areas in Figure 18). An approach to get a wider angle of

b

Fig. 18: Recognizability of visual landmark depending on
angle

view is to use an orange DINA4-sheet as visual landmark.
For this approach, several images of the sheet were taken and
the max and min BGR values were evaluated using python
and OpenCV.

Checking all pixel-values of the taken images of the orange
sheet results in max and min BGR-values for the orange
sheet. The min and max RGB-values are then used to find
the respective boundaries in the HSV-space using an online
rgb-hsv converter (see Figure 20).

Since OpenCV uses hue range [0,179], saturation range
[0,255], and value range [0,255] for HSV [14], manual con-
version has been done to these boundaries.

Currently, this approach does not improve the recognition
of the visual landmark. However this approach should be

Band 2/2022

Fig. 19: Taken images for pixelvalues of orange sheet

Enter RGB hex code (#): 9A3F25 Enter RGB hex code (#): | FF9998

or or
Enter red color (R): 154 Enter red color (R): 255

Enter green color (G): |63 Enter green color (G): | 153

Enter blue color (B): 37 Enter blue color (B): 152

Convert| Reset Convert | Reset.
Hue (H): 13 ® Hue (H): 1 ©
Saturation (S) 76.0 % Saturation (S) 40.4 %
Value (V) 60.4 % Value (V). 100.0 %

Color preview. Color preview.

Fig. 20: RGB to HSV conversion

investigated and refined in the future.

The combination of the imageprocessing-algorithm and the
already implemented ROS could be an additional improvement
of the whole system. The image processing was developed
in python and needs to be started manually at every start
of the RosPi-system. If the python-program for recognition
of the landmark is not started manually, the algorithm does
not provide information about landmark recognition on the
CAN-Bus. Implementing the python algorithm into the ROS-
system in C++ or starting the python-imageprocessing-process
autonomously while booting would be a more neat solution.
The imageprocessing-information would then be sent to the
CAN-Bus via CAN-accessories of ROS and information
about a detected charging station would be available on the
CAN-Bus with the start of RosPi and without a manual action
of the user.

Furthermore, the ROS implementation includes code to
convert and forward signals coming from an XBox-Controller
to the CAN-Bus. Since the implementation of this recent
project includes a possibility to switch between manual
and autonomous mode, a currently not used button of the
XBox-Controller could be determined to switch between
both modes. The manual mode works fine with the XBox-
Controller. A possibility to switch to autonomous mode and
back with the Remote Controller would be an enjoyable
feature for the user.

VIII. RESULTS AND CONCLUSION

The autonomous wide-range approach performed by the
vehicle based on the taken images and image-processing shows

31

VISUAL DETECTION OF A CHARGING STATION AND IMPLEMENTATION OF A DOCKING ROUTINE PERFORMED BY AN AUTONOMOUS VEHICLE (DAVID KLIEWE)

desired behaviour when starting in a central position with
convenient alignment towards the charging station.

[T

Fig. 21: Different starting positions for wide-range approach

When starting in a placement as shown in position 1 or 4
in Figure 21, the vehicle approaches the station but cannot
recognize the infrared-pulses. So it ends up in a loop of
going forth and back (see Figure 17). Starting in a placement
between position 2 and 3 (see Figure 21) with alignment
towards the station, the vehicle ends up in a position from
which it is possible to recognize the infrared-led pulses and
to gain information about its close-range orientation towards
the charging station. Additional movements could then be
initiated to get to the right position for battery-charge.
Conclusively, a reliable system for wide-range detection
and approach of a charging station has been developed.
The framerate of the Raspberry Pi camera in combination
with the information extracted by image processing is
sufficient to perform an approach towards the charging station
autonomously from up to 5 meters. Via the wide-range
docking process, the vehicle approaches the docking station
autonomously and performs central positioning dependent on
the starting position. Approaching the center of the charging
station, the vehicle stops when the signals of the IR-LEDs
are sufficient. The IR-LED-signals could then be used to
perform the close-range docking process. The close-range
system developed by Alexander Meifiner is able to provide
the necessary information for up to 61 cm and to finalize the
docking process [5]. Merely the hardware and the setup of
the charging station should be revised by building a PCB for
the system and prevent the IR-LEDs from being moved. The
algorithm for the close range docking process needs to be
implemented as well.

