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Abstract 
Recent decades have highlighted the profound consequences of air pollution on air quality 

and human health, resulting in millions of deaths worldwide and contributing to the intensification 
of the Earth's climate due to ongoing anthropogenic emissions. These emissions, originating from 
densely populated and industrialized regions, lead to the release of gaseous pollutants that undergo 
chemical transformations in the atmosphere, producing secondary particulate pollutants. 
Atmospheric modeling is a valuable tool that facilitates a more profound comprehension of 
physicochemical processes, thereby providing guidelines for mitigating air pollution and 
enhancing our understanding of climatic feedback mechanisms. 

Recent policies aimed at reducing emissions from anthropogenic activities have 
predominantly focused on specific species, including carbon dioxide (CO2), methane (CH4), sulfur 
dioxide (SO2), and nitrogen oxides (NOx). This is expected to cause a change in the landscape of 
secondary aerosol population characteristics as the abundancy of their precursors will also change. 
For example, the observed historical increase in ammonia (NH3) emissions is expected to enhance 
the importance of certain inorganic aerosol species at the expense of others. A substantial body of 
research conducted in the most heavily polluted regions of the Northern Hemisphere has already 
demonstrated that the average concentration of aerosol nitrate is comparable to, if not greater than, 
the respective concentration of aerosol sulfate. Sulfate is currently recognized as the most 
substantial contributor to the total inorganic aerosol mass on a global scale. Consequently, the 
estimation of aerosol nitrate by atmospheric models has become increasingly crucial, and the 
number of models that include this species in their calculations is steadily rising, despite not being 
the norm in the past. This thesis aims to address a key assumption that can influence the estimation 
of nitrate aerosols (NO3

-) by models. This assumption is their physical state (i.e., solid or liquid). 
Aerosols typically crystallize and form solids when exposed to decreasing ambient relative 
humidity, though this process is often complex due to various aerosol compositions and the 
hysteresis effect .In thermodynamics, particles that form solids are considered to be in a stable 
state; however, aerosol water can exist even in very low humidity values, leaving particles in a 
supersaturated aqueous state called metastable. Utilizing a state-of-the-art chemistry and climate 
model (EMAC) and a recently developed version of a thermodynamic equilibrium model 
(ISORROPIA-lite), the study explores the hypothesis that the state assumption significantly 
impacts inorganic aerosol estimations. Additionally, it examines the impact of the aerosol physical 
state on the estimated particle acidity, as this is another quantity that influences the aerosol 
partitioning process. Furthermore, the thesis investigates a number of factors that are known to 
influence the model's ability to accurately estimate NO3

- concentrations in regions of high 
anthropogenic activity, with a particular focus on the polluted North Hemisphere (East Asia, India, 
Europe, and North America). The objective is to ascertain the most significant factors that 
contribute to the best replication of observations of NO3

- in sizes less than 1 μm and 2.5 μm in 
diameter (PM1 and PM2.5, respectively). The analysis is further expanded to encompass the 
recognition of any seasonal patterns as well as measurement location patterns. Finally, the study 
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examines the interactions between nitrate aerosol and mineral dust, thereby investigating the 
climatic impact of NO3

- with respect to its radiative effect from both aerosol-radiation interactions 
(direct effect) and aerosol-cloud interactions (indirect effect).The importance of considering dust-
nitrate interactions when examining such metrics is also quantified. 

The study found that the physical state assumption has a minimal impact on the global 
budget of key inorganic aerosol species, including NO3

-, SO4
2-, and NH4

+, as well as non-volatile 
cations, with overall differences being less than 10%. Consequently, for the purposes of climatic 
or air quality simulations that cover a long time period and consider a global scale, that choice is 
not expected to have a significant impact. However, the metastable assumption has been shown to 
yield faster simulation times, with an average increase of approximately 4-5%.In regions 
characterized by consistently low relative humidity values and/or mid-range temperatures, the 
assumption of considering only liquid particles has been found to result in lower concentration 
estimates, with NO3

- concentrations being reduced by up to 40%, and slightly more acidic particles 
by up to 1 unit. Consequently, for analyses that consider specific regions, the aerosol physical state 
assumption assumes greater importance. 

Concerning the factors influencing the accuracy of NO3
- estimations, it was ascertained 

that, on average, a high model grid resolution and a low dinitrogen pentoxide (N2O5) hydrolysis 
coefficient tend to yield better agreement with observations in both sizes. The employment of 
disparate anthropogenic emissions databases emerged as a significant factor influencing model 
estimations, particularly in replicating PM1 NO3

- concentrations across diverse regions. In general, 
there is no 'perfect' model setup capable of best capturing both PM1 and PM2.5 NO3

- concentrations 
across all regions simultaneously. Depending on the area of interest, different parameterizations 
yield superior rates of agreement.  

Furthermore, it was determined that nitrate aerosols induce a net cooling direct radiative 
effect of -0.11 W/m2, primarily attributable to the scattering of SW radiation by smaller size modes, 
accounting for 85% of this estimate. Conversely, nitrate aerosols have been observed to induce a 
net warming indirect radiative effect of +0.17 W/m2, which is attributed to the depletion of smaller-
sized particles (i.e., anthropogenic pollution) through coagulation with larger particles (i.e., dust). 
This depletion results in the formation of less low-level warm clouds, which decreases the amount 
of SW radiation that is reflected back to space. The efficacy of this mechanism is further 
augmented by nitrate-dust interactions, which augment the size of dust particles through adsorption 
and coating processes. The incorporation of dust chemistry is of paramount importance when 
compared to assumptions for dust composition or dust loading, as its omission engenders an 
underestimation of the aforementioned estimates by up to 45%. 
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Aerosols are particles that exist in either a solid or liquid state and are suspended in the 
atmosphere. Their size distribution exhibits a considerable range, spanning from a diameter of a 
few nanometers (nm) to hundreds of micrometers (μm). A standard categorization system divides 
aerosols into four size mode categories, namely nucleation, Aitken, accumulation, and coarse 
modes, with size ranges typical of these categories illustrated in Figure 1.1. Typically, aerosols are 
observed in the nucleation mode when new particles are formed via the nucleation process, which 
refers to the formation of new particles from clusters of gas molecules (Seinfeld and Pandis, 2016). 
The occurrence of this process necessitates atmospheric conditions characterized by 
supersaturation, defined as a relative humidity exceeding 100%. In such conditions, the continuous 
collisions between gas molecules and the clusters that serve as the particle formation sites initiate 
the process of agglomeration, subsequently transferring particles from the gaseous state to the 
liquid phase. With regard to the three larger size categories, an aerosol can be emitted directly or 
transferred from one mode to another via the processes of condensation and coagulation (Fig. 1.1). 
In general, aerosol particles can be classified as either soluble (hydrophilic/able to absorb water) 
or insoluble (hydrophobic/unable to absorb water) based on their physicochemical properties. 
Aerosols are further classified based on their diameter, with categories such as PM10, PM2.5, and 
PM1 representing particles with diameters of 10, 2.5, and 1 micrometers, respectively. The 
atmospheric trajectory of aerosols is influenced by gravity, with larger particles typically having a 
shorter range of travel. Consequently, aerosols can be found in remote areas, even in altitudes that 
reach up to the upper stratosphere. However, it should be noted that nano particles, which are 
formed by nucleation, undergo rapid transfer to a larger size mode through coagulation with larger 
particles, resulting in limited travel distances. 
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Figure 1.1: Depiction of aerosol multi-modal size distribution along with examples of aerosol 
types, typical of each mode. Also depicted are processes through which an aerosol particle can 
be transferred between the size modes. Figure taken from the Deutscher Wetterdienst webpage 
‘Particle Size Distribution’ 
(https://www.dwd.de/EN/research/observing_atmosphere/composition_atmosphere/aerosol/cont_
nav/particle_size_distribution_node.html). 

 
Aerosols that are directly emitted into the atmosphere are designated as primary pollutants, 

with their sources encompassing a wide range of natural and anthropogenic origins. Notable 
instances of primary natural aerosols include sea salt particles, which are produced by the bursting 
of air bubbles entrained by wind stress over oceans (Monahan, 1986). These particles contain 
chloride anions (Cl-) and sodium cations (Na+). Dust particles, originating from the suspension of 
soil and wind erosion in desert regions (Marticorena and Bergametti, 1995), contain cations such 
as calcium (Ca2+), magnesium (Mg2+), potassium (K+), and sodium (Sposito, 1989). In addition, 
organic carbon (OC), black carbon (BC), brown carbon (BrC), and soot particles are typically 
emitted from wildfires (Andreae and Gelencsér, 2006). Anthropogenic aerosols are typically 
emitted from activities related to power generation, materials production, transportation, and 
agricultural activities (IPCC, 2013). These aerosols can be either directly emitted as primary 
pollutants or formed later in the atmosphere from chemical reactions of precursor gases. In this 
case, they are deemed secondary pollutants. Natural aerosols can also be secondary pollutants from 
natural emissions of precursor gases such as ammonia (NH3), nitrogen monoxide (NO), or 
dimethyl sulfide (DMS), for example. In general, primary aerosols tend to be emitted in larger 
sizes compared to secondary aerosols (Myhre et al., 2013). The classification of anthropogenic 
aerosols is predominantly determined by the presence of carbon-related compounds. In the first 
category, organic aerosols are distinguished by their carbon content, while in the second category, 
inorganic aerosols are defined by the absence of carbon. The three predominant species in the latter 
category are the anions sulfate (SO4

2-), nitrate (NO3
-), and ammonium (NH4

+), which are all 
secondary aerosols originating from emissions of precursor gases such as SO2, NOx, and NH3 
(Arias et al., 2021). Conversely, organic aerosols can be classified into two distinct categories: 
primary organic aerosols (POA), originating from biomass burning or fossil fuel combustion 
emissions, and secondary organic aerosols (SOA), arising from precursor volatile organic 
compound (VOC) emissions (Kanakidou et al., 2005). Organic aerosols can be further categorized 
based on their volatility and oxygenation levels (Jiménez et al., 2009). 

Aerosols are removed from the atmosphere by various processes that can act either 
independently or in combination. These processes are divided into two categories: dry and wet 
removal.  The process of dry removal is characterized by gravitational sedimentation, turbulent 
mixing, and Brownian motion, with removal rates depending on the size of the aerosol, the surface 
type on which they are deposited, and wind speed (Carslaw, 2022). Conversely, wet removal is 
characterized by the process of scavenging aerosols through rainfall or snowfall, followed by their 
subsequent deposition. This process is further categorized into two distinct mechanisms: rainout, 

https://www.dwd.de/EN/research/observing_atmosphere/composition_atmosphere/aerosol/cont_nav/particle_size_distribution_node.html
https://www.dwd.de/EN/research/observing_atmosphere/composition_atmosphere/aerosol/cont_nav/particle_size_distribution_node.html
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which occurs within the cloud, and washout, which transpires beneath the cloud (Kajino and 
Aikawa, 2015). During rainout, aerosols are removed by precipitation above the cloud base height, 
while during washout, they are removed when colliding with falling precipitation below the cloud 
base height. 

Aerosols, in addition to their involvement in gas and liquid phase chemistry, play a 
significant role in dynamic atmospheric processes, as illustrated in Figure 1.2. These processes 
often lead to an enhancement in the size of aerosols. For instance, new particles can be formed by 
the nucleation of supersaturated gas compounds when their molecules cluster together (Laaksonen 
et al., 1995; Curtius, 2006). The newly formed aerosol particles then typically undergo a process 
of coagulation, in which particle clusters collide with each other due to Brownian motion, leading 
to an increase in their size through a process of coalescence (Fuks and Davies, 1964). A particularly 
notable aerosol process is their capacity to activate and form cloud droplets through the 
condensation of supersaturated water vapor on their surface (Andreae and Rosenfeld, 2008). These 
particles are designated as cloud condensation nuclei (CCN), while others possess the capacity to 
function as ice nucleating particles (INP), whereby droplets undergo freezing on their surface, 
leading to the formation of ice crystals (INP) (Suslick, 2001). The size and type of aerosols have 
been demonstrated to have a substantial impact on the characteristics of the resulting clouds and 
their climatic effects. 

Aerosols have been shown to exert an impact on the Earth's climate through interactions 
with incoming short-wave (SW) and outgoing long-wave (LW) radiation (IPCC, 2013). These 
interactions constitute the aerosol direct radiative effect. Broadly speaking, aerosol types such as 
black carbon, brown carbon, and dust mostly contribute to a net direct warming through absorption 
(Kanakidou et al., 2005), while organic aerosols and the major anthropogenic inorganic particles 
contribute to a net direct cooling through scattering (Myhre et al., 2013). However, aerosols also 
impact the climate via interactions with clouds and more specifically by altering their optical 
characteristics (Twomey, 1977) and lifetimes (Albrecht, 1989). Figure 1.3 illustrates the various 
mechanisms through which aerosols modify the radiative equilibrium of the climate, 
encompassing both direct effects with radiation interactions and indirect effects with cloud 
interactions. The direct effect can be either positive (climate warming) due to the absorption of 
radiation or negative (climate cooling) due to the scattering of radiation. The indirect effect 
pertains to the aerosol-induced alterations in cloud reflectivity, which can also manifest as either 
positive or negative. It is widely acknowledged that aerosols of anthropogenic origin contribute to 
a net cooling of the planet (Myhre et al., 2014), a crucial aspect of which is the masking of the 
overall net warming that is induced by greenhouse gases globally (Urdiales-Flores et al., 2023). A 
more extensive discussion of the impacts of aerosols on climate is presented in Section 3.1. 

Finally, it is widely acknowledged that aerosols, irrespective of their type or size, have a 
detrimental effect on human health, contributing to an increase in all-cause mortality, particularly 
due to heart attack and stroke-related deaths, as well as respiratory system infections (Pope, 2000; 
Pope and Dockery, 2006). Additionally, a recent correlation between exposure to PM2.5 levels of 
pollution and an increased risk in developing Parkinson's Disease has been discovered 
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(Krzyzanowski et al., 2024). The collective impact of exposure to air pollution is marked by its 
profound global consequences, leading to over eight million premature deaths worldwide annually 
(WHO, 2022). 

 
 
 

 
Figure 1.2: Schematic diagram of basic aerosol dynamic processes in the atmosphere, from the 
new particle formation (nucleation) to growth via coagulation and condensation to their eventual 
activation into cloud droplets. Figure is adopted under the Creative Commons Attribution 4.0 
License (https://creativecommons.org/licenses/by/4.0/deed.en) from the ‘An Introduction to 
Aerosol-Climate Interactions’ presentation by François Dulac during the ‘Workshop on Aerosol-
Climate Interactions: Mechanisms, Monitoring, and Impacts in Tropical Regions’ held by ‘The 
Abdus Salam International Centre for Theoretical Physics’ in Hurghada, Egypt during 11 – 15 
February 2008 (https://indico.ictp.it/event/a07185/session/3/contribution/1/material/1/0.pdf ). 

https://creativecommons.org/licenses/by/4.0/deed.en
https://indico.ictp.it/event/a07185/session/3/contribution/1/material/1/0.pdf
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Figure 1.3: How aerosols impact the radiative budget of the climate through interactions with 
radiation (direct effect) and clouds (indirect effect). Figure taken from the European Space 
Agency webpage ‘Clouds and aerosols in the climate system’ 
(https://www.esa.int/Applications/Observing_the_Earth/FutureEO/EarthCARE/Clouds_and_aero
sols_in_the_climate_system ). 

 
 
 



In the context of accurately representing aerosol processes within climate and chemistry 
models, it is imperative to address the fundamental aspect of aerosol microphysics. The size 
distribution of aerosols plays a pivotal role in determining this treatment, as the various processes 
previously discussed are characterized by substantial size dependency. Many models commonly 
employ a lognormal distribution to parameterize the four size ranges (Fig. 1.1). The equation that 
describes this distribution, giving the normalized number concentration 𝑛 of aerosols in the size 
bin with a midpoint radius 𝑟, is the following : 

 

https://www.esa.int/Applications/Observing_the_Earth/FutureEO/EarthCARE/Clouds_and_aerosols_in_the_climate_system
https://www.esa.int/Applications/Observing_the_Earth/FutureEO/EarthCARE/Clouds_and_aerosols_in_the_climate_system
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𝑛(ln 𝑟) = ∑ 𝑁𝑖√2𝜋 ln 𝜎𝑖 𝑒(−(ln 𝑟− ln 𝑟𝑖̅̅ ̅)22 ln2 𝜎𝑖 )
  (1.1) 

 
Where 𝑖 refers to each individual size mode, 𝑁𝑖 to the number concentration of particles, 𝑟�̅� the 
geometric mean radius and 𝜎𝑖 the geometric standard deviation of the particle radius. In models 
that adopt the lognormal aerosol size distribution, as opposed to a sectional distribution approach, 
the radius limits of the different bins are not distinctly separated and there is some degree of 
overlap. 

New particle formation is defined as the process of the nucleation of gas molecule clusters, 
which results in the formation of new aerosols that exist in the smallest size mode. The process of 
nucleation can occur in two distinct ways: homogeneous and heterogeneous. In the former, the 
process occurs without the presence of a foreign surface to assist it, whereas in the latter, a foreign 
surface is present. Nucleation can also occur with a single species present (homomolecular) or 
more (heteromolecular) (Seinfeld and Pandis, 2016), with the latter being most commonly present 
in chemistry models as species are well mixed with each other. The nucleation rate for new 
particles is typically contingent upon the concentrations of gas molecules, as well as the prevailing 
ambient conditions (e.g., temperature, relative humidity). The existence of supersaturation 
conditions is a necessary prerequisite for nucleation. The formation of new particles occurs 
through the process of agglomeration, where individual gas molecules collide with gas molecule 
clusters, resulting in a phase transition from gas to liquid. A very popular parameterization that is 
used by models to describe this process is that of Vehkamäki et al. (2002) which is relevant for 
temperatures in the range of 230.15 K until 305.15 K, relative humidities between 0.01 % and 100 
% and gas molecule concentrations between 104 and 1011 cm-3. It gives the nucleation rate 𝐽 of 
new particles per cm3 , as an exponential of a third order polynomial of the relative humidity RH 
and the total gas phase concentration 𝑁𝑎 of a cluster of gas molecules : 

 
 𝐽 =  exp [𝑎(𝑇, 𝑥∗) + 𝑏(𝑇, 𝑥∗) ln(𝑅𝐻 100⁄ ) + 𝑐(𝑇, 𝑥∗)[ln(𝑅𝐻 100⁄ )]2 + 𝑑(𝑇, 𝑥∗)[ln(𝑅𝐻 100⁄ )]3 +  𝑒(𝑇, 𝑥∗) ln(𝑁𝑎) +  𝑓(𝑇, 𝑥∗) ln(𝑅𝐻 100⁄ ) ln(𝑁𝑎) + 𝑔(𝑇, 𝑥∗)[ln(𝑅𝐻 100⁄ )]2 ln(𝑁𝑎) + ℎ(𝑇, 𝑥∗)[ln(𝑁𝑎)]2 + 𝑖(𝑇, 𝑥∗) ln(𝑅𝐻 100⁄ )[ln(𝑁𝑎)]2 + 𝑗(𝑇, 𝑥∗)[ln(𝑁𝑎)]3 ]     (1.2) 
 

Where the coefficients 𝑎(𝑇, 𝑥∗) until 𝑗(𝑇, 𝑥∗) are conversely dependent on the mole fraction 𝑥∗ of 
an individual gas species (e.g. sulfuric acid) present in the gas molecule cluster. Additionally, these 
functions are themselves third-order polynomial functions of temperature. 



15 
 
 
 
 

 Following the process of nucleation, one way that the growth of aerosol particles in size is 
facilitated, is the condensation of gas species onto their surface. This process of condensation is a 
universal phenomenon, affecting all aerosol size modes. For aerosols in the nucleation mode, the 
change in mass 𝐴 in molecules/cm3 is given by the following equation : 
 𝑑[𝐴]𝑑𝑡 =  𝑁1𝐶1∑ 𝑁𝑖𝐶𝑖𝑖=1,7 (∑ 𝑁𝑖𝐶𝑖[𝐴]𝑖=1,7 )    (1.3) 
 
Where 𝑖 corresponds to the respective size mode with 𝑖 = 1 denoting the nucleation mode. The 
case of 𝑖 = 2,4 represents the soluble fraction of the three larger size modes (Fig. 1.1) and the case 
of 𝑖 = 5,7 represents the insoluble fraction of the three larger size modes. However, precisely 
because these have an insoluble as well as a soluble fraction (unlike the nucleation size mode), 
there is an additional source of nucleated mass that condenses on them. Consequently, equation 
(1.3) is slightly altered into : 
 𝑑[𝐴]𝑑𝑡 =  𝑁𝑗𝐶𝑗+𝑁𝑗+3𝐶𝑗+3∑ 𝑁𝑖𝐶𝑖𝑖=1,7 (∑ 𝑁𝑖𝐶𝑖[𝐴])𝑖=1,7     (1.4) 
 
Here 𝑖 represents all seven size modes, while 𝑗 = 2,4 and refers to the soluble fractions of the three 
larger ones. Therefore the subscripts (𝑗 + 3) = 5,7 and refer to the insoluble fractions only. 𝑁 
denotes the particle number concentration in each specific size mode while 𝐶 is the condensation 
coefficient for each size mode, and describes the diffusive flux of gas on a single particle surface. 
The condensable amount of gas on a particle, given by the diffusive flux, has a strong dependence 
on the particle size, the ambient atmospheric conditions to facilitate condensation as well as the 
gas phase species considered and time limitations for kinetic condensation. The condensation 
coefficient is given according to Fuks and Davies (1964) as follows : 
 
 𝐶𝑖 =  4𝜋𝐷𝑟𝑔𝑖4𝐷𝑠𝑣𝑟𝑔𝑖+ 𝑟𝑔𝑖𝑟𝑔𝑖+𝛥     (1.5) 

 
 
Where 𝑟𝑔𝑖 is the geometric mean radius of the size mode 𝑖, 𝐷 is the diffusion coefficient (see Eq. 
1.8), 𝑠 is an accommodation coefficient for each gas species treated ranging from 0.03 to 1, 𝑣 is 
the mean thermal velocity of the gas molecule and 𝛥 is the mean free path length of the gas 
molecule. The physical meaning of 𝛥 is that it denotes the distance from which the kinetic regime 
applies with respect to the particle, i.e. the distance from which the gas molecule is able to 
kinetically condense in the time frame of one model time step. 
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The process of particle coagulation is of paramount importance in the subsequent growth 
of aerosol size. This process occurs when particles of the same or different size modes collide and 
adhere to one another. Commonly this process is described by the following equation which gives 
the change in aerosol number concentration 𝑁𝑖 in each size mode 𝑖 describing both intermodal and 
intramodal coagulation :  

 𝑑𝑁𝑖𝑑𝑡 =  12 𝐾𝑖𝑖𝑁𝑖2 −  ∑ 𝐾𝑖𝑗𝑁𝑖𝑁𝑗𝑗     (1.6) 

 
Where 𝑗 can be the respective size mode with which size mode 𝑖 undergoes intermodal coagulation. 𝐾 is the coagulation coefficient that acts as a metric for the frequency of collisions between 
particles. The smallest values of 𝐾 , indicating less frequent collisions, occur for similarly sized 
aerosols. That is because small aerosols tend to move faster and more freely but have small 
available collision surface (cross section), while large aerosols even though having higher cross 
sections, tend to move slower requiring more time for a collision to take place. 𝐾 is therefore 
heavily dependent on aerosol size, which inherently affects the moving speed and the number of 
collisions, and it is determined from the following equation according to Fuks and Davies (1964) 
: 

 𝐾𝑖𝑗 =  16𝜋�̅��̅�4�̅�𝑣𝑟̅̅̅̅ + �̅��̅�+𝛥′     (1.7) 

 

Where �̅� is the mean geometric radius of the radii of modes 𝑖 and 𝑗 given as : �̅� =  𝑟�̅�+ 𝑟�̅�2  while  �̅� 

and 𝛥′ correspond to the thermal velocity and the mean free path length of an aerosol with radius �̅�. Finally �̅� is the diffusion coefficient which can be estimates as : 
 

 �̅� = 0.073 ∗ 1000𝑃 100⁄ ∗ ( 𝑇298.15)1.5
    (1.8) 

 
Where 𝑃 and 𝑇 are the atmospheric pressure in hPa and the atmospheric temperature in Kelvin 
units respectively. The diffusion coefficient is a metric of the rate that indicates the prevalence of 
Brownian motion that particles undergo compared to their gravitational settling. For example, a 
particle with a diameter of 0.1 μm will travel a longer distance in the atmosphere due to its diffusion 
rather than its sedimentation by gravity, owing to its miniscule mass. Conversely, for a particle 
with a diameter of 10 μm, this relation is the opposite. While the coagulation process does change 
the aerosol number concentrations among the different size modes, since intermodal coagulation 
will result in the aerosol residing in the bigger size, it ensures the total conservation of mass. 
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Aerosol thermodynamics is a critical process that governs the partitioning of particles 
between their gaseous and aerosol phases. This process also determines their physical state 
(liquid/solid), composition, and water content. Typically, organic and inorganic gas phase species 
are dissolved into their liquid form in the presence of solvents, with atmospheric water being the 
most abundant. These species are then subsequently dissociated into their ions to form aerosols. 
The extent of dissociation is dependent on the pH of the solvent and the acidic strength of the 
electrolyte (gas species) dissolved (Jacobson, 1999; Seinfeld and Pandis, 2016). It is important to 
note that aerosol formation can also originate from solid dissolved species. The resulting products 
can exist in either liquid or solid state and have a pure organic or inorganic composition or a 
mixture of both. The transition of an aerosol particle from a solid to a liquid state is termed 
deliquescence, and from liquid to solid state efflorescence. These transitions are dependent on 
ambient relative humidity. A solid particle exposed to increasing RH will begin to dissolve at a 
threshold known as Deliquescence Relative Humidity (DRH). However, the reverse phase 
transition rarely occurs at the same RH threshold, as a hysteresis effect comes into action during 
the process. Conversely, a liquid particle subjected to decreasing RH will undergo crystallization 
at a lower value, known as the Crystallization Relative Humidity (CRH). In multicomponent 
mixtures, the transition is governed by a different threshold, called Mutual Deliquescence Relative 
Humidity (MDRH), which depends on the particle composition. Typically, the MDRH is lower 
than the DRH of the pure solids in the mixture. This approach was first developed by Wexler and 
Seinfeld (1991) and has become a prevalent method for treating phase state transitions in 
thermodynamic equilibrium models. It is imperative to note that the DRH, CRH, and MDRH are 
all functions of ambient temperature. 

In general, the computational demands associated with solving equilibrium equations are 
significant, prompting most models to employ diverse techniques to optimize their efficiency. 
These techniques are designed to facilitate incorporation into regional and global climate-
chemistry models. A more detailed discussion regarding these approaches can be found in Section 
2.1. It is noteworthy that all thermodynamic equilibrium models are reliant on the utilization of 
activity coefficients for the species under consideration. These coefficients represent the deviation 
of a species from ideal behavior (where a value of 1 indicates total ideality) and are typically 
dependent on ambient temperature. The determination of these activity coefficients can be 
achieved through either direct calculation by the model or through laboratory studies. However, 
given the impossibility of isolating individual ions in a solution, the calculations or measurements 
obtained typically correspond to the activity coefficients of specific ionic pairs. Finally, the most 
common parameterization for estimating the liquid water content of an aerosol particle is the 
Zdanovskii-Stokes-Robinson method (Zdanovskii, 1948; Stokes and Robinson, 1966), which only 
considers pure organic or inorganic compositions and is described by the following equation :  

 𝑊 =  ∑ 𝐶𝑖𝑚𝑖,0(𝑎𝑤)𝑖      (1.9) 
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Where 𝑊 is the aerosol water mass given in kg of water per m3 of air, 𝐶𝑖 is the concentration of 
an electrolyte 𝑖 given in moles/m3 of air in the aqueous phase and 𝑚𝑖,0(𝑎𝑤) is the molality of a 
single component aqueous solution of the electrolyte 𝑖 that has a water activity equal to 𝑎𝑤 = 𝑅𝐻 100⁄  , given in mol/kg. More extensive information regarding the thermodynamic treatment 
that was followed throughout the thesis research and is relevant to all results that will be presented, 
can be found in Sections 2.1, 2.2.2, 3.2.2 and 4.2.2. 

One of the most fundamental aspects of aerosol particles is their ability to act as cloud 
condensation nuclei (CCN) and activate into cloud droplets. The activation of aerosols occurs 
when their equilibrium supersaturation reaches (or exceeds) the critical supersaturation threshold 
necessary for activation, a process that is governed by their size. The activation of soluble particles, 
that have the capacity for water absorption, is most often described by the Köhler theory (Köhler, 
1936). This theory attributes a Köhler curve to each individual particle, which is a curve that shows 
the radius at which the particle will activate (called the critical radius) in relation to the critical 
supersaturation for activation and its own equilibrium supersaturation. The equation most 
frequently employed to describe this theory is as follows : 

 𝑠 =  𝐴𝐷𝑝 − 𝐵𝐷𝑝3     (1.10) 

 
This theoretical framework encompasses the interplay among two distinct phenomena, denoted as 
effects. The first term refers to the Kelvin (curvature) effect, which states that intermolecular forces 
over a curved surface are weaker than those over a flat surface. Consequently, any given molecule 
can more readily escape and transition to the vapor phase. The second term refers to the Raoult 
(solute) effect, which states that the supersaturation vapor pressure of a solvent (e.g., water) will 
be decreased in the presence of a solute (e.g., a species dissolved in water). Here 𝑠 is the particle’s 
equilibrium supersaturation, 𝐷𝑝 is its diameter while 𝐴 =  4𝜎𝑀𝑤𝑅𝑇𝜌𝑤  and 𝐵 =  6𝑛𝑠𝑀𝑤𝑣𝜋𝜌𝑤  . 𝑀𝑤 and 𝜌𝑤 

are the molar mass and density of water respectively, 𝑅 is the universal gas constant, 𝑇 is the 
temperature, 𝜎 is the surface tension of the gas-particle interphase, 𝑛𝑠 are the number of moles of 
the solute substance (soluble material) in the aerosol particle and 𝑣 is the Van’t Hoff factor of said 
solute. A typical Köhler curve is depicted in Figure 1.4. Recently the Köhler theory has been 
expanded by Petters and Kreidenweis (2007) to include the aerosol’s hygroscopicity parameter 𝜅 
(which is a metric of its water absorption ability) slightly modifying the equation as :

 𝑠 =  4𝜎𝑀𝑤𝑅𝑇𝜌𝑤𝐷𝑝 −  𝐷𝑑3𝜅𝐷𝑝3     (1.11) 

 
where 𝐷𝑑 is the dry diameter of the aerosol particle. 
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Figure 1.4: A typical example of a Köhler curve depicting the equilibrium supersaturation of a 
particle 𝑠𝑘 as a function of its radius. If the ambient supersaturation is bigger that the critical 
supersaturation required for activation 𝑠𝑐 then the particle will activate when it reaches its critical 
radius 𝑟𝑐 and start increasing in size as it absorbs water. Generally larger particles exhibit smaller 𝑠𝑐 and bigger 𝑟𝑐 thresholds. Figure is adopted from W. Brunne © Penn State, and is licensed 
under the Creative Commons Attribution 4.0 License 
(https://creativecommons.org/licenses/by/4.0/deed.en). 
 

The activation process is not exclusively limited to aerosol particles containing a solute 
(i.e., soluble material); insoluble particles can also activate into cloud droplets owing to the 
adsorption of soluble material on their surface. However, the dynamics of such particles are 
governed by a distinct theory, namely the Frenkel-Halsey-Hill (FHH) adsorption model, which 
involves the adsorption of multiple layers of soluble material. In such instances, the equilibrium 
supersaturation of the aerosol particle is determined by the following equation : 

 𝑠 =   4𝜎𝑀𝑤𝑅𝑇𝜌𝑤𝐷𝑝 − 𝐴𝐹𝐻𝐻 (𝐷𝑝−𝐷𝑑2𝐷𝑤 )−𝐵𝐹𝐻𝐻
   (1.12) 

 
The above is a parameterization developed by Sorjamaa and Laaksonen (2007) and Kumar et al. 
(2009). Here 𝐷𝑤 is the diameter of a water molecule, while 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 are empirical constants 
that describe the interactions of the aerosol surface with the adsorbed molecules in the first layer 
and all subsequent layers respectively. These constants differ depending on the composition of the 
insoluble particle and are generally determined experimentally. Sorjamaa and Laaksonen (2007) 

https://creativecommons.org/licenses/by/4.0/deed.en
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suggest a range of 0.1 to 3 for 𝐴𝐹𝐻𝐻 and 0.5 to 3 for 𝐵𝐹𝐻𝐻. Recently, Kumar et al. (2011) developed 
a unified activation framework (UAF) to account for soluble coatings over particles with an 
insoluble core. In such instances, the equilibrium supersaturation of the particle is expressed as : 𝑠 =  4𝜎𝑀𝑤𝑅𝑇𝜌𝑤𝐷𝑝 − 𝜀𝑠𝐷𝑑3𝜅(𝐷𝑝3−𝜀𝑖𝐷𝑑3) − 𝐴𝐹𝐻𝐻 (𝐷𝑝−𝜀𝑖1 3⁄ 𝐷𝑑2𝐷𝑤 )−𝐵𝐹𝐻𝐻

  (1.13) 

 
Where 𝜀𝑠 and 𝜀𝑖 are the volume fractions of soluble and insoluble material respectively. Note that 
for a completely soluble aerosol particle (𝜀𝑠 = 1 and 𝜀𝑖 = 0), equation (1.13) becomes equation 
(1.11), while for a complete insoluble particle (𝜀𝑠 = 0 and 𝜀𝑖 = 1), equation (1.13) becomes 
equation (1.12).

As previously stated, aerosol particles can be removed from the atmosphere through a 
variety of processes, including gravitational sedimentation, dry deposition, and wet deposition. 
The latter process is further subdivided into two categories, depending on whether the particle will 
be scavenged within the cloud or below it, through washout. Comprehensive details concerning 
the parameterization of all depositional processes within chemistry and climate models can be 
found in Appendix A.1. 

 
 
 




Despite the fact that the majority of global and regional scale climate-chemistry models 
tend to address most, if not all, of the physical processes described in the previous section, their 
chemical representation of aerosol species is not always so explicit. Approximately two decades 
ago, models predominantly treated aerosol particles as bulk species and frequently incorporated 
simplifying assumptions for both organic and inorganic species, largely due to limitations in 
computational cost. It was not uncommon for most models to employ a simplified chemical 
speciation, representing the entire ensemble of their aerosol populations by a limited number of 
species (e.g., sea salt, dust, organic and black carbon, sulfate). However, significant advancements 
have been made since then, with most models now having detailed parameterizations and chemical 
treatments while simultaneously expanding their aerosol speciation. Noteworthy advancements 
include the expansion of the inorganic species to encompass other significant constituents, such as 
nitrate and ammonium, as well as chloride and mineral cations. A similar enhancement has been 
observed in the representation of organic species, which now offer a more sophisticated speciation 
based on their emission source characteristics (i.e., fossil fuel or biomass-related) and oxidation 
levels. This enhancement in the intricacy of chemical representation of aerosol species in 
numerical models has coincided with the transformation in emission trends over the past two 
decades, which was undertaken to address the concerns related to climate change. 



21 
 
 
 
 

A notable development pertains to the inorganic precursors, with substantial measures 
having been implemented for the reduction of SO2 emissions, though less extensively for NOx 
emissions, while concurrently NH3 emissions have exhibited an increase. This phenomenon is 
corroborated by the respective modeled and observed trends in the concentrations of these 
compounds (Bellouin et al., 2011; Hauglustaine et al., 2014; Ciarelli et al., 2019), with their 
projected future course simulated under different socioeconomic scenarios anticipated to follow a 
similar trajectory. This behavior is further illustrated in Figure 1.5. Such a change in the global 
reactive gases emissions landscape is also likely to bring about alterations in the inorganic aerosol 
composition regime. In the atmosphere, sulfuric acid (H2SO4) and nitric acid (HNO3) compete 
with each other to react with the available ammonia (NH3), leading to the formation of particulate 
sulfate (SO4

2-) and particulate nitrate (NO3
-), respectively. Since SO2 is a key precursor for H2SO4 

and NOx a key precursor for HNO3, it is anticipated that the availability of HNO3 to react with 
NH3 will increase. This phenomenon, when considered in conjunction with the observed increase 
in global NH3 levels, suggests a potential enhancement in the formation of particulate nitrate within 
the atmosphere, at the expense of particulate sulfate formation. 

 

Figure 1.5: Global and annual averaged evolution (black line) of NOx, SO2, and NH3 emissions. 
Also shown are the future projections among the three socioeconomic scenario pathways RCP4.5 
(green line), RCP6.0 (blue line) and RCP8.5 (red line). The historical data for SO2 are from Smith 
et al. (2004), while for NOx and NH3 are from Lamarque et al. (2010). The socioeconomic scenario 
data are described by Moss et al. (2010) and Van Vuuren et al. (2011). Figure is adopted from the 
open access publication by An et al. (2019) under the Creative Commons Attribution 4.0 License 
(https://creativecommons.org/licenses/by/4.0/deed.en). 

 

https://creativecommons.org/licenses/by/4.0/deed.en
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Indeed, sulfate aerosols, which are the most significant contributor to inorganic mass 
concentrations on a global scale, have exhibited analogous declining trends in recent years, 
particularly in the U.S. (Hand et al., 2012; Leibensperger et al., 2012; Lajtha and Jones, 2013) and 
Europe (Lajtha and Jones, 2013; Ciarelli et al., 2019; Yang et al., 2020). This phenomenon is 
gradually and consistently contributing to an increase in the nitrate aerosol component's share of 
the total inorganic mass. Numerous studies have identified concentration levels that are 
comparable to or favor the nitrate species in the U.S. (Walker et al., 2012; Shah et al., 2018), 
Europe (Schaap et al., 2004; Galindo et al., 2008; Lanz et al., 2010; Aksoyoglu et al., 2017), and 
more strongly over the East Asian region (Kai et al., 2007; Lin et al., 2010; Wang et al., 2013; 
Wen et al., 2018; Li et al., 2020) as well as on the general global scale (Hauglustaine et al., 2014). 
A transition from a sulfate-dominated atmosphere to one dominated by nitrate is expected to affect 
not only the atmospheric acidity levels but also the behavior of dust particles, a major natural 
aerosol species. Specifically, a decrease in sulfate levels is predicted to result in an increase in the 
pH of particles, thereby affecting the process of aerosol thermodynamic partitioning between the 
gas and particle phases. This, in turn, is expected to influence the overall atmospheric oxidation 
capacity (Pye et al., 2020; Nenes et al., 2020). In regard to the second impact, the interactions 
between nitrate and dust particles are expected to result in a shift in the latter's optical 
characteristics, manifesting in an accelerated manner. However, these changes do not necessarily 
result in a straightforward climatic response, exhibiting either warming or cooling radiative effects 
for dust particles (Klingmüller et al., 2020; Kok et al., 2023). Consequently, studies have identified 
nitrate aerosols as a primary inorganic component of both air quality and climatic impact in both 
the long and near future (Bauer et al., 2007a; Bellouin et al., 2011; Li et al., 2015). Consequently, 
a comprehensive representation of nitrate aerosols, particularly their formation and chemical 
evolution, is imperative for air quality and climate models.. 

