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Abstract 

Africa is the world’s least electrified continent, home to three-quarters of the global population 

without electricity. Electricity generation in African countries today relies heavily on fossil 

fuels and hydropower, despite the continent’s abundant potential for the most widely accessible 

renewable energy sources—wind and solar, as Africa is the sunniest continent in the world and 

has many windy sites. Africa is also very vulnerable to climate change due to relatively low 

levels of local socio-economic development. Renewable energy is recognized as an important 

solution for Africa to address both climate change mitigation and electricity access. Reliable 

and highly resolved information on Renewable Energy Potential (REP) is imperative to support 

renewable power plant expansion. However, existing meteorological data sets over Africa used 

for REP estimates are often characterized by relatively coarse spatial resolution, data gaps in 

space and time, and general data quality issues. This challenges the reliability and accuracy of 

existing REP estimates, as well as the modelling of energy systems that include renewable 

energy. 

To overcome the existing meteorological data set challenges for renewable energy applications 

in Africa, the ICOsahedral Nonhydrostatic (ICON) Numerical Weather Prediction (ICON-

NWP) model in its Limited Area Mode (ICON-LAM) is implemented and run over southern 

Africa as a prototype for the continent. The ICON model is configured in a hindcast dynamical 

downscaling setup at a convection-permitting 3.3 km spatial resolution. The simulation time 

span covers contrasting solar and wind weather years from 2017 to 2019. To assess the 

suitability of the novel simulations for REP estimates, the simulated hourly 10 m wind speed 

(sfcWind) and hourly surface solar irradiance (rsds) are extensively evaluated against a large 

compilation of in-situ observations, satellite, and composite data products. ICON-LAM 

reproduces the spatial patterns, temporal evolution, the variability, and absolute values of 

sfcWind sufficiently well, albeit with a slight overestimation and a mean bias (mean error (ME)) 

of 1.12 m s-1 over land. Likewise the simulated rsds with an ME of 50 W m-2 well resembles 

the observations. 

In this work, the simulated 60 m wind speeds (ws60m) from the ICON-LAM simulation and 

the often-used 31 km-resolution ERA5 reanalysis are also evaluated against measurements at 

18 weather masts. The wind power calculated from these simulated wind speed data sets is also 

compared with measurements at existing wind farms in South Africa. The estimated wind 

energy potential (WEP) based on ICON-LAM and ERA5 are finally compared using an 

innovative approach with 1.8 million eligible wind turbine placements over southern Africa. 

Results show ERA5 underestimates ws60m with a Mean Error (ME) of -1.8 m s-1 (-27%). In 

contrast, ICON-LAM shows a ME of -0.1 m s-1 (-1.8%), resulting in a much higher average 

WEP by 48% compared to ERA5. A combined Global Wind Atlas-ERA5 product reduces the 

ws60m underestimation of ERA5 to -0.3 m s-1 (-4.7%), but shows a similar average WEP 

compared to ERA5 resulting from the WEP spatial heterogeneity. ICON-LAM also reproduces 

the observed wind power better than the others, further consolidating the reliability of its 

derived WEP. Underestimating wind energy yields may hinder the expansion of wind energy, 
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as less economic performance is expected, which underlines the importance of highly resolved 

meteorological data. 

Increasing the share of renewable energy in African energy systems is imperative and urgent 

to address climate change mitigation and access to electricity. This thesis also investigates the 

impact of the high-resolution ICON-LAM simulations on energy system modelling for 

southern Africa. An energy system design, encompassing wind energy, solar energy, and battery 

storage, is derived exemplarily to meet 100% of the local electricity demand, cost-optimized, 

for each administrative province in southern Africa. Different meteorological data sets, 

including ICON-LAM as well as the commonly used ERA5 and its variant, are utilized and 

compared to derive cost-optimized energy systems. The results show significant differences in 

the wind energy potentials derived from different meteorological data sets, while similar solar 

energy potentials are found. Cost-optimized energy systems when using ICON-LAM 

meteorological inputs require less total annual cost (approx. 14%) and battery capacity (approx. 

13%) compared to the other energy system solutions using different meteorological input 

datasets. This suggests that the cost of renewable energy systems may have been overestimated 

in the past, potentially also hindering its local development. The study further emphasizes the 

importance of using high-resolution, alternative, atmospheric modelling data sets as a decisive 

input for energy system modelling. 

Overall, our results show that the ICON model is able to reproduce the renewable energy 

related variables and basic atmospheric flows in southern Africa. Compared to other commonly 

used data sets, the ICON simulations reveal higher wind energy potentials, and cost-optimized 

energy systems based on these simulations require lower total annual costs and battery capacity. 

These findings are critical for local renewable energy development, as renewable energy 

potentials may have long been underestimated and the costs of building renewable energy-

based energy systems overestimated in southern Africa. Further tuning of physical 

parameterization schemes specifically for southern Africa may improve the performance of the 

ICON simulation. Adapting a more sophisticated energy system that includes the real-world 

power grid and various energy-using sectors may also improve the accuracy of the energy 

system modelling performed in this study. 
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Zusammenfassung 

Afrika ist der am wenigsten elektrifizierter Kontinent der Welt und beherbergt drei Viertel der 

Weltbevölkerung ohne Strom. Die Stromerzeugung in den afrikanischen Ländern hängt 

größtenteils von fossilen Brennstoffen und Wasserkraft ab, obwohl der Kontinent über ein 

großes Potenzial für die am leichtesten zugänglichen erneuerbaren Energiequellen verfügt - 

Wind- und Solarenergie, da Afrika der sonnenreichste Kontinent der Welt ist und über viele 

windreiche Standorte verfügt. Außerdem ist Afrika aufgrund des geringen sozioökonomischen 

Entwicklungsstandes der Bevölkerung sehr anfällig für den Klimawandel. Erneuerbare 

Energien gelten als wichtige Lösung für Afrika, um sowohl den Fortschritt des Klimawandels 

zu verlangsamen als auch den Zugang zu Elektrizität zu erhöhen. Zuverlässige und 

hochaufgelöste Informationen über das Potenzial erneuerbarer Energien (REP) sind 

unerlässlich, um den Ausbau erneuerbarer Kraftwerke zu unterstützen. Bestehende 

meteorologische Datensätze über Afrika, die für REP-Schätzungen verwendet werden, sind 

jedoch häufig durch eine relativ grobe räumliche Auflösung, räumliche und zeitliche 

Datenlücken und allgemeine Probleme mit der Datenqualität gekennzeichnet. Dies stellt eine 

Herausforderung für die Zuverlässigkeit und Genauigkeit der bestehenden REP-Schätzungen 

sowie für die Modellierung von Energiesystemen miterneuerbaren Energien. 

Um die bestehenden Herausforderungen mit meteorologischen Datensätzen für Anwendungen 

im Bereich der erneuerbaren Energien in Afrika zu überwinden, wurde das ICOsahedral 

Nonhydrostatic (ICON) Numerical Weather Prediction (ICON-NWP) Modell in seinem 

Limited Area Mode (ICON-LAM) implementiert und über dem südlichen Afrika als Prototyp 

für den Kontinent angewandt. Das ICON-Modell wird in einem dynamischen Hindcast-

Downscaling-Setup mit einer konvektionsgeeigneten räumlichen Auflösung von 3,3 km 

konfiguriert. Die Simulationszeitspanne umfasst unterschiedliche Sonnen- und Windjahre von 

2017 bis 2019. Um die Eignung der neuartigen Simulationen für REP-Schätzungen zu 

beurteilen, werden die simulierte stündlich aufgelößte 10-m-Windgeschwindigkeit (sfcWind) 

und die stündliche Oberflächensonneneinstrahlung (rsds) ausführlich anhand einer großen 

Sammlung von In-situ-Beobachtungen, Satelliten- und zusammengesetzten Datenprodukten 

bewertet. ICON-LAM reproduziert die räumlichen Muster, die zeitliche Entwicklung, die 

Variabilität und die absoluten Werte von sfcWind ausreichend gut, wenn auch mit einer leichten 

Überschätzung und einer mittleren Abweichung (mittlerer Fehler (ME)) von 1,12 m s-1 über 

Land. Auch das simulierte rsds mit mittlerer Abweichung von 50 W m-2 bildet die 

Beobachtungen gut nach. 

In dieser Arbeit werden die simulierten 60-m-Windgeschwindigkeiten (ws60m) aus der ICON-

LAM-Simulation und der häufig verwendeten ERA5-Reanalyse mit 31 km Auflösung auch 

anhand von Messungen an 18 Wettermasten bewertet. Die aus diesen simulierten 

Windgeschwindigkeitsdatensätzen berechnete Windleistung wird auch mit Messungen an 

bestehenden Windparks in Südafrika verglichen. Das geschätzte Windenergiepotenzial (WEP) 

auf der Grundlage von ICON-LAM und ERA5 wird schließlich anhand eines innovativen 

Ansatzes mit 1,8 Millionen geeigneten Windturbinenplatzierungen im südlichen Afrika 

verglichen. Die Ergebnisse zeigen, dass ERA5 ws60m mit einem mittleren Fehler (ME) von -
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1,8 m s-1 (-27%) unterschätzt. Im Gegensatz dazu zeigt ICON-LAM einen ME von -0,1 m s-1 

(-1,8%), was zu einem um 48% höheren durchschnittlichen WEP im Vergleich zu ERA5 führt. 

Ein kombiniertes Global Wind Atlas-ERA5 Produkt reduziert die Unterschätzung des ws60m 

von ERA5 auf -0.3 m s-1 (-4.7%), zeigt allerdings einen ähnlichen durchschnittlichen WEP im 

Vergleich zu ERA5, was auf die räumliche Heterogenität des WEP zurückzuführen ist. ICON-

LAM reproduziert auch die beobachtete Windenergie besser als die anderen Modelle, was die 

Zuverlässigkeit der abgeleiteten WEP weiter untermauert. Eine Unterschätzung der 

Windenergieerträge kann den Ausbau der Windenergie behindern, da eine geringere 

wirtschaftliche Leistung erwartet wird, was die Bedeutung hoch aufgelöster meteorologischer 

Daten unterstreicht. 

Die Erhöhung des Anteils erneuerbarer Energien in den afrikanischen Energiesystemen ist 

zwingend erforderlich und dringend notwendig, um den Klimawandel abzumildern und den 

Zugang zu Elektrizität zu gewährleisten. In dieser Arbeit wurden auch die Auswirkungen der 

hochauflösenden ICON-LAM-Simulationen auf die Modellierung des Energiesystems im 

südlichen Afrika untersucht. Ein Energiesystem, das Windenergie, Solarenergie und 

Batteriespeicher umfasst, wird so kostenoptimiert, dass 100% des lokalen Strombedarfs für 

jede Provinz im südlichen Afrika gedeckt werdenn. Verschiedene meteorologische Datensätze, 

darunter ICON-LAM sowie der üblicherweise verwendete ERA5-Datensatz und seine 

Varianten, werden verwendet und verglichen, um kostenoptimierte Energiesysteme abzuleiten. 

Die Ergebnisse zeigen signifikante Unterschiede in den Windenergiepotenzialen, die aus den 

verschiedenen meteorologischen Datensätzen abgeleitet wurden, während für die Solarenergie 

ähnliche Potenziale gefunden wurden. Kostenoptimierte Energiesysteme, die aus ICON-LAM 

abgeleitet wurden, erfordern im Vergleich zu den anderen weniger jährliche Gesamtkosten (ca. 

14%) und Batteriekapazität (ca. 13%). Dies deutet darauf hin, dass die Kosten für erneuerbare 

Energiesysteme in der Vergangenheit möglicherweise stark überschätzt wurden, was ihre 

lokale Entwicklung behindert hat. Dies unterstreicht die Bedeutung der Verwendung 

hochauflösender, physikalisch konsistenter atmosphärischer Modellierungsdatensätze für die 

Modellierung von Energiesystemen. 

Insgesamt zeigen unsere Ergebnisse, dass das ICON-Modell in der Lage ist, die mit 

erneuerbaren Energien verbundenen Variablen und die grundlegenden atmosphärischen 

Strömungen im südlichen Afrika zu reproduzieren. Im Vergleich zu anderen üblicherweise 

verwendeten Datensätzen zeigen die ICON-Simulationen ein höheres Windenergiepotenzial, 

und kostenoptimierte Energiesysteme, die auf diesen Simulationen basieren, erfordern 

geringere jährliche Gesamtkosten und Batteriekapazitäten. Diese Ergebnisse sind für die 

Entwicklung erneuerbarer Energien vor Ort von entscheidender Bedeutung, da die Potenziale 

erneuerbarer Energien im südlichen Afrika lange Zeit unterschätzt und die Kosten für den Bau 

von Energiesystemen auf der Grundlage erneuerbarer Energien überschätzt wurden. Eine 

weitere Abstimmung der physikalischen Parametrisierungsschemata speziell für das südliche 

Afrika könnte die Leistung der ICON-Simulation verbessern. Die Anpassung eines 

anspruchsvolleren Energiesystems, das das reale Stromnetz und verschiedene 

energieverbrauchende Sektoren umfasst, könnte die Genauigkeit der in dieser Studie 

durchgeführten Modellierung des Energiesystems ebenfalls verbessern.  
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Chapter 1. Introduction 

Over the past 100 years, fossil fuels have enormously powered our world, playing a crucial 

role in enhancing the quality of life for billions of people around the world (Epstein, 2014; Hall, 

2017). However, burning carbon-rich fossil fuels releases massive amounts of greenhouse 

gases—carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), and water vapor (H₂O)—

into the atmosphere, making the burning of carbon-rich fossil fuels the primary cause of the 

increased concentration of greenhouse gases compared to pre-industrial levels (Hafner et al., 

2018; Raupach & Fraser, 2011). These greenhouse gases emitted by human activities have been 

identified as the most significant driver of observed climate change since the mid-20th century 

(Arias et al., 2021). Nowadays, many of the observed climate changes, such as rising global 

temperatures and extreme weather events, are unprecedented in thousands or hundreds of 

thousands of years, with widespread, rapid, and intensifying trends that pose significant threats 

(Intergovernmental Panel on Climate Change, 2021). 

To mitigate climate change and avoid exhausting unsustainable fossil fuels, many countries 

have pledged to achieve carbon neutrality by gradually phasing out fossil fuels and significantly 

increasing the use of renewable energy (Zhou, 2023). Several grand and impactful policies 

have been initiated by countries around the world, such as the Green Deal from the European 

Commission (European Commission, 2019), the Carbon Peak and Carbon Neutrality in China 

(Wang et al., 2021), and net zero emission target set by America (The White House, 2021).  

African countries present special cases. As the least electrified continent, Africa is home to 

three-quarters of the global population without electricity—about 600 million people in 2022—

a number that has returned to historic highs due to the energy crisis and the COVID-19 

pandemic (International Energy Agency, 2022). Meanwhile, Africa is the fastest-growing 

continent in terms of population, with one-fourth of the global population projected to be 

African by 2050 (Siegel, 2021). This rapid population growth may further deepen the current 

electricity supply gap if effective interventions are not implemented. 

Despite contributing very little to the increased greenhouse gases in the atmosphere—only 

about 4% (Ayompe et al., 2021)—Africa is marked as the most vulnerable region to climate 

change (Caretta et al., 2022), primarily due to the limited capacity to buffer themselves from 

disasters. Mitigation actions and/or strategies for addressing climate changes are therefore even 

more urgent to plan and to execute in Africa. Renewable energy is widely recognized as one of 

the paramount solutions for Africa (Oyewo et al., 2023). Renewable energy helps reduce 

Africa’s carbon footprint, at the same time, bringing electricity to the continent. Abundant 

untapped renewable energy potentials exist in Africa (Amir & Khan, 2021; Hafner et al., 2018), 

making renewable energy a viable solution to bridge the electricity supply gap. Furthermore, 

the distributed renewable energy in the form of local mini-grids connected or stand-alone 

power plants also provides a cost-effective solution to reach considerable amounts of rural 

Africans, when connecting them through building a traditional centralized power grid is 

economically unrealistic (International Energy Agency, 2022). 
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In 2023, Africa produced 869.65 terawatt-hours of electricity, with 76% coming from fossil 

fuels and only 24% from renewable energy (Ember, 2024). Despite being the sunniest continent 

(Duah & Asamoah, 2018), only 3% of Africa’s electricity is generated by solar energy. 

Hydropower is the most heavily used renewable energy technology in Africa, accounting for 

17% of the total electricity generation. Achieving a balance between addressing energy poverty 

to support African economic growth using fossil fuel-fired power plants, while also pursuing 

decarbonization, poses a significant challenge for African countries. However, large 

installations of renewable energy power plants are expected in Africa’s near future and many 

African countries have already been increasingly adopting clean energy initiatives to harness 

the vast Renewable Energy Potential (REP) (Adelaja, 2020). 

Wind and solar energy are the most widely accessible renewable energy technologies, 

compared to others like biomass, hydropower, and geothermal energy (López Prol & Schill, 

2021). Due to their dependence on weather conditions, they are categorized as variable 

renewable energy (Schaber et al., 2012). Variable renewable energy technologies are the 

renewable energy sources that are focused on in this thesis. Global wind (GWA, 2019) and 

solar (GSA, 2019) atlas indicate higher wind and solar energy potentials in both northern and 

southern parts of Africa. Given its proximity to Europe, dedicated efforts have been made to 

analyse northern Africa’s REP also in terms of import options for Europe (Benasla et al., 2018; 

Trieb et al., 2016). In this study, we focus on southern Africa as a prototype for the entire 

continent to help harness the potential and increase access to electricity for local benefits. 

According to the latest estimates, the technical potential of open-field solar photovoltaic energy 

is approximately 97 TWpeak and onshore wind energy 14 TWpeak (Ishmam et al., 2024; 

Winkler et al., 2025) in the Southern African Science Service Centre for Climate Change and 

Adaptive Land Management (SASSCAL) countries Angola, Botswana, Namibia, South Africa, 

and Zambia. SASSCAL countries now heavily rely on coal-fired power (South Africa and 

Botswana) and hydropower (Namibia, Angola, and Zambia) (Ember, 2024), despite the 

existence of many sunny and windy sites, as  can be deduced from energy potential maps (GWA, 

2019; GSA, 2019; Ishmam et al., 2024; Winkler et al., 2025). To identify these high potential 

sites to expand the current renewable energy installation, reliable and highly resolved REP 

information is imperative. 

However, using meteorological data sets for REP estimates over Africa is currently challenging. 

Due to data scarcity, coarse global reanalysis products like the state-of-the-art global reanalysis 

ERA5 (Hersbach et al., 2020), which has a spatial resolution of 31 km, are frequently employed 

to derive REP maps in Africa (Bloomfield et al., 2022; Jánosi et al., 2021). Meteorological data 

sets with coarse spatial resolution may be useful for broad-scale analysis and general trend 

identification. However, significant variations within a grid cell are averaged out in these data 

sets, making them inadequate for high-resolution applications that require great local detail. 

Statistical downscaling methods are sometimes used to overcome the coarse spatial resolution 

issue in REP-related applications over Africa (Sterl et al., 2022). However, its limited 

representation of physical processes typically results in an inability to capture local weather or 
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climate phenomena, extremes, and emerging patterns under changing climatic conditions, 

despite being computationally efficient (Xu et al., 2019; L. Zhang et al., 2020). High-resolution, 

physically consistent data sets for REP estimates are missing, and the impact of using high-

resolution versus coarse-resolution data sets on REP estimates remains unknown. In addition 

to REP information, which is usually expressed in long-term averages over many years, power 

time series are also crucial for optimizing renewable energy systems. Unfortunately, global 

wind and solar energy potential atlases typically do not include time-varying REP information 

(GWA, 2019; GSA, 2019). 

Regional dynamical downscaling is a well-known way to bridge the gap between available but 

coarse model-based data and the high-resolution data needed in practice (Tapiador et al., 2020). 

It involves a physically consistent simulation of atmospheric processes at a regional scale, 

achieving higher spatial resolution (hereafter regional atmospheric modelling) (Giorgi, 2020). 

Coarser simulations from a larger or global model domain often serve as the initial and time-

varying (lateral) boundary conditions (Caldwell et al., 2009; Laprise, 2008) in regional 

atmospheric modelling. When the horizontal grid spacing is reduced to below 4 km, regional 

atmospheric modelling is considered convection-permitting (Prein et al., 2015). Recent 

overviews (Giorgi, 2019; Lucas‐Picher et al., 2021; Prein et al., 2015; Schär et al., 2020) have 

documented the advantages of high-resolution convection-permitting atmospheric modelling, 

which include more realistic depiction of surface terrain and better resolution of atmospheric 

dynamics and interactions between atmosphere and land surface. 

This study aims to help close the power supply gap in Africa by producing reliable and highly 

resolved estimates of REP for wind and solar energy. It is hypothesized that reliable and highly 

resolved REP estimates can be achieved by using convection-permitting kilometre-scale, 

physically consistent model-based data sets with wind and solar energy potential modelling. A 

high-resolution regional atmospheric model is set up at a convection-permitting scale of 3.3 

km with the ICOsahedral Non-hydrostatic (ICON) model (Zängl et al., 2015) over southern 

Africa. ICON is a state-of-the-art atmospheric modelling system and is currently in operational 

use for weather forecasting at several national weather services. A model comparison study 

shows that ICON has good forecasting skill scores (Magnusson et al., 2022). The wind and 

solar REPs are estimated using the Renewable Energy Simulation toolkit (RESKit) model 

(Ryberg, 2020; Ryberg et al., 2019) based on the meteorological data set simulated by the ICON 

model. The RESKit model has been used and proven to be trustworthy in several energy system 

modelling-related works (Patil et al., 2022; Pena Sanchez et al., 2021; Pueblas et al., 2023). 

This study then compares the estimated wind and solar REPs with available alternatives—

ERA5 and its variant—over southern Africa, highlighting differences based on the high-

resolution, physically consistent model-based data set. Further investigations explore the 

impacts on energy systems design using this simulated high-resolution data set compared to 

others. 

The overarching goals of this PhD thesis are to: 
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(1) implement and execute high-resolution regional atmospheric modelling using the ICON 

model over southern Africa, and conduct a thorough evaluation of the simulation’s performance 

in reproducing renewable energy-related variables as well as basic weather/climate variables, 

comparing them against observations. 

(2) evaluate the simulated wind speed at the wind turbine hub height and the calculated wind 

power by comparing them to measurements, then calculate the spatially distributed wind 

energy potential based on the ICON simulations and compare it to other widely used wind 

energy potential products. 

(3) investigate the impact of the high-resolution data set from ICON simulations on energy 

systems modelling. This investigation places special emphasis on the cost of building a cost-

optimized energy system, the design of such a system, and the operational time series. 

Chapter 2 provides an overview of the models used in this study. It comprises the basic 

introduction and specifics of the atmospheric model ICON, as well as detailed information 

about the wind and solar power simulation workflows in the RESKit model. 

Chapter 3 deals with the dedicated ICON high-resolution atmospheric modelling for renewable 

energy applications over southern Africa. It first gives a review about the available 

meteorological data sets that have been used or can be used for wind and solar REP estimates. 

It then examines the advantages, disadvantages, limitations, and applicability of these data sets 

across the African continent, categorized by the data sets’ type. This chapter also details the 

configurations of the dedicated regional atmospheric modelling for REP estimates using the 

ICON model in Limited Area Mode (ICON-LAM). Comprehensive spatial and temporal 

evaluation procedures are conducted for the ICON-LAM outputs of surface wind speed and 

surface solar irradiance, and the simulation performance of ICON-LAM is compared and 

discussed with other data sets. The basic weather/climate variables of air temperature and 

precipitation are also briefly examined in the evaluation as, to the best of our knowledge, this 

is the first time the ICON model has been run regionally over southern Africa. 

Chapter 4 focuses on examining the simulation performance of the ICON model when applied 

to wind energy. Compared to the surface wind speed, the wind energy industry is more 

interested in the wind speed at upper atmosphere heights, where the rotors of the wind turbines 

are located. The simulated wind speed from ICON-LAM, ERA5, and ERA5’s variant are 

evaluated against the wind speed measured by weather masts at 60 m, which is the highest 

available wind speed measurement height in southern Africa. Wind power simulation using the 

RESKit model based on the evaluated wind speed products are performed over existing wind 

farms in South Africa and validated against measurements. Wind energy potentials are further 

estimated by RESKit using an innovative approach adopted from a state-of-the-art work with 

1.8 million eligible wind turbine placements employed in southern Africa and are compared 

between different wind speed driven products. 

Chapter 5 shifts the focus to energy system modelling and aims to investigate the implications 
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of the ICON simulations for determining the cost-optimized energy system in southern Africa. 

The wind and solar energy potentials calculated by the RESKit model based on different 

meteorological products are compared using eligible power plant placements in southern Africa. 

Under the assumption of perfect power transmission from power plants to consumers, the 

shares of wind energy, solar energy, and battery storage in the energy system are designed in 

the way that the total available system power could meet 100% of the local electricity 

demand—the projected electricity demand for the year 2050—in a cost-optimized way for each 

province in southern Africa. The different costs and designs of these cost-optimized energy 

systems derived from different meteorological data sets are analysed and compared. 

Investigations into the operational time series of the cost-optimized energy system, in terms of 

the met electricity demand shares from wind energy, solar energy, and batteries, are further 

conducted and compared based on different driven meteorological data sets. 

Finally, Chapter 6 discusses and concludes the main findings, and provides an outlook for 

necessary future research. 
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Chapter 2. Theory 

2.1 Atmospheric model ICON 

Atmospheric motions are governed by three fundamental physical principles: conservation of 

mass, conservation of momentum (Newton’s second law), and conservation of energy (Holton 

& Hakim, 2013). These principles lead to the basic governing equations of atmospheric motion: 

the continuity equation, the equation of motion, the first law of thermodynamics, and the 

equation of state. Modelling the Earth’s atmosphere requires solving these governing equations, 

which describe the dynamics and thermodynamics of the atmosphere. Numerical Weather 

Prediction (NWP) is an initial value problem where the initial state of the atmosphere is used 

with prognostic equations to predict the state of the atmosphere at some time in the future. The 

simulation of the atmosphere therefore emphasizes two aspects: the initial state and the 

prognostic equations solving, and both aspects are very active in research today. One way to 

better sample the initial state of the atmosphere is to assimilate as many observations as 

possible, while multiple ways exist to approximate the solution to prognostic equations. 

The mathematical equations of atmospheric dynamics and thermodynamics that govern 

atmospheric motion are nonlinear partial differential equations and cannot be solved exactly 

by analytical methods (Strikwerda, 2004) except in a few idealized cases (Pielke Sr, 2013). 

NWP may obtain the approximate solution of the motion equations using spectral methods, 

which approximate the solution as a sum of certain basis functions (e.g., Fourier series is a sum 

of sinusoids), and/or the finite difference methods, which discretize the differential equations 

into partial derivatives and approximate each one using algebraic equations with finite 

differences (Strikwerda, 2004). Even with the capacity of today’s supercomputers, the weather 

forecast runs only about two weeks into the future because the density and quality of the 

assimilated observations and the chaotic nature of solving the partial differential equations 

introduce forecast errors that double every five days (Weickmann et al., 2007). 