Furthermore the camera provides images of the environment.
This can be useful in future works, especially works
that involve mapping spaces and different types of object
recognition. Different objects could be equipped with different
visual landmarks. The image processing code needs to be
extended with shape- or color-detection then. Furthermore
sensor information, for example a laser communication with
a charging station, could be matched with the information

32

extracted from the images.

The most important aspect for the desired functionality of a
reliable wide-range approach is a reliable steering mechanism.
Misalignment caused by mismatching of mechanics and sensor
information needs to be prevented. Furthermore reflection
of environment light should be evaluated and reduced as
much as possible while searching for the site location of the
charging station. When these improvements were made, the
vehicle presents a solid system for manual and autonomous
driving actions.

IX. ACKNOWLEDGMENT

The realization of this project took place in the “Embed-
ded Communications and Signal Processing Lab” which is
part fo the “Institute of Communications”. The “Institute of
Communications” appertains to the “Faculty of Information,
Media and Eletrical Engineering” of the TH Koln - Cologne
University of Applied Sciences. The author expresses special
thanks to Prof. Dr. Bartz for the opportunity to implement
this project in the laboratory under supervision and support of
Prof. Dr. Bartz.

REFERENCES

[1] Deloitte, “Urbane Mobilitit und autonomes Fahren im Jahr
20357, Online: https://www2.deloitte.com/de/de/pages/trends/
urbane- mobilitaet-autonomes-fahren-2035.html, Last reviewed: January
2022.

Verband der Automobilinsdustrie, “Erstes globales E-Mobility-
Ranking”, Online: https://www.vda.de/de/presse/Pressemeldungen/
210423-Erstes- globales-E-Mobility-Ranking, Last reviewed: January
2022.

[3] Robert Rose, “Entwurf und Implementierung einer skalierbaren Kom-
munikation zwischen mobilen Systemen unter Verwendung von ROS”,
Bachelor-Thesis TH Cologne: 2019.

Robert Rose, “Development of a Platform-Independent CAN Monitor
and Parametrization Tool for Specific Devices”, Research Project TH
Cologne: 2020.

Philip Meiner, “Entwicklung eines Docking-Systems zum autonomen
Laden eines RC-Modellfahrzeugs”, Master-Thesis TH Cologne: 2019.
Raspberry Pi (Trading) Ltd.,, “Raspberry Pi 4 Model B
Datasheet”, Online: https://datasheets.raspberrypi.com/rpi4/
raspberry-pi-4-datasheet.pdf, Last reviewed: January 2022.

NVIDIA CORPORATION, “JETSON NANO DEVELOPER KIT”,
Online: https://cdn-reichelt.de/documents/datenblatt/I100/NVIDIA _
JETSON_NANO_ENG_MAN.pdf, Last reviewed: January 2022.
Raspberry Pi (Trading) Ltd., “Raspberry Pi Camera Module”, Online:
https://www.raspberrypi.com/documentation/accessories/camera.html,
Last reviewed: January 2022.

KTelectronic, ~ “Ultraschall ~ Messmodul ~ HC-SR04”,
https://www.mikrocontroller.net/attachment/218122/HC-SR04_
ultraschallmodul_beschreibung_3.pdf, Last reviewed: January 2022.
Sparkfun, “Ultrasonic Ranging Module HC - SR04”, Online: https:
/lcdn.sparkfun.com/assets/b/3/0/b/a/DGCH-RED_datasheet.pdf, Last re-
viewed: January 2022.

“MDO03 - 24Volt 20Amp H Bridge Motor Drive”, Online: http:/
www.robot-electronics.co.uk/htm/mdO3tech.htm, Last reviewed: January
2022.

Adrian Rosebrock, “OpenCV shape detection”,
https://pyimagesearch.com/2016/02/08/opencv-shape-detection/,
reviewed: January 2022.

“HSV-Farbraum”, Online: https://de.wikipedia.org/wiki/HSV-Farbraum,
Last reviewed: January 2022.

OpenCYV, “OpenCV modules”, Online: https://docs.opencv.org/4.x/, Last
reviewed: January 2022.