However, this is not a simple task, as the semi-volatile nature of nitrate aerosols poses 
significant challenges in predicting their partitioning between the gas and particle phases. This 
task is typically reserved for thermodynamic equilibrium models. An examination of the 
production of nitrate aerosol in the atmosphere is crucial, as it is a secondary pollutant, meaning it 
is not directly emitted. The primary precursor of nitrate aerosol is nitric acid (HNO3), which, 
notably, does not itself constitute a primary pollutant. Nitrate aerosol formation involves two 
predominant pathways, which vary with the diurnal cycle (Jacobson, 1999; Seinfeld and Pandis, 
2016). Specifically, during daytime, the predominant source of HNO3 is the oxidation of NO2 by 
the hydroxyl radical (OH). Atmospheric oxidation is regarded as the chemical transformation of 
trace gases by certain species, with OH being one of the most significant, along with ozone (O3) 
and the nitrate radical (NO3). This process generally leads to the removal of primary gaseous 
pollutants. The oxidation of NO2 is represented by the following gas phase reaction : 

 𝑁𝑂2 + 𝑂𝐻 → 𝐻𝑁𝑂3    (R1.1) 
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During daytime, the reaction of NO2 with sunlight (i.e., photolysis) reduces its availability, as it 
"breaks down" NO2 into nitrogen monoxide (NO) and an oxygen atom. However, during nocturnal 
periods, the absence of sunlight and subsequent photolysis of NO2 results in a shift in this regime, 
leading to a significant increase in NO2 abundance compared to daytime levels. Consequently, 
NO2 reacts with ozone to produce the nitrate radical as follows : 
 𝑁𝑂2 + 𝑂3 → 𝑁𝑂3 + 𝑂2   (R1.2) 

 
As with NO2, the absence of photolysis of the nitrate radical during the night results in its increased 
concentrations. Consequently, the nitrate radical reacts with NO2 to produce dinitrogen pentoxide 
(N2O5) via the following reaction : 
 𝑁𝑂3 + 𝑁𝑂2 ⇆ 𝑁2𝑂5    (R1.3) 

 
The aforementioned reaction is reversible and governed by a thermal equilibrium, the scale of 
which is measured in minutes. The final link in the chain of reactions that occur during nighttime 
is the hydrolysis of N2O5, a heterogeneous reaction that takes place on a particle surface with an 
adequate amount of water, resulting in the production of HNO3 as follows : 
 𝑁2𝑂5 + 𝐻2𝑂(𝑎𝑞, 𝑠) → 2𝐻𝑁𝑂3   (R1.4) 

 
Subsequently, HNO3 can lead to the production of nitrate aerosols via equilibrium 

partitioning between the gas and particle phases, gas phase chemistry, and heterogeneous 
chemistry (Jacobson, 1999; Seinfeld and Pandis, 2016). A concise overview of the pivotal 
reactions associated with nitrate aerosol formation is presented in Table 1.1. 

The solubility of HNO3 in the gas phase allows for its dissolution into the ions H+ and NO3
- 

within cloud water. Furthermore, the formation of particulate nitrate originates from the reaction 
of HNO3 with NH3 to produce the ammonium nitrate species (NH4NO3). Depending on the 
ambient relative humidity, this can exist either in solid form as a salt or in liquid form (deliquesced 
into the NH4

+ and NO3
- ions). A typical value for the DRH of ammonium nitrate at 25°C is 62% 

(Hidy, 2012). The formation of ammonium nitrate through this pathway is predominantly observed 
in urban and polluted regions, leading to the presence of aerosol nitrate primarily in the fine mode. 
The formation of ammonium nitrate is found to be highly dependent on the availability of NH3. 
Specifically, in low concentrations where there is not enough NH3 to react with H2SO4 in order to 
neutralize the available sulfate, the production of ammonium sulfate ( (NH4)2SO4 ) overpowers 
that of ammonium nitrate. Conversely, under conditions of elevated ammonia concentrations, 
sufficient to counteract sulfate, a surplus ammonia is produced that is more readily available to 
react with nitric acid (HNO3) to form ammonium nitrate. In the context of heterogeneous 
chemistry, nitrate aerosols are produced through the adsorption of HNO3 on the surface of sea salt 
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particles and mineral dust particles. In the initial instance, HNO3 reacts with NaCl, yielding the 
salt NaNO3, with hydrochloric acid (HCl) as a by-product. In the second case, HNO3 reacts with 
the carbonates present in mineral dust to produce the salts Ca(NO3)2, Mg(NO3)2, KNO3, and also 
NaNO3. These salts, akin to ammonium nitrate, can exist in their solid form or undergo 
deliquescence to become individual ions (see Table 1.1). The formation of these salts through this 
pathway occurs predominantly in more remote regions, resulting in aerosol nitrate primarily in the 
coarse mode. Finally, the equilibrium gas-to-particle partitioning of the nitrate aerosol species is 
anti-correlated with ambient temperature, with colder conditions favoring the transition towards 
the particle phase. 
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Table 1.1 : Summary of most common chemical reactions resulting in aerosol nitrate formation 
 

Reaction Conditions 

Gas Phase with Aqueous Products 𝐻𝑁𝑂3(𝑔) → 𝐻+ + 𝑁𝑂3− Dissolution in cloud water 𝑁𝐻3(𝑔) + 𝐻𝑁𝑂3(𝑔) → 𝑁𝐻4+ + 𝑁𝑂3− Ambient RH > DRH of 
Ammonium Nitrate 

Gas Phase with Solid Products 𝑁𝐻3(𝑔) + 𝐻𝑁𝑂3(𝑔) → 𝑁𝐻4𝑁𝑂3(𝑠) Ambient RH < DRH of 
Ammonium Nitrate 

Heterogeneous 𝑁𝑎𝐶𝑙(𝑠) + 𝐻𝑁𝑂3(𝑔) → 𝑁𝑎𝑁𝑂3(𝑠) + 𝐻𝐶𝑙 (𝑔) Sea Salt surface 𝐶𝑎𝐶𝑂3(𝑠) + 2𝐻𝑁𝑂3(𝑔)→  𝐶𝑎(𝑁𝑂3)2(𝑠) + 𝐶𝑂2(𝑔) + 𝐻2𝑂(𝑎𝑞) 
 

Mineral Dust surface 𝑀𝑔𝐶𝑂3(𝑠) + 2𝐻𝑁𝑂3(𝑔)→  𝑀𝑔(𝑁𝑂3)2(𝑠) + 𝐶𝑂2(𝑔) + 𝐻2𝑂(𝑎𝑞) 
 

Mineral Dust surface 𝐾2 𝐶𝑂3(𝑠) + 2𝐻𝑁𝑂3(𝑔)→  2𝐾𝑁𝑂3(𝑠) + 𝐶𝑂2(𝑔) + 𝐻2𝑂(𝑎𝑞) 
 

Mineral Dust surface (𝑁𝑎)2 𝐶𝑂3(𝑠) + 2𝐻𝑁𝑂3(𝑔)→  2𝑁𝑎𝑁𝑂3(𝑠) + 𝐶𝑂2(𝑔) + 𝐻2𝑂(𝑎𝑞) 
 

Mineral Dust surface 
Equilibrium Partitioning 𝐻𝑁𝑂3(𝑔) ⟷ 𝐻𝑁𝑂3(𝑎𝑞)  𝐻𝑁𝑂3(𝑔) ⟷ 𝐻+ + 𝑁𝑂3−  𝑁𝑎𝑁𝑂3(𝑠)  ⟷ 𝑁𝑎+ + 𝑁𝑂3−  𝐶𝑎(𝑁𝑂3)2(𝑠)  ⟷ 𝐶𝑎2+ + 2𝑁𝑂3−  𝑀𝑔(𝑁𝑂3)2(𝑠)  ⟷ 𝑀𝑔2+ + 2𝑁𝑂3−  𝐾𝑁𝑂3(𝑠)  ⟷ 𝐾+ + 𝑁𝑂3−  
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–

A prevalent hypothesis among atmospheric models concerning the precise estimation of 
inorganic aerosol concentrations concerns the assumption of their thermodynamic physical state. 
This involves the inquiry of whether the particles will enable the process of crystallization when 
the ambient relative humidity (RH) is sufficiently low, thereby forming solid salts, or if they will 
be characterized by a supersaturated aqueous state even in conditions of extremely low ambient 
RH. The former state is designated as stable, while the latter is referred to as metastable. Evidence 
of aerosol water existing in this supersaturated form in the low end of the RH spectrum has been 
found (Brooks et al., 2003; Parsons et al., 2004), and the existence of aerosols in the metastable 
state in RH ranges as low as 40% has also been observed by field campaigns (Guo et al., 2015; 
Bougiatioti et al., 2016; Guo et al., 2018). Furthermore, it has been argued that treating the aerosol 
physical state as metastable is a more appropriate approach for models that tend to ignore the 
crystallization hysteresis effect (Adams et al., 1999; Metzger et al., 2002). However, it would be 
erroneous to consider the aerosol physical state an obvious choice for simulating inorganic aerosol 
concentrations, especially on a global scale. For instance, the consideration of a stable state is 
believed to yield a more accurate agreement with observations under conditions where the ambient 
RH consistently falls below 50% (Fountoukis et al., 2009; Karydis et al., 2010). Conversely, under 
conditions of intermediate ambient RH, the metastable approach has been shown to offer a more 
substantial agreement with observations for low aerosol concentrations (Ansari and Pandis, 2000). 
However, under comparable conditions and at higher aerosol concentrations, the two approaches 
yield insignificant differences (Ansari and Pandis, 2000). Furthermore, in scenarios where ambient 
RH is comparatively low (< 60%), yet ambient temperature is relatively high (> 10°C), the 
metastable assumption generally exhibits stronger agreement with observations. Conversely, for 
lower temperatures (< 5°C), this is true for the stable assumption, with both treatments 
demonstrating insignificant differences for high RH values (> 83%) (Cheng et al., 2022). 
Therefore, it is evident that the assumption choice is significantly influenced by the region and the 
prevailing atmospheric conditions, particularly in the context of a global model. Finally, the 
consideration of the aerosol physical state, apart from its implications for ambient concentrations, 
also has an impact on aerosol acidity, which in turn affects the gas/particle partitioning process 
(Guo et al., 2016; Nenes et al., 2020; Pye et al., 2020). This is of particular importance for the 
particular nitrate species, as its phase partitioning is sensitive to the aerosol pH. Specifically, at pH 
values of ~1 all nitrate exists practically in the gas phase, while when pH exhibits values of ~4 
then it is found almost exclusively is the particle phase (Tilgner et al., 2021). Therefore, it is 
evident how even small discrepancies in the model estimated aerosol acidity can result in unwanted 
uncertainties in the estimates of such species. 

In consideration of the aforementioned information, the initial objective of the present 
thesis, as outlined in Section 2, is to meticulously examine the disparities between the two 
approaches, which have been integrated within a global atmospheric model, with respect to their 
respective applications in the simulation of inorganic aerosols. The central objective is to address 
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the most significant geographical regions and ambient conditions under which such discrepancies 
arise. This will enable future users to make informed decisions regarding the strengths and 
weaknesses of each assumption. To that end, the following central research questions have been 
developed and addressed : 

 
 

➢ Does the aerosol physical state consideration lead to significant differences in 
inorganic aerosol concentrations on a global scale ? 
 

➢ Under what conditions and over which regions do the two approaches exhibit the 
highest discrepancies ? 
 

➢ How is the inorganic aerosol acidity affected by their physical state assumption ? 
 

➢ Does one consideration result in any measurable computational speed-up in global 
scale simulations ? 

 
To this end, a global scale climate-chemistry model is employed to conduct simulations that will 
compare both approaches. Comprehensive information regarding the model can be found in 
Sections 2.2.1, 3.2.1, and 4.2.1. The model has been utilized to conduct simulations that compare 
the estimations of the two thermodynamical approaches with observations from the most polluted 
regions and with each other. Additionally, the simulations examine the key differences in estimated 
aerosol pH values. Furthermore, the changes in computational cost required by both approaches 
has been thoroughly investigated. 

Another central focus of this thesis is the aim to take a step towards a more accurate 
estimation of nitrate aerosols by a global atmospheric model. In addition to the examples that 
demonstrate the growing significance of nitrate aerosols within the category of inorganic aerosols, 
as discussed in the preceding section, it is crucial to note the projected future increase in NH3 
emissions (Fu et al., 2017; Chen et al., 2019b; Xu et al., 2020), a primary precursor. This increase 
will contribute to an elevated presence of fine-mode nitrate aerosols in regions affected to a greater 
extent by anthropogenic pollution. This is particularly relevant given the established role of nitrate 
aerosols as a significant component of the overall aerosol population in today's environment (He 
et al., 2001; Silva et al., 2007; Weagle et al., 2018; Tang et al., 2021). The rationale behind striving 
for a more precise nitrate aerosol representation is that a prevalent bias in many regional and global 
models is the overprediction of concentration levels. Specifically, this feat is reported by modeling 
studies that were conducted in the most heavily polluted regions of the planet, such as Europe 
(Fountoukis et al., 2011; Tuccella et al., 2012; Ciarelli et al., 2016; Chen et al., 2018; Jones et al., 
2021), USA (Yu et al., 2005; Heald et al., 2012; Zakoura and Pandis, 2018, 2019; Jones et al., 
2021) and especially East Asia (Kim et al., 2006; Li and Han, 2016; Bian et al., 2017; Chen et al., 
2019a; Tan et al., 2020; Miao et al., 2020). 
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In light of such model biases, Section 3 endeavors to investigate a range of configurations 
and parameterizations associated with the estimation of fine mode nitrate aerosol in the global 
model. The objective is to pinpoint the most crucial aspects to bridge the disparities between 
simulated and observed concentrations of PM1 and PM2.5 nitrate particles. The regions with the 
highest levels of anthropogenic activity across the Northern Hemisphere, namely East Asia, India, 
Europe, and North America, were examined. The primary objective of this section is to derive 
model setup recommendations for future users, tailored to the specific region and size mode of 
interest. The aspects that are examined include the impacts of : 

 
➢ Utilizing different grid resolutions. 

 
➢ Using different databases for anthropogenic emissions of trace gases and aerosols. 

 
➢ The thermodynamic aerosol physical state assumption. 

 
➢ Considering a lower uptake coefficient for the N2O5 hydrolysis. 

 
➢ Considering a more simplified mechanism regarding aerosol wet deposition. 

 
The model estimations resulting from all considerations above are extensively compared with 
observations from both filter measurement networks regarding the PM2.5 size, as well as field 
campaigns of AMS measurements regarding the PM1 size in the aforementioned regions. The time 
span of the comparisons extends over a decade, with all seasons being taken into account.  

Finally, this thesis thoroughly investigates the climate impact of nitrate aerosols in both 
coarse and fine modes, in regard to their present-day global direct and indirect radiative effect. The 
investigation is further expanded by considering the implications of the interactions between 
nitrate aerosols and mineral dust particles. The significance of these interactions stems from the 
promotion of nitrate aerosol production on dust surfaces through HNO3 adsorption (Trump et al., 
2015; Karydis et al., 2016) and the subsequent heterogeneous reactions described in the previous 
section. The implications of dust-pollution interactions on the radiative effects of anthropogenic 
aerosols have been the focus of recent studies (Klingmüller et al., 2019; Klingmüller et al., 2020; 
Kok et al., 2023). However, the specific focus on the implications of dust-nitrate interactions on 
the latter's radiative effects has not been a primary research area. Furthermore, the direct radiative 
effect (linked to interactions with radiation) of nitrate aerosol has been estimated by numerous 
studies previously (Adams et al., 2001; Liao et al., 2004; Bauer et al., 2007a; Bauer et al., 2007b; 
Bellouin et al., 2011; Xu and Penner, 2012; Heald et al., 2014). However, the same cannot be said 
for the indirect radiative effect (linked to interactions with clouds) of the species, which is of 
particular importance as nitrate aerosols are not only very effective cloud condensation nuclei 
themselves, but they also result in the increased activation into cloud droplets of dust aerosols 
through physicochemical interactions with them (Karydis et al., 2011, 2017). Apart from this fact, 
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the indirect radiative effect is generally the largest source of uncertainty in the total radiative effect 
(Myhre et al., 2014; Seinfeld et al., 2016).  

Beyond the examination of dust-nitrate interactions and their impact on the radiative effects 
of nitrate aerosols, this thesis aspires to address two additional research queries. The first is the 
extent to which the chemical composition and the emitted amount of mineral dust in the 
atmosphere will impact the loading of nitrate aerosols on a global scale, and whether a linear 
relationship exists. Secondly, the study will examine the impact of these two factors on the 
estimated radiative effects of NO3

-. In order to address these research queries, the study proposes 
the following research questions, which will be explored in Section 4 : 

 
➢ What is the present-day global direct radiative effect of coarse and fine nitrate 

aerosols ? 
 

➢ What is the present-day global indirect radiative effect of total nitrate aerosols ? 
 

➢ What is the impact of dust-nitrate interactions on both these estimates ?  
 

➢ Is the consideration of dust composition or dust aerosol loading most important ? 
 

The global model has simulated multiple scenarios concerning various chemical compositions and 
dust loadings in the atmosphere. Each scenario encompassed a 11-year time period to calculate 
radiative effect estimations. Details regarding the aspects examined are presented in section 4.2.1. 
Finally, all details about the representation of dust-nitrate interactions in the global model are 
found in section 4.2.2. 
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Abstract. This study explores the differences in performance
and results by various versions of the ISORROPIA thermo-
dynamic module implemented within the ECHAM/MESSy
Atmospheric Chemistry (EMAC) model. Three different ver-
sions of the module were used, ISORROPIA II v1, ISOR-
ROPIA II v2.3, and ISORROPIA-lite. First, ISORROPIA II
v2.3 replaced ISORROPIA II v1 in EMAC to improve pH
predictions close to neutral conditions. The newly developed
ISORROPIA-lite has been added to EMAC alongside ISOR-
ROPIA II v2.3. ISORROPIA-lite is more computationally ef-
ficient and assumes that atmospheric aerosols exist always as
supersaturated aqueous (metastable) solutions, while ISOR-
ROPIA II includes the option to allow for the formation of
solid salts at low RH conditions (stable state). The predic-
tions of EMAC by employing all three aerosol thermody-
namic models were compared to each other and evaluated
against surface measurements from three regional observa-
tional networks in the polluted Northern Hemisphere (Inter-
agency Monitoring of Protected Visual Environments (IM-
PROVE), European Monitoring and Evaluation Programme
(EMEP), and Acid Deposition Monitoring Network of East
Asia (EANET)). The differences between ISORROPIA II
v2.3 and ISORROPIA-lite were minimal in all comparisons
with the normalized mean absolute difference for the con-

centrations of all major aerosol components being less than
11 % even when different phase state assumptions were used.
The most notable differences were lower aerosol concentra-
tions predicted by ISORROPIA-lite in regions with relative
humidity in the range of 20 % to 60 % compared to the pre-
dictions of ISORROPIA II v2.3 in stable mode. The com-
parison against observations yielded satisfactory agreement
especially over the USA and Europe but higher deviations
over East Asia, where the overprediction of EMAC for nitrate
was as high as 4 µg m−3 (∼ 20%). The mean annual aerosol
pH predicted by ISORROPIA-lite was on average less than a
unit lower than ISORROPIA II v2.3 in stable mode, mainly
for coarse-mode aerosols over the Middle East. The use of
ISORROPIA-lite accelerated EMAC by nearly 5 % com-
pared to the use of ISORROPIA II v2.3 even if the aerosol
thermodynamic calculations consume a relatively small frac-
tion of the EMAC computational time. ISORROPIA-lite can
therefore be a reliable and computationally efficient alterna-
tive to the previous thermodynamic module in EMAC.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Aerosols in the atmosphere have a significant impact on cli-
mate and air pollution. They contribute to the deterioration
of air quality, especially in heavily industrialized regions,
leading to increased mortality rates and decreased life ex-
pectancy (Héroux et al., 2015). Particulate matter with di-
ameter less than 2.5 µm (PM2.5) is the largest contributor to
stroke, cancer, heart conditions and chronic obstructive pul-
monary diseases (Brook et al., 2010; Pope et al., 2011), with
ambient pollution causing approximately 4.2 million prema-
ture deaths in 2019 alone (WHO, 2022). Tarin-Carrasco et
al. (2021) predicted that mortality rates in Europe due to air
pollution could increase in the next 30 years in the more ex-
treme emission scenarios (e.g., RCP8.5). In addition to the
direct threat aerosols pose to humans and ecosystems through
their effects on air quality, they can also affect other climate-
related processes. For example, they can act as cloud conden-
sation nuclei and modify cloud lifetime and optical proper-
ties (Andreae et al., 2005; Klingmüller et al., 2020). Aerosols
also affect the energy balance of our planet by reflecting ad-
ditional solar radiation back to space and thus cooling the
atmosphere or by absorbing solar radiation and thus warm-
ing the atmosphere (Klingmüller et al., 2019; Miinalainen et
al., 2021). Some major inorganic aerosol components also
affect various ecosystems. For example, nitrates and sulfates
can harm flora by lessening its lifetime and variety (Honour
et al., 2009; Manisalidis et al., 2020) and can affect wildlife
by causing water eutrophication (Doney et al., 2007). A crit-
ical property of atmospheric particles that regulates their im-
pacts on clouds and ecosystems is their acidity (Karydis et
al., 2021). Depending on its levels, acidity can affect air qual-
ity and human health (Lelieveld et al., 2015) but also the
aerosols’ hygroscopic characteristics (Karydis et al., 2016).
The aerosol pH also drives the partitioning of semivolatile
inorganic components between the gas and aerosol phases
(Nenes et al., 2020). Finally, aerosol acidity plays a role in
the activation of halogens in aerosols (Saiz-Lopez and von
Glasow, 2012), their toxicity (Fang et al., 2017) and also in
secondary organic aerosol formation (Marais et al., 2016).

Sulfate is the most important component of PM2.5 inor-
ganic aerosol, since it contributes the most in terms of global
mass burden (Szopa et al., 2021) and aerosol optical depth
(AOD) (Myhre et al., 2013). The nitrate contribution to the
PM2.5 aerosol composition is also important in several areas
(e.g., Europe, North America, East Asia) and seasons (He
et al., 2001; Silva et al., 2007; Weagle et al., 2018; Tang et
al., 2021). The quantification of nitrate partitioning between
the gas and particulate phases is challenging partly because
it is affected by meteorology (temperature, relative humid-
ity) and all ionic aerosol components but also due to the lack
of observations to constrain the composition of the gas-phase
components and the size distribution of the particulate phase.
Nitrate in the form of ammonium nitrate is mainly found in
the fine mode (e.g., PM2.5) (Putaud et al., 2010). This is es-

pecially the case over polluted regions where there is enough
ammonia remaining after the neutralization of sulfate (Kary-
dis et al., 2011, 2016). In coastal and desert areas, nitrate is
formed mainly by reactions of HNO3 with sea salt and dust
particles (Savoie and Prospero, 1982; Wolff, 1984; Karydis et
al., 2016) and therefore is found mainly in the coarse parti-
cles. The importance of nitrate in the troposphere is expected
to increase in the following decades, because SO2 emissions
are anticipated to drop, while NH3 emissions are anticipated
to increase (Fu et al., 2017; Chen et al., 2019; Xu et al.,
2020). With decreased SO2 concentrations, less ammonia is
required to neutralize the sulfates and therefore more is avail-
able for ammonium nitrate formation (Tsimpidi et al., 2007).

There have been several thermodynamic models devel-
oped in the last decades to calculate the inorganic aerosol
concentrations and composition in the atmosphere. Two of
the first were EQUIL and KEQUIL, developed by Bassett
and Seinfeld (1983). Then the MARS model was developed
by Saxena et al. (1986) with the aim of reducing the com-
putational time required in order to be incorporated into
larger-scale chemical transport models. MARS was the first
model to divide the composition domain into smaller sub-
domains, aiming to reduce the number of equations needed
to be solved. Then the SEQUILIB model by Pilinis and Sein-
feld (1987) was the first to incorporate sodium and chloride
as well as the corresponding salts in the simulated aerosol
system. Further developments included EQUISOLV by Ja-
cobson et al. (1996) as well as SCAPE by Kim et al. (1993),
which simulated temperature-dependent deliquescence fol-
lowing Wexler and Seinfeld (1991) and predicted the pres-
ence of liquid-phase aerosols even at low relative humidity
(RH). E-AIM is another benchmark thermodynamic model
which instead of solving algebraic equations for equilib-
rium uses the minimization of the Gibbs free energy ap-
proach (Wexler and Clegg, 2002). Later versions of E-AIM
also include selected organic aerosol components (Clegg et
al., 2003). Furthermore, AIOMFAC is a model that utilizes
organic–inorganic interactions in aqueous solutions in order
to calculate activity coefficients up to high ionic strengths
(Zuend et al., 2008) and is based on the LIFAC model by
Yan et al. (1999). Further developments in AIOMFAC in-
clude a wider variety of organic compounds (Zuend et al.,
2011). The EQSAM thermodynamic model was developed
by Metzger et al. (2002) with the basic concept that aerosol
activities in equilibrium are controlled by RH, and solute ac-
tivity is a function of RH. The model uses a domain structure
based on sulfate availability to increase computational effi-
ciency by solving fewer thermodynamic equations, similar
to Nenes et al. (1998). EQSAM and ISORROPIA are the two
available options for aerosol thermodynamics in the EMAC
model.

Nenes et al. (1998) developed the ISORROPIA model in
an effort to increase computational efficiency while main-
taining the accuracy of the calculations. The system sim-
ulated by ISORROPIA included NH+4 , Na+, Cl−, NO−3 ,
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SO2−
4 and H2O. ISORROPIA also contains the temperature-

dependent equations for deliquescence by Wexler and Sein-
feld (1991) and is computationally efficient so that it can be
incorporated into 3D atmospheric models. In ISORROPIA,
the aerosol state is predicted as a weighted mean value of the
dry and wet states. The weighting factors depend on ambi-
ent RH, the mutual deliquescence relative humidity (MDRH)
and the deliquescence relative humidity (DRH) of the most
hygroscopic salt in the mixture. An improved version of
ISORROPIA including the mineral ions K+, Ca2+ and Mg+,
called ISORROPIA II, was developed by Fountoukis and
Nenes (2007). The addition of the above crustal ions resulted
in the inclusion of 10 more salts and 3 more ions in the solid
and aqueous phases, respectively. The model gained in com-
putational efficiency by performing different calculations for
different atmospheric chemical composition regimes, which
are determined by the abundance of each aerosol precursor as
well as the ambient temperature and relative humidity. De-
pending on the values of the so-called “sulfate ratio”, the
“crustal species and sodium ratio” and the “crustal species
ratio”, five aerosol composition regimes are determined in
order to calculate the necessary equilibrium equations for
the species present in each regime. Furthermore, the use of
pre-calculated look-up tables for the activity coefficients (see
Sect. 2.2), including their temperature dependence, is an-
other factor for the gain in computational efficiency. Like
E-AIM, ISORROPIA II can solve the thermodynamic equi-
librium problem under stable or metastable conditions. In the
second case, aerosols are assumed to exist only as supersat-
urated aqueous solutions even at low RH, while in the first
case the aerosols are able to form solid salts. A very slightly
updated version, called ISORROPIA II v2.3, was introduced
to improve aerosol pH predictions close to neutral conditions
(Song et al., 2018). More specifically, in some subcases of
the ISORROPIA II regime, NH3 evaporation was not taken
into account in the aerosol pH calculations, leading to unre-
alistic estimates close to neutrality (pH ∼ 7). This error had
a minimal effect on the predicted gas-phase NH3 levels and
consequently on the inorganic aerosol concentrations. More-
over, it only affected a few subcases and only when the sta-
ble mode was used. More details on these differences can
be found in Song et al. (2018). The newest development of
ISORROPIA II, called ISORROPIA-lite, was designed to be
even more computationally efficient than its predecessor and
to also include the effects that organic aerosol components
have on particle water and the semivolatile inorganic aerosol
species partitioning (Kakavas et al., 2022).

This study aims to evaluate the newly developed
ISORROPIA-lite thermodynamic module within the EMAC
global climate and chemistry model and to explore any dis-
crepancies on a global scale, by utilizing different aerosol
phase states. For this reason, our analysis explores the dif-
ferences in the results between ISORROPIA-lite and ISOR-
ROPIA II over diverse conditions and environments. In
Sect. 2, the model configuration and the treatment of inor-

ganic aerosol thermodynamics is presented. In Sects. 3 and 4,
the results and comparisons between the simulations are an-
alyzed, and in Sect. 5 the major conclusions are presented.

2 Model configuration

2.1 EMAC model setup

The EMAC (ECHAM5/MESSy) model is a global atmo-
spheric chemistry and climate model (Jöckel et al., 2006). It
includes a series of submodels and links them via the Mod-
ular Earth Submodel System (Jöckel et al., 2005) to the base
model (core) that is the fifth-generation European Center
Hamburg general circulation model (Roeckner et al., 2006).
Gas-phase chemistry is simulated by MECCA (Sander et al.,
2019) with a simplified scheme similar to the one used in
CCMI (Chemistry-Climate Model Initiative), like in Jöckel
et al. (2016). Aerosol microphysics along with gas–aerosol
partitioning are treated by GMXe in which the aerosols are
differentiated between soluble and insoluble modes with a
total of seven lognormal modes (Pringle et al., 2010a, b).
The soluble mode contains the nucleation, Aitken, accumu-
lation and coarse size ranges, while the insoluble mode lacks
only the nucleation size range. Transfer of material between
the insoluble and soluble modes is calculated in two pro-
cesses. After coagulation, when a hydrophobic and a hy-
drophilic particle coagulate, the resulting mass is assumed
to reside in the hydrophilic mode and also when soluble
material condenses onto a hydrophobic particle (after gas–
aerosol partitioning) it is again transferred to the hydrophilic
mode (Pringle et al., 2010a, b). Wet deposition of gases and
aerosols is described by SCAV (Tost et al., 2006, 2007), dry
deposition is described via DRYDEP (Kerkweg et al., 2006)
and gravitational sedimentation of aerosols is described by
SEDI (Kerkweg et al., 2006). Cloud properties and micro-
physics are calculated by the CLOUD submodel (Roeck-
ner et al., 2006), utilizing the detailed two-moment liquid
and ice-cloud microphysical scheme of Lohmann and Fer-
rachat (2010) and considering a physically based treatment
of the processes of liquid (Karydis et al., 2017) and ice crys-
tal (Bacer et al., 2018) activation. The organic aerosol com-
position and evolution in the atmosphere is calculated by the
ORACLE submodel (Tsimpidi et al., 2014, 2018).

The model simulations in this work were nudged towards
actual meteorology using ERA5 data (Hersbach et al., 2020).
For the purposes of this study, the spectral resolution applied
within EMAC was T63L31, which corresponds to a grid res-
olution of 1.875◦× 1.875◦, covering vertical altitudes up to
25 km with a total of 31 layers. The simulations were all done
for the period 2009–2010, with 2009 representing the model
spin-up period.

Anthropogenic emissions of aerosols and aerosol precur-
sors were based on the EDGARv4.3.2 inventory (Crippa et
al., 2018). Open biomass burning emissions were derived by
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the GFEDv3.1 database (van der Werf et al., 2010), and nat-
ural emissions of NH3 (volatilization from soils and oceans)
were based on the GEIA database (Bouwman et al., 1997).
SO2 emissions by volcanic eruptions are based on the AE-
ROCOM dataset (Dentener et al., 2006), as are emissions of
sea spray aerosols using the chemical composition proposed
by Seinfeld and Pandis (2016). Biogenic emissions of NO
from soils are calculated online according to the algorithm
of Yienger and Levy (1995), while NOx produced by light-
ning is also calculated online based on the parameterization
of Grewe et al. (2001). Oceanic emissions of dimethyl sul-
fide (DMS) are calculated online by the AIRSEA submodel
(Pozzer et al., 2006). Finally, the dust emission fluxes are
calculated online according to Astitha et al. (2012), by taking
into account the meteorological information for each grid cell
(i.e., temperature and relative humidity) as well as the differ-
ent thresholds of friction velocities above which suspension
of dust particles takes place. The emissions of crustal ions
(Ca2+, Mg+, K+ and Na+) are estimated as a fraction of the
total dust flux based on the soil chemical composition of each
individual grid cell (Karydis et al., 2016; Klingmüller et al.,
2018). These ions are emitted in the insoluble accumulation
and coarse size modes and are subsequently transferred to the
soluble aerosols by the processes described above.

2.2 Inorganic aerosol thermodynamics treatment

In this study, the ISORROPIA-lite aerosol thermodynamic
model has been implemented in EMAC as part of the GMXe
submodel, not as a replacement but as an alternative to the
previous version, in order to efficiently calculate the equilib-
rium partitioning of the inorganic species between gas and
aerosol phases. Furthermore, ISORROPIA II v2.3 is used to
replace ISORROPIA II v1 in the model.

Kinetic limitations in the partitioning need to be taken into
consideration, because only fine aerosols are able to achieve
equilibrium within the time frame of one model time step,
which in this study equals to 10 min. Therefore, the partition-
ing calculation is done in two stages according to Pringle et
al. (2010a, b). First the amount of the gas-phase species that
is able to kinetically condense onto the aerosol phase within
the model time step is calculated by assuming diffusion-
limited condensation (Vignati et al., 2004). Then, in the sec-
ond stage, the partitioning between this gas-phase material
and the aerosol phase is performed. The partitioning calcula-
tion is performed for all seven size modes (i.e., in each model
time step, ISORROPIA is called separately for each of them).

According to Kakavas et al. (2022), ISORROPIA-lite fea-
tures two main modifications in its code, with regard to
ISORROPIA II v2.3 (Song et al., 2018) and ISORROPIA
II v1 (Fountoukis and Nenes, 2007). First, the routines re-
lated to the stable case have been removed, since only the
metastable case is considered and all salts formed are del-
iquesced. However, CaSO4 is the only solid salt allowed
to form, as it is considered insoluble for most atmospheri-

cally relevant RH values and precipitates spontaneously. Fur-
thermore, for the calculation of binary activity coefficients,
ISORROPIA-lite uses the tabulated binary activity coeffi-
cient data for each salt from Kusik-Meissner (Kusik and
Meissner, 1978) instead of calculating them online, and it
includes their temperature dependence according to Meiss-
ner and Peppas (1973). This is done by combining the Kusik
and Meissner (1978) model for specific ionic pairs with the
Bromley (1973) activity coefficient mixing rule for multi-
component mixtures. More information on this procedure
can be found in Fountoukis and Nenes (2007). This sec-
ond modification is the major contributor to the computa-
tional speed-up provided by ISORROPIA-lite, which in an
offline estimation was reported to be around 35 % (Kakavas
et al., 2022). Furthermore, this feature could explain differ-
ences in inorganic aerosol estimates with the previous ver-
sion of ISORROPIA using the same aerosol state assumption
(metastable case). Another important modification is that the
effect of organic aerosol water on the inorganic semivolatile
aerosol components is included. This consideration slightly
increases the aerosol pH but more significantly drives the
phase partitioning towards the aerosol phase in order to sat-
isfy equilibrium conditions (Kakavas et al., 2022). However,
this feature of ISORROPIA-lite was not used in the present
study, as the water uptake by organics is treated by other parts
of the GMXe aerosol microphysics submodel in the EMAC
global model. The effects of the secondary organic aerosol
on aerosol water and nitrate partitioning are discussed by
Kakavas et al. (2023).

In the updated version of the GMXe submodel, users have
the option to select between ISORROPIA-lite and ISOR-
ROPIA II v2.3 to perform EMAC simulations depending
on the application and the desired phase state assumption.
While ISORROPIA-lite utilizes the metastable approach ex-
clusively, ISORROPIA II v2.3 utilizes both and has the stable
approach as default.

3 Evaluation of new aerosol thermodynamic modules
within EMAC

For reasons of clarity, from this point forward both in the
main text as well as in any figure captions, whenever dif-
ferent aerosol sizes are mentioned, total suspended particles
(denoted TSP) refer to the sum of the four lognormal size
modes of the aerosol microphysics submodel (i.e., nucle-
ation, Aitken, accumulation and coarse modes), fine aerosols
refer to the sum of the three smaller size modes (i.e., nucle-
ation, Aitken and accumulation modes) and coarse aerosols
refer to the largest size mode of the model exclusively.
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Figure 1. Box plots depicting the 25th, 50th and 75th percentiles (box) of the (i) difference and (ii) fractional difference in global daily mean
surface concentrations of aerosol water (left y axis), mineral ions, NH+4 and SO2−

4 in TSP as well as coarse and fine aerosol NO−3 (right
y axis), as predicted by EMAC using ISORROPIA II v1 and ISORROPIA II v2.3. The 10th and 90th percentiles (whiskers) for each aerosol
component are also shown. Both models assume that the aerosol is at its stable state at low RH and that a positive change corresponds to
higher concentrations by ISORROPIA II v1.

Table 1. Statistical analysis of EMAC-simulated mean daily sur-
face concentrations by employing ISORROPIA II v1 versus ISOR-
ROPIA II v2.3, both in stable mode. Deviations are given as ISOR-
ROPIA II v1 minus ISORROPIA II v2.3.

Mean difference Normalized mean
(µg m−3) absolute difference

(%)

Coarse NO−3 −8× 10−4 1.8
Fine NO−3 −0.011 2.6
HNO3 −3.1× 10−4 0.7
NH+4 −1.6× 10−4 2.0
SO2−

4 −0.009 1.2
Na+ 0.007 1.6
Ca2+ 1.7× 10−4 0.4
K+ 1.1× 10−4 0.4
Mg+ 1.5× 10−4 0.4
Cl− 0.040 2.3
H2O 0.046 1.1
H+ −2.9× 10−5 1.5

3.1 Comparison of ISORROPIA II v1 against
ISORROPIA II v2.3 in stable mode

The first comparison aims to examine how ISORROPIA II
v2.3 fares against ISORROPIA II v1 when considering solely
the stable assumption, after the latter’s replacement in the
newer version of the EMAC model.

The differences in global daily mean surface concentra-
tions of NH+4 , SO2−

4 , mineral ions (sum of Ca2+, K+, Mg2+)
and aerosol water in TSP as well as fine and coarse aerosol
NO−3 as predicted by the two versions can be seen in Fig. 1.
The 25th and 75th percentiles of concentration differences
between the two versions for the aerosol water are below

0.2 µg m−3, and for the remaining species they are an order of
magnitude less, which translates to differences mostly below
1 % for all species. Therefore, the predictions of inorganic
aerosol composition of the two versions agree exceptionally
well.

In order to investigate potential differences arising in spe-
cific areas, regions affected by high nitrate concentrations
were selected, i.e., Europe, the Tibetan Plateau, East Asia,
North America and the Middle East. The differences in daily
mean coarse and fine NO−3 over these regions are shown in
Fig. S1 in the Supplement. The comparison showed that the
differences regarding the 25th and 75th percentiles are less
than 0.05 µg m−3 (or less than 2.5 %) between the results of
the two ISORROPIA II versions for both size modes. A sta-
tistical analysis of the results reveals that all differences be-
tween the aforementioned species are on average below 3 %
(Table 1). Therefore, the replacement of ISORROPIA II v1
by v2.3 in the EMAC model yields only trivial differences
in the predicted aerosol ionic composition and water. The
following sections focus on the comparison between the re-
sults of ISORROPIA-lite against ISORROPIA II v2.3 (called
ISORROPIA II hereafter for simplicity), both in stable and
metastable states.

3.2 Comparison of ISORROPIA-lite against
ISORROPIA II in metastable mode

The model results using ISORROPIA-lite are compared first
against those using ISORROPIA II in metastable mode in or-
der to determine whether the ISORROPIA-lite version can
produce similar results with the more detailed module in
EMAC, under the same conditions. Figure 2 depicts the dif-
ferences of the global daily mean surface concentrations of
the same species that were examined before. The compari-
son yields differences for the 25th and 75th percentiles that
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Table 2. Statistical analysis of EMAC-simulated mean daily surface
concentrations by employing ISORROPIA-lite versus ISORROPIA
II, both in metastable mode. Bias is given as ISORROPIA-lite mi-
nus ISORROPIA II.