Depending on the simulated scale, an atmospheric model can predict or reproduce microscale 

phenomena such as boundary layer eddies and tornadoes, sub-microscale turbulent flows over 

buildings, as well as large-scale synoptic and global flows. The horizontal coverage of a model 

is either global, for the entire Earth, or regional, for a limited area of the Earth. With a century 

of development in NWP beginning in the 1920s (Lynch, 2008), atmospheric models have 

evolved from relatively simple models with strong assumptions such as thermotropic and 

barotropic models (Gates, 1955) to sophisticated hydrostatic and non-hydrostatic models 

(Jacobson, 2002), along with continuously increasing computational power. 

Hydrostatic atmospheric models replace the vertical momentum equation with the hydrostatic 

equilibrium under the assumption that the upward pressure gradient force is balanced by the 

downward gravitational pull of the Earth (Hargreaves, 1992), assuming a complete equilibrium 

between the gravity force and the pressure force in the atmosphere. This assumption filters out 

the vertically moving acoustic waves from the vertical momentum equation, thus significantly 

reducing model simulation time. It is a good approximation for synoptic and sub-synoptic 
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scales of motion. Hydrostatic equilibrium has been used successfully in the European Centre 

for Medium-Range Weather Forecasts (ECMWF) NWP model for 30 years back to 2010 (Wedi 

& Malardel, 2010), however, it fails when the horizontal grid spacing becomes finer and when 

the model has to resolve motions with similar horizontal and vertical scales, typically at the 10 

km horizontal scale resolved on a grid spacing of the order of 2 km (Wedi & Malardel, 2010). 

In these cases of higher spatial resolution, a non-hydrostatic model is required, where no 

hydrostatic equilibrium is assumed and the vertical momentum equation is solved explicitly, 

although the computational time is considerably increased. The calculation time step and its 

upper limit implied by Courant–Friedrichs–Lewy (CFL) condition (Gnedin et al., 2018) for a 

non-hydrostatic model shall be adjusted accordingly. 

The German Weather Service (DWD) is one of only 14 weather service centers in the world 

that operates a global NWP model (DWD, 2024), and the ICOsahedral Nonhydrostatic (ICON) 

model is their current NWP model. The ICON modelling framework (Zängl et al., 2015) is 

being developed primarily by DWD and the Max Planck Institute for Meteorology (MPI-M) to 

provide a unified set for the next generation global NWP and climate modelling system. The 

governing equations of the ICON model are fully compressible non-hydrostatic with a two-

component system of dry air and water, where water can be present in all three phases (Prill et 

al., 2022). 

The ICON model equips an unstructured triangular horizontal grid (Wan et al., 2013). The 

triangular grid structure is derived from an icosahedron and projected onto a sphere, resulting 

in 20 equilateral spherical triangles. Each individual global ICON grid is identified as RnBk, 

where “n” represents the number of divisions along the edges of the original icosahedron, 

followed by “k” subsequent edge bisections. Most of the variables in the ICON model are 

calculated based on the circumcentres of the triangles, while the horizontal velocity 

components are given at the edge midpoints (Prill et al., 2022). 

The vertical coordinates of the atmospheric models can be divided into three main classes: 

constant-height coordinates with a constant height interval propagated vertically, constant-

pressure coordinates with a constant pressure propagated vertically, and terrain-following 

coordinates (sigma-coordinate) based on either pressure or height that follow the contour of 

the land without a constant interval. Implementing a terrain-following coordinate clearly 

benefits the simulation of the lower boundary conditions, but it compromises the numerical 

accuracy of the horizontal pressure gradient at the same geometric height surface (Choi & 

Klemp, 2021). To mitigate this drawback, the hybrid terrain-following coordinate combines 

sigma-coordinates with constant-pressure or constant-height coordinates, such as the hybrid 

pressure/sigma vertical coordinate called the eta-coordinate used in the ECMWF Integrated 

Forecasting System (IFS). In non-hydrostatic models, the geometric height-varying vertical 

coordinate is preferred to the pressure-based coordinate (Prill et al., 2022). Two height-based 

terrain-following vertical coordinates hybrid Gal-Chen (Gal-Chen & Somerville, 1975; Klemp, 

2011; Simmons & Burridge, 1981) and SLEVE (Leuenberger et al., 2010; Schär et al., 2002) 

are available in the ICON model. 
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In the NWP models, the solution of the prognostic equations is based on a spatial and temporal 

grid. Processes that can be resolved explicitly at this grid scale (gridscale processes) do not 

include all existing phenomena in the atmosphere or at the surface. For a realistic simulation, 

processes with a spatio-temporal scale below the model grid resolution (sub-gridscale 

processes) require additional representations or so-called physical parameterizations. The 

ICON model provides 8 types of physical parameterizations for sub-gridscale processes of 

solar and thermal radiation, cloud microphysics, convection, cloud cover, turbulent transfer, 

non-orographic gravity wave drag, orographic drag, and land surface (including sea ice and 

lake models). These physical parameterization schemes are continuously updated to reflect the 

latest developments in the scientific publications. 

2.2 Renewable energy model RESKit 

The Renewable Energy Simulation toolkit for Python (RESKit) is an open-source model 

(GitHub repository, 2019) developed by the Institute of Climate and Energy Systems - Jülich 

Systems Analysis (ICE-2), Forschungszentrum Jülich GmbH (Ryberg, 2020; Ryberg et al., 

2019). It is capable of estimating the power time series of onshore and offshore wind turbines 

as well as open-field solar photovoltaic systems, using the technical specifications of the 

respective wind and solar energy applications. Several weather data sets and their 

corresponding calibrations derived from validation of simulated power against observations 

can be used within the RESKit model. The RESKit model is able to simulate renewable energy 

systems in the context of singular units, but with the proper parallelization configuration, 

millions of individual turbines and photovoltaic systems can be simulated in a matter of 

minutes (on the right hardware). Output from the RESKit model usually aids in the simulation 

of renewable energy systems and serves as input to the broader-scale energy system design 

models (Caglayan et al., 2021; Ortiz-Imedio et al., 2021; Patil et al., 2022). 

2.2.1 RESKit wind workflow 

The wind workflow of the RESKit model deals with the wind power calculation over wind 

turbine locations. Necessary input parameters are the locations of the wind turbines with 

longitude and latitude records and the wind turbine technology used for each wind turbine with 

hub height, rotor diameter, and capacity. 

The RESKit model extracts weather variables of 2 m air temperature, surface pressure, and 100 

m wind speed from the selected weather product at the wind turbine locations for wind power 

calculation. Spatial interpolations of nearest, bilinear, and cubic methods are available to derive 

weather variables at the specific wind turbine locations. 

The wind turbine harnesses the wind resource and generates power by extracting the kinetic 

energy of the wind, specifically by converting the transverse motion of the wind into turbine 

rotation. The wind speed at the hub height of the wind turbine is used to approximate the speed 

of the air filled in the cross-sectional area of the turbine rotor; it is logarithmically extrapolated 

from the 100 m wind speed, as 100 m is the most representative hub height for modern wind 
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turbines (von Krauland et al., 2021). 

The power curve in the RESKit model, which relates wind turbine power output in unit watt to 

wind speed, is approximated by the wind turbine’s specific power, defined as the installed 

capacity per rotor swept area. Typically, the power curve of a wind turbine is given with respect 

to a standard air density of 1.225 kg m-3 (Carta & Mentado, 2007), which corresponds to the 

standard atmospheric conditions of sea level pressure (1013 hPa) and 15 ℃ temperature. An 

air density correction procedure is therefore applied to adjust the real-world wind speeds to the 

standard air density conditions as proposed by the International Electrotechnical Commission 

(IEC) 61400-12 (Turbines—Part, 2005). 

If a wind turbine consistently generated power at a given wind speed according to its power 

curve, then converting wind speed to wind power would be fairly straightforward. However, 

wind turbines respond stochastically to wind speed in the real world, meaning that the power 

curve can only serve as a summary estimate of the turbine’s generation (Ryberg et al., 2019). 

The underlying reasons for this variability are diverse, as documented in Ryberg et al. (2019a), 

including factors such as reduced aerodynamics efficiency caused by turbulence in the wind, 

large wind speed gradients existing across the turbine rotor, and the wind speed fluctuations 

exceeding the turbine response time. To account for this stochastic response, the final power 

curve used in the RESKit model is convoluted with a Gaussian kernel (Ryberg et al., 2019). 

2.2.2 RESKit solar workflow 

The versatile solar photovoltaic technology offers many configurations for a solar photovoltaic 

power system. Depending on the installation surface, it can be an open-field or rooftop solar 

photovoltaic system. Here, this thesis focuses only on the open-field solar photovoltaic system. 

The solar photovoltaic power is calculated using the solar workflow in the RESKit model 

(Ryberg, 2020). The necessary inputs besides weather variables are location and capacity of a 

solar photovoltaic system. 

Weather variables of global horizontal irradiance, direct horizontal irradiance, surface wind 

speed, surface pressure, surface air temperature, and surface dew temperature at the location of 

the solar photovoltaic system are considered in the RESKit model solar workflow calculation. 

Similar to the wind workflow, several spatial interpolation methods, i.e., nearest, bilinear, and 

cubic, are available to interpolate weather variables to the solar plant locations. 

To calculate solar power output, RESKit first determines the solar position, i.e., the solar 

azimuth and apparent zenith angle, based on the longitude/latitude, local time, and altitude 

above sea level according to the NREL SPA algorithm (Reda & Andreas, 2004). The apparent 

solar zenith angle considers the refraction or bending of the sun’s rays as they pass through the 

Earth’s atmosphere, compared to the solar zenith angle, which is the “true” zenith angle but at 

the top of the atmosphere (Labriji et al., 2022). The total solar irradiance at the top of the solar 

modules—the plane of the array—is then calculated considering the solar irradiance 

components of the solar beam and the sky diffuse solar irradiance using the solar position with 
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the sky diffuse irradiance model Perez (Perez et al., 1990). As the efficiency of the solar 

photovoltaics is temperature dependent (Dubey et al., 2013), the solar module temperature is 

estimated in RESKit using the surface wind speed, surface air temperature, and the global 

irradiance at the plane of the array. The solar power output of the solar modules is subsequently 

calculated based on the total solar irradiance at the plane of the array and the module 

temperature using the interpolated single diode approximation (Jain & Kapoor, 2004; King et 

al., 2004; Wenham et al., 2013). 

In addition, there are many factors that affect the solar photovoltaic system performance and 

imply losses. A literature screening indicates that there is a lack of a general overview on a 

global scale that includes all solar photovoltaic system losses and their approximate magnitudes 

(not shown). Probably due to the complexity of the system and the current high rate of 

development in the industry, most studies focus on a specific loss such as soiling (Dehghan et 

al., 2022), mismatching (Dhass et al., 2022), inverter loss (Good & Johnson, 2016; Nagarajan 

et al., 2019), or wiring (Ekici & Kopru, 2017). Overall introductions of the system losses are 

available, but the typical loss values are not documented (Saeed & Zohaib, 2022) or the loss 

values are calculated and verified based on abundant field records from one location (Hashemi 

et al., 2021). Also, other studies (Kumar et al., 2019; Mejia et al., 2014; Mejia & Kleissl, 2013; 

Raj et al., 2016) examine some system losses in a specific case, raising questions about their 

representativeness, and studies (Anis & Nour, 1995; Bucciarelli Jr, 1984; Schaub et al., 1994) 

may be too old for a strongly developing industry. 

Given the ambiguity of quantifying losses for solar photovoltaic systems in the literature, this 

thesis applies a recommendation and/or experience from the solar photovoltaic industry 

(Aurora Solar, 2023), which is different from (Ryberg, 2020). They (Aurora Solar, 2023) 

suggest annual solar photovoltaic system losses of 0.5% from connection, 1.5% from light-

induced degradation, 2% from wiring, 2% from soiling, and 3% from system availability, with 

a total suggested annual loss of 8.7%. Considering the severe dusty conditions in many parts 

of southern Africa, we follow their suggestion and increase the soiling loss to a maximum of 

4%, for a total system loss of 10.7%. 
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Chapter 3. Convection-permitting ICON-LAM simulations for renewable 

energy potential estimates over southern Africa 

*adapted from: Chen, S., Poll, S., Hendricks Franssen, H. J., Heinrichs, H., Vereecken, H., & Goergen, K. (2024). 

Convection‐permitting ICON‐LAM simulations for renewable energy potential estimates over Southern Africa. 

Journal of Geophysical Research: Atmospheres, 129(6), e2023JD039569. https://doi.org/10.1029/2023JD039569 

3.1 Introduction 

The African continent is one of the focus areas when it comes to global efforts in mitigating 

the adverse impacts of climate change (Blunden & Boyer, 2022; Trisos et al., 2022). Though 

African societies have contributed little to global climate change, generating less than 4% of 

global greenhouse gas emissions (Ayompe et al., 2021), the African continent is identified as a 

highly vulnerable region (Caretta et al., 2022). The slow expansion of a basic electrical grid 

infrastructure hinders national economic development (Sarkodie & Adams, 2020), which may 

further reinforce adverse climate change impacts on African people. According to a report by 

the International Energy Agency in 2021, there are still around 580 million people in Sub-

Saharan Africa lacking access to electricity in 2019, which accounts for three-quarters of the 

global population without reliable supply of electricity (International Energy Agency, 2021). 

It is broadly accepted that renewable energy technologies are vital for a greenhouse gas neutral 

energy system (Fetting, 2020; Potrč et al., 2021; Yuan et al., 2022). This is especially true for 

Africa, given the large untapped REP existing over the African continent (Amir & Khan, 2021; 

Hafner et al., 2018). In this context our focus is on wind (primarily onshore) and solar power 

renewable energies. The transformation from a mainly fossil or nuclear fuelled energy system 

towards a renewable energy dominated energy system requires reliable information about the 

exact available REPs in space and time (McKenna et al., 2022). 

In order to produce reliable REP estimates, the spatio-temporal variation of wind speed and 

solar irradiance needs to be well captured, and therefore the underlying atmospheric physics 

has to be accurately simulated. Near-surface winds, that wind turbines use to generate 

electricity, are controlled by the background wind field, planetary boundary layer (PBL) 

mixing, and surface friction (He et al., 2010). With respect to photovoltaic technology, less than 

50% of the top of the atmosphere solar radiation is transmitted to the surface on average due to 

atmospheric processes (absorption, scattering, and reflection) influenced by cloud cover and 

atmospheric particles (e.g., aerosols) as well as the surface properties such as albedo and 

topography (Wald, 2018). Concerning resolution, for instance, the spatial resolution of 300 m 

to 3 km corresponds to PBL turbulence and near-surface flows (Pryor et al., 2020), and with a 

temporal resolution of at least one hour the diurnal cycle of PBL growth and decay can be 

captured (Yuanjie Zhang et al., 2020). Under highly fluctuating cloud cover and hence solar 

irradiance, a sub-hourly temporal resolution is necessary (Roy et al., 2021). Based on these 

requirements, we hereafter give an overview of meteorological datasets that are available and 

that have been used or are of potential use as inputs for REP estimates. 
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The Global Wind (GWA, 2019) and Solar (GSA, 2019) Atlases (Figure 3.1) are wide-spread 

sources of information for REP assessments. The latest versions of these global atlases at the 

time of writing in 2023-06 provide long-term averages of wind and solar information and their 

generation potentials under certain plant technical parameters at a spatial resolution of 

nominally 250 m. However, what is additionally needed are also time series of renewable 

energy potentials to design an energy system that assures a secure energy supply at all times 

(Caglayan et al., 2021; Lund et al., 2015). 

Meteorological observations at weather stations, e.g., from the regional basic synoptic network, 

feeding into World Meteorological Organization (WMO), are available for long time spans and 

many locations. They provide local point-scale weather information for the past (He & 

Kammen, 2014; Ramirez-Vergara et al., 2023), while especially wind might show a 

pronounced spatial variability (Santos-Alamillos et al., 2014; Yu et al., 2015), and both wind 

and solar might show pronounced changes in the future related to climate change (Yang et al., 

2022). Data from meteorological station networks often serve as ground truth in REP-related 

model validations or as assimilated observations in forecasts and reanalyses (Valmassoi et al., 

2023). 

Satellite observation-derived data products have become widely used in REP assessments and 

recently also as input to statistical approaches such as machine learning, semi-empirical, or 

physics-based models (Edwards et al., 2022; Medina-Lopez et al., 2021). For example, a study 

(Elsner, 2019) provided off-shore wind energy potential estimates for the African coastal areas 

by using the satellite-based Blended Sea Winds (BSW) data set with spatial resolution of 0.25° 

and temporal resolution of 6-hourly. In (Neher et al., 2020) the SARAH-2 satellite data product 

with 30-min temporal and 0.05° spatial resolution was used to derive the solar energy potential 

for West Africa. Nevertheless, satellite-derived products face shared challenges due to 

observation gaps in space and time caused by satellite routines, atmospheric noise from clouds 

and aerosols, and the need for accurate retrieval algorithms (Huang et al., 2019; Weissman et 

al., 2012). 

Data from global or regional weather forecast or climate models can be used to provide multi-

decadal, gap-free, homogeneous, and physically consistent datasets, also at wind turbine hub 

height and for arbitrary spatial domains. To assess REP, datasets are available through hindcast 

simulations or atmospheric reanalysis. Another application is to forecast renewable energy 

outputs as a function of weather conditions (Meenal et al., 2022), or to investigate future 

climate change impacts on REP and power production (Pryor et al., 2020). 

Reanalyses, that combine observations with model simulations through data assimilation 

algorithms and synthesising a coherent set of surface and vertical atmospheric data (Kalnay, 

2003), are frequently used for wind and solar REP estimates. The ERA5 at 31 km resolution 

and hourly outputs (Hersbach et al., 2020), its predecessor ERA-Interim at 79 km and three-

hourly outputs (Dee et al., 2011), or the MERRA-2 at about 50 km (Gelaro et al., 2017) are 

examples for global reanalyses that are used in the context of renewable energy planning and 
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potential assessments for different spatial domains (Caglayan, Ryberg, et al., 2019; Jurasz et 

al., 2021; Ryberg et al., 2019; Yuhu Zhang et al., 2020). Many studies have addressed the 

suitability of these or similar reanalysis datasets for REP assessments, and depending on the 

study site and dataset, even lower resolution data are considered as suitable inputs (Doddy 

Clarke et al., 2021; Kanwal et al., 2022); for certain studies the reanalyses systematically 

underestimate wind speeds (Tahir et al., 2018). In general, higher temporal as well as spatial 

resolutions in model outputs lead to better agreement with observations (Michael R. Davidson 

& Dev Millstein, 2022; Samal, 2021). 

A study (Frank et al., 2020) showed the added value of very high resolution regional reanalyses. 

COSMO-REA6 (Bollmeyer et al., 2015) for Europe at 6 km and COSMO-REA2 (Wahl et al., 

2017) for Central Europe at 2 km, COSMO-REA2 performs better in the representation of 

extreme temporal wind speed changes at typical  wind turbine hub height, which is often 

underestimated in coarser-resolution reanalyses (ERA-Interim, MERRA-2), when compared to 

tower measurements. In a COSMO-REA6 and ERA5 global solar irradiance (GHI) comparison 

with synoptic station and satellite data (Urraca et al., 2018), they concluded that in areas with 

high variability of surface solar irradiance in coastal areas and mountains the high-resolution 

reanalysis agrees closer with satellite observations.  

In a study evaluating GHI from reanalysis and satellite products (Sawadogo, Bliefernicht, 

Fersch, Salack, Guug, Diallo, et al., 2023), they compared ERA5 and MERRA-2 reanalysis 

products with CAMS and SARAH-2 satellite products, using 37 in-situ measurements from 

western Africa. The study found that satellite data outperform reanalysis data under distinct 

sky conditions. Additionally, both data sources have a larger error of more than 150 W m-2 (root 

mean squared error) under cloudy skies than under clear skies. Another study (Mabasa et al., 

2021) conducted an evaluation of GHI using two reanalyses (ERA5 and MERRA-2) and three 

satellite-based datasets (SOLCAST, CAMS, and SARAH-2) against 13 radiometric 

observations in South Africa. The study found that both types of datasets overestimate GHI, 

with less discrepancy observed in satellite-based GHI compared to reanalysis-based GHI. 

Global climate models are also used for REP analysis (Devis et al., 2018), but by dynamically 

downscaling coarser resolution (global) weather/climate models, high-resolution regional 

models add value through a better representation of surface properties and dynamical processes 

(Giorgi, 2019; Laprise, 2008; Rummukainen, 2015), making them well suited as inputs to 

downstream impact studies, e.g., to REP assessment of wind power resources (Pryor et al., 

2020). Using regional climate scenarios from the World Climate Research Programme’s 

(WCRP) Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative at 12 

km resolution, e.g., studies (Moemken et al., 2018; Tobin et al., 2016) found a tendency in 

some areas towards a decrease of wind energy potentials due to climate change, and, e.g., a 

study (Vautard et al., 2014) identified only a limited climatic impact by large-scale wind farms 

on the atmosphere. In reanalysis-driven long hindcast time series from Regional Climate Model 

(RCM) runs at 24 km grid spacing (Geyer et al., 2015), they concluded for wind energy 

potentials over the North Sea that time series are characterized by a large interannual 
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variability, short observational time series as well as near-surface wind speed to hub height 

transformations may lead to large biases in the REP estimates. In a study (Sawadogo et al., 

2021) used 25 km spatial resolution CORDEX-CORE initiative runs over Africa; the ERA5-

driven evaluation runs reproduce observations reasonably well; in future climate projections, 

simulations indicate an increase in solar irradiance and wind speed. 

RCM simulations at convection-permitting (CP) or km-scale resolution (below 4 km) add yet 

again value in comparison to conventional RCM simulations as recently summarised by 

(Lucas‐Picher et al., 2021) or (Schär et al., 2020), offering information at stakeholder-relevant 

scales (Gutowski et al., 2020; Senior et al., 2021). Studies in West Africa have assessed the key 

role of explicit convection in simulating monsoon systems (Birch et al., 2014; Marsham et al., 

2013). CP climate modelling (CPCM) over the whole African continent (Kendon et al., 2019; 

Stratton et al., 2018) demonstrated that the CP model is able to realistically capture hourly 

rainfall characteristics and, e.g., notably reduce the dry austral winter average rainfall biases in 

West Africa. Such CP simulations require large computational resources (Prein et al., 2015) 

and have been routinely only used in numerical weather prediction (NWP) (Chamberlain et al., 

2014; Lean et al., 2008) over parts of Africa. To date, the only pan-African CPCM simulation 

is with the Met Office Unified Model (Kendon et al., 2019; Stratton et al., 2018), covering 10-

year historical and future time span at 4.5 km resolution. 

In this context, our objective is to produce a high-resolution dataset over southern Africa from 

dedicated atmospheric simulations to be used for REP assessments. We choose southern Africa 

as the study domain due to the high demand for a reliable electricity supply and favourable 

solar and wind conditions. Simulations are done with the ICOsahedral Nonhydrostatic (ICON) 

Numerical Weather Prediction (ICON-NWP) model in its Limited Area Mode (ICON-LAM) 

(Zängl et al., 2015). ICON is the operational forecast model of multiple national weather 

services and as a state-of-the-art modelling system is feasible to not only run for NWP but also 

for climate applications (Pham et al., 2021). In a multi-model comparison (Magnusson et al., 

2022), ICON shows good forecasting skill scores. In this study, ICON-LAM dynamically 

downscales the initialized analysis product of the German Weather Service (DWD), based on 

the global deterministic ICON-NWP forecasts dataset (hereafter ICON-GL), from a spatial grid 

spacing of 13 km to a convection-permitting resolution of 3.3 km, without parameterized deep 

convection. Simulations cover the time span from January 2017 to December 2019 with 

contrasting first-order meteorological drivers for a REP assessment. Simulated wind speed at 

10 m height (sfcWind), surface solar irradiance (rsds), precipitation (pr), and air temperature at 

2 m height (tas) from ICON-LAM setup are evaluated using ground meteorological stations as 

well as satellite and composite products. The goal is to demonstrate the potential of a physically 

consistent hindcast simulation with a km-scale NWP model in reproducing meteorological 

fields of sfcWind and rsds with high fidelity. This new dataset can then serve in ensuing case 

studies (i) as an alternative input dataset to REP estimations and hence as a potential input to 

renewable energy planning (Akinbami et al., 2021), and (ii) as a high-resolution test dataset for 

the study region that helps to determine in comparison with conventionally used data sources 

(such as coarse-resolution reanalysis) what the added value can be for REP analysis and what 
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is in fact needed in terms of meteorological input data. 

3.2 Materials and methods 

3.2.1 Study area 

According to the Global Wind (GWA, 2019) and Solar (GSA, 2019) Atlas (Figure 3.1), 

southern as well as northern Africa have large wind and solar REP. Due to its proximity to 

Europe, REP of northern Africa has been assessed, e.g., by studies (Benasla et al., 2018; Trieb 

et al., 2016). We however choose southern Africa as our study area, where renewable energies 

might be exploited for the benefit of electricity supply for the sub-Saharan African countries. 

Our study area and model domain extends from 16º S to 38º S, and 9º E to 39º E (Figure 3.2). 

Most of the area experiences semi-arid conditions with a wet season during austral summer, 

while along the southern coast it rains throughout the whole year, the western part receives 

winter rainfall (Engelbrecht et al., 2015; Weldon & Reason, 2014). Precipitation in the northern 

part of the model domain is mostly linked to the southernmost position of the Inter-Tropical 

Convergence Zone (ITCZ) (Waliser & Gautier, 1993), while the southern part of the area is 

affected by tropical-temperate climatic zone interactions (Todd et al., 2004) embedded in the 

South Indian Convergence Zone (SICZ) (Cook, 2000). Surrounded by the cold upwelling 

Benguela ocean current at the western and the warm Agulhas current along the eastern 

coastlines, the thermal gradients and evaporation over the nearby oceans strongly influence this 

region (Weber et al., 2017). 

The topography of southern Africa is characterized by a narrow coastal plain and the inland 

Plateau, with the “horse-shoe-shaped” great escarpment situated in between (Moore et al., 

2009). This complex topography strongly influences local weather conditions and climate. It 

triggers mesoscale convective systems in the eastern part (Blamey & Reason, 2009; Laing & 

Fritsch, 1997), and influences the intra-seasonal variability of the maize growing season 

(Tadross, Hewitson, et al., 2005), and the beginning of the austral summer rainy season 

(Tadross, Jack, et al., 2005). 
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Figure 3.1 Top: Long-term (1998-2017) mean wind speed [m s-1] at 100m height. Bottom: 

Long-term (1994/1999/2007 (depending on the region) to 2018) mean of daily totals of 

horizontal global irradiance. Data sources: Global wind (GWA, 2019) and solar (GSA, 2019) 

atlas. 
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Figure 3.2 Full ICON-LAM model domain including the boundary relaxation zone with model 

topography (GLOBE30) and ground meteorological stations as used in this study of the 

TAHMO (purple squares), SASSCAL WeatherNet (red circles) and NCEI Global Hourly - 

Integrated Surface Database (black triangles) meteorological station networks. 

