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EDITORIAL

Editorial

Mit diesem Band im Jahr 2025 wird die Veroffentlichung in der Reihe Kélner Beitrdge zur technischen
Informatik nach dem Band 1/2024 fortgesetzt. Die Fakultat fiir Informations-, Medien- und Elektrotechnik
am Institute of Computer and Communication Technology (ICCT) ermdglicht Master Studierenden nicht
nur aus dem Bereich der technischen Informatik eine Mdglichkeit Ihre Forschung zu veréffentlichen, die
im Rahmen von Forschungs- und Entwicklungsprojekten an der TH KéIn und/oder bei Projektpartnern
entstand.

Ziel ist es, die Ergebnisse laufender Arbeiten aus den Forschungs- und Entwicklungsaktivitdten des
Forschungsschwerpunkts nach auBen zu kommunizieren und Informatiker:innen und Informationstech-
niker:innen auBerhalb des Forschungsschwerpunkts z.B. aus dem Kélner Raum einzuladen, neue Er-
gebnisse aus Wissenschaft und technischer Anwendung im Rahmen von Cologne Open Science zu
publizieren.

In zwei Workshops wurden die hier verdffentlichten Themen diskutiert. Am 22.11.2024 wurden Exploring
transformer-based models for the basic task of text classification (Malte Autrata) und Adaptive Ramp Me-
tering Control with Double Deep Q-Learning — A Simulation Study (Luca Schex, Leon Schex, Chunrong
Yuan) vorgestellt. Am 16.5.2025 wurde DEEP-SEED: From Scratch to Ensemble — A Deep Learning
Approach to Seedling Classification (Luca Uckermann) vorgestellt.

Der Herausgeberkreis freut sich, diesen neuen Band der Reihe der Fachoéffentlichkeit zur kritischen
PrGfung und zur méglichen Mitwirkung vorlegen zu kénnen.

Rainer Bartz
Andreas Behrend
Andreas Grebe
Tobias Krawutschke
Hans W. Nissen
Beate Rhein

René Worzberger
Chunrong Yuan
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EXPLORING TRANSFORMER-BASED MODELS FOR THE BASIC TASK OF TEXT CLASSIFICATION (MALTE AUTRATA)

Exploring transformer-based models for the basic
task of text classification

Malte Autrata, malteautrata@ googlemail.com, Accompanying lecturer: Prof. Dr. Beate Rhein

Abstract—This  paper evaluates the performance of
transformer-based models (BERT, T5, and Llama 3) for
classifying German newspaper articles into nine predefined
categories. A dataset of 10,273 articles [1] was used to
compare the models in terms of accuracy, training efficiency,
and inference speed, highlighting the trade-offs between
computational requirements and classification performance.
BERT achieved a test accuracy of 90.27% with minimal training
time, making it a practical choice for balanced performance and
efficiency. Llama 3 delivered the highest accuracy at 92.86% but
required significantly longer training times. The TS model, while
flexible in text-to-text tasks, slightly lagged in accuracy. These
results underscore BERT’s suitability for resource-constrained
scenarios and Llama 3’s potential in high-accuracy applications
where computational resources are plentiful.

Index Terms—LLM, large language model, transformer, text
classification

I. INTRODUCTION

Text classification is a fundamental task in Natural Lan-
guage Processing (NLP) that involves categorizing documents
into predefined categories. This process is essential for manag-
ing and organizing large text corpora and supports applications
such as fake news detection, email filtering, and e-commerce
review analysis [2]. By automating text classification, busi-
nesses and organizations can streamline workflows and derive
actionable insights [3].

Text classification tasks can be broadly categorized into off-
the-shelf classification, zero-shot classification, and supervised
learning using labeled data. This paper focuses on supervised
learning, leveraging supervised machine learning models to
compare performance and computational requirements. This
approach offers key advantages, including independence from
Application Programming Interfaces (APIs) and enhanced
data privacy. The models analyzed include Bidirectional En-
coder Representations from Transformers (BERT), Text-to-
Text Transfer Transformer (T5) and Llama 3, all of which
are based on the transformer architecture. This architecture
has revolutionized NLP by achieving state-of-the-art results in
tasks like machine translation while being more parallelizable
than traditional approaches like recurrent neural networks [4].
Transformers’ attention mechanism enables them to capture
contextual relationships across a sequence by relating all
positions within it.

The study evaluates these models using the *Ten Thousand
German News Articles Dataset’, a collection of 10,273 articles
categorized into nine classes: *Web’, ’Panorama’, ’Interna-
tional’, *Wirtschaft’, *Sport’, ’Inland’, ’Etat’, *Wissenschaft’
and "Kultur’ [1] [5]. The dataset presents challenges due to its
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Fig. 1. The Transformer architecture consists of two main components: the
encoder on the left and the decoder on the right. The encoder processes the
input sequence and generates a set of representations, which are then passed
to the decoder. The decoder uses these representations, combined with its own
inputs, to establish attention mechanisms that connect the input and output
sequences, enabling context-aware output generation [4].

imbalanced class distribution, with some categories such as
’Etat’, *Wissenschaft” and *Kultur’ being significantly under-
represented. By comparing model accuracy, training duration,
and inference speed, this paper aims to identify the optimal
model for different use cases, balancing performance and
computational resource requirements.

II. MODELS

This section provides an overview of the transformer-based
models evaluated in this study: T5, BERT, and Llama 3.
These models were selected because they represent distinct
and state-of-the-art transformer architectures (shown in Fig.
1), are open-source, compatible with various frameworks, and
collectively allow a comprehensive examination of perfor-
mance across a spectrum of complexity (from foundational
transformer models to a cutting-edge large language model).

A. TS5 base model

The TS model employs an encoder-decoder architecture,
transforming all tasks into a text-to-text format. Pre-trained
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on diverse datasets using unsupervised learning, T5 can be
fine-tuned for specific tasks by adapting the input-output
format [6]. This flexibility in task framing makes TS5 highly
versatile, suitable for classification tasks. The base configu-
ration includes 12 encoder and decoder layers, totaling 220
million parameters, with an embedding dimensionality of 768.
During pre-training, the model processes sequences of up
to 512 tokens [6]. T5 base achieved a General Language
Understanding Evaluation (GLUE) score of 82.7, indicating
robust classification performance [6].

B. BERT large model

BERT utilizes an encoder-only architecture, capturing con-
textual information bidirectionally by considering both left and
right contexts simultaneously. This capability makes BERT
highly effective for tasks requiring deep language understand-
ing, such as classification and question answering. Its encoder-
only structure is well-suited for classification tasks where a
representation of the entire sequence can be used to predict
the class. However, each task requires adaption with the
corresponding output layer [7]. The large variant of BERT
consists of 24 encoder layers with 340 million parameters and
an embedding dimensionality of 1,024. Like T35, it handles
input sequences of up to 512 tokens during pre-training. BERT
large scored 82.1 on the GLUE benchmark [7], slightly below
T5 large, but it remains a robust choice for classification tasks.

C. Llama 3 8B model

Llama 3 is a large language model (LLM) with a decoder-
only architecture designed for auto-regressive tasks [8]. As
the most complex model in this study, it is included to
examine how well a LLM compares to more basic transformer
architectures for text classification. Llama 3’s larger context
window (8,000 tokens) [9] and higher embedding dimension-
ality (4,096) [10] give it an advantage in capturing detailed
contextual relationships. Pre-trained on multilingual datasets,
with 5% of the data in non-English languages, Llama 3 is
expected to perform well in multilingual and domain-specific
tasks. Despite its size, quantization techniques and parameter-
efficient fine-tuning methods, such as Low-Rank Adaptation
(LoRA), enable its use on resource-constrained systems. The
inclusion of Llama 3 allows for a direct comparison of
accuracy and computational requirements between large-scale
and more compact models.

D. Summary

These models were chosen for their distinct characteristics,
which make them collectively sufficient to address the text
classification task:

1) Open-Source Availability: Ensures accessibility, adapt-
ability, and transparency in implementation.

2) Framework Compatibility: Supports integration with
popular machine learning libraries.

3) Architectural Diversity: Provides a spectrum of trans-
former designs:

o T5: Encoder-decoder architecture for task versatil-
ity.

o BERT: Focuses on deep bidirectional context un-
derstanding with an encoder-only design.

o Llama 3: Adopts a decoder-only approach, empha-
sizing high accuracy in tasks requiring extensive
context.

4) Scalability: The models vary in size and resource re-
quirements, allowing for the evaluation of trade-offs
between accuracy and efficiency.

This diversity allows a comprehensive comparison of their
accuracy, training efficiency, and implementation complexity,
as explored in subsequent sections.

III. IMPLEMENTATION

This section details the implementation process for fine-
tuning and evaluating the T5, BERT, and Llama 3 models on
the text classification task. The models were trained and tested
on the *Ten Thousand German News Articles Dataset’, with
adjustments made to optimize performance and accommodate
hardware constraints.

A. Training environment

The models were trained on a server equipped with two
NVIDIA Titan RTX GPUs, each with 24 GB of VRAM [11].
This hardware setup influenced choices such as model size,
batch size, and optimization techniques. CrossEntropyLoss
was used as the loss function, and the AdamW optimizer was
employed for all training processes. Hyperparameters were
tuned individually for each model to maximize performance.

B. Model-specific implementations

1) TS5 base implementation: To adapt the T5 model for text
classification, the prefix ’Klassifiziere nachfolgenden Artikel
in eine der folgenden Kategorien: Web, International, Etat,
Wirtschaft, Panorama, Sport, Wissenschaft, Kultur oder In-
land:” (’Classify the following article into one of the following
categories: ...") was prepended to each input article, converting
the task into a text-to-text format.

