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Abstract

Real-world news environments comprise both granular quantitative information and coarse
categorizations. For instance, company earnings are reported as a dollar figure alongside
categorizations, such as whether earnings beat or missed market expectations. When pro-
cessing capacity is limited, these components may compete for attention. We study the
hypothesis that more severe processing constraints increase the relative reliance on coarser
signals: people still discriminate between categories but distinguish less granularly within
them, creating higher sensitivity around category thresholds but lower sensitivity else-
where. Using stock market reactions to earnings announcements as our empirical setting,
we document that hard-to-value stocks are associated with a more pronounced S-shaped
response pattern around category thresholds. Naturalistic experiments that exogenously
manipulate processing constraints provide supporting causal evidence in individual investor
behavior. We then study two determinants of processing constraints in the field. First, more
common sizes of surprise may be processed more precisely. Indeed, regions with more
historical mass exhibit far higher return sensitivity. Second, a surprise about the category
realization may capture attention, leaving less capacity to process the numerical signal. We
find that category surprises, e.g., a profit when a loss was expected, are associated with
diminished sensitivity to numerical earnings information.
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1 Introduction

News reports characterize events by combining granular numerical information and coarse cat-
egorizations. Consider a firm’s quarterly earnings announcement: Walmart’s earnings per share
(EPS) for the fourth quarter in 2024 were $1.80. Also, Walmart beat the consensus analyst fore-
cast of $1.65 and reported higher earnings than in the same quarter of the previous year. When
processing information is cognitively costly, numerical information and coarse categorizations
can compete for attention. Importantly, coarse categorizations may often be easier to process,
or require less mental effort. Intuitively, people may have a sense of or rules of thumb for their
reactions to broad categories of news – like whether earnings were above or below expectations
– because such categories are stable, familiar, and recurring. These category shortcuts may al-
low for quick processing without deep analysis. In contrast, interpreting the granular numerical
data is often more challenging: what’s the market-adjusted return associated with a reported
EPS of $1.90 vs. $2.03?

In this paper, we study the hypothesis that more severe information processing constraints
– either because the decision problem is harder, or because the decision maker’s processing
resources are more limited – lead people to rely more on categorical information. Intuitively,
when information processing is more constrained, people may still discriminate between dif-
ferent categories of situations, but find it harder to granularly distinguish situations within a
category based on harder-to-process numerical signals. The behavioral pattern thus associated
with higher processing constraints is a more step-shaped response function: higher sensitivity
at category boundaries but lower sensitivity elsewhere. We discuss various microfoundations for
why coarse information is cognitively cheaper and review the class of models that can predict
a more S-shaped response under larger processing constraints.1 We illustrate the main ideas
using a simple framework of constrained Bayesian optimization, where numerical signals are
integrated less precisely than categorical information.2

We empirically test the predictions about the role of processing constraints for the rela-
tive reliance on coarse versus granular information in the context of stock market returns to
earnings surprises, both in aggregate market data and naturalistic, individual belief formation
experiments with investors. Earnings announcements are a well-suited testing ground for the
importance of processing constraints given the high-dimensional nature of news and data that

1While step- or S-shaped response functions around thresholds have been widely documented across diverse
applications as we review below, the pattern’s intensity has not previously been empirically linked to the severity
of processing constraints, to the best of our knowledge.

2Motivated by our empirical setting, we model categories as exogenous rather than endogenous.
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investors have to process in short periods of time.

Field Evidence. Testing our hypothesis in the field requires a characterization of relevant nu-
merical signals and categorizations used in the case of earnings announcements, and variation
in the severity of processing constraints. First, to identify which categories are most commonly
communicated in earnings news, we analyze headlines in the Earnings category of the Wall
Street Journal between 2002 and 2021.3 We confirm that a frequent categorization is into
beating versus missing the consensus forecast, with other common categorizations being about
whether earnings are a profit or a loss, and about the growth or decline of earnings over time.⁴
Our main analyses focus on the coarse signal about earnings beating or missing market expec-
tations – the distinction that has received most attention in the previous literature – but we
also leverage other categorizations, such as whether a company reports year-over-year earn-
ings growth or decline, in our mechanism analyses to study competition for attention. Second,
we adopt a broad definition of processing constraints in the context of stock market valuations
as anything that creates subjective uncertainty about the mapping between fundamentals like
earnings and predicted stock prices.⁵ In practice, we leverage concepts previously explored in
the literature on what makes firms “hard to value.” In particular, we follow Golubov and Kon-
stantinidi (2023), who propose a measure of valuation uncertainty (VU), defined as the disper-
sion in stock prices implied by valuation models estimated at different points in the distribution
for a given industry-year. Valuation uncertainty, hence, captures the uncertainty associated with
mapping fundamentals like a company’s earnings to stock prices. Importantly, given how VU is
calculated, it varies both across firms at a given point in time and within-firm over time.

Equipped with relevant categorizations (next to the numerical earnings signal) and a mea-
sure of the severity of processing constraints, we begin our examination of the field data by
studying the relationship between market-adjusted returns in the five days following an earn-
ings announcement and so-called “standardized unexpected earnings” (SUE), calculated as
the difference between the actual earnings per share and the consensus forecast, divided by
the closing price before the earnings announcement. This perspective on SUE, or earnings sur-
prises, allows us to investigate the role of being in the earnings beat versus miss category – the
sign of the surprise – alongside the effect of the numerical magnitude of firm earnings – the

3Data used: https://www.kaggle.com/datasets/amogh7joshi/wsj-headline-classification.
⁴Numerical information about earnings is, in fact, mentioned in fewer than 10% of earnings news headlines.
⁵Sources of such subjective uncertainty thus comprise both features of the “demand side” of information

processing, i.e. the difficulty of a task or genuine stochasticity in the mapping, and of the “supply side”, i.e. the
processing resources supplied by the decision-maker.
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size of the surprise.
Figure 1 illustrates a striking pattern in our sample of more than 176,000 earnings an-

nouncements for over 6,000 unique companies between 1986 and 2019: market-adjusted re-
turns exhibit a pronounced S-shaped relationship with SUE. Returns are, on average, highly
sensitive to the sign of earnings surprises but far less sensitive to their size. This non-linear
relationship between market-adjusted returns and earnings surprises has, in fact, been well es-
tablished in finance and accounting over the past three decades (e.g., Freeman and Tse, 1992;
Skinner and Sloan, 2002). A variety of (non-behavioral) explanations – primarily on the role
of earnings persistence – have been put forward in the literature, as we review in detail below.
This paper provides a complementary, behavioral hypothesis to help explain this pattern.

Figure 1: S-shaped Response of Market-Adjusted Returns to Earnings Surprises

Notes: This figure illustrates the relationship between market-adjusted returns and earnings surprises. The x-
axis represents standardized unexpected earnings (SUE), calculated as the difference between actual earnings
per share (EPS) and mean expected EPS, normalized by the previous closing price (Pi,t−1). The y-axis shows
the cumulative market-adjusted return over the five 5 trading days following an earnings announcement.

To study the association between valuation uncertainty and market-adjusted returns, we
compare the earnings response curve for observations associated with high VU versus low VU.
Our main specification estimates the relationship between market-adjusted returns and SUE for
symmetric windows around zero. For small windows around zero surprise, this primarily cap-
tures the impact of crossing the category threshold (beat versus miss). Within these windows,
we predict that observations with greater valuation uncertainty show increased sensitivity to
SUE, reflecting a stronger reliance on coarse categorical distinctions. As we gradually expand
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the width of the symmetric window around zero, the estimated relationship increasingly reflects
the sensitivity to the size of surprises. The second part of our hypothesis is that observations
with high valuation uncertainty are less sensitive to the magnitude of surprises.

Consistent with our hypothesis, our key finding is that higher valuation uncertainty is as-
sociated with higher sensitivity of market-adjusted returns to the sign of surprises, but lower
sensitivity to the size of surprises. While the estimated interaction between the earnings re-
sponse coefficient (capturing sensitivity to a marginal increase in the size of surprise) and val-
uation uncertainty is significantly and robustly positive for small symmetric windows around
zero (capturing responses to crossing the category threshold), it becomes significantly nega-
tive for large symmetric windows around zero (capturing responses to both the sign and size
of surprises). The effect sizes are economically meaningful: for a window size of 0.002 SUE
around zero surprise, a 0.01 increase (henceforth one unit) in SUE is associated with a 17.12
percent (p < 0.01) increase in market-adjusted returns for a company with average valuation
uncertainty. For a company with a one-standard deviation higher valuation uncertainty, this
effect is 19.42 percent (p < 0.01), i.e. valuation uncertainty is associated with increases in the
sensitivity to surprises by approximately 13 percent (p < 0.01).

For a window size of 0.05, a one-unit increase in SUE is associated with a 2.4 percent (p <
0.01) increase in market-adjusted returns for a company with average valuation uncertainty.
For a company with a one-standard deviation higher valuation uncertainty this effect is 2.1
percent (p < 0.01), i.e. a decrease in the sensitivity to surprises by approximately 13%.

Our finding is robust to varying sets of controls, event study cutoffs and specifications. We
conduct an extensive set of tests on how our findings about the role of hard-to-value stocks
relate to previous explanations for the S-shaped response to earnings news in the finance and
accounting literature. We find that our results are not explained by differences in earnings
quality, differential pre-announcement information acquisition and differential strategic disclo-
sure as factors, among other things. We argue that the distinctive prediction associated with
our hypothesis – a more S-shaped pattern implies three crossing points between the earnings
response curves of high versus low VU observations – cannot easily be explained by existing
explanations.⁶ We also explore the relationship between valuation uncertainty and long-run
responses to earnings news and, in particular, post-earnings announcement drift (PEAD). In
our data, we find patterns consistent with the idea that high VU is associated with overreaction

⁶While much previous work in finance estimates a linear earnings response coefficient, some work accommo-
dates nonlinearities by estimating a linear effect of percentile ranks of surprises (e.g., Hartzmark and Shue, 2018).
Here we directly aim at better understanding the origin of these nonlinearities, see also our discussion in Section
6.

4



for small and underreaction for larges surprise, yet these estimates are noisily measured.
Uncertainty about earnings announcements could be correlated with time-varying unob-

servables that drive the S-shaped patterns in our data. To provide evidence against this explana-
tion, we show that – consistent with our behavioral hypothesis – different forms of uncertainty
have different effects on the stock market response to earnings announcements. In particular,
we exploit variation in uncertainty about the location of category thresholds. We predict that
such uncertainty decreases investors’ sensitivity to surprises everywhere, especially around cat-
egory boundaries.⁷ We test this prediction using variation in dispersion of analysts’ earnings
forecasts. Consistent with our hypothesis, we find that higher dispersion in earnings forecasts –
unlike valuation uncertainty – predicts decreases in the sensitivity to surprises, especially close
to the category thresholds. We also provide an extensive discussion and analyses of alternative
concepts⁸ and measurements, documenting further empirical support.

The correlational field evidence motivates our subsequent empirical analyses that shed light
on the hypothesized mechanism. We proceed in two steps. First, we complement our correla-
tional baseline findings with causal evidence using individual belief formation experiments.
Second, we return to the field application to examine variation in processing constraints across
different sizes of surprise, allowing us to test different theories of processing constraints.

Experimental Evidence. To provide causal evidence on the effect of the severity of processing
constraints on return expectations at the individual level, we run controlled online experiments
with investors. In our Baseline condition, respondentsmake incentivized predictions about same-
day stock price movements of five different real companies in a specific earnings news scenario.
The use of real companies with scheduled earnings announcements in the days following the
experiment allows us to incentivize predictions. In each scenario, respondents receive a news
story about a company’s earnings that contains both numerical information about EPS and cat-
egorical information on whether the firm beat or missed the consensus forecast. Our design
varies the realized earnings surprises across participants. To provide causal evidence on the
role of processing constraints, we randomly assign half of the participants to a Baseline condi-
tion and the other half to a High Constraints condition. In High Constraints, we increase the
severity of processing constraints in two complementary ways. First, we add additional infor-

⁷Intuitively, consider the effect of aggregating horizontally offset S-shaped response functions (reflecting dif-
ferent possible category boundaries), which washes out the high sensitivity around each threshold.

⁸This includes empirical work on the investor distraction hypothesis (Hirshleifer et al., 2009b) using measures
such as the number of same-day announcements or large sporting events, which we argue leads some investors to
not attend to some announcements at all (thus creating insensitivity to it), whereas our prediction explores the
implication of attending to information but incorporating it imprecisely, see Section 4.6.
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mation to the earnings news piece that is irrelevant for the stock price reaction. This increases
the task’s inherent demand for information processing, thus creating potential competition for
attention. Second, respondents have to submit their estimate within a time limit of 40 seconds
to be eligible for a bonus, effectively decreasing the supply of information processing capacity.
The results of our pre-registered experiments on individual price forecasts strongly corroborate
our main findings from aggregate price data in the field. In both treatment conditions, aver-
age and median forecasts as a function of the surprise exhibit a pronounced S-shaped pattern:
predicted price reactions are highly sensitive to a switch from the “earnings miss” to the “earn-
ings beat” category but far less sensitive to the magnitude of the surprise within each category.
Second, we find a large treatment difference in line with the distinctive pattern implied by our
behavioral prediction. Incentivized forecasts in High Constraints are more S-shaped: Expected
price adjustments are relatively larger for small earnings surprises—more positive for small
beats and more negative for small misses—but diminish in magnitude for larger surprises. Our
findings are robust across a range of different, pre-registered tests and specifications.

Local Variation in Processing Constraints and its Implications. The empirical relationship
between excess returns and earnings surprises shown in Figure 1 exhibits various properties
that our analyses so far do not address: (i) there is smoothly diminishing sensitivity on either
side of zero surprise, rather than a discontinuous jump at the category boundary, and (ii) there
is a clear asymmetry in slopes for negative and positive surprises, with much less sensitivity in
the negatives. In our theory, the variation in local sensitivities to earnings surprises depends on
variation in the local severity of processing constraints. We next examine two theory-guided
hypotheses about the local variation of processing constraints in the field, leveraging recent
work in the cognitive sciences.

First, a class of theories predicts that the precision of information processing depends on the
prior distribution of signals. This includes theories of decision by sampling (Stewart et al., 2006)
and of efficient coding (e.g., Barlow et al., 1961; Laughlin, 1981; Frydman and Jin, 2022; Heng
et al., 2020). Intuitively, individuals may face lower cognitive cost (or their cognitive system is
better attuned to) processing signals that they are more familiar with or that are more common
in the distribution of signals in a given environment. The common prediction is that the local
sensitivity to variation in a stimulus is associated with the prior likelihood (or historical density)
in that stimulus range.

We test this prediction to our empirical setting, examining how the historical distribution
of earnings surprises influences investors’ sensitivity to these surprises in the field. To set the
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stage, we first document two key features of the empirical distribution of earnings surprises: (i)
it exhibits a pronounced bell shape centered around zero, rapidly declining as surprises grow
in magnitude, and (ii) it is notably asymmetric, with negative surprises being less common
than positive ones. Second, we estimate local earnings response coefficients for a fine-grained
partition of buckets with earnings surprises of different size. Strikingly, the local sensitivity to
the magnitude of earnings surprises is strongly correlated with the local empirical density. Our
evidence is compatible with the idea that processing constraints are negatively correlated with
their empirical prior mass. In fact, the empirical density explains away 58% of the difference
in sensitivities between positive and negative earnings surprises, as well as 50% of the “jump”
at the category threshold between beating and missing market expectations.⁹

Second, a prominent finding in lower-level cognitive tasks (such as visual perception) is
that more surprising information draws more attentional capacity (e.g., Friston, 2005; Itti and
Baldi, 2009).1⁰ Applied to our context, surprising category realizations (given expectations)
might claim more processing resources, leaving less remaining capacity for the integration of
the numerical information. To study this hypothesis, we need variation in whether a category
realization is surprising or not, given market expectations. Because beats and misses of the
consensus are defined relative to consensus expectations and thus almost equally surprising by
construction, we turn to other categories, which allow us to define more versus less surprising
realizations. Our prediction is that the locally estimated sensitivity to the magnitude of earnings
surprises is lower when the realized category was unexpected rather than expected. Intuitively,
the category surprise crowds out attention to the precise size of the surprise. In our field data,
we find evidence that surprising category realizations are associated with lower local sensitivity
to the magnitude of earnings surprises. For example, the earnings response coefficient (ERC)
for year-over-year (YoY) earnings growth is lower when an earnings decline was predicted com-
pared to when growth was expected. Analogously, we find that the ERC for YoY earnings decline
is lower when growth was expected compared to when a decline was predicted. Overall, the
patterns we document are consistent with a form of competition for attention where surprises
driven by unexpected category realizations interfere with attention to numerical information.

⁹Note that these additional findings related to efficient coding are complementary to – rather than an alterna-
tive explanation for – our baseline results. Variation in local empirical density cannot explain our baseline results
that leverages variation in valuation uncertainty.

1⁰Canonical models of rational inattention also predict a link between the (Shannon) cost of information and
the degree of surprise implied by information.
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Contributions and Related Literature. An expansive literature going back at least to Simon
(1955) relates behavioral anomalies to the severity of information processing constraints and
bounded rationality (see, e.g., Woodford, 2020).11 Recent work studies the role of noisy or
random behavior, which has been associated with patterns of global insensitivity to variation
in choice parameters (Enke and Graeber, 2023; Enke et al., 2025b). Departing from this line
of work, we here propose that more severe processing constraints induce relatively stronger re-
liance on coarse categorical information while leading to insensitivity within category. Applying
a variant of Enke and Graeber’s (2025) model of bounded rationality and reference points to
categories, we show that more constrained decisions thus exhibit locallymore sensitivity around
category boundaries, alongside the previously documented pattern of lower global sensitivity.
In this literature, our work most closely connects to recent studies on over- and underreaction
to news (Augenblick et al., 2025; Ba et al., 2024). Augenblick et al. (2025) present laboratory
and field evidence of overinference from weak signals and underinference from strong ones.12
In their model, people accurately determine the direction of a belief update given a signal but
integrate the signal strength imperfectly. While their model and evidence are not about cate-
gorical versus numerical information, we believe that they are close in spirit to ours and discuss
the precise relationship in Section 2. We also discuss the relationship to Ba et al. (2024), who
propose a two-stage model of belief formation in which individuals first reduce complexity by
focusing on a subset of representative states and then incorporate this information subject to
cognitive imprecision. Our evidence can be interpreted accordingly: coarse categorization is a
form of simplification at the representational stage, and integration of numerical information
is imprecise at the computational stage.

A different literature spanning across disciplines studies the precise nature of the cost of
information processing (see Oprea, 2024a, for a review). Coarser information structures are
associated with lower processing cost according to various information-theoretic concepts, such
as Shannon cost (Sims, 2003) and Kolmogorov complexity, which refers to the shortest set of
rules to describe a given information structure. In particular, models of rational inattention and
resource rationality can generate information discretization (see Maćkowiak et al., 2023, for a

11Also related is work on what makes decisions complex and how people respond to such complexity (Enke et
al., 2025a; Gabaix and Graeber, 2024; Oprea, 2024b; Enke, 2024). Various simplification strategies and heuristics
have been identified, such as people resorting to simpler mental models in the face of complexity (e.g., Oprea,
2020; Graeber, 2022; Banovetz and Oprea, 2023; Kendall and Oprea, 2024; Arrieta and Nielsen, 2024; Salant
and Spenkuch, 2022; Musolff and Zimmermann, 2025).

12The literature on over- and underreaction to news is extensive, with varying conclusions: some papers docu-
ment underreaction to news (Benjamin, 2019; Kieren et al., 2023; Goncalves et al., 2024), other papers document
overreaction to news (De Bondt and Thaler, 1985; Bordalo et al., 2022).
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review). Our results on variation in processing constraints in particular further relate to the line
of work on efficient coding (Frydman and Jin, 2022) and decision by sampling (Stewart et al.,
2006), both of which are consistent with higher sensitivity of the response function for stimulus
ranges with higher empirical density. We are not aware of work that directly tests the role of
processing constraints for the relative reliance on coarse versus granular information, and the
previous empirical evidence in this space is mostly confined to controlled lab experiments. This
paper identifies a high-stakes field context that speaks to several of the concepts put forward
in the recent literature.

Our field tests of categorization relate to field studies on reference points (Allen et al., 2017;
Pope and Simonsohn, 2011) and left-digit bias (List et al., 2023; Strulov-Shlain, 2023; Lacetera
et al., 2012). Meier et al. (2025) shows that financial analysts’ individual forecast revisions ex-
hibit a step-shaped pattern that they conclude is consistent with reference-dependent thinking.
This individual-level belief formation evidence in the field supports our line of argument that
the S-shaped excess return functions are partly a behavioral phenomenon. This line of work
finds similar patterns of higher behavioral sensitivity around thresholds but does not study the
role of processing constraints, which is our focus here.13

Our evidence on the reliance on coarse versus granular information broadly relates to semi-
nal work on “coarse thinking” and “thinking through categories” in economics (Mullainathan et
al., 2008; Mullainathan, 2002; Bordalo et al., 2025) and finance (Barberis and Shleifer, 2003).
The common thread in this stream of work is that people lump together situations into coarse
groups. In Mullainathan (2002), agents coarsely partition the state space and do not continu-
ously update from information unless there is enough evidence to cross a category threshold.
Mullainathan et al. (2008) present a model in which the coarse grouping of situations can lead
people to accidentally transfer information applicable to one situation to other situations in
the same group. These tendencies for coarsening may have a similar psychological origin as
the patterns of competition between coarse and granular information structures that we study
in this paper. Schley et al. (2023) study how categorical thinking may shape the probability
weighting function.1⁴ Yet, this literature on categorization does not directly examine the role

13Recent work also models the relationship between the prospect theoretic S-shaped value function and in-
formation processing constraints (e.g., Villas-Boas, 2024). Our evidence does not directly speak to this instance
of diminishing sensitivity (and loss aversion) observed in risky choice. Future work may determine whether our
prediction about the effect of processing constraints on S-shaped response functions holds in this type of decision.