3.2.2 Numerical model and experiment design 

3.2.2.1 ICON model version 

The ICON modelling framework (Zängl et al., 2015) is developed by the German Weather 

Service (Deutscher Wetterdienst, DWD) and the Max-Planck-Institute for Meteorology (MPI-

M) and other partners to build a unified next-generation (global) Numerical Weather Prediction 

(NWP) and climate modelling system. The ICON model can be used for simulations at a variety 

of spatial and temporal scales (Heinze et al., 2017; Hohenegger et al., 2023). To achieve this, 

different model modes exist, which can be divided into the NWP, the climate mode ECHAM, 

and the large-eddy simulation physics packages (Pham et al., 2021). ICON-NWP is used for 

operational global and regional forecasts by the DWD. ICON-CLM is a recently realised mode 

(Pham et al., 2021) built upon ICON-NWP in a limited-area mode (ICON-LAM) and facilitates 

a suite of technical infrastructures for regional climate applications. Here, we make use of the 

ICON model release version 2.6.4 (so-called “common release” as of 2021-09-29) ICON-NWP 
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in limited area mode (ICON-LAM). 

3.2.2.2 Model setup and configuration 

The ICON-LAM triangular horizontal grid used here has a high spatial resolution of 

approximately 3.3 km with total 649,392 triangular cells centred at (24° E, -27° S) (ICON grid 

identifier: R3B09). The used vertical height-based terrain-following coordinate system SLEVE 

(Leuenberger et al., 2010; Schär et al., 2002) has 65 levels with a model top at 22 km; the 

lowermost vertical level is located at a height of 10 m above the land surface. 

In this study, ICON-LAM is used in a one-way single nest dynamical downscaling setup. The 

Initial and hourly Lateral Boundary Conditions (ICs and LBCs) are from the DWD initialized 

analysis as part of the DWD global ICON weather forecast (13 km, R3B07 ICON grid). The 

high-resolution triangular grid cells (R3B09) of the 3.3 km domain are exactly inscribed in the 

13 km global grid cells (R3B07), following the sub-triangle generation rule of the ICON model 

mesh. The LBCs relaxation zone is 14 grid cells and is discarded in the presentation of the 

results. To keep our ICON-LAM hindcast simulations close to the assimilated synoptic 

atmospheric state of the driving global NWP, the model’s atmosphere is reinitialized at 6-day 

intervals. In details, day 6 of the preceding time slice overlaps with day 1 of the current time 

slice, which is used as a spin-up day and discarded later; day 2 until day 6 of each time slice 

are concatenated with each other, leading to a slight inconsistency in the atmospheric fields 

every 120hrs. The land surface and subsurface are run transient, i.e., they are restarted from the 

model’s previous state. This way, subsurface storage terms, such as soil moisture, which affect 

the land-atmosphere coupling can freely develop over time in the high-resolution nest. 

The model setup (e.g., grid and nesting approach) and configuration (e.g., physics settings) 

used here has been adopted from the operational weather forecast of DWD, for Germany and 

surrounds at a convection-permitting resolution. This so-called ICON-D2 implementation 

currently uses the ecRad (Hogan & Bozzo, 2018) radiation scheme, the diagnostic Probability 

Density function (PDF) cloud cover scheme, a single-moment scheme for cloud microphysics 

and precipitation (Doms et al., 2011; Seifert, 2008), the prognostic turbulent kinetic energy 

(TKE) scheme (Raschendorfer, 2001) for vertical diffusion and transfer (turbulent transfer), 

and the land surface model TERRA (Schrodin & Heise, 2001; Schulz et al., 2016) with up to 3 

(+ 3 for three additional “water” tiles of open water, lake, and sea-ice) dominant land tiles 

considered per grid cell in combination with the Flake lake scheme (Mironov, 2005), and sea-

ice scheme (Mironov et al., 2012). As simulations are done on convection-permitting scale, 

deep convection parameterization is switched off. Five main aerosol species (sea salt, soil dust, 

organic aerosol, sulfate aerosol, and black carbon) are considered by ICON’s radiation scheme, 

based on the spatially distributed long-term mean monthly aerosol annual cycle from the Tegen 

climatology (Tegen et al., 1997). ICON-LAM output intervals for wind and solar energy-

related variables are 15 minutes with instantaneous values, for other variables output is hourly. 

The static surface parameters are extracted from the external variable database of the ICON 

model auxiliary system ExtPar. Model topography is based on the Global Land One-km Base 
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Elevation Project at 30 arc seconds (GLOBE30). Land cover is taken from the Global Land 

Cover Map for 2009 at 10 arc seconds (GlobCover 2009). The Digital Soil Map of the World 

at 5 arc seconds (DSMW) is used to classify soil types, and the Global Lake Database at 30 arc 

seconds (GLDB) for the lake data. 

3.2.2.3 Simulation time span 

The global ICON-NWP operational forecasts that are used as ICs and LBCs for our ICON-

LAM model runs are available since 2015. On the basis of the ERA5 reanalysis (Hersbach et 

al., 2020) a simulation period from 2017 to 2019 is chosen (data not shown). It is representative 

for an average year as well as contrasting meteorological conditions with respect to wind and 

solar REP to serve as a basis for a robust energy system analysis. Total surface global solar 

irradiance of the year 2019 was recognized as generally higher than the 30 years average, the 

year 2017 lower, and the year 2018 close to average. The annual average wind speed at 100m 

compared with the 30 years average also shows a clear difference between these three years, 

although with more spatial heterogeneity and less obvious as for radiation. The concrete 

simulation time span is 2016-12-31UTC00H to 2020-01-01UTC00H. The 1st day in each 6 

days reinitialization interval is treated as a spin-up day and would be discarded, therefore, we 

set one additional day at the beginning of the simulation time span to solve the data-lacking 

issue for the 1st day of the very 1st time slice. 

3.2.3 Observational data sets 

Table 3.1 lists all the datasets used in this study as an overview. 

Table 3.1 Summary of data used in this chapter. 

Abbreviation 

used in the text 

Variables 

description 

Spatial 

resolution 

Temporal 

resolution 

Dataset 

type  

Source (URLs), 

last visited on 

2024-01-03 

OBS 10 m wind 

speed, surface 

solar 

irradiance, 2 

m air 

temperature, 

and 

precipitation 

point sub- to 

multi- 

hourly 

ground 

meteorolog

ical station 

SASSCAL_WN: 

https://sasscalwe

athernet.org/, 

TAHMO: 

https://tahmo.org

/, and 

NCEI_ISD: 

https://www.ncei

.noaa.gov/produc

ts/land-based-

station/integrated

-surface-database 

OSB-CDR 10 m wind 

speed over 

global ice-free 

oceans 

0.25°, ~ 

25 km 

3-hourly satellite NOAA: 

https://doi.org/10

.7289/V55T3HH

0 

SARAH-3 Surface solar 

irradiance 

0.05°, ~ 5 

km 

30-

minute 

satellite CM SAF: 

https://doi.org/10



24 

 

.5676/EUM_SA

F_CM/SARAH/

V003 

CRU 2 m air 

temperature 

over all land 

domains of 

the world 

except 

Antarctica 

0.5°, ~ 50 

km 

monthly composite 

product 

UEA: 

https://crudata.ue

a.ac.uk/cru/data/

hrg/ 

GPM Precipitation 0.1°, ~ 10 

km 

30-

minute 

satellite 

(successor 

of TRMM) 

NASA: 

https://pps.gsfc.n

asa.gov/ 

ERA5 10 m wind 

speed, surface 

solar 

irradiance, 2 

m air 

temperature, 

and 

precipitation 

~ 31 km hourly ECMWF 

reanalysis 

ECMWF: 

https://doi.org/10

.24381/cds.adbb

2d47 

ICON-GL 10 m wind 

speed and 2 m 

air 

temperature 

~ 13 km hourly DWD 

initialized 

analysis 

DWD - 

PAMORE 

archive: 

https://www.dwd

.de/EN/ourservic

es/pamore/pamor

e.html 

ICON-LAM 10 m wind 

speed, surface 

solar 

irradiance, 2 

m air 

temperature, 

and 

precipitation 

~ 3.3 km 15-

minute 

except 

hourly 

with pr 

simulated 

in this 

study 

this study 

 

3.2.3.1 Meteorological ground station networks 

Data from two local meteorological station networks and one global hourly in-situ surface 

integrated database (OBS) have been used for model evaluation purposes: The Southern 

African Science Service Centre for Climate Change and Adaptive Land Management 

(SASSCAL) is a joint initiative of Angola, Botswana, Namibia, South Africa, Zambia, and 

Germany in response to the challenges of global climate change. SASSCAL is monitoring the 

weather in southern Africa by a meteorological station network called SASSCAL WeatherNet 

(hereafter SASSCAL_WN). The second local network is the Trans-African Hydro-

Meteorological Observatory (hereafter TAHMO), TAHMO aims to develop a dense network 

of hydro-meteorological monitoring stations in sub-Saharan Africa. The third in-situ dataset 
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comes from the National Centers for Environmental Information (NCEI) and contains a global 

hourly integrated surface database (hereafter NCEI_ISD) collected from numerous sources 

over the world. NCEI_ISD does not provide rsds and pr observation in our study area. Figure 

3.2 shows the location of each weather station used from the three networks. The station data 

is used at an hourly temporal resolution. 

3.2.3.2 Satellite and composite data sets 

Apart from the aforementioned in-situ observations, we also incorporate satellite and 

composite datasets for the evaluation of different variables. Currently, station observations such 

as buoys over the oceanic part of the study domain are unavailable. We therefore use the 

National Oceanic and Atmospheric Administration (NOAA) Ocean Surface Bundle Climate 

Data Record (OSB-CDR) (Clayson et al., 2016) for ICON-LAM sfcWind evaluation over the 

oceans. OSB-CDR provides sfcWind over global ice-free oceans from passive microwave 

sensor data. It has a grid spacing of 0.25° with a temporal resolution of 3 hours and a continuous 

spatial coverage. 

Satellite driven rsds observations have been widely used to evaluate climate model simulations 

(Bichet et al., 2019; Sawadogo et al., 2021; Tang et al., 2019). Surface Solar Radiation 

Parameters edition 3 (SARAH-3) (Pfeifroth et al., 2023) is the successor of the SARAH-2 

(Pfeifroth et al., 2017), which has been proved to provide viable solar energy assessment data 

over Africa (Mabasa et al., 2021; Sawadogo, Bliefernicht, Fersch, Salack, Guug, Diallo, et al., 

2023); SARAH-3 is provided by the European Organisation for the Exploitation of 

Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring 

(CM SAF). It provides rsds based on geostationary satellite observations with a half hourly 

temporal resolution and a high spatial resolution of 0.05°, covering an area from -65°E to 65°E 

and -65°N to 65°N. SARAH-3 data at an hourly temporal resolution is used to evaluate ICON-

LAM rsds output. 

The Climatic Research Unit Timeseries CRU TS V4.06 (Harris et al., 2020) provides monthly 

mean tas at 0.5° resolution for all land areas, except Antarctica. We compare the monthly tas 

between ICON-LAM and CRU. 

The Global Precipitation Measurement mission (GPM) (Huffman et al., 2015) is a global 

observation mission for pr and snow; it is the successor of the Tropical Rainfall Measuring 

Mission (TRMM). GPM with a spatial resolution of 0.1° and a temporal resolution of 30 

minutes has been shown to outperform TRMM (Zhang et al., 2018) over mountainous area. 

From GPM we utilise hourly pr for the ICON-LAM evaluation. 

3.2.4 In-situ observations quality control 

Before using the in-situ observations of rsds and sfcWind and – to a lesser extent tas and pr 

(see Figure A.1 to A.5) – for validation, a quality control related pre-processing is necessary. 

We first unify the variable names and physical units from different networks and standardise 

the observations’ recording time zones to Universal Time Coordinated (UTC). In a next step 

https://www.noaa.gov/
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implausible or out-of-range observations are then excluded. With rsds, the Baseline Surface 

Radiation Network (BSRN) quality control tests (Long & Dutton, 2010) are applied to the rsds 

observations; we use the BSRN’s physically possible limits test, and the BSRN’s extremely 

rare limits test; due to the lack of the necessary observed solar irradiance components (direct 

normal irradiance and diffuse horizontal irradiance) the BSRN closure test cannot be used. 

After that, we discard stations with more than 70% missing hourly observations over the 3-

years period. Finally, 217 (87 of SASSCAL_WN, 27 of TAHMO, and 103 of NCEI_ISD), 96 

(70 of SASSCAL_WN, 26 of TAHMO), 106 (86 of SASSCAL_WN, 20 of TAHMO), and 212 

(88 of SASSCAL_WN, 28 of TAHMO, and 96 of NCEI_ISD) stations remain with sfcWind, 

rsds, pr, and tas measurements, respectively. No gap-filling technique is used to fill the missing 

observations, the evaluation applies only to the available observation time steps of each in-situ 

station. 

 From the 96 stations that provide rsds observations, 13 stations show dubious constant 

nighttime rsds values in the range of 3 to 70 W m-2. These offsets constitute at the same time 

the minimum values per station. Per station a nighttime average offset is therefore subtracted 

from the time series. The Ineichen and Perez (Ineichen & Perez, 2002) clear sky model with a 

global coverage of monthly climatological Linke turbidity from pvlib (Holmgren et al., 2018) 

is used to check maxima and diurnal cycles of each corrected station rsds time series; otherwise, 

we would lose about 13% of our rsds validation sites. As this study focuses on the evaluation 

of simulated daytime rsds, an additional location and day-of-the-year specific sunrise and 

sunset check of the rsds observations is also done based on simulated ICON-LAM rsds. 

The installed height of the sensor devices is especially important for the sfcWind evaluation 

procedure. Most of the stations from aforementioned networks meet common meteorological 

observation standards (World Meteorological Organization, 2021), i.e., 1.25 m to 2 m for air 

temperature observations, 10 m for wind speed, surface solar irradiance within a range of 1m 

to 2 m, and precipitation at 0.5 m to 1 m. In the TAHMO network, however, different weather 

sensors are integrated into a combined device to reduce maintenance costs and all the observed 

variables are recorded at 2 metres height. A further scaling procedure to extrapolate observed 

TAHMO network wind speed from 2 m to 10 m height is therefore needed. There are several 

scaling methods with associated advantages and disadvantages, discussion in this regard is out 

of the scope of the current study. Simplified extrapolations are the theoretically derived log law 

(assuming a neutrally stratified atmosphere) (Upstill‐Goddard et al., 1990; Yu et al., 1984) 

and the empirically derived power law (Hellmann, 1919). We compared the use of log law and 

power law here, and found that the log law unrealistically amplifies 2 m wind speed to 10 m 

especially for large wind speeds (data not shown). Therefore, the power law procedure is used 

in our wind speed scaling, see equation (3.1):  

𝑊𝑆𝐻 = 𝑊𝑆𝑟𝑒𝑓 (
𝐻

𝐻𝑟𝑒𝑓
)

𝛼

                         (3.1) 

WSref is the wind speed at the reference hight Href (here 2 m), while WSH is the wind speed of 
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interest at height H (here 10 m). The α of power law is derived by following the approach in a 

study (Tizgui et al., 2017), incorporating roughness length as used in the ICON-LAM 

simulations for the closest model grid cell to the station. 

3.2.5 Evaluation methods 

This study aims to construct reliable and highly resolved meteorological information for 

downstream robust REP estimates. We focus on wind and solar energy as those renewable 

energy sources are considered as most important to achieve greenhouse gas neutral energy 

systems. We therefore conduct a model evaluation of sfcWind and rsds and on the hourly 

temporal resolution for it is necessary in the REP application field to capture the wind speed 

and solar irradiance fluctuations, leading also to a very strict model-to-observations evaluation. 

Aside from REP-related variables, tas and pr are also included in the evaluation, being the most 

basic variables considered in model evaluations (Ban et al., 2021; Kotlarski et al., 2014) and 

also being the fact that to our knowledge the model is run for the first time in the km-scale 

setup over southern Africa. Three observation networks are used here in order to include as 

many stations as possible. 

Most of the in-situ observations are recorded at an hourly basis while the ICON-LAM 

simulation output is available every 15 minutes (for a later use in REP analysis). In line with 

the observations, the evaluation procedures use an hourly temporal scale. Only pr is 

investigated on a monthly scale given the scarce pr events over large semi-arid and arid parts 

of the study area. While simulated datasets provide 15min instantaneous sfcWind estimates, 

in-situ observations report mean sfcWind for 5, 10, 30, or 60 minutes periods depending on the 

available recordings and station operator. We always compare hourly mean sfcWind by 

averaging existing in-situ sub-hourly sfcWind and by averaging simulated ICON-LAM 15min 

sfcWind. For stations that reported hourly instantaneous values of tas and of rsds, a comparison 

between observations and ICON-LAM simulations was made for the hourly instantaneous 

values. For rsds, additionally, nighttime observations (equal to 0 W m-2) were discarded from 

the analysis. As ICON-LAM accurately simulates sunrise and sunset, the nighttime rsds can be 

determined precisely. 

The evaluation is carried out at the point and area scales. The nearest ICON-LAM generic 

model grid value to a station location is used for comparison. Even though we are working at 

a high resolution of 3.3 km and most of the stations are approximately at the same altitude 

above mean sea level as the grid cells, the comparison of a simulated value representative of a 

grid cell and a point measurement can still be affected by surface heterogeneity. We therefore 

apply a lapse rate of 0.0065 °C m-1 to the ICON-LAM simulated tas to account for the possible 

discrepancy in altitude between the model grid cell and the observation station, following 

examples from studies (Chen et al., 2019; Heikkilä et al., 2011). 

For the statistical comparison, we use the mean error (ME),  

𝑀𝐸 =  
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖) =  �̅� −  �̅�𝑁

𝑖=1    (3.2) 
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the mean absolute error (MAE), 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑀𝑖 −  𝑂𝑖|

𝑁
𝑖=1                       (3.3) 

and the correlation coefficient (R). 

𝑅 =  
∑ (𝑀𝑖−�̅�)(𝑂𝑖−�̅�)𝑁

𝑖=1

√∑ (𝑀𝑖−�̅�)2𝑁
𝑖=1 √∑ (𝑂𝑖−�̅�)2𝑁

𝑖=1

              (3.4) 

In the equations (3.2) to (3.4), M represents simulated model values and O observed values, 

the time step is indicated with subscript i and the length of the total time series is N: 

�̅� =  
1

𝑁
∑ 𝑀𝑖 ,   �̅� =  

1

𝑁

𝑁
𝑖=1 ∑ 𝑂𝑖

𝑁
𝑖=1          (3.5) 

The Perkins Skill Score (PSS) (Perkins et al., 2007) quantifies the overlap area (percent) 

between two empirical frequency distributions. Zm and Zo are the normalised frequencies of a 

bin for the frequency distributions of simulations and observations, respectively, see equation 

(3.6). In this study, the respective bin width for the PSS calculation for sfcWind, rsds, and tas 

are 1 m s-1, 30 W m-2, and 1 °C. PSS calculation for pr is not applicable as data is only available 

at a monthly temporal resolution. 

𝑃𝑆𝑆 =  ∑ min(𝑍𝑚 − 𝑍𝑜)𝑛
1                  (3.6) 

In the spatial comparison, variables of rsds and pr are not available from ICON-GL, and 

sfcWind as well as tas are based on the lowermost model level (10 m) of ICON-GL simulated 

u and v, and air temperature, respectively. Additionally, different satellite and composite data 

products corresponding to the variables of interest are used to compensate for the discrete and 

unevenly distributed station-based observations. As these data products come on grids which 

differ from the ICON-LAM triangular model grid, data on different grids are resampled to a 

common grid for comparison, using a conservative remapping approach (Suklitsch et al., 2008). 

We downsample fine grid data according to their relative spatial contribution to the same grid 

as the coarse resolution comparison grid is available on. The conservative mapping approach 

has been used in comparisons which are displayed in Figures 3.8, Figure 3.13, and Figure A.3. 

Understanding the capacity of ICON-LAM model to simulate rsds under different sky clearness 

conditions is crucial for solar energy applications. We use the sky clearness index (Kt) and 

categorize the observed rsds into distinct atmospheric conditions of all-sky, clear-sky, and 

cloudy-sky. All observational data are used to evaluate simulations under all-sky condition. 

Cloudy-sky as well as clear-sky cases are identified on the basis of the observed rsds, and the 

corresponding time steps from the simulation are taken and simulated rsds for those time steps 

are compared with observed rsds. Kt is defined as the ratio of the rsds to the extraterrestrial 

solar radiation at the top of the atmosphere (G0) according:  
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𝐾𝑡 =
𝑟𝑠𝑑𝑠

𝐺0
                                             (3.7) 

The extraterrestrial solar radiation at a given location for a specific day depends only on the 

latitude and the day of the year, and the daily extraterrestrial radiation G0 (MJ m-2 day-1) is 

calculated according to (Allen et al., 1998). The daily observed rsds is derived from hourly rsds 

under the condition that there is no single missing hourly observation value during the day. 

This sky clearness index has been applied in many studies but the thresholds used to 

differentiate distinct sky conditions vary with the focus area: 0.82 was recognized as the 

boundary threshold between clear- and cloudy-sky for studies in China (Du et al., 2022; Shi et 

al., 2021), Kt ≥ 0.6 was accepted as clear-sky and cloudy-sky was treated as 0.12 ≤ Kt ＜ 0.35 

in another study focusing on western Africa (Sawadogo, Bliefernicht, Fersch, Salack, Guug, 

Diallo, et al., 2023). Here we follow studies for South Africa (Apeh et al., 2021; Govindasamy 

& Chetty, 2018) and determine clear-sky as Kt > 0.7 and cloudy-sky as Kt < 0.3. 

The capability of the ICON-LAM model to simulate the diurnal variation of sfcWind and rsds 

is further investigated. The average diurnal variation of sfcWind for all-year, austral winter, 

and austral summer as well as the average diurnal variation of rsds under the sky conditions 

all-sky, clear-sky, and cloudy-sky are compared between in-situ observations and ICON-LAM 

simulations for three representative stations. 

3.3 Results and discussion 

To evaluate the performance of our ICON-LAM simulations over southern Africa, we compare 

simulated sfcWind and rsds with in-situ station point measurements, as well as with spatially 

distributed data products. The focus of the evaluation is on the entire model domain. In a first 

step, seasonal means are compared with the state-of-the-art global reanalysis product ERA5, 

the forcing data ICON-GL, and satellite observations, to see whether the mean atmospheric 

states can be reproduced by this new ICON-LAM setup; in addition, the spatial distribution of 

the mean states is also investigated. 

3.3.1 Seasonal mean comparison 

The seasonal means of sfcWind and rsds in austral summer (December-January-February, DJF) 

and austral winter (June-July-August, JJA) from ERA5, ICON-GL, ICON-LAM, and the 

reference datasets OSB-CDR and SARAH-3 are illustrated in Figure 3.3. The spatial patterns 

of sfcWind over the ocean are similar for the different simulation datasets. In comparison, 

OSB-CDR shows in general lower sfcWind in both seasons. This is possibly due to the passive 

microwave sensor with coarse spatial resolution that cannot capture fine spatial wind speed 

details. Over the land area of the domain, increasing the spatial resolution from ERA5 (31 km) 

to ICON-GL (13 km), and ICON-LAM (3.3 km) allows to depict finer spatial details of the 

wind speed field. The southern Africa Great Escarpment altered wind speeds, which are clearly 

visible in the high-resolution ICON-LAM simulations, especially in austral winter, where the 
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higher wind speed belt (mean sfcWind > 6 m/s) coincides with the steep slopes at the central 

southern African Plateau. The western branch of the Great Escarpment, which is predominantly 

located in Namibia, can be identified in ICON-LAM with increased wind speeds, which are 

not in the simulated wind speeds by the ICON-GL and ERA5 models. On the other hand, it is 

found that ICON-LAM systematically simulates higher wind speeds over land compared with 

ERA5 and ICON-GL in both seasons. It should be noted that in this study the focus is not on 

an evaluation of the added value of the km-scale simulation with reference to the lower 

resolution model runs, this is the reason why we do not resample the high-resolution data to 

the coarse resolution grids. 

Rsds from ICON-GL is not included in this study (empty sub-plot in Figure 3.3). ERA5, ICON-

LAM, and SARAH-3 agree with each other on the rsds magnitude of the differences between 

the summer and winter seasons and the spatial patterns of rsds in both seasons. With a low 

cloud coverage (see also the pr maps in Figure A.1) in the austral winter, averaged rsds 

decreases meridionally according to the mean solar zenith angle from north to south. During 

austral summer, the hot desert climates of South Africa and Namibia clearly stand out. 

 

Figure 3.3 Average sfcWind [m s-1] (top multi-panel) and rsds [W m-2] (lower multi-panel) for 

https://en.wikipedia.org/wiki/Southern_African_plateau
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the period 2017 to 2019 and austral winter (JJA) (upper row) and austral summer (DJF) (lower 

row), for ERA5 (1st column), driving ICON-GL (2nd column), ICON-LAM (3rd column), and 

the reference data (4th column), OSB-CDR for sfcWind, SARAH-3 for rsds. The sfcWind of 

ICON-GL is derived from the lowest model level (10 m) of u and v and the rsds of ICON-GL 

is not available. All the datasets are presented on their respective native grids. 

3.3.2 Simulated wind speed evaluation 

3.3.2.1 Wind speed over station points 

Figure 3.4 shows the spatial distribution of the metrics MAE, ME, R, and PSS for the evaluation 

of ICON-LAM sfcWind simulation results against the meteorological stations. The associated 

summary statistics per metric and network are presented in Figure 3.5. ICON-LAM simulated 

sfcWind has for many stations a positive bias and the spatial average (standard deviation) of 

MAE and ME are 1.7 (± 0.51) and 1.12 (± 0.83) m s-1, respectively (Figure 3.5 a and b). Here, 

92.2% of a total 217 considered in-situ observations are found with positive sfcWind ME biases, 

and 40% of the total scatter are in the range of +/-1 m s-1, based on hourly data for the period 

2017 to 2019. Additionally, 69% of the stations show a correlation > 0.6 between observations 

and simulation. PSS is larger than 0.8 for 39% of the station locations. The metrics are similar 

for the three measurement networks. Despite the observation data quality control procedures 

(see Section 3.2.4), some stations were retained, which show large deviations from simulations 

and are consequently also treated as outliers (defined as points out of the range minimum, 1st 

quartile - 1.5 * (3rd quartile - 1st quartile), and maximum, 3rd quartile + 1.5 * (3rd quartile - 

1st quartile), of the box-whisker) in the plots. For the sake of completeness, outliers are plotted 

in the summary statistics box-whisker plots. 
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Figure 3.4 Spatial distribution of MAE, ME, R, and PSS of hourly sfcWind for the period 2017 

to 2019 at ground meteorological stations. Statistics are calculated comparing simulated 

sfcWind by ICON-LAM and observed sfcWind by ground meteorological stations. Symbols 

identify different observational networks. Rectangles: TAHMO, circles: SASSCAL_WN, 

triangles: NCEI_ISD. The symbol sizes represent the number of valid measurement days 

during 2017 to 2019. 
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Figure 3.5 Summary statistics of the metrics presented in Figure 3.4 per meteorological station 

network and combined. Each box-whisker plot shows the minimum, 0.25 percentile, median, 

0.75 percentile, and maximum values of each evaluation measure per network, and in addition 

the mean (white dashed line) and the outliers (black diamonds). Yellow dots: individual data 

points (one dot corresponds to one station in Figure 3.4), n is the number of stations with valid 

data. 

