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Preface

The world of fluids, which can be gases or liquids, fascinates mankind already for centuries.
Studies reach back to the antiquity and prominent figures of sciences, such as Archimedes,
Leonardo da Vinci, Benedetto Castelli, Evangelista Torricelli, or Blaise Pascal were early pio-
neers in researching the behavior of fluids under various conditions. Later, in the 18th century,
Isaac Newton, Daniel Bernoulli, and Leonhard Euler contributed to a more sophisticated un-
derstanding of the involved physics. They preceded Claude-Louis Navier and George Gabriel
Stokes, who progressively developed the Navier–Stokes equations, partial differential equations
describing the motion of viscous fluids, over several decades in the 19th century. The Navier-
Stokes equations, given by the conservation of mass, momentum, and energy, in all their beauty,
build the foundation of nowadays experimental and numerical methods to investigate, for exam-
ple, laminar, transitional, or turbulent, gaseous or liquid flows, aeroacoustics, species or particle
transport, fluid-structure interaction, or combustion processes.

The Navier-Stokes equations are defined on continuous space. With the lack of understanding in
developing numerical methods to solve such partial differential equations it took until the 1920s
until Lewis Fry Richardson made fundamental developments in approximating corresponding
solutions with numerics. As a meteorologist, he introduced the finite difference (FD) method
in 1928 to calculate the fluid dynamics for weather prediction, and with this provided the tool
set to go from continuous to discrete space. In this, his work was groundbreaking for the field
of computational fluid dynamics (CFD). Subsequently, in the 1940s, John von Neumann and
Robert D. Richtmyer contributed to the stability analysis of numerical schemes, addressing
key challenges in the numerical solution of fluid dynamics problems. Particularly considering
irregular geometries, breakthroughs were made by Richard Courant, who developed the finite
element (FE) method in the 1950s. With the 1960s, the first CFD software became available,
making the field of numerical fluid mechanics more practical. This gave rise to new excitement
and more and more people became fascinated by CFD. From this momentum rose the finite
volume (FV) method, which was developed by McDonald, Mac-Cormack, and Paullay in 1971
and 1972. While the FD method uses nodal representations, the FV method discretizes the
Navier-Stokes equations in their integral form, and is a generalization of the FD method. The
discontinuous Galerkin (DG) method was developed in the 1970s and combined features of both
the FE and FV methods. Also the smoothed-particle hydrodynamics (SPH) method, which is a
meshfree Lagrangian method, was developed in this century by Gingold, Monaghan, and Lucy.
The 1980s were governed by the development of turbulence models, e.g., Launder and Spalding
developed the k-ϵ model. Furthermore, the lattice-Boltzmann (LB) method was born, which
takes another approach to predicting fluid dynamics than the aforementioned numerical meth-

i



ods. In the LB method, the Boltzmann equation, an integro-differential equation describing
the statistical behavior of particles, is solved in its discretized form. Also the spectral element
(SE) method, which couples the tensor product efficiency of global spectral methods with the
geometric flexibility of finite elements, was invented by Patera and his peers in the 1980s. The
nowadays existing methods are all derivatives of the advancements made in the 20th century,
with a strong trend towards tackling coupled multi-physics multi-scale problems.

The early work of Richardson was at that time not adoptable to practical applications. The
computational power to transition from coarse toy problems to more complex real-life scenarios
was simply not available. This changed in the 1950s and 1960s, when digital computers with
sufficient power became available, and John von Neumann and Stanislaw Ulam started study-
ing fluid behavior with them. Over decades the computational power continuously increased
and the first Cray machines with scalar and vector processors appeared in the 1970s with fur-
ther advancements in scalability and speed into the 1980s. Increased computational power
was achieved through higher clocking, larger vector units, and shared memory multiprocessing.
While an increase in the clocking frequency in general decreased the time to solution, more
powerful vector units were able to perform single floating point operations on larger and larger
datasets, and shared memory multiprocessing enabled multiple processors to access a joint
memory space. Also in the 1980s, the jump to distributed memory computing was made with
multiple processors not sharing anymore the same memory space, but requiring communication
via messages - the concept of cluster computing was born. Despite vector machines enjoyed
popularity and are still being used today for specific applications, the trend in supercomputing
transitioned to distributed computing with a strong boost across the the 1980s and 1990s to-
wards the 2000s. The Intel iPSC Hypercube machine from 1985 was succeeded by the CM-1,
which was a massively parallel computer with 65,536 single instruction multiple data (SIMD)
processing elements and later by the the CM-5, a multiple instructions multiple data (MIMD)
machine, and the Beowulf cluster. The latter was developed by Donald Becker and Tom Stir-
ling at NASA, and connected normal personal computers (PCs) via a network. Soon it became
clear, than an increase of the clocking speed is limited by physical constraints, especially by the
energy consumption and the heat production. More computational power was hence achieved
by increasing the number of processor cores on a single chip as well as in the whole cluster
by increasing the number of nodes. This trend, as can be seen from the Top500 list1, has not
stopped and high-performance computing (HPC) centers around the globe compete in the the
challenge to host the most powerful and energy efficient supercomputers.

With the appearance of different computing architectures, e.g., graphics processing units (GPUs),
that were initially intended for graphics work, or field programmable gate array (FPGA) de-
vices, the idea of HPC systems uniting different architectures under one roof – the modular
supercomputing architecture (MSA) – was born. Especially GPUs with their potential to scale
up frequently used operations in many simulation codes, such as vector/vector, vector/matrix,
and matrix/matrix operations, became prominent. This trend is these days massively fueled
by the need for accelerated training of artificial intelligence (AI) technologies, showing a strong
shift towards a higher share of GPUs over central processing unit (CPU)-based systems in
nowadays MSA systems. As of today, we are in the Exascale era, where a single HPC system

1Top500 list https://top500.org
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is capable of performing more than 1018 floating point operations per second. Through all the
generations, the transistor density has increased, coming to a foreseen physical limit. This is
why physicists and computer architects thought about novel disruptive technologies for com-
puting. This led to the invention of quantum devices, e.g., to gate-based quantum computers
and analogue quantum annealers, requiring a complete rethinking of algorithm design. These
devices are still being advanced and researched, offering potential to efficiently tackle NP-hard
problems.

Machine learning (ML) is around for many decades with fundamental work already made in the
1940s and 1950s. However, the deep learning (DL) era, where DL as an ML technique started
to be applied to a wider set of problems and also started to require increased compute power
did not start before 2010. It was not before 2012 that GPUs were used to train ML models with
a limited use of this architecture (up to 8 GPUs) until 2014. A large-scale era, where up to 100
GPUs were used followed until 2016. Since then, also with the advent of large language models
(LLMs), massive investments and developments in AI training and inference at scale have been
made. The general trend across all disciplines goes towards training multi-modal foundation
models with a subsequent refinement to specific tasks. These developments have not stopped
at the field of CFD. In the last decade, major advancements have been made in predicting fluid
mechanics with neural networks. Surrogate modeling, integrating complex physics predicted by
DL models into large-scale simulations have been developed. AI-based closure and subgrid-scale
(SGS) models trained on highly-resolved simulation data, and optimization algorithms based
on reinforcement learning (RL) techniques, are available. Training and inferencing at scale for
CFD problems using MSAs has become possible and moves – similar to other disciplines – to-
wards advanced AI with a sophisticated and deepened knowledge about the underlying physics.

The Parallel CFD International Conference (ParCFD), which was inaugurated in 1989 in Man-
hattan Beach, California, has always picked up the latest trends in CFD and computing. Since

Figure 1: Locations of the ParCFD International Conference since 1989.
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its first event, the ParCFD took place every year (except 2020 due to the COVID-19 pandemic)
and traveled around the world, i.e., it was held in the USA, Germany, France, Japan, Italy, UK,
Taiwan, Norway, The Netherlands, Russia, Spain, South Korea, Turkey, China, and Ecuador,
see Fig. 1. The latest 35th Parallel CFD International Conference 2024 took place in Bonn,
Germany, from Sep. 02-04., 2024. It brought together experts from different disciplines in CFD,
e.g., from aerospace, combustion, or biomedical engineering, HPC and quantum specialists, al-
gorithm, workflow, and tool developers, industry, and AI experts. In total, the Conference had
108 participants from 21 countries, and 84 presentations in nine mini-symposia and other topics
sessions in addition to five keynote presentations were given.

This proceedings document holds 67 scientific publications from the nine mini-symposia and
from four sessions on other topics. All papers have undergone an iterative single-blind peer-
review process to guarantee novelty and a high-quality.

With this, we wish the audience of this proceedings document an interesting and insightful
reading and look forward to the next ParCFD International Conference in 2025.

The Editors and Organizers of ParCFD 2024,

Dr.-Ing. Andreas Lintermann Dr.-Ing. Sohel Sebastian Herff Jens Henrik Göbbert
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Şenol, N., Akay, H. U., & Yiğit, Ş. . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Controllable Droplet Transport via Inverse Design of Substrate Heterogeneity; Vrionis,
P.-Y., Demou, A., & Savva, N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Data-Driven CFD-Based Design Optimization of Flow Pattern in a Gravitational
Mixer Settler; Khatir, Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Mini-Symposium 9: Computational Fluid Dynamics with High-Order Spec-
tral Element Methods on GPUs 225

Towards High-Fidelity Simulations of Urban Flows; Duró, J. M., Muñoz, N., Mestres,
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Invited Speakers and Keynotes

Lennart Schneiders
SIEMENS Digital Industries Software

Lennart Schneiders is a Software Engineer and researcher at Siemens Digital Industries Soft-
ware. He received his PhD from RWTH Aachen University in 2017. Until 2022, he was a
postdoctoral researcher at RWTH Aachen, Jülich Aachen Research Alliance, and California
Institute of Technology. Lennart is currently a developer of the multiphysics CFD software
Simcenter STAR-CCM+. His research interests lie in numerical method development, turbu-
lent multiphase flow, and high-performance computing.

Title: The intricacies of adaptive unstructured mesh refinement for industrial flows

Abstract. The simulation of industrial flows is associated with significant uncertainties arising
from the quality of the computational mesh. In many industries, meshing therefore is considered
an expert job. With the advances in parallel computing and GPU hardware reducing solver
times, meshing can become a bottleneck in certain industrial workflows. While adaptive mesh
refinement (AMR) is an intriguing approach to alleviate some of those problems, developing
such a technique in a robust form is a challenge in its own.

In this talk, the intricacies of developing a general purpose AMR scheme are discussed. This
includes the definition of generic solution-based refinement strategies. And it will be demon-
strated that refining an unstructured mesh does not automatically guarantee lower truncation
errors, but can even lead to the opposite.
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Christian Hasse
Technical University Darmstadt, Simulation of
reactive Thermo-Fluid Systems

Christian Hasse is full professor in the Department of Mechanical Engineering at Darmstadt
University of Technology. He holds the chair of Simulation of reactive Thermo-Fluid Systems.
He has supervised successfully more than 30 PhD students and currently 25 PhD students and
post-docs are working in his group. He has more than 270 peer-reviewed publications and has
served in multiple editorial boards and as associate/guest editor. He is organizer of scientific
workshops and conferences focusing on sustainable combustion to achieve net zero emissions.

Prof. Hasse is elected Fellow of the Combustion Institute for his contributions on turbulent
combustion, solid fuel combustion, multi-phase flow and soot formation. He has been elected
to the Board of Directors of the International Combustion Institute in 2024. His main research
interests are modeling and high-fidelity simulation of reactive and non-reactive flows, especially
for CO2-free and CO2-neutral fuels such as hydrogen, ammonia, biomass, E-fuels and metals.
In addition to fundamental studies on flame structures and dynamics, he also actively works on
transferring these results to real-world applications including (aero-)engines, boilers and pro-
cesses chemical engineering. For these topics, his group has developed a number of high-fidelity
software applications that are deployed national Tier-2 and European Tier-0/1 supercomput-
ers. In 2024 he has received an ERC Advanced Grant on aluminum steam combustion in which
he aims to unravel the fundamental properties of pressurized Al-steam flames for the entire
scientific chain, from single particles to turbulent flames with millions of particles, through
a well-orchestrated combination of high-fidelity simulations, advanced modeling, and tailored
experiments.

Title: How high-fidelity simulations of hydrogen combustion on supercomputers accelerate the
energy transition

Abstract. Reactive Computational Fluid Dynamics (rCFD) has become an indispensable tool
in fundamental and applied research. In addition, rCFD is used in industrial design, such as
aero engine combustors or gas turbines. This success is based on the combination of decades
of scientific model development, efficient numerics and ever-increasing computing power. This
situation is about to change as both the energy system (1) and the HPC architecture (2) are
undergoing disruptive changes.

First, the urgent need to shift from fossil fuels to renewable fuels such as hydrogen requires
the redesign of energy conversion systems due to the completely different combustion charac-
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teristics of renewable fuels. Combustion models for high-fidelity simulations are lacking and
must be developed based on in-depth physical understanding. Second, the next generation of
supercomputers will be mostly based on GPUs rather than CPUs. Efficient use of these systems
will require a new class of CFD software with specialized numerics.

In this talk I will first introduce the role of rCFD in combustion system design before I highlight
the role of hydrogen in the energy transition and how it differs from conventional fuels. After
discussing the impact of GPU-based supercomputers on rCFD software development, I will
present how GPU-based direct numerical simulations can unravel the complexities of hydrogen
combustion.

In summary, in a rapidly changing environment, simulations on upcoming Exascale systems will
provide physical insights that were deemed impossible just a few years ago. This will increase
the impact of rCFD on the entire spectrum from fundamental science to industrial design of
innovative systems.

The recording of this talk is available on YouTube.
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Niclas Jansson
KTH Royal Institute of Technology, PDC Center
for High Performance Computing

Niclas Jansson is a researcher at PDC Center for High Performance Computing at the KTH
Royal Institute of Technology, Stockholm. He received his M.S. in computer science in 2008
and a PhD in numerical analysis in 2013 from KTH. Between 2013 and 2016, Niclas was a
postdoctoral researcher at RIKEN Advanced Institute for Computational Science, where he
was part of the application development team of the Japanese exascale program, Flagship
2020, focusing on developing extreme-scale multiphysics solvers for the K computer, and held
a visiting scientist position at RIKEN between 2018 and 2021. He has extensive experience in
extreme-scale computing as a developer of RIKEN’s multiphysics framework CUBE, the HPC
branch of FEniCS and the next-generation spectral element flow solver Neko, and is currently
the coordinator of the EuroHPC Center of Excellence for Exascale CFD.

Title: Towards Exascale Simulations of Turbulent Flow

Abstract. Recent trends and advancements in including more diverse and heterogeneous
hardware in High-Performance Computing (HPC) are challenging scientific software developers
in their pursuit of efficient numerical methods with sustained performance across a diverse
set of platforms. As a result, researchers are today forced to refactor their codes to leverage
these powerful new heterogeneous systems. We present our work on addressing the extreme-
scale computing challenges in computational fluid dynamics, ensuring exascale readiness of
turbulence simulations. Focusing on Neko, a high-fidelity spectral element code, we outline the
optimisation and algorithmic work necessary to ensure scalability and performance portability
across a wide range of platforms. Finally, we present performance measurements on a wide
range of accelerated computing platforms, including the EuroHPC pre-exascale system LUMI
and Leonardo, where Neko achieves excellent parallel efficiency for an extreme-scale direct
numerical simulation (DNS) of turbulent thermal convection using up to 80% of the entire
LUMI supercomputer.
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Ricardo Vinuesa Motilva
KTH Royal Institute of Technology, School of
Engineering Sciences, Teknisk Mekanik, Fluid
Mechanics

Dr. Ricardo Vinuesa is an Associate Professor at the Department of Engineering Mechanics,
KTH Royal Institute of Technology in Stockholm. He is also Vice Director of the KTH Digital-
ization Platform and Lead Faculty at the KTH Climate Action Centre. He studied Mechanical
Engineering at the Polytechnic University of Valencia (Spain), and he received his PhD in Me-
chanical and Aerospace Engineering from the Illinois Institute of Technology in Chicago. His
research combines numerical simulations and data-driven methods to understand, control and
predict complex wall-bounded turbulent flows, such as the boundary layers developing around
wings and urban environments. Dr. Vinuesa has received, among others, an ERC Consolidator
Grant, the TSFP Kasagi Award, the Goran Gustafsson Award for Young Researchers, the IIT
Outstanding Young Alumnus Award, the SARES Young Researcher Award and he leads several
large Horizon Europe projects. He is also a member of the Young Academy of Science of Spain.

Title: Explaining and controlling turbulent flows through deep learning

Abstract. In this presentation we first use a framework for deep-learning explainability to
identify the most important Reynolds-stress (Q) events in a turbulent channel (simulated via
DNS) and a turbulent boundary layer (obtained experimentally). This objective way to assess
importance reveals that the most important Q events are not the ones with the highest Reynolds
shear stress. This framework is also used to identify completely new coherent structures, and
we find that the most important coherent regions in the flow only have an overlap of 70% with
the classical Q events. In the second part of the presentation we use deep reinforcement learning
(DRL) to discover completely new strategies of active flow control. We show that DRL applied
to a blowing-and-suction scheme significantly outperforms the classical opposition control in
a turbulent channel: while the former yields 30% drag reduction, the latter only 20%. We
conclude that DRL has tremendous potential for drag reduction in a wide range of complex
turbulent-flow configurations.

The recording of this talk is available on YouTube.
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Linda Gesenhues
EuroHPC Joint Undertaking

Dr. Linda Gesenhues is a Programme Manager at the European High Performance Computing
Joint Undertaking (EuroHPC JU). Linda has a longstanding interest in HPC and in particular
has worked on research on High Performance Computing applications for computational me-
chanics and fluid dynamics.

Linda graduated from RWTH Aachen University with a Bachelor and Master in Mechanical
Engineering. She then went on to complete her bi-national doctoral studies at the High Perfor-
mance Computing Center at the Federal University of Rio de Janeiro in Brazil and the Chair
for Computational Analysis of Technical Systems at RWTH Aachen University in Germany,
researching on finite element simulations of geophysical flows. She continued her career as a
research group leader at the Chair for Computational Analysis of Technical Systems focusing
on massively parallel simulations of phase boundaries during melting processes. In 2022, Linda
joined the Research&Innovation sector of the European High Performance Computing Joint
Undertaking as a Programme Mananger for HPC applications, training and skills.

Title: The EuroHPC Joint Undertaking: Leading the Way in European Supercomputing

Abstract. In this presentation the European High Performance Computing Joint Undertak-
ing (EuroHPC JU) will be introduced. The EuroHPC JU joins together the resources of the
European Union, 31 European countries and 3 private partners to develop a World Class Super-
computing Ecosystem in Europe. Linda will present the operational EuroHPC supercomputers
located across Europe and give details on how to access this infrastructure.

Linda will then present some of the JU’s missions, such as the acquisition of new supercomput-
ers including exascale systems and quantum computers, the implementation of an ambitious
research and innovation programme and how to further strengthen Europe’s leading position
in HPC applications.

The recording of this talk is available on YouTube.
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Mini-Symposium 1:

Quantum Computing for CFD
Applications

Organizers: Matthias Möller, Julia Kowalski, Norbert Hosters, Rakesh Sarma, and Jaka
Vodeb

Computational Fluid Dynamics (CFD) has been among the first disciplines to explore emerging
compute technologies like vector processors in the 1990s and early 2000s and multi-core CPUs
and GPUs since the mid-2000s to push the capabilities of simulation- based fluid flow analysis
to their limits. Every new compute paradigm required a modernization of CFD codes and
has brought a plethora of advanced methodologies to date ranging from classical grid-based
approaches to particle and hybrid methods.

An emerging compute technology that promises to become a game-changer in the quest for ul-
timate compute power is quantum computing. In contrast to vector processors and multi-core
CPUs and GPUs, quantum computing requires more than the adaption of established codes.
The potential power of quantum computers will come from the strict exploitation of quantum
mechanical effects such as superposition, entanglement, and quantum parallelism. This requires
us to rethink the usefulness of established approaches such as grid-based Navier-Stokes solvers
as a methodological base for future quantum-CFD applications.

The aim of this mini-symposium is to bring together pioneers and interested stakeholders in
quantum-CFD to discuss recent advances in this young discipline. In particular, we welcome
contributions in the fields of quantum Navier-Stokes methods, quantum Lattice Boltzmann
methods, hybrid quantum-classical approaches, and quantum Machine Learning such as Quan-
tum Gaussian Process emulation and hybrid workflows for Hyperparameter Optimization. Due
to the early stage of the field, contributions can range from theoretical complexity analysis
results to practical implementations of algorithms on quantum computers or their simulators.
We also encourage newcomers in the field to pitch their ideas to stimulate open discussions and
thereby contribute towards nurturing a stable quantum-CFD community.
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A B S T R A C T
This study proposes numerical methods for flow computations to obtain a converged solution using
quantum annealing. In general numerical simulations, a time integration or iterative method is required
to obtain a converged solution. The proposed methods extract a converged solution by quantum
annealing, making use of the quantum superposition state, which is one of the unique characteristics
of quantum mechanics used in quantum annealing machines. The proposed algorithms are built for
lattice gas automata (LGA) and finite difference methods. This paper mainly outlines the algorithm
for LGA.

1. Introduction
Continuous progress in computers has expanded the

range of computational fluid dynamics (CFD) applications
over the years. However, due to the limitations in the perfor-
mance of semiconductors used in current computers, such
as processing technology and power consumption, the per-
formance gains of current computers are expected to reach a
plateau eventually.

Quantum computers, designed based on a different op-
erating principle from existing computers, are expected to
be one of the next-generation computers. Current quan-
tum computers can be broadly divided into gate-based and
annealing-based quantum computers. Gate-based quantum
computers perform computations using quantum circuits
incorporating gates corresponding to matrix calculations.
Therefore, gate-based quantum computers are considered to
be adaptable to a wide variety of applications by changing
the combinations of gates (or matrices).

Quite a few flow computation algorithms for gate-based
quantum computers were proposed by previous studies (e.g.,
[1, 2, 3]). One of the disadvantages of current quantum com-
puters is that the number of available “qubits,” which cor-
respond to conventional computer bits, is still limited, and
they are prone to induce computation errors. On the other
hand, quantum annealing machines are designed to find the
lowest energy states and are thus widely used for solving
combinatorial optimization problems. The number of qubits
available for quantum annealing machines is greater than

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02435 and of the Proceedings 10.34734/FZJ-2025-
02175.

∗Corresponding author
kuya@tohoku.ac.jp (Y. Kuya)

ORCID(s): 0000-0002-3658-2992 (Y. Kuya); - (T. Asaga)

for gate-based quantum computers; for example, the D-Wave
Advantage has more than 5,000 qubits [4]. However, since
quantum annealing machines can basically only find the
lowest energy states of a cost function, few algorithms have
been proposed for flow computations [5, 6].

This study proposes quantum annealing methods that
obtain a converged flow solution by annealing computation,
utilizing quantum superposition states. The proposed algo-
rithms are built for lattice gas automata (LGA) and finite
difference methods. This paper outlines the algorithm built
for LGA.

2. Quantum annealing
Quantum annealing machines obtain the optimum com-

binations of a binary parameter 𝑞𝑖 ∈ {0, 1} or 𝜎𝑖 ∈ {−1, 1}
that minimizes a cost function formulated in the following
QUBO (quadratic unconstrained binary optimization) model
or Ising model:
QUBO model

𝐸({𝑞𝑖}) =
∑
𝑖

∑
𝑗
𝑄𝑖𝑗𝑞𝑖𝑞𝑗 , (1)

Ising model
𝐸({𝜎𝑖}) =

∑
𝑖
ℎ𝑖𝜎𝑖 +

∑
𝑖<𝑗

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 , (2)
where 𝐸({𝑞𝑖}) and 𝐸({𝜎𝑖}) are the cost functions, 𝑄𝑖𝑗 is the
QUBO matrix, ℎ𝑖 is the local bias acting on 𝜎𝑖, and 𝐽𝑖𝑗 is
the coupling constants between 𝜎𝑖 and 𝜎𝑗 , respectively. The
QUBO and Ising models become equivalent by the following
relation:

𝑞𝑖 =
𝜎𝑖 + 1
2

. (3)
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In this study, the proposed algorithm for LGA is expressed
in the form of a QUBO model.

3. Proposed quantum annealing methods for
LGA
In this section, the overview of LGA is given first.

Then, the quantum annealing lattice gas automata (qaLGA)
proposed by a recent study is briefly introduced. Finally, the
proposed quantum annealing methods to obtain a converged
flow solution is described.
3.1. Overview of LGA

LGA considers particles, which correspond to a set of
molecules or atoms, and statistically reproduces flow physics
by the collision and streaming processes. The following
equation describes the time evolution of LGA:

𝑞𝑖(𝑡 + 1, 𝐫 + 𝐜𝑖) = 𝑞𝑖(𝑡, 𝐫) + Δ𝑖[𝑞(𝑡, 𝐫)], (4)
where 𝑞𝑖 describes the state of a lattice node at time 𝑡 and
position 𝐫 = (𝑥, 𝑦) and equals 1 when a particle having
velocity in the 𝑖-direction exists and 0 otherwise. Δ𝑖 is the
collision operator. The well-known two-dimensional FHP
models consist of particles of the same unit mass on a
hexagonal lattice. Zeros and ones represent the presence of
particles moving along the lattice lines. The FHP-I model
considers six particle states, while the FHP-II and FHP-III
models consider stationary particles (i.e., zero velocity) in
addition to the six moving particles.
3.2. Quantum annealing lattice gas automata:

qaLGA
Recently, Kuya et al. [6] proposed the following cost

function, i.e., QUBO model, which reproduces the collision
process of the FHP-III model:

𝐸({𝑞𝑖(𝑡′, 𝐫)}) =
+
(
−2𝐶𝜌∑

𝑖 𝑞
′
𝑖𝑞

′
𝑖 +

∑
𝑖
∑

𝑗 𝑞
′
𝑖𝑞

′
𝑗

)

+
(
−2𝐶𝜌𝑢∑

𝑖 𝑢𝑖 ⋅ 𝑞
′
𝑖𝑞

′
𝑖 +

∑
𝑖
∑

𝑗 𝑢𝑖𝑢𝑗 ⋅ 𝑞
′
𝑖𝑞

′
𝑗

)

+
(
−2𝐶𝜌𝑣∑

𝑖 𝑣𝑖 ⋅ 𝑞
′
𝑖𝑞

′
𝑖 +

∑
𝑖
∑

𝑗 𝑣𝑖𝑣𝑗 ⋅ 𝑞
′
𝑖𝑞

′
𝑗

)

+𝜆
∑

𝑖 𝑞𝑖𝑞
′
𝑖𝑞

′
𝑖 ,

(5)

where 𝑞′𝑖 denotes the particle state after the collision and
before the propagation processes, and 𝑢𝑖 and 𝑣𝑖 are the
velocity components in the 𝑥- and 𝑦-directions. Also, 𝐶𝜌,
𝐶𝜌𝑢, and 𝐶𝜌𝑣 are the sum of the conservative variables at

each lattice node:
Mass:∑

𝑖 𝑥𝑖(𝑡, 𝐫) = 𝐶𝜌(𝑡, 𝐫),

Momentum (𝑥-direction) ∶∑
𝑖 𝑢𝑖𝑥𝑖(𝑡, 𝐫) = 𝐶𝜌𝑢(𝑡, 𝐫),

Momentum (𝑦-direction) ∶∑
𝑖 𝑣𝑖𝑥𝑖(𝑡, 𝐫) = 𝐶𝜌𝑣(𝑡, 𝐫).

(6)

The first to third terms on the right-hand side of this equation
correspond to the mass, 𝑥-momentum, and 𝑦-momentum
conservation equations, which must be satisfied through the
collision process, respectively. The fourth term leads to the
post-collision state different from the pre-collision state,
and the coefficient 𝜆 adjusts the strength of this constraint
term. If only the first to third terms in Eq. 5 are solved
by quantum annealing, the same pre-collision state may
also be obtained as the post-collision state since both the
pre-collision state also satisfies the conservation equations.
The fourth term increases the cost function when the post-
collision state becomes the same as the pre-collision state.
A detailed description of this QUBO model can be found in
Ref. [6].
3.3. Obtaining a converged flow solution using

quantum annealing by LGA
By extending the idea of qaLGA described above, this

study proposes a QUBO model to obtain a converged flow
solution by quantum annealing, utilizing the quantum super-
position state. The proposed QUBO model for LGA consists
of the sub-cost functions as follows:

𝐸({𝑞}) = 𝐸𝑇 ({𝑞, 𝑞′}) + 𝐸Ω({𝑞, 𝑞′})
+𝐸𝑤({𝑞, 𝑞′}) + 𝐸𝑜({𝑞}),

(7)

where 𝐸𝑇 , 𝐸Ω, 𝐸𝑤, and 𝐸𝑜 are the sub-cost functions
given to satisfy the convergence condition, collision rules,
boundary conditions, and flow field conditions. For example,
the sub-cost function of the collision is given by

𝐸Ω =
∑

𝐫≠𝐫𝑤𝑎𝑙𝑙

[(∑
𝑖
∑

𝑗 𝑞
′
𝑖𝑞

′
𝑗 −

∑
𝑖
∑

𝑗 𝑞
′
𝑖𝑞𝑗 +

∑
𝑖
∑

𝑗 𝑞𝑖𝑞𝑗
)

+
(∑

𝑖
∑

𝑗 𝑢𝑖𝑢𝑗𝑞
′
𝑖𝑞

′
𝑗 −

∑
𝑖
∑

𝑗 𝑢𝑖𝑢𝑗𝑞
′
𝑖𝑞𝑗 +

∑
𝑖
∑

𝑗 𝑢𝑖𝑢𝑗𝑞𝑖𝑞𝑗
)

+
(∑

𝑖
∑

𝑗 𝑣𝑖𝑣𝑗𝑞
′
𝑖𝑞

′
𝑗 −

∑
𝑖
∑

𝑗 𝑣𝑖𝑣𝑗𝑞
′
𝑖𝑞𝑗 +

∑
𝑖
∑

𝑗 𝑣𝑖𝑣𝑗𝑞𝑖𝑞𝑗
)

+ 𝜆𝜔
∑

𝑖 𝑞
′
𝑖𝑞𝑖

]
,

(8)
where Eq. (5) is extended to a whole computational domain
except for the wall boundaries.

Figure 1 compares the 𝜌𝑢 distribution of a channel flow
obtained by the proposed quantum annealing algorithm with
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a conventional LGA solution. In conventional LGA compu-
tation, the converged solution is obtained using a standard
time-advancing method from an initial condition with con-
stant velocity. In contrast, the proposed algorithm obtains
the converged solution by quantum annealing with several
sampling processes.
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Figure 1: 𝜌𝑢 distributions of a channel flow obtained by
proposed algorithm and conventional LGA.

4. Conclusions
This paper has discussed novel numerical methods to

obtain a converged flow solution using quantum annealing.
The algorithms are built for lattice gas automata (LGA) and
finite difference methods, but this paper only outlines the one
for LGA. The proposed QUBO model built for LGA consists
of sub-cost functions, which are the constraints imposed to
satisfy the convergence condition, collision rules, boundary
conditions, and flow field conditions. In a numerical test, the
𝜌𝑢 distribution of a channel flow is obtained by solving the
proposed QUBO model using quantum annealing, and the
obtained solution is in good agreement with that obtained
by the conventional LGA.
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ABSTRACT
A three-year DLR project entitled “Machine Learning and Quantum Computing – Digitalization of
Aircraft Development 2.0”, was established in spring 2021 with the goal to investigate whether and
how high-fidelity aerodynamic simulations can be carried out using innovative methods from the field
of machine learning and in which way these methods can also be implemented on quantum computers.

1. Introduction
The aviation industry faces the challenge of having to

make significant contributions to achieving the ambitious
global climate and environmental targets. To achieve this,
future aircraft must consume significantly less fuel than to-
day’s or use more environmentally friendly engines, and also
need to be quieter, especially during take-off and landing. In
order to be able to assess these properties as early as possible
in the development of a new aircraft, a very large number of
computer simulations are required, which are barely feasible
even on today’s high-performance computers.

Accelerating these simulations, thanks to the use of
quantum computers, promises to close this gap in the future.
Unexpected characteristics of an aircraft that would only
become evident later in flight testing can be uncovered in ad-
vance through a large number of scale-resolving simulations
and remedied during the design process. As a vision, a com-
plete flight from take-off to landing could be simulated on a
quantum computer long before the real first flight, thus cre-
ating an accurate image of the aircraft and its environmental
effects in advance. At DLR, these topics are addressed by the
virtual product which has a central and important meaning in
the context of the digitalization of aviation. The virtual prod-
uct aims to comprehensively simulate and design aircraft in
the computer. Its realization requires further development
of modern methods and algorithms, which also have the
potential to be implemented efficiently on hardware of the
future, for example on quantum computers.
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2. Content of the talk
Within this context, a three-year DLR project entitled

“Machine Learning and Quantum Computing – Digitaliza-
tion of Aircraft Development 2.0”, was established in spring
2021 with the goal to investigate whether and how high-
fidelity aerodynamic simulations can be carried out using
innovative methods from the field of machine learning and
in which way these methods can also be implemented on
quantum computers.
2.1. PINNs and PIQCs

Among other things, novel simulation algorithms based
on neural networks were being developed and applied to
compressible fluid mechanics equations, such as the Euler
equations [1, 2]. These so-called physics-informed neural
networks (PINNs) can also be transferred to quantum com-
puters, with certain adjustments, using physics-informed
quantum circuits [3]. In contrast to established, classic meth-
ods, in which generally only a given, specific simulation
can be carried out, this novel approach even opens up the
possibility of integrating various parameters such as object
shape or flow conditions as variables into the simulation. If
a parameter-dependent solution is calculated, many different
simulations can be carried out very efficiently by varying
the parameters, demonstrated in Fig. 1. Physics-informed
quantum circuits have so far only been applied to comparably
simple differential equations, due to the computational ef-
fort required to simulate quantum computers. Nevertheless,
these initial results look promising.
2.2. Correction of coarse grid results

Another research area of the project group dealt with the
question of howmachine learning can be used to improve the
resolution of relatively imprecise simulation results that are
based on relatively coarse discretizations, that is, a limited
number of degrees of freedom corresponding to relatively
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Figure 1: Physics-informed neural network for parametric prediction of compressible flow around a parameterized ellipse.

Figure 2: So-called “super-resolution problem” known from image processing (top), which inspires the correction of coarsely
discretized flow simulations (bottom).
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coarse grids. Well-known methods from image processing
were used and adapted to enable corrections to flow simula-
tions, as shown in Fig. 2. These methods open up the possi-
bility of accelerating the still computationally very complex
method for solving the Reynolds averaged Navier-Stokes
equations. A reduction of this complex step, namely solving
with a high number of degrees of freedom, is realized by
carrying out a relatively inexpensive correction to a solution
obtained by a reduced number of degrees of freedom, as a
post-processing step [4, 5].

3. Conclusion
The work done in the project demonstrated that machine

learningmethods and in particular the use of neural networks
can be applied to aerodynamically motivated problems. It
was also possible to demonstrate ideas on how thesemethods
can be used to apply novel technologies, such as quantum
computers, for the simulation of compressible flows at high
REYNOLDS numbers. Further investments and future work
in this direction seem worthwhile to leverage the synergy
effects of quantum computers and AI methods to make them
accessible for industrial requirements.

The talk will give an overview of the key result of
the project group, with a focus on topics that will be fur-
ther investigated in the recently launched DLR Quantum-
Computing Initiative project “Towards Quantum Fluid Dy-
namics” (ToQuaFlics), in particular quantum-inspired top-
ics.
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A B S T R A C T
We introduce a quantum algorithm to solve differential equations iteratively, employing the Jacobi
scheme on a quantum register with trajectory information stored using a linear combination of
unitaries. We benchmark the approach on paradigmatic fluid dynamics problems where our results
stress that instead of inverting large matrices, one can program quantum computers to perform
multigrid-type computations and leverage corresponding advances in scientific computing.

1. Introduction
Differential equations are crucial for understanding var-

ious natural and engineered systems. The field of computa-
tional fluid dynamics (CFD) faces significant challenges due
to the complexity of solving Navier-Stokes equations, espe-
cially for turbulence modeling and aircraft aerodynamics.
Overcoming these challenges requires developing scalable
and parallelizable differential equation solvers to accurately
capture multi-scale phenomena in high-performance simu-
lations.

Quantum computing offers a distinct approach to com-
putational problem-solving through exponentially growing
state spaces and entangled configurations. While quantum
algorithms show potential for enhancing differential equa-
tion algorithms, current approaches relying on full ma-
trix inversion differ from the typical methods used in CFD
solvers. These solvers opt for memory-efficient iterative
methods, avoiding large matrix inversions and instead em-
ploying relaxation-based techniques to approximate solu-
tions. Thus, we note the need for extending the quantum
algorithmic toolbox to include iterative and multigrid meth-
ods.
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Our work focuses on implementing a quantum algo-
rithm for iterative differential equation solvers, emphasizing
the construction of gate-based quantum circuits. Using the
Jacobi method as an illustrative example, we demonstrate
key algorithmic elements for developing quantum-based
iterative solvers and evaluate its performance in CFD ap-
plications through examples using the Burgers equation and
coupled Euler equations.

2. Algorithm
The steps involved in implementing the quantum Jacobi

method algorithm are outlined in Fig. 1. The aim is to
iteratively solve a differential equation by off-loading the
intensive computational calculations involved in large-scale
Jacobi iterations to a quantum processor.

The implementation begins by applying finite differenc-
ing to the differential equation. The problem then reduces to
solving a system of 𝑁 equations specified by 𝐴𝒙 = 𝒃 with
unknown solution 𝒙, known vector 𝒃 and known diagonally
dominant matrix𝐴 = 𝐷+𝑅 divided into a diagonal matrix𝐷
and off-diagonal matrix 𝑅. Starting from a guess for 𝒙0, the
Jacobi solver iterates over 𝐾 steps to obtain an approximate
solution 𝒙𝐾 using the scheme

𝒙𝑘 = 𝐷−1(𝒃 − 𝑅𝒙𝑘−1) ∀ 𝑘 ∈ [1, 𝐾]. (1)
Firstly, an appropriate block-encoding scheme is used to
embed the problem data into the unitary operators 𝑈𝑙 ∀ 𝑙 ∈
[𝐷−1, 𝑅, 𝒃,𝒙0] [1]. Secondly, the Jacobi iteration method is
recast into a quantum state calculation
||𝑥𝑘⟩ = 𝑈𝐷−1

[
𝑈𝑏
||∅⟩ − 𝑈𝑅

||𝑥𝑘−1⟩
] (2)

where ||∅⟩ is the computational zero state. The difficulty with
constructing a circuit to implement this is finding a way to
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Figure 1: Algorithmic pipeline of the quantum Jacobi method. The input is the differential equation and the output is the 𝑘th

iterate solution.

Figure 2: Quantum Jacobi method circuit. (a) Multiplication circuit to obtain the block-encoding 𝑈𝑗 of the 𝑗th expansion term.
The block-encoding 𝑈𝛼 represents the vector encodings of 𝑈𝑏 or 𝑈𝑥0 . The block-encoding 𝑈𝛽 and 𝑈𝛾 represents the matrix
encodings 𝑈𝐷−1 and 𝑈𝑅. (b) LCU circuit used to solve for the 𝑘th iterate ||𝑥𝑘⟩ using 𝑎 = ⌈log2(𝑘 + 1)⌉ ancillary qubits. The 𝑈𝑗
represent the block-encodings of the 𝑗th ∈ [1, 2𝑎] expansion terms and 𝑉 encodes their respective normalization factors 𝑐𝑗 .

subtract the amplitudes of an unknown iterate state from a
known state. The no-cloning theorem prohibits the creation
of a deterministic circuit for state vector subtraction [2].
Instead, we employ probabilistic methods like the linear
combination of unitaries (LCU) technique [3].

The 𝑘th iterate solution can be written as an expansion
of the recursion scheme in terms of a linear combination of
known operators acting on the zero state

||𝑥𝑘⟩ =
[ 𝑘∑
𝑗=1
(−𝑈𝐷−1𝑈𝑅)𝑗−1𝑈𝐷−1𝑈𝑏+(−𝑈𝐷−1𝑈𝑅)𝑘𝑈𝑥0

]
||∅⟩ .

(3)
Each of the 𝑘+1 terms in this expansion is obtained by mul-
tiplying the individual block-encodings 𝑈𝑙 using the circuit
in Fig. 2(a). Due to the nature of the embedding scheme of
the block-encoded data, ancillary qubits are required to elim-
inate cross-terms that arise when the individual unitaries are
multiplied [4].

After obtaining the multiplied expansion terms 𝑈𝑗 , the
solution can be written as a summation

||𝑥𝑘⟩ =
𝑘+1∑
𝑗=1

±𝑐𝑗𝑈𝑗
||∅⟩ . (4)

This is implemented on a quantum device with the LCU cir-
cuit in Fig. 2(b). The coefficients 𝑐𝑗 refer to the multiplication
of the normalization constants associated with the multiplied
encodings and are embedded into the unitary 𝑉 [3]. The
superposed solution ||𝑥𝑘⟩ is then obtained by projecting the
auxiliary register onto the zero state.

Information is extracted from the quantum solution
which naturally embeds all the prior iterate solutions ||𝑥𝑘<𝐾

⟩
in its history. A prediction of an observable represented
by operator 𝑀 is obtained by taking an expectation value
⟨𝑥𝑘||𝑀 ||𝑥𝑘⟩. This could be used to measure features of
the solution such as principal components or statistical
moments.
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Figure 3: Solving the Burgers equation with 𝐾 = 80 iterations
of the quantum Jacobi method. The scalar field surface 𝑓 (𝑥, 𝑡)
represents a traveling sinusoidal wave in a dissipative system.

3. Results
We apply the quantum Jacobi solver to CFD problems.

We first focus on the modeling of convection-diffusion sys-
tems. The physics of these systems is governed by the
viscous Burgers equation, which in one-dimension is given
by

𝜕𝑓
𝜕𝑡
+𝑓

𝜕𝑓
𝜕𝑥

= 𝜇
𝜕2𝑓
𝜕𝑥2

for 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑡 ≤ 0.5. (5)
This differential equation models the scalar field 𝑓 (𝑥, 𝑡)
within a fluid of viscosity 𝜇 = 0.08.

The problem is recast to a system of equations with a
suitable finite differencing scheme

𝑓 (𝑥, 𝑡𝑚) = 𝐴−1𝑓 (𝑥, 𝑡𝑚−1) ∀ 𝑚 ∈ [0, 150] (6)
and solved iteratively with the quantum Jacobi method. The
amplitudes of the quantum state solution over time are shown
in Fig. 3 after simulating the quantum Jacobi algorithm with
dynamic boundary conditions 𝑓 (0, 𝑡) = −𝑡, 𝑓 (1, 𝑡) = 𝑡
and initial condition 𝑓 (𝑥, 0) = sin (2𝜋𝑥). We observe that
high-quality solutions can be obtained from the full state
vector using limited resources. The surface plot visualizes
the scalar field solution, which represents a wave traveling
through a medium with non-zero viscosity.

We apply the quantum Jacobi solver to a second problem
in CFD regarding aeroacoustics. We look to model the
propagation of sound waves in an quiescent fluid. The fluid
dynamics is governed by the linearized Euler equations,
which in two-dimensions is given by

𝜕𝑝
𝜕𝑡
+ �̄�
(
𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

)
= 0, (7)

Figure 4: Solving the Euler equations with 𝐾 = 12 iterations
of the quantum Jacobi method. The pressure field solution
𝑝(𝑥, 𝑦) represents the transmission of a Gaussian-modulated
noise, emitted from a static point source, through quiescent
air.

𝜕𝑢
𝜕𝑡
+ 1

�̄�
𝜕𝑝
𝜕𝑥

= 0, (8)
𝜕𝑣
𝜕𝑡
+ 1

�̄�
𝜕𝑝
𝜕𝑦

= 0. (9)

Here, 𝑢(𝑥, 𝑡) is the velocity component in the 𝑥-direction,
𝑣(𝑦, 𝑡) is the velocity component in the 𝑦-direction and �̄�
is the mean density of the fluid. These equations model the
propagation of acoustic waves via the pressure field solution
𝑝(𝑥, 𝑦, 𝑡) with zero source terms and negligible base flow.

As before, the problem is recast to a system of equations
with a suitable finite differencing scheme and solved itera-
tively with the quantum Jacobi method. The discretization
is applied in the 𝑥-direction using 128 spatial nodes with
𝑥 ∈ [−2, 2] and in the 𝑦-direction using 128 spatial nodes
with 𝑦 ∈ [−2, 2]. The temporal domain is divided into
60 temporal nodes. The amplitudes of the quantum state
solution in the 𝑥𝑦-plane is shown in Fig. 4 after simulating
the quantum Jacobi algorithm with non-reflective bound-
ary conditions and a Gaussian-modulated sinusoidal initial
condition cos(2𝜋𝜔𝑟)𝑒−𝑟2 with frequency 𝜔 = 2 and radial
component 𝑟2 = 𝑥2 + 𝑦2. The contour plot visualizes the
pressure field solution of the noise transmitted from a static
point source, demonstrating how the Gaussian-modulated
sinusoidal waves travel through a quiescent fluid.

4. Discussion
The main advantage of using a quantum iterative solver

over a classical analog stems from the memory savings as-
sociated with manipulating the problem data and calculating
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the iterate solutions on quantum processors. An exponential
speed-up in memory comes from the fact that optimized
classical iterative approaches achieve a scaling of (𝑁),
while the quantum Jacobi solver has an improved scaling
of (log2(𝑁)). This characteristic is indeed relevant for
extensive industrial CFD simulations where the memory
required to store and manipulate the data exceeds the amount
available in classical computing. This can be further justified
by employing quantum iterative solvers as part of precon-
ditioning subroutines within larger multigrid algorithms.
These CFD pipelines are a necessity for future surrogate
modeling and multiphysics simulations in leveraging the
computational upside of quantum physics.

In terms of quantum resources estimates, the overall
circuit requires log2(𝑁) + 2𝑘 + ⌈log2(𝑘 + 1)⌉ qubits and(𝐾2𝐶) gates, where 𝐶 is the cost associated with the
chosen block-encoding protocol [1]. We also highlight that
the number of iterations scales linearly with the condition
number of the system.

5. Conclusion
We proposed an algorithm for implementing a quantum

iterative solver of differential equations based on a linear
combination of unitaries represented by block-encodings.
Specifically, we demonstrated the building blocks for the
quantum Jacobi iterative solver and developed a pipeline
for preparing the approximate solution as a quantum state.
The tools and techniques developed can be readily applied
to other iterative schemes.

We tested the approach by preparing solutions of convec-
tion-diffusion systems described by the viscous Burgers
equation and for sound wave propagation described by the
Euler equations. We observe that the iterative approach can
recover high-quality solutions in very few iterations, even for
cases where the solution is discontinuous. This is especially
notable in turbulent CFD simulations where shock waves
appear.

Further work regarding quantum iterative solvers could
benefit from incorporating machine learning approaches to
increase the accuracy and performance of the algorithm. For
example, improvements in the convergence rate could come
from using a physics-informed approximation to 𝒙0 based on
a variational ansatz circuit. Another example could involve
reducing the number of iterations by employing quantum
physics-informed neural networks within the quantum iter-
ative algorithm. Utilizing quantum solvers in this way will
enable quantum computing to become a reality sooner than
anticipated.
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A B S T R A C T
Differentiable quantum circuits (DQCs) are the hybrid quantum-classical alternative to Physics-
Informed Neural Networks (PINNs). The latter ones have been introduced from the machine learning
community to avoid the curse of dimensionality in mesh-based computational fluid dynamics (CFD)
solvers, and allow for seamless inclusion of information from available data. The adoption of quantum
circuits is motivated by enabling access to highly expressive feature maps, which might be key in
capturing intricate solutions to selected fluid dynamics problems. In this work, we discuss the potential
of DQCs and its recent extensions to address paradigmatic CFD use cases.

1. Introduction
Recent advances in the domain of CFD allowed for better

solutions of fluid dynamics problems and their respective
partial differential equations (PDEs). Many of CFD’s most
successful techniques use finite differences/elements/volume
methods or spectral methods to solve some form of the
Navier-Stokes equations [1]. Despite the high fidelity that
these methods can reach, their reliance on meshes or modes
exposes them to the curse of dimensionality, i.e., high
computational costs in multi-scale PDEs involving multiple
equations in 2D and 3D geometries.

Recently, PINNs have been proposed as an alternative
paradigm to solve PDEs [2]. In essence, PINNs approximate
the PDE solution with the output of a neural network (NN),
trained to minimize loss terms directly derived from the
equations. PINNs offer an edge with respect to standard
supervised learning (SL), as in principle, they do not require
any sample of the solution, be that analytical, numerical
or experimental. Thanks to their efficiency and flexibility,
PINNs found applications also in CFD problems [3].
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Using NNs as a solution approximator is an obvious
choice due to the popularity of neural architecture, however
any universal, differentiable, trainable model can be used in
their stead. One proposal replaces NNs with Differentiable
Quantum Circuits (DQCs) [4], as represented in Fig. 1.
The approach is variational (which makes it more viable on
near-term quantum hardware [4]), and offers exact differen-
tiation [5], removing the need of numerical differentiation
entirely. Finally, DQC offers efficient ways to encode prob-
lem features (e.g., coordinates), leveraging the exponentially
large Hilbert space (w.r.t. the number of qubits) accessed by
the quantum circuits [4, 6]. Therefore, their execution can
be more energy-efficient, when compared to GPU training
of NNs.

2. Methods
Consider the following generic differential problem

𝜕𝑢
𝜕𝑡
+ [𝑢] = 0, 𝑡 ∈ [0, 𝑇 ] , 𝑥 ∈ Ω, (1)

𝑢(𝑡 = 0, 𝑥) = 𝑔(𝑥), 𝑥 ∈ Ω, (2)
 [𝑢] = 0, 𝑡 ∈ [0, 𝑇 ] , 𝑥 ∈ 𝜕Ω, (3)

where  is a generic nonlinear operator of 𝑢 and its 𝑥-
derivatives, 𝑔(𝑥) is an initial condition and  [𝑢] is a bound-
ary operator.

In the DQC methodology, we approximate the solution
as 𝑢(𝑥) ≈ 𝑢𝜃(𝑥), via the expectation value of an observablê:

𝑢𝜃(𝑥) = ⟨𝑢𝜃 (𝑥)||̂||𝑢𝜃 (𝑥)⟩ , (4)
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Figure 1: Diagram of the DQC algorithm.

Figure 2: Lid-driven flow in a square cavity solved with DQC. On the left is the total velocity magnitude and on the right the
velocity profile.

measured on the output state ||𝑢𝜃 (𝑥)⟩ of a Quantum Neural
Network (QNN), a circuit described by (trainable) 𝜃 param-
eters and encoding the features 𝑥 as [7]

||𝑢𝜃(𝑥)⟩ = 𝑈𝜃𝑈𝜑 (𝑥) |0⟩ . (5)
𝜃’s are trained to minimize a loss function evaluating the
residuals of Eqs. 1-3, when 𝑢𝜃(𝑥) → 𝑢(𝑥), with 𝑈𝜑(𝑥) and
𝑈𝜃 unitary operations.

3. Results
Figure 2 shows the solution of the lid-driven cavity

flow problem obtained with DQC. We present the solution
of the incompressible Navier-Stokes equation in its non-
dimensional, steady state form

(𝐕 ⋅ 𝛁)𝐕 = −𝛁𝑝 + 1
Re
∇2𝐕, (6)
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Figure 3: Pressure field downstream from an obstacle at 𝑥 = 0. On left is the reference FEM result. In middle is the prediction
of a Trainable Frequency (TF) QNN. On the right is the prediction of a Fixed Frequency (FF) QNN.

where 𝐕 = (𝑣𝑥, 𝑣𝑦)𝑇 is the 2D velocity vector, 𝑝 is the
pressure and Re is the REYNOLDS number. The QNN sur-
rogate for 𝐕 and 𝑝 employed 4 qubits for both 𝑥 and 𝑦
coordinates, and used 8 layers of the so-called hardware
efficient ansatz [8] as 𝑈𝜃 . The solution for Re=150 matches
closely the benchmark obtained via a finite element method
(FEM) solver.

The spectrum of frequencies accessible to the feature
map in the quantum circuit can be augmented by including in
𝑈𝜑 additional trainable variational parameters [9]. Figure 3
shows the pressure field downstream from a cylinder for 2D
time-dependent Navier-Stokes equations.

A QNN approximating the stream function �̃� is used
to derive the two components of the velocity 𝐕 and to
satisfy the continuity relation automatically. Another QNN
is used to approximate the pressure field 𝑝. Each QNN
employs 8 layers of the ansatz. The results for Re=100 show
a noticeable improvement compared to a fixed frequency
version of the QNNs.

4. Conclusions
In this work, we applied the DQC algorithm to fluid

dynamics PDEs. We presented promising results obtained
both with various feature map architectures. Ongoing devel-
opment aims to also include inductive biases [10], targeting,
e.g., irrotational flows.
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A B S T R A C T
We introduce QLBM, a software package that aims to unify the fragmented landscape of quantum
Lattice Boltzmann Methods (QBMs) and facilitate future work. We highlight several nuances of
competing approaches and introduce the user- and researcher-facing sides of QLBM. We demonstrate
how QLBM provides an end-to-end environment for developing and analyzing QBMs for both
simulators and quantum hardware. QLBM is publicly available at https://github.com/QCFD-Lab/qlbm

under an MPL-2.0 license.

1. Introduction
The field of Quantum Computing (QC) [1] has re-

cently received a substantial amount of attention from both
academia and industry. QC carries the potential to augment
the current hybridized computational landscape with a dras-
tically different yet complementary archetype. The exponen-
tial memory efficiency and quantum parallelism traits of the
quantum computing paradigm makes it especially attractive
for the increasingly demanding large-scale CFD applications
of today.

The current state of QC hardware has been undergo-
ing rapid development and is currently in the so-called
Noisy Intermediate-Scale Quantum phase [2]. While quan-
tum computers available today showcase some of the core
advantages that theoretical physics promises, they are lim-
ited in both the number of qubits available and the time
span that qubits can retain coherent states. These constraints
impose great limitations on the applications that quantum
computers can presently carry out.

To facilitate the research of quantum algorithms in an
era without Fault-Tolerant QCs, scientists have turned to
simulation methods instead. Recently, increasingly many
software frameworks have emerged to bridge the gap be-
tween theoretical advances in algorithmics and hardware
availability. These range from general purpose simulation
tools [3, 4, 5] to specialized packages aimed at machine
learning [6, 7] and material simulation [8]. The current
state of quantum software intersects QC theory and avail-
able hardware such that researchers can leverage classical
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is 10.34734/FZJ-2025-02446 and of the Proceedings 10.34734/FZJ-2025-
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hardware to verify large-scale algorithmic prototypes while
quantum counterparts edge closer to fault-tolerance. At the
same time, available software retains compatibility with the
circuit model of universal quantum computers.

In this work, we introduce QLBM, a software package for
developing quantum Lattice Boltzmann Methods. We first
briefly introduce the Lattice Boltzmann Method (LBM) and
its quantum counterparts that motivate the importance of
our work in Sec. 1.1 and Sec. 1.2, respectively. Section 2
describes the QLBM software package and its features.
1.1. Lattice Boltzmann methods

The Boltzmann Equation (BE) describes the kinetic be-
havior of fluid at the mesoscopic scale, nestled between
microscopic Newtonian dynamics and macroscopic Navier-
Stokes continua. The BE models the state of populations
of fluid particles as a statistical distribution function over
physical space, velocity, and time. The discretization of the
BE along phase space and time yields the Lattice Boltzmann
Equation, which can in turn be solved numerically by the
Lattice Boltzmann Method (LBM). Each LBM time step can
be conceptually broken down into three subroutines: stream-
ing through physical space, reflection at the boundaries of
the fluid domain, and (non-linear) particle collision.

In recent years, the LBM has become a more and more
popular option to solving fluid flow problems for several
reasons. From a theoretical standpoint, it allows for the com-
putation of macroscopic quantities such as mass and momen-
tum density [9]. From a practical standpoint, the LBM lends
itself well to massively parallel computing paradigms [10,
9]. Over the years, several parallel software implementations
of the LBM have emerged, including OPENLB [11], WAL-
BERLA [12], LBMPY [13], and PYLBM [14], which are able
to carry out distributed simulations on hundreds of hetero-
geneous compute nodes. Simultaneously, researchers have
been investigating formulations that allow the parallelism
of the LBM to be exploited through paradigm of quantum
computing.
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Figure 1: Overview of the qlbm workflow.