Key implementation details:

« Tokenization: Inputs were tokenized with a maximum
sequence length of 512 tokens, truncating longer inputs.

o Output Format: The model generated class labels as
textual outputs, restricted to five tokens for computational
efficiency.

o Training Configuration: A learning rate of 5e-05, a
batch size of 16, gradient clipping at 1.0, 2,000 warm-up
steps, and 10,000 total steps were used.

« Evaluation Criterion: Outputs deviating from the pre-
defined categories were considered incorrect.

2) BERT large implementation: The BERT model was fine-
tuned using the deepset/gbert-large pre-trained variant, which
is optimized for German-language tasks [12]. This version was
selected because it is well-documented and widely adopted for
German text. A classification head was added to the [CLS]
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token representation to enable single-label classification.
Key implementation details:

« Tokenization: Inputs were tokenized with a maximum
sequence length of 512 tokens, truncating longer inputs.

o Model Architecture: The classification head consisted
of a feed-forward network on top of the [CLS] token
representation with a hidden layer and 10% dropout to
prevent over-fitting.

« Training Configuration: A learning rate of 2e-07, a
batch size of 8, a maximum gradient normalization of
1.0 and 17,500 training steps were employed. No warm-
up steps were included.

3) Llama 3 8B implementation: Given the large size of
the Llama 3 model, modifications were made to fit it within
the available hardware constraints. A classification head was
added to the model output to enable it to perform single-label
classification.

Key implementation details:

« Tokenization: Input sequences were capped at 1,500
tokens for practical training duration, despite the model’s
8k-token context window capability.

o Quantization: Model weights were reduced to 8-bit
integers during training to lower memory usage and
computational requirements [13].

o Model Architecture: Low-Rank Adaptation of Large
Language Models (LoRA) was applied to the attention
and Multilayer Perceptron (MLP) modules, enabling effi-
cient parameter updates with minimal additional overhead
[14]. The classification head was added on top of the
decoder output as fully trainable parameters.

¢ Training Configuration: A learning rate of le-04 was
used for the first 3,000 steps and reduced to le-05
thereafter. Weight decay (0.01) was introduced after 1,200
steps to prevent over-fitting. A batch size of 4 was
adopted, training was distributed across multiple sessions
to allow hyperparameter adjustments, and 4,300 training
steps were used. The LoRA rank was set to 8 with LoORA
alpha set to 16 and a LoRA dropout to 0.01.

C. Challenges and optimizations

« Hardware Constraints: The GPU memory limited the
batch sizes and sequence lengths for larger models,
necessitating techniques like quantization and LoRA for
Llama 3.

« Dataset Splitting: A fixed test set and randomly split
training and evaluation sets (20% evaluation split) were
used for all models. While this approach maintains
consistency in test-set evaluation, random splits could
introduce minor variations in training dynamics.

o Loss and Accuracy Tracking: Loss and accuracy curves
were monitored throughout training to identify conver-
gence and stability issues, with adjustments made to
hyperparameters as needed.

IV. RESULTS

This section presents and analyzes the performance of the
T5, BERT, and Llama 3 models on the text classification task.
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Fig. 2. Comparison of loss curves during training for the BERT large, T5 base,
and Llama 3 8B models on the text classification task. The x-axis represents
the number of training steps, while the y-axis denotes the loss.

The evaluation considers multiple metrics, including accuracy,
precision, recall, F1 scores, training duration, and inference
speed, to provide a comprehensive comparison. Figures and
tables are used to illustrate key findings.

A. Training dynamics

The training loss and accuracy curves (Fig. 2 and 3) for each
model reveal significant differences in convergence behavior:

o TS base: Converged rapidly, with loss stabilizing near
zero within the initial training steps. Its token-based loss
computation due to the text-to-text format may explain
this behavior. Accuracy reached approximately 85% early
and stabilized with minimal fluctuations.

« BERT large: Demonstrated slower and more oscillatory
convergence, requiring over 10,000 steps to reach peak
performance. The loss curve reveals spikes after every
1,000 steps, which could be the reason for reshuffling
the dataset. These spikes become smaller as the training
progresses and finally disappear completely after ap-
proximately 10,000 steps. Accuracy gradually increased,
ultimately plateauing slightly below the final accuracy of
Llama 3 at 90.64%.

o« Llama 3 8B: Achieved the highest accuracy early in
training, surpassing 90% within the first 2,000 steps. De-
spite minor fluctuations, its loss and accuracy stabilized
efficiently, aided by hyper-parameter adjustments during
training. The final evaluation accuracy reached a strong
92.70%.

B. Evaluation metrics

Table I summarizes the evaluation metrics for each model.
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Accuracy TABLE II
EFFICIENCY

0.9

Metric T5 base | BERT large | Llama 3 8B

08 training time (minutes) 140 448.16 3,183

test-set inference time (minutes) 0.43 0.72 3.6

0.7

Insights:

o
o

o GPU utilization: TS5 and Llama 3 were trained and
tested using two GPUs, allowing for faster processing,
while BERT was trained on a single GPU due to its
specific implementation setup. This discrepancy should

— BERT large be considered when comparing training efficiency across

02 —— T5 base the models.

— Lima 386 o Flexibility in Llama 3 training: While Llama 3 was

0 2000 4000 6000 8000 10000 12000 14000 16000 trained with a classification head in this study, it is also

Step possible to train it as a text-to-text model, similar to
. . . - TS. This flexibility allows Llama 3 to adapt to a wider

Fig. 3. Accuracy comparison during training for BERT large, TS base, and . . .

Llama 3 8B models on a text classification task. The x-axis represents the range of tasks dependlng on the spe01ﬁc requirements and

number of training steps, while the y-axis indicates the accuracy. resource availability.

« Efficiency: TS5 required the least training and infer-
ence time, making it the most efficient model for

Accuracy
[=]
&

04

03

TABLE I rapid exp§r1mentat10n. DF§p1te using only one QPU,

TEST-SET RESULTS BERT maintained competitive performance and training

_ times, further demonstrating its practicality for resource-

Metric T5 base | BERT large | Llama 3 8B ined . Ll 3’ . .
festosel accuracy 39.01% 90.77% 93.86% cogs?rame env1fonments. Llama 3’s resource—'mtenswe
test-set balanced accuracy | 89.08% 90.46% 92.41% training reflects its complexity and parameter size.

macro precision 88.33% 89.47% 92.50% « Implementation complexity: BERT’s need for a clas-

TLCTo previston 8.01% | 90.27% 91.95% sification head added some implementation overhead
macro recall 89.08% 90.46% 92.41% . K

micro recall 39.01% 90.27% 92.50% compared to TS. Llama 3 required advanced techniques

macro Fl score 88.69% 89.86% 92.18% like quantization and LoRA to mitigate its high resource

micro F1 score 89.01% 90.27% 92.41% demands.

Key observations: . . .
y D. Confusion matrix analysis

o Accuracy and precision: Previous research on this The confusion matrices (Fig. 4) reveal model-specific chal-
dataset reported a accuracy of 90.5%, achieved using jepges:

German-specific BERT variants [15]. In this study both
BERT (90.27%) and Llama 3 (92.86%) demonstrated o All models struggled to distinguish between the ’Interna-

comparable or improved performance, indicating the
strength of the implemented approaches. T5’s accuracy
of 89.01%, while slightly below the baseline, still reflects
robust performance given it’s flexibility and efficiency.
Balanced accuracy metrics were closely aligned, reflect-
ing consistent performance across both balanced and
unbalanced datasets.

o Generalization: T5 exhibited inconsistent performance,
with test-set accuracy (89.01%) higher than evaluation-set
accuracy (87.13%), suggesting sensitivity to challenging
samples in the evaluation set.

C. Training and inference efficiency

Table II highlights the training and inference durations for

each model.

tional” and ’Panorama’ categories, suggesting significant
overlap in the dataset’s features for these classes.

o Llama 3 consistently outperformed T5 and BERT across
most categories, demonstrating its ability to leverage its
larger context window and richer representations.

E. Summary

While Llama 3 achieved the highest overall accuracy and
precision, all models performed similarly in accuracy and
balanced accuracy, with differences being minor. BERT pro-
vided a strong balance between performance and efficiency,
emerging as the most practical choice for most use cases. T5’s
rapid convergence and simplicity make it ideal for tasks where
quick implementation and lower resource usage are priorities.
These results provide actionable insights into the trade-offs of
transformer-based models for text classification.

Kdlner Beitrage zur technischen Informatik
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Fig. 4. Confusion matrices for the text classification models T5 Base,
BERT Large, and Llama 3 8B, showcasing their performance across nine
categories: "Web’, ’International’, ’Etat’, *Wirtschaft’, 'Panorama’, ’Sport’,
"Wissenschaft’, Kultur’, and ’Inland’. The rows represent the true labels,
while the columns denote the predicted labels. The diagonal cells indicate
correctly classified instances, with higher values reflecting better performance.

TABLE III
USE CASES

Use case
When quick results combined with little effort are most
important.
Offers a strong balance
between performance and efficiency.
Delivers the highest accuracy, when computational
resources and effort is no limiting factor.

Model
TS5 base

BERT large

Llama 3 8B

V. CONCLUSION

This study compared the performance of three transformer-
based models (TS5, BERT, and Llama 3) on the task of classify-
ing German newspaper articles into predefined categories. The
results highlight the trade-offs between accuracy, computa-
tional efficiency, and resource requirements, offering valuable
insights for selecting models in real-world applications, as
summarized in table III.