3.3.2.2 Wind speed over representative station points 

Aside from the summarising metrics of Figure 3.4 and 3.5, we illustrate model performance 

for three representative stations (see Table 3.2 for details), which are located in different areas 

of the model domain, at different altitudes  above mean sea level, through scatter plots, 

percentile plots, frequency distributions, and monthly mean annual cycles for ICON-LAM 

simulated and observed sfcWind (Figure 3.6), and also through the average diurnal variation 

analysis (Figure 3.7). The selected stations have hourly observational data records with less 

than 24 missing data points in three years. 

Station 68325 locates at the centre of the model domain and also the centre of the Plateau at an 

altitude of 1275m. ICON-LAM shows on average higher wind speeds than in the observations 
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with more frequent wind speeds above 5 m s-1 as illustrated by the scatter, percentile, and 

histograms plots. On the other hand, ICON-LAM captures the sfcWind with a correlation 

coefficient of 0.75, the measured annual cycle and also the diurnal variations are well 

represented. 

Station E7625 is a coastal station at a height of 405m. For this station, the scatter plot indicates 

an underestimation by ICON-LAM simulated larger wind speed. Generally, biases are small, 

as illustrated by the percentiles, histograms, and annual cycles. The time series in sfcWind are 

well captured by ICON-LAM. The observed trend in diurnal variation has been reproduced 

although with overestimation during daytime and underestimation during nighttime in the 

austral summer and also in the complete year; Overestimations also happen in the midday of 

the austral winter. 

Station 858596 at a height of 606m is chosen to represent a transition zone from the coastal 

area to the Plateau. Similar to station 68325, for this observation site ICON-LAM overestimates 

wind speeds and simulates much more often elevated wind speeds (> 6-8 m s-1) than measured 

at the site, despite the fact, that the shape of the annual sfcWind cycle and diurnal variation are 

reproduced well. 

Table 3.2 Three selected representative stations with location, altitude, and the altitude of the 

corresponding ICON-LAM grid cell. 

Station id 

used by the 

networks 

Station 

name 

Country Longitude 

[decimal 

degrees] 

Latitude 

[decimal 

degrees] 

Network 

identifier 

Altitude 

from 

station 

metadat

a [m] 

ICON-

LAM 

altitude 

[m] 

68325 Goodh

ope 

Botswana 25.43 -25.46 SASSC

AL_WN 

1275 1275.07 

E7625 Aussin

anis 

Namibia 15.05 -23.44 SASSC

AL_WN 

405 426.09 

858596 Eksteen

fontein 

South 

Africa 

17.29 -28.84 SASSC

AL_WN 

606 634.39 
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Figure 3.6 Overview of sfcWind characteristics, ICON-LAM vs meteorological station 

observations, for three selected stations (rows) for hourly 10 m wind speed [m s-1]. Columns 

from left to right: scatter plots, percentile plots, histograms (bin width 1 m s-1), monthly mean 

annual cycles, and the location of each station. Colours in the scatter plots: point density 

estimated by a Gaussian Kernel (brighter colour means higher density). Percentiles in the 

percentile plot are at every 1% interval. Histogram plot has a bin size of 1 m s-1. 
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Figure 3.7 Average diurnal cycle of hourly sfcWind [m s-1] at three selected stations (rows). 

Results are shown for in-situ observations (blue line) and ICON-LAM simulations (orange line) 

for the period 2017 to 2019 (all-year), austral winter (JJA), and austral summer (DJF) 

(columns). 

3.3.2.3 Wind speed over ocean 

The comparison over the oceans in Figure 3.3 indicates that ICON-LAM shows higher seasonal 

mean sfcWind than OSB-CDR. In order to compare sfcWind over the oceans in more detail, 

despite the fact that offshore wind energy potentials are not a focus and would be too close to 

the coastline to be captured in our data comparison, Figure 3.8 shows differences in the 

percentiles and the mean. ICON-LAM overestimates sfcWind off the coast of Namibia. The 

overestimation is more pronounced for higher sfcWind with the highest overestimation for 

extreme sfcWind of the 0.95 percentile. For the 0.05 percentile there is a widespread 

underestimation of sfcWind by ICON-LAM. For the mean sfcWind over the ocean (Figure 3.8f) 

differences range from -0.5 to 1.5 m s-1. 



37 

 

 

Figure 3.8 Differences in 3-hourly sfcWind [m s-1] between (ICON-LAM minus OSB-CDR) 

for corresponding percentiles (0.05, 0.25, 0.5, 0.75, 0.95) over the ocean for the period 2017 to 

2019. The mean difference is also plotted. 

3.3.2.4 Wind speed evaluation discussion 

In our comparison of ICON-LAM sfcWind with a large compiled station dataset we find a clear 

tendency towards positive sfcWind ME biases (Section 3.3.2.1.). At the same time the 

observational reference data (as big a wind speed data set as we could compile at the time of 

writing) shows various deficiencies: Despite the quality control of the in-situ sfcWind 

observations (section 3.2.4), outliers in Figure 3.5 are an indication of problems with data 

quality, that is difficult to fully evaluate without knowing the local setup. Although we tried to 

compile an observation dataset with as many sites as possible, the spatial heterogeneity is very 

much undersampled. Finally, the station-to-model grid comparison even at km-scale resolution, 

means the local measurement condition could differ from the model’s land cover and terrain. 

Through the sfcWind seasonal mean biases analysis (Figure 3.3 a to h), systematic 

overestimations compared with ERA5 and ICON-GL are found with ICON-LAM simulated 

austral winters and summers average sfcWind. Studies in Sweden (Minola et al., 2020), US 

and Iran (Gualtieri, 2021) have documented an underestimation of the simulated sfcWind for 

mountain sites with ERA5 due to its coarse spatial resolution. Given our study domain with a 

complex topography with features such as the Plateau and the Great Escarpment, the 

overestimation from ICON-LAM with reference to ERA5 still needs to be further investigated 

to evaluate the true added value from the high-resolution dynamical downscaling. With respect 

to ICON-GL (Figure 3.3 b and f) the model setup also plays a role, as, e.g., the roughness 
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lengths are lower in ICON-LAM by about 20.9% on average over the central southern 

mountainous part of the model domain (data not shown). 

As data from this experiment are to be used for REP estimates, the entire evaluation is done 

with hourly wind speeds. A similar near-surface wind speed evaluation study (Molina et al., 

2021) showed with decreased temporal resolution, from hourly to 6-hourly to daily, that the 

correlation coefficients and skill scores increase. In an evaluation with hourly temporal 

resolution for sfcWind (Minola et al., 2020), they showed an overestimation of up to 1.5 and 2 

m s-1 from ERA5 over Sweden, when comparing to coastal and inland stations, respectively. A 

study (D’Isidoro et al., 2020) conducted an atmospheric dynamical downscaling study using 

the Weather Research and Forecasting (WRF) model over Lesotho at 1 km resolution. The 

study was driven by the ECMWF ERA5 reanalysis dataset. The authors found that the 

simulated hourly surface wind speed biases were generally between 0.5 and 1.7 m s-1 using 

three different physics combinations. These biases are comparable to the average hourly 

surface wind ME of 1.12 (± 0.83) m s-1, as determined from 217 stations in this study. 

3.3.3 Simulated solar irradiance evaluation 

3.3.3.1 Solar irradiance over station points 

Figure 3.9 shows the spatial distribution of 4 evaluation metrics comparing ICON-LAM 

simulated and station observed rsds in [W m-2] under various sky conditions of all-sky, clear-

sky, and cloudy-sky and also the associated available observation days number. Figure 3.10 

shows the statistical summary of the corresponding metrics. Under all skies (Figure 3.9 a to e), 

the average MAE (± standard deviation) over the considered stations is 118.6 (± 30.87) W m-2 

and the average ME is 50.8 (± 42.21) W m-2. Often a positive ME is observed in the study 

domain. In the deserts along the west coast of Namibia and South Africa biases are often close 

to 0 W m-2. The absolute biases underlying MAE show an increasing trend from coast to inland 

and from south to north; this coincides with areas of higher precipitation and hence cloudiness 

(see Figure A.1). On the other hand, the correlation coefficient and frequency distribution 

illustrate that the simulated values by ICON-LAM are close to observations. The average of R 

is 0.87 with a standard deviation of 0.05, and for 95% of the stations PSS > 0.8. When 

considering the TAHMO and SASSCAL_WN networks, for which rsds data are available, they 

show systematic differences in their comparison with the ICON-LAM. The SASSCAL_WN 

sites show for all metrics a better agreement with ICON-LAM simulated rsds especially in 

terms of ME and PSS. The newly integrated weather sensor type of the TAHMO network could 

be a reason for this behaviour. Grouping according to station networks in Figure 3.5 and Figure 

3.10 allows to identify network-related effects in the evaluation. 

ICON-LAM simulates rsds under clear skies well (see Figure 3.9 f to j), the average MAE over 

all stations is about 60 W m-2 and the estimate is almost unbiased with an average R across all 

stations above 0.95. The PSS values for clear-sky rsds show a large spread with average PSS 

around 0.75. Simulating rsds is challenging under cloudy skies, which occurs less than 109 

days for all the used stations (except one station, Figure 3.9o). For cloudy skies MAE and ME 

are higher (stations average about 210 W m-2 and 175 W m-2, respectively), average R is about 
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0.52 and PSS 0.65. 

 

Figure 3.9 As in Figure 3.4, but for daytime hourly rsds [W m-2] under sky conditions of all-

sky, clear-sky, and cloudy-sky (rows). The last column “% days of 1095” indicates the 

percentage of days out of the full three years (1095 days) that are available with the 

corresponding sky condition over each station. 

 

Figure 3.10 As in Figure 3.5, but for the summary statistics of the metrics presented in Figure 
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3.9. 

3.3.3.2 Solar irradiance over representative station points 

The same three representative stations from Section 3.3.2.2. are also analysed in terms of rsds 

in Figure 3.11 and their average rsds diurnal variation under all-sky, clear-sky, and cloudy-sky 

are showed in Figure 3.12. In general, ICON-LAM simulates rsds in close agreement with the 

station network observations, which is especially obvious in the scatter and percentile plots. 

Higher scores of R with a minimum of 0.88 and a PSS of 0.87 are found for all three stations. 

The simulated and observed diurnal cycles of all-sky rsds and clear-sky rsds agree nearly 

perfectly. On the other hand, ICON-LAM strongly overestimates rsds for cloudy skies 

conditions, especially during the rsds peak hours. However, it is important to stress that cloudy 

skies conditions only occur 34 days in three simulation years at station 68325, and 4 days and 

5 days for stations E7625 and 858596, respectively. 

Station 68325 is actually one of the stations, to which we apply the offset correction during 

daytime (about 33 W m-2). The observed rsds frequency distribution of station 68325 is 

reproduced by ICON-LAM with a PSS of 0.95. An overestimation is found in one austral 

summer month while underestimation exist during one month in austral spring based on the 

mean annual cycle comparison between simulation and observation.  

If we compare simulated solar irradiance with measured solar irradiance for the stations E7625 

and 858596 high R (0.94 and 0.96 respectively) and low ME (4.35 and -10.71 W m-2 

respectively) are found. ICON-LAM underestimates solar irradiance in the austral winter at 

station 858596 and overestimates in September for station E7625. There is no obvious 

systematic bias except a small shift for ICON-LAM simulated clear sky rsds at station E7625. 

 

Figure 3.11 As in Figure 3.6, but for daytime hourly rsds statistics [W m-2] and histogram plot 

has a bin size of 30 [W m-2]. 
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Figure 3.12 Average diurnal cycles for hourly rsds [W m-2] at three selected stations (rows). 

Results are shown for in-situ observations (blue line) and ICON-LAM simulations (orange line) 

under all-sky, clear-sky, and cloudy-sky conditions (columns). “No.days” is the number of days 

found with the corresponding sky condition. 

3.3.3.3 Solar irradiance over the whole study domain 

In Figure 3.13 we show the difference between ICON-LAM and SARAH-3 simulated rsds for 

several percentiles as well as the mean differences. These differences are again based on 

daytime data. In general, both datasets show a good agreement at all the percentiles and also 

the mean states. Major differences in two models for simulating rsds exist over ocean. ICON-

LAM simulated higher rsds compared with SARAH-3 at the coasts of Namibia and the ocean 

west of Namibia particularly for percentiles 0.75 and 0.5, and an area of underestimation of 

ICON-LAM also occurs at the northern part of the Indian Ocean. The difference between the 

simulated and observed mean is between -30 and 30 W m-2. 
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Figure 3.13 As in Figure 3.8, but for daytime hourly rsds [W m-2]. 

3.3.3.4 Solar irradiance evaluation discussion 

Generally, ICON-LAM simulates rsds in southern Africa in good accordance with observations 

especially under clear sky, delivers an almost unbiased clear sky rsds simulation. Biases are 

relatively small over the desert areas in the west, related to the strong anticyclonic circulation 

with subsidence which prevents that a cloud cover develops in the ICON-LAM, altering 

radiation. The larger biases can be found in the northern parts, which are characterized by more 

cloudiness and rainfall, as shown in Figure A.1, a shared challenge as with reanalysis data 

(Babar et al., 2019). 

Actually, large discrepancies in the rsds under cloudy skies are also found between reanalysis 

and the in-situ observations as well as satellite products and the in-situ observations. A study 

(Sawadogo, Bliefernicht, Fersch, Salack, Guug, Diallo, et al., 2023) reported that the MAE 

varies from 153 to 232 W m-2 for the rsds under cloudy skies for the reanalysis (ERA5 and 

MERRA-2) and satellite (CAMS and SARAH-2) products, compared to 37 observing stations 

over western Africa. Evaluation of satellite-estimated rsds over South Africa (Mabasa et al., 

2022) showed excellent performance under clear skies with rMAE smaller than 6.5% and 

poorer performance under cloudy skies with rMAE 29%, whereas satellite-based rsds estimate 

outperform the reanalysis-based estimate over South Africa (Mabasa et al., 2021). In addition, 

a dynamical downscaling study (Sawadogo, Bliefernicht, Fersch, Salack, Guug, Ogunjobi, et 

al., 2023) using the WRF-solar model driven by ERA5 also documented large overestimations 

for rsds under cloudy skies. The evaluation of ICON-LAM simulated cloudy-sky rsds over 96 

stations shows an average MAE of 210 W m-2 which is within the typical margin of error. 
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When evaluating model performance, systematic differences become apparent between the two 

local observation networks we use. Evaluation results using observations from the 

SASSCAL_WN show a better overall agreement with the ICON-LAM model results at all 

times under all sky conditions. The average ME decreases from 50.8 W m-2 to 26 W m-2 if only 

SASSCAL_WN observations are used. 

In our comparison, we apply a strict daytime hourly simulated rsds evaluation. Using longer 

averaging intervals, e.g., a daily temporal aggregation, would lead to a more favourable 

comparison for the ICON-LAM simulation (Cao et al., 2022). Daily averaged rsds evaluation 

with overestimation of 4.1 W m-2 and monthly 4.5 W m-2 are found from ERA5 at high latitudes 

(> 58°N) (Babar et al., 2019). Including nighttime rsds would also for sure increase the model 

skill scores for ICON-LAM. However, due to the study’s goal of providing data for REP 

estimation, we have to stick to daytime hourly evaluation. In a study (Yang & Bright, 2020) 

done with worldwide 57 stations and a 27 years validation time span, the validation of hourly 

rsds from ERA5 shows a global average ME of 23.95 W m-2. In their study, two stations in 

southern Africa are included, located in the coastal desert of Namibia and the desert of South 

Africa, with a ME of 4.14 and 11.11 W m-2, respectively. In a comparison over China, ERA5 

overestimates the hourly surface solar irradiance by about 30.87 W m-2 (Jiang et al., 2019). 

Hence the performance of ICON-LAM simulated daytime hourly rsds is comparable with 

ERA5 all-day comparisons. 

When considering a high-resolution COSMO-REA6 reanalysis product, study shows that it is 

able to mitigate the limitation of ERA5 over complex terrain, e.g., coastal areas, in simulating 

rsds (Urraca et al., 2018). The coastal station E7625 in section 3.3.3. proves ICON-LAM can 

capture solar irradiance over complex terrain. 

3.3.4 Simulated precipitation and 2 m air temperature evaluation 

We additionally evaluate pr and tas for this novel model implementation over the study domain. 

In Figure A.1, seasonal means of pr and tas from ERA5, ICON-GL, ICON-LAM, and 

GPM/CRU are presented. Pr of ICON-GL is not available for Figure A.1 b and f. The spatial 

patterns of pr, Figure A.1 a to h, are similar for the three datasets. Austral winter is the dry 

season in southern Africa, very little (< 5 mm) or no rainfall occurs over land except along the 

southern coast and western part of South Africa associated with the Benguela current; most of 

the pr is located over the oceans of the southern part of the study domain. In austral summer 

(wet season), rainfall expands over almost all land areas with a southerly shifted ITCZ and the 

northerly winds of the East African Monsoon (Geppert et al., 2022), except for the deserts in 

the western part. This pronounced seasonal pr cycle with its local features is, e.g., in accordance 

with other studies (Engelbrecht et al., 2015; Geppert et al., 2022; Weldon & Reason, 2014). 

The deserts along the west coast of Namibia and South Africa are related to the combination 

of the cold Benguela ocean current and the subsidence of the South Atlantic Anticyclone. Aside 

from reproducing the large-scale patterns, the high-resolution ICON-LAM shows small-scale 

local pr maxima associated, e.g., with orographic features such as the mountains in Lesotho. 
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Towards the Southern Ocean ICON-LAM pr amounts are smaller when compared to ERA5 

and GPM. 

Tas in Figure A.1 show good agreement among the different datasets in both seasons, again, 

with a pronounced seasonal cycle. The distribution of tas over the ocean follows a thermal 

north-south gradient, altered by the warm Agulhas current over the Indian Ocean and the cold 

Benguela current along the Atlantic coastline. Land surface heterogeneity over southern Africa 

characterises the pattern of tas; mountain ranges and the  Plateau are clearly visible in the 

ICON-LAM high-resolution simulation. 

Pr is further evaluated on a monthly time scale. Figure A.2 shows MAE and ME of simulated 

pr, compared to in-situ observed pr. ICON-LAM simulated monthly pr biases decrease from 

the North-East to the deserts in the South-East of the study domain, which follows the 

prevailing rainfall patterns. The average of MAE for pr (± standard deviation) is 16.56 (± 16.89) 

mm month-1 and the average for ME is 3.75 (± 12.57) mm month-1. A very pronounced and 

much documented added value of convection-permitting RCM simulations is an improved 

reproduction of pr characteristics (amounts, intensities, spatial patterns, etc.) (Ban et al., 2021; 

Lucas‐Picher et al., 2021; Prein et al., 2015). We therefore analyse the difference of the 0.95 

percentile of daily pr between ICON-LAM and GPM, for the three simulation years and austral 

winters and summers (see Figure A.3). Pr in southern Africa shows a high seasonality with an 

obvious contrast between austral winter (dry) and austral summer (wet). In line with the 

experiment setup of regular re-initialisations, ICON-LAM reproduces the observed seasonality 

of pr by GPM and also the spatial pattern of extreme pr. However, ICON-LAM simulates a too 

small amount of extreme daily pr compared with GPM over the Indian ocean, and also over 

the country of Mozambique during austral summer (see Figure A.3k). This lack of ICON-LAM 

simulated pr over the Indian ocean is also found in the monthly mean pr comparison, on the 

contrary, ICON-LAM has more monthly pr over land than GPM except for the area of 

Mozambique (Figure A.3l). 

The simulated ICON-LAM tas shows, depending on the spatial location, positive and negative 

biases throughout the simulation domain without a clear spatial pattern, although western 

Namibia and western Southern Africa tend to have more often negative ME, and other areas 

positive ME. See also Figure A.4b. The average ME is 0.23 (± 0.99) °C and the MAE is 1.97 

(± 0.55) °C. The R and PSS illustrate the high correspondence between simulated and measured 

values with spatial means above 0.9 and standard deviations below 0.05. Figure A.5 compares 

again for individual stations simulated values and measurements. The measured data are in 

general well reproduced, but two of the three stations show some systematic bias. For station 

E7625 tas is overestimated about 1.49 °C (ME) and for station 858596 there is an 

underestimation with a mean error of -1.45 °C. 

3.4 Summary and conclusions 

Our study presents a high-resolution physically consistent dataset over southern Africa to serve 

as input for spatially and temporally highly resolved REP estimates. The dedicated convection-
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permitting 3.3 km atmospheric simulations are run with the ICON-LAM, driven by initialised 

analysis based on the global deterministic ICON-NWP forecasts, and using the operational km-

scale weather prediction ICON configuration of DWD. The simulations cover three 

meteorologically contrasting years from 2017 to 2019. They help fill the scarcity of high-

resolution datasets over this part of Africa. Subsequently, these results can help to foster the 

development of renewable energy expansion in Africa, where three quarters of the global 

population without reliable access to electricity are located and where renewable energy is 

considered one of the vital solutions. 

Our high-resolution ICON-LAM setup and simulations are to our knowledge unprecedented 

for the study area; they show overall a good performance in reproducing REP-related sfcWind 

and rsds fields and near surface essential climate variables, albeit with some limitations. 

The detailed hourly sfcWind evaluation indicates overall a good reproduction of station 

observations, and biases of 1.12 (± 0.83) m s-1 are well comparable to other work (D’Isidoro et 

al., 2020). There is, however, a tendency to an overestimation over land. The reason behind 

this model behaviour is unclear; more in-depth assessment of the surface and boundary layer 

schemes as implemented and configured and a dedicated model parameter optimisation study 

for the area might after all be necessary to further reduce the biases. This is beyond the scope 

of this analysis.  

The error level of the ICON-LAM hourly daytime rsds is similar to what is found in other 

studies. Those studies were evaluating daily mean rsds (daytime and nighttime); such that 

comparisons however are less rigorous and tend to result in smaller error metric values of ME 

or MAE, because for instance the 0 W m-2 nighttime rsds is usually correctly simulated. 

Additionally, ICON-LAM simulates rsds well under clear skies, while overestimating rsds 

under cloudy skies, although within the typical margin of error compared to other existing high-

resolution products. Furthermore, ICON-LAM correctly simulates the background weather and 

typical climatological features, investigated through tas and pr fields. 

In an ensuing step, this evaluation will be expanded by an evaluation of the same model runs 

for wind speeds at higher altitudes above the land surface, as the wind energy field is in a height 

range between 80 to 140 m (Jung & Schindler, 2021), with bigger hub heights in the future 

wind turbines underway (Martin et al., 2020). This leads to much fewer evaluation datasets 

(Drechsel et al., 2012). 

Most importantly, the added value of using a km-scale meteorological input dataset as opposed 

to the conventionally used coarse-resolution reanalysis in REP estimates for wind and solar 

power will be investigated. We consider our methodology of a km-scale dynamical 

downscaling with a state-of-the-art atmospheric NWP model system a viable approach to 

complement existing datasets in the field of REP estimation. Aside from an immediate use of 

the dataset for other REP-related studies, the experiment design can also be applied in studies 

on the impact of climate change on REP estimates.  
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Chapter 4. Higher onshore wind energy potentials revealed by kilometre-

scale atmospheric modelling 

*adapted from: Chen, S., Goergen, K., Hendricks Franssen, H. J., Winkler, C., Poll, S., Houssoukri Zounogo 

Wahabou, Y., ... & Heinrichs, H. (2024). Higher onshore wind energy potentials revealed by kilometer‐scale 

atmospheric modeling. Geophysical Research Letters, 51(19), e2024GL110122. 

https://doi.org/10.1029/2024GL110122 

4.1 Introduction 

Wind energy is one of the most promising renewable energy technologies for achieving carbon 

neutrality (Lei et al., 2023; Zhao & You, 2020). Its globally installed total capacity has steadily 

increased and reached about 900 GW at the end of 2022, this is 27% of the global renewable 

energy capacity; 93% of which is from onshore wind power farms (International Renewable 

Energy Agency, 2023). To make the most efficient use of onshore wind energy within the 

energy system transition, its energy potential needs to be known with sufficient spatial and 

temporal resolution (McKenna et al., 2022), including wind feed-in time series to optimize the 

energy mix. 

Africa is the world’s least-electrified continent, even facing an increasing lack of access to 

electricity as of 2022 (International Energy Agency, 2023). Given half of the population in 

southern Africa is without electricity supply (International Energy Agency, 2023), along with 

the abundant untapped technical potential for onshore wind energy of approximately 14 

TWpeak (Ishmam et al., 2024; Winkler et al., 2025), reliable estimates of southern Africa's 

onshore wind energy potential (WEP) are important for the region. 

Assessments of onshore WEP with an hourly resolution are state-of-the-art for energy system 

studies (Caglayan, Ryberg, et al., 2019; McKenna et al., 2022; Ryberg et al., 2019). While 

spatially highly fluctuating wind speeds are difficult to capture, especially over complex terrain 

(Qiao et al., 2022), reanalysis products, typically utilized for assessing WEP in energy system 

studies, have relatively coarse spatial resolutions. For example, ERA5 (Hersbach et al., 2020), 

a state-of-the-art global reanalysis, has a spatial resolution of 31 km. Regional reanalyses over 

Europe with higher spatial resolutions such as COSMO-REA6 (Bollmeyer et al., 2015) at 6 km 

and CERRA (Schimanke et al., 2021) at 5.5 km, have been shown to outperform global 

reanalyses especially for winds at marginal frequency distributions, near the ground, and over 

complex terrain (Frank et al., 2020; Jourdier, 2020; Jourdier et al., 2023). In general, the added 

value of kilometre-scale (km-scale), convection-permitting, atmospheric (regional) climate 

simulations, e.g., in the resolution of surface heterogeneities, the reproduction of atmospheric 

processes, or land-atmosphere interactions, has been documented in several overviews 

(Lucas‐Picher et al., 2021; Prein et al., 2015; Schär et al., 2020). However, to our knowledge, 

no regional atmospheric reanalysis is available for any region over the African continent. 

In this work, we first evaluate simulated wind speeds against measured wind speeds from 
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weather masts at a height of 60 m, which is the highest available wind speed observations over 

southern Africa. We use three simulation data products: (i) A dedicated atmospheric simulation 

with the ICON model (Zängl et al., 2015) (Zängl et al., 2015) in hindcast mode at a convection-

permitting high-resolution of 3.3 km (ICON-LAM) over southern Africa, as documented in a 

validation study (Chen, Poll, et al., 2024), (ii) the ERA5 (Hersbach et al., 2020) atmospheric 

reanalysis with a resolution of 31 km as a commonly used dataset in renewable energy 

assessments (ERA5_ori), and (iii) the ERA5’s wind speed statistical downscaling using the 

Global Wind Atlas (GWA) version 3 (GWA, 2019) (ERA5_GWA). Secondly, the WEP is 

computed with the renewable energy simulation model RESKit (GitHub repository, 2019) from 

ICON-LAM, ERA5_ori, and ERA5_GWA wind speed products to investigate the benefit of 

the km-scale spatial resolution. The WEP is first calculated over existing weather mast 

locations. In a further step, 1.8 million eligible wind turbine placements over southern Africa 

(Franzmann et al., 2023; Ishmam et al., 2024; Winkler et al., 2025) are exploited to simulate 

the hourly power time series of the WEP. The differences between the estimated wind turbine 

power time series from ICON-LAM, ERA5_ori, and ERA5_GWA and the corresponding 

annual average of WEP for each of 1.8 million eligible wind turbines over southern Africa are 

further inspected to derive the impact of higher resolution input data for WEP assessments on 

estimated wind energy yields over our pilot study region over southern Africa. 