1⁴Work in the cognitive sciences shows that adding category boundaries can generate S-shaped response pat-
terns around them, such as in the case of proportion judgments (Hollands and Dyre, 2000). Huttenlocher et al.
(2000) suggests that people rely on category priors from which they adjust to make continuous estimates, which
aligns well with the model we outline in Section 2.
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of processing constraints.1⁵
Finally, our paper contributes to the vast finance literature on stock price responses to news

(Daniel et al., 1998; Kwon and Tang, 2025; Bordalo et al., 2024a; Tetlock, 2014; Bordalo et al.,
2024b; Jin and Peng, 2024; Hong and Stein, 1999; Barberis et al., 1998, 2018; Barberis, 2018;
Hong and Stein, 2007) and earnings surprises in particular (Bernard and Thomas, 1989; Kor-
mendi and Lipe, 1987; Bouchaud et al., 2019; Hirshleifer and Teoh, 2003). There are several
popular explanations for the S-shaped response to earnings news in the finance and accounting
literature: Freeman and Tse (1992) argue that the S-shaped stock price response is driven by
the persistence of earnings news. Specifically, small positive and negative surprises are a signal
about the persistent component of cashflows, while extreme surprises are not. Relatedly, Skin-
ner and Sloan (2002) show that the S-shape is stronger for growth firms – which have longer
duration cashflows on average – than value firms.1⁶ Adding to these explanations that highlight
specific properties of financial markets, we explore an additional, behavioral mechanism. We
empirically distinguish our results from the above alternative explanations (and others, such as
the role of endogenous disclosure, see Huang et al. (2023)).

Our paper also relates to existing work in behavioral finance: Hirshleifer et al. (2009b)
suggest the investor distraction hypothesis and find that markets react less to a given piece of
news when information load is high. Relatedly, DellaVigna and Pollet (2009) find more under-
reaction on Fridays, when investor attention is low. Another strand of literature shows that in-
vestors may choose to ignore public signals altogether when there is more uncertainty (Banerjee
et al., 2024; Hirshleifer et al., 2009a; Engelberg, 2008; Cohen et al., 2020). Laarits and Sammon
(2024) show that hard-to-value stocks are globally insensitive to earnings surprises, aligning
with broader evidence on insensitivity of behavioral responses to beliefs in finance (Giglio et
al., 2021; Charles et al., 2024). These mechanisms can explain less sensitivity to the size of
surprises when there is more valuation uncertainty, but they fail to account for increased sensi-
tivity to the sign of surprises in the presence of higher valuation uncertainty, which we establish
in this paper. We add to this literature by providing evidence that valuation uncertainty affects
responses to earnings announcements differentially close to and further away from category

1⁵The role of processing constraints, however, has been conjectured to affect reliance on coarse information.
For instance, Hsee and Zhang (2010) propose that when an attribute is difficult to assess, people may rely more
on qualitative comparisons.

1⁶Negative returns for barely meeting the forecast have also been associated with earnings management
(Burgstahler and Dichev, 1997; Bhojraj et al., 2009). Specifically, firms have an extreme focus on beating con-
sensus earnings by at least one cent, and engage in earnings management to ensure this happens. Small misses,
therefore, are evidence of significant negative news, as even with earnings management, firms were not able to
beat by a penny. The earnings management hypothesis, however, does not explain the overall S-shaped pattern.
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boundaries.
The paper proceeds as follows: Section 2 discusses the behavioral predictions and outlines a

conceptual framework. Section 3 describes the field setting and our empirical strategy. Section
4 reports our results from the field. Section 5 presents our experimental design and results.
Section 6 studies different theories of local variation in processing constraints and their impli-
cations. Section 7 concludes.

2 Behavioral Predictions

We are interested in the role of the severity of cognitive constraints for how agents form beliefs
in environments with both granular and coarse information structures. Two remarks are in
order. First, we do not microfound the notion that coarse information structures are “cognitively
cheaper” here but refer the reader to the various existing justifications discussed in the previous
literature above. Second, under this assumption, there are various modeling approaches that
can, in principle, generate the key behavioral prediction we derive here. The objective of our
empirical approach is to test this shared prediction but not to sharply distinguish between
modeling approaches. The below framework serves to illustrate the logic of the main behavioral
predictions (to provide guidance for the empirical tests) using a standard setup of cognitive
imprecision. However, we explicitly do not claim that this model is the only or even the most
adequate account of the set of behavioral predictions we study. We discuss the relationships to
alternative approaches at the end of this section.

Concretely, we model an agent who receives a numerical signal alongside categorical infor-
mation. The agent fully understands the category memberships, but integrates the numerical
signal with noise. We derive predictions in a simple framework of constrained Bayesian opti-
mization. This class ofmodels has beenwidely applied across disciplines – including inmodeling
the implications of cognitive noise (e.g., Ilut and Valchev, 2023; Enke et al., 2025b; Enke and
Graeber, 2023; Khaw et al., 2021). Enke and Graeber (2025) use this modeling approach to
conceptualize the effect of processing constraints on assimilation and contrast effects of refer-
ence points, with our framework being a special case. Our model most closely relates to the
one of Augenblick et al. (2025), in which a decision maker understands the direction of an
update but integrates the signal strength with noise. We discuss the similarities and differences
in detail at the end of this section.
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Setup. A decision maker (DM) receives a quantitative signal s ∈ R, such as a company’s
earnings per share, and chooses their response r ∈ R. They further receive a collection of K
category thresholds ck ∈ R; k = 1, . . . , K . These category thresholds may include, for example,
the consensus forecast, the EPS in the same quarter last year or simply the origin of the EPS scale.
Given s, each category threshold ck implies a qualitative signal sk = 1{s > ck}. The DM’s full
information set thus comprises a collection of binary categorizations alongside the numerical
signal itself, {s1, . . . , sK , s}. The foundational assumption is that the DM processes the category
thresholds without noise, whereas they integrate the numerical signal subject to processing
noise.1⁷ Such noise occurs in the process of integrating information to form a response r. We
take a broad view of the potential determinants of such noise, including factors on the “demand
side” of information processing, i.e., the difficulty of the optimization problem, and factors on
the “supply side” of information processing, i.e., the DM’s cognitive processing resources, hard
capacity constraints like time constraints, or even perceptual imprecision.

Assumption 1. Categorical information is incorporated without noise; the numerical signal is
processed with noise.

The DM chooses their response r given the information set, with objective function U(r, s).
We assume that the DM’s unconstrained optimal response function r⋆(s) in the absence of any
noise is differentiable and monotonic. Without loss, we further assume that it is increasing. We
do not require that this unconstrained response function is linear or takes any particular shape.
The model is general: it applies to a belief r as a function of a signal s, or to an action a as a
function of some decision parameter p, with a⋆(p). In different applications, different sources
of processing noise likely emerge. Given our application to earnings news, in what follows we
focus on the interpretation of how a belief responds to information.

Category Prior and Default Response. In recent applications of cognitive imprecision, the
DM’s prior captures what they would do if they were completely incapable of simulating the
optimum (see, e.g., Enke et al., 2025b). We assume a normal unconditional prior N (rud ,σ2

ud).
The objective function and this prior pin down an unconditional “default response,” which
is the action the DM would take before receiving information, e.g., the prior mean given a
quadratic loss function. In this class of models, the prior is thus signal-invariant; it induces an
unconditional default response rud that does not depend on the signal itself.

1⁷We assume no noise in processing the category thresholds for simplicity here. This assumption can be relaxed
in ways Augenblick et al. (2025) show. The more general version of Assumption 1 is that processing noise on the
numerical component is higher than on the qualitative comparisons.
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We depart from the notion of a signal-invariant prior by further working with a category
prior r⋆ | s1, . . . , sK ∼ N (rd ,σ2

d) that induces a conditional default response rd , which already
incorporates the set of qualitative signals {s1, . . . , sK}. In particular, before integrating the nu-
merical signal, the agent identifies their mean optimal action conditional on the categorical
information:

rd = E[ r⋆ | s1, . . . , sK ]. (1)

The central idea of a category prior is that the DM fully parses and understands categorical
information and incorporates it in Bayesian fashion. Intuitively, the agent forms a costless “first
impression” by processing categorical information such as, e.g., “earnings beating expectations”
and forms a corresponding conditional belief, e.g., the average excess return for companies
with positive surprises. The processing of categories is assumed to be “cognitively cheap” and
therefore not subject to noise. The distinction between categorical and numerical information
(or qualitative and quantitative information more generally) is reminiscent of the distinction
between the initial representation of a problem, driven by attentional phenomena, based on
which the DM then (imprecisely) processes the different components of the problem, the com-
putational stage (e.g., Ba et al., 2024). If there is a single category boundary, K = 1, and the
optimal response crosses the origin, r⋆(0) = 0 , our setup is similar to Augenblick et al. (2025),
who do not invoke a conditional prior but would obtain similar predictions in that case.1⁸

The DM’s understanding of threshold information allows them to categorize their default re-
sponse. Because the DM is aware that playing this conditional mean action only leads to optimal
behavior on average, they are uncertain about whether the conditional default response is ac-
tually optimal, captured by the conditional prior uncertainty σ2

d . The conditional default mean
rd jumps at the category thresholds. The conditional default response is thus a step function.

Processing Noise. Due to processing noise that only affects the integration of the numerical
signal s, the DM does not have direct access to their optimal response r⋆(s). We model this
noise as emerging in the mapping between numerical signal and response. Such noise can
have various origins: information-processing constraints, uncertainty about preferences, or true
stochasticity in the mapping between response and optimal response. Due to noise, the DM can
only mentally simulate their best response. This mental simulation creates an unbiased noisy
cognitive signal about the optimal response:

1⁸They model a conditional subjective perception of signal strength.
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r c(s)∼N
�

r⋆(s),σ2
r (s)
�

(2)

The precision of this cognitive signal is determined by the level of processing noise, σ2
r (s). As

shown, for example, in Ilut and Valchev (2023), this form of mapping noise can be modeled
as uncertainty about the weight that maps a problem fundamental (here, the signal) into the
optimal action (the belief).

Note that we here allow for processing noise to depend on the size of the signal, σ2
r (s). We

begin by deriving our main predictions under the assumption of constant noise.

Constrained Optimal Response. The DM is constrained by the (for now, exogenous) pres-
ence of processing noise. They optimally combine their imperfect cognitive signal with their
conditional prior in Bayesian fashion, which yields:

r(s) = λ r c(s) + (1−λ)rd(s), (3)

where the weight on the cognitive signal, λ = σ2
d

σ2
r (s)+σ

2
d
decreases in the level of processing

noise, σ2
r (s) and increases in the degree of prior noise. Crucially, the behavioral response is a

weighted average of optimal and default (step function) response.
Note that under the assumption of constant processing noise that is independent of the

signal, σ2
r , the behavioral response is a piecewise linear function that jumps at the comparison

points. In particular, this response function has two key properties in comparison to the optimal
response function r∗ (again, without assuming any additional characteristics for r∗):

• The behavioral response r is more sensitive than the unconstrained optimal response r∗

at the boundaries induced by the category thresholds. Intuitively, this originates from
the jump in the piecewise linear behavioral response caused by the jump in the default
response function, which is absent from the smooth unconstrained response.

• The behavioral response r is less sensitive than the unconstrained optimal response r∗

everywhere except at the comparison thresholds. Intuitively, this originates from mixing
the unconstrained optimal response with a default response function that is completely
inelastic (flat) everywhere but at the category thresholds.

Variation in Processing Noise. The conditional prior induces jumps at category thresholds,
and the level of processing noise controls response sensitivity everywhere else. If noise is con-
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stant, the constrained behavioral response is a piecewise linear step function. In practice, the
extent of processing noise might vary across the range of stimuli. For example, assuming that
noise increases in the absolute magnitude of the unexpected earnings surprise would induce
a smoother, sigmoid shaped response as a function of SUE. In that case, the region of excess
sensitivity is not constrained to the category boundary, but excess sensitivity is predicted in a
window around zero.1⁹ Models of decision by sampling (Stewart et al., 2006) and efficient cod-
ing (e.g., Barlow et al., 1961; Laughlin, 1981; Frydman and Jin, 2022) predict that processing
noise for a given stimulus range is decreasing in its empirical density in the stimulus distribu-
tion. The level of noise in processing the numerical signal might also directly depend on the
set of categorizations: in the cognitive sciences, a common finding is that more surprising infor-
mation draws higher attentional capacity (e.g., Itti and Baldi, 2009; Friston, 2005), potentially
leaving a lower stock of processing resources to the numerical signal. We empirically explore
different sources of processing noise in Section 6.

Model Summary and Predictions. Intuitively, the DM understands the central tendency of
the responses associated with a collection of category identifiers, but processes the actual nu-
merical information imprecisely. The conditional prior jumps at category thresholds because the
conditional expectation of the optimal response jumps when the DM only relies on categorical
information. Processing noise only affects the sensitivity to the numerical signal and induces
behavioral attenuation. The level of noise might vary in practice, inducing different degrees of
sensitivity to the signal in different parameter ranges.

Prediction 1. An increase in processing noise increases sensitivity of the expected behavioral re-
sponse at category boundaries (amplification) and decreases it everywhere else (attenuation).

Extension: Uncertainty about the Location of the Category Threshold. In practice, there
may be a second form of uncertainty directly affecting optimization: prior uncertainty about
the location of the category thresholds, such as the analyst forecast of EPS. Uncertainty about
what constitutes the expected level of the announced variable introduces uncertainty about
categorizing the surprise.2⁰

1⁹Increasing noise in the absolute magnitude of the signal has been documented in a wide variety of experi-
mental tasks by Enke et al. (2025b), who argue that noise is driven by the distance to “simple points” where the
DM understands the mapping between parameter and action, akin to category thresholds.

2⁰There are two different ways of thinking about analyst forecast dispersion. First, it may capture a given
individual’s uncertainty about the category threshold, for example because they saw several contradicting analyst
forecasts. Second, different individuals may have different comparison levels, but each of them is certain about
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We introduce normal noise about the category threshold that pins down what gets coded
as zero surprise, so s̃ ∼N (s,σ2

s ). The noise parameter σ2
s captures the degree of dispersion.21

Prediction 2. An increase in surprise coding noise decreases sensitivity for all levels of surprise,
but most strongly around the category threshold of zero surprise.

Discussion. Several remarks are in order. First, the signal s may be multidimensional rather
than a scalar. The numerical signal would then be many-dimensional, too. In our model, the
agent incorporates all categorical information without noise, and creates one single unbiased
mental simulation of the optimal response that is based on all numerical components jointly.
This means we model a DM whose global optimization is subject to noise when jointly integrat-
ing numerical information, not one who separately perceives or processes individual parame-
ters with noise. Second, we allow but are agnostic about whether the unconstrained optimal
response r⋆ itself responds more strongly at category boundaries. For example, it might be that
making a profit instead of a loss indeed affects the optimal response. Our prediction is merely
that processing constraints would make the behavioral response even more sensitive around
category boundaries.22

Relationship to Existing Models. This model builds on and is compatible with the main
ideas in Augenblick et al. (2025). A central difference is that while Augenblick et al. (2025)
model an agent who knows the direction of an update but not the strength, in our model
people form a conditional prior that depends on potentially multiple comparisons to category
boundaries. One implication is that our model, applied to belief formation, supports updating in
the wrong direction (as often documented in standard belief updating experiments when priors
are extreme, e.g. in the data of Enke and Graeber (2023)). This partly results from the fact that
we formulate our model in action space, i.e., the signal provides a noisy signal of the optimal
action rather than of the signal strength.23 Moreover, we do not model a binary state space but a

their expectations. In the latter case, the resulting behavioral response of the model captures the (equal-weighted)
aggregation of individuals with different reference points, each of them behaving constrained optimal according
to (3).

21Note that uncertainty about a reference level is examined in the literature on stochastic reference points (e.g.,
Sprenger, 2015), but has not been explored with respect to its effect on the shape of the response function.

22Intuitively, it is clear that the conditional response based on categorical information alone must be a step
function. We merely require that the unconstrained response based on all information is smoother than this step
function.

23Augenblick et al. (2025) extend their model to incorporate distortions of the prior in Section II.C. In our
framework, as in Enke and Graeber (2023), distortions are formulated directly in action space and can thus
accommodate distortions of parameters other than the signal diagnosticity by design.
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continuous one, and people process the quantitative signal with noise, rather than the implied
signal strength. In our model, the signal does not induce the DM to form an estimate of the
signal strength (which the agent in Augenblick et al. (2025) then combines with a prior), but
of the optimal response directly. In their model, the conditional expectation of signal strength
bS(sd) “jumps” as the direction of the Bayesian update switches; in our model, the conditional
prior jumps at category boundaries. While Augenblick et al. (2025) develop a highly instructive
general updating setup that does not require Bayesian updating or any specific functional form,
we restrict our attention to a setup with normal estimates, which are similar in spirit to their log-
normal setup in updating space. Augenblick et al. (2025) focus on a setup with one qualitative
signal (the direction of the update) and one or more quantitative signals; our setup is about
many qualitative signals and one or more quantitative ones. All in all, the foundations of our
model are consistent with and build on Augenblick et al. (2025); but people in our framework
know the central tendency of their response to a stimulus category (rather than the direction of
an update) andmentally simulate their response (rather than responding to the signal strength).
Above and beyond Augenblick et al. (2025), we acknowledge that alternative formulations, such
as the feature-specific noise in Bastianello and Imas (2025), may be consistent with our main
predictions under specific assumptions.

3 Field Setting:Market Responses to Earnings Announcements

In this section, we provide details on the institutional setting of earnings announcements and
the data sources we employ.

Setting. Earnings announcements are important events in the financial reporting calendar
of U.S. publicly traded companies, heavily scrutinized by investors and analysts alike. These
announcements, mandated by the Securities and Exchange Commission (SEC) to be disclosed
quarterly via Form 10-Q and annually via Form 10-K, provide a comprehensive overview of a
company’s financial performance. The key metric often highlighted is earnings per share (EPS),
which serves as a critical indicator of a company’s profitability. Companies typically release
earnings through press releases and conduct earnings calls, during which senior executives
discuss the results and provide forward guidance. Analysts and investors closely monitor these
earnings surprises, making EPS a focal point of financial analysis and investment decisions.
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3.1 Data

Data on Earnings Announcements. Our paper focuses on market-adjusted returns around
earnings announcements. To study these, we need to determine when investors can first trade
on earnings information. Using the Institutional Brokers’ Estimate System (IBES) earnings re-
lease date and time, we identify the first trading day with available earnings information. If
earnings are released before 4:00 PM ET on a weekday, we label that day as the effective earn-
ings date. If released on or after 4:00 PM ET, on aweekend, or a trading holiday, the next trading
day is the effective earnings date. We link IBES data to stock price data from the Center for
Research in Security Prices (CRSP) using the mapping file provided by Wharton Research Data
Services (WRDS) and restrict the sample to firms with non-missing earnings and consensus
(mean) earnings expectations. We use IBES’ measure of earnings-per-share in the unadjusted
detail file, that is, “street” earnings. This measure is designed to take out the effect of one-time
items (Hillenbrand and McCarthy, 2024).2⁴

Analyst Expectations. The IBES also provides comprehensive information on analyst expec-
tations and forecasts for EPS for publicly traded companies at various horizons. To quantify
uncertainty about a company’s earnings, we use the measure of analyst dispersion from Ben-
David et al. (2023), defined as “the standard deviation of EPS forecasts divided by the absolute
value of the average EPS forecast”.

Stock Price Data. We leverage extensive historical data on stock prices, returns, and trading
volumes from CRSP.

Earnings Surprises. To quantify the response of stock prices to earnings news, we start by
constructing a variable to capture earnings surprises using analyst expectations from IBES. Fol-
lowing DellaVigna and Pollet (2009) and Hartzmark and Shue (2018), we define standardized
unexpected earnings (SUE) as:

SUEi,t =
EPSi,t − Et−1[EPSi,t]

Pi,t−1
(4)

where EPSi,t is the earnings per share. Et−1[EPSi,t] is the mean expected earnings per share

2⁴The term “unadjusted” means that earnings were not adjusted by IBES for stock splits. We use data from the
unadjusted file because in constructing the adjusted file, IBES rounds estimates and actual earnings to the nearest
penny, which can reduce the precision of any earnings surprise measure.
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in the last IBES statistical period before earnings were released. Pi,t−1 is the last closing price
before the earnings announcement. To reduce the influence of outliers, we winsorize SUEi,t at
the 1% and 99% level.

Market-Adjusted Returns. We follow Campbell et al. (2001) and define market-adjusted re-
turns as the difference between the stock’s return and the return on the value-weighted market
portfolio. Specifically, the stock’s return (Ri) is calculated as the cumulative total return on the
stock (inclusive of capital gains and dividends) over a given period, while the market return
(Rm) represents the weighted average cumulative total return of all ordinary common shares
traded on major exchanges in the United States stock market.2⁵ The market-adjusted return
(RMA) is then given by RMA = Ri−Rm, effectively isolating the stock’s performance from broader
market movements.

Measures of the Severity of Processing Constraints. To proxy for the severity of processing
constraints, we leverage the existing literature on what makes stocks “hard to value” (see, e.g.,
Laarits and Sammon, 2024). From this body of work, the measure of “valuation uncertainty”
(VU) in Golubov and Konstantinidi (2023) is most closely related to our object of interest, as
it captures uncertainty regarding the mapping between fundamentals and stock prices. Con-
cretely, valuation uncertainty, VUi,t−1, of company i at time t −1 is defined as the interquartile
range of expected firm value given by a multiples-based valuation model at different points in
the distribution of a given firm’s industry at a given point in time. The measure varies both
within companies over time and across companies at a given point in time.2⁶ We will therefore
refer to “observations with high/low valuation uncertainty" rather than “firms with high/low
valuation uncertainty”, because a given firm might be associated with high or low VU at differ-
ent times.

Intuitively, high valuation uncertainty means that translating information about, say, earn-
ings, into prices or returns is associated with higher uncertainty. This may be due to a variety
of reasons, including attributes that make a firm “more complex” as reviewed in the literature
above, cyclical factors (e.g. market or industry environment) that make valuations more difficult
or uncertain, the generic difficulty of valuing assets et cetera. We do not claim to distinguish

2⁵We use market-adjusted returns instead of factor-adjusted returns to avoid noise inherent in estimating factor
betas. Further, given that we are focusing on such a narrow window around earnings announcements, the earnings
news (rather than e.g., factor news) is likely the main driver of returns.

2⁶To avoid look-ahead bias, we identify month-end values of VU based solely on information that was public
as of that month’s end. For each earnings announcement, we use the value from the last month-end before the
announcement date.
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between these, but rather embrace the multitude of factors contributing to uncertainty about
the mapping in line with the broad notion of information processing constraints described in
Section 2.

