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The Problem of Heavy Tails*

Because finite sample inference for inequality indices based on asymptotic methods 

or the standard bootstrap does not perform well, Davidson and Flachaire (Journal of 

Econometrics, 2007) and Cowell and Flachaire (Journal of Econometrics, 2007) proposed 

inference based on semiparametric methods in which the upper tail of incomes is modelled 

by a Pareto distribution. Using simulations, they argue accurate inference is achievable 

with moderately large samples. We provide the first systematic application of these and 

other inferential approaches to real-world income data (high-quality UK household survey 

data covering 1977–2018), while also modifying them to deal with weighted data and a 

large portfolio of inequality indices. We find that the semiparametric asymptotic approach 

provides a greater number of statistically significant differences than the semiparametric 

bootstrap which in turn provides more than the conventional asymptotic approach and the 

‘Student-t’ approach (Ibragimov et al., Econometric Reviews, 2025), especially for year-pair 

comparisons within the period from the late-1980s onwards.
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1. Introduction 

 

You might think that it is straightforward to assess whether a difference in two income 

inequality indices is statistically significant: simply derive estimates of the indices and their 

standard errors using standard methods and then do a two-sample t-test of the inequality 

difference – analogous to what you might do for assessing the statistical significance of 

differences in means of other scalar socioeconomic indicators. However, this strategy is 

flawed (see below). This problem has led researchers to propose improved inferential 

methods, but they have rarely been applied to real-world datasets. In this paper, we provide 

the first systematic application of several recently proposed approaches to assess the 

difference in inequality between a pair of years using high-quality UK household survey data, 

also showing how the methods can be adapted to account for survey weights and be applied 

to wider range of inequality indices than has been considered to date. 

Standard asymptotic and bootstrap approaches to assessing the statistical significance 

of inequality differences have been criticized as having poor statistical performance even in 

large samples. See, e.g., Cowell and Flachaire (2007, 2015), Davidson (2012), Davidson and 

Flachaire (2007), Schluter (2012), and Schluter and van Garderen (2009). The problem is that 

distributions of studentized (differences in) inequality indices derived using these approaches, 

and which are the basis of t-statistics used for statistical tests, tend towards skewed 

distributions rather than standard normal distributions. (These skewed distributions are 

illustrated by, e.g., Schluter, 2012, Figure 1.) The source of the problem is that income 

distributions are typically heavy-tailed – skewed, with a long right-hand tail and Pareto-like 

shape at the top. Sparseness of observations in the top income range is an additional 

complication with household survey data.  

Naturally, the question arises whether there are methods for inference about income 

inequality that have better statistical performance for heavy-tailed income distributions than 

the standard asymptotic and bootstrap methods. The answer according to the research cited 

above is affirmative, and several approaches have been proposed, as we discuss below. 

However, assessments of these approaches have been based almost entirely on simulated 

data, with few substantive applications using real-world survey datasets.  

Our first contribution arises from our comparisons of the proposed inferential 

approaches in a real-world setting, using high-quality yearly UK household survey data for 

1977–2018 covering periods when inequality changed a lot and when it changed relatively 

little. We document whether the methods provide similar or different conclusions about the 
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statistical significance of income inequality differences between pairs of years for multiple 

pairs of years.  

Undertaking inference about inequality differences is important because income 

inequality statistics are key social indicators, with inequality levels and trends the subject of 

public attention and debate, with national and international statistical agencies routinely 

publishing statistics.  

To illustrate the issues, Figure 1 shows inequality time series derived from the data 

the UK’s Office for National Statistics has used to compile official inequality statistics (see, 

e.g., Office for National Statistics, 2019) and which we also use later in this paper. In 

addition to the Gini coefficient, the ONS’s headline indicator, we show series for five other 

indices.  

<Figure 1 near here> 

According to all six indices, there was an increase in income inequality between the 

end of the 1970s and the start of the 1990s, about 10 percentage points according to the Gini 

coefficient, which is substantial and likely to be statistically significant (we verify this later). 

But what about the inequality changes thereafter? All indices fluctuate in value over the 

subsequent three decades, and it is of interest to know which year-pair inequality differences 

are statistically significant and which represent sampling variability. We expect answers to 

depend on which specific pair of years is compared and on which inferential approach is 

used, and we document this. We also report how answers depend on the inequality index.  

Statistical agency bulletins typically do not report standard errors along with 

inequality index estimates nor undertake formal statistical tests of inequality differences, but 

instead use approaches such as reporting rounded estimates to minimize the chances of 

incorrectly interpreting differences as statistically significant. For example, the UK 

Department for Work and Pensions’ Households Below Average Income reports show Gini 

coefficient estimates to two decimal places (Department for Work and Pensions, 2025b). Our 

research sheds light on whether assessing inequality differences using informal rounding 

rules is consistent with the results of applying appropriate inference.  

Our second contribution is to extend the proposed inferential methods to increase their 

useability. Instead of employing method of moments estimators as Davidson and Flachaire 

(2007) and Cowell and Flachaire (2007) do, we use asymptotically equivalent estimators 

based directly on a survey’s unit record data. This switch has two advantages. The first is that 

researchers can straightforwardly incorporate survey weights in derivations of estimates and 

their sampling variances. Research proposing new inferential approaches has ignored weights 
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and yet virtually every household survey contains weights that adjust for survey design 

features such as differential sampling probabilities, or help address issues such as non-

response and, more generally, better represent the target population of interest. Not using the 

weights when deriving inequality indices (or other descriptive statistics) leads to biased 

estimates.  

A further advantage of the unit record approach is that one can use a wide range of 

inequality indices. Almost all the research proposing improved inference has focused on the 

Gini index and the Theil index and sometimes other Generalized Entropy indices. With our 

approach, one can undertake inference for almost any inequality index (subject to caveats 

about their ‘sensitivity’). We assess inequality differences using a portfolio of indices that are 

widely used in official statistics and by inequality researchers: the Gini coefficient, members 

of the Generalized Entropy (GE) family, the p90/p10 quantile ratio, and the shares of total 

income held by the richest 10% and by the richest 1% of income units. We use all these 

indices but focus on the Gini and Theil indices for empirical reasons we discuss later. (We do 

not consider Atkinson inequality indices because, for each member of that family, there is an 

ordinally equivalent member in the GE family.) The p90/p10 quantile ratio and top income 

share measures are also widely used.  

We assess UK inequality differences using four approaches to inference about 

inequality change (reviewed in more detail later). Approach 1, and the reference point against 

which we compare more recently proposed methods, is the conventional asymptotic 

approach, with formulae derived using influence functions or linearization (also known as the 

delta method). Problems with this approach spurred proposals for improved inferential 

methods.  

Inference approaches 2 and 3 are semiparametric because the upper tail of each pair of 

income distributions being compared is assumed to be well-described by a Pareto 

distribution. Approach 2 is the semiparametric asymptotic approach proposed by Cowell and 

Flachaire (2007) in which conventional asymptotic methods are used to compare inequality 

between a pair of distributions, where each is described by a mixture of a Pareto distribution 

for the upper tail and the observed data for the rest of the distribution. Approach 3 is that of 

David and Flachaire (2007) who proposed a semiparametric percentile-t bootstrap method in 

which inference is based on repeated sampling from semiparametric mixture distributions 

(defined as above). Our analysis adapts approaches 2 and 3 to use unit record data rather than 

method of moments estimators. 
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The fourth approach is the Student-t method evaluated by Ibragimov, Kattuman, and 

Skrobotov (2025) and Midões and de Crombrugghe (2023), applying results derived by 

Ibragimov and Müller (2010). The approach involves a random split of each distributional 

sample into a relatively small number of groups, deriving group-specific estimates, and then 

combining them to derive an overall estimate for the index and its sampling variance. Test 

statistics are easy to compute for this method by comparison with the semiparametric 

methods.  

Three other approaches to inference for inequality differences are not considered here. 

Davidson and Flachaire (2007) considered an M out of N (‘Moon’) bootstrap method, but 

their analysis of statistical performance leads them to favour their semiparametric percentile-t 

bootstrap method, which is what we use. Dufour et al. (2019) develop permutation tests (and 

associated permutation bootstrap tests) for tests of inequality differences, investigating their 

performance using simulated data. We have not used permutation tests because they are not 

applicable when the survey data include (non-integer) weights, which is the ubiquitous real-

world situation including in our application. Schluter and van Garderen (2009) and Schluter 

(2012) propose an approach based on variance stabilising transformations that do not have 

analytical solutions in general and are “more demanding in terms of moments of the 

underlying distribution” than other approaches (Midões and de Crombrugghe, 2023, p. 920). 

