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Abstract

A pension system is resilient if it able to absorb external (temporal) shocks and if it is able to adapt
to (longterm) shifts of the socio-economic environment. Defined benefit (DB) and defined contribution
pension plans behave contrastingly with respect to capital market shocks and shifts: while DB-plan
benefits are not affected by external shocks they totally lack adaptability with respect to fundamental
changes; DC-plans automatically adjust to a changing environment but any external shock has a
direct impact on the (expected) pensions. By adding a collective component to DC-plans one can
make these collective DC (CDC)-plans shock absorbing - at least to a certain degree. In our CDC
pension model we build a collective reserve of assets that serves as a buffer to capital market shocks,
e.g. stock market crashes. The idea is to transfer money from the collective reserve to the individual
pension accounts whenever capital markets slump and to feed the collective reserve whenever
capital market are booming. This mechanism is particular valuable for age cohorts that are close to
retirement. It is clear that withdrawing assets from or adding assets to the collective reserve is
essentially a transfer of assets between the age cohorts. In our near reality model we investigate the
effect of stock market shocks and interest rate (and mortality) shifts on a CDC- pension system. We
are particularly interested in the question, to what extend a CDC-pension system is actually able to
absorb shocks and whether the intergenerational transfer of assets via the collective reserve can be

regarded as fair.
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1 Introduction

All over the world defined benefit pension plans (DB-plans) are in retreat, meaning
that young employees entering working life must accept defined contribution pension
plans (DC-plans).' There are several reasons for this development, including: in-
creased risk awareness among employers, intensified regulation and a low interest

rate environment.

Employees and labour unions regard the shift from DB to DC as a massive reduction
of labour rights since the investment risk is put on the weak shoulders of employees.
This fact cannot be denied. However, one can also argue that the transition from DB
to DC is just proof that DB plans are unsustainable in the sense that they lack flexi-
bility to adjust to a changed economic environment. As a consequence, inevitable ad-
justments had to be made by closing old DB systems and in doing so putting the fi-
nancial burden of the obsolete DB plans on the shoulders of the younger generation.?
This generation is hit twice since at the same time the social security pension systems

are under reconstruction with the obvious outcome for the young.?

Compared to DB-plans, pure (individual) DC-plans are “over-reactive” in the sense
that pension benefits are directly linked to the time value of the pension pot. Equity
market shocks, shifts of the yield curve or changing life expectancy instantaneously

hit the expected pension or the pension in payment.

The idea behind collective DC- (CDC-) plans is to introduce a collective component
to a DC-plan to buffer external shocks or shifts in order to stabilise (expected) pen-
sion payments. The collective reserve in a CDC system can be regarded as an unallo-
cated fund of assets. This fund must be fed by contributions or asset returns. Pay-
ments into and withdrawals from the collective reserve constitute an intergenera-

tional transfer of assets.

In the following we present a multi generation CDC-pension model including rules
for when and how the intergenerational transfer is to be carried out. The main pur-
pose of this paper is to apply the concept of resilience to a pension system. Resili-
ence is the ability of a system to absorb (single) external shocks and to adapt to (per-
manent) shifts of the socio-economic environment. Our approach allows us to explic-

itly measure the intergenerational transfer.

I Cf. [OECD 2011], p. 15.

2 We have the same effect if the benefits of a DB plan remain untouched but the contributions are
adjusted.

3 Cf. [House of Commons 2016] p. 15-16.



The utility increasing effect of intergenerational risk transfer has been proven by
many authors using different methods. [Gordon/ Varian 1988] use a stylised overlap-
ping generation model to prove that the government should play an active role by
borrowing or saving in the capital market to improve risk allocation between genera-
tions. [Gollier 2007] addresses the intergenerational risk transfer in a pension fund
with a stable number of new young workers replacing the retirees who get a lump
sum payment as pension benefit. Using expected utility theory, Gollier can prove that
if all generations save into a common pension fund the expected utility for every
generation can be increased. [Westerhout 2011] discusses the question of how the in-
tergenerational risk transfer in a pension system can be designed in such a way that
every generation really takes advantage of the system. [Cui e.a. 2011] argue in the
same spirit as [Gollier 2007], however their pension model is more realistic in the
sense that their model works with current pension payments (instead of lump sum
benefits) and they introduce an absorbing funding surplus, which finances the inter-
generational transfer. Furthermore [Cui e.a. 2011] use option price techniques to

value the intergenerational transfer.

Our contribution is to discuss the resilience of a CDC pension scheme with respect to
intergenerational fairness. We say that a pension scheme is resilient, if it is able to
absorb external (single) shocks (e.g. a crash of market value of equities) and it is
able to adjust to (permanent) shifts (e.g. shift of interest rates or mortality). It is desir-
able that a single stock market crash does not affect pensions in payment to full ex-
tend. However, as in defined contribution system with no external sponsor any pro-
tection of the group of pensioners is implicitly financed by an intergenerational trans-
fer from the young to the old. Young participants will regard this kind of intergenera-
tional transfer as fair because they expect that sooner or later the effects of the down
shock will be compensated by an up shock. However, if e.g. the risk-free interest rate
shifts to a new lower level, say combined with a lower inflation rate, then the under-
standing of intergenerational fairness could be that all age cohorts have to bear the
consequences. Under these circumstances a waving of pension adjustments or a cut
of pensions in payment could be compelling from the perspective of intergenera-

tional fairness.

The setup of this paper is as follows. Following this introduction, section 2 intro-
duces our basic pension model and section 3 the asset liability management (4LM)
rules. The resilience test in section 4 constitutes the main part of this paper. To test
the resilience of the pension system we have to define a steady state position (section
4.1). Then we apply capital market shock (section 4.2) and capital market shift (sec-
tion 4.3) scenarios to the system. Finally in section 4.4 we discuss the effects of a
mortality shift.



2 Basic Model

2.1 Population Model

2.1.1 CDC Pension Fund

We consider a pension fund for active and retired employees. The active employees
pay periodic contributions to build up a pension capital. At a certain retirement age z
the individual pension capitals are converted into a life annuity. The pension fund is
exclusively financed by the regular contributions; there is no external entity that
could step in if the pension fund runs out of assets. Examples of such scenarios
would be if assets do not perform as expected or if the retirees live longer than ex-
pected resulting in pension benefits having to be adjusted. In extreme cases pension
payments may have to be cut. On the other hand, overperforming assets or declining

life expectancy eventually result in higher pension benefits.

In the case of a defined contribution (DC) pension fund, the contributions determine
the pension benefits. If observed asset returns or mortality rates deviate from the ex-
pected values the pension benefits have to be adjusted while contributions remain un-
changed. In contrast, in a definded benefit (DB) scheme, the contributions would be
adjusted but not the promised benefits. The standard design of a DC schemes is an
individual DC scheme, where each participant pays contributions into a personal
pension pot, at retirement the accrued capital of the pension pot determines the paid

benefits.

To our understanding the characteristic feature of a collective DC (CDC) pension
fund is that there is a collective reserve, i.e. part of the total assets can be used to bal-
ance unexpected losses on the asset side or actuarial losses on the liability side. The
following FIGURE 1 shows the stylised balance sheet of the pension fund. We have to

explain when and how the collective reserve is deployed and refilled.

Res(f)
P(t) collective reserve
portfolio of assets V‘l(l‘

individual saving
account for active
employees

&0
actuarial reserve
for pensions in
payment

FIGURE 1: Stylised Balance Sheet



We assume that employees enter the system at a fixed entry age xo and that they re-

main in the population until death. If an employee dies before age z the balance of

the personal account is paid out. From the retirement age of z onwards an annuity is

paid until the person dies.

Here we list some basic notations with respect to the population model:

t

X0.

z.!

:

time index t=0,1, ..., T
fixed entry age, if not stated otherwise we set xo = 20
fixed retirement age, if not stated otherwise we set z = 65

maximal age, if not stated otherwise we set @ =115

L(t, x): number of persons of the (z, x)-cohort, i.e. the number of persons who are

x years old at time . We assume that each age cohort is homogeneous,
1.e. all members share the same mortality risk and have the same pension

entitlements.

p(t,x)=L(t+1,x+1)/L(¢t,x): survival probability for the (¢, x)-cohort. This is

a random variable conditioned to the avaible information at time ¢, ob-

servable at time #+1.

p(t,x): estimated survival probability for the (¢, x)-cohort for the time interval

[¢, t+1] based on the information up to time ¢

p,(t,x) :actuarial survival probability for the (7, x)-cohort. These values are used

to calculated the actuarial reserve for pensions due. The actuarial survival
probalities could be best or prudent estimates. We do not model an ongo-
ing updating of p, (¢, x) to match the experienced mortality rate up a cer-
tain date. However, in the course of our discussion we will also examine
the effect of a mortality shift.

By definition of @ we have p(t,)= p(t,w) = p,(t,0) =0 for all «.

We do not model the idiosyncratic mortality risk, i.e. the risk that a single person

dies in a certain time period. Instead, we allow for non integer L(¢, x) and assume that

L(t+1,x+1)=L(t,x) p(t,x),

where the random variable p(z,x) represents the systematic mortality risk.



We think of p(z,x) as any reasonable best estimate for p(t,x). In practice, the
phrase best estimate does not necessarily imply that p(7,x) =E( p(t,x)).* We distin-
guish between p, (f,x) and p(z,x) to allow for safety margins with respect to mor-
tality rates.

We regard the initial population (L(O, X)X, <x< a)) and the new entrants

(L(t, X))t 0) as deterministic.

z—1
L'(t):= z L(t,x): total number of active employees at time ¢
L} (1) = z L(t,x): total number of retirees at time ¢
L(t)=L"(t)+ L*(¢): total population at time z.

For convenience we define L(¢, x):= L(¢, xo) for all x <xo and L(-1, x):= L(0, x) for all
x, assuming that before time # =0 we had a stable population. If not stated otherwise
we calibrate our model population such that L(0, 20) = 1000.

2.1.2 Steady State Population and Population Dynamics

The best estimate probabilities p(t,x) are taken from the mortality tables Richttafeln
2005G,* which are the generally accepted standard tables for calculating book re-
serves for DB- plans in Germany. The entry age of the Richttafeln 2005G is xo= 20
and the terminal age is =115, 1.e. p(¢,115) =0 for all #. The Richttafeln 2005G are
derived from social security data for male and female employees and comprise tables
for all birth cohorts between 1891 and 2005. If indicated we will present separate re-
sults for a male and a female population. However, most calculations are performed

on the basis of a hybrid male/ female population . To this end we define hybrid sur-
vival probabilities by p(t,x) = %( POt x) + pUm (t,x)) . One should be aware of

the fact that the resulting hybrid population is not the population of a 50 - 50 mixed
male/female population.

4 For example, in the stochastic CDB-model (as described in the [Cairns e.a. 2006]) the “natural” best
estimate is not necessarily an unbiased estimator.

> “Reference tables” [Heubeck et al. 2006]



Our calculations are based on an initial (male, female or hybrid) population defined
by

L(0,20) =1000, L(0,x+1)= p(2018,x) L(0,x) for x =20, ..., 115,
i.e. all calculations start in 2018.

To illustrate the path to a steady state population we stipulate that all cohorts born af-
ter 2005 have the mortalitiy rates as the 2005- generation, i.e.

p(t,x) = P(2005+ x, x) for all t>2005 + x.
This implies that from year 2120 the population is stationary.
Steady State Population

One of the main objectives of this paper is to analyse how our CDC-pension system
responds to external capital market and or longevity shocks or shifts. We apply the
external shock/ shift to a CDC-system which is in a steady state with respect to mor-

tality and capital market returns.