4.2 Data and methods 

4.2.1 Wind Speed Data and Height Scaling 

To evaluate the simulated wind speeds, in-situ observations at 60 m height from 18 weather 

masts over South Africa are used (Wind Atlas for South Africa, 2010). To our knowledge, these 

are the only publicly available observations for southern Africa that measure wind speeds 

relatively close to real-world wind turbine hub heights. The details of the observation data 

quality are documented in Appendix B.1.1. 

ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) (Hersbach et al., 2020) has an hourly temporal and 31 km spatial resolution, and it 

provides wind speed for 13 vertical model levels up to 500 m above ground level (AGL) 

(ERA5_ori). In addition, ERA5 also provides the interpolated eastward and northward 

components of 100 m AGL wind speed. The ERA5 100 m wind speeds have been widely used 

in WEP studies (Görmüş et al., 2022; Gruber et al., 2022; Jung & Schindler, 2022) as they are 

often considered as the most representative for hub heights of modern wind turbines (von 

Krauland et al., 2021). 

The convection-permitting atmospheric model runs used here are done with a regional setup of 

the ICON atmospheric model (Zängl et al., 2015) (ICON-LAM) for the years 2017 to 2019. 

This dynamically downscaled one-way single nest ICON run over southern Africa has a 

convection-permitting high spatial resolution of 3.3 km; the initial and lateral boundary 

conditions are from the German Weather Service (DWD) initialized analysis based on global 

ICON weather forecasts; the atmosphere is reinitialized every six days. In an extensive 
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validation study (Chen, Poll, et al., 2024), they provide a detailed overview of the setup and 

configuration, based on the operational DWD numerical weather forecast simulations. ICON-

LAM has 11 vertical model levels below 500 m AGL. The 15-minute instantaneous wind speed 

outputs are averaged to hourly resolution for comparison to the ERA5 and the weather mast 

measurements. 

Simulated wind speeds for 60 m height from ERA5_ori and ICON-LAM at the weather mast 

locations are interpolated from the nearest model grid cells and the closest two model vertical 

levels above and below 60 m using the wind speed power law (Devis et al., 2014; Devis et al., 

2018; Pryor et al., 2005), see Appendix B.1.2 for details. 

In some renewable energy potential studies (Gruber et al., 2022; Murcia et al., 2022), the coarse 

spatial resolution of ERA5 is addressed by a combination with wind speeds from GWA through 

a statistical downscaling, where the ratio of the long-term mean 100 m wind speed of GWA 

and ERA5 is multiplied by the time series of ERA5 100 m wind speed to obtain a nominal 

spatial resolution of 250 m as in GWA version 3 (ERA5_GWA). GWA itself is also based on a 

dynamical downscaling (Davis et al., 2023). Studies (González-Aparicio et al., 2017; Ryberg 

et al., 2019) have applied this procedure also to the MERRA-2 reanalysis. For comparison with 

these previous studies, the same approach is also applied in our study to the ERA5 100 m wind 

speed. Hence, aside from ICON-LAM and ERA5_ori a third simulation-based dataset 

ERA5_GWA is used. ERA5_GWA 100 m wind speed is logarithmically extrapolated to the 

observed wind speed height of 60 m for evaluation. 

4.2.2 Wind Power Calculation 

Wind speed (m s-1) is the key parameter for the wind power (kWh) calculation. Usually, the 

wind power density, half of the constant air density multiplied by the cube of the wind speed, 

is used as the typical measure of WEP (Pryor & Barthelmie, 2011) in the meteorological realm, 

e.g., (Lei et al., 2023). In this study, however, we conduct a more realistic WEP estimate by 

using the wind turbine-specific power curve (Ryberg et al., 2019), which relates the actual 

electrical power production generated by the wind turbine to the wind speed, and by calculating 

wind power for individual potential wind turbine placements that are eligible for wind energy, 

including a sufficient horizontal distance between the placements (Franzmann et al., 2023; 

Ishmam et al., 2024; Winkler et al., 2025). 

The wind power calculations are done with the RESKit renewable energy simulation model 

(GitHub repository, 2019). RESKit calculates the wind power based on the 100 m wind speed 

while considering the effects of air temperature and pressure from the meteorological input 

data. The 100 m wind speed is logarithmically extrapolated to the hub height of the turbine and 

the generated wind power is found by identifying the corresponding wind speed on the power 

curve, which is determined by the wind turbine’s specific power—the installed capacity per 

rotor swept area—as a synthetic power curve in RESKit (Ryberg et al., 2019). RESKit is also 

able to provide optimized wind turbine parameters capacity, rotor diameter, and hub height for 

a given turbine placement based on the long-term averaged 100 m wind speed from the GWA 
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version 3 dataset (GWA, 2019) to harvest wind energy resources with maximum efficiency 

(Ryberg et al., 2019). 

To examine the impact on WEP estimates from ERA5_ori, ERA5_GWA, and ICON-LAM, we 

choose the technical parameters from the wind turbine NTK1500/60 (Nordtank, 1997) with 1.5 

MW rated capacity, 60 m rotor diameter, and 60 m hub height (hereafter H60m) to match the 

height of the observed wind speeds. We then compute the wind power for these three different 

wind speed products over the 18 locations with weather masts for comparison. 

The turbine H60m is actually a small turbine and wind turbines have developed rapidly in 

recent decades, such that smaller wind turbines are successively replaced by larger and more 

efficient turbines (Martin et al., 2020). In order to deliver up-to-date WEP estimates, the 

expected median onshore wind turbine size in 2035 of 5.5 MW capacity, 174 m rotor diameter, 

and 130 m hub height (hereafter H130m)—from a survey conducted by (Wiser et al., 2021) 

oriented to the world’s leading experts in the wind energy industry—is additionally used as a 

baseline turbine with RESKit to find the optimal future turbine design (hereafter HOpt) for 

each wind turbine placement. A total of 1,829,467 eligible individual wind turbine placements 

have been identified over southern Africa (Franzmann et al., 2023; Ishmam et al., 2024; 

Winkler et al., 2025). The onshore WEP across entire southern Africa is then estimated using 

RESKit with the turbine HOpt over these 1.8 million eligible wind turbine placements, with 

approximately 99.4% of them using different turbine technologies, i.e., different values of 

capacity, rotor diameter, and hub height. For example, the spatial distribution of wind turbine 

hub heights used in HOpt is shown in Figure B.1. A similar HOpt determination is also 

conducted over 18 weather mast locations with detailed output parameters documented in Table 

B.1. Please note that whenever spatial plots are shown, values for each of the 1.8 million 

placements are plotted, providing eventually a continuous map. 

4.2.3 Wind Speed Evaluation and Wind Power Comparison 

The three data products are evaluated against observations by employing various statistical 

metrics. While the Mean Error (ME) indicates the systematic over- or under-estimation when 

comparing the simulation with the observation, the Mean Absolute Error (MAE) reveals the 

absolute biases between them. To assess the similarity in both wind speed magnitude and the 

variation in direction between simulations and observations over time, the Pearson Correlation 

Coefficient (R) is employed. Additionally, the Perkins Skill Score (PSS) (Perkins et al., 2007) 

is used to quantify the extent to which the simulation reproduces the observed frequency 

distribution of wind speed at a frequency distribution bin size of 1 m s-1.  

To compare the WEP derived from three wind speed products, the Capacity Factor (CF), as an 

indicator of WEP, is calculated for all eligible 1.8 million wind turbine placements. CF 

represents the ratio of actual power generation of a wind turbine to its nominal power 

generation capacity (Bolson et al., 2022).  

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝐹)  =  
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
  (4.1) 
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4.3 Results 

4.3.1 Comparison of Simulated 60 m Wind Speeds from ERA5 and ICON-LAM to 

Observations 

Figure 4.1 shows the comparison of observed hourly wind speed at 60 m height and simulated 

wind speed by ICON-LAM, ERA5_ori, and ERA5_GWA. From the ME subplot (Figure 4.1a), 

it is evident that ERA5_ori underestimates the 60 m wind speeds by up to 4 m s-1 with an 

average underestimation of 1.8 m s-1 (-27%). ERA5_GWA has only a slight underestimation of 

0.32 m s-1 (-4.7%). In comparison, ICON-LAM 60 m wind speeds show an even smaller 

underestimation of only 0.12 m s-1 (-1.8%). The average MAE (Figure 4.1b) across all the 

weather mast sites is roughly 2.2 m s-1 (33%), 1.6 m s-1 (24%), and 1.7 m s-1 (25%) for 

ERA5_ori, ERA5_GWA, and ICON-LAM, respectively. The percentages in parentheses are 

percentage errors of each metric when divided by the average 60 m wind speed of 6.68 m s-1 

over all weather masts. All datasets reproduce the observed 60 m wind speed variations over 

time similarly well (Figure 4.1c), with an averaged R over all the masts of 0.78 and 0.79 for 

ERA5_ori and ERA5_GWA, and 0.75 for ICON-LAM. ICON-LAM shows closer agreement 

with observations than the ERA5 variants in simulating the frequency distributions of 60 m 

wind speeds (see Figure 4.1d) with an average PSS for all weather mast locations of 0.93 for 

ICON-LAM, 0.74 for ERA5_ori, and 0.84 for ERA5_GWA, respectively.  

The simulated 60 m wind speeds at the different wind speed ranges of the baseline wind 

turbine’s power curve (see Figure B.2) are compared separately with the observations in 

Appendix B.3. The result of the full range wind speed comparison (Figure 4.1) is confirmed by 

the additional comparisons of the wind turbine’s usable (from 3 to 25 m s-1, see Figure B.3) 

and ramping phase (from 3 to 11 m s-1, see Figure B.4) wind speed ranges of the power curve. 

However, ICON-LAM outperforms the other two by a big margin in simulating the rated wind 

speed (Figure B.5) from 11 to 25 m s-1 in terms of ME, MAE, and PSS, and with quite similar 

R among the three data sets. 
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Figure 4.1 Comparison of simulated 60 m wind speeds from ERA5 (EAR5_ori and 

ERA5_GWA) and ICON-LAM against weather mast observations: a) ME, b) MAE, c) R, and 

d) PSS. Dashed lines correspond to the average of the respective metric per dataset. The pie 

charts indicate the temporal data coverage of 60 m observed wind speeds for each weather mast; 

dark grey indicates the percentage of available data from 2017 to 2019. The masts are labelled 

according to their identifier in the Wind Atlas of South Africa (2010); weather mast “WM04” 

has no data from 2017 to 2019 and is therefore not included in the comparison. For the mast 

locations see Figure 4.2b. 

4.3.2 Contrasts in Wind Power Generation Driven from ERA5 and ICON-LAM Over 

Weather Mast Locations 

The estimated wind power for the 18 weather mast locations is expressed through CF and 

shown in Figure 4.2. CFs are calculated from the ERA5_ori, ERA5_GWA, and ICON-LAM 

wind speed products and the H60m and HOpt wind turbine technologies (see Table B.1 for 

detailed wind turbine parameters). Converting 60 m wind speed into wind power by using the 

H60m turbine, the averaged CFs for all the masts are 0.11, 0.16, and 0.21 for ERA5_ori, 

ERA5_GWA, and ICON-LAM, respectively. When considering the optimal turbine HOpt for 

each of the 18 weather mast locations, CF shows a similar behaviour, albeit with a clear positive 

offset; the corresponding averaged CFs are 0.28, 0.35, and 0.44 for ERA5_ori, ERA5_GWA, 

and ICON-LAM. Significant increases in average CFs—perceived as the power generation 

efficiency—are found from the H60m turbine as typically manufactured in 1997 to the HOpt 

turbine expected for 2035. The average CF difference from different wind speed products is 

consistent with the evaluation of simulated CFs against power measurements for existing wind 
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farms in South Africa (see B.4.2 for details) using the real-world installed turbine parameters; 

the corresponding averaged CFs are 0.25, 0.30, and 0.38, whilst the observed averaged CF is 

0.37. 

 

Figure 4.2 a) Locations of the weather masts (red dots) with topography over the entire study 

area and ICON-LAM model domain. b) As in a), but zoomed into the area where the masts 

(with index) are located. c) Averaged CFs from 2017 to 2019 over weather mast locations 

estimated from ERA5_ori, ERA5_GWA, and ICON-LAM under two wind turbine 

technologies of H60m and HOpt. 

4.3.3 Spatially Distributed Wind Energy Potential 

Examining the CF time series differences derived from ERA5_ori, ERA5_GWA, and ICON-

LAM over all the eligible placements (see B.5.1 for details) shows that most placements have 

larger CFs derived from ICON-LAM than from ERA5_ori and ERA5_GWA, with few 

exceptions for placements over flat terrain from ERA5_ori and over steep terrain from 

ERA5_GWA. The spatial patterns of the correlation coefficient between ICON-LAM and 

ERA5_ori on the one hand and between ICON-LAM and ERA5_GWA on the other hand are 

similar, and larger correlation coefficients occur in the southwest and northeast of the study 

area. 

The annual average CF is further inspected in Figure 4.3, comparing the 2017 to 2019 averages 

of the CF derived from ERA5_ori, ERA5_GWA, and ICON-LAM. The interannual variation 

of CF within one dataset is relatively small (see the annual maps in Figures B.11 and B.12), 

albeit the spatial variation of the CF is very pronounced, within each dataset and among 
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ERA5_ori, ERA5_GWA and ICON-LAM. 

ICON-LAM reveals more spatial details (Figure 4.3a) in CFs compared to ERA5_ori. The 

added value of the ICON-LAM runs is evident, as the surface topography with 3.3 km spatial 

resolution is much better represented than in ERA5 with 31 km spatial resolution. In total, 58.6% 

and 9.2% of the ICON-LAM placements show larger CFs of more than 30% and 100%, 

respectively, compared to ERA5_ori (Figure 4.3d), indicating a higher WEP from ICON-LAM. 

In addition, only 5% of all the placements show smaller CFs from ICON-LAM compared to 

ERA5_ori, mostly located in the inland plateau and the coastal plain of Mozambique. 

Local details can barely be seen in the ERA5_ori-based CFs (Figure 4.3c). A low CF (< 0.2) 

belt is found in the strong-relief (Figure 4.2a and 4.2b) southern and eastern part of South 

Africa, where significant differences in terrain heterogeneity between the high and coarse 

resolution data exist, that impact the wind speeds. This results in larger CFs from ICON-LAM 

compared to ERA5_ori, even exceeding 100% for some placements in this region (Figure 

4.3d). 

By combining GWA information into ERA5_ori, much more heterogeneous CFs are found 

from ERA5_GWA (Figure 4.3e) compared to ERA5_ori (Figure 4.3c). The larger CFs of 

ICON-LAM compared to ERA5_ori in the topographically complex belt disappear when 

comparing ICON-LAM to ERA5_GWA, and slightly larger CFs are found by ERA5_GWA 

(Figure 4.3f). In fact, GWA version 3 has reported a tendency to overestimate mean wind speeds 

over steep terrains such as ridges and hilltops (Davis et al., 2023), which is consistent with the 

slightly larger CFs compared to ICON-LAM found from ERA5_GWA in this study over the 

extremely contrasting terrain in and/or around Lesotho. Spatially distributed CFs from ICON-

LAM are generally closer to ERA5_GWA than ERA5_ori, except for placements over the 

northeastern plateau of the study area. Overall, 81.8% of the placements from ICON-LAM 

show more than 30% and 11.4% more than 100% larger CFs, respectively, compared to 

ERA5_GWA, and 3% of the placements indicate smaller CFs from ICON-LAM compared to 

ERA5_GWA (Figure 4.3f).  

The comparison of spatially distributed average CFs derived from different wind speed 

products is summarized in the CF frequency distribution analysis (Figure 4.3b). ERA5_ori and 

ERA5_GWA perform quite similarly for CFs below 0.2 and reach the CF peak near CF 0.25, 

but ERA5_GWA shows more CFs occurrences in the CF range [0.2, 0.3] and ERA5_ori in the 

range [0.3, 0.475]. ICON-LAM has a similar shape of the frequency distribution compared to 

ERA5_GWA but with a CF peak near 0.4 instead of 0.25. These results are consistent with the 

evaluation of the simulated power over existing wind farms in South Africa (see B.4.2) that 

ERA5 variants tend to deliver smaller CFs and miss the larger ones. Splitting placements by 

country, as shown in B.6, also indicates similar patterns. 
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Figure 4.3 Averaged CF of 2017 to 2019 for each eligible wind turbine placement across 

southern Africa derived from a) ICON-LAM, c) ERA5_ori, and e) ERA5_GWA and their 

relative differences in CF of d) (ICON-LAM minus ERA5_ori) / ERA5_ori and f) (ICON-

LAM minus ERA5_GWA) / ERA5_GWA. The frequency distributions of spatially distributed 

3-year (solid lines) and annually (dashed lines) averaged CFs across all eligible placements 

derived from three wind speed products are shown in b) with a CF bin size of 0.025. 
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4.4 Discussion and conclusions 

In this chapter we assessed the quality of wind speed simulation products against in-situ 

observations and compared WEP over southern Africa.  

ERA5_ori underestimates the 60 m wind speed by 27%. Other wind speed evaluations at wind 

energy-related heights in Europe (Jourdier, 2020; Olsen et al., 2019), America and Iran 

(Gualtieri, 2021) confirm our finding and this indicates ERA5_ori limits in providing a reliable 

assessment of WEP. ERA5_GWA, based on statistical downscaling of ERA5_ori, performs 

well compared to ICON-LAM in terms of ME, MAE, and R. However, ICON-LAM reproduces 

the observed wind speed frequency distribution with PSS of 0.93, and ERA5_GWA 0.84. Wind 

speed evaluation at the cut-in and cut-out range against measurements shows similar results 

(see Figure B.3) to the full range, however, ICON-LAM clearly outperforms the two ERA5 

variants in simulating the wind speed in the rated wind speed range of the wind turbine’s power 

curve (Figure B.5), which is the most productive wind speed range for the wind energy. 

The evaluation of simulated wind power for the existing 25 wind farms in three provinces in 

South Africa for the year 2019 shows ICON-LAM generally reproduces the observed CFs 

better than ERA5_GWA and ERA5_ori (see B.4.2). The WEP, using CF as an indicator, is 

further estimated over 1.8 million eligible wind turbine placements across southern Africa. 

Spatially, ICON-LAM has larger CFs over mountainous regions, and it agrees better with 

ERA5_GWA than with ERA5_ori over these regions. ERA5_ori tends to provide slightly larger 

CFs over part flat terrain, which is missing in the other products. ICON-LAM (with larger CFs) 

differs most with ERA5_GWA for the northeastern part of the southern African Plateau. The 

respective spatial mean CFs derived from ERA5_ori, ERA5_GWA, and ICON-LAM are 0.28 

(annual power 12.39 GWh/turbine, see Figure B.15), 0.25 (11.37 GWh/turbine), and 0.38 

(17.02 GWh/turbine). These CFs are corroborated by comparing wind speeds from the different 

products used to calculate CFs over all the eligible wind turbine placements (Figure B.14). 

More than half of the eligible placements show a larger CF of more than 30% when comparing 

ICON-LAM to both ERA5 variants, and this translates into an increased average annual power 

of 6 GWh/turbine according to ICON-LAM; it is compelling when compared to South Africa’s 

electricity consumption of 203 TWh in 2022. This calls for more suitable (high resolution and 

physically consistent) datasets for future WEP studies for southern Africa and beyond. It is an 

important finding for the optimization of the energy transition towards net zero carbon emission, 

i.e., it hints to the possibility that the renewable WEP may for large areas be widely 

underestimated. 

Note that the different performances of the wind speed products, evaluated against 18 masts, 

may not be directly transferable to the comparison of the corresponding derived CFs across 1.8 

million eligible wind turbine placements due to: 1) The non-linear conversion from wind speed 

to wind power. 2) Different scale of 18 wind speed evaluation masts versus 1.8 million eligible 

placements-based CFs in southern Africa, with very pronounced heterogeneity of surface 

topography and calculated wind power. 3) The wind atlas workflow related with ERA5_GWA 
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is possibly tuned over the weather masts as the evaluation is applied there iteratively (Davis et 

al., 2023; Mortensen, 2021; Mortensen et al., 2017), which is not the case for ICON-LAM. 

A particular strength of the study is the higher level of applicability of our results as we employ 

a state-of-the-art WEP calculation workflow adapted from the energy assessment realm 

(Ryberg et al., 2019), which considers land eligibility and variable turbine technology to 

maximize generation for each eligible turbine placement, and also uses the turbine-specific 

power curve for wind to power conversion. This more realistic calculation of WEP is usually 

missing in similar other works (Lei et al., 2023; Lu et al., 2009; Reyers et al., 2016), which 

often consider only meteorological variables. 

Meanwhile, WEP derived from high-resolution, convection-permitting, physically consistent 

wind speed products, especially over Africa, is usually missing in the energy realm (Fasihi & 

Breyer, 2020; McKenna et al., 2022). The spatial patterns of CFs derived from coarse wind 

speed products in studies (Fasihi & Breyer, 2020; Lu et al., 2009) over southern Africa are 

similar to our ERA5_ori-based CFs, highlighting the importance of using the high-resolution 

wind speed product for WEP estimates. Higher fidelity of wind speed simulation and wind 

power calculation are found with our high-resolution physically consistent wind speed product, 

revealing higher wind power (see B.7) and helping to attract investment in the local onshore 

wind energy industry. 

Onshore wind energy is expected to play a major role in the energy transition and 

underestimated onshore WEP estimates would ultimately affect its efficient use. However, a 

direct transferability of our findings to other regions may not be feasible due to the particular 

ocean-land distribution and the complex topography with complex circulation patterns in the 

analysed region (Chen, Poll, et al., 2024). 

Given the substantially larger estimated WEP revealed by ICON-LAM, our next step is to 

investigate the impact these increased WEPs have on the design of the renewable energy system 

over southern Africa as a contribution to the energy security discussion in the region. 
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Chapter 5. High-resolution atmospheric modelling reveals lower costs for 

renewable energy systems in southern Africa 

*adapted from: Chen, S., Goergen, K., Hendricks Franssen, H.‐J., Franzman, D., Winkler, C., Ishmam, S., Poll, 

S., Linssen, J., Vereecken, H., & Heinrichs, H. (2025). High-resolution atmospheric modelling reveals lower costs 

for renewable energy systems in southern Africa. In preparation for submission to Energy. 

5.1 Introduction 

Africa remains the least electrified continent in the world (International Energy Agency, 2022). 

Renewable energy presents a crucial opportunity to bridge this electricity supply gap, given the 

continent’s vast, untapped renewable energy resources (Ishmam et al., 2024; Winkler et al., 

2025). The feasibility of distributed renewable energy systems further strengthens this case, as 

they offer a cost-effective and technically viable alternative to centralized fossil-fuelled power 

plants, particularly in reaching un-electrified rural areas (Nyarko et al., 2023). The ongoing 

global transition to carbon-neutral energy systems in response to global climate change (Oteng 

et al., 2024) further underscores the urgency of a renewable energy-driven transformation in 

Africa. Expanding renewable energy within African energy systems is therefore a decision that 

yields multiple benefits. 

Wind and solar are the most widely accessible renewable energy sources for electricity 

generation compared to others such as biomass (biofuels and wastes), water (hydro and tidal), 

or geothermal heat (López Prol & Schill, 2021). However, both are variable renewable energy 

(VRE) resources, as they are highly dependent on weather conditions (Wang et al., 2023). 

Energy systems in general consist of interconnected networks of components involved in the 

production, conversion, delivery, and use of energy across various sectors, including power 

generation, heating/cooling, transportation, and industry (Mancarella, 2014; Martínez-Gordón 

et al., 2021). Such energy systems are complex, as they consist of heterogeneous, spatio-

temporally interconnected multi-scalar and multi-dimensional system components (Bale et al., 

2015). Incorporating power generated by VRE further complicates the energy systems design, 

implementation, and operation. Analysing complex energy systems with respect to VRE at a 

sufficient, decision-relevant level of detail is challenging. 

How to deal with the internal fluctuation of power supply from VRE in an energy system has 

therefore been a long-standing and widespread discussion (Cochran et al., 2012; Deguenon et 

al., 2023; Sinsel et al., 2020). Proposed viable solutions are, e.g., the self-complementarity of 

VRE, or the inclusion of backup systems, such as a storage system using battery or “power-to-

x” (Franzmann et al., 2023; Ishmam et al., 2024; Müller et al., 2025; Palys & Daoutidis, 2022; 

Winkler et al., 2025), as well as dispatchable power systems like fossil-fired power plants and 

hydropower plants. To build reliable energy systems, the key lies in successfully identifying 

the self-complementarity of VRE sources, specifically, how their total power generation varies 

within the energy systems. As part of the VRE complementarity topic, the geophysical 

constraints of the reliability of solar and wind energy in terms of their hybridization, i.e. how 

both sources may complement each other, have been studied globally (Tong et al., 2021) or 
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locally like in the United States (Shaner et al., 2018). The identification of solar and wind 

energy “droughts” under the influence of different weather conditions and climate modes has 

been investigated for Australia (Richardson et al., 2023). The complementarity of wind and 

solar energy has been for example analysed for historical periods based on MERRA-2 

reanalysis (Ren et al., 2019) and dynamical downscaling simulations with regional climate 

models (D’Isidoro et al., 2020). For the investigation of future periods of wind and solar energy 

complementarity, simulations from the sixth phase of the Coupled Model Intercomparison 

Project (CMIP6) have been used by Costoya et al. (Costoya et al., 2023). In this study, the self-

complementarity of VRE is defined as the hybridization of solar and wind power generation 

within a given region, emphasizing its role in optimizing energy balance at a local scale. For a 

comprehensive review of complementarity analysis of VRE, readers are referred to Jurasz et 

al. (Jurasz et al., 2020), where different types of complementarity – temporal, spatial, and 

spatiotemporal – between renewable energy sources are introduced, along with metrics for 

assessing complementarity. 

To build an affordable, reliable, and sustainable energy system in Africa, in accordance with 

the United Nations Sustainable Development Goals (SDG) goal seven, the spatial and temporal 

variability of VRE potential and the self-complementarity of VRE feed-in power time series 

need to be accurately resolved to optimize the energy system design. This energy system 

optimization implies the necessity of accurate meteorological data from which reliable VRE 

information can be derived. However, existing meteorological data sets over Africa used for 

this purpose are often characterized by a coarse spatial resolution or data gaps (Chen, Goergen, 

et al., 2024; Chen, Poll, et al., 2024; Michael R Davidson & Dev Millstein, 2022; McKenna et 

al., 2022).  

This study therefore aims to examine the impacts of using different meteorological data 

products at different spatial resolutions on the energy systems design. The state-of-the-art 

global reanalysis ERA5 (referred to as ERA5_ori) (Hersbach et al., 2020), its statistical 

downscaling variants ERA5_GWA (using the Global Wind Atlas (GWA, 2019)) and 

ERA5_GSA (using the Global Solar Atlas (GSA, 2019)), collectively referred to as ERA5_adpt, 

and a dedicated high-resolution dynamically downscaled product based on ICON simulations 

in limited area mode (ICON-LAM) (Chen, Poll, et al., 2024) are examined. A previous study 

already indicated higher onshore wind energy potentials using high-resolution meteorological 

data from ICON-LAM simulations compared to ERA5_ori and ERA5_GWA (Chen, Goergen, 

et al., 2024). Based on these results, this study explores the data sets’ impact on energy systems 

design. Southern Africa is chosen as the focus area due to the availability of the high-resolution 

ICON-LAM simulations. The region may serve as a pilot area for the entire African continent. 