BERT large emerged as the most balanced option, achieving
a strong accuracy of 90.27% while maintaining relatively low
training and inference durations. Its efficient encoder-only
architecture and availability as a German-optimized variant
make it particularly well-suited for scenarios with limited
computational resources or strict time constraints. However,
the need for a task-specific classification head adds complexity
to its implementation.

The TS5 base model demonstrated flexibility and ease of
adaptation by re-framing the classification task as a text-to-text
problem. While its accuracy (89.01%) was slightly lower than
BERT’s, TS required less implementation effort and exhibited
rapid training convergence, making it ideal for projects where
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Fig. 5. Model comparison: All models deliver satisfactory results, with T5
base excelling in ease of training, BERT large offering the best trade-off of
between inference time and accuracy, and Llama 3 8B achieving the highest
overall accuracy.

simplicity and efficiency are prioritized over peak accuracy.

Llama 3 8B, the most resource-intensive model, delivered
the highest accuracy at 92.86%. Its decoder-only architec-
ture and large context window proved advantageous for cap-
turing nuanced relationships within the data. However, the
significantly longer training and inference durations, along
with the need for advanced techniques like quantization and
LoRA, limit its practicality to scenarios where computational
resources are abundant, and achieving maximum accuracy is
paramount.

The inclusion of Llama 3 allowed for a direct comparison
between large language models and more compact transformer
architectures. This comparison highlights that while larger
models can offer superior performance, their benefits must be
weighed against their resource demands, as highlighted in Fig.
5.

A. Future work

Future research could explore:

1) Testing additional transformer architectures, such as
A Robustly Optimized BERT Pretraining Approach
(RoBERTa) or DistilBERT, to assess their trade-offs in
performance and efficiency.

2) Addressing the dataset’s class imbalance to improve
performance across underrepresented categories.

3) Investigating techniques like data augmentation or active
learning to further enhance model generalization.

4) Evaluating these models on more diverse and complex
datasets to test their scalability and robustness.

In conclusion, the choice of a transformer-based model for text
classification should be guided by the specific requirements of
the application, balancing accuracy, resource availability, and
ease of implementation. This study provides a framework for
making such decisions, enabling practitioners to align model
selection with their operational priorities.
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Abstract— This work presents an innovative approach for
ramp metering control on highways, wherein a double deep Q-
Learning algorithm has been applied for finding optimal
parameters to improve the traffic flow using Reinforcement
Learning. Through automatic control of traffic lights at on-
ramps, the entry of vehicles can be regulated intelligently so as
to prevent congestion and make optimal use of available gaps,
which is essential for the rush-hour traffic. The whole system
was implemented in Python in a simulation environment, with
models trained and tested using Pytorch. The system is able to
control traffic lights at the on-ramp, by finding the optimal
parameters for switching between green and red phases. We use
a matrix to represent system state, which captures vehicle
positions, speeds and the queue length at the on-ramp. In order
to optimize the traffic flow, a reward function has been defined
based on both the average vehicle speeds and the queue length.
Compared to no control of traffic light, we have achieved a 47%
reduction in the overall system travel time and a 27% reduction
on the ramp in rush-hour scenarios. When the road network
needs to deal with a substantially high traffic flow, the routing
of vehicles on the highway and on the ramp can be regulated
effectively using the proposed approach so that traffic
congestion can be prevented effectively.

Keywords— Double Deep Q-Learning, Reinforcement
Learning, Ramp Metering, Traffic Flow Optimization, Adaptive
Traffic Control, Traffic Management, Urban Mobility

I. INTRODUCTION.

Nowadays, dealing with traffic congestion has become a
critical issue worldwide, particularly in urban areas. Road
systems has to be managed intelligently so as to reduce travel
times, cut emissions and improve the overall traffic safety. In
this work, we aim at optimizing highway traffic and propose
an approach for the automatic control of ramp metering by
adaptive learning of the optimal parameters based on a double
deep Q-Learning algorithm.

A ramp metering system uses traffic lights installed at the
on-ramp of a main roadway for the entry control of vehicles
which are moving toward the on-ramp on a secondary road
network. During periods with high traffic densities, traffic
lights can be used to control the traffic flow on the highway
so as to avoid situations where a large number of vehicles
enter the main roadway at the same time. Since a large number
of entering vehicles would require a relatively long sequence
with more corresponding gaps for possible vehicle merging, it
is necessary to break up vehicles formed at the traffic lights in
the secondary road network into smaller groups or individual
vehicles. Therefore, a ramp metering system has to be
designed properly so that it can regulate the incoming traffic
flow and try to prevent traffic congestion by making an
optimal use of the gaps available on the highway.

One common method of traffic control uses a type of
fixed-time operation, where traffic lights are switched
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according to a fixed schedule. The green phase is configured
to allow either one or several vehicles to proceed
simultaneously, with two vehicles at a time being a common
setting to increase the outflow. The red phase is timed to
minimize disruptions to the highway flow so as to keep the
system stable. An enhancement of the fixed-time operation
method is a simple traffic-dependent control based on demand
and capacity. These systems operate without a specifically
optimized control strategy, adjusting traffic light phases solely
based on the current traffic volume [1].

Since the early 1990s, methods aiming at the improvement
of the traffic-dependent control have been proposed. One
example is the rule-based ALINEA algorithm [2]. By
adjusting the inflow rate based on the traffic density measured
downstream, just after the merge point, it tries to keep the flow
rate on the main road close to its maximal capacity limit and
prevents the highway from becoming overloaded and causing
congestion. The measurement and calculation are
performed at predetermined time intervals. The inflow rate
will be increased if the measured vehicle density is low and
it will be decreased if the measured density value becomes
high.

Recently, thanks to the possibility of dynamic adjustment
of control strategies, Reinforcement Learning (RL) has been
widely used for ramp metering control [3][4]. In [3], RL has
been used for controlling the number of vehicles entering the
main highway from the ramp merging area. In [4], traffic
cameras have been used so that information regarding the
current traffic conditions can be extracted from video data for
the control of ramp metering. Through a comparative
experiment carried out in simulation, it has been shown that
RL-based control has made a significant improvement over
both the fix-time and rule-based control systems.

During rush hours, congestions can happen both on the
main and a secondary road. In our viewpoint, it is very
important to balance traffic flows on the main roadway and on
the ramp so that we can avoid traffic jam on the main highway
and prevent heavy traffic holdups into the secondary road
network as well. This is particularly important in road
networks with an above-average inflow from the on-ramp —
such as interchanges at highway junctions or on-ramps near
major intersections in urban metropolitan areas with a high
traffic density. So instead of using RL for the single purpose
of maximizing the traffic flow on the main highway, our goal
is to develop a deep RL-based approach capable of rendering
an optimal solution for all the vehicles involved.

In order to deal with this challenge problem, we have
developed methods for finding the optimal input parameters
for the RL algorithm. These parameters are essential for
building the control mechanisms within RL as they help to
determine how the dynamics of the rapidly changing actions
of traffic lights should cope with the inertia of the reactive
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Fig. 1. The test scenario with a main highway and a ramp.

system with changes of traffic situations on both the highway
and the ramp. In addition to fixing these optimal input
variables, a further contribution of our work lies in the
definition of reward function, which is indispensable for the
RL algorithm to generate favorable system behaviors and
making it converge toward the final goal of obtaining a
dynamic balance among the flow rate on the highway, the
queue length of the on-ramp and the flow rate on the on-ramp.

The rest of the paper is organized as follows: Section 11
deals with scenario definition and modeling for the ramp
metering system. Section III discusses the motivation and
concept of a system-level optimization. Details of the
proposed learning algorithm including the definitions of the
state, actions, the reward function as well as the network
architecture will be presented in Section IV. Experimental
results are evaluated and discussed in section V. And finally,
Section VI summarizes the whole paper.

II. SCENARIO DEFINITION AND MODELING

In order to realize and test the proposed control method,
we use SUMO, an open-source traffic simulation tool [5]. For
ramp metering, we have created a system with a two-lane
highway and a ramp, as is illustrated in Figure 1. The sizes of
the different sections of the highway and the ramp have been
defined in such a way that the travel time on the highway
segment from the point H1 to H2 would roughly equal the
travel time from the point R1 of the on-ramp to H2 if the road
were totally free.

As possible test scenario, we have also thought about using
a highway with three lanes. However, the use of a two-lane
one makes the underlying control system more challenging, as
it could generate more severe traffic congestions. With the
reduction of lanes, vehicles on the highway would have less
chances for making rooms for the merging of incoming
vehicles from the on-ramp.

The length of the acceleration lanes is set as 250 meters, a
little longer than the usual one existed in real-world, due to the
safety restriction of the SUMO simulator. In real-word
practice, vehicles can often continue driving on the shoulder
if merging is not immediately successful. However, this
option does not exist in SUMO.

For traffic simulation, two types of vehicles are
considered: cars and trucks. In order to generate realistic
traffic behaviors, vehicles are allowed to exceed the speed
limit. This has been achieved by using an individual speed
factor, which is assigned to each vehicle with a standard
deviation of 0.1 and a mean of 1.0, thereby creating a natural
variance in traffic flow.

For the simulation of vehicles following a preceding
vehicle, the Krauss Car-Following model is used for setting
the speed of the following car so as to ensure safe and smooth
traffic flow. The speed is determined based on a set of
parameters including reaction time, braking force and safety
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Fig. 2. Interacting factors of traffic flow.

In order to show the interaction and correlation of different
parameters and their impact on the generation of traffic jam,
we show in Figure 2 three diagrams whose axes are the rate of
traffic flow represented as vehicles per hour and per lane
(veh/h/lane), flow density measured as vehicles per kilometer
and per lane (veh/km/lane), and vehicle speed calculated as
kilometer per hour (km/h).