To this end we define a steady state population {L(x), x= 20,..., 115}, where the

number of members of an age cohort does not change over time:
L(x):=L(0,x) and p(x)= p(2018,x) for all x.
Population Dynamics

In addition to the shock/ shift scenario analysis we will perform simulations. For
these we take into account the cohort specific mortality trends as estimated in
Richttafeln 2005G. Furthermore, we will also consider different scenarios with re-

spect to the number of new entrants to the pension fund at the age of xo = 20.

The evolution of the population in time will depend on the number of entering em-

ployees. We will consider four scenarios for population dynamics:
A constant number of new entrants: L(t, Xo) = 1000 for all t > 0.
+1% growing number of new entrants: L(t, Xo) = 1000 (1.01)!
-1% shrinking number of new entrants: L(t, Xo) = 1000 (1.01)*

winding up after 10 years: L(t, Xo) = 1000 for t=0, ..., 10 and
L(t, Xo) = 0 for t > 10.

The following FIGURE 2 exhibits the population development for these scenarios for

a male and a female population
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FIGURE 2: Population development for 2005-2105, for a female and a male popu-

lation for various new entrant scenarios.

We observe an increasing population despite a constant number of new entrants. This
is due to the fact that we use cohort mortality tables with increasing survival proba-
bilities. Since we assume that the secular trend of improving mortality rates comes to
an end for generations born 2005 or later, from the year 2120 onwards we have a

steady state population.

2.2 Liabilities

We distinguish between the liabilities with respect to active employees and the pen-

sion liabilities for retirees.
Pensions liabilities for active employees

Each active employee has an individual pension account to which the regular contri-

butions and a “profit participation” are credited.

For xo <x <z let v(t, x) denote the individual accumulated pension capital at time z.
We assume that at time ¢ (at the beginning of [, t+1]) every active employee (x < z)
pays a constant contribution ¢, which is credited to his or her personal account. C(¢) =

LA(¢) ¢ denotes the total of all contributions payable at time ¢.

We assume that all individual accounts share the same “profit participation” n(t+1).
We understand 77(#+1) to be the profit participation for the time period [z, #+1], which
is credited at time #+1. If 77(¢+1) is determined at time ¢, i.e. at the beginning of

[¢, t+1] then we will call this a prospective declaration of profit participation; if
n(t+1) is determined at the end [z, #+1] we call this a retrospective declaration. The

phrase “profit participation” is commonly used with life insurance contracts, where
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it refers to payments on top of a guaranteed interest rate. In our model, there is no

guaranteed interest rate, we explicitly allow for a negative 7 (7).

At time ¢ = 0 we assume that each member of the (0, x) — cohort (for x: xo < x <z) has
an initial pension capital v(0, x). Furthermore, we assume that all newly entering em-

ployees (at age xo) start with zero pension capital, i.e. v(¢, xo) = 0 for all 7.

For the individual accounts we have the following recursion:
v(t+1,x+1) = (v(t,x)+c) exp(n(z +1)) fort>0x,<x<z

Note that v(¢, x) is the individual pension capital “a logical second” before the contri-
bution c is credited. The final pension capital v(¢, z) is not paid out but is converted

into a life annuity.

If a person of the (¢-1, x-1) - cohort, xo < x < z, dies within the time interval [#-1, 7],
then at time 7 the accrued capital v(¢,x) = (v(t -Lx-1)+ c) exp(ry(t)) is paid out to
the surviving dependents. The total death benefit payable at time ¢ > 0 is

D)= Y (L(t-1,x=1)—L({t,x)) v(t,x).

x=x5+1
Note that according to our convention L(-1, x) = L(0, x).

Since the death benefit equals the accumulated pension capital, the survival probabil-
ities do not effect the individual pension accounts. However, the mortality rates for

the active employees has an effect on the population structure of the pension fund.

At time ¢ the death benefit D() is paid out and the accrued contributions of the (¢, z)-

cohort, namely V(¢):= L(¢,z) v(¢,z), is converted into an annuity.

We define

VAt) = z L(t,x) v(t,x)+ D(?).
P
VA(£) denotes the total liability with respect to the group of active employees a logical
second before D(t) is paid out and Vx(7) is converted. Note that J*(¢) does not com-
prise the new contributions C(¢) that are credited at the beginning of [¢, #+1]. For no-
tational convenience we set V* (t+) =V "(t)— D(t) - V.(t) + C(t), the liabilities with
respect to active employees a logical second after the death benefit is paid, the (¢, z)-

cohort become retirees and the new contributions flow in.



Remark

VAt = Zz: L(t-1,x-1)v(t,x) (Eq. 1)

x=xy+1
Liabilities for pensions due

We assume that within the (z, x) - cohort (z < x < w) all retirees are entitled to the
same pension b(z, x). The pensions are paid in advance, i.e. the pensions for the time
period [¢, t +1] are payable a “logical second” after time ¢. B(?) := ZL(t, x) b(t,x)

denotes the sum of all pensions due at time .

To calculate the actuarial reserve for all pensions in payment, we assume a fixed
(time independent) actuarial interest rate s and actuarial survival probabilities

pa(t, x). Implicitly we assume that all p, (¢, x) are ,,known* at time ¢ = 0.

Let d(t, x) denote the actuarial reserve for a 1€ - pension paid in advance for mem-

bers of the (, x)-cohort. d(¢, x) can be defined by the following backward recursion:
d(t,w)=1 and da(t,x)=1+p, (¢t,x)exp(-u,) d(t+1,x+1) forx=z, ..., ®-1.

We define V(1) = z L(t,x) b(t,x) d(t,x), the pension liabilities with respect to

x=z+1

the cohort of retierees. Note that V*(¢) does not comprise Vx(¢).

At time ¢ the (¢, z)-cohort members own an individual pension capital of v (z, z) which

is immediately after time ¢ converted into a life annuity

V(t’Z; , thus V(#) = L(t, 2) b(¢, 2) d(t, z).

b(t,z) =

at,z

-1
VE@+) =V () +V.(t) - B(t) = Y L(t,x) b(t,x) (éi(1,x) 1) are the liabilities for due

X=Z

pensions a logical second after V() is converted and due pensions are paid.

We assume that at the end of each period [¢, £ +1] all pensions are adjusted by the
same rate £(+1), i.e. b(t+1,x+1)=exp(e(t+1)) b(t,x) forx=z,..,w—1. As with

n(t+1) the pension adjustment £(#+1) can be declared prospectively at time t or ret-

rospectively at time t+1.
Remark

From the account’s point of view, the death benefit D(#) belongs to [#-1, ] while B(?)
and C(¢) belong to [z, t+1]. Therefore the balance sheet liability of the pension fund



should be Vyu(t) = V() — D(¢) rather than V(¢). We may justify our “accounting trick”
by assuming that at the end of [#-1, ¢] the death benefit has yet not been paid out and

that D(¢) just represents provisions for benefits due but yet not paid.

The reason why we include D(¢) in the liabilities V*(¢) is pure pragmatism. By this
we can combine net cash outflow in a single entity and this simplifies notation con-

siderably. For notational convenience we define (cf. Figure 3):
CF(t):= B(t) + D(t) — C(¢t):  total outgoing cash flow at time ¢
V() :== V(1) + VE(@) total liability just before CF(t) is paid out
V(t+) = V(£) - CF(t) =VA(t+) + VR(t+)  total liability just after CF(¢) is paid out.

I e
VA7) @

{ oo
AON T

FIGURE 3: Liabilities and cash flows

N\

()<

.

Since in case of death just the existing reserve is paid out, there is actually no mortal-
ity risk for the cohort of active workers. So the question might be: Why not simplify
the model by setting L(z, x) = L(¢, z) for x < z and skipping the death benefit? How-
ever, in our model we have a collective reserve and as we will see, the age structure

of the whole pension population does have effect on the performance.

2.3 Assets

Let P(¢) denote the value of assets at time ¢, just before the cash flow CF(¢) = D(¢) +
B(?) - C(¢) is paid out. Denote by z(z+1) the log-return on pension assets for the in-

vestment period [z, #+1], then P(¢+1)=(P(t)—CF(t))exp(f(t +1)).
We assume that fi(z+1) is a random variable, which can be decomposed as
:[l(t + 1) = IU(O't) + 0, Xt+1 ’ (Eq 2)

where (o) is a real valued increasing function on [0, omax], and Xi, X>, ... are sto-
chastically independent identically distributed random variables with zero expecta-

tion and variance one.

-10 -



The idea behind (£q. 2) is that at time ¢ the pension manager decides on the risk ex-
posure o, for the following investment period [¢, #+1]. They can choose a risk free in-
vestment (o = 0) or, depending on the risk appetite, a more risky investment with a
higher expected return. In our model the assets are controlled by only one parameter

o: , which serves as risk indicator. The time index #+1 in fi(z+1) or X1 indicates the

time, when these random variables can be observed.
Remarks

1. Consider the continuous time Black Scholes model with a risk free asset
dA, = A, p dt and arisky asset dS, =S, (u,, dt+o,,dW,). We may think of S,
as a broadly diversified portfolio of equities, representing the market portfolio
in terms of the capital asset pricing theory. Consider a right-continuous
nonnegative real valued risk exposure process (o (t)):>0 , where o(f) only de-
pends on the information up to time . We interpret o (¢) to be the risk exposure

we take at time 7.
Define (S7),., by Sy =S, and d S7 =S/ (u(o,)dt+ o, dW,). Then this is ar-
bitrage free within the Black Scholes framework if and only if

: +30y —H
w(o)=H+ry o—Lto’ with ry, = ] ;O-M a (Eq.3)
M

The economic interpretation is the following: Suppose our portfolio has value
P, at time ¢ and we wanted to pursue a constant mix strategy for the time inter-
val [¢, t+1]. This means that at any ¢’e [¢, t+1] the relative proportion of risky
assets in our portfolio is constant at some level § € [0,1]. So at time ¢ we invest
P P: inS; and (1-p) P; in A, . Since the value processes for S; and 4, will di-

verge within [z, +1] we have to rebalance our portfolio continuously.

Then for o= o, we get P, =P, exp(Hi+7ry 0—%+0” +o(W,,, —W,)) and

+1

t

P . o
In [’?”‘J =u(o)+o(W,, —W,). Thus, a constant mix strategy within the Black

Scholes framework statisfies (Eg. 2).

2. As an alternative we could pursue a buy and hold strategy: At time t invest [ P;
in S; and (1-p) P; in A; and then wait until #+1. Then we get

P, =P ((-pByexp(i)+ fexp(u, +0, (W, ~W,))) and

-11 -



E(P.,) =P ((1-B)exp(@)+ Bexp(u, +103,)).-

If we define i, =exp(x)—1 and i =exp(y,, +Lo,)—1, we get

E(%}:a—ﬂ)am)w(ug)=1+iA + (i —i,).

t

However, one may convince oneself that (¢ +1):=1n (R / B) cannot be de-

+1

composed as in (Eq. 2).

3 Asset Liability Management
3.1 Basic Relations

We define p(r):=In(P(t)/V(t)) - the log-reserve ratio or simply the reserve ratio.