This and the complexity of the numerical solutions required for implementation militates 

against using this approach.  

Our paper has some similarities to that by Alfons, Templ, and Filzmoser (2013). 

Common to their paper and ours is a unit record data approach and incorporation of survey 

weights, plus use of robust estimators of Pareto distribution shape parameters. However, 

Alfons et al. consider only semiparametric asymptotic estimators and not also semiparametric 

percentile-t bootstrap (or Student-t) estimators, they measure inequality using the Gini 

coefficient alone, their substantive application examines only two countries (Belgium and 

Austria) for two years (2005, 2006), and they do not formally test for inequality differences. 

We compare a larger portfolio of estimators and inequality indices and undertake formal tests 

of pairwise inequality differences on a relatively large scale (year-pairs drawn from 42 years 

of UK survey data up to 2018).  

The various inferential methods can also be applied to inequality comparisons across 

regions or countries. In their empirical illustration, Ibragimov et al. (2025) test for inequality 

differences between Moscow and every other Russian region, comparing the findings of 

conventional asymptotic, permutation and permutation bootstrap, and Student-t approaches 
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for inference about pairwise differences in Gini coefficients. Midões and de Crombrugghe 

(2023) undertake inference about differences in Theil coefficients estimated from two 

different Russian surveys using the permutation and Student-t approaches. In both papers, 

estimates are based on unweighted survey data, and neither employs the semiparametric 

approaches in their Russian data applications.  

The headline findings from our application to UK data are, first, that the conventional 

asymptotic and Student-t methods yield similar conclusions about the statistical significance 

of year-pair inequality comparisons. Second, compared to these approaches, we find that 

application of the semiparametric asymptotic approach increases the number of statistically 

significant inequality differences for pairs of years in the 30-year period following the late-

1980s. The semiparametric bootstrap method yields conclusions similar to those for the 

semiparametric asymptotic approach for middle-sensitive inequality indices. In addition, we 

demonstrate that using naïve rules of thumb such as ‘count differences of at least one or two 

percentage points in rounded Gini coefficients as statistically significant’ are not reliable.  

Although there remains a need for further research that compares the statistical 

performance of all four approaches in a single study, our findings suggest that users could use 

the semiparametric asymptotic approach for assessing the statistical significance of inequality 

differences rather than the other approaches. Our unit record data variant of this approach is 

straightforward to implement using available software, can incorporate survey weights, and 

provides improved inference.  

The rest of the paper unfolds as follows. In Section 2 we describe the key elements of 

the four inference approaches cited above. We provide details of our UK household survey 

data and its income variables in Section 3. We report inequality estimates and tests of 

pairwise inequality differences in Section 4, comparing results across methods. Section 5 

contains our conclusions. Supplementary materials cited in the main text are in Appendices 

A–D.  

 

 

2. Approaches to assessing the statistical significance of income inequality differences 

 

This section explains the four approaches to inference that we apply, providing an overview 

of their key features (but not repeating the detailed expositions available in the original 

articles), and explaining how we have adapted the semiparametric approaches to real-world 

data. Throughout, we assume that there are unit record data from at least two household 
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surveys with independent samples. Each survey contains suitably defined income variables 

and there are survey weights.  

 

2.1. Conventional asymptotic approach 

The asymptotic approach is the one most used. It takes no account of the heavy-tailed nature 

of income distributions. 

A point estimate of inequality index I can be derived either by direct calculation from 

the unit record data or via the method of moments. For example, for the Theil index, T, the 

researcher calculates the estimate 𝑇𝑇�: 

𝑇𝑇� = �𝑓𝑓𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(𝑦𝑦𝑖𝑖/𝑚𝑚)log(𝑦𝑦𝑖𝑖/𝑚𝑚) 

where yi is the income of unit i, fi is the survey weight for i normalized by the sum of the 

weights over the N sample units, and m is the weighted sample mean. Alternatively, but 

equivalently, the Theil index can be written in terms of its moments: 

𝑇𝑇 = (𝑣𝑣/𝜇𝜇) − log(𝜇𝜇)  

where v = E[ylog(y)] and 𝜇𝜇 is mean income, E[y]. T can be estimated by replacing the 

moments by their (weighted) sample counterparts. For the weighted data case, Cowell (1989) 

provides moment formulae for all Generalized Entropy indices including the Theil index.  

 Sampling variances can be derived for the unit record approach using linearization or 

influence function methods – they lead to identical formulae (Cowell and Flachaire, 2015). 

Formulae for the weighted data case are provided by Biewen and Jenkins (2006) for 

Generalized Entropy and Atkinson indices and by Langel and Tillé (2013) for the Gini 

coefficient. Methods of moments variance estimators using weighted data are derived using 

the linearization (delta) method and the requisite formulae are functions of the covariance 

matrix for the moments: see Cowell (1989).  

To test the hypothesis of equality for years A and B, the Studentized (t-type) test 

statistic Wd is given by: 

𝑊𝑊𝑑𝑑 =
𝐼𝐼𝐵𝐵 − 𝐼𝐼𝐴𝐴

�𝑉𝑉��𝐼𝐼𝐴𝐴� + 𝑉𝑉��𝐼𝐼𝐵𝐵��
0.5 (1) 

where the 𝐼𝐼 and 𝑉𝑉�(. ) are the inequality index and variance estimates. See Davidson and 

Flachaire (2007, eqn. 16). The p-value for the null hypothesis of no difference in inequality 

according to index I is:  

𝑃𝑃∗ = 2𝑁𝑁(−|𝑊𝑊𝑑𝑑|) (2) 
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where N(.) is the standard normal cumulative distribution function. 

 

2.2. Semiparametric asymptotic approach 

The semiparametric asymptotic approach addresses heavy-tail and top-sparsity issues by 

replacing the observed survey data at the top of the distribution with a Pareto distribution that 

has been fitted to those same data. The parametric assumption not only fills in the distribution 

within the top income range in the observed survey data but also extrapolates it beyond the 

observed range. Each of the sample income distributions compared is a mixture of Pareto-

distributed incomes for Rich top-income units (identified by indicator R = 1) and observed 

incomes for the remaining units (R = 0). For a given survey dataset, the asymptotic and 

semiparametric asymptotic point estimates of a specific inequality index are not necessarily 

equal (see Figure 2 below).  

 To derive point and variance estimates, Cowell and Flachaire (2007) use the method 

of moments. They exploit the assumption that the survey units are independently distributed 

and derive the moments for the overall mixture distribution as a population-share weighted 

sum of the moments for R = 0 units (as in the conventional asymptotic approach) and the 

moments implied by the (fitted) Pareto distribution for R = 1 units. Cowell and Flachaire 

consider five Generalized Entropy indices (GE(α), α ∈ [–1, 2]) but ignore survey weights. 

Allowing for weights is difficult because, in the mixture distribution case, the already 

complex formulae shown in Cowell and Flachaire’s (2007) equations 21–25 need to be 

generalized to incorporate bivariate moments (for incomes and weights), i.e., one needs to 

extend Cowell’s (1989) formulae for the non-semiparametric case to the semiparametric case.  

Our unit record data variant of Cowell and Flachaire’s (2007) approach is as follows. 

For each survey dataset, we use the observed incomes y for R = 0 units but, for each R = 1 

unit i, we replace its observed income yi with a value 𝑦𝑦𝑖𝑖𝑃𝑃 which is a random draw from the 

fitted Pareto distribution. To preserve the joint ordering of weights and incomes in the 

original data, we sort the distribution of observed incomes y in ascending order and also sort 

the distribution of imputed incomes 𝒚𝒚𝑃𝑃 in ascending order. Then we allocate the survey 

weight of the rth richest unit in y to the rth richest unit in 𝒚𝒚𝑃𝑃. Differently from Cowell and 

Flachaire (2007), we fit the Pareto distribution by a more robust method (OBRE rather than 

maximum likelihood, explained in §2.4 below). 