Data Filtering. To construct our final sample, we start with the set of all CRSP ordinary
common shares (share codes 10-11) that are traded on major exchanges (exchange codes 1-3).
We then further restrict to stocks which can be matched to IBES, and to stock-quarters with
non-missing earnings-per-share and consensus earnings-per-share estimates. Next, we require
that each stock-quarter has non-missing data for our measure of analyst dispersion (Ben-David
et al., 2023), which requires that at least 3 analysts cover the stock, and a non-zero value
for consensus expected earnings. We also require that the stock has a non-missing value for
valuation uncertainty. Finally, we require that the stock has non-missing returns on the earnings
announcement day itself, and the following four trading days, as well as a non-missing closing
price on the last trading day before the earnings announcement. After applying these filters,
given our standard error clustering strategy, we then remove all singletons both in terms of
year-quarters and stocks. This filtering procedure yields a final sample of more than 176,000
earnings announcements for more than 6,000 unique companies between 1986 and 2019.

Summary Statistics. We present summary statistics in Table 1. SUE has a median of zero and
a standard deviation of 0.079. EPS are on average $0.33 with a standard deviation of $0.72.
Market-adjusted returns over the four days after the earnings announcement are on average
zero, but they exhibit large dispersion. The interquartile range spans from -0.047 to 0.045. The
total number of observations in our main regression tables is slightly smaller than the number
of observations in Table 1, as they restrict to subsets of the SUE distribution.

Table 1: Summary Statistics

Obs. Mean SD P25 P50 P75

SUE 176,893 -0.003 0.079 -0.001 0.000 0.002
EPS 176,893 0.327 0.719 0.050 0.250 0.510

Dispersion 176,893 0.430 0.449 0.189 0.271 0.450
VU 176,893 0.750 0.232 0.607 0.747 0.894

Mkt. Adj. Ret 176,893 0.000 0.092 -0.048 -0.002 0.046

20



3.2 Event-Study Approach

Our main analyses focus on the cumulative market-adjusted returns from the first day the in-
formation could have been traded on to four trading days after.2⁷ Our analyses focus on a
relatively short time horizon around the event for several reasons: First, most of the price ad-
justment to new information should occur on the announcement day or within a few days after,
as investors rapidly process and act on the new information (Martineau, 2021). Second, by
focusing on a short window around the earnings announcement, the study minimizes the in-
fluence of other unrelated news or events that could affect stock prices. Over a longer window,
it becomes increasingly likely that other factors (e.g., macroeconomic news, industry develop-
ments, or non-earnings-related firm-specific events) will confound the analysis. In other words,
a shorter event window ensures that the observed abnormal returns can be more confidently
attributed to the earnings announcement rather than other extraneous variables.

3.3 Market-Adjusted Returns and Earnings Surprises

Descriptive Evidence. We first start by plotting the average stockmarket response to earnings
surprises. Figure 1 (Section 1) displays the raw data on the relationship between SUE (on the
x-axis) and market-adjusted returns from the earnings announcement day itself (t = 0), to four
trading days after the earnings announcement (t = 4) (on the y-axis).

The figure shows a pronounced S-shaped response to earnings news on average: the stock
market response to earnings news is highly sensitive around zero surprise but fairly insensitive
further away from zero surprise. Moving from a SUE of -0.01 to 0.01 is associated with an
average difference of 8.56% in cumulative market-adjusted returns from t = 0 to t = 4.2⁸
Moving from a SUE of 0.01 to 0.02 is associated with a change of 30 basis points in cumulative
market-adjusted returns. Similarly, moving from a SUE of -0.02 to -0.01 is associated with a
change of 58 basis points in market-adjusted returns.

The slope of the empirical response function is steepest where the sign of the surprise

2⁷Our results are robust to using different time horizons around the event.
2⁸A salient feature of Figure 1 is that for small positive SUEs – which one would think is good news – average

market-adjusted returns are negative. This is because many of the surprises in this range are less than 1 penny.
Recall that our measure of SUE is the earnings surprise relative to the pre-earnings announcement price, so there
will be a range with sub-penny earnings beats e.g., a 5 dollar stock or 100 dollar stock could both have a 1/2 of
a cent surprise, and have different SUEs. These sub-penny earnings beats are viewed less favorably by the market
than a beat of at least one cent per share. If we re-make this figure with dollar earning surprises, and form bins
in one cent increments, the first positive bin (i.e., the bin with surprises of at least 1 cent) has positive average
returns, i.e., we restore the expected result.
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switches. In terms of the magnitudes of the slope, the steepest part of the curve is observed
around the point where SUE is zero and flattens out for larger absolute surprises, where only
the magnitude of the surprise varies. Notably, rather than a discrete jump around zero surprise,
the pattern exhibits rather smooth diminishing sensitivity. Moreover, there is a clear asymme-
try: conditional on the sign of the surprise, returns are far less sensitive to the magnitude of
negative surprises than to the magnitude of positive surprises.

4 Field Evidence

In this section, we provide basic tests of our first hypothesis: that the severity of processing
constraints – as proxied by valuation uncertainty – predicts increased sensitivity to the crossing
of category boundaries, but is associated with decreased sensitivity within categories.

4.1 Raw Data

We begin with a look at the raw data before turning to empirical tests. For illustration, Figure
2 displays the raw data on the relationship between standardized unexpected earnings (on the
x-axis) and the cumulative market-adjusted return from t = 0 to t = 4 on the y-axis, separately
for observations with high versus low valuation uncertainty. The red dots show observations
with valuation uncertainty in the top quintile, while the blue dots show observations with bot-
tom quintile valuation uncertainty. The figure illustrates that the sensitivity to the sign of the
earnings surprise is higher for observations in the top quintile of valuation uncertainty than
for those in the bottom quintile of valuation uncertainty. Top VU quintile observations exhibit
more negative excess returns for small negative surprises and more positive excess returns for
small positive surprises.

These patterns flip once we consider earnings surprises further away from zero. Return
responses appear to be less sensitive to the magnitude of surprises for observations with top
quintile valuation uncertainty than for those with bottom quintile valuation uncertainty, espe-
cially for positive surprises.

This plot provides suggestive evidence of a relationship between valuation uncertainty and
market-adjusted returns that follows the distinctive predictions of our framework. We now turn
to more systematic evidence on the economic and statistical significance of this relationship.
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Figure 2: Earnings Responses: Top versus bottom quintile of Valuation Uncertainty

Notes: This figure illustrates the earnings responses under different levels of valuation uncertainty. The x-axis
represents standardized unexpected earnings (SUE), calculated as the difference between actual earnings
per share (EPS) and mean expected EPS, normalized by the previous closing price (Pi,t−1). The y-axis shows
the cumulative market-adjusted return, reflecting the total return on the stock from the announcement day
itself to four trading days after the announcement, minus the value-weighted market return over the same
period. The red dots represent data from stock quarters with top-quintile valuation uncertainty, and the blue
dots represent data from stock quarters with bottom-quintile valuation uncertainty. Valuation uncertainty is
defined as the dispersion in expected market capitalization given by a multiples based valuation method at
different points in the industry-year distribution (Golubov and Konstantinidi, 2023).

4.2 Empirical Specification

Baseline Specification. To quantify the stock market response to earnings announcements,
we follow Kothari and Sloan (1992) and estimate canonical earnings response regressions of
the following form:

ri,(t,t+n) = αVUi,t−1 + βSUEi,t + γSUEi,t × VUi,t−1 +δX i,t +φt +ψi + εi,t , (5)

where ri,(t,t+n) is the cumulative market-adjusted return from the first day investors could trade
on earnings information to n days later. Our main specification focuses on the cumulative
market-adjusted returns from n = 0 (the first day investors could have traded on the earnings
information) to n = 4 (four trading days later). Our key object of interest in this equation is γ,
which illustrates how the response to earnings surprises depend on the valuation uncertainty
associated with a company i before the earnings announcement at t. To ease interpretation of
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magnitudes, we normalize VU to have mean zero and a standard deviation of one.
We control for both security (Permno) fixed effects, ψi and year-month fixed effects, φt .

With security fixed effects, our regression captures differences in post-earnings announcement
returns when for a given stock there is more or less valuation uncertainty. The time fixed effects
account for time-variation in average returns around earnings announcements which are lower
in recessions and higher in booms. So, with time fixed effects, our results should be interpreted
as exploiting heterogeneity in post-earnings announcement returns in the cross-section at each
given point in time.2⁹

In addition, we control for several time-varying firm-level characteristics in X i,t−1: time since
listing (age), market capitalization, returns from t-12 to t-2 (the returns typically used to form
momentum portfolios), book-to-market, CAPM beta, institutional ownership and total daily
stock volatility over the past 12months.3⁰ The logic of including these controls is that being hard
to value may be correlated with other characteristics known to predict how stocks respond to
earnings news e.g., growth firms respond differently than value firms (Skinner and Sloan, 2002)
and institutions tend to lower their inventory of volatile firms ahead of earnings announcements
(Di Maggio et al., 2021). By including these controls, we aim to understand the role of variation
in valuation uncertainty above and beyond its correlation with these other time-varying firm
characteristics. All control variables are computed as of month end for the last month before
the earnings announcement. Standard errors are double clustered at the stock and year-month
level.

Estimating Stock-Price SensitivityWithin and Across Categories. Ourmain prediction con-
cerns the correlation between valuation uncertainty and the sensitivity of stock market returns
across a category threshold – for a switch in the sign of the surprise – as well as the sensitiv-
ity within-category – as the magnitude of surprises varies. We use an “expanding windows”
approach: we estimate our main specification for many symmetric windows around zero SUE
with varying width. For tiny windows around zero surprise, the slope coefficient picks up the
sensitivity of stock market responses to crossing the category threshold. Here, our prediction
is that VU is associated with higher sensitivity, corresponding to a positive interaction effect
between VU and the earnings response coefficient. As we gradually expand the window size,
the earnings response coefficient increasingly also captures the sensitivity to the magnitude of
surprises on either side. Our prediction is that VU is associated with lower earnings response

2⁹In Appendix A.2 we show that our results are qualitatively similar when estimating a pooled specification. In
particular, we observe a pronounced amplification of the response to surprises for windows close to zero.

3⁰Table A1 demonstrates the robustness of our results to excluding these control variables and fixed effects.
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sensitivity within the category, so that the overall effect of VU decreases as the window size
increases. As the window grows to include the full sample, we know from previous research
that measures of harder-to-value stocks operationalized by VU are associated with lower earn-
ings response sensitivity, such that we expect a negative interaction coefficient there. Taken
together, the interaction coefficient is predicted to be positive for tight windows around zero,
then gradually falls below zero as more and more data are included in the symmetric windows.

4.3 Valuation Uncertainty and Sensitivity to Surprises

Table 2 shows that SUE is positively and significantly associated with market-adjusted returns
across all specifications, i.e., the earnings response coefficient is positive, as expected. Specifi-
cally, in column (1), when focusing only on surprises close to zero, a one-unit increase in SUE
(defined as a SUE of 0.01 i.e., a 1% surprise in earnings yield given our definition of SUE) is
associated with a 17.12 percentage point increase in market-adjusted returns (p < 0.01). This
positive relationship persists under larger surprise windows, though attenuated, across columns
(2) through (5), with coefficients ranging from 9.94 to 2.39, all significant at the 1% level. This
attenuation in coefficients as we widen the support reflects the general S-shaped relationship
between market-adjusted returns and earnings surprises shown in Figure 1.

Our main object of interest is the interaction effect between SUE and valuation uncertainty.
As predicted by our model, Column 1 reports a positive and significant interaction effect for
narrow SUE windows around zero. In other words: valuation uncertainty predicts increased
sensitivity to the crossing of a category boundary. Yet, this interaction coefficient falls as we
gradually expand the window of support, and finally turns negative and significant for windows
larger than 0.01 (see Columns (3), (4) and (5)). This means valuation uncertainty predicts
decreased sensitivity to the magnitude of surprises (conditional on their sign), and this effect
dominates in the full sample.

These effects are economically meaningful. For an observation with a one-standard devia-
tion higher valuation uncertainty the market adjusted return is 19.3 percent (p < 0.01) com-
pared to 17.12 for an observation with an average valuation uncertainty. This means that a
one-standard deviation higher valuation uncertainty predicts increases in the sensitivity to sur-
prises by 13 percent. For a window size of 0.05, a one unit increase in SUE is associated with
a 2.4 percent (p < 0.01) increase in market-adjusted returns for a company with average val-
uation uncertainty. For a company with a one-standard deviation higher valuation uncertainty
this effect is 2.1 percent (p < 0.01), i.e., it predicts decreases in sensitivity to surprises by 13

25



percent. For comparison, DellaVigna and Pollet (2009) show that the immediate stock response
is 15% lower for Friday announcements than for non-Friday announcements.

Figure 3 zooms in on the analysis of the interaction between the earnings surprise and
valuation uncertainty for a larger number of window sizes around zero. The figure shows that
the interaction coefficient is highly significant and positive for relatively small windows around
zero. Consistent with the evidence from the table, the interaction coefficient becomes negative
and significant for windows larger than 0.01 of SUE.

Taken together, these correlational findings are consistent with the central behavioral pre-
diction of our model. Note that this prediction of a more S-shaped relationship and thus a switch
in the sign of the effect of valuation uncertainty is quite distinctive and thus hard to rationalize
with existing or alternative explanations, which we address in the next subsection.

Figure 3: Effect of Valuation Uncertainty on Earnings Response Coefficients

Notes: This figure shows the coefficients of the interaction effect between the Standardized Unexpected Earn-
ings (SUE) and valuation uncertainty (VU) for varying sizes of the window of SUE around zero. The smallest
window size (i.e., the leftmost coefficient) is +/- 0.002 around zero, and each dot represents adding 0.001
to each side of the window. Valuation uncertainty is defined as the z-scored dispersion in expected market
capitalization given by a multiples-based valuation method at different points in the industry-year distribu-
tion. The x-axis represents the window size around zero for standardized unexpected earnings, and the y-axis
shows the interaction coefficient. Error bars indicate the 95% confidence intervals for each coefficient.
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Table 2: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 17.12*** 9.938*** 6.473*** 3.691*** 2.393***
(0.662) (0.384) (0.257) (0.169) (0.123)

VU 0.000693 0.000707 0.000814 0.00118** 0.00130**
(0.001) (0.001) (0.001) (0.001) (0.001)

SUE x VU 2.302*** 0.859*** 0.254* -0.261*** -0.331***
(0.427) (0.226) (0.150) (0.099) (0.072)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.116 0.112 0.111 0.103 0.095

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty. SUE
refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast by analysts,
normalized by the last closing price before the earnings announcement. Valuation uncertainty is defined as the
z-scored dispersion in expected market capitalization given by a multiples-based valuation method at different
points in the industry-year distribution. Our specifications control for both security (Permno) fixed effects and
year-month fixed effects. We also control for time since listing (age), market capitalization, returns from t-12 to
t-2, book-to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months.
Clustered standard errors are reported in parentheses. The window size indicates the range of SUE around zero
considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

4.4 Robustness

In this subsection, we discuss our findings regarding a series of alternative mechanisms and
considerations brought forward in the existing literature.

Robustness to Definition of SUE. Is the S-shaped response of stock prices to earnings news
a function of how we define SU E? In Appendix A.1, we show that our main findings are robust
to a variety of alternative definitions of SUE. In addition, we consider the relationship between
post-earnings returns and percentile ranks of SUE, as discussed in Hartzmark and Shue (2018).
We argue that percentile ranks of SUE would not be well suited to test our hypotheses about
the effects of within- versus across category earnings response sensitivity. There is a substantial
mass of observations exactly at SU E = 0 (over 10% of our sample) and an even larger mass
within a SU E of ± 10 basis points (about 37% of our sample). Consequently, percentile ranks
“spread out” a large number of observations at and around SU E of zero, which interferes with
the identification of the sensitivity around the nominally defined category threshold. We show
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corresponding results in the Appendix. What is more, we note that percentile ranks are a good
test of the predictions of models that predict a local earnings response sensitivity that is propor-
tional to the local empirical density (such as efficient coding or decision by sampling): taken to
the extreme, local sensitivity that is directly proportional to the historical mass in a given bin
predicts a linear relationship when looking at earnings response coefficients by percentile rank.
We return to this perspective in Section 6.

Robustness to Different Time Periods. As we show in Appendix A.3, our results are robust to
restricting to large market capitalization stocks (stocks above the median market capitalization
each quarter) and to data after 2010. Our results are thus not entirely driven by small stocks,
or data from earlier time periods.

Moreover, a significant body of work in finance has studied the long-run response to earn-
ings news, i.e., excess returns up to 90 days after an announcement. Historically, this literature
documented a tendency for stocks with good news to continue to outperform, and stocks with
bad news to continue to underperform, the so-called post-earnings announcement drift (PEAD).
In Appendix B, we explore the relationship between long-run responses to earnings news and
valuation uncertainty. In our data, we find patterns consistent with the idea that high VU is asso-
ciated with overreaction for small and underreaction for larges surprise. Yet these estimates are
noisily measured given the increased noise present for the longer time horizon where additional
news event shape stock prices.

Earnings Persistence. One possible alternative explanation for the differences in how valua-
tion uncertainty affects the response to earnings news for SUEs close to zero versus away from
zero is differences in the persistence of earnings news. For this to explain our results, however,
two things would need to be true. First, small surprises for high valuation uncertainty firms
would need to be more persistent than small surprises for low valuation uncertainty firms.31
And second, large surprises for high valuation uncertainty firms would need to be less persis-
tent than large surprises for low valuation uncertainty firms. In Appendix A.4, we test whether
there is differential persistence in earnings surprises for high versus low valuation uncertainty
firms and whether this differs for surprises close to zero and far away from zero. To do so,
we test the predictive power of an earnings surprise for earnings growth over the subsequent
year. As we explain in more detail in Appendix A.4, differences in earnings persistence cannot

31More specifically, when we discuss persistence for an SUE near zero, we mean that small positive surprises
are followed by subsequent small positive surprises, and vice versa for small negative surprises.
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account for our findings.

Earnings Manipulation. A potential concern with our main results is that managers engage
in earnings manipulation to ensure a small positive SU E in order to avoid the negative returns
associated with missing earnings expectations. Specifically, the concern is that a small earnings
miss is a signal of a larger problem at the firm – as management was unable to engineer a
positive surprise. And, this signal – rather than SU E itself – explains the significant jump in
returns at the category boundary of SU E > 0. Further, if companies with more valuation un-
certainty have a stronger incentive to engage in earnings manipulation (i.e., the signal for a
small earnings miss is perceived by the market to be stronger), this might explain our results
on heterogeneity in the S-shaped response to earnings news.

If this was the case, we would expect to see more bunching of earnings news just above
zero for high VU stocks. As we explain in Appendix A.5, we do not see pronounced differences
in bunching across high and low VU observations. Moreover, our results on earnings persis-
tence (described in the previous paragraph) are also inconsistent with systematic differences
in earnings manipulation by valuation uncertainty.

Accounting for Accruals. One potential concern is that firms with high valuation uncertainty
may be more likely to use accruals to engineer small earnings beats. We address this concern by
re-estimating our main specification controlling for abnormal accruals, and interactions of ac-
cruals with SUE. Appendix Table A11 shows that positive accruals per se predict more negative
market responses, especially for values of SUE close to zero. Yet, controlling for accruals leaves
the estimated interaction coefficient between SUE and VU virtually unchanged. Appendix A.6
provides additional details.

Differences in Pre-Announcement Information Acquisition. One concern with the results
in Table 2 is that they might be driven by differences in the amount of information incorporated
into stock prices before the earnings announcement itself between high and low valuation uncer-
tainty stocks. Specifically, suppose that, owing to the increased ex-ante uncertainty, investors
learn relatively less about high valuation uncertainty stocks pre-announcement – and thus less
of the earnings information is incorporated into prices before it is formally released. This might
specifically apply to small earnings surprises, because as shown in Figure 1, prices are very
responsive to earnings surprises just around zero – and thus being wrong in this region could
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be extremely costly to investors.32 And, if this channel applies differently to small versus large
surprises, one might be concerned that it is driving our results on valuation uncertainty.

To rule out this explanation, we run a series of tests to examine whether high and low
valuation uncertainty stocks have different amounts of earnings information incorporated into
prices before versus after the announcement itself. As we outline in more detail in Appendix
A.8, if anything, more information is incorporated into prices ahead of time for high VU stocks
– which would work against our main finding. We conclude, therefore, that differences in the
incorporation of information pre-announcement are unlikely to be driving our baseline results.

4.5 Uncertainty About the Location of Category Thresholds

Valuation uncertainty could be correlated with time-varying unobservables that drive the S-
shaped patterns in our data. To provide further evidence getting at this concern, we show that
– consistent with our behavioral hypothesis – other forms of uncertainty have very different
effects on earnings response sensitivity.

Our basic framework focuses on noise in the integration of the numerical signal but cate-
gorization is without noise, i.e. the agent fully understands the implications of the category
boundaries. However, uncertainty about the categorizations is highly plausible in practice: it
can result from an individual agent being uncertain about the location of the category boundary
or from different agents believing in different boundary locations. Prediction 2 shows that un-
certainty about the categorization itself should decrease people’s sensitivity to surprising news,
especially close to category boundaries. Recall that this prediction is thus almost the reverse of
our main prediction on the severity of processing constraints, which are associated with higher
sensitivity around boundaries. In the following, we examine how prior uncertainty about the
consensus forecast affects sensitivity to news. We proxy this uncertainty with dispersion of
analysts’ earnings forecasts.

Specification. To estimate heterogeneous earnings response sensitivity by degree of forecast
dispersion, we estimate the following specification:

ri,(t,t+n) = αSUEi,t ×Dispersioni,t−1 + βSUEi,t + γDispersioni,t−1 +δX i,t−1 +φt +ψi + εi,t , (6)

32This is just one reason for why high valuation uncertainty stocks might have a different amount of information
incorporated into prices pre-announcement e.g., it could also be that stocks with high valuation uncertainty have
different disclosure strategies (Dye, 1985; Huang et al., 2023).
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where Dispersioni,t−1 is the standard deviation of analyst forecasts for the earnings of company
i in the last IBES statistical period before the earnings announcement, normalized by the mag-
nitude of the consensus estimate of earnings per share Ben-David et al. (2023). We include the
same set of controls and fixed effects as in the previous section.33 This measure thus captures
the extent of analyst uncertainty about a company’s earnings before the earnings announce-
ment. Again, to ease interpretation, we normalize Dispersion to have mean zero and standard
deviation one.