He have p(¢) > 0 iff P(¢) > V(). In the following p(¢) will be the fundamental control
variable for the asset liability management (4LM). For practioners, the cover ratio
P(?)/V(t) rather than p(¢) is taken as the indicator of the “wellbeing” of a pension
fund. Clearly, it makes no difference whether we control p(¢) or P(¢)/V(t). But, as we
will see, p(¢) simplifies notations. Note that for P(¢)/V(¢) = 1 (say 0.8< P(¢)/V(¥) <
1.2) we have 1 + p(¢) = P(t)/V(¢).

Attime ¢ (i.e. based on the information up to time ¢) the pension manager has to de-
dide on o; , the risk exposure for the coming time period [z, ¢ +1]. If we apply a pro-
spective declaration, then also 77(z+1) and £(#+1) are determined at time ¢. It is clear
that if we want to guarantee a minimum cover ratio (or reserve ratio) then we must

apply a retrospective declaration.

For the following propositions we define for # > 0:

_ L(t,x) b(t,x) (c'z'(t, X)— 1) _ L(t,x) b(t,x) (ii(t, X)— l)
VRO V.(0-B@) VR (t+)

(forx >2z)

w(t,x):

4D = —In #U]
p

7(t+1)=—In xzz%w(t, x)}
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CF (1)

At) = 0
5 = IH(P(t)_CF(t)J—ln(P(t)j _ h{l—)t(t) exp(_pg))j
V(1)-CF(z) V(t) 1— A(t)
=V O+V.O-BO _ V()
= o-cre var)
Remarks

w-1
1. Since V*(t+) = ZL(t,x) b(t,x) (c'i(t,x) — 1) , w(t,x) is the relative weight of the

X=z

w-1
(¢, x)-cohort in VZ(¢+). Note that Z w(t,x)=1.

2. 7(t+1) is the weighted safety margin if the actuarial assumptions with respect

to the survival probabilities are set so that p, (z,x) > p(t,x). If we use best esti-

mate survival probabilities for actuarial valuation we have z(¢+1)=0.

3. 7(t+1) and z(z+1) only depend on the survival probabilities for the cohort of
retirees. 7(¢+1) measures to what extent the experienced and the actuarially

presupposed mortality rates diverge. If the actuarial assumptions include safety

margins then 7(¢+1) is expected to be positive.

We regard 7z(¢+1) as the best estimate for 7(¢t+1) based on information up to
time 7. As practitioners we do use the phrase “best estimate” rather generously.

In particular we do not stipulate that E(7 (¢ +1)) = 7(t +1) . One should note
that p(t,x)=E(p(t,x)) forall x and ¢+ does not imply that

E(7(1+1))=A(t+1).

4. If p, (t,x)= p(t,x) then 7(t+1)=0 and 7(t+1) :—ln(g%w(t,x)].
x=z P\, X

7Z(t +1) can be interpreted as the weighted mortality effect.

5. A(t) can be interpreted as the liquidity ratio, the ratio of outgoing money to the
total liabilities. Note that A(¢) < 1 since CF(r) < V(¢).

6. Since V(¢) > CF(t) (by definition) 6(¢) is well defined provided P(¢) > CF(t).

7. Note that p(¢) = 0 implies 6(¢) = 0. For p(¢) > 0 6(¢) is positive and increasing
in CF(t) and for p(¢) <0 6(¢) is negative and decreasing in CF(¢). 6()
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measures the effect of the cashflow CF(7) on the reserve ratio p(¢). CF(¢) has
no effect on the absolute value of the reserve P(¢) — V(¢), but CF(¢) # 0 effects
the reserve ratio. If CF(¢) < 0, which is typical for a young population, the re-
serve ratio will decrease. This effect is similar to the stock dilution effect when
additional common shares are issued. A share buy-back program has an oppo-
site effect. So we call o(¢) the stock effect. As we will see below, the stock ef-
fect will be positive if the pension system is in a steady state. It is also positive

if the pension system is unwinding.

8. y(f) can be interpreted as the weighted age burden. y(t) = 0 means that there

are no pension liabilities, and y (#) = 1 implies that there are no liabilities for

active workers.

Proposition 1

If 77(¢ +1) is the profit participation for the individual pension accounts and if the

pensions are adjusted by £(¢ +1), then we have the following recursions for the liabil-

ities:
VAt +1) =exp(n(t+1)V*(t+) (Eq. 4)
VRt +1) =exp(e(t+1)+u, — 7t +1)) V" (1+) (Eq. 5)

If e(t+1)=n(t+1)—p, +7(t+1), then

V(t+1)=exp(n(t+1)(V()-CF(t))=exp(n(t+1))V (t+) (Eq. 6)
p+)—p@)=pu@+)—nE+D)+0o() . (Eq. 7)
Proof

To prove (Eq. 4) we use definition (Eq. 1) and the fact that v(z, xo) = 0:

VAt+1) = Z L(t,x~1) v(t +1,x)

X =xp+1

=exp(n(t+1)) i Lt,x-1) (v(t,x-1)+c¢)

x=x+1

=exp(n(t+ 1))[C(t) + Zi: L(t,x) v(t,x)}

X=X

= exp(n(t+ D) (V" () - DO ~V.(1)+ C(0)).
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To verify (Eq. 5) we take (Eq. 2) and use the definition of w(z, x) and 7(¢+1) and the

recursion for d (z, x):

-1
VEE+1) =D Lt +1Lx+1) bt +1,x+1) it +1,x+1)

X=2z

- 1) S 560 Lt x) bt x) HD ]
exp(u +8(+)ZP( x) L(t,x) b(t, )pa(t,x)

_exp(,u +g(t+l))(VR(t)+V(t) B(t))25((tx;)

=exp(u, +&(t+1) =A@ +D)(V* () +V.(6)- B®)).

w(t, x)

(Eq. 6) and (Eq. 7) follow directly from (Egq. 4) and (Eq. 5) and the definition of 6(¢).
.
Remark

If we determine 77(¢ +1) and &(z +1) retrospectively, i.e. on the basis of information
up to time #+1, then according to (Eg. 7) (¢ +1) and £(¢ +1) can be defined such that
any predeterminded reserve level p(z +1) can be reached. For example, if we define
nt+1)=4a@+1)+06(t) and e(t+1)=n+1)—pu, +7(t+1), then p(t+1)= p(¢). If
this was our ALM-strategy, we wouldn’t need a collective reserve! However, in this
setting capital market risks and the mortality risk would directly affect the individual
accounts or pensions. The main benefit of a collective system, namely the intergener-

ational risk sharing, would then not be enabled.

Fixing 77(#+1) and ¢(z+1) at time ¢ (and not at time ¢ +1) reflects the idea of defined
ambition. This is attractive for savers and retirees because they know in advance,

how their contributions are accrued and how the pensions are adjusted.

In Proposition 1 we have set g(t+1) =n(t+1)— u, + 7(¢ +1), which can only be de-

termined retrospectively. Thus for a prospective declaration we have to replace
Z(t+1)by z(t+1).

Proposition 2

If in the situation of Proposition 1 we define &(t+1)=n(t+1)— u, +7(t +1) then

Vt+1)= exp(n(t +D)+7Y,, )(V(t) - CF(t)) (Eq. 8)

6 c.f. [Day et al. 2014]
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p(t'l'l)_p(t) = O-tXHl _Yz+l +:u(6z)+5(t)_77(t+1) >
where Y, = ln(1+y(t)(exp(ﬁ'(tJrl)—ﬁ'(t+1))—1)).

Proof

The definition of g(¢#+1) together with Proposition 1 shows that
VE+1)=VAt+1)+ VR +1)
=exp(n(t+D)V* (t+)+exp(n(t+1)+ 2t +1) -7t +1)) V= (t+)
( VA®t+) . VE(t+)
Vier)  V(t+)
exp(n(t+1))V(t+)(l+ y()[ exp(A(t+1) -7t +1))-1] )
exp(n(t+1)+Y,,) V(t+).

=exp 77([+1))V(t+)£ exp(Z(t+1)—-7(t+1)) ]

(Eq.9) is a direct consequence of (Eq. 8) and the definition von 6(?).

Remark

(Eq. 9)

1. (Eq. 9) will be the basis for the AL M-strategies which are presented in the next

section. The change of the reserve ratio, p(t+1)-p(¢), can be broken down into

= the stochastic capital market effect j(t+1)=u(o,)+o0, X,

= the stochastic longevity effect Y+
= the structural stock effect o ()
= the profit participation 7 ().

2. Admittedly, the definition of Y+ is a little bit clumsy, but it serves perfectly to

isolate the longevity risk. Y:+1 depends on the weighted age burden y(t) and the

difference between the estimated and the observed longevity effect
z(t+)—7(t+1).

If (/) =0 then Y1 =0,and if y(¢1)=1then ¥, =7(t +1) - 7(t +1).

Using the 2" order Taylor approximation for the function

A In (1 +y(¢) (exp(A) - 1)), we get the following approximation:
Y., 2 Ay()(1+ 1 A(1-p(0))) with A= #(t+1)—7Z(t+1).

3. If #(t+1)=0, and especially if p,(t,x)= p(t,x) for all x, then

Y, = ln£1+ 7(t) f[%—lj w(t,x)].

- 16 -
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4. The pension adjustment &(¢+1)=7(¢t+1)— u, + 7(t +1) can be regarded as

fair, since there is no systematic transfer of capital between the young and the
old. If the actuarial surviving probabilities p.(¢, x) are calculated with safety
margins, then the initial pensions b(z, z) are lower compared to a best estimate

pension. Then 7(¢+1) ensures that the safety margins are (on average) re-

funded to the cohort of retirees. However, within the cohort of retirees high
safety margins with respect to p.(#, x) do have a redistributional effect, since

higher pension adjustments are unilaterally favourable for long living retirees.

3.2 ALM - Strategies

We now come to the question of how to control the CDC-pension fund described
above. Capital market opportunities and risks, mortality rates and the number of new
entrants are exogenous variables, of which only the capital market risk can be con-
trolled to a certain extent. Our CDC-pension fund is self financing in the sense that
there is no outside institution that can step in if capital markets perform extremely
badly or people live much longer than expected. On the other hand, the pension
member can be sure that every contribution paid into the system is exclusively used

for death or pension benefits.

Since the pension fund itself does not guarantee any benefits, there must be some
good arguments for employees to entrust their contribution to such a system. Actu-
ally, the only good reason to enter such a collective system is that the employees
have a good chance to get a better risk-return profile than in an individual saving and

dissaving arrangement.

Before presenting ALM-rules for the CDC pension fund, let us state some principles
that the ALM has to comply with:

Principle 1: The benefits a person receives are calculated on the basis of their per-
sonal pension capital at retirement age. Especially all pension members within
an age cohort are treated equally.

The idea behind this principle is that the sole purpose of the collective element
in the CDC plan is to enable an intertemporal risk transfer. Thus, in the absence
of risk a CDC plan should be nothing but a simple DC plan with a one-to-one

correspondence between contributions and benefits on the individual level.

Our CDC model complies with Principle 1 since the pensions are calculated on
the basis of accumulated contribution and furthermore, 77(¢) and &(¢) apply

equally to active workers and retirees respectively.
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Principle 2: 1t must be ensured that P(¢) > V(¢), i.e. p(t) > 0. We think of a capital
funded system, which in general means that pension benefits are prefunded by
regular contributions. In contrast, in a pay-as-you-go provision system the cur-
rently paid benefits are covered by currently incoming contributions. Instead of
P(t) > V(¢) for all ¢, we could require that at any time all pension liabilities can
be settled even if there are no further contributions. However, in a system with
no guarantees the expression “all pension liabilities™ is rather vague or has to
be made precise. In our model the understanding of VX(7) is that this is the actu-
arial reserve under the assumption that the currently paid pensions are kept
constant in future. Note that V%(¢) is not the market consistent value of the pen-
sion liabilities since we do not price the pension fund’s implicit option to in-
crease or reduce future payments if circumstances require.