Mean difference Normalized mean
(µg m−3) absolute difference

(%)

Coarse NO−3 −6.2× 10−4 3.5
Fine NO−3 −3.1× 10−4 3.9
HNO3 −2.7× 10−4 2.0
NH+4 −1.4× 10−5 3.8
SO2−

4 2.5× 10−3 4.0
Na+ 0.011 6.7
Ca2+ 2.9× 10−4 1.9
K+ 1.8× 10−4 2.4
Mg+ 5.8× 10−4 3.5
Cl− 0.017 7.0
H2O 0.035 1.8
H+ −8.3× 10−4 4.6

are less than 0.5 µg m−3 for the aerosol water and mostly less
than 0.05 µg m−3 for the remaining inorganic aerosol compo-
nents, which translates into differences of less than 2 % for
all species most of the time.

Figure S2 shows the comparison between predicted global
daily mean coarse and fine aerosol nitrate concentrations, fo-
cusing on the regions with the higher simulated mean annual
concentrations. Across all regions, the concentration differ-
ences for both size modes are typically lower than 0.1 µg m−3

(or less than 3 %) and are mostly found over the Himalayan
and East Asian regions.

In Table 2, the statistics of the results for the global sur-
face concentrations for all examined aerosol components re-
veal differences that are on average less than 7 %. Therefore,
ISORROPIA-lite does provide quite similar predictions with
ISORROPIA II in the EMAC model for simulations using
the metastable state assumption.

3.3 Evaluation of inorganic aerosol predictions

EMAC predictions using both ISORROPIA-lite and ISOR-
ROPIA II in stable mode for PM2.5 ammonium, sulfate and
nitrate were compared against measurements from three ob-
servational networks. The networks cover some of the most
polluted areas in the Northern Hemisphere. The EPA CAST-
NET network (U.S. Environmental Protection Agency Clean
Air Status and Trends Network, 2024) and the IMPROVE
network (Interagency Monitoring of Protected Visual Envi-
ronments) with 152 stations for nitrate and sulfate and 143
stations for ammonium cover the USA, with IMPROVE con-
cerning mostly rural and/or remote areas. The EMEP net-
work (European Monitoring and Evaluation Programme) in-
cludes nine stations for nitrate and sulfate and seven for am-

monium covering the European region. Finally, the EANET
network (Acid Deposition Monitoring Network in East Asia,
2024) with 33 stations measuring all three major aerosol
components covers parts of East Asia. The number of sta-
tions refers to the year 2010, which is simulated in this work.

Figure 3 depicts the differences between the model-
predicted and the observed mean annual concentration val-
ues for SO2−

4 , NH+4 and NO−3 aerosols, while Tables 3, 4
and 5 contain the overall statistics for the same compar-
isons. Here, the mean bias (MB), mean absolute gross error
(MAGE), normalized mean bias (NMB), normalized mean
error (NME) and the root-mean-square error (RMSE) are cal-
culated to assess the model performance. Starting with SO2−

4 ,
the model tends to underpredict the observations but with a
mean bias (MB) of less than−0.5 µg m−3 for Europe and less
than −1 µg m−3 for the USA, capturing both the higher val-
ues of the eastern USA and the lower values of the western
USA. Its normalized mean error (NME) ranges from 40 % to
60 %, being highest for the East Asian region, which also has
the highest MB of −1.65 µg m−3 (Table 3). Seasonally, the
largest biases are found during summertime over Europe and
the USA and during wintertime over East Asia (Table S4),
while the same is true for the predictions of ISORROPIA II
in stable mode, exhibiting quite similar metrics (Table S1).
NH+4 is much better simulated by the model over the three
regions, where the agreement with observations is high with
MB values of less than 0.4 µg m−3 but with slightly higher
NME values (Table 4). Over East Asia, the only important
disparity is a slight underprediction of about 2 µg m−3 around
Hong Kong following the underprediction of SO2−

4 over the
same area (Fig. 3). Seasonally, spring is the worst period
for the predictions of both versions, while there does not
seem to be a consistent pattern of behavior for all three re-
gions which perform best over different periods (Tables S5
and S2). Finally, the model tends to overpredict NO−3 con-
centrations over the three regions with MB values of less than
1 µg m−3, albeit with high NME values (Table 5). Over East
Asia, with the exception of Hong Kong, the model overesti-
mates the NO−3 concentrations by about 3 µg m−3, especially
in the Wuhan and Guangzhou areas and also around Beijing
(Fig. 3). In general, besides Hong Kong, the model overpre-
dicts the concentrations of all three aerosol components ex-
amined here in the East Asian region. For all regions, the best
seasonal agreement between the predictions of both versions
in terms of MB values is found during the summer period,
while the worst agreement occurs around the winter/spring
period (Tables S6 and S3). The NME values are lowest in the
summer for the USA and, surprisingly, in the winter for Eu-
rope and East Asia, even though this is the period with the
worst MB values for these regions. Potential explanations in-
clude the coarse grid resolution used in this work as well
as issues related to emissions (Zakoura and Pandis, 2018).
It should be noted that even though the two versions per-
form similarly, better performance on certain statistical met-
rics should not be taken as an indication that one state as-
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Figure 2. Box plots depicting the 25th, 50th and 75th percentiles (box) of the (i) difference and (ii) fractional difference in global daily
mean surface concentrations of aerosol water (left y axis), mineral ions, NH+4 and SO2−

4 in TSP as well as coarse and fine aerosol NO−3
(right y axis), as predicted by EMAC using ISORROPIA-lite and ISORROPIA II. The 10th and 90th percentiles (whiskers) for each aerosol
component are also shown. Both models assume that the aerosol is at its metastable state at low RH and that a positive change corresponds
to higher concentrations by ISORROPIA-lite.

Table 3. Statistical evaluation of EMAC-predicted surface concentrations of PM2.5 SO2−
4 using ISORROPIA-lite against observations during

2010.

Network Number of Mean observed Mean predicted MAGE MB NME NMB RMSE
of datasets (µg m−3) (µg m−3) (µg m−3) (µg m−3) (%) (%) (µg m−3)

EPA 1791 2.18 1.28 0.92 −0.90 42 −38 0.93
IMPROVE 1526 1.02 0.92 0.47 −0.10 46 −11 0.73
EMEP 108 1.71 1.27 0.75 −0.44 44 −26 0.91
EANET 353 3.19 1.54 1.95 −1.65 61 −51 2.46

sumption is more scientifically valid than the other. While
a stable state could be considered more accurate under very
low humidity conditions (e.g., over remote deserts; Karydis
et al., 2016), in regions such as those with intermediate RH
and low nitrate concentration (e.g., northeastern USA), par-
ticles are mostly in the metastable state (Guo et al., 2016).
However, the two state assumptions produce very similar re-
sults in most cases, as shown here.

3.4 Computational speed-up metrics

The computational efficiency and speed-up that
ISORROPIA-lite provides compared to ISORROPIA II
in both stable and metastable modes were quantified. Table 6
contains the total number of time steps that the EMAC
model performed for the same simulation period (i.e., 24 h
of CPU time using 16 nodes), as well as the real time that
was needed per individual time step, for each ISORROPIA
version. The metrics shown in Table 6 concern the aver-
age value of each quantity, along with the corresponding
standard deviation, resulting from a total of 18 simulations
(6 for each version). From the difference in the real time
required by the model to execute each individual time step,
the speed-up of ISORROPIA-lite was found to be just above

3 % compared to ISORROPIA II in metastable mode and
almost 5 % compared to ISORROPIA II in stable mode.
These values are, as expected, lower than the improvement
in the computational efficiency that the ISORROPIA-lite
version provides compared to the original version, as found
in the offline evaluation, because EMAC contains several
other modules that are quite computationally expensive.
For example, the gas-phase chemistry (MECCA submodel)
as well as wet deposition and liquid-phase chemistry
(SCAV submodel) are responsible for two-thirds of the total
computational cost of the global model. As a comparison,
the offline speed-up that ISORROPIA-lite provided was
calculated to be 35 % and when utilized in the regional
model PMCAMx 3D it was found to be 10 % (Kakavas et
al., 2022).

4 Comparison of ISORROPIA-lite against
ISORROPIA II in stable mode

In this section, we present a comparison of the ISORROPIA-
lite results in metastable mode against those of the ISOR-
ROPIA II results in stable mode. Both versions are now
available in the latest version of the EMAC model, and the
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Figure 3. Annual mean surface concentrations of PM2.5 for (i) SO2−
4 , (ii) NH+4 and (iii) NO−3 as simulated by EMAC using ISORROPIA-lite

(shaded contours) versus observations of the same species from the IMPROVE, EMEP and EANET networks (colored circles).
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Table 4. Statistical evaluation of EMAC-predicted surface concentrations of PM2.5 NH+4 using ISORROPIA-lite against observations during
2010.

Network Number of Mean observed Mean predicted MAGE MB NME NMB RMSE
of datasets (µg m−3) (µg m−3) (µg m−3) (µg m−3) (%) (%) (µg m−3)

EPA 1660 1.01 1.01 0.50 0.00 49 0 0.72
IMPROVE – – – – – – – –
EMEP 84 1.08 1.44 0.63 0.36 59 34 0.75
EANET 360 0.93 1.25 0.69 0.32 74 34 1.25

Table 5. Statistical evaluation of EMAC-predicted surface concentrations of PM2.5 for NO−3 using ISORROPIA-lite against observations
during 2010.

Network Number Mean observed Mean predicted MAGE MB NME NMB RMSE
of datasets (µg m−3) (µg m−3) (µg m−3) (µg m−3) (%) (%) (µg m−3)

EPA 1762 1.39 1.87 1.06 0.48 76 42 1.65
IMPROVE 1526 0.42 1.18 0.82 0.76 194 175 1.15
EMEP 108 1.15 1.91 1.25 0.76 109 66 1.66
EANET 372 1.32 2.27 1.33 0.95 101 72 2.17

user has the option to utilize either one. While ISORROPIA-
lite always assumes metastable aerosols, ISORROPIA II as-
sumes stable aerosols by default. This comparison is done
in an attempt to quantify the effects of using the metastable
case in global atmospheric simulations and to identify the re-
gions and conditions under which the two assumptions have
any significant differences. Some discrepancies are expected
due to the different physical states of aerosols at low RH;
however, the choice between a stable state and a metastable
state should not be considered obvious. For example, Foun-
toukis et al. (2009) and Karydis et al. (2010) have shown that
the stable assumption is in better agreement with observa-
tions under conditions where RH is consistently below 50 %.
On the other hand, Ansari and Pandis (2000) emphasize that
the metastable assumption must be considered for regions
characterized by intermediate RH and low pollutant concen-
trations (in this case of NO−3 ), while there are no signifi-
cant differences between the two assumptions over regions
with high concentrations. Here, differences in the calculated
aerosol acidity by the two modules are also investigated.

4.1 Spatial variability of mean annual aerosol
concentrations

For sulfate in TSP, the predicted maximum annual average
concentration was 7 µg m−3 over East Asia, highlighting the
large anthropogenic impact over that region, while it was also
high (> 5 µg m−3) in India, Europe and the Middle East in
both simulations (Fig. 4i). Absolute differences for sulfate in
TSP were lower than 0.15 µg m−3 (< 3%) and found mainly
over the polluted Northern Hemisphere (mainly eastern USA
and Europe) with slightly higher values simulated by ISOR-
ROPIA II (Fig. 4ii). This is most likely related to the also

higher NO−3 aerosol predictions by ISORROPIA-lite over the
same regions (see below and Fig. 4viii). The higher SO2−

4
aerosol concentrations estimated by ISORROPIA II over the
Middle East region are mainly due to changes in wet deposi-
tion induced by the different physical states of the aerosol
due to the higher water content by ISORROPIA-lite. The
simulated concentrations of NH+4 in TSP had maximum an-
nual average values of 6 µg m−3 and were found mainly over
East Asia, especially around the greater Beijing and Wuhan
areas, while India and Europe also exhibited high mean an-
nual values for TSP NH+4 (> 3 µg m−3) (Fig. 4iii). The abso-
lute differences for NH+4 in TSP between the two model ver-
sions are higher over the Himalayan and East Asian regions
(in favor of ISORROPIA II) but apparently weaker over the
USA, the Middle East and Africa (ISORROPIA-lite pre-
dicts higher values), although never higher than 0.5 µg m−3

(< 5%) (Fig. 4iv). Regarding aerosol NO−3 concentrations in
the coarse mode, the maximum annual average of 6 µg m−3

was predicted at the Arabian Peninsula (Fig. 4v), while in the
fine mode the maximum annual average value of 11 µg m−3

was predicted over the metropolitan areas of Wuhan and
Guangzhou (Fig. 4vii). Other high annual average concen-
trations of fine aerosol NO−3 are found in the Tibetan Plateau
and most prominently in heavy industrial regions such as
eastern USA, East Asia and Europe (exceeding 4 µg m−3 in
most of these areas), with the latter two regions contribut-
ing high annual average concentrations in the coarse mode
as well. The absolute differences for coarse NO−3 were sim-
ilar in magnitude to those of NH+4 in TSP with the Middle
East yielding higher values by ISORROPIA-lite, while the
opposite is true for Europe and the eastern USA (Fig. 4vi).
The absolute differences for fine NO−3 are higher than those
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Table 6. Total number of time steps that EMAC executed in 24 h of running time and number of seconds needed for each time step, utilizing
ISORROPIA-lite and ISORROPIA II (both in stable and metastable). The computational speed-up refers to how much quicker (in %) the
process is executed by ISORROPIA-lite in comparison to the previous version in both modes.

Simulation No. of time steps No. of seconds Computational
per time step speed-up (%)

ISORROPIA-lite 78 193± 116 1.10± 0.002 –
ISORROPIA II v2.3 (metastable) 75720± 242 1.14± 0.003 3.3± 0.3
ISORROPIA II v2.3 (stable) 74 599± 169 1.16± 0.003 4.8± 0.3

for coarse NO−3 , reaching up to 1.75 µg m−3 mainly over
the Tibetan Plateau (∼ 30%) with ISORROPIA II predict-
ing the higher values (Fig. 4vii). Higher nitrate concentra-
tions were also predicted by ISORROPIA II mainly close to
the west coast of South America and north of the Atacama
Desert. Around those regions as well as the Tibetan Plateau,
the relative humidity is often below 50 % and 30 %, respec-
tively (see Fig. 8), and the metastable assumption results in
lower nitrate concentrations, in agreement with the findings
of Ansari and Pandis (2000). At the same time, ISORROPIA
II predicts a higher aerosol fraction for NO−3 (up to 10 %) for
the west coast of South America and the Tibetan Plateau.
This is not the case for East Asia (Fig. 5ii), although the
low sulfate-to-nitrate ratio of that region results in an excess
of available NH3 to react with HNO3 and form ammonium
nitrate that would justify the higher fine-mode nitrate con-
centrations by the stable case of ISORROPIA II (Ansari and
Pandis, 2000). A higher NO−3 aerosol fraction (up to 10 %) in
the Middle East was exhibited by ISORROPIA-lite (Fig. 5ii).
This area is characterized by increased mineral ion concen-
trations and high sulfate to nitrate ratios (Karydis et al.,
2016), which led to higher coarse-mode nitrate predictions
by the metastable case (Ansari and Pandis, 2000), although
the maximum difference was only 0.6 µg m−3 (Fig. 4vi, viii).
The differences in coarse and fine NO−3 among the two ver-
sions did not display any strong seasonality as they were
only slightly higher during autumn (for East Asia) and win-
ter (for India-Himalaya) (not shown). A comparison of the
simulated aerosol concentrations at higher altitudes can be
found in Fig. S3, where the zonal mean annual average con-
centrations as well as their absolute differences between the
two model versions are depicted. The deviations between the
results of the two ISORROPIA versions become smaller as
the air masses move higher in the atmosphere, until they are
practically identical at altitudes above 700 hPa. Regarding
the behavior of,the mineral ions of Ca2+, K+ and Mg2+, the
majority of high concentrations are found around the largest
desert regions of the Sahara, Gobi, Atacama and Namib
deserts (Fig. S4), with Ca2+ being evidently the most domi-
nant across all minerals. Furthermore, the absolute difference
maps (Fig. S4) show minimal differences in mean annual sur-
face concentrations (mostly less than 0.5 µg m−3) between
the simulations from the two model versions. This is also re-

flected in the comparison of zonal mean annual average con-
centrations and their differences, as shown in Fig. S5.

In the heavily polluted regions (particularly eastern USA,
Europe and East Asia), the particulate NO−3 dominates com-
pared to the gas-phase HNO3 (Fig. 5i). The fine-mode frac-
tion of the particulate nitrate burden is higher than the coarse-
mode fraction over East Asia, India, Europe or the eastern
USA, while in the large desert areas of the Middle East and
the Sahara most of the particulate NO−3 exists in the coarse
mode (Fig. 5iii). The aerosol water fraction is low (< 30%)
across the most arid regions of Sahara, Atacama, Namib
and Gobi, while Europe has the highest continental average
aerosol water content in the Northern Hemisphere polluted
regions (Fig. 5v). ISORROPIA-lite predicts higher average
aerosol water concentration globally since the particles can-
not form solids because the salts remain in a supersaturated
metastable solution (Fig. 5vi).

The absolute differences in global daily mean concentra-
tions are mostly less than 0.3 µg m−3 for all species (NH+4 ,
SO2−

4 and mineral cations in TSP as well as coarse and
fine aerosol NO−3 ) except aerosol water in TSP (Fig. 6). In
that case, the absolute differences for the 25th and 75th per-
centiles are less than 5 µg m−3. This translates to fractional
differences for the 25th and 75th percentiles mostly below
20 % for aerosol water in TSP and coarse NO−3 aerosol and
mostly below 5 % for all the remaining species.

The model results in the regions with the highest mean
annual loads of fine and coarse aerosol NO−3 concentrations
(see Sect. 3.1) as well as the most significant differences in
estimated aerosol water and aerosol acidity (see Sect. 4.3)
were further analyzed to determine whether the phase state
assumption has a large effect on simulated aerosol nitrate for-
mation (Fig. 7). For both coarse and fine daily mean NO−3
concentrations, Europe and North America are clearly the
regions with the smallest differences between the two ver-
sions. On the other hand, East Asia and especially the India-
Himalaya region are areas where the differences are the high-
est; ISORROPIA II is predicting higher fine aerosol NO−3
concentrations, while in the Middle East ISORROPIA-lite
is predicting higher coarse-mode aerosol NO−3 concentra-
tions. However, even for these areas the differences are typi-
cally below 0.25 µg m−3 (25th and 75th percentiles) with the
higher differences not exceeding 0.8 µg m−3 (10th and 90th
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Figure 4. Annual mean surface concentrations of (i) SO2−
4 and (iii) NH+4 in TSP as well as (v) coarse and (vii) fine aerosol NO−3 as predicted

by EMAC using ISORROPIA-lite. Change of the annual mean EMAC-simulated surface concentration of (ii) SO2−
4 and (iv) NH+4 in TSP

as well as (vi) coarse and (viii) fine aerosol NO−3 after employing ISORROPIA II. Positive values in red indicate higher concentrations by
ISORROPIA-lite. The models assume different aerosol states.

percentiles). This translates to fractional differences below
25 % (25th and 75th percentiles) for all regions, reaching up
to 30 % (10th and 90th percentiles) mainly in the Tibetan
Plateau and the Middle East.

Table 7 contains the statistics for the comparisons of the
global daily average surface concentrations calculated by
the two simulations. While all the aerosol component con-
centrations, except for aerosol water, are higher for ISOR-
ROPIA II, the differences are still quite low. Furthermore, de-
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Figure 5. Annual mean surface fractions of (i) aerosol/total NO−3 , (iii) fine/total-aerosol NO−3 and (v) aerosol water mass as calculated
by EMAC using ISORROPIA-lite. Change of the annual mean EMAC-simulated surface fractions of aerosol/total (ii) NO−3 , (iv) fine/total-
aerosol NO−3 and (vi) aerosol water mass after employing ISORROPIA II. Positive values in red indicate higher fractions by ISORROPIA-
lite. The models assume different aerosol states.

spite the different aerosol phase state assumptions by the two
versions, the normalized mean absolute difference remains
low for all species (on average < 11%) except HNO3. The
overall statistics support the conclusion that, on the global
scale, the phase state assumption for low RH does not have
a significant impact on the predicted tropospheric aerosol
load. More specifically, ISORROPIA-lite produces a slightly
higher tropospheric burden for aerosol NO−3 than ISOR-
ROPIA II (0.875 Tg versus 0.861 Tg, respectively), while the
opposite was the case for HNO3 (0.921 Tg versus 0.935 Tg).
The higher burden of ISORROPIA-lite is due to the fact that
the higher aerosol water content favors the partitioning of
HNO3 to the particulate phase.

4.2 Relative-humidity-dependent behavior of NO−
3

aerosols

The dependence of the differences in nitrate predictions on
relative humidity was examined for both fine and coarse
mode particles (Fig. 8). The differences between ISOR-
ROPIA II and ISORROPIA-lite are higher at intermediate
RH ranging from 20 % to 60 %, being more evident in the
fine-mode aerosol NO−3 and for high annual mean concen-
trations of coarse-mode aerosol NO−3 (> 4 µg m−3). In this
RH range, solid salts can precipitate when the stable equilib-
rium state is assumed (Seinfeld and Pandis, 2016), while in
the metastable state all these salts remain dissolved in wa-
ter. A region that often has RH in the 20 %–60 % range is
the Tibetan Plateau, which leads to discrepancies in the fine-
mode particulate nitrate predictions of the two models in this
area, while higher coarse-mode particulate nitrate concentra-
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Figure 6. Box plots depicting the 25th, 50th and 75th percentiles (box) of the (i) difference and (ii) fractional difference in global daily mean
surface concentrations of aerosol water (left y axis), mineral ions, NH+4 and SO2−

4 in TSP as well as coarse and fine aerosol NO−3 (right
y axis), as predicted by EMAC using ISORROPIA-lite and ISORROPIA II. The models assume different aerosol states at low RH and that a
positive change corresponds to higher concentrations by ISORROPIA-lite.

Figure 7. Box plots depicting the 25th, 50th and 75th percentiles (box) of the difference in the global daily mean surface concentrations of
(i) coarse and (iii) fine aerosol NO−3 for the regions of North America, Europe, the Middle East, India-Himalaya and East Asia, as predicted
by EMAC using ISORROPIA-lite and ISORROPIA II. The fractional differences in global daily mean surface concentrations of (ii) coarse
and (iv) fine aerosol NO−3 for the same regions are also shown. The models assume different aerosol states at low RH and that a positive
change corresponds to higher concentrations by ISORROPIA-lite.
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Figure 8. Scatterplots comparing the annual mean surface concentrations of coarse (i, iii) and fine aerosol NO−3 (ii, iv) for relative humidity
ranges of 20 %–60 % (i, ii) and 60 %–100 % (iii, iv) as predicted by EMAC using ISORROPIA-lite versus ISORROPIA II. The models
assume different aerosol states at low RH. Black points represent the 20 %–40 % RH range, green points represent the 40 %–60 % range,
blue points represent the 60 %–80 % range and pink points represent the 80 %–100 % range. (v) Mean annual relative humidity as calculated
by EMAC using ISORROPIA-lite.

tions are predicted by ISORROPIA-lite in the Middle East,
which is an area that is also often characterized by interme-
diate RH. The differences found for coarse-mode particulate
nitrate in the higher RH range of 60 %–100 % can account
for the respective differences that occurred in areas charac-
terized by such RH values (eastern USA, Europe and East
Asia) but concern lower annual mean concentration values
(< 3 µg m−3).

4.3 Comparison of the estimated aerosol acidity

The estimated aerosol acidity by the two model versions was
compared separately for the accumulation and coarse size
modes. This comparison aims at verifying the credibility of
the estimated inorganic aerosol acidity of ISORROPIA-lite,
as the first results of its implementation in the EMAC model
are presented here. Since this capability is well established
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Table 7. Statistical analysis of EMAC-simulated mean daily sur-
face concentrations by employing ISORROPIA-lite in metastable
mode versus ISORROPIA II in stable mode. Bias is given as
ISORROPIA-lite minus ISORROPIA II.

Mean difference Normalized mean
(µg m−3) absolute difference

(%)

Coarse NO−3 −0.026 9.1
Fine NO−3 −0.044 9.8
HNO3 −0.002 10.3
NH+4 −1.8× 10−4 8.0
SO2−

4 −0.020 4.8
Na+ −0.081 8.6
Ca2+

−0.005 1.7
K+ −0.002 1.8
Mg+ −0.002 1.7
Cl− −0.120 9.4
H2O 2.717 10.8
H+ −4.7× 10−4 6.1
pH accumulation −0.06 (pH) 2.3
pH coarse 0.03 (pH) 2.3

for ISORROPIA II (Karydis et al., 2021), it is of interest to
examine any potential, but otherwise expected, differences
between the two versions. The pH was computed for the fine-
and coarse-mode particles:

pH=−log10

(
[H+]
[H2O]

)
. (1)

The calculations were performed neglecting the water associ-
ated with the organic fraction of aerosols, as they are handled
by other parts of the aerosol microphysics submodel GMXe.
The average pH was calculated based on the instantaneous
H+ and H2O values estimated every 5 h. This is because uti-
lizing daily average values for H+ and H2O can result in a
low-biased predicted pH of∼ 2 units globally (Karydis et al.,
2021). The 5 h interval provides a frequent output of values at
different times of the day to account for the diurnal variabil-
ity of pH, since a selection of 6 or 8 h intervals would result
in instantaneous H+ and H2O values at identical times on
different days; pH calculations are performed only in cases
where there is enough water in the aerosol (instantaneous
values exceeding 0.05 µg m−3).

ISORROPIA-lite predicts slightly more acidic particles
mainly in the coarse mode (Fig. 9iv). The most significant
differences (up to 1 unit) in that size range are located over
the Middle East and the Arabian Peninsula, while smaller dif-
ferences can be found in limited parts of the Himalayan and
the East Asian regions as well as the western USA and the
Amazon Basin. These regions are characterized by high min-
eral cation concentrations and/or low RH. Therefore, the sta-
ble state results in increased pH values due to the precipita-
tion of insoluble salts out of the aqueous phase. On the other

hand, in the metastable state all anions remain in the aqueous
phase, lowering the particle pH. Differences in accumulation
mode particle acidity are not as high (Fig. 9ii). ISORROPIA-
lite predicts that accumulation mode particles over heavily
industrialized regions such as Southeast Asia, Europe and
the eastern USA are moderately acidic with mean pH val-
ues in the range of 4–5, while exhibiting alkaline behavior in
desert areas where the increased levels of mineral ions ele-
vate the pH above 7 (Fig. 9i). Coarse-mode particles are in
general more alkaline than those in the accumulation mode,
with a few exceptions over the eastern USA, central Europe,
north India and Southeast Asia (Fig. 9iii). These regions are
characterized by high NH3 concentrations from agricultural
activities.

A sensitivity test was performed by reducing all NH3
emissions by half to investigate if there would be a buffering
mechanism that controls the pH of the accumulation mode
particles more than in the coarse mode. Figure 10 shows
the difference in the mean annual calculated aerosol pH be-
tween the base case (NH3 emissions present) and the sensi-
tivity case (half NH3 emissions). When NH3 emissions are
switched off, the pH of fine PM decreases by up to 3 units,
and the particles become a lot more acidic (Fig. 10i). For the
coarse mode, this effect is not that strong (pH reduction of
up to 1.5 units) (Fig. 10ii). As expected, this buffering mech-
anism is mainly observed across the aforementioned regions
where NH3 concentrations are high, but it is also observed
over areas affected by natural NH3 emissions. This is consis-
tent with the results of Karydis et al. (2021), who found that,
in the absence of NH3, aerosol particles would be extremely
acidic in most of the world.

The differences in the accumulation mode pH calculated
by ISORROPIA-lite and ISORROPIA II are extremely small
(i.e., mean difference of 0.06 pH units or 2.3 %) and even
smaller for coarse-mode pH (Table 7), indicating an overall
good agreement between the two model versions.

5 Conclusions

This study presents the first results of the implementation of
the ISORROPIA-lite thermodynamic module in the EMAC
global chemistry and climate model, and it is compared to
the previous version, ISORROPIA II v2.3, after the latter has
successfully replaced ISORROPIA II v1 to improve pH pre-
dictions close to neutral conditions.

The results of ISORROPIA II versions 1 and 2.3 both in
stable mode had insignificant differences (< 3%) concern-
ing the global predictions of NH+4 , SO2−

4 , mineral ions and
aerosol water in TSP concentrations as well as fine- and
coarse-mode aerosol NO−3 . The comparison of results from
ISORROPIA-lite against ISORROPIA II v2.3 in metastable
mode showed also negligible differences (< 7%) between
all the examined aerosol components on a global scale.
The comparison of the ISORROPIA-lite results for PM2.5
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Figure 9. Annual mean EMAC-simulated (i) accumulation and (ii) coarse-mode aerosol pH using ISORROPIA-lite. Change of the annual
mean EMAC-simulated (iii) accumulation and (iv) coarse-mode aerosol pH after using ISORROPIA II, with negative values in red indicating
lower pH by ISORROPIA-lite. The models assume different aerosol states.

Figure 10. Absolute change of the annual mean EMAC-simulated (i) accumulation and (ii) coarse-mode aerosol pH using ISORROPIA-lite
after reducing the NH3 emissions by half. Positive values in blue indicate higher aerosol pH when NH3 is present.

NH+4 , SO2−
4 and NO−3 versus observations from the IM-

PROVE, EMEP and EANET networks reveals that East Asia
is the area with the largest discrepancies. There was satis-
factory agreement in Europe and over the USA for NH+4
and SO2−

4 , while ISORROPIA-lite predicted lower concen-
trations around Hong Kong with a maximum difference of
1.5 µg m−3 (∼ 20%) for these two species. For NO−3 , the
discrepancy was up to 3 µg m−3 (∼ 30%) in the same re-
gion, while a difference of about 1.5 µg m−3 (∼ 25%) was
found over central Europe with ISORROPIA-lite predicting
the higher values. With the exception of Hong Kong, the

model in general overpredicted the concentrations of all three
aerosol components over the East Asian region.

A comparison between ISORROPIA-lite in the metastable
state and ISORROPIA II in the stable state was performed to
identify potential discrepancies in the inorganic aerosol con-
centrations simulated by EMAC. Although differences be-
tween the two model versions are to be expected due to the
different physical state of aerosols at low RH, it is of in-
terest to examine under which conditions these differences
occur so that potential users are informed of the strengths
and weaknesses of using either model version depending on
the application. Both modules are now available as differ-
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ent options in the EMAC model. The agreement between
the two versions was generally quite good for global daily
mean surface concentrations of inorganic aerosols, mineral
ions and aerosol water. More specifically, mineral ions, SO2−

4
and NH+4 in TSP had the smallest differences overall, less
than 0.5 µg m−3 even in localized extreme cases but in the
vast majority less than 0.1 µg m−3 (or less than 5 %). For
coarse NO−3 aerosols, the absolute differences were of sim-
ilar magnitude, with the higher concentrations simulated by
ISORROPIA-lite in the Middle East being the most notable.
In the case of fine NO−3 aerosols, the differences were larger
(up to ∼ 1.75 µg m−3 in local extremes), mainly over the
west coast of South America (north of the Atacama Desert),
the Tibetan Plateau and East Asian regions, with higher con-
centrations simulated by ISORROPIA II but still within ∼
30%. In Europe and the USA, the corresponding differences
were less than 0.25 µg m−3. The most important difference
was the higher aerosol water calculated by ISORROPIA-lite,
especially for relative humidity in the 20 % to 60 % range.
However, this was less than 5 µg m−3 or 20 % in most cases.
Therefore, even though local differences are expected in re-
gions where the relative humidity is often in this range, on a
global scale choosing a different physical state of the aerosol
at lower RH does not have such a big impact.

When the relative humidity ranged from 20 % to 60 %, dif-
ferences in coarse and fine NO−3 concentration predictions
among the two versions increased. The highest discrepancies
were found in the Tibetan Plateau and the Middle East re-
gions, both of which are dominated by such RH values dur-
ing most of the year. In the first region, the combination of
those RH values with mid-range temperatures does not favor
nitrate aerosol formation if the aerosol is in the metastable
state (ISORROPIA-lite). In the second region, the low RH
values result in very low aerosol water predictions for the
stable state assumed by ISORROPIA II, which hinder the
condensation of HNO3 into the aerosol phase.

Investigation of the differences in the estimated inorganic
aerosol acidity between the two versions, due to the different
assumed aerosol phase states, is of great interest for potential
future use of ISORROPIA-lite in global climate simulations.
ISORROPIA-lite produces slightly more acidic coarse-mode
aerosols (in comparison to ISORROPIA II) but by less than
1 pH unit on average. The most important differences were
found mainly in the Middle East and the Arabian Peninsula
due to the presence of high mineral cation concentrations.
The stable state considered by ISORROPIA II allows for the
precipitation of insoluble salts and removes anions from the
aqueous phase that would otherwise deplete the pH, while
this is not the case for the metastable aerosol state considered
by ISORROPIA-lite. Furthermore, NH3 is found to control
the aerosol acidity of both fine and coarse mode particles;
however, it provides a significantly larger buffering capac-
ity to the accumulation mode than to the coarse mode. This
results in slightly more basic accumulation particles than

coarse in regions with high NH3 from agricultural activities
and low mineral cation concentrations (e.g., Europe).

Finally, concerning the computational efficiency that
ISORROPIA-lite provides when used by the EMAC global
model, a speed-up of more than 3 % was achieved compared
to ISORROPIA II in metastable state and nearly 5 % com-
pared to ISORROPIA II in stable state.
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Abstract 12 

In recent decades, nitrate aerosols have gradually become a predominant component of atmospheric 13 
composition, outcompeting sulfate aerosols in terms of both abundance and climatic significance. 14 
Nevertheless, the accurate simulation of nitrate aerosols remains a persistent challenge for most global 15 
atmospheric models. The factors that influence the formation of nitrate aerosols are diverse and complex, 16 
further complicated by variations in conditions across different regions. This study aims to explore these 17 
factors to identify the most critical components for accurately simulating aerosol nitrate levels in the world's 18 
most polluted areas. To do so, the state-of-the-art EMAC atmospheric climate and chemistry model is 19 
employed to assess the impact of key parameters, including grid resolution, emission inventories, as well 20 
as the treatment of thermodynamic, chemical, and aerosol scavenging processes. The widely used 21 
ISORROPIA II thermodynamic equilibrium model is applied to simulate the formation and composition of 22 
inorganic aerosols. The model predictions are then compared with surface observations of particulate nitrate 23 
in the size ranges of smaller than 1 μm and 2.5 μm in diameter (PM1 and PM2.5). These include PM2.5 data 24 
from routine filter-based measurement networks (EMEP, EPA, IMPROVE, and EANET) and PM1 25 
measurements obtained by aerosol mass spectrometer (AMS) in field campaigns conducted in Europe, 26 
North America, East Asia, and India. The findings indicate that the model consistently predicts higher 27 
nitrate concentrations of PM2.5 in all regions, particularly in East Asia, with biases reaching up to a factor 28 
of 3. However, the model's performance is enhanced by increasing the grid resolution, decreasing the uptake 29 
coefficient for N2O5 hydrolysis, and utilizing an appropriate emission database (e.g., CMIP6). Notably, the 30 
region of East Asia exhibited enhanced prediction accuracy when a simplified aerosol scavenging treatment 31 
was employed. A comparison of model predictions and observations of PM2.5 nitrate underscores a seasonal 32 
dependence in the model's ability to best replicate network observations across different regions. 33 
Conversely, the model exhibited a tendency to underpredict observations of PM1 nitrate, contrasting with 34 
the observed patterns for PM2.5 nitrate. This discrepancy is particularly pronounced at downwind sites, 35 
where the model and measurement discrepancies were most significant. The identification of a universal 36 
optimal model configuration for the representation of PM1 presents a significant challenge. It was found 37 
that improvements in the model achieved using the aforementioned parameters did not necessarily result in 38 
enhanced agreement in this comparison. In general, modeling PM1 nitrate aerosol in Europe and in locations 39 
downwind of emission sources poses the greatest challenges for the model. A comparison of the diurnal 40 
concentrations between model predictions and observations at selected European stations reveals that much 41 
of the model bias stems from an unrealistically sharp decrease in nitrate aerosol levels from morning 42 
maxima to evening minima, a pattern rarely reflected in the measurements. Finally, the predicted 43 
tropospheric burden of total nitrate aerosol demonstrates relatively minor variations across all sensitivity 44 
tests, with differences not exceeding 25%. 45 
 46 
Keywords : Nitrate aerosol, model bias, seasonal variation, diurnal variation, tropospheric burden 47 
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48 
Aerosols represent a critical and intricate component of the Earth's climate system, attributable 49 

to the complexity of their chemical composition and the numerous alterations they undergo upon 50 
emission into the atmosphere. The composition of anthropogenic aerosols, influenced by the 51 
diverse precursor gases emitted by anthropogenic activities, plays a pivotal role in shaping climate 52 
and air quality. Of particular concern are aerosols with a diameter of less than 2.5 μm (PM2.5), 53 
which have been linked to a significant global mortality rate, estimated to exceed four million 54 
deaths per year (Chowdhury et al., 2022; Im et al., 2023). Furthermore, anthropogenic aerosols 55 
have a significant impact on the Earth's energy balance by causing a net cooling effect that tends 56 
to mask the warming induced by greenhouse gases (Storelvmo et al., 2016; Glantz et al., 2022; 57 
Nair et al., 2023). Among the various types of anthropogenic aerosols, sulfates (SO4

2-) have 58 
become the dominant type in terms of mass concentrations, with a tropospheric burden that is more 59 
than twice as high as that of nitrates (NO3

-) (Bellouin et al., 2011; Myhre et al., 2013; Karydis et 60 
al., 2016). However, numerous studies have indicated a shift in this regime, with nitrates 61 
challenging the dominance of sulfates in several key regions of the polluted northern hemisphere, 62 
including Europe (Lanz et al., 2010; Aksoyoglu et al., 2017), the USA (Walker et al., 2012), and 63 
East Asia (Wang et al., 2013; Li et al., 2020). This phenomenon can be attributed to the strict 64 
restrictions on sulfur dioxide (SO2) emissions worldwide, which have not always been 65 
accompanied by a corresponding reduction in nitrogen oxide (NOx) emissions, and particularly 66 
ammonia (NH3), which has increased in recent decades (Bellouin et al., 2011; Hauglustaine et al., 67 
2014). Nitrate aerosols are of particular importance because they can influence atmospheric 68 
chemistry through heterogeneous reactions with dust and sea salt, which also lead to more acidic 69 
conditions in aerosols (Karydis et al., 2016; Karydis et al., 2021). Additionally, nitrate aerosols 70 
have been shown to affect climate through a direct radiative effect that leads to cooling (Myhre et 71 
al., 2013; Hauglustaine et al., 2014; Milousis et al., 2025). Furthermore, nitrate aerosols influence 72 
the properties of clouds and other aerosol species, resulting in a complex indirect radiative effect 73 
(Milousis et al., 2025). Consequently, the precise representation of nitrate aerosols in global 74 
chemistry climate models (CCM) is imperative, as they are projected to have the most substantial 75 
impact on climate and air quality by the end of the century. 76 