Results. Table A2 displays our results on analyst dispersion. The first column again confirms
the expected baseline positive earnings response coefficient, i.e. a strong positive relationship
between SUE and market-adjusted returns, with a coefficient of 16.49 (p < 0.01). The interac-
tion term between SUE and dispersion is negative (-1.40, p < 0.01), suggesting that the effect of
SUE on returns is significantly diminished when analyst dispersion is high, consistent with our
predictions and inconsistent with the idea that uncertainty per se leads to a more pronounced
S shape.

The interaction coefficient remains negative and significant at the 1% level for larger win-
dows of SUE of 0.005, 0.01, 0.025 and 0.05. The magnitude of the effects of analyst dispersion
on earnings responses is sizable. For a window of 0.002 a one-standard deviation increase in
analyst forecast dispersion decreases the earnings response by almost 10 percent. For a window
of 0.005 the magnitude of the response is reduced by 5 percent. Figure A2 plots the coefficients
of the interaction effect between dispersion and SUE for larger SUE windows around zero. The
figure clearly demonstrates that for all windows of SUE around zero, the interaction effect is
negative.

Taken together, the evidence clearly highlights that uncertainty about the location of a cat-
egory threshold is associated with earnings response insensitivity across the board, and espe-
cially so close to the category threshold.

Relationship Between Dispersion and Valuation Uncertainty. Measures of category uncer-
tainty might be correlated with valuation uncertainty and alternative measures of processing
constraints more generally. We discuss and examine these relationships in the following subsec-
tion. Appendix Table A13 shows a pairwise correlation matrix with a set of related measures.
We estimate a correlation of 0.3 between VU and Dispersion. Given this positive correlation
and the opposing effects of these different measures on returns, our main estimates of the ef-

33Table A3 examines robustness to the exclusion of controls.
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fect of VU on the S shape might be downward-biased. Table A4 shows that, if anything, our
results on the amplifying effect of valuation uncertainty for small surprises become stronger
after controlling for dispersion.

4.6 Related Concepts and Measurements

As illustrated by the preceding analysis and the conceptual framework, different forms of un-
certainty capture different concepts that can be measured in a variety of ways.

Different Concepts. Following previous work, we conceptualize the severity of processing
constraints as creating uncertainty about the mapping between a signal and one’s optimal re-
sponse.3⁴ This is often characterized as people attending to a specific information while strug-
gling to precisely incorporate it into their response. This form of uncertainty, hence, at least
partly operates on the intensive margin of attention: people process signals but imprecisely. A
related yet different concept is the idea that distraction might induce (some) people to not
attend to a signal at all. This channel operates on the extensive margin of attention: variation
in information content cannot affect behavior if it is not processed to begin with. The existing
literature on measures of distraction highlights this latter channel: multiple same-day earnings
announcements, extreme macro news, Friday earnings announcements and the occurrence of
major sports events plausibly affect which fraction investors attend to a given firm announce-
ment versus not, but do not necessarily shift uncertainty about how to map the announcement
into a best response (conditional on attending). We deem this distinction important: inattention
cannot generate the pattern that we identify, because it relies on people actually processing (at
least) the categorical information content, and is compatible with people attending to numeri-
cal information, too. Distraction, by contrast, would lead to global attenuation because (some)
people do not process and respond to any of the information components.

This above highlights the specificity of our prediction to measurements that capture uncer-
tainty about the mapping from signal to response. Related concepts, such as distraction and
uncertainty about category thresholds, predict global attenuation instead.

Alternative Measurements. Among the many proxies for “hard-to-value,” valuation uncer-
tainty appears to be the closest measure to our characterization of processing constraints. This

3⁴The previous subsection showed that uncertainty about the location of a category threshold is indeed a distinct
concept from this, with different effects.
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is because, by definition, it suggests that for a given firm at a given point in time, there is a wider
possible range of valuations. This translates directly to the idea in the model of the mapping
between numerical signals and best response.

The literature on what makes stocks hard to value, however, discusses many other possi-
ble measures. First, as discussed in Laarits and Sammon (2024), a longer cash-flow duration
(Gormsen and Lazarus, 2023) may make a stock harder to value because investors need to
forecast fundamentals further in the future to accurately estimate the stock’s true value today.
Cash-flow duration might partly affect the mapping uncertainty we are interested in, while it
seems unrelated to the concepts of uncertainty about category thresholds as well as distrac-
tion. It clearly also captures features unrelated to the severity of processing constraints, as e.g.,
some companies have different payout ratios at different points in their life cycles. Appendix
Table A12 shows that cashflow duration is associated with a more pronounced S-shaped pattern.
This result aligns with the early work of Freeman and Tse (1992) who show that growth firms
— which tend to have higher cash-flow duration – exhibit more S-shaped return responses to
earnings news.

Second, the literature has also used measures of whether a company spans many business
functions/geographical regions (Cohen and Lou, 2012), idiosyncratic volatility and trading vol-
ume (Ben-David et al., 2023) as proxies for valuation uncertainty. Appendix Table A12 shows
that amplification of small surprises and the comparative static of a decreasing interaction co-
efficient for larger surprises qualitatively holds for all three of these other proxies of valuation
uncertainty.

Finally, the literature on the investor distraction hypothesis studies measures of expected
and unexpected distractions. Measures of expected distraction, such as multiple same-day com-
pany announcements (Hirshleifer et al., 2009b), major sports events such as the Olympics,
World Series, or March Madness (Drake et al., 2016), the incidence of announcement on Fri-
day (DellaVigna and Pollet, 2009) and releases of key macroeconomic indicators (Kasznik and
Kremer, 2014) have been related to pricing inefficiencies in some contexts, although some of
these effects appear to be less robust in more recent samples (e.g., Israeli et al., 2021). Israeli
et al. (2021) also study measures of unexpected distraction (using a general news pressure
instrument) and find that while they do appear to affect retail but not institutional investors,
there are no discernible price effects. This class of measures has traditionally been linked to
global attenuation effects, and we argue that they are best thought of as capturing the exten-
sive margin of attention, i.e, inattention to the announcement altogether, rather than mapping
difficulty.
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5 Experimental Evidence

To provide causal evidence on the relationship between the severity of processing constraints
and the S-shaped empirical earnings response function, we complement the correlational field
evidence with incentivized naturalistic experiments conducted with investors.

5.1 Design

Objectives. First, we aim for a naturalistic setting that emulates the multi-dimensional charac-
ter of real news stories about earnings announcements, containing both categorical and numer-
ical information. Second, to test the hypothesis that the field evidence – observed in aggregate
prices – is partly driven by a pattern that already emerges in individual updating behavior, we re-
quire individual-level belief data. Third, we exogenously manipulate the severity of processing
constraints in a controlled way.

Baseline Setting. Participants receive a hypothetical earnings news article about a real com-
pany, which has their actual quarterly earnings announcement scheduled within five days of the
study. While the earnings news is created by us for the purpose of this experiment, it closely
follows the structure and information of real earnings news coverage and includes real-time in-
formation about the company. The news article mentions (i) the company’s consensus forecast
of EPS (actual value at the time of experiment), (ii) the current stock price (actual value), (iii)
a realization of the EPS, which is the earnings scenario that we vary across participants, (iv)
categorical information about whether realized EPS beat or miss the consensus forecast, which
is also mentioned in the headline, and (v) very basic firm background for context.

The earnings scenario – characterized by a realized EPS – is determined by randomly draw-
ing a value for the implied standardized unexpected earnings (as defined above) from +/-
[0.0001, 0.0005, 0.001, 0.005, 0.01] and by then calculating the implied EPS value.3⁵ This
range of SUE captures over 85% of the empirical distribution.

For concreteness, see below the body of the earnings news article for the company Darden
Restaurants for the scenario of an SUE of -0.0005.

Darden Restaurants, Inc. is an American multi-brand restaurant operator headquar-
tered in Orlando, Florida. In their earnings announcement for the third quarter

3⁵The firm’s realized earnings are calculated based on the firm’s actual consensus forecast of earnings, its actual
stock price at the time of the experiment, and this SUE.

34



of 2024, Darden reported earnings below market expectations. Trading at a stock
price of $164.73 prior to the announcement, Darden reported earnings per share
of $1.94. Darden therefore earned 3.96% less than analysts expected, given the
consensus forecast of $2.02 earnings per share.

Participants are asked to consider the scenario that the upcoming, actual earnings announce-
ment of the company was actually occurring right now,3⁶ and the actually announced EPS
equals the displayed realized earnings. The main task is to then predict the change between
the current stock price (which in the scenario is the stock price right before the earnings an-
nouncement) and the same-day closing price. We provide screenshots of the entire experiment
in Appendix D, which includes the decision screen for the Baseline condition (Appendix Figure
A16). Our baseline task thus provides the standard set of numerical information provided in
earnings news coverage alongside the most common categorization as beating or missing the
forecast (also mentioned in the header), emulating the type of simultaneous provision of coarse
and granular information structures that motivates this paper.

We present five independent scenarios to participants, each about a different real U.S. com-
pany with a quarterly earnings announcement occurring within the five days following the data
collection.3⁷ For each participant, we randomly draw the order of the companies as well as the
SUE realization.

Incentives. In addition to a $1.70 base payment, one out of 10 participants is randomly drawn
to be eligible for a $50 bonus, with one round randomly selected as the round-that-counts. An
eligible participant wins $50 if two conditions are met: First, the standardized unexpected earn-
ings implied by the company’s actual earnings announcement (in the days following the study)
falls within 10% of the scenario provided.3⁸ Second, the participant’s stock price prediction
must fall within 1 percentage point of the actual change observed on the announcement day.

Treatments. Participants are randomly assigned (with equal probability) to one of the fol-
lowing two between-subject conditions: Baseline and High Constraints. Relative to the Baseline
condition, we increase the severity of processing constraints for participants in the High Con-
straints condition in two ways. First, we effectively manipulate the “demand side” of processing

3⁶The full data collection was conducted between late morning and early afternoon EST, in the time window
earnings announcement are most common.

3⁷The set of companies we used are: Micron Technology, FedEx, Lennar, Darden Restaurants, and Paychex.
3⁸In a follow-up question at the end of the study, participants estimated the likelihood to be 56.54% on average,

suggesting that they viewed the task as relevant for their payoff.
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constraints by increasing the information load of the task without adding any information that
should affect estimates. In particular, in addition to the exact same earnings news presented
in Baseline, High Constraints displays further background information on the company’s his-
tory that is neutral in character and irrelevant for the price movement on the announcement
day. To provide an example, below is an excerpt of the irrelevant information provided for one
company:

Darden is an American multi-brand restaurant operator headquartered in Orlando,
Florida. Darden has more than 1,800 restaurant locations and more than 175,000
employees, making it the world’s largest full-service restaurant company. The com-
pany began as an extension of Red Lobster, founded byWilliam Darden and initially
backed by General Mills. Red Lobster was later sold in July 2014.

Second, we manipulate the “supply side” of processing constraints by limiting the processing
capacity available to respondents in this condition. Specifically, to remain eligible for a bonus
payment, respondents need to submit their estimate in a given round within a time limit of 40
seconds, effectively inducing time pressure. In Baseline, median response time was 25 seconds
(25th percentile: 15 seconds; mean: 47 seconds, 75th percentile: 45 seconds). The combination
of time pressure with additional (irrelevant) information load in High Constraints aimed at
effectively limiting respondents’ ability to thoroughly integrate all information. Respondents
almost always complied with the time limit: we recorded 6.7% timeouts across all rounds and
participants. An example decision screen for this condition is shown in Appendix Figure A16.

The High Constraints condition increases the severity of information processing constraints
in a way that arguably has ecological validity: on financial markets, investors routinely face
large amounts of information, some of which is technically irrelevant to a given valuation, and
are time constrained in their decisions (Hirshleifer and Teoh, 2003).

Predictions and Category Defaults. In each round, we elicit the same-day price change pre-
diction in percent and restrict the entry range to a window ranging from -15% to +15% of the
current stock price. We analyze the prediction data in two formats (both pre-registered, see
below). First, we analyze the raw predictions. Second, we also elicit category defaults, which
is a respondent’s best estimate of the historical average of same-day percent price change for
companies who beat the forecast, and for those who missed the forecast.3⁹ These category de-
faults are the direct empirical analogue of the conditional default response rd , see Section 2.

3⁹The specific question we ask is: “Historically, what do you think was a company’s average stock price change
on a day where announced earnings [exceeded / fell below] the consensus forecast?”
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Equipped with each respondent’s individual category defaults, we can express their predictions
in a specific firm scenario in relation to the corresponding category default, which we refer to
as our normalized predictions. Specifically, predictions of price changes for positive (negative)
surprises are divided by the respondent’s category default for positive (negative) earnings sur-
prises. The normalized predictions have the intuitive interpretation that a stated prediction that
equals the individual’s category prior equals a value of one. We document the same findings for
both measures.

Discussion. Two remarks about the experimental design are in order. First, our High Con-
straints manipulation intends to manipulate the severity of processing constraints in ways that
appear practically relevant to us, given our application, but is not meant as a way to precisely
identify different potential cognitive channels. For example, one might draw a distinction be-
tween individuals not processing some component of information altogether (a form of selective
attention) versus individuals attending to but not (fully) integrating a piece of information as
a result of processing constraints. We think both channels are highly relevant in practice.

Second, how strongly people respond to different components of information – especially
under constraints – is likely a function of the extent to which they have encountered and delib-
erated about a given signal in the past. This applies to both numerical and categorical informa-
tion. It is plausible that a relatively stronger reliance on categorical information is a function of
how familiar people are with the corresponding categories. In our context, earnings beats and
misses is the most common set of categories for investors, so we might expect them to have a
good sense of their category defaults. The prior elicitation of or training on a specific category
as experimental manipulations might be a fruitful avenue for future work to identify the role
of familiarity for the relative reliance under processing constraints.

5.2 Sample

The data collection took place in December 2024 andwas pre-registered on AsPredicted (#205080).⁴⁰
The pre-registration includes the experimental design, hypotheses, outcomes, sample size, and
exclusion criteria. We recruited participants on Prolific, a widely used online platform. Our fi-
nal sample comprises data from a total of 1,000 U.S. investors who successfully completed the
experiment. All of our participants have an account on a trading platform and are at least 18
years of age.

⁴⁰https://aspredicted.org/n3zm-md9t.pdf
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Comprehension Questions and Exclusion Criteria. We pre-specified that respondents who
fail to pass a set of three comprehension questions on the instructions within the first two
attempts are not allowed to proceedwith the study.We do not screen on prior knowledge; rather,
the correct answers are mentioned in the instructions. The three comprehension questions,
shown in Appendix Figure A10, test whether people have understood the general instructions
about earnings announcements and stock responses. 9% of the respondents who started the
experiment failed the comprehension check and were thus not allowed to participate. To ensure
our data only include investors who have at least some basic understanding of the setting, we
further pre-specified the exclusion of respondents who state a category prior with a wrong
sign. We consider this a low bar for understanding the empirical setting (or paying attention).
In particular, we exclude respondents who state a belief indicating that the historical average
of same-day price changes in response to positive earnings surprises was non-positive, as well
as all respondents who state a belief that the historical average of same-day price changes in
response to negative earnings surprises were non-negative. After applying these exclusions, we
end up with a final sample size of 897 respondents.⁴1

5.3 Results

Result 1: Shape of the Empirical Response Function in Baseline. The blue markers in Panel
(a) of Figure 4 plot the median normalized return prediction for each SUE value in Baseline.⁴2
The blue line illustrates the implied slope. Even in our simple baseline condition without any
additional complications, we find that the data from our individual prediction experiment ex-
hibit a pattern that is qualitatively highly similar to the price patterns observed in the field
data: the response function exhibits a pronounced S shape. Median return predictions are very
sensitive to crossing the category threshold – from missing to beating expectations – but are far
less sensitive to the magnitude of a surprise (conditional on its sign).

Result 2: Processing Constraints and Price Predictions. Next, we test for the effect of the
treatment manipulation on the sensitivity of the price change predictions to variation in sur-
prises. The red markers in Panel (a) of Figure 4, showing predictions in High Constraints, follow
a noticeably more S-shaped pattern than the empirical response function of condition Baseline.
We document the distinctive prediction of our framework that implies three different crossing

⁴1Our findings also hold for a sample that does not apply these pre-specified exclusion criteria.
⁴2We begin with normalized returns, which we pre-registered as our main measure. All results also hold for

the raw returns, see Robustness below and all corresponding analyses in Appendix C.
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Figure 4: Experimental Results
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Notes: This Figure presents the main evidence from the experiment with 897 respondents. Panel (a) presents
the median return predictions across all treatment cells. The blue line depicts data from respondents in the
baseline condition, while the red line displays data from the high constraints condition. Panel (b) presents the
coefficients on the interaction term between SUE and the high constraints dummy for varying window sizes
of SUE.

points of the implied response functions: first, the implied slope around zero surprise is steeper
in High Constraints than in Baseline, meaning that more severe processing constraints cause
more extreme predictions for small surprises, i.e. more positive (negative) predictions for small
positive (negative) surprises. Focusing on either only positive or only negative surprises, how-
ever, the implied slope of the response function is lower in High Constraints. As a result, the
directional effect of more severe processing constraints reverses for sufficiently large absolute
surprises: High Constraints causes more extreme predictions for small positive and negative sur-
prises yet less extreme predictions for large positive and negative surprises. In our data, these
two crossing points happen to be symmetrically located at SUE values of −0.001 and +0.001.
At those values, median normalized predictions in both conditions equal one, meaning that
respondents state predictions equal to their two category defaults at the median.

To test the statistical significance and size of these effects, we pre-specified an approach
that mirrors our analyses for the field data. We estimate a simple regression equation of the
following form:

ri j = αHigh Constraintsi + βSU Ei j ++γSU E j ×High Constraintsi + ϵi j

where ri j is the response (a price change prediction) of individual i for company j.High Constraintsi
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is an indicator taking value one for respondents in High Constraints and value zero for respon-
dents in Baseline. SU E j denotes the size of the surprise for company j. Our key object of interest
is the coefficient on the interaction term between SUE and High Constraints, γ. Recall from the
field evidence we predicted and documented a positive interaction coefficient for small abso-
lute surprises that fell as we iteratively included larger absolute surprises, eventually turning
negative for the full sample. Following this approach in the observational data, we here run this
regression repeatedly for expanding symmetrical windows around zero SUE. To account for the
effect that the local sensitivity to SUE also changes in Baseline, we normalize the interaction
coefficient by dividing by the coefficient on SUE, β .

Panel (b) of Figure 4 presents the resulting estimates (γ̂/α̂) for expanding symmetric ranges
of surprises. The coefficient of about 0.5 for the smallest window around zero SUE means that
more severe cognitive constraints increase the sensitivity to SUE by 50% (p < 0.01), relative to
Baseline. As we gradually increase the window size, the interaction coefficient falls, eventually
turning negative once we include data with SUE> 0.001. For the full dataset, the interaction co-
efficient equals -0.2 (p < 0.01), indicating a 20% lower sensitivity to SUE compared to Baseline.
Table 3 provides these results in regression format.⁴3 Taken together, these patterns show that
respondents in High Constraints are significantly more responsive to the category information,
yet less sensitive to the numerical magnitude of surprises. We interpret these results as suggest-
ing that the aggregate S-shaped price patterns in the field and our correlational findings on the
role of valuation uncertainty may partly be a result of how individuals’ beliefs respond to the
severity of processing constraints.

Robustness. We conduct a battery of robustness tests and sensitivity analyses, all of which we
pre-registered.We summarize these findings, all of which are reported in Appendix C . As jointly
illustrated in Figure A8, our results hold when we (a) analyze raw price change predictions
instead of normalized predictions; (b) do not normalize the interaction coefficient with the
Baseline slope; (c) test effects on means instead of medians; (d) drop timeouts in the High
Constraints condition (6.7% in High Constraints); (e) exclude participants who report looking
up additional information online (5.24%); and (f) exclude observations where the predicted
price change has the opposite sign of the earnings surprise (7.6%), i.e. a negative (positive)
price change prediction for a positive (negative) surprise.

⁴3The table also shows a level effect: respondents in High Constraints predict somewhat higher returns, irre-
spective of the size of surprise.
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Table 3: Dependent variable: Normalized predictions

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 3754.4∗∗∗ 1527.8∗∗∗ 1027.9∗∗∗ 400.0∗∗∗ 236.7∗∗∗
(224.1) (82.47) (34.58) (15.82) (11.29)

SUE x HC 1745.6∗∗∗ 305.6∗∗ 138.8∗∗ -83.33∗∗∗ -55.38∗∗∗
(390.4) (119.2) (55.61) (23.94) (14.33)

HC 0.0746∗∗ 0.0694∗ 0.0971∗∗∗ 0.0833 0.113∗∗
(0.0350) (0.0374) (0.0335) (0.0508) (0.0508)

Constant -0.0246 0.0139 -0.0138 4.97e-09 0.0333
(0.0211) (0.0219) (0.0171) (0.0218) (0.0275)

Observations 900 1813 2677 3557 4483
R-squared 0.0641 0.103 0.157 0.183 0.208

Notes: This table shows the results of regressing normalized predictions on SUE, an indicator for the High Con-
straints treatment (HC), and the interaction of both (SUE x HC) in the experimental data using median regressions.
The results are shown for expanding windows around zero SUE. Regression (1) contains rounds for SUE in the
window [-0.0001, 0.0001], Regression (2) for SUE in [-0.0005, 0.0005], Regression (3) for SUE in [-0.001, 0.001],
Regression (4) for SUE in [-0.005, 0.005] and Regression (5) for SUE in [-0.01, 0.01], where the latter window
corresponds to the full sample. Clustered standard errors are reported in parentheses. The window size indicates
the range of SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1,
** p<0.05, *** p<0.01.

6 Variation of Earnings Response Sensitivity and the Deter-
minants of Processing Constraints

Up to this point, our empirical analyses both in the field and the experiment focus on the non-
linear shape of the earnings response function. As noted in Section 2, our framework predicts
a piecewise linear step function under the assumption of a constant severity of processing con-
straints for all possible signal realizations. Yet, the empirical relationship in Figure 1 has several
notable features that a piecewise linear fit misses and that our empirical analyses ignore thus
far.

First, the return patterns in the field exhibit a smooth pattern of diminishing sensitivity
around zero surprise rather than a discontinuous jump. Second, there is a clear asymmetry
between consensus beats and misses, with far lower sensitivity in negatives. In this section,
we examine whether our hypothesis about the severity of processing constraints also speaks to
these patterns.
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In the context of the theoretical framework, local variations in the slope of the earnings
response function are directly linked to local variation in the severity of processing constraints.
Intuitively, locally higher processing noise induces the agent to relymore on the category default
and less on local variation in the numerical information. As a result, higher noise makes the
agent less sensitive to variation in the magnitude of announced EPS, conditional on a category.