Our unit record data procedure is similar to the Alfons et al. (2013) ‘replacement of 

non-representative outlier’ approach. However, differently from them (and motivated by 
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Blanchet, Flores, and Morgan, 2022), we improve coverage of the top income range by 

randomly drawing M = 50 imputed values for each R = 1 unit, proportionally reducing each 

of the cloned units’ sampling weights at the same time. Improving coverage also implies 

closer correspondence to Cowell and Flachaire’s (2007) moment-based approach which is 

akin to using M = +∞. (We thank Emmanuel Flachaire for this insight.) We experimented 

with values of M ranging from 1 to 100 and found that M = 50 provided a good balance 

between improved coverage (assessed using comparisons of empirical densities and densities 

implied by the fitted Pareto distributions) and increasing computational burden. Further 

details are available on request. 

 Implementation of these steps yields a revised unit record dataset containing incomes 

and accompanying weights to which one can apply the standard asymptotic methods 

described in the previous section, except that they are now semiparametric estimates because 

the Pareto distribution is used. If there were no survey weights, our approach would mimic 

that of Cowell and Flachaire (2007). However, because we work with unit record data, it is 

straightforward to undertake estimation and inference for almost any inequality index, not 

only the Generalized Entropy ones that were their focus. 

 Test statistic Wd and the p-value for the hypothesis of no inequality difference are 

calculated as in (1) and (2) except that inequality and variance estimates now refer to 

estimates derived from semiparametric distributions. 

 

2.3. Semiparametric percentile-t bootstrap approach 

Davidson and Flachaire’s (2007, p. 158) algorithm is as follows. The approach starts by 

calculating the same Wd statistic as the conventional asymptotic approach (eqn. 1) but, 

instead of using the standard normal distribution for inference (as in eqn. 2), one uses a 

bootstrap approach which resamples from semiparametric mixture distributions.  

That is, one fits a Pareto distribution to each of the survey datasets for years A and B, 

followed by construction of two semiparametric distributions and estimates of an inequality 

index for each of the two years, 𝐼𝐼𝐴𝐴 and 𝐼𝐼𝐵𝐵. The index was the Theil index in Davidson and 

Flachaire’s (2007) case, but the algorithm also works for other indices. The next step is to 

construct a pair of bootstrap samples from the pair of semiparametric distributions. For each 

distribution, this is derived by taking a standard bootstrap sample of R = 0 units and, for R = 1 

units, replacing each unit’s observed income with a single random draw from the fitted Pareto 
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distribution. Then, from the two semiparametric distributions that result, calculate the pairs of 

inequality index estimates and sampling variances.  

The Studentized test statistic for each bootstrap sample, b, is:  

𝑊𝑊𝑏𝑏
∗ =  

��𝐼𝐼𝐵𝐵𝑏𝑏 − 𝐼𝐼𝐵𝐵� − �𝐼𝐼𝐴𝐴𝑏𝑏 − 𝐼𝐼𝐴𝐴��

�𝑉𝑉��𝐼𝐼𝐴𝐴𝑏𝑏� +  𝑉𝑉��𝐼𝐼𝐵𝐵𝑏𝑏��
0.5 . (3) 

As Davidson and Flachaire explain, “the numerator is recentred so that the statistic tests a 

hypothesis that is true for the bootstrap samples” (2007, p. 161). After repeating this step B 

times, one has a distribution of bootstrap statistics 𝑊𝑊𝑏𝑏
∗ for b = 1, …, B. 

The percentile-t bootstrap p-value for the test of equality, P*, is the proportion of 

bootstrap samples for which the bootstrap statistic is more extreme than the statistic 

calculated from the original data, Wd: 

𝑃𝑃∗ = �
1
𝐵𝐵�

� 𝜄𝜄(|𝑊𝑊𝑏𝑏
∗| > |𝑊𝑊𝑑𝑑|)

𝐵𝐵

𝑏𝑏=1

 (4) 

where ι(.) is the indicator function. See Cowell and Flachaire (2007, eqn. 18).  

Our implementation of Davidson and Flachaire’s (2007) approach uses the same 

value formula but modifies the algorithm. In our variant, we fit the Pareto distribution using 

OBRE rather than maximum likelihood, calculate inequality indices and sampling variances 

using the unit record approach described earlier (instead of the method of moments), allow 

for survey weights, and undertake calculations for more inequality indices (not only the Theil 

index). When calculating inequality indices 𝐼𝐼𝐴𝐴 and 𝐼𝐼𝐵𝐵 from the semiparametric distributions, 

we expand the data (M = 50) for R = 1 observations, as discussed in §2.2. However, to mimic 

Davidson and Flachaire’s (2007) approach, we do not expand the data within the bootstrap 

replications. Were we to use M > 1 in this context, our variant of the bootstrap approach 

would artificially reduce variability. (We thank Emmanuel Flachaire for this insight.) 

We also considered an additional bootstrap approach in preliminary analyses. 

Davidson and Flachaire’s (2007) bootstrap approach does not take account of the uncertainty 

arising because the Pareto shape parameters are themselves estimates. To address this issue, 

we used a modified bootstrap approach in which the Pareto parameters were estimated within 

each bootstrap repetition. Cowell and Flachaire (2007) point out that this approach creates its 

own issues, and they rely on the semiparametric asymptotic method instead.  

Calculating standard errors for Generalised Entropy indices using their method of 

moments formulae requires that all relevant moments are finite, specifically that 𝜃𝜃 � ≥

max {0, 2𝛼𝛼}, where 𝜃𝜃� is the estimated Pareto shape parameter and α is the sensitivity 
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parameter for the GE(α) inequality index (see their eqn. 26). For each bootstrap sample in the 

modified semiparametric bootstrap approach, “we need to estimate a new value 𝜃𝜃�: even if 

condition (26) is satisfied in the original sample, it can be violated many times in bootstrap 

samples” (Cowell and Flachaire, 2007, p. 1091). In our empirical analysis reported below, the 

𝜃𝜃� for each year at the initial step range between 4.5 and 2.5 and, consistent with Cowell and 

Flachaire’s prediction, we found many violations of their condition 26 when fitting Pareto 

distributions within bootstrap replications. Using a unit record data approach like ours does 

not get rid of the problem. For example, estimates of GE(2) indices, and their sampling 

variances specifically, were erratic and unreliable. Consequently, like Cowell and Flachaire 

(2007), we rely on the semiparametric asymptotic method and do not report estimates from 

our additional semiparametric bootstrap analyses. 

 

2.4. Researcher choices when applying semiparametric approaches 

There are implementation choices, including how to fit the Pareto distributions. 

 First there is the issue of which units should be used to fit the Pareto distribution for 

each of the surveys available, i.e., how should one define the subgroup of R = 1 units? There 

is a trade-off between bias and variance. The Pareto assumption is likely a better description 

of top incomes the higher the top income range considered (Jenkins 2017, Charpentier and 

Flachaire 2022) but the smaller the number of observations, the greater the sampling 

variability and high-income outliers may have undesirable effects. There is a substantial 

literature about fitting of Pareto distributions and how to choose the k richest units for the 

estimation sample: see, e.g., Cowell and Flachaire (2007), Davidson and Flachaire (2007), 

and Jenkins (2017), who cite references to informal graphical methods and more formal 

statistical methods. The choice of k is often discussed in the context of fitting a Pareto model 

to a single sample distribution, whereas in our application we have 42 years of data, and we 

also have survey weights. So, rather than using a sample selection rule tailored to each year 

separately and framed in terms of the number of richest units, we adopted a rule referring to 

the (weighted) fraction of top-income observations (‘ptail’).   

We set ptail = 5% in the results we report, in which case min(k) = 239 and max(k) = 

339 households across our 42 years of survey data (see Section 3). The same fraction was 

used by Atkinson and Jenkins (2020) in their multi-year semiparametric inequality analysis 

(covering 1937–2010). Jenkins (2017) used ptail = 1%, 5%, and 10% when analysing yearly 

data for 1995–2010, and reports that semiparametric inequality estimates were little different 
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across variants. Other rules of thumb have been used: Davidson and Flachaire (2007, p. 157) 

set k equal to the square root of the sample size for each of their simulated distributions and 

Cowell and Flachaire (2007, p. 1059) and Midões and de Crombrugghe (2023) used a similar 

rule. The ‘merge point’ algorithm developed by Blanchet, Flores, and Morgan (2022) is 

inapplicable in this context because it requires external information from administrative 

record data. 

To check the robustness of our results, we repeated all our inference analysis using 

ptail = 1% (selected results are reported in Appendix D). Pareto shape parameter estimates 

were a bit smaller (distributions were more heavy-tailed) than for the ptail = 5% variant, and 

there were more large swings in confidence intervals across years and larger two-sample test 

p-values. Notwithstanding these differences, the substantive conclusions about pairwise 

inequality differences that we draw assuming ptail = 5% are little affected.  