The curves shown in Figure 2 capture the interactions
among these factors and give indications on the movement of
vehicles and the tendency of potential change in road traffic.
When flow density reaches the point of a traffic jam, as is
shown by the red box, the flow rate drops to zero, which
means that vehicles have come to a standstill. At the point of
a critical density, as is shown by the green box, the flow rate
reaches its maximum. This indicates that at the maximal flow
rate, spacing between vehicles are optimal and this allows for
the most efficient movement of vehicles on the highway.
Below this critical threshold, both flow rate and flow density
decrease, which indicates that the road capacity is
underutilized. But above the critical density, flow rate
decreases as traffic density increases, indicating that the
movement of vehicles begins to interfere with each other in
the traffic, leading to traffic congestion.

Based on the above discussion, it is clear that traffic
congestion would occur when the flow density requested by
vehicles moving on and toward a certain highway section
would exceed its maximal density capacity. This is the reason,
why it is called as the critical density of the highway.

III. SYSTEM-LEVEL OPTIMIZATION

Our control strategy lies in the optimization of a system-
level travel time, reducing the travel times for all vehicles in
the system, including those originally on the highway and
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those on the ramp which want to enter the highway. Hence the
total travel time of all vehicles driving through the system is
used as the primary evaluation metric.

In order to calculate the system travel time, the travel time
of each vehicle is determined as the difference between its
arrival and departure times. For a vehicle on the highway
route, this corresponds to the arrival time at point H2 minus
the departure time at point H1, as is shown in Figure 1.
Similarly, for a vehicle on the ramp route, it is calculated as
the arrival time at point H2 minus the departure time at point
R1. The system travel time is then obtained as the arithmetic
mean of the travel times of all individual vehicles passing
through the system.

For the purpose of visualization, an arithmetic mean of the
travel times of all vehicles that have passed through the system
during the last 100 simulation steps is calculated. This means,
this value is updated every 100 simulation steps so that it can
provide a visual representation of the dynamic traffic
conditions.

In order to find optimal parameters for achieving a system-
level optimization, we first define a constant scenario by
setting the flow rate as 5000 veh/h for the main highway and
as 2000 veh/h for the on-ramp. This generates a traffic flow
where the flow rates on both the highway and the on-ramp are
maintained close to the maximum flow, i.e., near the critical
density. This is possible because vehicle positions and speeds
in SUMO are determined by applying traffic rules based on
speed limits and the minimum required distance between
vehicles. With these two values set, it will lead to traffic
situation with congestions, since the critical density of the
highway section will be definitely exceeded after the merging.

If we start the traffic simulation with a permanently red
traffic light at the on-ramp, no vehicles will come from the on-
ramp, resulting in a traffic flow that is close to the maximum
flow of the highway and yet below the critical density. The
maximum flow on the highway section after the merging point
could only be achieved if vehicles from the on-ramp could
gradually merge onto the highway through an optimal inflow
management. This is due to the fact that, both in reality and in
SUMO, vehicles arrive or are spawned with slightly random
gaps and speeds. These gaps allow vehicles from the on-ramp
to merge seamlessly into the highway traffic flow. Hence after
merging, the overall flow of the highway section is increased
and yet without any disruption of the existing traffic flow on
1t.

Using SUMO, we have then made an analysis of the
system behavior. We have compared the system-level travel
times and flow rates obtained from three traffic scenarios,
each with the constant traffic condition set above but with
difference regarding the use of traffic lights and their phase
changes. The three scenarios are:

e No control, equivalent to a traffic
permanently set as green

light

e Light switched with 5 seconds for green and 8
seconds for red

e Light switched with 50 seconds for green and 80
seconds for red

For each of the three cases, the simulation lasts 3600
seconds. Table 1 shows how the calculated travel times and
flow rates change across all three situations. The table
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provides us with valuable information regarding traffic
behaviors.

TABLE I TRAVEL TIME, FLOW RATE WITH DIFFERENT TRAFFIC
LIGHT CYCLES

Travel Time No-Control 5/8 s Cycle 50/80 s Cycle
System 104.22 s 68.49 s 79.96 s
Highway 107.18 s 51.59s 66.11 s
Ramp 97.30s 194.97 s 152.93 s
Flow Rate
System 4070 veh/h 4420 veh/h 4264 veh/h
Highway 2850 veh/h 3899 veh/h 3586 veh/h
Ramp 1220 veh/h 521 veh/h 678 veh/h

As presented in Table 1, traffic performance improves
with more frequent traffic light switching: the average system-
level travel time is 68.49 seconds with a switching cycle of 5
seconds green and 8 seconds red, and 79.96 seconds with a
switching cycle of 50 seconds green and 80 seconds red. Both
scenarios with switching traffic lights outperform the scenario
with no control, where the average travel time is 104.22
seconds. The same conclusions can be derived from the flow
rates. The flow rate with a switching cycle of 5 seconds green
and 8 seconds red was reduced to 521 veh/h compared to 1220
veh/h with no control.

In a static scenario where the capacity of both road
sections — the highway and the on-ramp — is maintained near
the critical density, an improvement in the overall system
travel time or an enhancement of the combined flow can only
be achieved by prioritizing the road section that can achieve a
higher throughput. In our case, this means regulating the on-
ramp with a traffic light control to keep the highway flow as
close to its maximum throughput as possible.

This leads to the conclusion that in order to keep the
overall travel time of vehicles as low as possible, it is
important to use traffic lights. And the time period used for
switching the traffic lights should be kept small so that in each
green phase, only a limited number of vehicles will enter into
the main highway simultaneously.

If the traffic lights are not controlled properly, bulks will
form, leading to wave-shaped backlogs on the merging line
and the on-ramp, as can be observed in Figure 3. Here traffic
speeds are compared between two cases: no control vs. traffic
light with a switching cycle of 5 seconds green, 8 seconds red.
The undulations of the speed curves in the upper part of Figure
3 is due to the fact that the vehicles shift frequently between
the states of standstills and short-periods of start-ups. In the
lower part of Figure 3, the speed curves are much more even
and smooth.

Therefore, with a proper regulation of the traffic lights,
vehicles from the on-ramp will enter the main highway in a
sequential manner. If the traffic lights can be switched
optimally between the red and green phase, fewer bulks will
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form and as a consequence, no or fewer traffic jams would
occur.

Since a static scenario with constant flow rate does not
exist in reality and the flow rate on both the highway and the
on-ramp varies, an optimization method has to be employed
to control the traffic lights so that the flow would remain close
to the critical density. It is therefore important to develop an
intelligent control strategy which could let the system
optimize toward the goal of maintaining a maximal flow on
the highway while trying to reduce the length of the queue on
the ramp as well. Of course, a trade-off between the flow rate
on the highway and the queue length of the on-ramp,
respectively the flow rate on the on-ramp, is desired.

IV. DOUBLE DEEP Q-LEARNING

For achieving efficient and stable ramp metering control,
we use the double deep Q-Learning method. Unlike standard
Deep Q-Learning (DQN), Double DQN utilizes its two Q-
networks (online and target) by decoupling action selection
(performed by the online network) from the value estimation
of that action (performed by the target network). This
mechanism specifically aims to reduce the overestimation of
Q-values, leading to a stability improvement in the
reinforcement learning process. In the following, details
regarding this learning and optimization process will be
presented.

A. Actions

For a control system, a new decision is an action, which
has to be made according to the change of the current system
state. After the execution of an action, system state will
change as the reaction of the action. In our problem of ramp
metering control, we use a two-phase control of the traffic
lights. As shown in Figure 4, the action set can be defined as

A ={G,R}, @)
where G stands for green and R stands for red. This means,
within the RL-based control system, an action has to be chosen
between two choices. Using a fixed time step, it determines
the color of the traffic light for the next phase based on the
current traffic state. In our case, a time step of 2 seconds has
proven to be a good compromise: it is short enough to remain
responsive, allowing only a single vehicle per traffic light
phase onto the ramp, but long enough to detect changes in the
traffic system and make the next decision accordingly.
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Fig. 4. Two-phase control.

B. State

Since cameras can be used to monitor traffic nowadays, it
can be used to obtain state information. Using SUMO, the
current state of each vehicle including location, speed and
distance travelled can be extracted directly.
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Figure 5 illustrates the process of state definition. Let the
control area have a size of X - Y, as shown in Figure 5 a), the
positions of all vehicles v(x,,y,) can be extracted from the
simulation. The vehicle state at time step t is represented in
the form of a matrix m, € R¥(*/)_ As shown in Figure 5 b),
m, also contains information on the signal state of the traffic
light, which is positioned in the last column in row j.
Integrated in row j of the matrix m, is the length of queue
formed at the traffic light. Since there are three vehicles
waiting in the queue, there are also three occupied squares
shown in color blue in the last row of the matrix m;,.

A single matrix is not sufficient to adequately capture the
vehicle dynamics. Therefore, the matrices are stacked over 3
consecutive time steps, resulting in an overall system state s:

S¢ = {my_p, me_y, My} @)

After having tested the state function based on the defined
scenario in simulation, further adjustments have been made
for performance optimization. It has been found that for the
matrix mg, it is better to take into accounts the length of each
vehicle in the definition. This results in a state matrix which
better quantify the dynamics of the vehicles. The final size of
the m, matrix has been set as 4 x 251.

C. Reward

Although the travel times of the vehicles are good
parameters for evaluating the ramp metering system, they are
not suitable to work as reward parameters, because they are
strongly influenced by previous actions. Neither is the flow a
suitable reward parameter. Since it is averaged over a certain
period of time, it provides an inaccurate representation of the
current state.