We now relax the working assumption of globally constant processing constraints, examine
potential drivers of local variation, and test whether locally more severe processing constraints
are indeed associated with locally lower sensitivity to the sizes of surprises.

Rather than proposing a new theory of the determinants of processing constraints, we lever-
age two prominent hypotheses from recent work in behavioral economics and the cognitive
sciences. The first hypothesis suggests that processing constraints are lower for more common
stimuli, such that local response sensitivity is linked to the local density in the historical distribu-
tion (Section 6.1). The second hypothesis suggests that surprise draws attention, and attention
is a scarce resource: a more surprising category realization (given expectations) might require
more processing capacity and “distract” from the precise magnitude of EPS, reducing sensitivity
to local variation in the numerical signal (Section 6.2).

Both of these (complementary) hypotheses received previous empirical support in labora-
tory settings and lower-level cognitive tasks such as perception, but have not been tested in an
economically relevant field setting. They can be viewed as extensions of our baseline framework
that add to and refine our main evidence, and do not stand in conflict with any of the findings
reported up to here.

6.1 The Role of Stimulus Frequency for Processing Accuracy

A long-standing hypothesis in the cognitive sciences posits that processing accuracy is higher
for stimuli that are encountered more frequently. This idea has been proposed, modeled, and
tested experimentally in a variety of ways, prominently including the principle of efficient coding
(Laughlin, 1981; Barlow et al., 1961). Efficient coding suggests that sensory systems are opti-
mized to represent incoming information in a way that is efficient given biological constraints,
typically enhancing stimulus discrimination – and thus higher sensitivity of the response func-
tion – in ranges with more empirical mass. Much of the modeling and empirical evidence of
efficient coding applies to lower-level cognitive tasks such as perception (e.g. Wei and Stocker,
2015; Girshick et al., 2011). More recently, the efficient coding principle has attracted attention
in economics, both in theory (e.g., Woodford, 2012) and empirical studies on subjective value
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(Polanía et al., 2019), estimation tasks (Heng et al., 2020) and choice under risk (Frydman and
Jin, 2022). Efficient coding is not the only theory compatible with higher sensitivity in stimulus
ranges with higher density. In particular, decision by sampling (Stewart et al., 2006; Stewart and
Simpson, 2008) suggests that subjective value is created by comparing a stimulus to samples
from memory. The model predicts higher discriminability in denser stimulus regions.

Stimulus Frequency and Local Earnings Response Sensitivity: Illustration. To empirically
approach this hypothesis, we first correlate the local sensitivity to variation in earnings mag-
nitudes, i.e. the local earnings response coefficient (ERC) in a given window of surprises, with
the relative frequency of that stimulus window. Specifically, we partition earnings surprises into
SUE bins of width 0.001. The blue markers in Figure 5 plot the total number of observations
in each bin. We make two main observations: First, the historical distribution is strongly bell-
shaped with mass concentrated around zero surprise (11.8% of the data is clustered at exactly
zero surprise). This is unsurprising: larger surprises should happen less often. Second, there is
a pronounced asymmetry: positive surprises are more common (52.9%) than negative surprises
(35.3%).

To illustrate the relationship with local earnings response sensitivity, we next run standard
earnings response regressions in 5-bin rolling windows, i.e. for each SUE bin, we run a re-
gression that includes observations in that bin as well as the two adjacent bins on either side.
The red markers in Figure 5 indicate the locally estimated earnings response coefficients with
95% confidence intervals. The shape of the distribution of local earnings response coefficients
is strikingly similar to the distribution of data mass. ERCs are generally higher for less extreme
surprises and higher for positive bins than the corresponding negative ones. Note that this evi-
dence directly speaks to the two features of the overall shape of the empirical response function
that our previous analyses did not speak to: diminishing sensitivity away from zero surprise and
a pronounced positive-negative asymmetry.

Regression Analyses. To formally test and quantify this visual impression of the hypothesized
relationship, we conduct additional analyses. Specifically, we first estimate a kernel density
on the historical distribution of surprises with 100 points. We restrict our attention to SUEs
between −0.05 and +0.05, corresponding to 98% of the data. Then, we run the following
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Figure 5: Historical Stimulus Frequency and Earnings Response Coefficients

Notes: First, we assign stocks into bins of SUE in increments of 0.001. Dots are centered at the minimum SUE
within each bin, so e.g., the dot at exactly zero contains SUEs in the interval [0, 0.001). Each blue dot represents
the number of observations in that bin. Then, in 5-bin rolling windows, we run an earnings response regression of
cumulative market-adjusted returns from the day of the earnings announcement (t = 0) to the close 4 days after
the earnings announcement (t = 4) on SUE. The red dots represent the earnings response coefficient, and the red
lines represent a 95% confidence interval.

regression:

ri,(t,t+n) = β1SUEi,t + β21SUEi,t<0 + β31SUEi,t<0 × SUEi,t

+ γ1SUEi,t × ln(Di,t) + γ21SUEi,t<0 × ln(Di,t)

+ γ31SUEi,t<0 × SUEi,t × ln(Di,t) + θX i,t +ωln(Di,t) +φt +ψi + εi,t

(7)

Di,t is the kernel density estimate for the point closest to a given observation’s SUE and X i,t

are the same controls as in Section 4. In Equation 7, we use the natural logarithm of density
rather than the density itself, as the distribution of Di,t is heavily skewed, with over 10% of
the data mass concentrated exactly at a SUE of zero. Finally, to ease the interpretation of the
regression coefficients, we normalize ln(Di,t) so that it takes a value of 1 when SUE is exactly
equal to zero.

The results are shown in Table 4. Column 1 replicates the baseline earnings response regres-
sion (restricting to SUE ∈ [−0.05, 0.05]) with both a linear term for SUE (capturing sensitivity
to numerical magnitude) and a category indicator for negative SUE. Column 2 adds the log den-
sity and its interaction terms. We first examine the effect of conditioning on density (including
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its interactions) on the effect of switching the category from an earnings beat to an earnings
miss. We find that this reduces the effect by approximately 50%.⁴⁴ This result is consistent with
the idea that about half of the jump that a piecewise linear model attributes to the category
switch might be explained by local variation in the frequency of data.

Next, we turn to the role of the historical distribution for the observed slope asymmetry
between positive versus negative SUE. The baseline difference in estimated slopes for positive
versus negative SUE is large: the estimated sensitivity to the magnitude of positive surprises is
2.7, and it is 2.5 lower for negative surprises. Upon including the log data density and its inter-
actions, the estimated difference in slopes is dramatically reduced from −2.5 to −1.04, a 58%
reduction.⁴⁵ This suggests that a substantial portion of the empirical asymmetry between posi-
tive and negative surprises in Figure 1 can be explained away when accounting for the fact that
negative surprises are far less common. Additional evidence presented Appendix A.1 shows that
specifications with percentile ranks on the x-axis yield an approximately linear relationship with
excess market returns (under some assumptions), providing an additional perspective consis-
tent with this hypothesis. Taken together, we find evidence that is compatible with the idea that
processing accuracy is higher for more frequently encountered stimuli, allowing us to demon-
strate the potential relevance of these principles for higher-level cognitive tasks in a relevant
economic field context.

6.2 Surprise, Distraction and Competition for Attention

The motivation of our basic framework is that integrating information requires cognitive pro-
cessing, which is a scarce resource. Instead of modeling the competition between categorical
and numerical information for the limited stock of processing capacity, we assume that nu-
merical information has a higher, constant processing cost. If, however, integrating categorical
information requires more processing in a given situation, fewer resources remain to parse the
numerical information.⁴⁶

A prominent principle in the cognitive sciences is that more surprising information requires
more processing resources (e.g., Friston, 2005; Itti and Baldi, 2009). The special role of sur-
prises for shaping attention has also been studied in economics (Bordalo et al., 2021). In ratio-

⁴⁴Specifically, the effect in Column 1 was −3.09%. After including the baseline effect and the interaction term
with density—evaluated at SUE = 0, where we have normalized ln(Di,t) = 1 we obtain a total effect of −3.4%+
1.87%= −1.53%, which is roughly half of −3.09%.

⁴⁵Note that the triple interaction between 1SUEi,t<0, SUEi,t and ln(Di,t) is -0.578.
⁴⁶Our baseline model abstracts from this feature by assuming zero processing noise for categorical information

and fixed processing noise for numerical information.
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Table 4: Historical Density and Earnings Response Sensitivity

(1) (2)

SUE 2.714*** 1.739***
(0.124) (0.180)

1SU E<0 -0.0309*** -0.0340***
(0.001) (0.002)

1SU E<0 x SUE -2.494*** -1.044
(0.141) (0.756)

ln(Density) -0.0181***
(0.001)

ln(Density) x SUE 0.718***
(0.054)

1SU E<0 x ln(Density) 0.0187***
(0.002)

1SU E<0 x SUE x ln(Density) -0.578***
(0.130)

Observations 173,587 173,587
R-squared 0.115 0.128

Fixed Effects YQ + Permno YQ + Permno
Controls ALL ALL

Notes: This table studies how the density of the data in a given range of SUEs affects earnings responses. For this
exercise, we restrict to SUEs between -0.05 and 0.05, and estimate a kernel density with 100 points. Column 1 is
an earnings response regression restricted to the subset of data with SUEs between -0.05 and 0.05, allowing for
a differential level and slope effect for SUEs less than zero. Column 2 includes the kernel density estimate from
the point in the kernel density function closest to a given observation’s SUE (the variable “Density”), as well as
interactions between Density and SUE, the indicator variable for negative SUE, and the interaction term between
the indicator variable for negative SUE and SUE itself. Clustered standard errors are reported in parentheses.
Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

nal inattention models (Sims, 2003), Shannon information cost implies that agents’ cognitive
processing effort scales with the informativeness of signals. As a result, more surprising events
are more cognitively costly to process.

Applied to our empirical application, surprising category realizations – e.g., a profit when
a loss was expected – might draw more processing resources, leaving less capacity to integrate
the precise numerical magnitude of EPS and thus reducing the observed earnings response sen-
sitivity. This hypothesis thus introduces direct competition between categorical and numerical
information, leveraging the notion that surprise drives processing load.⁴⁷

⁴⁷Note the difference between a surprising realization given the forecast for a specific company and the notion
of globally more or less frequent (and thus more or less globally surprising) events as studied in Section 6.1: the
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Empirical Strategy. We test whether amore surprising category realization given a firm’s con-
sensus forecast is associated with lower sensitivity to variation in the magnitude of surprises. In
particular, we estimate the local sensitivities for a given range of SUE and given category real-
izations, and compare whether these sensitivity estimates systematically depend on whether
the realized category was expected or not. Put differently, we fix realized values (SUE and cat-
egories) and explore variation whether the corresponding category expectations were fulfilled
or not.

This test requires variation in whether a category realization is surprising or not relative to
consensus market expectations. Note that the categorization as a consensus beat or miss – the
focus of our analyses so far – is defined relative to the consensus forecast itself and thus equally
surprising by construction. This exercise thus requires commonly used categorizations which
vary in whether they are surprising. As reviewed in Section 1, our analysis ofWall Street Journal
headlines revealed that there are two other highly common categorizations: EPS growth versus
shrinkage year-over-year, and EPS being positive (profits) versus negative (losses).

We estimate the following type of specification:

ri,(t,t+n) = β1SUEi,t + β21SUEi,t<0 + β31SUEi,t<0 × SUEi,t

+ ζRunningi,t +
3
∑

k=1

δk1(i,t)∈k +
3
∑

k=1

γk1(i,t)∈k × SUEi,t

+ θX i,t +φt +ψi + εi,t

(8)

where 1(i,t)∈k is an indicator variable for firm i’s earnings announcement at time t belonging
to group k. First, we consider four mutually exclusive categories of year-over-year earnings
growth, defined by the sign of actual and expected growth. Specifically, we distinguish between:
(1) cases where both actual and expected earnings growth are negative (Shrink & E[Shrink]),
(2) cases where actual growth is negative but expected to be positive (Shrink & E[Grow]), (3)
cases where actual growth is positive but expected to be negative (Grow & E[Shrink]), and (4)
cases where both actual and expected growth are positive (Grow & E[Grow]). This last category
serves as the omitted reference category. The running variable, Runningi,t , is year-over-year
earnings growth, divided by the pre-earnings announcement price. Therefore, in equation 8, the
coefficients δi capture the level effect of belonging to a given category compared to the omitted
category. The coefficients γi capture how different category realizations affect sensitivity to

empirical density argument from before refers to how a realization compares to the historical distribution, while
a surprise characterizes how a realization compares to a firm-specific expectation.
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the size of the SUE. Importantly, because we include SUE in Equation 8, we are effectively
comparing how events with similar SUE respond differently depending on an expected versus
unexpected category realization.

We also consider an alternative set of categorical realizations based on whether profits are
positive or negative, defining four categories by the expected and actual sign of profits. Here,
the running variable, Runningi,t , is earnings per share divided by the pre-announcement stock
price.

Results. Table 5 reports the regression results. We find that, first, surprising category real-
izations have substantial level effects on returns: these additional categorizations do seem to
affect returns, which is a pre-condition for this exercise. Second, and in line with the hypothesis,
more surprising category realizations are associated with lower sensitivity to the magnitude of
the earnings surprise.

Specifically, in the first column of Table 5, we study categorical realizations with respect
to year-over-year (YOY) earnings growth. We find that companies who report YOY earnings
growth experience a 1.4 p.p. higher market-adjusted return (p < 0.01) when a decline was
expected, relative to when growth was expected (recall that Grow & E[Grow] is the omitted
category). Among observations reporting EPS shrinkage, returns are approximately 1 p.p. (p <
0.01) more negative when EPS growth (rather than shrinkage) was expected. These effects of
category thresholds are striking as they control for the precise numerical information on SUE
and EPS.

We now turn to the interaction terms between these indicator variables and SUE itself, which
capture the sensitivity to variation in the numerical information about EPS. Consistent with our
hypothesis, the ERC for YoY growth observations is 1.13 p.p. (p < 0.01) lower when a decline
was expected than when growth was expected. This is a sizable drop in sensitivity by 39%.
Conversely, the ERC for observations with YoY earnings shrinkage is significantly lower when
growth was predicted than when a decline was expected (p < 0.05).

Column 2 of Table 5 replicates the analysis from Column 1, instead focusing on expected
versus surprising profits and losses i.e., EPS greater than and/or less than zero. Broadly, we find
analogous patterns to column 1. First examining level effects, we find that average excess re-
turns are significantly higher after reported gains when a loss was expected, rather than a gain
(p < 0.01). Average excess returns after reported losses are lower when a gain (rather than a
loss) was expected (p < 0.01). Next, there are also substantial differences in the correspond-
ing interaction terms between these indicator variables and SUE itself. Consistent with our
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Table 5: Surprising Categorical Realizations and Earnings Responses

(1) (2)

SUE 2.978*** SUE 3.360***
(0.140) (0.166)

1_SU E < 0 -0.0290*** 1_SU E < 0 -0.0294***
(0.001) (0.001)

1_SU E < 0 x SUE -2.883*** 1_SU E < 0 x SUE -2.729***
(0.154) (0.145)

EPS Growth/Price 0.000 EPS/Price 0.000
(0.000) (0.006)

Shrink & E[Shrink] -0.00511*** Loss & E[Loss] -0.00729***
(0.001) (0.001)

Grow & E[Shrink] 0.0142*** Gain & E[Loss] 0.0251***
(0.001) (0.004)

Shrink & E[Grow] -0.0145*** Loss & E[Gain] -0.0143***
(0.001) (0.003)

(Shrink & E[Shrink]) x SUE -0.101 (Loss & E[Loss]) x SUE -0.805***
(0.077) (0.125)

(Grow & E[Shrink]) x SUE -1.135*** (Gain & E[Loss]) x SUE -2.089***
(0.188) (0.229)

(Shrink & E[Grow]) x SUE -0.265*** (Loss & E[Gain]) x SUE -0.741***
(0.086) (0.139)

Observations 165,018 Observations 165,018
R-squared 0.12 R-squared 0.121

Fixed Effects YQ + Permno Fixed Effects YQ + Permno
Controls ALL Controls ALL

Notes: This table studies how surprising category realizations affect how stock prices respond to standardized
unexpected earnings. The left-hand-side variable is the cumulative market-adjusted returns from the day of the
earnings announcement (t = 0) to the close 4 days after the earnings announcement (t = 4). Both columns
include time-varying firm-level controls, as well as year-quarter fixed effects and firm fixed effects. Clustered
standard errors are reported in parentheses. Significance levels are denoted as follows: * p<0.1, ** p<0.05, ***
p<0.01.
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hypothesis about the effect of surprises on categorical versus continuous signals, the marginal
response to SUE for positive profits is significantly lower when a loss was expected than when
a gain was expected (p < 0.01). Indeed, sensitivity to quantitative earnings information drops
by almost 65 percent. Our analysis reveals no statistically significant difference in the response
to marginal SUE news between surprising and expected losses. This might be explained by the
very low baseline response to SUE for companies reporting losses to begin with.

Taken together, this additional set of results is compatible with the idea that more surprising
category realizations draw more attention away – and thus distract from – the size of surprises.

7 Conclusion

We study the competition between categorical and numerical information in a high-stakes field
setting and using incentivized experiments. A class of models that we illustrate using a frame-
work of constrained Bayesian optimization makes the distinctive prediction that more severe
processing constraints lead to sharpening across categories and flattening within-category: this
yields S-shaped behavioral response functions around category thresholds. In the case of stock
market responses to earnings surprises, more constrained agents are predicted to overreact to
small (positive and negative) surprises yet under-react to large ones. Our empirical setting is
motivated by the fact that excess stock returns in practice indeed exhibit a striking S shape.

Using a dataset of over 176,000 earnings announcements from the field, we provide evi-
dence of more pronounced S-shaped response functions for stocks that are hard-to-value. We
then confirm our findings with incentivized individual belief formation experiments with in-
vestors that leverage causal manipulations of processing constraints.

To go further, we then bring two prominent hypotheses from the cognitive sciences about
what causes local variation in processing constraints to the field: that processing accuracy is
higher for more frequently encountered stimuli, and that more surprising events capture more
processing resources, taking attention away from the numerical magnitude of earnings news.
We document evidence in support of both, suggesting that additional properties of the empiri-
cal earnings response function – smoothly diminishing sensitivity and an asymmetry between
negative and positive surprises – may be described by an account of behavioral responses to
limited processing capacity.

We believe that our general hypothesis – that there is competition between easy- and hard-
to-integrate information – applies to many other settings. Our approach provides a blueprint
for studying the potential cognitive origins of corresponding field phenomena: for the case of
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coarse versus granular information, our tests required two main ingredients. First, a selection
of relevant categorizations that decision makers face in practice. These can be readily identified
in practical applications, e.g., using news reporting as we did. Second, measures of variation in
the severity of processing constraints. Here, too, one can leverage existing measures (such as
proxies of what makes a stock hard to value) and resort to characteristics of the decision envi-
ronment that previous work argues should be related to processing accuracy (such as historical
stimulus frequency or the degree of surprise).
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A Additional exhibits for field data on stock returns

Appendix Figure A1: Histogram of SUE

This figure presents a histogram of Standardized Unexpected Earnings (SUE) in our sample. SUE is calculated
as the difference between the actual earnings per share and the consensus forecast, divided by the closing price
before the earnings announcement (DellaVigna and Pollet, 2009; Hartzmark and Shue, 2018). Our measure
of earnings-per-share takes out the effect of one-time items.
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Appendix Table A1: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size: no con-
trols and no fixed effects

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 15.35*** 9.121*** 6.034*** 3.490*** 2.271***
(0.638) (0.350) (0.241) (0.160) (0.117)

VU -0.00233*** -0.00157*** -0.00121** -0.00092 -0.00088
(0.001) (0.001) (0.001) (0.001) (0.001)

SUE x VU 1.980*** 0.672*** 0.134 -0.297*** -0.332***
(0.416) (0.213) (0.142) (0.096) (0.069)

Observations 95,723 133,490 153,511 167,678 173,668
R-squared 0.028 0.043 0.048 0.044 0.037

Notes: This table studies how market-adjusted returns respond to standardized unexpected earnings (SUE) and
how this varies by Valuation Uncertainty. Panel A includes all observations, while Panel B focuses on the bottom
quintile of analyst dispersion. SUE refers to the deviation of a company’s reported earnings per share from the
consensus earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. Clustered standard errors are reported
in parentheses. Thewindow size indicates the range of SUE around zero considered in each regression. Significance
levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A2: Effect of Analyst Dispersion on Earnings Response Coefficients by Earnings Size

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 16.49*** 9.903*** 6.562*** 3.681*** 2.276***
(0.673) (0.397) (0.266) (0.155) (0.102)

Dispersion -0.00092 -0.00114** -0.00100** -0.000899** -0.000647*
(0.001) (0.000) (0.000) (0.000) (0.000)

SUE x Dispersion -1.396*** -0.454** -0.314*** -0.197*** -0.111***
(0.410) (0.182) (0.103) (0.054) (0.033)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.116 0.112 0.112 0.103 0.095

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how market-
adjusted returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncer-
tainty. SUE refers to the deviation of a company’s reported earnings per share from the consensus earnings
forecast by analysts, normalized by the last closing price before the earnings announcement. Dispersion is the
z-scored standard deviation of analyst forecasts about earnings in the last IBES statistical period before the
announcement, normalized by the magnitude of the consensus estimate of earnings per share Ben-David et al.
(2023). Our specifications control for both security (Permno) fixed effects and year-month fixed effects. We
also control for time since listing (age), market capitalization, returns from t-12 to t-2, book-to-market, CAPM
beta, institutional ownership and total daily stock volatility over the past 12 months. Clustered standard er-
rors are reported in parentheses. The window size indicates the range of SUE around zero considered in each
regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Figure A2: Interaction effect of Dispersion and Standardized Unexpected Earnings

Notes: This figure illustrates the interaction effect of Dispersion and Standardized Unexpected Earnings (SUE)
on market-adjusted returns. The SUE variable refers to the deviation of a company’s reported earnings per
share from the consensus earnings forecast by analysts, normalized by the last closing price before the earnings
announcement. Dispersion is the z-scored standard deviation of analyst forecasts about earnings in the last
IBES statistical period before the earnings announcement, normalized by the magnitude of the consensus esti-
mate of earnings per share Ben-David et al. (2023). The figure plots the SUE x Dispersion interaction, showing
the response of market-adjusted returns within different SUE windows around the earnings announcement.
The x-axis represents the window size around zero for standardized unexpected earnings, and the y-axis
shows the interaction coefficient. Error bars indicate the 95% confidence intervals for each coefficient.
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Appendix Table A3: Effect of Analyst Dispersion on Earnings Response Coefficients by Earnings Size: no controls
and no fixed effects