In our model CDC pension system we can ensure P(¢) > V(¢) only if we allow for a
retrospective declaration. In case of a prospective declaration P(t) > V(f) can only be
ensured with a certain degree of probability. Thus, in the case of a prospective decla-

ration we have to take a weakened version of Principle 2:

Principle 2’: It must be ensured that P(¢) > V(¢), but for a transitional period P(¢) <

V(¥) is accepted provided measures are taken to restore full funding.

Principle 3: No age cohort is systematically preferred or put at a disadvantage
compared to others (intergenerational equity). The requirement of generational
equity is fundamental for any pension system - capital funded or pay-as-you-

go. This issue is widely discussed in literature.’

Admittedly, Principles 2, 2’ and 3 are put in rather vague terms. They convey the
idea of a “fair” pension system, but fairness is not an actuarial concept. At this point,
it is worth to mention the fundamental concept, which John Rawls (1921-2002)
worked out in his seminal book “A Theory of Justice”. He addresses the problem of
justice between generations from an abstract perspective so that his rules are not di-
rectly applicable to a funded pension scheme.® However, his idea of a social contract
agreed upon behind the “veil of ignorance” (“in the original position”) can be ap-
plied to the question of a fair pension scheme. Behind the veil of ignorance people
do not know in advance whether their generation will be lucky or unlucky with re-

spect to the individual life span and to the future development of capital markets.

7 Cf. [European Union 2016] IORP II Directive, Article 7.

8 Rawls explicitly addressed the issue of intergenerational fairness — cf. [Rawls 1971], Chapter 44, pp.
251-258.
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Principle 2 requires that the ALM has to control the cover ratio P(¢) / V(¢) or - which
is equivalent - the reserve ratio p(?) . If p(¢) threatens to fall below zero or some
threshold pmin measures have to be taken , e.g. pension cuts and/ or the reduction of
the risk exposure on the asset side. Intergenerational equity (Principle 3) requires
that p(7) is also capped above, since an unreasonable large reserve ratio indicates that

there is a systematic transfer from the old to the young.

As pointed out, generational equity requires that (¢ +1) =n(t+1)— ¢, + 7(t +1), oth-
erwise there would be a systematic income transfer between old and young.

In our setting a feasible retrospective ALM rule is a rule which at time ¢ (on the infor-
mation up to time #) determines 77(¢) and oz, such that Principles 1, 2 and 3 are satis-

fied. A feasible prospective ALM-rule is a rule which at time ¢ (on the information up

to time ¢) determines 77 (z+1) and o, such that Principles 1,2’ and 3 are satisfied.

We can think of a wide range of ALM-strategies that comply with the above princi-
ples. The ALM rules we use here are taken from [Goecke 2013]. The model pre-
sented there is time continuous and restricted to the accumulation phase. But the
basic features can be transferred the discrete case. In particular we adopt the idea of a

strategic reserve ratio p and a strategic risk exposure & . The pair (p, &) represents
a state of equilibrium in the sense that if we observe a reserve ratio p(¢) = p then we
choose o, =& as the risk exposure. 7(f) is chosen such that the reserve ratio remains

unchanged provided capital market returns and mortality rates are just as expected.

Another feature taken from [Goecke 2013] is that whenever p(¢) # p we adjust o,

and 7(¢+1) in dependence of the reserve gap p(t)—p .

We now state our basic ALM-strategy in the prospective version. For real numbers

(p,0,a, 0,0, ) we define
(ALM1) o0,=6+a(p(t)-p) and 0<0, <o,
(ALM2)  n(t+1) = u(o,)+5()+6(p(t) - p)

(ALM3)  e(t+)=nt+)—pu, +7(t+1).

Remarks:

1. The reserve gap p(t)— p rather than the reserve ratio p(¢) is the decisive con-

trol variable of the CDC-pension system. However, due to the stock effect o(¢)

the absolute level of p(#) does have influence on the process.
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2. (ALM 1) is motivated by the following considerations. Suppose at time ¢ we

determine the risk exposure o; under the side constraint, that with probability

1-a the reserve ratio does not fall below pmin, i.e. P(p(t+1)< p,. )<a.
For n(t+1)= u(o,)+o(t)+ H(p(t) - [)) - ¢.f. (ALM 2) - this is equivalent to

P(GtXHl _Yt+l Slomin —p(t)-l—H(p(t)-/S))SO( :

Let VaRo> 0 denote the a-value at risk of Xi+1, i.e. P(X,,, <-VaR,)=a, then

t+1 —

for Y1 =0 (i.e. neglecting the mortality risk) we get

PP (1=0)(p)=p)
’ VaR,

Thus, if we seek maximal risk exposure under the constraint

P(p(t+1)< p,..) < a, then we have to define

If we use the Black Scholes framework for the capital market (cf. Remark 1 of
section 2.3), then X; is normally distributed with variance 1 and expectation 0.
On the basis of the Solvency 2 security level of 1-a=99.5% we get VaRa =
2.5758. Suppose that the regulator allows a temporary underfunding of 90%
and a “normal” funding ratio of 115%, then Pmin = In(0.9) =-10.54%, p =
In(1.15) = 13.98%, and

6 =P~ Puin _ 0052 and a=-—9
VaR, VaR

a

Assuming that a broadly diversified portfolio of stocks has a volatility of about
19%, ¢ =0.095 corresponds to an equity ratio of about 50%.

The question of how to calibrate €, we will answer in view of Prop. 3, below.

3. Parameter a in (ALM 1) determines the adjustment speed with respect to the
risk exposure. For a = 0 we have a constant mix strategy throughout the time
horizon. If @ > 0 then the risk appetite for the asset allocation changes in line
with the positive or negative reserve gap p(¢)— o . The case a < 0 corresponds
to a massive anti cyclic investment strategy, because we then increase the risk
exposure after bad experience with the pension assets. However, this strategy

massively increases the risk of encountering negative reserve ratios.
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4. The side constraint 0 < o < omax allows us to keep the risk exposure within
reasonable limits. In our setting o, = 0 implies a risk free investment. We
should be aware that even a portfolio of AAA- government bonds is not risk
free, since bond prices are driven by market interest rates. So in practice we
must choose a o, not below some omin > 0. We could skip the upper bound
omax 1f we allowed for leverage instruments. However usually these instru-

ments are prohibited for pension funds.

5. According to (ALM 1) and (ALM 2) the risk exposure and the profit participa-
tion are linear function of the reserve gap. Since P(¢)/V(¢) = 1+p(¢) for 0.8 <
P(6)/V(f) <1.2, we can say that risk exposure and profit participation are ap-
proximately linearly dependent of the reserve gap. Since a low cover ratio
P()/V(f) << 1 is generally regarded as more critical than a high cover ratio, the
transition from P(¢)/V(¢) to In(P(¢)/V()) is at least plausible.

6. In (ALM 2) n(t+1) has three components:

* u(o) ensures a fair participation in the portfolio returns. All pension

members directly share the expected asset returns.

= (%) ensures that the capital returns from the collective reserve are evenly

redistributed to the pension members.

= The term 6(p(t)— p) represents an intergeneration risk transfer. If the

observed reserve ratio falls behind the target ratio, then all members have
to put extra money aside to fill the gap. If there is a positive reserve gap
then all members get an equal share. It is obvious that the generation of
young employees would prefer a strong reserve because this allows a
higher risk exposure and, in the long run, a higher return on investment.
The pensioners would be rather reluctant to strengthen the collective re-
serve. In [Goecke 2013] this term (for > 0) ensures the mean reverting
property of the stochastic process p (). Economically, £ < 0 makes no
sense; it 1s also clear that with 8= 0 we had no control over the reserve.

The case > 1 implies an overreaction — cf. Prop. 3 below.

7. As pointed out, the prospective declaration in (ALM 2) cannot ensure that P(¢)
> V(¢). In order to safeguard a minimum reserve ratio pmin, Wwe can define a ret-

rospective variant of (ALM 2) by

1" ) = (0, + S0+ Min (0 p() = P).0, Koy =Yy 4 (0= ).
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Note that if 0,X,,, =Y, + p(t) = p,., <O(p(t)— p) then by Proposition 2 we
have p(t+1) = Pmin.

8. In [Goecke 2013] a time continuous version of (ALM 1) and (ALM 2) is ana-
lysed for a pure CDC- saving fund. On the basis of a Black Scholes-type capi-
tal market model limit distributions for p(¢), n(¢) and o(¢) can be derived. Fur-
thermore, the question of optimality of the parameters (p, 7, a, 0,0, ) is dis-

cussed.

The following proposition is a direct consequence of Proposition 2 and serves as mo-
tivation for (ALM 2) and (ALM 3):

Proposition 3

If n(t+1)= u(o,)+8()+0(p(t)—p) and &(t+1)=n(t+1)— p, +7(t+1) then

pt+D)-pt)=0,X,,~Y,~0(p(®)-p) (Eq. 11)
E(p(t+1)— | p(0) = (1-0)(p() - p) + 0, E(X,,) ~E(Y,,,). (Eq. 12)
*

Remarks:

1. (Eq. 11) shows that for 0 < #< 1 we have an exponential damping with respect
to the reserve gap. €= 1 implies an instant refilling or depletion of the reserve
gap. A low @ -value means that accrued contributions and pensions in payment
are adjusted sluggishly which increases the probability that p(¢) falls below

zero. In the extreme case 8= 0 the total risk o, X,,, =Y, is dumped on the re-

serve and we have a random walk reserve, i.e.

pt+1) = p(0)+ Y (0.X., ~Y..))

2. (Egq. 12) is directly linked to Principle 3 stipulating equity between genera-
tions. Let us first assume that E(Y,,) =0, i.e. that our assumptions with respect
to future mortality are unbiased. We interpret the reserve gap p(t)— p as a

burden (if negative) or as a legacy (if positive) for future generations. If 0 < <
1 then the burden or bequest is systematically reduced over time. Thus, if our
CDC model started with p(0) = p, no generation (including unborn new en-

trants) is systematically favoured or disfavoured by the collective intergenera-
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tional risk transfer. A disruption of the equilibrium p(0) = p resulting from ex-
ogenous capital market or mortality risks is shared between generations. One
may argue that a generation entering the CDC-model at ¢ with p(t)— p <0 is
systematically put at a disadvantage. However, years before entering the CDC-
system they have had an equal chance of entering when p(z)—p > 0. If one

were to start a greenfield CDC fund with no initial collective reserve, the first

generations would clearly have a disadvantage.

. From (Eq. 12) if follows that 8> 1 would destabilise the system, because an

underfunding would be followed by an expected overfunding and vice versa.

. From the viewpoint of intergenerational equity we should calibrate p(z,x)

such that E(Y,,,)=0.

. For E(X,,))=E(Y,,,) =0 we have E(p(t+1)- p

p®))=01-60)(p)-p). To

calibrate @, we could require that the reserve gap p(¢)— p should halve within

m years. Then we have to set 8 :=1-(0.5)"".

. We are a little bit negligent in writing E(Y,,) - what we have in mind is the
expectation based on the information up to time . The same applies to the ex-

pression E(| p(t)) - using this notation we just want to stress that we observe

p () at time ¢.