1.2. Quantum algorithms for Lattice Boltzmann
methods

The initial wave of research into Quantum Computa-
tional Fluid Dynamics (QCFD) occurred between 2001 and
2003 and largely focused on extending the lattice-gas model
to distributed quantum devices [15, 16, 17, 18]. This work
tailors quantum lattice-gas solvers to a decentralized system
of quantum computers with limited number of qubits per
device, linked together through classical communication
channels. Though this approach enables the balancing of
the computational workload through horizontal scaling, it
requires a number of qubits that grows linearly with the
number of grid points of the lattice.

Recently, Quantum Lattice Boltzmann Methods (which
we abbreviate as QBMs, to distinguish from the software)
have emerged as promising candidates for the future di-
rection of QCFD. Research surrounding QBMs has largely
focused on the development of quantum primitives that
implement (parts of) the LBM time-marching loop. These
initiatives have given rise to several techniques that accom-
modate specific subroutines of the LBM, imposing trade-offs
between scalability and versatility. One way to categorize ex-
isting QBMs is by how they address the inherent nonlinearity
of collision.

Todorova and Steijl [19] and Schalkers and Möller [20]
propose collisionless methods that include primitives for
particle streaming and boundary conditions, but omit the
collision operator entirely. Steijl and co-workers [21, 22]
alternatively propose a method in which quantum primitives
that implement floating point arithmetic can compute non-
linear terms, but require a reversible conversion between the
encoding of the quantum state used to perform streaming and

the encoding that enables the computation of the nonlinear
velocity terms at each time step. Succi and collaborators [23,
24] adopt an approach based on truncated Carleman lin-
earization, that approximates the non-linear LBE by a finite-
dimensional linear system of equations that can be expressed
in terms of (unitary) quantum operators. Budinski [25, 26]
further developed an approach that enables both streaming
and collision but that incurs a probability of measuring an
orthogonal (irrelevant) quantum state after each time-step.
Finally, Schalkers and Möller [27] extended a previously
developed encoding equipped it with a collision operator at
the cost of requiring a number of qubits that scales with the
number of simulated time steps.

The current state of QBMs is fragmented between sev-
eral approaches that each present different strengths and
weaknesses. This poses several challenges for researchers
seeking to advance the field. First, the many nuances of
present QBM techniques make the comparison of the per-
formance and scalability difficult. From various quantum
state encodings to the decomposition of exponentially sized
matrices into quantum gates, QBMs build on top of extensive
knowledge and technology stacks that make implementation
a significant challenge. Second, the fractured nature of the
field poses challenges for techniques that augment existing
work. Third, the scarce availability of QBM implementa-
tions detracts from the reproducibility of the field.

2. The QLBM package
In this talk we present QLBM, an open-source software

package that aims to accelerate QBM research. With this
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initiative we seek to lay the foundation of a unified end-
to-end development environment for quantum Lattice Boltz-
mann algorithms. QLBM aims to facilitate both the seamless
development and comparison of existing methods and their
integration into the broader quantum software technology
stack, reducing redundant effort for researchers and practi-
tioners alike.

Figure 1 provides a high-level schematic of the end-
to-end workflow that QLBM enables. In the first part of
the talk, we focus on the application of QBMs already
implemented in the software. This includes a demonstration
of how QLBM converts human-readable JSON specifications
of 2D and 3D systems into quantum circuits, and how to
convert the generated circuits to specific platforms. We also
showcase the integration of QLBM with PARAVIEW [28] for
flow field and geometry visualization. Figure 2a displays an
example of the supported visualization techniques. Finally,
we show several concrete simulation use cases that users can
implement with just a few lines of Python code.

In the second part of the talk, we concentrate on QLBM as
a tool for developing novel QBMs. To this end, we high-
light the internal structure of the framework, the segrega-
tion of quantum circuit primitives into a complexity hierar-
chy, and the extensibility of already implemented methods.
We also spotlight QLBM’s out-of-the-box integration with
state-of-the-art quantum circuit compilers and simulators
that support a broad range of CPU and GPU architectures.
To complement the research-oriented side of QLBM, we
showcase mechanisms for exploiting potential speedups in
quantum simulators and an accompanying set of analysis
tools that allow for fair and replicable comparisons between
competing methods. Figure 2b shows one such mechanism,
which reduces the runtime of simulating time steps of the
collisionless QBM (CQBM) developed by Schalkers and
Möller [20] from linear to constant. QLBM additionally con-
tains tools meant to ease the transition from simulators to
(possibly fault-tolerant) quantum hardware. We demonstrate
QLBM’s capacity to accurately estimate critical properties of
transpiled quantum circuits for a variety of different quantum
hardware vendors. Such properties include circuit depth,
and the number exact of hardware-native gates. QLBM relies
on QISKIT to enable flexible analyses with regard to qubit
connectivity and gate sets, which come at no additional
cost to the software’s internal representation. Figure 2c
depicts how the number of gates of circuits implementing
CQBM [20] scales with the number of obstacles for 4
different grid refinement levels. We conclude the talk by
discussing prospects of QCFD software and QLBM’s place
within the broader domain.

(a) 2D flow field visualization around boundary-conditioned
geometry.

(b) Run time reduction for simulating one time step using
qlbm exploits.

(c) Number of high-level gates for 2D CQBM algorithm for
different grids.

Figure 2: Example of visualization and analysis options built
in qlbm.
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Advances in Parallel Simulation of
Reacting Flow

Organizers: Jian Fang, Zhi X. Chen, Umair Ahmed, and Daniel Mira

The simulation of reacting flow on modern high-performance computing systems is still a very
active and challenging topic. The objective of achieving carbon neutrality requires further in-
vestigation into the mechanisms of reacting flow related carbon neutral fuels, such as, hydrogen
and ammonia. However, the complexity of turbulence/chemistry interaction and the variety of
flow scales in reacting flows raise a lot of challenges to algorithm, numerical scheme, turbulence
and combustion models. The rapid development in computing hardware and data technologies
has largely boosted the large-scale high-fidelity simulations of turbulent reacting flows, although
there are still many on-going works needs to be further discussed within the community. This
mini-symposium is to communicate the progresses in simulation of reacting flow.

Topics of interest of this mini-symposium include, but are not limited to:

1. High-performance computing of combustion applications, including direct-numerical/large-
eddy simulations.

2. Data-driven techniques related to combustion.

3. Numerical scheme and algorithm that can be used in simulations of reacting flows.

4. Tackling multi-physics phenomenon in combustion (e.g. droplets, detonation, explosions,
ignition, flame-wall interaction and quenching).

5. Combustion dynamics and instabilities.

6. Combustion modelling.
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A B S T R A C T
We present here a parallel implementation of a hybrid method combining a high order semi-
Lagrangian method for the advection-diffusion of scalars and a finite element method for the
Navier-Stokes equations. Then, we introduce an overloading strategy to enhance the computational
performance of this method. Finally, we present an application test case of a high SCHMIDT scalar in
a turbulent jet flow.

1. Introduction
The phenomenon of advection-diffusion equations in

turbulent flows manifests in diverse scenarios, including
heat transfer [1] or the dispersion of pollutants [2]. Scalars
passively advected mainly vary in their diffusivity prop-
erties, which are characterized by their SCHMIDT number,
defined as the ratio of viscosity to diffusivity. Handling
scalars with high SCHMIDT numbers remains a challenge for
direct numerical simulation. Specifically, the Kolmogorov
scale 𝜇𝐾 , representing the smallest velocity variation scale,
is associated with the Batchelor scale 𝜇𝐵 , which denotes
the smallest mixing variation scale, through the following
relation:

𝜇𝐵 =
𝜇𝐾√
𝑆𝑐

(1)

As a consequence, when dealing with SCHMIDT numbers
higher than one, scalar dynamics operate at scales smaller
than the Kolmogorov scale. Achieving accurate treatment
of scalar advection-diffusion at high SCHMIDT numbers
requires a finer mesh for the scalar than for the momen-
tum. Consequently, monolithic numerical investigations are
limited to moderate SCHMIDT numbers. To address these
challenges, we have developed and implemented a method
to overcome these limitations.
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2. Equations and numerical method
For incompressible flows, the dynamics of the flow are

governed by the Navier-Stokes equations
𝜌𝜕𝐮
𝜕𝑡

+ 𝜌𝐮 ⋅ ∇𝐮 − 𝜈Δ𝐮 + ∇𝑝 = 𝟎 (2)

∇ ⋅ 𝐮 = 0 (3)
with 𝐮 the velocity field, 𝑝 the pressure field, and 𝜈 and 𝜌

the viscosity and the density, respectively. Those equations
are solved on a unstructured grid thanks to a finite-element
method with the EMAC formulation [3].

The dynamics of a passive scalar 𝜃 advected in the flow
are governed by a advection-diffusion equation:

𝜕𝜃
𝜕𝑡

+ 𝐮 ⋅ ∇𝜃 = 𝜅Δ𝜃 (4)
where 𝜅 is the diffusion coefficient of 𝜃. The SCHMIDT
number is then defined as 𝑆𝑐 = 𝜈∕𝜅. The scalar advection-
diffusion equation is solved on a fine Cartesian mesh. A
semi-Lagrangian particle method is used for the scalar trans-
port. It consists in concentrating the transported quantity 𝜃
on a set of particles. Particles are then advected thanks to the
advection velocity field and remeshed after each time-step on
the grid using an interpolation kernel. This methodology has
been validated and applied in [4, 5, 6]. In particular, Cottet
showed the high order of the method in [7]. Nevertheless,
the authors of [6] highlight the presence of load balancing
issues when very unstructured velocity mesh are used. The
presented parallel implementation aims to solve those prob-
lems.

3. Parallel implementation
In the present work, Navier-Stokes and advection-diffu-

sion equations are solved on two different groups of proces-
sors. The first group aims to solve Navier-Stokes equations.
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Figure 1: Workflow with or without the use of DLB Barrier.

Figure 2: Instantaneous contours of a scalar injected in a turbulent flow. Top picture 𝑆𝑐 = 1. Bottom picture 𝑆𝑐 = 10.

The second group deals with the remeshed particles method.
At each time step, the velocity field is communicated from
the first group to the second group in order to advect the
particles with a fourth order Runge-Kutta time scheme.
Using this partitioning, we avoid the load balancing issues
highlighted in [6] where the partitioning of the particle
mesh follows the velocity mesh. However, with this parallel
implementation, both groups of processors works in an
alternate fashion as the second group needs the velocity field
to advect particles. A way to enhance the computational

performance of this implementation is to use an overload-
ing strategy thanks to DLB, a library that improves the
performance of hybrid applications by addressing the load
imbalance at runtime [8]. With this strategy, all the resources
are used for both solvers. Figure 1 shows the workflow
when overloading resources. Code1.x represents the tasks
for solving Navier-Stokes equations and Code2.x represents
the tasks for the remeshed particles method. When Code1.x
is running, Code2.x is in a DLB.node.barrier, which means
that its processes do not do a busy wait and consequently,
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do not consume cycles. At the end of Code1.x, the commu-
nication of the velocity field is done. Code1.x enters in the
DLB.node.barrier and Code2.x does its tasks.

4. High Schmidt scalar advection in a
turbulent flow
A round jet in transition to turbulence is considered. The

flow configuration is defined by its inlet velocity profile.
At the inlet, the mean velocity field is non zero only for
the streamwise component, which is given by a hyperbolic
tangent profile:

𝐮𝑖 =
𝑈1 + 𝑈2

2
−
𝑈1 − 𝑈2

2
tanh
(
𝑅
4Γ0

(
𝑟
𝑅

− 𝑅
𝑟

))

where 𝑈1 is the centerline velocity, 𝑈1 is a small co-flow, Γ0is the momentum thickness of the initial shear layer, 𝑟 the ra-
dial coordinates, and𝑅 the initial jet radius. The REYNOLDS
number is fixed at 𝑅𝑒 = 𝑈1 ⋅ (𝑅∕𝜈) = 2,000. A forcing
term is added to accelerate the transition. This forcing is first
composed by a random part only added in the shear layer of
the jet to the three velocity components. It follows a Passot-
Pouquet spectrum with an amplitude set to 10% of 𝑈1. This
forcing is then complemented by a deterministic part, which
consists in a varicose axissymmetric excitation.
Figure 2 shows instantaneous contours of scalars for values
of SCHMIDT number equal to 1 and 10, with 960 CPUs
used. The velocity mesh consists of 62M elements and the
particles mesh of 115M particles.
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A B S T R A C T
This study provides a numerical study of turbulent lifted hydrogen jet flames by employing a Reynolds
stress, stretched flamelet model. Computations were conducted on turbulent lifted hydrogen jet flames
using several pipe diameters with a range of jet exit velocities and different pipe exit shapes. The
computed isotherms and the volumetric heat release rate contour lines are used to determine the
thermal and reaction zone liftoff heights. By comparing computational results with experimental
data, the limitations inherent in previous experiments concerning liftoff height are elucidated. The
scrutinizing of the lifted flame base enhances the understanding of the dynamics governing hydrogen
jet flames.

1. Introduction
Turbulent hydrogen jet flames exhibit intricate interac-

tions between fluid dynamics, and chemical kinetics. Under-
standing the liftoff height of turbulent hydrogen jet flames
is crucial for optimizing combustion efficiency, controlling
emissions, and enhancing the performance of various com-
bustion devices [1]. However, definitions of liftoff height
vary across the literature, reflecting discrepancies among
different research groups, particularly for hydrogen flames,
which have relatively low visibility compared to flames
produced by hydrocarbon fuels such as methane or propane.

In the present study, a second-order Reynolds stress
turbulence model [2], in conjunction with the mixedness-
reaction strained flamelet combustion model initially devel-
oped for methane [3], is adopted. This approach incorporates
adjustments to accommodate the unique combustion char-
acteristics of hydrogen. A parametric study of different pipe
shapes and sizes, along with a range of jet exit velocities, is
conducted to establish a precise and universally applicable
standard for measuring liftoff height, considering the spe-
cific temperature and heat release rate conditions of prior
experimental work [4].
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2. Methodology and simulation setup
2.1. Turbulence model

The Favre-averaged Navier-Stokes equations, coupled
with the energy equation in term of temperature, are utilized
to compute both velocity and temperature fields. These
equations are complemented by the second-order turbu-
lence model of the Launder-Reece-Rodi (LRR) turbulence
model [2] to address Reynolds stresses. Turbulent heat fluxes
in temperature equation are determined through second-
order closure [5]. Additionally, the temperature variance
equation is solved to build the reactedness distribution func-
tion. To model the mixing process, a set of equations for mix-
ture, employing second-order closures [5], are integrated.
The counter-gradient effects are embedded in the turbulent
heat flux equations [6].

For problems involving obvious free jets, such as circular
jets, the LRR model can better capture the anisotropy of
turbulence and thus provide in-depth insights into complex
flow structures, especially in engineering in applied and
basic research.
2.2. Combustion model

The mixedness-reactedness flamelet model, proposed by
Bradley et al. [3], serves as the foundation for our turbulent
combustion analysis in the present study. It facilitates the de-
termination of the mean volumetric heat release rate within
the temperature equation.

As fuel is introduced into the airflow through a pipe, the
initial high aerodynamic strain rate dampens both diffusion
and premixed flamelets. As the fuel disperses downstream
and mixes with air, the strain rate gradually decreases. This
reduction allows for premixed combustion to take place, as
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(a) 2D contour lines of the mean strain rate. (b) 2D contour lines of the mixture fraction.

Figure 1: The base of the turbulent lifted hydrogen jet from a circular pipe of a diameter of 2.9 mm with a jet exit velocity of
765 m/s. In the background, the mean volumetric heat release contour field is shown.

the strain rates required to quench premixed flamelets are
considerably higher than those for diffusion flamelets.

In the mixedness-reactedness flamelet model of lifted
turbulent hydrogen jet flames, stretched premixed hydro-
gen flamelets with varying equivalence ratios are used to
compute the mean heat release rate. These flamelets are
generated using the opposed flame reactor in CHEMKIN [7],
employing detailed chemistry comprising 9 species and 20
reaction steps. The extinction strain rates are also determined
using the counterflow configuration.

To integrate laminar flamelets with detailed chemistry
into turbulent flames, the assumed beta-probability distribu-
tion functions for mixedness and reactedness are employed
based on their corresponding mean and variance values.
To incorporate the effects of turbulence stretch on laminar
flamelets, a Gaussian distribution of strain rates, defined
by mean and variance values on the Taylor microscale of
turbulence [8], as observed in direct numerical simulations
by Yeung et al. [9] on both random and material surfaces in
constant density, homogeneous, isotropic turbulence.
2.3. Simulation setup

The open-source software package Code_Saturne [10]
were used a platform to conduct the computational tasks.

Version 8.0 of the code incorporates various turbulence
models, including Reynolds stress equations and turbulent
heat flux equations. The combustion model was integrated
into the software through user-defined subroutines, acting
as supplementary source terms for both temperature and its
variance equations.

Our simulations eschewed symmetry and steady-state
assumptions in favor of comprehensive three-dimensional,
time-dependent computations. The size of the computational
domain was contingent upon factors such as pipe dimensions
and jet exit velocity. The most extensive domain measured
3m x 3m x 7m and comprised approximately 4 million grid
cells. Except for the pipe wall, all other boundaries are free
inlet or outlet. During computation, a time step of 10−5
to 10−4 second was employed. The simulations extended
beyond one second to ensure the full development of the
flame.

The average velocity profile at the simulated inlet was
determined based on experimental measurements from pre-
vious studies on similar flow configurations [4]. Turbulent
kinetic energy and dissipation rates are suggested using stan-
dard empirical correlations based on average flow velocity
and pipe diameter.
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Specific inlet conditions are as follows

𝑇𝐾𝐸𝑖𝑛𝑙𝑒𝑡 = 1.5 ⋅
(
𝑈𝑚𝑒𝑎𝑛 ⋅ 0.16 ⋅ Re− 1

8
)2
, (1)

𝐸𝑝𝑠𝑖𝑙𝑜𝑛𝑖𝑛𝑙𝑒𝑡 =

(
C0.25
𝜇 ⋅
√
𝑇𝐾𝐸𝑖𝑛𝑙𝑒𝑡

)3

0.07 ⋅ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
. (2)

3. Results and discussion
The computations have been carried out for a range of

jet exit velocities from a pipe of different sizes and shapes.
Shown in Fig. 1 is the base of the turbulent lifted hydrogen
jet from a circular pipe of a diameter of 2.90 mm with a
jet exit velocity of 765 m/s. The flame is stable after 1 s
after ignition. The contour lines of the mixture fraction in
the plane through the pipe centerline superimposed on the
mean volumetric heat release rate contour field are presented
in Fig. 1b to illustrate the flame structure at the base. The
flame is lifted with a liftoff height indicated in the figure,
which depends on the value of the mean heat release. A lower
mean heat release rate corresponds to a short liftoff height.
Clearly, in the experimental measurements, the value of the
liftoff height will be affected by the instruments used and
environmental conditions, particularly as the visibility of a
hydrogen flame is low. The liftoff heights will be measured
with different values of the mean heat release rate from the
computational results across a wide range of conditions to
compare with the available experimental data. Additionally,
the possible causes for discrepancies in the experimental
measurements will be explored.

The tip of the lifted jet flame anchors on the mixture
fraction with a value of 0.0436, which corresponds equiv-
alence rate of 1.6 for the premixed hydrogen flame. At this
equivalence ratio, the laminar hydrogen flame has the max-
imum laminar burning velocity. The contour goes through
the maximum mean heat release region as shown in Fig. 1b.
The contour lines of the mean strain rate around the flame
base are shown in Fig. 1a. The mean strain is so high that no
sufficient laminar flamelets can survive. The flame stabilizes
at the contour with a value of 15,000 (1/s), which is slightly
lower than the maximum laminar extinction strain rate of
the mixture, which is about 17,540 (1/s). The effect of the
strain rate on the liftoff height will be further examined with
different pipe shapes and sizes.

Shown in the Fig. 2 is the velocity streamline of the
turbulent lifted hydrogen jet from a circular pipe of a di-
ameter of 2.90 mm with a jet exit velocity of 521 m/s. The
streamlines indicate that the velocity predominantly directs
towards the flame’s root, where it is denser, thereby accentu-
ating the entrainment effect. Near the flame’s initiation zone,
this entrainment draws unburnt air into the flame, enhancing
combustion efficiency and flame stability.

Figure 2: Velocity streamlines of a lifted hydrogen jet flame
with a 2.90 mm diameter and an inlet velocity of 521 m/s.

4. Conclusion
The study employs a Reynolds stress, stretched flamelet

model to investigate turbulent lifted hydrogen jet flames,
focusing on liftoff height and stabilization mechanisms. De-
tailed analysis of the flame base structure is conducted across
various conditions. Factors influencing liftoff height will be
thoroughly analyzed.
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A B S T R A C T
Simulations of rotating detonation engines are still dominated by solvers on uniform or statically
refined meshes. Here, we demonstrate the application of 3D parallel block-structured adaptive mesh
refinement to this problem class. The computations employ a generic shock-capturing curvilinear
high-speed combustion solver within the parallel adaptive mesh refinement framework AMROC. The
ability to not only capture the rotating waves effectively, but to resolve sub-scale phenomena down to
the cellular structures, intrinsic to detonation propagation, demonstrates the potential of the approach.

1. Introduction
Rotating detonation engines (RDEs) employ one or mul-

tiple detonation waves to burn continuously injected propel-
lants at the base of an annular chamber. Each detonation
spins circumferentially, creating a self-sustained reaction
front followed by high-pressure gas. As the burned gases
are exhausted in the axial direction, they generate thrust.
RDEs are of considerable interest nowadays as they have
the potential to operate thermodynamically more efficiently
than conventional pressure-constant combustion engines.
RDEs can also operate over a wide range of speeds and
pressures, which makes them attractive for use in a variety
of applications, e.g., in aerospace propulsion and land-based
power generation systems.

Investigating the internal flow field of RDEs in exper-
iments is very challenging as it is difficult to capture the
details of waves propagating at velocities of about 2000m∕s.
Numerical simulations provide an alternative, however they
also face serious obstacles. To be sufficiently sensitive for
reliable detonation prediction, it is necessary to employ de-
tailed chemical reaction models. Since practical RDEs gen-
erally mix propellants only in the combustion chamber, dif-
fusion cannot be neglected. While using the Navier-Stokes
equations with full chemistry models seems paramount, the
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resolution requirements to capture the instationary detona-
tion waves accurately make in particular reliable 3D simula-
tions very expensive.

An effective approach in mitigating the computational
cost is dynamic adaptive mesh refinement (AMR). Because
of the need to handle an annular cylindrical chamber, the
number of reported 3D simulations of RDEs, that have
applied on-the-fly mesh adaptation techniques, is compar-
atively small. Simply assuming all propellants to be pre-
mixed, usually the inviscid Euler equations have been solved,
in most cases with a simplified one-step reaction model.
Only recently, Pal et al. [1] adopted the commercial CFD
code CONVERGE with a full chemistry model for unsteady
Reynolds-averaged Navier-Stokes equations, albeit with a
cut-cell Cartesian AMR method.

2. Methods
Here, we conduct 3D numerical simulations of an RDE

using an extended version of our parallel bock-structured
finite volume AMR framework AMROC [2]. AMROC has
recently been extended for body-fitted curvilinear meshes
defined by a mapping function [3]. For RDE simulation, the
multi-component Navier-Stokes equations with a detailed
chemical model are solved as governing equations. The
HLLC (Harten-Lax-van Leer contact) scheme is applied to
approximate the inviscid fluxes, where facet-dependent ro-
tation matrices are used to rotate the velocities to align with
the 3D curvilinear mesh. A second-order-accurate MUSCL-
Hancock method with mapping-dependent spatial recon-
struction is applied for the temporal update. The viscous
fluxes are calculated at each face in physical space through
the coordinate transformation and are incorporated with a
conventional second-order-accurate finite volume approach.
As it is common for detonation problems, the chemically
reactive source terms are integrated cell-wise in an operator
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Figure 1: Unwrapped slices of pressure (bottom) and heat release rate (top) during half a rotation cycle.

splitting scheme. A semi-implicit generalized Runge–Kutta
method of fourth order (GRK4A) is adopted to integrate the
chemical kinetics [4].

AMROC employs a patch-wise refinement strategy,
where the entire domain comprises a collection of smaller
discrete elements known as blocks. Within these blocks,
cells are dynamically flagged using specified refinement
criteria. These flagged cells are subsequently grouped into a
region of various-sized rectangular blocks. Once the refined
cells are created from their parent, namely coarser cells, a
hierarchy of embedded grid patches with multiple levels
is established. Data between different refinement levels is
transferred by averaging and prolongation operations that
consider the geometric mapping. To ensure a fully conser-
vative scheme, a flux correction approach is applied and
equally extended to handle facets of variable area [3].

For distributed memory parallelization with MPI, the hi-
erarchical mesh is partitioned on-the-fly to processors using
a space-filling curve in computational space [2]. A rigorous
domain decomposition approach is applied, in which higher
refinement levels follow the distribution of the base level
cells, however increased workload from spatial and temporal
refinement is considered whenever the hierarchical mesh is
recreated. The regridding and redistribution process occurs
at a specified frequency, ensuring that the region of interest
is dynamically captured by the highest-level mesh.

3. Results
A 3D annular model of an RDE running on ethylene and

oxygen is simulated. The outer diameter of the chamber is
75mm, the channel width is 1mm and the axial height is
50mm. This chambers corresponds to an actual experiment

from our laboratory [5], although the detailed plenum ge-
ometry and also plug and aerospike nozzles at the exit are
not considered. Initially, the chamber is filled with air at
atmospheric conditions. A layer of stoichiometric ethylene-
oxygen is initialized with a height of 10mm. A patch with an
analytic 1D detonation wave solution is then used to artifi-
cially generate a single detonation wave in the first cycle. A
stoichiometric ethylene-oxygen mixture with 20% nitrogen
dilution is injected from slots at the head plane. A reduced
ethylene/oxygen reaction mechanism [6] with 10 species and
10 reactions is utilized to model the chemistry. Nitrogen
is treated as an inert gas. A velocity inlet is used for the
injection and the top side is set as an extrapolation outflow
boundary condition. The diluted mixture is injected at 300K
and 2 bar, with an inflow velocity of 200m∕s. The average
combined inlet mass flow rate is measured at 42.1 g∕s. All
other boundaries are treated as adiabatic slip walls, thereby
neglecting any viscous boundary layers. Because detonation
waves in gases propagate at a velocity of around 2000m∕s,
this is a justifiable and common simplification in RDE
simulations.

Figure 1 depicts the unwrapped plane in the middle of
the channel, showcasing two distinct structures observed
during the detonation propagation process throughout half
of a rotation cycle. The discrete injection leads to flow dis-
turbances ahead of the detonation, and the mixing between
the mixture jets and their interval determines the detonation
strength locally. The reflected waves are enhanced in the
region where the mixture is present. The computational res-
olution is sufficient to capture the “cells” formed by pressure
waves propagating at regular intervals perpendicular to the
detonation front. Their size is estimated to be 1.5mm. These
numerical "soot foils" offer a visual representation of the
internal wave structure. Weaker reflected waves are observed
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Figure 2: Two snapshots of the evolving density (left) and processors distribution (right) in the 3D RDE.

in regions where mixing is incomplete, which leads to the
disappearance of the cellular structure.

The computation was run with two additional refinement
levels and it uses approximately 11.6M to 12.3M instead
of 94.4M cells in the uniform case. The calculation is per-
formed on 480 cores (Intel Xeon E5-2670 2.0GHz). Typical
run times for a simulated time of 1mswere approximately 12
days wall clock time. Two snapshots of density and processor
distribution are displayed in Fig. 2. The images visualize
how, after a transient early state without clear detonation
(upper row), two stable detonation waves have developed
again (lower row). The adaptive mesh clearly follows the
fronts at the highest level (right) and most processors are
utilized in regions where the workload is high. Note that
the number of self-sustaining periodic waves dependent
critically but sensitively on the flow conditions and it is one
of the most important predictions of RDE simulations.
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A B S T R A C T
Studying the interplay between a hydrogen flame and turbulence is crucial for the advancement of
next-generation carbon-neutral combustion systems. In our present work, we conduct a series of direct
numerical simulations (DNS) to investigate the dynamics of a premixed hydrogen flame interacting
with the compressible homogeneous isotropic turbulence (HIT) maintained by a deterministic force
under different pressure and turbulence intensity. Under this particular forcing method applied to
turbulence at large scales, the relationship between the forcing intensity and the resulting fluctuating
velocity aligns well with the experimental results. In our study, we compared the normalized turbulent
burning velocity of hydrogen flames under different conditions, verified the common occurrence
of bending effects at elevated pressures and validated existed turbulent burning velocity models.
To further explore the dynamics of the HIT-flame interaction and fully leverage the advantages of
high-precision direct numerical simulations, we analyzed several flame behaviors such as stretch and
instability. The probability density functions (PDF) for the tangential strain rate and curvature are
displayed and the results indicate a strong correlation between the flame surface structure and the
turbulence generated by the large-scale forcing.

1. Introduction
Hydrogen energy has always been crucial for low-carbon

combustion. To better utilize hydrogen energy, it’s essential
to explore the combustion mechanisms of hydrogen, espe-
cially its combustion characteristics in turbulent flow. Direct
Numerical Simulation (DNS) can provide detailed insights
into combustion and flow dynamics. Song et al. analyzed
statistics of flame speed and diffusion effects of turbulent hy-
drogen flame [1, 2]. Lu and Yang carried out a series of DNS
of lean H2-air turbulent flames and proposed a turbulent
burning velocity model [3, 4]. Building upon these previous
works, we developed a turbulent forcing method adapted to
our inhouse compressible solver. We used this method to
compute turbulent premixed flames under different pressures
and turbulence intensities, investigating physical phenomena
and validating turbulent burning velocity models.
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2. Numerical methods
Our simulations are conducted using an in-house finite-

difference code, Advanced flow Simulator for Turbulence
Research (ASTR), which has been used for several previous
studies [5, 6, 7].
2.1. Forcing method

To maintain isotropic turbulence in our computations,
we need to apply forcing to sustain turbulent fluctuations.
Here, we have developed a large-scale forcing method
adapted to our solver. This forcing method applies random
forces to our cells in the form of sine and cosine functions
within the computational domain, which is a cubic box 𝐿3,
while fixing 𝐹𝑐 = 0 to ensure divergence-free conditions.
The magnitude of forcing is controlled by an initially given
parameter 𝐹𝑟 for our code. The quantities 𝜛𝑖𝑗 and 𝜔𝑖𝑗 are
two random variables ranging from [−1, 1]. The equations
to solve are

𝜌𝜕𝒖
𝜕𝑡

+ 𝜌(𝒖 ⋅∇)𝒖+∇𝑝 = 𝜇∇2𝒖+ 1
3
𝜇∇(∇ ⋅ 𝒖) + 𝜌𝒇 , (1)

𝑓𝑖 = 𝑎𝑖𝑗 sin
(
2𝜋

𝑥𝑗
𝐿

)
+ 𝑏𝑖𝑗 cos

(
2𝜋

𝑥𝑗
𝐿

)
, (2)

𝑎𝑖𝑗 =

{
𝐹𝑟𝜛𝑖𝑗 𝑖− ≠ −𝑗
𝐹𝑐𝜛𝑖𝑗 𝑖 = 𝑗

, 𝑏𝑖𝑗 =

{
𝐹𝑟𝜔𝑖𝑗 𝑖− ≠ −𝑗
𝐹𝑐𝜔𝑖𝑗 𝑖 = 𝑗

. (3)
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(a) (b)

Figure 1: (a) Relationship between 𝑢′ and
√
𝐹𝑟𝐿 in different computing domain. (b) Turbulent spectra with different 𝑢′.

Figure 1a shows the linear relationship between √𝐹𝑟𝐿and rms velocity fluctuation 𝑢′ obtained with our forcing
method. Figure 1b shows the turbulence spectra with dif-
ferent 𝑢′, observing that the turbulence spectra align closely
with the -5/3 power law.
2.2. Case configurations

Figure 2 presents our case setup. 𝐿𝑦 = 𝐿 = 5.3𝛿𝐿(flame thickness), 𝐿𝑥 = 8𝐿𝑦. This implies that when we
choose different flame thicknesses (e.g., different pressures)
for our cases, the computational domain size will change
accordingly with the flame thickness variation. The domain
is discretized on uniform grid points 𝑁𝑥 × 𝑁𝑦 × 𝑁 =
12𝑁 × 𝑁 × 𝑁 . The numerical resolution in all the cases
is ensured to resolve the smallest turbulent and flame length

Figure 2: Initial configuration for cases. Iso-surface of vorticity
is shown within the grey region and visualized by 𝑢 magnitude.

scales by the criterion 𝑘𝑚𝑎𝑥𝜂 ≥ 1.5 and a minimum of 24
grid points within a flame thickness 𝛿𝐿, respectively, where
𝑘𝑚𝑎𝑥 = 𝜋𝑁∕𝐿 is the maximum wave number magnitude
in DNS of HIT and 𝜂 is the Kolmogorov length scale. To
meet the criteria, we set 𝑁 = 128 for all our cases. For a
specific case, we first compute a laminar one-dimensional
premixed flame and scale the state variables profile of the
flame surface into the three-dimensional space mentioned
above, positioning the flame surface near the outlet. Then,
we set up eight turbulent boxes in the x direction with the
desired fluctuating velocity already evolved. This initializa-
tion aims to minimize the initial time required for reaching
the statistically steady state. Eight cases are conducted with
𝑝 = 2, 5 𝑎𝑡𝑚 and 𝑢′∕𝑆𝐿 = 2, 5, 10, 20.

3. Results and discussion
Figure 3 shows the comparison of the flame surface

structures after reaching statistical steady state through dis-
playing the isovolume of heat release rate among the cases.
The upper line shows the 2 𝑎𝑡𝑚 cases and the bottom line
shows the 5 𝑎𝑡𝑚 cases. 𝑢′∕𝑆𝐿 = 2, 5, 10, 20 from left to
right column. It can be observed that, in cases with the same
pressure, as the turbulence intensity increases, the wrinkling
of the flame surface also increases. The heat release rate in
high-pressure cases is higher than that in low-pressure cases
which matches our expectations.

We calculated the statistical burning velocity of our
cases and compared them with the 𝑆𝑇 model and observed
the expected bending effect phenomenon as shown in Fig. 4.
The turbulent burning velocity

𝑠𝑇 = 1
𝜌𝑢𝑌F,𝑢𝐴𝐿

(
𝑡2 − 𝑡1

) ∫
𝑡2

𝑡1
∫Ω −�̇�F𝑑𝑉 𝑑𝑡 (4)
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(a) 𝑝 = 2 𝑎𝑡𝑚; 𝑢′∕𝑆𝐿 = 2, 5, 10, 20

(b) 𝑝 = 5 𝑎𝑡𝑚; 𝑢′∕𝑆𝐿 = 2, 5, 10, 20

Figure 3: Flame surface structures displayed by the isovolume of heat release rate for different pressures 𝑝.

(a) (b)

Figure 4: Comparison of 𝑆𝑇 calculated from DNS and the model.

is defined by the consumption speed. We found that our
results generally align well with the Lu and Yang model [3].
This overall validation confirms the rationality of our forcing
method and the accuracy of our results.

4. Conclusions
We developed a deterministic forcing method to main-

tain statistically stationary isotropic turbulence for study-
ing flame/turbulence interaction. By using the deterministic
forcing method and the high-order solver, we studied the hy-
drogen flame/turbulence interaction at different turbulence
intensity and pressure. The bending curves of turbulence

burning velocity are observed in our cases and the results
agree well with the model proposed.
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A B S T R A C T
Combustion is a phenomenon present in most of the fundamental industries and sectors that 21st
century society depends on, such as energy generation, transportation and heating systems. However,
to further understand the complexities of the upcoming challenges; pollution reduction, hydrogen
combustion systems, Sustainable Aviation Fuels (SAF), etc, numerical simulations are crucial. Latest
supercomputers that come with heterogeneous architectures open new frontiers in the computational
capabilities for simulating reacting flows. In the present work, a methodology of porting to the GPU
the computation of the species transport using detailed chemistry is explained.

1. Introduction
Combustion is a multi-physics and multi-scale phe-

nomenon which use and understanding is essential in many
energy and transportation sectors. Numerical simulations
of real scale and real combustion regimes of the devices
used by those industries are extremely computationally
demanding [1]. Today’s cutting edge supercomputers are
enabling researchers to reach new horizons such as making
high-fidelity models, reducing simplifications and storing
and processing huge amounts of data. Particularly in the
field of engineering simulations, the CPU-GPU heteroge-
neous architectures have the potential to reduce the time-to-
results simulations by offloading parts of the code that are
arithmetically intensive to the GPU [2, 3, 4, 5].

The parallel Finite-Element Method (FEM) based code
Alya [6] is a multiphysics modular code that can solve a
wide range of engineering problems, from pure structural
mechanics to fully coupled turbulent multi-phase reacting
flows problems. In the latter problems, the chemical mod-
ule (chemic) is activated to compute the transport and the
chemical reactions of the species that are involved in the
case (reactants, combustion products, pollutants, etc.). The
present work explains the strategy adopted for adapting to
the GPU both, the matrix assembly algorithm, involved in
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FEM [7], and the stiff chemical integration found in the
finite-rate chemistry approach [8].

2. Methodology
Computational Fluid Dynamics (CFD) focuses on solv-

ing numerically the Navier Stokes Equations (NSE) to de-
termine the thermofluid dynamic state of a given flow. Fur-
thermore, when dealing with reacting flows, apart from the
NSE, one transport equation for each species participating
in the chemical reactions must be added to the system

𝜕
(
𝜌𝑌𝑘

)
𝜕𝑡

+ ∇ ⋅
(
𝜌u𝑌𝑘

)
= −∇ ⋅

(
𝜌V𝑘𝑌𝑘

)
+ �̇�𝑘, (1)

where the temporal evolution of the species mass fraction
“𝑘” is given by the fluid transport, which is decomposed
in the convective (second term of the left-hand-side) and
diffusion (first term of the right-hand-side) terms, and by the
production-consumption of the species “𝑘”. The convection
term represents the transport of the species “𝑘” due to the
bulk motion of the fluid. The diffusion term represents the
transport of the species “𝑘” due to molecular diffusion.
Lastly, the most right hand side term of the Eq. (1), known as
the chemical source term, is where the non-linear chemical
reactions are calculated to dictate if the given species are
being generated or consumed. The difference between the
time-scales of the chemistry and the flow dynamics makes
this equation difficult to be numerically solved.
2.1. Operator splitting in reacting flows with stiff

chemistry
Operator splitting schemes allow to decompose the

Partial Differential Equation (PDE) into decoupled sub-
equations that deal only with a portion of the physics [9]. In
the chemic module of Alya, the first order operator splitting

44



Á. Moure et al.: Computation of Transport and Chemistry for Combustion Applications in the Code Alya Using Accelerated Architectures

proposed by Lie-Trotter [10] is implemented, dividing the
simulation time-step into a separated evaluation of a trans-
port sub-step followed by a finite-rate chemistry sub-step.
2.2. Element operations of the transport terms

In the transport sub-step, a loop iterates over the ele-
ments of the mesh and performs the following operations to
assembly the matrix:

1. Gathering. Change of coordinates of the needed
properties from global to elemental, bringing mass
fractions, velocity, and temperature values to the
nodes of the element.

2. Element preparation. Interpolation of the element
nodes values to the Gauss points, using the elemental
shape functions.

3. Element assembly. Computation of the convective
and diffusive terms of the Eq. (1), performing the
space integration over the element domain, and pro-
jecting it back to the right-hand-side of the element
nodes.

4. Matrix assembly. Assembly of the global system
matrix accumulating the influence of each element in
each global node.

Due to the large portion of code needed to perform the 4
steps, many variables have to be declared as private. The
registers on the GPU limit the occupancy of the kernel
and the performance obtained is not optimal. The strategy
followed to get performance on GPUs is partitioning the
elemental loop in 2 kernels, one for the computation of the
convective term, and other for the diffusive term, performing
both of them a partial assembly of the matrix.
2.3. Finite-rate chemistry

The chemical integration sub-step drives to an Initial
Value Problem of an autonomous Ordinary Differential
Equation (ODE) system of the form:

𝑑𝑌𝑘
𝑑𝑡

=
�̇�𝑘
𝜌

←←→
𝑑𝑦
𝑑𝑡

= 𝑓 (𝑦) (2)

Normally the time-scales involved in the reactions of
the combustion mechanism can differ orders of magnitude,
making the ODE system very stiff.
ODE stiff methods

In the present work two ODE stiff numerical methods
algorithms are adapted to accelerate the calculation using
GPUs. Given the modularity of Alya, the implementation
has been done in a standalone C++ library, creating a common
interface that Alya can use regardless the integration method
selected.

• Backward Differentiation Formula (BDF) meth-
ods. BDF methods are robust and accurate for stiff
problems, with the drawback of being computation-
ally expensive. In this case the solver has not been
implemented itself, but adapted to run on the GPU,
using the well-known package CVODE [11]. Porting
CVODE to the GPU involves using the Magma library
to solve the linear systems, that appear when solv-
ing non-linear problems, in a batched LU factoriza-
tion [12], and pyJac to compute the Jacobian matrix
analytically on the GPU [13].

• Rosenbrock’s methods. These semi-implicit meth-
ods are proven to work well with relatively high stiff
problems with the advantage of being faster than
the BDF methods. The solvers ROS4 and RODAS
from Hairer, et al. [14] has been implemented and
parallelized with GPUs. In this case, each GPU thread
solves one ODE system, which corresponds to the
thermochemical state at each degree of freedom of the
domain.

3. Results
3.1. Matrix assembly

Figure 1 illustrates a strong scaling study of the matrix
assembly performed on LEONARDO Booster, where each
process has exclusive access to one GPU device simulta-
neously. Compared to the ideal lineal scaling, the results
suggest that the followed approach is highly parallel and can
take the most of the accelerated partition that the upcoming
supercomputers bring with them.

8 16 32 64 128 256 512

103

104

Processes

Se
co
nd

s

Strong scaling

Matrix assembly + solver
Linear scaling

Figure 1: Turbulent premixed flame mixing layer. Alya time to
solve 200 timesteps (details in Tab. 1).
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(a) CVODE’s integration times with analytical and numerical
approaches for the Jacobian matrix in the BDF method.

(b) Integration times of serial and GPU implementations of CVODE
adaptation.

Figure 2: Integration times of perfectly stirred reactors.

Seconds

Proc. Mat. assembly + solver Linear

8 18702.88 18702.88
16 9407.03 9351.44
32 4786.37 4675.72
64 2384.23 2337.86

128 1270.60 1168.93
256 651.45 584.47
512 353.27 292.23

Table 1
Timings for the graph in Fig. 1.

3.2. Chemical integration
Figure 2 shows the preliminary results of the GPU adap-

tation of the CVODE solver in the standalone library, given
a chunk of perfectly stirred reactors in a mixture of equiv-
alence ratio of 𝜙 = 0.8 for a 53 species and 325 reactions
GRI30 combustion mechanism [15]. It is shown that an
analytical Jacobian evaluation is faster than the conventional
finite differences approach, and that the GPU accelerated
solver runs around x6 times faster that a single CPU pro-
cessor.

4. Conclusions and outlook
The strategy followed to speedup the calculation of the

transport terms, focused on the matrix assembly, shows a
potential methodology that can be adopted for the rest of
the modules of Alya, however, further studies need to be

performed. Regarding the GPU acceleration of the chem-
ical integration sub-step in an standalone library, it shows
promising results and it will be easily integrated in future
versions of Alya given the modularity and the interface
design of both the C++ library and Alya.
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Organizers: Guillaume Houzeaux, Corentin Lapeyre, and Mario Rüttgers

Artificial Intelligence (AI) technologies are penetrating into all sectors of research and industry.
They automate and accelerate processes, and uncover new unseen relations in huge datasets.
The successful AI+HPC4CFD ParCFD 2022 and 2023 mini-symposia already impressively
showed that the Computational Fluid Dynamics (CFD) community drastically benefits from
these technologies. AI methods and notably deep learning techniques are used to develop
new models for CFD, e.g., reduced-order models, surrogates, and closure models aiming at
efficiently modeling complex physics that are otherwise expensive to compute. Furthermore,
reinforcement learning algorithms can be used for flow control applications, while receiving
feedback from CFD solvers after an action. The quality of these methods is often a function
of both the quantity and the accuracy of the underlying data used for training as well as the
physical constraints imposed on the training. The generation and processing of high fidelity
simulation data necessitates the application of High-Performance Computing (HPC) systems,
with an increasing number CFD solvers running on both CPU and GPU partitions. Modular
and heterogeneous systems with accelerator and/or specialized AI-components as blueprints for
upcoming Exascale systems have the potential to deal with the demands of complex and inter-
twined simulations and AI-data processing workflows. This minisymposium aims at continuing
the successful 2022 and 2023 AI+HPC4CFD minisymposia. It will gather experts in the fields
of development and application of parallel CFD methods incorporating novel AI methods, and
pure AI method developers contributing to the fields of CFD and HPC alike. It will again offer
a platform for discussion and exchange in the context of the convergence of AI and HPC with
respect to parallel CFD methods that could benefit from the power of next-generation Exascale
computing systems.
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A B S T R A C T
In this work, we embed hard constraints in a physics informed neural network (PINN) which predicts
solutions to the 2D incompressible Navier-Stokes equations. We extend the hard constraint method
introduced by Chen et al. [1] from a linear PDE to a strongly non-linear PDE. The PINN is used
to estimate the stream function and pressure of the fluid, and by differentiating the stream function
we can recover an incompressible velocity field. An unlearnable hard constraint projection (HCP)
layer projects the predicted velocity and pressure to a hyperplane that admits only exact solutions to
a discretized form of the governing equations.

1. Introduction
Machine learning provides a promising framework to

simulate fluid dynamics at a fraction of the computational
cost of traditional numerical methods [2]. Furthermore, the
incorporation of domain knowledge into a neural network
can improve the prediction accuracy, increase the model’s
explainability, and result in a neural network that is less
reliant on training data. Typically, the incorporation of the
physical constraints into a neural network is only weakly
enforced, for example, a PINN [3] weakly enforces the
governing equation by incorporating a penalty term (often
the equation’s residuals) into the loss function. In the cases
where a physical constraint is strongly imposed, the en-
forced governing equation is often either linear [1], or an
additional conservation law (such as the incompressibility
constraint [4]). In this paper we propose a method to strictly
enforce the discretized form of a nonlinear partial differential
equation, through projection, inspired by the linear analogue
used by Chen et al. in 2021 [1].

2. Physics informed neural network (PINN)
We will consider the 2D incompressible Navier-Stokes

Eqs. (1), (2), and (3) [5]. The solution of this system is given
by the 2D instantaneous velocity (𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡)) and the
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pressure (𝑝(𝑥, 𝑦, 𝑡)) of the fluid, where 𝑥, 𝑦 are the spatial
coordinates, and 𝑡 is the temporal coordinate. The kinematic
viscosity of the fluid is given by 𝜈, and the constant density
by 𝜌. That is, we solve for

0 = 𝜕𝑢
𝜕𝑡

+
(
𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣𝜕𝑢
𝜕𝑦

)
− 𝜈 𝜕

2𝑢
𝜕𝑥2

− 𝜈 𝜕
2𝑢

𝜕𝑦2
+ 1
𝜌
𝜕𝑃
𝜕𝑥

, (1)

0 = 𝜕𝑣
𝜕𝑡

+
(
𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣𝜕𝑣
𝜕𝑦

)
− 𝜈 𝜕

2𝑣
𝜕𝑥2

− 𝜈 𝜕
2𝑣

𝜕𝑦2
+ 1
𝜌
𝜕𝑃
𝜕𝑦

, (2)

0 = 𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

. (3)

The network proposed is a feed forward neural network
(FFNN) that takes as input the coordinates of the system
(𝑥, 𝑦, 𝑡) and outputs a prediction of the stream function
(𝜓) and the pressure (𝑝) at those coordinates. The velocity
components are defined as 𝑢 = 𝜕𝜓∕𝜕𝑦, 𝑣 = −𝜕𝜓∕𝜕𝑥,
using the automatic differentiation [6] (AD) built into the
network. This method strictly imposes the incompressibility,
see Eq. (3) of the system.

As just coordinates alone would be insufficient to predict
a unique solution, we use 𝑁 ground truth solutions (𝑢𝑖, 𝑣𝑖) to
anchor the model’s predictions (�̂�𝑖, �̂�𝑖) to our test case. The
data error

DE = 1
𝑁

𝑁∑
𝑖=1

(𝑢𝑖 − �̂�𝑖)2 +
1
𝑁

𝑁∑
𝑖=1

(𝑣𝑖 − �̂�𝑖)2 (4)

measures the distance between the ground truth solutions
and the network predictions. We calculate the data error
only on the velocity as in practice it would be significantly
more difficult to measure the pressure of a fluid through the
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Figure 1: HCP-PINN architecture. The left box is the FFNN with learnable weights and biases, and the right box is the unlearnable
HCP.

domain than the velocity when creating the ground truth data
set.

Training the FFNN using only the DE would neglect
the other knowledge we have of the system, the governing
PDE. A PINN [3] appends the loss function to include some
measure of the prediction’s deviation from the governing
equations, the physics error

PE = 1
𝑀

𝑀∑
𝑖=1

(𝑟𝑥𝑖 )
2 + 1

𝑀

𝑀∑
𝑖=1

(𝑟𝑦𝑖 )
2. (5)

The Navier-Stokes equation residuals (NSER) are found
by evaluating the RHS of Eq. (1) and Eq. (2) using AD for
𝑀 of the network predictions at locations (𝑥𝑖, 𝑦𝑖, 𝑡𝑖), denoted
𝑟𝑥𝑖 and 𝑟𝑦𝑖 , for 𝑖 ∈ {1, ...,𝑀}.

In some PINN literature (e.g. [3]) the error from the
initial condition and boundary conditions are incorporated in
the loss function as separately weighted penalty terms. In the
models presented here, the values on the spatial and temporal
boundaries are incorporated into the data error, such that the
loss function is defined only as a weighted sum of the DE
and PE.

3. Hard constraint projection (HCP)
The HCP-PINN has the same learnable network and loss

function as a PINN, but between the initial prediction of
the solution and the loss evaluation there is an unlearnable
hard constraint projection layer (see Fig. 1). Following the
methodology used by Chen et al. [1], the governing Eqs. (1)
and (2) are discretized with a central finite difference scheme
for the spatial derivatives, and a backwards finite difference
scheme for the temporal derivatives. The discretized forms
of the governing equations are then decomposed into two
matrices, the constraint matrix 𝐴 (containing all the con-
stant terms) and the prediction matrix 𝐵 (containing all of
the transient terms) such that multiplying 𝐴𝐵 recovers the
discretized following set of governing equations

𝐴𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1∕Δ𝑡
1∕Δ𝑡
1∕Δ𝑥
1∕Δ𝑥
1∕Δ𝑥
1∕Δ𝑦
1∕Δ𝑦
1∕Δ𝑦

1∕(Δ𝑥)2
1∕(Δ𝑦)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢 𝑣
−𝑢−Δ𝑡 −𝑣−Δ𝑡

(1∕2)𝑢(𝑢+Δ𝑥 − 𝑢−Δ𝑥) (1∕2)𝑢(𝑣+Δ𝑥 − 𝑣−Δ𝑥)
(1∕2𝜌)𝑃+Δ𝑥 0
(−1∕2𝜌)𝑃−Δ𝑥 0

(1∕2)𝑣(𝑢+Δ𝑦 − 𝑢−Δ𝑦) (1∕2)𝑣(𝑣+Δ𝑦 − 𝑣−Δ𝑦)
0 (1∕2𝜌)𝑃+Δ𝑦
0 (−1∕2𝜌)𝑃−Δ𝑦

𝜈(−𝑢+Δ𝑥 + 2𝑢 − 𝑢−Δ𝑥) 𝜈(−𝑣+Δ𝑥 + 2𝑣 − 𝑣−Δ𝑥)
𝜈(−𝑢+Δ𝑦 + 2𝑢 − 𝑢−Δ𝑦) 𝜈(−𝑣+Δ𝑦 + 2𝑣 − 𝑣−Δ𝑦)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Using tools from linear algebra we can define the pro-
jection matrix as 𝑃 = 𝐼 −𝐴𝑇 (𝐴𝐴𝑇 )−1𝐴. When an arbitrary
prediction matrix (𝐵) is multiplied by the projection matrix,
𝑃𝐵 = 𝐵′, the outcome (𝐵′) is the closest point to 𝐵
that lies on the hyperplane 𝐴𝐵 = 0. Thus, the predictions
after projection satisfy the discretized form of the governing
equations exactly. For a proof of this, please see the appendix
of the paper by Chen et al. [1]. In practice, each prediction
matrix contains only the values from one finite difference
stencil, so each of the 𝐵𝑖 in Fig. 1 corresponds to each of the
input coordinate tuples (𝑥, 𝑦, 𝑡).

4. Provisional results
To test the HCP-PINN, two models were trained, a PINN

with no HCP layer, and a HCP-PINN as depicted in Fig. 1.
Both models had 6 hidden layers with 50 neurons each,
and were optimized with default settings of the Adam [7]
optimizer with a loss function defined as = 0.9DE+0.1PE.
The hyperbolic tangent was used as the activation function.
The discretization used in the hard constraint projection has
values Δ𝑥 = Δ𝑦 = Δ𝑡 = 0.01.

The models were trained and tested on one dataset of
periodic vortex shedding past a bluff body. The data domain
is defined by 𝑡 ∈ [0, 10], 𝑥 ∈ [1, 8], and 𝑦 ∈ [−2, 2],
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Figure 2: Graphs comparing the value of the loss, data error, and physics error, on the test and training set, during the training
of both models.

Figure 3: Ground truth velocity field, and corresponding model predictions at epoch 750, of the velocity field at 𝑡 = 4.8.

downstream of the bluff body and with the wake fully real-
ized. The training dataset was randomly, uniformly sampled
across the domain with 𝑁 = 500 ground truth data points
(230 of which lie on the spatial and temporal boundaries)
and 𝑀 = 1,000 physics collocation points. The test dataset
is selected on a grid with 𝑡 = {1.6, 4.8, 8.0} and Δ𝑥 =
0.7070,Δ𝑦 = 0.8164 which both the test DE and the test
PE are evaluated on (𝑁𝑡𝑒𝑠𝑡 = 𝑀𝑡𝑒𝑠𝑡 = 150).

The training trajectory of the performance of the models
can be seen in Fig. 2, and the predicted velocity fields at
𝑡 = 4.8 are displayed alongside the ground truth in Fig. 3.
We see that the training trajectories of the two models follow
a similar shape, implying that the HCP-PINN optimizes in a
similar manner to the vanilla PINN. This is supported by the
predictions in Fig. 3, where the two models predict similar
flow fields that qualitatively represent the key features of the
flow. We would not expect the physics error of the HCP-
PINN to be exactly zero, as the governing equation is only
exactly obeyed in its discretized form, locally. Unfortunately,

we also find that the physics error associated with the HCP-
PINN is not consistently lower than for the PINN, which was
one of the motivations behind this implementation.

An established issue in the literature on the training of
PINNs is the imbalance between loss function terms [8], and
it was hoped by the authors that we would find the HCP-
PINN less sensitive to the hyperparameter 𝑤 in the function = (𝑤)DE + (1 − 𝑤)PE. We had also anticipated that
the HCP-PINN would potentially be less dependent on the
quantity and sampling strategy for the physics collocation
points, especially since the calculation of the residual at
these points is a computational bottle-neck for both models.
We report that the HCP-PINN and PINN appear to respond
equally sensitively from our studies into this (which have
been omitted from the extended abstract for brevity). The
authors suspect that the hard constraint projection, despite
requiring greater computational resources, has a minimal
effect on the predictions made during training, as implied
by the similar training trajectories and predictions in Fig. 2
and Fig. 3.
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The authors intend to look into modifying the imple-
mentation of the HCP-PINN, with the intention of more
favorable results. We will look into the execution of the HCP,
which uses a low order and potentially unstable discretiza-
tion, and a non-unique decomposition of the governing equa-
tion. We will also look at employing established machine
learning methods such as batch training and transfer learning
with the goal of fully exploring the potential of this method.
We finally note that Chen et al. [1] investigated only one
linear PDE when originally proposing this method for hard
constraint projection, and it is possible that the HCP method
is only appropriate for a subset of PDEs, such as linear or
weakly non-linear PDEs.