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 14.87*** 9.166*** 6.144*** 3.466*** 2.152***
(0.643) (0.361) (0.246) (0.142) (0.096)

Dispersion -0.00504*** -0.00446*** -0.00386*** -0.00339*** -0.00308***
(0.001) (0.000) (0.000) (0.000) (0.000)

SUE x Dispersion -1.167*** -0.380** -0.284*** -0.174*** -0.107***
(0.392) (0.176) (0.102) (0.053) (0.033)

Observations 95,723 133,490 153,511 167,678 173,668
R-squared 0.03 0.045 0.05 0.045 0.038

Notes: This table studies howmarket-adjusted returns respond to standardized unexpected earnings (SUE) and
how this varies by Valuation Uncertainty. SUE refers to the deviation of a company’s reported earnings per
share from the consensus earnings forecast by analysts, normalized by the last closing price before the earnings
announcement. Dispersion captures the z-scored standard deviation of analyst forecasts about earnings in the
last IBES statistical period before the earnings announcement, normalized by the magnitude of the consensus
estimate of earnings per share Ben-David et al. (2023). Clustered standard errors are reported in parentheses.
The window size indicates the range of SUE around zero considered in each regression. Significance levels
are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A4: Robustness: Simultaneous heterogeneous effects by Valuation Uncertainty and Dispersion

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 16.91*** 9.980*** 6.542*** 3.737*** 2.416***
(0.669) (0.391) (0.264) (0.173) (0.126)

VU 0.000701 0.000793 0.000947* 0.00135** 0.00144***
(0.001) (0.001) (0.001) (0.001) (0.001)

Dispersion (0.001) -0.00109** -0.00105** -0.00106*** -0.000820**
(0.001) (0.000) (0.000) (0.000) (0.000)

SUE x VU 2.815*** 1.065*** 0.384** -0.212** -0.313***
(0.427) (0.231) (0.152) (0.101) (0.072)

SUE x Dispersion -2.222*** -0.746*** -0.411*** -0.151*** -0.0560*
(0.406) (0.184) (0.102) (0.054) (0.033)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.117 0.112 0.112 0.103 0.095

Notes: This table studies how market-adjusted returns respond to standardized unexpected earnings (SUE)
and how this varies by Valuation Uncertainty and Analyst Dispersion. SUE refers to the deviation of a com-
pany’s reported earnings per share from the consensus earnings forecast by analysts, normalized by the last
closing price before the earnings announcement. Valuation uncertainty is defined as the z-scored dispersion in
expected market capitalization given by a multiples-based valuation method at different points in the industry-
year distribution. Analyst Dispersion captures the z-scored standard deviation of analyst forecasts about earn-
ings in the last IBES statistical period before the earnings announcement, normalized by the magnitude of the
consensus estimate of earnings per share Ben-David et al. (2023). We use the same controls and fixed effects
as Table 2. Clustered standard errors are reported in parentheses. The window size indicates the range of SUE
around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05,
*** p<0.01.
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Appendix Table A5: Returns on only earnings day

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 14.24*** 8.174*** 5.262*** 2.951*** 1.916***
(0.664) (0.378) (0.239) (0.149) (0.105)

VU 0.00039 0.000414 0.000554* 0.000826*** 0.000910***
(0.000) (0.000) (0.000) (0.000) (0.000)

SUE x VU 2.014*** 0.677*** 0.241** -0.178** -0.235***
(0.346) (0.183) (0.117) (0.081) (0.056)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.115 0.114 0.114 0.104 0.096

Notes: This table studies how market-adjusted returns respond to standardized unexpected earnings (SUE) and
how this varies by valuation uncertainty. Panel A includes all observations, while Panel B focuses on the bottom
quintile of analyst dispersion. SUE refers to the deviation of a company’s reported earnings per share from the
consensus earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. We use the same controls and fixed
effects as Table 2. Clustered standard errors are reported in parentheses. The window size indicates the range of
SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05,
*** p<0.01.
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Appendix Table A6: Returns from earnings day to t+2 i.e. 3 day returns

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 16.58*** 9.677*** 6.244*** 3.554*** 2.287***
(0.643) (0.376) (0.245) (0.160) (0.116)

VU 0.000498 0.000481 0.000597 0.00101** 0.00106**
(0.001) (0.000) (0.000) (0.000) (0.000)

SUE x VU 2.321*** 0.804*** 0.226 -0.250*** -0.290***
(0.384) (0.208) (0.137) (0.095) (0.068)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.116 0.114 0.113 0.105 0.096

Notes: This table studies how market-adjusted returns respond to standardized unexpected earnings (SUE) and
how this varies by Valuation Uncertainty. Panel A includes all observations, while Panel B focuses on the bottom
quintile of analyst dispersion. SUE refers to the deviation of a company’s reported earnings per share from the
consensus earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. We use the same controls and fixed
effects as Table 2. Clustered standard errors are reported in parentheses. The window size indicates the range of
SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05,
*** p<0.01.
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A.1 Sensitivity to Definition of SUE

One might be concerned that our baseline S-Shaped response of stock prices to earnings news
is a function of the way we have defined SU E. In this subsection, we show that our baseline
S-shape is present under a variety of alternative definitions of SUE. Further, we show that high
valuation uncertainty companies’ increased sensitivity to small surprises also holds under these
alternative definitions of SUE. Finally, we consider the relationship between post-earnings re-
turns and percentile ranks of SUE, as discussed in Hartzmark and Shue (2018). This latter
approach does not allow for testing non-linearity in returns to the size of earnings surprises. In-
stead, this approach could be considered a way to test predictions of models of efficient coding
that would predict a linear relationship if the mass is equally distributed on the x-axis.

The first alternative definition of SUE we consider is the percentage earnings surprise rel-
ative to the magnitude of the consensus earnings estimate. This is how earnings surprises are
defined e.g., on the Nasdaq website.

SU EA1
i,t =

EPSi,t − Et−1[EPSi,t]

|Ei,t−1[EPSi,t]|
(9)

Where Et−1[EPSi,t] is the mean analyst estimate of EPS, and EPSi,t is realized EPS.
The second alternative definition of SUE we consider is the earnings surprise relative to the

standard deviation of analyst estimates. This is the definition of earnings surprise used in e.g.,
Mendenhall (2004).

SU EA2
i,t =

EPSi,t − Et−1[EPSi,t]

SD(Ei,t−1[EPSi,t)
(10)

Where Et−1[EPSi,t] is the median analyst estimate of EPS, SD(Ei,t−1[EPSi,t) is standard devi-
ation of analysts’ estimates of EPS and EPSi,t is realized EPS.⁴⁸ When computing SU EA2

i,t , we
restrict to earnings announcements covered by at least 3 analysts to ensure we can compute
SD(Ei,t−1[EPSi,t).

The final alternative definition of earnings surprise we consider is a dollar surprise. This is
how earnings surprises are quoted on e.g., Yahoo finance and many large financial news media
websites.

SU EA3
i,t = EPSi,t − Et−1[EPSi,t] (11)

Where Et−1[EPSi,t] is the mean analyst estimate of EPS, and EPSi,t is realized EPS. One down-

⁴⁸We use the median analyst estimate instead of the mean (which we use in all other definitions of SU E) in
SU EA2

i,t for consistency with Mendenhall (2004). Results are similar using the mean estimate of EPS instead.
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side of working with the dollar surprise, relative to other definitions of SU E is that it is less
directly comparable across stocks e.g., the effect of a 1 cent earnings surprise on a stock with
an EPS of $1 might be very different than the effect of a 1 cent earnings surprise on a stock
with an EPS of $0.

Figure A3 shows the relationship between post-earnings market-adjusted returns and SUE
for each of these alternative definitions. While the strength of the S-shape’s curvature varies
across these alternative definitions, the broad empirical pattern of increased sensitivity around
zero, and decreased sensitivity away from zero is still present.

Appendix Figure A3: S-Shapes for Alternative Definitions of SU E

This figure presents the relationship between the alternative definitions of SU E and market-adjusted post-
earnings announcement returns. In each panel, we truncate the data at the 1st percentile and 99th percentile
of SUE.

Table A7 replicates our main results studying how VU affects the earnings response coeffi-
cients with each alternative definition of SU E in expanding windows of |SU E| around zero. In
our main results, our expanding windows start at absolute values of SUE less than 0.002, then
expand to 0.005, 0.01, 0.025 and 0.05. This roughly corresponds to the 50th percentile, 75th

percentile, the 90th and 95th percentile of SU E. So, to make the results with our alternative
definitions of SU E comparable to our baseline findings, for each definition of SU E, we also
examine expanding windows which contain roughly these fractions of the data. Note that the
number of observations is not exactly the same within each set of columns (i.e. keeping SU Es
less than the median in column 1 versus column 5), because there are exact ties in SUE, espe-
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cially in dollar terms. Further, the security fixed effects drop singleton observations, and the set
of singletons is different across columns. Across all the definitions of SU E, the pattern of high
VU being correlated with increased sensitivity to earnings news for small surprises holds. And,
across all the definitions of SUE, the coefficient on the interaction term shrinks as we expand
the window. Different from the baseline results, however, we do not observe a flipping for the
second and third alternative definitions of SUE, where high VU implies an attenuated response
for extreme SUEs.

Appendix Table A7: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Window Size 50% 75% 90% 95% All 50% 75% 90% 95% All 50% 75% 90% 95% All

SU EA1
i,t 0.415*** 0.168*** 0.109*** 0.0800*** 0.0271***

(0.155) (0.020) (0.012) (0.008) (0.002)
SU EA1

i,t x VU 0.0238 0.0782*** 0.0247* 0.00661 -0.00693***
(0.256) (0.025) (0.013) (0.008) (0.002)

SU EA2
i,t 0.00822 0.00551*** 0.00579*** 0.00519*** 0.00442***

(0.005) (0.001) (0.001) (0.001) (0.000)
SU EA2

i,t x VU 0.0146* 0.0133*** 0.00946*** 0.00897*** 0.00473***
(0.008) (0.001) (0.001) (0.001) (0.001)

SU EA3
i,t 0.668*** 0.336*** 0.192*** 0.155*** 0.107***

(0.182) (0.070) (0.035) (0.028) (0.015)
SU EA3

i,t x VU 0.610** 0.711*** 0.469*** 0.383*** 0.120***
(0.252) (0.084) (0.040) (0.033) (0.016)

Observations 27,261 93,312 134,354 151,318 171,269 34,303 93,870 119,568 126,467 137,620 50,771 91,087 139,193 151,849 173,345
R-squared 0.197 0.125 0.116 0.112 0.088 0.171 0.121 0.125 0.129 0.126 0.143 0.119 0.116 0.116 0.102

Firm-Level Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Fixed Effects YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to alternative definitions of standardized unexpected earnings (SUE) and how this varies by
Valuation Uncertainty. Valuation uncertainty is defined as the z-scored dispersion in expectedmarket capitalization
given by a multiples-based valuation method at different points in the industry-year distribution. Our specifications
control for both security (Permno) fixed effects and year-month fixed effects. We also control for time since listing
(age), market capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership, total
daily stock volatility over the past 12 months and the level of valuation uncertainty. Clustered standard errors
are reported in parentheses. The window size indicates the percentile of the SUE measure used to filter the data.
Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

Percentile ranks Another alternative way of measuring SU E is to calculate percentile ranks
of our baseline measure of SU E, as discussed in Hartzmark and Shue (2018). Our comparative
noisy processing framework predicts behavioral responses to both the sign and magnitude of
surprises. However, the use of percentile ranks complicates interpreting the data within the
framework of our model. Specifically, this approach precludes a quantitative assessment of
potential non-linearities in the relationship between returns and earnings surprises. Instead,
percentile ranks are better suited for testing models of efficient coding, which predict a linear
relationship under the assumption of evenly distributed mass along the x-axis – a condition met
when percentile ranks are used.

In fact, when using percentile ranks of SU E, rather than SU E itself, Hartzmark and Shue
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(2018) find that earnings responses appear to be linear, rather than S-shaped, consistent with
models of efficient coding.

Further, we believe that examining the response to percentile ranks can miss the importance
of crossing the boundary of SU E > 0 versus SU E < 0, which is crucial in our theoretical
framework. Specifically, over 10% of the announcements in our data have an SUE of exactly zero,
and almost half the data has an absolute SU E of less than 10 basis points. A graph constructed
based on percentile ranks will spread this half of the data out, and thus even if there is a sharp
jump in returns right at zero, using percentile ranks will make the response appear flatter.
Similarly, less than 15% of the data has an SUE of more than 100 basis points. Using percentile
ranks would tend to pull these data points together (i.e. reduce their spread), making our
observed pattern of attenuated responses in the tails of SU E seem weaker.

Given our theoretical framework, we are especially interested in understanding differences
across the SU E = 0 boundary. To better understand the effect of using percentile ranks of
SU E, but make the effect of crossing zero more clear, we consider the following alternative
percentile rank construction: First, we form 50 buckets based on percentile ranks of SU E but
only for SU E < 0. Then, we have 1 bucket for observations with an SU E of exactly zero. Finally,
we form 50 buckets based on percentile ranks of SU E, but only for SU E > 0.

Figure A4 shows the results. In the left panel, we follow Hartzmark and Shue (2018) and
form 100 bins based on percentile ranks, where the percentiles are formed each quarter. This
panel replicates their result of a linear response of stock prices to percentile ranks of SU E. In the
right panel, however, we use our alternative structure which breaks out the observations with
an SU E of exactly zero into their own bin, and does not form the percentile ranks conditional
on another variable (e.g., each quarter, or at the firm level).⁴⁹ And, the right panel shows that
there is indeed a sharp jump in returns at the zero-crossing boundary. Overall, these results
imply that our finding of increased sensitivity to SU Es right around zero is not an artifact of
how we constructed SU E (or using SU E itself rather than percentile ranks of SU E), but rather
a robust empirical pattern.

A.2 Robustness to pooled specification

In Table 2, we estimate our main regression specification in expanding windows. This approach
is useful for quantifying how sensitivity to SUE changes over different magnitudes of earnings

⁴⁹The logic is that forming the percentiles conditional on another variable could cloud the effect of crossing
SU E = 0, as SU E = 0 could fall into a different percentile bin each quarter or for each firm. By forming percentiles
unconditionally, we ensure all observations with an SUE of exactly zero are in the same bin.
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Appendix Figure A4: S-Shapes for Percentile Ranks of SU E

This figure presents the relationship between SU E grouped by percentile ranks and market-adjusted post-
earnings announcement returns. Vertical line denotes the bin with an SUE of exactly zero.

news. However, that method has two key limitations: first, the controls and fixed effects are
re-estimated in each window. Second, it implicitly imposes a linear structure on a relationship
that becomes increasingly nonlinear as we move into the tails of the distribution.

To allay these concerns, in Table A8, we pool the full sample and estimate a piecewise linear
specification that allows the response to earnings news to vary flexibly with the magnitude
of the standardized earnings surprise (SUE). The pooled regression resolves issues described
above by incorporating all observations simultaneously and modeling the earnings response as
a series of SUE-magnitude-specific linear segments. In the pooled specification, we find results
broadly similar to those in Table 2, with VU leading to increased sensitivity to small earnings
surprises, and decreased sensitivity to larger earnings surprises, although the latter result is
not statistically significant.
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Appendix Table A8: Pooled Regression: Effect of Valuation Uncertainty on Earnings Responses

(1) (2) (3) (4)

SUE x 1_|SUE|<=0.002 15.35*** 15.63*** 15.90*** 15.78***
(0.638) (0.636) (0.633) (0.647)

SUE x 1_|SUE|>0.002 & |SUE|<=0.005 7.821*** 7.909*** 8.003*** 8.189***
(0.314) (0.316) (0.320) (0.335)

SUE x 1_|SUE|>0.005 & |SUE|<=0.01 4.609*** 4.645*** 4.710*** 4.908***
(0.192) (0.192) (0.190) (0.197)

SUE x 1_|SUE|>0.01 & |SUE|<=0.025 2.352*** 2.377*** 2.423*** 2.577***
(0.125) (0.125) (0.125) (0.132)

SUE x 1_|SUE|>0.025 & |SUE|<=0.05 1.178*** 1.190*** 1.221*** 1.310***
(0.079) (0.079) (0.079) (0.086)

VU x SUE x 1_|SUE|<=0.002 1.980*** 2.096*** 1.905*** 1.950***
(0.416) (0.414) (0.413) (0.419)

VU x SUE x 1_|SUE|>0.002 & |SUE|<=0.005 0.594*** 0.612*** 0.544** 0.642***
(0.207) (0.208) (0.212) (0.213)

VU x SUE x 1_|SUE|>0.005 & |SUE|<=0.01 0.19 0.183 0.165 0.232*
(0.124) (0.124) (0.123) (0.126)

VU x SUE x 1_|SUE|>0.01 & |SUE|<=0.025 -0.101 -0.0991 -0.0923 -0.0658
(0.075) (0.075) (0.075) (0.081)

VU x SUE x 1_|SUE|>0.025 & |SUE|<=0.05 -0.0353 -0.0414 -0.0405 -0.0329
(0.057) (0.056) (0.055) (0.059)

Observations 173,668 173,668 173,668 173,587
R-squared 0.066 0.068 0.077 0.127

Controls No Yes Yes Yes
FE None None YQ Permno + YQ

Ratio 0.002 0.129 0.134 0.120 0.124
Ratio 0.005 0.076 0.077 0.068 0.078
Ratio 0.01 0.041 0.039 0.035 0.047
Ratio 0.025 -0.043 -0.042 -0.038 -0.026
Ratio 0.05 -0.030 -0.035 -0.033 -0.025

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty. SUE
refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast by analysts,
normalized by the last closing price before the earnings announcement. Valuation uncertainty is defined as the z-
scored dispersion in expectedmarket capitalization given by amultiples-based valuationmethod at different points
in the industry-year distribution. Some columns control for security (Permno) fixed effects and year-month fixed
effects. Some columns also control for time since listing (age), market capitalization, returns from t-12 to t-2, book-
to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months. Clustered
standard errors are reported in parentheses. Significance levels are denoted as follows: * p<0.1, ** p<0.05, ***
p<0.01. The final rows of the table report the ratios of the coefficients on SU E with the V U interaction terms.
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A.3 Robustness to different time periods

As discussed in Martineau (2021), the post-earnings-announcement drift (PEAD) is no longer
present in recent years, especially among large capitalization stocks. One might be worried,
therefore, if the PEAD is driven by under-reaction to extreme news, and the PEAD has disap-
peared, then the S-shaped response to earnings news has disappeared as well. To test this, first
we replicate our baseline plot of market-adjusted returns against SUE, but we restrict to data
after 2010 (the last period considered in Martineau (2021)). And, we further restrict to stocks
which, within a given quarter, are above the median market capitalization in our sample. Figure
A5 shows that the S-shape is still strong among large stocks in more recent years. This suggests
that the disappearance of the PEAD does not imply that the general empirical pattern of an
S-shaped response of stock prices to earnings news has also gone away.

Appendix Figure A5: S-shaped Response of Market-Adjusted Returns to Earnings Surprises: Post 2010, Large Cap.
Stocks

This figure illustrates the relationship between market-adjusted returns and earnings surprises. The x-axis
represents standardized unexpected earnings (SUE), calculated as the difference between actual earnings per
share (EPS) and mean expected EPS, normalized by the previous closing price (Pi,t−1). The y-axis shows the
cumulative market-adjusted return over the 4 days after the earnings announcement. Restricts to data after
2010, and stocks which are above median market capitalization in our sample each quarter.

Table A9 replicates our main results on the relationship between valuation uncertainty and
earnings response coefficients, again for the large-cap post-2010 sample. Reassuringly, our re-
sults of amplification for surprises around zero, and attenuation for large surprises also holds
on this subsample. Collectively, the evidence in Figure A5 and Table A9 suggest that the disap-
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pearance of the PEAD in recent years does not diminish the strength of our findings.

Appendix Table A9: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size: Post
2010, Large Cap. Stocks

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 22.18*** 13.37*** 9.212*** 5.980*** 4.611***
(1.168) (0.586) (0.384) (0.345) (0.337)

VU 0.000898 0.0013 0.00145* 0.00197** 0.00275***
(0.001) (0.001) (0.001) (0.001) (0.001)

SUE x VU 4.449*** 1.995*** 0.808*** 0.117 -0.489*
(0.923) (0.456) (0.285) (0.238) (0.263)

Observations 17,745 22,604 24,075 24,591 24,689
R-squared 0.164 0.157 0.152 0.137 0.13

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty. SUE
refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast by analysts,
normalized by the last closing price before the earnings announcement. Valuation uncertainty is defined as the z-
scored dispersion in expectedmarket capitalization given by amultiples-based valuationmethod at different points
in the industry-year distribution. Our specifications control for both security (Permno) fixed effects and year-month
fixed effects. We also control for time since listing (age), market capitalization, returns from t-12 to t-2, book-to-
market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months. Clustered
standard errors are reported in parentheses. The window size indicates the range of SUE around zero considered
in each regression. Restricts to data after 2010, and stocks which are above median market capitalization in our
sample each quarter. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

A.4 Earnings persistence

One possible alternative explanation for the differences in how valuation uncertainty affects the
response to earnings news for SUEs close to zero versus away from zero is differences in the
persistence of earnings news. For this to explain our results, however, two things would need to
be true. First, small surprises for high valuation uncertainty firms would need to be more per-
sistent than small surprises for low valuation uncertainty firms.⁵⁰ And second, large surprises
for high valuation uncertainty firms would need to be less persistent than large surprises for
low valuation uncertainty firms.

⁵⁰More specifically, when we discuss persistence near an SUE of zero, we mean that small positive surprises
are followed by subsequent small positive surprises, and vice versa for small negative surprises.
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We test whether there is differential persistence in earnings surprises for high- versus low-
valuation uncertainty firms and whether this differs for surprises close to zero and far away
from zero. To do so, we test the predictive power of an earnings surprise (i.e. SU E) at a given
point in time for earnings growth over the next year. To further make things comparable across
firms and time, we control for lagged earnings growth, and interact that quantity with all the
coefficients of interest.