2

[4

[5

[6

17

[8

[9 Online:

[10]
[11]

[12] Online:

Last
[13]

[14]

Kdlner Beitrage zur technischen Informatik

DEVELOPMENT OF A ROBUST PEAK DETECTION ALGORITHM IN TIME SERIES DATA (SHEZAN HOSSAIN MAHMUD, ENDER AKCOLTEKIN, DR. CYRANO BERGMANN)

Development of a Robust Peak Detection Algorithm
in Time Series Data

Shezan Hossain Mahmud
Communication Systems and Networks
TH Ko&ln
Koln, Germany
shezan_hossain.mahmud @smail.th-
koeln.de

Abstract— Common practice in sensor data processing is to
detect measured peak or trough signals in trend charts retrieved
from a machine or a system. Those signals are commonly signs
of anomalies or meaningful events. The goal of this paper is to
present a peak or trough detection routine, primarily to find all
valid peak or trough signals in historical sensor data of the
system condition in a medical cyclotron and decide which of
those could be relevant for further analysis. Peaks or troughs
with e.g., sudden sharp rise or fall in value can be analyzed,
classified, and eventually correlated with the potential cause of
their occurrence, such as component lifetime, malfunction,
exceeding system limits, etc. The particular focus of this work
comprises the development of a concept and the implementation
of an algorithm that is capable to detect peak signals
automatically in time-dependent cyclotron sensor trend data
with minimal predetermined threshold information. The results
of this work create fundamentals for the development of
predictive maintenance mechanisms.

Keywords— Cyclotron sensor data, Time-series data, Peak
Detection, Trough Detection

I. INTRODUCTION AND PROBLEM STATEMENT

The cyclotron considered here is a type of circular
accelerator for protons (nucleus of hydrogen atoms) and as
such, it is responsible to accelerate protons up to roughly 60%
of the speed of light and extract them as a continuous beam of
protons for irradiation treatments of cancerous tumors. This
type of treatment is widely known as Proton Therapy (PT).
Varian Medical Systems PT (Varian PT) is one of the world’s
leading suppliers of PT system solutions and has built more
than two dozen treatment centers worldwide. Therefore,
Varian PT is committed to ensuring high system quality,
reliability, and stability in clinical operations. To ensure these
goals, continuous monitoring and controlling of the overall
system condition at any time is mandatory. The cyclotron is a
very complex system including thousands of sensors. These
sensors generate continuously millions of data points within a
short period. It is very time-consuming to analyze these data
manually to understand the anomalies or meaningful events.
An automatic robust peak detection algorithm can certainly
pave the way to easily analyze the data and find out interesting
correlations among them. Oftentimes this type of data study
aids in anticipating system failure and identifying it before it
occurs. Not only that, in the case of remote services of the
cyclotron, automatic peak recognition can be a very effective
way to comprehend the peaks of different sensors’ data and
their relationships.

Band 2/2022

Ender Akcoltekin
Backbone Portfolio Development
Varian Medical Systems (A Siemens
Healthineers Company)
Troisdorf, Germany
ender.akcoeltekin @varian.com

Dr. Cyrano Bergmann
Software Engineering
Varian Medical Systems (A Siemens
Healthineers Company)
Troisdorf, Germany
cyrano.bergmann@varian.com

Although it seems easy to detect manually a peak or trough
signal in a small time series, dealing with a large amount of
data and detecting peaks automatically and reliably, increases
the challenge to develop an algorithm that is capable to find
all relevant peak signals from the data within a short period,
as the false peaks detection incorporates with true peaks.
Furthermore, distinguishing the noise and peak level without
any predetermined threshold or influence increases the
difficulty of automatic robust peak detection in time series
data. All local peaks are not necessarily true peaks. True peak
values need to be so large that even in a global context they
appear as significantly large values [1].

II. RELATED WORKS

Some works on peak detection have been evaluated. By
separating noisy pixels from noise-free pixels, the appropriate
pixels replaced the noisy pixels during the filtering stages [2].
Various threshold values have been applied to achieve this.
These cutoff points were derived using the mean, standard
deviation, and quartile. With an auxiliary condition to identify
noisy pixels, these three threshold values were applied one
after the other. This method is very interesting for detecting
noise from noise-free pixels. Another research proposes
several alternative methods for peak detection and compares
them using annual sunspot data [1]. For improved
performance, the Automatic Multiscale Based Peak Detection
(AMPD) algorithm's standard deviation was replaced with
variance [3]. The strongest peaks are identified using moving
mean and the standard deviation of the moving mean before
comparing the overlaps of burst areas found in the time series
[4]. These algorithms cannot be adapted directly, but new
methods for cyclotron sensor data are required.