However, this task presents a number of challenges. Concentrations of nitrate aerosols are 77 
highly sensitive to the levels of their precursors, making their accurate representation in models an 78 
essential starting point for their accurate prediction.  Furthermore, nitrate aerosols are inherently 79 
semi-volatile, implying that partitioning between the gas and particle phases is an intricate process, 80 
as equilibrium conditions must be met, which in turn complicates calculations (Seinfeld and 81 
Pandis, 2016). To ensure the reliability of model predictions, it is imperative that they accurately 82 
represent the equilibrium between the gas and particle phases, which is contingent on various 83 
atmospheric conditions. For instance, humidity and temperature have been identified as pivotal 84 
factors in determining this equilibrium, while atmospheric acidity has been shown to play a crucial 85 
role in regulating partitioning processes (Ansari and Pandis, 2000; Guo et al., 2016; Pye et al., 86 
2020).   The complexity of the system is further compounded by the interaction of nitrate aerosols 87 
with other significant aerosol species, such as sea salt and mineral dust. The inclusion of these 88 
pathways is imperative for accurate predictions (Karydis et al., 2010; Karydis et al., 2016; Kakavas 89 
and Pandis, 2021). The intricate nature of nitrate aerosols often leads to discrepancies between 90 
model estimates and observations, with models frequently predicting higher mass concentrations. 91 
For instance, overestimations of approximately 2 µg/m3 have been identified in Europe (Jones et 92 
al., 2021; Milousis et al., 2024), with biases reaching a factor of 5 or more in certain instances 93 
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(Chen et al., 2018). Analogous findings have been documented in the US (Walker et al., 2012; 94 
Zakoura and Pandis, 2018, 2019; Jones et al., 2021), while model projections in East Asia have 95 
been observed to exhibit amplified biases relative to other regions (Miao et al., 2020; Milousis et 96 
al., 2024), with Xie et al. (2022) noting that approximately 60% of studies modeling particle 97 
concentrations in China have overpredicted particulate nitrate levels. The potential causes of such 98 
biases can be categorized into several groups, encompassing a range of physicochemical processes 99 
and model characteristics. 100 

A fundamental reason for discrepancies between model predictions and observations, as well 101 
as between predictions made by different models, is the grid resolution employed. A high spatial 102 
resolution (i.e., a substantial number of simulated grid cells with reduced size) facilitates the 103 
capture of chemical interactions that precursors undergo and their various removal processes with 104 
a high degree of precision. Conversely, a low spatial resolution may result in oversimplifications. 105 
It is important to note that the increased complexity of the representation is associated with higher 106 
computational costs. However, the use of high spatial resolution has been shown to reduce biases 107 
in predicted nitrate aerosol concentrations by 60-80% (Metzger et al., 2002; Zakoura and Pandis, 108 
2018, 2019). Furthermore, Schaap et al. (2004) and Heald et al. (2012) posit that the employment 109 
of high resolution is, in certain instances, imperative to ensure the accurate comparison of model 110 
outcomes with observational data.  111 

Another source of discrepancies between model and measurement results is the accuracy of the 112 
emission inventories in the model. Specifically in the case of nitrate aerosols, the presence of 113 
ammonia (NH3) emissions is critical in determining their concentrations. In regions where there is 114 
an excess of ammonia, it forms ammonium nitrate (NH4NO3) after having neutralized sulfuric acid 115 
(H2SO4) and reacting with nitric acid (HNO3) (Seinfeld and Pandis 2016). The primary sources of 116 
NH3 emissions are associated with agricultural activities, and the accuracy of its representation in 117 
emission inventories is not always guaranteed (Nair and Yu, 2020). This is due to the influence of 118 
various factors. These include the variety of agricultural practices and management techniques 119 
used, as well as the land changes induced by agricultural activities in general (Sutton et al., 2013; 120 
Ge et al., 2020). These factors make it difficult to ensure consistent accuracy regarding NH3 121 
emissions. Additionally, the distinct characteristics of soil types and climates across different 122 
regions can substantially influence emission factors (Reis et al., 2009; Nair and Yu, 2020), a 123 
critical consideration in the development of a global inventory. For instance, Zhang et al. (2017) 124 
have highlighted that numerous prior NH3 emission inventories in China employed emission 125 
factors determined for Europe. In addition, the diurnal and seasonal variability of NH3 emissions 126 
must be considered in global inventories to ensure representability (Pinder et al., 2006; Hendriks 127 
et al., 2016). These considerations are equally relevant to the representation of other precursor 128 
gases, such as NOx and SO2, which are also crucial for particulate nitrate formation. 129 

The thermodynamic state of the aerosol is another factor that plays an important role in the 130 
accuracy of model predictions. Specifically, the assumption regarding the particle's ability to 131 
persist as a supersaturated aqueous solution throughout its lifetime (metastable conditions) or its 132 
potential to undergo deliquescence into a solid state as the ambient relative humidity declines 133 
(stable conditions) is of consequence. This assumption can lead to alterations in the aerosol's 134 
acidity, which, in turn, can influence the prediction of concentrations for species such as nitrate 135 
aerosols. These species are characterized as semi-volatile, and the partitioning to the aerosol phase 136 
is favored in more acidic conditions, and vice versa (Nenes et al., 2020). Previous studies have 137 
examined the impact of the thermodynamic state assumption on aerosol concentration predictions 138 
and have demonstrated that the choice is region-dependent.  For instance, a stable state has been 139 
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shown to yield more realistic predictions when simulating arid and desert regions (Karydis et al., 140 
2016). Furthermore, Fountoukis et al. (2009) and Karydis et al. (2010) found that stable 141 
thermodynamic conditions are more consistent with observations when the ambient relative 142 
humidity (RH) is below 50%. Conversely, Ansari and Pandis (2000) found that metastable 143 
thermodynamic conditions are more suitable for regions with intermediate relative humidity (RH) 144 
and low aerosol concentrations. However, no significant differences were observed between these 145 
two assumptions for high aerosol concentrations. Guo et al. (2016) determined that metastable 146 
thermodynamic conditions are more representative of areas exhibiting characteristics analogous to 147 
those observed in the Northeastern US. In contrast, Milousis et al. (2024) found minimal 148 
differences between the two assumptions for major inorganic pollutants (i.e., nitrate, sulfate, and 149 
ammonium aerosols, as well as mineral cations) on a global scale. 150 

Another factor influencing model predictions of nitrate aerosols is the chemistry of dinitrogen 151 
pentoxide (N2O5), which is particularly important for the nocturnal production of nitrate particles. 152 
Specifically, N2O5, a compound derived from the oxidation of NOx species, undergoes 153 
heterogeneous hydrolysis on particle surfaces in the presence of sufficient amounts of water, 154 
resulting in the formation of HNO3, a pivotal precursor of nitrate aerosols. This heterogeneous 155 
pathway has been shown to dominate the nighttime production of HNO3, potentially accounting 156 
for up to 50% of particulate nitrate production in polluted areas during both winter (Liu et al., 157 
2020) and summer (Qu et al., 2019). The hydrolysis reaction is predominantly governed by a 158 
corresponding uptake coefficient, with numerous models employing a single average value. 159 
However, the reaction exhibits a strong dependence on environmental quantities such as 160 
temperature and relative humidity. Consequently, some studies suggest the utilization of different 161 
values in models depending on the prevalent ambient conditions of the examined region. For 162 
instance, Wang et al. (2020) proposed a significantly lower value than the conventional value 163 
utilized in CCMs (0.02) to better align with conditions observed in Beijing. A similarly suggestion 164 
was made by Phillips et al. (2016) for semi-rural regions in Germany, with the intent of providing 165 
more precise estimates of particulate nitrate, and this is supported by a number of studies in various 166 
parts of the US as well (Bertram et al., 2009; Brown et al., 2009; Chang et al., 2011; Chang et al., 167 
2016). The significance of N2O5 chemistry is particularly pronounced in regions exhibiting 168 
activities that contribute to elevated NOx concentrations. This effect is further exacerbated in areas 169 
characterized by intrusions of particles, such as mineral dust and/or sea salt, which facilitate 170 
heterogeneous reactions.  171 

Furthermore, model predictions of nitrate aerosols can be strongly influenced by the model 172 
treatment of their wet deposition and, specifically, the manner in which cloud acidity affects the 173 
dissolution of HNO3. Specifically, in less acidic conditions, elevated in-cloud dissolution of HNO3 174 
is observed to achieve overall electroneutrality, leading to increased particulate nitrate production 175 
(Seinfeld and Pandis, 2016; Tilgner et al., 2021). Consequently, it is imperative for a model to 176 
accurately represent in-cloud properties, as the nuances of pH conditions in regions with different 177 
characteristics will be more accurately captured. This, in turn, will facilitate a more comprehensive 178 
understanding of nitrate formation processes. 179 

The present study aims to investigate the sensitivity of modelled nitrate aerosol predictions and 180 
how their modelled concentrations are influenced by a number of parameters on a global scale. To 181 
this purpose, the global atmospheric chemistry-climate model EMAC was employed, utilizing 182 
diverse configurations and parameterizations that encompass all the aforementioned aspects that 183 
influence the predictions of particulate nitrate concentrations. The model's performance was 184 
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evaluated against network and station observations of NO3
- in the PM2.5 and PM1 size ranges, with 185 

the objective of identifying the parameters that are most significant over specific regions. 186 

187 

188 
 The model utilized in this study is the EMAC global chemistry and climate model (Jöckel 189 

et al., 2006). EMAC comprises a series of submodels, which are interconnected via the Modular 190 
Earth Submodel System (MESSy) (Jöckel et al., 2005) to the base (core) model, namely the fifth 191 
generation European Center Hamburg general circulation model (ECHAM5) (Roeckner et al., 192 
2006). The gas phase chemistry is simulated by the submodel MECCA (Sander et al., 2019) with 193 
a simplified scheme similar to that used in the Chemistry Climate Model Initiative (CCMI), as 194 
described by Jöckel et al. (2016). The liquid phase chemistry is simulated by the submodel SCAV 195 
(Tost et al., 2006), which is also responsible for the wet deposition treatment of trace gases and 196 
aerosols. The submodel DRYDEP (Kerkweg et al., 2006b) addresses the dry deposition of trace 197 
gases and aerosols, while the submodel SEDI (Kerkweg et al., 2006b) handles the gravitational 198 
sedimentation of aerosols. The GMXe submodel (Pringle et al., 2010a; Pringle et al., 2010b) 199 
simulates aerosol microphysical processes and the gas-to-particle partitioning of inorganic species. 200 
For more detailed information on these particular processes, the reader is referred to Section 2.2. 201 
The ORACLE submodel (Tsimpidi et al., 2014; 2018) is responsible for simulating the 202 
composition and chemical evolution of all organic aerosol species. The microphysical processes 203 
of clouds are simulated by the CLOUD submodel (Roeckner et al., 2006), using the two-moment 204 
microphysical scheme for liquid and ice clouds of Lohmann and Ferrachat (2010), while 205 
considering a physically based treatment for the processes related to the activation of liquid 206 
droplets (Karydis et al., 2017) and ice crystals (Bacer et al., 2018). In this study, all simulations 207 
performed were nudged towards the actual meteorology using ERAI data (Dee et al., 2011), and 208 
concern the period 2009-2018, with the first year being used as the model spin-up period.  209 

The spatial resolution used in all simulations, except for the sensitivity cases (Section 2.3), 210 
corresponds to T63L31, which has a grid resolution of 1.875𝑜 𝑥 1.875𝑜 and covers vertical 211 
altitudes up to 25 km, divided into 31 layers. The database of anthropogenic emissions in terms of 212 
aerosols and their precursors, utilized by all simulations with the exception of the sensitivity cases 213 
where modifications were made (see Section 2.3), was derived from the CAMS inventory (Inness 214 
et al., 2019). The database pertaining to biomass burning emissions was derived from the 215 
GFEDv4.1 database (Randerson et al., 2017). The natural emissions of NH3, originating from soil 216 
and oceanic volatilization, were obtained from the GEIA database (Bouwman et al., 1997). The 217 
biogenic soil emissions of NO were calculated online during runtime using the algorithm of 218 
Yienger and Levy (1995). Lightning production of NOx is also calculated online by the LNOx 219 
submodel (Tost et al., 2007a) based on the parameterization of Grewe et al. (2001). The emissions 220 
of SO2 from volcanic eruptions are obtained from the AEROCOM database (Dentener et al., 2006). 221 
Sea salt emissions are calculated online according to the parameterization of Guelle et al. (2001), 222 
which utilizes precalculated lookup tables to determine the wind speed-dependent mass and 223 
particle number fluxes for the accumulation and coarse mode sizes, which applies for sea salt 224 
aerosols. For more detailed information on the calculation of the lookup tables, the reader is 225 
referred to Stier et al. (2005) and Kerkweg et al. (2006a). The AIRSEA submodel (Pozzer et al., 226 
2006) calculates oceanic emissions of dimethyl sulfide (DMS) online. Additionally, dust emission 227 
fluxes are calculated online using the parameterization of Astitha et al. (2012). This method 228 
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considers both the meteorological information of each grid cell (temperature and relative humidity) 229 
and the various friction velocity thresholds above which dust particle suspension occurs. The 230 
mineral dust composition is determined by the bulk composition, and the mineral ions Na+, Ca2+, 231 
K+ and Mg2+ are estimated as a fraction of the total dust emission flux based on the chemical 232 
composition of the soil in each grid cell (Karydis et al., 2016; Klingmüller et al., 2018).  233 

234 
In this study, all calculations related to the thermodynamics of inorganic aerosols, as well as 235 

their partitioning process, are performed by ISORROPIA II v2.3 (Fountoukis and Nenes, 2007), 236 
which is a thermodynamic module integrated into the GMXe submodel. ISORROPIA II v2.3 treats 237 
the chemical system of K+–Ca2+–Mg2+–NH4

+–Na+–SO4
2−–NO3

−–Cl−–H2O aerosols and has the 238 
ability to simulate either a stable thermodynamic state, where aerosols are allowed to precipitate 239 
into solid salts, or a metastable state, where aerosols remain in a supersaturated aqueous solution 240 
even at low relative humidities. The initial case is employed as the fundamental assumption of this 241 
study, along with all other sensitivity simulations, with the exception of one (Section 2.3). 242 
ISORROPIA II v2.3 is a slightly updated version of ISORROPIA II that concerns more accurate 243 
predictions of aerosol pH near neutral conditions (Song et al., 2018). Nevertheless, its impact is 244 
confined to a limited subset of calculations within the diverse compositional sub-regimes of 245 
ISORROPIA II. Specifically, in certain instances, NH3 evaporation was not taken into account in 246 
the aerosol pH calculations, resulting in values that approached neutrality. However, this had a 247 
negligible effect on both the predicted NH3 and the inorganic aerosol concentrations. The 248 
ISORROPIA II v2.3 model utilizes Bromley's formula (Bromley, 1973) to calculate the binary 249 
activity coefficients for multicomponent mixtures. For specific component pairs, it employs the 250 
Kusik-Meissner relationship (Kusik and Meissner, 1978), which incorporates the temperature 251 
dependence of Meissner and Peppas (1973). Further insights can be found in the study by 252 
Fountoukis and Nenes (2007). 253 

In the GMXe submodel, aerosol size is described by seven lognormal size modes, four of which 254 
are assigned to a soluble fraction and the remaining three to an insoluble fraction. The soluble 255 
fraction includes the nucleation, Aitken, accumulation, and coarse size modes, while the insoluble 256 
fraction includes only the latter three (Pringle et al., 2010a, 2010b). In the aerosol partitioning 257 
process, kinetic limitations must be considered, as only sizes smaller than coarse mode can reach 258 
equilibrium within the timeframe of one model time step (10 minutes for this study). Consequently, 259 
the partitioning calculations are performed in two stages. Initially, the amount of gas phase species 260 
that can kinetically condense to the particle phase within this timeframe is calculated according to 261 
the diffusion limited condensation theory of Vignati et al. (2004). Subsequently, the partitioning 262 
between the gas and particle phases is estimated by assuming instantaneous equilibrium for all 263 
aerosol size modes, as the ISORROPIA II v2.3 routines are called separately for each one. Finally, 264 
the transfer of material between the soluble and insoluble modes is calculated by GMXe after the 265 
partitioning calculations have been completed. This transfer can occur in two ways: by 266 
coagulation, where two particles of different modes collide and the resulting particle is in the 267 
soluble mode; or if substantial soluble material has condensed onto an insoluble particle when it 268 
is transferred back to the soluble mode (Pringle et al., 2010a, 2010b).  269 

270 
A total of eight simulations were performed (base case and seven sensitivity cases) in an attempt 271 

to cover all aspects that influence the model predictions of particulate nitrate concentrations, as 272 
discussed in Section 1, and whose configurations are summarized in Table 1. The objective is to 273 
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ascertain whether a specific configuration can most accurately replicate the measurements of PM2.5 274 
and PM1 concentrations in the most heavily polluted regions of the globe. The base case simulation 275 
was performed using the following combination of configurations. A T63L31 spatial resolution 276 
(1.875𝑜 𝑥 1.875𝑜  grid) with anthropogenic emissions provided by the CAMS database is used. 277 
The aerosols' thermodynamic state was assumed to be stable, i.e., it was permitted to precipitate 278 
into solid salts at low relative humidity (RH). Aerosol scavenging is addressed by a comprehensive 279 
mechanism encompassing over 150 chemical reactions for the liquid phase, in addition to the 280 
online calculation of the in-cloud and precipitation pH (Tost et al., 2006, 2007b). The uptake 281 
coefficient of N2O5 hydrolysis is 0.02 according to the parameterization proposed by Evans and 282 
Jacob (2005).  283 

In the initial two sensitivity model iterations (‘RES_low’ and ‘RES_high’), the sole 284 
modification implemented was an alteration in the spatial grid resolution. This alteration involved 285 
the adoption of a lower resolution, characterized by a reduction in the number of grid cells, and a 286 
higher resolution, marked by an increase in the number of grid cells. Notably, the vertical 287 
resolution was maintained at 31 layers, consistent with the base case. The lower spatial resolution 288 
is the T42L31 resolution, which corresponds to a 2.813𝑜 𝑥 2.813𝑜  grid and the higher spatial 289 
resolution is the T106L31 resolution, which corresponds to a 1.125𝑜 𝑥 1.125𝑜  grid. The other two 290 
sensitivity model runs (‘CMIP’ and ‘HTAP’) employed distinct emission inventories with regard 291 
to anthropogenic emissions of aerosols and trace gases, yet utilized the grid resolution of the base 292 
case. Specifically, the CMIP6 model run utilized the CMIP6 database (O'Neill et al., 2016), while 293 
the HTAP model run employed the HTAPv3 database (Crippa et al., 2023). 294 

An additional sensitivity model run was performed in which the thermodynamic state of the 295 
aerosol was altered (‘THERM’). In this run, the metastable assumption was implemented, meaning 296 
aerosols are prevented from forming solids, even at extremely low RH values, allowing them to 297 
persist in a supersaturated aqueous phase. Additionally, a sensitivity model run was conducted in 298 
which the scavenging treatment was modified (‘SCAV’), employing a simplified mechanism 299 
where the gas-to-particle phase partitioning follows the effective Henry's Law coefficients 300 
approach. Furthermore, no aqueous phase chemistry was considered in the calculation of cloud 301 
acidity, as a constant value of 5 was assumed for in-cloud and precipitation pH (Tost et al., 2007b). 302 
Another sensitivity model run (‘HYDRO’) concerns the treatment of the uptake of N2O5 hydrolysis, 303 
and more specifically the uptake coefficient considered. Specifically, an uptake coefficient for 304 
hydrolysis of 0.002 was employed (one order of magnitude lower than in the base case) in an 305 
attempt to obtain more accurate predictions in certain regions (Section 1). 306 
  307 
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Table 1: Configurations used in the base case and all sensitivity simulations. 308 


309 

310 
The mean surface concentrations of PM2.5, NO3

-, and the size fraction of PM2.5 NO3
- (i.e., the 311 

fraction of PM2.5 NO3
- mass in respect to the total aerosol NO3

- mass) are shown in Figure 1 for the 312 
entire period from 2010 to 2018. The maximum values of 14 µg/m3 are predicted over the Indian 313 
subcontinent and the East Asian region, with Central Europe showing concentrations of ~5 µg/m3 314 
for the period average, while Turkey and Eastern USA show mostly concentrations of ~3 µg/m3 315 
(Fig. 1a). With respect to the size fraction, PM2.5 accounts for more than 80% of the total particle 316 
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concentration over the polluted northern hemisphere and up to 70% over South America, the 317 
southern part of Africa, and Australia (Fig. 1b). The PM2.5 size fraction also demonstrates a 60% 318 
contribution attributable to interactions of particulate nitrate with mineral dust particles originating 319 
from the Sahara and the dust outflow directed towards South America. A 30% contribution is also 320 
observed over the Southern Ocean due to interactions of particulate nitrate with sea salt particles. 321 
The Arabian Peninsula region exhibits the lowest predicted NO3

- PM2.5 fraction, with a value of 322 
less than 20%.  323 

 324 

 325 
Figure 1: Annual mean (a) surface concentrations and (b) size fraction of PM2.5 NO3

- for the period 326 
2010 – 2018 as simulated with EMAC from the base case. 327 

 328 

 329 
The PM2.5 aerosol observations are obtained from four networks that cover regions with the 330 

highest levels of anthropogenic activity in the polluted northern hemisphere. These networks 331 
include the EPA CASTNET network (U.S. Environmental Protection Agency Clean Air Status 332 
and Trends Network) and the IMPROVE network (Interagency Monitoring of Protected Visual 333 
Environments), which collectively encompass 152 stations for particulate nitrate across the United 334 
States. Notably, IMPROVE predominantly focuses on rural and remote regions, while EPA 335 
primarily covers urban areas. The EMEP network (European Monitoring and Evaluation 336 
Programme Air Pollutant Monitoring Data) includes nine stations for particulate nitrate, covering 337 
the European region. Additionally, the EANET network (The Acid Deposition Monitoring 338 
Network in East Asia) covers parts of East Asia with 33 stations. The locations of all stations can 339 
be found in Figure S1a. The aforementioned networks provide monthly measurements for the 340 
entire period under consideration in this study. Given the continuous nature of PM2.5 measurements, 341 
a comparison with model predictions is presented in the form of surface concentration maps, where 342 
the observations from each station are overlaid on the model concentration maps (see Figure 2). A 343 
comparison in the form of scatter plots of seasonal means can be found in Figure S2. The seasonal 344 
statistical evaluation for the comparison of PM2.5 nitrate is shown in Table 2. The metrics employed 345 
include Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), 346 
Normalized Mean Bias (NMB), and Root Mean Square Error (RMSE). 347 

As illustrated in Figure 2a, the model demonstrates a notable capacity for reproducing the 348 
measurements for the majority of stations in the USA, particularly those situated in the Midwestern 349 
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region and along the Southern East Coast. However, discrepancies of approximately 1 µg/m3 350 
(model overprediction) are evident over the Central East stations, and discrepancies of 351 
approximately 2 µg/m3 are observed for the larger areas of New York and Northern California. In 352 
Europe, the model's overprediction of low concentrations is evident in the Iberian Peninsula, the 353 
Baltic region, and Croatia (~3 µg/m3 difference), while it more accurately represents the high 354 
concentrations observed in the UK and the Central and Western regions, with some exceptions in 355 
Germany and Switzerland (Fig. 3b). In East Asia, the discrepancy between model predictions and 356 
observations is particularly pronounced. The model values for the North China Plain, Japan, 357 
Vietnam, and Thailand exceed the observed concentrations by up to 2 µg/m3, similar to the 358 
overprediction observed in Europe. However, the model values for Korea are three times higher 359 
than the observed concentrations (Fig. 3c). Conversely, the concentrations in the Zhangzhou region 360 
were underpredicted by the model, with discrepancies reaching up to 5 µg/m3.  361 

Statistically, the USA region demonstrates the most optimal model representation exhibiting 362 
differences to network observations that are less than 1 µg/m3 across all seasons. However, 363 
elevated normalized error values were observed during the summer and autumn periods. While the 364 
model demonstrates higher overpredictions for East Asia, the mean bias and normalized error 365 
values appear to be relatively unaffected. However, the mean gross error and root square error 366 
metrics are notably larger compared to those observed for the USA. Notably, Europe exhibits the 367 
most significant discrepancies between model predictions and observations, with a mean bias 368 
exceeding 1 µg/m3 and normalized error values particularly pronounced during the warm spring 369 
and summer periods, which are typically associated with low nitrate concentrations. 370 
 371 

 372 

 373 
 374 
 375 

Figure 2: Annual mean surface concentrations of PM2.5 NO3
- for the period 2010 – 2018 as 376 

simulated by EMAC from the base case (shaded contours) versus observations of the same species 377 
from the (a) EPA-IMPROVE, (b) EMEP and (c) EANET networks (colored circles). 378 

 379 
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Table 2: Seasonal statistical evaluation of EMAC values for PM2.5 NO3
- surface concentrations 380 

from the base case against observations during 2010-2018. The used metrics include the Mean 381 
Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), Normalized 382 
Mean Bias (NMB) and Root Mean Square Error (RMSE). 383 

 384 
 385 

386 
The aerosol observations of PM1 are derived from AMS measurements obtained during field 387 

campaigns in the Northern Hemisphere from 2010 to 2018. The measurement durations of these 388 
campaigns ranged from one to six months and encompassed rural, urban, and downwind locations. 389 
The campaign and types of locations can be seen in Figure S1b. Further details regarding the 390 
locations of the field campaigns, including their duration, can be found in Tsimpidi et al. (2016; 391 
2024). As the field observations (in contrast to the network measurements) are not continuous but 392 
rather fragmented into different time periods for each field campaign location, the comparison is 393 
presented in the form of scatter plots that compare the model and the measured values depending 394 
on the location type (see Figure 3). A scatter plot comparison of the seasonal means is shown in 395 
Figure S3. The statistical evaluation involves the regions of the USA, East Asia, Europe, and India, 396 
employing the same metrics as previously outlined. The results are presented in Table 3. 397 

As illustrated in Figure 3a, the model demonstrates a notable capacity to replicate the average 398 
PM1 values over Europe with a high degree of accuracy, exhibiting an average bias of up to 50%, 399 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 2.4 1.4 -0.5 50 -16 2.2 

Spring 291 1.4 2.2 1.2 0.8 87 54 1.5 

Summer 280 0.5 0.8 0.5 0.3 103 59 0.9 

Autumn 290 0.7 0.9 0.6 0.2 89 37 0.9 

IMPROVE Winter 116 0.8 1.2 0.7 0.4 80 48 0.9 

Spring 233 0.5 1.1 0.7 0.6 131 112 0.9 

Summer 193 0.2 0.4 0.3 0.2 155 123 0.5 

Autumn 214 0.2 0.4 0.3 0.2 143 99 0.5 

EMEP Winter 7 3.4 3.9 2.5 0.6 74 16 3.3 

Spring 18 1.6 2.8 1.6 1.2 96 73 2.1 

Summer 18 0.3 1.5 1.3 1.2 461 451 1.8 

Autumn 17 0.8 2.7 1.9 1.9 241 233 2.8 

EANET Winter 30 2.0 2.5 1.6 0.4 80 21 2.6 

Spring 59 1.9 2.0 1.6 0.1 87 8 2.9 

Summer 59 0.6 1.6 1.4 0.9 217 147 2.6 

Autumn 59 0.8 0.8 0.7 0.0 85 3 1.1 
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despite manifesting substantial variations at specific locations. In North America, the observed 400 
underprediction of average values is slightly stronger for downwind and particularly for rural 401 
locations (Fig. 3b) with average values for urban sites showing better agreement. In East Asia, the 402 
model demonstrates a comparable degree of accuracy to that observed in Europe, although it 403 
exhibits a significantly lower prevalence of outliers (Fig. 3c). However, the average downwind 404 
values in this region exhibit an overprediction of slightly more than 50%. In India, the model's 405 
estimation of average urban values aligns closely with measurements, while the model 406 
significantly overestimates average rural values by a factor of 4 (Fig. 3d). 407 

In contrast to the comparison of PM2.5 concentrations, the majority of the metrics indicate that 408 
PM1 aerosol observations in Europe are better reproduced. Conversely, the USA exhibited low 409 
mean bias values and high scatter, as evidenced by normalized bias and error metrics. Conversely, 410 
East Asia exhibits higher absolute differences. The model demonstrates suboptimal performance 411 
for India, particularly in rural areas where there is a substantial discrepancy between the modeled 412 
and observed values. Conversely, the model demonstrates a higher degree of accuracy in predicting 413 
PM1 concentrations in both rural and urban locations as compared to downwind areas. 414 

 415 
Table 3: Statistical evaluation of EMAC predicted PM1 NO3

- surface concentrations from the base 416 
case against observations during 2010-2018. The used metrics include the Mean Absolute Gross 417 
Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), Normalized Mean Bias (NMB) 418 
and Root Mean Square Error (RMSE). 419 

 420 
 421 

 422 

 

Region 

 

 

Type of 

location 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.7 1.0 -0.5 88 -42 1.5 

Urban 22 1.5 1.8 1.6 0.4 111 25 2.1 

Downwind 5 1.2 0.8 1.1 -0.5 87 -36 1.7 

East Asia Rural 40 6.8 7.8 4.7 1.0 68 15 6.0 

Urban 78 9.7 10.3 4.0 0.6 41 6 5.2 

Downwind 15 4.9 7.9 3.5 3.0 71 61 5.2 

Europe Rural 163 1.4 1.4 0.9 0.0 62 1 1.4 

Urban 28 1.8 1.5 1.0 -0.2 54 -13 1.5 

Downwind 99 3.2 2.4 1.5 -0.7 48 -23 2.2 

India Rural 5 0.4 2.1 1.8 1.7 439 412 2.6 

Urban 14 8.2 7.8 4.0 -0.4 49 -5 5.2 
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 423 
Figure 3: Scatterplots comparing mean surface concentrations of PM1 NO3

- as simulated by EMAC 424 
from the base case and AMS observations in campaigns in the regions of (a) Europe, (b) North 425 
America, (c) East Asia and (d) India. Enlarged dots indicate the 2008 – 2018 period averages from 426 
all locations. Also shown are the 1:1 lines (solid) as well as the 2:1 and 1:2 lines (dashed). 427 
 428 


429 

430 
The differences in the predicted surface PM2.5 nitrate concentrations across the sensitivity 431 

simulations in comparison to the base case, are illustrated in Figure 4. Furthermore, a comparison 432 
for PM2.5 concentrations across different seasons can be seen in Figure 5 and a comparison of PM1 433 
concentrations for the different types of measurements sites in Figure 6, with detailed statistical 434 
metrics provided in Tables S1–S14. 435 

(b) North America (a) Europe 

(c) East Asia 
(d) India 
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Figure 4: (a) Average surface concentrations of PM2.5 NO3
- for the period of 2008 – 2018 as 436 

simulated by EMAC from the base case. White areas indicate average concentrations smaller than 437 
0.25 µg/m3 . Percentage changes of the EMAC-simulated average surface concentrations of PM2.5 438 
NO3

- between the base case model run and the (b) ‘THERM’ case (c) ‘RES_low’ case, (d) 439 
‘RES_high’ case, (e) ‘CMIP’ case, (f) ‘HTAP’ case, (g) ‘HYDRO’ case and (h) ‘SCAV’ case 440 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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model runs. Negative values in red indicate higher concentrations by the respective sensitivity case 441 
and positive values in blue indicate the opposite. 442 
 443 

444 
 Lower Grid Resolution: Employing a coarser grid resolution generally predicts higher surface 445 

PM2.5 nitrate concentrations than the base case (Fig. 4c). The most substantial disparities (reaching 446 
up to 80%) are evident in North America, followed by Europe (~30%). In East Asia, changes are 447 
more localized, with some areas exhibiting up to 15% lower values, while the Himalayan Plateau 448 
in India shows reductions of approximately 50%. 449 

When evaluated against observational datasets, the 'RES_low' model run demonstrates a strong 450 
capacity for reproducing mean winter and spring nitrate concentrations in Europe, where nitrate 451 
levels typically peak during these seasons (Fig. 5). However, the model significantly overestimates 452 
summer and autumn concentrations, with biases reaching factors of 3 to 4 for EMEP observations. 453 
In North America, this model consistently overestimates nitrate levels, particularly during the 454 
warmer seasons, although winter concentrations are more in line with EPA observations. 455 
Conversely, the model's estimates for PM2.5 nitrate levels in the IMPROVE network are elevated 456 
by up to threefold, exhibiting comparable overestimations to those observed in EANET data. 457 
According to the statistical metrics, the 'RES_low' model run does not outperform the base case, 458 
indicating that a coarser grid resolution does not increase the model's estimation accuracy. 459 

For PM1 nitrate concentrations, the 'RES_low' case slightly overpredicts rural values in Europe 460 
by approximately 13%, while urban values are slightly underpredicted (Fig. 6). At downwind 461 
locations, the underprediction is more pronounced, reaching around 25%. In North America, this 462 
tendency is nearly reversed, with rural sites exhibiting a substantial underprediction (~30%) and 463 
urban sites demonstrating an overprediction (~20%). Notably, downwind locations in this region 464 
are best represented by the 'RES_low' sensitivity model run. In East Asia, the 'RES_low' case 465 
shows very similar rural values to the base case, while urban sites display a moderate 466 
underprediction (~15%). However, at downwind locations, concentrations are significantly 467 
overpredicted, with nearly twice as high values as the observed values. In India, the 'RES_low' 468 
case exhibits a contrasting pattern. In this case, concentrations in rural areas are overpredicted, 469 
similar to the base case results, while concentrations in urban areas show the largest 470 
underprediction among all sensitivity model runs, with concentrations being approximately a 471 
factor of 2.5 lower. Statistically, the 'RES_low' case exhibits a marginal enhancement in accuracy 472 
for rural locations in North America and East Asia. However, it does not exceed the accuracy of 473 
the base case for Europe or India. 474 

Higher Grid Resolution: Conversely, simulations employing a higher grid resolution have 475 
yielded reduced surface PM2.5 nitrate concentrations in comparison to the base case (Fig. 4d). The 476 
disparities in nitrate concentrations can reach up to 50% across North America, Europe, and India, 477 
with less consistent patterns observed in East Asia.  478 

A comparison of the 'RES_high' model run with the EMEP observations reveals that it 479 
underpredicts nitrate concentrations in winter and spring by approximately 20%, while 480 
demonstrating greater accuracy in summer and autumn, reducing the overestimation compared to 481 
the base case (Fig. 5). A similar pattern is observed in the prediction of EPA observations, with 482 
more accurate forecasts in most seasons, except in winter, where slight underestimations occur. 483 
For the IMPROVE network, the 'RES_high' model run demonstrates the strongest agreement with 484 
observations during summer, though its performance varies across other seasons. 485 
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For PM1 nitrate, the 'RES_high' scenario reveals a modest underprediction across all European 486 
location types, with the most substantial discrepancy observed at downwind sites (~33%). In North 487 
America, rural and downwind sites exhibit a more pronounced underprediction, reaching up to a 488 
factor of 2, while urban locations show a modest overprediction (~12%). Conversely, the results 489 
for East Asia exhibit an opposing pattern, with all location types demonstrating a slight 490 
overprediction, particularly evident at downwind sites (~factor of 2). In India, the urban locations 491 
estimates by this sensitivity align closely with the base case results, while rural sites demonstrate 492 
a marginally higher overprediction. Statistically, the 'RES_high' case enhances the accuracy of 493 
model predictions for urban sites in North America and Europe while also improving rural 494 
predictions in East Asia, underscoring its effectiveness in capturing finer spatial variability. 495 

 496 

 497 

(a) Europe (b) US (EPA) 

(c) US (IMPROVE) (d) East Asia 
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Figure 5: Average seasonal surface concentrations of PM2.5 NO3
- measured and predicted from the 498 

base case and all sensitivity cases for the networks of (a) EMEP, (b) EPA, (c) IMPROVE and (d) 499 
EANET during winter, spring, summer and autumn. 500 
 501 

502 
CMIP6: The application of the CMIP6 anthropogenic emission inventory to the simulation of 503 

surface PM2.5 nitrate concentrations reveals a pattern of lower concentrations in most regions, with 504 
the exception of India (Fig. 4e). The most significant reductions in surface PM2.5 nitrate 505 
concentrations are observed in North America and Europe, with a range of 50% to 60%. In 506 
contrast, East Asia exhibits a comparatively smaller reduction, ranging from 10% to 20%. 507 
Conversely, India exhibits an increase in PM2.5 nitrate levels ranging from 30% to 40%. 508 

A comparison with observations reveals notable discrepancies (Fig. 5). For EMEP observations, 509 
the 'CMIP' model run underestimates winter and spring concentrations by up to 40%, while 510 
overestimating summer values (by twofold), although autumn values are well captured. For EPA 511 
observations, this case underestimates in all seasons except winter, yielding the lowest PM2.5 nitrate 512 
predictions among all cases. Of particular interest is the observation that the underestimation 513 
during most seasons is analogous to the overestimation seen in the 'RES_high' case. In contrast, 514 
IMPROVE observations exhibited more precise model predictions, characterized by minor 515 
positive biases (less than 10%). In comparison, the IMPROVE observations exhibited minor 516 
positive biases (less than 10%), with summer values demonstrating enhancement over the base 517 
case. Conversely, EANET observations displayed overprediction tendencies in other seasons, 518 
aligning closely with the outcomes of the base case. Statistically, the 'CMIP' case demonstrates 519 
greater efficacy than the base case for most observational networks, with the exception of EANET, 520 
where comparable outputs are obtained. 521 

A comparison of the 'CMIP' model run with observations of PM1 nitrate concentrations 522 
measured by AMS instruments in field campaigns reveals the largest underprediction of all 523 
sensitivity model runs for all location types in Europe, with downwind sites exhibiting notable 524 
discrepancies (~factor of 2). A similar pattern is observed in North America, where rural sites 525 
show differences as high as 80%. In contrast, observations in East Asia are more closely aligned 526 
with this case. The observations from rural sites exhibited the strongest agreement with the model, 527 
while urban sites demonstrated a slight underprediction of less than 10%. In contrast, downwind 528 
locations demonstrate a moderate overprediction of approximately 25%. In India, the 'CMIP' 529 
simulation results in an overprediction of observations of around 20% in urban areas, with values 530 
in rural areas showing an even greater discrepancy, reaching approximately a factor of 10. 531 
Statistically, this particular case exhibits suboptimal performance in comparison to the base case 532 
for Europe and India. However, it demonstrates enhanced performance in East Asia and the USA, 533 
particularly for metrics other than MB and NMB. 534 

HTAP: The simulation using the HTAPv3 anthropogenic emission inventory generally predicts 535 
higher PM2.5 nitrate concentrations than the base case (Fig. 4f). Notably, Europe and the eastern 536 
United States constitute exceptions, exhibiting 20–30% lower concentrations compared to the base 537 
case model. In other regions, particularly western North America and India, the predicted 538 
concentrations are up to 100% higher than in the base case model, with values in East Asia showing 539 
increases of 60–80%. 540 

A comparison of the model results with observations reveals significant variations. For EMEP 541 
observations, the 'HTAP' model run underestimates values in winter, similar to the 'CMIP' case, 542 
and overestimates concentrations in summer. Notably, the 'HTAP' model run exhibits the most 543 
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significant underestimation in spring, reaching approximately 60%. However, the model's 544 
performance is satisfactory in the autumn. In contrast, comparisons to EPA observations 545 
demonstrate a consistent overestimation in all seasons, contrasting with the results of the 'CMIP' 546 
case. A similar overestimation of values is observed when comparing the 'HTAP' simulation results 547 
to the IMPROVE data, particularly in winter, and this is consistent with the results of the 548 
'RES_low' model run. For EANET observations, the 'HTAP' sensitivity demonstrates a high degree 549 
of overprediction of values, ranging from a factor of 2 in spring and summer to a factor of 4 in 550 
winter. From a statistical perspective, the 'HTAP' model run demonstrates stronger performance 551 
in comparison to the base case simulation for EMEP observations during summer and autumn, 552 
while model predictions are less accurate in winter and spring. Slight enhancements are evident 553 
for EPA observations, while the model's performance is suboptimal for IMPROVE observations, 554 
particularly for EANET observations. 555 