5. Current work
We aim to refine the HCP-PINN further. The directions

stated in the previous section will be our immediate goals,
however this model also has the potential to embed the
boundary conditions strictly through the use of ghost cells.
Additionally, we would like to investigate the model’s ro-
bustness to noise and outliers, generalisability to other flow
regimes, and extrapolation capabilities given only boundary
and initial conditions.
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A B S T R A C T
A novel approach for the generation of drag correlations for multiphase flows is presented. Fully
resolved computational fluid dynamics simulations for multiphase flows are performed to provide
ground truth data. An artificial neural network is trained to learn the accurate particle behavior based
on less accurate flow data from the Lagrangian particle simulation. For the case of a settling spherical
particle, this approach outperforms the existing empirical model.

1. Introduction
Due to the computational intensity of fully resolved

simulations, Lagrangian point particle models are widely
spread for the simulation of particle laden flow with tech-
nical relevant numbers of particles. These models rely on
empirical drag correlations for the determination of particle
forces. It is well known that these models are only valid for
𝑑𝑝 ≪ Δ𝑥 [1]. The goal of this work is to use artificial neural
networks (ANN) instead of empirical correlations to remedy
this shortcoming.

2. Methods
2.1. Resolved particle simulations

For the fully resolved particle simulation, a Lattice
Boltzmann method (LBM) is combined with a rigid body
solver (Fig. 1a). A detailed description of the LBM imple-
mentation can be found in [2]. The base grid has a grid size
of Δ𝑥𝛼 with additional adaptive mesh refinement around
the moving particle, providing a local resolution of Δ𝑥𝛽 .
The forces acting on the particle surface 𝐹 are determined
by integrating the hydrodynamic forces over the particle
surface using the momentum exchange method for LBM.
This information is used to solve the motion equation of each
particle, which is defined in a Lagrangian frame of reference

†This paper is part of the ParCFD 2024 Proceedings. The DOI
of this document is 10.34734/FZJ-2025-02454 and of the Proceedings
10.34734/FZJ-2025-02175.
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𝑑𝑡2

=
𝐹𝑝

𝑚𝑝
+ 𝑔
(
1 −

𝜌𝑓
𝜌𝑏

)
(1)

by using a predictor-corrector scheme. At the boundary Γ𝑏(see Fig. 1a), the no-slip condition is enforced with 𝑢Γ = 𝑢𝑝where 𝑢𝑝 refers to the particle velocity.
2.2. Lagrangian particle tracking

For the Lagrangian particle tracking simulations, the
rigid body solver is replaced by a point particle approach.
The particle motion is described by the Maxey-Riley equa-
tion [1]. If the added mass and history force are neglected,
the motion eq. (1) is solved. Here, the momentum equation
for the carrier fluid is solved on a uniformly refined grid with
Δ𝑥𝛼 . The force 𝐹𝑝 is provided by empiric correlations 𝐶𝐷,
such that

𝐹𝑝

𝑚𝑝
=

𝐶𝐷
24

𝑅𝑒𝑝
𝜏𝑝

, 𝑅𝑒𝑝 =
𝜌‖𝑢 − 𝑢𝑝‖𝑑𝑝

𝜇
, 𝜏𝑝 =

𝜌𝑝𝑑2𝑝
18𝜇

,

with the particle REYNOLDS number 𝑅𝑒𝑝, the particle relax-
ation time 𝜏𝑝 the carrier fluid viscosity 𝜇 and particle density
𝜌𝑝. Here, the classical Schiller-Naumann equation for the
drag part [1] is used, which reads as

𝐶𝐷 =
24
𝑅𝑒𝑝

(1 + 1
6
𝑅𝑒2∕3𝑝 ). (2)

A two-way coupled approach is chosen to capture the
particle motion feedback onto the flow field. The momen-
tum equation for the carrier fluid phase is extended by the
momentum source term associated with the particle reaction
force, which reads as

𝐹𝑓,𝑝 = −(‖�⃗� − 𝑥𝑝‖)𝐹𝑝, (3)
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Figure 1: Grid setup for fully resolved simulations (a) and Lagrange particle simulations (b). Body-relative sampling locations �⃗�𝑠,𝑖
are shown as .

where (⋅) is a Gaussian kernel, which distributes the mo-
mentum source to the vicinity of the particle. The standard
deviation is chosen as 6𝜎 = 1.6𝑑𝑝. By doing so, the intrinsic
drawback of the Lagrange particle tracking method becomes
apparent: The velocity field is locally disturbed by the two-
way coupled approach, resulting in an erroneous evaluation
of the given empirical correlation defined for the undisturbed
carrier fluid velocity.
2.3. ANN based correlations from fully resolved

simulations
The first step is to provide an improved drag correlation

by using data from fully resolved simulations. For each time
step 𝑛, the hydrodynamic force 𝐹 𝑛 acting on a given particle
is known. Additionally, the velocity field at 𝑁𝑠 points �⃗� 𝑛

𝑠,𝑖
relative to the body position �⃗� 𝑛

𝑏 is extracted (see Fig. 1a).
This information forms a dataset

{𝑢 𝑛
𝑟𝑒𝑙,𝑖, 𝐹

𝑛} with 𝑢𝑟𝑒𝑙,𝑖 = 𝑢𝑠,𝑖 − 𝑢𝑏, (4)
which serves as training data for an artificial neural network
(ANN) to find a suitable relation in the form of 𝐹 ≈ 𝑓 (𝑢𝑠,𝑖).The ANN is a multilayer perceptron composed of an
input layer with 𝑁𝑠 neurons, three fully connected layers
with 64 neurons each, and a final layer with 3 neurons,
one for each force component. The relatively small network
architecture is chosen to guarantee an efficient performance
for parallel CFD computations on high-performance com-
puting (HPC) systems. A larger network architecture would
negatively affect the efficiency of the proposed method, since
the ANN must be employed by each rank for the number
of particles in the corresponding rank for every time step.
The weights and biases are updated by an adaptive moments
(ADAM) optimizer [3] and a mean-squared error (MSE) loss
function. A leaky-Rectified linear unit (ReLU) activation

function is chosen [4], a variation of the ReLU activation
function [5].

The obtained ANN is used as a novel force correlation
for the Lagrange particle tracking. Different to the known
correlations such as eq. (2), the input data accounts for the
velocity disturbance caused by the boundary condition in the
fully resolved simulation. To enable the use of the obtained
ANN inside the LPT simulation, the analogous velocity data
at the points 𝑥𝑠,𝑖 has to be obtained (see Fig. 1b).

While this approach makes use of the most accurate data,
systematic deviations of the input data (i.e., the velocity
field) have to be expected in Lagrangian particle simulations.
This is due to the lower grid resolution and the fact, that
the momentum feedback compared to the fully resolved
simulation is fundamentally different.
2.4. ANN based correlations from coupled

simulations
To address these drawbacks, a novel approach is pro-

posed. Here, both the fully resolved simulation and the LPT
simulation are run simultaneously. For each time step, the
particle trajectory from both simulation is coupled by setting

𝑢𝑝,𝐿𝑃𝑇 = 𝑢𝑝,𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 . (5)
From this coupled simulation, a dataset similar to eq. (4)
is extracted by sampling the carrier fluid velocity from the
LPT. The resulting ANN can be used in LPT simulations, as
described in Sec. 2.3.

3. Results
The generic case of spherical particle settling in an ini-

tially quiescent fluid is considered. The REYNOLDS number
with respect to terminal velocity is chosen as 𝑅𝑒 = 32. Both
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Figure 2: Particle velocity 𝑢𝑝∕𝑢𝑡 and position 𝑥𝑝 for Schiller-Naumann (SN), ANN from fully resolved simulations (ANN-I) and
ANN from coupled simulations (ANN-II), with 𝑢𝑡 as theoretical terminal velocity.

new models are only trained with data for 𝑑𝑝∕Δ𝑥 = 4. The
results for all models and resolutions in the range 𝑑𝑝∕Δ𝑥 =
[0.25, 16.0] are shown in Fig. 2.

As expected, the SN model yields significant deviations
from the reference values for large 𝑑𝑝∕Δ𝑥. For smaller
𝑑𝑝∕Δ𝑥, the solution approaches the one-way coupled case
with 𝑢𝑝∕𝑢𝑡 = 1. The variation of the result over 𝑑𝑝∕Δ𝑥 is
greatly reduced for both ANN based models. Additionally,
the transient behavior is improved. Overall, the ANN-II
model shows the most promising results with respect to the
fully resolved reference solution.
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A B S T R A C T
Fluid flow modeling and control is a significant modern challenge with potential impacts across
science, technology, and industry. Improved flow control could enhance drag reduction, mixing,
and noise reduction in areas like transportation, energy, and medicine. However, progress in flow
control is currently hindered by the lack of systematically standardized benchmarks and the high
computational cost of fluid simulations. While two-dimensional problems have been extensively
studied, three-dimensional simulations with larger meshes are rarely considered due to the need for
highly parallelized and specialized solvers. As a result, the engineering burden of encapsulating these
simulations in benchmark environments has proven to be a significant barrier. In this paper, a GPU-
based extension of the HydroGym platform coupling the multiphysics solver framework m-AIA with
a state-of-the-art reinforcement learning platform is presented for fluid flow control problems. Based
on the highly-parallelized lattice Boltzmann solver, which is part of m-AIA, a new set of three-
dimensional, non-differentiable fluid flow environments is added that extend existing flow control
challenges to a new level of physical and computational complexity.

1. Introduction
The effective control of fluid dynamics is a critical

challenge in many scientific, technological, and industrial
systems and improved flow control has the potential to
dramatically enhance performance in domains as diverse
as energy, transportation, security, and medicine. For ex-
ample, turbulent wall-bounded fluid flows are of significant
importance for numerous engineering [1, 2, 3, 4, 5] and
biomedical applications [6, 7, 8, 9, 10], e.g., in the con-
text of reducing the CO2 emissions in the transportation
sector or enhancing disease prevention and monitoring in
human medicine. Moreover, understanding and controlling
the dynamics of mixing processes and multi-phase flows,
such as microscopic fibers or gas bubbles in turbulent flows,
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is crucial for various environmental and industrial applica-
tions, including pollution control [11, 12], marine biology
[13, 14], and chemical engineering [15, 16, 17]. However,
controlling fluid flow is notoriously difficult due to the non-
linear and multiscale nature of fluid dynamics, which leads
to high-dimensional and non-convex control problems, but
rapid advancements in machine learning have significantly
improved our ability to tackle these complex optimization
challenges [18]. For example, reinforcement learning has
recently achieved notable successes in various modern tasks,
including decision-making in planning [19], robotics [20],
and protein design [21]. A major factor driving these ad-
vances is the development of scalable reinforcement learning
frameworks and standardized environments, which facilitate
direct comparisons between learned policies.

In contrast, progress in reinforcement learning for flow
control has been limited by the scarcity of such platforms.
To overcome this fundamental limitation, a new scalable
and extensible platform called HydroGym was recently de-
veloped that closes the loop between efficient flow solvers,
flow control benchmark problems, and state-of-the-art re-
inforcement learning. However, rooting in a finite-element
based PDE solver called Firedrake, the existing HydroGym
environments are limited to a variety of two-dimensional
benchmark flows since running and validating advanced
three-dimensional simulations is not feasible due to scala-
bility issues of the Firedrake solver.
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Figure 1: Flow configurations and benchmark algorithms included in the initial and extended HydroGym-GPU platform.

To tackle this limitation, a new GPU-accelerated ex-
tension bridging the lattice Boltzmann (LB) solver imple-
mented in the multiphysics solver framework m-AIA1 (for-
merly known as Zonal Flow Solver - ZFS [22, 23]) with the
extensible HydroGym platform is introduced. Based on pre-
vious, successful RL applications [24] using this highly par-
allelized LB solver, a novel collection of three-dimensional,
non-differentiable fluid flow environments has been incor-
porated. These additions elevate the existing flow control
challenges to an unprecedented level of physical and com-
putational complexity.

2. HydroGym-GPU
Recent advances have combined reinforcement learning

with flow control, focusing on three main areas: controlling
individual environments, developing strategies to navigate

1multiphysics - Aerodynamisches Institut Aachen

through flow environments, and using multi-agent reinforce-
ment learning to learn components of numerical solvers. De-
spite these impressive results, the studies have been limited
to specific flow control environments and lack the diversity
found in modern machine learning frameworks. Hence, to
effectively apply modern reinforcement learning to a broader
class of fluid flow control problems, it appears to be ben-
eficial to train policies across multiple environments. As a
result, this approach allows for fine-tuning existing agents
for future applications and significantly reduces computa-
tional efforts, especially for three-dimensional simulations.
Therefore, integrating various flow control environments
with different computational complexities requires scaling
both the environments and the reinforcement learning agents
to optimally use available computational resources.

One solution to tackle these problems is the usage of
highly efficient and parallelized CFD solvers combined with
modern data exchange protocols suitable for large-scale
HPC application to enable efficient communication between
RL agents and environments during runtime. Therefore,
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the present work leverages the existing LB solver of the
m-AIA framework offering compute efficient and largely
scalable simulations. It benefits from a hybrid parallelization
approach based on MPI and a shared memory model either
based on OpenMP or on the parallel algorithms defined in
the C++ standard 17 (PSTL) implemented in the NVIDIA
HPC SDK allowing for i) a hardware-agnostic implemen-
tation on CPU and GPU and ii) favorable strong and weak
scaling on modern HPC architectures. The LB solver op-
erates on hierarchical unstructured Cartesian grids, which
are generated using a massively parallel grid generator [25]
being part of m-AIA. The discretized form of the Boltzmann
equation is solved with the Bhatnagar-Gross-Krook (BGK)
approximation of the right-hand side collision process [26],
i.e.,
𝑓𝑖(𝒙+𝝃𝒊𝛿𝑡, 𝑡+𝛿𝑡)−𝑓𝑖(𝒙, 𝑡) = −𝜔(𝑓𝑖(𝒙, 𝑡)−𝑓

𝑒𝑞
𝑖 (𝒙, 𝑡)), (1)

is solved for the particle probability distribution functions 𝑓𝑖(PPDFs) at neighboring fluid cells at locations 𝒙+𝝃𝒊𝛿𝑡. They
are functions of the location vector 𝒙 = (𝑥1, 𝑥2, 𝑥3)𝑇 , the
discrete molecular velocity vector 𝝃𝒊 = (𝜉𝑖1, 𝜉𝑖2, 𝜉𝑖3)𝑇 , and
the time and time increment 𝑡 and 𝛿𝑡. The collision frequency
is expressed by 𝜔.

To enable highly efficient communication between our
LB solver and the RL agents, we extended m-AIA’s MPI
interface leveraging the Multiple Program Multiple Data
(MPMD) mode. The MPMD interface has the great advan-
tage of executing different programs across multiple proces-
sors and heterogeneous compute hardware, e.g., CPU-CPU,
CPU-GPU, GPU-GPU setups while facilitating complex,
distributed computations. Moreover, MPMD supports the
use of different programming languages and tools within
the same application. This interoperability is extremely
beneficial for the present HydroGym benchmark platform
as it facilitates efficient communication between different
m-AIA flow environments and standard, Python-based RL
libraries. Moreover, it allows for frequent data exchange
and coordination between different computational tasks with
barely any computational overhead enabling very efficient
training runs. Finally, it also enables multi-agent/multi-
environments training protocols in a straightforward fash-
ion without requiring changes in the code. To this end,
all communications between environments and agents as
wells as inter-environment communication (if necessary)
is handled by our MPMD interface, while relevant inter-
agent communication, e.g., gradient and weight sharing,
is realized using existing deep learning libraries (JAX,
PyTorch, TensorFlow, etc.).

Leveraging this computational efficiency of the GPU-
accelerated LB solver and the MPMD communication,
three-dimensional fluid flow environments with grid sizes

on the order of 100 ⋅ 106 cells are added to the HydroGym
platform, paving the way for novel transfer learning and
control applications in the largely unexplored chapter of
three-dimensional flow control. Precisely, two distinct drag
reduction scenarios which are typically considered as bench-
mark problems in CFD code development are implemented:
3D Cylinder Flow: The first test case of our HydroGym-
GPU extension targets the flow around a smooth circular
cylinder which is characterized by a large range of interest-
ing fluid mechanics phenomena as the REYNOLDS number
(𝑅𝑒) is increased from a low to high 𝑅𝑒-number regime,
e.g., 100 < 𝑅𝑒 < 105. In more detail, the flow develops
from a two-dimensional steady wake to three-dimensional
unsteady vortex shedding, followed by wake transition, shear
layer instability and boundary layer transition. The present
flow simulation setup is validated to be accurate for 𝑅𝑒 <
4,000. To facilitate interactions between the RL agent and
the flow environment, multiple mass sources are equally
distributed across the circumference of the cylinder, each
being independently controllable. Note that the mass sources
extend over the entire spanwise direction. The state space,
which the RL agent observes, can include a mixture of an
arbitrary number of probes, including velocity, vorticity,
pressure, and density sensors, that can be distributed in
the entire computational domain. The reward metric is
calculated based on the weighted total force value in all three
dimensions similar to two-dimensional counterparts.
3D Sphere Flow: The second test case consists of an
unsteady flow past a sphere. In the subcritical regime, e.g.
800 < 𝑅𝑒 < 3.7 ⋅ 105, the dynamics show a variety of
complex flow patterns including a thin laminar boundary
layer, flow separation at a location that is not known a priori,
transition to turbulence in thin shear layers, and an unsteady
recirculation zone followed by a turbulent wake. Without
faithful representation of these flow features, it is not pos-
sible to accurately predict aerodynamic or hydrodynamic
loading on complex-geometry objects. This is important
since a drag reduction setup similar to the cylinder flow
case is considered here. In the current implementation, the
flow simulations are validated for 𝑅𝑒 < 104. To enable
interactions between the RL agent and the flow environment,
up to 32 individually controllable point mass sources are
distributed across the sphere surface. Similar to the cylinder
test case, the observational state space can comprise an
arbitrary number of velocity, vorticity, pressure, and density
sensors. Again, the reward is based on the integral force
value in all three dimensions.

3. Results
In the following, we briefly present validation results for

the introduced 3D flow environments and compare them to
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(a) Drag distribution over time for a single test episode. (b) Lift distribution over time for a single test episode.

(c) Instantaneous vorticity snapshot of an uncontrolled flow environ-
ment.

(d) Instantaneous vorticity snapshot of a flow environment controlled
by a PPO agent.

Figure 2: Exemplary test results of on- (PPO) and off-policy (DDPG, TD3) agents for the 2D cylinder flow test case at 𝑅𝑒 = 100.

literature. Afterwards, we shortly discuss training results for
different agents interacting with a 2D cylinder flow at 𝑅𝑒 =
100 and outline how successfully learned control policies
can be leveraged in transfer learning experiments to reduce
computational costs in complementing 3D environments.
Validation: A grid refinement study has been conducted
for 3D simulations with 𝑅𝑒 = 200 by comparing the drag
coefficient 𝐶𝑑 = (2 ⋅𝐹𝑥)/(𝜌 ⋅𝑈 ⋅𝐴) to the results in [27], with
the temporally averaged force in the streamwise direction
acting on the cylinder 𝐹𝑥, the density 𝜌, the inlet velocity 𝑈 ,
and the cross-sectional area of the cylinder 𝐴. The grids are
locally refined with 2 cubic refinement patches that capture
the wake region and 3 cylindrical refinement patches for the
near-wall regions. The results are shown in Tab. 1. Since an
additional gain in accuracy of only 0.1% for the simulation
with the fine grid compared to the medium grid an increased
grid size from 40 ⋅ 106 to 80 ⋅ 106 cells cannot be justified
and the medium grid is used for training the RL agents.
Training results: To investigate the effectiveness of our
GPU-enhanced benchmark platform, we performed multiple
tests for a variety of RL agents proposed in literature
and conducted extensive hyperparameter optimizations and
transfer learning experiments across different flow environ-
ments. However, for sake of brevity, here we only elaborate
on the selected test case of a flow around cylinder at a
𝑅𝑒 = 100. Extensive results for all other test cases will be
discussed in follow-up work.

Grid resolution No. cells 𝐶𝑑 [dev. to 𝐶𝑑 = 1.338 [27]]
Coarse 20 ⋅ 106 1.180 [−11.8%]
Medium 40 ⋅ 106 1.317 [−1.6%]
Fine 80 ⋅ 106 1.318 [−1.5%]

Table 1
Grid refinement study for 3D simulations at 𝑅𝑒 = 200.

2D flow environment: Figure 2 exhibits exemplary test re-
sults for different RL agents including one on-policy (PPO)
and two off-policy methods (DDPG and TD3). As illustrated
in Fig. 2d, all agents learn a competitive control policy that
stabilizes the wake and mostly reduce the lift fluctuations
caused by the vortex shedding (see Fig. 2b). Overall, a total
drag reduction of approximately 12% can be achieved across
all agents (see Fig. 2a) which is in line with previous studies
reported in literature. More importantly, by leveraging the
highly efficient m-AIA LB solver in combination with the
developed MPMD interface, our HydroGym-GPU extension
requires only approximately 40 minutes on a single NVIDIA
A100 GPU for a full training cycle (400 episodes, each
containing 20 vortex shedding periods), marking a new
milestone for comparable flow environments in terms of
efficiency.
Transfer learning to 3D flow environments: In the fol-
lowing, we highlight another interesting aspect about the
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(a) zero-shot transfer learning (no training) (b) fine-tuned control policy (20 episodes)

Figure 3: Transfer learning experiments from 2D to 3D environments leveraging (a) zero-shot applications without further training
in the target environment and (b) fine-tuning experiments with limited adaptation (20 training episodes) in the target environment.

HygroGym-GPU platform enabling transfer learning exper-
iments in a straightforward fashion. Here, we demonstrate
this feature in two experiments - first, we directly transfer
a control policy learned in the 2D flow case to the corre-
sponding 3D environment, e.g. a zero-shot transfer with no
subsequent training/adaptation, and second, we fine-tune the
2D flow control policy for 20 episodes in the 3D environ-
ment. Results are shown in Fig. 3 and exhibit promising
trends for future compute intensive 3D flow environments.
That is, even in the zero-shot transfer, the agent can mostly
suppress the vortex shedding in the wake and achieves a drag
reduction of approximately 8 % (see Fig. 3a). Considering
that the agent has never explored the 3D environment before
and consequently could never adapted to it, these results
indicate a good performance for future, more general control
agents leveraging foundation models across multiple flows
simultaneously.

Furthermore, we can improve the performance of the
control policy in the 3D environment using a fine-tuning
training step in the new test environment. Precisely, we
now allow the agent to adapt its network parameters to
the new environment in a limited training sequence (max.
20 episodes for the 3D test case). Results are shown in
Fig. 3b. The fine-tuned control agent can achieve a similar
drag reduction performance compared to the original 2D
test case. As a result, this hybrid transfer learning strategy
requires only a fraction of the computational costs of training
procedures exploring exclusively 3D environments, but still
learns competitive control policies. Hence, pre-training in
a simpler 2D environment with low or moderate compute
requirements followed by a fine-tuning sequence in more
challenging 3D environments massively reduces the training
time and costs. This finding is particularly promising for
future HydroGym-GPU extensions which will investigate
various complex and compute intensive 3D flow cases
exhibiting turbulence dominated flow features.

4. Conclusion
In this contribution, a novel GPU-accelerated extension

of the recently introduced HydroGym platform is presented,
connecting the multi-physics solver framework m-AIA with
this adaptable RL benchmark. By utilizing a highly paral-
lelized LB solver, a representative set of three-dimensional,
non-differentiable fluid flow scenarios has been integrated
and validated. Furthermore, we outlined that hybrid transfer
learning strategies, which pre-train an agent in a simple
flow environment of moderate computational complexity
and fine-tune the policy in the target environment, require
only a fraction of the computational costs compared to
training procedures exploring costly 3D environment, yet
learn competitive control policies. In future, we will extend
our highly efficient HydroGym-GPU platform and introduce
more challenging and real-world oriented test cases such
as aviation applications, noise reduction in aeroacoustics
settings, and mixing enhancement in multi-phase flows. Ad-
ditionally, future benchmarks will investigate model-based
RL agents that use latent dynamical models to uncover
physical mechanisms [28], as part of our quest for general
foundation models in fluid flow control. These advance-
ments will significantly elevate the complexity of existing
flow control challenges, introducing new levels of physical
and computational intricacy.
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A B S T R A C T
In this talk, we present recent results on improving the throughput of ocean simulations of the ICON-
O ocean model. Our goal is to achieve more simulated days per computing day without sacrificing
accuracy. To achieve this, we propose the use of machine learning (ML) combined with a small-scale
parallel-in-time time stepping scheme. We show that the ML correction makes it possible to compute
on coarser grids and be at least as accurate as on a grid twice as fine. In addition, the spectral deferred
correction (SDC) time integration allows for higher order and larger time steps. Moreover, parallel
SDC makes even better use of the available resources. Thus, the combination of both approaches
leads to an acceleration of the simulation.

1. Introduction
Ocean models are a key component of any Earth system

model. As many models are based on partial differential
equations, their complexity requires the use of state-of-the-
art high-performance computing systems for simulations.
However, global simulations over multiple decades with
resolutions below one kilometer capable of representing sub-
mesoscale eddies on the numerical grid, are still not feasible
due to excessive runtimes. This talk will explore two strate-
gies to speed up simulations of ICON-O: super-resolution
to reduce the required spatial resolution and parallel-in-time
integration to accelerate numerical time stepping.

2. The ICON-O ocean model
The Icosahedral Nonhydrostatic Weather and Climate

Model (ICON) is the Earth system modeling framework of
†This paper is part of the ParCFD 2024 Proceedings. A recording

of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02456 and of the Proceedings 10.34734/FZJ-2025-
02175.
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the Max Planck Institute for Meteorology (MPI-M), the Ger-
man Weather Service (DWD), the German Climate Comput-
ing Center (DKRZ), and the Karlsruhe Institute of Technol-
ogy (KIT). ICON-O is the ocean component of ICON and
is based on the hydrostatic Boussinesq equations. It uses a
special form of structure-preserving finite elements on an
Arakawa C-grid as spatial discretization [1, 2] and a semi-
implicit Adams–Bashforth-2 (AB) method for numerical
time stepping.

3. Super-resolution
The incorporation of small scale features in simulations

of partial differential equations to capture the effective or
macroscopic behavior of the solution is a challenging task.
We propose to use a machine learning motivated super-
resolution approach trained with fine scale data to enhance
coarse scale simulations during runtime. A deep neural
network Θ is trained using pairs of high-resolution/low-
resolution simulation snapshots. The network is then used to
periodically correct a low-resolution solution 𝑢 toward the
restriction of a high-resolution simulation

�̄�(𝑡 + ▵𝑐) = Θ(𝑢(𝑡 + ▵𝑐)). (1)
This correction is subsequently used as the initial value
in the next time step. In our approach, the correction step
size ▵𝑐 is chosen much larger than the time step size ▵𝑡
of the underlying time stepping scheme, i.e., ▵𝑐 ≫ ▵𝑡. A
schematic overview of the application of the model during
runtime is shown in Fig. 1.

We show that this allows us to achieve discretization
errors much lower than what would be possible with an
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𝑢(𝑡) �̄�(𝑡 + ▵𝑐)

ICON-O

𝑢(𝑡 + ▵𝑡)

𝑡′= 𝑡+▵𝑐
Θ

ML model

substitution at runtime

Figure 1: Hybrid approach combining numerical simulation using the ICON-O model with machine-learning-based super-resolution.
The data flow during runtime is indicated by the arrows. ▵𝑡 is the time step used in the numerical simulation (ICON-O), while
▵𝑐 ≫ ▵𝑡 is the correction step si e.

uncorrected coarse solution. Further details on the training
process and network architecture are provided by Witte et
al. [3]. The results are based on the shallow water equation
(SWE) using the so-called Galewsky [4] test case.

4. Parallel spectral deferred corrections
The ICON code is already highly scalable and exploits

spatial parallelism, which provides generally good perfor-
mance. However, time integration is sequential by nature
and is therefore a major bottleneck in transient simulations,
requiring special algorithms to accelerate this time integra-
tion. Here, we present parallel spectral deferred corrections
(SDC) as a way to incorporate time parallelism into the
ICON-O model. SDC introduced in 2000 by Dutt et al. [5],
iteratively use a low order integrator to compute an approx-
imate solution for an initial value problem

𝑢′(𝑡) = 𝑓E(𝑢(𝑡)) + 𝑓I(𝑢(𝑡)), 𝑢(𝑡𝑛) = 𝑢𝑛 (2)
posed on an interval [𝑡𝑛, 𝑡𝑛+1] based on collocation. We as-
sume that the right-hand side is split into a term 𝑓I modeling
fast, stiff but linear dynamics and a second term 𝑓E that
models slow and nonlinear processes. Let the 𝑀 quadrature
nodes of the collocation method applied to the interval
[𝑡𝑛, 𝑡𝑛+1] be given as 𝑡𝑛 ≤ 𝜏1 < ⋯ < 𝜏𝑀 ≤ 𝑡𝑛+1. Using
an implicit-explicit Euler as base method, one iteration (or
sweep) of SDC for Eq. (2) computes approximate solutions
𝑢𝑘𝑚 at the nodes 𝑚 = 1,… ,𝑀 as

𝑢𝑘+1𝑚 = 𝑢𝑛 + ▵𝑡
𝑀∑
𝑗=1

𝑞𝑚,𝑗
[
𝑓E(𝑢𝑘𝑗 ) + 𝑓I(𝑢𝑘𝑗 )

]

+ ▵𝑡
𝑚−1∑
𝑗=1

▵𝜏𝑗+1[𝑓E(𝑢𝑘+1𝑗 ) − 𝑓E(𝑢𝑘𝑗 )]

+ ▵𝑡
𝑚∑
𝑗=1

▵𝜏𝑗[𝑓I(𝑢𝑘+1𝑗 ) − 𝑓I(𝑢𝑘𝑗 )]. (3)

Here, ▵𝑡 = 𝑡𝑛+1−𝑡𝑛 is the step size, 𝑞𝑚,𝑗 are the entries of the
Butcher table of the collocation method and ▵𝜏𝑗 = 𝜏𝑗−𝜏𝑗−1,

𝑗 = 1,… ,𝑀 the distance between the nodes (▵𝜏1 = 𝜏1−𝑡𝑛).
The initial guess on each node 𝑢0𝑚 is a copy of the solution
𝑢𝑛. Each iteration thereby increases the order of the scheme
by one, up to the order of the underlying collocation method.

As noted in [6], the original definition of the ▵𝜏𝑗 can
be replaced by algebraic parameters 𝑞▵𝑚,𝑗 to speed up the
convergence. Moreover, it is even possible to choose 𝑞▵𝑚,𝑗 =
0 if 𝑚 ≠ 𝑗, which allows parallelism across the method [7].
The latter choice is equivalent to replacing the classical
lower-triangular SDC matrix with a diagonal one. Recently,
Čaklović et al. [8] provided a novel set of (diagonal) pa-
rameters called MIN-SR-FLEX (minimization of the spec-
tral radius of a given difference of the lower triangular
matrix and its diagonal approximation). These enable the
parallelism and still provide fast convergence and numerical
stability. Freese et al. [9] provide parallel benchmarking of
the resulting parallel SDC integrator for the (nonlinear) SWE
using the ICON-O model.

5. Conclusions
In Fig. 2, we show results for the well-known Galewsky

test case for the SWE up to day eight. We only depict the
zonal velocity component, and note that the meridional and
height components show similar behavior. We demonstrate
that a simulation with a 20 km resolution corrected every
▵𝑐 = 12 h achieves errors of an uncorrected simulation on a
10 km grid. As a reference, we use a simulation on a 2.5 km
grid. In all cases, the time step ▵𝑡 is chosen to be 10 s, i.e.,
▵𝑐 ≫ ▵𝑡.

Figure 3 shows the speedup of parallel SDC on one
node of the JUWELS cluster, utilizing up to 96 threads.
To be precise, we plot the speedup of two SDC variants
(▵𝑡 = 960 s) against the established AB (▵𝑡 = 30 s) with
2 OpenMP threads. All these methods result in a similar
relative error of 1.3% with respect to an AB simulation
with ▵𝑡 = 1 s. For the established AB scheme, we observe
speedup due to the intrinsic OpenMP space parallelization
of ICON. Using the parallel SDC without actual OpenMP
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Figure 2: Spatial 𝐿2 and 𝐿max error over time in the  onal velocity component 𝑢 for a 10 km, 20 km and ML-corrected 20 km
resolution for the Galewsky test case. The error is computed with respect to a reference on a 2.5 km grid [3].

parallelism in time, yields a speedup mainly due to the higher
order of the scheme, which allows for a 32 times larger time
step. Using the additional time parallelism gives even more
speedup due to better utilization of available resources.
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Figure 3: Speedup with respect to AB with 2 OpenMP
threads for AB (▵𝑡 = 30 s) and parallel SDC (pSDC). We show
a space-parallel only pSDC using ICON’s intrinsic OpenMP
paralleli ation and the novel space-time parallel SDC, both
using ▵𝑡 = 960 s. All methods yield a relative error of 1.3%
for the Galewsky test case after 144 h [9].
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A B S T R A C T
A computational fluid dynamics (CFD) framework to combine deep reinforcement learning (DRL)
with active flow control (AFC) simulations is presented. This framework is first validated in a
canonical geometry, the flow past a cylinder at REYNOLDS number 𝑅𝑒 = 100, achieving a drag
reduction of roughly 10%. Then, the methodology is applied to a more complex case in order to
exploit the DRL capabilities to control massive separations of turbulent flows. To do this, the flow
past the SD7003 wing at 𝑅𝑒 = 60, 000 and angle of attack 𝐴𝑜𝐴 = 14◦ is analyzed, where the DRL
control achieves an increase in the aerodynamic efficiency of approximately 157%.

1. Introduction
The application of active flow control (AFC) has al-

ready proven its capabilities in reducing flow separation in
wings [1, 2]. However, these traditional AFC methods are
inherently limited by their ability to target only a single
frequency within the full spectrum of turbulence scales,
which constrains the achievable level of drag reduction.

The development of new computing hardware combined
with novel data-driven methods has made machine learning
emerge as a powerful tool to tackle problems where phys-
ical knowledge is limited. In this manner, combining deep
reinforcement learning (DRL) and AFC can yield promising
results in the field of flow control, discovering more sophis-
ticated actuation strategies that can produce more complex
flow interactions and hence push the limits of AFC.

The first study that successfully applied DRL to AFC
problems was Rabault et al. [3], who considered a 2D

†This paper is part of the ParCFD 2024 Proceedings. A recording
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is 10.34734/FZJ-2025-02457 and of the Proceedings 10.34734/FZJ-2025-
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cylinder at a REYNOLDS number of 𝑅𝑒 = 100. Subsequent
investigations extended the REYNOLDS numbers up to 𝑅𝑒 =
2000 [4] and the DRL technique was later implemented to a
3D cylinder with a similar methodology but at a maximum
REYNOLDS number of 𝑅𝑒 = 400 [5]. Other studies also
applied DRL-based controls to reduce the skin friction of
wall-bounded flows at 𝑅𝑒𝜏 = 180 [6]; or to reduce the
flow separation bubble in a boundary layer at 𝑅𝑒𝜏 = 180
[7]. Nevertheless, all these studies were applied in canonical
cases (cylinders, channels, boundary layers. . . ) and at low
REYNOLDS numbers, showcasing the early stage of this
methodology.

In the present study, an AFC-DRL framework is pre-
sented and validated with a three-dimensional cylinder at
𝑅𝑒 = 100. Later, as a step forward to test the capabilities of
the methodology in more complex geometries with higher
turbulent conditions, the SD7003 wing at 𝑅𝑒 = 60, 000 and
𝐴𝑜𝐴 = 14◦ is studied. This will represent the application
of DRL to more realistic industrial cases, hence pushing the
boundaries of AFC for turbulent flows of industrial interest.

2. Methodology
In DRL, two main entities can be identified: (i) The

environment and (ii) the agent. In the current framework,
the environment is the CFD simulation that predicts how the
flow evolves with a given actuation and the agent is a neural
network (NN) that predicts the probability distribution of
possible actions given the current state of the environment.
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Figure 1: CFD - DRL setup.

For the simulations, the CFD solver SOD2D [8] is used,
which is a spectral element method (SEM) in-house code de-
veloped at the Barcelona Supercomputing Center (BSC). In
this study, the isothermal and incompressible Navier-Stokes
equations are solved. The general form of the equations is
given by

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (1)
𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

− 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
+ 1

𝜌
𝜕𝑝
𝜕𝑥𝑖

= 0, (2)

where 𝑢 and 𝑝 denote the velocity and the pressure fields to
be solved, respectively, and 𝜈 and 𝜌 represent the kinematic
viscosity and density of the fluid. For the flow past a cylinder
case studied here, these equations are solved directly without
filtering. For the flow past a wing, however, the filtered ap-
proach is used, i.e., large eddy simulation (LES). Therefore,
the filtered velocity 𝑢 and pressure 𝑝 fields are solved instead,
and an additional term is added to the right-hand side (RHS)
of the momentum equation (Eq. 2) to account for the effects
of unresolved turbulent scales, yielding

𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

− 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
+ 1

𝜌
𝜕𝑝
𝜕𝑥𝑖

= −
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

, (3)

where 𝜏𝑖𝑗 represents the subgrid-scale (SGS) tensor. In the
present LES, the subgrid-scale (SGS) stress tensor is closed
using a subgrid-scale viscosity model through the expression
𝜏𝑖𝑗−1∕3𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜈𝑠𝑔𝑠𝑆𝑖𝑗 , where 𝑆𝑖𝑗 is the resolved strain
rate tensor. The Vreman model [9] is employed to compute
the subgrid-scale viscosity 𝜈𝑠𝑔𝑠.On the other hand, the Python library TF-Agents is used
to create the DRL model and train it. The communication
between the CFD solver (written in Fortran) and the DRL

model (written in Python) is done through a Redis in-
memory database, managed through the library SmartSim.
This setup is schematized in Fig. 1.

The idea of DRL is that an agent receives a state, e.g.,
some probes located in the domain, and this returns an action
that is applied back into the environment, e.g., the mass
flow rate of the jet. However, to correctly determine the best
actuation, the DRL agent must first undergo a training pro-
cess. Therefore, during the training, the agent also receives
a reward, which represents the magnitude that aims to be
optimized. Then, the environment and the agent engage in
a trial-and-error process organized in episodes. An episode,
in this context, denotes a simulation period wherein the CFD
solver and the DRL agent exchange information, including
states, actions, and rewards. Following the completion of
an episode, this data is used to refine the agent through
a training step. The proximal policy optimization (PPO)
algorithm is used in this case [10].

Regarding resource allocation, the presented framework
uses GPUs for the CFD simulations while the DRL algo-
rithm runs on CPUs. Note that most of the computational
time is devoted to the CFD simulations (practically the
100%). The training of the cylinder presented in the results
section involved a total of 2,000 episodes and 36 𝑈∞∕𝐷(convective time units) per episode. This took approximately
26 wall-time hours in 4 GPUs using a mesh of 3.3 ⋅ 106
grid points. This translates into a computational cost of 104
GPU-h.

In contrast, the simulation for the wing case incurs a
higher computational cost due to the increased complexity.
Previous investigations [2] suggest that a mesh of about
30 ⋅ 106 grid points is necessary to perform LES. How-
ever, to significantly reduce the computational cost, the
training is conducted in a coarser mesh of about 4.8 ⋅ 106
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Figure 2: Lift coefficient 𝐶𝑙 (left), drag coefficient 𝐶𝑑 (middle), and mass flow rate 𝑄 (right) for the cylinder case with no control
(𝑡𝑈∞∕𝐷 < 50) and with DRL control (𝑡𝑈∞∕𝐷 > 50).

grid points. This coarser mesh is still capable of capturing
the largest scales, which have the most significant impact
on the aerodynamic coefficients, thereby making use of
an equivalent and computationally cheaper training setup.
For the moment, the DRL agent is trained for about 660
episodes, with each episode running for 15 𝑈∞∕𝑐, which
is the approximate required non-dimensional time to reach
the statistical steady state once the actuation is activated.
The training took approximately 144 wall-time hours in 16
GPUs, resulting in a total computational cost of 2,304 GPU-
h. All the simulations presented in this study are conducted
on the new MareNostrum 5 machine (BSC).

3. Results
3.1. DRL of the flow past a cylinder

First, the aforementioned methodology is tested in a
well-known case, the flow past a circular cylinder at 𝑅𝑒 =
100. Here, the DRL control aims at reducing the drag co-
efficient and, at the same time, the fluctuations of the lift
coefficient. For this reason, the reward to train the model is
selected to be 𝑟 = 𝐶𝑑,𝑏−𝐶𝑑 −𝛼|𝐶𝑙|; the first part rewarding
the reduction of the drag coefficient 𝐶𝑑 = 𝑑∕(1∕2𝜌𝑈2

∞𝑆)with respect to the baseline scenario 𝐶𝑑,𝑏, and the second
penalizing the increase of the lift 𝐶𝑙 = 𝑙∕(1∕2𝜌𝑈2

∞𝑆), with
𝛼 being a weighting factor to adjust the importance of each
term. In this case, the reference surface 𝑆 is defined in terms
of the cylinder diameter 𝐷 and the spanwise length 𝐿 as
𝑆 = 𝐿 𝐷, and the drag 𝑑 and lift 𝑙 forces correspond
to the resulting components of the aerodynamic force in
the streamwise and cross-stream directions relative to the
freestream 𝑈∞. To perform the AFC actuations, two jets are
located on the top (𝜃 = 90◦) and bottom (𝜃 = 180◦) surfaces
of the cylinder, where their mass flow rate 𝑄 = 𝑈𝑗𝑒𝑡𝑆𝑗𝑒𝑡is controlled by the DRL agent; 𝑈𝑗𝑒𝑡 and 𝑆𝑗𝑒𝑡 being the
velocity and surface of the jets. The mass flow rates of the
jets are set to be opposites, i.e., 𝑄𝜃=90◦ = −𝑄𝜃=180◦ . As
observed in Fig. 2, the trained agent effectively reduced the

drag of the cylinder by 9.32% and the standard deviation of
the lift coefficient signal by 78.4%. Additionally, it displaced
the vortex shedding frequency towards smaller values. Con-
cretely, the STROUHAL number (𝑆𝑡 = 𝑓𝐷∕𝑈∞) is reduced
from 𝑆𝑡 = 0.172 to 𝑆𝑡 = 0.161.
3.2. DRL of the separated flow past the SD7003

wing
The SD7003 airfoil at 𝑅𝑒 = 60, 000 and 𝐴𝑜𝐴 = 14◦

is analyzed by means of large eddy simulations (LES). This
case was already investigated by Rodriguez et al. [2], who
showed promising results using classical AFC approaches
to mitigate the massive flow separation. In the present study,
the classical single-frequency approach is initially tested,
with jets located at the leading edge of the airfoil (𝑥∕𝑐 =
0.007) and oriented perpendicular to the wall. The actuation
is set to a non-dimensional frequency of 𝐹+ = 1 and a
momentum coefficient of 𝐶𝜇 = 0.003. The non-dimensional
frequency is defined as 𝐹+ = 𝑓𝑥𝑇𝐸∕𝑈∞, and the mo-
mentum coefficient is given by 𝐶𝜇 = (ℎ𝜌𝑈2

𝑗𝑒𝑡,𝑚𝑎𝑥)∕(𝑐𝜌𝑈
2
∞),where 𝑥𝑇𝐸 represents the x-distance from the actuator to the

trailing edge, ℎ is the jet streamwise width, 𝑈𝑗𝑒𝑡,𝑚𝑎𝑥 is the
maximum outlet velocity of the jet and 𝑐 denotes the wing
chord. Results are depicted in Fig. 3 (dotted lines) and are
compared against the baseline scenario (dashed lines), hence
demonstrating that the separation is considerably reduced.
The aerodynamic efficiency (𝐸 = 𝐶𝑙∕𝐶𝑑) is increased by
126%, with a drag reduction of 39% and a lift increase
of 38%. Note that here the reference surface 𝑆 is defined
in terms of the wing chord 𝑐. The results of the trained
DRL agent are also displayed in Fig. 3 (solid lines). Sim-
ilar parameters as in the classical approach are used, i.e.,
location and angle of the jets, but in this case, the DRL
agent autonomously selects the optimal mass flow rate to
maximize aerodynamic efficiency, with the reward being
𝑟 = (𝐶𝑙∕𝐶𝑑 − 𝐶𝑙,𝑏∕𝐶𝑑,𝑏)∕(𝐶𝑙,𝑏∕𝐶𝑑,𝑏). As observed in Fig.
3, the DRL agent achieved slight improvements over the
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Figure 3: Lift coefficient 𝐶𝑙 (left) and drag coefficient 𝐶𝑑 (right) for the SD7003 wing case with DRL control.

Figure 4: Q-criterion iso-contours illustrating vortical structures in the flow past the SD7003 wing. No control (left) and DRL
control (right).

classical AFC, increasing the lift and reducing drag coeffi-
cients by 44% each (compared to the baseline scenario), with
a 157% increase in aerodynamic efficiency. Thus, the DRL
approach further improved efficiency by 31% compared to
the classical AFC method. Finally, Fig. 4 presents the Q-
criterion iso-contours for both the baseline (no control) and
DRL-controlled cases, highlighting the effective reduction
of the recirculation bubble achieved by the DRL strategy.

4. Conclusions
This study presents a framework that integrates a CFD

solver with a deep reinforcement learning (DRL) model to
optimize active flow control (AFC) strategies. The frame-
work is tested on two different flow scenarios: the flow past
a circular cylinder at 𝑅𝑒 = 100 and the flow past an SD7003
wing at 𝑅𝑒 = 60, 000 and an angle of attack 𝐴𝑜𝐴 = 14◦.
For the cylinder, the DRL agent shifted the vortex shedding
frequency from 𝑆𝑡 = 0.172 to 𝑆𝑡 = 0.161, contributing
to flow stabilization, and yielding a reduction of the drag

coefficient and the lift coefficient fluctuations of 9.32% and
78.4%, respectively. On the other hand, for the SD7003 wing,
the DRL-controlled setup achieved a 157% increase in the
aerodynamic efficiency, improving upon the classical AFC
method by an additional 31%.

Overall, the DRL agent demonstrated the ability to fur-
ther enhance aerodynamic performance beyond traditional
AFC methods. The results highlight the potential of DRL to
optimize AFC in complex flow environments, dynamically
adapting control inputs to achieve improved drag and lift
coefficients. However, the results for the wing case are
preliminary, and further investigations are needed to explore
additional parameters, such as the neural network architec-
ture, episode length, reward formulation, and jet placement
and angle, among others. Furthermore, all simulations were
conducted using a coarse mesh. Future work aims to transfer
the training to a finer mesh after initial training on the coarser
one, allowing for results that more accurately reflect the true
length scales of the problem.
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A B S T R A C T
This study investigates the effectiveness of physics-informed neural networks (PINNs) in simulating
unsteady flows, with a particular focus on the impact of the number of collocation points used during
the training process. A parallel code is implemented based on data parallelism, and its performance
and accuracy is assessed by applying it to the advection problem of the volume-of-fluid function.
The scalability of the parallel implementation is also assessed, showing that increasing the number
of GPUs can enhance computational efficiency. The developed code is further applied to a two-
dimensional unsteady flow over a cylinder, with a specific focus on reproducing vortex shedding.
The results demonstrate that increasing the number of collocation points improves the accuracy of the
PINN’s predictions.

1. Introduction
Physics-informed neural networks (PINNs) [1] represent

a novel class of deep neural networks (DNNs) that can
incorporate both observation data and physical principles,
i.e., governing equations and their initial/boundary condi-
tions, into the training process. With this distinctive feature,
PINNs are expected to address some of the key drawbacks of
conventional DNNs, such as the need for large datasets and
the limitation of interpretability. Furthermore, PINNs are re-
garded as an alternative to traditional numerical methods for
solving differential equations, as PINNs can be trained solely
with differential equations and their initial and boundary
conditions. Such PINNs that are trained without observation
data are referred to as data-free PINNs (DF-PINNs).

The validity of DF-PINNs has been already demon-
strated for the Burgers equation by Raissi et al. [1] and for
various differential equations by other authors. However,
there has been limited research on their application to the
Navier-Stokes equations, and the validity of DF-PINNs re-
mains uncertain in this context. For instance, Chuang and
Barba reported that their PINN failed to reproduce vortex
shedding in the simulation of two-dimensional unsteady
flow over a cylinder [2]. Similarly, our preliminary tests
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have shown that DF-PINNs predict steady flow even at
sufficiently high REYNOLDS number, as observed in the
literature [2]. Moreover, they have also shown that the flow
pattern predicted by DF-PINNs is significantly influenced
by the number of collocation points per unit time used in the
training.

These observations indicate that increasing the number
of collocation points per unit time can enhance the pre-
diction accuracy of DF-PINNs. However, there is currently
no clear criteria for determining the appropriate number
of collocation points in the training of DF-PINNs. This
study aims to address this issue by investigating the impact
of the number of collocation points on the accuracy and
performance of DF-PINNs, particularly in the case of un-
steady flow problems. To this end, we implement a parallel
code for training DF-PINNs, based on data parallelism, and

GPU0

GPU1

GPU2

GPU3

Distribution of
collocation points

Synchronization of
network parameters

Figure 1: Illustration of the parallelized PINN training process.
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(a) 𝑁𝑔𝑝𝑢 = 1. (b) 𝑁𝑔𝑝𝑢 = 2. (c) 𝑁𝑔𝑝𝑢 = 4. (d) 𝑁𝑔𝑝𝑢 = 8.

Figure 2: The distribution of VOF after a single rotation obtained using different number of GPUs 𝑁𝑔𝑝𝑢. The number of collocation
points assigned to each GPU is fixed to 30,000.

(a) Relative error. (b) Elapsed time.

Figure 3: Results of a the weak-scaling test. The number of collocation points assigned to each GPU is fixed to 30,000 or 240,000.

assess its performance and accuracy by applying the code
to an advection problem. We further apply the code to two-
dimensional unsteady flow over a cylinder and investigate
the effect of the number of collocation points to reproduce
vortex shedding.

2. Method
The parallelized training process adopted in this study

is based on data parallelism, and is illustrated in Fig. 1. At
the first step, the collocation points at which the residual of
the governing equation is evaluated are distributed to each
compute unit, i.e. GPU in this study. Then, the gradients
of the loss function with respect to the network parameters
(weights and biases) are calculated on each compute unit by
utilizing the back-propagation mechanism. Finally, the gra-
dients are averaged by using the allreduce operation among
all compute nodes and the averaged gradients are used to

update the network parameters. This procedure ensures the
identity of the neural network on each node.

The architecture of the neural network on each node
depends on the problem to be solved. In particular, suitable
quantities must be chosen for the input and output of the
neural network. For example, in the PINN built for solving
two-dimensional unsteady flow, the input layer has three
neurons for the spatial position, 𝑥 and 𝑦, and the time,
𝑡, and the output layer has three neurons for the velocity
components, 𝑢 and 𝑣, and the pressure 𝑝. In addition, in the
case of the advection problem shown later, the input is the
spatial position, 𝑥 and 𝑦, and the time, 𝑡, and the output is a
scalar function 𝜙.

For evaluating the loss of the neural network, the residual
of the governing equations, and the disparity between the
network’s predictions and the ground truth which is specified
according to the initial and boundary conditions for the
governing equations. Note that these losses are evaluated
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0.0 |𝑢| 2.0

(a) CFD based on the finite difference method.

(b) PINN trained over the time interval Δ𝑡 = 1 [40, 41].

(c) PINN trained over the time interval Δ𝑡 = 10 [40, 50].

(d) PINN trained over the time interval Δ𝑡 = 100 [40, 140].

Figure 4: Comparison of velocity distribution around a cylinder at a non-dimensional time 𝑡 = 41.0.

on the collocation points which are selected randomly from
spatial and temporal domains.

3. Results and discussion
We apply the developed parallel code to advection of the

volume of fluid (VOF) function and assess its performance
and accuracy.

In this assessment, the number of collocation points as-
signed to each GPU is fixed (𝑁𝑐𝑜𝑙∕𝑁𝑔𝑝𝑢 = 30,000, 240,000),
and the number of GPUs used in the training is varied. Note
that two-thirds of the collocation points are used to evaluate
the residual of the governing equation and the rest are used
for the initial condition.

First, we clearly observe that increasing the total number
of collocation points effectively reduces interface smearing,
and thus enhances the accuracy of the PINN prediction, as

shown in Fig. 2. We confirm this result quantitatively by
evaluating the relative L2 error with respect to the analytical
exact solution, as demonstrated in Fig. 3a. Note that the
dashed line is drawn according to the scaling ∝ 𝑁−1

𝑐𝑜𝑙 . Then,
we assess the scalability of the present parallel training by
measuring the elapsed time in the case of different number
of GPUs. The results of this weak scaling test is shown in
Fig. 3b. Note that the training time is normalized by the
elapsed time of 𝑁𝑔𝑝𝑢 = 1 in each case. It can be confirmed
that the training time does not increase significantly even
when a relatively smaller number of collocation points are
used (𝑁𝑐𝑜𝑙∕𝑁𝑔𝑝𝑢 = 30,000), and the scalability can be
improved when the larger number collocation points are used
(𝑁𝑐𝑜𝑙∕𝑁𝑔𝑝𝑢 = 240,000).

Furthermore, we use the code to simulate two-dimen-
sional flow over a cylinder, and investigate the effect of
the number of collocation points. In this investigation, we
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0.0 |𝑢| 2.0

(a) Snapshot at the initial state at non-dimensional time 𝑡 = 40.0.

(b) Snapshot at non-dimensional time 𝑡 = 43.2.

Figure 5: Snapshots of velocity distribution around a cylinder.

first vary the time interval over which the PINN is trained
while keeping the number of collocation points, in order to
clarify how many collocation points per time are required
to reproduce vortex shedding. The results are summarized
in Fig. 4. It can be clearly observed that the PINN solu-
tion approaches the CFD solution as the time interval for
PINN training becomes shorter, indicating the minimum
number of collocation points per time. Then, we increase the
time interval for training to cover a full periodic of vortex
shedding while keeping the requirements for the number of
collocation points per time described above. An example of
a periodic vortex shedding simulated using the current PINN
is presented in Fig. 5. It can be seen that a full cycle of vortex
shedding is well reproduced by the current PINN. Note that
in this case the number of collocation points assigned to each
GPU is approximately 𝑁𝑐𝑜𝑙∕𝑁𝑔𝑝𝑢 = 200,000, including
those for the residual of the governing equation, initial
condition, and boundary conditions.

4. Conclusions
This study demonstrates the effectiveness of physics-

informed neural networks (PINNs) in reproducing cyclic
vortex shedding patterns in unsteady flow simulations, even
in a data-free training context. It has been demonstrated that
the number of collocation points per unit time is critical to
the accuracy of predictions. Additionally, it has been shown
that the use of data parallelism in PINN training significantly
enhances computational efficiency without compromising
accuracy. These observations emphasize the potential of
PINNs as a reliable and efficient tool for simulating complex
fluid dynamics.
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A B S T R A C T
Time-marching of turbulent flow fields is computationally expensive with traditional numerical
solvers. In this regard, transformer neural network, which has been largely successful in many other
technical and scientific domains, can potentially predict complex flow fields faster compared to
physics-based solvers. In this study, a transformer model is trained for a turbulent boundary layer
problem, which is then coupled to the multi-physics solver m-AIA to make predictions of velocity
fields. The method can potentially contribute to significant reduction in computational effort while
maintaining high accuracy.

1. Introduction
Numerical prediction of turbulence remains challenging

due to its multiscale nature that requires highly-resolved
simulations to accurately capture the temporal and spa-
tial dynamics [1]. In the Computational Fluid Dynamics
(CFD) community, numerical solvers capable of simulating
complex turbulent dynamics have been developed, albeit
demanding substantial computational resources and high
resolutions. Alternatively, Machine Learning models, for
instance based on Convolutional Neural Networks [2], have
emerged as promising alternatives. The use of transformer
architecture-based models for time-marching turbulent fields
have been limited to few recent successful efforts, often for
prediction of compressed representations of the flow field to
reduce computational effort [3, 4], which may suppress in-
formation of the high-frequency components. Nonetheless,
transformers can potentially be an effective neural network
to perform complex long-term temporal predictions of tur-
bulent flows, while allowing distributed training given the
multi-head attention configuration. In this study, the trans-
former architecture is applied to the prediction of a Turbulent
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Boundary Layer (TBL) problem, with a unique reconstruc-
tion strategy of the input velocity fields, which allows the
prediction of the full velocity field without any intermediate
compression step. Furthermore, the trained model is cou-
pled to the highly-parallel multi-physics simulation tool m-
AIA formerly known as the Zonal Flow Solver (ZFS) [5],
which was further developed towards m-AIA. The coupling
framework is needed to couple the physical solver (in this
case, m-AIA) to the distributed deep learning inference with
the transformer. Replacing m-AIA-based expensive time-
marching of the turbulent fields with the transformer model
is expected to significantly reduce the computational costs.