III. BACKGROUND AND REQUIRED TOOLS

The new algorithm defines all the entries with a larger
distance to the mean as outliers. The dataset chosen to
illustrate the peak detection performance of the algorithm is a
vacuum sensor used to measure the pressure conditions in the
cyclotron’s ion source, which is operated in a pressure range
between 1E-04 mbar and 1E-06 mbar, but the system pressure
might reach up to 100 mbar. Operation of the cyclotron
includes frequent machine maintenance and other user
operations that directly affect the pressure in the cyclotron,
such as purging and venting operations. As a result, unstable
conditions are visible, which results in a moving or drifting
baseline. This leads to a complex scenario in the global
distribution of the full dataset (fig: 1).

33

DEVELOPMENT OF A ROBUST PEAK DETECTION ALGORITHM IN TIME SERIES DATA (SHEZAN HOSSAIN MAHMUD, ENDER AKCOLTEKIN, DR. CYRANO BERGMANN)

34

Frequency

40 60 80 100

0 20
Pressure measured by CYVSPIS1 (mbar)

Fig. 1: Histogram of the measurements of vacuum sensor
CYVSPI51

It is expected that the baseline signals, which come from the
preceding purging and venting events, follow a Gaussian
distribution and should be recognized above the stable
operating conditions. Figure 2 shows the situation from a
close-up of the sample values, where an underlying Gaussian
distribution can be seen, transitioning to an exponential decay
toward higher values. This agrees well with the assumption
that venting a fixed column with constant power pumps will
result in an exponential pressure drop in the column after
venting. Therefore, it is expected to find fewer measurements
with high-pressure values than with low pressure values.

104

Frequency

10t

[|
0.000 0.005

0.002 0.003
Pressure measured by CYVSPIS1 (mbar)

Fig. 2: Histogram of the measurements of vacuum sensor CYVSPI51
zoomed towards maximum frequency)

IV. TooLS REQUIRED

Notebook (16GB RAM), Windows 10,
Jupyter Notebook, Python 3.8.

Notepad-++,

Python Libraries: Pandas, NumPy, Matplotlib, SciPy, sea-
born, scikit-learn.

V. ALGORITHM ANALYSIS

The algorithm works in the way that it detects values out
of the range of the n'" standard deviation around the mean.
Since the global conditions in the cyclotron vacuum are
unstable, the algorithm utilizes the local stability within a
moving window to calculate a local threshold to detect outliers
in the dataset. The iterative approach is utilized to enhance the
robustness and sensitivity of the algorithm. The detected peaks
(outliers) are separated from the dataset at the end of each
loop, which lowers the threshold values towards the baseline
after each loop. This iterative approach also increases
sensitivity for smaller amplitude peaks.

A. Algorithm for Peak Detection
1. b) Initialize a 1.a) Load
Boolean column timestamp and
"filtered" with sensor's values to
false values dataframe

"'filtered"'== False

1. ¢) User input:
condition for loop
termination (q)

v v

3. b) x* Standard
Deviation (SD) of the
sensor's value

3. a) Moving Average
(MA) of sensor's value
within window size

.| 4. Threshold (Th)=
MA +x* (SD)

A

Yes 6. Convert Value of
"filtered" column from
False to True

P

v

7. Calculate mean %
change (p) between
two consecutive loops,
for "filtered"== True

8.1sp>q?

9. Peak detected for
"filtered" == True
Noise detected for

"filtered" == False

Fig. 3: Algorithm for peak detection

Figure 3 represents the steps of the algorithm for peak
detection. The method of calculating “cut-off using moving
mean and n*standard deviation”, used in [4], is modified to
utilize in this project to detect peak signals. The data has been
collected from the log files of Cyclotron and copied as a data
frame of timestamp. Each step of the algorithm is briefly
illustrated below:

1. a) Timestamp (ti) and sensor values (vi) are loaded to
data frame.

b) A Boolean column “filtered” is initialized with all
False values.

¢) To terminate the loop of peak and noise separation,
a numerical user input (q) is also initialized.