When evaluated against PM1 nitrate concentrations measured by AMS instruments in field 556 
campaigns, the 'HTAP' case demonstrates a 20% underprediction of values in rural sites in Europe, 557 
despite the fact that this particular sensitivity best captured average urban values among all others. 558 
However, in downwind locations, the model underpredicts concentrations by nearly 40%. The 559 
'HTAP' model run demonstrates a notable degree of alignment with observations in North 560 
America, exhibiting the strongest agreement with measurements in both rural and urban locations. 561 
Conversely, in downwind locations, the model values are considerably lower than observations, 562 
akin to the base case estimates, exhibiting a model-measurement discrepancy of nearly 50%. In 563 
contrast, the modeling of observations in East Asia appears to be a challenging endeavor for this 564 
particular sensitivity model run, as predicted values show the highest overprediction among all 565 
model cases for all location types. The results for downwind sites exhibit a distinct overprediction 566 
of almost a factor of 2, while results for other locations show discrepancies of less than 20%. In 567 
India, concentrations as predicted by the 'HTAP' case demonstrate a substantial overprediction for 568 
both urban and rural locations, and the most significant model-measurement discrepancies among 569 
all sensitivity model runs. In rural areas, the overprediction can reach up to a factor of 15, while in 570 
urban areas, the predicted concentrations are approximately double the observed values. 571 
Statistically, the 'HTAP' case exhibits suboptimal performance relative to the base case in East 572 
Asia and India. However, it does yield enhanced predictions for rural sites in the USA and Europe, 573 
with the exception of downwind locations. 574 
  575 
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 576 
Figure 6: Average PM1 NO3

- surface concentrations measured by AMS instruments in field 577 
campaigns and predicted by the base case and all sensitivity cases for the regions of (a) Europe, 578 
(b) North America, (c) East Asia and (d) India divided into rural, urban and downwind locations. 579 
 580 

581 
582 

Metastable state: The simulation assuming a metastable thermodynamic state (aerosols do not 583 
precipitate into solid salts at low-humidity) indicates only minor discrepancies in surface PM2.5 584 
nitrate concentrations compared to the base case (Fig. 4b). Concentrations exhibit a 10–15% 585 
increase in North America and Europe, while in the Himalayan Plateau, they decrease by up to 586 
30%, and in East Asia, they are slightly lower. 587 

(a) Europe (b) North America 

(c) East Asia (d) India 
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When evaluated against PM2.5 observations, the 'THERM' case model run demonstrates a high 588 
degree of similarity to the base case model across all observational networks. However, slightly 589 
less accurate predictions (differences <5%) are observed for the EPA and IMPROVE networks, as 590 
reflected in the statistically insignificant differences between the metrics derived for the sensitivity 591 
and base case model runs. 592 

For observations of PM1 nitrate concentrations, the 'THERM' sensitivity results are nearly 593 
identical to the base case model run in Europe and North America for all location types. A similar 594 
behavior is observed in East Asia, where the 'THERM' case overpredicts observed concentrations 595 
by approximately 5% compared to the base case model run for all locations. In India, the 'THERM' 596 
and base case results show no difference in rural areas, but values are underpredicted by about 597 
40% in urban areas due to the use of the metastable state assumption. This discrepancy is 598 
associated with the combination of moderate temperatures and low relative humidity at these 599 
locations, which hinder the partitioning of nitrate into the aerosol phase (Ansari and Pandis, 2000; 600 
Milousis et al., 2024). These factors contribute to the model-measurement discrepancies, 601 
particularly in urban areas with elevated nitrate aerosol concentrations. Statistically, this particular 602 
sensitivity performs marginally better than the base case model run for downwind sites in East 603 
Asia. However, it underestimates nitrate concentrations at urban sites in India, with only minor 604 
discrepancies to observed values elsewhere. 605 

Lower N2O5 uptake coefficient for hydrolysis: The simulation that incorporated a lower 606 
uptake coefficient for N2O5 hydrolysis consistently yielded lower surface PM2.5 nitrate 607 
concentrations in all regions when compared to the base case model (Fig. 5g). The simulation 608 
indicates a 20% decrease in East Asia and a 40% decrease in Europe and North America, reflecting 609 
the suppression of nitrate formation via the hydrolysis pathway. 610 

A comparison of the 'HYDRO' model run with observations reveals a tendency to underpredict 611 
the concentrations of PM2.5 nitrate by the EMEP network during winter and spring. The discrepancy 612 
between the 'HYDRO' model run and the observations is more pronounced in winter and spring 613 
(25% and 35%, respectively) compared to summer and autumn. For the EPA network, this 614 
sensitivity underpredicts winter values by approximately 30%, yet it demonstrates a higher degree 615 
of agreement with observations for all other seasons when compared to the other sensitivity cases. 616 
For IMPROVE observations, the 'HYDRO' case results in a lower overprediction in all seasons 617 
when compared to the base case model run. The model-measurement differences are within 30%. 618 
For EANET observations, the 'HYDRO' model run yielded values that more closely aligned with 619 
observations compared to the results of the other sensitivity model runs, with the exception of the 620 
'CMIP' case during summer. Statistically, the 'HYDRO' case demonstrates enhanced performance 621 
in comparison to the base case across all observational networks and metrics, with the exception 622 
of the EANET observations during the autumn season. The most substantial enhancements 623 
compared to the base case are observed for the EPA network, as this scenario demonstrated the 624 
most improved metrics in comparison to the rest of the sensitivities, for values obtained in summer 625 
and autumn. 626 

Notably, for PM1 nitrate concentrations, the 'HYDRO' case exhibits the second highest 627 
underprediction among all sensitivity model runs, surpassed only by the 'CMIP' case, across all 628 
location types in Europe. A similar behavior was observed for North American values. However, 629 
the outcomes of the model-measurement comparison vary significantly for values in East Asia. 630 
Specifically, while the 'HYDRO' model run demonstrates the most significant underprediction for 631 
urban site values (approximately 15%) among all other sensitivity cases, it exhibits a lower 632 
overprediction bias compared to the base case for both rural and downwind locations, resulting in 633 
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a closer agreement with the measurements.  In India, the 'HYDRO' case displays the least 634 
pronounced overprediction for rural values among all the sensitivity model runs, although these 635 
values are substantially lower (a factor of 4.5) than the observations. Notably, for urban areas, the 636 
'HYDRO' case demonstrates a comparable underprediction to that observed in the 'RES_low' and 637 
'THERM' cases. Statistically, the 'HYDRO' case demonstrates a lower performance than the base 638 
case in Europe, particularly for rural and downwind locations, as evidenced by the presence of 639 
stronger negative biases and higher error rates. In North America, the model's performance is 640 
suboptimal for rural locations but superior for urban sites, exhibiting comparable metrics for 641 
downwind predictions. In East Asia, the 'HYDRO' model run demonstrates more accurate 642 
predictions than the base case for rural and downwind locations for most metrics (with the 643 
exception of RMSE), yet predictions are less precise for urban sites. In India, the predictions in 644 
rural areas are improved compared to the base case model run by this sensitivity, but predictions 645 
in urban areas remain unchanged. This observation indicates that the 'HYDRO' model run performs 646 
better in capturing nighttime aerosol nitrate formation, which is predominant in rural areas. In 647 
contrast, daytime production pathways seem to be more significant in urban areas. 648 

 649 

650 
Simplified scavenging treatment: The implementation of a simplified scavenging treatment 651 

for the gas phase aerosol precursors in the model (Section 2.3) yields substantially reduced surface 652 
PM2.5 nitrate concentrations compared to the base case (Fig. 4h). The most substantial disparities 653 
are evident in Europe and East Asia, where concentrations are reduced by approximately 60%. 654 
Comparatively, North America exhibits a reduction of approximately 30%, while India 655 
experiences a decline of around 10–20%. These lower concentrations can be attributed to the high 656 
wet deposition fluxes in the simplified mechanism, which neglects gas-phase diffusion limitations 657 
and assumes an equilibrium between the gas and aerosol phases (Tost et al., 2007b). Additionally, 658 
the assumed pH of 5 for clouds and precipitation is less acidic than typical for polluted regions, 659 
further enhancing nitrate scavenging. 660 

A comparison of the 'SCAV' case with observations reveals the strongest underprediction for 661 
EMEP measurements in winter (~45%). Comparable estimates are obtained in the 'CMIP' case 662 
during the spring season. Overprediction biases are less by ~20% and ~30%, respectively, than in 663 
the base case model run during summer and autumn. For the EPA network, the 'SCAV' case 664 
demonstrates the most significant overprediction of observations in winter (~45%) among all 665 
sensitivity model runs. However, values are only marginally overpredicted in the other seasons 666 
(~10%), and even slightly underpredicted in spring. The IMPROVE observations demonstrate a 667 
closer alignment with the 'SCAV' case predictions in comparison to the base case predictions 668 
throughout the year, exhibiting notable reductions in model-measurement discrepancies by up to 669 
~40% during winter and spring. For EANET observations, the 'SCAV' model run yielded smaller 670 
values than the base case, thereby reducing the overprediction bias by ~35% during winter. In all 671 
other seasons within the region, this particular sensitivity demonstrates the smallest discrepancies 672 
between model predictions and observations among the rest. Statistically, the 'SCAV' case 673 
demonstrates enhanced performance in comparison to the base case for EMEP and EPA 674 
observations across the majority of seasons, with the exception of winter, where the model exhibits 675 
a substantial underprediction tendency, as evidenced by both bias and error metrics. The model-676 
measurement agreement for observations of the IMPROVE network exhibited enhancement in 677 
comparison to the base case model run across all seasons. The agreement for EANET observations 678 
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shows improvements only during winter and summer, while during spring and autumn the 679 
statistical metrics of the 'SCAV' case are worse compared to the base case. 680 

For PM1 nitrate, the 'SCAV' case demonstrates a higher underprediction of observations 681 
compared to the base case for all location types in Europe. The magnitude of the bias observed in 682 
the 'SCAV' case is comparable to that seen in the 'CMIP' and 'HYDRO' cases. In North America, 683 
the 'SCAV' case results in an underprediction of concentrations of approximately 50% for rural 684 
sites and 40% for downwind sites, though it is slightly smaller than the overprediction bias of the 685 
base case model for urban locations. In East Asia, the 'SCAV' case exhibits a smaller 686 
overprediction of observed values compared to the base case results for downwind locations 687 
(~25%), while this sensitivity provides nearly identical estimates for rural sites. Conversely, urban 688 
sites exhibit a slight underprediction (12%) in this sensitivity analysis. In India, the 'SCAV' 689 
sensitivity model run does not lead to substantial changes in the estimates compared to the base 690 
case results for both urban and rural locations. Statistically, the 'SCAV' case demonstrates 691 
suboptimal performance in comparison to the base case with regard to bias metrics for results in 692 
Europe, although the discrepancy in error metrics is less pronounced. In North America, the 693 
'SCAV' case demonstrates poorer metrics for rural sites, yet it exhibits enhancements for urban 694 
sites. Downwind sites display elevated biases but reduced errors. In East Asia, the 'SCAV' case 695 
exhibits higher accuracy in capturing observations at rural and downwind sites compared to the 696 
base case, but performs less successfully at urban sites. A similar pattern is observed in the results 697 
for India. In summary, when evaluated against the metrics of the base case, the 'SCAV' case yielded 698 
enhancements for rural sites in Europe and India. 699 


700 

With regard to the PM2.5 size mode, the availability of continuous time series data from 701 
monitoring networks facilitates a comparison of seasonal patterns across different model 702 
sensitivities and regions. Conversely, the PM1 measurements, which were campaign-based and 703 
characterized by varying durations, lack the capability to facilitate a comparable seasonal analysis. 704 
Consequently, a selection of stations measuring PM1 concentrations in Europe was chosen for PM1, 705 
given the considerable difficulties encountered by the model in this region for this size mode, 706 
regarding the replication of observation concentrations. These stations, which provide hourly 707 
measurements, facilitate a detailed comparison of the diurnal variation of modeled and observed 708 
data. Finally, this section includes an analysis of the total tropospheric burden of nitrate aerosols. 709 
This analysis compares estimates from all sensitivity cases to assess their global-scale 710 
implications. This multi-scale approach aims to highlight the temporal dynamics and atmospheric 711 
significance of nitrate aerosols in relation to different modeling configurations. 712 

713 
Figure 7 presents the seasonal patterns of PM2.5 predictions from model sensitivity runs and 714 

measurements obtained from observational networks in the specified regions. For the EMEP 715 
network, all models consistently underpredicted the PM2.5 concentrations from January to April, 716 
with the largest discrepancies observed in March, ranging from 35% for the 'RES_low' case to 717 
55% for the 'SCAV' case. It is noteworthy that the 'HTAP' case is the sole model run that accurately 718 
replicates this period, including the peak concentration observed in the measurements in March. 719 
Conversely, from April to December, the majority of sensitivity cases exhibit an overprediction of 720 
observed concentrations, with the exception of the 'HTAP' case after October. The most 721 
pronounced overestimations are observed in the 'RES_low' and base cases, with concentrations 722 
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reaching up to twice the observed levels in October. In contrast, the 'CMIP' and 'HYDRO' cases 723 
exhibit smaller discrepancies between model and measurement, with model overestimations of 724 
approximately 40%. While all model cases captured the general seasonal cycle, the 'HTAP' case 725 
misaligned the timing of the second maximum, which was shifted to one month earlier and 726 
exhibited a stronger post-summer decline compared to the other model runs. The results of the 727 
'CMIP' case, followed by the 'RES_high' and 'HYDRO' cases, demonstrate the closest agreement 728 
with observations, particularly at low nitrate concentrations. Overall, the magnitude of model 729 
overpredictions is most pronounced during summer and early autumn. The enhanced discrepancies 730 
between model projections and observations for this network can be partially attributed to the 731 
elevated evaporation of the semi-volatile nitrate aerosol species under warm conditions (Ames and 732 
Malm, 2001; Docherty et al., 2011), a process that is augmented by the utilization of nylon filters 733 
by the EMEP samplers (Yu et al., 2005). 734 

A similar seasonal pattern is observed in the USA when comparing model outputs to EPA 735 
measurements, with underpredictions of observed values from January to April and 736 
overpredictions from April to December. The 'SCAV' case demonstrates the most significant 737 
underprediction of observations, exhibiting a 35% discrepancy in February. In contrast, the 738 
'RES_low' case reveals the most substantial overprediction, with concentrations surpassing 739 
observations by a factor of 2 in August. The sensitivity model runs with different anthropogenic 740 
emission inventories demonstrate contrasting behaviors, with the 'HTAP' case consistently 741 
overpredicting the measured concentrations and the 'CMIP' case underpredicting them. 742 
Notwithstanding these biases, the seasonal variation is adequately captured in all model cases, with 743 
the 'RES_high' and 'HYDRO' model runs demonstrating the most optimal overall performance. A 744 
similar pattern to the European region was observed, where the warm months were characterized 745 
by the largest overprediction biases for this network as well.  This phenomenon is attributed, at 746 
least in part, to biases associated with evaporation losses during that particular period of the year. 747 
Specifically, filter samples are found to be strongly influenced by ambient temperature and relative 748 
humidity. Under warmer weather conditions, the increased temperatures of the filters result in the 749 
increased evaporation of semi-volatile species like particulate nitrate (Ames and Malm, 2001; 750 
Docherty et al., 2011). For the IMPROVE network, all model cases exhibit overpredictions of 751 
PM2.5 concentrations throughout the year, with more pronounced discrepancies observed during 752 
colder months. During these months, the 'HTAP' scenario demonstrates discrepancies of up to a 753 
factor of 2.5 in February and a factor of 2 in December, while the 'RES_low' scenario exhibits 754 
comparable deviations in spring and summer. Among the sensitivity cases, the 'CMIP' model run 755 
demonstrates the most robust agreement with observed data, followed by the 'SCAV' case during 756 
the early months of the year and the 'RES_high' and 'HYDRO' sensitivities during the remainder 757 
of the year. 758 

The EANET network demonstrates a comparable seasonal variability to the IMPROVE 759 
network, with all model cases consistently predicting higher concentrations than observed 760 
throughout the year, while successfully reproducing the observed seasonality. The most 761 
pronounced overpredictions occur during the cold months, with the 'HTAP' model run exhibiting 762 
the most significant deviations of up to a factor of 3.5 in January. The 'SCAV' case demonstrates 763 
the most favorable agreement with observations, exhibiting deviations that remain constrained to 764 
a factor of 1.5 during the cold season. This suggests that the intricate aerosol scavenging process 765 
included in the base case may potentially underestimate the wet deposition fluxes of particulate 766 
nitrate in this region. The 'HYDRO' and 'CMIP' cases also demonstrate notable performance, 767 
particularly in cases of lower concentrations. 768 
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 769 
 770 

Figure 7: Seasonal variation of measured (black line) and predicted (colored lines) PM2.5 NO3
- 771 

surface concentrations from the base case and all sensitivity model cases and observations of the 772 
networks of (a) EMEP, (b) EPA, (c) IMPROVE and (d) EANET. 773 

 774 
 775 

(a) Europe (b) US (EPA) 

(c) US (IMPROVE) (d) East Asia 
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776 
Figure 8 presents a comparison of the diurnal variation of PM1 nitrate concentration predictions 777 

from the base case model and the sensitivity model runs against hourly observations from seven 778 
European stations. At Birkenes, the majority of model cases demonstrate the capacity to replicate 779 
the observed diurnal pattern, with concentrations peaking in the early morning and decreasing in 780 
the late evening. However, the 'RES_low' case demonstrates a substantial deviation, with 781 
concentrations that are twice the observed values. The 'RES_high' case provides the closest 782 
approximation to the observed concentrations, suggesting that a higher grid resolution is more 783 
effective in capturing the variations in aerosol nitrate concentrations induced by anthropogenic 784 
activities during the day. Conversely, the 'SCAV' model run exhibited the most significant 785 
underprediction, reaching a factor of 2.In Bucharest, the model sensitivities yielded a comparable 786 
morning peak, albeit smaller than the observed value, occurring approximately two hours earlier 787 
than the observed peak. While an evening minimum is predicted at a similar time, the model 788 
estimations overemphasize its peak, resulting in an underprediction that is twice as strong as the 789 
one exhibited for the morning values. The 'RES_high' scenario demonstrates superior performance 790 
compared to the other cases for this station, which exhibits a diurnal pattern analogous to the 791 
previous station, followed by the base and 'THERM' scenarios. The 'SCAV' case demonstrates the 792 
most significant diurnal variability among the rest of the sensitivities, exhibiting a pronounced 793 
decrease in concentrations during the transition from day to night. 794 

At Hohenspeissenberg, the model results fail to reproduce the observed early morning 795 
minimum. Predicted late morning maxima and afternoon minima are higher than the observations 796 
in most cases, except for the 'RES_high', 'HYDRO', and 'CMIP' cases. During the early morning 797 
hours, these three cases demonstrate the smallest discrepancies with the observations, while the 798 
'RES_low' model run exhibits a stronger agreement in the afternoon due to a less pronounced 799 
decline in the modeled concentrations. The station's elevation of 300 meters serves to mitigate the 800 
influence of anthropogenically influenced air masses, thereby reducing the variability observed in 801 
hourly values. This phenomenon is not reflected by the model's results. 802 

At Melpitz, the observed diurnal pattern is well reproduced by the model results. In the majority 803 
of sensitivity cases, morning values are marginally higher than observed values, while evening 804 
values are slightly lower. The 'CMIP' case demonstrates the most accurate morning values among 805 
the diverse model runs, while the base and 'THERM' cases exhibit more precise evening 806 
concentration predictions compared to the others. The 'RES_low' model run demonstrates the most 807 
overall agreement with observations throughout the day, attributable to the less pronounced 808 
maximum and minimum peaks. 809 

For the SIRTA station, the model results adequately capture the diurnal pattern, though the 810 
evening minimum values are predicted three hours later than observed. The 'RES_low' and 811 
'RES_high' cases demonstrated an enhanced representation of the morning maximum compared to 812 
the other cases, while the 'RES_low' model run exhibited superior prediction of the evening 813 
minimum compared to all other sensitivities. This 'RES_low' case also demonstrated a less 814 
pronounced transition from daytime to nighttime values, similar to the previous comparison. The 815 
other model sensitivity cases underpredict the observations, with discrepancies ranging from 40% 816 
('HTAP' case) to a factor of 3 ('CMIP' case). 817 

At Puy De Dôme, the model results fail to reproduce the diurnal variation of the observations. 818 
The station's location on one of the highest peaks of the Chaîne des Puy renders it a representative 819 
point for conditions of the regional atmosphere. This characteristic is evidenced by the absence of 820 
a pronounced diurnal variation in the PM1 values, in contrast to what is observed in stations more 821 
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characteristic of anthropogenically affected atmospheres, such as Bucharest and SIRTA. The 822 
morning values are marginally overpredicted by the 'RES_low' case; however, evening values are 823 
consistently underpredicted by all sensitivities, at a time when the observations showed nearly 824 
constant values. The 'RES_low' model run exhibits the least deviation from observations in the 825 
afternoon, while the base and 'THERM' cases demonstrate more accurate performance in the early 826 
morning. 827 

At Villeneuve, the observed diurnal pattern is generally well reproduced by the model results, 828 
with the exception of a three-to-four-hour delay in the observed evening minimum. It is evident 829 
that all cases exhibit an underprediction of the observed concentrations, with the most pronounced 830 
discrepancies observed in the 'HTAP' case, reaching up to a factor of 3, and the least significant 831 
discrepancies observed in the base and 'THERM' cases, at approximately 60%. 832 

The analysis indicates that the grid resolution is the most critical factor in reproducing the 833 
diurnal variability of PM1 nitrate concentrations. For stations exhibiting regional characteristics 834 
(Hohenspeissenberg, Melpitz, and Puy De Dôme), the 'RES_high' model run provides optimal 835 
predictions during the day, while the 'RES_low' model run more accurately captures evening and 836 
nighttime values. The observed discrepancy during nighttime hours can be attributed to the 837 
distortion of NOx fields in the 'RES_low' case, resulting from the larger grid cells. This distortion 838 
leads to elevated nitrate radical concentrations and increased nitrate aerosol production during 839 
nighttime hours, a process that has the greatest impact on rural areas (Zakoura and Pandis, 2018). 840 
Consequently, the 'RES_low' case results in increased nighttime concentrations that approximate 841 
the observed values. The base and 'THERM' scenarios demonstrate satisfactory performance 842 
across all stations, while the 'HYDRO' case exhibits minimal enhancement. For the sensitivity 843 
model runs employing different emission inventories, the 'HTAP' case outperforms the 'CMIP' 844 
case; however, the agreement between modeled values and observations remains less than that for 845 
the base case. This outcome confirms the suitability of the CAMS database for modeling European 846 
PM1 nitrate concentrations. 847 
  848 
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 849 
Table 4: Names, locations and data availability of the stations used for the comparison of diurnal 850 
PM1 NO3

- concentrations. The location type of each station is also categorized as rural (RUR) or 851 
downwind (DW) locations. 852 

 853 
 

Station Name 
 

Station Code 
 

Longitude 
 

Latitude 
 

Availability of 
 hourly data 

 
Birkenes II (RUR) 

 
NO0002R 

 
58°23'19"N  

 
008°15'07"E 

 
8/2012 – 8/2018 

 
Bucharest (DW) 

 
RO0007R 

 
44.344°N  

 
26.012°E 

 
8/2016 – 8/2018 

 
 

Hohenspeissenberg 
(DW) 

 
 

DE0043G 

 
 

47°48'05"N  

 
 

011°00'35"E 

 
4/2015 – 10/2015 
1/2017 – 9/2017 

10/2017 – 11/2018 

 
 

Melpitz (RUR) 

 
 

DE0044R 

 
 

51°31'49"N  

 
 

012°56'02"E 

 
7/2015 – 9/2015 

5/2016 – 11/2017 

 
Puy de Dôme (RUR) 

 
FR0030R 

 
45°46'00"N  

 
002°57'00"E 

 
3/2015 – 10/2016 
1/2018 – 12/2018 

 
SIRTA  

Atmospheric 
Research 

Observatory (DW) 

 
 

FR0020R 

 
 

48°42'31"N  

 
 

002°09'32"E 

 
 

10/2014 – 1/2016 

 
Villeneuve d'Ascq 

(DW) 

 
FR0027U 

 
50.611°N  

 
3.14°E 

 
10/2016 – 11/2017 
7/2018 – 12/2018 

 854 
 855 
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 856 
Figure 8: Diurnal evolution of measured (black line) and predicted (colored lines) PM1 NO3

- 857 
surface concentrations from the base case model and all model sensitivity cases for the stations at 858 
(a) Birkenes, (b) Bucharest, (c) Hohenspeissenberg and (d) Melpitz. 859 
 860 

(a) Birkenes (b) Bucharest 

(c) Hohenspeissenberg (d) Melpitz 
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 861 
Figure 8 (cont): Diurnal evolution of measured (black line) and predicted (colored lines) PM1 NO3

- 862 
surface concentrations from the base case model and all model sensitivity cases for the stations at 863 
(e) SIRTA, (f) Villeneuve and (g) Puy De Dôme. 864 
 865 

866 
The global tropospheric burden of aerosol nitrate, defined as the total tropospheric column mass 867 

concentration expressed in terms of teragrams (Tg) and averaged over the entire time period from 868 
2008 to 2018, is outlined in Table 5 and Figure 9. This analysis encompasses the predictions from 869 
the base case as well as the sensitivity model runs. The base case estimates a burden of 0.7 Tg, 870 
closely matching the multi-model average of 0.63 Tg reported by Bian et al. (2017). The 'RES_low' 871 
case demonstrates the most substantial burden of 0.89 Tg, representing a 27% increase compared 872 
to the base case estimate. This is attributable to larger grid cells, which have a distorting effect on 873 
NOx concentration fields over broader regions, leading to elevated nocturnal production of 874 
particulate nitrate. Conversely, the 'RES_high' case exhibits the lowest burden of 0.53 Tg, a 24% 875 
decrease compared to the base case estimate, attributed to the more accurate reproduction of NOx 876 
concentration fields by this sensitivity and the reduced nocturnal production of particulate nitrate. 877 

The 'CMIP' case estimates a burden value close to the base case one (0.74 Tg), while the 'HTAP' 878 
model run produces a higher burden of 0.88 Tg, driven by the elevated particulate nitrate 879 
differences compared to the base case, particularly over India and the Western US. The 'THERM' 880 
and 'HYDRO' cases both yielded burdens of 0.69 Tg, indicating a minimal impact of the aerosol 881 
thermodynamic state assumption, as well as the N2O5 uptake coefficient for hydrolysis on the 882 
nitrate aerosol burden. The 'SCAV' case estimates a lower burden of 0.53 Tg due to the increased 883 
wet deposition rates from the simplified scavenging approach. This outcome is consistent with the 884 
results reported by Tost et al. (2007b), who, employing analogous simplifications and assumptions, 885 
including a pH value of 5 for rain and clouds, also observed increased deposition rates. 886 

 887 

(g) SIRTA (f) Villeneuve (e) Puy De Dôme 
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Figure 9: Bar chart showing the average tropospheric burden of total aerosol NO3
- predicted from 888 

the base case and all sensitivity cases for the period 2010-2018. Also shown is the respective 889 
average burden from 9 models taken from Bian et al. (2017), equal to 0.63 Tg. 890 
  891 
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 892 
Table 5: Average tropospheric burden of aerosol NO3

- for the period 2010-2018 for the base case 893 
and all sensitivity simulations. 894 

 895 
  

Tropospheric 
Burden (Tg) 

Simulation 
Name 

 
NO3

- 

 
Base Case 

 
0.70 

 
RES_low (T42) 

 
0.89 

 
RES_high (T106) 

 
0.53 

 
CMIP6 

 
0.74 

 
HTAP 

 
0.88 

 
THERM 

 
0.69 

 
HYDRO 

 
0.69 

 
SCAV 

 
0.53 

 896 
  897 
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898 
This study examined the impact of diverse atmospheric modeling components on the precision 899 

of predicted surface concentrations of nitrate aerosols. A series of sensitivity scenarios were 900 
developed to assess the impact of grid resolution, anthropogenic emission inventories, aerosol 901 
thermodynamic assumptions, uptake coefficient for N2O5 hydrolysis, and scavenging treatments 902 
on model predictions. A comparative analysis was conducted against PM2.5 filter observations and 903 
PM1 AMS measurements, focusing on polluted regions within the Northern Hemisphere. The 904 
findings indicated that accurately replicating observed PM2.5 and PM1 concentrations necessitates 905 
a nuanced approach, as no single model configuration consistently yielded the best results for all 906 
conditions and regions. 907 

With respect to PM2.5 observations, the model demonstrated the most optimal performance in 908 
the USA region, exhibiting the lowest overall bias and error metrics for all respective sensitivities. 909 
In East Asia, the model consistently overpredicted concentrations in all configurations, although 910 
percentage differences were often moderate. Despite the significant disparities in model-911 
observations differences within this region, certain configurations demonstrated the capacity to 912 
enhance both the predicted concentrations and the statistical metrics. These configurations 913 
included higher grid resolution, a lower uptake coefficient for N2O5 hydrolysis, and a simplified 914 
aerosol scavenging treatment. Conversely, Europe emerged as a particularly challenging region 915 
for the model to replicate, exhibiting both under- and overpredictions of nitrate concentrations 916 
relative to observations, a pattern that exhibited significant seasonal variation. Specifically, the 917 
discrepancies between predictions and measurements, in terms of model overprediction, reached 918 
their zenith during the warmer period for this region. This phenomenon can be attributed to the 919 
enhanced evaporation of the semi-volatile nitrate aerosol species under warm conditions, a process 920 
that is amplified by the use of nylon filters. This phenomenon was also observed in the comparison 921 
with the EPA network values. Conversely, the model exhibited elevated discrepancies with 922 
observed values from the IMPROVE and EANET networks during the colder periods. 923 
Notwithstanding these challenges, the scenarios that demonstrated an enhancement in comparison 924 
to the base case predictions for East Asia were found to be equally effective in the other two 925 
regions, thereby underscoring their significance in enhancing the model's precision in replicating 926 
PM2.5 nitrate observations. 927 

With respect to PM1 observations, the model demonstrated considerable variations in 928 
performance across different location types and regions. Generally, observations in urban areas 929 
exhibited the strongest correlation with model predictions across all regions within the sensitivity 930 
cases. However, observations in rural locations were either underpredicted or severely 931 
overpredicted in North America and India, respectively. In contrast, rural observations in Europe 932 
and East Asia were more accurately replicated by the base and ‘CMIP’ cases, respectively. In 933 
general, downwind locations posed the greatest challenge for the model, with underprediction 934 
biases being evident in Europe and North America. In contrast, a contrasting behavior was 935 
observed for East Asian values. Overall, the base case demonstrated a satisfactory agreement with 936 
most observations for the regions of Europe and East Asia. In contrast to the PM2.5 comparison, it 937 
was challenging to identify specific model configurations that consistently outperformed the base 938 
case in terms of predicted nitrate concentrations or statistical metrics. However, the selection of 939 
emission inventory emerged as the most crucial factor in enhancing the model's estimation 940 
accuracy. Specifically, the model runs that used the CAMS database provided the best 941 
representation of particulate nitrate concentrations for Europe, the model runs that used the 942 
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HTAPv3 database were most accurate for observations in North America, while the model runs 943 
that used the CMIP6 database best captured values in East Asia. 944 

An analysis of the diurnal variation of PM1 nitrate concentrations observed at European stations 945 
revealed that the majority of model configurations effectively captured the overall diurnal patterns 946 
of the observations at most stations. However, there were exceptions, namely stations that 947 
exhibited characteristics more indicative of regional atmospheric conditions, and thus lacked 948 
significant diurnal variation concerning their maximum and minimum values. However, notable 949 
biases emerged, with the model results systematically overemphasizing the evening minima and 950 
exhibiting a sharp decline in concentrations after midday. This behavior was not mirrored in the 951 
observations, leading to underpredictions of the observed values in the afternoon and evening. The 952 
selection of the grid resolution proved to have the most significant impact on the predicted diurnal 953 
patterns. The high-resolution configuration demonstrated higher accuracy during the morning 954 
hours, while the lower-resolution configuration exhibited a stronger ability to capture afternoon 955 
and evening values. Among the emission inventories, utilization of the CAMS database yielded 956 
the most reliable estimates for PM1 nitrate particle concentrations over Europe. 957 

In regard to the tropospheric nitrate aerosol burden, the base case, the metastable aerosol state 958 
assumptions, the lower uptake coefficient for N2O5 hydrolysis, and the use of the CMIP6 emissions 959 
database yielded values that were the closest to the multi-model average value reported by Bian et 960 
al. (2017). Conversely, scenarios involving a reduced grid resolution and the HTAPv3 emissions 961 
database resulted in estimates that were approximately 25% higher than the base case. This 962 
outcome is attributed to the influence of augmented grid cells and expanded precursor fields. 963 
Conversely, the scenarios where a higher grid resolution and a simplified aerosol scavenging 964 
treatment were used estimated burdens approximately 25% lower compared to the base case, 965 
attributable to the finer spatial resolution and increased wet deposition, respectively. 966 

In conclusion, this study underscores the complexity of accurately modeling nitrate aerosols. 967 
The findings underscore the necessity of selecting appropriate configurations based on regional 968 
and seasonal conditions, with high-resolution grids, CMIP6 emissions, and adjusted uptake 969 
coefficients for N2O5 hydrolysis being pivotal in enhancing the model's performance. However, 970 
the observed variability across regions and seasons underscores the necessity of a multifaceted, 971 
context-sensitive approach to further advance the field of atmospheric modeling of particulate 972 
nitrate concentrations. 973 
  974 
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975 

The usage of MESSy (Modular Earth Submodel System) and access to the source code is licensed 976 
to all affiliates of institutions which are members of the MESSy Consortium. Institutions can 977 
become a member of the MESSy Consortium by signing the “MESSy Memorandum of 978 
Understanding”. More information can be found on the MESSy Consortium website: 979 
http://www.messy-interface.org (last access: 22 May 2024). The code used in this study has been 980 
based on MESSy version 2.55 and is archived with a restricted access DOI 981 
(https://doi.org/10.5281/zenodo.8379120, The MESSy Consortium, 2023). The data produced in 982 
the study is available from the authors upon request. 983 
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Abstract 

Nitrate (NO3
-) aerosol is projected to increase dramatically in the coming decades and may become the 

dominant inorganic particle species. This is due to the continued strong decrease in SO2 emissions, which 

is not accompanied by a corresponding decrease in NOx and especially NH3 emissions. Thus, the radiative 

effect (RE) of NO3
- aerosol may become more important than that of SO4

2- aerosol in the future. The 

physicochemical interactions of mineral dust particles with gas and aerosol tracers play an important role 

in influencing the overall RE of dust and non-dust aerosols but can be a major source of uncertainty due to 

their lack of representation in many global climate models. Therefore, this study investigates how and to 

what extent dust affects the current global NO3
- aerosol radiative effect through both radiation (REari) and 

cloud interactions (REaci) at the top of the atmosphere (TOA). For this purpose, multi-year simulations 

nudged towards the observed atmospheric circulation were performed with the global atmospheric 

chemistry and climate model EMAC, while the thermodynamics of the interactions between inorganic 

aerosols and mineral dust were simulated with the thermodynamic equilibrium model ISORROPIA-lite. 

The emission flux of the mineral cations Na+, Ca2+, K+ and Mg2+ is calculated as a fraction of the total 

aeolian dust emission based on the unique chemical composition of the major deserts worldwide. Our 

results reveal positive and negative shortwave and longwave radiative effects in different regions of the 

world via aerosol-radiation interactions and cloud adjustments. Overall, the NO3
- aerosol direct effect 

contributes a global cooling of -0.11 W/m2, driven by fine-mode particle cooling at short wavelengths. 

Regarding the indirect effect, it is noteworthy that NO3
- aerosol exerts a global mean warming of +0.17 

W/m2. While the presence of NO3
- aerosol enhances the ability of mineral dust particles to act as cloud 

condensation nuclei (CCN), it simultaneously inhibits the formation of cloud droplets from the smaller 

anthropogenic particles. This is due to the coagulation of fine anthropogenic CCN particles with the larger 

nitrate-coated mineral dust particles, which leads to a reduction in total aerosol number concentration. This 

mechanism results in an overall reduced cloud albedo effect and is thus attributed as warming.  

 

Keywords: direct radiative effect, indirect radiative effect, nitrate aerosols, mineral dust 

  







 

Atmospheric aerosols are among the most complex components of the Earth's climate system. 

This is due not only to the diversity of their origins, with many natural and anthropogenic emission 

sources, but also to their extremely varied chemical composition and properties. The many 

mechanisms by which they interact with each other and with physical entities such as radiation, 

clouds, land, and oceans add to their complexity and play a critical role in the energy balance of 

the planet (Arias et al., 2021). The most direct way in which aerosols affect the Earth's energy 

balance is through their interactions with solar shortwave (SW) and terrestrial longwave (LW) 

radiation (IPCC, 2013). Overall, the radiative effect due to aerosol-radiation interactions (REari) is 

mainly dominated by the scattering of SW radiation back to space (negative radiative effect, 

generating a cooling of the climate system) and the absorption of LW radiation (positive radiative 

effect, generating a warming of the climate system) (Gao et al., 2018; Tsigaridis and Kanakidou, 

2018). Aerosols belonging to the black and/or brown carbon family, together with mineral dust 

particles, contribute to absorption (Kanakidou et al., 2005; Zhang et al., 2017; Wong et al., 2019), 

while the main inorganic aerosol components, such as sulfate and nitrate, as well as a significant 

amount of organic carbon contribute mainly to scattering (Kirchstetter et al., 2004; (Bond and 

Bergstrom, 2006; Klingmüller et al., 2019; Zhang, 2020). However, mineral dust can also 

influence the behavior of the REari of anthropogenic pollution. Dust particles alter the 

anthropogenic radiative effect of aerosol-radiation interactions by reducing the loading of 

anthropogenic aerosols (either by coagulating with them or by adsorption of their precursor 

inorganic trace gases), leading to less scattering of solar radiation and thus a warming effect (Kok 

et al., 2023). 

Atmospheric aerosols can also indirectly affect the Earth's energy balance by forming clouds, 

controlling cloud optical thickness and scattering properties, and altering their precipitation and 

lifetime (IPCC, 2013). Atmospheric aerosols act as cloud condensation nuclei (CCN), providing a 

suitable surface for water vapor to condense, leading to the formation of liquid droplets that 

develop into a corresponding liquid cloud (Lance et al., 2004). Such clouds are referred to as warm 

clouds and are typically found in the lower troposphere (Khain and Pinsky, 2018). However, there 

is constant competition between small and large particles for the available amount of water vapor 

(Barahona et al., 2010; Morales and Nenes, 2014). Under the same humidity conditions, the 

presence of small particles will lead to the formation of small droplets with high number 

concentrations, while the presence of larger particles will lead to the formation of large droplets 

but with lower number concentrations.  Depending on the size characteristics of its particle 

population, a warm cloud will exhibit different optical properties, with a population dominated by 

smaller particles generally being more reactive in the SW spectrum. The change in cloud 

reflectivity due to the presence of aerosols is referred to as the first radiative effect due to aerosol-

cloud interactions (REaci) and was first described by Twomey (1977). The small size of 

anthropogenic aerosols results in an overall smaller cloud droplet size, which reduces precipitation 

efficiency and thus increases cloud lifetime. This contributes to cloud reflectivity and is referred 

to as the second radiative effect of aerosol cloud-interactions, first described by Albrecht (1989). 

These two indirect effects are considered equally important for the total indirect radiative effect of 

aerosols (Lohmann and Feichter, 2005). Atmospheric aerosols exert a net cooling effect that can 

partially mask the warming effect of greenhouse gases, therefore, the recent decline in 







anthropogenic aerosol concentrations may accelerate global warming (Urdiales-Flores et al., 

2023). Overall, the radiative effect due to aerosol-cloud interactions is considered the main source 

of existing uncertainty in the effective (total) radiative effect of aerosols in the atmosphere (Myhre 

et al., 2014; Seinfeld et al., 2016). 