2. Turbulent boundary layer problem
specification
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Figure 1: Sketch of the CFD domain with the three-
dimensional actuated turbulent boundary layer flow. The gray
area indicates the region of interest where the TBL data is
extracted.
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Figure 2: Architecure of the transformer model based on encoder-decoder configuration adapted from [8].

The CFD model is based on a validated Zero-Pressure
Gradient flat plate approximation of the active drag reduc-
tion technique using spanwise traveling transversal surface
waves. Wall-resolved Large-Eddy Simulation (LES) is per-
formed using the in-house CFD solver m-AIA1 [6, 7]. The
physical domain of the flat plate model is given in Fig. 1,
where the dimensions in the Cartesian directions are 𝐿𝑥, 𝐿𝑦and 𝐿 . The actuation parameters are the wavelength 𝜆, the
time period 𝑇 and the amplitude 𝐴. At the inflow of the
domain, the reformulated synthetic turbulence generation
(RSTG) method is used to initiate a TBL flow. The onset
of the surface actuation, analyzed in [6, 7], is located at 𝑥0,
where a fully developed TBL is established. The surface area
𝐴surf for the integration of the wall-shear stress 𝜏w is shaded
in gray. Periodic Boundary Conditions (BC) are used in the
spanwise direction  , characteristic outflow conditions are
applied on the downstream and upper boundaries, and the
no-slip condition is imposed on the wall [6].

Further details on the numerical method, the computa-
tional setup, validation of the LES and BC can be found in
Albers et al. [6].

3. Transformer for temporal prediction
The transformer architecture is adapted from an encoder-

decoder configuration, used for temporal predictions [8],
which is shown in Fig. 2. The encoder consists of an input
layer, positional encoding and a stack of six encoding layers,
where each layer consists of a self-attention and a fully
connected layer, followed by a normalization layer. The input

1m-AIA https://git.rwth-aachen.de/aia/m-AIA/m-AIA

layer is a fully-connected network and the positional encod-
ing consists of sine and cosine functions. For the decoder
layers, there is additional layer to apply self-attention over
encoder outputs, where the input is from the encoder output
and the decoder output is a linear mapping to the target
sequence. Look-ahead masks are applied to ensure that the
decoder only sees information from the previous time-steps.

If the training dataset consists of 𝑛 velocity fields at
time-instances 𝑡1, 𝑡2,… , 𝑡𝑛, the encoder takes in a sequence
of 𝐮𝑡1 ,𝐮𝑡2 ,… ,𝐮𝑡𝑚 as input, and the decoder outputs the
velocities at time-instances 𝐮𝑡𝑚+1 ,… ,𝐮𝑡𝑛 , where 1 < 𝑚 <
𝑛. Here, 𝐮 is the velocity field vector, 𝑚 is the encoder
sequence length and 𝑛 − 𝑚 is the target sequence length.
The decoder input in this case would consist of velocities
at time-instances 𝐮𝑡𝑚 ,… ,𝐮𝑡𝑛−1 . The input velocity field is
reshaped to smaller cubic sub-domains (83 for this study),
where each sub-domain is treated as a separate batch by the
transformer. This allows to limit the number of features that
the model needs to predict, thus reducing the complexity
of the self-attention mechanism. Furthermore, 16 attention
heads are employed and the Adam optimizer is used for
training. The trainings are conducted with the DeepSpeed2
framework in a distributed training setup provided by the
AI4HPC3 library. Exemplary predictions by the transformer
model of the streamwise (𝑢) and spanwise (𝑤) components
of the velocity field are shown in Fig. 3. It can be seen that
the model is able to provide good qualitative predictions of
the velocity field. This trained model is then coupled to the
m-AIA solver.

2DeepSpeed https://github.com/microsoft/DeepSpeed
3AI4HPC https://ai4hpc.readthedocs.io/en/latest/
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Figure 3: Exemplary prediction (Output) from the transformer of TBL velocity field slice in the wall-normal direction on the 𝑖-𝑘
plane, compared to the original LES field (Input), where 𝑖 is the streamwise and 𝑘 is the spanwise direction. In this case, Input
and Output refer to the LES-predicted and transformer-predicted velocity field at a future time-step.
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Figure 4: Coupling workflow between m-AIA and PhyDLL.

4. Coupling m-AIA with the transformer
Coupling m-AIA with the trained transformer is achieved

using the open-source “Physics Deep Learning coupLer"
(PhyDLL)4, which provides a coupling mechanism for
parallel physical solvers via the Message Passing Interface
(MPI) using the Multiple Program Multiple Data paradigm.
It establishes a mapping between processes running the
physical solver and processes via a user-defined DL Engine.
In this work, the DL Engine is a Python script, which imple-
ments the inference of the transformer. To communicate data
between the physical solver and the DL Engine, PhyDLL
offers a Fortran, C, and Python interface around MPI’s point-
to-point operations.

The coupling workflow is illustrated in Figure 4. In-
side m-AIA’s 3D structured solver (fvstructuredsolver3d),
𝐮 is passed to the mlCouplerPhyDLL as three one-dimensional
fields (𝑢,𝑣,𝑤). This class is derived from an abstract class
following the popular strategy design pattern proposed by
Gamma et al. [9] to keep the solver independent from the
actual coupling algorithm. The mlCouplerPhyDLL uses Phy-
DLL’s API to send the flow fields to the DL Engine. First,

4PhyDLL https://phydll.readthedocs.io/en/latest

the 3D flow field is divided into cubic subdomains inside
the function extractCubes(). The DL Engine manages a ring
buffer, storing the data from the 𝑚 most recent timesteps,
to construct sequences of cubic subdomains as input to the
transformer. After the input has been constructed, the infer-
ence of the transformer is implemented as proposed by Lud-
vigsen5. Multiple forward passes through the transformer are
performed to create a suitable target sequence of length 𝑛−𝑚,
which the model can decode to make the final prediction.
Afterwards, the function combineCubes() combines the cubic
subdomains from the final prediction to form the full flow
field (�̂�,�̂�,�̂�) again. The final predicted flow field is then sent
back to the mlCouplerPhyDLL of m-AIA using PhyDLL’s API.
Finally, the flow field in m-AIA is updated and the simulation
continues based on the transformer’s prediction.

5. Conclusions
The manuscript explored the use of a transformer model

to perform coupled predictions of TBL velocity fields with
the CFD solver m-AIA. For this, a transformer model is
trained with full velocity field data that is restructured into

5https://github.com/KasperGroesLudvigsen/influen a_transformer
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smaller cubic sub-domains. The trained model, which shows
good qualitative agreement, is being coupled to the m-AIA
solver using the PhyDLL framework, which is an ongoing
work at the time of writing this abstract. Therefore, so far
qualitative analyses are performed based on the comparison
of outputs from the CFD solver and the transformer model.
The proposed methodology promises to accurately predict
turbulent fields, while significantly reducing the computa-
tional effort for time-marching TBL fields by reducing the
number of time-steps computed by the physical solver. For a
single time step, computational savings of upto 53 times was
possible during transformer inference, while also reducing
the memory consumption by 1,100 times. As an outlook for
the conference talk, quantitative analyses are performed to
assess the prediction accuracy also for the coupled configu-
rations and the speed-up compared to the stand-alone CFD
solver. Furthermore, the conservation properties (in terms
of mass and momentum) of the time-marched velocity fields
obtained through the interaction of the CFD solver and the
transformer model will be analyzed, and the imbalances will
be quantified in future work.
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A B S T R A C T
GNNs can be applied to any shape or volume represented by a graph, e.g., triangulated shapes, or
computational grids. Convolutional filters in GNNs operate on nodes and their neighboring nodes.
This allows more efficient training compared to convolutional neural networks (CNNs), whose
convolutional filters are rectangular and operate in Cartesian directions. The goal is to predict
respiratory system flow features such as air resistance, wall shear stress, and energy flux within the
human nasal cavity during inspiration. The initial step involves generating a virtual population through
random scaling applied simultaneously to length, width, and height. Three distinct geometries are
chosen to generate 297 virtual patients, including an average one based on 35 healthy patients, a
Caucasian healthy patient, and an Asian healthy patient. The second part of the talk exposes the
preliminary results based on 297 patients with physiological observations and discussions on the
accuracy result of the GCNN model.

1. Introduction
The pressure loss inside the nasal airway is an impor-

tant indicator to estimate a patient’s breathing condition [1,
2]. Moreover, the airflow features of nasal respiration are
closely related to the Wall-Shear Stress (WSS) distribution.
When air flows through the nasal passages, it comes into
contact with the nasal mucosa, creating frictional forces.
These frictional forces result in the generation of WSS,
which plays a crucial role in various physiological func-
tions of the nasal cavity, including the air resistance. As a
consequence, altering the WSS distribution may impact the
breathing efficiency.

The high geometrical complexity of the nasal cavity
causes complicated laminar, transitional, and turbulent flow
patterns depending on the considered respiratory flow rate.

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02460 and of the Proceedings 10.34734/FZJ-2025-
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These complex dynamics require high-fidelity CFD-based
modeling techniques, for which computational challenges
are significant.

Fast Deep Learning (DL) models utilizing graph archi-
tectures and inductive methods have demonstrated signifi-
cant potential in efficiently predicting fluid mechanical prop-
erties within complex geometries across meshes of varying
resolutions [3]. This capability is exploited in the present
study to address the aforementioned limitations of CFD,
enabling the development of accurate predictive tools for
coarser meshes and thereby streamlining the pre-processing
step.

In the present study, a GCNN and volumetric velocity
data-based approach for predicting respiratory flow features,
such as the pressure loss and the WSS distribution, is in-
vestigated. To overcome a lack of measured velocity data,
the GCNN is trained with velocity fields from high-fidelity
CFD simulations, a valid approach considering the proven
accuracy of this methodology [3].

2. Method
In bioengineering, obtaining a significant amount of

patient geometries is a work-intensive undertaking, primar-
ily due to confidentiality policy considerations and limited
access to hospital databases. The tedious task of image seg-
mentation adds another layer of complexity to this process.
Additionally, training of deep learning models demands a
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Figure 1: Numerical results of the patient 86: a) Magnitude of velocity vector, b) Map of pressure and c) Map of wall shear stress.

substantial amount of data to nourish the algorithms ade-
quately. To bypass this challenge, the authors constructed a
virtual population using three geometries, employing ran-
dom scaling simultaneously across length, width, and height.
This data augmentation resulted in the generation of 297 vir-
tual patients with 99 virtual patients per original geometry.

For each geometry, an unstructured mesh with prism
layers is crafted using the software ANSYS-ICEM-CFD
(Ansys Inc., USA). Further insights into the meshing process
can be found in the work by [4]. The high performance
computational mechanics code Alya [5], developed at the
Barcelona Supercomputing Centre (BSC), is used to solve
the Navier-Stokes equations. The Dakota software (Sandia
National Laboratories) [6] is used to set up and execute
297 cases with random scaling across length, width, and
height for each model. The toolkit software DARE, which
is developed at the BSC, is used as an automation software.

A no-slip boundary condition is imposed on the nasal
airway walls. The inlet velocity profile is imposed as a
Dirichlet condition on the inlet flat surface of the nostril. A
constant flow rate was set to Q=20L/min. This is frequently
used in the literature and considered as normal constant in-
spiration flow rate [7, 8, 9]. A zero-traction outflow condition
is imposed as a Neumann condition (the surface is free from
external stress) at the outlet of the nasopharynx. Figure 1
displays numerical results for variation 86 of the first patient,
as example, showing three different airflow features: the
velocity contour fields, pressure map, and the WSS map.
This patient

The GCNN architecture used in this study is based
on [3], where a method for data-driven prediction from flow
fields defined on irregular and unstructured meshes, using
a GCNN framework, is presented. The GCNN training is
performed in a distributed training setup. This is achieved
through data distributed training where each worker (e.g., a
GPU) performs training on a subset of the data samples. The

open-source library AI4HPC1 is utilized in this work. The
parallel computations are performed on the DEEP system
at JSC. Further insights into the parallelism process can be
found on the AI4HPC website2.

3. Results
The objective is to leverage the dataset created to predict

physiological aspects, such as air resistance or the WSS.
As an initial step, all available data samples (297 patients)
are employed to train a model, aiming to assess the model’s
capability of performing the required regression task. That
is, taking a large spatial graph containing nodal velocity data
and determining the pressure drop across the geometry with
a minimum mean squared error. Then, following the success-
ful completion of this preliminary test, the generalization ca-
pabilities of the model are evaluated by splitting the dataset,
allocating 80% for training and 20% for validation. The
model’s demonstrate excellent performance in predicting the
pressure drop, achieving a Mean Squared Error (MSE) of
0.0002, and mean accuracy, which is measured as the relative
error between the model output and the target output, of
99.85% for the validation sets.

A comparison of the ground truth values of the pressure
drop from CFD result and the predictions from the network
qualitatively shows the high accuracy of the model for both
datasets, see Fig. 3. As can be seen, the validation points
(blue dots) are selected to cover the entire range of the
pressure drop, demonstrating high accuracy across all pa-
tient ranges. The current model achieves a relative validation
error of 0.86% in predicting the pressure drop.

1https://ai4hpc.readthedocs.io/en/latest/index.html
2https://ai4hpc.readthedocs.io/en/latest/AI4HPC/distributedfws.

html
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Figure 2: Schemes of the architecture of the GCNN and distributed training for 𝑁 workers: a), the architecture of the GCNN.
‘GC’ refers to the graph convolution operation, ‘TKP’ refers to Top-K pooling and ‘V‘ to the velocity field, image from the
courtesy of the authors [3]; b), the architecture of the distributed training framework AI4HPC.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Train

Valid

Figure 3: A comparison of GCNN predictions with the ground truth pressure drop. The training and validation datasets contain
236 and 61 samples, respectively.

4. Conclusions
The current study investigates a velocity data-based ap-

proach using GCNNs to predict respiratory flow features,
including pressure loss. Understanding nasal physiology and
respiratory function requires studying nasal airway resis-
tance and wall shear stress in the nasal cavity and their rela-
tionship with airflow. Developing machine learning models
capable of achieving a relative validation error of 0.86% for

the air resistance can be highly beneficial for the develop-
ment of treatments for nasal disorders.
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A B S T R A C T
Mesh generation performance with OpenFOAM’s snappyHexMesh utility is impacted by the de-
composition method used for load balancing on HPC systems. Testing shows that 3D hierarchical
decomposition with optimal configuration can significantly improve mesh generation runtimes.
However, this optimal configuration depends on several factors, such as geometric complexity and
mesh resolution requirements. We evaluate the use of random forest classifiers to select optimal
subdomain allocations with minimal interaction from the user. Our current implementation achieves a
76% classification accuracy on a limited dataset, showing potential for improvements in future work.

1. Introduction
Mesh generation is a key pre-processing step in a Com-

putational Fluid Dynamics (CFD) design and analysis cycle
that is executed prior to the solver phase [1]. However,
with long runtimes that can be comparable to that of the
solver itself, meshing can be a significant bottleneck [2].
The snappyHexMesh (SHM) utility in the OpenFOAM CFD
toolkit1 aims to minimize runtimes through parallelization
(using MPI), and it uses graph decomposition to distribute
the meshing task across processes. For many OpenFOAM
cases2, the mesh generation step often scales poorly on large
high-performance computing (HPC) platforms. As mesh
generation has traditionally been conducted on workstations,
this has been largely overlooked as an optimization con-
cern [3]. The poor scaling behavior becomes evident when
analyzing the complete execution of the SHM utility, for
the Onera M6 Wing3 modeled with OpenFOAM4, on the
ARCHER2 system5. As seen in the plots in Fig. 1, while
increasing the number of cores provides notable reduction
in runtimes initially, the runtimes level off before increasing

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02461 and of the Proceedings 10.34734/FZJ-2025-
02175.
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again (Fig. 1a) and the parallel efficiency declines through-
out (Fig. 1b). The analysis also shows that OpenFOAM’s
hierarchical 3D geometric decomposition method has the
lowest runtimes and exhibits better parallel efficiency than
the third-party libraries: METIS [4, 5], Scotch [6], PT-
Scotch [7] and KaHIP [8].

Profiling indicates that at higher core counts, the cost
of the MPI calls significantly outweighs the compute work,
resulting in poor parallel efficiency. However, these calls
predominantly take place when recomputing the decomposi-
tion, which is triggered due to load imbalance that occurs as
the mesh evolves. While this is true for all the methods, the
communication overhead scales more favorably for the hier-
archical method. The advantage of the third-party methods is
to optimize interprocessor communication, while geometric
decomposition aims to keep the workload fully balanced
across processors. As communication is less frequent in the
mesh generation process relative to the solver, hierarchi-
cal decomposition can provide the most balanced parallel
execution without the higher communication overhead that
occurs in the third-party methods. In fact, a case study by
Amazon Web Services (AWS) recommends running SHM
with hierarchical decomposition6.

Users can configure the hierarchical decomposition pro-
cess by providing n: the number of subdomains in 𝑥, 𝑦, and
 . Further optional configuration can come from altering
the sorting order from the default 𝑥𝑦 to 𝑦𝑥 ,  𝑦𝑥 etc.
These configuration changes can have a significant impact
on performance: Table 1 shows the runtimes of the mesh
generation step with SHM for the Onera M6 Wing, with an
approximately 2× difference between the worst and the best
configuration.

6https://aws.ama on.com/blogs/hpc/getting-the-best-openfoam-perfo
rmance-on-aws/
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(a) Execution time per core per decomposition method. (b) Parallel efficiency per core per decomposition method.

Figure 1: Analyzing the performance of the snappyHexMesh utility for the Onera M6 Wing4. METIS, Scotch, PT-Scotch and
KaHIP methods use default parameters. Hierarchical uses “balanced” subdomain allocations (i.e., 2 × 2 × 2 for 8 cores, 4 × 8 × 4
for 128 cores, etc.) with default 𝑥𝑦 sorting order.

𝒏𝒙 𝒏 𝒏𝒛 Execution time [s]
1 1 8 145.80
1 2 4 100.00
1 4 2 75.56
1 8 1 79.92
2 1 4 108.03
2 2 2 76.93
2 4 1 78.11
4 1 2 76.45
4 2 1 80.77
8 1 1 84.35

Table 1
Runtimes for the Onera M6 Wing4 mesh generation with
different subdomain allocations on 8 cores of ARCHER25 with
default 𝑥𝑦 sorting order.

In OpenFOAM, most cases start off as a structured
mesh created using the blockMesh utility, which is eas-
ily decomposed using the decomposePar utility. However,
while generating the final mesh, SHM creates new cells
during its refinement and layer addition phases. These are
managed with a load re-balancing step after almost every
iteration in the refinement phase and once at the end of
the layering phase. During this step, the mesh generation
is paused and the new decomposition is determined based
on the selected method. The mesh is then re-distributed
across cores, after which the mesh generation is resumed.
The frequency of load re-balancing is governed by the user-
provided maxLoadUnbalance and maxLocalCells settings:
load balancing occurs if either of these is violated. As the
final cell count and the locations of high mesh resolution

are not known at the start, it is non-trivial to determine the
decomposition and load balancing settings to minimize the
need to re-balance. While this could lead CFD engineers
to use more “automated” methods like Scotch7, this might
result in a loss of valuable resources and an inefficient
workflow due to poor parallel efficiency.

The CFD Vision 2030 [2] stipulates that mesh generation
should ideally be more automatic and require limited interac-
tion from the user. On this basis, we investigate if machine
learning (ML) can be used to automatically determine the
best hierarchical decomposition subdomain allocation, or
“Optimum n” for an OpenFOAM mesh generation case. Our
aim is to make the hierarchical decomposition as easy to
use as one of the third-party libraries by simplifying the
configuration step.

2. Methodology
2.1. Method selection

OpenFOAM mesh generation settings can be consoli-
dated in a tabulated form as nearly all configurations af-
fecting the final mesh and the generation process are nu-
merical. While many ML algorithms can operate on struc-
tured, tabulated datasets, decision trees are established as
the ML method of choice for datasets with around 10,000
samples [9] as they offer a good balance between speed
and accuracy. Random forests, i.e., collections of decision
trees trained on different subsets of the training data through
bootstrapping, improve on decision trees by reducing the risk
of overfitting. This comes with the disadvantage of making

7https://www.cfdengine.com/newsletter/091/
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the logic behind the final decision harder to interpret as the
method aggregates over several possibilities and combina-
tions of the data [10, 11]. However, it also provides a more
balanced measure of a feature’s contribution to the decision
making. We have implemented our ML model as a random
forest classifier8 with the scikit-learn [12] framework, where
the inferred class is a string representing the Optimum n in
the form of “𝑛𝑥 × 𝑛𝑦 × 𝑛 ”.

Although the mesh generation and decomposition set-
tings can be easily tabulated, representing the geometries
with scalar values requires further pre-processing. Using the
Open3d9 package in Python, geometries in .stl and .obj

formats can be analyzed and manipulated. The geometry’s
orientated bounding box provides an approximation of its
lengths and orientation, and its voxel grid representation
gives an estimate of its volume. The current implementation
focuses only on SHM’s refinement phase, which employs
load re-balancing frequently.
2.2. Dataset generation

Our dataset is created to tie the geometries’ complexities
and refinement requirements to the decomposition configu-
ration. It covers 5 different geometries: cylinder, NACA6512
airfoil10 [13], twisted hex vase11, teapot12 and OpenFOAM’s

8https://scikit-learn.org/stable/modules/generated/sklearn.ensemb
le.RandomForestClassifier.html

9https://www.open3d.org/
10https://github.com/MiroslavKabat/pythonNacaProfileGeneratorSTL
11https://www.thingiverse.com/thing:72040
12https://www.thingiverse.com/thing:821

Figure 2: Motorbike geometry13 with orientated bounding box.

motorbike13, see Fig. 2. For each of the geometries, we cre-
ate 10 cases covering a range of positions, sizes, orientations
and settings, giving a total of 50 cases. Each case is run with
9 possible subdomain allocations for 9 different core counts
on ARCHER2, namely: 30, 42, 64, 77, 112, 128, 143, 198
and 256 cores. The final dataset contains a total of 4050
samples. Any samples for which SHM reported errors in
the mesh (e.g. face errors) are removed prior to training and
testing to minimize the effect of those errors on the results.
For each of the 50 cases, Optimum n is determined per core
count and is the subdomain allocation that provided the best
execution time. All the runs of a case on a given core count
were assigned the same Optimum n as their class.
2.3. Model training

To maximize the accuracy of the scikit-learn Random-
ForestClassifier in determining the Optimum n, a Random-
izedSearchCV tool employing the RepeatedStratifiedKFold
cross-validation method is used to determine the optimal
hyperparameters. The random forest is built with 92 decision
trees with a maximum depth of 7. The cross-entropy loss cri-
terion is used to determine the splits in the tree and each tree
is trained on a maximum of 95 samples. The configuration
of the cross-validation and number of features to be selected
using the SelectKBest method is further determined using
hyperparameter sweeps with the Weights & Biases tool14.
The model is trained on 67% of the post-selection data (the
remainder is used for testing), with the split percentage also
determined using hyperparameter sweeps. The top selected
features and their importances, i.e., their contribution to the
determination of the classification, are provided in Tab. 2.
A feature’s importance is a measure of its significance in
decreasing the impurity criterion (the cross-entropy loss in
this model) for the prediction, averaged over all the trees in
the random forest8,15. The “number of cores” feature has the
greatest impact on the classification; this is expected because
that feature is implicitly linked to the subdomain allocation.
The remainder of the features, which relate to the mesh
refinement, load balancing and geometry characteristics,
have a lower but still notable influence.

3. Evaluation and future work
The model is evaluated using an accuracy score which

determines the percentage of the dataset that the Optimum n
was classified correctly for. The accuracy achieved for our
dataset is 76%, with a precision score of 71% and an 𝐹1score of 64%. This is a promising outcome, given the limited
size of the data we trained our proof-of-concept model on.

13https://develop.openfoam.com/Development/openfoam/-/tree/master/
tutorials/incompressible/simpleFoam/motorBike

14https://wandb.ai/site
15https://scikit-learn.org/stable/modules/ensemble.html
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Feature Description Importance [%]
cores # of processors 56.30
(xSD, ySD, zSD) # of subdomains in each direction/ 3

√
cores (1.25, 1.20, 1.34)

(xVox, yVox, zVox) Max voxels in the geom. in each direction (1.80, 2.10, 3.09)
(xPos, yPos, zPos) Geom. centre/boundary mesh center (3.20, 1.98, 2.56)
maxLoadUnbalance Max allowed load unbalance 1.87
maxLocalCells Max # of cells per processor 1.72
(xCe, yCe, zCe) # of cells in the initial mesh (1.63, 2.47, 1.28)
(xLen, yLen, zLen) Geom. (bounding box) lengths/boundary mesh lengths (0.00, 2.53, 3.19)
(yaw, pitch, roll) Geom. (bounding box) orientation as Tait-Bryan angles (0.00, 2.75, 3.81)
surfaceRefLevel Min & max surface refinement levels (1.31, 1.22)
featureEdgeRefLevel Feature edge refinement level 1.40

Table 2
List of features in the dataset, and their rates of importance in the model.

The accuracy is expected to improve with a larger dataset,
and with a greater variety of geometries and case setups.
Aside from increasing the size of the dataset, additional
features can improve the accuracy of the classification. This
includes settings for SHM’s snapping and layer addition
phases, which also impact the runtime of the mesh genera-
tion. Further improvements to overcome current limitations
include a scheme for generalizing the subdomain allocation
to decouple the classification from the number of cores,
expanding the performance data to include multiple HPC
systems, and accounting for the impact of the decomposition
on the quality of the final mesh.

In this work, we have focused on selecting optimal
settings for the hierarchical decomposition method. Future
work could extend this approach to optimize the rate of load
balancing by tuning the load imbalance parameters, with
potential application across all decomposition methods used
by SHM. Additionally, although we have not attempted to
interpret the random forest classifier beyond reporting the
feature importances, further studies to do so may yield in-
sight into the problem to guide novel optimization strategies
for SHM.
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A B S T R A C T
The impact of spanwise traveling transversal surface waves on drag reduction in turbulent compress-
ible flat plate flow is explored. The findings indicate that when the traveling phase speed approaches the
freestream velocity at 𝑀 = 0.7, a shock wave is induced in the spanwise direction. This shock wave
effectively breaks down streamwise vortices into smaller scales, which significantly enhances drag
reduction. The spanwise shock wave is a large-scale quasi-periodic phenomenon. To understand its
impact on the multi-scale nature of turbulent flows, a nonlinear mode decomposing deep convolutional
autoencoder is employed. The results show that the autoencoder reconstructs the flow field more
accurately compared to Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition
(DMD). Additionally, it effectively separates the large-scale spanwise shock wave and small-scale
turbulent structures, which achieves a clearer distinction than POD and DMD.

1. Introduction
In civil aviation, skin friction contributes significantly to

the total aerodynamic drag, accounting for up to 50% [1],
which leads to higher fuel consumption. Therefore, reducing
skin friction is paramount for environmental reasons. Drag
reduction techniques can be classified into two main groups:
active, e.g., spanwise wall oscillations [2] or spanwise trav-
eling waves [3], and passive methods, e.g., riblets [4]. While
the former requires an introduction of energy input, the
latter doesn’t depend on external energy. The basic idea of
spanwise traveling transversal surface waves is to introduce
a secondary flow field by introducing a wavy motion to the
surface, resulting in a drag reduction.

Combining the fast-emerging field of machine learning
(ML) and fluid dynamics shows great potential to enhance
the understanding of fluid dynamics, e.g., by predicting the
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of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02462 and of the Proceedings 10.34734/FZJ-2025-
02175.

∗Corresponding author
x.shao@aia.rwth-aachen.de (X. Shao);

ogu han.ayan@rwth-aachen.de (H.O. Ayan);
f.huebenthal@aia.rwth-aachen.de (F. Hübenthal);
m.ruettgers@f -juelich.de (M. Rüttgers); a.lintermann@f -juelich.de (A.
Lintermann); office@aia.rwth-aachen.de (W. Schröder)

ORCID(s): - (X. Shao); 0009-0007-5452-2786 (H.O. Ayan);
0009-0000-7159-8220 (F. Hübenthal); 0000-0003-3917-8407 (M. Rüttgers);
0000-0003-3321-6599 (A. Lintermann); 0000-0002-3472-1813 (W. Schröder)

resulting flow under different inlet conditions [5]. One com-
mon order reduction method is Proper Orthogonal Decom-
position (POD) introduced to the fluid-dynamics community
by Lumley in 1967 [6], which breaks the flow into different
modes for a deeper analysis. Although POD techniques
allow a reasonably good analysis of different modes in flow
fields, its ability to handle non-linear relations, which are
crucial aspects of turbulent flows, is limited [7]. Another
relatively novel method for analyzing nonlinear systems is
Dynamic Mode Decomposition (DMD) [8], which can be
interpreted as an extension to POD with an additional con-
sideration for the temporal aspects. However, DMD is also a
linear approximation, presenting challenges when analyzing
heavily nonlinear systems.

Artificial neural networks can overcome this obstacle
due to their ability to capture non-linearity. In [9], the so-
called Mode Decomposing Conventional Neural Network
Autoencoder (MD-CNN-AE) is employed for mode decom-
position. Although a conventional autoencoder uses only
one mode, increasing the number of decoder branches is
proven to improve learning and the capability to observe
more complex flow structures. The superiority of MD-CNN-
AE over POD is further shown in [10], where flow fields
around square cylinders under varying geometric conditions
are analyzed.

The current work extends the previous studies to the
turbulent compressible flat plate flow, which has a high
amount of non-linearity. That is, the effects of the surface
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Figure 1: Schematic of the spanwise traveling transversal surface waves setup. The function 𝑦|wall (𝑥, 𝑡) = 𝑔(𝑥)𝐴 cos
(
2𝜋
𝜆
( − 𝑐𝑡)

)

defines the wall-normal motion. The quantity 𝐴 is the wave amplitude, 𝜆 is the wavelength, 𝑇 is the period, 𝑐 (= 𝜆∕𝑇 ) is the phase
speed, and 𝑔(𝑥) are step functions to manage a gradual spatial implementation and decay of the actuation in the 𝑥 direction.

actuation on the flow field are examined in detail including
a comparison between POD, DMD, and the MD-CNN-AE.

2. Methods
Turbulence scale-resolving numerical simulations for

actively controlled turbulent boundary layer flow are con-
ducted by the finite volume (FV) module of the in-house
multiphysics flow solver m-AIA (multiphysics Aerodynam-
ics Institute Aachen)1, formerly known as Zonal Flow Solver
(ZFS) [11]. An advanced numerical methodology is utilized
to precisely simulate the flow field over moving boundaries,
incorporating high-order discretization techniques and effec-
tive shock-capturing schemes. More details on the numerical
method are given in [12].

The flow domain is defined by the Cartesian coordinates
𝑥, 𝑦, and  representing the streamwise, wall-normal, and
spanwise directions, illustrated in Fig. 1. The simulations are
done for a momentum thickness based REYNOLDS number
Re𝜃 =

𝑢∞𝜃
𝜈 = 1,000, with a momentum thickness of 𝜃 = 1

at location 𝑥1∕𝜃 = 165 and the freestream velocity 𝑢∞, and
𝑀 = 0.7. The domain size is defined by 𝐿𝑥 × 𝐿𝑦 × 𝐿 =
361𝜃×101𝜃×64.94𝜃. The actuation parameters are specified
by wavelength 𝜆+, time period 𝑇 +, and amplitude 𝐴+ in
inner scaling based on the friction velocity 𝑢𝜏 and kinematic
viscosity 𝜈. The actuated parameter values are 𝜆+ = 3,000,
𝑇 + = 88, and 𝐴+ = 74.

As depicted in Fig. 2, the autoencoder follows a similar
structure of [9], where the encoder is followed by two mode-
decomposing decoder branches. The activation functions are
selected to be linear and tanh or ReLU for the convolutional
layers. The activation function is used in the intermediate
convolutional layers to handle non-linearities, whereas the

1https://doi.org/10.5281/ enodo.13350586

linear activation function is used at the final convolutional
layer. The 𝑦 planes at the center of the domain (𝑥∕𝜃 =
180), highlighted by the red rectangle in Fig. 1, are used
for training. In total, 9230 snapshots are used and the model
is trained for 2,000 epochs with the Adaptive Moment Es-
timation (Adam) [13] optimizer and a Mean Squared Er-
ror (MSE) loss function. The snapshots are randomly di-
vided into training and validation sets and PyTorch’s [14]
distributed data parallel is utilized for distributed training
on multiple GPUs. The parameters under investigation are
the three-dimensional velocity components (𝑢, 𝑣,𝑤) and the
pressure (𝑝).

3. Results
The vortex topology based on the 𝜆2 criterion and the

pressure contour in the 𝑦 plane is shown in Fig. 3. The
isosurfaces of the vortex structures are generated by 𝜆2 =
−0.02, colored by the relative MACH number defined by
𝑀rel =

√
𝑢2 + 𝑣2 + (𝑐 −𝑤)2∕

√
𝛾𝑝∕𝜌, where 𝛾 is the ratio

of specific heats, and 𝜌 is the density. At 𝑐 = 1.028 relative to
the stagnation sound speed a shock wave shown in Fig. 3(𝑏)
develops. The shock wave travels as the surface wave in the
positive  direction. Within the shock wavefront, the vortices
experience a reduction in number and size, influenced by the
passing wave.

The reconstruction results for the autoencoder in com-
parison to the DMD and the POD with the 16 modes/16
decoders configuration for variables 𝑢, 𝑣,𝑤, 𝑝 are depicted
in Fig. 4. The results indicate the high capability of the
autoencoder relative to other methods, specifically in the
three areas, namely in reconstructing the shock, the flow in
the vicinity of the shock, and the turbulent structures. The
inability of POD to regenerate the turbulent structures is
an expected outcome as it heavily relies on linear spatial
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Figure 2: General concept the MD-CNN-AE for predicting two modes.
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Figure 3: Instantaneous flow field for the non-actuated reference case (𝑎), and the actuated case (𝑏). Each illustration contains
an 𝑦 plane pressure contour at 𝑥∕𝜃 = 180 and a top view of the vortex topology in the streamwise direction and 𝑦+ < 60.

Figure 4: Original and reconstructed variables 𝑢, 𝑣,𝑤, 𝑝 for POD, DMD, and Autoencoder. The values are normalized by
(𝑎𝑖 − 𝑎𝑚𝑖𝑛)∕(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛), where 𝑎 represents the variables under investigation.
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Figure 5: Decoder and the mode outputs of the channel 𝑢 for the autoencoder and DMD for a 2 mode/decoder configuration.
The values are normalized by (𝑎𝑖 − 𝑎𝑚𝑖𝑛)∕(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛), where 𝑎 represents the channels under investigation.

Figure 6: Decoder outputs of an autoencoder configuration with 2 decoders for all variables 𝑢, 𝑣,𝑤, 𝑝. The values are normalized
by (𝑎𝑖 − 𝑎𝑚𝑖𝑛)∕(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛), where 𝑎 represents the variable under investigation.

patterns, making it an unsuitable method for an in-depth
analysis of turbulent flows. In contrast, DMD is able to
reconstruct small-scale structures, which can be linked to
its ability to consider the temporal dynamics of the system.
However, DMD also fails to reconstruct the shock accurately

as the shock wave is blurry, and the flow around the shock is
also not well presented.

The individual outputs of the 2 decoders for the autoen-
coder and 2 modes for the DMD for variable 𝑢 are shown
in Fig. 5. It can be concluded that the autoencoder separates
the shock and the turbulence in the flow, where the shock is

92



X. Shao et al.: Investigating the Effects of Spanwise Transversal Traveling Waves on a Turbulent Compressible Flat Plate Flow With the Aid of a Deep ...

completely reconstructed. On the contrary, the DMD is not
able to do this. The shock is vaguely represented and quite
blurry in mode 1 in Fig. 5. The POD results here were not
included as it was deemed an unfitting method, where the
turbulence was not captured in detail. The ability to sepa-
rate the large-scale shock waves and multi-scale turbulence
structures is not unique to variable 𝑢. The same separation
pattern exhibits in 𝑣,𝑤, 𝑝.

The decoder results for all variables are shown in Fig. 6.
In each velocity channel, decoder 1 captures the large-
scale structures associated with the shock, whereas decoder
2 captures the multi-scale turbulence. On the other hand,
only the large-scale structures are captured in the pressure
channel, whereas decoder 2 does not output anything. This
is affiliated with the nature of the pressure characteristics,
which do not possess fluctuating turbulence.

In conclusion, the mode decomposing autoencoder can
capture the shock and the high-frequency turbulent fluctu-
ations accurately compared to the conventional methods,
i.e., Proper Orthogonal Decomposition (POD) and Dynamic
Mode Decomposition (DMD). Moreover, the autoencoder
can separate large-scale shock waves from multi-scale tur-
bulence structures, which results in a continuous turbulence
flow field. Clear decomposition makes it possible to examine
the alter of turbulence structures due to the shock wave.
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A B S T R A C T
The combustion of ammonia is accompanied by the release of NO𝑥, which refers to both NO and NO2,
i.e., the nitrogen oxides contributing to air pollution. A potential technology for complete combustion
of ammonia and reduced NO𝑥 emissions is combustion in porous media. Multiple test cases are defined
using 2D burner configurations that are investigated computationally by means of Direct Numerical
Simulations (DNS). The main objective of this work is to study the exhaust gas products for a wide
range of burner configurations. However, simulating a large number of burner setups using DNS is
time-consuming and costly. To reduce the number of DNS computations, a physics-informed deep-
learning model based on Graph Convolution Neural Networks (GCNNs) is employed. In a first step,
the effectiveness of data-driven GCNNs is validated for reactive flows in porous media and preliminary
data is shown here. Subsequently, GCNNs augmented with constraints from combustion chemistry are
implemented to train on sparse data and to predict the combustion characteristics of the porous media
burner with high efficiency.

1. Introduction
Ammonia offers a promising possibility as a carbon-

free energy carrier. Although it can easily be transported
using the existing infrastructure and stored for future en-
ergy needs, combustion of ammonia poses considerable
challenges. The three major challenges are its low burning
velocity compared to hydrocarbons resulting in poor flame
stability, its high levels of nitrogen oxide formation and its
high toxicity even at trace levels. To tackle these challenges,
combustion in porous media can be utilized. Porous media
combustion (PMC) has long been investigated for conven-
tional fuels [1, 2]. Conduction and radiation heat transfer
between the porous medium and the reaction zone can help
in stabilizing the flame for fuels with poor combustion
characteristics [3, 4]. The porous medium is provided in the
form of a ceramic structure, which forms a rigid matrix.
Within the porous cavities of this rigid matrix the fuel and
oxidizer flow, mix and react. Direct numerical simulations of
combustion in porous media can aid in designing and opti-
mizing porous media burners. Direct pore-level simulations
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(DPLS) require a coupling of such fully-resolved direct flow
simulations with thermal simulations of the solid matrix.
Such simulations are cost-intensive and performing DPLS
for a wide range of burner configurations is computationally
intractable. Data-driven graph neural networks have shown
potential in predicting flow fields while training on data from
numerical simulations [5, 6]. To study the effectiveness of
such deep-learning based models in predicting NO𝑥 emis-
sions, the GCNN approach is employed to investigate porous
media combustion. The performance of the proposed GCNN
is evaluated against DNS results from the EBIdnsFoam
solver [7] and results from a simplified 1D model.

2. Method
Two-dimensional burner configurations with porous

solid structures are considered as shown in Fig. 1. The
properties of the porous structure such as porosity and pore
size as well as the initial/boundary conditions of velocity and
temperature are varied for different burner configurations.
Direct numerical simulations are performed for 10% of the
total generated configurations. For the remainder of the con-
figurations, training data for temperature is generated from
1D volume-averaged simulations (1D-VAS) of PMC [8].
Cantera is used to calculate the species reaction rates and
material properties appearing in the governing equations.
Thus, a combination of DNS and 1D-VAS results is used
for the training of the GCNN model, which are considered
via two data loss functions 𝐿𝑑𝑎𝑡𝑎 from DNS and 1D-VAS.
It should be noted that all GCNN outputs can be considered

94



R. Puri et al.: Predicting NOx Emissions From Porous Media Burners Using Physics-Informed Graph Neural Networks

Porous structure

Fuel

Air

Fuel

Air

Air

(a) Uniform porous medium.

𝑥

𝑦

Porous structure

Fuel

Air

Fuel

Air

Air

(b) Regular porous medium with first three layers arranged in parallel.

Figure 1: Two-dimensional burner with solid structures representing the porous material.

in the 𝐿𝑑𝑎𝑡𝑎 loss function when DNS data is available, while
only temperature predictions are considered in 𝐿𝑑𝑎𝑡𝑎 when
using data from 1D-VAS. Physics-informed models can
provide good accuracy in predicting solutions to boundary
value problems. In addition to full DNS data, the inclusion
of sparse temperature data from 1D-VAS can help to further
improve the prediction quality. Due to the laminar flow in the
porous media, steady state solutions for all configurations are
obtained.

The proposed model architecture is shown in Fig. 2.
A physics-informed GCNN is defined in which the govern-
ing equations for reacting flows are enforced as physical
constraints. The input for the model is defined by the grid
coordinates and the boundary conditions for velocity and
temperature. The output of the model are the velocity, den-
sity, temperature, mixture fraction and NO𝑥 mass fraction
fields inside the burner. The NO𝑥 emissions at the outlet
of the burner are extracted from the predicted NO𝑥 mass
fraction fields. Assuming constant pressure, low velocity,
equal species heat capacities, and no viscous heating, the
physical constraints for the GCNN are defined using the sim-
plified equations for continuity, momentum, energy, mixture
fraction, and species (NO𝑥) mass conservation for steady
laminar reactive flow [9]. The predicted value of the H2O
mass fraction serves as a progress variable and is used with
Cantera to compute the source terms and material properties
in the governing equations. The viscosity is obtained from

Sutherland’s law [10]. The physical constraints imposed by
the governing equations are implemented as a loss function
𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 for the GCNN
𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = 𝐿𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦(𝜌, �⃗� ) + 𝐿𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚(𝜌, �⃗� ) +

𝐿𝑒𝑛𝑒𝑟𝑔𝑦(𝜌, �⃗� , 𝑇 ) + 𝐿𝑚𝑖𝑥.𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝜌, �⃗� , 𝑓 ) +

𝐿𝑁𝑂𝑥(�⃗� , 𝑌𝑁𝑂𝑥), (1)
where 𝜌 is the mixture density, �⃗� the velocity field, 𝑇
the temperature, 𝑓 the mixture fraction and 𝑌𝑁𝑂𝑥 is the
NO𝑥 mass fraction. Finally, the physical loss 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 is
combined with the data loss 𝐿𝑑𝑎𝑡𝑎 from both DNS and 1D-
VAS, such that the total loss function for the model is defined
as

𝐿𝐺𝐶𝑁𝑁 = 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝐿𝑑𝑎𝑡𝑎. (2)
The automatic differentiation functionality of the PyTorch

library is used for implementing the partial and ordinary
differential equations (PDE/ODE) in the loss function. Thus,
the proposed GCNN model uses the grid data from Open-
FOAM as well as the boundary conditions as input and the
species concentration of the NO𝑥 species in the exhaust
gas can be predicted from the output of the model. As
the training progresses, the PDE/ODE residuals in the loss
functions decrease, thus improving the predictive capability
of the GCNN.
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Figure 2: Schematic of the GCNN model.

𝜙 Fuel Burner 𝑇𝑚𝑎𝑥,𝑃 𝐼𝑀 (K) 𝑌𝑁𝑂𝑥
(DNS) 𝑌𝑁𝑂𝑥

(GCNN) error (%)
0.9 NH3 P1 1767 3.164 × 10−4 2.307 × 10−4 27.1
0.95 0.9NH3+0.1H2 P2 1591 2.207 × 10−5 3.378 × 10−5 67.8
0.95 NH3 P1 1591 1.078 × 10−4 5.393 × 10−5 49.9

Table 1
Comparison of prediction results of data-driven GCNN with the interpolated DNS data. The burner configuration with uniform
porous structures (Fig. 1a) is defined as P1 and the configuration with first three parallel layers of porous structures (Fig. 1b) is
defined as P2. The fuel is defined using the mole fraction of fuel species.

3. Results
Here, we present preliminary results from the data-

driven GCNN model which is trained with DNS data from
12 cases. The performance of the GCNN model is measured
by the error in percent of the predicted values of the NO𝑥emissions from the exhaust of the burner. The DNS data
is interpolated onto uniform grids and the adjacency list is
generated for this uniform grid. Each uniform grid is set
with an 𝑥-spacing of 0.5𝑑 and a y-spacing of 0.24𝑑, with
𝑑 being the characteristic length of each solid strut in the
porous medium. All variables except for the velocity are
scaled to a range from zero to one. For the data-driven model,
a 70:30 % split is used to distribute the data into training
and testing datasets. The testing dataset is later also used
for validation of the trained model. The hyperparameters
for the model are tuned using the random search method
and the model is trained on the the GPU partition of the
JURECA-DC cluster [11] installed at the Jülich Supercom-
puting Centre (JSC), Forschungszentrum Jülich. The model
is comprised of six GraphConv convolution layers and two
EdgePooling pooling layers coupled with two un-pooling
layers. The intermediate dimensions in consecutive graph
convolution layers are (7, 256, 512, 1028, 1028, 512, 256, 7)

and the hyperbolic tangent activation function is used. The
ADAM optimizer is used with a learning rate of 0.0001 and
the model is trained for 3,000 epochs.

As observed in Tab. 1, the deviation in prediction from
the data-driven model from the DNS results is higher, as the
NO𝑥 mass fraction in the exhaust decreases. This deviation is
likely attributed to the limited DNS data available for train-
ing. Further improvements are expected from the physics-
informed model in future work.

4. Conclusion
A physics-informed graph convolution neural network is

proposed to predict the NO𝑥 emissions from the combustion
of ammonia in porous media burners. Preliminary results
from a data-driven GCNN are shown in the present work.
The data-driven GCNN model is capable of predicting the
order of magnitude of the NO𝑥 emissions, with increasingly
higher errors for lower absolute values of NO𝑥 mass fraction.
Based on the learning outcomes from the current configu-
ration future work will enhance the data-driven part of the
model and further develop the physics-informed model.
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Continuous Integration/Continuous Deployment (CI/CD) has evolved into a pivotal methodol-
ogy, significantly enhancing software development and deployment processes. In Computational
Fluid Dynamics (CFD) applications, CI/CD plays a crucial role in guaranteeing simulation ap-
plications’ stability, reproducibility, portability, and performance. This mini-symposium aims
to delve into innovative approaches across various stages of the CI/CD pipeline, making sub-
stantial contributions to the scientific aspects of CFD applications. We welcome contributions
in the following areas:

Builds:

• In-depth discussions on efficient build processes tailored for CFD applications.

• Achieving portability across various compilers, architectures, CPU/GPU configurations,
programming standards, code generation, and managing multiple code versions through
containerization.

Tests:

• Exploration of advanced testing methodologies designed explicitly for CFD simulations.

• Integration of automated testing frameworks seamlessly into the CI/CD pipeline.

• Addressing challenges associated with large-scale parallel testing.

• Discussion on the integral role of CI/CD in ensuring the accuracy and reliability of sim-
ulations.

• Collaboration strategies for testing within interdisciplinary teams.
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Deploy:

• Investigation into methods ensuring seamless and reliable deployment of CFD applica-
tions.

• Formulation of strategies for versioning and deployment in diverse computing environ-
ments.

• Guaranteeing application scalability and adaptability.

Monitor:

• Implementation of monitoring infrastructures and code instrumentation for performance
analysis.

• Continuous monitoring methodologies to detect anomalies and enhance overall efficiency.

General:

• Development of strategies for designing modular and maintainable CFD software.

• Presentation of case studies illustrating successful implementations of CI/CD in CFD
research groups.
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A B S T R A C T
Continuous integration and continuous deployment (CI/CD) methodologies have gained traction
in the computational fluid dynamics (CFD) community, offering streamlined code evolution and
deployment. This article addresses the modernization challenge of Alya, a 19-year-old CFD simulation
code, by tailoring a framework to ensure code stability, reproducibility, portability, and reliability.
Emphasis lies on robust building, rigorous testing, and vigilant monitoring to uphold optimal
performance levels and prevent degradation. Additionally, efforts are directed toward enhancing
developer collaboration during the CI cycle. This abstract outlines our methodological approach and
contributions since migrating to CI/CD practices.

1. Introduction
In this abstract, we outline our adaptation of CI/CD

practices to Alya [1], a CFD simulation code with a 19-
year legacy and robust High-Performance Computing (HPC)
capabilities. We’ve tailored a framework to ensure stability,
reproducibility, and reliability throughout Alya’s develop-
ment life cycle, emphasizing robust building, testing, and
vigilant monitoring. Our approach prioritizes optimal per-
formance and code integrity. Moreover, we are striving to
improve developer collaboration throughout the CI cycle.
This abstract summarizes our methodological approach and
technical contributions post-migration to CI/CD practices.

2. Following the CI-CD life cycle
Alya’s development process follows the standard CI/CD

life cycle, involving phases like planning, coding, building,
testing, releasing, deploying, operating, and monitoring.
Continuous Integration (CI), from planning to testing, in-
tegrates new code changes iteratively, promoting collab-
oration and early issue detection. Conversely, Continuous
Deployment (CD), from release to monitoring, deploys code
changes sequentially after thorough testing, ensuring system

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02464 and of the Proceedings 10.34734/FZJ-2025-
02175.
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stability and performance. This approach ensures a system-
atic and controlled roll-out of updates, minimizing disrup-
tions and deployment risks. The workflow is summarized in
Figure 1.

Our CI/CD process centers on a GitLab instance serving
as the core of our workflow. During the plan phase, we
utilize GitLab’s issue functionality to outline specifications
and facilitate collaboration, ensuring thorough documenta-
tion. In the code phase, developers leverage GitLab’s merge
request features, incorporating Git’s commits and branches
for seamless code review and version control, in line with
the GitLab flow.

The build and test phases are crucial parts of the GitLab
CI pipeline, triggered automatically by merge request com-
mits. This pipeline, outlined in the repository’s .yaml file,
coordinates stages containing one or multiple jobs executed
by GitLab runner services. These phases are merged into
unified jobs, improving efficiency through shared docker and
staging environments. Initially, tasks involve building and
testing within docker environments, followed by compiling
and executing unity and smoke tests to ensure regression
absence. Additionally, new builds are promptly incorporated
when required by code changes. The build phase is con-
trolled by CMake, while CTest manages test execution.

Subsequently, the pipeline advances to the build and
testing phases within staging environments, covering BSC
HPC platforms MareNostrum IV, Power-CTE, and AMD-
CTE1. To streamline this process, we’ve developed squidi-
ent2 as a custom build and test manager, specifically adapted
to Alya. This tool handles build configurations, interfaces
with HPC machines, and utilizes slurm for scheduling tasks
across platforms. After builds, the pipeline executes unity

1https://www.bsc.es/marenostrum/marenostrum/technical-information
2https://alya.gitlab.bsc.es/alya/ci-cd/squidient
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plan code docker build+test staging build+test

code coveragereleasedeployoperatemonitor

Figure 1: Simplified CI/CD workflow.

and smoke tests, followed by comprehensive regression test-
ing. Post-evaluation, squidient compares results with refer-
ence files, considering tolerances set by test designers to
ensure simulation output integrity and accuracy. Utilizing
Intel PGO (Profile-Guided Optimization) provides valuable
insights into code coverage post-squidient execution. This
analysis helps evaluate the extent to which unity, smoke, and
regression tests cover new contributions.

Following a DevOps approach, developers test their con-
tributions. If failures occur in the build-test phases in either
the docker or staging environment, we reset the cycle iter-
atively until issues are resolved. For code coverage, strict
guidelines are enforced to ensure thorough testing and pre-
vent regressions. New tests must cover changes, validating
functionality and integrity. Additionally, overall code cov-
erage should remain stable, except during specific circum-
stances like refactoring or cleaning, ensuring the testing suite
evolves with the codebase, enhancing resilience and efficacy
over time.

The completion of the CI cycle signifies the acceptance
of the merge request, marking it as a release of the proposed
changes into the main repository branch.

The subsequent deployment process involves provision-
ing Alya on MareNostrum IV, orchestrated by squidient and
initiated by the GitLab CI pipeline of the main branch. As
for during the build and test phases, squidient operates on
a GitLab runner. This time, it compiles and installs Alya,
and generates the corresponding slurm modules. The generic
jsonconfiguration management of squidient facilitates the
addition of new deployment platforms, provided they can be
accessed via SSH and utilize slurm as the job manager.

During the operate phase, we gather feedback from
developers and simulation users, creating a feedback loop
for issue identification and improvement suggestions. We
conduct benchmarks using the CI pipeline and squidient,
covering aspects like I/O operations, kernel features, and
solver performance. Utilizing the TALP library [2], we
collect metrics such as load balancing and communication
efficiency, which product is the parallel efficiency.

In the monitoring phase, our visualization tool, rooster
[3], aids in presenting metrics and conducting analysis over
time. Through rooster, we monitor performance indicators,
detecting anomalies indicating underlying issues, which may
stem from machine-related factors or programming errors.

Conversely, rooster tracks instances of improvement, of-
fering insights into optimization efforts and code enhance-
ments.

3. Results
In the plan phase, since migrating to GitLab in 2020,

we’ve handled a total of 2042 issues, resolving 1909 of
them and leaving 133 still active. These issues led to 1796
merge requests, with 547 abandoned and 1221 successfully
merged. On average, there are 40 active merge requests,
with 9.2 commits daily over the past 2000 commits, con-
tributed by 28 active authors. In the build phase, our focus
is on application stability and portability. We evaluate 17
combinations in docker environments and execute 34 build
combinations across three HPC machines (Intel, IBM, and
AMD architectures), covering Intel, GNU, NVHPC/PGI, and
IBM compilers and debug options, ensuring compliance with
standard Fortran 2008 and validating external component
integration. We perform 130 unity tests and smoke tests,
along with up to 632 tests during regression testing for each
build. Code coverage has increased significantly from 16%
to 45% over four years. Regarding CI pipeline performance,
the Docker build+test phase takes one to two hours. The
GitLab runners are executed on two personal computers,
each equipped with an Intel i7 processor with 16 cores and
32 GB of RAM. Due to the simultaneous builds, Alya is
compiled using only one process, which likely accounts for
the prolonged compilation time. The staging phase extends
up to 375 minutes. The entire pipeline, consisting of 56
jobs, runs for 540 minutes, allowing approximately 2 merge
requests to be merged per day. The performance metrics
collection and visualization tool rooster effectively monitor
Alya’s performance. An example of the improvement in a
cough simulation [4], one of the benchmarks used to monitor
Alya, is visualized with rooster following the vectorization
of the velocity correction (Figure 2).

4. Conclusion and future works
In summary, our paper demonstrates the successful im-

plementation of CI/CD methodologies for Alya, a CFD
simulation code with strong HPC capabilities. Prioritizing
stability, reproducibility, and reliability, our framework has
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(a) Before vectorization. (b) After vectorization.

Figure 2: Sunbursts of the cough simulation showing the execution time improvement thanks to the vectorization of the velocity
correction.

shown significant progress. Efficient issue resolution and
improved collaboration in the planning phase have enhanced
developer teamwork. The rise in code coverage and op-
timized collaboration underscore our approach’s effective-
ness. Tools like rooster aid in performance monitoring, en-
suring Alya’s ongoing enhancement and reliability in HPC-
based CFD simulations.

In the future, we aim to streamline the CI pipeline,
focusing on reducing merge request times. We’re exploring
branch-level workflows to optimize resource allocation and
plan to integrate AI algorithms for smarter build and test
selection. Additionally, we’re working on collecting hard-
ware counters to detect machine-related deviations during
monitoring.
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A B S T R A C T
Floating-point accuracy is an important concern when developing numerical simulations or other
compute-intensive codes. Tracking the introduction of numerical regression is often delayed until it
provokes unexpected bug for the end-user. In this paper, we introduce Verificarlo CI, a continuous
integration workflow for the numerical optimization and debugging of a code over the course of its
development. We demonstrate applicability of Verificarlo CI on two test-case applications.