The level of detail that model-based energy systems planning can incorporate is not only 

dependent on the quality of the VRE information, which is constrained by meteorological data 

sets, but also on computational capacity, computational methods for optimisation, and energy 

system-related data availability (Martínez-Gordón et al., 2021). In large-scale energy systems 

models, typically at the national level, it is usual to use clustered or aggregated spatial data due 
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to the high computational cost (Martínez-Gordón et al., 2021). The spatial granularity of energy 

systems, often referred to as energy system nodes, is predefined, with calculations performed 

at the level of these nodes. The internal structure of the components within these nodes is 

typically disregarded. Likewise, in this study, we define administrative provinces as the energy 

system nodes and the energy system modelling is performed for each such province in southern 

Africa. 

This study starts the analysis by comparing the wind and solar potential maps derived from 

ICON-LAM and ERA5 data. The motivation is to illustrate the maximum possible amount of 

VRE potential in southern Africa. We then move to the complementarity analysis of solar and 

wind energy over southern Africa by incorporating the representative future electricity demand 

time series projected for the year 2050 for southern Africa. A cost-optimized renewable energy 

system is designed for each province in southern Africa, with power generation from VRE and 

power storage from batteries considered to meet the projected regional electricity demand. The 

underlying VRE complementarity designed in this cost-optimized energy system is able to 

address both reliable electricity supply and minimum overall costs. To evaluate the direct 

impact on local energy systems, it is assumed that power transmission from generation to 

consumers is lossless within a region and that there is no power exchange between regions, 

following the works in Ishmam et al. (Ishmam et al., 2024) and Winkler et al. (Winkler et al., 

2025). The cost and design of the energy system is compared based on the wind and solar VRE 

from different meteorological data sets. Finally, the daily time series of the renewable energy 

systems in terms of meeting the electricity demand shares of wind energy, solar energy, and 

battery (dis)charge are further investigated and compared. 

5.2 Materials and methods 

5.2.1 Meteorological data sets 

ERA5 (Hersbach et al., 2020) is a state-of-the-art global reanalysis product (ERA5_ori). With 

a temporal resolution of 1 hour and a spatial resolution of 31 km, it has been widely used in 

Renewable Energy Potential (REP) assessments (Bloomfield et al., 2020; Ruiz et al., 2021; 

Sakuru & Ramana, 2023). The new ERA6 reanalysis is expected to replace ERA5 in 2027, 

with grid space reduced to half (close to 15 km) that of ERA5 (European Centre for Medium-

Range Weather Forecasts (ECMWF), 2024). The Global Wind Atlas (GWA, 2019) and Global 

Solar Atlas (GSA, 2019), both with a nominal spatial resolution of 250 m and long-term mean 

temporal averages are also frequently used information for REP analysis (Gruber et al., 2022; 

Neupane et al., 2022; Ryberg et al., 2019). These global atlases (Wind: GWA, Solar: GSA) are 

integrated with a statistical downscaling approach (Peña-Sánchez et al., 2025; Ryberg, 2020; 

Ryberg et al., 2019) to overcome the coarse spatial resolution in ERA5. The long-term mean 

ratios of the global atlases to ERA5_ori, i.e., GWA/ERA5_ori and GSA/ERA5_ori, are first 

calculated and then multiplied with the ERA5_ori time series to obtain ERA5_GWA and 

ERA5_GSA (collectively referred to as ERA5_adpt). 

High-resolution, i.e., convection-permitting or, interchangeably, kilometre-scale, 
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meteorological data are scarce for Africa. Pan-African simulations are, e.g., by Stratton et al. 

(Stratton et al., 2018) and Kendon et al. (Kendon et al., 2019) at 4.5 km resolution. For our 

study a dedicated high-resolution dynamical downscaling atmospheric simulation experiment 

over southern Africa was performed by Chen et al. (Chen, Poll, et al., 2024) using the ICON 

model (Zängl et al., 2015) in Limited Area Mode (ICON-LAM) at a convection-permitting 

resolution of 3.3 km. The ICON-LAM simulation is driven by the global initialized analysis 

from the German Weather Service (DWD) and uses a numerical weather prediction 

configuration of DWD. Chen et al. (Chen, Poll, et al., 2024) gives a detailed overview on the 

experiment setup and configuration including an extensive evaluation of near-surface wind and 

solar irradiance, which demonstrates the suitability of the ICON-LAM 2017 to 2019 data for 

REP analysis. In Chen et al. (Chen, Goergen, et al., 2024), further evaluations show that ICON-

LAM more accurately reproduces observed wind speed closer to the wind turbine height, as 

well as the derived wind power, when using a state-of-the-art renewable energy simulation 

model, compared to commonly used data sets. 

The model domain of the ICON-LAM simulations defines the spatial focus of this study; it 

encompasses southern Africa below about 16 degrees south, i.e., countries Namibia, Botswana, 

South Africa, Lesotho, Eswatini are fully covered, and Zimbabwe and Mozambique are 

partially covered, and hence included in the study with a total of 65 provinces. This is referred 

to as southern Africa. The location and details of these countries and their provinces are shown 

in Figure C.1 and Table C.1. 

5.2.2 The wind and solar power calculation and the REP estimation 

The renewable energy simulation model RESKit (GitHub repository, 2019) is employed to 

calculate wind and solar power in this study. In the RESKit model wind workflow (Peña-

Sánchez et al., 2025; Ryberg et al., 2019), the 100 m wind speed is logarithmically scaled to 

the wind turbine hub height, and the wind power generated by the wind turbine is then derived 

according to a synthetic power curve – wind power as a function of wind speed. In the RESKit 

solar workflow (Ryberg, 2020), the solar irradiance received on top of the solar photovoltaic 

(PV) panels is first determined, and then the solar power generated by the solar PV panels is 

calculated accordingly using the law of photoelectric conversion. Other system-level loss 

factors are also considered, such as drops in PV panel photoelectric conversion efficiency due 

to the unfavourable ambient air temperature, losses from the inverter when converting direct 

current (DC) to alternating current (AC), and losses from soiling on the solar PV panels. 

Based on the land eligibility and placement identification analyses performed by Winkler et al. 

(Winkler et al., 2025), we calculate in total 1,829,467 wind turbines and 748,388 km2 solar PV 

panels in southern Africa that are eligible for the installation of the onshore wind and open-

field solar PV energy placements. Advanced wind turbines and solar PV panel modules, which 

are available from laboratory or manufacturer and are barely installed now but may be widely 

used in the future, are selected to be simulated with the RESKit model. Specifically, the 

baseline wind turbine with turbine parameters predicted for 2035 (Chen, Goergen, et al., 2024; 

Wiser et al., 2021) and the solar PV module with solar power conversion efficiency projected 
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for 2050 (Ryberg, 2020) are used, see Table 5.1 for details. Utilizing all the eligible placements 

for the installation of wind and solar farms with advanced wind and solar energy technologies, 

the onshore wind and open-field solar PV energy potentials are estimated using the RESKit 

model over southern Africa with the ERA5_ori, ERA5_adpt, and ICON-LAM datasets. 

Table 5.1 Key parameters of anticipated advanced wind turbine and PV panel technologies. 

Note that all simulated wind turbines have deviating parameters from the baseline 

configuration that lead to a maximum wind resource harvesting efficiency. 

Design Value 

Baseline wind turbine: 
 

Hub Height 130 m 

Root Diameter 174 m 

Capacity 5500 kW 

Specific Power 231.3 W m-2 

Solar PV panel design: 
 

Solar PV module WINAICO WSx-240P6 (Ryberg, 2020) 

Conversion rate Projected for 2050 

Capacity Proportionate to the available land area at 20 m²/kWpeak 

 

5.2.3 Spatially resolved electricity demand and time series for 2050 

A basis for any energy system optimization is electricity demand data. The annual sub-national 

disaggregated electricity demand data for the study region of southern Africa is sourced from 

Ishmam (Ishmam, unpublished yet). The annual electricity demand projections are built upon 

the national energy demand projections from the Net Zero 2050 scenario provided by the 

Network for Greening the Financial System (NGFS) Scenario Framework (O Richters et al., 

2022; Oliver Richters et al., 2022). These projections consider electricity demand from 

residential, commercial, agriculture, manufacturing, service, and transportation sectors. 

Geospatial proxies such as level of access to electricity, population density, CO2 emissions 

distribution, gross domestic product (GDP) distribution, etc., corresponding to these sectors 

are then utilized to disaggregate the annual national electricity demand to the administrative 

level 1 (GID-1), i.e., provinces. 

Hourly load curve data was then obtained from Toktarova et al. (Toktarova et al., 2019) for 

each country and adjusted to the UTC time zone to match the time zone of the generation time 

series. It is important to note that the shapes of these load curves may change over time as 
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access to electricity improves, and as the industrial and service sectors of countries grow, along 

with advancements in energy efficiency. However, for the purposes of this study, the load 

profiles have been retained in their current form and then scaled to align with the projected 

annual disaggregated demand in 2050. For in-depth information regarding the demand 

disaggregation methodology, please refer to Ishmam (Ishmam, unpublished yet). 

To illustrate the electricity demand, the spatially resolved hourly electricity demand time series 

for 2050 have been summed up over the entire southern Africa study domain as well as over 

individual countries in the study region (Figure 5.1). All time series utilized in this study are in 

UTC. The annual cycle for the whole region shows highest values during the austral winter 

(Figure 5.1a), the country of South Africa is projected to exhibit the highest electricity demand 

in southern Africa by 2050, estimated at 342 TWh year-1, about 86% of the total annual 

electricity demand in the region. Due to scale, for better visibility, the electricity demand time 

series of remaining study area countries are also shown in Figure 5.1b with highest values 

during austral spring and summer when cooling demand is highest. 

Hourly fluctuations in electricity demand for all of southern Africa, South Africa, and the 

Western Cape province, which is the economic hub of South Africa, are shown in Figure 5.2. 

The hourly electricity demand displays a discernible diurnal cycle, with a reduced nighttime 

demand from approximately 02:00 to 07:00. Expectedly, there is a contrast in energy demand 

between weekdays and weekends; also public holidays stand out. A slight seasonal cycle is 

visible with an increased electricity demand during Austral winter months and evenings. 

 

Figure 5.1 a) Projected total hourly electricity demand for 2050 for the entire southern Africa 

and those countries that are fully or partly covered by the ICON-LAM model domain, b) Same 

as in a) but zoomed in for countries with relatively lower electricity demand (Ishmam, 

unpublished yet). 
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Figure 5.2 Hourly electricity demand time series for a) southern Africa, b) South Africa, and 

c) Western Cape as projected for 2050, with days of the year aggregated by month shown on 

the x-axis and hours of the day shown on the y-axis. Please note the different scales of the 

colour bars used in the figure. 

5.2.4 Energy systems modelling 

The power time series calculated by the RESKit (Peña-Sánchez et al., 2025; Ryberg, 2020; 

Ryberg et al., 2019) model for onshore wind energy and open-field solar PV energy serve as 

the basis for designing optimal energy systems. Our study focuses on a future 2050 electricity 

demand scenario as introduced in the previous section. To alleviate the computational burden 

in the energy system modelling, power time series of wind and solar energy are clustered over 

each energy system node (province). Following studies of Ryberg (Ryberg, 2020) and 

Franzmann et al. (Franzmann et al., 2023), segmented average clustering is used in this study: 

For each of the energy system nodes, the annual Full Load Hours (FLH) of every individual 

wind and solar placement within an analysis region is calculated and ordered from the highest 

to the lowest. They are further serially divided into N groups with similar FLH members. The 

power time series belonging to the same FLH group are averaged as the group representative. 

The class number used as N is set to 10 and 3 for wind and solar power time series clustering, 

respectively (Franzmann et al., 2023; Ryberg, 2020). 

After getting the representative wind and solar power time series in each energy system node, 

the energy system framework ETHOS.FINE (GitHub repository, 2018; Klütz et al., 2025) and 

the solver gurobi (Gurobi Optimizer, 2018) is used to derive cost-optimized energy systems 

based on wind energy, solar energy, and battery storage for each province independently the 
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year of 2050. ETHOS.FINE minimizes the total annual costs while fulfilling the 

aforementioned provincial electricity demand based on the restricted maximum operation time 

series of renewable energy generation and on the ability to use curtailment. Due to the one node 

spatial resolution of the energy systems, power transmission losses from power plants to power 

consumers and power transmission between provinces are not considered to solely focus on 

the impact of different weather data products. The techno-economic parameters for calculating 

the total annual costs follow published works (Schöb et al., 2023; Schöb, 2024). 

5.3 Results 

5.3.1 ICON-LAM reveals higher onshore wind and similar open-field solar PV energy 

potential 

Considerable differences are found between the maximum harvestable wind energy potentials 

estimated from the three data sets, as shown in Figure 5.3. These results are consistent with the 

findings of Chen et al. (Chen, Goergen, et al., 2024). In contrast, similar maximum harvestable 

solar energy potentials are shown in Figure 5.3 estimated from different data sets. They are 

actually almost identical, with few detectable differences, and very similar spatial distributions 

of solar irradiance for the data sets were shown in Chen et al. (Chen, Poll, et al., 2024). 

Comparable results for wind and solar energy potential, as indicated by the capacity factor – 

the ratio of actual power generated to the nominal generation capacity – are shown in Figure 

C.2. The solar and wind energy potential maps in Figure 5.3 and C.2 are produced based on a 

total 1.8 million eligible wind turbine placements and 0.74 million km2 solar photovoltaic (PV) 

panel placements in southern Africa, respectively; values for each of these eligible placements 

are plotted, resulting in eventually a continuous map made up of many individual data points. 

When comparing wind energy potentials derived from the three data sets, the coarse spatial 

resolution of ERA5_ori (31 km) becomes obvious, as details of wind energy potentials are 

hardly visible compared to the other two high spatial resolution data sets. However, the general 

patterns of contrasting high and low wind energy potentials are consistent between the data 

sets. In addition, ICON-LAM shows generally a higher wind energy potential over the entire 

study domain, while ERA5_GWA partially agrees with ICON-LAM. The respective spatial 

mean annual wind energy potential derived from ERA5_ori, ERA5_GWA, and ICON-LAM 

are 12.39 GWh/turbine, 11.37 GWh/turbine, and 17.02 GWh/turbine, with all 1.8 million 

eligible wind turbine placements considered. 

Relatively large solar energy potentials within our study area exist in western South Africa and 

small parts of southern Namibia and Botswana (Figure 5.3b, 5.3d, and 5.3f). Locations along 

the south coast, eastern South Africa, Zimbabwe, and southern Mozambique are more 

unfavourable for solar energy installations. These locations correspond to the general 

atmospheric circulation patterns and the spatial patterns of precipitation in southern Africa 

(Figure S1 in Chen et al. (Chen, Poll, et al., 2024)), where clouds reduce the incoming solar 

radiation. The agreement in the spatial patterns of solar energy potentials derived from three 

data sets indicates that large-scale anticyclonic circulation patterns with high pressure clear-
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sky conditions in the southwest of the domain are well represented by ERA5 and ICON-LAM. 

 

Figure 5.3 Comparison of estimated 2017-2019 average annual total power derived from 

ERA5_ori, ERA5_GWA/_GSA, and ICON-LAM simulated by the RESKit model wind and 

solar workflows across all eligible wind turbine and solar PV panel placements in southern 

Africa. Black lines are country borders and grey lines are provinces in southern Africa used as 

energy system nodes in the study. Names of the countries and provinces included in this study 

are shown in Figure C.1 and Table C.1. All maps are made up of multiple colour-coded site-
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specific information, where each data point represents one wind turbine (total 1.8 million 

turbines) in Figure 5.3a, 5.3c, and 5.3e and one area of solar PV panels (total 0.74 million km2 

panels) in Figure 5.3b, 5.3d, and 5.3f, visually appearing as continuous data fields. 

5.3.2 Lower annual costs in energy systems derived from ICON-LAM 

In this study, the impact of three different meteorological data sets on the design of a renewable 

energy system over southern Africa is investigated. For this, an energy system considering wind 

energy, solar energy, and battery storage is designed in a cost-optimized way to meet 100% of 

the provincial 2050 electricity demand scenario in the 65 provinces over southern Africa. Three 

meteorological data sets for 2017 to 2019, are used to calculate the solar and wind power 

generation serving as input for the design of the cost-optimized energy system. 

The total annual costs and the individual shares of different technologies (wind, solar, battery) 

of these cost-optimized energy systems in southern Africa, derived from different 

meteorological data sets, are shown in Figure 5.4. A scaled axis is additionally provided in 

Figure 5.4, since values of provinces from South Africa, due to its dominant electricity demand 

in all of southern Africa (see Figure 5.1), exceed the other countries as outliers. Out of the 65 

provinces of our southern African study domain, 52 are considered capable of supporting a 

cost-optimized energy system that meets 100% of the regional 2050 scenario electricity 

demand by exploiting only renewable energy sources, i.e., the local wind and solar energy 

potentials per region, combined with battery installations. Table C.1 details the basic 

information for each province and indicates whether the cost-optimized energy system would 

be feasible to build or not. If the cost-optimized energy system cannot be built, the reasons are 

also documented, which are usually rooted in no eligible wind and solar placements at all or 

the optimization being proven infeasible or unbounded. 

In general, cost-optimized energy systems designed based on the ICON-LAM data set have 

lower total annual costs compared to the other two data sets. The annual cost from ICON-LAM 

is 11% Euros/a less than from ERA5_adpt and 16% Euros/a less than from ERA5_ori, averaged 

over three years for all provinces. Cost-optimized energy systems derived from ICON-LAM 

have more wind energy capacity (comparable to ERA5_adpt and 9% more than ERA5_ori) and 

less solar energy capacity (13% less than ERA5_adpt and 23% less than ERA5_ori) compared 

to the two ERA5 variants. In addition, the required battery capacity of cost-optimized energy 

systems derived from ICON-LAM is less than the other two (9% less than ERA5_adpt and 17% 

less than ERA5_ori). 

To investigate the reasons behind the lower annual costs of energy systems designed with 

ICON-LAM, a comprehensive analysis of annual operational characteristics of energy systems 

derived from different meteorological data sets is presented in Figure 5.5. The figure shows the 

full load hours (FLHs), levelized cost of electricity (LCOE), potential utilization rate, and 

curtailment rate for wind and solar technologies, and (dis)charge frequency and levelized cost 

of storage for battery technology, used in the energy systems. More FLHs of wind energy 

(Figure 5.5a), pointing to cheaper wind energy (Figure 5.5d), are available for use in the cost-
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optimized energy systems designed with ICON-LAM, which is consistent with the findings of 

Chen et al. (Chen, Goergen, et al., 2024) that high-resolution kilometre-scale atmospheric 

modelling over southern Africa yields higher wind energy potentials. Meanwhile, lower 

required battery capacity (Figure 5.4) indicates that wind and solar power estimated from 

ICON-LAM better complement each other in meeting demand, as less backup (battery) 

capacity is needed, leading to lower system cost. This is further confirmed by the lowest 

average battery (dis)charge frequency (Figure 5.5c) of energy systems designed with ICON-

LAM, as compared to with other ERA5 variants. 

Generally, all three data sets agree with each other that a low potential utilization rate with a 

maximum around 7% from the total wind and solar potentials (Figure 5.5 g and h), combined 

with an appropriate amount of installed battery capacity, is sufficient to meet the electricity 

demand for all provinces in southern Africa. Furthermore, on average more than half of the 

solar energy is curtailed (Figure 5.5k), while a relatively higher proportion of wind energy is 

utilized (Figure 5.5j), due to the nature of their generation, where solar energy is almost only 

available during the day and wind energy does not have a relatively strong periodic signal. 

Little interannual variation is observed regarding the cost and design (Figure 5.4) and the 

operational characteristics (Figure 5.5) of cost-optimized energy systems based on data from 

2017 to 2019. 
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Figure 5.4 The energy system’s total annual cost (Billion Euros) (blue bar) and the installed 

capacity (GW) of wind energy, solar energy, and battery (respective orange bars from left to 

right) for the cost-optimized regional energy system derived from different meteorological 

products for the three weather reference years a) 2017, b) 2018, and c) 2019. The first column 

contains all data points, while the second column zooms in on a range from 0 to 1 billion Euros 

and 0 to 10 GW capacity for a better presentation of the data. Each box extends from the first 

quartile (25th percentile) to the third quartile (75th percentile) of the data, with the median 

shown as a solid line inside. The whiskers are set at 1.5 times the interquartile range (IQR, the 

difference between the 75th and 25th percentiles) above the 75th percentile and below the 25th 

percentile, i.e., a box ends at ± 1.5*IQR. Data points are marked as outliers if they exceed the 

range defined by two whiskers. Dashed lines are the averages of all underlying data points for 

the corresponding box plots. 
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Figure 5.5 Annual operational characteristics, including full load hours (FLH, [hours]) (1st 

row), levelized cost of electricity (LCOE, cents per kilowatt-hour [€/kWh]) (2nd row), potential 

utilization rate (3rd row), and curtailment rate (4th row), for onshore wind (1st column), open-

field PV (2nd column), and battery (3rd column) technologies used in cost-optimized energy 

systems designed from different meteorological datasets. Please note that terminology changes 
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when it comes to battery technology. The (dis)charge frequency is the total energy delivered 

by the battery divided by its capacity, and the levelized cost of storage is the total annual cost 

of the battery divided by the total energy delivered by the battery. A blank subplot indicates 

that the corresponding metric does not apply to that particular technology. For the description 

of the components of boxplots please refer to Figure 5.4. 

5.3.3 Spatially varied costs and design of energy systems using different 

meteorological inputs 

Figure 5.6 presents the cost-optimized energy system for each southern African province in 

2017, derived from three meteorological data sets. Results for 2018 and 2019 are shown in 

Figure C.3 and C.4, which display in essence the same patterns. South African provinces, 

especially Western Cape and KwaZulu-Natal, have the highest total annual costs compared to 

other provinces in southern Africa, but ICON-LAM lowers the average costs by 11% and 16% 

compared to ERA5_adpt and ERA5_ori, respectively. The cost differences between energy 

systems derived from two ERA5 variants are relatively small, around 5%. Given the 

significantly lower electricity demand compared to South African provinces, other provinces 

in southern Africa beyond South Africa show insignificant variations in terms of energy system 

design and costs. The following analysis therefore focuses on South Africa. 

The southern coastal provinces of South Africa exhibit greater wind energy capacity 

installation according to ICON-LAM (Figure 5.6b) compared to both ERA5 (Figure 5.6f and 

5.6j), particularly Western Cape and KwaZulu-Natal, which are the biggest electricity demand 

provinces and have higher wind energy potential from ICON-LAM (Figure 5.3a) compared to 

ERA5 variants (Figure 5.3c and 5.3e). Meanwhile, the northern four provinces of South Africa 

demonstrate slightly lower wind energy capacity installation from ICON-LAM compared to 

ERA5_adpt and similar to ERA5_ori. In contrast, the energy systems derived from ICON-

LAM (Figure 5.6c) require less solar energy capacity compared to ERA5_adpt (Figure 5.6g) 

and especially ERA5_ori (Figure 5.6k). A similar behaviour is observed for the required battery 

capacities, with a slight increase only in the northernmost province using ICON-LAM (Figure 

5.6d) compared to ERA5_adpt (Figure 5.6h). This is mainly due to the cheaper wind energy as 

well as better complemented wind and solar energy that ICON-LAM delivers compared with 

ERA5 variants, as indicated in Figure 5.4 and Figure 5.5. 



71 

 

 

Figure 5.6 The costs and design of cost-optimized energy systems in southern Africa derived 

from meteorological data sets of ICON-LAM (1st row), ERA5_adpt (2nd row), and ERA5_ori 

(3rd row) based on 2017. For the other years, the reader is directed to Figure C.3 and C.4. 

Energy systems optimized with ERA5 data sets are depicted as relative differences compared 

to results obtained from ICON-LAM. The regions coloured in white indicate that a cost-

optimized energy system incorporating wind, solar, and battery technologies is not feasible in 

that region without connections to neighbouring regions. 

5.3.4 ICON-LAM: Increased wind and reduced solar energy contribution for meeting 

demand over time 

To illustrate how hourly electricity demand is met using a combination of technologies and 

how the energy system is cost-optimized through the curtailment of VRE power generation, a 

random subset of time series data is selected from the cost-optimized energy system in the 

Western Cape province of South Africa. Figure 5.7 shows energy systems cost-optimized by 

energy system modelling based on VRE potentials derived from ICON-LAM, ERA5_adpt, and 

ERA5_ori. The total power available in the system is the combined generation from wind 

energy and solar energy, as well as the charging (negative) or discharging (positive) from the 

battery. The electricity demand is depicted in an inverse manner, representing demand as an 

energy sink. Since the electricity demand is met 100% on an hourly basis, as illustrated in 

Figure 5.7, the lines representing the total power available in the system and the electricity 

demand are two symmetric lines with respect to the zero line. The energy system limits the 
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amount of wind and solar power it generates to balance costs and operational efficiency. The 

maximum possible wind and solar power are higher than the actual power generated, and the 

difference is curtailment. This curtailment helps the system to minimize costs. 

To investigate how different energy systems optimized with different meteorological data sets 

behave over time, the time series of cost-optimized energy systems are examined, focusing on 

the shares of electricity demand met by wind energy, solar energy, and batteries. Although the 

time series is simulated on an hourly basis, as shown in Figure 5.7, daily data is analysed to 

present more condensed information, which nevertheless delivers consistent results, as demand 

is fully met each hour. 

The projected 2050 yearly cycle of daily total electricity demand for the southern African 

provinces is shown in Figure 5.8, and Figure 5.9 compares daily electricity demand shares met 

by wind energy, solar energy, and batteries in energy systems. ICON-LAM generally shows 

higher shares of wind energy and lower shares of solar energy. Exceptions are found in Lesotho, 

where ERA5_adpt uses more wind energy (Figure 5.9b LSO) and less solar energy (Figure 5.9e 

LSO), while ERA5_ori shows an extremely low wind share with a correspondingly higher solar 

share (Figure 5.9c and 5.9f LSO). This result is consistent with the findings of Chen et al. (Chen, 

Goergen, et al., 2024), who show that ICON-LAM has the highest skill of simulating wind 

speeds over complex terrain, such as over Lesotho, where ERA5_GWA tends to overestimate, 

especially over extremely contrasting terrain features such as hilltops and ridges. In contrast, 

ERA5_ori cannot resolve this type of terrain and tends to underestimate due to its coarse spatial 

resolution. 