Mineral dust influences the anthropogenic radiative effect through aerosol-cloud interactions in 

several ways that can result in either a net warming or net cooling effect. Dust particles can increase 

the of cloud droplet number concentrations (CDNC) in remote areas since through chemical aging 

by pollutants (Nenes et al., 2014; Karydis et al., 2017), dust particles become more hygroscopic 

and require lower supersaturation thresholds for activation (Karydis et al., 2011).  This is caused 

by the transfer of anthropogenic pollutants towards remote desert regions which enhances the 

solubility of dust particles. In such regions, this mostly results in increased cloud albedo and a net 

cooling effect. However, dust particles also tend to reduce the availability of smaller anthropogenic 

CCN. This is due to intrusions of aged dust particles into polluted environments which reduce the 

numbers of smaller aerosols through increased coagulation with them. This results in lower cloud 

reflectivity (albedo) and thus a net warming effect (Klingmüller et al., 2020). Furthermore, when 

dust is above or below low-level clouds, the resulting effect of local heating is an increase in total 

cloud cover due to enhanced temperature inversion or enhanced upward vertical motion, 

respectively (Kok et al., 2023). On the other hand, when dust is present inside low-level clouds, 

local heating enhances in-cloud evaporation, resulting in an overall decrease in cloud cover. Kok 

et al. (2023) showed that the amount of desert dust in the atmosphere has increased since the mid-

19th century, causing an overall cooling effect on the Earth that masks up to 8% of the warming 

caused by greenhouse gases. If the increase in dust were halted, the previously hidden additional 

warming potential of greenhouse gases could lead to slightly faster climate warming.  

NO3
- is expected to dominate the global aerosol composition in the coming decades due to the 

predicted limited availability of SO4
-2 following the abrupt decline in SO2 emissions, which will 

not necessarily be accompanied by proportional reductions in NOx and NH3 emissions (Bellouin 

et al., 2011; Hauglustaine et al., 2014). Excess NO3- is expected to exert a cooling REari by 

scattering SW radiation(Bauer et al., 2007a; Xu and Penner, 2012; Myhre et al., 2013; IPCC, 

2013; Li et al., 2015), but the REaci is much more complex and complicated and can lead to both 

cooling and warming. Mineral dust thus becomes a key factor, as it is one of the main promoters 

of NO3
- aerosol formation, providing a very suitable surface for gaseous HNO3 condensation to 

the aerosol phase (Karydis et al., 2011; Trump et al., 2015). In addition to HNO3 adsorption, 

heterogeneous reactions on the surface of dust particles are known to promote nitrate formation 

(Krueger et al.,2004; Hodzic et al.,2006). The most important pathway through which this occurs 

is N2O5 hydrolysis with a yield for aerosol nitrate of ~2 (Seisel et al.,2005; Tang et al.,2012). At 

the same time, other reactions, such as NO2 oxidation, contribute to much slower nitrate production 

and are of major importance mainly during short periods of dust pollution events (Li et al., 2024). 

These processes  affect not only the optical properties of dust aerosols, which will influence their 

overall REari, but also how they can alter cloud formation and microphysics. NO3
- aerosols increase 

the hygroscopicity of mineral dust (Kelly et al., 2007) by providing layers of soluble material on 

their surface, thus increasing their ability to act as CCN (Karydis et al., 2017). In doing so, they 

also increase the size of dust particles through hygroscopic growth and therefore their coagulation 

efficiency. Thus, nitrate-dust interactions are a complex mechanism that ultimately affects 







climatology in a variety of ways. The role of mineral dust in modifying the influence of NO3
- 

aerosols in the global REaci is not yet well understood. This study aims to focus on the extent of 

the REari and REaci of NO3
- aerosols and on how interactions with mineral dust regulate both on a 

global scale. 

This study is organized as follows: in Section 2, details of the modeling setup for conducting 

the global simulations as well as the treatment of dust-nitrate interactions in the model are 

discussed and the methodology for calculating the global REari and REaci of NO3
- aerosols is 

explained. Section 3 presents the main results for the global REari for coarse and fine NO3
- aerosols 

for the base case simulation and the sensitivity cases listed in Table 1. Section 4 presents the results 

for the global REaci of total NO3
- aerosols, while section 5 includes the feedback mechanism of 

dust-nitrate interactions with cloud microphysics. Finally, the main conclusions and a general 

discussion on the scope of the study are presented in section 6. 

 

 

The simulations were performed with the global atmospheric chemistry and climate model 

EMAC (ECHAM/MESSy) (Jockel et al., 2006), which includes several submodels describing 

atmospheric processes and their interactions with oceans, land, and human influences. These 

submodels are linked through the Modular Earth Submodel System (MESSy) (Jockel et al., 2005) 

to a base model, the 5th Generation European Center Hamburg General Circulation Model 

(ECHAM) (Roeckner et al., 2006). The submodel system used in this work includes the MECCA 

submodel, which performs the gas phase chemistry calculations (Sander et al., 2019). The SCAV 

submodel is responsible for the in-cloud liquid-phase chemistry and wet deposition processes (Tost 

et al., 2006; Tost et al., 2007b), while DRYDEP and SEDI are used to compute the dry deposition 

of gases and aerosols and gravitational settling, respectively (Kerkweg et al., 2006). All aerosol 

microphysical processes are calculated by the GMXe submodel (Pringle et al., 2010a; Pringle et 

al., 2010b), where aerosols are divided into 4 lognormal size modes (nucleation, Aitken, 

accumulation and coarse).Each mode is defined in terms of aerosol number concentration, number 

mean dry radius, and geometric standard deviation (sigma). The mean dry radius for each mode is 

allowed to vary within fixed bounds (0.5 nm – 6 nm for nucleation, 6 nm - 60 nm for Aitken, 60 

nm - 700 nm for accumulation, and above 700 for coarse) and the sigma is fixed and equal to 1.59 

for the first three size modes and 2 for the coarse mode.  The coagulation of aerosols is also handled 

by GMXe, following Vignati et al. (2004) and the coagulation coefficients for Brownian motion 

are calculated according to Fuchs and Davies (1964). The partitioning between the gas and aerosol 

phases is calculated using the ISORROPIA-lite thermodynamic module (Kakavas et al., 2022) as 

implemented in EMAC by Milousis et al. (2024). The optical properties of the aerosols and the 

radiative transfer calculations are simulated by the submodels AEROPT (Dietmuller et al., 2016) 

and RAD (Dietmuller et al., 2016), respectively. AEROPT can be called several times within a 

model time step with different settings for the aerosol properties. More details are given in section 

2.3.1. All cloud properties and microphysical processes are simulated by the CLOUD submodel 

(Roeckner et al., 2006) using the two-moment microphysical scheme of Lohmann and Ferrachat 

(2010) for liquid and ice clouds. The activation processes of liquid cloud droplets and ice crystals 

follow the physical treatment of Morales and Nenes (2014) and Barahona and Nenes (2009), 







respectively, as described by Karydis et al. (2017) and Bacer et al. (2018). More details are given 

in Section 2.3.2. 

The meteorology for each of the simulations was nudged by ERA5 reanalysis data (C3S, 2017), 

thus this study estimates the radiative effect of nitrate aerosols with respect to REari and REaci 

separately, rather than the effective (total) radiative effect, as this would require multiple free-run 

simulations with prescribed sea surface temperatures for each case separately. The spectral 

resolution used for each simulation was T63L31, which corresponds to a grid resolution of  1.875° × 1.875°  and 31 vertical layers up to 25 km in height. The period covered by the 

simulations is from 2007 to 2018, with the first year representing the model spin-up period. 

Anthropogenic aerosol and trace gas emissions were taken from the CMIP6 database (O’Neill 

et al., 2016) according to the SSP370 scenario. Natural NH3 emissions (from land and ocean) were 

based on the GEIA database (Bouwman et al., 1997), and natural volcanic SO2 emissions were 

taken from the AEROCOM database (Dentener et al., 2006). Biogenic NO emissions from soils 

were calculated online according to the algorithm of Yienger and Levy (1995), while lightning-

produced NOx was also calculated online by the LNOx submodel (Tost et al., 2007a) using the 

parameterization of Grewe et al. (2001). DMS emissions from the oceans are calculated online by 

the AIRSEA submodel (Pozzer et al., 2006). Sea salt emissions are based on the AEROCOM 

database (Dentener et al., 2006) following the chemical composition reported by Seinfeld and 

Pandis (2016), i.e. 30.6% Na+, 3.7% Mg+, 1.2% Ca2+, 1.1% K+, and 55% Cl-. Dust emissions are 

calculated online using the parameterization of Astitha et al. (2012). In this scheme, while the 

surface friction velocity is the most important parameter for the amount of the emitted dust flux, 

the meteorological information for each grid cell is also taken into account. Dust particles are 

emitted in the accumulation and coarse size modes of the insoluble fraction but can be transferred 

to the soluble fraction after either coagulation with other soluble species and/or by condensation 

of soluble material on their surface. Both processes are treated and calculated by GMXe and 

ISORROPIA-lite. The emissions of mineral ions (Ca2+, Mg2+, K+, and Na+) are estimated as a 

fraction of the total dust emission flux based on the soil chemical composition of each grid cell. 

This is done using desert soil composition maps from Klingmüller et al. (2018) which are based 

on the mineral ion fractions from Karydis et al. (2016). These mineral ions are treated as individual 

species that are part of the aerosol in each size mode and are assumed to be well mixed with the 

rest of the aerosol species considered (i.e., dust, black carbon, organics, inorganic ions). The 

aerosol composition within each of the seven modes considered is uniform in size (internally 

mixed), but may vary between modes (externally mixed).  

To assess the impact of changes in mineral dust chemistry and emissions on the global NO3
- 

aerosol REari and REaci, four additional sensitivity simulations were performed (Table 1). In the 

first sensitivity simulation, mineral dust is described only by a bulk, chemically inert species. In 

this case, there is no uptake of HNO3 by the dust particles due to acid-base interactions with the 

non-volatile cations (NVCs), and so it remains in the gas phase. In the second sensitivity case, the 

chemical composition of the mineral dust was assumed to be spatially uniform, with a percentage 

distribution for bulk dust, Na+, K+, Ca2+ and Mg2+ particles assumed to be 94%, 1.2%, 1.5%, 2.4% 

and 0.9% respectively according to Sposito (1989). Finally, two additional simulations were 

performed to assess the impact of the global mineral dust budget on the results, where the dust 

emission fluxes were first halved and then increased by 50% to account for the historical increase 







in global dust mass load since pre-industrial times, as reconstructed by Kok et al. (2023). The 

particle size distribution of the emitted dust mass remained unchanged in all sensitivity 

simulations. 

Overall, the EMAC model is well established in the literature for its ability to accurately predict 

organic and inorganic aerosol concentrations and compositions, aerosol optical depth, acid 

deposition, gas-phase mixing ratios, cloud properties, and meteorological parameters (de Meij et 

al., 2012; Pozzer et al., 2012, 2022; Tsimpidi et al., 2016, 2017; Karydis et al., 2016, 2017; Bacer 

et al., 2018;  Milousis et al., 2024), factually replicate dust emissions (Astitha et al., 2012; 

Abdelkader et al., 2015; Klingmüller et al., 2018), and provide realistic estimates for CCN and 

CDNC (Chang et al., 2017; Karydis et al., 2017; Fanourgakis et al., 2019). Here, a comparison of 

the performance of the model in estimating the surface mass concentrations of PM2.5 NO3
- and 

total PM10 aerosols is provided in the supplemental material (Figures S2, S3 and Tables S1, S2). 

In addition, the ability of the model to estimate CDNCs is evaluated (Figure S4 and Table S3). 

The comparison is made with observations of PM2.5 nitrate aerosols from regional networks in the 

polluted northen hemisphere covering the regions of East Asia (EANET, The Acid Deposition 

Monitoring Network in East Asia), Europe (EMEP, European Monitoring and Evaluation 

Programme) and the USA for urban (EPA-CASTNET, U.S. Environmental Protection Agency 

Clean Air Status and Trends Network) and rural (IMPROVE, Interagency Monitoring of Protected 

Visual Environments) locations. The comparison with observations of surface mass PM10 aerosols 

also covers the above mentioned monitoring networks, with the exception of the EPA. Finally, the 

CDNCs estimated by the base case simulation are compared with the CDNCs observed in different 

regions of the planet (continental, polluted and clean marine) over different time periods, but also 

altitudes, as found in Karydis et al., (2017) and all relevant references therein. 

  







Table 1: Differences between the base case and all sensitivity simulations performed. 

 
Simulation Name 

 
Conditions Applied 

 
Base Case 

 
Mineral dust ion composition according to 

Karydis et al. (2016)1 

 
Sensitivity 1: Chemically Inert Dust 

 
Mineral dust emitted exclusively as a 

chemically inert bulk particle 

 
Sensitivity 2: Homogeneous Ion Composition 

Global homogeneous ionic composition of 
mineral dust particles according to Sposito 

(1989) 2 

 
Sensitivity 3: Half Dust Scenario 

 
50% reduced dust emission flux  

 
Sensitivity 4: Increased Dust Scenario 

 
50% increased dust emission flux  

 

 

 

The interactions between mineral dust and nitrate aerosols play a crucial role in altering the size 

distribution and optical properties of both species and can also strongly influence cloud 

microphysical processes (Fig. 1). Therefore, these interactions affect both the REari and the REaci 

of both nitrate and dust aerosols. First, the adsorption of HNO3 onto the surface of dust particles 

is a process that strongly promotes the formation of nitrate aerosols on dust (Karydis et al., 2016). 

We treat this condensation process using the GMXe submodel. Specifically, the amount of gas 

phase species that kinetically condenses within a model time step (equal to 10 minutes in this 

study) is calculated according to the diffusion-limited condensation theory of Vignati et al. (2004). 

The diffusive flux of gas on a single particle surface for each size mode  is described by the 




















condensation coefficient Ci according to Fuchs and Davies (1964) and is estimated from the 

following function as found in Vignati et al. (2004).  𝐶𝑖 =  4𝜋𝐷𝑟𝑔𝑖4𝐷𝑠𝑣𝑟𝑔𝑖 +  𝑟𝑔𝑖𝑟𝑔𝑖 + 𝛥 

Where rgi is the geometric mean radius of the size mode , D is the diffusion coefficient, s is an 

accommodation coefficient for each gas species treated and has the assigned values of 1 for H2SO4 

(Vignati et al. 2004), 0.1 for HNO3, 0.064 for HCl and 0.09 for NH3 (Pringle et al., 2010a; Pringle 

et al., 2010b). v is the mean thermal velocity of the molecule and Δ is the mean free path length of 

the gas molecule (the distance from which the kinetic regime applies with respect to the 

particle).This information is then passed to the ISORROPIA-lite thermodynamic module to 

calculate the gas/aerosol partitioning. Specifically, the module receives as input the ambient 

temperature and humidity along with the diffusion-limited concentrations of H2SO4, NH3, HNO3, 

and HCl, the concentrations of the non-volatile cations (NVCs) Na+, K+, Ca2+ and Mg2+, and the 

concentrations of the ions SO4
2-, NO3

-, NH4
+, and Cl- present in the aerosol phase from the previous 

time step. The module then calculates the equilibrium reactions of the NO3
- anion with the NVCs, 

depending on their abundance with respect to the SO4
2- anion, taking into account mass 

conservation, electroneutrality, water activity equations and precalculated activity coefficients for 

specific ionic pairs (Fountoukis and Nenes, 2007; Kakavas et al., 2022). Therefore, in all cases 

where mineral dust is considered chemically active, all reactions of nitrate aerosols with NVC are 

treated. The salts that may be formed are assumed to be completely deliquesced as follows:  𝐶𝑎(𝑁𝑂3)2 → 𝐶𝑎(𝑎𝑞)2+ +  2𝑁𝑂3(𝑎𝑞)−    

 𝑁𝑎𝑁𝑂3 → 𝑁𝑎(𝑎𝑞)+ + 𝑁𝑂3(𝑎𝑞)−      

 𝐾𝑁𝑂3 → 𝐾(𝑎𝑞)+ + 𝑁𝑂3(𝑎𝑞)−     

 𝑀𝑔(𝑁𝑂3)2 → 𝑀𝑔(𝑎𝑞)2+ +  2𝑁𝑂3(𝑎𝑞)−  

 

Salt deliquescence over a range of relative humidities is treated by the Mutual Deliquescence 

Relative Humidity (MDRH) approach of Wexler and Seinfeld (1991). In a multicomponent salt 

mixture, the MDRH determines the humidity value above which all salts are considered to be 

saturated. In this study, if the wet aerosol is below the MDRH, it does not crystalize and remains 

in a supersaturated aqueous solution (Kakavas et al., 2022), with all salts completely deliquesced. 

More information on equilibrium reactions and equilibrium constants as well as the corresponding 

thermodynamic equilibrium calculations can be found in Fountoukis and Nenes (2007). It should 

be noted that in this study nitrate production on dust particles does not only occur via the 

thermodynamic equilibrium between gas-phase HNO3 and particulate nitrate, but also via 

heterogeneous chemistry by hydrolysis of N2O5 on the dust surface. This chemical formation 

pathway is the most dominant for heterogeneous nitrate production (Seisel et al., 2005; Tang et 

al., 2012), while others,such as NO2 oxidation during dust pollution events over polluted regions  

(Li et al., 2024), do not show such high yields under normal conditions. On the other hand,  

consideration of sulphate production by heterogeneous chemistry on dust would theoretically 

result in slightly reduced amounts of particulate nitrate in some cases due to  acidification of dust 







particles inhibiting partitioning of HNO3 to the aerosol phase (Nenes et al., 2020). Overall, full 

consideration of heterogeneous chemistry on dust could change simulated nitrate aerosol 

concentrations only slightly and episodically, and therefore changes to radiative effect estimates 

are not expected to be critical. 

The coating of dust particles by nitrate aerosols during gas/aerosol partitioning calculations is 

an important process that leads to an increase in dust solubility and hygroscopicity (Laskin et al., 

2005). Therefore, after these processes have taken place, a large fraction of the originally insoluble 

dust particles has become soluble (Fig. 1a), which leads to changes in their optical properties, as 

their increased ability to absorb water makes them more efficient in extinguishing SW radiation 

and absorbing and emitting LW radiation (Fig. 1a, 1b) (Kok et al., 2023). The transfer to the soluble 

fraction after coating with soluble material is handled by the GMXe submodel, which also provides 

key aerosol attributes necessary for the calculation of the dust optical properties (see Section 2.3).  

  

Figure 1: Conceptual illustration of how dust-nitrate interactions affect the total NO3
- (left) REari and 

(right) REaci. a) In dust-rich environments, nitric acid transported from anthropogenic pollution and biomass 

burning regions interacts with mineral cations to form a soluble coating on the surface of dust particles. The 

dominant effect of these interactions is an enhanced LW absorption (warming REari) by the coarse dust 

particles. b.) In nitrate-rich environments, the intrusion of dust particles and their subsequent interaction 

with freshly formed nitric acid leads to an overall increase in aerosol hygroscopicity and thus a stronger 

SW reflection (cooling REari). c.) In dust-rich environments, the number of ice crystals in cirrus clouds is 

reduced while their size is increased due to the interaction of dust particles with the transported HNO3. This 

results in an optical thinning of the ice clouds, which leads to less trapping of outgoing LW radiation 

(cooling REaci). d.) In nitrate-rich environments, the increased wet radius of aged dust particles leads to 

enhanced coagulation with smaller particles, resulting in a decrease in the number of smaller aerosols and, 







in turn, a decrease in the number of activated particles in cloud droplets by smaller aerosols, which 

ultimately leads to a reduction in the backscattering of SW radiation by warm clouds (warming REari). 

 

 

In general, the changes in the properties of dust particles through their interactions with nitrate 

aerosols will result in more efficient removal rates, mainly through wet deposition, due to their 

higher hygroscopicity and increased size (Fan et al., 2004). The reduced number of dust particles 

that can act as ice nuclei (IN) and their increased size can lead to an optical thinning of cirrus 

clouds (Fig. 1c) (Kok et al., 2023). Furthermore, the changes induced by dust-nitrate interactions 

reduce the activation of smaller aerosols in warm clouds (Fig. 1d). In particular, the enhanced 

hygroscopicity of dust particles will lead to a faster depletion of the available supersaturation, as 

they act as giant CCN that absorb large amounts of water vapor to activate into cloud droplets 

(Karydis et al., 2017). In addition, the population of smaller aerosols will also be depleted by 

increased coagulation with the large dust particles. As a consequence of the different degrees of 

complexity of the dust-nitrate interactions, it is very important to note that they do not always 

result in a linear response in terms of how they affect climate through their subsequent interactions 

with radiation, clouds, or both. 

 

 

To calculate the global REari and REaci of NO3
- aerosols, the optical properties from the 

AEROPT submodel and the radiative transfer calculations from the RAD submodel were used. 

First, AEROPT provides the aerosol extinction (absorption and scattering) coefficients, the single 

scattering albedo, and the aerosol asymmetry factor for each grid cell with a vertical distribution 

analogous to the vertical resolution used. The GMXe submodel is used to provide input of aerosol 

attributes for the calculation of aerosol optical properties, which is done online using 3D look-up 

tables. The tables provide information on the real and imaginary parts of the refractive index and 

the Mie size parameter per size mode (Dietmuller et al., 2016). Then, the radiative scheme of RAD 

uses the particle number weighted average of the extinction cross section, the single scattering 

albedo, and the asymmetry factor as input for the radiative transfer calculations. In addition to 

AEROPT, RAD takes input from the submodels ORBIT (Earth orbital parameters), CLOUDOPT 

(cloud optical properties) (Dietmuller et al., 2016), and IMPORT (import of external datasets) to 

calculate the radiative transfer properties for longwave and shortwave radiation fluxes separately. 

Both the AEROPT and RAD submodels can be invoked multiple times within a model time step, 

each time with different settings for the aerosol optical properties, allowing radiative transfer 

estimates for identical climatological conditions. This is of paramount importance for the 

calculation of the REari of aerosols since any effects due to possibly different climatological 

conditions must be eliminated. Henceforth, all references to RE estimates, as well as net, 

longwave, and shortwave flux quantities, will refer to the top of the atmosphere (TOA) only. 

 

To estimate the global REari of all aerosols as well as that of total, coarse, and fine NO3
- aerosols, 

3 simulations were performed for each sensitivity case in Table 1. In the first simulation all aerosol 

species are present. In the second simulation NO3
- aerosols are completely removed by turning off 

their formation by removing the pathway of HNO3 formation through both NO2 oxidation and 







N2O5 hydrolysis, leaving no available HNO3 to condense on the aerosol via equilibrium 

partitioning and form nitrate. In the third simulation, coarse mode NO3
- aerosols are removed by 

allowing HNO3 to condense only on the fine mode (i.e., the sum of the three smaller lognormal 

size modes: nucleation, Aitken, and accumulation). For each of these three simulations, the 

radiative transfer routines are called twice for each time step. One call uses the normal aerosol 

optical properties of the existing population, and the other call uses an aerosol optical depth equal 

to 0 to emulate an atmosphere without aerosols. Essentially, the global REari of each simulation 

can be calculated by taking the difference between the net fluxes between the two calls. More 

specifically, the first simulation will yield the REari of the total aerosol load (F1,ari hereafter), the 

second simulation will yield the REari of all aerosols except NO3
- (F2,ari below), and the third 

simulation will yield the REari of all aerosols except the coarse mode NO3
- (F3,ari below). Since the 

above estimates of the radiative effect were computed using the exact same climatology, its effect 

was effectively eliminated. However, in order to isolate the NO3
- aerosol radiative effect, it is also 

essential to disable any aerosol-cloud interactions, otherwise the cooling effect would be severely 

underestimated because cloud scattering would make aerosol scattering less relevant (Ghan et al., 

2012). For this purpose, the simplest cloud scheme available in the EMAC model is used, which 

calculates the cloud microphysics according to Lohmann and Roeckner (1996) who empirically 

relate the cloud droplet number concentration to the sulfate aerosol mass (Boucher and Lohmann 

1995)  and specifically to its monthly mean values as derived from the sulfur cycle of the ECHAM5 

circulation model (Feichter et al., 1996). The cloud coverage is estimated according to Tompkins 

(2002) with the use of prognostic equations for the water phases and the distribution moments. To 

disable aerosol-cloud interactions, no aerosol activation routines are used to avoid coupling with 

the activation schemes. Overall, the global REari of total, coarse, and fine NO3
- aerosols are 

obtained as follows: 

● 𝐹𝑁𝑂3,𝑎𝑟𝑖(𝐹𝑁,𝑎𝑟𝑖) = 𝐹1,𝑎𝑟𝑖 − 𝐹2,𝑎𝑟𝑖 

● 𝐹𝑐𝑜𝑎𝑟𝑠𝑒𝑁𝑂3,𝑎𝑟𝑖(𝐹𝑐𝑁,𝑎𝑟𝑖) = 𝐹1,𝑎𝑟𝑖 − 𝐹3,𝑎𝑟𝑖 

● 𝐹𝑓𝑖𝑛𝑒𝑁𝑂3,𝑎𝑟𝑖(𝐹𝑓𝑁,𝑎𝑟𝑖) = 𝐹3,𝑎𝑟𝑖 − 𝐹2,𝑎𝑟𝑖 

 

In this work we estimate the effect of total NO3
- aerosols on the calculated global REaci. 

Climatology plays a crucial role in aerosol-cloud interactions and simulating a "fine-only NO3
- 

atmosphere", as done for the REari calculations, would produce an unrealistic climatological 

scenario, since coarse-mode NO3
- is strongly associated with cations in mineral dust particles 

(Karydis et al., 2016), making them quite effective as CCN (Karydis et al., 2017). Therefore, the 

REaci calculations require 2 additional simulations for each sensitivity case separately: one with all 

aerosols present and one with the entire NO3
- aerosol load removed by turning off their formation 

as described in the previous section. The global REaci is then given by: 

● 𝐹𝑁𝑂3,𝑎𝑐𝑖(𝐹𝑁,𝑎𝑐𝑖) = 𝐹𝐹𝑁 − 𝐹𝑁,𝑎𝑟𝑖

where FFN is the total NO3
- aerosol feedback radiative effect. Since FN,ari is calculated using the 

methodology described in Section 2.3.1, it is only necessary to estimate FFN. This is equal to the 

difference in net fluxes between the two additional simulations. There is no need to emulate an 

aerosol-free atmosphere here since any differences induced by different climatologies must be 







included. The two simulations performed for the calculation of FFN use the cloud formation 

scheme as described in Lohmann and Ferrachat (2010), which uses prognostic equations for the 

water phases and the bulk cloud microphysics. In addition, the empirical cloud cover scheme of 

Sundqvist et al. (1989) is used. For aerosol activation, the CDNC activation scheme of Morales 

and Nenes (2014) is used, which includes the adsorption activation of mineral dust as described in 

Karydis et al. (2017). The effect of dust-nitrate interactions on clouds presented here refers to the 

lowest level of cloud formation at 940 hPa. For the ICNC activation, the scheme of Barahona and 

Nenes (2009) is used, which calculates the ice crystal size distribution through heterogeneous and 

homogeneous freezing as well as ice crystal growth. 

 

 

The global average REari of total NO3
- aerosols at the top of the atmosphere was found to be -

0.11 W/m2, which is within the reported range of the estimated present day all-sky direct radiative 

effect of total NO3
- aerosols by other studies (Liao et al., 2004; Bauer et al., 2007a; Bauer et al., 

2007b; Bellouin et al., 2011; Xu and Penner, 2012; Heald et al., 2014) (Table S4). The NO3
- 

cooling of the REari calculated by EMAC is driven by the scattering of SW radiation (equal to -

0.34 W/m2), which outweighs the warming due to absorption of LW radiation (equal to +0.23 

W/m2) (Table 2). The REari of the total NO3
- aerosol shows a clearly contrasting behavior with 

respect to the size mode considered (Table 2; Figure 2).  

In particular, the coarse particles show a net warming effect of +0.17 W/m2 (Fig. 2i) and 

contribute to 96% of the LW warming of the total nitrate, while only contributing 15% of the 

radiative cooling in the SW spectrum (-0.05 W/m2). The LW warming is strongest over the dust 

belt zone and especially over the Sahara, the Middle East and the northern face of the Himalayan 

plateau, while the contribution over other arid regions such as the Atacama, Gobi, Taklimakan and 

Mojave deserts is significant. These regions are characterized by moderate to high concentrations 

of coarse NO3
- aerosols due to the adsorption of HNO3 on desert soil particles (Karydis et al., 2016; 

Milousis et al., 2024). Therefore, the warming due to absorption of terrestrial LW radiation by 

coarse-mode nitrates interacting with mineral dust is the strongest over these areas (see Fig. 1a), 

ranging from +1.5 W/m2 to +5 W/m2 (Fig. 2iii). On the other hand, the cooling exerted by coarse 

nitrate aerosol through the SW REari is more pronounced over areas where it interacts strongly 

with high concentrations of mineral dust particles (see Fig. 1b). Such areas include the Congo 

Basin, where HNO3 from tropical forest biomass burning interacts with Saharan mineral dust 

particles; the Middle East and North Indian regions, where anthropogenic HNO3 emissions interact 

with mineral dust particles from the Sahara and Taklimakan deserts, respectively; and the East 

Asian region, where HNO3 emissions from Chinese megacities interact with mineral dust particles 

from the Gobi Desert. These regions can lead to an average cooling of up to -3.5 W/m2 (Fig. 2v).  

Interestingly, there is no significant cooling from SW interactions over the Sahara for the coarse 

mode. This phenomenon can be attributed to two factors, the first related to nitrate-dust 

interactions and the second related to the characteristics of the region. Specifically, because the 

underlying desert surface is very bright, its absorption in this part of the spectrum is less than that 

of the particles above it, which means that the desert surface can scatter radiation more effectively 

than the particles above it. This is further enhanced by the growth of coarse mode particles there 







(see Fig. 4x and section 5.1) which increases the absorption cross section of the particles. All this 

leads to an overall attenuation of the cooling effect over this region and sometimes even to local 

warming (Fig. 2v).  

In contrast to the radiative effect of coarse NO3
- particles, the REari of fine NO3

- particles is an 

overall cooling of -0.28 W/m2 (Fig. 2ii). Fine nitrates have a negligible 4 % contribution to the 

warming in the LW spectrum (Fig. 2iv) but account for 85 % of the net cooling of the total nitrate 

aerosols (Fig. 2vi). The cooling induced by fine NO3
- aerosols from scattering of SW radiation is 

stronger (up to -5 W/m2) over regions of high anthropogenic activity, particularly the East Asian 

and Indian regions, where fine nitrates dominate the total nitrate aerosol load. The regions of West 

Africa and the Amazon Basin are characterized by moderate fine nitrate concentrations, and the 

cooling observed there is enhanced by HNO3 associated with biomass burning interacting with 

fresh and aged Saharan dust particles, respectively, which are dominated by accumulation mode 

sizes in the absence of coarse mode nitrates. Finally, other polluted regions such as North America 

and Europe also show SW cooling up to -2 W/m2. 







 

Figure 2: Global mean TOA net REari for (i) coarse and (ii) fine NO3- aerosols; longwave REari for (iii) 

coarse and (iv) fine NO3- aerosols; shortwave REari for (v) coarse and (vi) fine NO3- aerosols, as calculated 

by EMAC from the base case simulation. 

 

 

 







Table 2: Net, longwave, and shortwave global mean TOA REari of total, coarse, and fine NO3
- 

aerosols for the base case and each sensitivity case simulations. 

 

 

Simulation Aerosol Component TOA REari (W/m2) 
  Net LW SW 

Base Case 

 
Total NO3

- 
 

- 0.11 
 

+ 0.23 
 

- 0.34 
 

Coarse NO3
- 

 
+ 0.17 

 
+ 0.22 

 
- 0.05 

 
Fine NO3

- 
 

- 0.28 
 

+0.01 
 

- 0.29 

Chemically Inert 
Dust 

 
Total NO3

- 
 

- 0.09 
 

+ 0.11 
 

- 0.20 
 

Coarse NO3
- 

 
+ 0.07 

 
+ 0.10 

 
- 0.03 

 
Fine NO3

- 
 

- 0.16 
 

+ 0.01 
 

- 0.17 

Homogeneous Ion 
Composition 

 
Total NO3

- 
 

- 0.09 
 

+ 0.18 
 

- 0.27 
 

Coarse NO3
- 

 
+ 0.13 

 
+ 0.17 

 
- 0.04 

 
Fine NO3

- 
 

- 0.22 
 

+ 0.01 
 

- 0.23 

Half Dust Scenario 

 
Total NO3

- 
 

- 0.08 
 

+ 0.19 
 

- 0.27 
 

Coarse NO3
- 

 
+ 0.15 

 
+ 0.18 

 
- 0.03 

 
Fine NO3

- 
 

- 0.23 
 

+ 0.01 
 

- 0.24 

Increased Dust 
Scenario 

 
Total NO3

- 
 

- 0.10 
 

+ 0.27 
 

- 0.37 
 

Coarse NO3
- 

 
+ 0.20 

 
+ 0.26 

 
- 0.06 

 
Fine NO3

- 
 

- 0.30 
 

+ 0.01 
 

- 0.31 
     

 







 

The comparison of the calculated total NO3
- radiative effect due to interactions with net, LW, 

and SW radiation for the sensitivity cases listed in Table 1 can be found in Table 2, which shows 

each of the estimates. Consideration of nitrate interactions with mineral dust cations can greatly 

affect the NO3
- REari estimates. Assuming that mineral dust particles are inert, the estimated 

warming due to LW radiation interactions for total nitrate aerosols is 52% weaker than in the base 

case where dust reactivity is considered. Similarly, the cooling effect exerted by all nitrate aerosols 

through interactions with SW radiation is estimated to be 41% weaker under the assumption that 

mineral dust is non-reactive. Both estimates are lower when mineral dust is assumed to be 

chemically inert, since HNO3 is no longer effectively adsorbed on dust particles. However, since 

both the estimated warming and cooling are weaker, the effects partially cancel each other out, 

resulting in a net cooling effect (-0.09 W/m2) that is 18% weaker compared to the base case 

calculations. Assuming a homogeneous ionic composition for the dust, results in SW cooling and 

LW warming for total nitrate aerosols being 21% and 22% lower, respectively, weakening the 

estimate for the net cooling REari by 18% (-0.09 W/m2). The net direct radiative effect of total NO3
- 

is the same for the cases where dust is assumed to have a homogeneous chemical composition and 

where it has no chemical identity, indicating the importance of both aspects for the impact of dust-

nitrate interactions on the direct radiative effect.  

In the Half Dust scenario, the total nitrate aerosol LW warming estimate is 17% weaker than in 

the base case, while the total nitrate aerosol SW estimate is even more so (21%), resulting in a 

lower net cooling estimate of -0.08 W/m2. Finally, the Increased Dust scenario shows the strongest 

total nitrate aerosol LW warming effect (17% increase over the base case) due to an increase in 

coarse mode nitrate. At the same time, the cooling effect of total nitrate aerosols due to interactions 

with SW radiation shows a smaller increase of 9%. Thus, accounting for the historical increase in 

mineral dust emissions results in a net cooling estimate of -0.10 W/m2, which is smaller than the 

base case. Interestingly, the behavior of the global total NO3
- REari does not exhibit linearity with 

respect to the global dust load. This is not surprising since the nitrate-dust interactions themselves 

are not linearly correlated, and a given increase or decrease in dust emissions does not lead to an 

analogous change in nitrate aerosol levels. For example, Karydis et al. (2016) have shown that 

moving from a scenario in which nitrate-dust chemistry is not considered to one in which it is, but 

with half dust emissions, resulted in a 39% increase in the tropospheric burden of nitrate aerosols. 

However, moving from a scenario with half to full dust emissions, the corresponding increase was 

only 9%. In our case, moving from the chemically inert dust scenario to the half dust scenario led 

to an 18% increase in atmospheric nitrate aerosol burden, while moving from the half dust scenario 

to the base case led to an additional 8% increase, and finally moving from the base case to the 

increased dust scenario led to an even smaller increase of 5%.  

There are several reasons for this non-linearity between changes in dust load and nitrate 

production. Firstly, since the adsorption of HNO3 onto dust particles is the main driver of nitrate 

production on dust, over desert areas (where the change in dust load takes place) the amount of 

nitric acid present is the limiting factor for such production, rather than the amount of dust itself. 

Secondly, when more dust is present in the atmosphere, the combination of its increased coating 

with the higher aerosol numbers, tends to result in its  more efficient removal by wet deposition as 







well as coagulation. This inherently affects nitrate production, which does not increase in 

proportion to the increase in dust. 

 

 

The global average REaci of total NO3
- aerosols at the top of the atmosphere was found to be 

+0.17 W/m2. In contrast, an estimate of the REaci of nitrate aerosols by Xu and Penner (2012) 

showed only a trivial cooling effect for particulate NO3
- (-0.01 W/m2). Similar to the REari, the net 

REaci estimated by EMAC is driven by the effect on the SW part of the spectrum, which causes a 

warming effect of +0.27 W/m2, while the effect on the LW radiation causes an average cooling of 

-0.10 W/m2 (Table 3). Overall, the net REaci of total NO3
- aerosols is reversed compared to the net 

REari, i.e. REaci exerts a strong cooling effect over regions where REari exerts a warming effect and 

vice versa (Fig. 3i). The reason for this is that the regions contributing to a cooling REari are 

dominated by smaller sized nitrate aerosols and vice versa. Therefore, the size characteristics of 

the dominant nitrate aerosol population lead to different effects on the cloud optical properties as 

discussed in section 1. For example, as the dominance of smaller nitrate aerosols decreases over a 

particular region, the optical thinning of low-level clouds will have an opposite effect on the REaci 

(Fig. 1d). Details of the mechanism by which nitrate-dust interactions affect cloud microphysical 

processes are discussed in section 5. Over North America and Europe, REaci causes a warming 

effect of up to +3 W/m2, driven solely by the effect on SW radiation (Fig. 3iii). Over the regions 

of East Asia and the Amazon and Congo basins, REaci reaches a maximum of +5 W/m2, driven by 

both the effect on the SW (up to +4 W/m2) and LW (up to +1.5 W/m2) parts of the radiation 

spectrum. The cooling effect of REaci (up to -2 W/m2) extends mainly between the equatorial line 

and the Tropic of Cancer, mainly due to the interaction of nitrate aerosols with desert dust particles 

(e.g. from the Sahara) and their effect on the terrestrial spectrum (LW) (Figs. 1c & 3ii). The cooling 

effect of dust interactions with anthropogenic particles in the LW spectrum corroborates the 

findings of Klingmüller et al. (2020) and is attributed to the reduced ice-water path due to the 

depletion of small aerosols, which in turn leads to less trapped outgoing terrestrial radiation. In 

addition, Kok et al. (2023) note how the presence of dust particles leads to an optical thinning of 

cirrus clouds by reducing the number of ice crystals while increasing their size, which also leads 

to less trapping of outgoing LW radiation and thus a cooling effect (Fig. 1c). On the other hand, 

the warming effect of dust interactions with anthropogenic particles in the SW spectrum requires 

further investigation and is therefore discussed in more detail in Section 5.  







Figure 3: Global mean TOA REaci for total NO3
- aerosols. Estimates for (i) net, (ii) longwave, and (iii) 

shortwave, as calculated by EMAC from the base case simulation. 













Table 3: Net, longwave, and shortwave global mean TOA REaci of total NO3
- aerosols for the 

base case and each sensitivity case simulations. 