2. Data frame with corresponding False values in
“filtered” column are forwarded for further
calculations.

3. a) The moving average (MA) of the sensor values
within a suitable window size is calculated.

b) Also, the x™ standard deviation of the dataset is
calculated. (Here, x is a real variable and needs to be
adjusted according to dataset’s characteristics).

4. The threshold (Th) is calculated by the summation of
the calculated MA and x™ standard deviation.

Kdlner Beitrage zur technischen Informatik

DEVELOPMENT OF A ROBUST PEAK DETECTION ALGORITHM IN TIME SERIES DATA (SHEZAN HOSSAIN MAHMUD, ENDER AKCOLTEKIN, DR. CYRANO BERGMANN)

5. A comparison is made between the sensor’s value and
the calculated threshold (Th).

6. If the sensor’s value is greater than or equal to the
threshold, the corresponding “filtered” column’s
Boolean False value turns into True, otherwise
remains as False.

7. The mean percentage change (p) between two
consecutive loops of the sensor’s value is calculated
for “filtered” == True.

8. If mean percentage change (p) is lesser than the
defined q value, the loop is terminated, otherwise it is
continued executing from step 2.

9. Peak signals are detected with mask “filtered” ==
True. And noise values are recognized with mask
“filtered” == False.

B. Algorithm for Trough Detection

The algorithm of peak detection described above is
slightly modified to recognize the trough signals. The
modified steps are briefly mentioned following:

. In step 4, instead of summing MA and x" SD,
absolute difference between them is used to define
the threshold.

. The "greater than" sign is altered to the "less than"
sign of step 5 to detect troughs.

. Since mean percentage change is less significant for
trough values, for terminating iterations, the count
percentage change is used in step 7 instead of the
calculating mean percentage change.

VI. EVALUATION OF PEAK DETECTION

A. Result Demonstration of New Algorithm

To demonstrate the result of the algorithm, the dataset of
vacuum sensors (CYVSPI5S1) has been selected. The
following plot (fig: 4) shows the dataset representation before
applying the algorithm, where the x-axis represents the
timestamp in the second (from January to March) and the y-
axis represents the pressure measurements of the
corresponding timestamp in millibar.

Pressure measured by CYVSPI51 (mbar)

1072
\
. I I SN

2022-01-01 2022-01-15

2022-02-01 2022-02-15 2022-03-01 2022-03-15 2022-04-01

Timestamp(s)
Fig. 4: Pressure measurement by sensor “CYVSPI51” for 3
months (January to March 2022)

The outcome of the new algorithm after performing 6th
iterations is plotted following (fig: 5), where the red stars
represent the detected peak signals, and the cyan dots
correspond to noise values in millibar. For this dataset, to
calculate the thresholds, the summation of the moving mean
(within a window size of 1000) and 3™ standard deviation has
been selected.

Band 2/2022

102{ * Peak Detected
© Noise Detected

Pressure Measured by CYVSPIS1 (mbar)

Pt AP it bt

107 ol

20220101

2022:01-15 2022°02-01 2022°02-15

Timestamp (5)

2022°03-01 2022:03-15 2022-04-01

Fig. 5: Plot of peak pressure detected by the new algorithm after
the final (6th) iteration

After the final iteration, the new algorithm recognized
peak signals in the pressure range between 1E02 mbar and 2E-
03 mbar (approximately). The following zoomed version of
the same figure shows better visualization of the plot to
understand.

=

o-

Pressure Measured by CYVSPI51 (mbar)

* Peak Detected
* Noise Detected

2022-01-15 2022-02-01 2022-02-15

Timestamp (s)

2022:03-01 2022-03-15
Fig. 6: Plot of peak pressure detected by the new algorithm after
final (6th) iteration (zoomed towards noise level)

It can be noticed from figure 6 that, the new algorithm
detects no peak (red stars) at the noise level, which means no
false peak is recognized. The algorithm needs only 27.22
seconds to find such peaks among the 730505 vacuum sensor
data points and stores the figures for all the loops in the local
system.