 A second choice concerns the method used to fit the Pareto model. Davidson and 

Flachaire (2007) and Cowell and Flachaire (2007), and many other top-income researchers, 

use the maximum likelihood (ML) estimator. The ML estimator of the Pareto shape 

parameter and its standard error is consistent, efficient, and asymptotically normal (Hill 1975; 

Quandt 1966). However, the ML estimator can be biased if there are a few high outlier 

incomes, whether genuine or reflecting error or data contamination in the sense of Cowell 

and Victoria-Feser (1996) and Cowell and Flachaire (2007): the influence function for the 

maximum likelihood estimator is unbounded in this situation. To address this potential 

problem, we use the ML ‘Optimal b-robust estimator’ (ML-OBRE) due to Victoria-Feser and 

Ronchetti (1994). The idea is to use the ML score function for most of the data, exploiting the 

efficiency of the ML estimator, but to place an upper limit c on it for high income values in 

the interests of robustness. Victoria-Feser and Ronchetti (1994) show that with 95% 

efficiency, the optimal value in the Pareto case is c = 3, and this is what we use. Brzezinski’s 

(2016) Monte-Carlo study finds that ML-OBRE performs well compared to four other robust 

estimators, including the one favoured by Alfons et al. (2013). As it happens, our ML-OBRE 

and ML estimates of Pareto shape parameters were similar (further details available on 

request).  

Another choice concerns the number of bootstrap replications used when 

implementing the semiparametric bootstrap approach. Davidson and Flachaire (2007), 

Cowell and Flachaire (2007), and Midões and de Crombrugghe (2023) all used B = 199. We 

use B = 999 to increase bootstrap precision while not increasing computational burden 

unduly. 
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2.5. The Student-t approach 

The Student-t approach proposed by Ibragimov and Müller (2010) and implemented by 

Ibragimov et al. (2025) takes no specific account of the heavy-tailed nature of income 

distributions but produces symmetric test statistic distributions by construction. For each 

survey, first, randomly allocate the sample units to q groups, with q > 2. Second, calculate the 

inequality index I separately for each group. (Any inequality index can be used, but 

Ibragimov et al. 2025 focus on the Gini and Theil indices.) Third, derive the overall estimate 

of I for the survey as a simple average of the group estimates and its variance as the sample 

variance of the group estimates. Having repeated these steps for all the surveys available, 

undertake pairwise t-tests for inequality differences between surveys using expressions 

analogous to (1) and (2) for test statistics and p-values (hence the ‘Student-t’ label). Midões 

and de Crombrugghe (2023) also evaluate the Student-t approach extensively, remarking that 

“the method is simple, intuitive and computationally cheap, particularly in comparison to 

non-standard bootstrap methods” (2023, p. 908).  

The developers of the Student-t approach have not considered survey weights. The 

validity of their tests is founded upon the independence and asymptotic normality of the 

various group estimators, and this is unaffected by the presence of weights. Hence, the 

desirable properties of the Student-t estimators carry over to the weighted data case.  

We split each household survey sample into 8 equal-sized groups of households. In 

principle, the number of groups may differ across empirical distributions but our use of 8 

equal-sized groups for all years is not only practical given our 42 years of data but also 

consistent with the recommendations of Ibragimov et al. (2025) and Midões and de 

Crombrugghe (2023), noting that our sample sizes are relatively large and do not differ 

markedly across years (Appendix Table A1).  

 

2.6. Ranking the approaches in terms of statistical performance 

In a ‘beauty contest’ between the four approaches, where beauty is assessed in terms of test 

size, there is one clear loser – the conventional asymptotic approach – but no clear winner. 

(Test size refers to the probability of rejection of the null hypothesis of index equality 

compared to the nominal benchmark, taken to be 5% in the literature we cite.) It is difficult to 

point to winners because the calculations of empirical test size for the various approaches 

have analyzed different types of tests (mostly one-sample tests, fewer two-sample tests), and 

used different inequality indices (but most commonly the Theil index). Moreover, although 
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all the assessments of test performance use a similar set of Singh-Maddala distributions, 

albeit with variations in tail-heaviness (and some also use other distributions such as the 

lognormal and Pareto), there is no assessment with performance comparisons of all four 

approaches. This is because the Student-t approach was developed relatively recently. 

Moreover, the focus of Ibragimov et al.’s (2025) and Midões and de Crombrugghe’s (2023) 

performance comparisons is between the Student-t and permutation approaches (and the 

conventional asymptotic approach). Only Cowell and Flachaire (2007) analyze the 

performance of the semiparametric asymptotic method.  

 Davidson and Flachaire write regarding the Theil index that “accurate inference can 

be achieved with [their semiparametric bootstrap] method in moderately large samples” 

(2007, p. 141), by contrast with the conventional asymptotic, standard and Moon bootstrap 

methods. All tests are oversized (test size is larger than the nominal 5%; error rejection 

fractions are positive), but least so for the semiparametric method. Cowell and Flachaire 

conclude that “the semiparametric bootstrap outperforms the other methods and gives 

accurate inference in finite samples” and “in situations where semiparametric inequality 

measures can be used, they perform well in asymptotic tests and at least as well as 

semiparametric bootstrap methods” (2007, p. 1068). The conclusions are (mostly) based on 

one-sided one-sample tests. For details, see their Tables 4 (Theil index) and 5 (mean 

logarithmic deviation) comparing conventional asymptotic, standard bootstrap, 

semiparametric asymptotic, and semiparametric bootstrap methods. Performance also 

depends on the inequality index. Cowell and Flachaire’s (2007) Figures 10 and 11 show that, 

for both semiparametric approaches, error rejection fractions are small and minimized if the 

inequality index is not too top- or bottom-sensitive. Davidson and Flachaire (2007, Figure 15) 

also include analysis of a two-sided two-sample test of equal Theil indices showing that error 

rejection fractions are smallest for the semiparametric bootstrap for sample sizes of at least 

2,000 (but around 5% nonetheless), and largest for the conventional asymptotic approach 

(around 7.5%).  

 Ibragimov et al. (2025) and Midões and de Crombrugghe (2023) also consider two-

sided two-sample tests. Ibragimov et al. (2025) report size calculations for the Theil and Gini 

indices for two distributions with the same number of observations (N = 200) in their Table 1, 

comparing conventional asymptotic, permutation and permutation bootstrap, and several 

variants of their Student-t approach. Their Table 2 shows similar calculations for two 

distributions with different numbers of observations. Overall, Student-t tests appear to have 

better size properties than conventional asymptotic tests (and at least as good as permutation 



14 

and permutation bootstrap tests). As long as the distributions compared are not too heavy-

tailed, the Student-t tests tend to be slightly conservative (size just below 5%). Midões and de 

Crombrugghe’s (2023) conclusions are similar. See, e.g., their Figure 6 for the Theil index 

showing the Student-t method “controls for size remarkably well” (p. 914) compared to the 

conventional asymptotic and semiparametric bootstrap approaches over sample sizes ranging 

from 500 to 10,000, though the differences between them diminish if the distributions are not 

heavy-tailed (p. 915). 

 All in all, although picking winners in the statistical performance beauty contest 

requires new research that compares all four methods on the same terms, it is already clear 

that performance is conditional on how heavy-tailed the distributions being compared are and 

the index used to summarize inequality. Even without the new research, it is of considerable 

interest to know whether the four methods provide similar or different inferential conclusions 

when applied to real-world survey data, and this paper delivers such information for the first 

time.  

 

 

3. The ONS’s ETB data and income concepts  

 

Our analysis is based on a historical series of unit-record household survey data deposited by 

the Office for National Statistics (ONS) at the UK Data Service (ONS, 2022). The data were 

used by the ONS in their annual articles about the ‘Effects of taxes and benefits on household 

incomes’ (ETB) until recently: see, e.g., ONS (2019) for 2018. Since 2020 the ONS has 

revised its inequality data, incorporating a top-income adjustment based on income tax 

administrative data to improve survey coverage of the very top of the distribution, and 

supplemented the survey data (now labelled the Household Finances Survey): see, e.g., ONS 

(2020) and references therein. We restrict attention in this paper to the 42-year-long 

consistent series of survey data that finishes just prior to the onset of Covid-19. We return to 

discuss inference using ONS’s most recent ETB data in Section 5.  

The public-use ONS data we use derive from the Living Costs and Food Survey 

(LCFS, from 2008) and its predecessor, the Family Expenditure Survey (FES, to 2007). 