Wind and solar energy shares, in meeting the electricity demand, vary throughout the year but 

complement each other, as the system is designed to fully meet electricity demand (see Figure 

5.1, 5.2, and 5.8) at minimal cost. Slightly different temporal patterns of met electricity shares 

are observed between the years 2017 to 2019 (see Figure C.5 for 2018 results and Figure C.6 

for 2019). The contribution of wind and solar energy to meet the electricity demand on a 

specific day may vary between years, as it is influenced by the local weather on that day, or 

even over multiple days depending on the weather pattern. This interannual variability is 

therefore expected, but no significant year-to-year changes are noted in the comparison 

columns of Figure 5.9, Figure C.5, and Figure C.6, indicating consistent results.  

In all the cost-optimized energy systems, the total generated power from wind and solar energy 

most of the time meets the local electricity demand with only a small contribution of battery 

power. The spatio-temporal average battery discharge rates – the fraction of time when the 

battery is discharging – are 27.7%, 32.6%, and 36.5% for the cost-optimized energy systems 

derived from ERA5_ori, ERA5_adpt, and ICON-LAM, respectively, while the corresponding 

total electricity demand met by the battery is only 6.4%, 5.3%, and 5.8%. 
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Figure 5.7 The time series subset of the cost-optimized energy system of the province Western 

Cape derived from three different meteorological data sets based on the 2017 weather year. The 

orange solid line represents the total power generation in the energy system, which is made up 

of contributions from open-field PV (solar energy) in the red solid line, onshore wind energy 

in the green solid line, and batteries in the blue solid line. The electricity demand, or energy 

sink, is presented in the brown solid line. The maximum harvestable solar and wind energy 

generation is shown in the red and green dashed lines, respectively. 
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Figure 5.8 The projected 2050 daily total electricity demand of the southern African provinces 

(numbers), where a feasible cost-optimized energy system can be built. The colour bar on the 

right of the figure, with a different scale, is used exclusively for the electricity demand of South 

African provinces. This is necessary due to the large difference in electricity demand between 

provinces from South Africa and other Southern African countries considered in this study. All 

provinces are arranged by country and sorted ascending by name index, i.e., their identical GID 

numbers, which are shown in the ticks on the x axis. For the correspondence between the 

identical GID numbers and the exact province, please refer to Table C.1, column “Province 

code (GID_1 code)”. 
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Figure 5.9 The time series comparison of daily demand (with reference to the 2050 demand 

projection) fraction met by wind, solar, and battery technologies in the cost-optimized energy 

systems derived from meteorological data sets ICON-LAM, ERA5_adpt, and ERA5_ori for 

2017. The 1st column is the result derived from ICON-LAM, and the 2nd and 3rd columns are 

the comparison of ICON-LAM to the ERA5 variants, ICON-LAM minus ERA5_adpt and 

ICON-LAM minus ERA5_ori, respectively. The structure of the x- and y-axis of each subplot 

in this figure is the same as in Figure 5.8, i.e., the y-axis contains the day of the year, and the 

x-axis shows different provinces grouped by country; the country names are abbreviated (Table 

C.1) for better visualization. In the “ICON-LAM” column, only positive or 0 values are present 

in the “Wind” and “Solar” rows, meaning the corresponding fraction of electricity demand is 

met; both positive and negative values are present in the “Battery” row, indicating battery 

discharge and charge, respectively. In the columns “ICON-LAM - ERA5_adpt” and “ICON-

LAM - ERA5_ori” positive and negative values represent the comparison between ICON-LAM 

and ERA5 for each technology. The results for years 2018 and 2019 are shown in Figures C.5 

and C.6. 

5.4 Discussion and conclusions 

This study indicates that the cost-optimized energy systems in southern Africa, designed based 

on ICON-LAM meteorological input data, reduces the estimated total annual cost on average 

by about 14% (16% less than ERA5_adpt and 11% less than ERA5_ori) compared to the 

commonly used data set for this task, the ERA5 products, and cuts the required battery capacity 

by 13% (9% less than ERA5_adpt and 17% less than ERA5_ori). In detail, cost-optimized 

energy systems derived from ICON-LAM, compared to other alternatives, deploy more wind 

energy, less solar energy, and less battery, primarily due to the cheaper wind energy revealed 

by ICON-LAM. Under such circumstances, this would facilitate the development of regional 

renewable net-zero energy systems. This finding further underlines the necessity of using high-

resolution physically consistent model-based data to plan for a cost-optimized energy system. 

This study also shows significant differences in wind energy potentials, with ICON-LAM 

producing, on average, about 5 GWh per turbine (approximately 50%) more annual wind power 

compared to other ERA5 products. The additional wind energy per year revealed by ICON-

LAM for only one single wind turbine averaged out of the 1.8 million eligible turbines across 

the study area could power approximately 1,736 typical British three-person households, the 

size of a small town, with an annual electricity consumption of 2,880 kWh/household (IRSAP, 

2023), for one year. In contrast, the solar energy potentials are similar (almost identical) across 

all data sets. This suggests that solar irradiance under clear-sky conditions over southern Africa 

primarily controlled by large-scale anticyclonic atmospheric circulation patterns are well-

resolved in all the data sets. The simulation of wind speed remains challenging, particularly for 

the coarser spatial resolution of ERA5. Local surface properties cannot be resolved in such 

detail as with the kilometre-scale ICON-LAM, the simulation of planetary boundary layer 

mixing or surface friction, and ultimately the accuracy of near-surface wind speed simulations 

is affected. 
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Regarding the role of batteries in renewable energy systems, the three meteorological data sets 

of the study agree with each other that wind and solar can supply most of the electricity demand, 

with minimal battery use – averaged only about 5.8% of the annual demand have to be covered 

by batteries, for about 68% of the time no battery discharge is required. Batteries remain 

essential, however, for times without sufficient wind and solar power. This is in accordance 

with the global 100% renewable or net-zero emission scenarios, where batteries are projected 

to be a critical energy system component to achieving high levels of reliability, although their 

contribution to electricity demand may vary depending on local conditions and specific system 

designs (International Renewable Energy Agency, 2024). 

The complementarity of wind and solar energy that this study focus here is actually a frequently 

raised topic in literature. However, many of these studies as mentioned in the introduction 

section tend to address the complementarity of wind and solar energy from a theoretical and 

strategic perspective, and do not consider the latest developments in the field of renewable 

energy assessment. Compared to our study, these studies do not consider the suitability of the 

land to build wind turbines or solar power plants or the specific placement of the renewable 

energy sources, and only include spatially distributed (gridded) meteorological information. 

Also, the energy system, which includes the complementarity of wind and solar energy, often 

does not consider the system costs and the battery capacity, or only includes a predefined 

constant battery capacity. However, these are important factors that need to be carefully 

considered in the design and operation of real-world energy systems. Our study also clearly 

demonstrates that any future design of VRE based energy systems should include assessments 

based on high-resolution, dedicated modelling and not only rely on readily available data 

products. 

It should be noted, however, that the impact of different meteorological data sets on the cost-

optimized design of energy systems is specific to our study area in southern Africa. The 

complex land-atmosphere interactions, given the complex terrain with some highly contrasting 

features in southern Africa, or ocean-land circulation patterns, play a role in the simulation of 

VRE variables and may limit the transferability of the study’s findings. 

As for the energy systems modelling, this study assumes lossless power transmission and no 

power exchange between provinces to examine the direct impact on the local energy system. 

Dealing with a real-world power grid is more complex and would alter the outcome of our 

study. Furthermore, research by Blanco and Faaij (Blanco & Faaij, 2018) suggests that 

including more energy sectors reduces the need for battery capacity in the energy systems even 

further. By modelling energy systems with only wind and solar energy and without 

interprovincial transmission, our study may overestimate battery needs. Modelling a real-world 

full energy system with all the energy sectors integrated and power exchanged would likely 

lower both battery requirements and overall costs, but the relative differences in VRE 

contributions derived from different meteorological data sets should remain the same as this 

study presents. 
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Furthermore, this study considers annual variations in designing the cost-optimized energy 

system. Multi-decadal simulations that capture interannual VRE variabilities, as shown by 

Caglayan et al. (Caglayan, Heinrichs, et al., 2019), could yield more robust results and, 

therefore, deserve attention in future decades-scale applications of the current study. 
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Chapter 6. Discussion, conclusions, and outlook 

A significant deficit exists in the provision of electrical energy across Africa. Renewable energy 

is recognized as a crucial solution, given the continent’s abundant untapped potential and the 

low greenhouse gas emissions associated with harnessing these resources. However, planning 

energy systems using Africa’s most widely accessible renewable energy sources—wind and 

solar—faces challenges due to limitations in available meteorological data sets from both 

measurements and simulations. The identified limitations include relatively coarse spatial 

resolution, data gaps in both space and time, and general data quality issues in simulated 

meteorological data sets. 

This doctoral thesis presents a comprehensive interdisciplinary study between Earth System 

Modelling and Energy System Design and aims to alleviate the meteorological data strains in 

Africa, focusing on southern Africa as a prototype. First, a dedicated dynamical downscaling 

using the ICON model is performed to produce a high-resolution, physically consistent, model-

based data set ICON-LAM. The capability of ICON-LAM to simulate wind and solar energy 

related variables is then evaluated, and the estimated wind power derived from ICON-LAM is 

also evaluated and compared with those derived from alternative data sets. Finally, the impact 

of ICON-LAM on cost-optimised energy system design in southern Africa compared to other 

alternatives is investigated. The entire energy system modelling chain is addressed in this study, 

starting with the production of the meteorological data set. The broad scope of fundamental 

expertise required for this work represents a significant departure from the approaches taken in 

previous studies. 

6.1 Discussion 

Achieving higher spatio-temporal resolution in meteorological data sets is a clear trend in 

geoscience, as small-scale phenomena can be explicitly resolved without parameterization, 

providing more detailed insights compared to coarser models (Schär et al., 2020). Determined 

by the target of the research, many studies in geoscience with a focus on renewable energy 

assessment tend to approach the subject from a theoretical and strategic perspective. Idealised 

assumptions are typically made, and state-of-the-art developments in the renewable energy 

assessment field are often not considered. For example, studies focused on estimating 

renewable energy potentials (Antonini et al., 2024; Lu & McElroy, 2023; Yang et al., 2024), on 

investigating the impact of climate change on renewable energy potentials (Feron et al., 2021; 

Reyers et al., 2016), and on examining the complementarity of wind and solar energy (Lei et 

al., 2023; Richardson et al., 2023; Tong et al., 2021). Land eligibility, technical constraints 

within the power plant, and social acceptance of the installation of renewable energy power 

plants are not taken into account, despite being addressed in the state-of-the-art renewable 

energy assessment field, which aims to really look at how much energy is available to harness 

for practical use, as reviewed by (McKenna et al., 2022). And these are non-negligible factors 

that highly affect the feasibility of the project and, subsequently, on the accuracy of the 

estimated total renewable energy potential. 
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At the same time, high-resolution, physically consistent, model-based meteorological data sets 

through dynamical downscaling are rarely used in the renewable energy assessment field. 

Typically, global reanalyses with coarse spatial resolution in the range of 30 km to 60 km, such 

as MERRA-2 and ERA5, are used in renewable energy assessment (Gonzalez-Aparicio et al., 

2017; Ruiz et al., 2021; Sakuru & Ramana, 2023). Regional reanalyses also play a role 

(Gualtieri, 2022; Kenny & Fiedler, 2022), e.g., COSMO-REA2 and COSMO-REA6. Although 

it is better resolved in terms of spatial resolution, ranging from 2 km to 12 km, to the best of 

the author’s knowledge there is no regional analysis available for all or part of the African 

continent. Other products such as the Global Wind Atlas (GWA, 2019) and the Global Solar 

Atlas (GSA, 2019) with high-resolution of 250 m do exist, but without information on temporal 

variation, which is crucial for the energy systems modelling (Caglayan et al., 2021; Lund et al., 

2015). High-resolution, physically consistent meteorological data sets for renewable energy 

assessment especially over Africa are missing, and the impact of using high-resolution versus 

coarse-resolution data sets on renewable energy assessment remains unknown. 

In this thesis, a linkage between the fields of geoscience and renewable energy assessment is 

established. The wind and solar energy potential estimated in this work integrates state-of-the-

art developments from both fields into a single project, delivering new results. Dedicated 

dynamical downscaling using the ICON model is performed to provide high-resolution 

physically consistent data set over southern Africa. Existing results of land eligibility and 

power plant siting are included from the starting point of this thesis. Maximum resource 

harvesting is ensured as the technical parameters of the renewable energy units are not constant 

but varied to achieve the best generation efficiency at each eligible location. In the energy 

system modelling, an optimization solver is employed to consider an energy system that first 

meets 100% of the electricity demand, which is the top priority for a real-world power supply 

system. The best combination of wind energy, solar energy, and batteries for the energy system 

is then solved in a cost-optimised way. As a result, energy systems can be designed for southern 

Africa. This is in accordance with the Sustainable Development Goal 7 proposed by the United 

Nations (United Nations, 2015) and is of great practical value for the local energy system 

development in Africa. 

While this thesis has done its best to fill the identified research gaps, some aspects need further 

consideration to improve renewable energy potential estimates and energy system design in 

southern Africa. In the atmospheric modelling step, the ICON model is used to dynamically 

downscale the forcing data—the global initialized analysis—from 13 km to a convection-

permitting scale of 3.3 km. The ICON model configuration used for this atmospheric modelling 

over southern Africa is taken from the operational Numerical Weather Prediction (NWP) runs 

for Germany in DWD. The sensitivity of the physical parameterization schemes used in this 

configuration over southern Africa has not been analysed, although it has been carefully tuned 

by DWD for the German domain. A sensitivity study of the high-resolution ICON model has 

been performed for Italy (De Lucia et al., 2022) and the ICON model was found to be sensitive 

to changes in the physical parameterization schemes. A similar sensitivity analysis can be 

carried out for southern Africa, with the aim of selecting suitable parameterization schemes to 
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properly represent local weather and climate features. 

Constrained by the availability of forcing data from 2015 onwards, three simulation years from 

2017 to 2019 are selected in this study. Although average and extreme wind and solar 

conditions are best considered in the selection of simulation years, a climate scale simulation 

such as 30 years would be more reliable for robust energy systems design; this is only possible 

when the corresponding forcing data will be available. Beyond historical weather patterns, it is 

also important to account for weather variability under climate change and explore how this 

will impact the robust design of energy systems. In addition, a higher level of accuracy is found 

with sub-hourly energy system modelling (Omoyele et al., 2024). It is suggested to extend the 

current hourly temporal resolution used in energy system modelling to sub-hourly intervals, 

such as 30 mins, 15 mins, or even 1 min. This would require more temporally detailed 

meteorological data sets and the allocation of additional computational resources, which, 

although resource-intensive, is a potentially indispensable endeavour for achieving more 

accurate energy system modelling. 

Although real-world restrictions such as land eligibility were taken into account, the renewable 

energy potentials estimated in this study may still be overestimated. This is mainly due to social 

factors limiting the installation of wind and solar power plants, such as local resistance to 

placing solar/wind power plants, which is difficult to quantify and was not considered in this 

study. A recent review on quantifying social factors for onshore wind energy planning (Tsani 

et al., 2024) documented that landscape impacts, proximity to settlements, and justice are 

important social factors and indicated that further improvements are needed to better reflect 

social concerns in planning models. Nonetheless, since normally only a fraction of the 

estimated technical potential is already sufficient to meet local electricity demand, it might be 

possible to circumvent at least parts of the overlooked social factors in this study. In addition, 

the regional energy system that we analyse only considers wind energy, solar energy, and 

batteries, based on the Copper Plate scenario — assuming an ideal, unlimited power flow 

exchange in the region (Hess et al., 2018). It is highly simplified compared to the real-world 

energy systems facing grid constraints, although it is a reasonable scenario to use here to 

compare the results of different designed energy systems derived from different meteorological 

data sets. 

6.2 Conclusions 

The high-resolution atmospheric simulations performed by the ICON model have been shown 

to reproduce the basic atmospheric conditions and the underlying large-scale atmospheric 

circulations in southern Africa, and the wind and solar energy-related atmospheric variables 

have also been shown to be well captured. This supports the reliability of the ICON model for 

use over southern Africa and makes it a viable candidate for other related applications, such as 

investigating the impacts of variable weather conditions on renewable energy. Testing the 

performance of the ICON model beyond southern Africa is of interest to assess its simulation 

accuracy across different terrain types, land-atmosphere interactions, and dominant large-scale 
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atmospheric circulations. 

Higher and different spatially distributed wind energy potentials are revealed by the ICON 

model over southern Africa, compared to other commonly used meteorological data sets like 

ERA5. It is the first time that the higher onshore wind energy potential has been revealed by 

km-scale convection-permitting atmospheric modelling. Underestimation of wind energy 

yields may hinder further expansion of wind energy, as lower economic performance is 

expected, highlighting the importance of highly resolved weather data. Attention is also drawn 

to further investigate the local wind energy potential in order to better inform and attract local 

investment, and ultimately assist in the planning and construction of local energy systems. 

Whether the same trend of wind energy potential underestimation would be observed in other 

parts of the world remains unknown, making it an important topic for ensuing studies to explore. 

The southern African cost-optimised energy systems under the 100% renewable energy 

scenario derived from ICON-LAM show lower total annual costs and lower required battery 

capacity compared to those derived from other available data sets. This is vital information for 

planning the local energy system in southern Africa. It implies that the previous local energy 

system design may have been overestimated in terms of cost, thus hindering the local energy 

system development. This further emphasises the importance of using convection-permitting 

km-scale high-resolution meteorological data sets in energy system analysis. Considering the 

impacts of weather variability on energy systems would further increase the robustness of the 

analysis, including long-term historical weather years, uncertainty in future weather years 

under climate change, and the feedback on weather from huge wind power plants. 

6.3 Outlook 

As mentioned above, a sensitivity analysis of the ICON model is suggested to find the best 

performance combination of physical parameterization schemes over southern Africa. Given 

the complex atmospheric circulations and highly contrasting topography present in southern 

Africa, this sensitivity analysis of the ICON model is expected to further improve the current 

model simulation performance. To derive robust regional energy system designs for southern 

Africa, the simulation time span should be increased to a longer period like 30 years. 

Potential improvements are also identified for the RESKit wind and solar power simulation 

workflows. For the RESKit wind workflow, the wind power calculation is based on the 100 m 

wind speed and logarithmically extrapolates this 100 m wind speed to the hub height of the 

wind turbine. Actually, both the ICON and ERA5 models utilise a terrain-following vertical 

model discretization, which allows for fine vertical resolution of the planetary boundary layer, 

where wind turbine rotors are situated. A wind speed extrapolation based on the wind speed at 

the model vertical level closest to the wind turbine hub height is more straightforward and has 

less uncertainty. In addition, the wake effect—the trail left by each wind turbine after it has 

extracted kinetic energy—has been shown to affect the performance of nearby wind turbines 

and sometimes even neighbouring wind farms (Porté-Agel et al., 2020). The wind workflow 

used in this study does not account for this wake effect. Future studies should include wake 
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effects to simulate wind power more realistically. 

For the RESKit solar workflow, the uncertainty lies in the photoelectric conversion efficiency 

and the applied system-level losses. The solar photovoltaic industry has grown dramatically 

over the last 10 years (Allouhi et al., 2022). The cost of solar photovoltaic panels has drastically 

declined, and the photoelectric conversion efficiency of solar photovoltaic panels continues to 

improve (Manisha et al., 2022). The photoelectric conversion efficiency used in this study is 

projected to 2050 based on the observed trends (Ryberg, 2020), most assuming a further cost 

decrease. Different development scenarios of the solar photovoltaic industry—the underlying 

changes in photoelectric conversion efficiency—could be formulated and included in the future 

analyses. Besides, an approximate system-level overall loss factor based on first-hand industry 

experience is applied to represent all inevitable losses in the solar photovoltaic system in this 

study. A detailed quantification of each of these losses in the system may also be helpful as a 

next step to better quantify different loss factors in the photovoltaic system. 

Social factors are not included in the wind and solar energy potential estimates of this study. 

These social factors, which impede the implementation of renewable energy projects, are more 

complex than they may initially appear. The recent review on quantifying social factors for 

onshore wind planning (Tsani et al., 2024) showcases this and highlights the need for 

interdisciplinary approaches. Further work building on the current study should consider 

dealing with this topic. 

Aspects to improve the energy system modelling are also worthy of attention. The inclusion of 

realistic grid constraints in the energy system modelling and the possibility to exchange 

electricity between regions/provinces are of high interest. Apart from that, the inclusion of other 

existing energy sectors such as heating and cooling, transport, residential, and industry, to 

achieve a realistic energy system modelling, is also of great importance. Sub-hourly temporal 

resolution should also be considered when optimising the energy system modelling. Having all 

these aspects on board would certainly increase the accuracy of the energy system design, but 

it also exponentially increases the computational burden and challenge for the optimization 

procedure. The corresponding data availability and data uncertainty are also the limitations 

here. The trade-off between modelling accuracy and the required efforts must be carefully 

evaluated. 

The higher onshore wind energy potentials and the lower costs of cost-optimised energy 

systems are revealed by the ICON simulations in this study, compared to other commonly used 

meteorological data sets. It is of great interest to apply high-resolution atmospheric simulations 

in the context of renewable energy potential also for other regions, to see if the same results 

are observed/ revealed. 

Climate change is likely to become more severe and extreme if the mitigation measures 

currently under discussion are not implemented as they should be for all countries in the world. 

Investigating the impact of climate change on wind and solar energy potentials, and 

subsequently on the robust design of energy systems, is of paramount importance for the 
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regions most vulnerable to climate change like the African continent. 
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Appendix 

A. Appendix A 

 

Figure A.1 Average total precipitation [mm month-1] (top multi-panel) and 2 m air temperature 

[°C] (lower multi-panel) for the period 2017 to 2019 and austral winter (JJA) (upper row) and 

austral summer (DJF) (lower row), for ERA5 (1st column), driving ICON-GL (2nd column), 

ICON-LAM (3rd column), and the reference data (4th column), GPM for pr, and CRU for tas. 

The tas of ICON-GL is based on the lowermost model level (10 m) of air temperature. All the 

datasets are presented on their respective native grids. 
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Figure A.2 Spatial distribution of a) MAE and b) ME of monthly precipitation [mm] from 2017 

to 2019 from ICON-LAM compared with ground meteorological stations. 

 

Figure A.3 Precipitation comparison: 0.95 percentile of daily precipitation [mm day-1] (1st 

column), daily precipitation in austral winters [mm day-1] (2nd column), daily precipitation in 

austral summers [mm day-1] (3rd column), and monthly mean precipitation [mm month-1] (4th 

column) from ICON-LAM (1st row) and GPM (2nd row); difference ICON-LAM minus GPM 

(3rd row), for the years from 2017 to 2019. Simulated precipitation from ICON-LAM is 

resampled to the GPM grid using conservative remapping. 
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Figure A.4 Spatial distribution of MAE, ME, R, and PSS of hourly air temperature at 2 m 

height for the period from 2017 to 2019. Statistics are calculated for simulated air temperature 

by ICON-LAM compared with ground meteorological stations. Rectangles are stations from 

the TAHMO network, circles are SASSCAL_WN stations, and triangles represent NECI_ISD 

stations. The symbol size represents the number of valid measurement days. 
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Figure A.5 For three selected stations hourly 2 m air temperature statistics [°C] are shown (one 

row per station). The columns from left to right show: scatter plot, percentile plot, histograms, 

mean annual cycles, and spatial location. In these plots ICON-LAM simulated values are 

compared with measurements. Colours in the scatter plot represent the point density estimated 

by the Gaussian Kernel, the brighter the colour is, the higher the density is. Percentiles for 

every 1% are plotted in the percentile plot. The histogram plot has a bin size of 1 [°C]. 
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B. Appendix B 

B.1 Data preparation for wind speed evaluation and wind energy potential estimation 

B.1.1 Data quality of observed wind speeds at weather masts in South Africa 

The data quality of the wind speed observations is the cornerstone of the simulated wind speed 

evaluation. A total of 19 weather masts (Wind Atlas for South Africa, 2010) over South Africa 

are, to our knowledge, the only publicly available observations for southern Africa that measure 

wind speeds at bigger heights near real wind turbine heights. The detailed description of each 

mast can be found on the website: https://wasadata.csir.co.za/wasa1/WASAData. Wind speeds 

over the mast locations are recorded at 10 m, 20 m, 40 m, 60 m, and 62 m, and with wind 

directions observed at 20 m and 60 m. The mean, minimum, maximum, and standard deviation 

of the wind speeds are recorded at 10-minute intervals. All the weather masts were carefully 

installed, and all site-specific adjustments were well documented. The properties of the sensors 

and how they are structured on the standing tower are also available. Calibrations are performed 

on the collected raw data according to the calibration certificates of each sensor. Further quality 

control procedures recommended by the instrument supplier are also performed before the data 

are officially released. All the data/times are provided in local time (UTC+2), the 

transformation to the UTC time has been applied in this study. 

B.1.2 Wind speed scaling using power law 

𝑊𝑆𝐻 = 𝑊𝑆𝑟𝑒𝑓 (
𝐻

𝐻𝑟𝑒𝑓
)

𝛼

                 (B.1) 

WSH is the wind speed of interest, here H=60 m; WSref is the wind speed at the reference height 

Href, always using the closest available simulated wind speed. Empirically, α is 1/7 under a 

neutrally stable atmosphere without considering surface roughness (Bratton & Womeldorf, 

2011). As simulated wind speeds are available on multiple vertical model levels of the terrain 

following grids, we follow the approach in the study (Devis et al., 2018) and make use of the 

wind speed of the upper (H + 1) and lower (H - 1) vertical model levels around 60 m to 

determine α individually: 

𝛼 =  
𝑙𝑛 

𝑊𝑆(𝐻+1)

𝑊𝑆(𝐻−1)
 

𝑙𝑛 
(𝐻+1)

(𝐻−1)
 

                        (B.2) 

This allows us to describe α dynamically to account for temporal variations in atmospheric 

stability and variations in surface roughness. Additionally, incorporating the nearest two wind 

speeds around the target height, the interpolated wind speed is internally consistent with the 

vertical wind shear in the models. 

B.1.3 The wind turbine hub heights designed in the HOpt wind turbine 
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Figure B.1 Spatial distribution of wind turbine hub heights used in the HOpt wind turbine 

setting across all 1.8 million eligible wind turbine placements in southern Africa. Note that 

values are plotted for each of the 1.8 million placements, providing eventually a continuous 

map; white spots are areas where no wind turbine placement is possible according to 

(Franzmann et al., 2023; Ishmam et al., 2024; Winkler et al., 2025). 

B.2 Details of wind turbine technologies used to simulate wind power over weather mast 

locations 

 

Table B.1 Wind turbine technologies details for the 60 m hub height wind turbine H60m, the 

baseline wind turbine H130m, and the optimal wind turbine HOpt over weather mast locations. 