So instead, the speed on the on-ramp, speed on the section
of highway above it, and the length of the queue before the on-
ramp (i.e., number of vehicles waiting in front of the traffic
light) are initially considered as the basis for defining the
reward. Leading to the reward function 7, determined as
follows:

1, = (U, + wq,), where u >0, w <0 3)

Here v, is the average speed on the on-ramp and the
freeway section above, g, is the queue length before the on-
ramp at time t. The weighting factors y is positive for speed
and the weighting factor w is negative for queue length.

After experimented with dynamically changing traffic
scenarios, it has been found out that the queue length alone is
not sufficient to adequately represent the behavior on the
section before the on-ramp. In situations where both the ramp
and the highway are flooded with vehicles, the queue length
on the ramp remains almost constant, which is equal to the
maximal vehicle capacity determined by the length of the
ramp. In such cases, the average speed of the vehicles on the
ramp can be a more suitable and also reliable metric.
Therefore, the average speed before the on-ramp was added as
an additional factor to the reward function, leading to its final
version defined by the following equation:

1y = (uvy + wq; + Tvry), wherep >0, w <0, >0 (4)
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Here vr; is the average speed before the on-ramp at time ¢t
and T is a positive weight factor.

D. Architecture of the Neural Network
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Fig. 6. Network architecture.

For the double deep Q-Learning algorithm, a Multilayer
Perceptron (MLP) with fully connected layers was used for
both the main network and the target network. As shown in
Figure 6, the network begins with an input layer that
corresponds to the observation space, which is equivalent to
the system state matrix, with a size of 3x4x251=3012. The
flattening operation is not performed explicitly in a dedicated
flatten layer but is applied before the data are fed into the
network. The data are then passed through several fully
connected hidden layers with a decreasing number of neurons
(128, 64, 32, 8) to extract essential features and process the
complex patterns of the traffic environment. The final output
layer corresponds to the action space with two possible
actions: red or green, and provides the decision values for
control. Each layer uses the ReLU activation function to
enable non-linear learning.

V. EXPERIMENTAL EVALUATION

For the purpose of experimental study, we have simulated
dynamic traffic situations with rush-hour conditions. Figure 7
shows the designed traffic scenario with changes in traffic
flow during the morning rush hour between 7:50 and 8:50.
The traffic flows on the highway and on the ramp, shown in
color blue and red respectively, peak at 8:10 a.m., reflecting
the expected traffic spikes during the morning rush hour. After
8:20, the flow rate gradually decreases, marking the end of the
peak traffic period. However, traffic volume on the ramp
remains relatively high.

Traffic Flow Rate on the Highway and Ramp

= Highway
3000 m— Ramp
2500
= 2000
3
<
2
= 1500
2
o
1000
500
0
07:50 08:00 08:10 08:20 08:30 08:40 08:50

Time from 7:50 AM to 8:50 AM

Fig. 7. Dynamic scenario with flow changes on both highway and ramp.

Using this basic traffic scenario with rush hour situations,
we have compared our approach of deep Reinforcement
Learning (deep RL) with two other control strategies: no
control and fixed-time operation with a traffic light cycle of 5
seconds green and 5 seconds red.
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Fig. 8. Comparison of travel times.

In the case of fixed-time operation, two vehicles will be
allowed to pass during each green phase. A 5 second red phase
also proves to be an effective choice, as it prevents excessive
interference with the highway traffic flow, keeping the system
stable (avoiding wave-shaped backlogs) while allowing a
higher outflow from the on-ramp.

A comparison of the system-level travel times shown in
Figure 8 highlights the significant improvements achieved
through our deep RL approach. Compared to the no-control
strategy, we were able to reduce the average system travel
time by approximately 42%. Compared to the fixed-time
operation, an improvement of around 25% was achieved. Our
deep RL control also demonstrates clear advantages on the
ramp: compared to the no-control strategy and the fixed-time
operation, the average travel time for vehicles on the ramp has
been reduced by about 24% and 26%, respectively.

One notable observation is that the average ramp travel
times between the no-control and fixed-time operation
scenarios differ by less than one second on average, even
though the differences in the graph appear much larger. This
is because each point on the curves shown in the diagram
always represents the average value of the last 100 seconds,
regardless of how many vehicles were included in the last
measurement.

Looking at the ramp traffic flow in Figure 9 provides an
explanation for this phenomenon. In the fixed-time operation,
the traffic flow on the ramp is mostly delayed, meaning that
most vehicles pass through the system only when highway
traffic volume decreases. Since our system, as shown in Figure
1, has a length of 250 meters behind the traffic light, many
vehicles wait beyond this boundary. Their waiting times are
therefore not yet included in the measured ramp travel times,
making the recorded values for the fixed-time operation
appear lower than they actually are.

Expanding the considered system would thus make the
advantages of our deep RL approach on the ramp even more
apparent. Notably, our approach can shift the ramp traffic flow
forward in time, allow more vehicles to pass earlier through
the ramp and increase further the overall efficiency of the
system. A similar effect can be also observed for the highway.
Consequently, the efficiency of the entire system is enhanced.
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Fig. 10. The loss and reward functions.

By relieving congestion on the ramp earlier and enabling
more efficient traffic control, the overall traffic flow is
improved. This contributes to a noticeably more positive
experience for road users passing through the system, as
waiting times are reduced and overall travel times are
shortened.

As shown in Figure 10, the decrease of the loss function
can be clearly observed over the training period, indicating
that the model is continuously learning from experience and
improving its prediction accuracy. The moderately steep drop
in loss at the beginning of training demonstrates that
fundamental correlations in the data are quickly identified by
the model. Subsequently, the loss curve flattens out, indicating
that the learning process is stabilizing and approaching an
optimum.

The reward function in the lower part of Figure 10 shows
an overall upward trend, indicating the successful adaptation
and learning of the model. The fluctuations and the temporary
drop in reward may be attributed to the model's exploration of
new strategies during the learning process, which initially
prove to be suboptimal. However, overall, a convergence of
the reward curve towards the end of training is observed,
signaling increasing stability and efficiency in the behavioral
strategies learned by the model.
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Fig. 11. Comparison of travel times with additional scenarios.

In order to evaluate the generalization capability of the
trained model, it has been tested further with 25 new traffic
scenarios. The traffic flow on the highway and the on-ramp,
as is shown in Figure 7, was randomly varied by 100 to 500
vehicles per hour for each time period. Additionally, the
random seed of the SUMO simulation was changed for each
traffic scenario, resulting in different randomization of vehicle
spawning within the simulation. The characteristic pattern of
rush-hour has remained intact but with significant variations
in intensity.

The test results shown in Figure 11 demonstrate that the
model responds reliably to the newly generated traffic flows
and even achieves better efficiency in terms of travel time
savings for system users. On average, our deep RL approach
has lowered the system-level travel time by approximately
47% compared to no control and by about 31% compared to
fixed-time operation. Regarding the travel time on the ramp,
we observed an average improvement of approximately 27%
compared to no control and about 18% compared to fixed-
time operation. As previously explained, extending the
underlying system would further highlight the advantages of
our deep RL approach on the ramp.

VI. CONCLUSION

In summary, we have proposed an approach for the control
of a traffic light based the double deep Q-Learning algorithm.
Using the realized system, it is possible to mitigate the
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negative effects of vehicle merging behavior, which occurs
frequently on highway on-ramps. The results show that in
dynamic situations representing rush-hour scenarios and
compared to no control, the system travel time and the travel
time on the ramp can be reduced by an average of 47 % and
27 % respectively.

Capable of regulating the traffic flow on the ramp at the
point where traffic density threatens to exceed critical values,
this method can be used to effectively prevent the formation
of wave-shaped traffic jams on the highway. Through
intelligent traffic light management, seamless merging of
vehicles from the on-ramp into the flowing traffic on the
highway is enabled. Thanks to the intelligent control of traffic
lights, abrupt braking and acceleration can be minimized, as is
clearly reflected by the smoothness of speed curves. This leads
to the cut of travel times for all road users and the increase of
the overall efficiency of the whole traffic network.

This research lays the foundation for future work, where
the proposed approach can be tested and refined in more
realistic environments with multiple on- and off-ramps. Its
integration into real-world traffic management systems would
make a significant contribution by helping to reduce traffic
congestion, improve traffic efficiency, enhance road safety
and diminish emissions.
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Abstract—This paper evaluates and compares three deep learn-
ing (DL) approaches for plant seedlings classification using
a dataset consisting of 4750 images of 12 different plant
species. Several DL approaches were considered, including
a custom convolutional neural network (CNN) trained from
scratch, a pre-trained CNN ‘“ResNet-18” and a pre-trained
vision transformer (ViT) “vit-base-patch16-224" fine-tuned for
the task at hand. To address the challenges of data scarcity and
class imbalance, extensive data augmentation techniques such
as random rotations, flips and color jittering were employed.
Results showed that transfer learning with ResNet-18 outper-
forms the custom model, achieving a mean F1-score (micro-
averaged) of 0.961 on the test set. The custom CNN, still
achieved a competitive F1-score of 0.927, demonstrating that
even smaller locally trained architectures can be viable if
carefully designed and thoroughly regularized. While the ViT
model achieved the highest Fl-score of 0.967, an ensemble
combining the predictions of all three models outperformed
the single models with a score of 0.971. Finally, potential
improvements are outlined, including deeper architectures,
synthetic image generation and interpretability measures, to
further improve seedling classification performance.

Index Terms—Machine learning, Image classification, Convolu-
tional neural networks, Vision transformers, Transfer learning

1. Introduction

This section provides an overview of the challenge,
including its context, problem definition, dataset overview
and key challenges.