. In view of the definition of Y;+1 in Proposition 2 the condition E(Y,,) =0 is
quite ambitious. Actually, if we have a stochastic model for p(z,x) - evena

very simple one - there is little hope to define p(z,x) such that E(Y,,,)=0. But

+1
what we can do is, given p(z,x), estimate E(Y,,) to get an idea how far away

from 0 we are.

.If@=1then p(t+1)-p=0cX,,,-Y, and n(t+1)=u(c,)+o(t)+o X, -Y
for all #. This means that there is a 1-year time lag between the risk occurrence

and the time it would affect the individual accounts and the pensions.

. Let us consider the following modification of our CDC-model: Suppose we
stipulate that every contribution and every benefit paid out has to be “reserve-
neutral” in the sense that any in- or outflow does not affect the reserve ra-

tio p(¢). This means that if the contribution c is credited to the personal account
an additional collective contribution of (exp(p(?)) - 1) ¢(¢) has to be paid into

the collective reserve. Conversely, if a pension b(¢) is paid out the pensioner
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gets an additional bonus of (exp(p(?)) - 1) b(¢) paid from the collective reserve.
The same applies to death benefits.
If then, as in Proposition 2, we define &(t +1)=n(¢t+1)— 1, + 7(t +1) for this

reserve-neutral CDC- variant model we get
P(t+1)=(P(t)—exp(p(t))CF (1)) exp(f(t +1)) ,
Vie+l)= (V(l) — CF(t)) exp(n(t + 1)) and

pt+l)—p()=0,X,, =Y, +u(o,)-n+1). (Eq. 13)

(Eq. 13) is the same as (Egq. 9) of Proposition 2 except that the stock effect X¢)
has vanished. For n(t+1) = u(o,) + 6( p(t)— [)) we then get exactly the same

equations (Eg. 11 and 12) as in Proposition 3.

3.3 Individual Saving and Dissaving

The main purpose of this paper is to compare collective defined contribution (CDC-)
plans with individual defined contribution (/DC-) plans. In our understanding an in-
dividual arrangement is one where we do not actively utilise a collective reserve. In
the following we want to show that /DC can be regarded as a special case of the
CDC-framework introduced above.

In the IDC-case there is no reserve to puffer capital market or mortality risks. Thus
p(t)=p(0)=p=0 and &¢)=0.If weset e(t+1)=n(t+1)— u, + 7(¢ +1) then by
(Eq. 9) of Proposition 1 we get 0= p(t+1)— p(¢t) = a(t+1)—n+1), i.e.

n(t+1)= fi(t+1). Thus, with respect to the cohort of active members, an I/DC-sys-

tem is just a CDC-system without reserves.
Remarks
1. If we require p(t)=p(0)=p=0 andset e(t+1)=n(t+1)—p, +7(t+1) asin

Proposition 2 we get 77(t +1) = ii(t +1)—-Y,,, . In this case, the cohort of active

+1
members shares the mortality risk Y1 which only depends on the mortality of

the retirees.

2. By setting ¢(t+1) = f(t +1)— u, + 7(¢ +1) the longevity risk is shared by the

cohort of retirees collectively, irrespectively to what degree the particular age
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cohort contributes to the longevity risk. If we wanted to eliminate the intergen-
erational risk sharing we would have to introduce cohort-specific pension ad-

justment rates by

e(t+Lx+1)=a(t+1) -, +ln(%]. (Eq. 14)

Both versions of &(#+1) are variants of an actuarial tontine, where the idiosyn-
cratic longevity risk is transferred to a cohort of retirees. In the first case we
could speak of an open tontine allowing for new entrants.” One may convince

oneself that if pensions were adjusted according (Eg. 14) then
P(t,x)=L(t,x)r(t,x) d(t,x) forallx>zand =t +x - z,
if at time 7o for x = z the initial cohort capital P(#, z) satisfies

P(t,,z)=L(t,,z)r(t,,z) d(t,,z) .

3.4 Steady State Analysis

To measure the intergenerational redistribution in a CDC- pension system we need a
reference point to compare. To this end we look at a CDC-system which is in a sta-
tionary state, when - loosely spoken - nothing changes. To make things precise we

say that the pension fund is in a steady state, if the following conditions hold:
= we have a stable population, i.e. L(t, x) = L(x) is independent of ¢ and Y; =0,

» we have a stable return on assets, i.e. fi(t)= u for all t and X; =0,

*  d(t,x) = d(x) is independent of # with a constant actuarial interest rate 4, and
deterministic mortalities rates p(¢,x) = p(¢,x) = p,(¢,x) = p(x),
" p(t)=p, nt)=nand &)= cand forall ¢

If contributions, profit participation and pension adjustments are constant, then also
VA®®), VR(£), D(1), R(f), CF(¢), V(¢), P(¢), A(t) and y(f) must be constant - so we can

2

skip the time index “..(¢)

From P=(P-CF)exp(u) we get A= CI;—F = exp(p) (1—exp(—x)). We may as-

sume A < 1. So we can express the stock effect (cf. section 3.1) in terms of p and

% c.f. [Milevsky, Salisbury 2015], [McKeever 2010]
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5ZIH(M

) j:—ln(exp(p)+exp(,u)—exp(p+/u)).

n=u+6=—In(l+exp(p—pu)—exp(p)) is thus the steady state profit participation.
Note that 1 <1< exp(p)+exp(u)—exp(po+u)>0.

Remark: If we set i:=exp(u)—1 and RQ:=(P—-V)/V =exp(p)—1 we can write
0 =—In(1-i RQ) =i RQ . Thus dis just the extra profit participation from the collec-

tive reserve (P-V).

Observe that 77 and ¢ are not uniquely determined by the steady state condition. For

example, by setting 7 =0 we would unilaterally favour the cohort of retirees since

then all of the capital gains (exp( L) — 1) P would be used to increase the pensions in

payment. Actually, for a given 77 we can find a suitable ¢ such that we have a steady

state in the above sense.

Among all (7, ) -combinations only £=7 - 1, ensures intergenerational equity in the
sense that there is no permanent transfer from old to young or vice versa. However, if

£=n- U, then according to Proposition 2 we must have n = u+ ¢.
Example

For p(t)=p=0.2 and f(t) = 1 =0.025 we can calculate the steady state stock ef-
fect by & =—In(exp(p)+exp(u)—exp(p+ 1)) = 0.0056206 . The intergenerationally
fair (n, €) — combination is given by (17, &) = (u+ 0, u+ 0 - ).

However, if we allow for a systematic cross subsidising between the cohorts of sav-
ers and retirees there are further (7, £) - combinations which are feasible in the sense
that these combinations are steady state compatible. On the basis of the hybrid steady
state population'® and 4 = 0.01 we calculate the feasible (7, £)- combinations — cf.

Figure 4.

19 hybrid population as in section 2.1.2.
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FIGURE 4: Steady state compatible (77, £)- combinations for a hybrid steady state
population for 1= 0.025, 1, =0.01 and p= 0/ 0.2. The dotted line indicates inter-

generationally fair (77, £) - combinations.

If we regard ¢ as a function of 77 we notice a leverage effect between 7 and ¢. At the
reserve ratio of p = 0.2 the intergenerationally fair (n, £)- combination would be
(n,6)= (W0, - ta) = (3.06%, 2.06%)), i.e. young and old equally participate in the
stock effect. But also (7, £) = (2.50%, 2.81%) is feasible in the sense that the reserve
ratio is kept constant. However in this case only the old would benefit from the stock
effect.

Remark

One can extend the above considerations to a dynamic steady state, where the contri-
butions are inflation adjusted by a fixed rate w, 1.e. c(z+1) = c exp(w). It is easy to
verify that the steady state stock effect will then be

8, = —In(exp(p) +exp(u—w)—exp(p + g —w)).
We summarise the results in the following

Proposition 4

If the pension system is in a dynamic steady state with inflation adjusted contribu-
tions at the rate of w, then the steady state intergenerationally fair profit participa-

tion n and pension adjustment & are given by

n=p+0o, and e=n-p,, (Eq. 15)

where &, :=—In(exp(p)+exp(u—w)—exp(p+ u—w)).
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The comparison of CDC- and IDC-pension arrangements must take into account that
members of a CDC- plan receive additional returns from the collective reserve,

namely the stock effect 6 which is positive provided p >0.

To measure the effect we calculate 7Vipc(x) and TVepc(x), the time value of future
(death and pension) benefits minus future contributions for members the x-cohort in
the IDC and CDC-case. Then TVcpc(x) - TVipc(x) measures the effect of the extra re-

turn of & = —1In(e”+¢e”—e”™*) from the collective reserve.

Figure 5 illustrates this for 4= 0.025, 1, = 0.01, p=0.15 and 6 = 0.0041. For exam-
ple, an employee, aged xo = 20, entering the CDC plan will receive more benefits
with a time value of about 4.39 contribution rates. This is exactly the time value of

the additional return of 6.

14 f%
, N

%,
12 % Q%
10 x&

& N
8 M %%
6 \’§§Q : XXX XX
5 Y
. \

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

FIGURE 5: Value added per head (TVcpc(x) - TVipc(x)) in a CDC-pension scheme
in steady state with a constant capital market return of ©=0.025, a reserve ratio of

p=10.15 and a contribution rate of ¢ = 1.

4 Resilience Test

A pension system is resilient, if it is able to absorb external (single) shocks and
adapt to a (lasting) shift of the economic environment. Our resilience test works as
follows: We start from a steady state situation and then apply a shock or a shift sce-
nario and analyze the effects on the pension benefits. In a DC pension system all dis-
turbances from outside must be compensated by adjusting the pension benefits. In the
IDC-version we do not allow for risk transfer between generations, so the IDC-ver-
sion will serve as a reference model to evaluate different ALM-strategies of the CDC-

model.

-28 -



4.1 Steady State Original Position
We assume that our pension system starts from a steady state position'' with follow-
ing parameters:

= annual contributions ¢ = 1 payable from age xo= 20 until age z-1 = 64

» constant capital market returns z(¢) = ¢ =0.025

= a stationary population with time independent survival probabilities
L(x+1)

L(x)
where p(x) are the male/ female hybrid survival probabilities as described in
section 2.1.2. We then have 7(¢)=7(¢) =0 for all 7.

p(t,x) = p(t,x) = p,(t,x) = p(x) =

2

= constant number of new entrants L(xo) = L(20) = 1000

» fixed actuarial interest rate of 1, = 0.01 and annuity factors for x >z

exp(—ku,) ; i(z) = 17.9249

= pensions in payment are adjusted at the rate of e= - 14, = 0.015.
For the /DC-model the accrued pension capital at the age of x: xo <x <z =65 is then

_ep((r=x)p)-]

Y= )

v(z) 842531 4

= =4.7003.
i(z)  17.9249

and the initial steady state pension is b(z) =

To make IDC- and CDC-plans comparable we assume that in the CDC-case we start
with a steady state resevere ratio p =0 . Then in the steady state situation pensions
and death benefits are identical for /DC- and CDC-plans. We define

{L(x) v(x) forx, <x<z
po= . and
L(x)r(x)d(x) forz<x<w

D = {(L(x —1)—L(x)) v(x) forx,<x<z

0 forz<x<w

to be the steady state pension capital for the x-cohort and the death benefit for those
who die between age x-1 and x. We denote by P the total steady state pension capital

and V the total steady state pension liabilities. Under the assumption that p =0 we

T ¢f. section 3.4
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calculate P=V = > P+ » D, =2530615+5851=2536466. Note that by

x=x,+1 x=xy+1
our convention P and ¥ comprise the death benefits for the decedents of the forego-

ing year.