These are household surveys with a focus on household spending and income, each intended 

to be nationally representative of the UK private household population. The annual sample 

size is approximately 6,500 households per year on average (and ranges from around 4,900 to 

7,500). Survey years refer to financial years (12-month periods starting 5 April each year) 
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from 1993/94 onwards and to calendar years before that. For brevity we label financial years 

by their first part: ‘2016’ refers to financial year 2016/17, etc. ETB income data are not top-

coded. 

 We use the ONS’s definition of income, which is consistent across the 42 years. 

Income is net (disposable) household income, i.e., household income from employment and 

self-employment, plus income from capital and government cash transfers, minus personal 

income tax payments, employee national insurance contributions, and local taxes such as 

council tax. (Incomes are expressed in pounds per week.) This definition corresponds closely 

to that set out by the Canberra Group’s (2011) guidelines and is also used by statistical 

offices in most high-income countries around the world, including Eurostat for official 

income statistics for EU member states.  

Following the ONS, we adjust all household incomes and income components for 

differences in household size and composition using the modified-OECD equivalence scale. 

The ONS uses the same scale in its reports but our calculation of it differs slightly from 

theirs. This is because the modified-OECD scale defines children to be individuals aged 14 or 

under. In our public-use dataset, we only know whether an individual is a ‘dependent child’, 

i.e., aged 15 or less, or aged 16–19 and in full-time education. Thus, our equivalence scale 

calculations count slightly more children than the ONS do, but we expect the effects to be 

negligible.  

The FES and LCFS include survey weights. Before 1996, a household’s weight was 

simply the number of individuals in the household. From 1996 onwards, the weights also 

adjust for non-response and are calibrated to population totals. We use the survey weights in 

all calculations.  

The estimates we report are based on data that we trimmed lightly. Specifically, we 

drop a small number of incomes that are (i) zero or negative, (ii) between zero and one, or 

(iii) top incomes that are more than twice the next highest income. These selections remove 

on average 14, 1, and 0.2 incomes per year, respectively. (Over the 42 years, only 9 top 

incomes are dropped, no more than one per year.) In total the number of households dropped 

is 0.23% per year on average and is never more than 0.48% in any year. For more details of 

the sample sizes and numbers dropped by trimming, see Appendix A.  

Our trimming rule is consistent with standard practice but is intentionally 

conservative to check how well the inference approaches deal with top-income issues. Many 

inequality indices are undefined for incomes less than or equal to zero and these values also 

raise questions about survey measurement error, hence rejection rule (i). Rules (ii) and (iii) 
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reduce the possibility that bottom- and top-sensitive inequality indices produce estimates 

unduly affected by influential outliers. On these, see the discussion by Cowell and Flachaire 

(2007) and Cowell and Victoria-Feser (1996). We have rerun all our analysis using data 

without using rule (iii) and found, as expected, that comparisons based on the top-sensitive 

GE(2) index were even less robust than the ones we report, as predicted by Cowell and 

Flachaire’s (2007) simulation analyses. (Results are available on request.) 

 ONS ETB articles do not report standard errors (SEs) or confidence intervals (CIs) or 

statistical tests of inequality differences. The technical documentation accompanying the 

LCFS (see, e.g., Office for National Statistics, 2023) provides general discussion about 

sampling errors but reports no SEs or CIs for inequality indices. Hence, our inferential 

analysis is the first of its kind for ETB data that we are aware of. 

 

 

4. Assessing the statistical significance of inequality differences: results 

 

The running order for our presentation of results is as follows. First, we show for multiple 

indices how the approaches differ in terms of their (point) estimates and precision. Second, 

we summarize the tests of inequality differences between pairs of years. Summaries are 

essential because with 42 years of data there are 861 possible two-sample tests to report, for 

each approach and index. Hence, we begin by showing for each year A, the number of two-

sample tests for which the p-value is less than 5% for the test of no inequality difference 

between year A and every other year B (maximum number = 41), by approach and index. (5% 

is the most used critical value for tests of inequality differences.) 

We then focus on four specific years, A ∈ {1977, 1990, 2006, 2018} and report the p-

values for tests of no inequality difference for each of these four years and every other year, 

B, by approach and index. We chose the four specific years deliberately. They are 

approximately evenly spaced over the 42-year period. Moreover, 1977 is the year with lowest 

inequality, 1990 is when the 1980s inequality increase levelled off (Figure 1) and 2006 is a 

year when inequality was little different from the 1990 level according to most indices. In 

addition, 1990 and 2006 were years prior to recessions. All in all, we provide detailed 

examination of differences over the initial period when we expect statistically significant 

changes, but also within the later period when statistical significance is likely to be more at 

issue.  
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For brevity, we focus on results for the Gini and Theil indices because the former is 

the most used index among practitioners and the latter has been the focus of most simulation-

based assessments of the semiparametric approaches to inference. For completeness, we also 

derive results for additional indices (GE(α), for α = –1, 0, 2; top 10% share; top 1% share; 

p90/p10), reporting them in Appendix C. For a comprehensive survey of inequality indices 

providing formulae and discussing properties and interpretations, see inter alia Cowell 

(2000). The Gini coefficient is the most reported index. It is more sensitive to income 

differences around the middle of the distribution than to differences at the top or at the 

bottom (‘middle-sensitive’). GE indices range from bottom-sensitive to top-sensitive, with 

sensitivity depending on parameter α, with researchers most commonly using values α = –1 

(bottom-sensitive), 0 (mean logarithmic deviation, MLD; middle-sensitive), 1 (Theil index; 

slightly top-sensitive), and 2 (half the squared coefficient of variation; distinctly top-

sensitive). Top income shares and the p90/p10 quantile ratio are widely used inequality 

indices. We expect inference about p90/p10 differences to be similar across the four 

approaches we apply because the index takes no account of the income distribution above the 

90th percentile. Following Cowell and Flachaire (2007), we also expect inference about MLD 

differences and Gini differences to be similar as they are both middle-sensitive.  

 

4.1. Index estimates and indicative precision, by approach 

The conventional asymptotic and semiparametric bootstrap approaches provide identical 

estimates of each inequality index – the series shown in Figure 1 – and the corresponding 

Student-t series of estimates are virtually identical to these series as well. This is also true for 

the GE(–1) and GE(2) indices. (See Appendix Figures B1–B3.) The semiparametric 

asymptotic series differs slightly from the others, with the differences more apparent, the 

more top-sensitive is the inequality index, which of course is where the Pareto imputations 

are most relevant. The differences are not a problem for inference because the semiparametric 

bootstrap approach computes the relevant test statistics accounting for initial-step inequality 

differences (see eq. 3).   

 Table 1 provides indicative information about the relative precision of the estimates, 

by index and approach. We summarize precision by the length of the one-sample 95% 

confidence interval (CI), expressed as a percentage of the corresponding estimate, to facilitate 

comparisons across indices and approaches. Larger values mean lower precision. Bootstrap 

CIs are calculated using Davidson and Flachaire, 2007, eqn. 17. (Note, however, the authors’ 
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caveats about assessing CI accuracy in this context; hence our reference to ‘indicative’ 

precision.) For brevity, the table shows 42-year averages for each index and approach.  

<Table 1 near here> 

 Table 1 shows that the two semiparametric approaches provide more precise estimates 

than the conventional asymptotic approach, as expected, for all indices (except GE(–1) to 

which we return). There is a gain in precision from using the semiparametric asymptotic 

approach rather than the semiparametric bootstrap (cf. cols. 3 and 2). Comparing indices, 

observe that, for all approaches, precision decreases the more top-sensitive is the inequality 

index (the larger is α for index GE(α), and the top 1% share versus the top 10% share), and 

especially so for GE(2). (The exception is the semiparametric asymptotic approach, for which 

GE(2) is relatively precisely estimated.) The precision of p90/p10 is much the same whatever 

the approach, as expected. 

By comparison with the three other approaches, the Student-t approach stands out for 

its greater imprecision for all inequality indices, greater even than the conventional 

asymptotic approach (cf. cols. 5 and 1).  