1. Introduction
Despite Floating-point (FP) accuracy being a known

issue [1], modern tools for software development do not
provide automated numerical accuracy regression tests. To
fill this need, we propose Verificarlo CI (Continuous Integra-
tion). GitHub and GitLab are popular platforms for develop-
ing software, and both have features for CI. CI services are
triggered on specific events, such as merging a pull request.
Verificarlo CI is designed to be integrated with them, but it
can also be used with custom workflows.

To facilitate its adoption, Verificarlo CI has been de-
signed to be easy and fast to deploy, while still being flexible
enough to be relevant for most applications. We provide the
user with a simple API to insert FP probes in their tests,
execute them with Verificarlo, setup CI Actions, and finally
access and interpret the results.

Finally, we demonstrate Verificarlo CI on two use-cases:
exploring reduced mixed-precision in the Nekbone CFD
proxy application; tracking numerical bugs during the de-
velopment of a the Quantum Monte Carlo Chemistry Kernel
library (QMCkl).

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02465 and of the Proceedings 10.34734/FZJ-2025-
02175.
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2. Verificarlo CI for numerical correctness
Verificarlo [2] is a tool based on the LLVM compiler

framework modifying at compilation each floating point
operation with custom operators. After compilation, the
program can be linked against various backends to explore
FP related issues and optimizations. The latest version of
Verificarlo fully supports OpenMP and MPI parallel pro-
grams.

Verificarlo computes the number of significant bits to
evaluate the numerical accuracy of a computation. It cap-
tures the number of accurate bits in the FP mantissa against
a chosen reference. Unfortunately, an exact reference value
is not known beforehand for many complex programs or
intermediate computations. To overcome this problem, Ver-
ificarlo uses Monte Carlo arithmetic (MCA) [3], a stochastic
method that can simulate numerical errors and estimate the
number of significant bits directly: the result of each FP
operation is replaced by a perturbed computation modeling
the losses of accuracy. From a set of MCA samples, it is
possible to estimate the significant bits of a computation,
𝑠2 = − log2 |𝜎∕𝜇|, where 𝜎 and 𝜇 are the sample’s standard
deviation and mean [4].

Verificarlo includes six backends, which are extensively
documented in the user manual. The two most important
backends are: the MCA backend, described previously, and
the VPREC backend that emulates the effect of using mixed-
precision in a program [5].

Verificarlo CI automates numerical accuracy tests by
using a separate Git branch to store test results. Whenever
users make modifications to the main branch, a remote
runner carries out predefined tests and uploads the results
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to the CI branch. Users can view their results dynamically
using a simple web server.

Verificarlo CI offers a command-line interface that helps
configuring the CI pipeline on a given application and hooks
it up to a GitLab or GitHub repository : it automatizes the ini-
tial setup by creating both the CI pipeline and the dedicated
results branch. Users are then free to further customize their
pipelines.

Developers use a dedicated C or Fortran API to include
probes in their code. Each probe is associated with a test
and a variable name. During testing, the probe measures the
accuracy of a chosen variable. Optionally, an alert can be
triggered if the relative or absolute error exceeds a user-set
threshold. In the below C example, the probe is identified by
the "test"/"var" couple, and an absolute error threshold is set
to 0.01:
vfc_probe_check(probes , "test", "var", var , 0.01);

In order to be able to run the tests, Verificarlo CI requires
a description of the tests and backends to run. It is specified
in a JSON configuration file which supports complex test
setups. The test results are exported to an HDF5 file, a
hierarchical format commonly used in HPC applications.
Test results are stored on the dedicated CI branch, allowing
robust archival. The HDF5 files can optionally embed the
raw test results. In the default CI workflow, this raw data is
stored as a job artifact and accessible for a limited time, to en-
able user defined additional analysis. Finally, Verificarlo CI
analyzes the data and generates dynamic reports organized
into different views: temporal, cross-test, or cross-variable
comparisons and accuracy violations.

3. Mixed-precision for Nekbone proxy
application
Nek50001 is a high-order solver for Computational Fluid

Dynamics (CFD) based on the Spectral Element Method
(SEM) that solves the Navier-Stokes equation for incom-
pressible flow. Nekbone is a proxy application for Nek5000
that focuses on important computational and scaling aspects
of the entire solver. We used the VPREC backend to examine
precision appetites in Nekbone using the polynomial degree
of 10 and different number of elements. The results of
tracking the residual of the Conjugate Gradient (CG) solver,
see Fig. 1, suggest a possibility of using as little as 16 bits of
mantissa (the beginning of the plateau) and still being able to
converge, while the original version relies on FP64 (double
precision) with 52 bits of mantissa. We verified this assump-
tion with the MCA backend, confirming such a possibility for
the precision reduction to single in the CG solver on CPUs.

1https://nek5000.mcs.anl.gov/ and https://github.com/Nek5000/Nekbo
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Figure 1: Examining precision needs in Nekbone for various
numbers of elements: the residual (𝐿2 norm) in CG.

Recently, following this precision inspection, we modified
Nekbone to support mixed single-double precision and we
were able to reduce the time-to-solution by 34%. Once a
suitable precision is found, a Verificarlo CI probe can be
inserted in the code, to automatically monitor the residual
error of each subsequent code version.

4. Tracking accuracy in the QMCkl library
The Sherman-Morrison-Woodbury (SMWB) kernel was

developed as part of the QMCkl library2, an open-source
library of highly-optimized building blocks for implement-
ing Quantum Monte Carlo methods in the TREX European
Center of Excellence.

Given a matrix𝐴 and its inverse𝐴−1, Sherman-Morrison
(SM) is a formula to efficiently compute the inverse after a
rank-1 update 𝑢𝑣𝑇 on 𝐴

(𝐴 + 𝑢𝑣𝑇 )−1 = 𝐴−1 − 𝐴−1𝑢𝑣𝑇𝐴−1

1 + 𝑣𝑇𝐴−1𝑢
. (1)

This formula can be generalized for rank-𝑘 updates using the
Woodbury (WB) formulation [6]. In WB, the denominator of
SM is replaced by the inverse of a small square 𝑘×𝑘matrix.
For 𝑘 = 2 and 𝑘 = 3, WB is expected to be faster than

2https://github.com/TREX-CoE/qmckl
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iterating 2 or 3 times with SM. QMCkl implements different
algorithms to apply SM with a set of updates (𝑢𝑗 , 𝑣𝑗), for
𝑗 = 1, ..., 𝑚. The naive approach, SM1, applies these updates
in sequence.

Depending on the updates ordering, the SM denominator
can be close to zero, meaning that the matrix 𝐴 becomes
singular. This makes the method numerically unstable. A
refined algorithm using Slagel splitting [7] is called SM2.
Below a minimum threshold for the denominator, the update
is split in two, the first half is applied, and the second half
enqueued with remaining updates.

To implement the Woodbury formula, blocks of rank-
3 and rank-2 updates are built. If the intermediate matrix
update is singular, the corresponding updates are split with
SM2. This method is called SMWB. Since SMWB changes
the order of operations, one must ensure that the numerical
accuracy is preserved compared to SM2.

SM1 SM2 SMWB
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Figure 2: Significant bits of Frobenius norm, for all datasets
and algorithm combinations, for commit 6f282, grouped by
algorithms. SMWB fails catastrophically in some cases.
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Figure 3: Significant bits of Frobenius norm, for our different
algorithms, over commits for dataset 4263. SMWB’s accuracy
improves after the fix.

To track the accuracy of these algorithms during de-
velopment with Verificarlo CI, we use a large number of
datasets from a QMC=Chem [8] use case on Benzene. All
datasets are run with all algorithms in MCA mode. The main
development branch in the repository was instrumented with
probes identified with dataset number / algorithm couples
allowing a factored analysis in the dynamic reports. Finally,
we set up a CI branch using the command-line helper to track
accuracy on the main development branch, from which Fig. 2
and Fig. 3 were generated.

During the development of SMWB, the run inspection
report, reproduced in Fig. 2, highlighted some outputs for
which SMWB fails with a high error under the MCA back-
end. After investigation, we discovered that in the initial
implementation of SMWB, delayed updates were directly
applied after each WB step. This reduces the numerical
stability because it increases the probability of producing
singular intermediate matrices. It was fixed in commit 67f53
by moving all the updates to the very end of the update queue
as shown in Fig. 3, obtained from the temporal view.

5. Conclusion
Verificarlo CI automates numerical accuracy tests within

a continuous integration workflow: it grants users the ability
to define such tests. It provides an easy way to visualize
results throughout the development process of a code. Better
integration of numerical checks in the CI process saves
developers precious time to focus on their area of expertise.

Verificarlo CI has been used in the context of TREX
and CEEC EuroHPC JU Centers of Excellence to detect
numerical regressions, pin-point faulty commits, and predict
the effect of mixed-precision. A tutorial demonstrating its
use is available on GitHub3. Furthermore, we believe that
using such a tool as a part of the regular CI/ CD process
would help for early stage identification of numerical bugs
and re-ensuring numerical reliability of codes.
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A B S T R A C T
Accelerators are essential for achieving optimal performance and energy efficiency in computing.
However, market segmentation often leads to language lock-ins, limiting flexibility across accelerators
and increasing development costs. To address this, alternatives like SYCL or OpenMP have emerged,
enabling code portability across diverse hardware platforms. The study reveals that while both
OpenMP and SYCL demonstrate comparable performance to native languages on NVIDIA and Intel
GPUs, SYCL significantly outperforms OpenMP on AMD platforms. These findings underscore the
potential of multi-device and open languages in enhancing performance and reducing development
overhead in parallel CFD simulations.

1. Introduction
Hardware acceleration is a crucial component in the

quest for enhanced performance and energy efficiency. How-
ever, due to market segmentation, many accelerators (e.g.,
GPUs) suffer from language lock-ins (e.g., CUDA, HIP),
restricting the use of the same language across multiple
vendor accelerators [1]. Moreover, CI/CD pipelines would
be compromised by these practices, as maintaining multiple
pipelines for each architecture would be error-prone and
increase the complexity of the process. CD would require
maintaining multiple implementations of the same algo-
rithm in different languages. CI would also be tied to each
language, as each language is tied to its own compiler [2].
To address these issues, various alternatives have emerged,
such as OpenCL, SYCL, or OpenMP. These languages have
the capability to run on multi-vendor accelerators such as
CPUs or GPUs while using the same code.

Computational Fluid Dynamics (CFD) is a powerful
tool for simulating complex environments such as turbo-
machinery, aerodynamics, or heat transfer. CFD simulations
were traditionally performed on CPUs and distributed across
clusters using MPI. Due to the inherently parallel nature of
CFD, GPU acceleration is key to leveraging performance
and energy efficiency. However, some areas of CFD, such

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02466 and of the Proceedings 10.34734/FZJ-2025-
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as particle simulation, still remain mostly implemented on
the CPU [3].

This paper presents a suite of benchmarks for testing
CFD codes on NVIDIA, AMD, and Intel GPUs. We com-
pare the native language of each platform with the portable
languages OpenMP and SYCL.

The following paper is structured as follows: In Sec. 2,
we present the environmental conditions and methods used
in the experiment. Section 3 describes the results obtained
and discusses them.

2. Methods
The experiments were conducted using the GPUs listed

in Tab. 1. The selected GPUs cover NVIDIA, AMD and Intel
architectures. While the table specifies the driver used for
each GPU, it is worth mentioning that the V100 employs the
CUDA 12.4 toolkit, the RX 6700XT is powered by ROCm
5.4.3, and the Max 1100 is integrated with oneAPI 2024.1.

Transitioning to portable languages (OpenMP & SYCL),
it is worth distinguishing each one. While OpenMP is sup-
ported in all the previously mentioned toolkits. SYCL is
supported by the oneAPI’s compiler and is suitable for
NVIDIA and AMD GPUs.

Regarding the benchmarks, we employed a set of eleven
CFD codes combined with common CFD equations. For the
sake of space, we are not providing detailed descriptions
and parameters of the benchmarks here. Instead, we strongly
recommend that readers refer to the repository where this
information is provided1. Concerning the benchmark im-
plementation of each language and how we keep them as
similar as possible, the baseline implementation was CUDA.

1The repository used can be found at: https://github.com/A924404/

cfd-bench
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NVIDIA Tesla V100 AMD RX 6700 XT Intel Max 1100
Frequency
(GHz) Up to 1.38 Up to 2.58 Up to 1.55

Cores 80 SM 40 CU 56 Xe cores
Perf. (FP64) 7.06 TFLOPS 0.825 TFLOPS 22.22 TFLOPS

Driver 550.54.14 5.18.3
23.52 (ocl)
1.3 (level0)

Table 1
Specifications of the GPU used in the experimentation.

Translating the code to HIP was achieved using the HIPIFY
tool2 Since OpenMP syntax is quite different from the other
employed languages and there is no official tool to port it,
the port was done manually to be as similar as possible to
the CUDA code. Once the OpenMP code was delivered, it
was compiled for each architecture using the vendor com-
piler for that architecture. Finally, SYCL code was mainly
ported using the SYCLomatic tool3. In this case, SYCL code
was always compiled for all architectures using the oneAPI
compiler.

3. Experimental Results and Results
Discussion

3.1. Results
Reviewing Fig. 1 for the Tesla V100, CUDA serves as

the native benchmark. SYCL fails to run the miniWeather
benchmark due to an issue related to its interaction with MPI.
In the case of OpenMP, the d3q19-bgk test was not imple-
mented in the original suite. SYCL averaged 91% of CUDA
performance, while OpenMP reached 80%. Depending on
the benchmark, these percentages may vary.

Figure 2 shows results from the AMD 6700 XT. The
native implementation for AMD GPU is HIP. While both
HIP and SYCL ran all benchmarks, OpenMP failed the lid-
driven-cavity test, the main issue found relies on memory
allocation. While HIP and SYCL are able to allocate the
amount of memory required by the benchmark, OpenMP do
not. The results show poor performance on AMD architec-
ture. OpenMP achieves only 51% of HIP times on average,
while SYCL reaches up to 66% of native performance.
The standard deviation (SD) for OpenMP is 44% and for
SYCL it is 35%. SYCL’s performance on AMD is primarily
affected by the adv and miniWeather tests, but removing
them increases performance to 81% with an SD of 19%.
OpenMP’s issue is spread across all benchmarks.

Finally, the Intel Max 1100 results are shown in Fig.3.
SYCL runs on two backends: Level0 and OpenCL, both
maintained by Intel with no notable differences expected. In

2https://github.com/ROCm/HIP?tab=readme-ov-file.
3https://github.com/oneapi-src/SYCLomatic
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Figure 1: NVIDIA Tesla V100 performance comparison across
CUDA, OpenMP, and SYCL.
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Figure 2: AMD RX 6700 XT performance comparison across
HIP, OpenMP, and SYCL.
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CUDA HIP SYCL OpenMP
Cuda ptx 33,455 - 46,259 144,999
Amdgcn - 23,757 43,321 132,692

Table 2
Total assembly code lines by language and architecture.

this instance, all three implementations failed to execute the
miniWeather mini-app due to MPI call incompatibilities in
the system, unrelated to the languages used, but rather due to
the absence of an MPI installation. Additionally, the authors
did not have root access to the system employed for Intel
GPUs.

Regarding the numbers and SYCL, both backends are
virtually equivalent in performance, achieving an average
speedup of ×1. Transitioning to OpenMP, it shows a slight
speedup over the SYCL equivalents, averaging ×1.05.
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Figure 3: Intel Max 1100 performance comparison across
SYCL(Level0), SYCL(OpenCL), and OpenMP.

3.2. Discussion
Open and portable languages such as SYCL and OpenMP

are promising in scenarios where changing GPUs neces-
sitates completely altering the underlying source code and
CI/CD pipelines due to vendor lock-ins. In performance
results, SYCL has shown a performance comparable to
NVIDIA’s (10% difference). However, when moving to
AMD GPUs, the performance is degraded due to the imma-
turity of the language on this platform. SYCL is also a native
language for Intel GPUs, allowing for highly optimized
performance. Regarding OpenMP, we found mixed results.
On Intel platforms, there is no performance loss, while on
NVIDIA, the gap is approximately 20%, and on AMD, it
is around 50%. Both SYCL and OpenMP are ultimately

translated into native assembly code that the GPU executes.
Therefore, the efficiency of translating high-level code to
low-level code is crucial for achieving performance. Table 2
shows the number of assembly lines into which the target
languages are translated4. Generally, more lines imply more
time for the GPU to run them. For CUDA PTX, SYCL
employs 27% more code, while OpenMP uses 77% more.
For Amdgcn, SYCL uses 45% more assembly code, and
OpenMP uses up to 82% more.
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A B S T R A C T
This study compares various major Computational Fluid Dynamics (CFD) solvers used in High-
Performance Computing (HPC) environments, focusing on their structures and communities. The
findings reveal common patterns in the strategies employed to address technical debt in HPC. Multiple
code quality evaluation (codemetrics) approaches are utilized in this research, tailored to accommodate
the specific constraints of the HPC domain, thereby examining both technical and human factors
involved.

1. Introduction
In High-Performance Computing, as the hardware e-

volves rapidly without reaching complete standardization,
the cost incurred by code development and aging - technical
debt - keeps increasing. Additionally, achieving full maturity
in the validity and performance of software is harder. This
redirects experts’ focus on these aspects at the expense of
technical debt. In areas such as physical modeling, numer-
ical methods, applied mathematics and high-performance
computing, the expertise needed to develop and master a
code requires more time than ever and more specialized
skills. This makes any waste of experts time even more
unacceptable.

Regarding the HPC domain, Reed et al. [1] suggested
that high-performance technologies evolve faster than peo-
ple can keep up with. For example, GPU-powered (Graphics
Processing Unit) supercomputers have experienced notable
prominence since 2010, yet many legacy-HPC applications
born before this era are still figuring how to adapt to GPU-
based supercomputers at an affordable cost. Meanwhile,
Codemetrics - a set of measurements that estimates code
complexity - are useful to provide accurate information to
development teams. Codebase analysis isn’t the only focus
of Codemetrics [2, 3]. Indeed, Codemetrics also target the
team involved [4]: their perception of the code, how they
navigate and retrieve information from it.
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2. Codemetrics
Codemetrics is a recent field of investigation, well-

established in mainstream software development but seldom
applied to HPC software. After a short state of the art on
the existing solutions, the need of HPC-specific codemetrics
will be detailed.
2.1. Existing solutions

While existing solutions address mainstream develop-
ment processes, particularly focusing on the detection and
management of complex segments. Additionally, some of
these solutions (CodeScene1, Doxygen2) offer graphical rep-
resentations of code: a network view that illustrates interde-
pendencies within the codebase.

These tools, such as those provided by SonarSource3,
Understand4 and CodeScene, enable users to gain qualitative
insights such as maintainability, duplication rate, coverage
of their codebases. Codee5, offers solutions tailored to the
unique challenges posed by legacy systems. Indeed, dif-
ferent coding standards and versions of coding languages
are covered. These type of tools have already been used
in academic studies [5, 6] by bridging the gap between
the metric computed and the overall perception of a set of
developers towards given code snippets.
2.2. Why HPC need tailored codemetrics

Regrettably, mainstream codemetrics yield highly unfa-
vorable results when applied to HPC software. A codebase
originating in the 1990s, amalgamating the efforts of numer-
ous PhD students, and continually adjusted to keep pace with

1https://codescene.com
2https://doxygen.nl
3https://www.sonarsource.com
4https://scitools.com
5https://www.codee.com

111



T. Marzlin & A. Dauptain: Comparing Several HPC CFD Software Through Codemetrics: A Case Study

Figure 1: The lines of code of the HPC-CFD solver SATURNE (left) and AVBP (right) are stacked over time, colored by the
date of the edition.

the latest hardware advancements, inevitably exhibits sig-
nificant complexity, limited contributor engagement, code
bloat, and instances of dead code, among other issues.

The current approach concentrates on well-established,
and consequently successful, HPC Computational Fluid Dy-
namics (CFD) software, assessed through codemetrics. To
the best of our knowledge, there has been no systematic
comparison between communities and projects within the
HPC realm.

A community-aware analysis will be employed to elu-
cidate the human aspect of the development process. The
technical debt of HPC codes will be evaluated from both a
historical standpoint and a structural perspective.

First of all, with the use of Git platform (Versioning
Control System) the in-house tool: Anubis6 is giving access
to the history of the codebase and its evolution. It allows for
a deeper understanding of developers’ relationships with the
codebase, as well as providing a visualization of workforce
dynamics.

A loop processes each month’s version of the code
using git checkout, building a database of various quanti-
ties of interest : authors, commits by authors, complexity,
and branches deltas. For the 20+ years of the code’s exis-
tence (AVBP), this loop takes approximately ten hours to
complete. Afterward, customizable reports on several code
metrics can be generated.

Figure 1 illustrates the growth of the codebase for two
mature HPC codes, SATURNE and AVBP. While AVBP
shows several strong refactoring in its history, SATURNE
exhibits a continuous and steady evolution.

A second tool: Maraudersmap7 create a geographical
representations of the codebase. Through the depiction of a
Callgraph, which illustrates a network of code blocks and

6https://gitlab.com/cerfacs/anubis
7https://gitlab.com/cerfacs/maraudersmap

their interdependencies, we can discern inadequate struc-
tural practices and streamline the tracking of complexity,
size, and dependencies.

For a 500,000-line Fortran codebase, it takes 3 minutes
to clean the CPP directives, analyze the code structure,
and build the call graph connectivity. The tool then offers
various features to filter the graph, collapse abstractions
(such as objects and methods) into single nodes, and color
by structure, complexity, or custom string patterns.

Figure 2 shows the general overview of two large CFD
solvers SATURNE and AVBP. The most striking difference is
SATURNE using a large unified interface "bindings" where
AVBP is relying on a procedural "Main" structure. Several
filtering were used in both cases to untangle the callgraphs
to this point.
2.3. Case studies

The primary objective is to gather data from authentic
projects encompassing diverse HPC codes characterized by
varying standards, teams, and management approaches. Ul-
timately, the goal is to uncover commonalities among these
communities to pinpoint the most effective and enduring
strategies employed by teams in the HPC field. Naturally, a
wide array of development standards were observed. Legacy
systems frequently keep parts written in older versions of
programming languages such as Fortran 77 and 90.

Nine large codes (> 100𝑘 lines) have been analyzed:
Alya, AVBP, Yales2, Neko, NekRS, Nek5000, MesoNH,
Oasis-MCT, Saturne. These comparisons yield valuable
insights into how a code evolves and is monitored over time.

A comprehensive discussion of the results is beyond
the scope of this abstract. However, this exercise yielded
significant feedback from the communities involved. Many
groups highlighted the importance of monitoring the impact
of code abstractions. Specifically, hardware-agnostic HPC
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Figure 2: General, filtered, callgraphs of CFD HPC codes SATURNE (left) and AVBP (right), both featuring a large amount of
physical modeling. Arbitrary colors are denoting main folders.

libraries like Kokkos are used through templates, which has
consequently increased the learning curve for newcomers.

3. Conclusion
This work demonstrates the need of an initial implemen-

tation as well as early results from decision-making tools
designed to address technical debt in High-Performance
Computing (HPC) software. Augmented call graphs signifi-
cantly improve training, code reviews, refactoring, and flaw
detection. The subjective nature of code metrics is mitigated
by observing their long-term evolution, providing histori-
cal context that facilitates team discussions and decision-
making.

Future publications will include rigorous quantitative
comparisons across multiple codes for deeper insights. Our
ongoing research will also develop new complexity indica-
tors for HPC, such as a ’structural complexity’ index for
abstraction layers and a ’preprocessing index’ for CPP di-
rectives, to better manage template programming and legacy
code maintenance.

Acknowledgements
Funded by the European Union. This work has received

funding from the European High Performance Computing
Joint Undertaking (JU) and Germany, Italy, Slovenia, Spain,
Sweden, and France under grant agreement No. 101092621.

Disclaimer
Funded by the European Union. Views and opinions

expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the Euro-
pean High Performance Computing Joint Undertaking (JU)
and Germany, Italy, Slovenia, Spain, Sweden, and France.
Neither the European Union nor the granting authority can
be held responsible for them.

References
[1] D. Reed, D. Gannon, J. Dongarra, Reinventing High Per-

formance Computing: Challenges and Opportunities (2022).
arXiv:2203.02544.

[2] T. McCabe, A Complexity Measure, IEEE Transactions on
Software Engineering SE-2 (4) (1976) 308–320. doi:10.1109/

TSE.1976.233837.
[3] A. Tornhill, Your Code as a Crime Scene, Pragmatic

Bookshelf, 2024.
URL https://www.adamtornhill.com/articles/crimescene/

codeascrimescene.htm

[4] S. Himayat, D. J. Ahmad, Software Understandability using
Software Metrics: An Exhaustive Review, SSRN Electronic
Journal (2023). doi:10.2139/ssrn.4447189.

113



T. Marzlin & A. Dauptain: Comparing Several HPC CFD Software Through Codemetrics: A Case Study

[5] M. Esposito, A. Janes, T. Kilamo, V. Lenarduzzi, Early Career
Developers’ Perceptions of Code Understandability. A Study
of Complexity Metrics (2023). arXiv:2303.07722.

[6] L. Lavazza, S. Morasca, M. Gatto, An empirical study on
software understandability and its dependence on code charac-
teristics, Empirical Software Engineering 28 (6) (2023) 155.
doi:10.1007/s10664-023-10396-7.

114



ParCFD2024
35𝑡ℎ International Conference on Parallel Computational Fluid Dynamics

Sep. 02-04, 2024, Bonn, Germany

Enabling Lighter and Faster Simulations With Repeated Matrix Blocks
Josep Plana-Riua,∗, F. Xavier Triasa, Guillem Colomera, Ádel Alsalti-Baldelloub,
Xavier Álvarez-Farréc and Assensi Olivaa

aTechnical University of Catalonia, ESEIAAT, Heat and Mass Transfer Technological Centre, Carrer de Colom 11, 08222, Barcelona, Spain
bUniversity of Padova, Department of Information Engineering, Via Giovanni Gradenigo, 6b, 35131, Padova PD, Italy
cSURF, High-Performance Computing and Visualization Team, Science Park 140, 1098 XG, Amsterdam, The Netherlands

A R T I C L E I N F O†

Keywords:
Sparse Matrix-Vector Product;
Sparse Matrix-Matrix Product;
Arithmetic Intensity;
High Performance Computing

A B S T R A C T
When pushing towards lighter and faster Computational Fluid Dynamics simulations, the contribution
and construction of every component should be considered. The sparse matrix-vector product (SpMV)
is the most expensive kernel among all operations. In some situations, e.g, with spatial reflection
symmetries, the sparse matrices have some repeated blocks that could be exploited for better
performance. By transferring the repeated blocks only once, the amount of data to transfer is reduced,
and thus, the memory footprint of the simulation will be reduced. Moreover, with this framework, the
SpMV is transformed into a sparse matrix-matrix product (SpMM), reducing the memory footprint and
speeding-up the simulation. The method is tested in a differentially heated cavity in order to test the
performance gains with the use of the SpMM compared to the use of a SpMV.

1. Introduction
Pushing toward bigger and bigger simulations of the

incompressible Navier-Stokes equations requires an increase
in the computational power available in high-performance
computing (HPC) systems. Nonetheless, as these cases re-
quire a lot of memory and data transfer, it is not only the
time spent computing that is relevant. Yet, the time spent
in data transferring becomes the most relevant part of the
time budget of the simulation, leading to what is known as a
memory-bound process [1].

If the Navier-Stokes equations are solved numerically,
it is straightforward to divide the operations into the well-
known sparse matrix-vector product (SpMV), the dot product
(dot), the linear combination of vectors (axpy), and the
element-wise product of vectors (axty). These operations
appear naturally in an algebraic approach, yet in stencil-
based approaches these operations are implemented based
on nested mesh-loops.
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SpMV, being the most computationally expensive oper-
ation, requires transferring the data of the sparse matrix
and the data of the whole full vector. This implies that the
amount of data to be transferred for bigger simulations takes
a relevant time compared to the time spent executing the
operation. In this sense, some conditions might be exploited
to transfer a smaller amount of data, either in the matrix, in
the vector, or both. This implies that the kernel’s arithmetic
intensity (AI), defined as the ratio of the computing load and
the data transferred, is low. Other techniques as the presented
by Greathouse and Daga [2] for GPU compute units aim to
improve the performance of SpMV by mapping properly the
loads of the sparse matrix, leading to remarkable speed-ups
compared to the original CSR-based algorithms.

For instance, Krasnopolsky [3] developed the concept of
solving 𝑛 flow states simultaneously to later on ensemble
averaging the results of these flow states. In this paper,
the SpMV operations were translated to sparse matrix-matrix
products (SpMM) to all the 𝑛 flow states simultaneously as
a single operation. By doing so, the amount of data to be
transferred compared to running 𝑛 times the simulation was
reduced, as the sparse matrix was only transferred once. By
doing so, the AI would increase notably, as the amount of
computations would be preserved while the amount of data
transferred was reduced.

Later on, Alsalti-Baldellou et al. exploited the domain’s
symmetries [4] or repetitions [5] to reduce the matrix’s size
to transfer by splitting the domain in the inner cells within
the symmetric part and the bounds between every symmetric
contribution. By doing so, the number of right-hand sides
(RHS), i.e., the number of columns in the full matrix, would
be 2𝑑 , being 𝑑 the number of symmetries in the domain.
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While in the former, the methodology was only applied
in the solution of the linear system of equations of the
projection method, and no results in the speed-up of SpMM

were presented, the latter applied this methodology to all the
SpMV operations within the simulation, i.e., in the use of the
gradient, divergence, and Laplacian operators.

Thus, the presented methodology can be applied in dif-
ferent situations apart from the ones previously mentioned:
ensemble averaging of the time averaged results of turbu-
lent flow simulations, application in domains with mirror
symmetries or repeated geometrical structures (e.g. wall
mounted cubes, wind farm), or parametric studies by chang-
ing relevant values in the simulations. Nonetheless, the
framework of this study is based on ensemble averaging the
solutions, following the works of Krasnopolsky [3].

2. Application to CFD simulations
Following the notation of Verstappen and Veldman [6],

the semi-discrete incompressible Navier-Stokes equations
read as follows for a staggered case,

𝑀𝐮𝑠 = 0, (1)

Ω
𝑑𝐮𝑠
𝑑𝑡

+ 𝐶(𝐮𝑠)𝐮𝑠 = −Ω𝐺𝐩𝑐 +𝐷𝐮𝑠 + 𝐟𝑠, (2)

where 𝑀 is the face-to-cell divergence operator, Ω = 𝐼3 ⊗
Ω𝑠, where Ω𝑠 is a diagonal matrix containing the staggered
volumes;𝐶 is the convective operator represented by a skew-
symmetric matrix given a symmetry-preserving discretiza-
tion; 𝐷 is the diffusive operator and 𝐺 is the cell-to-face
gradient operator, and 𝐟𝑠 represents the body forces.

More precisely, the tests were run in one high memory
node of MareNostrum5 supercomputer (2x Intel Xeon Plat-
inum 8480, 2x56 CPU cores) loading the node with around
400k cells per CPU core (46.65M cells), so that the largest
cases would fit in the nodes.

The time-integration scheme used was a Heun third-
order Runge-Kutta scheme (RK3) with a self-adaptive time
step size computed based on the eigenbounds of the convec-
tive and diffusive operators. The results were tested to be
independent of the scheme used.

The discretization scheme for the operators considered
only the first neighbor cell, leading to 7 non-zeros per
row in a three-dimensional case. Nonetheless, the Laplacian
operator for the Poisson equation was tested considering the
first neighbor (7p), a cross pattern (13p, 13 non-zero entries
per row), and a cube pattern (27p, 27 non-zero entries per
row). A two-dimensional representation of these stencils is
shown in Fig. 1.

The tests were run by setting a fixed number of iterations
in the Poisson solver solution. The speed-up was computed

as follows: considering the 𝑛 = 1 simulation as the baseline,
with a SpMV time 𝑇SpMV, the speed-up for a given 𝑛 with 𝑇SpMM(n)is determined by

𝑃𝑛,SpMM(𝑛) =
𝑛𝑇SpMV

𝑇SpMM(n)
. (3)

In this case, the tests will be applied to a differentially
heated cavity (DHC) setup with RAYLEIGH number Ra =
1010 and PRANDTL number Pr = 0.71 with aspect ratio
4 in a setup similar to Krasnopolsky [3] so that multiple
flow states, which correspond to 1, 2, 4, and 8 RHS, will
be launched simultaneously for a few iterations to compute
the speed-ups of the SpMM operations. A higher number of
non-zeros in the sparse matrix positively affects the speed-
ups obtained, as for 8 RHS, the speed-ups go from maximum
values of ≈2.5 to ≈3.5 for 7p and 27p, respectively.

Figure 2 presents the results for 150, 350, and 550
iterations per solution of the Poisson equation for all 7p,
13p, and 27p. The results in all three cases lay between the
theoretical upper and lower bounds, according to Alsalti-
Baldellou et al. [5]. It would be expected to obtain a slightly
better performance for a greater number of iterations as the
weight of the Poisson equation would rise in the overall wall
clock time. However, the relevance of a greater number of
iterations in the speed-up should decrease the bigger the
value.

The method has been tested as well for other cases such
as a turbulent planar channel flow of Re𝜏 = 180 with a
similar mesh and load, leading to equivalent results to the
presented in Fig. 2.

3. Conclusions
In this work, the speed-up analysis obtained in the use

of SpMM in simulations in which there are repeated matrix
blocks compared to the use of a single RHS (i.e., a SpMV)
is presented and compared against the theoretical upper and
lower bounds for three different configurations, presented in
Fig. 1: 7p, 13p and 27p.

It can be seen in Fig. 2 that the numerical speed-ups are
obtained between the theoretical upper and lower bounds,
being approximately equidistant to both bounds in all the
cases run for both DHC and CF. Moreover, it can be observed
that the denser the sparse matrix, the higher the speed-up,
leading to an increased interest in applying the method to
simulations in which the discretization is of a higher order,
i.e., with more non-zeros per row, compared to using only
the first neighbor, with 7 non-zeros per row.
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Figure 1: Two-dimensional representations of the stencil for 7p (left), 13p (center) and 27p (right). The shaded cells represent the
first neighbors in all representations.

Figure 2: Speed-up for the 7p (left), 13p (center), and 27p (right) discretizations for a given number of Poisson solver iterations
in the DHC case. The dashed line provides the upper bound of the speed-up, whereas the dot-dash line defines the lower bound,
according to Alsalti-Baldellou et al. [5].
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A B S T R A C T
This work assesses the feasibility of large-scale simulations for industrial applications using a
symmetry-preserving discretization method for unstructured collocated grids in LES of turbulent
flows. The method ensures stability without artificial dissipation and maintains portability through
minimal algebraic kernels. Key challenges are addressed, such as the low arithmetic intensity of sparse
linear algebra and efficient computation. A scalability analysis across MPI-only, MPI+OpenMP,
and GPU architectures demonstrates the method’s effectiveness in enhancing parallel efficiency and
supporting large-scale simulations.

1. Introduction
The continuous development of novel numerical meth-

ods, coupled with the rapid evolution of high-performance
computing (HPC) systems, has significantly expanded the
role of computational fluid dynamics (CFD) in various in-
dustrial applications. Despite these advancements, the de-
velopment of CFD faces persistent challenges. Early im-
plementations were hindered by the compute-bound limita-
tions of processors, which led to the adoption of compute-
centric programming models. Over time, processor designs
have evolved, addressing these limitations and resulting
in a mismatch between computational power and memory
bandwidth. This, in turn, forces the creation of complex
memory hierarchies, complicating the optimization of tra-
ditional programs. At the same time, the widespread use of
accelerators in diverse technological fields has driven the
rise of hybrid architectures, offering greater computational
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throughput while improving power efficiency in large-scale
applications [1]. However, this shift introduces a new chal-
lenge: ensuring the portability of legacy applications. This
challenge requires versatile software architectures and the
development of specialized APIs, such as CUDA, OpenCL,
and HIP [2, 3].

In this context, the conservative discretization method
for unstructured grids, as proposed by [4], has been adopted
and implemented under TermoFluids Algebraic (TFA)—our
in-house code based on an innovative algebra-dominant
framework, HPC2 [5]. This robust framework facilitates
seamless integration into open-source codes [6] and hybrid
supercomputing environments.

While computational power has improved, the time and
resources required for detailed simulations remain a signifi-
cant bottleneck. Achieving large-scale simulations is crucial
for meeting industry demands for rapid decision-making,
shorter product development cycles, and expanding CFD’s
industrial application fields. Thus, our research seeks to
ensure the integration of modern CFD methodologies into
industry practices, enabling precise and accurate simulations
of complex processes while efficiently utilizing available
resources and reducing simulation costs within limited time-
frames.

2. Portability for CFD
The construction of codes based on a minimal set of

algebraic kernels has become essential for ensuring porta-
bility, optimization, and ease of maintenance, particularly
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in light of the growing diversity of computational archi-
tectures and hardware vendors. The hybrid nature of mod-
ern high-performance computing (HPC) systems presents
additional challenges, as effective utilization of both pro-
cessors and parallel accelerators often requires heteroge-
neous computations and complex data exchanges. Tradi-
tional CFD codes, however, rely on intricate data structures
and specialized computational routines, which complicates
portability. To address this, algorithms centered on algebraic
kernels, such as the sparse matrix-vector product (SpMV),
linear combination of vectors (axpy), element-wise product
of vectors (axty), and the dot product, emerge as promising
solutions [5].

However, this approach introduces two primary chal-
lenges: (i) computational, particularly the low arithmetic
intensity of the SpMV operation. This limitation can be mit-
igated by employing the more computationally intensive
sparse matrix-matrix product (SpMM), which is advantageous
in various scenarios such as matrices �̂� ∈ ℝ𝑁×𝑁 that
can be decomposed as the Kronecker product of a diagonal
matrix, 𝖢  𝑑𝑖𝑎𝑔(𝒄) ∈ ℝ𝐾×𝐾 , and a sparse matrix, 𝖠 ∈
ℝ𝑁∕𝐾×𝑁∕𝐾 , i.e., �̂� = 𝖢⊗ 𝖠. The following transformation
is achieved:

 = �̂�𝒙 ⟹
(
 1,… ,  𝐾

)
= 𝖠

(
𝑐1𝒙1,… , 𝑐𝐾𝒙𝐾

)
, (1)

where 𝒙𝑖,  𝑖 ∈ ℝ𝑁∕𝐾 . Substituting SpMV with SpMM in such
cases significantly reduces memory access demands and the
memory footprint by reusing matrix coefficients. (ii) Algo-
rithmic challenges, such as redefining boundary conditions,
can be naturally addressed within an algebraic framework
using affine transformations, e.g.,

𝝋ℎ → 𝖠𝝋ℎ + 𝒃ℎ, (2)
which enables algebraic treatments suitable for both explicit
and implicit time integration methods [7].

Beyond portability, algebra-based CFD implementations
offer distinct numerical benefits. For example, they facilitate
the development of efficient CFL-like conditions, reducing
computational cost by up to 4x compared to classical ap-
proaches. The algebraic CFL method relies on constructing
stable eigenvalue bounds during preprocessing, requiring
only minimal vector updates over time [8]. Additionally, al-
gebraic frameworks allow for the streamlined incorporation
of advanced techniques such as flux limiters, yielding com-
pact and efficient implementations by utilizing incidence
matrices and local operations to control gradient ratios,
thus reducing the number of computing kernels required for
porting [9].

Building on these principles, the work in [10] proposed
an effective approach to accelerate Poisson solvers by ex-
ploiting domain symmetries. By carefully ordering the un-
knowns, SpMV operations could be replaced with SpMM, leading
to a 2.5x increase in the performance of compute-intensive
kernels while significantly reducing the solver’s memory
footprint and setup costs. This enhancement highlights the
potential of algebra-based methods for large-scale simula-
tions on diverse HPC architectures.

3. Algorithm scalability analysis
The objective of the numerical experiments is to evaluate

the performance and scalability of TFA’s base algorithm
under different parallel computing paradigms. Specifically,
we compare the performance of an MPI-only configuration –
where each CPU core is assigned a single task – against a
hybrid MPI+OpenMP configuration, which utilizes 2 MPI
processes and 56 multi-threaded executions per node. This
hybrid approach is intended to reduce communication over-
head by leveraging shared memory, which is particularly
advantageous in multicore environments. Furthermore, the
scalability of the code on hybrid HPC systems is analyzed,
taking advantage of TFA’s underlying structure, which is
based on minimal algebraic kernels. This architecture en-
ables broad portability across diverse GPU hardware using
the OpenCL API.

The numerical test case solves a turbulent channel flow
using a conjugate gradient solver with a Jacobi precondi-
tioner for Poisson’s equation, combined with an explicit
time integration scheme and a variable time step. Since the
primary objective is to assess the scalability of TFA+HPC2

kernels, each case is limited to 10 time steps, with 800 solver
iterations per step. The test problem is solved over the entire
domain without exploiting symmetries, thereby isolating the
key algebraic kernels – SpMV, axpy, axty, and dot product – for
performance measurement and analysis.

Strong scalability tests were conducted using both MPI-
only and MPI+OpenMP configurations on the MareNos-
trum 5 GPP supercomputer at BSC. The experiments were
run on nodes equipped with two Intel Xeon Platinum 8480+
processors (56 cores, 2 GHz, 105 MB L3 cache, and 307.2
GB/s memory bandwidth) with 256 GB of RAM, inter-
connected via ConnectX-7 NDR200 InfiniBand. Addition-
ally, GPU-accelerated tests were conducted on the Snel-
lius supercomputer at SURF, utilizing nodes with two Intel
Xeon Platinum 8360Y processors (36 cores, 2.4 GHz, 54
MB L3 cache, and 204.8 GB/s memory bandwidth), 512
GB of RAM and interconnected through dual ConnectX-6
HDR100 cards.

Figure 1 illustrates the strong scalability results for both
parallel paradigms using two baseline configurations: (i) a
single-node configuration (left plot) with a 305 × 480 × 350
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Figure 1: MPI-only vs. MPI+OpenMP strong scalability; with a 350×480×350 - 58.8M CVs - grid (left plot) and a 800×1470×800
- 940.8M CVs - grid (right plot).

grid and (ii) a 16-node configuration (right plot) with a 800×
1470×800 grid. Both configurations maintain a workload of
525k control volumes (CV) per CPU core. The results show a
marked super-linear speedup for hybrid MPI+OpenMP pro-
cesses, which can be attributed to enhanced cache utilization,
a pattern consistently observed across both baselines.

Moreover, the MPI-only solution exhibits significant
communication overhead, particularly when using 16 or
more computational nodes in the single-node baseline,
where a drop in performance is observed. In contrast, the
16-node baseline for the MPI-only configuration depicts a
higher overhead due to the increased number of halo cells.
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Figure 2: GPU-based strong scalability analysis on Snellius
GPU island with a 400 × 640 × 400 - 102.4M CVs - grid.

The strong scalability analysis for TFA+HPC2 on a
hybrid architecture was conducted on a domain of 400 ×
640 × 400, using a single-node configuration as the base-
line on the Snellius GPU island. As shown in Fig. 2, a
steady speedup is observed as the system scales. However,
despite the memory-bound nature of CFD applications, the
efficiency remains between 50% and 70% up to 8 nodes. For
a 16-node implementation, the efficiency drops to approxi-
mately 45%, indicating the increasing impact of communica-
tion overhead in hybrid architectures as the scale increases.

Figure 3 presents the weak scalability analysis1 for both
MPI+OpenMP and GPU-based tests. The hybrid parallel
paradigm (left plot) shows an 11% drop in performance
when scaling up to 200 nodes, compared to the 16-node
baseline. In contrast, the GPU-accelerated weak scalabil-
ity (right plot) displays a significant initial drop in effi-
ciency, approximately 10%, when transitioning from intra-
node to inter-node execution. This performance decrease is
attributed to the increased latency associated with inter-node
communication. However, once scaling beyond two nodes,
the GPU weak scaling stabilizes, showing only a minor
decline in performance. At the 16-node scale, the efficiency
drop remains modest at around 5%, indicating relatively
consistent performance as the system scales across nodes.

1The main objective of this study is to assess the scalability of
TFA+HPC2 kernels. Thus, the number of iterations per time step was fixed
to ensure a consistent number of kernel calls as the problem scales.
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Figure 3: Weak scalability analysis; MPI+OpenMP paradigm with 525k CVs per CPU-core, starting with 16 nodes up to 200
nodes (left plot) and GPU-based implementation with 25.6M CVs per GPU card, starting with 1 node up to 16 nodes (right plot).

4. Performance analysis
In order to measure the implementation performance, an

equivalent arithmetic intensity (AI𝑒𝑞) and equivalent Perfor-
mance (P𝑒𝑞) were defined by applying a weighted average:

AI𝑒𝑞 =
∑

𝑘∈𝐾 𝛼𝑘FLOPS𝑘∑
𝑘∈𝐾 𝛼𝑘BYTES𝑘

, (3)

and

P𝑒𝑞 =
∑

𝑘∈𝐾 P𝑘N𝑘∑
𝑘∈𝐾 N𝑘

, (4)

where 𝐾 is the set of kernels (𝐾 = {SpMV, axpy, axty, dot}),
N𝑘 and P𝑘 corresponds with the number of operations and
the performance of each kernel, respectively, while 𝛼𝑘,
FLOPS𝑘, and BYTES𝑘 represents the operations ratio, the
number of floating-point operations, and the number of
memory transfers for each kernel, respectively.

Further, AISpMV is computed by the expression proposed
in [10]:

AISpMV = 2𝑛𝑛 (𝖠) + 1
8𝑛𝑛 (𝖠) + 4𝑛𝑛 (𝖠) + 4(𝑛 + 1) + 8𝑛 + 8𝑚 + 8

,

(5)
where 𝑛𝑛 (𝖠), 𝑛 and 𝑚 correspond with the number of non-
zeros, 7 in the current implementation, and the number of
rows and columns of matrix 𝖠, respectively.

Figure 4 illustrates the roofline model analysis of TFA
+ HPC2 performance on two distinct HPC architectures,
highlighting their behavior in the memory-bound region.
Both solutions demonstrate an equivalent arithmetic inten-
sity (AI𝑒𝑞) of approximately 0.125, with a noticeable gap
between the theoretical peak performance (P𝑝𝑒𝑎𝑘) of the su-
percomputers and the achieved performance (P𝑒𝑞). Despite
this, the results show that TFA+HPC2 efficiently utilizes
the available resources for its given arithmetic intensity, as
the performance points for both architectures are located
near the memory bandwidth limit. Notably, the GPU-based
implementation (right plot) exhibits higher efficiency than
the MPI+OpenMP configuration (left plot).

Furthermore, while both architectures are constrained
by memory bandwidth, the GPU-accelerated system con-
sistently outperforms the MPI+OpenMP solution at lower
arithmetic intensities, benefiting from higher throughput and
more optimized parallel execution routines. This highlights
the advantage of GPU architectures in achieving better per-
formance despite the inherent memory-bound limitations.

5. Closing remarks
The TFA+HPC2 framework demonstrates strong porta-

bility across various HPC architectures, leveraging its min-
imal algebraic kernel design to ensure broad compatibility
and efficiency. The MPI+OpenMP hybrid paradigm shows
superior strong scalability over MPI-only, benefiting from
better cache utilization and reduced communication over-
head, making it ideal for large-scale CPU-based simulations.
While the GPU-accelerated implementation is promising,
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Figure 4: Roofline model; MPI+OpenMP paradigm on 1 node (112 CPU-cores) with a 350×480×350 - 58.8M CVs - grid solution
(left plot) and GPU-based implementation on 1 node (4 GPU cards) with a 400 × 640 × 400 - 102.4M CVs - grid solution (right
plot).

it faces performance limitations due to inter-node commu-
nication overhead, indicating the need for increased com-
putational load per GPU. Nonetheless, the current imple-
mentation is highly optimized, with performance primarily
constrained by memory bandwidth.

Future work will focus on increasing the arithmetic
intensity of TFA+HPC2 to overcome its memory-bound lim-
itations, e.g., by exploiting domain symmetries in large-scale
urban simulations; replacing SpMV operations with SpMM to en-
hance solver performance. The weak scaling analysis shows
excellent efficiency, confirming the framework’s robustness
and scalability for demanding industrial applications.
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Thanks to the utilization of massive computational resources, nearly all aspects of unsteady
flow dynamics within the human body can now be accurately resolved. Numerical simulations
have advanced to the point where they can effectively capture both spatial and temporal scales
of airflow and blood circulation. HPC biomechanics encompasses a broad spectrum, ranging
from the respiratory system to the cardiovascular system.

The multi-physics capabilities of supercomputers enable simulations that incorporate fluid-
electro-mechanical coupling, such as modeling the interaction between a beating heart and
arterial blood flow. These precise computational tools offer fresh perspectives and countless
potential applications. It is evident that such methods represent the future of medical diagnosis
and treatment processes.

In particular, the application of nasal/oral drug delivery holds significant importance in the
respiratory system, presenting new challenges such as modeling the mucosa layer and simulating
fluid-structure interaction within the nasal cavity. Additionally, given the previous impact of
COVID-19 on public health, accurately understanding and modeling the propagation of human
biological aerosols has become crucial.
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A B S T R A C T
Unlike bioprosthetic valves, rigid heart valves provide exceptional durability, making them a com-
pelling option to consider for long-term treatment. In this context, our objective is to demonstrate the
capability of our numerical method in simulating the behavior of such rigid mechanical heart valves.
From the physical point of view, the solution requires of two distinct yet interrelated physics: fluid
dynamics and the behavior of solid components. Moreover, from the implementation perspective,
a parallel implementation is an absolute necessity in order to reproduce the behavior of such rigid
mechanical heart valves. For the numerical coupling strategy, we implement an embedded boundary
mesh method. This approach involves discretizing the fluid using a non-body-conforming mesh, where
the boundaries of the rigid bodies are embedded within the fluid mesh. The force exerted by the fluid
on a body is determined from the residual of the momentum equations, while the body’s velocity is
imposed as a boundary condition in the fluid.

1. Introduction
Two main types of heart valve replacements are rigid

mechanical valves and bioprosthetic valves. Characteristic
as its durability and longer useful life make rigid heart valve
replacements an important option to take into account. In
particular, younger patients have the potential to benefit
significantly from these properties, as described in [1].

Simulations of the behavior of real heart valves demands
a considerable number of elements for fluid discretization.
To tackle this challenge, we performed the implementation
within the Alya system, using its computational fluid dynam-
ics massively parallel solver. As a result, we can focus on
the integration of two components into the Alya system: a
computational rigid solid solver and an algorithm for solving
the fluid and rigid body interaction using an embedded
boundary mesh method.

2. Fluid
The physics of the fluid is described by the incom-

pressible Navier-Stokes equations. Let 𝜇 be the viscosity
†This paper is part of the ParCFD 2024 Proceedings. A recording

of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02474 and of the Proceedings 10.34734/FZJ-2025-
02175.
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of the fluid, and 𝜌 its density. Additionally, let 𝜺 and 𝝈
be the velocity rate of deformation and the stress tensors,
respectively, defined as:

𝜺(𝒖) = 1
2
(
∇𝒖 + ∇𝒖𝑡

) and
𝝈 = −𝑝𝑰 + 2𝜇𝜺(𝒖).

The problem is stated as follows. Find the velocity 𝒖 and
mechanical pressure 𝑝 in a domain Ω such that they satisfy
in a time interval (0, 𝑇 ]:

𝜌𝜕𝒖
𝜕𝑡
+ 𝜌 (𝒖 ⋅ ∇) 𝒖 − ∇ ⋅ (2𝜇𝜺(𝒖)) + ∇𝑝 = 𝜌𝒇 in Ω × (0, 𝑇 ]

and ∇ ⋅ 𝒖 = 0 in Ω × (0, 𝑇 ]
together with initial and boundary conditions. The boundary
conditions considered in this work are:

𝒖 = 𝒖𝐷 on Γ𝐷 × (0, 𝑇 ],
𝒖 = 𝒖𝑆 on Γ𝑆 × (0, 𝑇 ], and

𝝈 ⋅ 𝒏 = 𝒕 on Γ𝑁 × (0, 𝑇 ],

where Γ𝐷, Γ𝑆 and Γ𝑁 are the boundaries ofΩwhere Dirich-
let, rigid body Dirichlet and Neumann boundary conditions
are prescribed respectively, and 𝜕Ω = Γ𝐷 ∪ Γ𝑆 ∪ Γ𝑁 . Note
that the wet boundary of the solid Γ𝑆 , and the associated
prescribed solid surface velocity 𝒖𝑆 will change in time.
They are respectively the boundary and the variable used in
the coupling with the rigid body.
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Figure 1: The set of hole elements, the solid boundary Γ𝑆 ,
and the approximation of the solid boundary on the fluid mesh
Γ̂𝑆 in the context of a simple structured mesh.

3. Rigid solid
The linear acceleration𝒂(𝑡) and angular acceleration𝜶(𝑡)

of the body at a time 𝑡 are related to the input force 𝒇𝐹 (𝑡) and
input torque 𝝉𝐹 (𝑡) by the Newton-Euler equations:

𝒇𝐹 (𝑡) = 𝑚𝒂(𝑡) (1)
and

𝝉𝐹 (𝑡) = 𝑰(𝑡) ⋅ 𝜶(𝑡) + 𝝎(𝑡) × (𝑰(𝑡) ⋅ 𝝎(𝑡)), (2)
where 𝑚 is the total mass of the body, 𝝎(𝑡) the angular
velocity, and 𝑰(𝑡) is the inertia tensor. By integrating in time
the Equations (1) and (2), the velocity and the position of the
rigid body can be determined.

4. Fluid and rigid body interaction for an
embedded boundary mesh method
The main steps of the algorithm for solving the interac-

tion consist of four parts, as outlined below.
• The hole elements identification. First, the program

identifies the elements whose volumes of intersec-
tion with the rigid body domain are sufficiently large
to consider them as part of the solid. They will be
excluded from the finite element assembly process.
Let this set of elements be called as the set of hole
elements ℎ𝑜𝑙, represented by gray squares as shown
in Fig. 1.

• The fringe nodes identification. The exclusion of
the assembly process of the set ℎ𝑜𝑙 defines a new
internal boundary Γ̂𝑆 in the fluid mesh, the bold black
line in Fig. 1. This internal boundary can be seen
as an approximation on the fluid mesh to the actual
solid boundary surface Γ𝑆 , the red line in Fig. 1.
Let the nodes that that define Γ̂𝑆 be called as the set
fringe nodes: 𝑓𝑟𝑖. This set allow us to define other
important sets of nodes: the set of free 𝑓𝑟𝑒 and the
set of hole nodes ℎ𝑜𝑙. The set of free nodes will be
belong to the fluid mesh domain and the set of hole
nodes will be considered as part of solid mesh domain.

• The imposition of the rigid body velocity on the
fluid mesh. The velocity of the rigid solid is imposed
on the set 𝑓𝑟𝑖 in an interpolating way using the
universal kriging methodology.

• The fluid force exerted on the rigid solid. The force
exerted by the fluid on the solid, which determines its
new position inside the fluid mesh, is calculated using
the residual of the momentum equations correspond-
ing to the set 𝑓𝑟𝑖.

Some of the implementation details of the embedded
mesh boundary methods described next in this work was
published previously in [2].

5. Numerical results
To demonstrate the capability of our numerical method

in simulating the behavior of such rigid mechanical heart
valves a real experiment described in [3] is considered. In the
experimental setup, a bileaflet mechanical heart valve was
placed within a rigid artificial aorta, and an inflow boundary
condition was prescribed as a plug flow profile (forward
and reverse), facilitating the opening and closing of the two
valves. The REYNOLDS number of the flow varies from 0,
when the valves are closed, to nearly 6000 when the valves
are fully open.

The velocity in the x-direction and vorticity obtained
during the simulation at the plane of symmetry can be used
to visualize the motion of the leaflets during the opening and
closing phases, as shown in Fig. 2 and 3, respectively.

The vorticity field reveals that during the opening phase
of the valves (see Fig. 3, left), the flow field remains laminar.
During the closing phase (see Fig. 3, right), the vorticity field
is characterized by a recirculation zone generated near the
sinus root walls.

With respect to both the velocity field and vorticity,
the numerical simulation successfully reproduces the key
behaviors of the rigid mechanical heart valves described by
Dasi et al. [3].
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Figure 2: Velocity field around the valves when closing and opening.
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Figure 3: Vorticity around the valves when closing and opening.