B. Comparison of the New Algorithm With DBSCAN

To test the accuracy of the new algorithm a comparison
has been made using the DBSCAN (Density-based Spatial
Clustering of Applications with Noise) algorithm [5] of the
scikit-learn library on the same dataset. It is needed to be noted
that the detailed description of the DBSCAN algorithm and its
parameter optimization technique is out of the scope of this
paper. The following plot (fig: 7) shows the outcome of the
DBSCAN algorithm on the same vacuum sensor dataset.

10°| % Peak Detected *
Noise Detected

10| |

100 i

1072
10-3 AR meden

2022-01-01 2022-01-15

Pressure Measured by CYVSPI51 (mbar)

"

2022:02-01 2022-02-15 2022-03-01 20220315
Timestamp (s)

2022-04-01

Fig. 7: Peak and noise pressure separated by the DBSCAN
algorithm

35

DEVELOPMENT OF A ROBUST PEAK DETECTION ALGORITHM IN TIME SERIES DATA (SHEZAN HOSSAIN MAHMUD, ENDER AKCOLTEKIN, DR. CYRANO BERGMANN)

36

Figure 7 illustrates peaks (red stars), and noise (cyan dots)
detected by DBSCAN. As seen in the picture, some of the
erroneous peaks that DBSCAN identified are actually in the
noise level. The following figure (fig: 8) is the zoomed version
of figure 7 shows the highlighted false peaks (red stars at the
noise level) recognized by DBSCAN.

Pressure Measured by CYVSPI51 (mbar)

* Peak Detected
Noise Detected

2022-01-15 2022-02-01 2022-02-15 2022-03-01

Timestamp (s)

2022-03-15

Fig. 8: Peak and noise pressure separated by the DBSCAN
algorithm (zoomed at the noise level)

The next plot (fig: 9) shows a direct comparison between
the two algorithms and demonstrates where DBSCAN
incorrectly recognized some noise that the new algorithm
correctly detected as peak signals (red stars).

102

10!

i
® DBSCAN and New Algorithm Both Detected Peak

% DBSCAN Detected Noise but New Algorithm Detected Peak |
10-1] © DBSCAN and New Algorithm Both Detected Noise 1

Pressure Measured by CYVSPIS1 (mbar)

[y Lx_——

2022:02-01 2022-02-15 2022-03-01 2022-03-15
Timestamp (s)

1073 it Wz

2022-01-01 2022-01-15 2022-04-01
Fig. 9: False noise detected by DBSCAN, new algorithm recognized
those correctly as peak signals

In January and March, the false noises (red stars) of figure
9 are more noticeable. The following zoomed variants of
figure 9 provide a vivid illustration of the scenario stated
above for those months.

: @ DBSCAN and New Algorithm Both Detected Peak
: % DBSCAN Detected Noise but New Algorithm Detected Peak
© DBSCAN and New Algorithm Both Detected Noise

Pressure Measured by CYVSPIS1 (mbar)

2022-03-01 2022-03-05 2022-03-09 2022-03-13 2022-03-17 2022-03-21 2022-03-25
Timestamp (s)
Fig. 10: False noise detected by DBSCAN, new algorithm
recognized those correctly as peak signals (zoomed in the month of
March)

Figure 10 displays some false noise (red stars) detected by
DBSCAN in March. While DBSCAN detected those values
(red stars) as noise, it can be comprehended that these values
are peak signals, which the new algorithm recognized

correctly. The same scenario is also noticeable in January and
illustrated by figure 11.

® DBSCAN and New Algorithm Both Detected Peak
% DBSCAN Detected Noise but New Algorithm Detected Peak
© DBSCAN and New Algorithm Both Detected Noise

Pressure Measured by CYVSPI51 (mbar)

2022-01-05 2022-01-09 2022-01-13 2022-01-17 2022-01-21 2022-01-25
Timestamp (s)

Fig. 11: False noise detected by DBSCAN, new algorithm
recognized those correctly as peak signals (zoomed in the month of
January)

Additionally, DBSCAN detected a few erroneous peak
signals at the noise level (fig: 12), whereas the new algorithm
properly identified those values as noise.

Pressure Measured by CYVSPI51 (mbar)

DBSCAN and New Algorithm Both Detected Noise
% DBSCAN Detected Peak But New Algorithm Detected Noise .