1.1. Context and Background

The “Plant Seedlings Classification” challenge, hosted
on Kaggle [1], presents a real-world problem central to
modern agriculture: accurately identifying the species of
young seedlings from digital images [2] and distinguishing
between weeds and crops [3].

The dataset described in [4] contains images of ap-
proximately 960 unique plants, representing /2 different
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species (see Fig. 1). Each image captures a seedling at
different growth stages and under different conditions, re-
flecting the complexities found in real-world agricultural en-
vironments. These conditions include differences in lighting,
background soil patterns and subtle phenotypic variations
that can blur the lines between certain species.

Figure 1. One sample image for each class in the dataset

Fig. 1 shows one sample image for each class in the
dataset, illustrating the different species. The images vary
in background, lighting and growth stage, highlighting the
challenges of visual similarity across species.

The evaluation metric of the competition is a
mean (micro-averaged) Fl-score, which encourages bal-
anced performance across all classes C' [5]-[8]:

c
- TP;
Precision,, = # M
>iA(TP; + FP;)
c
¢ Tp.
Recall,, = Zz:l i @

S (TP, + FN;)

Fl — 2 x Precision,, x Recall, 3)
# " Precision, + Recall,,
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where T'P;, FP; and FN; are the true positive, false
positive and false negative counts for class ¢, respectively
and C is the set of all classes. The mean Fl-score (3) is
a balanced measure that considers both precision (1) and
recall (2) across all classes, making it a suitable evaluation
metric for multi-class classification tasks.

1.2. Problem Definition and Objectives

The core objective of the challenge is to build an auto-
mated classification model that can take a seedling image
as input and accurately predict its species. The following
points summarize the task:

1) Input: Train set of 4750 images of plant seedlings.

2) Output: Classification label for each image, indi-
cating the species of each plant seedling.

3) Goal: High classification performance as measured
by equation 3.

The challenge is to develop a model that can generalize
well across different species, even when faced with varia-
tions in lighting, background and growth stages. A signifi-
cant risk when dealing with deep learning (DL) models is
overfitting, especially when the dataset is relatively small [9,
Chapter 1] [10, Chapter 5]. Therefore, the model must be
designed to learn robust features that can generalize well to
unseen data (see 1.4).

1.3. Dataset Overview

For a better understanding of the dataset, a brief
overview of the class distribution and sample images is
provided below:

Class Distribution

", B O Sy e, D
cass

Figure 2. Class distribution of the 4750 training images

Fig. 2 shows the distribution of classes in the train
dataset, with each bar representing the number of images
per class. The dataset is imbalanced, with some classes
having significantly fewer samples than others. This im-
balance can pose a challenge for model training, as the
model may struggle to learn the features of underrepre-
sented classes effectively. The most common classes are
“Loose Silky-bent” (654) and “Common Chickweed” (611),
while the least common classes are “Common wheat” and
“Maize” (both 221).
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1.4. Key Challenges

Developing robust classification models for this task is
not trivial. There are several challenges:

1) Inter-Class Similarity: Certain seedlings can look
strikingly similar, making it difficult for both hu-
mans and machines to distinguish between them.

2) Intra-Class Variability: Even within a single
species, seedlings can vary significantly in appear-
ance due to differences in growth stage, lighting and
background. This variability challenges models to
learn consistent features that generalize well.

3) Data Limitations: With approximately 960 unique
plants, the dataset could be considered modest for
training DL models from scratch. While data aug-
mentation can help to some extent (see 3.3), the
relatively small dataset may still limit the capacity
of models that can be effectively trained without
overfitting.

4) Model Architecture Capacity: Choosing the right
model architecture, whether a custom convolu-
tional neural network (CNN) [11] trained from
scratch or a pre-trained deep CNN / Vision Trans-
former (ViT) [12], to learn complex visual fea-
tures. Deeper models can capture more nuanced
differences, but they can also be harder to train
and require careful regularization to prevent over-
fitting (see 3.3).

By clearly understanding these challenges and the
broader context, model architectures can be proposed that
address these difficulties. The following chapters discuss the
strategies for model design, training optimization, model
evaluation and analysis of results, ultimately leading to the
approach that best addresses the core challenge of differenti-
ating between plant seedling species. Finally, the conclusion
summarizes the key findings and suggests potential areas for
future research.

2. Model Architecture Design

Python and Jupyter notebooks were used to implement
the models and train them on the plant seedlings dataset.
The code was organized into separate notebooks for each
model, allowing for easy experimentation and comparison
of different architectures. Libraries such as PyTorch, Scikit-
learn, NumPy and Pandas were used for data manipulation,
model training and evaluation.

To achieve deterministic results and reproducibility, the
random seed 42 was set at the beginning of each notebook.
This ensured that the same random initialization was used
for each run, leading to consistent results across different
experiments:
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RANDOM_SEED = 42

seed (RANDOM_SEED)
np.random. seed (RANDOM_SEED)

6 |torch.manual_seed (RANDOM_SEED)
torch.cuda.manual_seed_all (RANDOM_SEED)

9 |torch.backends.cudnn.deterministic = True
10 | torch.backends.cudnn.benchmark = False

Listing 1. Settings to achieve deterministic results and ensure re-

producibility.

The random seed was set for the Python, NumPy and Py-
Torch random number generator. Additionally, the cuDNN
backend was set to deterministic mode to ensure that the
results are reproducible on the GPU.

2.1. Guessing Baseline

As a starting point and to get familiar with the dataset
and the Kaggle competition, a simple guessing baseline was
implemented. The baseline assigns the most frequent class
label to all test samples. This approach provided a lower
bound on model performance and served as a reference
point for evaluating the effectiveness of more sophisticated
models. The head of the submission file is shown below:

I | file, species
1b490196¢c.png, Loose Silky-bent
85431c075.png, Loose Silky-bent
506347cfe.png, Loose Silky-bent
7f46a7ldb.png, Loose Silky-bent
6 | 668cl007c.png, Loose Silky-bent

Listing 2. Head of guessing baseline submission file.

In this case, all 794 test samples were assigned the class
label “Loose Silky-bent”, which is the most frequent class in
the training dataset. The F1-score of this baseline is 0.14105.

2.2. Custom CNN

The custom CNN architecture was designed (from
scratch) to capture features relevant to seedling classifi-
cation, while being lightweight enough to be effectively
trained locally on the given dataset. The model consists of a
series of convolutional and pooling layers followed by fully
connected layers to learn features hierarchically and make
the final class prediction.

As shown in Fig. 3, the network begins with a series
of convolutional layers (blue), with the number of filters
gradually increasing from /6 to 256. These convolutional
layers, each followed by a Rectified Linear Unit (ReLU)
activation, extract spatial features such as edges, textures
and patterns from the images. To reduce spatial dimensions
and computational complexity, max-pooling layers (gray)
are applied after each convolutional block to focus on the
most salient features.

After the convolutional and pooling stages, the feature
maps are flattened into a 1D vector that serves as the
input to the fully connected layers (blue). The first fully
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Figure 3. Custom CNN architecture, consisting of convolutional and pool-
ing layers followed by fully connected layers.

connected layer has /28 neurons and captures high-level
abstract features, while the final fully connected layer maps
these features to the /2 target classes (green), producing the
class probabilities.

The final custom CNN model has approximately 2 mil-
lion parameters, making it lightweight and computationally
efficient compared to the following architectures. The model
architecture is designed to capture relevant features for
seedling classification while being suitable for training on a
moderate-sized dataset.

2.3. Pre-trained CNN

As an alternative to training and building a custom CNN
from scratch, a pre-trained CNN can be used to leverage
learned features from a large dataset. The pre-trained model
ResNet-18 [13] was used as a feature extractor, where the
final classification layer was replaced with a new fully
connected layer to predict the /2 plant seedling classes:
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from torchvision import models
from torch.nn import Linear

model = models.resnetl8 (

5 weights=models.ResNet18_Weights.DEFAULT

6 1)

7 |model.fc = Linear(
in_features=model.fc.in_features,

9 out_features=len (dataset.classes),

10 )

Listing 3. Replacing the final classification layer of a pre-trained
ResNet-18 model.

The ResNet 18 model has been pre-trained on the Im-
ageNet dataset [14] and has shown strong performance on a
variety of computer vision tasks [13]. By using a pre-trained
model, the network can leverage the learned features from
ImageNet to improve performance on the plant seedlings
dataset. The final classification layer was replaced to adapt
the model to the specific classification task.

This pre-trained CNN model has approximately /1 mil-
lion parameters, making it deeper than the custom CNN.
However, fine-tuning the weights allow the model to learn
more complex features and hopefully achieve better perfor-
mance on the plant seedlings dataset.

2.4. Pre-trained ViT

Another approach is to use a ViT as the backbone
architecture. The VIiT model has been pre-trained on
ImageNet-21k [15] (including plants/crops) and then fine-
tuned [16] on the plant seedlings dataset. The final classifi-
cation head was replaced with a new linear layer to predict
the /2 plant seedling classes:

import timm
import torch

model = timm.create_model (
"vit_base_patchl6_224",

6 pretrained=True,

7 num_classes=num_classes

s 1)

9 |model.head = torch.nn.Linear (

10 model.head.in_features,

1 num_classes

12 )

Listing 4. Replacing the final classification layer of a pre-trained
ViT model.