6. Conclusions
Simulation results demonstrate that the method pre-

sented here is capable of replicating real experimental out-
comes. These promising findings suggest a future where
simulations could play a crucial role in assisting patient
diagnosis.
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A B S T R A C T
A parallel mesh procedure is developed to create a single mesh from 2 or more meshes, in case
proteins would merge together. The various steps of the algorithm are presented in details, before
some preliminary results are shown using the Compatible Discrete Operator method.

1. Introduction
Biomolecular simulations are critical to understanding

the highly dynamic environments within biological cells.
Biosimulations work in conjunction with imaging tech-
niques to relate static experimental structures to functional-
ity. For large time and length scales, continuum mechanics
has been proposed for use in a coarse-grained approach.
Fluctuating Finite Element Analysis (FFEA) [1] is such a
method. It uses a mesh-based approach in place of a particle-
based one, i.e., computing bulk quantities as opposed to
atomic positions. Protein interactions are fundamental to
biological mechanisms that underpin life. They can interact
in a number of different ways, for instance by sticking to each
other, where mesh ’subsurfaces’ temporarily glue together,
or by merging together. The latter is a permanent interaction,
where 2 meshes join together by a ’bridge’. Sticking is the
more frequent phenomenon in biology, but merging is more
challenging in terms of algorithm, and as such is considered
here.

This work presents the parallel algorithm used to merge
2 or more meshes (see Section 2). Some preliminary results
are shown for a steady 3-D vector-valued diffusion equation
computed using the Compatible Discrete Operator (CDO)
method [2] implemented in code_saturne1 [3] (see Section
3), before some conclusions are drawn (see Section 4).
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2. Principle of the Method
The merging algorithm is split into several operations.

Figure 1 shows the steps to build a ’bridge’ between 2
neighboring meshes, before collapsing into a single body.
The principle of this method is to use a plane (in red in

Figure 1: Merging procedure.

Fig. 1), equidistant from 2 meshes’ centers of gravity, as an
interface for the projection, extrusion and finally merging of
each pair of meshes. All the steps following the computation
of the plane orientation are local to each mesh, until the 2
projected ’subsurface’ footprints are glued together at the
plane. The footprint boundary faces are then changed into
inner faces, in the final step of the method. The method is
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Figure 2: Sketch of the combined various steps of the projection procedure.

easily generalized to many concurrent merging occurrences
between 2 individual meshes, and fully parallel.
2.1. Projection procedure

The projection procedure is the pivotal step of this algo-
rithm (see Fig. 2). Its steps are enumerated here:

1. Construct/import the meshes to be merged
2. Select the local boundary ’subsurfaces’ to be projected
3. Build the plane from the distance between the meshes
4. Perform initial projections onto the plane, parallel to

the plane normal
5. Find the optimal projection footprints, as the 2 foot-

prints might not be conformal
6. Define vectors between ’subsurfaces’ and average

footprint vertices
7. Re-project the ’subsurface’ vertices, along these new

vectors
2.2. Extrusion and interface gluing

For each mesh, an extrusion is computed between the
’subsurface’ and the average footprint, creating layers of
prisms. The average footprint is generally non-conformal,
and the code_saturne embedded gluing algorithm is acti-
vated to get it conformal, creating new faces on both sides of
the plane. This results in a layer of polyhedral cells on both
sides of the plane, the average footprint faces being made
inner faces.
2.3. Comments on the current implementation

and potential improvements
• In this work, the location of 2 or more meshes is set a

priori, and the distance between them computed from
the gravity centers of the interacting objects. This is
not optimal, in general, but an iterative process could
be implemented to compute the minimum ’physical’
distance, starting from the existing technique, based
on the centers of gravity of the individual meshes.
In the future, information could be obtained from
Molecular Dynamics (MD), when the distance be-
tween 2 proteins is below a given threshold, depending

on the studied case. MD could then inform whether
the proteins are attracting or repulsing each other.
In the former case, the merging algorithm would be
activated, otherwise, the whole simulation would con-
tinue to compute the protein evolution.

• The position of the subsurface center depends on the
2 end points of the segment linked to the distance.
A cylinder, which axis’ center is one of these ends
and direction’s is based on the segment’s, is used to
select the subsurface elements, its radius being ap-
proximated from the shape of the physical boundaries
of the protein.

• In order to get a workable number of layers to be used
by each extrusion, information is gathered from the
volumic elements the subsurface belongs to, focusing
on their edge size.

3. Preliminary Results
The projection procedure has successfully been imple-

mented into code_saturne, including the ’subsurface’ extru-
sions, though some final developments are required to get the
full algorithm in place. Figure 3 (left) shows the example of
a ’bridge’ merging between 2 cubes, and Fig. 3 (right) of 2
’bridge’ merging between 3 ellipsoids. The newly created

Figure 3: Examples of merging for 2 cubes (right) and 3
ellipsoids (left).

meshes will be used as supports to simulate 3-D vector-
valued diffusion equations using the Compatible Discrete
Operator approach. To demonstrate the performance of the
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method, a simulation is carried out in a cubic box, with
zero-Dirichlet boundary conditions in all 3 directions. The
mesh is made of a mix of tetrahedral (inner mesh) and
prismatic (at the wall) elements to assess the ability of the
CDO approach for mixed element meshes. Figure 4 (top)

Figure 4: Top: Sketch of the cubic mesh with tetrahedral
cells in the inner domain and prism layers at each wall.
Bottom: CDO solution against a reference produced by a Finite
Difference code.

shows a clip of the mesh, with tetrahedral and prismatic
elements, and Fig. 4 (bottom) the profile of the solution in 1
direction (the test is such that all 3 directions show the same
solution), obtained using the CDO method, and compared
to a reference produced by a Finite Difference (FD) code ran
on a refined homogeneous mesh. The CDO solution is very
closed to the FD reference, despite the use of a very coarse
grid. Figure 5 shows a clip of a 3-D array of 256 ellipsoids.
For each of them, a steady vector-valued diffusion equation
is computed by CDO in 1 single instance of code_saturne.
The ellipsoidal shape is used to make the geometry more

Figure 5: Simulation using 256 separate ellipsoids.

general and concurrent ’bridges’ will be computed between
neighboring ellipsoids. The same equation will be solved on
the resulting single mesh.

4. Conclusions
A merging algorithm between 2 or more meshes has

been presented, and its projection and extrusion procedure
have been implemented into code_saturne. A 3-D steady
vector-valued diffusion equation has been computed as a
reference case to show the accuracy of the Compatible Dis-
crete Operator method when using tetrahedral and prismatic
elements. Furthermore, it has been shown that one instance
of code_saturne’s solver is able to compute 256 independent
ellipsoidal meshes. More results will be presented for the full
merging algorithm applied to 256 ellipsoids. Parallelization
will also be explained in detail and timing of the merging
procedure will be given, as well as results on the perfor-
mance of the algorithm.
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A B S T R A C T
This work is one of three components (upper airways, lower conducting airways, and respiratory
zones) of a digital twin lung model developed by the Physical and Numerical Modelling research
group at the CASE department of the Barcelona Supercomputing Center (BSC). To the best of
the authors’ knowledge, the challenge of accurately computing the local effective dose at the site
of action remains unresolved. Our group’s aim is to simulate patient-specific aerosol transport and
deposition using physics-based 3D computational fluid particle dynamics (CFPD) models that account
for airway or alveolar tissue pathology. In this study, we focus on the particularly challenging
respiratory or alveolar zone of the lung. We present a novel in-silico approach with unparalleled
spatio-temporal resolution, enabling the tracking of aerosol particles throughout the entire respiratory
cycle within both the conducting airways and the alveolar region. Among the analyzed geometries,
Mesh 4 has demonstrated superior performance in replicating realistic particle deposition patterns,
aligning closely with segmentation images obtained through scanning electron microscopy. This result
highlights the potential of Mesh 4 for advancing physiologically accurate modeling of the human
pulmonary acinus. The key unprecedented contribution of this work lies in its realistic geometry for
the acini and the distal anatomical structure of the respiratory lung zone, including the subacini. The
team focused on modeling the alveolar internal space, where the gases are able to flow. The first step
was defining a 3-dimensional, branching arrangement of lines representative of the logic by which
bronchioles transition into alveolated airways. This diagram was then interpreted as a substrate for
the distribution of spherical objects, indicative of single alveolar sacs. These spherical objects were
finally merged into a unified, continuous geometry representative of the volumetric alveolar space. The
specific context of the current work is framed within the European Project CREXDATA. Its general
vision is to develop a generic platform for real-time critical situation management including flexible
action planning and agile decision making over streaming data of extreme scale and complexity. One
of the use cases of the project is the COVID-19 pandemic crisis, studying at the microscopic level
viral evolution for forecasting emerging mutations of clinical relevance. To that end, the first step is
to develop a mechanistic multi-scale model to build a toolbox aimed at having a digital twin for the
treatment of patients.

1. Introduction
Existing 3D CFPD models struggle to accurately com-

pute aerosol transport and deposition in the entire human
†This paper is part of the ParCFD 2024 Proceedings. A recording

of the presentation is available on YouTube. The DOI of this document
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lung, particularly with pathologies. Airflow in the pul-
monary acinus is primarily laminar, characterized by low
REYNOLDS numbers and the absence of turbulence, which
aids in predicting particle transport through the airways [1].
Aerosols ranging from 0.001 to 10 𝜇m can reach these
regions, with their behavior influenced by sedimentation,
convection, and diffusion [2]. While gravity significantly
affects larger particles, smaller ones are subject to Brownian
motion.

To address these limitations, we have developed a novel
model to simulate fluid flow and transported particles for
the respiratory zone of the lung. Our approach accounts for
both geometric and dynamic similarities, ensuring accurate
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Figure 1: (a, c, e) Three dimensional geometries representing the more distal region of the respiratory zone, the alveolar sacs;
(b, d, f) mesh visualization of the interior of each of the geometries, respectively. (g) Three dimensional geometry representing
a sub-acinus, one of the sub-units of the acinus; (h) and its interior mesh visualization.

representation of flow regimes critical to particle deposi-
tion [3]. We reconstructed alveolated structures across dif-
ferent length scales, allowing an evaluation of the influence
of geometry and volume on deposition patterns.

The results obtained lay the foundation for addressing the
major challenge of drug delivery to human lungs: evaluating
the dose delivered to the local site of action in the respiratory
zone, which is crucial for treating diseases like COPD.
Additionally, these findings are significant for understanding
the progression of infections caused by bio-aerosols, such as
viruses or bacteria, within the human lungs.

2. Methodology
To describe the methodology of the present work we

divide this section into separate subsections, i.e., Sec. 2.1
describes the geometry and mesh, and Sec. 2.2 the physical
and numerical methods.
2.1. Geometry and mesh description

Due to the tiny dimensions of the ducts and alveoli
within the respiratory zone of the lung, obtaining geometries
of these regions through medical imaging has become a
extreme challenge not resolved until now. Consequently, all
geometries are synthetically generated. This work presents
a range of scales for such complex structures, based on
different approaches, ranging from purely geometric to more

anatomically accurate representations. The scaling of these
geometries was adjusted based on the alveolar diameters
from [4]. Geometries used for meshes 3 and 4 have been
developed under the ST+ARTS AIR project1, by making
use an space colonization algorithm combined with medical
images from the lung’s respiratory zone.

High-quality mesh discretization was performed to en-
sure numerical stability and accurate simulation results. The
mesh generation software ANSYS-ICEM-CFD (Ansys Inc.,
USA) was used. An octree-based method generated a fine
surface mesh, followed by volumetric meshing using the
Delaunay method. To improve the quality of the meshes,
techniques like Laplace smoothing [5] were applied, en-
suring well-shaped elements that conform to the complex
domain geometry. Given the laminar nature of airflow in the

1https://starts.eu/air/

Mesh No. elem. Elem. type Boundaries Nodes
1 2857071 TET04 329456 560414
2 1195847 TET04 93116 223957
3 1102221 TET04 174998 229220
4 8090162 TET04 1292494 1684917

Table 1
Summary of different mesh features.
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acinar airways, prism layers near boundaries were unnec-
essary, simplifying the meshing process to use exclusively
TET04 tetrahedral elements. In Fig. 1, the generated meshes
are displayed, while in Tab. 1, the features of the different
meshes are shown.
2.2. Physical and numerical method

The work presented has been implemented and achieved
using an in-house code, Alya [6]. It is a high performance
computational mechanics code to solve complex coupled
multi-physics problems. This software has been developed
by the CASE Department of the Barcelona Supercomputing
Center. It is a modular scientific code written in Fortran and
parallelized with MPI that is broken into multiple modules.
2.2.1. Fluid Solver

To simulate the airflow inside the pulmonary acinus, we
use the incompressible Navier-Stokes equations combined
with the Approximate Lagrangian-Eulerian (ALE) formula-
tion to emulate Fluid-Solid Interaction (FSI). The fluid con-
servation laws are expressed in a moving Eulerian domain,
with the governing momentum and continuity equations, i.e.,

𝜌𝑓
𝜕𝐮𝑓
𝜕𝑡

+ 𝜌𝑓 [(𝐮𝑓 − 𝐮𝑚) ⋅ ∇]𝐮𝑓
−∇ ⋅ [2𝜇𝝐(𝐮𝑓 )] + ∇𝑝 = 𝜌𝑓 𝐟 , (1)

∇ ⋅ 𝐮𝑓 = 0. (2)
Here, 𝜇 is the fluid’s viscosity, 𝜌𝑓 its density, 𝐮𝑓 its velocity,
𝑝 the mechanical pressure, 𝝐(𝐮𝑓 ) the strain rate tensor de-
fined as 𝝐 = (1∕2) ⋅ (∇𝐮𝑓 +∇𝐮𝑇𝑓 ), 𝐟 the body force term, and
𝐮𝑚 the mesh velocity. In our implementation, 𝐮𝑚 is derived
from the mesh displacement at the boundaries, 𝐝𝑚, which is
calculated by solving a diffusion equation

∇ ⋅ [𝑐𝑚∇𝐝𝑚] = 0, (3)
where 𝐝𝑚 the node displacement and 𝑐𝑚 is a diffusion co-
efficient, computed element-wise to control element stiff-
ness [7]. In this work, the displacement function is a modi-
fied expression from [8]

𝑑𝑚(𝑡) =
𝑑max
2

[
1 − cos

(
2𝜋

𝑇cycle
𝑡
)]

, (4)

where 𝑑max is the maximum displacement of the mesh and
Tcycle is the breathing period. To discretize the incompress-
ible Navier-Stokes equations, the VMS method is used [9],
and for mesh displacements with the ALE formulation,
see [10]. The resulting linear system at each time step is
given by
[
𝐀𝑢𝑢 𝐀𝑢𝑝
𝐀𝑝𝑢 𝐀𝑝𝑝

] [
𝐮
𝐩

]
=
[
𝐛𝑢
𝐛𝑝

]
, (5)

where u and p are velocity and pressure unknowns.

Numerical treatment. The time discretization is based on
a second-order Backward Finite Difference (BFD) scheme.
To solve the coupled algebraic system in Eq. (5), we apply
a split approach using the pressure Schur complement sys-
tem [11].

The momentum equation is solved using the GMRES
method, with a diagonal preconditioner. The continuity
equation is solved using the Deflated Conjugate Gradient
(DCG) method [12], together with a diagonal precondi-
tioner.
Boundary conditions. Regarding the boundary condi-
tions for the fluid, a predefined flow rate could not be
specified because the meshes contain only a single surface
through which the fluid flows in a periodic motion. To enable
fluid entry, the mesh boundaries must move, thereby increas-
ing the internal volume. Using Eq. (4), a normal displace-
ment was applied to the mesh nodes to induce flow from the
inlet. Consequently, the fluid velocity at the walls matches
the velocity induced by the described boundary displace-
ment. To emulate the typical flow rates found in the acinar
region, as described in the literature, different maximum nor-
mal displacements were applied: 𝑑max = 10, 15, 20, 25𝜇𝑚,
occurring over half of the breathing period 𝑇cycle = 4
seconds. The inlet was fixed.
2.2.2. Particle Solver

In order to solve particle transport in Alya, a one-way
coupling is employed. This means particles are transported
using the previously obtained airflow solution. Particle
transport is solved in a Lagrangian frame of reference,
each particle is tracked along its trajectory individually. The
model has a few assumptions:

• Particles are small enough to neglect their effects on
airflow, i.e., one-way coupling;

• Particles are spherical and don’t interact with each
other;

• Particle rotation is negligible;
• Thermophoretic forces are neglected;
• The forces considered are: drag Fd, gravitational and

buoyancy Fg, and the force due to Brownian diffusion
FB;

Let x𝑝, u𝑝 and a𝑝 be the position, velocity and acceleration of
each particle, respectively. Let m𝑝 be its mass, 𝜌𝑝 its density,
d𝑝 its diameter and V𝑝 its volume. Particle trajectories are
obtained by solving Newton’s second law, with the forces
considered,

a𝑝 =
1
𝑚𝑝

(F𝑔 + F𝑑 + F𝐵). (6)

136



A. B. Eguzkitza et al.: Comparison of Airflow and Particle Deposition in Different Acinus Geometries

The equation for the drag force assumes the particle has
reached its terminal velocity and is given by

F𝑑 = −𝜋
8
𝜇𝑑𝑝

𝐶𝑑
𝐶𝑐

𝑅𝑒𝑝(u𝑝 − u𝑓 ), (7)
where Re𝑝 is the particle REYNOLDS number involving its
relative velocity with the fluid

𝑅𝑒𝑝 =
𝜌𝑓 |u𝑝 − u𝑓 |𝑑𝑝

𝜇
, (8)

and C𝑑 and C𝑐 are the drag coefficient and the Cunningham
slip correction factor, respectively. The Cunningham slip
correction factor [13] is an empirical correction applied to
account for non-continuum effects that arise due to the small
size of the particles relative to the mean free path of the gas
molecules. This factor is crucial for accurately calculating
the drag force and Brownian force on the particles studied.
It is defined as:

𝐶𝑐 = 1 + 2𝜆
𝑑𝑝

[
1.257 + 0.4 exp

(−1.1𝑑𝑝
2𝜆

)]
, (9)

here 𝜆 is the mean free path of the air molecules, 68 nm in
our case. With respect to the drag force we have considered
Cheng’s model [14], where the drag coefficient is given by

𝐶𝑑 = 24
𝑅𝑒𝑝

(
1 + 0.27𝑅𝑒𝑝

)0.43

+0.47
(
1 − exp

(
−0.04𝑅𝑒0.38𝑝

))
. (10)

The gravity and buoyancy forces contribute to the dynamic
of the particle whenever exists a density difference, i.e.,

𝐅𝑔 = 𝑉𝑝g(𝜌𝑝 − 𝜌𝑓 ), (11)
with g being the gravity vector. The particle density is mostly
considered to be 1 g/cm3, which is about 1,000 times the
density of air [15]. Finally, the stochastic force due to a
particle’s Brownian motion F𝐵 is expressed as [13]

F𝐵 = 𝜉

√
𝜋𝑆0
Δ𝑡

, (12)
where 𝜉 is a random vector following a normal Gaussian
distribution with zero mean and unit variance, Δt is the time
step size in which the amplitudes of the Brownian force
components are evaluated, in our case Δ𝑡 = 10−3, and 𝑆0corresponds to the spectral density of the white noise process

𝑆0 =
216𝜇𝑘𝐵𝑇

𝜋2𝜌𝑓𝑑5𝑝

(
𝜌𝑝
𝜌𝑓

)2
𝐶𝑐

, (13)

where k𝐵 is the Boltzmann constant and the temperature of
the airways is T, in our case we have considered 36 ◦C [16].

Numerical treatment: particle dynamics and distance
to the wall. To obtain particle’s dynamics in each time step
the Newmark method is used. Consider that the particle path
must be computed from time step 𝑛 to the next one 𝑛 + 1,
where the time step size is defined as Δ𝑡 ∶= 𝑡𝑛+1 − 𝑡𝑛. This
method consists on obtaining particle’s position and velocity
after obtaining the acceleration on timesteps 𝑛 and 𝑛 + 1,
solving the following equations:
⎧⎪⎪⎨⎪⎪⎩

𝐚𝑛+1𝑝 = 𝐅𝑛+1∕𝑚𝑝,

𝐮𝑛+1𝑝 = 𝐮𝑛𝑝 + Δ𝑡(𝛾𝐚𝑛+1𝑝 + (1 − 𝛾)𝐚𝑛𝑝),

𝐱𝑛+1𝑝 = 𝐱𝑛𝑝 + 𝐮𝑛𝑓Δ𝑡 +
1
2
Δ𝑡2(2𝛽𝐚𝑛+1𝑝 + (1 − 2𝛽)𝐚𝑛𝑝).

(14)

The Newton-Raphson method is used iteratively to solve for
the implicit dependence, ensuring that the updated acceler-
ations, velocities, and positions are consistent at each time
step. However, due to the low mass of nanoparticles, they
experience very high accelerations. Their extremely short
relaxation time means they rapidly respond to changes in
the surrounding air velocity, needing a significant number
of iterations to accurately capture their dynamics. Conse-
quently, the simulation often failed to reach the required
number of iterations before hitting the imposed limit, leading
to the disregard of most injected particles. To address this,
the relaxation factor is updated at each iteration to control the
velocity update. If the residual indicates poor convergence,
the relaxation factor is reduced by 10% to potentially im-
prove the stability and convergence of the iterative process.
Recall that the fluid’s velocity is present when updating the
position. The values used in our case are 𝛽 = 0.25 and 𝛾 =
0.5, values at which the numerical method is unconditionally
stable, i.e., always stable.

To compute the distance to the wall for the particles,
the iterative solver used is the Deflated-Conjugate Gradient
method with a diagonal preconditioner.
Boundary Conditions. Particles of various sizes were in-
jected during the inhalation period over 3 breathing cycles,
with sizes ranging from 1 nm to 10 𝜇m, based on [17], at
intervals of 5 ⋅ 10−3 s. For meshes M1, M2, and M3, 100
particles of each type were injected every five time steps,
while for M4, 250 particles were injected also each five time
steps. This resulted in a total of 1.2 ⋅ 106 particles being
injected into meshes M1, M2, and M3, and 3 ⋅ 106 particles
into M4, since it represents a larger portion of the pulmonary
acinus. Particles were deposited on touch. particles are con-
centrated in very few message passing interface (MPI) par-
titions, resulting in a very poor load balance, which will be
analyzed in the present work. The partitioning performed in
the preprocessing step of the simulation aims to balance the
workflow for solving the Navier-Stokes equations using the
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M1 M2

10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m 10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m

# of CPUs 96 96 96 96 96 96 96 96

Elapsed time (min) 371.4 389.1 362.1 386.9 100.6 154.9 102.1 113.61

M3 M4

10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m 10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m

# of CPUs 96 96 96 96 288 288 288 288

Elapsed time (min) 91.5 92.3 91.0 91.8 375.1 371.8 369.9 371.4

Table 2
Computational resources and timing details for the different meshes on MN5, detailing the number of CPUs used and elapsed
time for simulations with the different mesh deformations.

-3

-2

-1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4

10 µm
15 µm
20 µm
25 µm

15 L/min (17th)

30 L/min (17th)
60 L/min (17th)
15 L/min (16th)
30 L/min (16th)
60 L/min (16th)

F
lo
w

ra
te

(×
10

−
5
g/
s)

Time (s)

Sub-acinus (M4) flowrate

(a) Flowrate.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

10 µm
15 µm
20 µm
25 µm

P
re
ss
u
re

d
ro
p
(P

a)

Time (s)

Sub-acinus (M4) pressure drop

(b) Pressure drop.

Figure 2: Features of M4 for the different mesh deformations.

FEM method. A primary challenge arises when balancing
particle transport, as particles are typically injected into
a small part of the entire domain. Consequently, a load
imbalance occurs when different processors or nodes in a
parallel computing system handle unequal workloads. This
disparity results in some processors completing their tasks
earlier, or having no tasks at all, leading to idle time while
waiting to be synchronized with others. Such inefficiencies
increase the overall computation time, as faster processors
must wait for the slower ones. When performing CFPD sim-
ulations on supercomputers efficient resource management
becomes crucial. To attack these problems, we propose a
dynamic solution, which is applied at runtime, the Dynamic
Load Balancing Library (DLB) [18, 19]. DLB is applied at
runtime meaning that we do not need to analyze specific
inputs or modify the application code. The philosophy of
the library is to exploit the computational resources, i.e.,
CPUs or cores, of the MPI processes blocked in an MPI

blocking call by other processes running on the same node,
by spawning more threads of the second level of parallelism,
i.e., in our case, OpenMP.

3. Results
In the following, the simulation results are discussed

with respect to the airflow features in Sec. 3.1 and the
particle deposition in Sec. 3.2.
3.1. Airflow features

In this section we show the simulation results obtained
using Alya, examining the airflow dynamics across different
mesh deformations and delving into the analysis of particle
transport and deposition. The study focuses on particles
ranging from 1 nm to 10 𝜇m, which are critical for under-
standing health impacts in the pulmonary acinus. Particles
smaller than 10 𝜇m penetrate deep into the lungs [17]. This
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(a) M1 for 𝑑max = 25 𝜇m. (b) M2 for 𝑑max = 15 𝜇m.

(c) M3 for 𝑑max = 15 𝜇m. (d) M4 for 𝑑max = 20 𝜇m.

Figure 3: Pressure drop map for the four meshes during the peak exhalation, where pressure is maximum (t = 3 s).

size range encompasses various aerosols such as viruses,
smoke, and dust and can be used for inhalation therapies.
Computational resources. With respect to the computa-
tional resources used and the elapsed time on MareNostrum
5 (MN5) supercomputer for the simulations, these details are
presented in Tab. 2. All the timesteps were post-processed by
Alya to later simulate particle transport.
Respiratory physiology. Regarding pressure dynamics,
the observed pressure drop across the acinar walls aligns
with respiratory mechanics. During inhalation, negative
pressure relative to the atmosphere facilitates air entry into
the respiratory zone, driven by thoracic expansion and
diaphragm contraction. This expansion lowers intrathoracic
pressure, increasing alveolar volume and drawing air in.
Conversely, during exhalation, acinar pressure turns posi-
tive, aiding in air expulsion. This occurs as the diaphragm
relaxes and the lung tissues’ elasticity compresses the alve-
oli, pushing air outward.

The pressure drop profile exhibits a sinusoidal pattern
across all meshes. Figure 2b illustrates the pressure drop pro-
files for all deformations in M4. Figure 3 depicts the pressure
variations within the acinar walls during peak exhalation,

the phase of the breathing cycle where pressure reaches its
maximum.

Literature offers limited information on acinar volume
expansion, typically ranging between 20% and 35%. Our
results, detailed in Tab. 3, correspond to the moment of
maximum expansion t = 2 s. To align with physiological
characteristics of the acinus, some experimental cases need
to be discarded due to either excessive or insufficient ex-
pansion. Specifically, some cases with 𝑑max = 25 𝜇m show
excessive expansion, while a few with 𝑑max = 10 𝜇m exhibit
insufficient expansion.

Another critical aspect is comparing the measured flow-
rates with those expected if typical flowrates were to enter
the respiratory system through the nose. Considering the
lung’s dichotomous branching pattern, the flowrate at a given
generation 𝑔 can be calculated by

�̇�g =
�̇�0
2g , (15)

where �̇�0 is the flowrate entering the respiratory system.
Typical values for �̇�0 range from 15, 30 to 60 L/min, vary-
ing according to different respiratory conditions. However,
the assumptions in Eq. (15) become less accurate beyond
the 16th generation, where the lung’s branching pattern
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(a) 10𝜇𝑚 radial displacement.

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 0.5 1 1.5 2 2.5 3 3.5 4

M1
M2
M3

60 L/min (23rd)
15 L/min (23rd)

30 L/min (23rd)
60 L/min (22nd)
15 L/min (22nd)
30 L/min (22nd)

F
lo
w

ra
te

(×
10

−
6
g
/s
)

Time (s)

15 µm radial displacement

(b) 15𝜇𝑚 radial displacement.

-6

-4

-2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4

M1
M2
M3

60 L/min (23rd)
15 L/min (23rd)

30 L/min (23rd)
60 L/min (22nd)
15 L/min (22nd)
30 L/min (22nd)

F
lo
w

ra
te

(×
10

−
6
g
/s
)

Time (s)

20 µm radial displacement

(c) 20𝜇𝑚 radial displacement.

-8

-6

-4

-2

0

2

4

6

8

0 0.5 1 1.5 2 2.5 3 3.5 4

M1
M2
M3

60 L/min (23rd)
15 L/min (23rd)

30 L/min (23rd)
60 L/min (22nd)
15 L/min (22nd)
30 L/min (22nd)

F
lo
w

ra
te

(×
10

−
6
g
/s
)

Time (s)

25 µm radial displacement

(d) 25𝜇𝑚 radial displacement.

Figure 4: Flowrates for M1, M2, and M3 for different mesh deformations.

Volume Expansion (%)

Mesh 10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m

M1 23.2 35.7 49.1 63.8
M2 8.7 13.1 17.8 22.5
M3 15.7 23.9 32.1 40.7
M4 13.8 20.8 27.9 35.2

Table 3
Volume expansion for each mesh for the different deformations
for t = 2 s.

does not strictly follow a simple dichotomous model and
changes more frequently. Additionally, the equation does not
consider losses from friction or bends in the airways. These
limitations mean that the formula, while providing a useful
initial estimate, likely underestimates true flowrates in the
deeper parts of the lung. This highlights the need for more
sophisticated models that can more accurately account for
these variations, as minor differences can lead to significant
errors.

Figure 4 and Fig. 2b show the flowrates measured at the
inlets for M1, M2, M3, and for M4, alongside theoretical
values calculated using the dichotomous branching model.

For mesh M1, the flowrate entering the mesh is so
minimal that it does not align well with predictions from
the branching model, suggesting that this synthetic model
may not accurately represent alveolar sacs. Conversely, cer-
tain configurations of the other meshes exhibit a better fit.
Additionally, the results for M4 align more closely with
theoretical expectations. However, these alignments are sen-
sitive; even minor changes in size can significantly affect the
flowrate entering the mesh. The consistency of the measured
flowrates with theoretical predictions highlights the accu-
racy of our model, confirming its ability to effectively mirror
physiological conditions. Nevertheless, it is important to
note that the theoretical model has several limitations.
3.2. Particle deposition

Simulations of particle transport and deposition were
conducted over three respiratory cycles, assuming periodic
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M1 M2

10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m 10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m

# of CPUs 62 62 62 62 36 36 36 42

Elapsed time (min) 165.0 169.2 167.1 208.9 114.9 108.0 103.7 96.3

M3 M4

10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m 10 𝜇m 15 𝜇m 20 𝜇m 25 𝜇m

# of CPUs 36 36 36 36 224 224 224 224

Elapsed time (min) 100.1 85.3 44.3 88.5 166.2 213.9 152.5 198.5

Table 4
Computational resources used in MN5 to solve the particle transport for the different meshes and the elapsed time in minutes
obtained for the different mesh deformations.

Figure 5: Particle deposition across M1 for 𝑑max = 15 𝜇m from different views, showing the spatial distribution of particles within
the mesh.

airflow solutions with the same time step as the initial airflow
simulations.
Computational Resources. Solving particle transport is
less resource-intensive than simulating incompressible fluid
dynamics in deformable meshes. To efficiently explore dif-
ferent configurations in particle transport, involving various
particle types and drag models, we stored the airflow solu-
tions beforehand. This method significantly reduces compu-
tational demands. Consequently, fewer CPUs were utilized
for particle simulations compared to fluid dynamics simula-
tions. Detailed information on CPU usage and elapsed times

for various mesh configurations is provided in Table 4. The
results of the simulations were post-processed each 10 time
steps by Alya.
Particle transport and deposition. In our study, particle
transport varied by size and mesh complexity. Larger parti-
cles (5–10 𝜇m) primarily followed gravity, with M4 showing
extended fluid-driven movement. Particles of 2 𝜇m traveled
further due to fluid velocity, while submicron particles (<
1 𝜇m) were dominated by convection and diffusion, trav-
eling the greatest distances. During exhalation, nanometric
particles were expelled, whereas 0.5–2 𝜇m particles often
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(a) Particle deposition across M2 for 𝑑max = 25 𝜇m.

(b) Particle deposition across M3 for 𝑑max = 10 𝜇m.

Figure 6: Particle deposition from different views, showing the spatial distribution of particles within the mesh.
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Figure 7: Particle Deposition in Mesh M4 for 𝑑max = 20 𝜇m from different views, illustrating the distribution and concentration
of particles within the pulmonary acinus region.

lingered in distal regions. Micron-sized particles approached
the inlet more easily in M1 and M2, but were trapped in
alveoli in M3 and M4, reflecting their complex geometries.

Figure 5, Fig. 6a, Fig. 6b, and Fig. 7 illustrate how
the deposited particles are spatially distributed across the
meshes. In Figure 8a, Fig. 8b, Fig. 9a, and Fig. 9b we present
the deposition efficiencies (DE) for different deformations
across all meshes, alongside the percentage of particles
exhaled through the inlet and those that remain suspended.
The deposition efficiency for each particle type is calculated
by

DE𝑖 =
# of deposited particles of type 𝑖
# of injected particles of type 𝑖 . (16)

This formula allows us to quantitatively assess the effective-
ness of each mesh in trapping specific particle types under
the given conditions.

As 𝑑max increases, particle deposition slightly rises, par-
ticularly for larger particles (5–10 𝜇m). Mesh geometry and
fluid flow profile play a more significant role in deposition
than volume changes.

Meshes M1 and M2 show similar deposition efficiencies,
with M1 retaining more suspended submicron particles,
while M3 and M4 favor submicron particle deposition. De-
position of 1 𝜇m particles is consistent across meshes, but 2
𝜇m particles deposit less in M3 and M4.

For 5–10 𝜇m particles, deposition occurs primarily in
ducts, influenced by gravity, with M3 and M4 showing

more even distribution due to their longer, non-alveolated
ducts. Smaller particles (0.5–2 𝜇m) travel further, deposit-
ing throughout alveoli in M1, alveolated ducts in M2, and
terminal alveoli in M3 and M4. Submicron particles (<0.5
𝜇m) are airflow-driven, largely exhaled, but deposit along
alveolar edges, especially in M3 and M4 due to their complex
geometries.

4. Conclusions
We will present the particles transported by fluid flow

in the lung’s respiratory zone. Due to the limitations of
resolution clinical images, this part is not solved in general
in the literature of the field. In this multidisciplinary work
we have address this challenge offering a multiple version
of such complex geometries with the solutions of mesh
movement leading a fluid flow and transported particles.

This study marks a significant advancement in the field
of personalized medicine. By offering a comprehensive un-
derstanding of airflow and particle dynamics, particularly in
the distal respiratory zone, it provides critical insights into
several areas. These include assessing the damage caused
by pollutants to lung epithelial tissue, preventing the pro-
gression of respiratory infections caused by viruses and bac-
teria, and improving the efficacy of inhaled treatments. Ulti-
mately, this work lays the groundwork for the development
of personalized medicine strategies, specifically through the
creation of digital twin models of the lungs.
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(a) Deposition efficiency of M1.
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(b) Deposition efficiency of M2.

Figure 8: Deposition efficiency of M1 and M2 for the different mesh deformations of 10𝜇𝑚 (upper left), 15𝜇𝑚 (upper right),
20𝜇𝑚 (lower left), and 25𝜇𝑚 (lower right) radial displacement. The exhaled and suspended particles are also indicated.
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(a) Deposition efficiency of M3.
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(b) Deposition efficiency of M4.

Figure 9: Deposition efficiency of M3 and M4 for the different mesh deformations of 10𝜇𝑚 (upper left), 15𝜇𝑚 (upper right),
20𝜇𝑚 (lower left), and 25𝜇𝑚 (lower right) radial displacement. The exhaled and suspended particles are also indicated.
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A B S T R A C T
The present work is one of the three pieces (upper airways, lower conductive airways and respiratory
zone) of a digital twin lung model developed by the Physical and Numerical Modelling research
group from the CASE department in Barcelona Supercomputing Center (BSC). In particular, the study
presents the solution of fluid flow and SARS-COV-2 particle transport in the lower conductive zone of
the lungs, using a geometry based on patient specific images. The specific context of the current work
is framed within the European Project: CREXDATA: Critical Action Planning over Extreme-Scale
Data. Its general vision is to develop a generic platform for real-time critical situation management
including flexible action planning and agile decision making over streaming data of extreme scale
and complexity. One of the use cases of the project is the COVID-19 pandemic crisis, studying viral
evolution in patients. To that end, the first step is to develop a mechanistic multiscale model to build
a toolbox aimed at having a digital twin for the treatment of patients.

1. Introduction
In response to recent health crisis like the COVID-19

pandemic, researchers have utilized modeling to address
complex challenges in crisis management. However, existing
models often lack deep insights into viral evolution for novel
therapeutic strategies [1, 2]. Our aim is to obtain a mul-
tiscale, multicellular, spatiotemporal model for simulating
lung tissue infected by SARS-CoV-2, spanning from organ
to cell level. This model aims to facilitate the discovery of
patient-specific therapeutic targets and enable full-sized lung
organ simulations.

Our approach integrates Alya [3] and PhysiBoSS [4]
simulators for optimized, patient-specific interventions. Alya,
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a HPC multiphysics tool, simulates airflow in the lung air-
ways and viral particle transport, while PhysiBoSS, an agent-
based tool, assesses alveolar states and cellular impacts.

This workflow can be summarized in:
1. The transport of viral particles in a mesh geometry of

the lower conducting airways, considering up to 17th
generation.

2. Coupling with the lung respiratory zone, to assess the
viral deposition in the alveolar tissue.

3. Simulation of cell-level infection evolution in the ep-
ithelium.

In the current work, our focus lies on the first step of
the proposed workflow: simulating airflow and viral aerosol
transport in the lower conducting airways to evaluate the
fraction of inhaled particles that reach the respiratory zone.

2. Methodology
This section describes the geometry and the computa-

tional mesh in Sec. 2.1, how the airflow simulations are con-
ducted in Sec. 2.2, and the method for the particle transport
in Sec. 2.3.
2.1. Geometry and mesh description

The geometry is patient-specific from generation 0 to
3 and synthetically generated from generation 3 to ∼ 17.
The patient-specific part is reconstructed from a clinically
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(a) (b) (c)

Figure 1: (a) Three dimensional geometry of airways, with patient-specific part shown in orange and synthetic part shown blue.
(b) Trachea inlet. (c) Terminal outlets.

Very Very
shallow Shallow Normal Deep deep

𝑄max 7.5 15 22.5 30 60
(L/min)
𝑉𝑖𝑛ℎ𝑎𝑙𝑒𝑑 0.159 0.318 0.477 0.637 1.274
(L)

Table 1
Characteristics of 5 breathing patterns in a sinusoidal model.

acquired computed tomography (CT) scan, and each termi-
nal is connected to the corresponding synthetically generated
extension to obtain the conducting zone of the airways
(Fig. 1). The synthetic airways are computed following [5].
An initial study to asses the fidelity of the resulting geometry
with anatomical experimental data found in literature is
performed.

An unstructured mesh is employed, due to the complex
shape of the geometry. The mesh has more than 45M ele-
ments and is hybrid, made of tetrahedrons with prism layers
at the wall to resolve the wall boundary layer profile.
2.2. Airflow simulations

In order to obtain the airflow simulations, we solve
the Navier-Stokes equations. The numerical model to solve
these equations is based on a stabilized finite element
method. A description of this numerical method can be
found in [6].

Regarding boundary conditions, an initial approach in-
volves imposing flow rate at the trachea inlet and setting
zero pressure at all outlets, aligning with existing literature
for result validation [7, 8]. However, further exploration of
alternative boundary conditions is undertaken to obtain a

more accurate solution that better captures the underlying
physical phenomena.

We simulate both stationary flows and sinusoidal breath-
ing patterns. The parameters are shown in Tab. 1. In the case
of stationary flow, a constant flow rate of 𝑄max is imposed
at the trachea, while for dynamic breathing a sinusoidal
function is imposed:

𝑄trachea(𝑡) =
𝑑Δ𝑉
𝑑𝑇

=
(
𝑉inh 𝜋
𝑇

)
sin

(2𝜋
𝑇
𝑡
)

= 𝑄max sin
(2𝜋
𝑇
𝑡
)
, (1)

where the breathing cycle period 𝑇 is 4 seconds in all cases.
2.3. Particle transport

The transport of particles is simulated in a Lagrangian
frame of reference, following each particle individually.
From the numerical point of view, the main assumptions
to develop the model are: particles are assumed sufficiently
small to neglect their effect on the air, therefore, a one way
coupling is considered; particles do not interact with each
other; and particle rotation is neglected.

Particles are injected at the trachea inlet following a
uniform distribution. For the steady simulations, all particles
are released at the initial time step. For the unsteady simu-
lations, a number of particles proportional to the flow rate
are injected at each timestep during inspiration. Different
particle sizes in a range around 120 nm are considered,
representing viral particles [9].

3. Results
This section presents the results of the study. In more

detail, Sec. 3.1 presents and analysis of the conductive zone
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(a) Velocity streamlines in the bifurcating model for different airflow rates: (left) 7.5 L/min, (middle) 15 L/min, and (right) 30 L/min.

(b) Pressure for three different airflow rates: (left) 7.5 L/min, (middle) 15 L/min, and (right) 30 L/min.

Figure 2: Visualization of the velocity streamlines and the pressure distribution in the lung model.

Figure 3: Flow rate per generation for 30 L/min.

geometry, Sec. 3.2 investigates stationary simulations of the
conductive zone, and Sec. 3.3 looks at transient simulations.

3.1. Analysis of the conductive zone geometry
The validation of the conductive zone geometry confirms

the model’s adherence to anatomical structures, while high-
lighting some differences. The relationship between airway
diameter and generation shows close agreement with experi-
mental data in the patient-specific portion (generations 0–2),
whereas the synthetic geometry exhibits a faster diameter
reduction.

Characterization of branching indicates a deviation from
ideal dichotomous branching, as not all branches divide
beyond generation 8, resulting in a distribution of termi-
nal branches centered around generation 11. Moreover, the
terminal diameters remain fixed regardless of generation,
leading to abrupt changes in diameter at higher generations.

The model’s lobe-specific terminal distribution is anatom-
ically realistic, with the right side containing more terminals
and the right middle lobe having the fewest. However, the
observations that not all branches reach the same generation,
combined with inaccuracies in diameters, underscore the
need for improving the geometry and setting boundary
conditions that accurately capture the resulting pressure
differences.
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(a) Particle deposition for three different airflow rates: (left) 7.5 L/min, (middle) 15 L/min, and (right) 30 L/min.

(b) SARS-CoV-2 particle deposition for three different airflow rates: (left) 7.5 L/min, (middle) 15 L/min, and (right) 30 L/min.

Figure 4: Visualization of the particle deposition in the lung model.

3.2. Stationary simulations of the conductive zone
The stationary simulations of the conductive zone are

validated to ensure solution accuracy and stability. Veloc-
ity profiles at various positions in the airways are vali-
dated against prior studies, revealing similar velocity trends.
Reynolds number calculations confirm laminar or transi-
tional flow, justifying the neglect of turbulence.

The air velocity streamlines shown in Fig. 2a reveal peak
velocities after the initial bifurcation areas of all five main
lobes, marking the transition from the patient-specific to the
synthetic model. This peaks in velocity are likely due to the
abrupt changes in diameter at these transition points.

Flow rate comparisons with theoretical values as de-
picted in Fig. 3 highlight discrepancies due to uniform
terminal diameters and boundary conditions, which fail to
account for realistic variability across generations.

The pressure distribution results, see Fig. 2b, show a
steady decrease from the trachea to lower generations, with
maximum pressure observed near the tracheal walls, as
expected. Higher flow rates exhibit more significant pressure
drops in lower airways.

Particle deposition patterns as found in Fig. 4a reveal
that larger particles, e.g., 50 µm, predominantly deposit in
the trachea, with deposition spreading into deeper airways

as particle size decreases. The SARS-CoV-2 particle de-
position, see Fig. 4b, shows higher concentrations in the
bronchial regions for higher flow rates.

Flow and particle outflow analyses demonstrate a consis-
tent pattern of higher outflow in the right lung, with the right
middle lobe showing the lowest outflow. Particle outflow
is inversely related to flow rate, with higher deposition
observed at increased flow rates. Larger particles exhibit
greater deposition than smaller particles, emphasizing size-
dependent behavior in particle transport and deposition.
3.3. Transient Simulations: Breathing cycle

SARS-CoV-2 particle transport is visualized at the start
of inhalation (𝑡 = 0.1, 0.2, 0.3𝑠) and exhalation (𝑡 =
2.1, 2.3, 2.5𝑠) in Fig. 5.

Deposition progresses as particles initially deposit in
the deep airways during inhalation and then in the first
generations during exhalation, see Fig. 6.

The percentage of particles exiting through the terminal
airways in each lobe as depicted in Fig. 7a show that more
particles exit through the right lung than the left, with the
lowest outflow observed in the right middle lobe.

The percentage distribution of deposited, outgoing, and
exhaled particles for each flow rate, see Fig. 7b, shows high
deposition percentages, particularly for 60 L/min and 15
L/min. It is noted that deposition may be overestimated due
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(a) 𝑡 = 0.1𝑠. (b) 𝑡 = 0.2𝑠. (c) 𝑡 = 0.3𝑠.

(d) 𝑡 = 2.1𝑠. (e) 𝑡 = 2.3𝑠. (f) 𝑡 = 2.5𝑠.

Figure 5: Particle transport at different time stances for 30L/min.

to the assumption that all particles touching the wall remain
deposited, while in reality, not all particles stay attached.

4. Conclusions
This study examines SARS-CoV-2 particle behavior

within the conductive zone of the respiratory system, pro-
viding key insights into particle deposition dynamics. The
results demonstrate that airflow rates significantly affect
deposition patterns, with elevated airflow (such as during
physical exertion) increasing the likelihood of particles
reaching deeper regions. This suggests a heightened risk
of infection in the lower respiratory tract under certain
conditions.

However, the current model has limitations. The syn-
thetic geometry used diverges from anatomical accuracy,
with inconsistencies in branch diameters and incomplete
branching to terminal generations.

5. Future work
Future efforts will focus on addressing the geometric

limitations of the conductive zone model by incorporating
anatomically accurate branching structures and implement-
ing more sophisticated boundary conditions, such as assign-
ing unique conditions to individual outlets to better simulate
physiological variations.

Moreover, expanding the model to include a compre-
hensive respiratory zone geometry, currently under devel-
opment, will enable a more detailed analysis of particle
behavior throughout the entire respiratory tract.

Additionally, improvements to the particle deposition
model will account for particle bouncing upon wall con-
tact, offering a more accurate representation of deposition
dynamics. The model will also be adapted to study the im-
pact of pathological conditions, such as asthma and COPD,
by modifying airway geometries to reflect disease-specific
changes.

Coupling the model with PhysiBoSS will enable detailed
simulations of virus-cell interactions, which will provide
deeper insights into viral behavior and infection progression.
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(a) 𝑡 = 0.6𝑠. (b) 𝑡 = 1.2𝑠. (c) 𝑡 = 1.8𝑠.

(d) 𝑡 = 2.4𝑠. (e) 𝑡 = 3𝑠. (f) 𝑡 = 4𝑠.

Figure 6: Deposition progression at different time instances for 30L/min.

(a) Percentage of outgoing particles through the terminals in each
lobe for the five flow rates.

(b) Percentage distribution of deposited, outgoing, and exhaled
particles for the five flow rates.

Figure 7: Distributions of particles.
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A B S T R A C T
The present work is one of the three pieces (upper airways, lower conductive and respiratory zones)
of a digital twin lung model developed by the Physical and Numerical Modelling research group of
the CASE department at the Barcelona Supercomputing Center (BSC). In this study, we focus on
the upper airways, and we present a computational model to analyze the fate of particles in nasal
drug treatments. By integrating fluid dynamics with particle transport algorithms, the computational
model, implemented in the in-house code Alya, aims at predicting the particles behavior, from their
interactions with the nasal cavity walls considering mucus layer, to their deposition and ultimately
their fate once deposited. This work is framed within the project DREAMS: Particle Deposition
Computational Model for ChildREn Airways with Mucus Surface.

1. Introduction
Inflammatory upper airway diseases, encompassing a

range of conditions, such as allergic rhinitis, rhinosinusitis
and laryngitis, are estimated to affect around 20% of the
global population. The symptoms involve obstruction of the
upper airways, resulting in poor breathing capacity, thus
inevitably causing poor life quality and high economical
costs. Inhalation therapy, including nasal spray treatments,
is an attractive approach to treat such respiratory diseases.
To improve treatment efficacy, it is crucial to understand
the movement of drug particles through the nasal cavity,
their interactions with the nasal walls, and their eventual
deposition in the Airway Surface Liquid (ASL) layer, which
is made of two substrates: mucus layer (highly viscous), and
periciliary layer (less viscous). Following deposition, it is
important to assess the drug uptake from these particles.
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2. Particle dynamics modeling
Deposition and uptake processes occur at different time

scales. While deposition involves the interaction of drug
particles with the nasal surfaces over a short time frame (i.e.,
seconds), uptake encompasses the gradual absorption of the
drug into the ASL, which occurs over a longer period of time
(i.e., minutes). By decoupling these processes, we can sim-
ulate each phase and provide insights into the effectiveness
of nasal drug delivery.
2.1. Particle-wall interaction and deposition model

We propose a computational model for the interaction
between solid particles and nasal cavity walls. Unlike con-
ventional approaches that assume a sticking or "deposit-
on-touch" condition, our model considers the mucus layer
coating the nasal cavity walls. In our approach, a critical col-
lision velocity criterion, based on that proposed by Ohsaki et
al. [1], determines whether the particle deposits or rebounds
upon colliding with the wall. We define the critical collision
velocity as

𝑢cr =
3𝜋𝜇𝑟2𝑝
2𝑚𝑝

(
1 + 1

𝑒

)
ln
(

 
 𝑎

)
, (1)

where 𝜇 is the mucus viscosity coefficient, 𝑟𝑝 is the particle
radius, 𝑚𝑝 is the particle mass, where 𝜌𝑝 is the particle
density, 𝑒 is the restitution coefficient,  is the mucus layer
thickness, and  𝑎 is the particle surface roughness.

In cases of rebound, the new particle direction is calcu-
lated with a statistical model based on the surface roughness
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(a) (b)

Figure 1: (a) Microscopic image of the gel coating the 3D nasal cast, simulating mucus layer in the experiments and (b) geometry
of the surface roughness obtained from (a), where ℎ𝑚 is the average surface roughness height.

9 54

𝑑(𝜇m)

(a)

9 54

𝑑(𝜇m)

(b)

Figure 2: Deposition maps in a 9-year-old patient nasal geometry, obtained with (a) “deposit-on-touch" condition and (b)
particle-wall interaction model, for the flow rate 15𝐿/min, where 𝑑 is the particle diameter (𝜇𝑚).

of the mucus layer [2], illustrated in Fig. 1a. By geometri-
cally characterizing the mucus surface, such model samples
the angles of rebound 𝜃 and𝜙, in spherical polar coordinates,
for a colliding particle of diameter 𝑑 and angle of attack 𝛼
(see Fig. 1b). The particle then continues its trajectory within
the nasal cavity, gradually losing kinetic energy until it meets
the deposition criterion (i.e., ‖𝒖𝑝‖ ≤ 𝑢𝑐𝑟, where 𝒖𝑝 is the
particle velocity), hence it deposits on the ASL layer.
Results. The efficacy of the particle-wall collision rebound
model was assessed against experimental results using the

same nasal cast geometry (from a 9-year-old patient), for the
flow rates of 15𝐿/min and 60𝐿/min. A parameter study has
been carried out to identify the optimal values for the numer-
ical deposition against the experimental one [3]. In Fig. 2,
the deposition maps computed with“deposit-on-touch" and
particle-wall interaction models, show a substantial differ-
ence in the particles distribution. In addition, the proposed
model significantly enhances the accuracy of deposition
maps, demonstrating a high level of consistency between the
computational predictions and experimental observations.
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(a) (b)

Figure 3: (a) Illustration of the mucosa in the respiratory tract and (b) schematic diagram for mathematical modeling.

2.2. Dissolution and diffusion models for deposited
particles

Once the particles are deposited on the ASL layer,
they are subject to dissolution, diffusion and advection
processes [4]. The dissolution of drug particles in a liquid
medium, through which they will progressively be reducing
their mass and size, is described by the Noyes–Whitney
equation

𝑑𝑚
𝑑𝑡

=
−𝐴𝐷𝑚(𝐶𝑠 − 𝐶𝑏)

ℎ
, (2)

where 𝑚 is the particle mass, 𝐴 is the particle surface area,
𝐷𝑚 is the diffusion coefficient, ℎ is the mucus layer thick-
ness, 𝐶𝑠 is the drug solubility and 𝐶𝑏 is the concentration of
the dissolved drug in the bulk phase.

The dissolved particles diffuse across both layers of
the ASL towards the epithelium, are advected towards the
pharynx due to the mucociliary clearance, and are subject
to enzymatic degradation. A diagram of the mucosa is illus-
trated in Fig. 3a (image adapted from Intersurgical1). The
diffusion-advection-reaction equation is given as

𝜕𝐶
𝜕𝑡

+ ∇ ⋅ (𝒖𝐶) = ∇ ⋅ (𝐷𝑚∇𝐶) + 𝜌(𝐶), (3)
where 𝐶 is the drug concentration, 𝒖 is velocity of the
mucus and 𝜌(𝐶) is the reaction term, accounting for the
enzymatic degradation. Eq. (3) is solved subject to boundary
conditions, such that 𝐶( = 0) = 𝐶𝑠𝑎𝑡, where 𝐶𝑠𝑎𝑡 is the
saturation concentration, assuming local equilibrium at the

1https://au.intersurgical.com/info/filtrationandhumidification

lumen-mucus interface, and 𝐶( =  𝑚𝑎𝑥) = 𝑘𝐶 , where
 𝑚𝑎𝑥 = 𝛿𝑚 + 𝛿𝑝, and 𝑘 is the absorbance of the epithelium
(see Fig. 3b).

3. Conclusions
Once the particle-wall interaction and diffusion models

are implemented separately, the outlook of this work is to
couple them to achieve a more comprehensive simulation.
In this integrated approach, the concentration of deposited
particles will be evaluated at the nodes of the computational
mesh at each time step. These particles will then be itera-
tively dissolved into the ASL layer and advected through the
nasal cavity.
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A B S T R A C T
A numerical study using the lattice-Boltzmann method is conducted to investigate the conditioning
ability of the human nose, where a boundary treatment is implemented to model the latent heat
effect. The humidity exchange at the wet surface of the nasal mucosa influences the wall temperature,
imitating the thermal inertial effects of the mucosa tissue. To capture the curvature of the cavity geom-
etry, interpolated bounce-back schemes are used to set the wall temperature and water concentration
computed by the boundary model. The impact of evaporation on the conditioning ability is investigated
for pre- and post-surgery cavity geometries of a patient that was diagnosed with enlarged turbinates and
underwent turbinectomy. The widening of the nasal passages in the course of the turbinectomy cause a
reduced pressure loss between the inlets (nostrils) and the outlet (pharynx), but also dry air streaming
towards the back part of the airway-throat interface. This coincides with the patient’s perception, who
reported less efforts for breathing in, but at the same time a dry and sometimes painful feeling at the
back of the throat.

1. Introduction
Clinical investigations of the conditioning ability of the

nose demonstrate a challenge due to the difficult access of the
nasal cavity with measurement equipment. Computational
fluid dynamics (CFD) enables in-depth studies of the nasal
conditioning ability, allowing to obtain velocity, pressure,
temperature, and humidity concentration distributions inside
the cavity. The lattice Boltzmann method (LBM) has proven
to be a popular approach to address fluid flow problems
in the medical field [1, 2] due to the adaptability towards
complex geometries and easy extension to solve transport
phenomena.

This article presents numerical studies on the influence
of the latent heat effect of evaporation on the inhalation
process through the nose. The nasal cavity geometry is
obtained via computer tomography scans converted into a
surface model with the automated machine learning-based
pipeline described in [3]. CFD simulations are conducted for

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02479 and of the Proceedings 10.34734/FZJ-2025-
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the pre- and post-surgical anatomy of a patient that under-
went turbinectomy, a surgical intervention to treat enlarged
turbinates. Whereas previous attempts for estimating and
planning surgical interventions with an LBM mainly focus
on a surgery’s influence on the pressure or temperature dis-
tributions [4, 5], the current study allows to analyze the main
complication of a turbinectomy, i.e., a decreased capability
to humidify incoming air. On the one hand, turbinectomy is
known to reduce nasal resistance and ease breathing [6]. On
the other hand, it alters nasal conditioning, since less heat ex-
change and humidification are possible, resulting in streams
of significantly colder and dryer air in the nasopharynx [7].