4.2 Capital Market Shock

A capital market shock is associated with an equity market crash or boom. Starting
from a steady state situation with a constant investment return of = 0.025 we as-
sume that at time 7o (i.e. at the end of [70-1, 70]) we observe a return of u + ua with
un =+0.2 (“up-scenario”) or ur=-0.2 (“down-scenario”). In the following our word-
ing always refers to the down-scenario, however the derived formulars apply to ei-

ther cases.

4.2.1 Capital Market Shock Effect on /DC-Plans

Instantly upon observation of the capital market shock the individual pension ac-
counts and the annuities are adjusted. Consider the (70, x)-cohort, i.e. the generation
of persons aged x at time 7o. For xo < x <z the personal pension capital at 7o will be
v’(x):= exp(ua) v(x) instead of v(x). After Ty the annual return is again u , therefore
the resulting annuity (z-x years later) will be cut by factor

IE)

o) exp((z—x),u)(l—exp(,uA)) - cf. FIGURE 6.

For x > z the due pension will be b’(x) = exp(ua) b(x) instead of b(x). From time To+1

onwards pensions will again be adjusted by e= p -4 .

The capital market shock has the strongest effect on persons aged z or older. Their
benefits would be cut by about 18% compared to the pre-shock level.
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FIGURE 6: Down-shock scenario (1= -0.2) for IDC-plans: Effect on the expected

pension level, depending on the age x at time 7.

4.2.2 Capital Market Shock Effect on CDC-Plans

In the steady state scenario we have a constant expected return (6)= x4 and no ex-
ternal disturbances, i.e. X;=Y;=0and p=0. Then p(t) = 6()=0and n(t+1)=u
for all # < 7). In the steady state original position for all ages x the cohort pension

capital P, and the individual pension capital Py /L(x) coincide with the time value of

future benefits minus contributions.

Now consider a single interest rate shock at time 7o (i.e. 6.X;, = 1, ). Applying rule

(ALM 2) we have n(t+1)= u+93(t)+0 p(¢t) for all t and 77 (To) = p. Therefore at
time 7o neither the individual accounts v(x) nor the due pensions r(x) are affected.
However, the total pension capital at time 7 falls to exp(ua) P and p (7o) = ua and
S(T,) = In(e” +e* —e" ). By Proposition 3 we know that p(T, + k) = (1-0)" , ,
so for 0< <2 p(t) converges to p=0. In the special case =1 we get p(T;+1)=0
and n(To+1) =+ un + 6(To) = y+1n(1+e"(e”A —1)) . Note that &) = 1 (¢) -4

Due to the non-trivial stock effect 6(¢) there is no simple formula for 77 (¢). Therefore
we just illustrate 7 (¢) for the down-scenario (ua = -0.2) for different levels of 8 - cf.
FIGURE 7.
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FIGURE 7: Effect of a capital market down-shock (za= - 0.2) at time 7o on the re-
serve ratio p(¢) (top chart) and the profit participation 7 (¢) (bottom chart) for al-

ternative levels of 6.

For 6= 0 the reserve ratio will remain at the level of p=-0.2 forever. This means

that all future generations have to pay the bill: Due to the negative stock effect we

have n=pu - 6 = u - In(e” +e ™ —e" ™) =2.04% instead of u=2.5%.

For 0 < < 2 the reserve ratio returns to the steady state level. If we wanted to avoid
a negative profit participation, we would have to choose 8 < 0.1 with the conse-

quence that it takes about 7 years to halve the after-shock reserve gap of 20%.

Our goal is to measure the intergenerational effects of a CDC-plan compared to an
IDC-plan in a shock scenario. To this end for each (70, x)-cohort we calculate
TVepce (To, x), the time value of future benefits minus future contributions. Note that

for IDC-plans the time value equals the cohort’s pension capital i.e.

L(x)v(x) forx<z

TV, (T, x) = exp(u, ) P. = eXp(/UA){L(x) r(x)d(x) forx>z .
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We take ATV (x) =TV p.(T,,x) =TV - (T,,x) as a measure of the intergenerational

asset transfer for the (7o, x)-cohort, and ATV(x)/L(x) as the individual effect.

Fig. 8 illustrates the intergenerational redistribution in the down-shock scenario. Let
us consider the CDC-plan with 8= 0.2. Then the steady state pension capital is maxi-
mal for the (70, z)-cohort — we get P. = 75798. In the IDC-case the pension capital
falls to exp(ua) P- = 62058. In the CDC-case the pension capital of the (70, z)-cohort
remains unchanged after the shock, but the time value of future pensions reduces to
64206. This means that the CDC-plan causes an intergenerational redistribution of

ATV(z) = 64206 - 62059 = 2147 in favour of the (7o, z)-cohort.

10000
7500
5000

2500

2500 o

-5000
0 10 20 30 40 50 60 70 80 90 100 110

FIGURE 8: ATV(x) for age cohorts 0 <x < 115 for different levels of & for a down-

shock scenario (wa=- 0.2).

There is an additional (small) redistribution effect in favour of the death benefits pay-
able at time 7) after the shock. While in the CDC-case the total death benefit is not
affected at 7o , in the /DC-case the death benefit is reduced by factor exp(ua). It is
clear that the total effect over all generations (including future generations of new en-

trants) must be zero.

If we look at the effects per capita we see that the positive or negative redistribution
effects amounts to a multiple of the regular contribution (which is 1 in our calcula-
tions) — cf. Fig. 9. For example, in the case 8= 0.2 and ua = -0.2 each single member
of the (7o, z)-cohort receives a transfer of ATV(z)/ L(65) = 2.39. In the extreme case
6= 0 the reserve will remain at the after shock level of -0.2 for ever so that all future
generations will be charged. This extreme case again shows that a CDC-system could
be misused by the generation 50+, who may have strong influence on 4LM-decisions

and who are prone to postpone unpleasant decisions.
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FIGURE 9: Redistribution effect per head (ATV (x)/ L(x)) for different levels of &
for a down-shock scenario (xa= - 0.2).
The following table shows the intergenerational redistribution for a single capital
market down and up shock in relation to the pre-shock total pension capital. Note

that for = 0 the reserve ratio will remain at the level at time directly after the shock.

1.e p(¢f) = un=- 0.2 for all > To.

Capital Market Down Shock Capital Market Up Shock
(ua =-0.2) (ua =+0.2)
0 Redistribution to the Beneficiary | Redistribution to the | Beneficiary
older generation age cohorts | younger generation age cohorts
0 9.11% 246 11.86% <58
0.1 3.52% >59 4.67% <61
0.2 2.17% 262 2.86% <63
0.3 1.56% >64 2.06% <63
0.4 1.22% >64 1.62% <64
0.5 1.00% >65 1.33% <64
0.6 0.86% 265 1.13% <64
0.7 0.75% 265 0.99% <64
0.8 0.66% 265 0.87% <64
0.9 0.60% 265 0.79% <64
1.0 0.54% >65 0.71% <64

T4BLE 1: Overall redistribution effect in % of total pre-shock pension capital in fa-
vour of the older generation (down-scenario) or younger generation (up-scenario)

for different levels of 4.
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4.3 Capital Market Shift

We now want to analyse the effect of an interest rate shift on a pure bond portfolio.
We analyse a sudden but permanent interest rate shift from u to p:= p+ pinipr from
some time 7o onwards. We associate this stylised situation with a non-expected deci-
sion of the central bank to adjust interest rates.!?> This interest rate shift has then two
effects: Firstly, new fixed income investments bear an interest rate of 4’ instead of x,
and secondly, there is a price effect on existing bond investments. If the interest rate
shift occurs at the beginning of the time period [7o, 7o +1] then the market value of a
bond portfolio with an average duration of D will chance by factor '~ exp(-D tnif)
instantly after the shift. From time 7o onwards all assets including new investments
will have a return of 4. If D > 0 then the interest rate up/down shift results in a single

down/up shock followed by a permanent up/down shift.

We want to check how IDC- and CDC-plans adapt to this permanent change of the

capital market. In our wording we concentrate on a down shift scenario (Usnin <0). It
is quiet obvious that, cum grano salis, in an up-shift scenario the same happens in the
other direction. To keep the variants of our calculations in limits we do not adjust the

actuarial interest rate 4 , so that the annuitisation factors ¢(x) remain unchanged.
If not stated otherwise our numerical examples are calculated on the basis of
u=2.5%, psnipr = -1.0%, 1= p+ pswipp = 1.5%, pta = 1%, & =p1" - pta = 0.5%.

Furthermore, we consider the price effect due to the interest rate shift by assuming
that the time value of assets change by factor fp := exp(-D- tinirr) for D=0, D =5 and
D =10.

4.3.1 Capital Market Shift Effect on IDC-Plans

From time 7 onwards the individual pension capital bears interest at the lower rate

1'=1.5%, pensions in payment are adjusted by &' = 0.5%.

We illustrate the effect for the group of active members — cf. FIGURE 10 below. For
example a person aged x = 20 or younger at time 7o will be affected most, because
they experience the lower interest rates for the whole accumulation phase. Their pen-
sion capital at age z = 65 will be 64.75 instead of 84.25, that is about 77% of the pre-

shift level. This is independent of the duration of the underlying assets. For older

12 Actually central banks can only determine the short term interest rates, long term interest rates can
only be influenced indirectly.
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members the positive duration effect for D > 0 can overcompensate the reduced fu-
ture returns. However, after retirement the pensions are only adjusted by &= 0.5%
instead of £=1.5%.

Pension in payment will experience a single increase by factor fp followed by re-
duced pension adjustments. For older pensioners the duration effect at time 7o might

overcompensate the reduced adjustment rate.

110% duration =10
105% 1 duration = 5
,/
_shi i =1009 / )
100% pre-shift pension level (=100%) 4 _ duration = 0
/ 7
/ ! //
95% 57 ,//
/ 7
Pug e
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. e
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FIGURE 10: Down-shift scenario (usnir = -1%) for IDC-plans: Effect on the ex-

pected pension level at age z, depending on the age x at time 7o and the duration.

Let TVipc (x, To) denote the time value of future benefits (pension and death benefit)
minus contributions at time 7o immediately after the shift. If we want to calculate
TVipc (x, To) market consistently it must be calculated on the basis of the shifted dis-
count rate i +ushir. Then clearly TVipc (To, x) = fp Px, where P, denotes the pre-shift

pension-capital for the x-cohort.

4.3.2 Capital Market Shift Effect on CDC-Plans

We assume that the pension management instantly recognises the interest rate shift as
permanent. According to (ALM 2) fort > To

n(t+1) = +8(0)+0(p(0)- ).

Due to the interest rate shift, at time 7o the assets have to be revalued. As above, we
assume that P":= fp P is the value of assets immediately after revaluation. Accord-

ingly, after revaluation we have

!

P
p(I;)=In (7) =-D u,, and
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(P =CFY  (P_. -
5(To)_ln(V—CFj ln(Vj_ln(l exp(u)(1= fp)) + Dty -

Here we used the fact that in the steady state situation CF = (1-exp(-u)) P. Following
(ALM 2) we get

(T, +1) = @' +8(T)+0(p(Ty) ~ p) = ' +In(1-exp(u)(1 - f,)) + (1-0) Dy,
and

B _ (P'-=CF)exp(u') | _
(T, +1) p(To)—ln[(V_CF)eXp(n(TOH))j P(T;)

= W= (T, + 1) +8(T,) =0 p(Ty) .