Instead of fine-tuning the entire model, the pre-trained
weights of the vit_base_patchl6_224 model [17]
were frozen and only the classification head was trained
on the plant seedlings dataset. Transfer learning leverages
the powerful feature extraction capabilities of the pre-trained
model while adapting the final layer to the specific classi-
fication task [9, Chapter 6]. Furthermore the computational
cost is reduced compared to training the entire model from
scratch or fine-tuning all layers:
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for param in model.parameters() :
param.requires_grad = False

for param in model.head.parameters() :
5 param.requires_grad = True

Listing 5. Freezing the pre-trained ViT backbone and training only

the classification head.

The ViT model has approximately 86 million parameters,
but only 9,228 of these are adapted in the experiments.
This makes the model computationally efficient, while still
benefiting from the powerful feature extraction capabilities
of the pre-trained ViT model.

2.5. Ensemble

Several challenges have shown that an ensemble of
models can often outperform individual models, especially
when inference time is not a primary concern [13], [18].
A final ensemble was created by combining the predictions
of all three models (custom CNN, pre-trained CNN, pre-
trained ViT) using a weighted average. The weights were
determined based on the performance of each model on the
test set:
import torch.nn.functional as F

model_custom_cnn.eval ()
4 |model_resnet.eval ()
s |model_vit.eval ()

w_custom_cnn = 0.25
§ |w_resnet = 0.25
w_vit = 1 - w_custom_cnn - w_resnet

probs_custom_cnn = (

14 F.softmax (model_custom_cnn (images), dim=1)
15 1)

16 | probs_resnet = (

17 F.softmax (model_resnet (images), dim=1)

18 )

19 | probs_vit = (

20 F.softmax (model_vit (images), dim=1)

)

23 | probs_ensemble = (

w_custom_cnn x probs_custom_cnn +
w_resnet * probs_resnet +

26 w_vit x probs_vit

)

2 |_, preds = torch.max (probs_ensemble, 1)

Listing 6. Ensemble predictions using a weighted average.

The ensemble combines the strengths of each individual
model to improve overall performance and robustness. By
averaging the predictions of multiple models, the ensemble
can reduce the impact of individual model weaknesses and
provide more reliable predictions (wisdom of the crowd [19,
Chapter 7]). As the ViT model achieved the highest perfor-
mance on the test set, it is assigned the highest weight in the
ensemble (0.5), while the custom CNN and ResNet models
are assigned equal weights (both 0.25).
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2.6. Summary

TABLE 1. MODEL PARAMETERS AND SIZE OF THE CUSTOM CNN,
PRE-TRAINED CNN AND PRE-TRAINED VIT.

Model Total Params | Trainable Params | Total Size (MB)
Custom CNN 1,999,916 1,999,916 3491
Pre-trained CNN 11,182,668 11,182,668 106.02
Pre-trained ViT 85,655,820 9,228 806.35

Table 1 shows the total number of parameters and the
size of each model. The custom CNN has the smallest
number of parameters and size, making it lightweight and
computationally efficient. The pre-trained CNN has a larger
number of parameters, while the pre-trained ViT has the
largest, but only a small fraction of them are trainable during
the experiments. This allows for efficient training while still
benefiting from the powerful feature extraction capabilities
of the pre-trained model.

3. Training Optimization Strategies

This section describes the training algorithms, learning
rate schedules and regularization techniques used to improve
model generalization and prevent overfitting.

3.1. Training Algorithms and Optimizers

All models were trained using the Adam optimizer [20]
with a learning rate of 0.00/. The Adam optimizer is a
popular choice for training deep neural networks due to
its adaptive learning rate mechanism and momentum-based
updates. A weight decay of /e-4 was applied to regularize
the model and prevent overfitting (see 3.3).

3.2. Learning Rate Schedules

To adjust the learning rate during training, a learning rate
scheduler was used to reduce the learning rate by a factor
of 0.5 if the validation loss did not improve for 2 epochs.
This technique helps the model converge more effectively
by gradually reducing the learning rate as it approaches a
local minimum.

3.3. Regularization Techniques

To prevent overfitting and improve generalization, sev-
eral regularization techniques were applied during training:

¢ Weight Decay: L2 regularization with a weight de-
cay of /e-4 was applied to the optimizer to penalize
large weights (see 3.1).

« Dropout: A dropout layer with a dropout probability
of 0.5 was added after the fully connected layer to
regularize the model and prevent co-adaptation of
neurons.

« Data Augmentation: Various data augmentation
techniques such as random rotations, flips and color

22

jittering were applied to the training images to in-
crease the diversity of the training set and improve
the robustness of the model (see Fig. 4).

Original Augmented 1 Augmented 2

Augmented 3 Augmented 4 Augmented 5

Figure 4. Original image (top left) and five augmented versions.

Fig. 4 shows one original image of the given dataset and
five augmented versions. The augmentations include random
rotations, flips and color jittering, which help the models
learn more robust features and improve generalization to
unseen data. During training those augmentations were ap-
plied randomly to each image, while the original images
were used for validation. This approach allowed the model
to learn from a more diverse set of training samples without
introducing bias in the validation process.

4. Model Evaluation and Validation

This section describes the evaluation framework used
to assess the performance of the models during training. It
includes a discussion of the validation framework, perfor-
mance metrics and results obtained from the models.

4.1. Validation Framework

To evaluate the performance of the models during train-
ing, the dataset was split into training and validation sets
using a stratified split with a ratio of 80:20. The valida-
tion set was used to monitor performance during training
and prevent overfitting. Since the dataset is imbalanced, a
stratified split was used to ensure that the class distribution
in the training and validation sets is similar. This prevents
the model from overfitting the training set and ensures that
it generalizes well to unseen data. This split results in a
training set of 3800 and a validation set of 950 samples.

Since the Kaggle challenge does not provide the labels
for the test set, the validation set served as a proxy to
evaluate the performance of the model on unseen data (not
used during training). Validation loss and accuracy were
monitored during training to assess the convergence and
generalization capabilities of the models. Due to compu-
tational constraints, only one run per model was performed:
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Training and Validation Loss

Figure 5. Training and validation loss (custom CNN)

Training and Validation Loss

Figure 6. Training and validation loss (pre-trained CNN)

Fig. 5, Fig. 6 and Fig. 7 show the training and validation
loss curves for the custom CNN, pre-trained CNN and pre-
trained ViT models, respectively. Each curve illustrates the
learning dynamics of the model over successive epochs.

The custom CNN demonstrated a gradual reduction in
both training and validation loss, converging steadily around
epoch 60. This indicates effective learning without over-
fitting, as the training and validation loss curves remained
closely aligned. One could argue that the model could ben-
efit from increased capacity and further training to improve
performance.

The pre-trained CNN showed faster convergence, with
training and validation loss stabilizing around epoch 26. This
faster convergence reflects the advantages of fine-tuning, as
the model uses pre-trained weights for feature extraction.
Similarly, the pre-trained ViT, which also converged rapidly
within 25 epochs, demonstrates the effectiveness of using
pre-trained models and transfer learning for this classifica-
tion task. However the gap between training and validation
loss suggests that the model could benefit from additional
regularization to improve generalization. In particular, the
pre-trained CNN began to clearly overfit the data after epoch
30.

The inclusion of a checkpoint in each figure highlights
the point at which the model achieved the lowest validation

Training and Validation Loss

Figure 7. Training and validation loss (pre-trained ViT)
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loss, indicating optimal performance and serving as a refer-
ence for saving the best model state. The loaded checkpoints
are at epoch 60, 26 and 25 for the custom CNN, pre-trained
CNN and pre-trained ViT, respectively.

4.2. Performance Metrics

In addition to losses, validation accuracy was tracked
during training to monitor performance of the models. Accu-
racy is calculated as the ratio of correctly predicted samples
to the total number of samples in the validation set:

A Number of Correct Predictions @)
ccuracy =
Y Total Number of Samples

The accuracy (4) provides a simple and intuitive measure
of performance on the validation set:

Validation Accuracy

Figure 8. Validation accuracy (custom CNN)

Validation Accuracy

/

e ﬁ»/\///\/\\//\/
|

Figure 9. Validation accuracy (pre-trained CNN)

Validation Accuracy

Figure 10. Validation accuracy (pre-trained ViT)

Similar to the loss curves, Fig. 8, Fig. 9 and Fig. 10
show the validation accuracy of the custom CNN, pre-
trained CNN and pre-trained ViT models, respectively. The
accuracy curves provide insight into the ability of the model
to correctly classify the validation samples over successive
epochs. The figures highlight the information from the loss
curves, showing that the pre-trained models converged faster
and achieved higher accuracy compared to the custom CNN.
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But again, the custom CNN showed a steady and smooth
increase in accuracy over time, indicating that the model
continues to learn and improve its performance. The selected
checkpoints are the same as for the loss curves, indicating
the load state of the model with the lowest validation loss,
which also corresponds to high accuracy.

5. Results and Analysis

This section presents the results of the models on the
validation and test sets. The performance of each model
is evaluated using various metrics, including training and
validation loss, validation accuracy and test Fl-score. The
results are compared to assess the effectiveness of different
architectures and training strategies. Additionally, qualitative
results are provided to illustrate predictions of the models
and highlight areas for improvement.

5.1. Quantitative Results

TABLE 2. QUANTITATIVE RESULTS OF THE MODELS ON THE TRAIN,
VALIDATION AND TEST SET.

Model Train Loss | Val Loss | Val Accuracy | Test F1-Score [ Epochs
Guessing Baseline - - - 0.14105 -
Custom CNN 0.2897 0.3034 0.9042 0.92695 64
Pre-trained CNN 0.0532 0.1467 0.9537 0.96095 30
Pre-trained ViT 0.1438 0.2089 0.9379 0.96725 29
Ensemble - - - 0.97103 -

Table 2 shows the performance of each model on the
validation and the test set. The custom CNN achieved a val-
idation accuracy of 90.42% and a test F1-score of 0.92695.
The pre-trained CNN (ResNet-18) outperformed the custom
CNN with a validation accuracy of 95.37% and a test F1-
score of 0.96095. The pre-trained ViT (vit-base-patchl6-
224) achieved a validation accuracy of 93.79% and a test
Fl-score of 0.96725. The ensemble, which combined the
predictions of all three models, achieved the highest test
Fl-score of 0.97103. Since the guessing baseline and the
ensemble are not trained models, the training and validation
losses are not applicable.