Table A10 contains the results. Similar to our baseline regression specification, we run these
earnings persistence regressions in expanding windows around zero. The first column uses
all data, while the second column restricts to a small window around zero. Columns 3 to 6
progressively expand the window considered. In the smallest window (i.e. column 2), we find
that for high VU firms, earnings growth is negatively related to SUE today. This would work
against finding a stronger S-shape for high VU firms, as if small surprises are less persistent, we
would expect stock prices to react less, rather than more.

Further, in columns 7-12, we add in interaction terms for lagged earnings growth. There,
we find the same pattern: in tight windows around a SUE of zero, there is a negative coefficient
on the interaction term between SUE today and VU when trying to predict future earnings
growth, while for wider windows, the coefficient on the triple interaction term turns positive
and significant. Again, this would exactly work against the stronger S-shaped response for high
VU firms we find in the data. Collectively, the evidence in Figure A6 and Table A10 are further
evidence that differences in earnings manipulation, and earnings persistence are not driving
our main findings.

A.5 Earnings Manipulation

One concern with our main results is that crossing the boundary from SU E < 0 to SU E > 0

affects how investors’ adjust their expectations of a stock’s value for a reason outside of our
model. For example, one might be worried that managers engage in earnings manipulation to
ensure a small positive SU E. And therefore, when investors observe a small negative surprise,
crossing zero is not actually about moving across a category boundary. Instead, it signals that
managers were unable to manipulate earnings to ensure a positive SU E, which conveys to in-
vestors that either (1) the company’s fundamentals are much worse than previously thought or
(2) management is incompetent. And further, perhaps companies with more valuation uncer-
tainty have a stronger incentive or scope to engage in earnings manipulation, which drives our
results on cross-sectional heterogeneity in the S-shaped response to earnings news.
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If this were the case, however, one would expect two things. First, one would expect differ-
ences in bunching right around the cutoff at SU E = 0 for high and low VU observations. The
logic is that if high VU stocks manipulated earnings more, we would see a greater mass of earn-
ings just above the consensus estimate. Second, if managers of high VU firms engaged in more
earnings manipulation, we would expect differential persistence in their earnings news – as
management cannot manipulate earnings in the same direction forever. Therefore, one might
expect that positive SUEs for high VU firms predict relatively lower earnings growth going for-
ward than for low VU observations. In this section, we show that neither of these patterns hold
in the data, suggesting that differential earnings manipulation by valuation uncertainty is not
driving our main results.

First, we test for differences in bunching just above an SU E = 0 for high versus low VU
observations. To this end, each quarter, we split the data into two groups depending on whether
or not the stock has above or below median VU. Figure A6 plots the fraction of the data in each
VU group in 1 cent bins of dollar earnings surprise, defined as the difference between realized
earnings and the mean estimate of earnings. While there is a large mass of data at a surprise of
almost exactly zero, there is no difference in bunching for high versus low VU observations.⁵1
This is the first piece of evidence suggesting that differences in earnings manipulation do not
drive our results.

Next, we test whether SUE is differentially persistent for high and low VU observations.
Table A10 contains the results. Similar to our baseline regression specification, we run these
earnings persistence regressions in expanding windows around zero. The first column uses
all data, while the second column restricts to a small window around zero. Columns 3 to 6
progressively expand the window considered. In the smallest window (i.e., column 2), we find
that for high VU firms, earnings growth is negatively related to SUE today. This would work
against finding a stronger S-shape for high VU firms, as if small surprises are less persistent, we
would expect stock prices to react less, rather than more.

Further, in columns 7-12, we add in controls and interaction terms for lagged earnings
growth. Including lagged earnings growth is important, as earnings growth is mechanically
correlated with SUE, and earnings growth is persistent (Novy-Marx, 2015). Therefore, not in-
cluding lagged earnings growth could lead to omitted bias. There, we find the same pattern:
in tight windows around a SUE of zero, there is a negative coefficient on the interaction term

⁵1We say almost because the bin at exactly zero includes all surprises greater than or equal to zero, and less
than a full penny per share, i.e., the bins take the floor of the earnings surprise in one cent increments. So there
are some observations in that bin with slightly positive surprises. Results are similar replicating this plot using the
ceiling within each 1-cent increment, as opposed to the floor.
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Appendix Figure A6: Share of the Data Around SU E = 0: High versus Low VU Split

Each quarter, we split the data into two groups depending on whether or not the stock has above or below
median VU. This figure plots the fraction of the data in each VU group in 1 cent bins of dollar earnings surprise,
defined as the difference between realized earnings and the mean estimate of earnings. Each bin takes the
floor of the earnings surprise so e.g., the bin at zero includes all surprises greater than or equal to zero, and
less than a full penny per share. For clarity, we only plot data with earnings surprises between -3 cents, and
3 cents.

between SUE today and VU when trying to predict future earnings growth, while for wider
windows, the coefficient on the triple interaction term turns positive and significant. Again,
this would exactly work against the stronger S-shaped response for high VU firms we find in
the data. Collectively, the evidence in Figure A6 and Table A10 are further evidence that differ-
ences in earnings manipulation, and earnings persistence are not driving our main findings.

A.6 Accruals

One potential concern is that firms with high valuation uncertainty may be more likely to use
accruals to engineer small earnings beats. Accruals on their own, however, are mechanically
correlated with SUE. Specifically, accruals are a component of net income, and net income
underlies EPS and thus SUE. Including raw accruals alongside SUE in a regression creates a
multicollinearity problem, obscuring the true interaction effect. To address this, we construct
a version of accruals that is uncorrelated with SUE and captures abnormal behavior relative
to the firm’s typical accruals pattern. First we construct two measures of accruals: (1) cash
flow accruals defined as net income minus operating cash flows and (2) balance sheet accruals
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Appendix Table A10: Predictive Power of SUE for Future Earnings Growth

4 Quarters Ahead Earnings Growth
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

SUE Window All ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05| All ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE -1.218*** -0.115* -0.330*** -0.366*** -0.463*** -0.634*** -0.802*** -0.0256 -0.254*** -0.304*** -0.431*** -0.608***
(0.190) (0.062) (0.039) (0.035) (0.029) (0.039) (0.212) (0.069) (0.045) (0.037) (0.029) (0.037)

VU 0.00153*** 0.000614*** 0.000708*** 0.00104*** 0.00120*** 0.00136*** 0.00124*** 0.000677*** 0.000742*** 0.00111*** 0.00119*** 0.00130***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SUE x VU -0.298* -0.101 -0.0907** -0.0314 0.0282 0.0148 0.00427 -0.0815 -0.118*** -0.0535 0.00464 -0.00694
(0.153) (0.066) (0.040) (0.027) (0.027) (0.036) (0.131) (0.086) (0.045) (0.034) (0.027) (0.036)

Lagged Earnings Growth -0.0465 -0.000908 -0.0028 -0.00485 -0.00214 -0.00248 0.019 -0.0621** -0.0621*** -0.0565*** -0.0370*** -0.0449***
(0.048) (0.001) (0.002) (0.004) (0.002) (0.003) (0.049) (0.028) (0.022) (0.020) (0.009) (0.014)

Lagged Growth x SUE 5.539*** 3.759 -1.443 -2.737 -0.573 -1.848***
(2.114) (13.510) (4.782) (3.144) (0.851) (0.587)

Lagged Growth x VU -0.0832*** 0.021 0.0363** 0.0320** 0.0223*** 0.0306***
(0.031) (0.028) (0.016) (0.015) (0.007) (0.009)

Lagged Growth x SUE x VU 0.519 -33.43** -6.374 -5.243 0.673 1.166***
(0.907) (15.680) (5.498) (4.695) (0.566) (0.418)

Observations 143,703 82,184 113,150 128,550 138,489 142,207 143,703 82,184 113,150 128,550 138,489 142,207
R-squared 0.171 0.218 0.176 0.149 0.144 0.135 0.557 0.22 0.178 0.152 0.147 0.139

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how SU E can predict
future fundamentals, as measured by next year’s earnings growth, and how this varies by Valuation Uncertainty.
SUE refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast
by analysts, normalized by the last closing price before the earnings announcement. Valuation uncertainty is
defined as the z-scored dispersion in expected market capitalization given by a multiples-based valuation method
at different points in the industry-year distribution. Lagged earnings growth is the earnings growth over the past
year (i.e., relative to the same quarter the previous year), divided by the pre-earnings announcement price. 4-
quarters ahead earnings growth is defined as year-over-year earnings growth over the next 12 months (i.e., relative
to the same quarter the next year), divided by the pre-earnings announcement price. Our specifications control
for both security (Permno) fixed effects and year-month fixed effects. We also control for time since listing (age),
market capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership and total daily
stock volatility over the past 12 months. Clustered standard errors are reported in parentheses. The window size
indicates the range of SUE around zero considered in each regression. Significance levels are denoted as follows:
* p<0.1, ** p<0.05, *** p<0.01.

calculated as the change in non-cash current assets minus the change in non-debt, non-tax
current liabilities, minus depreciation expense Sloan (1996). Both measures are normalized by
total assets to make them comparable across firms and across time. We then residualize each
accruals measure by regressing it on SUE and including firm and year-quarter fixed effects. The
“Residualized” accruals used in Table A11 reflect these orthogonalized, abnormal components
of accruals.

At a high level, the results in Table A11 suggest that the empirical evidence is inconsistent
with this story. In particular, the interaction between accruals and earnings surprises is negative,
consistent high accruals signaling lower earnings quality and thus dampening the market’s
reaction to news. Further, our results on the interaction between SUE and VU are unchanged
by including accruals.
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Appendix Table A11: Accruals, Dispersion, Valuation Uncertainty and Earnings Responses

Cash Flow Accruals/Total Assets Balance Sheet Accruals/Total Assets
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SUE 17.74*** 10.68*** 7.117*** 4.180*** 2.729*** 17.38*** 10.31*** 6.786*** 3.913*** 2.539***
(0.664) (0.377) (0.253) (0.161) (0.120) (0.672) (0.395) (0.266) (0.173) (0.129)

SUE x VU 1.879*** 0.214 (0.243) -0.599*** -0.558*** 2.655*** 0.927*** 0.279* -0.311*** -0.392***
(0.481) (0.240) (0.150) (0.091) (0.066) (0.440) (0.239) (0.156) (0.101) (0.073)

SUE x Accruals (Residualized) -15.98 2.92 0.694 -1.094 0.101 -21.48** -4.999 -0.365 -0.605 0.359
(10.360) (4.357) (2.342) (1.069) (0.715) (9.447) (3.724) (2.014) (1.145) (0.715)

SUE x Dispersion -2.297*** -0.833*** -0.429*** -0.166*** -0.0546 -2.269*** -0.790*** -0.450*** -0.160*** -0.0565
(0.417) (0.190) (0.104) (0.057) (0.035) (0.426) (0.191) (0.106) (0.057) (0.034)

Observations 89,284 123,987 142,317 155,390 161,014 90,751 126,469 145,235 158,584 164,273
R-squared 0.121 0.118 0.118 0.11 0.101 0.12 0.116 0.116 0.108 0.099

Window Size 0.002 0.005 0.01 0.025 0.05 0.002 0.005 0.01 0.025 0.05

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty, Accruals
and Analyst Dispersion. SUE refers to the deviation of a company’s reported earnings per share from the consensus
earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. Dispersion is defined as the z-scored
standard deviation of analyst forecasts for the earnings of company i in the last IBES statistical period before the
earnings announcement, normalized by the magnitude of the consensus estimate of earnings per share Ben-David
et al. (2023). Cash Flow Accruals are defined as net income minus operating cash flows. Balance Sheet Accruals
are calculated as the change in non-cash current assets minus the change in non-debt, non-tax current liabilities,
minus depreciation expense Sloan (1996). Both measures of accruals are normalized by total assets. To identify
the piece of accruals uncorrelated with SUE itself, and abnormal relative to a firm’s historical average, we run a
first stage regression of accruals on SUE and firm and year-quarter fixed effects. In each regression in this table,
we include these “Residualized” measures of accruals.
Our specifications control for both security (Permno) fixed effects and year-month fixed effects. We also control for
time since listing (age), market capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional
ownership and total daily stock volatility over the past 12 months. Clustered standard errors are reported in
parentheses. The window size indicates the range of SUE around zero considered in each regression. Significance
levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

A.7 Other measures of Hard to Value

While our main analysis uses valuation uncertainty as a proxy for processing constraints, it is
just one of many possible measures that might capture how difficult it is for investors to interpret
earnings news. In Table A12, we explore a range of alternative proxies drawn from the literature.
These include measures related to cash flow duration (Gormsen and Lazarus, 2023), business
complexity, measured as an indicator variable for whether a single business segment generates
more than 80% of the firm’s total revenue (Cohen and Lou, 2012), idiosyncratic volatility, and
stock turnover, defined as the monthly trading volume scaled by the total shares outstanding
(Ben-David et al., 2023). Broadly, all of which have been linked to uncertainty in how investors
value firms.

For each proxy, we estimate the effect of earnings surprises (SUE) on announcement re-
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turns, and interact SUE with the alternative measure to test whether they also exhibit the same
“flipping” pattern that we observe in Table 2. Further, we include analyst dispersion, as we have
shown in Table A2 that this generally attenuates the response to earnings news. Finally, for each
measure, we fully saturate the regression by including every possible interaction term between
SUE, dispersion and the measure itself (although we only report the interaction terms with
SUE).

The first panel of Table A12 shows that for cashflow duration, the patterns are broadly
similar to VU, with the interaction term being positive for small earnings surprises and negative
for large earnings surprises. Note that inputs to the Gormsen and Lazarus (2023) measure are
“value” (book-to-market), “profit” (operating profitability/book equity), “investment” (annual
growth in total assets), “beta” (market beta) and “payout” (payout ratio). In their calibration,
value, profit and payout tend to decrease duration, while investment and beta tend to increase
duration. Therefore, the result in the first panel of Table A12 that high duration firms have a
more S-shaped response to earnings news is likely related to the results in Skinner and Sloan
(2002) that low book-to-market firms i.e., growth firms have a more S-Shaped response to
earnings news. However, in our sample (which extends well beyond the original sample in
Skinner and Sloan (2002)), we find that growth firms generally have an amplified response
to earnings news at all points in the SUE distribution, but that effect is strongest for earnings
surprises near zero.

The second panel shows a similar pattern of a decreasing interaction term for complicated
firms, although the interaction term in each case retains the same sign.⁵2 Results are similar
when replicating the second panel using geographic segments, instead of business segments.
The third panel shows that having more volatile stock returns also generates the flipping pattern
observed in Table 2. Finally, the fourth panel shows that increased trading volume leads to a
decreased interaction term as the windows expand, but the interaction term in each window is
positive.

⁵2Recall that the measure in Cohen and Lou (2012) is whether a single business segment accounts for 80% or
more of total revenue. And, firms with a single business segment are arguably simpler to value. So, in Table A12,
we have flipped the indicator to be whether there is no business segment accounting for 80% or more of total
revenue
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In Table A13, we report the correlations between valuation uncertainty, dispersion in analyst
estimates and the proxies of hard to value in Table A12.

A.8 Differences in Pre-Announcement Information Acquisition

To test for differences in pre-announcement information acquisition, we run regressions of the
form:

Outcomei,t = βVUi,t−1 +δX i,t +φt +ψi + εi,t , (12)

where Outcomei,t is a measure of how much information was incorporated into prices after
the earnings information was made public i.e., larger values denote that less information was
incorporated ahead of time. We include the same controls and fixed effects as in Equation 5.

In column 1, we examine the absolute earnings day return normalized by the standard de-
viation of pre-announcement returns. The logic is that large earnings-day returns are evidence
that less information was incorporated into prices before the announcement (Frazzini, 2006).
There are, however, unconditional differences in volatility between high and low valuation un-
certainty stocks. To account for this, we normalize the earnings-day return by the standard
deviation of returns over the month before the announcement itself (Sammon, 2024). Here,
we find a negative coefficient, suggesting that relatively more information is incorporated into
prices pre-announcement for high valuation uncertainty stocks.

In column 2, we examine the price jump measure of Weller (2018), which is designed to
capture the fraction of earnings information incorporated into prices after the announcement
information was made public. Here, we see no relationship between valuation uncertainty and
the price jump measure, evidence that high and low valuation uncertainty stocks are similar on
this dimension.⁵3 Overall, the results in Table A14 suggest that, if anything, more information
is incorporated into prices ahead of time for high VU stocks – which would work against our
main finding. We conclude, therefore, that differences in the incorporation of information pre-
announcement are unlikely to be driving our baseline results.

A.9 Trading Volume

One possible mechanism through which valuation uncertainty may affect the response to earn-
ings surprises relates to attention. In particular, it is conceivable that there are differences in

⁵3Column 2 has significantly fewer observations than column 1 because of the “non-event filter,” which removes
observations where the total return around the earnings announcement is close to zero, see Weller (2018) for
details.
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Appendix Table A12: Alternative Measures of “hard-to-value”

Duration
(1) (2) (3) (4) (5)

SUE 16.58*** 9.900*** 6.541*** 3.683*** 2.305***
(0.674) (0.395) (0.265) (0.158) (0.108)

SUE x Measure 1.306*** 0.533*** 0.321*** -0.0109 -0.111**
(0.376) (0.182) (0.117) (0.066) (0.045)

SUE x Dispersion -1.819*** -0.631*** -0.402*** -0.197*** -0.0934***
(0.415) (0.173) (0.098) (0.053) (0.033)

Observations 95,059 133,019 153,175 167,457 173,538
R-squared 0.116 0.112 0.112 0.103 0.095

SUE x Measure / SUE 0.079 0.054 0.049 -0.003 -0.048

Indicator: Largest Biz. Segment < 80%
(6) (7) (8) (9) (10)

SUE 16.45*** 9.932*** 6.614*** 3.721*** 2.307***
(0.573) (0.332) (0.217) (0.128) (0.089)

SUE x Measure 3.298*** 2.070*** 1.469*** 0.871*** 0.534***
(0.399) (0.199) (0.122) (0.068) (0.053)

SUE x Dispersion -1.748*** -0.664*** -0.459*** -0.281*** -0.155***
(0.386) (0.172) (0.099) (0.052) (0.033)

Observations 94,783 132,557 152,575 166,722 172,720
R-squared 0.117 0.114 0.114 0.105 0.097

SUE x Measure / SUE 0.200 0.208 0.222 0.234 0.231

Idiosyncratic Volatility
(16) (17) (18) (19) (20)

SUE 16.82*** 9.915*** 6.525*** 3.721*** 2.311***
(0.661) (0.389) (0.267) (0.172) (0.116)

SUE x Measure 2.650*** 0.971*** 0.366** -0.146 -0.0919
(0.525) (0.250) (0.145) (0.095) (0.059)

SUE x Dispersion -2.358*** -0.767*** -0.414*** -0.166*** -0.0938***
(0.408) (0.162) (0.091) (0.051) (0.033)

Observations 95,059 133,017 153,172 167,454 173,534
R-squared 0.117 0.112 0.112 0.103 0.095

SUE x Measure / SUE 0.158 0.098 0.056 -0.039 -0.040

Turnover
(21) (22) (23) (24) (25)

SUE 16.55*** 9.982*** 6.611*** 3.688*** 2.271***
(0.613) (0.353) (0.237) (0.143) (0.097)

SUE x Measure 3.863*** 1.887*** 1.048*** 0.434*** 0.246***
(0.524) (0.224) (0.130) (0.072) (0.053)

SUE x Dispersion -2.091*** -0.709*** -0.436*** -0.223*** -0.120***
(0.388) (0.171) (0.100) (0.052) (0.033)

Observations 95,055 133,011 153,164 167,443 173,522
R-squared 0.117 0.113 0.113 0.104 0.095

SUE x Measure / SUE 0.233 0.189 0.158 0.118 0.108

Window Size 0.002 0.005 0.01 0.025 0.05

Firm-Level Controls YES YES YES YES YES
Fixed Effects Permno + YQ Permno + YQ Permno + YQ Permno + YQ Permno + YQ

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how market-adjusted returns respond to stan-
dardized unexpected earnings (SUE) and how this varies by different measures of processing constraints. SUE refers to the deviation of a
company’s reported earnings per share from the consensus earnings forecast by analysts, normalized by the last closing price before the
earnings announcement. Duration is defined as cashflow duration from Gormsen and Lazarus (2023). The indicator for the largest business
segment accounting for more than 80% of sales is from Cohen and Lou (2012). The measures of idiosyncratic volatility and turnover are
from Ben-David et al. (2023). Turnover is defined as the monthly trading volume scaled by the total shares outstanding. Dispersion is the
standard deviation of analyst forecasts for the earnings of company i in the last IBES statistical period before the earnings announcement,
normalized by the magnitude of the consensus estimate of earnings per share Ben-David et al. (2023). Our specifications control for both
security (Permno) fixed effects and year-month fixed effects. We also control for time since listing (age), market capitalization, returns from
t-12 to t-2, book-to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months. Clustered standard
errors are reported in parentheses. The window size indicates the range of SUE around zero considered in each regression. Significance levels
are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A13: Correlation Between Proxies for Hard to Value

Variables Valuation
Uncer-
tainty

Dispersion Cashflow
Duration

Indicator:
1 Biz.
Seg.>80%
Revenue

Indicator:
1 Geo.
Seg>80%
Revenue

Idiosyncratic
Volatility

Turnover

Valuation Uncertainty 1
Dispersion 0.3 1
Cashflow Duration 0.326 0.304 1
Indicator: 1 Biz. Seg.>80%
Revenue

0.034 0.064 -0.024 1

Indicator: 1 Geo. Seg>80%
Revenue

0.084 0.078 0.039 0.481 1

Idiosyncratic Volatility 0.462 0.351 0.441 0.058 0.063 1
Turnover 0.15 0.108 0.28 0.16 0.234 0.342 1

Notes: Valuation uncertainty is defined as the interquartile range of market capitalization implied by a multiples-
based valuation method at different points in a given industry-year distribution (Golubov and Konstantinidi, 2023).
Dispersion is the standard deviation of analyst forecasts for the earnings of company i in the last IBES statistical
period before the earnings announcement, normalized by the magnitude of the consensus estimate of earnings per
share Ben-David et al. (2023). Duration is defined as cashflow duration from Gormsen and Lazarus (2023). The
indicator for the largest business segment accounting for more than 80% of sales is from Cohen and Lou (2012).
The measures of idiosyncratic volatility and turnover are from Ben-David et al. (2023).