This finding requires careful interpretation. Arguably, if the three other approaches 

are oversized by comparison with the Student-t approach, as suggested by the discussion in 

§2.6, then one would expect those approaches to have narrower (standardized) CIs, arising 

from smaller standard errors, which is what is seen in Table 1. However, this argument is not 

fully persuasive. First, the (standardized) CIs for the conventional asymptotic and Student-t 

series are not too different, which is not what the research on test performance cited earlier 

would lead us to expect. Second, the same research shows that the conventional asymptotic 

method delivers the most over-sized tests, so one would expect it to deliver smaller, not 

larger, standardized CIs by comparison with the semiparametric methods. An alternative 

interpretation of the patterns shown in Table 1, and the one we favour, is that with these real-

world data the semiparametric approaches are delivering test statistics closer to nominal size, 

and that the Pareto assumption for the top tail is ‘buying’ greater precision.  

 Providing more detail about indicative precision, Figure 2 shows standardized CIs for 

the Gini and Theil index estimates, year by year. The figure underlines the points made 

regarding Table 1 in terms of the relative precision of the different approaches but adds more. 

The semiparametric asymptotic series is remarkably stable over time by contrast with the 

others, for both indices. Two other features of the charts stand out.  
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First, the semiparametric bootstrap series is more like the conventional asymptotic 

series when considering the Theil index rather than the Gini. Second, there are large year-to-

year fluctuations in the Student-t series, for both indices. (This feature reflects year-to-year 

variations in standard errors rather than estimates: see Figure 2.) We do not have a definitive 

explanation for this but conjecture it is due to ‘grouping variability’. This is the issue arising 

because the Student-t method uses a single random allocation of survey units to groups. The 

problem is that a different random allocation to groups leads to different estimates and 

sampling variances and so, arguably, random chance underpins the observed variability. See 

Hérault and Jenkins (2025) for more discussion. 

<Figure 2 near here> 

Our principal interest is in two-sample tests, not indicative precision or its 

fluctuations. We summarize these tests next. 

 

4.2. p-values for tests of no inequality difference between a pair of years 

Figure 3 summarizes counts of p-values less than 5% for tests of no inequality difference 

between each year A between 1977 and 2018 and every other year B, for the Gini and Theil 

indices. The maximum count is 41. We use 5% as the threshold for statistical significance in 

accordance with common practice. 

<Figure 3 near here> 

 There are high counts for every year from 1977 through 1986, for both indices, and all 

approaches. These high counts are followed by a fall in 1987, and fluctuating counts 

thereafter, as one might expect given the ups and downs in the inequality estimates shown in 

Figure 1. However, there are distinct differences by approach for this period.  

As Table 1 and Figure 2 lead us to expect, the semiparametric asymptotic approach 

yields higher counts than the three other approaches. For example, for the Gini index, the 

counts for the former fluctuate around 30 (nearly three-quarters of the maximum count). The 

semiparametric bootstrap approach yields slightly fewer (typically around 5 per year). In 

contrast, the counts for the conventional asymptotic and Student-t approaches fluctuate 

around 20 (only around half the maximum count). For the Theil index, the patterns are like 

those for the Gini except that the counts for semiparametric asymptotic approach are 

generally slightly higher over the 1986–2017 period and those for the conventional 

asymptotic and Student-t approaches are lower. Also, for the Theil index comparisons, the p-

value counts per year for semiparametric bootstrap series are more clearly in between the 

series for the other approaches. 
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 There are similarities and differences in temporal patterns of counts when inequality 

indices other than these two are considered. For example, according to the counterparts to 

Figure 3 for the MLD (Appendix Figure C1), top 10% share (Figure C3), and top 1% share 

(Figure C5), and GE(2) (Figure C11), the semiparametric approach continues to deliver the 

highest counts across all years, and the conventional asymptotic and Student-t approaches the 

lowest. The semiparametric bootstrap series is more like the semiparametric asymptotic series 

for the middle-sensitive MLD index and the top 10% share. For the p90/p10 index (Figure 

C7), counts per year are similar for all four approaches, albeit a bit lower for the Student-t 

approach. For bottom-sensitive GE(–1) (Figure C9), counts per year are also similar for all 

approaches, albeit a bit lower for the semiparametric bootstrap approach.  

 We now turn to more detailed analysis of inequality differences, summarizing 

comparisons between each of four specific years (1977, 1990, 2006, and 2018) and every 

other year. In Figures 4 and 5, we show p-values for the two-sided two-sample tests for the 

Gini and Theil indices respectively, with dotted lines showing the 5% critical value for 

reference. It is useful to be able to see the p-values themselves, and thereby assess whether 

they are well below any specific threshold or close to it. It turns out that, if a p-value is less 

than 5%, it is typically close to zero. 

<Figures 4 and 5 near here> 

 Figures 4 and 5 show there is a distinct difference in test p-values for the 

semiparametric asymptotic approach on the one hand and the conventional asymptotic and 

Student-t approaches on the other hand. The first yields more statistically significant p-values 

(using the 5% benchmark) for both the Gini and Theil indices for comparisons with years 

after 1986. The semiparametric bootstrap approach produces p-values that generally lie in 

between those for the other three approaches, closer to the semiparametric asymptotic values 

for the Gini coefficient and closer to the other two approaches’ values for the Theil index.  

 What are the substantive findings if we focus on the test results for the semiparametric 

asymptotic approach? For both the Gini and Theil index, inequality in 1977 – a low 

inequality year – differed from inequality in every year from 1980 onwards. Inequality in 

1990, a high inequality year, differs significantly from inequality in most other years except 

for the relatively high inequality years at the end of the 1990s and around 2010 (recall the 

estimates shown in Figure 1). Inequality in 2006 is slightly lower than in 1990 but differences 

are statistically significant for much the same set of years. In 2018, inequality is slightly 

lower again, and many of the significant differences for the Gini index are the same as for the 

comparisons between 1977 and 1990, except that (for example) comparisons for 1987 and 
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1988 are not statistically significant and there are only a few statistically significant 

differences from the Gini for years in the early 2000s and later. The story for the Theil index 

is similar except that there are more statistically significant year-pair differences for the years 

after the early 2000s. This period is also when the temporal changes in the Theil index were 

larger than for the Gini coefficient (Figure 1).  

 Continuing with the results of the tests for the semiparametric asymptotic approach, 

we now report the outcomes for additional inequality indices. The set of year-pair differences 

that are statistically significant is much the same for middle-sensitive MLD index and top 

10% share (Appendix Figures C2, C4) as for the Gini coefficient. The same is true for 

p90/p10 tests except that there are almost no statistically significant differences between 2018 

and each year after 2000 (Figure C8). The pattern of test results for the top-sensitive indices – 

the top 1% share (Figure C6) and GE(2) (Figure C12) – are broadly similar to those for the 

Theil index, except that there are more statistically significant GE(2) differences between 

2018 and years after 1986. For the bottom-sensitive GE(–1) (Figure C10), there are few 

statistically significant comparisons except between the low inequality year 1977 and year 

after 1985, or between higher-inequality years (1990, 2006 or 2018) and each year before 

1987.  

 

4.3. Are there lessons for statistical agencies and practitioners? 

National statistical agencies typically derive SEs and CIs for published statistics, including 

inequality estimates, using the conventional asymptotic approach or similar, albeit accounting 

for additional survey design features such as clustering and stratification that we have not 

considered here. How the sampling uncertainty is communicated differs, but no agency 

accounts for heavy-tail issues when calculating SEs and CIs.  

Consider two leading examples, the UK Department for Work and Pensions’s 

Household Below Average Incomes publication (‘HBAI’, annual) that reports estimates of 

Gini coefficients using the same income definitions as the ONS ETB articles (see, e.g., 

Department for Work and Pensions, 2025b) and the US Census Bureau’s annual P-60 report 

on Income in United States (see, e.g., Guzman and Kollar, 2023). UK HBAI reports do not 

publish SEs or CIs but, instead, report Gini coefficients to 2 decimal places, i.e., the nearest 

percentage point (a practice to which we return). The associated technical documentation 

(e.g., Department for Work and Pensions, 2025a) provides general discussion of statistical 

uncertainty and detailed explanations of their derivation of SEs accounting for survey design 

features, but no SEs or CIs are reported, nor are design effect sizes (DEFFs). In contrast, US 
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P-60 reports do provide information about SEs and the statistical significance of Gini index 

and quintile group share changes in their main tables (see, e.g., Guzman and Kollar, 2023, 

Figure 3). The associated technical documentation (US Census Bureau, 2023, especially 

Appendix H) explains how SEs are derived using a replicate method that accounts for sample 

design features.  