5.2. Qualitative Results

Since the labels for the test set are not available, the
qualitative results are based on the validation set to get
an idea of the performance of the models. The confusion
matrices of the custom CNN, pre-trained CNN and ViT
models on the validation set are shown below:

Fig. 11 shows the confusion matrix of the custom CNN
on the validation set. The rows represent the true classes,
while the columns represent the predicted classes. The di-
agonal elements represent the number of correct predictions
for each class, while the off-diagonal elements represent the
misclassifications. While there are some misclassifications
without a clear pattern, the model clearly struggled to dis-
tinguish between “Loose Silky-bent” and “Black-grass”.
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Figure 11. Confusion matrix (custom CNN)
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Figure 12. Confusion matrix (pre-trained CNN)

Similar to the custom CNN, Fig. 12 shows the confusion
matrix of the pre-trained CNN on the validation set. The
model showed the same difficulty in distinguishing between
“Loose Silky-bent” and “Black-grass”.

Although the pre-trained ViT model takes a different
approach, Fig. 13 shows that it also struggled with the same
pair of classes “Loose Silky-bent” and “Black-grass”.

5.3. Comparative Analysis

The results show that the ensemble model outperforms
the individual models, achieving the highest test F1-score
of 0.97103. The pre-trained ViT model achieved the highest
individual test Fl-score of 0.96725, followed by the pre-
trained CNN with a test Fl-score of 0.96095. The custom
CNN achieved a test Fl-score of 0.92695, demonstrating
competitive performance despite being trained from scratch.
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Figure 13. Confusion matrix (pre-trained ViT)

Since real-time inference is not required for this task, the
computational cost of the models is not a primary concern.
However, the custom CNN is the lightest model with ap-
proximately 2 million parameters, making it computationally
efficient. The pre-trained CNN has approximately /7 million
parameters, while the pre-trained ViT has approximately 86
million (9 thousand trainable) parameters, making it the
most computationally expensive model.

5.4. Interpretability Measures

The Pytorch-Grad-CAM library [21] by Jacob Gilden-
blat was used to generate class activation maps (CAMs) for
the custom CNN, pre-trained CNN and ViT models. CAMs
provide insight into the regions of the image that the model
focuses on when making predictions and can help explain
the decision-making process of the model.

The simplified code snippet below shows how to gener-
ate CAMs for a given image using the custom CNN model:
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1 | from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image

import show_cam_on_image
+ | from pytorch_grad_cam.utils.model_targets
5 import ClassifierOutputTarget

7 | with GradCAM (

8 model=model,
9 target_layers=target_layers,
10 ) as cam:

1 gs_cam = cam(

12 input_tensor

13 =image.unsqueeze (0),
14 targets

15 =targets,

16 )

17 gs_cam = gs_cam[0, :]

18 visualization = show_cam_on_image (
19 rgb_img,

20 gs_cam,

21 use_rgb=True,
2 )

Listing 7. Generate CAMs using Pytorch-Grad-CAM.
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Figure 14. Grad-CAM (custom CNN)
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Figure 15. Grad-CAM (pre-trained CNN)

Fig. 14, Fig. 15 and Fig. 16 show the Grad-CAM visu-
alizations for the last two layers of the custom CNN, pre-

Scentless Mayweed
-
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Figure 16. Grad-CAM (pre-trained ViT)

trained CNN and ViT models. The visualizations highlight
the regions of the image that the model focuses on when
making predictions. The Grad-CAM visualizations provide
insight into the decision-making process of the models and
help to interpret their predictions.

For some classes, such as “Small-flowered Cranesbill”,
“Fat Hen”, “Common Chickweed”, “Cleavers” and “Maize”,
the custom CNN clearly focused on parts of the plants that
a human would use to distinguish between the classes. For
these species, the focus was on the leaves. For classes like
“Black-grass”, “Common wheat”, “Sugar beet”, “Scentsless
Mayweed” and “Loose Silky-bent” the CNN focused on
what appears to be the soil or the background. One could
argue that the model had difficulty distiguishing between
the plants and the background and focused on noise in the
images.

In comparison, both pre-trained architectures, the CNN
and the ViT, focused more on the plants themselves. But
even for “Black-grass”, “Scentsless Mayweed” and “Loose
Silky-bent” the models did not seem to focus on the
plants alone. The visualizations of the areas of interest are
smoother for the CNN compared to the ViT, which looks
more blocky. This is due to the different architectures and the
way the models process the images as the ViT divides the
image into patches and processes them separately, therefore
the patches are more visible in the Grad-CAM visualiza-
tions for the ViT. For a human observer the Grad-CAM
visualizations can help understand how the models made
their predictions and what features they focused on, the
pre-trained CNN seemed to produce the most reasonable
visualizations and focus on understandable features.

6. Conclusion and Lessons Learned

This section summarizes the key findings and lessons
learned from the project. It discusses key takeaways, chal-
lenges encountered, a comparison to other challenge sub-
missions and papers and potential future work to improve
the results.
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6.1. Key Takeaways

In this project, several strategies were explored to clas-
sify plant seedlings into /2 different species, with the overall
goal of achieving robust performance as measured by the
mean (micro-averaged) Fl-score. Data augmentation played
a central role in preventing overfitting and improving model
performance. Techniques such as random rotations, flips
and color jittering effectively increased the diversity of the
training samples, thereby improving the robustness of the
learned feature representations. Meanwhile, the choice of
an appropriate model architecture proved critical. A custom
CNN designed and trained from scratch achieved compet-
itive results (test Fl-score of 0.92695), demonstrating the
potential for custom solutions even with relatively modest
dataset sizes. However, the use of pre-trained networks, such
as ResNet18 and vit-base-patchl6-224, demon-
strated how transfer learning can deliver superior results
(test F1-scores of 0.96095 and 0.96725) by building on rich
feature embeddings learned from large-scale datasets. Proper
validation underlined these successes, with a stratified split
ensuring balanced class distributions in both the training and
validation sets. This practice not only prevented the model
from overfitting to majority classes, but also allowed careful
monitoring of loss and accuracy metrics to guide training
decisions and allowed early stopping to load the best model
state before overfitting occurred.

6.2. Challenges Encountered

Despite the encouraging results, several challenges re-
mained throughout the process. The class imbalance present
in the dataset underscores the need for robust strategies
to deal with skewed data, such as stratified data splits. In
addition, certain class pairs, such as “Loose Silky-bent”
and “Black-grass”, exhibited high visual similarity, leading
to consistent confusion for all the custom and pre-trained
models. Overfitting remained a significant risk due to the
limited dataset size, necessitating the use of multiple regular-
ization methods including weight decay, dropout layers and
data augmentation to ensure generalization. Computational
constraints also played a role in decisions regarding batch
size, image resolution and the capacity of architectures that
could be feasibly trained within the available resources
(e.g., freezing layers in the ViT model to reduce trainable
parameters). Finally, the unavailability of labels for the test
set made it difficult to comprehensively evaluate the models,
necessitating the use of the validation set as a proxy for
performance on unseen data.

6.3. Kaggle Challenge Comparison

The Kaggle challenge provided a valuable benchmark
to contextualize the performance described. Although the
official competition ended in March, 2018, making further
submissions and rankings comparisons impossible, analysis
of the historical results still provides valuable insights.
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The ensemble model achieved a final Fl-score of
0.97103 on the test set, placing it approximately at rank 327
out of 833 public participants. Notably, the competition was
highly competitive, with the top two submissions achieving
perfect scores of 1.0. Unfortunately, the detailed methodolo-
gies and codebases of these top-ranked submissions are not
publicly available, limiting direct comparison.

However, several published solutions provide useful ref-
erence points. The best publicly documented model used the
InceptionResNetV2 architecture [22] and achieved an score
of 0.98740, closely followed by another highly successful
solution based on EfficientNetBO [23]. In addition, [24]
reported impressive results (99.69% accuracy) by combining
AlexNet [25] with transfer learning, along with extensive
preprocessing steps such as color space conversion and im-
age enhancement. Another study [26] demonstrated strong
performance (97.54%) with the VGG19 network [27], out-
performing ResNet models in their specific experiments.

This paper is closely aligned with these findings, high-
lighting the effectiveness of transfer learning for image
classification tasks, especially when faced with dataset lim-
itations. However, the uniqueness of this work lies in the
explicit investigation of a spectrum of techniques ranging
from custom architectures to advanced transfer models such
as ViTs, all trained locally and the custom CNN even trained
from scratch, while achieving competitive results.

6.4. Future Work

Going forward, there are several ways to refine and
extend the current results. Adding more models to the
ensemble or training the ensemble on the validation set
data to find the optimal weights for each model. Exploring
deeper pre-trained networks such as ResNet-50, DenseNet,
or EfficientNet could improve performance, although careful
management of overfitting will be important. Collecting
additional labeled data or generating synthetic samples using
generative adversarial networks (GANs) [28] could help
address the class imbalance and improve the ability of the
model to generalize to underrepresented classes. Finally, and
probably the best next step, is image segmentation to remove
the background “noise” and focus on the plant seedling it-
self. This could help the models learn more relevant features
and improve classification accuracy.
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