Appendix Table A14: Relationship between Valuation Uncertainty and Information Incorporated Into Prices Be-
fore Earnings Announcements

|RET |/SD PJ
(1) (2)

VU -0.0413*** -0.00261
(0.013) (0.003)

Observations 168,061 63,752
R-squared 0.22 0.17

Firm Level Controls YES YES
FE Permno + YQ

Notes: This table contains the results from a regression of measures of the amount of information incorporated
into prices before the earnings announcement itself on valuation uncertainty. Our specifications control for both
security (Permno) fixed effects and year-month fixed effects. We also control for time since listing (age), market
capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership and total daily stock
volatility over the past 12 months. Clustered standard errors are reported in parentheses. The window size indi-
cates the range of SUE around zero considered in each regression. Significance levels are denoted as follows: *
p<0.1, ** p<0.05, *** p<0.01.

attention between high and low VU observations. Specifically, high VU stocks may receive rela-
tively more attention for less extreme earnings surprises, and therefore respond more to earn-
ings news that are close to zero surprise.
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In this section, we aim to test for differences in attention between high and low VU observa-
tions – depending on the size of the earnings surprise – around earnings announcements. We
follow Hou et al. (2009) and use turnover around earnings announcements, defined as trading
volume divided by shares outstanding, as a proxy for investor attention. Specifically, to match
our baseline specification in Table 2, we calculate cumulative turnover from t = 0 to t = 4

around the earnings announcement i.e., we match the horizon we use to compute returns.
The results are in Table A15. Column 1 shows that there is no level effect of valuation

uncertainty. In other words, valuation uncertainty is not related to the trading volume. The table
shows that, in general and across all specifications, earnings surprises are negatively associated
with trading volume. For small surprises this means that there is a lot less trading volume for
positive than for negative surprises, consistent with higher attention paid to earnings misses.
For small earnings surprises, there is no interaction effect between valuation uncertainty and
SUE. As we widen the distribution of SUEs we consider, we find a positive coefficient on the
interaction term between VU and SUE. This suggests that, if anything, high VU stocks may
receive more attention around earnings announcements when the surprises are bigger. This
runs contrary to the alternative story that differences in attention are driving our main results.
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Appendix Table A15: Effect of Valuation Uncertainty on Turnover Around Earnings Announcements

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE -1.861*** -0.495*** -0.194*** -0.0754** -0.0378
(0.255) (0.104) (0.058) (0.038) (0.028)

VU 0.000429 0.000677 0.000543 0.00053 0.000447
(0.000) (0.000) (0.000) (0.000) (0.000)

SUE x VU 0.109 0.158** 0.156*** 0.127*** 0.0781***
(0.203) (0.078) (0.047) (0.029) (0.021)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.546 0.529 0.516 0.505 0.498

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how cumulative
turnover responds to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty. SUE
refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast by analysts,
normalized by the last closing price before the earnings announcement. Valuation uncertainty is defined as the
z-scored dispersion in expected market capitalization given by a multiples-based valuation method at different
points in the industry-year distribution. Our specifications control for both security (Permno) fixed effects and
year-month fixed effects. We also control for time since listing (age), market capitalization, returns from t-12 to
t-2, book-to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months.
Clustered standard errors are reported in parentheses. The window size indicates the range of SUE around zero
considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

B Post-Earnings Announcement Drift (PEAD)

Our main results in Table 2 show that when valuation uncertainty (VU) is high, investors appear
to react relativelymore to small earnings surprises, and relatively less to large earnings surprises
compared to when VU is low. This could be consistent with – in the face of valuation uncertainty
– investors systematically over-reacting to small earnings beats/misses and under-reacting to
large earnings beats/misses. If this were true, however, when VU is elevated we would expect
to observe return reversion after the small earnings surprises, and return continuation after
the large earnings surprises. In this section, we test for this type of systematic over and under
reaction, and how this depends on valuation uncertainty.

To quantify post-earnings announcement return reversion and continuation, we build on
the pooled specification in Appendix A.2. Specifically, we re-run the pooled regression in Table
A8, but use the cumulative market-adjusted returns from 5 days after the earnings announce-
ment to 29 or 59 days after the earnings announcement as the left-hand-side variable. We start
these windows 5 days after the earnings announcement, as this is when our baseline earnings
response regression windows in Table 2 end. To reduce the influence of outliers, we Winsorize
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these returns at the 1% and 99% levels. Given that the right-hand-side variables are interac-
tion terms with SUE, positive coefficients are evidence of return continuation, and thus under-
reaction to the initial news. On the other hand, negative coefficients are evidence of return
reversal, and over-reaction to the earnings release.

Table A16 contains the results. The first thing that stands out about the table is that all of
the interaction terms between SUE and the indicator variables for particular SUE ranges (i.e.,
the first 5 coefficients in each column) are positive and statistically significant. This is broad ev-
idence of continuation, and is consistent with the existence of the post-earnings announcement
drift (PEAD).

The first column presents results for market-adjusted returns from 5 days to 29 days after the
earnings announcement. The interaction term for the smallest window, V U xSU Ex1|SU E|<=0.002

is negative, evidence of over-reaction to small earnings beats when valuation uncertainty is
elevated. The magnitude is also large, at over 40% of the baseline responsiveness to news, as
reported in the “Interaction/ Baseline” column. The interaction term is not statistically signif-
icant, although this may be because the dispersion in returns at such long horizons is high,
lowering the power of this test.

The interaction term between the next largest window and VU, V U xSU Ex1|SU E|>0.002|SU E|<=0.005

is also negative, but the magnitude is significantly smaller, at only 8% of the baseline effect. This
is consistent with less over-reaction in the presence of high VU in this range, relative to the ob-
servations with SUE closest to zero. The next interaction term, V U xSU Ex1|SU E|>0.005|SU E|<=0.01

is negative and even smaller in magnitude.
The next interaction term, V U xSU Ex1|SU E|>0.01|SU E|<=0.025 is positive, flipping the sign real-

tive to the first three interaction terms. Further, the magnitude is large at over 15% of the base-
line effect. This is consistent with under-reaction to news in the presence of high VU for these
relatively large earnings surprises. The last interaction term V U xSU Ex1|SU E|>0.025|SU E|<=0.05 is
large and negative, however, there are only ≈ 5,000 observations with a SUE in that range,
so we do not wish to draw too many conclusions from the point estimate, which we believe is
likely noisy.

The next column of Table A16 presents the results for returns from 5 days to 59 days after the
earnings announcement. Broadly, the results are consistent with the first column: It appears that
there are reversals for SUE close to zero, and increasingly large (in magnitude) continuation
in the windows further from zero. Collectively, the evidence in Table A16 is consistent with
the story outlined above: when VU is high, investors appear to over-react to small earnings
beats/misses, leading to reversion, and appear to under-react to large earnings beats/misses,
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leading to continuation.

Appendix Table A16: Pooled Regression: Effect of Valuation Uncertainty on PEAD

[5,29] [5,59]
(1) Interaction/

Baseline
(2) Interaction/

Baseline

SUE x 1_|SUE|<=0.002 1.392** 4.379***
(0.537) (0.923)

SUE x 1_|SUE|>0.002 & |SUE|<=0.005 1.115*** 1.816***
(0.268) (0.444)

SUE x 1_|SUE|>0.005 & |SUE|<=0.01 0.788*** 1.452***
(0.148) (0.255)

SUE x 1_|SUE|>0.01 & |SUE|<=0.025 0.425*** 0.641***
(0.090) (0.147)

SUE x 1_|SUE|>0.025 & |SUE|<=0.05 0.404*** 0.701***
(0.092) (0.126)

VU x SUE x 1_|SUE|<=0.002 -0.608 -0.437 -0.519 -0.119
(0.560) (0.857)

VU x SUE x 1_|SUE|>0.002 & |SUE|<=0.005 -0.0931 -0.083 0.0171 0.009
(0.205) (0.321)

VU x SUE x 1_|SUE|>0.005 & |SUE|<=0.01 -0.0127 -0.016 0.0757 0.052
(0.139) (0.229)

VU x SUE x 1_|SUE|>0.01 & |SUE|<=0.025 0.0677 0.159 0.236* 0.368
(0.083) (0.131)

VU x SUE x 1_|SUE|>0.025 & |SUE|<=0.05 -0.102 -0.252 -0.113 -0.161
(0.071) (0.129)

Observations 172,526 172,526
R-squared 0.098 0.118

Controls Yes Yes
Fully Saturated with Interaction Terms Yes Yes

FE Permno + YQ Permno + YQ

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how the relationship
between long-run post-earnings announcement returns and SUE varies by Valuation Uncertainty. The left-hand-
side variable in each column is the the market-adjusted return from 5 days after the earnings announcement, to
29 or 59 days after the earnings announcement. SUE refers to the deviation of a company’s reported earnings per
share from the consensus earnings forecast by analysts, normalized by the last closing price before the earnings
announcement. Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given
by a multiples-based valuation method at different points in the industry-year distribution. All columns control
for security (Permno) fixed effects and year-month fixed effects. All columns also control for time since listing
(age), market capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership and
total daily stock volatility over the past 12 months. Clustered standard errors are reported in parentheses. The
column “Interaction/ Baseline” reports the ratio of the intearction term, divided by the baseline responsiveness to
SUE in the same SUE range. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

Finally, we would like to highlight that most of our empirical analysis includes firm-level
fixed effects. While there are many ways to measure earnings quality (Dechow et al., 2010),
we believe that earnings persistence is the most worrying confounder in our setting, as it has
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already been offered as an explanation for attenuated responses to extreme news. Earnings
persistence, however, is a firm-level measure. So differences in the firm level persistence of
earnings should already be accounted for by the firm-level fixed effects, and therefore is unlikely
to be driving our results.
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C Additional exhibits for experimental data
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Appendix Figure A7: Notes: This figure is constructed in the same way as Figure 4a but excluding observations
reflecting predictions with a sign that is opposite to that of the earnings surprise.

91



-0.5

0.0

0.5

1.0

In
te

ra
ct

io
n 

Co
ef

fic
ie

nt
: H

ig
h 

Co
ns

tra
in

ts
 * 

SU
E

 (n
or

m
al

iz
ed

 b
y 

ba
se

lin
e c

oe
ffi

ci
en

t o
f S

U
E;

 9
5%

 co
nfi

de
nc

e i
nt

er
va

ls)

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
Boundary of Symmetric Window

Treatment Effect Ratio by Window Size

a) Using the raw price change predictions not
normalized by priors.

-500.0

500.0

1500.0

2500.0

Tr
ea

tm
en

t E
ffe

ct
 (I

nt
er

ac
tio

n)
 - 

Re
tu

rn
 P

re
di

ct
io

n

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
Window Size

Treatment Effect by Window Size

b) Using interaction coefficients not normal-
ized by the SUE slope of Baseline condition.

-0.5

0.0

0.5

1.0

In
te

ra
ct

io
n 

Co
ef

fic
ie

nt
: H

ig
h 

Co
ns

tra
in

ts
 * 

SU
E

 (n
or

m
al

iz
ed

 b
y 

ba
se

lin
e c

oe
ffi

ci
en

t o
f S

U
E;

 9
5%

 co
nfi

de
nc

e i
nt

er
va

ls)

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
Boundary of Symmetric Window

Treatment Effect Ratio by Window Size

c) Using conditional means instead of medi-
ans and winsorized at normalized predictions
of +/-3.
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d) Excluding observations in the High Con-
straints group that timed out.
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e) Excluding observations from subjects who
indicated that they looked up additional infor-
mation on any company online.
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f) Excluding observations reflecting predic-
tions with a sign that is opposite to that of
the earnings surprise.

Appendix Figure A8: Robustness checks for Figure 4b.
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Appendix Table A17: Dependent variable: Normalized predictions - Robustness Check 1

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 4000.0∗∗∗ 1600.0∗∗∗ 1166.7∗∗∗ 426.0∗∗∗ 246.7∗∗∗
(240.9) (78.65) (61.56) (16.78) (11.94)

SUE x HC 2666.7∗∗∗ 400.0∗∗∗ 166.7∗∗ -62.34∗∗∗ -46.67∗∗∗
(557.0) (104.8) (76.90) (22.85) (14.47)

HC -7.26e-17 1.09e-16 0.0500 0.00519 -0.0333
(0.0527) (0.0325) (0.0308) (0.0441) (0.0491)

Constant 2.43e-17 -3.82e-17 -0.0167 0.0130 0.0333
(0.0231) (0.0211) (0.0195) (0.0225) (0.0286)

Observations 805 1660 2466 3284 4143
R-squared 0.154 0.212 0.286 0.281 0.283

Notes: This table shows the results of the same regressions as in Table 3 but excluding observations reflecting
predictions with a sign that is opposite to that of the earnings surprise, i.e. a negative predicted price change for
positive SUE and vice versa. Clustered standard errors are reported in parentheses. The window size indicates the
range of SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, **
p<0.05, *** p<0.01.
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Appendix Table A18: Dependent variable: Normalized predictions - Robustness Check 2

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 3754.4∗∗∗ 1527.8∗∗∗ 1027.9∗∗∗ 400.0∗∗∗ 236.7∗∗∗
(226.8) (84.51) (34.95) (15.67) (11.46)

SUE x HC 1870.6∗∗∗ 338.9∗∗∗ 149.9∗∗∗ -83.33∗∗∗ -58.89∗∗∗
(406.2) (104.6) (54.16) (23.71) (13.96)

HC 0.0871∗∗ 0.0528 0.0916∗∗∗ 0.0833 0.0778
(0.0364) (0.0330) (0.0323) (0.0521) (0.0483)

Constant -0.0246 0.0139 -0.0138 4.97e-09 0.0333
(0.0214) (0.0222) (0.0173) (0.0216) (0.0277)

Observations 869 1759 2591 3440 4330
R-squared 0.0644 0.101 0.156 0.185 0.208

Notes: This table shows the results of the same regressions as in Table 3 but excluding observations in the "High
Constraints" group that timed out. Clustered standard errors are reported in parentheses. The window size indi-
cates the range of SUE around zero considered in each regression. Significance levels are denoted as follows: *
p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A19: Dependent variable: Normalized predictions - Robustness Check 3

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 3666.7∗∗∗ 1527.8∗∗∗ 1047.8∗∗∗ 400.0∗∗∗ 243.2∗∗∗
(239.6) (88.32) (34.36) (16.32) (12.46)

SUE x HC 1958.3∗∗∗ 386.5∗∗∗ 201.7∗∗∗ -83.33∗∗∗ -56.09∗∗∗
(404.9) (110.4) (70.78) (24.43) (15.71)

HC 0.0958∗∗∗ 0.0290 0.0553 0.0833 0.0847∗
(0.0367) (0.0348) (0.0349) (0.0520) (0.0492)

Constant -0.0333 0.0139 -0.00478 -2.50e-16 0.0322
(0.0225) (0.0223) (0.0163) (0.0216) (0.0281)

Observations 854 1715 2535 3367 4248
R-squared 0.126 0.162 0.237 0.239 0.241

Notes: This table shows the results of the same regressions as in Table 3 but excluding observations from subjects
who indicate that they looked up additional information on any company online. The window size indicates the
range of SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, **
p<0.05, *** p<0.01.

Appendix Table A20: Dependent variable: Normalized predictions - Robustness Check 4

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 11000.0∗∗∗ 6000.0∗∗∗ 4818.2∗∗∗ 1818.2∗∗∗ 1000.0∗∗∗
(707.4) (302.7) (181.1) (98.28) (30.54)

SUE x HC 11500.0∗∗∗ 1500.0∗∗∗ 481.8 -518.2∗∗∗ -266.7∗∗∗
(1407.5) (461.6) (314.2) (189.1) (48.76)

HC 0.150 0.250∗∗ 0.532∗∗∗ 0.409∗∗ 0.667∗∗∗
(0.127) (0.119) (0.131) (0.205) (0.214)

Constant 0.100 5.55e-17 -0.182∗∗ 0.0909 -1.01e-14
(0.0689) (0.0666) (0.0711) (0.104) (0.138)

Observations 900 1813 2678 3559 4485
R-squared 0.321 0.375 0.436 0.384 0.430

Notes: This table shows the results of the same regressions as in Table 3 but using the raw price change predictions
(i.e., predictions not normalized by priors) for completeness. The window size indicates the range of SUE around
zero considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A21: Dependent variable: Normalized predictions - Robustness Check 5

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 5039.7∗∗∗ 1766.4∗∗∗ 1339.3∗∗∗ 475.4∗∗∗ 292.3∗∗∗
(1413.6) (151.9) (107.7) (30.69) (20.10)

SUE x HC 1345.9 231.2 125.3 -92.30∗∗ -63.14∗∗
(1576.5) (198.7) (142.4) (41.77) (27.22)

HC 0.255∗ 0.144 0.180 0.0939 0.172∗
(0.153) (0.127) (0.116) (0.106) (0.0986)

Constant -0.0727 0.0240 -0.0200 0.00403 -0.0193
(0.142) (0.119) (0.107) (0.0926) (0.0857)

Observations 900 1813 2677 3557 4483
R-squared 0.0656 0.103 0.157 0.183 0.208

Notes: This table shows the results of the same regressions as in Table 3 but using OLS regressions instead of
median regressions. To account for the potential skew in the normalized prediction measure, we winsorize at
normalized predictions of +/-3. The window size indicates the range of SUE around zero considered in each
regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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D Screenshots of Experiment

Appendix Figure A9: Instruction Screen 1

This is the main instructions screen in the experiment. This screen is visible to both the Baseline and High
Constraints conditions.
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Appendix Figure A10: Instruction Screen 2

This is the first comprehension question screen in the experiment. Respondents who do not answer the ques-
tions correctly in the first two attempts are disqualified from the survey. This screen is visible to both the
Baseline and High Constraints conditions. 98



Appendix Figure A11: Instruction Screen 3

This screen elicits respondents’ priors to a positive or negative earnings surprise. This screen is visible to both
the Baseline and High Constraints conditions.

Appendix Figure A12: Instruction Screen 4 (High Constraints)

This instruction screen is visible only to the High Constraints condition.
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Appendix Figure A13: Instruction Screen 4 (Baseline)

This instructions screen is visible only to the Baseline condition.

Appendix Figure A14: Instruction Screen 5

This is the second comprehension question screen in the experiment. Respondents cannot continue to the next
screen until they answer the question correctly. They have unlimited attempts to answer correctly. This screen
is visible to both the Baseline and High Constraints conditions.
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Appendix Figure A15: Decision Screen (High Constraints)

This is a screenshot of the decision screen for the High Constraints condition in the experiment.
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Appendix Figure A16: Decision Screen (Baseline)

This is a screenshot of the decision screen for the Baseline condition in the experiment.
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E Proofs

E.1 Prediction 1

Proof. Let r∗(s) denote the unconstrained best response, strictly increasing and differentiable in
the quantitative signal s. Let rd(s) be the conditional default induced by qualitative categories,
a step function with jumps at the thresholds ck.

Constrained response. A decision maker (DM) observes an unbiased but noisy cognitive signal

rc(s) ∼ N
�

r∗(s),σ2
r (s)
�

,

and forms the constrained response

r(s) = λ rc(s) +
�

1−λ
�

rd(s), with λ=
σ2

d

σ2
r (s)+σ

2
d
∈ (0, 1).

Here σ2
d is the variance of the (Gaussian) conditional prior; λ is strictly decreasing in the pro-

cessing (mapping) noise σ2
r (s).

Sensitivity inside a category (s ̸= ck). Because rd(s) is locally flat away from thresholds,

S(s) :=
∂ E[r(s)]
∂ s

= λ r∗′(s).

If processing noise rises from σ2
r to eσ2

r > σ
2
r , then eλ < λ and hence eS(s) < S(s) for all s ̸= ck.

Thus sensitivity is attenuated between category boundaries.

Sensitivity at a boundary ck. Let

∆k = lim
ϵ↓0

�

E
�

r(ck + ϵ)
�

−E
�

r(ck − ϵ)
��

.

Continuity of r∗(s) implies

∆k =
�

1−λ
� �

rd(c
+
k )− rd(c

−
k )
�

.

A higher processing noise lowers λ, which increases the jump ∆k. Hence sensitivity is amplified
exactly at category boundaries. ■
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E.2 Prediction 2

Proof. Introduce surprise–coding noise by assuming the DM perceives the zero–surprise thresh-
old with error:

c̃ = 0+ ϵs, ϵs ∼N (0,σ2
s ).

The binary qualitative signal therefore equals

s̃1(s) = 1
�

s > c̃
	

= 1
�

s+ ϵs > 0
	

,

so that the probability of being classified “above forecast” is p(s) = Φ
�

s/σs

�

, where Φ is the
standard normal CDF.

Smoothed default. Let µ+ and µ− denote the average optimal responses when the firm is
perceived to beat or miss the forecast, respectively. Then

rd(s) = µ+ p(s) +µ− [1− p(s)], r ′d(s) =
�

µ+ −µ−
� ϕ(s/σs)

σs
,

with ϕ the standard normal pdf.

Effect of more surprise-coding noise. For any s and for σ̃s > σs,

ϕ
�

s/σ̃s

�

σ̃s
<
ϕ
�

s/σs

�

σs
,

and the proportional decline is maximized at s = 0 (the former jump-point).

Overall sensitivity. Expected local sensitivity now equals

Scoding(s) = λ r∗′(s) +
�

1−λ
�

r ′d(s).

Because r∗′(s) and λ are unaffected by σs, the entire impact runs through r ′d(s) and is therefore
negative for all s, with the greatest absolute reduction at s = 0. ■

104


	ECONtribute_364_2025.pdf
	Introduction
	Behavioral Predictions
	Field Setting: Market Responses to Earnings Announcements
	Data
	Event-Study Approach
	Market-Adjusted Returns and Earnings Surprises

	Field Evidence
	Raw Data
	Empirical Specification
	Valuation Uncertainty and Sensitivity to Surprises
	Robustness
	Uncertainty About the Location of Category Thresholds
	Related Concepts and Measurements

	Experimental Evidence
	Design
	Sample
	Results

	Variation of Earnings Response Sensitivity and the Determinants of Processing Constraints
	The Role of Stimulus Frequency for Processing Accuracy
	Surprise, Distraction and Competition for Attention

	Conclusion
	Additional exhibits for field data on stock returns
	Sensitivity to Definition of SUE
	Robustness to pooled specification
	Robustness to different time periods
	Earnings persistence
	Earnings Manipulation
	Accruals
	Other measures of Hard to Value
	Differences in Pre-Announcement Information Acquisition
	Trading Volume

	Post-Earnings Announcement Drift (PEAD)
	Additional exhibits for experimental data
	Screenshots of Experiment
	Proofs
	Prediction 1
	Prediction 2