2. Numerical Method
For solving each macroscopic equation, i.e., Navier-

Stokes equation (NSE) for the airflow and advection-diffusion
equations (ADE) for the heat and humidity transfer, the LBM
implemented in the open source multiphysics solver frame-
work m-AIA 1 (multiphysics - Aerodynamisches Institut
Aachen, formerly known as Zonal Flow Solver (ZFS) [8])
is employed where the temperature and water concentration
distribution are computed via passive scalar transport. The
velocity discretization model is the D3Q27 lattice and the
second-order equilibrium distribution is used for the BGK-
collision operator for all solved equations. The boundary
treatment for the NSE system, in- and outflow for the ADE
systems are chosen similarly as in [5]. The interpolated

1https://git.rwth-aachen.de/aia/MAIA/Solver
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Figure 1: The heat and water flux are evaluated at the mucosa wall to obtain the temperature and concentration at the wall.
The computed latent heat flux depends on the passed water flux from the mucosa to the fluid.

bounce-back scheme for the ADE [9] is applied for the heat
and humidity transport to compute the missing boundary
populations to account for the boundary curvature of the
nasal cavity wall, i.e.,

𝑔𝑖(x, 𝑡 + Δ𝑡) ={
−2𝑞�̃�𝑖(x, 𝑡) + (2𝑞 − 1)�̃�𝑖(x − c𝑖Δ𝑡, 𝑡) +

1
4Φ

𝑊
𝑖 , q < 0.5

− 1
2𝑞 �̃�𝑖(x, 𝑡) +

2𝑞−1
2𝑞 �̃�𝑖(x, 𝑡) + 1

8𝑞Φ
𝑊
𝑖 ,0.5 ≤ 𝑞 ≤ 1 , (1)

where q is the normalized distance between the boundary
node and wall intersection point in the discrete velocity di-
rection 𝑖, and Φ𝑊

𝑖 the desired value for the wall temperature
𝑇𝑊 and water concentration 𝐶𝑊 prescribed by the scheme.
This scheme uses neighboring populations and the exact
boundary distance in contrast to the simple bounce-back
scheme which enables to prescribeΦ𝑊

𝑖 at the boundary wall.
In order to computeΦ𝑊

𝑖 , the wet surface model from [10]
is used. The wet surface model assumes an additional outer
layer with a uniform thickness in the normal direction to
the geometry wall, modeling the nasal mucosa, which is
referred to as the membrane layer. The temperature at the
outside wall of the membrane layer is called the organ-side
temperature 𝑇𝑂, which is assumed to be constant due to the
continuous heat supply by the blood capillaries. For the same
reason, the organ-side water concentration 𝐶𝑂 is assumed to
be fully saturated at the outer layer. To approximate 𝐶𝑂, the
fully saturated water concentration of air as a function of the
temperature 𝑇 is computed via 𝐶 = 𝑤𝜌𝑇 , where 𝜌 is the
density of air and 𝑤 is the water fraction (kg water vapor per
kg dry air), given by the empirical function [10, 11]

𝑤(𝑇 ) = 1
1000

⋅ (2.027 + 0.0006312𝑇 3

− 0.010972𝑇 2 + 0.6036𝑇 ). (2)
To compute the missing wall temperature 𝑇W and water
concentration 𝐶W, the energy and mass balance at the nasal

wall are evaluated as depicted in Fig. 1. The heat flux 𝑞 and
water flux 𝑗 are computed by using linear approximations for
the gradients, i.e., the fluxes on the membrane side are

𝑞𝑀𝑖 = 𝑘𝑀
𝑇𝑂 − 𝑇𝑊

𝑖

𝛿𝑀𝑖
and (3)

𝑗𝑀𝑖 = 𝐷𝑀 𝐶𝑂 − 𝐶𝑊
𝑖

𝛿𝑀𝑖
, (4)

where 𝑘𝑀 is the heat conductivity, 𝐷𝑀 is the diffusivity
constant of water, and 𝛿𝑀𝑖 is the distance in the membrane
layer along the discrete velocity direction. At the opposite
side of the nasal cavity wall, the airflow, heat, and concen-
tration transport are simulated. The heat and water flux from
a boundary lattice node with the fluid cell temperature 𝑇 𝐹

and water concentration 𝐶𝐹 to the wall are approximated by

𝑞𝐴𝑖 = 𝑘𝐴
𝑇𝑊
𝑖 − 𝑇 𝐹

𝛿𝐴𝑖
and (5)

𝑗𝐴𝑖 = 𝐷𝐴𝐶
𝑊
𝑖 − 𝐶𝐹

𝛿𝐴𝑖
, (6)

where 𝛿𝐴𝑖 is the distance between the fluid cell center and
the wall surface in the opposite discrete velocity direction of
the missing population. Note, that in Eq. (6) the convective
part is neglected due to the assumption of low flow velocities
in the wall vicinity. An additional term in the energy bal-
ance is introduced, which imitates the heating and cooling
of the mucous layer due to condensation and evaporation,
respectively. The heat flux of the latent heat is computed by
𝑞𝐿𝑖 = −𝑗𝐴𝑖 ℎ

𝐿
𝑖 , where ℎ𝐿𝑖 is the specific latent heat in kJ/kg,

given as a function of the temperature [11]
ℎ𝐿(𝑇 ) =2500.8 − 6.1434 ⋅ 10−6 ⋅ 𝑇 3

159



Shota Ito et al.: Wet-Surface Modeling in Lattice-Boltzmann Simulations for Evaluating Surgery Impacts on the Humidity Transfer in Nasal Flows

Distance [cm]:

0 1.5 2.5 6 11

1.5 2.5 6

(a) Intranasal positions.

0 1 2 3 4 5 6

25

27

29

31

33

35

Intranasal distance [cm]

T
[°
C
]

Keck et al.
𝐶𝑎𝑠𝑒𝐿𝐻=𝑂𝑁
𝐶𝑎𝑠𝑒𝐿𝐻=𝑂𝐹𝐹

(b) Mucosa surface temperature.

Figure 2: Comparison of the intranasal mucosa temperature concentration at the positions 1.5 cm, 2.5 cm, and 6 cm between
the simulation and measurements from [12]. The influence of the latent heat effect is shown.

+ 1.5893 ⋅ 10−3 ⋅ 𝑇 2 − 2.3641 ⋅ 𝑇 . (7)
Evaluating the energy and mass balances as 𝑞𝐴𝑖 = 𝑞𝑀𝑖 + 𝑞𝐿𝑖and 𝑗𝐴𝑖 = 𝑗𝑀𝑖 along the missing population direction yields
the missing wall values Φ𝑊

𝑖 for Eq. (1).

3. Results
The wet surface model was first sanity-checked in a wet

pipe flow simulation in [13], similarly as in [10, 11]. Then,
the impact of the latent heat on the mucosa surface is com-
pared against the experimental data of [12]. That is, the nasal
mucosa temperature is compared at three nasal locations
shown in Fig. 2. Therein, it is shown that by considering the
latent heat effect, the simulated nasal mucosa temperature
approaches the trend of the experimental results. Note that
a perfect match is not to be expected, since the nasal cavity
model in the current study is different from the model in [12].
More details regarding the conducted tests of the wet surface
model are given in the work of [13].

The flow simulations were conducted on 8 nodes of
the graphics processing unit (GPU) partition of JURECA-
DC [14], i.e., on a total number of 32 NVIDIA A100
GPUs. Traditionally, m-AIA was developed to run CFD
simulations in parallel on central processing unit (CPU)
partitions of high-performance computing (HPC) systems.

However, recently GPU partitions on HPC systems are gain-
ing popularity. To allow computations on both partitions, the
lattice-Boltzmann method has been ported to GPUs using
the parallel Standard Library (pSTL) algorithms of C++17 in
combination with NVIDIA’s NVHPC compiler.

The simulation domain is resolved by about 220 ⋅ 106
cells, using mesh resolutions of Δ𝑥 = 0.1 𝑚𝑚. The grid
resolution is finer than the spatial resolution of the CT data
to resolve all relevant flow features to analyze the flow.
Especially thin wall-bounded shear layers which are relevant
to simulate the right heat transfer are resolved accurately this
way [1]. The patient has undergone turbinectomy in the left
nasal passage (from the patient’s view).

The surgical intervention reduces the total pressure loss
between the inlets (nostrils) and outlet (pharynx) from
10.02 𝑃𝑎 before the surgery to 7.11 𝑃𝑎 afterwards (−31%).
At the same time, the temperature difference between the
incoming air at the inlets and outlet is reduced from 304.8𝐾
to 295.8 𝐾 (−3%), and the humidity concentration from
96.2% to 90.0% (−7%). Figure 3a illustrates the total pres-
sure loss to the inflow areas for a cross-sectional area through
the left nasal passage. It is clearly shown how the removal
of parts of the inferior and middle turbinates widen the
nasal passage and, therefore, decrease the pressure loss.
Figure 3b shows the humidity distribution for the same
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(a) Total pressure loss to the inflow areas (nostrils) for a cross-sectional area through the left nasal passage (from the patient’s view) of the
pre-surgical (left) and the post-surgical (right) cases.
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(b) Humidity distribution for a cross-sectional area through the left nasal passage (from the patient’s view) of the pre-surgical (left) and the
post-surgical (right) cases.

cross-sectional area. The narrowed passages in the pre-
surgical case allow closer contact between the incoming air
and the airway-nose interface, and, therefore, an increased
heat exchange and humidification. In contrast, the widening
of the nasal passages in the course of the turbinectomy cause
dry air streaming towards the back part of the airway-throat
interface. This coincides with the patient’s perception, who
reported less efforts for breathing in, but at the same time a
dry and sometimes painful feeling at the back of the throat.
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A B S T R A C T
Atherosclerosis is one of the major risk factors for vascular diseases, and its preferable sites suggest
that development of atherosclerosis may be related to hemodynamics. The relationship between pulse
wave velocity (PWV) and atherosclerosis has long been discussed for non-invasive diagnosis. The
evaluation of the measured PWV as a diagnostic indicator for vascular diseases is based on the
Moens-Korteweg equation. However, since this theoretical equation is derived based on many ideal
assumptions, the evaluation of PWV measured in actual blood vessels using the Moens-Korteweg
equation could be uncertain. Therefore, further understanding of the phenomenon of pulse wave
propagation is necessary to make PWV a more reliable diagnostic indicator. In this study, to obtain
a more reliable diagnostic indicator for atherosclerosis, the evaluation of the measured PWV and
changes in pulse waveforms were investigated using a three-dimensional straight cylindrical model of
the aorta.

1. Introduction
Atherosclerosis is one of the risk factors for vascular

diseases such as heart disease and cerebrovascular dis-
ease,which are major causes of death worldwide. Atheroscle-
rosis is a disease in which atherosclerotic plaques develop on
the inner surface of arteries, eventually obstructing blood
vessels and causing functional decline or arrest of vital
organs [1]. One of the non-invasive methods for diagnosing
atherosclerosis is measuring pulse wave velocity (PWV).
Pulse wave propagation is a phenomenon in which oscil-
lation in the arterial wall (pulse wave) caused by the blood
pulsed by the heart’s contraction propagate with blood flow
to the periphery of the artery. This velocity is called pulse
wave velocity, and when measured in vivo, it is obtained by
dividing the distance L between two measurement points by
the time delay Δt of the waveform.
Therefore, it is

PWVmeasure =
𝐿
Δ𝑡
. (1)

Note that PWVmeasure is calculated as the average veloc-
ity between two measurement points. When evaluating the
measured PWVmeasure the Moens-Korteweg equation [2] is
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commonly used. According to the Moens-Korteweg equa-
tion, PWV is expressed as

PWVM-K =
√
𝐸ℎ
2𝜌𝑟

. (2)

Here, 𝐸 is the Young’s modulus of the vessel wall, ℎ
is the thickness of the vessel wall, 𝜌 is the blood den-
sity, and 𝑟 is the inner diameter of the vessel. From this
equation, it is predicted that changes in properties of the
vessel wall due to conditions such as arterial wall thick-
ening, decreased elasticity, or the development of steno-
sis associated with arteriosclerosis, lead to an increase in
PWV. However, the Moens-Korteweg equation is derived
based on idealized assumptions and remarkably deviates
from the geometric and mechanical environments in actual
biological systems. Therefore, diagnosing arterial sclerosis
by PWVmeasure based on PWVM-K could be uncertain. In
addition, PWVmeasure evaluates only velocity of wave prop-
agation and does not consider many other important biolog-
ical factors. Therefore, in order to enhance the reliability
of PWVmeasure as a diagnostic indicator, a new evaluation
index that considering dynamics of the pulse waveforms are
necessary. In this study, PWVmeasure was firstly evaluated to
verify whether the computational models and schemes can
be applied to future pulse wave analysis, and then pulse wave
analysis was conducted to make PWVmeasure a more reliable
diagnostic indicator for arteriosclerosis.
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Figure 1: Arterial model.

2. Methods
In this study, the nonlinear structural analysis solver, RA-

DIOSS version 2022.3 by Altair, was used to perform fluid-
structure interaction analysis using the Arbitrary Lagrangian-
Eulerian (ALE) formulation. A three-dimensional straight
cylindrical tube model of the aorta was used for the simula-
tion model as shown in Fig. 1+2. The outer part was com-
posed of solid elements simulating the vessel wall, while the
inner part composed of fluid elements simulating blood. One
cross section contained 256 elements in the solid domain
and 512 elements in the fluid domain. The structural part
was modeled using isotropic linear elastic material, while
the fluid part was modeled using viscous fluid material. The
governing equations used were the equilibrium equations
for the structural part and the Navier-Stokes equation and
the continuity equation for the fluid part. For the boundary
conditions, a single rectangular wave was introduced into
the fluid part at the inlet, as shown in Fig. 3, to generate
a compression wave. Both ends of the structural part were
fixed for displacement and rotation, and a no-slip condition
was applied at the interface between the structure and fluid
parts. The Young’s modulus of the blood vessel wall was set
to 𝐸 = 1.5𝑀𝑃𝑎, the Poisson’s ratio to 𝜈 = 0.45, and the
initial density to 𝜌𝑠𝑖 = 1000𝑘𝑔∕𝑚3. The kinematic viscosity
of the blood was set to 𝜈 = 4.0 ⋅ 10−6𝑚2∕𝑠, the sound speed
to 𝐶 = 80𝑚∕𝑠, and the initial density to 𝜌𝑓𝑖 = 1000𝑘𝑔∕𝑚3.
The specifications of the PC used for the simulations are
Intel core i9-13900: clock frequency, 3.0 GHz; number of
cores, 24; memory size, 128 GB.

3. Results and discussions
Figure 4a shows the efficiency of the parallel computa-

tion. The efficiency of the parallel computation increased
the most at 8 parallel processes. As the number of threads
increased, the clock frequency gradually decreased to pre-
vent the processor from overheating. However, with 8 paral-
lel processes, the clock frequency remained relatively high
compared to other parallel processes. On the other hand,
with 16 parallel processes, the clock frequency significantly

Figure 2: Cross section A-A’ of arterial model.

Figure 3: Boundary condition at the inlet of fluid.

decreased, and the increased overhead of data communi-
cation between computation nodes led to a decrease in
efficiency.

Figure 4b shows the computed results of local PWVmeasurein the blood vessels. PWVmeasure was calculated using the
phase velocity method [3]. This method involves shifting
one of the observed waveforms between any two measure-
ment points, aligning the rising edges of the waveforms,
and measuring the distance moved as the time delay Δ𝑡.
PWVmeasure was then calculated using this time delay Δ𝑡
and the distance 𝐿 between the measurement points. At the
location z=200 mm, the local PWVmeasure was determined
from the two velocity waveforms at z = 150 mm and 250 mm,
and this methodology was applied across other locations as
well. The results indicate that the maximum error between
the calculated PWVmeasure values and theoretical values was
found to be 18.4 %. Hence, further verification is necessary
in future studies.

For pulse wave analysis, both volume pulse waves and
velocity pulse waves are necessary. Therefore, in this study,
the changes in amplitude and shape of both pulse waves
toward the peripheral regions were investigated. Figure 4c
shows the radial displacement waveforms of the vessel wall
at different locations, while Fig. 4d shows the centerline

164



Y. Kaneko & T. Fukui: Fundamental Study on Fluid-Structure Interaction Models for Pulse Waveform Analysis Through Blood Vessels

(a) The efficiency of the parallel computation. (b) PWV values at each point.

(c) Wall displacement waveforms at each point. (d) Velocity waveforms at each point on the center line.

Figure 4: Figures illustrating computational efficiency, PWV values, wall displacement, and velocity waveforms.

velocity waveforms at different locations. From the results,
it can be observed that as the pulse wave propagates distally,
the upstroke became less steep and the amplitude decreased.
This behavior was attributed to the effect of fluid viscosity
dissipation.

4. Conclusions
In order to analyze pulse waves using fluid-structure

interaction, the PWV of the simulation model was evaluated.
The calculated PWV was estimated lower than the theoret-
ical value. In the future work, the simulation model will be
validated to accurately analyze pulse waves, and pulse wave
analysis will be conducted to deepen the understanding of
pulse wave propagation.
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A B S T R A C T
Efficient particle deposition modeling is crucial for understanding regional particle deposition effects
on human airways. Lagrangian particle tracking in large, complex domains presents two primary
challenges: high computational costs and the requirement for a robust framework with effective
interpolation routines and comprehensive mesh information. Finite Element Method (FEM) routines,
utilized for fluid modeling, are ideal due to their interpolation capabilities and data structures, which
store mesh and geometric information essential for tracking and identifying particle deposition status.
However, FEM data structures are complex and usually reside on CPUs, making it challenging to
port them to GPUs. Despite this, GPUs offer significant parallelization potential for particle tracking
if these data structures can be efficiently managed. In this work, we introduce a GPU-accelerated
Lagrangian particle deposition framework utilizing FEM-based routines. Our approach focuses on
efficient transfer and simplification of FEM data structures from CPU to GPU, facilitating the
implementation of zonal-based particle searching and inertial deposition techniques directly on the
GPU. Our model demonstrated lower sequential execution time than ANSYS Fluent’s particle tracking
module and achieved a 100x speedup over the Sequential CPU implementation and a 4x speedup over
the OpenMP implementation for number of particles up to 5 Million. The GPU-accelerated framework
reduces execution time from days to hours for complex geometries, enabling deeper exploration of
particle deposition in human airways.

1. Introduction
Modeling aerosol deposition in the human airway is

crucial for understanding regional particle deposition, aiding
the development of targeted drug delivery systems [1, 2,
3, 4]. In-vivo methods are limited by safety and regulatory
issues, especially with radioactive aerosols [5, 6, 7]. In-
vitro studies show that slight variations in geometry and
surface irregularities from fabrication significantly impact
aerosol deposition [8, 9, 10]. A wide range of fluid flow
solvers, including the finite volume method (FVM) [11],
finite element method (FEM) [12], and lattice Boltzmann
method (LBM) [13] have been employed to simulate fluid
flow in bounded domains. These solvers incorporate tur-
bulence models such as Reynolds–averaged Navier–Stokes
(RANS) [14, 12] and large eddy simulation (LES) [14, 12].
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In a study by [13], the authors aimed to enhance parti-
cle simulations using GPUs, focusing on the lattice Boltz-
mann method (LBM). However, this approach lacked par-
ticle modeling and experimental validation, limiting com-
prehensive evaluation and practical applicability. In another
work by [15], efforts were made to parallelize particle depo-
sition within the FEM framework. However, this paralleliza-
tion was achieved exclusively using CPU resources.

2. Methodology
2.1. Fluid Modeling

The framework was implemented using our in-house
FEM package, ParMooN [16]. We solved the unsteady 3D
Navier-Stokes equations to simulate fluid flow in the hu-
man airway. Turbulence modeling based on the Variational
Multiscale Method (VMS) was applied for the REYNOLDS
number 3,725. For further details on VMS, see [17]. The
computational mesh used in this study, as shown in Fig. 1,
consists of 300,000 tetrahedral cells.
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Figure 1: Computational mesh, Particle deposition at 3k and 6k timestep with velocity heat maps.

2.2. Particle Modeling
The equations of motion for the particles [12] are given

by

𝑚𝑝
𝑑𝐮𝑝
𝑑𝑡

=3
4
𝜌𝑓
𝜌𝑝

𝑚𝑝
𝑑𝑝

𝐶𝐷
𝐶𝐶
|||𝐮𝑓 − 𝐮𝑝

|||
(
𝐮𝑓 − 𝐮𝑝

)

+ 𝑚𝑝𝐠
𝜌𝑝 − 𝜌𝑓
𝜌𝑝

+ 𝐅𝐵 ,
(1)

where 𝐮𝑝, 𝐮𝑓 , 𝜌𝑝, 𝜌𝑓 , represent the particle velocity, fluid
velocity, particle density, and fluid density, respectively. The
terms in the right-hand side are drag force, gravitational
force and Brownian force, respectively.

3. GPU Implementation
The main concept and parallelization scheme for GPU-

accelerated particle tracking are illustrated in Fig. 2. Before
the simulation begins, all essential data, including simplified
FEM data structures and mesh information, are transferred
from the CPU to the GPU and stored there. The particle
information is initialized on the CPU and then transferred to
the GPU. At each timestep, the corresponding fluid solution
is read from the stored file and transferred to the GPU for
computation. In the GPU, each thread is assigned to track
a particle within the domain. This thread is responsible
for solving the particle equations of motion, interpolating
velocity values at the particle’s current position, performing
zonal searches to compute the updated particle position
within the domain, and calculating the particle deposition

parameters. After all threads complete the computation, a
CUDA-synchronization call is made on the CPU side. If
necessary, particle details can be transferred back to the CPU
from GPU for visualization or logging purposes. The fluid
solution for the next timestep is then read, and the process is
repeated until all particles are deposited or have escaped.
3.1. Adaptation of FEM Data Structures for GPU

FEM utilizes complex nested data structures; for exam-
ple, a cell class may contain edges, and an edge class may
contain vertices. Copying these structures to GPUs is com-
plex and introduces computational overhead, especially in
multithreaded GPU environments constrained by memory.
The core idea of our implementation was to transfer essential
data as primitive arrays from CPU to GPU, enabling the
implementation of FEM-based algorithms for deposition,
interpolation, and tracking routines.
3.2. Inertial Deposition Algorithm

The deposition logic triggers when a particle moves out-
side the computational domain. We determine the deposition
point by analyzing the boundary face of the preceding cell
and constructing a vector between the previous and current
particle positions. The intersection of this vector with the
current boundary surface identifies the deposition point, as
shown in Fig. 3. Using the simplified FEM data structures,
we compute the intersection and orientation of the boundary
face in 3D using the simplified boundary face and cell
connectivity information transferred from CPU to GPU.
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Figure 2: Timeline of GPU accelerated particle deposition.

Figure 3: Deposition logic for structured and unstructured cells.

3.3. Zonal Particle Search
In a zonal search approach, we need the data structures

of the mesh to compute the neighboring cells of the current
cell. This results in searching for the particle within the
zonal neighborhood rather than the entire domain. This in-
formation is necessary to interpolate the underlying velocity
value at the current particle position, which is required for
solving the particle equations of motion. The neighboring

information can be obtained from the FEM data structures
available within the CPU, which hold information such as
cells, their faces, vertices, and neighbor information, see
Fig. 4 for an example. However, using these data structures
to compute the neighboring cells in the GPU presents two
main challenges. First, these data structures are complex and
will add unnecessary memory load when copied to the GPU.
Second, computing these neighbors on-the-fly within the
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sample cell level-1 level-2 level-3

Figure 4: Zonal neighbors visualized at various zonal levels for a sample cell within the domain.

N_Particles Sequential OMP CUDA OMP Speedup GPU Speedup
100K 0.219 0.01 0.002 21 88
1M 2.166 0.139 0.022 16 98
2M 4.445 0.18 0.044 25 102
5M 11.101 0.433 0.101 26 110

Table 1
Time taken and speedup for various number of particles.

Figure 5: GPU vs. OMP speedup for various number of
particles.

GPU using these complex data structures is computationally
expensive, as each GPU thread responsible for updating a
particle’s position must traverse numerous data structures to
calculate the neighboring cells.

We compared our sequential implementation with an
OpenMP-based multi threaded implementation and our
GPU-based implementation. As shown in Tab. 1 and Fig. 5,
the GPU implementation achieves a speedup of 100 times
compared to the sequential implementation.

Pre-computing this neighboring information externally
and transferring it to the GPU is also memory-intensive.

Zonal Levels Min Median Max
1 14 61 114
2 30 210 558
3 31 447 1376

Table 2
Statistics of number of neighboring cells for a given cell in the
domain up to that zonal level.

As seen from Tab. 2, each cell may have close to 1,000
level-3 neighbors, resulting in storing thousands of cell IDs
as neighboring information for each cell in a domain with
millions of cells. This can create an array that uses a large
amount of memory, making it challenging to transfer to the
GPU. Therefore, we need a simple data structure that can
be transferred to the GPU and used to perform minimal
calculations in computing the zonal neighbors of the cell.

We observed that the raw mesh file, which provides
information about which cells and vertices are connected,
can be transformed into an adjacency matrix through proper
calculations on the CPU. In this matrix, each row represents
a cell, and the column values represent connectivity to other
cells in the domain. Furthermore, the resulting adjacency
matrix is sparse, allowing it to be stored in a Compressed
Sparse Row (CSR) format. This format significantly reduces
the memory footprint, making it easier to transfer to the
GPU and use to calculate neighboring cells according to the
algorithm shown in Alg. 1. Each GPU thread will perform
Alg. 1 to compute the zonal neighbors of its respective
particle’s current cell.
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Algorithm 1 Breadth-First Search (BFS) for Neighboring Cells using CSR-based Adjacency Matrix for CUDA implemen-
tation.

1: // Create local arrays to store cells and depths for the queue
2: int queue_cell_no[], queue_depth[], searched_cells[], queue_start_cursor ← 0, queue_end_cursor ← -1, searched_cells_counter ← 0
3: // Add the current cell to the queue
4: queue_end_cursor ← queue_end_cursor + 1, queue_cell_no[queue_end_cursor] ← cell_no, queue_depth[queue_end_cursor] ← 0
5: while queue_start_cursor ≤ queue_end_cursor not inside_domain do
6: // Pop the cell from the queue
7: current_cell ← queue_cell_no[queue_start_cursor]
8: current_depth ← queue_depth[queue_start_cursor]
9: queue_start_cursor ← queue_start_cursor + 1

10: // Loop through neighbour cells at current level
11: start_index ← d_m_row_pointer[current_cell]
12: end_index ← d_m_row_pointer[current_cell + 1]
13: // For cells in current level
14: for index ← start_index to end_index - 1 do
15: neighbour_cell ← d_m_col_index[index] // Get the neighbor cell
16: is_searched ← false
17: // Check if the neighbor cell is already searched
18: for k ← 0 to searched_cells_counter - 1
19: if neighbour_cell = searched_cells[k]
20: is_searched ← true
21: break
22: if is_searched then
23: continue
24: // Check if particle is inside current neighbour cell
25: bool inside_neighbour_cell ← Is_Point_In_Cell_CUDA()
26: searched_cells_counter ← searched_cells_counter + 1
27: searched_cells[searched_cells_counter] ← neighbour_cell
28: if inside_neighbour_cell
29: inside_domain ← true // to get out of while loop
30: d_m_previous_cell[tid] ← d_m_current_cell[tid] // update cell information
31: d_m_current_cell[tid] ← neighbour_cell
32: break
33: if current_depth + 1 < search_depth
34: // Add the neighbour cell to the queue to be searched
35: queue_end_cursor ← queue_end_cursor + 1
36: queue_cell_no[queue_end_cursor] ← neighbour_cell
37: queue_depth[queue_end_cursor] ← current_depth + 1
38: end for
39: end while

Reference Mesh Size Number of Particles Time taken(s)
per timestep

ANSYS Fluent 0.2 Million 100K 0.6
Our Implementation 0.3 Million 100K 0.159

Table 3
Comparison of sequential timings.

4. Results
To validate the efficiency of our sequential implementa-

tion, we compared the time our code takes to track particles
(sequential implementation with one OpenMP thread) with
ANSYS Fluent on a single CPU. This helps show that our

code’s baseline version is optimal when compared with the
existing implementations. The Tab. 3 shows the time taken
for sequential execution of the ANSYS fluent module and
our sequential implementation. It’s important to note that
ANSYS Fluent has its own way of creating meshes (meshing
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Figure 6: Deposition fraction for various particle sizes. VMS is
the deposition fraction from our GPU accelerated model. All
other models are from [12].

routines), So a mesh created within ANSYS with 200K
elements was used for calculating the time taken for particle
tracking. However, our in-house solver cannot work with
meshes exported from ANSYS. Because of this, we used
our own mesh (with 300,000 elements) generated externally
and measured the particle tracking time. Both our code and
ANSYS Fluent used the same number of particles. Even
though ANSYS Fluent has fewer cells (elements) in its mesh,
it still took longer to track particles than our framework.
Additionally, we compared our deposition fraction results
with those from [12], showing a strong correlation for larger
particle sizes, as depicted in Fig. 6. For smaller particle sizes,
a more refined mesh is necessary to accurately capture the
fluid dynamics.

Acknowledgements
The authors acknowledge Lokesh Mohanty (Indian In-

stitute of Science, Bangalore) and Varun Vaidyanathan (In-
dian Institute of Technology, Delhi) for their assistance in
conducting the experiments for this study.

References
[1] K. Kadota, A. Imanaka, M. Shimazaki, T. Takemiya,

K. Kubo, H. Uchiyama, Y. Tozuka, Effects of inhalation
procedure on particle behavior and deposition in the airways
analyzed by numerical simulation, Journal of the Taiwan
Institute of Chemical Engineers 90 (2018) 44–50. doi:10.

1016/j.jtice.2017.11.008.
[2] J. Kimbell, R. Segal, B. Asgharian, B. Wong, J. Schroeter,

J. Southall, C. Dickens, G. Brace, F. Miller, Characterization
of deposition from nasal spray devices using a computational
fluid dynamics model of the human nasal passages, Journal of
Aerosol Medicine 20 (2007) 59–74. doi:10.1089/jam.2006.

0531.

[3] K. Inthavong, Z. Tian, J. Tu, W. Yang, C. Xue, Optimis-
ing nasal spray parameters for efficient drug delivery using
computational fluid dynamics, Computers in Biology and
Medicine 38 (2008) 713–726. doi:10.1016/j.compbiomed.

2008.03.008.
[4] A. Gambaruto, E. Olivares, H. Calmet, G. Houzeaux,

A. Bates, D. Doorly, Transport and deposition in the upper
human airways during a sniff, in: Computational Engineering
and Science for Safety and Environmental Problems COMP-
SAFE2014, Sendai (Japan), 2014.

[5] K. Cheng, Y. Cheng, H. Yeh, R. Guilmette, S. Simpson,
Y. Yang, D. Swift, In vivo measurements of nasal airway
dimensions and ultrafine aerosol deposition in the human
nasal and oral airways, Journal of Aerosol Science 27 (1996)
785–801. doi:10.1016/0021-8502(96)00029-8.

[6] J. Kesavan, R. Bascom, B. Laube, D. Swift, The relationship
between particle deposition in the anterior nasal passage and
nasal passage characteristics, Journal of Aerosol Medicine 13
(2000) 17–23. doi:10.1089/jam.2000.13.17.

[7] G. Kanapilly, O. Raabe, C. Goh, R. Chimenti, Measurement
of in vitro dissolution of aerosol particles for comparison
to in vivo dissolution in the lower respiratory tract after
inhalation, Health Physics 24 (1973) 497–507. doi:10.1097/

00004032-197305000-00004.
[8] Z. Zhang, C. Kleinstreuer, Computational analysis of

airflow and nanoparticle deposition in a combined
nasal–oral–tracheobronchial airway model, Journal
of Aerosol Science 42 (2011) 174–194. doi:

10.1016/j.jaerosci.2011.01.001.
[9] G. Garcia, E. Tewksbury, B. Wong, J. Kimbell, Interindivid-

ual variability in nasal filtration as a function of nasal cavity
geometry, Journal of Aerosol Medicine and Pulmonary Drug
Delivery 22 (2009) 139–156. doi:10.1089/jamp.2008.0713.

[10] E. Frederix, A. Kuczaj, M. Nordlund, M. Belka, F. Lizal,
J. Jedelsky, J. Elcner, M. Jicha, B. Geurts, Simulation of size-
dependent aerosol deposition in a realistic model of the upper
human airways, Journal of Aerosol Science 115 (2018) 29–
45. doi:10.1016/j.jaerosci.2017.10.007.

[11] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, Com-
putational model of airflow in upper 17 generations of human
respiratory tract, Journal of Biomechanics 41 (2008) 2047–
2054. doi:10.1016/j.jbiomech.2007.12.019.

[12] P. Koullapis, S. Kassinos, J. Muela, C. Perez-Segarra,
J. Rigola, O. Lehmkuhl, Y. Cui, M. Sommerfeld, J. Elcner,
M. Jicha, I. Saveljic, N. Filipovic, F. Lizal, L. Nicolaou,
Regional aerosol deposition in the human airways: The sim-
inhale benchmark case and a critical assessment of in silico
methods, European Journal of Pharmaceutical Sciences 113
(2018) 77–94. doi:10.1016/j.ejps.2017.09.003.

[13] T. Miki, X. Wang, T. Aoki, Y. Imai, T. Ishikawa, K. Takase,
T. Yamaguchi, Patient-specific modelling of pulmonary air-
flow using GPU cluster for the application in medical prac-
tice, Computer Methods in Biomechanics and Biomedical
Engineering 15 (2012) 771–778. doi:10.1080/10255842.2011.
560842.

171



T. Anandh & S. Ganesan: GPU Accelerated FEM-Based Lagrangian Particle Tracking Framework for Human Air Pathway

[14] A. Kolanjiyil, C. Kleinstreuer, Computationally efficient
analysis of particle transport and deposition in a human
whole-lung-airway model. part i: Theory and model valida-
tion, Computers in Biology and Medicine 79 (2016) 193–204.
doi:10.1016/j.compbiomed.2016.10.020.

[15] E. Olivares Mañas, Parallel lagrangian particle transport:
application to respiratory system airways, Ph.D. thesis, Uni-
versitat Politècnica de Catalunya (2018).

[16] U. Wilbrandt, C. Bartsch, N. Ahmed, N. Alia, F. Anker,
L. Blank, A. Caiazzo, S. Ganesan, S. Giere, G. Matthies,
R. Meesala, A. Shamim, J. Venkatesan, V. John, Par-
MooN—A modernized program package based on mapped
finite elements, Computers & Mathematics with Applications
74 (1) (2017) 74–88. doi:10.1016/j.camwa.2016.12.020.

[17] B. Pal, S. Ganesan, A finite element variational multiscale
method for computations of turbulent flow over an aerofoil,
International Journal of Advances in Engineering Sciences
and Applied Mathematics 7 (1–2) (2015) 14–24. doi:10.1007/
s12572-015-0126-1.

172







Mini-Symposium 6:

Mini-Symposium on Tool Support
for Developing Highly-Parallel CFD
Applications

Organizers: Jana Gericke, Ronny Tschüter, and Immo Huismann

Code complexity of parallel Computational Fluid Dynamics (CFD) solvers has seen tremendous
growth in recent years: expanding feature sets and more complex hardware, such as accelerators
and hierarchical memories, took their toll. This can be partially mitigated by abstraction, for
instance as offered by third-party libraries, but at the expense of larger and more intricate
software stacks that need to be managed. The conjunction of abstraction, code complexity, and
growing software stacks complicates code analysis and, in turn, leads to performance problems
potentially remaining undiscovered and unfixed. Consequently, tools support is indispensable
in various aspects throughout the software engineering life-cycle to support both developers
and users.

This mini-symposium aims at gathering developers and users of software tools assisting in the
development of sophisticated, highly-parallel HPC software for CFD. It provides a platform
for experts of different fields empowering discussion and knowledge transfer to achieve the
overarching goal: raising reproducibility, automation, and documentation during the whole
software-engineering life-cycle of CFD applications on high-performance computers. The tools
are ranging from performance analysis, over debugging of HPC codes, to management of the
involved software stacks.

A list of potential contributions may include, but it is not limited to:

• Tools for automation in the software development life-cycle

• Workflows for automated testing and deploying of software projects

• Methods and tools for debugging and correctness checking of highly-parallel applications

• Tool support for (node-level) performance analysis

• User success stories of utilizing tools
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A B S T R A C T
Performance models facilitate the development and optimization of scalable applications for HPC
systems. Automatic empirical performance modeling allows the creation of performance models for
CFD applications and other large software suites, although challenges regarding profiling time and
model accuracy arise from their size and characteristics. To mitigate these challenges, we propose an
automatic tool for Score-P filter file creation. We measure exemplary OpenFOAM CFD applications
using these filter files and employ Extra-P to generate strong-scaling performance models and identify
scalability bottlenecks.

1. Introduction and motivation
Understanding performance at scale and identifying

potential bottlenecks are crucial for developing and op-
timizing efficient HPC applications. While computation-
and communication-intensive kernels/functions are typi-
cally well understood, implicit performance bottlenecks,
such as those arising from caching or synchronization ef-
fects, can be easily overlooked. These aspects typically only
manifest as significant issues once the scale of the utilized
HPC system reaches a certain magnitude. To improve the
utilization of computational resources and consequently
reduce energy consumption, it is important to identify such
bottlenecks as early as possible in the development or
optimization process, utilizing a minimal amount of compu-
tational resources. This is particularly critical when dealing
with large, highly configurable code bases, such as modern
CFD solvers. Mathematical performance models are suitable
for examining scaling behavior and identifying potential
bottlenecks. However, designing these models analytically
for an entire large code base is often impractical due to the
manual effort required. On the other hand, automatic empir-
ical performance modeling offers a solution to circumvent
the challenges of analytical modeling.

†This paper is part of the ParCFD 2024 Proceedings. A recording
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is 10.34734/FZJ-2025-02482 and of the Proceedings 10.34734/FZJ-2025-
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For instance, Extra-P [1] is a state-of-the-art perfor-
mance modeling tool that leverages profiling results from
program executions with relatively small yet representative
input data. It generates performance models for entire code
bases or instrumented sections without requiring significant
manual effort aside from code instrumentation. However,
particularly in the case of CFD applications, the runtime
and memory overhead introduced by profiling and model
creation can become significant due to the sizes of mod-
ern software suites. Filtering the profiled code regions can
mitigate this problem, but the definition of suitable filters
might be seen as a challenge on its own. This observation
led to the development of a fast, automatic, and easy-to-
use tool for creating Score-P [2] filter files using a single
profile. With the overarching goal of reducing the resource
consumption in HPC, it is the purpose of this work to
motivate and introduce the use of empirical performance
models for code development and optimization by example
of the open source CFD software OpenFOAM v2312 [3],
the performance-modeling tool Extra-P, and the Score-P
profiling framework.

2. Empirical performance modeling with
Extra-P
Extra-P is a tool to automatically generate performance

models for HPC applications based on small-scale mea-
surements that offer insights similar to those of analytical
performance models. It considers a set of execution pa-
rameters, such as the number of processors or input sizes.
Using measurement tools like Score-P, the empirical data is
gathered for various combinations of the execution parame-
ters. Subsequently, this data is modeled with Extra-P, which
returns models based on the Performance Model Normal
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Form (PMNF). The PMNF is a general structure of perfor-
mance models, which describes the impact of the execution
parameters on a performance metric (e.g., time) as a human-
readable equation using a combination of monomial and
logarithmic terms. These models help unveil performance
bottlenecks as the application scales.

When using Extra-P for scaling analysis of applications,
one has to be aware that it is designed with a focus on
weak scaling. That means Extra-P models the runtime for
a single average process, given the number of processes
and a problem size scaled with the number of processes.
Consequently, we cannot directly model the runtime in a
strong-scaling scenario, as this would have the same constant
problem size for each number of processes. Instead, we
can model the overall effort in the form of the sum of all
processes’ runtimes; this metric behaves similarly to the
runtime of a single average process in the weak-scaling
scenario so that it can be modeled using Extra-P.

3. Automatic generation of Score-P filter files
Score-P instruments code during compilation to mea-

sure the execution time of functions, but these measure-
ments also include the overhead associated with the in-
strumentation. This overhead can disturb the performance
modeling, especially for frequently accessed short-running
functions/regions. A solution to reduce the instrumentation
overhead is to filter the functions or kernels that necessitate
performance measurements (i.e., those responsible for a
substantial fraction of the total runtime). This improves the
model accuracy while also reducing the time and mem-
ory required to generate the performance models. Since
manually creating filter files is mostly impractical for large
applications, we have developed a fast, user-friendly, and
freely available tool to automatically generate Score-P filter
files based on one existing Score-P profile.
3.1. Filter generation

Our design for the automatic Score-P filter generator1
is inspired by prior research on hotspot detection [4]. Our
approach examines all call paths in a single measurement to
identify functions essential for modeling and those that may
disrupt the modeling process. Most relevant for modeling are
functions that contribute significantly to the total runtime.
Conversely, functions that are frequently visited but have
short runtimes potentially disrupt the modeling process.
From these observations, we developed the following proce-
dure for filtering call paths: call paths with a runtime per visit
in the top 25% are always included. This criterion ensures
that call paths contributing significantly to the runtime are
retained. To address the potential exclusion of call paths

1https://github.com/extra-p/extrap/blob/master/tools/scorep_filter_
generator.py

where individual calls have a short runtime but collectively
are in the top 25% of runtimes, we include the first parent
call-tree node with the number of visits below the median.
Once we have identified these two sets of included call paths,
we also include all prefixes of the call paths to create a more
comprehensive and meaningful call tree.
3.2. Effects of filtering on OpenFOAM

To evaluate the effects of automatically generated filter
files in mitigating the impact of overhead on the profiling
time, we have conducted the measurements described in
the following on the basis of the Cavity3D-1M2 bench-
mark contained in the OpenFOAM HPC Benchmark Suite3.
Four execution configurations were considered: (1) without

Figure 1: Effects of different filtering schemes on the required
resources.

source code profiling; (2) entailing full instrumentation of
the source code; (3) instrumentation filtering during run-
time; and (4) filtering at the time of instrumentation. Each
experiment was conducted using 520 processors distributed
across five nodes of the high-performance computer Licht-
enberg 2 and repeated five times4. The measured times do
not include the time required for preprocessing. Figure 1
illustrates the summed execution times across all used pro-
cessors. While the full instrumentation led to an overall
increase in computation time of roughly 1.34 times in me-
dian values, it decreased to 1.30 times and 1.05 times when
using the automatically generated filter file during runtime
and instrumentation, respectively. Additionally, we noticed
significant reductions in memory overhead and execution

22024-05-14: https://develop.openfoam.com/committees/hpc/-/tree/develop/

incompressible/icoFoam/cavity3D
32024-05-14: https://develop.openfoam.com/committees/hpc/-/tree/develop
42024-06-03: https://www.hr .tu-darmstadt.de/hlr/hochleistungsrechnen/

index.de.jsp
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time required for performance model creation in case a filter
file was used. During development, we observed similar re-
ductions in profiling time for other data sets, configurations,
and applications.

4. Performance modeling results
We gathered performance measurements for the same

3D lid-driven cavity flow example as above on the Licht-
enberg 2 cluster at TU Darmstadt. We performed a strong-
scaling analysis using a mesh size of 4603, a limit of 3000
iterations, and 1, 2, 3, 4, 5, and 6 nodes with 104 processes
per node. As mentioned, we cannot directly model the run-
time for strong scaling; instead, we model the effort in core–
seconds.

Figure 2: Effort performance models for the lid-driven cavity
flow, created using measurements for 1-6 nodes.

Using this metric, perfect scaling would be represented
by a constant model, meaning that the work is shared equally
among all processes without any overhead. We see this in
Fig. 2 for the precondition kernel, which dominates the
performance of the cavity example up to 600 processes. The
matrix multiplication Amul also contributes significantly. Be-
yond 600 processes, MPI_Allreduce of the gSumProd function
overtakes all other kernels and dominates the performance.
This also coincides with the results reported by Brogi et
al. [5], who found that MPI dominates the performance when
the number of cells per process gets smaller. Unlike the other
functions, the main function’s model is created by combining
the individual models of all functions within its call path.
As a result, the model for the main function deviates from
the measurement at 624 nodes. Despite this deviation, the
model accurately reflects the performance trend, displaying
superlinear growth similar to the model and measurements
for MPI_Allreduce, which exhibit the same behavior. In order

to assess the quality of the created models, we extend the
set of measurements by 8, 10, 12, and 14 nodes. The corre-
sponding models are shown in Fig. 3. When comparing both
figures, it is evident that Extra-P is able to identify the correct
scaling behavior within a reasonable projection distance.

5. Conclusion
Performance modeling helps identify potential bottle-

necks when scaling up. Unfortunately, crafting such models
by hand requires expertise and is laborious for larger appli-
cations such as CFD solvers. An empirical modeling tool
like Extra-P can simplify this task but requires measuring
the application. In many measurements, short-running, of-
ten called functions, exhibit comparatively high run-to-run
variations, which disturb the modeling process. Our filter
generator automatically produces a filter file that prevents
the instrumentation of small functions, thus reducing mea-
surement overhead and improving the models. We used this
approach for the Cavity3D benchmark of OpenFOAM and
found that the MPI_Allreduce functions of the PDC solver are
the main bottleneck.
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A B S T R A C T
Supercomputers are nowadays widely used in Computational Fluid Dynamics (CFD), Machine
Learning (ML) and Artificial Intelligence (AI) applications. Running this kind of programs generally
implies to request a certain number of Central Processing Units or Graphical Processing Units
and to set a time limit for the job. However, supercomputers users are not always aware about all
the implications of their submission patterns and some of them are sub-optimal for the resources
management system. In particular, the requested time is crucial for supercomputers efficiency as a
poor estimated requested time results in larger slowdown and waiting times for the users. Also, the AI
and ML communities have different submission practices than the CFD practitioners making difficult
to forecast the supercomputers usage in a close future. Whereas effort is usually done on the scheduler
to enhance the user experience, for once, we worked on a practical solution to model and improve the
collective behavior of users.

1. Introduction
With the development of computational resources, su-

percomputers become increasingly used for high-fidelity
Computational Fluid Dynamics (CFD), Machine Learning
(ML) or Artificial Intelligence (AI) applications. In order to
run these simulations on a supercomputer, users generally
request a number of Central Processing Units (CPUs) or
Graphical Processing Units (GPUs) for a certain amount of
time (= requested time or wall clock time).

However, many users do not really pay attention to
the requested time and set them to the maximum allowed.
This is sub-optimal in various ways for the supercomputer
efficiency and the user experience.

Indeed, jobs that run much less time than the requested
time could have benefited from the backfill mechanism on
the supercomputers where it is allowed. Basically, when
some resources are not used but planed for a job (job1) that is
waiting for more resources, if another job (job2) can run on
the free nodes without altering the start time of job1, then
job2 will start to run on the free nodes. In 2002, Chiang
et al. [1] studied the impact of more accurate requested
job times on the production of a supercomputer. Results
showed that when the requested times were more accurate,
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is 10.34734/FZJ-2025-02483 and of the Proceedings 10.34734/FZJ-2025-
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the slowdown (time between the submission and the end of
the job divided by the time between the start and the end of
the job) was decreased by a factor 2 to 6.

Another sub-optimal practice related is to run a job until
the end of the requested time without writing an output at the
end. Imagine a numerical simulation that requires 12 chained
jobs running on 1,000 CPUs to reach a simulation time. If for
each of these chained jobs, the solution to restart the next
simulation was written 30 minutes before the end of the job,
that means that 12 ⋅ 0.5 ⋅ 1,000 = 6,000 CPU hours were
completely wasted.

Finally, the rise of AI runs on clusters is shifting the
pressure. AI users’ habits are different, with notably node-
sharing and interactive jobs. Indeed, contrary to CFD users
that can tend to just launch the job on the maximum number
of resources and time on the queue to reduce the time to
solution, AI/ML users generally process graphically to fit
their model or run massively shorter parallel jobs in order to
get data for the model. The accuracy in the case of interactive
graphical jobs is then directly dictated by whether the AI/ML
user is satisfied by his model or not. With the migration
of many CFD software on GPUs, hardware mainly used
for AI/ML applications, AI/ML and "classical" users will
collide in the future. We need solutions to forecast how the
communities interact. The first step is an accurate data driven
model of users’ habits.

In our effort in the assessment of users, supercomputers
usage habits are collected in the in-house open-source tool
Seed. This collection has two purposes:
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Figure 1: Histograms (left) and Cumulative Distribution Function (right) of the users’ accuracy for various years on a
supercomputer.

• provide data to model submission habits of various
communities of users in order to predict the supercom-
puter usage and simulate how changes in submission
habits can affect the production.

• raise awareness among the users about sub-optimal
submission patterns through graphical representations
in order to hopefully study in a real case the impact of
better submission practices.

2. Seed
Seed is a Python software developed at CERFACS. Seed

can analyze basic jobs characteristics submitted by the users
such as the distribution of the duration of the jobs, the
number of CPUs allocated, the number of CPU hours, the
inter arrival time of the jobs, the waiting times, the slowdown
and the users’ accuracy. The accuracy (the actual time of the
job divided by the requested time) is of particular interest,
since as mentioned earlier, imprecise accuracy is associated
with larger waiting times and slowdown.

Figure 1 displays the histograms and Cumulative Dis-
tribution Function (CDF) for the users’ accuracy along the
years on on the production queues of an in-house supercom-
puter that is still running. You can observe, especially with
the CDF, a progression in terms of accuracy along the years.
Indeed, in 2019 approximately 80 % of jobs had an accuracy
inferior to 0.25 against roughly 50 % for 2024. Still, in 2024,
more than 60% of the jobs have an accuracy inferior to 0.5,
and approximately 10 % of the jobs stay running until being
evicted by the scheduler. This is clearly sub-optimal for the
resources management system.

We can also look at the evolution of users’ accuracy
month by month as in Fig. 2. We classified the jobs as
"nostayers" (the jobs instantly crash/finish despite a large re-
quested time), "understayers" (less than 2/3 of the requested
time was used for the jobs), the "normal" ones (between 2/3
of the requested time and strictly inferior to the request time)
and the "overstayers" (the ones that stay until the end of the
requested time). You can observe the global progression of
the accuracy along the years: at the end of January 2019,
there were only 1% of "normal" jobs and 91 % of "nostayers"
whereas at the end of June 2024, there were around 18 % of
"normal" jobs and 13 % of "nostayers". The number of CPU
hours attributed to "normal" jobs also increases over time
contrary to the number of CPU hours of the "overstayers"
that declines.

In order to encourage the users to be more accurate
on the requested time, we developed in Seed, an analysis
tool to highlight the people with the best ratio of jobs
with an accurate requested time (category "normal") on the
production jobs. This top 5 is displayed in Fig. 3 where the
score is computed as the number of jobs with an accurate
requested time divided by the total number of jobs run by the
users on production queues. Normally, the users’ real names
are displayed in this graph but they were anonymized for this
paper. With this graph, we aim to both congratulate users
who tailored the requested time to their jobs and to follow
their progression. Note that we started to show this graph to
users at the end of January 2024. If we look back at Fig. 2,
we can observe a decrease in the proportion of "nostayers"
and an increase in "normal" jobs submitted from this period.
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Figure 2: Distribution of various categories of accuracy as a function of the time in terms of number of jobs (left) and CPU
hours (right) on production queues. The "nostayers" represent jobs that instantly crash/finish, the "understayers" are the jobs
that undervalue the wall clock time, the "normal" stand for the jobs with a good estimation of the requested time, and the
"overstayers" are the jobs staying until the end of the wall clock time.

Figure 3: Top 5 of the users with their ratio of jobs with an accurate requested time (top) and evolution of the best 5 users of
the last month (bottom). For each user, the radius of the circle is proportional to the number of jobs submitted by the user that
run on the supercomputer.
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Figure 4: Distribution of various categories of accuracy as a function of the time in terms of number of jobs for a software used
mainly for high-fidelity CFD (left) and a software used for AI applications in fluid mechanics (right).

However, it may be too early to attribute this improvement
to our awareness campaign.

Finally, in order to gather more information about the
users’ jobs and to assess which community was the most
subject to poor estimated wall clock time, we encouraged
the users to tag their jobs with the software they were
using. We were then able to evaluate the number of CPU
hours dedicated for each software and perform an analysis
similar to Fig. 1 and Fig. 2 to check the differences in jobs
submissions between various communities of users. Figure 4
displays the evolution of the categories of accuracy for two
communities of users: the ones using AVBP, a software used
for high-fidelity numerical simulations in turbomachinery
and, the ones using LMBPY, a Lattice Boltzmann solver
that certain CERFACS users utilize for ML/AI applications.
As you can observe on this figure, the AVBP users tend to
submit more jobs that will stay until being evicted by the
scheduler, whereas the LBMPY users generally do not need
all the wall clock time set and we can observe more "normal"
submissions.

3. Conclusions and perspectives
In this paper, we introduced a first step in the modeling of

users’ behavior to forecast the usage of future supercomput-
ers architectures. We especially highlighted the importance
of modeling the requested time and introduced Seed to

perform analysis of the users’ submission patterns and/or
improve the behavior of the users on a supercomputer.

In a long run, we would like to develop advanced work-
load models based on the users’ submission patterns. Zakay
and Feitelson [2] developed a workload model to preserve
the users’ experience in terms of time of submission. This
kind of models could be improved with an users’ accuracy
model to assess the impact of sub-optimal and optimal
accuracy on various virtual machines.
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A B S T R A C T
This contribution highlights correctness and performance analysis results for an open-source CFD
application. During the performance analysis of the code, we observed unexpected non-deterministic
behavior in the application. Data race analysis with ThreadSanitizer, available in GNU and LLVM
compilers, in combination with our extension for OpenMP-aware data race analysis, identified the
root cause of the non-deterministic behavior. We will look into the analysis setup and the reports from
the tool. Furthermore, we will discuss insights about the performance and I/O behavior of the code
collected with the Scalasca tool-suite & Darshan and highlight performance optimizations.

1. Introduction
The open-source CFD application under investigation

in this work is CalculiX1. CalculiX was mainly developed
to solve problems in structural mechanics using the finite-
element method. However, CalculiX also offers the solution
to computational fluid dynamics problems using the finite-
volume method described by Moukalled et al. [1]. The use
case investigated in this work simulates the laminar airflow
through a 90° bent pipe with a square cross-section. The code
is written in C and Fortran and parallelized using pthreads.
1.1. Pthreads parallelization

To achieve worksharing via multithreading using pthreads,
the pattern shown in Fig. 1a is repeatedly found in the
CalcluliX code. The code snippets show how the residual
of solving the momentum equations is parallelized. The ap-
plication’s main thread creates num_cpus new worker threads
using pthread_create (l.48). The function pointer passed
to the creation call, i.e. calcresvfluid1mt, is a high-level
wrapper function that takes care of the work distribution for
each spawned thread (Fig. 1c, l.146) and calls into a Fortran
subroutine that implements the actual work (l.148). In this
case, it is calcresvfluid1, which calculates the residual using
a sparse matrix-vector product (Fig. 1d, l.30). After all
threads have been spawned, the main thread waits until all
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spawned worker threads have finished their work by calling
pthread_join (Fig. 1a, l.51).

This code pattern leads to an excessive total number
of threads created during execution because each time the
application performs multithreading, 𝑛𝑢𝑚_𝑐𝑝𝑢𝑠 threads are
created, but they are not reused. For example, executing
the simulation for 5 timesteps with 𝑛𝑢𝑚_𝑐𝑝𝑢𝑠 = 8 threads
creates 3809 threads in total. This pattern prohibits tracing
longer simulation runs, because performance analysis tools
like Extrae, Score-P and Vampir cannot handle those huge
number of threads. For example, Extrae was not able to
handle more than 7800 threads.
1.2. OpenMP refactoring

The problematic pattern shown in Fig. 1a can be refac-
tored into equivalent OpenMP code, as shown in Fig. 1b.
This enables the application to benefit from the thread pool
internally managed by the OpenMP runtime and avoids
excessively creating new threads without any reuse. It also
highlights the importance of application developers relying
on best practices provided by open standards like OpenMP.