 The research reviewed in §2.6 shows the semiparametric asymptotic approach 

provides improved inference over the conventional asymptotic approach and we have shown 

that it is relatively straightforward to implement. Statistical agencies and other practitioners 

could therefore account for the heavy-tailed nature of the income data in their household 

surveys relatively easily. Moreover, observe that the methods we have used can be 

generalized to address survey design features such as clustering and stratification, with 

limited additional computational burden, by employing suitable bootstrap methods. Alfons et 

al. (2013) demonstrate this point.  

 On the other hand, arguably the Department for Work and Pensions’s rounding of 

their Gini estimates to two decimal places provides a straightforward and transparent way to 

guard against unwarranted claims of statistically significant inequality differences. That is, 

consider a naïve inference rule that is ‘count a one percentage point difference in rounded 

Ginis as significant’. If the rule worked, we would not find differences in rounded Ginis of 

one percentage point that are statistically insignificant. How well does the rule work in 

practice? 

In our UK data, there are many one percentage point differences in rounded Ginis that 

are not statistically significant. (There are also many such differences that are statistically 

significant.) To take one example, there are 4 years for which the Gini estimate is one 

percentage point more than the 1989 Gini, which rounds to 32%, and all differences are non-

significant (relative to the 5% benchmark) according to the semiparametric asymptotic (and 

other approaches). Similarly, for the Theil index (not reported by the ONS ETB report), there 

are 7 years for which the index is one percentage point smaller than the 1992 estimate (19% 

when rounded), but the difference is not statistically significant.  

What if the naïve inference rule were changed to ‘count a two percentage point 

difference in rounded Ginis as significant’? According to the semiparametric asymptotic 

method, there are no non-significant differences for Gini coefficients and one non-significant 

difference for the Theil index (2010 and 2012). However, according to the Student-t 

approach, there are many more such cases. If the naïve inference rule is relaxed even further, 

to refer to differences of at least three percentage points in rounded Ginis, there remain many 
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differences that are assessed by the Student-t approach as non-significant relative to the 5% 

benchmark. There are even more such differences in rounded Theil indices according to both 

the Student-t and conventional asymptotic approaches. 

We therefore conclude that assessing the statistical significance of inequality 

differences using naïve rounding rules is unreliable. Of course, one percentage point 

differences in the Gini that are statistically significant are also likely not substantively 

significant. Atkinson, for example, has argued that “a three percentage point reduction in the 

Gini coefficient does not seem unreasonable as a criterion of salience” (2015, p. 54). 

However, salience defined thus does not necessarily imply statistical significance, as we have 

shown. Our view is that one should not discuss substantive significance without first 

considering statistical significance. 

 

 

5. Conclusions 

 

Using real-world data, we have adapted and road-tested recent proposals for improved 

inference about inequality differences. With 42 years of UK household survey data, we have 

confirmed the conclusions of Cowell and Flachaire (2007) that semiparametric methods 

provide more precise estimates than conventional asymptotic estimates. Using simulation 

analysis, they found that the semiparametric asymptotic approach provides similar inference 

conclusions to Davidson and Flachaire’s (2007) semiparametric percentile-t bootstrap 

approach. Using UK survey data, we find that the former provides more statistically 

significant test outcomes than the latter. Conclusions are most similar across these two 

approaches for middle-sensitive inequality indices like the Gini. 

We also find that the recently-proposed Student-t approach of Ibragimov et al. (2025) 

yields similar inferential outcomes to the conventional asymptotic approach when applied to 

UK data. Consistent with this, we note that in Ibragimov et al.’s application to pairwise 

differences in Gini coefficients between Moscow and 83 other Russian regions, “the 

conclusions of all the approaches – the asymptotic, [standard] bootstrap, permutation, and the 

t-statistic based robust tests – to testing equality of the Gini coefficients GM and GR agree 

among themselves” (2025, p. 401). 

In addition, we have shown how switching to a unit record data variant of the 

semiparametric approaches enables researchers to consider inference for a larger portfolio of 

inequality indices and to incorporate survey design features such as weights. It would be 
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straightforward to add additional inequality indices to the portfolio, e.g., S80/S20 (the ratio of 

the income share of the richest fifth to the income share of poorest fifth) which is reported by 

Eurostat, and the Palma ratio (ratio of the income share of the richest tenth to the income 

share of the poorest 40%). 

More research is needed about the statistical performance of the various approaches 

for two-sample tests. Most assessments of the statistical performance of semiparametric 

approaches have focused on one-sample tests, and yet two-sample tests are the most relevant 

for applied researchers. Student-t proponents have undertaken more two-sample tests but the 

performance comparisons between the Student-t and other methods have rarely included 

semiparametric methods, and none consider the semiparametric asymptotic approach. 

Another fruitful direction for future research is development of tests for multiple 

comparisons. As in all previous research on inequality differences, we have restricted 

ourselves to inference for pairwise comparisons and yet there is much interest in assessing 

hypotheses about upward or downward trends over multiple years.  

There also remain issues concerning how income data from household surveys should 

be trimmed to remove egregious influential outliers at the bottom and especially top of the 

distribution. More radical trimming than we have used runs the risk of dropping valid values 

and thence introducing bias. Trimming the top 1% and bottom 1% may make estimates 

robust to high-leverage outliers but inequality trends for the middle 98% of the distribution 

are unlikely to describe trends for the population as a whole: what is going on at the very top 

and the very bottom is important too. Relatedly, we have illustrated with our empirical 

application how Cowell and Flachaire’s (2007) remarks about the interconnectedness of 

inference and high-income outlier issues. For example, it is harder to obtain reliable inference 

for differences in top-sensitive indices like the GE(2) than for middle-sensitive indices like 

the Gini coefficient. 

New inference methods are also required given recent developments to address non-

sampling error, specifically the under-coverage of the top of the income range by household 

surveys. Unless addressed, this form of systematic error introduces under-estimation of 

inequality indices. To counter this problem, the UK Department for Work and Pensions has 

used a top-income adjustment – the ‘SPI’ adjustment – since 1992. The UK ONS recently 

introduced its own top-income adjustment building on the work of Burkhauser et al. (2018a, 

2018b) and Jenkins (2017), and it underpins recent ETB reports. Blanchet, Flores, and 

Morgan (2022) propose a general methodology for making top-income adjustments. For a 

recent review of methods and practice, see Jenkins (2022).  
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The distinctive feature of these top-income adjustments is that they use external 

information about top incomes taken from income tax administrative record data. By contrast, 

the current paper and the ‘improved inference’ literature we build on uses no external 

information: the Pareto distributions for top incomes are estimated from the household survey 

data to hand. To develop inference for inequality indices calculated from top-income adjusted 

survey data might involve a modification of the semiparametric approaches considered to 

date. It might entail fitting Pareto distributions to the administrative data (as in Jenkins 2017) 

rather than the survey data, and perhaps also using a bootstrap approach that resamples from 

the top incomes in the administrative data.  

 Developments such as these are only possible if suitable administrative record data on 

incomes are available, and that is not the case for most countries in the world. They must 

continue to rely on the household survey data that are available, and the findings of this paper 

remain relevant for this common situation. 
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Data Availability Statement 

 

Our research uses unit record data from the UK Office for National Statistics (ONS), ‘Effects 

of Taxes and Benefits on Household Incomes’ (ETB) datasets. The yearly datasets, covering 

1977–2018, are the versions of the ETB datasets that do not include the top-income 

adjustments discussed in the Conclusions section of the main text. (The newer ONS ETB 

datasets incorporating top-income adjustments are catalogued at the UK Data Service 

(UKDS): see https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=8856.)  

The ETB datasets we use were previously made available to registered users of the 

UK Data Service, with the following Study Numbers: 8683 (for years 2001–2017), 8660 

(2018), 7065 to 7081 (1977–1993), and 3657, 3780, 3948, 4070, 4398, 4401, and 4577 

(1994–2000). These datasets are currently ‘decatalogued’ but are available on request via the 

UKDS. First, you need to be a registered user of the UKDS: see 

https://ukdataservice.ac.uk/help/registration/registration-login-faqs/. Once registered, apply to 

the UKDS to access the datasets, citing the persistent identifier in the UKDS catalogue 

(https://beta.ukdataservice.ac.uk/datacatalogue/doi/?id=8683#!#1) and the Study Numbers for 

the years required. Requests will be passed on to the ONS to authorise. Once authorisation is 

granted, the UKDS will allow access to the datasets requested.  

 Stata do-file code used to produce the material reported in this paper is available on 

request from the authors. 