Simulation TOA REaci (W/m2) 
 Net LW SW 

Base Case  
+ 0.17 

 
- 0.10 

 
+ 0.27 

Chemically Inert Dust  
+ 0.11 

 
- 0.06 

 
+ 0.17 

Homogeneous Ion 
Composition 

 
+ 0.13 

 
- 0.09 

 
+ 0.22 

Half Dust Scenario  
+ 0.15 

 
- 0.08 

 
+ 0.23 

Increased Dust Scenario  
+ 0.14 

 
- 0.11 

 
+ 0.25 

 

 

Table 3 shows the comparison of the net, LW, and SW contributions of total NO3
- to the REaci 

at the top of the atmosphere as calculated by the base case simulation and all sensitivity cases 

considered. By assuming a chemically inert dust, the calculated net REaci of nitrate decreases by 

35%, resulting in a net warming of +0.11 W/m2. As with the REari estimate, this sensitivity case 

produces the largest deviation from the base case among all sensitivity simulations, for both the 

SW (37% less warming) and LW (40% less cooling) estimates. This is due to the fact that the 

absence of dust-nitrate interactions does not have such a large impact on the population of both 

aerosols and activated particles (see also Section 5). The assumption of a homogeneous ionic 

composition of the mineral dust leads to a weakened LW cooling estimate of 10% and a weakened 

SW warming estimate of 19% resulting in a net NO3
- REaci of +0.13 W/m2 (24% lower than in the 

base case).  

The reduced dust emissions result in a 15% weaker warming in the SW spectrum and a 20% 

weaker cooling in the LW spectrum, leading to an overall NO3
- REaci of +0.15 W/m2 (12% weaker 

than the base case scenario). This is because the reduced loading of nitrate aerosols, especially in 

the coarse mode, in the half dust scenario results in less absorption of LW radiation (Fig. 1c) (hence 

less cooling). Similarly, the effect of dust-nitrate interactions on the activation of smaller particles 

(Fig. 1d) is less drastic and results in a weaker inhibition of SW radiation scattering (hence less 

warming, see also Section 5). Finally, increased dust emissions in the increased dust scenario show 

a 10% increase in the LW cooling and an 8% decrease in the SW warming effect, surprisingly 

resulting in a net warming (+0.14 W/m2) that is lower than in the half dust scenario. The reason 

that this scenario results in more LW cooling than the base case is that the increased amount of 

dust particles leads to even more optical thinning of the ice clouds, and therefore even less trapping 

of LW radiation (more cooling). However, the reason why the SW warming estimate is lower than 

the base case is more complicated. First, the transition from the half dust scenario to the base case 

and then to the increased dust scenario does not lead to an analogous increase in the nitrate aerosol 







burden (see Section 3.2). Moreover, since the number of aerosols has increased from the increased 

dust scenario to the base case, but the relative humidity has remained largely the same, there is 

more competition for water vapor because it is now distributed over a larger population. As a 

result, the wet radius increase in the presence of nitrates is not as strong in the increased dust 

scenario compared to the base case, and the depletion of smaller sized particles is also not as strong 

(not shown). The implications of the depletion of the aerosol population in the presence of nitrate 

aerosols on the microphysical processes of warm clouds, and consequently on SW warming, are 

discussed in the next section.  

 


 

To further investigate the cause of the positive REaci induced by the NO3
- aerosols, their effect 

on the aerosol population characteristics as well as on the cloud microphysics is investigated, with 

respect to the lowest forming cloud level of 940 hPa. For this purpose, a sensitivity simulation is 

performed assuming a 'nitrate aerosol free' (NAF) atmosphere, in which the formation of NO3
- 

aerosols has been switched off, but an advanced cloud scheme is considered which is the same as 

the one described in Section 2.3.2. Essentially the same setup that was used for the estimation of 

the total nitrate aerosol feedback radiative effect. This simulation is used to determine whether the 

presence of NO3
- aerosols has a significant effect on the hygroscopicity and size of atmospheric 

aerosols and ultimately on the maximum supersaturation developed during cloud formation. Over 

polluted areas affected by transported dust air masses from surrounding arid areas, the presence of 

NO3
- aerosols can increase the CCN activity of the large mineral dust particles, resulting in a 

reduction of the maximum supersaturation and inhibiting the activation of the small anthropogenic 

particles into cloud droplets (Klingmüller et al., 2020). Results from the NAF sensitivity 

simulation support this hypothesis over parts of Eastern and Central Asia, where the maximum 

supersaturation decreases by up to 0.05%. In contrast, the presence of NO3
- aerosols increases 

maximum supersaturation by up to 0.2% over North America, Europe, the Middle East, and parts 

of southern Asia (Fig. 4ii). Therefore, changes in maximum supersaturation caused by the presence 

of NO3
- aerosols cannot explain their warming effect through the REaci.  

The presence of NO3
- has a significant effect on the hygroscopicity of both fine and coarse 

aerosols and consequently on their wet radius, as shown in Figures 1a,b & 4. This is most evident 

for coarse desert dust particles, which mix with NO3
- aerosols from urban and forest regions, 

increasing their hygroscopicity by an order of magnitude (up to 0.1), especially over the African-

Asian dust belt and the Atacama Desert in South America (Fig. 4vi). Aerosol hygroscopicity is 

similarly increased for the fine mode particles both near arid regions and over the highly 

industrialized region of Southeast Asia (Fig. 4iv). The low values of the hygroscopic parameter of 

the fine aerosol population, especially over the dust belt zone, are largely due to the higher 

proportion of insoluble fine particles present over these regions (Figure S5). This is also observed 

over other regions with similarly low fine aerosol hygroscopicity (South Africa, South America 

and Western U.S). Nevertheless, the estimates of aerosol kappa values at 940 hPa are broadly 

consistent with the results of Pringle et al., (2010c). On the other hand, the aerosol hygroscopicity 

for the two size modes is only slightly reduced, by up to 0.06 (or <10%) over the oceans and coasts 

of Europe and East Asia, due to interactions of NO3
- with sea salt particles, reducing their 







hygroscopicity. The increased ability of both coarse dust aerosols and smaller aerosols to absorb 

water leads to an increase in their wet radius, but in different parts of the world. For example, fine 

particle sizes increase by up to 0.04 μm (up to 40%) mostly over regions of high anthropogenic 

activity (North America, Europe, and East Asia) (Fig. 4viii). On the other hand, coarse mode 

particle sizes are increased by up to 0.1 μm (up to 10%) over the forests of central Africa and the 

African-Asian dust belt zone (Fig. 4x), while showing a similar decrease near the coasts of the 

polluted northern hemisphere due to the effect of NO3
- on the hygroscopicity of sea salt. 

 

 

 







 

 















Figure 4: (i) Global mean maximum supersaturation, fine aerosol (iii) hygroscopicity and (v) wet 

radius, and coarse aerosol (vii) hygroscopicity and (ix) wet radius, as calculated by EMAC from 

the base case simulation at the altitude of 940 hPa. Absolute difference between base case and 

Nitrate Aerosol Free (NAF) sensitivity simulation in (ii) maximum supersaturation, fine aerosol 

(iv) hygroscopicity and (vi) wet radius, and coarse aerosol (viii) hygroscopicity and (x) wet radius 

at the altitude of 940 hPa. Red indicates higher values calculated by the base case simulation in 

the presence of NO3
- aerosols. 

 

Figure 5 shows the effect of NO3
- on the number concentration of fine and coarse aerosols 

between the base case and the 'NAF' sensitivity simulation, as well as the total aerosol population. 

The presence of NO3
- aerosols decreases the total aerosol number concentration over forests and 

polluted regions (see also Fig. 1d). This behavior is driven solely by the decrease in smaller particle 

sizes, as the effect is minimal for the coarser particles (Figs. 5ii & 5iv). The largest decrease is 

calculated over East and South Asia (up to 1000 cm-3 or 10%), while decreases of up to 200 cm-3 

on average (~10%) are found over Europe, the USA, and Central Africa. This effect is directly 

related to the increased wet radius of the aerosol population (Fig. 4viii) over these regions and thus 

to its depositional efficiency. In addition, coarse dust particles become more hygroscopic due to 

interactions with NO3
- aerosols that increase in size, resulting in increased coagulation with the 

smaller anthropogenic particles, which reduces their abundance.  

The reduced aerosol number concentration in the presence of NO3
- can lead to a reduction of 

particles that are also activated into cloud droplets. Such behavior can be seen in Figure 6, which 

shows the effect of NO3
- on the number concentration of activated fine and coarse particles in 

cloud droplets between the base case and the 'NAF' sensitivity simulation. The reduction in the 

total number of activated cloud droplets is almost entirely due to the reduction in smaller size 

particles (Figs. 6ii & 6iv). A reduction in the total number of activated droplets of up to 30 cm-3 or 

10% is observed over the USA, Amazon, Europe, Central Africa, and parts of the Middle East, 

while this reduction reaches up to 100 cm-3 (10%) over Southeast Asia, where the largest reductions 

in aerosol numbers are also calculated (Fig. 4ii). In turn, these are the regions where the warming 

effect of NO3
- aerosols on the calculated mean REaci is strongest (Figure 3i). The small increase in 

activated droplets (~ 10 cm-3 or 1%) over Beijing, which concerns the fine mode particles, is most 

likely because their number concentration decreases with increasing size. The high aerosol number 

concentration there, which is the global maximum (Figure 5i), results in a hotspot of more readily 

activated particles in the presence of NO3
-. On the other hand, the CDNC decreases slightly over 

the Sahara due to the more efficient deposition capacity of coarse dust particles due to their 

interactions with nitrate aerosols, which is also reflected in the decrease in aerosol number (Fig. 

6iv). Overall, the lower particle number in the presence of NO3
- aerosols hinders the ability of the 

smaller anthropogenic particles to activate into cloud droplets, leading to a reduced cloud cover 

and thus a reduced cloud albedo effect. Therefore, not only less LW radiation is absorbed, but 

more importantly, less SW radiation is scattered back to space, resulting in an overall warming of 

the net average REaci for total NO3
- aerosols. 











Figure 5: Global mean number concentration of (i) fine and (iii) coarse aerosols as calculated by EMAC 

from the base case simulation at the altitude of 940 hPa. Absolute difference between the base case and the 

Nitrate Aerosol Free (NAF) sensitivity simulation in the number concentration of (ii) fine and (iv) coarse 

aerosols at the altitude of 940 hPa. Blue indicates that number concentrations are lower in the presence of 

NO3
- aerosols. 















 

 









Figure 6: Global mean number concentration of activated (i) fine and (iii) coarse aerosols as calculated by 

EMAC from the base case simulation at the altitude of 940 hPa. Absolute difference between the base case 

and the Nitrate Aerosol Free (NAF) sensitivity simulation in the number concentration of activated (ii) fine 

and (iv) coarse aerosols at the altitude of 940 hPa. Blue indicates that number concentrations are lower in 

the presence of NO3
- aerosols. 



 

This study presents the effects of interactions between mineral dust and NO3
- aerosols on the 

present-day global TOA radiative effect of the latter. We investigate how the presence of dust 

affects the radiative effect of NO3
- aerosols, both through aerosol interactions with radiation and 

separately with clouds (REari and REaci, respectively). Sensitivity simulations are also performed, 

varying both the mineral dust composition and its emissions, to assess their effect on the calculated 

NO3
- aerosol radiative effect. 

It was found that the global average net REari of total NO3
- aerosols is -0.11 W/m2, which is 

mainly due to the cooling from the shortwave part of the radiation spectrum due to scattering, 

 










equal to -0.34 W/m2. A warming from the longwave part of the spectrum due to absorption was 

found to be +0.23 W/m2 on global average and was mainly located over regions with high 

concentrations of coarse NO3
- aerosols. SW cooling was also observed in these regions, but also 

over regions of high anthropogenic activity, mainly over the polluted northern hemisphere. The 

behavior of the REari was opposite when considering different sizes of NO3
- aerosols. Specifically, 

the coarse mode was responsible for 96% of the estimated warming in the LW part of the spectrum, 

but 15% of the estimated cooling in the SW part of the spectrum. On the other hand, the 

contribution of the fine mode to the LW warming was negligible, but it was the main contributor 

to the SW cooling, accounting for 85% of the net estimate. The sensitivity experiments revealed 

that the chemistry of the mineral dust is the most important factor in changing the estimated REari 

of the total NO3
- aerosols. In particular, LW warming is most affected by this assumption, being 

52% weaker after assuming chemically inert dust emissions, while the SW cooling is reduced by 

41% compared to the base case simulation, amounting to a net cooling of -0.09 W/m2. A globally 

homogeneous ionic composition for mineral dust had a smaller effect in LW (22% decrease) and 

SW (21% decrease) but resulted in the same net estimate of -0.09 W/m2. Halving the dust 

emissions resulted in weaker estimates for LW and SW by 17% and 21%, respectively, and the 

lowest overall net REari of -0.08 W/m2. On the other hand, a 50% increase in dust emissions 

increased both LW warming and SW cooling by 17% and 9% respectively, resulting in a net 

cooling REari of -0.10 W/m2, indicating the strong non-linear relationship of nitrate-dust 

interactions and how they affect the radiative effect estimates. 

The global average net REaci of total NO3
- aerosols was +0.17 W/m2 due to the effect on the 

shortwave portion of the spectrum. This was found to be +0.27 W/m2, while the cooling from the 

longwave part was -0.10 W/m2. Spatially, the net REaci is reversed compared to the net REari for 

total NO3
- aerosols, where regions responsible for a strong SW cooling of the REari contribute to a 

strong SW warming of the REaci and vice versa. This is due to the fact that nitrate-dust interactions 

challenge the dominance of smaller particles over heavily polluted regions, reducing the 

reflectivity of warm cloud and thus having an opposite effect on the REaci. The sensitivity 

experiments again showed that the consideration of the mineral dust chemistry is the most 

important aspect for the calculation of the REaci of the total NO3
- aerosols. When the dust was 

assumed to be chemically inert, the LW and SW estimates were up to 40% weaker, resulting in a 

net warming of +0.11 W/m2. Assuming a homogeneous ion composition resulted in a smaller 

weakening of the estimates (up to 18%) and a net warming of +0.13 W/m2. When dust emissions 

were halved, the LW cooling was reduced slightly more than in the base case, resulting in a net 

warming of +0.15 W/m2. The 50% increase in dust emissions had the largest effect on LW behavior 

(10% increase), but surprisingly the net estimate (+0.14 W/m2) was smaller than in the half-dust 

scenario. The reason for this is that the SW estimate did not increase but decreased by 8% due to 

the fact that in this scenario the increased nitrate burden causes increased competition for the 

available supersaturation and the effect of dust-nitrate interactions on the smaller aerosol 

populations is not as emphasized as in the base case. 

The total NO3
- aerosol REaci shows a positive sign, which is attributed to a reduced cloud albedo 

effect. More specifically, although the presence or absence of NO3
- aerosol in the atmosphere did 

not significantly affect the total available maximum supersaturation, it did alter both the 

hygroscopicity and wet radii of the aerosols. In the presence of NO3
-, the hygroscopicity of aerosols 







over deserts was increased by up to an order of magnitude, leading to an increase in their wet 

radius of up to 10%, with an even larger increase of up to 40% for smaller particles over urban 

regions. Therefore, in the presence of NO3
- aerosols, the depletion of fine particles by coagulation 

with coarser particles (i.e., mineral dust) is enhanced and further increases the size of the coarse 

particles. The reduction in the number of aerosols is up to 10% in some regions, with maximum 

reductions calculated over Southeast Asia. This reduction in the number of fine aerosols leads to 

a reduction in the number of cloud droplets activated by fine aerosols (also up to 10%), which 

would otherwise have absorbed more outgoing longwave radiation and, more importantly, 

scattered more incoming shortwave radiation. Thus, the reduced cloud albedo effect leads to a 

cooling in the longwave part of the spectrum, which is offset by a strong warming in the shortwave 

part, overall resulting in a net warming of the atmosphere.  

The chemistry-climate model simulations presented here suggest that NO3
- aerosol-radiation 

interactions lead to a net effect of -0.11 W/m2 (cooling) driven by fine NO3
- aerosol, while NO3

- 

aerosol-cloud interactions lead to a net effect of +0.17 W/m2 (warming) driven mainly by coarse 

mode NO3
- aerosol. 
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A central objective of this thesis was to investigate a variety of aspects associated with 
nitrate aerosol formation over a range of geographic locations and how different conditions affect 
that process in a global model. Furthermore, the impact of the aerosol physical state assumption 
and the inorganic aerosol acidity on nitrate aerosol global concentrations was also studied. The 
findings of this study indicate that employing a stable or a metastable assumption is more 
advantageous over specific regions, although the selection of a particular assumption should not 
be regarded as a straightforward decision on a global scale (Ansari and Pandis, 2000; Fountoukis 
et al., 2009; Karydis et al., 2010; Cheng et al., 2022). Furthermore, this thesis aims to suggest 
optimal global and/or regional model setups in order to minimize the bias between predictions and 
observations regarding fine mode nitrate aerosol. This is due to the fact that many models exhibit 
an overprediction bias when estimating PM1 and PM2.5 NO3

- concentrations (Fountoukis et al., 
2011; Heald et al., 2012; Ciarelli et al., 2016; Bian et al., 2017; Chen et al., 2018; Zakoura and 
Pandis, 2019; Tan et al., 2020; Jones et al., 2021; Miao et al., 2022). The suggestions pertain to 
the most polluted regions of the Northern Hemisphere, characterized by elevated average 
concentrations of fine-mode NO3

- (namely, East Asia, India, Europe, and North America). A 
pivotal element of this thesis is the examination of the implications that dust-nitrate interactions 
have on the radiative effect of coarse, fine, and total NO3

-. While the impact of dust-pollution 
interactions on the radiative effects of both has been the aim of recent studies (Klingmüller et al., 
2018, 2019; Kok et al., 2023), not a lot of focus has been given specifically to nitrate aerosols. 
This thesis places particular emphasis on the radiative effect of NO3

- due to aerosol-cloud 
interactions, as it is identified as the source of the greatest uncertainty in estimating the radiative 
forcing of this species, a common issue across various aerosols (Myhre et al., 2014; Seinfeld et al., 
2016). 

With respect to the initial research objective, following the successful implementation of 
the inorganic aerosol thermodynamics module, designated ISORROPIA-lite, within the global 
chemistry and climate model EMAC, a comparative analysis of its outcomes with the prior version, 
designated ISRORROPIA II, was conducted. A notable distinction between the two versions 
pertains to the assumptions made about the physical state of the aerosols. In the ISORROPIA II 
framework, the aerosols are capable of undergoing solidification at low levels of humidity, 
indicating a stable state. Conversely, in the ISORROPIA-lite approach, the aerosols always persist 
in a supersaturated state, characterized as a metastable condition. Despite employing divergent 
approaches, the two versions demonstrated minimal differences on a global scale. However, 
discrepancies emerged over regions characterized by intermediate humidity values ranging from 
20% to 60%. In such conditions, the metastable assumption does not favor the partition of nitrate 
towards the aerosol phase, consequently resulting in slightly lower fine mode NO3

- concentrations 
(up to 1.5 µg/m3 or ~25%). This behavior was observed in regions such as the Himalayan Plateau 
and the Amazon Basin, in proximity to the Atacama Desert. East Asia was also a region that 
resulted in lower fine mode NO3

- concentrations by the metastable assumption, as the low 
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sulfate/nitrate ratio of that area results in higher fractions of partitioning to the aerosol phase by 
the stable assumption. Conversely, in other arid regions such as the Middle East and the general 
dust belt zone, the metastable assumption led to elevated concentrations of coarse mode NO3

- (up 
to 1 µg/m3 or ~15%), attributable to the augmented water content of aerosols in these regions 
relative to the stable assumption. This heightened water content resulted in increased HNO3 
adsorption on dust particles, consequently elevating coarse mode NO3

- concentrations.  
Furthermore, the metastable assumption yielded, on average, more acidic coarse, but 

especially accumulation mode inorganic aerosols, over regions within the humidity range of 20% 
- 60%. This phenomenon can be attributed to the stable assumption, wherein, under conditions of 
low humidity, non-volatile cations (NVCs) present in the aerosols of these regions precipitate out 
of the aqueous phase, thereby precluding their inclusion in acidity calculations. Conversely, within 
the metastable assumption, the NVCs persist in the aqueous phase, irrespective of the humidity 
values. This phenomenon results in a reduction of inorganic aerosol acidity. However, the 
differences between these assumptions remained within a range of 1 pH unit. Accumulation mode 
particles were found to have more acidic values than coarse mode particles in regions with high 
NH3 concentrations. A sensitivity analysis, in which the global NH3 emissions were reduced by 
50%, revealed a robust buffering mechanism that governs the pH of accumulation mode particles, 
which exhibited differences up to 3 pH units in the absence of typical NH3 concentrations. This 
effect was less pronounced in coarse mode particles, which exhibited a tendency to exhibit higher 
alkalinity in these regions. 

Finally, it was observed that ISORROPIA-lite led to a computational speed enhancement 
of up to 5% in comparison to ISORROPIA II, in terms of the number of time steps that the global 
model was capable of executing per second. This enhancement can be attributed to the utilization 
of pre-calculated look-up tables for the ionic activity coefficients, as opposed to their online 
computation during runtime, as implemented in ISORROPIA-lite. Given the negligible differences 
between the two versions, especially on a global scale, ISORROPIA-lite emerges as a reliable 
alternative for multi-decadal global-scale climate simulations.. 

With regard to the second research objective, the results from the global model were 
compared with surface measurements of PM1 and PM2.5 NO3

- concentrations in the polluted North 
Hemisphere. Specifically, filter measurements of PM2.5 NO3

- were utilized from prominent 
observation networks in East Asia (EANET), Europe (EMEP), and the USA (EPA and 
IMPROVE). Concurrently, AMS measurements of PM1 NO3

- were utilized from campaigns 
conducted in East Asia, India, Europe, and North America, encompassing urban, rural, and 
downwind measurement locations.  

The findings revealed a tendency of the model to overpredict PM2.5 NO3
- concentrations 

across all regions, with biases ranging from 1-2 ug/m3 (Europe and US) up to a factor of 3 (East 
Asia). The discrepancy between model predictions and observations can be partly attributed to 
nitrate evaporation in filters during warmer periods, a phenomenon that is particularly evident in 
the cases of Europe and the US (EPA). East Asia exhibited a constant overprediction bias by the 
model throughout the year. The findings indicate that the adoption of either a higher model grid 
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resolution (specifically  1.125𝑜𝑥 1.125𝑜 instead of 1.875𝑜𝑥 1.875𝑜) or a lower uptake coefficient 
for N2O5 hydrolysis (namely, 0.002 instead of 0. 02), or the utilization of the CMIP6 anthropogenic 
emissions database, resulted in enhanced agreement between model predictions and PM2.5 
observations across all regions, as evidenced by their augmented statistical performance. 

Additionally, it was observed that the model demonstrated a tendency to perform more 
effectively in estimating PM1 NO3 concentrations, exhibiting generally higher levels of agreement 
when compared to AMS measurements. This was particularly evident in the regions of Europe and 
East Asia, where substantial agreement was observed, particularly in rural and urban locations. 
Conversely, the regions of North America and India exhibited higher model biases, characterized 
by underprediction of PM1 values in rural and downwind locations in the former (~ factor of 2) 
and overprediction of PM1 values in rural locations in the latter (~ factor of 4). In general, the 
downwind measurement locations were the most challenging for the model to replicate. 
Nevertheless, the use of a higher model grid resolution as well as a lower uptake coefficient for 
N2O5 hydrolysis, emerged as the most effective approaches to reduce this bias between model 
predictions and observations. Furthermore, it was observed that the utilization of distinct 
anthropogenic emissions databases yielded enhanced correlation across various regions. 
Specifically, the CAMS database exhibited reduced biases in regions such as Europe and India, 
while the HTAPv3 database demonstrated similar performance in North America and the CMIP6 
database exhibited optimal performance in East Asia. 

Finally, with regard to the third research objective, the impact of the interactions between 
dust and nitrate particles on the latter's radiative effects was assessed. Specifically, the present-day 
direct radiative effect (from aerosol-radiation interactions) of coarse and fine NO3

- and the present-
day indirect radiative effect (from aerosol-cloud interactions) of total NO3

- were estimated at the 
top of the atmosphere. The findings revealed that coarse NO3

- contributes to a positive direct effect 
(warming) of + 0.17 W/m2 on average. This positive direct effect is driven by the absorption of 
LW radiation, which is enhanced by the increased coating of nitrate-containing dust particles after 
they interact with transported pollutants in desert regions. Conversely, fine NO3

- exerts a negative 
direct effect (cooling) of – 0.28 W/m2 on average, driven by the scattering of SW radiation, which 
is enhanced by the increased aerosol hygroscopicity of fine nitrate particles, after they interact with 
aged dust particles in regions with high anthropogenic activity. This results in the present day net 
direct radiative effect of total NO3

- being -0.11 W/m2 on average. 
The study further unveils that total NO3

- contributes to a positive indirect radiative effect 
of + 0.17 W/m2 on average, driven by a + 0.27 W/m2 warming in the SW part of the spectrum (less 
scattered radiation), outweighing a – 0.10 W/m2 cooling in the LW part of the spectrum (less 
absorbed radiation). The negative indirect radiative effect in the LW spectrum is attributed to the 
fact that dust-nitrate interactions result in dust particles becoming more efficient ice nucleating 
particles. However, the ice clouds that are formed by these particles contain ice crystals that are 
larger in size but fewer in number. This phenomenon leads to the optical thinning of ice clouds, 
which are capable of absorbing less LW radiation, particularly within the dust belt zone where this 
behavior is most pronounced. Conversely, the positive indirect radiative effect in the SW spectrum 
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is attributable to the nitrate-induced enhancement in the hygroscopicity of fine and coarse mode 
aerosols, which can reach up to one order of magnitude. This, in turn, leads to an increase in the 
wet radius of these aerosols by up to 40% and 10%, respectively. Consequently, the presence of 
nitrates leads to an augmentation in the size of aerosols, thereby enhancing their efficacy as 
coagulators. The increased rates of coagulation result in a depletion of fine mode aerosol numbers 
(up to 10%), and in turn, an analogous decrease in the numbers of activated droplets by fine 
aerosols. The net effect of these processes is a reduction in the cloud albedo effect over regions 
where fine nitrate populations are dominant. This reduction in backscattered SW radiation, 
attributed to a warming indirect effect, is a key finding of this thesis. 

A pivotal discovery in this study was the realization that the chemistry of mineral dust 
emerges as the most crucial factor influencing both radiative estimates and SW and LW estimates. 
This is evident by the fact that the exclusion of dust-nitrate interactions led to SW and LW 
estimates that were 40–50% weaker. A notable finding is the non-linear relationship between 
changes in global dust loading and global nitrate aerosol levels. This non-linearity is also reflected 
in the changes in radiative estimates. 

The findings of this thesis build on and support the most recent findings of atmospheric 
and climate research while concurrently posing new research queries. Given the growing 
significance of nitrate aerosol, it is imperative that global models strive to minimize their biases 
and enhance the precision of NO3

-concentration estimations. This approach would serve to reduce 
the uncertainty surrounding the estimation of the present day, as well as the anthropogenic 
radiative effects of the species. A crucial element in this regard is the incorporation of 
heterogeneous chemistry within global models to account for nitrate production on dust particles. 
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Dry Deposition 

The process of particle dry deposition is based on the big leaf model, where the air 
resistance is interpreted in the same way as a layout of linear resistances in an electrical circuit. 
Thus the total particle deposition velocity 𝑢𝑑 is given as such : 

 𝑢𝑑 =  1𝑟𝑎+𝑟𝑏+𝑟𝑎𝑟𝑏𝑢𝑠 + 𝑢𝑠   (A1.1) 
 

Where 𝑟𝑎 is the aerodynamic resistance, 𝑟𝑏 is the quasi-laminar resistance (a metric of molecular 
diffusion) and 𝑢𝑠 is the gravitational settling velocity of the particle, which is a metric of the 
sedimentation flux. The first two parameters are calculated according to the following equations : 

 𝑟𝑎 =  ∫ 𝛷(𝜁)𝜅𝑢∗𝑧 𝑑𝑧𝑧𝑧0      (A1.2) 
 

Where 𝑧0 is the roughness length, 𝑧 is the reference height, 𝜅 is the dimensionless von Karman 
constant, 𝑢∗ is the friction velocity and 𝛷(𝜁) is a dimensionless stability function that depends on 
the Monin-Obukhov length 𝐿 and is equal to 𝜁 =  𝑧 𝐿⁄ , as well as the profiles of the horizontal 
wind speed and temperature.  

 𝑟𝑏 =  13𝑢∗[𝑆𝑐−𝛾+( 𝑆𝑡𝑎+𝑆𝑡)2+12(𝐷𝑝𝐴 )2]𝑅1  (A1.3) 

 
Where, 𝐷𝑝 is the particle diameter, 𝑆𝑐 is the Schmidt number (a metric of particle Brownian 

diffusion), 𝑆𝑡 is the Stokes number and along with the parameter 𝑅1 =  exp (−𝑆𝑡1 2⁄  ), they 
represent the fraction of particles that directly stick to a given surface on first contact. Finally, 𝐴 
corresponds to the characteristic radius of collectors and along with the parameters 𝛾 and 𝛼, they 
depend on different land-use specifications. The equations (A1.1) to (A1.3) can be found in 
Seinfeld and Pandis (2016), the equation for the calculation of 𝑅1 is based on Slinn (1982), while 
typical values for 𝐴, 𝛼 and 𝛾 are adopted from Zhang et al. (2001). 
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Gravitational Sedimentation 
As stated the gravitational sedimentation flux for aerosol particles is given by the settling 

velocity according to Pruppacher and Klett (1979) as :  
 𝑢𝑠 = 𝑢𝑆𝑡𝑜𝑘𝑒𝑠 ∗ 𝑓𝑆𝑙𝑖𝑛𝑛 ∗ 𝑓𝐶𝑠𝑓   (A1.4) 
 

Where, the Stokes velocity represents the sedimentation velocity of spheres and is given as : 
 𝑢𝑆𝑡𝑜𝑘𝑒𝑠 =  29 (𝜌𝑝(𝑖) − 𝜌𝑎𝑖𝑟) 𝑔𝜂𝑑 𝑟𝑝(𝑖)2  (A1.5) 

 
With 𝑖 referring to the respective aerosol size mode, 𝜌𝑝(𝑖) is the aerosol density, 𝜌𝑎𝑖𝑟 is the density 
of air, 𝑟𝑝(𝑖) is the particle radius, 𝑔 denotes the gravitational acceleration and 𝜂𝑑 the dynamic 
viscosity of the air. The parameter 𝑓𝑆𝑙𝑖𝑛𝑛 is a correction factor that is applied to an aerosol 
population that follows the lognormal size distribution. It is a necessary correction to account for 
the fact that in a specific size mode, the sedimentation velocity of all particles is larger than the 
one of a particle having the mean mode radius, and is given according to Slinn and Slinn (1980) 
as :

 𝑓𝑆𝑙𝑖𝑛𝑛 = 𝜎𝑝(𝑖)2 ln 𝜎𝑝(𝑖)    (A1.6) 
 
With 𝜎𝑝(𝑖) being the standard deviation of the aerosol radius in the size mode 𝑖. Finally, the 
parameter 𝑓𝐶𝑠𝑓 is a correction factor to account for aerodynamical differences between ideal 
spheres and real non-spherical particles. It is called the Cunningham-slip-flow factor 
(Cunningham, 1910) and is calculated as :

 𝑓𝐶𝑠𝑓 = 1 + 1.257 𝜆𝑎𝑖𝑟𝑟𝑝(𝑖) + 0.4 𝜆𝑎𝑖𝑟𝑟𝑝(𝑖) exp (−1.1𝑟𝑝(𝑖)𝜆𝑎𝑖𝑟 )  (A1.7) 

 
Where 𝜆𝑎𝑖𝑟 is the mean free path of air molecules. 

 
Wet Deposition – In Cloud Scavenging 

To account for the change in number concentration 𝑛, of aerosols after in-cloud scavenging 
by cloud droplets has taken place, the following equation is most commonly used (Pruppacher and 
Klett, 1979; Seinfeld and Pandis, 2016) : 

 𝑛(𝐷𝑝, 𝑡) = 𝑛(𝐷𝑝, 𝑡0) exp(−𝛬𝑖𝑐(𝐷𝑝) ∗ 𝑡)  (A1.8) 
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Where 𝐷𝑝 is the particle diameter and 𝛬𝑖𝑐(𝐷𝑝) is the in-cloud scavenging coefficient which is 
given as : 
 𝛬𝑖𝑐(𝐷𝑝) =  𝑁𝑑𝐾(𝐷𝑝, 𝑥)   (A1.9) 

 
Here 𝑁𝑑 is the number concentration of cloud droplets and 𝐾(𝐷𝑝, 𝑥) is the collection coefficient 
between a particle with diameter 𝐷𝑝 and a rain droplet with diameter 𝑥, and is estimated according 
to the coagulation theory of Fuks and Davies (1964) as :  

 𝐾𝐷𝑝,𝑥 =  2𝑘𝑇3𝜇  𝑥𝐷𝑝     (A1.10) 

 
Where 𝑘 is the Boltzmann constant, 𝑇 is the temperature and 𝜇 is the viscosity of air. 
 
 

Wet Deposition – Below Cloud Scavenging 
Similarly, the change in aerosol number concentration 𝑛, of aerosols after below-cloud 

scavenging by cloud droplets is given as (Pruppacher and Klett, 1979; Seinfeld and Pandis, 2016): 
 𝑑𝑛(𝐷𝑝)𝑑𝑡 =  −𝛬𝑏𝑐(𝐷𝑝)𝑛(𝐷𝑝)   (A1.11) 
 

Here, 𝛬𝑏𝑐(𝐷𝑝) is the below-cloud scavenging coefficient which is calculated by : 
 𝛬𝑏𝑐(𝐷𝑝) =  ∫ 𝜋4 ∗ 𝐷𝑑2 ∗ 𝑢𝑡(𝐷𝑑) ∗ 𝐸(𝐷𝑑 , 𝐷𝑝) ∗ 𝑁(𝐷𝑑)𝑑𝐷𝑑   ∞0  (A1.12) 

 
Where 𝐷𝑑 is the cloud droplet radius, 𝑢𝑡(𝐷𝑑) is the cloud droplet falling velocity, 𝑁(𝐷𝑑) is the 
cloud droplet size distribution and 𝐸(𝐷𝑑, 𝐷𝑝) is the particle-droplet collision efficiency parameter 
which denotes the ratio of total number of particle-droplet collisions occurring in an area that is 
equal to the effective cross-section of the cloud droplet. It is estimated according to Slinn (1974): 

 𝐸(𝐷𝑑 , 𝐷𝑝) =  4𝑅𝑒𝑆𝑐 [1 + 0.4𝑅𝑒1 2⁄ 𝑆𝑐1 3⁄ + 0.16𝑅𝑒1 2⁄ 𝑆𝑐1 2⁄ ] 

+ 4𝜑 [𝜔−1 + (1 + 2𝑅𝑒1 2⁄ ) 𝜑] + ( 𝑆𝑡−𝑆∗𝑆𝑡−𝑆∗+23)3 2⁄
  (A1.13) 
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Where, 𝑅𝑒 is the Reynolds number, 𝜑 = 𝐷𝑝𝐷𝑑 is the ratio of particle-to-droplet diameters, 𝜔 =  𝜇𝑤𝜇𝑎  

is the ratio of water-to-air viscosity and 𝑆∗ is a parameter that is dependent on 𝑅𝑒 and is calculated 
as : 

 𝑆∗ =  1.2+ 112 ln(1+𝑅𝑒)1+ln(1+𝑅𝑒)     (A1.14) 
 
The first term of equation (A1.14) refers to the contribution of from Brownian diffusion, the second 
term to the contribution of interception and the third term to the contribution of impaction. 
  



151 
 
 
 
 



 
  



Supplement of Geosci. Model Dev., 17, 1111–1131, 2024
https://doi.org/10.5194/gmd-17-1111-2024-supplement
© Author(s) 2024. CC BY 4.0 License.

Supplement of

Implementation of the ISORROPIA-lite aerosol thermodynamics model
into the EMAC chemistry climate model (based on MESSy v2.55):
implications for aerosol composition and acidity
Alexandros Milousis et al.

Correspondence to: Vlassis A. Karydis (v.karydis@fz-juelich.de)

The copyright of individual parts of the supplement might differ from the article licence.



1 
 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

       
Figure S1: Bar chart plots depicting the 25th, 50th and 75th percentiles (box) of the difference in the global 
daily mean surface concentrations of i) coarse and ii) fine aerosol NO3- for the regions of North America, 
Europe, Middle East, India-Himalayas and East Asia, as predicted by EMAC using ISORROPIA II v1 
and ISORROPIA II v2.3. The fractional differences in global daily mean surface concentrations of iii) 
coarse and iv) fine aerosol NO3- for the same regions are also shown. Both models assume that the aerosol 
is at its stable state at low RH and a positive change corresponds to higher concentrations by ISORROPIA 
II v1.  
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Figure S2: Bar chart plots depicting the 25th, 50th and 75th percentiles (box) of the difference in the global 
daily mean surface concentrations of i) coarse and ii) fine aerosol NO3- for the regions of North America, 
Europe, Middle East, India-Himalayas and East Asia, as predicted by EMAC using ISORROPIA-lite and 
ISORROPIA II. The fractional differences in global daily mean surface concentrations of iii) coarse and 
iv) fine aerosol NO3- for the same regions are also shown. Both models assume that the aerosol is at its 
metastable state at low RH and a positive change corresponds to higher concentrations by ISORROPIA-
lite.  
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Figure S3 : Annually averaged zonal concentrations of i) SO42- and ii) NH4+  in TSP, iii) coarse and iv) 
fine aerosol NO3- as predicted by EMAC using ISORROPIA-lite. Change of the annually averaged 
EMAC-simulated zonal concentration of v) NH4+ and vi) SO42- in TSP, vii) coarse and viii) fine aerosol 
NO3- after employing ISORROPIA II. Positive values in red indicate higher concentrations by 
ISORROPIA-lite. The models assume different aerosol states. 
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Figure S4: Annual mean surface concentrations of i) Ca2+, ii) Mg2+ and iii) K+ in TSP as predicted by 
EMAC using ISORROPIA-lite. Change of the annual mean EMAC-simulated surface concentration of iv) 
Ca2+, v) Mg2+ and vi) K+ in TSP after employing ISORROPIA II. Positive values in red indicate higher 
concentrations by ISORROPIA-lite. The models assume different aerosol states. 
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Figure S5: Annually averaged zonal concentrations of i) Ca2+, ii) Mg2+ and iii) K+ in TSP as predicted by 
EMAC using ISORROPIA-lite. Change of the annually averaged EMAC-simulated zonal concentration 
of iv) Ca2+, v) Mg2+ and vi) K+ in TSP after employing ISORROPIA II. Positive values in red indicate 
higher concentrations by ISORROPIA-lite. The models assume different aerosol states. 
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Table S1: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

SO4
2- using ISORROPIA II in stable mode against observations during 2010.  