H60m is included to quantify the impact of the different data sets on wind energy potential 

calculation for the observation height of the weather masts. H130m represents the wind turbine 

development in 2035 and it is used as the baseline turbine to derive HOpt turbine parameters 

in the RESKit model. 
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Name Capacity (kW) Hub height (m) Rotor diameter (m) Specific power (W/m2) 

H60m 1500 60 60 530.8 

H130m 5500 130 174 231.3 

HOpt-WM01 5316.3 137.2 174 223.6 

HOpt-WM02 5577.6 127.2 174 234.6 

HOpt-WM03 5524.4 129.1 174 232.3 

HOpt-WM05 6245.5 107.0 174 262.7 

HOpt-WM06 5996.2 113.4 174 252.2 

HOpt-WM07 5744.7 121.4 174 241.6 

HOpt-WM08 5766.9 120.6 174 242.5 

HOpt-WM09 6251.8 107.0 174 262.9 

HOpt-WM10 5707.5 122.6 174 240.0 

HOpt-WM11 6708.6 107.0 174 282.1 

HOpt-WM12 4933.4 154.4 174 207.5 

HOpt-WM13 5057.8 148.4 174 212.7 

HOpt-WM14 6325.7 107.0 174 266.0 

HOpt-WM15 5252.4 139.8 174 220.9 

HOpt-WM16 5668.7 123.9 174 238.4 

HOpt-WM17 5488.7 130.4 174 230.8 

HOpt-WM18 5242.4 140.2 174 220.5 

HOpt-WM19 5257.1 139.6 174 221.1 

 

B.3 Evaluation of wind speeds at the different wind speed ranges of the wind turbine’s 

power curve 

According to the synthetic power curve (Ryberg et al., 2019), the cut-in, rated, and cut-out wind 

speeds of the baseline wind turbine (turbine H130m, see Table B.1) are set to 3, 11, and 25 m 

s-1. The corresponding exemplary power curve is shown in Figure B.2. These cut-in, rated, and 
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cut-out wind speeds are also consistent with most of the wind turbines installed in South Africa 

(see Table B.2). 

The evaluation of the simulated wind speed in the usable, cut-in to rated (ramping phase), and 

rated to cut-out wind speed ranges of the wind turbine is shown in Figure B.3, Figure B.4, and 

Figure B.5, respectively. The simulated wind speed beyond the usable wind speed range of the 

wind turbine is not the focus of this study, but it may be interesting for other applications, so 

we also show it in Figure B.6. 

ERA5_ori performs best at simulating wind speeds beyond the usable wind speed range of the 

wind turbine. Most of the wind speeds beyond the usable wind speed range are small wind 

speeds below 3 m s-1. The upper limit of the wind speed for the current wind energy industry 

is due to the material constraint and the lower limit is due to the size of the wind turbine. 

Readers will need to reconsider the results of this study if there is a major advancement in the 

wind energy industry that dramatically changes the usable wind speed range of wind turbines 

in the future. 

 

Figure B.2 The exemplary power curve used in this study for determining different 

investigated wind speed ranges in the wind speed evaluation. 
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Figure B.3 As in Figure 4.1, but for the observed 60 m wind speed in the range of the 3 m s-1 

cut-in to the 25 m s-1 cut-out wind speeds, concentrating on the usable wind speed range for 

wind turbines. 
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Figure B.4 As in Figure B.3, but for the observed 60 m wind speed in the range of 3 m s-1 to 

11 m s-1 wind speeds, concentrating on the wind speed range during the ramping phase of a 

wind turbine’s power curve. Note the nearly equal mean PSS values of ERA5_GWA and 

ICON_LAM. 

 

Figure B.5 As in Figure B.3, but for the observed 60 m wind speed in the range of 11 m s-1 to 

25 m s-1 wind speeds, concentrating on the wind speed range from the rated wind speed to the 

cut-out wind speed of a wind turbine’s power curve. Note that ERA5_ori, ERA5_GWA, and 

ICON-LAM all experience negative R at mast number 19 of -0.06, -0.07, and -0.04, 

respectively. 
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Figure B.6 As in Figure B.3, but for the observed 60 m wind speeds that cannot be harvested 

by the wind turbine—wind speeds outside the cut-in (3 m s-1) and cut-out (25 m s-1) wind speed 

range of the wind turbine’s power curve. Note the extended y-axis range in subplot a) and the 

nearly equal mean MAE values of ERA5_GWA and ICON_LAM as well as the nearly equal 

mean R values of ERA5_ori and ERA5_GWA in subplot c). 

B.4 Comparison of simulated wind power to measured wind power for three provinces in 

South Africa 

In this section, in order to justify the credibility of the estimated CFs, besides the wind speed 

evaluation, a further evaluation of the wind power simulation against measurements is 

performed. Since no individual wind turbine power measurements are publicly available in 

southern Africa, the wind power measurements from three provinces in South Africa are 

utilized and compared to the simulated wind power using the RESKit model with the real 

installed wind turbine parameters. Through this comparison, we gain insights into which wind 

power derived from the wind speed product is more reliable, and therefore the corresponding 

derived wind energy potential. 

B.4.1 The wind power measurement in South Africa 

The Department of Mineral Resources and Energy from South Africa developed, hosted, and 

operated the Renewable Energy Data and Information Service (REDIS, 2022) to provide access 

to renewable energy data and information. Three provinces of South Africa, Western Cape, 
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Eastern Cape, and Northern Cape, have wind farms, see Figure B.7. The measured hourly CFs 

of wind power at the provincial level for each of the three provinces are provided by REDIS, 

and the location of these wind farms and the parameters of the installed wind turbines such as 

hub height, rotor diameter, and capacity are extracted from The Wind Power database (The 

Wind Power, 2005). 

As our focus time period is 2017-2019, the wind farms with the commissioning date after 2019 

and the dismantling date before 2017 are not included. Since some wind farms were 

commissioned in 2017, we choose 2019 as our focus year to be on the safe side, i.e., away from 

the commission date. After completing the missing information, 3 missing hub heights and 1 

missing turbine model, in The Wind Power database by searching the project name online, we 

finally get 25 wind farms in South Africa for the year 2019. The location map and the detailed 

information of these wind farms are shown in Figure B.7 and Table B.2. It is worth mentioning 

that the installed capacity in each province extracted from the Wind Power database is quite 

close to the installed capacity provided by REDIS (see Table B.2): the respective installed 

capacity for Eastern Cape, Northern Cape, and Western Cape from the Wind Power are 1020.25, 

673.4, and 436.6 MW, and, 1010.31, 665.46, and 418.72 MW from REDIS. 

 

Figure B.7 Spatial distribution of 25 wind farms in South Africa in 2019. 
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B.4.2 Simulation of wind power and comparison to measurements 

Using the wind farms’ information shown in the Table B.2 with the RESKit model driven by 

wind speed products from ERA5_ori, ERA5_GWA, and ICON-LAM, hourly CFs in 2019 are 

simulated over all the wind farms in South Africa. When averaging all CFs of simulated wind 

power over all wind farms in a province, for comparison with the measured CFs at the province 

level, a weighted average is performed by weighting each wind farm according to its share of 

installed capacity in the province. 

The frequency distribution comparisons between simulated and measured CFs for different 

provinces are shown in Figure B.8. The averaged CFs derived from ERA5_ori, ERA5_GWA, 

and ICON-LAM are 0.25, 0.30, and 0.38 for existing wind farms in South Africa, and the 

observed averaged CF is 0.37. Regionally, ICON-LAM better captures mean CFs, see the 

average CFs in the legend of Figure B.8, and also better reproduces the frequency distribution 

of measured CFs, compared to ERA5_ori and ERA5_GWA in Northern and Eastern Capes. 

ERA5_ori- and ERA5_GWA-based CFs show similar problems of simulating too many 

(largest discrepancy 11%) low CFs (< 0.375) and too few (largest discrepancy 2%) high CFs 

(> 0.375), although ERA5_GWA-based CFs are generally better than ERA5_ori-based CFs. In 

Western Cape, ERA5_GWA better resolves the simulated CFs above 0.7 and delivers the 

closest mean CF compared to measurements; ICON-LAM better reproduce CFs below 0.2 and 

all data sets fail to catch CFs in the range about [0.2, 0.7]; too many (largest discrepancy 1.8%) 

and too few (largest discrepancy 1%) CF occurrences above 0.7 are found with ICON-LAM 

and ERA5_ori, respectively. Further examination of the wind speed distribution in Figure B.9 

confirms and/or explains our findings for CFs, ICON-LAM simulates more often wind speeds 

in the range of 9 to 15 m/s and less around the mean wind speed of approximately 6 m s-1 than 

the ERA5 products, although the general shape of the wind speed frequency distributions is 

similar, i.e., one modal distribution with changes in magnitude of central height and overall 

width, among the different wind speed products. 
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Figure B.8 Frequency distributions of measured (OBS) and simulated CFs from ERA5_ori, 

ERA5_GWA, and ICON-LAM with a bin size of 0.025 for three provinces in South Africa 

(Northern Cape, Western Cape, and Eastern Cape). Averaged CF are presented next to the 

legend of each product. 

 

Figure B.9 As in Figure B.8, but for the corresponding wind speed frequency distribution with 

bin size of 1 m s-1. 
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B.5 Comparison of CF time series, annual and average CF derived from different wind 

speed products 

B.5.1 Investigation of time series differences in CF between ICON-LAM and ERA5 

With the aim of investigating the time series’ similarity and differences between ERA5 

(EAR5_ori and ERA5_GWA) and ICON-LAM derived CFs for each of the about 1.8 million 

southern African eligible wind turbine placements, a Detrended Cross Correlation Analysis 

(DCCA) (Podobnik & Stanley, 2008) is performed. Although DCCA indicates the correlation 

between two variables like R, DCCA removes the inherent trend from the analyzed time series 

and is able to provide insights regarding how two time series are related, which might not be 

captured by simple correlation metrics like R. Additionally, ME, MAE, and R are also 

calculated for the comparison of CFs time series derived from ICON-LAM against those from 

ERA5 products. 

Figure B.10 examines the differences in the CF time series derived from ERA5_ori, 

ERA5_GWA, and ICON-LAM across the 1.8 million eligible wind turbine placements in the 

ICON-LAM domain. In most cases, ICON-LAM shows larger CF compared to ERA5 (Figure 

B.10a and B.10b) with some exceptions over flat terrain in western South Africa and southern 

Namibia (Figure B.10a) and steep terrain, e.g., in the Drakensberg region in South Africa and 

Lesotho (Figure B.10b) (see Figure 4.2a for the topography and place names in the model 

domain). Spatially, the mean absolute differences (MAE) between ICON-LAM-based and 

ERA5-based (ERA5_ori in Figure B.10c and ERA5_GWA in Figure B.10d) CFs over all the 

placements are generally below 0.3 for most of the placements (>98%). Quite similar patterns 

in correlation coefficients are found between ICON-LAM and ERA5_ori on one hand and 

ICON-LAM and ERA5_GWA on the other hand; larger correlation coefficient values exist in 

the southwest and northeast. The DCCA metric gives a similar signal. 
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Figure B.10 Comparison of time series of estimated CFs between ICON-LAM-based and 

ERA5-based wind energy potentials for all 1.8 million eligible wind turbine placements in 

southern Africa; 1st column ICON-LAM vs ERA5_ori; 2nd column ICON-LAM vs 

ERA5_GWA for ME, MAE, R, and DCCA. White spots are areas where no wind turbine 
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placement is possible according to (Franzmann et al., 2023; Ishmam et al., 2024; Winkler et 

al., 2025). 

B.5.2 Comparison of different wind speed products derived annual and 3-year average 

CF 

 

Figure B.11 Differences (3rd column) of averaged CF derived from ICON-LAM (1st column) 

and ERA5_ori (2nd column) mapped across all the eligible wind turbine placements southern 

Africa for the years 2017, 2018, and 2019, and 3 years average. 
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Figure B.12 As in Figure B.11, but for the ERA5_GWA. 

B.6 Exploration of the frequency distribution of simulated wind speeds and its derived 

CFs across eligible wind turbine placements country by country 

The frequency distribution comparisons between simulated hourly CFs averaged over all the 

eligible wind turbine placements for different countries derived from ERA5_ori, ERA5_GWA, 

and ICON-LAM are shown in Figure B.13, and the corresponding wind speeds frequency 

distributions are in Figure B.14. Similar to the distribution pattern of simulated CFs derived 
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from ERA5_ori, ERA5_GWA, and ICON-LAM found in Figure B.11, the CFs simulated by 

two ERA5 variants have more low CFs and few high CFs compared to by ICON-LAM over 

all eligible wind turbine placements in southern Africa, but the differences between products 

intensified compared to Figure B.11. In general, CFs from ERA5_ori agree more with ICON-

LAM over relatively flat terrain countries such as Mozambique and Botswana, while 

ERA5_GWA CFs are more consistent with ICON-LAM over contrasting terrain such as 

Lesotho. The frequency distributions of wind speed (Figure B.14) show a similar pattern but 

in a more condensed form when compared to the CFs in Figure B.13. The cube of the wind 

speed when converting wind speed to wind power could be the underlying reason. 
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Figure B.13 As in Figure B.8, but over the eligible wind turbine placements for seven countries 

in southern Africa. 
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Figure B.14 As in Figure B.13, but for the corresponding wind speed frequency distribution 

with bin size of 1 m s-1 over the eligible wind turbine placements for seven countries in southern 

Africa. 

B.7 The estimated wind power over eligible placements across southern Africa 
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Figure B.15 As in Figure 4.3, but for the estimated average annual total power for 2017-2019, 

simulated by the RESKit model with the HOpt wind turbine, across all eligible wind turbine 

placements in southern Africa. The used bin size of power in subplot b) is 0.75 GWh. 
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C. Appendix C 

 

Figure C.1 Location of the 65 fully covered provinces by the ICON-LAM domain over 

southern Africa. Provincial boundaries are coloured purple and country boundaries are 

coloured black. For country names and the reference of the indexed province name to the full 

name, readers are forwarded to Table C.1. 
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Figure C.2 As in Figure 5.3, but comparison of the capacity factor. 



1
1
1
 

 T
a
b

le
 C

.1
 I

n
fo

rm
at

io
n

 o
n

 a
ll

 p
ro

v
in

ce
s 

in
 s

o
u

th
er

n
 A

fr
ic

a 
fu

ll
y
 c

o
v
er

ed
 b

y
 t

h
is

 s
tu

d
y
 a

n
d
 t

h
ei

r 
fe

as
ib

il
it

y
 t

o
 b

u
il

d
 a

 c
o
st

-o
p

ti
m

iz
ed

 e
n

er
g

y
 s

y
st

em
. 

N
o
. 

C
o
u
n
tr

y
 

C
o

u
n

tr
y

 

co
d

e 

(I
S

O
-3

1
6

6
-1

 

al
p

h
a 

3
 

co
d

e)
 

P
ro

v
in

ce
 

co
d

e 

(G
ID

_
1

 

co
d

e)
 

P
ro

v
in

ce
 

A
re

a 

(k
m

2
) 

C
o
st

-

o
p
ti

m
iz

ed
 

en
er

g
y
 s

y
st

em
 

fe
as

ib
le

 t
o
 

b
u
il

d
 o

r 
n
o
t?

 

If
 n

o
t,

 w
h
y
? 

1
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.1
_

1
 

C
en

tr
al

 
1
4
6
5
7
9
.2

2
 

y
es

 
 

2
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.2
_

1
 

C
h
o
b
e 

2
0
9
6
3
.9

3
 

n
o

 
n
o
 v

al
id

 e
n
er

g
y
 s

y
st

em
 p

ro
v

id
ed

 

3
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.3
_

1
 

F
ra

n
ci

st
o
w

n
 

9
2
.8

6
 

n
o

 
n
o
 e

li
g
ib

le
 s

o
la

r 
o

r 
w

in
d

 p
la

ce
m

en
ts

 f
o

u
n

d
 

4
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.4
_

1
 

G
ab

o
ro

n
e 

2
8
1
.3

5
 

n
o

 
p
ro

b
le

m
 p

ro
v
en

 t
o

 b
e 

in
fe

as
ib

le
 o

r 

u
n
b
o
u
n
d
ed

 

5
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.5
_

1
 

G
h
an

zi
 

1
1
4
4
0
2
.5

7
 

y
es

 
 

6
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.6
_

1
 

Jw
an

en
g

 
1
4
.0

6
 

n
o

 
n
o
 e

li
g
ib

le
 s

o
la

r 
o

r 
w

in
d

 p
la

ce
m

en
ts

 f
o

u
n

d
 

7
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.7
_

1
 

K
g
al

ag
ad

i 
1
0
5
1
2
8
.8

5
 

n
o

 
n
o
 v

al
id

 e
n
er

g
y
 s

y
st

em
 p

ro
v

id
ed

 

8
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.8
_

1
 

K
g
at

le
n
g

 
7
7
8
6
.3

9
 

y
es

 
 

9
 

B
o
ts

w
an

a 
B

W
A

 
B

W
A

.9
_

1
 

K
w

en
en

g
 

3
6
9
3
8
.0

9
 

y
es

 
 

1
0

 
B

o
ts

w
an

a 
B

W
A

 
B

W
A

.1
0

_
1
 

L
o
b
at

se
 

2
3
.7

9
 

n
o

 
n
o
 e

li
g
ib

le
 s

o
la

r 
o

r 
w

in
d

 p
la

ce
m

en
ts

 f
o

u
n

d
 

1
1

 
B

o
ts

w
an

a 
B

W
A

 
B

W
A

.1
1

_
1
 

N
o
rt

h
-E

as
t 

5
2
4
9
.1

5
 

y
es

 
 

1
2

 
B

o
ts

w
an

a 
B

W
A

 
B

W
A

.1
2

_
1
 

N
o
rt

h
-W

es
t 

1
1
1
3
3
3
.6

6
 

y
es

 
 

1
3

 
B

o
ts

w
an

a 
B

W
A

 
B

W
A

.1
3

_
1
 

S
el

ib
e 

P
h
ik

w
e 

4
6
.1

6
 

n
o

 
n
o
 e

li
g
ib

le
 s

o
la

r 
o

r 
w

in
d

 p
la

ce
m

en
ts

 f
o

u
n

d
 

1
4

 
B

o
ts

w
an

a 
B

W
A

 
B

W
A

.1
4

_
1
 

S
o
u
th

-E
as

t 
1
6
9
0
.5

6
 

y
es

 
 

1
5

 
B

o
ts

w
an

a 
B

W
A

 
B

W
A

.1
5

_
1
 

S
o
u
th

er
n

 
2
7
3
3
4
.4

3
 

y
es

 
 



1
1

2
 

 

1
6

 
B

o
ts

w
an

a 
B

W
A

 
B

W
A

.1
6

_
1
 

S
o
w

a 
4
.4

3
 

n
o

 
n
o
 e

li
g
ib

le
 s

o
la

r 
o

r 
w

in
d

 p
la

ce
m

en
ts

 f
o

u
n

d
 

1
7

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.1

_
1
 

B
er

ea
 

1
9
9
2
.0

5
 

y
es

 
 

1
8

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.2

_
1
 

B
u
th

a-
B

u
th

e 
1
7
8
9
.2

4
 

y
es

 
 

1
9

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.3

_
1
 

L
er

ib
e 

2
8
1
8
.1

2
 

y
es

 
 

2
0

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.4

_
1
 

M
af

et
en

g
 

2
6
5
0
.3

6
 

y
es

 
 

2
1

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.5

_
1
 

M
as

er
u

 
3
7
6
7
.9

9
 

y
es

 
 

2
2

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.6

_
1
 

M
o
h
al

e'
s 

H
o
ek

 
3
4
3
9
.6

0
 

y
es

 
 

2
3

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.7

_
1
 

M
o
k
h
o
tl

o
n
g

 
4
1
6
9
.0

5
 

y
es

 
 

2
4

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.8

_
1
 

Q
ac

h
a'

s 
N

ek
 

2
1
2
2
.6

9
 

n
o

 
n
o
 v

al
id

 e
n
er

g
y
 s

y
st

em
 p

ro
v

id
ed

 

2
5

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.9

_
1
 

Q
u
th

in
g

 
2
9
6
4
.5

7
 

y
es

 
 

2
6

 
L

es
o
th

o
 

L
S

O
 

L
S

O
.1

0
_

1
 

T
h
ab

a-
T

se
k
a 

4
8
3
1
.6

0
 

y
es

 
 

2
7

 
M

o
za

m
b
iq

u
e 

M
O

Z
 

M
O

Z
.2

_
1
 

G
az

a 
7
5
4
6
7
.5

5
 

y
es

 
 

2
8

 
M

o
za

m
b
iq

u
e 

M
O

Z
 

M
O

Z
.3

_
1
 

In
h

am
b
an

e 
6
8
7
0
8
.2

4
 

y
es

 
 

2
9

 
M

o
za

m
b
iq

u
e 

M
O

Z
 

M
O

Z
.6

_
1
 

M
ap

u
to

 
2
2
9
0
3
.4

2
 

y
es

 
 

3
0

 
M

o
za

m
b
iq

u
e 

M
O

Z
 

M
O

Z
.5

_
1
 

M
ap

u
to

 C
it

y
 

7
0
1
.5

8
 

n
o

 
p
ro

b
le

m
 p

ro
v
en

 t
o

 b
e 

in
fe

as
ib

le
 o

r 

u
n
b
o
u
n
d
ed

 

3
1

 
M

o
za

m
b
iq

u
e 

M
O

Z
 

M
O

Z
.9

_
1
 

S
o
fa

la
 

6
8
0
7
1
.8

1
 

y
es

 
 

3
2

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.1

_
1

 
!K

ar
as

 
1
6
1
1
8
2
.4

5
 

y
es

 
 

3
3

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.2

_
1

 
E

ro
n
g
o

 
6
3
6
1
2
.6

3
 

y
es

 
 

3
4

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.3

_
1

 
H

ar
d
ap

 
1
0
9
6
9
8
.0

0
 

y
es

 
 

3
5

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.4

_
1

 
K

av
an

g
o

 
4
8
6
8
7
.3

4
 

y
es

 
 



1
1

3
 

 

3
6

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.5

_
1

 
K

h
o
m

as
 

3
7
0
7
4
.0

3
 

y
es

 
 

3
7

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.6

_
1

 
K

u
n
en

e 
1
1
5
3
2
9
.6

8
 

y
es

 
 

3
8

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.7

_
1

 
O

h
an

g
w

en
a 

1
0
6
4
9
.0

0
 

y
es

 
 

3
9

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.8

_
1

 
O

m
ah

ek
e 

8
4
7
4
9
.1

9
 

y
es

 
 

4
0

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.9

_
1

 
O

m
u
sa

ti
 

2
6
6
0
1
.9

6
 

y
es

 
 

4
1

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.1

0
_

1
 

O
sh

an
a 

8
6
5
2
.1

9
 

y
es

 
 

4
2

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.1

1
_

1
 

O
sh

ik
o
to

 
3
8
6
3
8
.3

9
 

y
es

 
 

4
3

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.1

2
_

1
 

O
tj

o
zo

n
d
ju

p
a 

1
0
4
6
3
1
.8

8
 

y
es

 
 

4
4

 
N

am
ib

ia
 

N
A

M
 

N
A

M
.1

3
_

1
 

Z
am

b
ez

i 
1
4
3
5
4
.5

6
 

y
es

 
 

4
5

 
S

w
az

il
an

d
 

S
W

Z
 

S
W

Z
.1

_
1

 
H

h
o
h
h
o
 

3
6
4
2
.6

2
 

y
es

 
 

4
6

 
S

w
az

il
an

d
 

S
W

Z
 

S
W

Z
.2

_
1

 
L

u
b
o
m

b
o

 
5
8
5
1
.4

5
 

y
es

 
 

4
7

 
S

w
az

il
an

d
 

S
W

Z
 

S
W

Z
.3

_
1

 
M

an
zi

n
i 

4
1
2
4
.3

6
 

y
es

 
 

4
8

 
S

w
az

il
an

d
 

S
W

Z
 

S
W

Z
.4

_
1

 
S

h
is

el
w

en
i 

3
7
6
4
.8

2
 

y
es

 
 

4
9

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.1

_
1

 
E

as
te

rn
 C

ap
e 

1
6
8
9
0
5
.1

5
 

y
es

 
 

5
0

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.2

_
1

 
F

re
e 

S
ta

te
 

1
2
9
8
2
5
.1

6
 

y
es

 
 

5
1

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.3

_
1

 
G

au
te

n
g

 
1
8
1
7
8
.3

1
 

n
o

 
p
ro

b
le

m
 p

ro
v
en

 t
o

 b
e 

in
fe

as
ib

le
 o

r 

u
n
b
o
u
n
d
ed

 

5
2

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.4

_
1

 
K

w
aZ

u
lu

-

N
at

al
 

9
3
2
8
2
.8

8
 

y
es

 
 

5
3

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.5

_
1

 
L

im
p

o
p
o

 
1
2
5
7
5
4
.0

1
 

y
es

 
 

5
4

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.6

_
1

 
M

p
u
m

al
an

g
a 

7
6
4
9
2
.3

4
 

y
es

 
   

 

 
 

5
5

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.7

_
1

 
N

o
rt

h
 W

es
t 

1
0
4
8
8
1
.6

7
 

y
es

 
 



1
1

4
 

 

5
6

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.8

_
1

 
N

o
rt

h
er

n
 C

ap
e 

3
7
2
9
1
6
.5

4
 

y
es

 
 

5
7

 
S

o
u
th

 A
fr

ic
a 

Z
A

F
 

Z
A

F
.9

_
1

 
W

es
te

rn
 C

ap
e 

1
2
9
4
7
2
.9

6
 

y
es

 
 

5
8

 
Z

im
b

ab
w

e 
Z

W
E

 
Z

W
E

.1
_

1
 

B
u
la

w
ay

o
 

4
5
8
.3

1
 

n
o

 
n
o
 v

al
id

 e
n
er

g
y
 s

y
st

em
 p

ro
v

id
ed

 

5
9

 
Z

im
b

ab
w

e 
Z

W
E

 
Z

W
E

.2
_

1
 

H
ar

ar
e 

8
9
7
.1

7
 

n
o

 
p
ro

b
le

m
 p

ro
v
en

 t
o

 b
e 

in
fe

as
ib

le
 o

r 

u
n
b
o
u
n
d
ed

 

6
0

 
Z

im
b

ab
w

e 
Z

W
E

 
Z

W
E

.3
_

1
 

M
an

ic
al

an
d

 
3
5
5
9
8
.6

8
 

y
es

 
 

6
1

 
Z

im
b

ab
w

e 
Z

W
E

 
Z

W
E

.5
_

1
 

M
as

h
o
n
al

an
d
 

E
as

t 

3
2
0
9
6
.3

2
 

y
es

 
 

6
2

 
Z

im
b

ab
w

e 
Z

W
E

 
Z

W
E

.7
_

1
 

M
as

v
in

g
o

 
5
6
2
8
0
.0

9
 

y
es

 
 

6
3

 
Z

im
b

ab
w

e 
Z

W
E

 
Z

W
E

.8
_

1
 

M
at

ab
el

el
an

d
 

N
o
rt

h
 

7
5
5
0
0
.5

4
 

y
es

 
 

6
4

 
Z

im
b

ab
w

e 
Z

W
E

 
Z

W
E

.9
_

1
 

M
at

ab
el

el
an

d
 

S
o
u
th

 

5
4
6
7
5
.7

1
 

y
es

 
 

6
5

 
Z

im
b

ab
w

e 
Z

W
E

 
Z

W
E

.1
0

_
1

 
M

id
la

n
d
s 

4
9
4
4
0
.0

9
 

y
es

 
 

  



115 

 

 

Figure C.3 As in Figure 5.6 but based on the weather year 2018. 
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Figure C.4 As in Figure C.3 but for the weather year 2019. 
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Figure C.5 As in Figure 5.9 but based on the weather year 2018. 
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Figure C.6 As in Figure C.5 but for the weather year 2019. 
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