 

 

 

https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=8856
https://ukdataservice.ac.uk/help/registration/registration-login-faqs/
https://beta.ukdataservice.ac.uk/datacatalogue/doi/?id=8683#!%231
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Figure 1. UK income inequality, 1977–2018, by inequality index 
 

 
Notes. Authors’ calculations based on ONS ETB data using the conventional asymptotic 
approach. The data are described in more detail in Section 3. 
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Figure 2. 95% confidence intervals (as % of estimate) by inequality index and approach  
 

 

 

 
Notes. As for Figure 1.  
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Figure 3. Count of p-values under 5% for test of no inequality difference between every 
pair of years (1977–2018), by inequality index and approach  

 

 

 
 
Notes. As for Figure 1. The maximum count is 41. 
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Figure 4. Gini index: p-values for test of no inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by approach 

 

 
 
Notes. As for Figure 1. 
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Figure 5. Theil index: p-values for test of no inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by approach 

 

 
 
Notes. As for Figure 1. 
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Table 1. 95% confidence intervals (as % of estimate), 42-year averages, by inequality 
index and approach 

 

 
Asymptotic Semiparametric 

asymptotic 
Semiparametric 

bootstrap 
Student-t 

(8 groups) 
     
Gini 6.1 2.8 4.6 7.1 
MLD = GE(0) 13.1 6.6 10.8 15.2 
Theil = GE(1) 20.4 5.8 18.4 23.6 
Top 10% share 7.6 2.4 5.8 8.9 
Top 1% share 30.0 4.6 30.5 34.4 
GE(–1) 28.9 27.2 45.9 34.8 
GE(2) 46.6 10.5 60.5 54.6 
p90/p10 6.9 6.0 6.0 7.9 

 
Notes. As for Figure 1. Bootstrap confidence intervals calculated as per Davidson and 
Flachaire (2007, eqn. 17).  
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Appendix A. Sample numbers 
 
Table A1. Sample numbers before and after dropping extreme outliers, by year 

Year 
Number of 

households in 
LCFS 

Negative 
or zero 
income 

Income 
between 0 

and 1 

Top-
income 
outlier 

(2) + 
(3) + 

(4) as 
% of 

(1) 

Number of 
households in 

analysis 
sample 

Weighted 
number of 

individuals 

 (1) (2) (3) (4) (5) (6) (7) 
1977 7,193 11 3 0 0.19 7,179 19,797 
1978 6,996 7 2 0 0.13 6,987 18,939 
1979 6,768 8 0 0 0.12 6,760 18,202 
1980 6,942 9 3 0 0.17 6,930 18,799 
1981 7,520 8 1 0 0.12 7,511 20,462 
1982 7,420 7 2 1 0.13 7,410 19,900 
1983 6,964 9 0 0 0.13 6,955 18,412 
1984 7,077 9 0 0 0.13 7,068 18,498 
1985 7,007 6 0 0 0.09 7,001 18,140 
1986 7,175 7 0 1 0.11 7,167 18,285 
1987 7,395 1 0 0 0.01 7,394 18,723 
1988 7,264 7 1 1 0.12 7,255 18,244 
1989 7,406 6 1 0 0.09 7,399 18,526 
1990 7,038 12 0 0 0.17 7,026 17,333 
1991 7,054 6 0 0 0.09 7,048 17,063 
1992 7,417 10 2 0 0.16 7,405 18,144 
1993 6,975 7 2 0 0.13 6,966 17,236 
1994 6,849 16 0 0 0.23 6,833 16,550 
1995 6,794 11 0 0 0.16 6,783 16,532 
1996 6,413 9 0 0 0.14 6,404 57,712 
1997 6,409 6 0 0 0.09 6,403 58,089 
1998 6,629 14 1 0 0.23 6,614 58,215 
1999 7,096 26 2 0 0.39 7,068 58,449 
2000 6,634 20 0 0 0.30 6,614 58,691 
2001 7,466 31 1 0 0.43 7,434 58,790 
2002 6,926 31 1 1 0.48 6,893 57,700 
2003 7,047 22 2 1 0.35 7,022 57,945 
2004 6,794 15 1 0 0.24 6,778 58,059 
2005 6,778 11 1 0 0.18 6,766 58,014 
2006 6,387 18 2 1 0.33 6,366 58,457 
2007 6,108 15 3 1 0.31 6,089 59,300 
2008 5,764 14 5 1 0.35 5,744 60,307 
2009 5,575 18 0 0 0.32 5,557 60,550 
2010 5,253 10 1 0 0.21 5,242 61,408 
2011 5,672 13 0 0 0.23 5,659 61,335 
2012 5,456 12 1 1 0.26 5,442 62,805 
2013 5,089 22 0 0 0.43 5,067 63,155 
2014 5,095 19 0 0 0.37 5,076 63,514 
2015 4,912 20 0 0 0.41 4,892 63,704 
2016 5,041 21 0 0 0.42 5,020 64,243 
2017 5,407 23 0 0 0.43 5,384 64,350 
2018 5,473 24 2 0 0.48 5,447 64,801 

Average 6,540 13.60 0.95 0.21 0.23 6,525 41,366 
Notes. Income is equivalized household disposable income (£ per week) among individuals derived from yearly 
UK Living Costs and Food Survey (LCFS) data. Top income outliers are those for which the highest income is 
at least twice as large as the next highest income. Before 1996, the LCFS weights referred only to the number of 
persons per household. From 1996 onwards, the weights also include ‘grossing up’ factors to adjust to the UK 
private household population (weighted totals refer to millions of individuals). The analysis reported in the main 
text is based on the trimmed samples with the yearly numbers shown in columns (6) and (7).  
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Appendix B. UK income inequality, 1977–2018, by index and approach 
 
 
Figure B1. UK income inequality, 1977–2018, by index and approach 
 

 
Notes. As for Figure 1. The (conventional) asymptotic series is the same as shown in Figure 
1. The series for the semiparametric bootstrap is identical to that series (by construction – see 
main text) and thus not shown. The derivations of the semiparametric asymptotic and 
Student-t series (8 groups) are explained in Section 2. 
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Figure B2. GE(–1): estimates by year and approach 
 

 
 
Notes. As for Figure B1. 
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Figure B3. GE(2): estimates by year and approach 
 

 
 
Notes. As for Figure B1. 
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Appendix C. Test p-values for additional indices 
 
Figure C1. MLD = GE(0): Count of p-values under 5% for test of no inequality 

difference between every pair of years (1977–2018), by approach 
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Figure C2. MLD = GE(0): p-values for test of no inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by approach 
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Figure C3. Share of top 10%: count of p-values under 5% for test of no inequality 
difference between every pair of years (1977–2018), by approach 
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Figure C4. Share of top 10%: p-values for test of no inequality difference between year 
A ∈ {1977, 1990, 2006, 2018} and every other year (B), by approach 
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Figure C5. Share of top 1%: count of p-values under 5% for test of no inequality 
difference between every pair of years (1977–2018), by approach 

 

 
 
  

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r o

f y
ea

rs
 w

ith
 p

-v
al

ue
 <

 5
%

1977 1982 1987 1992 1997 2002 2007 2012 2017

Asymptotic Semipar. asymptotic Semipar. bootstrap Student-t

Top 1% share



C-6 

Figure C6. Share of top 1%: p-values for test of no inequality difference between year A 
∈ {1977, 1990, 2006, 2018} and every other year (B), by approach 
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Figure C7. p90/p10: count of p-values under 5% for test of no inequality difference 
between every pair of years (1977–2018), by approach 
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Figure C8. p90/p10: p-values for test of no inequality difference between year A ∈ {1977, 
1990, 2006, 2018} and every other year (B), by approach 
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Figure C9. GE(–1): count of p-values under 5% for test of no inequality difference 
between every pair of years (1977–2018), by approach 
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Figure C10. GE(–1): p-values for test of no inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B), by approach 
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Figure C11. GE(2): count of p-values under 5% for test of no inequality difference 
between every pair of years (1977–2018), by approach 
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Figure C12. GE(2): p-values for test of no inequality difference between year A ∈ {1977, 
1990, 2006, 2018} and every other year (B), by approach 
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Appendix D. Test p-values for Gini and Theil index comparisons: ptail = 1% 
 
 
Figure D1. Gini index: p-values for test of no inequality difference between year A ∈ 

{1977, 1990, 2006, 2018} and every other year (B) 
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Figure D2. Theil index: p-values for test of no inequality difference between year A ∈ 
{1977, 1990, 2006, 2018} and every other year (B) 
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