 

 

 

 

 

 

 

 

 

 

 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 148 2.15 1.08 1.11 -1.06 51.73 -49.52 1.57 

Spring 290 1.99 1.68 0.57 -0.31 28.52 -15.44 0.73 

Summer 287 2.64 1.18 1.48 -1.46 55.88 -55.33 1.76 

Autumn 294 1.87 1.49 0.49 -0.37 26.33 -19.9 0.63 

IMPROVE Winter 116 0.92 0.72 0.57 -0.2 61.48 -21.67 1.26 

Spring 233 0.99 1.09 0.38 0.1 38.11 10.16 0.5 

Summer 193 1.35 0.79 0.68 -0.56 50.41 -41.55 1.05 

Autumn 214 0.94 0.99 0.31 0.04 33.1 4.61 0.42 

EMEP Winter 7 2.82 1.74 1.08 -1.08 38.28 -38.28 1.42 

Spring 18 1.62 1.2 0.75 -0.42 46.52 -25.74 0.88 

Summer 18 2.24 1.15 1.09 -1.09 48.62 -48.44 1.28 

Autumn 17 1.73 1.21 0.76 -0.53 43.91 -30.4 0.89 

EANET Winter 30 3.72 1.27 2.68 -2.45 72.04 -65.83 4.0 

Spring 60 3.79 1.77 2.3 -2.02 60.73 -53.34 3.42 

Summer 61 2.66 1.38 1.56 -1.28 58.7 -48.17 2.15 

Autumn 61 2.28 1.27 1.31 -1.01 57.49 -44.16 1.92 
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Table S2: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NH4
+ using ISORROPIA II in stable mode against observations during 2010.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 137 1.52 1.56 0.57 0.04 37.73 2.66 0.94 

Spring 269 0.98 1.69 0.79 0.71 80.17 72.58 0.97 

Summer 265 0.82 0.41 0.43 -0.41 51.71 -49.8 0.56 

Autumn 273 0.65 0.55 0.19 -0.11 29.33 -16.39 0.29 

EMEP Winter 6 2.07 2.8 0.84 0.74 40.56 35.63 1.27 

Spring 14 1.24 2.17 0.99 0.93 79.77 74.9 1.19 

Summer 14 0.84 0.43 0.41 -0.41 48.61 -48.61 0.45 

Autumn 13 0.83 1.16 0.41 0.34 49.7 40.67 0.53 

EANET Winter 27 1.39 1.38 0.94 -0.02 67.29 -1.12 1.81 

Spring 59 1.07 1.7 1.22 0.63 114.5 58.75 1.78 

Summer 58 0.69 0.56 0.33 -0.14 47.43 -19.85 0.47 

Autumn 58 0.54 0.48 0.38 -0.06 69.24 -11.74 0.58 
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Table S3: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
- using ISORROPIA II in stable mode against observations during 2010.  

 

 

 

 

 

 

 

 

 

 

 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.82 3.83 1.97 1.01 70.0 35.87 2.61 

Spring 291 1.41 3.2 1.9 1.79 135.16 127.11 2.35 

Summer 280 0.5 0.28 0.28 -0.22 55.11 -44.42 0.69 

Autumn 290 0.66 0.54 0.36 -0.12 54.07 -18.01 0.58 

IMPROVE Winter 116 0.81 2.16 1.41 1.34 173.76 164.76 1.77 

Spring 233 0.5 1.81 1.35 1.32 272.05 266.11 1.78 

Summer 193 0.2 0.29 0.18 0.09 89.7 48.07 0.25 

Autumn 214 0.21 0.37 0.25 0.16 119.85 77.91 0.35 

EMEP Winter 7 3.35 5.27 2.81 1.92 83.9 57.38 4.13 

Spring 18 1.63 2.47 1.56 0.83 95.71 50.94 2.14 

Summer 18 0.27 0.58 0.43 0.31 158.9 114.1 0.63 

Autumn 17 0.8 1.5 0.85 0.7 106.94 87.44 1.35 

EANET Winter 30 2.03 2.88 2.01 0.85 99.01 41.67 3.03 

Spring 59 1.85 2.43 1.97 0.58 106.59 31.6 3.05 

Summer 59 0.63 0.64 0.61 0.01 96.31 1.3 0.91 

Autumn 59 0.77 0.83 0.69 0.06 89.49 7.92 1.08 
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Table S4: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

SO4
2- using ISORROPIA-lite against observations during 2010.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 148 2.15 1.05 1.14 -1.09 52.91 -50.9 1.59 

Spring 290 1.99 1.68 0.57 -0.31 28.53 -15.67 0.73 

Summer 287 2.64 1.19 1.47 -1.46 55.7 -55.16 1.75 

Autumn 294 1.87 1.48 0.49 -0.38 26.53 -20.53 0.64 

IMPROVE Winter 116 0.92 0.7 0.57 -0.22 61.55 -24.25 1.26 

Spring 233 0.99 1.09 0.38 0.1 38.04 9.99 0.49 

Summer 193 1.35 0.79 0.68 -0.56 50.32 -41.67 1.04 

Autumn 214 0.94 0.99 0.31 0.04 33.1 4.61 0.42 

EMEP Winter 7 2.82 1.72 1.1 -1.1 39.06 -39.06 1.44 

Spring 18 1.62 1.2 0.74 -0.42 45.99 -25.96 0.87 

Summer 18 2.24 1.15 1.1 -1.09 48.93 -48.83 1.29 

Autumn 17 1.73 1.2 0.77 -0.54 44.58 -30.91 0.91 

EANET Winter 30 3.72 1.24 2.7 -2.48 72.49 -66.6 4.03 

Spring 60 3.79 1.79 2.28 -1.99 60.18 -52.68 3.4 

Summer 61 2.66 1.38 1.56 -1.28 58.74 -48.13 2.15 

Autumn 61 2.28 1.28 1.3 -1.0 57.08 -43.97 1.91 
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Table S5: Seasonal Statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NH4
+ using ISORROPIA-lite against observations during 2010.  
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Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 137 1.52 1.54 0.56 0.02 37.09 1.47 0.93 

Spring 269 0.98 1.72 0.8 0.74 81.38 74.93 0.98 

Summer 265 0.82 0.42 0.42 -0.4 50.71 -48.66 0.56 

Autumn 273 0.65 0.58 0.19 -0.07 29.08 -10.72 0.28 

EMEP Winter 6 2.07 2.77 0.82 0.71 39.47 34.09 1.25 

Spring 14 1.24 1.97 0.84 0.73 67.16 58.72 1.02 

Summer 14 0.84 0.46 0.38 -0.38 44.76 -44.76 0.42 

Autumn 13 0.83 1.18 0.43 0.35 51.57 42.76 0.54 

EANET Winter 27 1.39 1.35 0.93 -0.05 66.56 -3.36 1.81 

Spring 59 1.07 1.56 1.07 0.49 100.22 45.52 1.63 

Summer 58 0.69 0.59 0.32 -0.1 45.81 -14.62 0.46 

Autumn 58 0.54 0.52 0.37 -0.02 67.43 -4.4 0.56 
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Table S6: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
- using ISORROPIA-lite against observations during 2010.  
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Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.82 3.76 1.91 0.94 67.68 33.49 2.54 

Spring 291 1.41 3.26 1.96 1.85 139.4 131.61 2.36 

Summer 280 0.5 0.29 0.27 -0.21 54.12 -41.95 0.69 

Autumn 290 0.66 0.63 0.38 -0.03 56.94 -4.81 0.6 

IMPROVE Winter 116 0.81 2.15 1.41 1.34 172.65 164.36 1.74 

Spring 233 0.5 1.86 1.39 1.36 279.62 275.01 1.79 

Summer 193 0.2 0.3 0.18 0.1 92.3 53.19 0.26 

Autumn 214 0.21 0.42 0.28 0.21 137.09 102.38 0.39 

EMEP Winter 7 3.35 5.22 2.79 1.87 83.37 55.94 4.09 

Spring 18 1.63 2.55 1.58 0.92 96.88 56.11 2.1 

Summer 18 0.27 0.64 0.48 0.37 174.65 134.53 0.69 

Autumn 17 0.8 1.6 0.92 0.8 115.23 100.3 1.42 

EANET Winter 30 2.03 2.88 2.01 0.85 98.65 41.9 3.03 

Spring 59 1.85 2.38 1.9 0.53 103.14 28.86 2.98 

Summer 59 0.63 0.69 0.64 0.06 100.43 8.81 0.95 

Autumn 59 0.77 0.87 0.69 0.1 89.82 13.14 1.08 
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Figure S1: Locations of (a) PM2.5 NO3

- filter measurements from observation networks and (b) 
PM1 NO3

- AMS measurements from observation campaigns in (magenta) rural, (grey) urban and 
(cyan) downwind locations. 
  

(a)

(b)
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Figure S2: Scatterplots comparing the seasonal mean surface concentrations of PM2.5 NO3
- as 

simulated by EMAC from the Base Case with observations from the networks of (i) EMEP, (ii) EPA, (iii) 
IMPROVE and (iv) EANET. The enlarged dots indicate the mean seasonal values. Also shown are the 

1:1 lines (solid) as well as the 2:1 and 1:2 lines (dashed). 
 
 
 
 

(a) Europe (b) US (EPA) 

(c) US (IMPROVE) (d) East Asia 



167 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure S3: Scatterplots comparing the seasonal mean surface concentrations of PM1 NO3
- as 

simulated by EMAC from the Base Case with observations from campaigns in (i) Europe, (ii) North 
America, (iii) East Asia and (iv) India in all locations types (urban, rural and downwind). The enlarged 
dots indicate the mean seasonal values. Also shown are the 1:1 lines (solid) as well as the 2:1 and 

1:2 lines (dashed). 
 
 

 

(a) Europe (b) North America 

(c) East Asia (d) India 
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Table S1: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
-  from the RES_low sensitivity against observations during 2010-2018. The used metrics 

include the Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error 

(NME), Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 2.6 1.4 -0.3 49 -9 2.2 

Spring 291 1.4 2.3 1.3 0.9 95 66 1.6 

Summer 280 0.5 1.1 0.8 0.6 160 121 1.2 

Autumn 290 0.7 1.2 0.7 0.5 112 74 1.0 

IMPROVE Winter 116 0.8 1.4 0.8 0.6 94 75 1.0 

Spring 233 0.5 1.2 0.8 0.7 154 141 1.1 

Summer 193 0.2 0.6 0.4 0.4 222 194 0.7 

Autumn 214 0.2 0.6 0.4 0.4 208 173 0.7 

EMEP Winter 7 3.4 4.2 2.4 0.9 71 26 3.3 

Spring 18 1.6 3.4 2.0 1.8 122 111 2.8 

Summer 18 0.3 1.9 1.6 1.6 591 591 2.0 

Autumn 17 0.8 3.1 2.3 2.3 281 281 3.0 

EANET Winter 30 2.0 2.3 1.7 0.8 81 14 2.9 

Spring 59 1.9 2.2 1.9 0.4 100 19 3.2 

Summer 59 0.6 2.0 2.0 1.4 308 217 3.7 

Autumn 59 0.8 0.6 0.7 -0.2 90 -23 1.2 
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Table S2: Statistical evaluation of EMAC predicted surface concentrations of PM1 NO3
-  from 

the RES_low sensitivity against observations during 2010-2018. The used metrics include the 

Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), 

Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.8 1.0 -0.3 81 -29 1.3 

Urban 22 1.5 1.8 1.6 0.3 108 21 2.1 

Downwind 5 1.2 1.2 1.4 -0.1 117 -6 2.0 

East Asia Rural 40 6.8 7.6 3.8 0.9 55 13 4.9 

Urban 78 9.7 8.7 4.0 -1.0 41 -10 5.3 

Downwind 15 4.9 8.6 4.1 3.8 85 77 5.0 

Europe Rural 163 1.4 1.6 1.0 0.2 67 11 1.5 

Urban 28 1.8 1.6 1.1 -0.2 61 -8 1.6 

Downwind 99 3.2 2.6 1.8 -0.6 57 -20 2.6 

India Rural 5 0.4 2.0 1.7 1.6 408 380 2.2 

Urban 14 8.2 3.3 5.2 -4.8 63 -59 7.9 
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Table S3: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
-  from the RES_high sensitivity against observations during 2010-2018. The used metrics 

include the Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error 

(NME), Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 2.3 1.4 -0.5 50 -18 2.3 

Spring 291 1.4 1.9 1.1 0.5 75 36 1.3 

Summer 280 0.5 0.6 0.4 0.1 86 26 0.8 

Autumn 290 0.7 0.7 0.5 0.0 76 3 0.8 

IMPROVE Winter 116 0.8 1.1 0.6 0.3 68 33 0.8 

Spring 233 0.5 0.9 0.5 0.4 105 72 0.8 

Summer 193 0.2 0.3 0.2 0.1 97 7 0.3 

Autumn 214 0.2 0.3 0.2 0.1 96 9 0.4 

EMEP Winter 7 3.4 3.7 2.3 0.4 68 11 3.1 

Spring 18 1.6 2.7 1.5 1.0 90 63 1.9 

Summer 18 0.3 1.5 1.2 1.2 445 444 1.6 

Autumn 17 0.8 2.3 1.6 1.5 193 193 2.2 

EANET Winter 30 2.0 2.5 1.8 0.4 88 21 3.2 

Spring 59 1.9 2.1 1.72 0.2 93 13 3.0 

Summer 59 0.6 1.5 1.4 0.9 217 141 3.1 

Autumn 59 0.8 1.0 0.9 0.7 122 33 1.5 
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Table S4: Statistical evaluation of EMAC predicted surface concentrations of PM1 NO3
-  from 

the RES_high sensitivity against observations during 2010-2018. The used metrics include the 

Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), 

Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.5 1.0 -0.6 86 -54 1.5 

Urban 22 1.5 1.7 1.5 0.2 102 14 2.0 

Downwind 5 1.2 0.7 1.2 -0.6 96 -46 2.0 

East Asia Rural 40 6.8 7.8 4.3 1.0 64 15 5.5 

Urban 78 9.7 11.3 4.1 1.6 42 17 5.5 

Downwind 15 4.9 8.6 4.4 3.8 90 77 6.5 

Europe Rural 163 1.4 1.2 0.8 -0.3 57 -18 1.4 

Urban 28 1.8 1.5 1.2 -0.3 66 -17 1.7 

Downwind 99 3.2 2.2 1.4 -0.9 43 -30 2.1 

India Rural 5 0.4 2.5 2.1 2.1 505 500 3.1 

Urban 14 8.2 8.5 2.9 0.4 36 4 3.7 
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Table S5: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
-  from the CMIP6 sensitivity against observations during 2010-2018. The used metrics 

include the Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error 

(NME), Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 1.9 1.4 -0.9 49 -32 2.3 

Spring 291 1.4 1.4 0.7 0.0 52 -2 1.0 

Summer 280 0.5 0.3 0.3 -0.2 58 -36 0.7 

Autumn 290 0.7 0.4 0.4 -0.2 65 -36 0.6 

IMPROVE Winter 116 0.8 0.9 0.6 0.1 77 15 0.9 

Spring 233 0.5 0.7 0.4 0.2 87 35 0.6 

Summer 193 0.2 0.2 0.2 0.0 81 18 0.2 

Autumn 214 0.2 0.3 0.2 0.0 103 22 0.4 

EMEP Winter 7 3.4 3.6 2.6 0.2 77 7 3.6 

Spring 18 1.6 1.6 1.0 0.0 61 -3 1.2 

Summer 18 0.3 0.6 0.5 0.4 186 129 0.7 

Autumn 17 0.8 1.3 0.8 0.5 94 59 1.1 

EANET Winter 30 2.0 3.0 2.0 0.9 96 46 2.9 

Spring 59 1.9 2.0 1.6 0.1 86 8 2.8 

Summer 59 0.6 0.8 0.8 0.2 126 32 1.2 

Autumn 59 0.8 0.9 0.7 0.1 88 12 1.1 
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Table S6: Statistical evaluation of EMAC predicted surface concentrations of PM1 NO3
-  from 

the CMIP6 sensitivity against observations during 2010-2018. The used metrics include the 

Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), 

Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.3 1.0 -0.9 85 -77 1.6 

Urban 22 1.5 0.6 0.9 -0.8 62 -57 1.8 

Downwind 5 1.2 0.5 1.0 -0.7 79 -56 1.8 

East Asia Rural 40 6.8 6.5 4. -0.3 60 -4 5.1 

Urban 78 9.7 8.9 3.7 -0.8 39 -8 4.9 

Downwind 15 4.9 6.7 3.5 1.8 71 38 4.6 

Europe Rural 163 1.4 1.0 0.8 -0.5 53 -33 1.4 

Urban 28 1.8 1.0 1.0 -0.8 56 -42 1.7 

Downwind 99 3.2 1.5 1.8 -1.7 57 -52 2.6 

India Rural 5 0.4 4.3 4.0 3.9 975 952 7.0 

Urban 14 8.2 10.3 4.1 2.2 50 27 7.0 
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Table S7: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
-  from the HTAP sensitivity against observations during 2010-2018. The used metrics 

include the Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error 

(NME), Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 2.6 1.3 -0.2 44 -8 2 

Spring 291 1.4 2.2 1.0 0.8 73 55 1.2 

Summer 280 0.5 0.5 0.3 0.0 64 6 0.7 

Autumn 290 0.7 0.9 0.5 0.2 76 31 0.7 

IMPROVE Winter 116 0.8 1.7 1 0.9 122 110 1.2 

Spring 233 0.5 1.3 0.8 0.8 166 159 1.0 

Summer 193 0.2 0.5 0.3 0.3 173 151 0.5 

Autumn 214 0.2 0.6 0.4 0.4 201 169 0.6 

EMEP Winter 7 3.4 2.0 2.9 -1.3 87 -39 4.0 

Spring 18 1.6 4.2 2.7 2.6 166 159 3.6 

Summer 18 0.3 0.5 0.4 0.2 153 85 0.6 

Autumn 17 0.8 1.1 1.2 0.3 154 38 1.8 

EANET Winter 30 2.0 3.8 2.7 1.8 130 89 3.5 

Spring 59 1.9 2.8 2.0 0.9 109 49 3.1 

Summer 59 0.6 1.3 1.0 0.6 157 99 1.8 

Autumn 59 0.8 1.3 0.9 0.6 121 73 1.9 
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Table S8: Statistical evaluation of EMAC predicted surface concentrations of PM1 NO3
-  from 

the HTAP sensitivity against observations during 2010-2018. The used metrics include the Mean 

Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), Normalized 

Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.9 0.7 -0.2 66 -21 1.1 

Urban 22 1.5 1.2 1.1 -0.2 76 -15 1.8 

Downwind 5 1.2 0.6 0.9 -0.6 75 -51 1.7 

East Asia Rural 40 6.8 8.9 5.5 2.2 81 32 7.4 

Urban 78 9.7 11.3 4.5 1.6 47 167 5.9 

Downwind 15 4.9 8.9 4.2 4.0 87 83 5.9 

Europe Rural 163 1.4 1.2 0.9 -0.2 66 -17 1.5 

Urban 28 1.8 1.6 1.1 -0.1 60 -7 1.5 

Downwind 99 3.2 1.8 1.9 -1.4 60 -43 2.6 

India Rural 5 0.4 6.9 6.5 6.5 593 574 11.8 

Urban 14 8.2 16.6 9.3 8.4 114 103 13.6 
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Table S9: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
-  from the THERM sensitivity against observations during 2010-2018. The used metrics 

include the Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error 

(NME), Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 2.4 1.4 -0.5 50 -17 2.2 

Spring 291 1.4 2.2 1.2 0.8 89 55 1.5 

Summer 280 0.5 0.8 0.6 0.3 111 67 0.9 

Autumn 290 0.7 0.9 0.6 0.3 90 40 0.9 

IMPROVE Winter 116 0.8 1.2 0.7 0.4 80 51 0.9 

Spring 233 0.5 1.1 0.7 0.6 132 114 0.9 

Summer 193 0.2 0.5 0.3 0.3 167 136 0.5 

Autumn 214 0.2 0.4 0.3 0.2 150 110 0.5 

EMEP Winter 7 3.4 3.9 2.6 0.5 77 16 3.4 

Spring 18 1.6 2.2 1.6 1.2 97 72 2.1 

Summer 18 0.3 1.6 1.3 1.3 487 480 1.8 

Autumn 17 0.8 2.7 1.9 1.9 243 238 2.8 

EANET Winter 30 2.0 2.4 1.6 0.3 79 17 2.7 

Spring 59 1.9 2.0 1.6 0.1 85 7 2.8 

Summer 59 0.6 1.6 1.3 0.9 212 144 2.5 

Autumn 59 0.8 0.8 0.7 0.1 84 8 1.1 
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Table S10: Statistical evaluation of EMAC predicted surface concentrations of PM1 NO3
-  from 

the THERM sensitivity against observations during 2010-2018. The used metrics include the 

Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), 

Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.7 1.0 -0.4 85 -35 1.4 

Urban 22 1.5 1.9 1.7 0.4 114 30 2.2 

Downwind 5 1.2 0.7 1.1 -0.5 88 -37 1.8 

East Asia Rural 40 6.7 7.4 4.5 0.6 67 9 5.8 

Urban 78 9.7 9.8 4.0 0.1 42 1 5.2 

Downwind 15 4.9 7.4 3.0 2.6 61 53 4.6 

Europe Rural 163 1.4 1.4 0.8 0.0 63 2 1.4 

Urban 28 1.8 1.6 1.0 -0.2 56 -12 1.5 

Downwind 99 3.2 2.4 1.5 -0.7 48 -23 2.2 

India Rural 5 0.4 2.2 1.8 1.8 447 442 2.7 

Urban 14 8.2 4.7 4.9 -3.5 60 -43 7.2 
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Table S11: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
-  from the SCAV sensitivity against observations during 2010-2018. The used metrics 

include the Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error 

(NME), Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 
 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 1.2 1.8 -1.7 64 -59 2.6 

Spring 291 1.4 1.4 1.0 0.0 71 78 1.3 

Summer 280 0.5 0.7 0.4 0.2 88 35 0.8 

Autumn 290 0.7 0.9 0.6 0.2 83 28 0.8 

IMPROVE Winter 116 0.8 0.7 0.5 -0.1 60 -11 0.8 

Spring 233 0.5 0.8 0.5 0.3 101 63 0.7 

Summer 193 0.2 0.3 0.2 0.2 111 76 0.4 

Autumn 214 0.2 0.4 0.3 0.2 122 76 0.5 

EMEP Winter 7 3.4 2.3 3.0 -1.1 89 -32 4.0 

Spring 18 1.6 2.0 1.2 0.4 72 23 1.5 

Summer 18 0.3 1.2 1.0 1.0 366 350 1.3 

Autumn 17 0.8 2.1 1.4 1.3 172 164 2.1 

EANET Winter 30 2.0 1.9 1.4 -0.1 71 -4 2.7 

Spring 59 1.9 1.6 1.5 -0.2 79 -13 2.9 

Summer 59 0.6 1.0 1.0 0.4 154 64 1.9 

Autumn 59 0.8 0.6 0.6 -0.2 83 -19 1.0 
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Table S12: Statistical evaluation of EMAC predicted surface concentrations of PM1 NO3
-  from 

the SCAV sensitivity against observations during 2010-2018. The used metrics include the Mean 

Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), Normalized 

Mean Bias (NMB) and Root Mean Square Error (RMSE). 
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Season 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.6 1.0 -0.5 85 -47 1.4 

Urban 22 1.5 1.7 1.4 0.2 98 15 2.0 

Downwind 5 1.2 0.8 1.0 -0.5 81 -39 1.7 

East Asia Rural 40 6.8 6.6 4.3 -0.2 63 -3 5.5 

Urban 78 9.7 8.7 3.7 -1.0 38 -10 4.9 

Downwind 15 4.9 6.1 2.6 1.3 54 26 3.7 

Europe Rural 163 1.4 1.1 0.9 -0.3 61 -23 1.5 

Urban 28 1.8 1.2 1.0 -0.6 54 -33 1.7 

Downwind 99 3.2 1.9 1.8 -1.3 55 -41 2.6 

India Rural 5 0.4 2.0 1.7 1.6 407 378 2.4 

Urban 14 8.2 7.5 4.1 -0.6 50 -8 5.2 
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Table S13: Seasonal statistical evaluation of EMAC predicted surface concentrations of PM2.5 

NO3
-  from the HYDRO sensitivity against observations during 2010-2018. The used metrics 

include the Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error 

(NME), Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 

 

 

 

 
 
 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 2.0 1.4 -0.8 51 -30 2.3 

Spring 291 1.4 1.7 0.9 0.3 67 20 1.2 

Summer 280 0.5 0.5 0.3 0.0 64 -20 0.7 

Autumn 290 0.7 0.5 0.5 -0.2 70 -23 0.7 

IMPROVE Winter 116 0.8 1.0 0.6 0.2 68 20 0.8 

Spring 233 0.5 0.9 0.5 0.4 101 71 0.7 

Summer 193 0.2 0.4 0.2 0.2 117 77 0.3 

Autumn 214 0.2 0.3 0.2 0.1 98 38 0.4 

EMEP Winter 7 3.4 3.3 2.5 0.0 76 -1 3.3 

Spring 18 1.6 2.2 1.3 0.6 80 35 1.6 

Summer 18 0.3 1.0 0.8 0.8 298 274 1.1 

Autumn 17 0.8 1.8 1.1 1.0 138 128 1.7 

EANET Winter 30 2.0 2.2 1.5 0.2 75 9 2.7 

Spring 59 1.9 1.8 1.5 0.0 82 -2 2.8 

Summer 59 0.6 1.4 1.2 0.7 192 113 2.1 

Autumn 59 0.8 0.7 0.6 -0.1 82 -14 1.0 



181 
 

 
 
 
 
 
 

 
 

Table S14: Statistical evaluation of EMAC predicted surface concentrations of PM1 NO3
-  from 

the HYDRO sensitivity against observations during 2010-2018. The used metrics include the 

Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), 

Normalized Mean Bias (NMB) and Root Mean Square Error (RMSE). 
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Season 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.4 1.0 -0.7 87 -63 1.6 

Urban 22 1.5 1.2 1.1 -0.3 75 -20 1.9 

Downwind 5 1.2 0.5 1.1 -0.7 87 -57 2.0 

East Asia Rural 40 6.8 6.3 4.2 -0.5 62 -8 5.4 

Urban 78 9.7 8.1 4.1 -1.6 43 -16 5.3 

Downwind 15 4.9 6.1 2.3 1.2 47 25 3.6 

Europe Rural 163 1.4 1.0 0.8 -0.4 56 -27 1.4 

Urban 28 1.8 1.2 0.9 -0.6 53 -35 1.6 

Downwind 99 3.2 1.8 1.7 -1.5 54 -46 2.5 

India Rural 5 0.4 1.6 1.3 1.2 320 293 1.8 

Urban 14 8.2 4.9 4.7 -3.2 58 -40 6.6 
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Figure S1 : Time averaged zonal concentrations of i) fine and ii) coarse aerosol NO3

- , iii) Na+ , iv) Ca2+, 
v) Mg2+ and vi) K+ in TSP as predicted by EMAC from the Base Case simulation. 
 

(i) (ii)

(iii) (iv)

(v) (vi)
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Figure S2: Scatterplots comparing the seasonal mean surface mass concentrations of PM2.5 NO3

- as 
simulated by EMAC from the Base Case simulation with observations from the networks of (i) EANET, 
(ii) EMEP, (iii) EPA and (iv) IMPROVE. Blue points indicate values in winter, green points in spring, red 
points in summer and yellow points in autumn. Enlarged dots indicate seasonal means. Also shown are the 
1:1, 2:1, and 1:2 lines. 

(i) (ii)

(iii) (iv)
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Figure S3: Scatterplots comparing the seasonal mean surface mass concentrations of PM10 aerosols as 
simulated by EMAC from the Base Case simulation with observations from the networks of (i) EANET, 
(ii) EMEP and (iii) IMPROVE. Blue points indicate values in winter, green points in spring, red points in 
summer and yellow points in autumn. Enlarged dots indicate seasonal means. Also shown are the 1:1, 2:1, 
and 1:2 lines. 
 
 

(i) (ii)

(iii)
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Figure S4: Comparison of global cloud droplet number concentrations as simulated by EMAC from the 
Base Case simulation and observed across different types of environments (continental, polluted and clean 
marine). The exact locations, altitudes and time periods of the measurements are shown in Table S3. Also 
shown are the 1:1, 2:1, and 1:2 lines. 
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Figure S5 : Global mean insoluble fraction of (i) fine and (ii) coarse aerosols as predicted by EMAC from 
the Base Case simulation. 
 
 
 
 

(i)

(ii)
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Table S1: Seasonal statistical evaluation of the EMAC predicted surface mass concentrations of 

PM2.5 NO3
-  from the Base Case simulation against observations for the period 2008 - 2018.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.86 2.93 1.43 0.07 49.83 2.39 2.09 

Spring 291 1.63 1.78 0.71 0.14 43.54 8.84 1.09 

Summer 280 0.69 0.31 0.41 -0.38 59.5 -54.87 0.8 

Autumn 290 0.79 0.63 0.37 -0.16 46.88 -19.66 0.62 

IMPROVE Winter 116 0.92 1.52 1.03 0.6 111.16 64.6 1.48 

Spring 233 0.61 1.0 0.59 0.39 97.73 64.09 0.81 

Summer 193 0.24 0.37 0.26 0.13 107.85 52.94 0.39 

Autumn 214 0.26 0.44 0.29 0.18 111.35 67.43 0.44 

EMEP Winter 7 2.61 1.92 1.47 -0.68 56.4 -26.19 2.2 

Spring 18 1.99 1.72 0.69 -0.27 34.75 -13.47 1.05 

Summer 18 0.68 0.69 0.43 0.01 62.25 1.23 0.5 

Autumn 17 1.55 1.15 0.61 -0.4 39.12 -25.94 0.97 

EANET Winter 30 2.11 2.95 2.11 0.84 100.11 39.91 2.86 

Spring 59 1.74 2.67 1.84 0.92 105.65 53.04 2.8 

Summer 59 0.68 0.7 0.72 0.02 105.87 2.38 1.09 

Autumn 59 0.77 1.11 0.77 0.34 99.97 43.4 1.12 
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Table S2: Seasonal statistical evaluation of EMAC predicted PM10 aerosol surface mass 
concentrations from the Base Case simulation against observations for the period 2008 – 2018. 
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Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

IMPROVE Winter 89 7.16 8.36 4.94 1.2 68.9 16.74 6.96 

Spring 222 10.8 7.89 5.48 -2.91 50.77 -26.92 8.64 

Summer 203 14.27 12.85 10.88 -1.42 76.22 -9.98 18.24 

Autumn 207 10.61 6.79 5.45 -3.82 51.33 -35.98 8.67 

EMEP Winter 17 15.2 13.4 6.46 -1.8 42.48 -11.84 7.88 

Spring 34 12.23 10.36 3.8 -1.86 31.06 -15.23 4.98 

Summer 35 12.74 4.92 7.82 -7.82 61.35 -61.35 8.74 

Autumn 36 13.78 8.91 5.13 -4.87 37.21 -35.31 6.22 

EANET Winter 20 38.98 21.49 19.48 -17.49 49.98 -44.87 31.46 

Spring 42 44.52 25.96 20.19 -18.56 45.35 -41.69 27.79 

Summer 41 27.94 9.38 18.56 -18.56 66.43 -66.43 22.73 

Autumn 42 30.43 13.23 17.32 -17.2 56.91 -56.52 21.52 
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Table S3: Comparison between cloud droplet number concentrations calculated by the Base Case 
simulation and global observations (Karydis et al., 2017 and references therein). 
 
 

Location Latitude Longitude Altitude Time 
Period 

Observed 
CDNC(cm-3) 

Simulated 
CDNC(cm-3) 

S. Pacific 
Ocean 

 
20–35◦S 

 
135–175◦W 

 
PBL 

 
Annual 

 
82 

 
146 

E. Pacific 
Ocean 

 
29–32◦N 

 
120–123◦W 

 
450–850 m 

 
July 

 
49–279 

 
136 

N. Pacific 
Ocan 

 
41◦N 

 
131◦W 

 
< 1500 m 

 
April 

 
21–74 

 
166 

W. Canary 
Islands 

 
32◦N 

 
25◦W 

 
PBL 

 
July 

 
17 

 
35 

 
W. Australia 

 
30–40◦S 

 
88–103◦E 

 
PBL 

 
Annual 

 
107 

 
29 

 
Beaufort Sea 

 
72–78◦N 

 
154–159◦W 

 
202–1017 m 

 
June 

 
178–365 

 
14 

 
Beaufort Sea 

 
70.5–73◦N 

 
145–147◦W 

 
300–3000 m 

 
June 

 
20–225 

 
13 

 
Beaufort Sea 

 
65–75◦N 

 
130–170◦W 

 
400–4600 m 

 
April 

 
48–77 

 
30 

NE. Alaska 
Coast 

 
69–71◦N 

 
150–158◦W 

 
400–4000 m 

 
October 

 
10–30 

 
18 

 
Yellow Sea 

 
28–31◦N 

 
127–131◦E 

 
PBL 

 
Annual 

 
30–1000 

 
520 

 
SE Asia Coast 

 
10–40◦N 

 
105–150◦E 

 
PBL 

 
Annual 

186  
(100–250) 

 
84 

N. American 
Coast 

 
15–35◦N 

 
115–140◦W 

 
PBL 

 
Annual 

159  
(150–300) 

 
136 

S. American 
Coast 

 
8–28◦S 

 
70–90◦W 

 
PBL 

 
Annual 

182  
(100–300) 

 
75 
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S. African 
Coast 

 
5–25◦S 

 
10–15◦E 

 
PBL 

 
Annual 

153  
(130–300) 

 
64 

NE. Atlantic 
Ocean 

 
50–55◦N 

 
25–30◦W 

 
800–2200 m 

 
April 

 
65–300 

 
49 

Santa Maria, 
Azores 

 
37◦N 

 
25◦W 

 
550–1000 m 

 
June 

150  
(74–192) 

 
42 

Canary Islands 
Vicinity 

 
28◦N 

 
16.5◦W 

 
PBL 

June – 
July 

 
51–300 

 
33 

W. Moroccan 
Coast 

 
34◦N 

 
11◦W 

 
PBL 

 
July 

 
77 

 
29 

 
Oregon Coast 

 
45.5◦N 

 
124.5◦W 

 
PBL 

 
August 

 
25–210 

 
216 

 
Key West, FL 

 
24.5◦N 

 
82◦W 

 
PBL 

 
July 

 
268–560 

 
189 

Fundy Bay, 
Nova Scotia 

 
44◦N 

 
66◦W 

 
20–290 m 

 
August 

 
61 (59–97) 

 
182 

Cornwall 
Coast 

 
50◦N 

 
5.5◦W 

 
450–800 m 

 
February 

 
130 

 
112 

British Isles, 
UK 

 
55◦N 

 
2.5◦W 

 
Surface 

 
April 

 
172 

 
126 

British Isles, 
UK 

 
51◦N 

 
6◦W 

 
Surface 

 
October 

 
119 

 
147 

British Isles, 
UK 

 
53◦N 

 
9.5◦W 

 
Surface 

 
December 

 
96 

 
128 

SE. England 
Coast 

 
51.5–52◦N 

 
1.5–2.5◦E 

 
380–750 m 

 
September 

 
151–249 

 
184 

SW. Indian 
Coast 

 
10◦N 

 
65–75◦E 

 
50–550 m 

February 
– March 

 
100–500 

 
280 

Qinghai 
Province 

 
34–37◦N 

 
98–103◦E 

 
PBL 

 
Annual 

 
30–700 

 
219 
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Beijing 

 
37–41◦N 

 
113–120◦E 

 
PBL 

 
Annual 

 
30–1100 

 
880 

 
NE. China 

 
39–40◦N 

117.5 –
118.5◦E 

 
1719–1931 

m 

April –  
May 

 
200–800 

 
630 

Hebei 
Province 

 
35–40◦N 

 
112–119◦E 

 
PBL 

 
Annual 

 
30–400 

 
819 

Cumbria, 
England 

 
54.5◦N 

 
2.5◦W 

 
Surface 

March –  
April 

 
100–2000 

 
123 

Cumbria, 
England 

 
54.5◦N 

 
2.5◦W 

 
Surface 

 
May 

 
482–549 

 
127 

Koblenz, 
Germany 

 
50◦N 

 
7.5◦E 

 
901–914 hPa 

 
May 

 
675–900 

 
261 

Koblenz, 
Germany 

 
50◦N 

 
7.5◦E 

 
945 hPa 

 
October 

 
965 

 
333 

 
N. Finland 

 
68◦N 

 
24◦E 

 
342–572 m 

 
Annual 

154  
(30–610) 

 
63 

 
N. Finland 

 
68◦N 

 
24◦E 

 
342–572 m 

October –  
November 

 
55–470 

 
19 

Kuopio, 
Finland 

 
62.5◦N 

 
27.5◦E 

 
306 m 

August –  
November 

 
138 

 
89 

Cabauw, 
Netherlands 

 
51◦N 

 
4.5◦E 

 
PBL 

 
May 

 
180–360 

 
172 

Jungfraujoch, 
Switzerland 

 
46.5◦N 

 
7.5◦E 

 
Surface 

July –  
August 

 
112–416 

 
204 

 
Barrow, AK 

 
71.5◦N 

 
156.5◦W 

 
389–830 m 

 
August 

 
56 

 
21 

 
Barrow, AK 

 
71.5◦N 

 
156.5◦W 

 
431–736 m 

 
May 

 
222 

 
35 

 
Barrow, AK 

 
71.5◦N 

 
156.5◦W 

 
297–591 m 

 
June 

 
121 

 
23 
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Barrow, AK 

 
71.5◦N 

 
156.5◦W 

 
393–762 m 

 
July 

 
54 

 
30 

 
Barrow, AK 

 
71.5◦N 

 
156.5◦W 

 
1059–1608 

m 

 
September 

 
81 

 
19 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
795–1450 m 

 
Winter 

 
265–281 

 
203 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
343–1241 m 

 
Winter 

 
244 

 
277 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
985–1885 m 

 
Spring 

 
200–219 

 
227 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
671–1475 m 

 
Spring 

 
203 

 
252 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
1280–2200 

m 

 
Summer 

 
128–159 

 
648 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
756–1751 m 

 
Summer 

 
131 

 
899 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
1030–1770m 

 
Autumn 

 
217-249 

 
425 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
404–1183 m 

 
Autumn 

 
276 

 
557 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
900–800 hPa 

 
March 

200  
(100–320) 

 

 
249 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
300–600 m 

 
April 

 
650 

 
371 

Southern 
Great Plains, 

OK 

 
36.5◦N 

 
97.5◦W 

 
700–1200 m 

September 
–  

October 

 
457 

 
717 

Cleveland, OH 
; Detroit, MI 

 
40–42.5◦N 

 
80.5–85◦W 

 
300–1000 m 

 
August 

 
320–1300 

 
332 

Central 
Ontario 

 
50◦N 

 
85◦W 

 
< 2500 m 

 
October 

147  
(119–173) 

 
113 
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Central 
Ontario 

 
50◦N 

 
85◦W 

 
2000–2100 

m 

 
Summer 

 
350–360 

 
121 

Central 
Ontario 

 
50◦N 

 
85◦W 

 
1300 m 

 
Winter 

 
190 

 
84 

Upper NY 
State 

 
44◦N 

 
75◦W 

 
1500 m 

 
Autumn 

 
240 

 
285 

State College, 
PA 

 
41◦N 

 
78◦W 

 
1000–1600 

m 

 
October 

 
388 

 
204 

Mount Gibbes, 
NC 

 
35.5◦N 

 
82◦W 

 
Surface 

 
Annual 

 
238–754 

 
309 

Cape 
Kennedy, FL 

 
28.5◦N 

 
80.5◦W 

 
600–2800 m 

 
August 

 
250–330 

 
158 
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Table S4 : Comparison of estimates for the direct radiative effect (REari) of total NO3
- aerosols 

from this study and other studies referenced within. 
 
 
 
 
 

 
 
 
 
 
 
 

 
Reference Study 

 
REari Estimate (W/m2) 

 
Time Period 

 
Liao et al., 2004 

 
-0.14 

 
Present Day 2000 

 
 

Bauer et al., 2007a 

 
 

-0.11  
-0.14  

 
Present Day 2000 
Present Day 2030 

 
Bauer et al., 2007b 

 
-0.11 

 
Present Day 2000 

 
Bellouin et al., 2011 

 
-0.12 

 
Present Day 2000 

 
Xu and Penner 2012 

 
-0.12 

 
Present Day 2000 

 
Heald et al., 2014 

 
-0.10 

 
Present Day 2010 

 
This Study 

 
-0.11 

 
Present Day (2008 - 2018) 
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