2022-01-01 2022-01-15 2022-02-01 2022-02-15 2022-03-01 2022-03-15

Timestamp (s)

2022-04-01

Fig. 12: False peak signals detected by DBSCAN; new algorithm
recognized those correctly as noise (zoomed at the noise level)

In a nutshell, according to the comparison graphs
described above, the new algorithm is recognizing fewer
erroneous peak signals and noise values than the DBSCAN
algorithm for the vacuum sensor dataset.

C. Accuracy Calculation

The number of peak signals has been manually calculated
within the period of 1st January to 15th February, to
determine which method is demonstrating better accuracy.
From 349106 data points, 650 data (approximately) were
selected as peak signals by manual calculation. The following
accuracy measurements have been obtained using the manual
peak calculation as the reference.

Method True True False False
Positive | Negative | Positive | Negative

(%) (%) (%) (%)

New 95.08 100 0 4.92
algorithm

DBSCAN 83.85 99.95 0.05 16.15

Table 1: Accuracy calculation using manual calculation as

reference

It is needed to be noted that, manual peak calculation is
very time-consuming, and it may also inject some amounts of
human errors. Based on the comparisons made above, it can
be said that the new algorithm performs better at detecting

Kdlner Beitrage zur technischen Informatik

DEVELOPMENT OF A ROBUST PEAK DETECTION ALGORITHM IN TIME SERIES DATA (SHEZAN HOSSAIN MAHMUD, ENDER AKCOLTEKIN, DR. CYRANO BERGMANN)

true peaks and true noise while having lower false positive
and false negative percentages than the well-known
DBSCAN.

D. Result Demonstration for Trough Detection

The upper pole cap's water temperature measurement
sensor dataset of cyclotron is used to explain the outcome of
trough detection. The plot below (fig: 13) represents the six
months of data of the sensor before applying the new
algorithm.

N
©

N
®

N
°

N
@

Water Temperature Measured by AS_WF_temp_pcup (Celsius)
~
3

2022-03 2022-04 2022-05 2022-06

Timestamp(s)
Fig.13: Temperature measurement by sensor “AS_WT _temp_pcup”
for 6 months (March to August 2022)

2022-07 2022-08

The following plot (fig: 14) displays the result of the final
iteration of the algorithm for trough detection, the red stars
signifying the identified troughs and the cyan dots
corresponding to the noise values. The absolute difference
between the moving mean (within a window size of 1000)
and the 2nd standard deviation is chosen for this dataset to

compute the thresholds.
Y

N
©

ﬂ MWM‘ h M

™
@

~
N

N
o

* Trough Detected
Noise Detected

202203

Water Temperature Measured by AS_WF_temp_pcup (°C)

N
¥

2022-06 202207 202208

Timestamp (s)

202204 202205
Fig. 14: Plot of trough and noise temperature detected by the new
algorithm after the last (16") iteration

After the final iteration, the new algorithm recognized
trough signals in the temperature range between 24.8°C and
28.5°C (approximately). The algorithm takes only 35 seconds
to separate troughs from 241793 data points of the
temperature sensor and store the figures of each iteration in
the local system.

On the other hand, the parameters of the DBSCAN
algorithm could not be adjusted similarly compared to that
used for peak identification, since the time difference
between two successive data stored (At) is approximately
constant for all the points of this temperature sensor’s dataset.
Thus, the flexibility of the new algorithm is demonstrated by
its ability to detect troughs up to a satisfactory level.

Band 2/2022

VIIL

The new algorithm for peak and trough detection has
some dependencies which are discussed below:

DEPENDENCIES OF THE ALGORITHM

A. Window Size of Moving Average:

The window size affects how efficiently the new
algorithm works. Sticking to a specific window size is
challenging because each dataset of cyclone sensors has a
unique property and a variable value range. As a result, the
window size is a variable algorithmic parameter.

If the window size is selected too small, the thresholds
will have sharp edges, which will lead to some false peak
identification. On the contrary, selecting a bigger window
size can enhance the inability to recognize some true peak
signals. So, this parameter needs to be adjusted according to
the dataset’s characteristics.

B. Multiplication Factor of Standard Deviation:

Another arbitrary parameter of the new algorithm is the
multiplication factor of standard deviation. If this parameter
is chosen too small, there will be false peaks incorporated
with true peak signals. Again, fewer true peaks or troughs will
be recognized as the multiplication factor of standard
deviation increases. Depending on the dataset’s properties,
the multiplication factor of standard deviation needs to be
adjusted.