We could have derived this directly from (Eq. 11) of Prop. 3. More generally we get

pT, +k)= _(1_0)kDﬂshiﬁ'

For D = 0 the reserve ratio is not affected at all. Due to the non-trivial stock effect for
D > 0 there is no simple formula for 7(¢) for ¢ > To+1. So we just present numerical
results — cf. FIGURE 11. For D > 0 we observe an increase of the reserve ratio at time

To. After To the reserve is drawn down depending on the speed parameter 6.
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FIGURE 11: Down-shift scenario (unii= -0.01): Effect on the reserve ratio p ()

(Top CHART) and on the profit participation 7 (£) (BOTTOM CHART) for €= 0.2/ 0.6
and D =0/ 5/10.

The following charts illustrate the intergenerational redistribution effect

ATV (x) =TV e (T, x) =TV, (T}, x) . It is clear that ATV(x) =0 if D= 0. For D >0
in the CDC-system the collective reserve built at time 79 is gradually drawn down, so
that younger age cohorts profit from this. The intergenerational asset transfer is

larger for higher durations and lower adjustment speed parameters & - cf. FIGURE 12.

Clearly the overall effect sums up to zero, i.e. Z ATV (x)=0.

x<115
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FIGURE 12: Intergenerational redistribution ATV (7o, x) after a capital market
down-shift (g = - 0.01) in a CDC-pension system for instant recognition for age

cohorts 0 < x < 115 and for different & and D-values.

1.0

Dur=10, Theta=0.2
0.5 ===Dur=10, Theta=0.6
e Dur=5, Theta=0.2

= ==Dur=5, Theta=0.6

0.0

-0.5
-1.0
-1.5
-2.0

-2.5
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

FIGURE 13: Intergenerational redistribution per head ATV (To, x)/ I after a capital
market down-shift (z4n:=- 0.01) in a CDC-pension system for instant recogni-

tionfor age cohorts 0 <x < 115 and for different &/ D-values.

It is worth noting that an interest rate down shift leads to an intergenerational transfer

from old to young despite the fact that the young generations will receive lower pen-

sions in future compared to those who already have retired. At first glance this seems

to be paradoxical. However, one should note that we adjusted the discount rate in

line with the interest rate 4. Due to the interest rate down shift the coupon rates of

existing bonds constitute a reserve, built up by the older generation and (partially)

handed down to the younger generation.
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4.4 Mortality Shift

In practice, changes of mortality rates evolve gradually and it usually takes some

years to recognise these changes as being systematic rather than just deviations from
the mean. But eventually the actuary in charge has to adjust the mortality tables, that
is from one day to the other they have to calculate on the basis of new “shifted” mor-

tality tables. This is the situation we want to analyse with respect to a CDC-plan.

To make things precise, let p(x) be the steady state survival probabilities and for a

real number A define shifted survival probabilities for x by

pa()=(1+exp(-t) (p(o) ! 1))

with the implicit convention, that pa(x) = p(x) if p(x) = 1 or p(x) = 0. Note that we as-
sumed that p(x) = 1 for x <xp and p(w) = 0.

One may verify that for 0 < p(x) <1 logit(1— p,(x)) =logit(1— p(x))—A . This no-

tion of a mortality shift is motivated by the CBD- model'® which assumes that

logit (1 - p(x)) =In ( 1;%(:;)) can be approximated by a linear function - at least for
ages x > 60.'* By da(x) we denote the annuity factors based on pa(.).

We now define p(¢,x) = p(x) fort<To-1 and p(¢,x)= p,(x) for t> To-1. Note that

according to our convention p(T, —1,x—1) refers to the survival probabilities of the

(To-1, x-1)-cohort, observable at 7.

The following T4BLES 2 and 3 show the effect of a A = +/- 0.5 mortality shift on the
further life expectancy and annuity factors for x = 65. Cum grano salis, a A = +0.5
shift increases the life expectancy of men to that of women. Just for comparison, a
25% reduction of mortality rates (as the Solvency 2 standard formula requires '°) in-
creases life expectancy of about 2.4 years for men and 2.3 years for women. So a

shift of A =+/-0.5 in our setting stands for a rather massive mortality shift.

13 Named after the authors Cairns, Blake, Dowd of [Cairns et al.2006]
14 Cf. [Cairns et al.2006] p. 692
15 Cf. [EIOPA 2014] p. 33
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Further life expectancy at age 65

Male members Female members hybrid

period birth cohort period birth cohort period

2018 |1953 1973 1993 2018 [1953 1973 1993 2018
A=0 17.82 19.40 22.02 2445 (2150 |23.45 2594 28.23 (19.49
A=0.5 |21.47 2340 26.00 28.39 2492 (27.21 29.67 31.92 (23.07
A=-0.5]14.45 15.70 18.32 20.80 ([18.27 |19.92 22.46 24.81 (16.14

T4BLE 2:  Effect of a mortality shift on the further life expectancy for males and
females for the year 2018 (period table) and for birth years 1953, 1973, 1993 (co-
hort table). The last column refers to the steady state hybrid population.

Annuitising factor at age 65 for 1, = 0.01

Male members Female members hybrid

period birth cohort period birth cohort period

2018 |1953 1973 1993 2018 [1953 1973 1993 2018
A=0 16.53 17.79 1993 21.86 ([19.58 |21.09 23.05 24.80 (17.92
A=0.5 [19.49 2097 23.01 24.84 (2227 |23.98 25.84 27.51 (20.79
A=-0.5]13.71 1474 1694 1897 [16.96 |18.28 20.34 22.20 (15.16

T4BLE 3:  Effect of a mortality shift on the annuitising factors for males and fe-
males for the year 2018 (period table) and for birth years 1953, 1973, 1993 (co-
hort table). The last column refers to the steady state hybrid population.

We want to distinguish two strategies depending on whether the pension manage-

ment considers the observed mortality shift as exceptional or as permanent:

Strategy 1 (delayed recognition): The observed mortality shift is not recognised as

permanent but regarded as a statistical outlier. Consequently, the actuarial as-

sumptions remain unchanged, i.e. p,(t,x) = p(t,x) = p(x) for all .

Strategy 2 (instant recognition): The observed mortality shift is regarded as perma-
nent and the actuarial assumptions are adjusted instantly, i.e.
. p(x) fort<T,
p.(t,x) = p(t,x) = D
pa(x) fort =T,

Accordingly, from time 7y onwards the annuity factors d(x) are replaced by da(x).
In particular, new pensions are calculated on the basis of da(z). Despite the word-
ing “instant recognition” there is a time lag of one year, i.e. at time 7o we ex-
pected L(To-1, x-1) p(x) survivors of the (7o-1, x-1)-cohort, but we observe L(To-1,
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x-1) pa(x) survivors. From time 7y + 1 onwards we observe exactly what we ex-

pect.

4.4.1 Mortality Shift Effect on IDC-Plans

By construction, at any time ¢ and for any (z, x)-cohort the time value of future bene-
fits minus contributions - denoted by TVipc(t, x) - 1s exactly the pension capital for
the particular age cohort. Thus there is no intergenerational redistribution. However,

there is an intra-generational redistribution depending what strategy we pursue.

Strategy 1 (delayed recognition)

If we do not realise that the mortality shift is permanent, then year by year we have
to adjust the pensions in payment to compensate the difference between expected and
observed number of survivors. Then for ¢t > Ty and x > z we get
-1
b(t,x) ]:Hh{ px=1)

g(t,x)zln(b(t_l,x_l) mj:g—AHn(H(e 1) p(x-1)),
(Eq. 16)

where €= u - 1, is the steady state adjustment rate. Note that the initial pension for
the (7o, z)-cohort is not affected by the mortality shift.

Strategy 2 (instant recognition)

In this case from time 7y onwards pensions in payment and the new pensions are cal-
culated on the basis of the adjusted annuity factors da(x). So at time 79 all pensions in
payment experience a significant adjustment: downward- (for A > 0) or upward- (for
A <0). For x = z the pension capital is annuitised on the basis of da(z), which means
that compared to the pre-shift situation the z-cohort faces a one-time cut/increase by

factor d(z)/da(z). For x > z the pensions experience a one-time adjustment of

g(TO,x):ln[szgﬂn( plx=1) ax) ) (Eq. 17)
r(T,—1x-1) pa(x=1) a,(x)

Since from Tp+1 onwards we observe what we expect, the pensions are adjusted by

the pre-shift rate of €= 1 - ua .

Comparison Strategy 1/ Strategy 2

Let us compare the two strategies for the IDC-case for A= +0.5. In Figure 14 the line
denoted by “steady state” marks the growth of the future pensions starting from the

100% level in Tp if no mortality shifted occurred.
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For Strategy 1 year by year the pensions have to be adjusted by &(¢, x) - cf. (Eq. 16).
& (¢, x) decreases in x, so that the pension adjustments become more and more mas-
sive for the very old. Note that the initial pension for x =z = 65 starts at the 100%

level because the accrued pension capital is not affected by the mortality shift.

For Strategy 2 there is a massive one-off adjustment at time 7o, but thereafter the

benefits are again adjusted by the pre-shift rate e= y— u .

Comparing both strategies we recognise that the instant recognition is much more at-
tractive for those retirees who live longer. Consider e.g. the cohort of 80-year-old re-
tirees at time 7o. For them the pensions according to Strategy 1 will be higher than
the Strategy 2 pensions for the next 7 years. After time 7o+7 for Strategy 1 the pen-
sions are cut progressively such that at time 7o+15 the pension is less than 60% of
the pre-shift level. If Strategy 2 is applied instead, the initial cut at 7o by 20.6% is
overcompensated from time 7o+15 onwards. It is obvious that Strategy 1 entails a

substantial money transfer from those who live long to those who die early.

140%

steady state

X =65 (Strat. 1)
‘/&__o x =65 (Strat. 2)
<> ol

—/r

120%

100%

80% T e

60%

40%
O x =80 (Strat. 1)
20%

x =95 (Strat. 1)
To Tot5 Tot+10 To+15 To+20

0%
FIGURE 14: Effect on /DC-pensions after mortality shift for Strategy 1 and 2 for

the age cohorts of retirees who are 65, 80 and 95 years old at time 7.

4.4.2 Mortality Shift Effect on CDC-Plans

Strategy 1 (delayed recognition)

For ¢t > Ty -1 by Prop. 2 and 3 we get

Y., = ln(l + (1) f(%—lj w(t,x)J ; (Eq. 18)
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plt+1) =Y, +(1-0)p(0),
nt+)=u+8()+60p(t) and s(t+1)=n(t+1)—p,. (Eq. 19)
In particular p(7)=-Y, and n(T))=u.

Different from the IDC-case, here all age cohorts are treated equally and the cohort

of active workers becomes involved.

The effect on the profit participation 7(¢) and the reserve ratio p(¢) is more complex
than in the case of a capital market shift, since the age profile of the population
changes and it takes @ — xo = 95 years until a new steady state population is reached -
see FIGURE 15.

0%

-1%

-2%

-3%

-4%

-5%

-6%

2.0%

1.5%
5 -4 -3 -2 -1 TO +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

FIGURE 15: Effect of a mortality down-shift (A =+0.5) on the reserve ratio p(¢)
(top chart) and profit participation 7(f) (bottom chart) in a CDC-pension system

for Strategy 1 for alternative levels of 6.
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Since from time 7 onwards, the age burden y(¢) and the weights w(¢, x) deviate from

the steady state values, the Y; -process is not trivial. Clearly, for =0 p(¢) does not
k

converge, neither does ¥;. One may check that p(7, + k) = —Z (1-6) Y ;- Sowe

=0

can deduce that for 0 < <2, p(¢) converges provided Y; converges. The following
table shows the new steady state values for p and 7. E.g. for = 0.2 and A = +0.5 the
CDC-system will converge to a new steady state with a permanent negative reserve
of p=-3.17%. The steady state profit participation (7 = 1.79%) falls behind the capi-
tal market return (¢ = 2.50%) because the mortality shift has to be financed year by
year and furthermore due to the negative reserve we have a negative stock effect (in
this case 0= -0.0788%).

A=+05 A=-0.5
0 n o) TV (x0=20) n o) TV (x0=20)
10% 1.72% -6.25% -3.8082 3.47% 7.66% 5.7557
20% 1.79% -3.17% -3.2344 3.35% 3.76% 4.3964
30% 1.81% -2.12% -3.0320 3.31% 2.49% 3.9811
40% 1.82% -1.59% -2.9286 3.29% 1.86% 3.7799
50% 1.83% -1.28% -2.8658 3.28% 1.49% 3.6611
60% 1.83% -1.06% -2.8237 3.27% 1.24% 3.5828
70% 1.84% -0.93% -2.7934 3.27% 1.08% 3.5272
80% 1.84% -0.80% -2.7706 3.26% 0.93% 3.4857
90% 1.84% -0.71% -2.7529 3.26% 0.82% 3.4535
100% 1.84% -0.64% -2.7386 3.26% 0.74% 3.4279

TABLE 4: Strategy 1: Profit participation (77), reserve ratio (p) and time value of
future benefits minus contributions (7W) for new entrants (xo=20) in the
adjusted steady state after a mortality shift of A =+/-0.5.

We now turn to the question of to what extent a mortality shift induces a transfer of

wealth between the age cohorts. To this end we first calculate the time value

TVepce (To, x) of future benefits (including death benefits) minus future contributions

for each (7o, x)-cohort immediately after the shift occurred. Then the difference

TVepe (To, x) - TVipe (To, x) is a suitable figure to measure the intergenerational

TVepe (Ty, X) =TV p (Th, %)
L(T;, x)

wealth transfer. We also calculate , the individual contri-

bution (positive or negative) to the intergenerational transfer.

Consider for example the (70, z)-cohort. At time 7y we observe more survivors than

pa(z=1)

L(z) instead of L(z). The total pension capital
p(z=1)

expected, namely L, (z)=
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for this cohort is La(x) v(x) = 76059.39 for both, the /DC and the CDC-case. In the
IDC-case all future pensions are paid from this capital stock. In the CDC-case the

pensions are adjusted according to (Eq.19). For 8= 0.2 the time value of all pensions
paid to the (7o, x)-cohort amounts to 83171.67. The difference 6706.07 is the inter-
generational wealth transfer in favour of the (70, x)-cohort, which comes to an indi-
vidual transfer of 7.88. In other words, each single member receives a subsidy of

about eight contribution rates.

Let’s now look at the (70, xo)-cohort. At time 7o the pension capital is zero. In the

IDC-case all members of this cohort know that every Euro they pay into the system
bears an interest rate of ¢ = 0.025 and will be paid back — at least on average. In the
CDC-regime (6= 0.2) we get TVcpc (To, xo0) = -3 528.47 and an individual transfer of
-3.53. This means that a new entrant has to realise that more than 3 of the future con-

tribution rates are transferred to the old generation.

The following FIGURE 16 illustrates the intergenerational transfer on cohort-level in-
cluding cohorts of unborn. It is clear that the total sum taken over all existing and fu-
ture generations must add up to zero.

10000

5000

-5000
-80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90 100 110

FIGURE 16: Intergenerational redistribution after a mortality down-shift (A = +0.5)

in a CDC-pension system for Strategy I for age cohorts x > -80 and for =0/ 0.1/
0.2/ 0.4/ 1.

FIGURE 17 shows the transfer on individual level for x > 0. Since the old age cohorts

have fewer members the individual effect is more significant.
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FIGURE 17: Intergenerational redistribution per head after a mortality down-shift
(A =+0.5) in a CDC-pension system for Strategy I for ages x > 0 and for 6=0.1/
0.2/ 0.6/ 0.8.

Strategy 2 (Instant Recognition)

Instant recognition means that at time 7y the liabilities in the balance sheet are ad-
justed to comply with the new survival probabilities. But the benefits payable at 7o
(pensions and death benefits) remain unchanged i.e. 7(7o) = pand & 7o) = gt - tla .
Furthermore, we assume that the new pensions for the (70, z)-cohort are calculated on

the basis of d(z). However from 7o+1 onwards we apply da(z).

Let P(¢) resp. V(¢) denote the total of assets resp. liabilities at time ¢ > 7o . By our
convention P(¢) and V() include the death benefit payable in ¢ for active workers
who die in [#-1, #]. Thus we have P(7o) = P, the steady state value of assets. Let us
denote by L’(x) the number survivors of the (7o-1, x-1)-cohort after the mortality
shift.

Proposition 5

V(I,)=V+ (L'(z) - L(z))v(z) + Zw:

X=z

(mx—l) i,(x) |

p(x—1) d(x) jL(x)a'(x)r(x) (Eq. 20)

Proof

V(T,)) = ZZ_I: L(x-1)v(x)+ (L’(z) —L(z— 1)) v(z)+ i L'(x)d,(x)r(x)

X=X

= ZZ_: L(x-1)v(x)+ (L(z) —L(z—- 1)) v(z)+ ZW:L(x) d(x)r(x)

X=X

X=Z

+(L'(2) = L(2))(2) + i(%__&) i, (x)—d(x) jL(x) r(x)
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Since V = ZZ_I: L(x—-1)v(x)+ (L(z) —L(z— 1)) v(z)+ i L(x)d(x)r(x)we get (Egq. 20).

X=X, x=z

Note that for A>0 (L'(z)—L(z))v(z) < 0 and (pA (x=1) s (%) —1) >0.

p(x=1) d(x)
If the mortality shift is recognised instantly, the effect on the reserve ratio and the
profit participation strongly resembles the situation after a capital market down
shock. We illustrate the effects in FIGURE 18 below. As in Figure 7 we see that for

6> 0 the reserve ratio will gradually return to the steady state level p=0.
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-5%

-6%

-7%
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-9%
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S5 -4 -3 -2 -1 TO +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

2.5%

0.0%
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S5 -4 -3 -2 -1 TO +1 +2 +3 +4 45 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

FIGURE 18: Effect of a mortality down-shift (A =+0.5) on the reserve ratio p(¢)
(top chart) and profit participation 7(¢) (bottom chart) in a CDC-pension system

for Strategy 2 (instant recognition) for alternative levels of 6.

As for Strategy 1 we measure the intergenerational wealth transfer by comparing the
time value of future benefits minus contributions for the (7o, x)-cohorts. The instant

recognition of the mortality shift (A = +0.5) has a mild effect on the (7o, x)-cohorts

- 48 -



for x > z since their pensions are only indirectly affected via reduced ¢ (r). However
those who enter retirement at 7o+1 or later have to endure a double impact: firstly the
profit participation and future pension increases will go down to refill the reserve and
secondly, their initial pensions are calculated on the basis of the shifted mortality.
This is illustrated in FIGURE 19 and 20 below. We notice a sharp cut at age x = 65
which is a result of the fact that due to the instant recognition of the mortality shift,
from time 7o onwards all new pensions are calculated on the basis of the shifted mor-
tality rates. We see that the redistributional effect of a mortality shift differs clearly
from that of a capital market shock- compare Figure 19/ 20 and Figure 8/ 9.
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FIGURE 19: Intergenerational redistribution after a mortality down-shift (A = +0.5)

in a CDC-pension system for Strategy 2 for age cohorts x > 0 and for §=0.1/ 0.2/
0.6/ 0.8.
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FIGURE 20: Intergenerational redistribution per head after a mortality down-shift
(A =+0.5) in a CDC-pension system for Strategy 2 for ages x > 0 and for 6=0.1/
0.2/0.6/0.8.
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Comparison of Strategy 1/ 2 (delayed/ instant recognition)

The avoidance of cutting pensions in payment seems to be a touchstone of a pension
plan. Accordingly, the managers of a pension plan will be very reluctant to actually
cut pensions. If we look at the effect of Strategy 1 or 2 on the pensions in payment
(cf. FIGURE 21) then it is clear that the “procrastination policy” (Strategy 1) is very
attractive. We know from the analysis above that Strategy 1 shifts the burden of

longer life expectance to future generations, who inherit an eternal loan from the old.

==SteadyState
—=—0=0.2 (Strategy1)
130% +—0=0.4 (Strategy1)
,,,,,, 0=0.6 (Strategy1)
- 0=0.8 (Strategyl)
——0=0.2 (Strategy2)

(

(

(

120%
——0=0.4 (Strategy2)

..... 6=0.6 (Strategy2)
- 0=0.8 (Strategy2)

110%

100%

90%
To Tot+5 To+10 To+15 To+20

FIGURE 21: Pension level for pensions in payment after a mortality down-shift
(A =+0.5) for Strategy 1 and 2 for different levels of 6. 100% marks the pre-shift

pension level.

Both strategies imply a massive wealth transfer between the generations. TABLE 5
below shows the wealth transfer in favour of the older generations as a proportion of
the steady state total pension capital (= 2543840). Strategy 1 turns out to produce a
stronger transfer than Strategy 2. If we compare the age cohorts that profit from the
transfer we see that Strategy 1 is attractive for active employees aged 54 and over.
One may guess that for many pension plans these age cohorts are dominant in the
representative bodies, so one might expect that in real life there will be a strong ten-

dency to postpone the updating of the mortality tables.
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Mortality Shift (A = +0.5)

Strategy 1 Strategy 2
(delay recognition) (instant recognition)
0 Redistribution in % of | burdened Redistribution in % of |burdened
total pension assets age cohorts | total pension assets age cohorts
0 13.78% x<40 8.88% X<64
0.1 10.12% X<50 6.97% x<64
0.2 9.22% X<52 6.31% x<64
0.3 8.81% x<53 6.00% x<64
0.4 8.58% x<53 5.82% X<64
0.5 8.44% X<54 5.71% X<64
0.6 8.34% X<54 5.63% X<64
0.7 8.27% X<54 5.57% x<64
0.8 8.21% X<54 5.53% x<64
0.9 8.17% x<54 5.49% x<64
1.0 8.13% Xx<54 5.46% X<64

TABLE 5: Overall redistribution effect from young to old of a mortality shift (A =

+0.5) for Strategy 1 and Strategy 2 in % of total pre-shift pension capital.

Neither Strategy 1 nor 2 should be the choice in practice! There are good arguments

to apply a mixed strategy by adjusting mortality rates step by step.

5 Concluding Remarks

The primary purpose of collective DC-plans is smooth away the ups and downs of

capital market returns, which are particularly volatile for stock markets. If there is no

external institution to step in if equities slump, the smoothing can only be done by

some kind of intergenerational risk transfer. Intergenerational risk transfer is going
on since decades but in general unilaterally at the cost of the younger generation. The
shift from DB- to DC-plans is only one example. So the challenge is to find rules that

allow for a fair risk transfer between age cohorts. Our proposal for such rules is

guided by the concept of resilience. We apply these rules to several capital market

shock and shift scenarios and to mortality shift scenarios. We measure the intergener-

ational effects; so we have instrument to measure intergenerational equity. Our con-

clusion is that collective DC-plans are the better alternative compared to pure DC-

plans.
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