C. Condition for Loop Termination:

The mean percentage change of selected peaks between
two successive loops has been chosen to terminate the loop
for peak detection. Again, to end the iterations for trough
recognition, the percentage change of the number of selected
troughs between two consecutive loops is selected in the new
algorithm. Depending on the characteristics of the dataset,
this parameter may need to modify.

VIII. CONCLUSION

A new algorithm based on the statistical dispersion method
has been developed to detect peak or trough signals as well
as noise in sensor data of Varian’s cyclotron. To limit the
number of data, peak signals have been analyzed only on the
vacuum pressure data, whereas troughs signals were analyzed
on temperature data measured in the cyclotron’s pole caps.
An important advantage of this algorithm is the speed of
signal detection which is enabled by a masking technique that
prevents the creation of multiple data frames during the
iterative approximation.

Furthermore, using manual peak and noise analysis as a
benchmark, the new algorithm is showing better accuracy in
recognizing true positive (=95%) and true negative (100%)
than the DBSCAN algorithm in the dataset of vacuum
pressure. Again, in contrast to the DBSCAN algorithm, the
new algorithm also exhibits fewer false positive (0%) and
false negative (= 5%), respectively.

Additionally, those efficiency calculation statements are
also supported by direct comparison plots between two
algorithms, where it can be comprehended that some
erroneous peaks and noise detected by DBSCAN were
correctly identified by the new algorithm. Moreover, by
analyzing the dependencies of the new algorithm, peak or
trough signals can be detected up to a satisfactory level using
this algorithm.

37

DEVELOPMENT OF A ROBUST PEAK DETECTION ALGORITHM IN TIME SERIES DATA (SHEZAN HOSSAIN MAHMUD, ENDER AKCOLTEKIN, DR. CYRANO BERGMANN)

38

Identified peaks or troughs from these analyses of
cyclotron sensor data time series are data points that require
further investigation. E.g., step functions where measured
vacuum pressure reaches a new level will be found with high
confidence, but whether the new level indicates some
maintenance requirements or can be described by some other
physical effects is currently still part of deep expert analysis.

The number of the analyzed dataset has been limited by the
demanded resources for reference data analysis. And further
analysis of different datasets is postponed for later projects.

IX. ACKNOWLEDGEMENT

Special thanks to Prof. Dr. Andreas Grebe, the supervisor
from TH Koln, for guiding the project with his vast
experience and expertise.

X. REFERENCES

[1] G. Palshikar et al., “Simple algorithms for peak detection
in time-series,” in Proc. 1st Int. Conf. Advanced Data
Analysis, Business Analytics and Intelligence, vol. 122, 2009

[2] N. Singh and U. Oorkavalan, “Triple threshold statistical
detection filter for removing high density random-valued
impulse noise in images,” EURASIP Journal on Image and
Video Processing, vol. 2018, no. 1, pp. 1-16, 2018.

[3] A. M. Colak, Y. Shibata, and F. Kurokawa, “Fpga
implementation of the automatic multiscale based peak
detection for real-time signal analysis on renewable energy
systems,” in 2016 IEEE International Conference on
Renewable Energy Research and Applications (ICRERA).
IEEE, 2016, pp. 379-384.

[4] B. Rossi, B. Russo, and G. Succi, “Analysis of open
source software development iterations by means of burst
detection techniques,” in IFIP International Conference on
Open-Source Systems. Springer, 2009, pp. 83-93.

[5] GeeksforGeeks, “DBSCAN Clustering in ML — Density
based clustering,” https://www.geeksforgeeks.org/dbscan-
clustering-in-ml-density-based-clustering, 24 August 2022

Kdlner Beitrage zur technischen Informatik

	Editorial
	Multi-Agent Reinforcement Learning for smart Computing Resource Allocation in the Industry 4.0 (Michael Urlaub, Julia Rosenberger)
	Investigations on self-optimizing PID controllers based on neural networks and Implementation in a process control system (André Wittling)
	Visual detection of a charging station and implementation of a docking routine performed by an autonomous vehicle (David Kliewe)
	Development of a Robust Peak Detection Algorithm in Time Series Data (Shezan Hossain Mahmud, Ender Akcöltekin, Dr. Cyrano Bergmann)