2. Correctness analysis
At the beginning of our analysis, the application showed

unexpected non-deterministic behavior when executed by
more than a single thread. In repeated executions using
the same input file and the same number of threads, the
internal, parallel GMRES solver required a different number
of iterations until convergence. A data race analysis using
ThreadSanitizer2 (TSan) revealed the root cause of this non-
determinism. As shown in Fig. 2, TSan detected a data race
caused by two concurrent writes by thread T1 and thread T2
to the same memory location at address 0x7b1000000000 in

2https://github.com/google/sanitizers
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43 void calcresvfluidmain(ITG *num_cpus, /* ... */){

44 NNEW(ithread,ITG,*num_cpus); pthread_t tid[*num_cpus];

45 NNEW(res1,double,*num_cpus);

46 for(i=0; i<*num_cpus; i++) {

47 ithread[i]=i;

48 pthread_create(&tid[i], NULL,

49 (void*)calcresvfluid1mt, (void*)&ithread[i]);

50 }

51 for(i=0; i<*num_cpus; i++) pthread_join(tid[i], NULL);

52 /* ... */

53 }
(a) calcresvfluidmain.c (pthreads)

43 void calcresvfluidmain(ITG *num_cpus, /* ... */){

44 NNEW(ithread,ITG,*num_cpus); pthread_t tid[*num_cpus];

45 NNEW(res1,double,*num_cpus);

46 #pragma omp parallel num_threads(*num_cpus)

47 {

48 int omp_get_thread_num(void);

49 ITG thread_num = omp_get_thread_num();

50 calcresvfluid1mt(&thread_num);

51 }

52 /* ... */

53 }
(b) calcresvfluidmain.c (OpenMP)

143 /* subroutine for multithreading of calcresvfluid1 */

144 void *calcresvfluid1mt(ITG *i){

145 /* number of equations for this thread */

146 ITG n=nestart1[*i+1]-nestart1[*i];

147
148 FORTRAN(calcresvfluid1,(&n,a1,&b1[nestart1[*i]],

149 &au1[nestart1[*i]],ia1,&ja1[nestart1[*i]],

150 &x1[nestart1[*i]],res1));

151 return NULL;

152 }
(c) calcresvfluidmain.c

25 subroutine calcresvfluid1(a,b,x,res)

26 implicit none

27 real*8 a(*),b(*),x(*),res

28
29 res=0.d0

30 ! calculation of res = (A*x)-b

31
32 return

33 end
(d) calcresvfluid1.f

Figure 1: Multithreading implementation in CalculiX by example of residual calculation. Subcaptions and line numbers refer to
CalculiX source code files.

line 29 of calcresvfluid1.f (Fig. 1d). This memory location
corresponds to the variable res. TSan also shows that the
main thread allocated this memory location in line 45 of
calcresvfluidmain.c (Fig. 1a). The NNEW macro expands to

==================

WARNING: ThreadSaniti er: data race (pid=115530)

Write of si e 8 at 0x7b1000000000 by thread T2:

#0 calcresvfluid1_ CalculiX/calcresvfluid1.f:29

#1 calcresvfluid1mt CalculiX/calcresvfluidmain.c:148

Previous write of si e 8 at 0x7b1000000000 by thread T1:

#0 calcresvfluid1_ CalculiX/calcresvfluid1.f:29

#1 calcresvfluid1mt CalculiX/calcresvfluidmain.c:148

Location is heap block of si e 64 at 0x7b1000000000

allocated by main thread:

#0 calloc libsaniti er/tsan/tsan_interceptors.cc:964

#1 u_calloc CalculiX/u_calloc.c:41

#2 calcresvfluidmain CalculiX/calcresvfluidmain.c:45

#3 compfluid CalculiX/compfluid.c:856

#4 nonlingeo CalculiX/nonlingeo.c:1307

#5 main CalculiX/CalculiX.c:1150

SUMMARY: ThreadSaniti er: data race CalculiX/calcresvfluid1.f:29

==================

Figure 2: TSan’s analysis output when executing the applica-
tion with eight threads.

a u_calloc call that allocates res1 as an array of double-
precision values of size *num_cpus. In our case num_cpus = 8,
which matches the size of 64 bytes reported by TSan for
the memory block. The developer’s intention behind this
allocation is that thread 𝑖 should store its calculated residual
at index 𝑖 of the array res1. However, in lines 148-150 of
the file calcresvfluidmain.c, a pointer to the first element of
array res1 is passed to the subroutine calcresfluid1 instead
of a pointer to the 𝑖-th element. We modified the call to
the subroutine calcresvfluid1 and passed &res1[i] instead
of res1, and no data race was detected anymore. After
this change, the internal GMRES solver’s convergence also
behaves deterministically.

We were able to reproduce and detect the same data race
with the refactored OpenMP version of the code (Fig. 1b)
using our extensions for OpenMP-aware data race analysis
implemented on top of TSan in the Archer tool [2] and
distributed as part of LLVM. To enable Archer’s analysis
capabilities, the application code must be instrumented by
adding the flag -fsaniti e=threads to the compiler. LLVM’s
OpenMP runtime automatically loads Archer when appro-
priate. Fortran code can be compiled with gfortran if clang

is finally used to link the code with its OpenMP runtime.

3. Performance analysis
We conducted a performance analysis with the data-race

free application and used the Scalasca tool suite, includ-
ing Score-P, Cube, and Vampir, to collect and investigate
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Figure 3: Trace comparison of reference version with nested tasks.

profiles and traces. The profile revealed a function called
dgmres1mt as the hotspot, accounting for roughly 70% of the
application’s runtime, depending on the number of threads.
This function is the main driver of the internal, parallel
GMRES solver, which is used to solve large, sparse, non-
linear systems arising from the discretization of the mo-
mentum equations. GMRES is parallelized by splitting the
whole system matrix into independent subsystems so that
each thread can solve one of these subsystems.

To further assess the parallel efficiency of the code,
we calculated fundamental model factors proposed in [3]
using the Cube Advisor Plugin, which indicated a loss of
parallel efficiency caused by a load imbalance inside the
GMRES solver. Further investigation of the trace with Vam-
pir revealed a repeating pattern in which the same thread
consistently requires more iterations to solve its subsystem
compared to the others, as illustrated by the top trace in Fig.
3.

To improve the GMRES solver’s load balance, we im-
plemented a nested taskloop inside suitable parallelization
subroutines, which are color-coded in the trace. This in-
cludes the matrix-vector product (orange), application of the
preconditioner (yellow), a daxpy operation from LAPACK
(blue), and computation of the residual (green) to check the
convergence of GMRES. The orthogonalization (pink) of
computed Krylov subspace vectors could not be parallelized.
The nested taskloop is triggered to split the work between
the straggling and idling threads if a threshold of more than
75% idling threads is detected using a global atomic counter
variable. This optimization improved the load balance by
15% on average. It resulted in a runtime speedup of around
1.08x, which can also be visually observed using Vampir’s
trace comparison shown in Fig. 3.

Finally, we also investigated the I/O performance of the
application using Darshan [4]. Darshan’s analysis revealed
that more than 20% of the runtime is spent in write oper-
ations. Moreover, the data is written in tiny chunks of 3-6
double-precision values. We enabled the usage of buffered
I/O operations by adding the buffered="yes" keyword to all

open calls in the code. This resulted in a speedup of 1.43x for
the whole application.
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A B S T R A C T
Efficient performance analysis is crucial for optimizing scientific applications. The traditional instru-
mentation workflow may require multiple manual refinements of the instrumentation configuration
to minimize measurement perturbations, which can be time-consuming. This paper presents two
approaches to streamline these workflows, guided by a compiler-generated static whole-program
call graph of the target application. The Compiler-assisted Performance Instrumentation tool (CaPI)
enables the user to build modular selection pipelines, which can be tailored to the application and
measurement objective. Performance Instrumentation Refinement Automation (PIRA) combines static
call graph analysis with dynamic profiling for iterative refinement. Ongoing work aims to integrate
these approaches into a unified production tool, emphasizing workflow efficiency.

1. Introduction
Code instrumentation, used by performance tools such

as TAU [1] and Score-P [2], is the primary method for
collecting fine-grained, non-statistical performance data. By
explicitly inserting measurement points directly, this tech-
nique ensures that every function invocation is accurately
recorded. However, overhead management is key to keep the
introduced measurement perturbation to an acceptable level.
This is achieved by restricting the instrumentation to a subset
of regions, referred to as the instrumentation configuration
(IC). ICs are commonly created by starting with a full
instrumentation, running the application, and subsequently
adjusting the instrumentation based on the collected data.
Functions deemed irrelevant or too costly to instrument,
e.g. because they are short-running or frequently called, are
then removed from the instrumentation, either manually or
using tools such as scorep-score1. We refer to this process
as the build-run-analyze cycle. For complex applications,
multiple iterations of this process may be required, taking
up a significant amount of time and effort. In this work, we
are highlighting our work on alternative approaches relying
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on static program information in the form of a compiler-
generated whole-program call graph of the target applica-
tion. This information can be used to automate and simplify
the build-run-analyze cycle. In prior work, we have focused
on exploring tool support the following aspects:

• Tailoring ICs to the application and measurement
objective based on user direction

• Automated profile-guided refinement of the IC over
multiple iterations

In the following, we give an overview of our work on
call graph based instrumentation selection techniques and
illustrate their application to highly-parallel scientific codes.
Additionally, we discuss current developments.

2. Call-graph-based instrumentation selection
To generate ICs programmatically, we rely on call

graphs as a representation of the program’s structure. Func-
tions are encoded as the nodes of the graph, while potential
calls between two functions are represented as edges.

We use MetaCG [3] to collect, process and analyze the
call graph of the target application. This tool set provides
utilities to generate the call graph from the target source
code using a Clang-based solution, along with a C++-
library for graph management and analysis that we use as
the foundation for our performance analysis tools. As part of
its design, MetaCG allows the decoration of the call graph
with arbitrary, tool-specific meta data to enable advanced
analyses.
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Figure 1: Performance comparison of an OpenFOAM benchmark with various ICs, using XRay instrumentation. The shown CaPI
ICs focus on detecting call paths containing compute kernels and MPI calls respectively, including "coarse" versions that further
reduce the instrumentation. The inactive variant corresponds to running the application with inactive instrumentation, full refers
to full instrumentation. Measurements are from [8], conducted on a single compute node consisting of two Intel Xeon Platinum
9242 CPUs (96 cores).

2.1. User-directed static selection
The Compiler-assisted Performance Instrumentation

tool (CaPI) [4] was created within the exaFOAM2 project
to aid in the profiling of OpenFOAM and other large-scale
scientific applications. It enables the creation of ICs tailored
to the application and measurement objective. To this end,
CaPI provides a custom domain-specific language (DSL)
that enables the user to construct a pipeline of parameter-
ized, pre-defined selector modules. These modules perform
selection based on structural or function-local code metrics.
Additionally, CaPI provides a runtime library that enables
integration with several profiling and tracing tools, currently
offering support for Score-P [2], Extrae [5] and TALP [6].
It uses a recently extended version of XRay, the dynamic
instrumentation feature of the Clang/LLVM compiler [7], to
enable adapting the IC without the need for recompilation
or dynamic filtering [8]. In contrast to the instrumentation
approach used in Score-P and TAU that inserts profiling calls
statically into the binary, XRay uses placeholder instructions
(NO-OP sleds) that can be selectively patched at runtime.
Overhead compared to static instrumentation is mostly
limited to a few seconds for initialization and patching at pro-
gram start, with a slight additional cost incurred by the CaPI
runtime for passing call events to the measurement tool.
We have used XRay to successfully instrument large code
bases with more than 400,000 functions. Figure 1 shows
performance results for an OpenFOAM benchmark, profiled
with different CaPI-generated ICs, using both Score-P and
TALP as measurement back-ends. For this application, CaPI

2https://exafoam.eu/

was used to identify relevant call paths containing MPI
communication (mpi and mpi-coarse variants) as well as
call paths leading up to computational kernels (kernels
and kernels-coarse). The application of CaPI led to a
significant overhead reduction compared to the baseline full
instrumentation, while retaining profile information about
performance-critical program parts. Notably, running the
XRay-instrumented program without any active instrumen-
tation did not produce any overhead compared to the baseline
vanilla variant. A single build can thus be used for both
profiling and production runs.

In our most recent work, we have extended CaPI with
selection mechanisms to augment MPI traces using mea-
surements collected via instrumentation of functions within
problematic trace regions [9].
2.2. Iterative instrumentation refinement using

profile information
Instead of relying on static call graph information alone,

our second approach revolves around improving the gener-
ated IC by combining the call graph with dynamic profile
information. Inspired by the build-run-analyze workflow
that is usually performed manually by performance analysts,
it automates the iterative cycle of building an instrumented
binary, running performance measurements and then analyz-
ing the results to improve the IC for the next iteration. This
approach is implemented in the PIRA tool set [10], short
for Performance Instrumentation Refinement Automation.
Starting from an initial IC that is generated using static
information alone, PIRA repeatedly refines the IC by in-
corporating dynamic profile information from the previous
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Figure 2: Preliminary overhead measurements for overhead-guided PIRA for the two mini-apps LULESH and AMG2013. The
plots show the relative overhead at each refinement iteration, as well as the number of functions in the corresponding ICs. The
left plot shows PIRA’s initial hotspot detection mode, the middle the new overhead-guided heuristic (estimating call counts of
functions not yet instrumented) and the right side an equivalent version that has access to perfect call counts.

iteration. Currently, PIRA offers four principal modes of
operation with distinct focuses:

• The initial PIRA version introduced a hotspot detec-
tion mode that refines the IC towards the parts of the
target application that consume the majority of the
runtime. The search for hotspots is a common task
when analyzing an application’s performance.

• PIRA also integrates empirical performance model-
ing [11] for kernel detection, i.e. to detect functions
with interesting scaling behaviors. To that end, in
each iteration, the target application is executed with
a user-defined list of input sizes. Then, the empirical
performance modeling tool Extra-P [12] is invoked for
every function included in the profile and produces
a mathematical model to predict function runtimes
based on input sizes. The models are then evaluated
to determine which functions to include in the next
IC.

• PIRA LIDe [13] adds load-imbalance detection to
PIRA by quantifying the scattering of function run-
times across different MPI ranks and refines the IC
based on the imbalance severity.

• Recent developments in PIRA introduced the concept
of overhead-guided instrumentation refinement. This
feature allows the user to specify an overhead budget.
PIRA then performs hotspot detection, but strives to
keep the measurement overhead below the provided

budget by mapping the decision which functions to in-
strument to a binary Knapsack problem. Preliminary
results for this mode are shown in Fig. 2.

3. Ongoing and future work
Work on PIRA and CaPI is ongoing, with the central goal

of maturing the presented approaches from proof-of-concept
implementations to a unified production tool. Current work
is focused on:

• Streamlining the generation and validation checking
of the global call graph.

• Improving the MetaCG tool set to collect and pro-
cess call graphs of Fortran applications, thus enabling
PIRA and CaPI to operate on such codes.

• Extending and upstreaming new features for LLVM
XRay.

• Integrating PIRA features into CaPI, building a uni-
fied tool for static and dynamic instrumentation selec-
tion.
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A B S T R A C T
Making sense of the performance data generated by computational fluid dynamics (CFD) experiments
is challenging, both due to the high volume of data and the high variability of possible inputs.
We present preliminary work on a system to store sufficient metadata alongside the performance
data generated by the Score-P measurement tool to make these results more Findable, Accessible,
Interoperable, and Reusable (FAIR). This system can be deployed in both continuous integration and
production runs of CFD codes to allow developers better insight into potential causes of performance
variations.

1. Introduction
Computational Fluid Dynamics (CFD) solvers play a

crucial role in the development and design processes across
various disciplines, such as turbomachinery, marine propul-
sion and aerodynamics. The calculations involved are time
and resource-intensive, making a fast and well scaling solver
infrastructure paramount. Metrics such as runtime and par-
allel efficiency have been defined to measure and improve
on these characteristics. Performance measurement tools
such as Score-P [1] together with postprocessing tools like
Vampir [2], Cube [3], and Extra-P [4] help programmers to
understand runtime behavior and detect scalability issues.

These issues may not always be reproducible or obvious
and could even be side effects introduced by new, seemingly
unrelated code changes. Therefore, continuously tracking
these metrics is essential to address them early and improve
on them.

To achieve this, these tools should be run both within
and outside of a continuous integration (CI) workflow to
ensure comprehensive coverage of configurations at larger
scale. Collecting data of every CI execution poses challenges
in data management, accessibility and value extraction. This
challenge is addressed by the concept of FAIR data, which
promotes goals for Findability, Accessibility, Interoperabil-
ity and Reusability [5].

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02486 and of the Proceedings 10.34734/FZJ-2025-
02175.
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An essential step towards implementing FAIR principles
is defining a data schema and an associated ontology. A
data schema outlines which data elements that exist, and
the ontology describes the semantic relationships among
those elements. RDF (Resource Description Framework)1 is
a framework to describe ontologies and associated data via
𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡 triplets. These triplets connect
data elements according to the ontology, forming a graph
stored in a triplestore or a graph database which is queried
via SPARQL2.

This work proposes a lightweight but versatile option for
continuous performance tracking of Score-P instrumented
applications based on the RDFlib [6], PostgreSQL or SQLite
databases, and an object store. We extend the existing work
by enhancing Score-P with metadata collection capabilities,
suggesting a schema definition and simulation case descrip-
tion, and providing proposals for CI implementation and in-
field production runs.

2. Related work
Performance monitoring is of growing interest, on both

a per-application basis and a site-wide basis. Dai et al. [7]
and Evans et al. [8] are representative examples of site-wide
monitoring approaches. While the metrics collected by these
tools are a useful point of comparison, both aim for site-wide
monitoring and are therefore not suitable for our intended
purpose, as the recorded metadata is not simulation specific
and the backend requires significant infrastructure.

On a per-application basis, Boehme et al. [9] use Caliper
for continuous performance data collection, Adiak for user-
defined meta data collection, and SPOT for visualization,

1World Wide Web Consortium (W3C), RDF 1.1 Primer https://www.

w3.org/TR/rdf11-primer/
2World Wide Web Consortium (W3C), SPARQL 1.1 Overview https:

//www.w3.org/TR/sparql11-overview/
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Environment_Variables Values MPI_Ranks AvgRuntime
OMP_PROC_BIND, TC_NAME, OMP_PLACES, OMP_NUM_THREADS spread, intel2022a, cores, 13 8 5.274644

TC_NAME, OMP_NUM_THREADS intel2022a, 13 8 5.336053
TC_NAME, OMP_NUM_THREADS foss2022a, 13 8 6.037955

OMP_NUM_THREADS, TC_NAME, OMP_PLACES, OMP_PROC_BIND 13, foss2022a, cores, spread 8 6.050352
OMP_NUM_THREADS, OMP_PLACES, OMP_PROC_BIND, TC_NAME 26, cores, spread, intel2022a 4 6.196884
TC_NAME, OMP_PLACES, OMP_PROC_BIND, OMP_NUM_THREADS foss2022a, cores, spread, 26 4 6.709384

OMP_NUM_THREADS, TC_NAME 26, foss2022a 4 6.853112
TC_NAME, OMP_NUM_THREADS, OMP_PROC_BIND, OMP_PLACES foss2022a, 52, spread, cores 2 7.979124
TC_NAME, OMP_NUM_THREADS, OMP_PROC_BIND, OMP_PLACES intel2022a, 52, spread, cores 2 8.090973

TC_NAME, OMP_NUM_THREADS foss2022a, 52 2 8.556215
TC_NAME, OMP_NUM_THREADS intel2022a, 26 4 8.807644
OMP_NUM_THREADS, TC_NAME 52, intel2022a 2 11.576881

OMP_PROC_BIND, OMP_NUM_THREADS, TC_NAME, OMP_PLACES spread, 104, foss2022a, cores 1 13.526483
OMP_NUM_THREADS, TC_NAME 104, foss2022a 1 15.894367

OMP_PROC_BIND, OMP_PLACES, TC_NAME, OMP_NUM_THREADS spread, cores, intel2022a, 104 1 16.01187
TC_NAME, OMP_NUM_THREADS intel2022a, 104 1 23.095881

Table 1
Example result of a database query.

storing data in an SQL database or on the file system. Liao
et. al. [10] propose a ontology for projects running on HPC
with a dedicated view for artificial intelligence datasets and
models. Their HPC ontology is defined in RDF making use
of well defined ontologies such as OWL and QUDT. Their
backend is based on Blazegraph, queried via SPARQL. Our
setup builds on their HPC ontology, additionally providing
Score-P compilation and performance data, and offering an
offline store.

3. Implementation
Score-P is an application-level measurement system that

already generates some metadata about measurements it col-
lects. We extend the metadata it collects during instrumenta-
tion and runtime to include selected environment variables,
compiler flags, time stamps, and the used source or object
files. Hashes of the object and binary files are also part
of the recorded metadata. Users are encouraged to provide
additional source code metadata, such as a commit hash, via
environment variable.

We derive different sources of performance-related meta-
data using Cube, in particular the POP metrics3, from the
Score-P generated profiles and traces.

The proposed schema is based on Liao et. al.’s HPC
ontology [10]. We extend it with the compile time and
runtime metadata of Score-P directly and those that can be
extracted from the traces and profiles via Scalasca and Cube
like the POP metrics. Application-specific metadata should
be provided by the user to link the runtime metrics to a
specific solver configuration.

CI/CD based workflows are usually stateless. As a result
the output of the pipeline is discarded. The performance

3https://pop-coe.eu/

metrics are therefore sent to a PostgreSQL instance and the
Score-P experiment directory to the object store.

For production, the metadata collection steps are the
same as in the CI case. If the CI infrastructure is available
during these runs, it can be used. Otherwise, the backend can
be switched from PostgreSQL to a local SQLite database,
which stores the information offline. They can later be man-
ually integrated into the global database.

4. Results
Table 1 shows an example result of a database query

sorted by average runtime. The database contains metadata
from several NPB BT benchmark runs, each with a different
configuration of core pinning and core/thread ratio. The
intel2022a test case without thread pinning is slower than the
other runs with the same 4 processes - 26 threads configura-
tion and presents a good candidate for further investigation.

The example above is just one of many possible use
cases. Directly linking performance data to solver and cluster
configuration allows for advanced analysis on a homoge-
neous RDF data basis, leveling the path to identifying far-
reaching correlations.

5. Summary and outlook
The work presented here is a minimal but versatile

approach to continuous performance tracking. We intro-
duce Score-P’s metadata schema and propose its integration
into the HPC ontology. We give recommendations on what
additional metadata the user should collect. We provide
tooling for transforming performance-related data into an
RDF graph, tools for storing the trace information either
locally or in a database + object storage, and predefined
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queries for retrieval of common questions. These tools only
require basic infrastructure to be used successfully.

Future work may include the integration of system-
wide monitoring data for an even broader execution context.
Models of sensitivity to cross-influence from other jobs on
shared HPC systems may be built upon these integration.
Native graph analysis algorithms could also be employed for
further examination.
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Mini-Symposium 7:

Lattice Boltzmann Method-Based
Computational Fluid Dynamics and
its Application

Organizers: Amirul Khan and Alessandro de Rosis

The lattice Boltzmann method (LBM) stands as a versatile and powerful computational tool for
simulating fluid dynamics and related phenomena. With its unique mesoscopic approach, LBM
has gained significant attention for its ability to accurately model complex flows, including
multiphase flows, turbulent flows, and flows through porous media. This mini-symposium
aims to provide a platform for researchers and practitioners to exchange ideas, discuss recent
advancements, and explore emerging applications of the lattice Boltzmann method.

Topics of interest include:

• fundamental developments in LBM;

• novel computational techniques for enhancing simulation efficiency and accuracy, includ-
ing hardware acceleration and parallelisation strategies;

• applications of LBM in industrial and environmental fluid dynamics;

• challenges associated with coupling LBM with other numerical methods;

• machine learning-based approaches for improving the efficiency, accuracy, and applicabil-
ity of LBM.

Additionally, the mini-symposium will address issues related to the validation, verification, and
benchmarking of LBM simulations, as well as initiatives in the development and dissemination
of open-source LBM codes.

Researchers at all career stages are invited to contribute oral presentations. We welcome ex-
perts and enthusiasts from academia and industry. This mini-symposium seeks to advance our
understanding of LBM, stimulate interdisciplinary discussions, and inspire future innovations
in LBM-based computational fluid dynamics.
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A B S T R A C T
This work investigates the influence of the blending parameter 𝜎 on the Hybrid Recursive Regularized
BGK collision scheme with and without a correction term on the selection of LES and wall model.
The comparison is done using the well-known turbulent channel flow test case at a friction REYNOLDS
number 𝑅𝑒𝜏 of 1,000. The wall is either modeled via the implicit Musker profile or explicitly with
a combination of the Werner and Wengle and the Schmitt profile. The considered LES models are
the Wall-Adapting Local Eddy-viscosity (WALE) and the Vreman model. For the discretization of
the velocity space both, the D3Q19 and D3Q27 stencil are considered. Different resolutions of the
channel are studied, leading to 𝑦+ values of the first cell at the wall 𝑦+1 = 12.5, 25 and 50. The entire
range of 𝜎 values in the interval [0.0, 1.0] is analyzed.

1. Introduction
Nowadays, to perform high-fidelity simulations, high

performance computing (HPC) and the use of significant
computational resources are indispensable. The Lattice Boltz-
mann Method (LBM) offers an efficient, explicit high-
fidelity fluid simulation tool. However, optimal parameters
for turbulence and wall modeling in the multitude of pos-
sible LBM implementations are not well understood yet.
Therefore, we employ the massively-parallel LBM solver
Musubi [1] in our investigations to extend the previous
contributions: Spinelli et al. [2, 3] performed a systematic
study of collision schemes, LES and wall models on ac-
curacy and efficiency for turbulent channel flow (TCF) and
flow past a circular cylinder using the LBM solver Musubi.
Their investigations revealed that the suitability of a collision
scheme for a certain test case depends on the combination
in which it is used (e.g. LES and wall model). This has
been observed for the Hybrid Recursive Regularized BGK
(HRR-BGK) collision scheme [4] in particular. Besides,
HRR-BGK makes use of a blending parameter 𝜎. Thus, last
year, Spinelli and Gericke [5] extended these investigations
by evaluating the influence of 𝜎 on the HRR-BGK as it
impacts the numerical dissipation of the scheme. In their
investigations, they simulated the TCF by employing a fixed

†This paper is part of the ParCFD 2024 Proceedings. The DOI
of this document is 10.34734/FZJ-2025-02489 and of the Proceedings
10.34734/FZJ-2025-02175.
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combination of the Vreman LES model and the Musker
wall model. They showed that adjusting 𝜎 dependent on the
stencil as well as the resolution improves the accuracy. This
study extends the previous research by analyzing the influ-
ence of 𝜎 in the HRR-BGK scheme on the selection of LES
and wall model by comparing accuracy and performance.
The two considered LES models are the Vreman [6] and the
WALE [7]. The latter one tends to provide more accurate
results, while the Vreman model typically is faster [3].
The wall is modeled by the implicit Musker profile [8]
or the explicit combination of the Werner and Wengle [9]
and the Schmitt [10] profile, called Power-Law profile (see
also [3]). To further enhance the HRR-BGK scheme, the
correction term as proposed by Feng et al. [11] is utilized.
The velocity space is discretized with both, the D3Q19 and
D3Q27 stencil.

2. Method
The method is based on the Lattice Boltzmann equation

(LBE). In its post-collision expression, the LBE extended by
the correction term 𝜓𝑖 of Feng et al. [11] is written as

𝑓⋆𝑖 (𝐱, t) = 𝑓
eq
𝑖 (𝐱, 𝑡)+ (1−𝜔𝑖)𝑓

neq
𝑖 (𝐱, t)+0.5Δt𝜓𝑖. (1)

𝑓𝑖 is the discrete Probability Density Function (PDF) of
particles streaming from one lattice node 𝐱 to an adjacent one
𝐱+ 𝐜𝑖Δt, 𝐜𝑖 is the lattice velocity and Δt the time increment.
The equilibrium and non-equilibrium PDFs are given as

𝑓 eq𝑖 (𝐱, 𝑡) = 𝑤𝑖
𝑞=𝑛−1∑
𝑖=0

1
𝑛!

𝐚(𝑛)0 (𝑛)
𝑖 , (2)

𝑓 neq𝑖 (𝐱, 𝑡) = 𝑤𝑖
𝑞=𝑛−1∑
𝑖=2

1
𝑛!

𝐚(𝑛)1 (𝑛)
𝑖 . (3)
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Figure 1: Computational domain for the turbulent channel flow with superimposed flow field and the force driving the flow in
horizontal direction. Walls are indicated in grey.

The Hermite polynomials (𝑛)
𝑖 as well as the Hermite coeffi-

cients 𝐚(𝑛)0 and 𝐚(𝑛)1 are chosen as stated in [5]. For this investi-
gation, the HRR-BGK collision scheme introduced by Jacob
et al. [4], is used. The second-order Hermite coefficient of
𝑓 neq with the blending parameter 𝜎 is then given given as

𝐚(2,HRR)1 = 𝜎𝐚(2,RR)1 + (1 − 𝜎)𝜎𝐚(2,FD)1 , (4)

with 0 ≤ 𝜎 ≤ 1. If 𝜎 = 0, 𝐚(2,HRR)1 is reconstructed
by the velocity gradients calculated by Finite Difference
(FD). This is what Spinelli et al. called Projected Recursive
Regularization BGK (PRR-BGK) scheme. It is stable, but
highly dissipative [2]. For 𝜎 = 1.0, 𝐚(2,HRR)1 leads to the
Recursive Regularized BGK (RR-BGK) scheme proposed
by Malaspinas [12].

3. Test case and results
The well-known turbulent channel flow at a𝑅𝑒𝜏 of 1,000

is used as test case [13]. Its computational domain is shown
in Fig. 1.

A test case description, including boundary conditions
and domain size (they also investigated the effect of the
domain size) is offered in [3]. To account for the entire
range of possible 𝜎 values, the following parameters are
used: [0.0, 0.5, 0.9, 0.92, 0.94, 0.96, 0.98, 1.0]. For Vreman,
the model coefficient is set to 0.07, for WALE to 0.5. The
results are compared to the ones with Vreman and Musker
of [5] extended by the runs with 𝜎 = 0.0 and 𝜎 = 0.5
to have a complete dataset. As a reference, DNS data by
Lee and Moser [13] is used. Results show that the optimal
𝜎-range lies between 0.9 and 1.0 revealing the PRR-BGK
scheme is not suited for this specific test case. Using the
correction term makes HRR-BGK slower but it does not

increase the accuracy. Regarding the LES model, there is no
much difference in terms of accuracy if Vreman or WALE
(in conjunction with Musker wall function) is used. As the
Vreman model has less floating point operations compared
to WALE, it is preferable. Furthermore, the choice of 𝜎
depends on the wall model: For Vreman with Musker the
best results are obtained for 𝜎 = 0.9, while the optimum for
Vreman with Power-Law is 𝜎 = 0.94. Finally, we can take
the node-level performance of these collision schemes into
account: It was recently investigated by Wendler et al. [14].
They showed that the D3Q19 is ≈ 1.5 times faster than the
D3Q27, due to the reduced number of links. Furthermore,
they revealed that the HRR-BGK is ≈ 1.5 times faster than
the one with the correction term but only improves accuracy
by 0.1 % [3]. As the HRR-BGK schemes are implemented
with 𝜎 as a factor, its choice has no impact on the perfor-
mance. Contrary to that, the stencil has. Thus, for the TCF
test case we can conclude that in terms of balancing accu-
racy and computational effort, the combination of Vreman-
Power-Law-HRR-BGK-D3Q19 with a 𝜎 value of 0.94 and
without correction term gives the best result independent of
the resolution.

4. Conclusions
We investigated the influence of the blending parameter

𝜎 on the Hybrid Recursive Regularized BGK (HRR-BGK)
collision scheme with and without a correction term on the
selection of LES and wall model using the turbulent channel
flow test case (𝑅𝑒𝜏 = 1,000). Aiming to determine the
influence of 𝜎 while identifying the optimal combination of
it with LES and WM that balances cost-effectiveness with
accuracy we can conclude that this optimum is achieved
by the Vreman-Power-Law-HRR-BGK-D3Q19 combination
with a 𝜎 value of 0.94 and without the correction term. To
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enable a more robust validation of the findings, future work
will include additional test cases.
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A B S T R A C T
Blood is composed of plasma, which is the liquid component, and red blood cells (RBCs), white
blood cells, and platelets, which are the physical components. Plasma, the solvent portion of blood, is
generally treated as a Newtonian fluid. However, plasma is known to exhibit non-Newtonian properties
depending on the plasma protein content. RBCs are known to exhibit different behaviors in blood,
namely, tank-treading, and tumbling motions. These motions are important for understanding the
rheological properties of RBC suspensions because they have a significant effect on the apparent
viscosity of blood. As a fundamental study, the effect of the reduced area of RBCs on their motion
was investigated. Focusing on the non-Newtonian properties of plasma, the deformation behavior of
single red blood cells in two-dimensional shear flow was analyzed. As a result, it was confirmed that
the results in non-Newtonian fluid are different compared to the results in Newtonian fluid of others.

1. Introduction
Suspensions are used in industrial and medical appli-

cations, and it is important to understand their rheologi-
cal properties. Blood is a suspension with tangible com-
ponents such as RBCs suspended in plasma and exhibits
non-Newtonian properties. The mode of motion of RBCs
changes depending on the properties of the surrounding
plasma and RBCs. The main modes of motion are tank-
treading motion, in which only the membrane of the RBCs
rotates, and tumbling motion, in which the RBCs themselves
rotate. This change in motion has a significant effect on
the rheological properties of macroscopic RBC suspensions
because it changes the local fluid resistance of the blood.
Most studies have treated plasma as a Newtonian fluid, and
few studies have focused on the effect of the non-Newtonian
nature of plasma on the critical point of RBC motion, the
critical internal and external viscosity contrast. In this study,
we focus on the critical internal and external viscosity con-
trast to investigate the effect of the non-Newtonian property
of plasma on the viscosity of blood. As a fundamental study,
we investigated the effects of non-Newtonian properties on
the membrane velocity and inclination angle of RBC in shear
flow by comparing the results of others.

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02490 and of the Proceedings 10.34734/FZJ-2025-
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Figure 1: Schematic diagram of the computational model.

2. Methods
2.1. Computational Model

Figure 1 shows a schematic diagram of the computa-
tional model used in this study. The red blood cell is at the
center of the 4𝐷 × 𝐷 computational domain. The virtual
flux method [1], which can accurately determine physical
quantities on and near the surface of an object, was used.
2.2. Governing Equation for Fluid

The regularized lattice Boltzmann equation was used as
the governing equation for the fluid [2].

The power-law index model [3], which is easy to model
as a non-Newtonian fluid, was used. In the equations 𝑛 <
1, 𝑛 = 1, 𝑛 > 1 correspond to shear-thinning fluid,
Newtonian fluid, and shear-thickening fluid, respectively.
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𝜈 (�̇�) = 𝑚 |�̇�|𝑛−1 (1)
2.3. Governing Equation for Particle

The spring network model [4] was used as the governing
equation for the particle structure. The spring network model
performs motion and deformation so that the elastic energy
for stretching and bending of the membrane is minimized
under constant volume conditions. Since this analysis was
two-dimensional, a red blood cell membrane particle was
modeled as a red blood cell with 𝑁 mass points. The
membrane particles are held together by springs that resist
membrane stretching, deformation, and bending, respec-
tively. The reduced area 𝛼 is the ratio of the target area
of deformation to the area of the true circle under constant
perimeter length conditions.
2.4. Parallel computing

All simulations were conducted using parallel compu-
tation with OpenMP. The configurations are Intel core i9-
12900: clock frequency, 3.2 Hz; number of cores, 16; mem-
ory size, 24 GB.

3. Result and Discussion
The efficiency of parallel computation was evaluated.

Figure 2 shows the relationship between speed up ratio and
the number of threads.Here, the computation time is treated
as the time from the start of the computation to the output
of the membrane velocity and inclination angle values in the
present analysis. Figure 2 shows that the speed up ratio tends
to increase as the number of threads increases. However,
increasing the number of threads from 8 to 16 did little to
change the rate of speedup.This is considered to be because
the overhead of parallel computation of the virtual flux
method has increased due to the increase in the number of
threads.

The effect of reduced area on membrane velocity and in-
clination angle in non-Newtonian fluids was investigated. In
order to compare our results with those of others, the number
of lattices to representative lengths were set to D = 256, 128
with confinement C = 0.4 , 0.8 , respectively. N = 96 and
for the reduced area, 𝛼 = 0.60 , 0.70 , 0.80 , 0.90 were used.
Figure 3 shows the relationship between membrane velocity
and reduced area along with the results of previous studies.
Here, the membrane velocity is the average of the non-
dimensionalized values of 𝑟0�́�∕2, which is the theoretical
value of the rotational velocity of a circular vesicle flowing
in a shear flow at low confinement [5]. Figure 3 shows that
the membrane velocity tends to increase as the reduced area
increases. Since the strain rate changes in the case of a non-
Newtonian fluid, the results of this analysis are considered to

Figure 2: Speed up ratio.

Figure 3: Membrane velocity of a single RBC.

be different from those obtained in the case of a Newtonian
fluid. Figure 4 shows the relationship between inclination
angle and reduced area along with the results of previous
studies. Figure 4 shows that the inclination angle tends to
increase as the reduced area increases. These results are in
qualitative agreement with those of Niu et al. [6] and Kaoui
et al. [7]. Moreover, As in previous experimental studies with
a single red blood cell in shear flow [8], the red blood cell
exhibited tank-treading motion. The present results for non-
Newtonian fluids differ from those of others for Newtonian
fluids in the effect of reduced area on membrane velocity.
In this study, we conducted a two-dimensional analysis, but
when extending to three dimensions, a pattern called the
vacillating-breathing motion mode also arises. Therefore, it
is necessary to consider this motion mode when extending
to three dimensions in the future.

4. Conclusions
In this study, the effects of reduced area on film velocity

and inclination angle were investigated. In future studies, the
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Figure 4: Inclination angle of a single RBC.

effect of the internal and external viscosity contrast on RBC
will be investigated. The effects of parameters of RBC such
as capillary number and reduced area on the critical internal
and external viscosity contrast will be also investigated.
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Mini-Symposium 8:

Machine Learning-Based Reduced
Order Models for Fluid Flow
Emulators and Application to
Design Optimization

Organizers: Amirul Khan and He Wang

Machine Learning (ML) has emerged as a powerful tool in the development of Reduced Order
Models (ROMs) for computational fluid dynamics (CFD) surrogates or emulators, particularly
in the context of multidisciplinary design optimisation (MDO). The integration of ML with
ROMs offers promising avenues for efficient and accurate predictions, making it well-suited
for high-performance computing. In this mini-symposium, we invite contributions that reflect
the rapid advancements in ML-based ROMs for the creation of CFD surrogates or emulators
and their applications to MDO. We also welcome contributions that explore other ML-based
methods and their applications.

Contributions can cover, but are not limited to, the following topics:

• Development and application of non-intrusive ML-based ROMs.

• Uncertainty quantification and robust design using ML-enhanced CFD emulators/surrogates.

• Case studies showcasing the application of ML-based ROMs.

• Challenges and solutions in integrating ML-based ROMs with design optimisation.

• Future directions in the integration of ML and ROMs for design optimization.

• Applications in Multidisciplinary Design Optimization:

1. Aerospace vehicle design and aerodynamics

2. Automotive engineering and vehicle performance optimisation

3. Renewable energy system design and optimization

4. Biomedical device design and fluid-structure interaction studies
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This mini-symposium aims to foster discussions and collaborations among researchers, aca-
demicians, and industry professionals interested in the application of ML-based ROMs for flow
emulators in design optimization. We look forward to your valuable contributions.
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A B S T R A C T
This study focuses on the application of reduced order models (ROMs) and various machine
learning (ML) techniques to create surrogate computational fluid dynamics (CFD) models for the
built environment. By using functional principal component analysis (FPCA), these surrogates can
reconstruct flow fields for different geometries significantly faster than traditional CFD methods,
providing insights into factors such as thermal comfort and ventilation. The goal is to develop a model
that can predict the effects of different geometries or indoor space configurations and produce accurate
fluid/air flow results without the need for retraining, enabling rapid, interactive design exploration and
optimization.

1. Motivations
Civil engineers must take into account numerous factors

when designing the built environment. While the aesthetics
of the buildings are important, creating a comfortable and
safe environment for work is of greater importance. Under-
standing the impact of airflow is crucial as it directly influ-
ences other design properties, including thermal comfort and
energy efficiency [1]. Designing a good system for thermal
comfort is essential, research has been done to suggest that
temperatures which deviate too far from room temperature
can cause a decrease in mental performance, in places such
as schools thermal conditions are of great concern [2]. Other
issues such as ventilation are of equal concern, when there is
insufficient ventilation in enclosed environments there will
be a build-up of pollutants such as CO2 causing what is
known as stale air [3]. This is a great enough issue that
the term "Sick building syndrome" has been coined, this
has led to several symptoms such as skin/eye irritations,
headaches, fatigue, nausea, vomiting, and a decrease in con-
centration [4]. Highlighting the importance of incorporating
fluid flow early in the design process which is not feasible
with traditional CFD due to the large amount of compu-
tational expenses, a faster more efficient method will be
required. Creating a machine learning (ML)-based surrogate

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02492 and of the Proceedings 10.34734/FZJ-2025-
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model offers a potential solution, as CFD generates extensive
data that can be leveraged by ML methods to simulate fluid
flow or airflow efficiently and quickly. Once trained, the
ML surrogate model can generate new flow fields within
seconds, enabling fast, interactive modeling of thermal com-
fort, infection risk, and pollution dispersion with respect
to various design parameters. (geometry creation, meshing,
solution generation and post-processing).

2. Gap in Literature
This work combines multiple computational and machine-

learning methods to produce fast fluid dynamic surrogates.
Similar work has been done in the past by several authors
for interactive design. Interactive aerodynamic design of 3D
structures has been done in the past where a large amount of
training data was used with a Gaussian process regressor to
produce velocity, drag and pressure values [5]. Other work
has been done using internal flows analyzing the internal
hemodynamics of flow through arteries [6]. Further work
has been done on other engineering design applications
such as glass facades where other statistical models such
as mixture density networks were used to determine failure
rates of glass panels due to high stress/strain on different
designs [7]. This work will build upon these methods for the
built environment, using reduced order models (ROMs) and
testing different ML methods to determine the best method.
This includes using Gaussian process regressors (GPRs) and
other methods such as transformers.
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Number of mesh elements 135160
Turbulence model K-omega SST
Inlet velocity (m/s) 0.08

Turbulent intensity (%) 5
Turbulent viscosity ratio 10

Total number of simulations 484

Table 1
Table describing the boundary conditions of the training data,
mesh information, and total number of simulations.

Figure 1: The geometry of the CFD model can be seen which
includes the locations of inlet/outlet locations, it is important
to note that the dashed lines represent how the inlet/outlet
locations move to generate the training data. This geometry
is based on a similar 2D model created by [8].

3. Goals
To create these surrogates, several types of machine

learning models will be tested such as artificial neural net-
works, Multilayer Perceptrons, GPRs and transformers. CFD
simulations produce a large amount of data which would be
fed into these models. ROMs will be used to minimize the
required data. Many different ROMs have been considered
such as proper orthogonal decomposition (POD), autoen-
coders and functional principle component analysis (FPCA).
FPCA produces eigenfunctions associated with the data,
models will be trained to learn how these functions relate
to other factors such as geometry. The primary goal is to
develop a model capable of adapting to different geometries
and producing accurate fluid flow results without the need
for retraining. This model would allow engineers and de-
signers to get feedback on the flow field much faster than tra-
ditional methods, making design optimization much easier.
The project aims to provide a proof of concept demonstrating
the viability of combining ROMs and ML techniques and to
identify the necessary data for producing accurate models.

4. Work Done
The work that has been done includes using different

ROMs on several configurations for internal flow to better
understand specific use cases and how they could be imple-
mented. I have used FPCA to show that it can capture a larger
amount of variation using fewer modes when compared
to POD, allowing reconstruction to happen with similar
accuracy and a lower amount of data. This includes simple
cases such as flow past an obstacle and more complex cases
such as 2D representations of rooms. To generate the training
data I have used Ansys Fluent, the model’s geometry can
be seen in Fig. 1. This geometry represents a 2D slice of
a room which contains two tables and a divider. A fluent
script was generated to move the inlet and outlet locations
across the dotted lines, providing a range of flow fields for
training. The boundary conditions and other information
for the CFD simulations can be seen in Tab. 1. The goal
here is to apply FPCA to extract the top components of the
model, a GPR is then trained to predict several of these
components for unknown boundary conditions, which are
then used to reconstruct the flow field. Future work will be to
train a machine-learning model that can generate modes for
different geometries that reconstruct full-flow fields using
limited synthetic data sets from CFD. Once the base models
have been created there will be a move to deep networks to
train a more effective model.

5. Results
Figure 2 shows how the GPR model trained on the

ground truth data predicts flow fields based on different
inlet/outlet locations. The model accuracy is higher when
there is little interaction with obstacles such as walls and
dividers. The inlet positions are predicted semi-accurately,
where the mode can’t find the actual inlet location and
attempts to regress based on the two closest inlet locations.
This does not occur with the outlet position as these are all
known to the GPR model. While these results show that
it is possible to use GPR to predict flow fields it takes a
significant amount of time for the amount of data used, as
for 400 training data simulations it takes over 40 minutes on
an average laptop to run. ROMs such as FPCA can be used
to increase the training speed.

The variation captured for each of the flow fields in the
testing set can be seen in Fig. 3, this is a comparison of FPCA
and POD. It shows that FPCA captures a larger range of
variation when compared to POD. As for all inlet positions
the first component captures at least 60% of the variations
compared to POD which is around 25%. This shows that
FPCA is better at capturing these variations than traditional
POD.
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(a) Input geometry. (b) Ground truth for the data. (c) GPR prediction. (d) Absolute error.

Figure 2: Contours plots. The color indicates the velocity magnitude.

Instead of using a GPR to train the model on a full set of
data, it is used to train the principal components, this signifi-
cantly decreases training time to under a minute. The results
can be seen in Fig. 4, the first mode is always predicted
accurately and the following modes vary depending on the
inlet position. This is seen in Fig. 4c where inlet position 11
has minimal wall interaction, showing that GPR specifically
struggles to capture this type of flow field. Something similar
can be seen in Fig. 5 where the scores of the FPCA model are
being interpolated. This Fig. 5 shows that the inlet position
11 is a near one-for-one perfect prediction while there is a
greater error in the other two positions.

By reshaping the matrices obtained from the components
and the scores a reconstruction of the flow field can be
obtained, the results of these reconstructions can be seen in
Fig. 6c. These are then compared to the ground truth data
in 6b to get a contour plot of the absolute error (Fig. 6d). The
area of greatest error occurs at the inlet and outlet positions,
with the error decreasing as the inlet moves higher and away
from the walls. Further showing that the model has trouble
predicting these interactions, it is, good at predicting the
mean at the center of the flow field and can predict the
dominant flow feature for most cases.

A comparison between FPCA and POD can be seen in
Fig. 7 which shows both POD and FPCA can predict inlet
positions with a similar accuracy but, FPCA can distinguish
the curve associated with the lower outlet position which
can be seen in Fig. 7f. Both are unable to capture this

flow field with the current model and further work must
be done. However, this shows the strengths of using ROMs
with machine learning methods as the training time has been
dramatically reduced.

6. Conclusions
The results show that it is possible to use a GPR to predict

the flow fields while varying boundary conditions such as
inlet position, this however, requires a large training time.
FPCA has been shown to capture a larger range of variations
when compared to its predecessor POD, and coupling this
ROM with GPR allows for a much faster training time pro-
ducing good flow fields. However, more work must be done
to increase the accuracy of FPCA such as using different ML
methods such as Bayesian networks. Recent work suggests
the reason GPR struggles is that the model averages the flow
fields close to the outlet positions producing the flow that
spreads from the top to the bottom, an idea to fix this is to
sample grids from the flow field following a similar process
where these grids will be projected using POD/FPCA before
being predicted with GPR and finally being reconstructed.
Future work includes varying other aspects of the geometry
such as the divider location and incorporating other factors
useful to engineers such as indoor air quality.
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(a) Score 1.

(b) Score 2.

(c) Score 3.

Figure 3: Scatter graphs showing the percentage that each
mode captures for three different inlet locations, showing that
FPCA captures a larger range of variation with fewer modes.

(a) Inlet position 2.

(b) Inlet position 6.

(c) Inlet position 11.

Figure 4: Graphs comparing the predicted components with
the ground truth for three separate inlet locations.

210



U. Adia et al.: Machine Learning-Based Intelligent CFD Surrogates for Interactive Design Exploration of Built Environments

(a) Inlet position 2. (b) Inlet position 6.

(c) Inlet position 11.

Figure 5: Graphs comparing the predicted scores with the ground truth for three separate inlet locations.

(a) Input geometry. (b) Ground truth for the recon-
structed data.

(c) Reconstruction using the
eigenfunctions and score pre-
dicted by GPR.

(d) Absolute error for three differ-
ent inlet locations for the FPCA
reconstruction using the predicted
modes/scores.

Figure 6: Contours plots. The color indicates the velocity magnitude in 𝑚∕𝑠.
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(a) Inlet position. (b) Ground truth CFD data after POD
reconstruction.

(c) Ground truth CFD data after FPCA
reconstruction.

(d) GPR prediction using POD data. (e) GPR prediction using FPCA data. (f) GPR prediction for the full data set.

Figure 7: Contour plots comparing the flow field for an inlet position. The color indicates the velocity magnitude in 𝑚∕𝑠.
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A B S T R A C T
In this study, a shape optimization framework is designed and developed in order to use surrogate
model-based shape optimization methods in the context of compressible flows. While designing
the shape optimization framework, various open-source libraries were implemented and made to
communicate with each other through Python language. In addition to using Kriging method
for surrogate model-based shape optimizations, Gradient Enhanced Kriging (GEK) and Gradient
Enhanced Kriging with Partial Least Square (GEKPLS) methods are also investigated. They are
investigated from different perspectives and tested on a two-dimensional airfoil as a benchmark case. In
addition to optimizations with single-objective functions, as currently modeled using the framework,
the capabilities of the framework will be extended to multi-objective and multi-point studies.

1. Introduction
With the advancements in technology, the need for the

use of Computational Fluid Dynamics (CFD) in both design
and analysis phases in challenging engineering applications
in aerospace, defense, energy, and automotive industries
increases rapidly. As a result, the need for optimization
arises with the aim of improving efficiency of the designed
products. The aim of this study is to compare different
optimization methods utilized in aerodynamic shape opti-
mizations, which are frequently needed in the aerospace
field, by using our recently developed aerodynamic shape
optimization framework. For this purpose, a 2D transonic
airfoil generic case, which is one of the benchmark cases
proposed by the AIAA Aerodynamics Discussion Group
(ADODG)1, is selected, on which three different aerody-
namic shape optimization methods are tested. The optimiza-
tion framework has the flexibility to use different optimiza-
tion methods based on surrogate models for both single- and
multi-objective optimization problems. Optimum design it-
erations are performed using a method known as the Effi-
cient Global Optimization (EGO) [1] loop until convergence
criteria are reached. For this the Expected Improvement
(EI) [1, 2] is used during single-objective optimizations,
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while the Expected Hypervolume Improvement (EHVI) [3]
is used during multi-objective optimizations.

2. Methodology
By using the developed framework, it is possible to

control both optimization and flow solver stages. Classical
optimization steps are performed with the help of EGO.
Briefly, these steps comprise the initial design space, select-
ing the sampling points, building the surrogate models and
verifying the optimal design. The Surrogate Modeling Tool-
box (SMT) [4], together with smoot2 and pymoo3 codes for
multi-objective and multi-point optimizations, all of which
are open source, are incorporated in the optimization phase.
The CFD code SU2 [5], which is also an open source code, is
used on the flow solver side. The framework for controlling
and manipulating each step is developed in Python pro-
gramming language. The code SMT has been developed in
Python by collaboration of several universities and industrial
research groups in USA and Europe for surrogate-based
optimization methods with various sampling methods and
benchmark problems. It is relatively easy to implement new
surrogate models with the basic functions of SMT. Smoot
is a code designed for multi-objective optimization cases
under the ONERA Lab and is used with Pymoo, which is
another code that offers different criteria options. Pymoo
provides useful features for both single- and multi-objective
optimization-based genetic algorithms.

The purpose of surrogate models is to replace non-
linear objective functions, which are generally expensive
and difficult to compute, with models that are cheaper to

2https://github.com/onera/smoot
3https://pymoo.org
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compute. Thus, it makes the algorithm more efficient by
avoiding the computational burden. In this study, firstly,
Kriging method is applied as a surrogate-based optimization
method. Theoretically Kriging can be considered as a Radial
Basis Function (RBF) model with Gaussian basis. It is a
statistical method originally used in the field of geology [6].
Kriging also offers uncertainty estimation as well as mean
prediction estimation, which can be easily integrated with
EGO. Although the Kriging method provides great advan-
tages in optimization, it has shortcomings in terms of both
slowness and accuracy [7]. In this context, steps by Ozkaya
et al. [7] have been taken to improve the Kriging method.
Secondly, the Gradient Enhanced Kriging (GEK) method
has been developed to increase the accuracy of the model
by adding gradient information to the training data set.
Although different methods provide gradient information
during GEK, the adjoint method stands out due to its in-
dependence in the number of input variables. The gradient
information required by the GEK and GEKPLS methods
in their calculations is normally obtained by default in the
SMT code with the finite difference method. Considering the
advantages of the adjoint method, the gradient information
is obtained with the adjoint method with the help of SU2
instead of finite differences in the designed framework. In
the GEK model, when the number of input variables and the
number of sampling points are high, the size of the GEK
correlation matrix becomes large, which leads to a decrease
in performance.

For this reason, Bouhlel et al. [8] proposed a new sur-
rogate model called GE-KPLS combining Kriging model
with the partial-least squares (PLS) method (KPLS) with
GEK [8]. This method incorporates both the advantage of
KPLS in reducing the number of Kriging hyperparameters
and the advantage of GEK in increasing the accuracy with
gradient information, and is particularly successful in per-
forming efficient analyses for high dimensional cases.

Many engineering problems encountered and optimized
today inherently involve more than one objective. Therefore,
optimization codes are in need of multi-objective algorithms
as well. Likewise, especially in the field of aviation, and
taking it to the next level, multi-point optimization is used
to solve optimization cases that contain more than one
operation conditions (such as varying flight conditions) at
the same time.

3. Results
The RAE2822 airfoil [9] subjected to transonic flow

regime was chosen as the drag minimization case to test
the surrogate-based methods in this framework. The flow
conditions are

𝑀𝑎 = 0.734,

𝐶𝑑 𝐶𝑙 𝑆0(𝑚2)
0.0206 0.824 0.0778446

Table 1
RAE2822 aerodynamic coefficients calculated before optimiza-
tion.

Figure 1: Baseline geometry and FFD box.

𝑅𝑒 = 6.5 ⋅ 106.

Table 1 presents the calculated aerodynamic coefficients
drag and lift for the baseline geometry using SU2 here. These
are within the range of values reported by other investigators
in the AIAA Aerodynamics Discussion Group [9].

The optimization problem is stated as
𝑀𝑖𝑛. ∶ 𝐶𝑑 , such that:

𝐶𝑙 = 0.824, 𝐶𝑚 > 0.092, 𝑆 > 𝑆0,

where𝐶𝑑 ,𝐶𝑙, and𝐶𝑚 are the drag, lift, and pitching moment
coefficients, respectively, and 𝑆0 and 𝑆 are the initial and
optimized airfoil areas, respectively.

The RAE2822 airfoil geometry was parameterized using
the Free Form Deformation (FFD) technique and 18 points
were selected on the FFD box and the remaining 14 points
were defined as design variables so that the corner points are
fixed. Figure 1 shows the RAE2822 airfoil and the FFD box
around it, respectively.

Table 2 shows the objective function values obtained
with each surrogate model, the percentage improvement over
the function value obtained with the original airfoil, and
elapsed times for each models. As can be seen from this
table, the Kriging model gives an improvement of 41.9 %,
while the GEK model gives an improvement of 54.1 % and
the GEKPLS model gives an improvement of 52.3 %. Here,
the GEK and GEKPLS models give very close values, while
the GEK model gives a better improvement. As expected
elapsed time for Kriging model is less than others since
it does not include calculation of gradients. Again, Fig. 2
can be examined to compare the three models. Figure 2
depicts the objective function value obtained in each model
for each design iteration. Although the Kriging model pro-
duces lower values of drag than the original geometry, it
is observed that the oscillations are high, while the GEK
model achieves the lowest value compared to both models,
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RAE2822 Kriging GEK GEKPLS
𝐶𝑑 0.02060 0.01197 0.00945 0.00982

𝐼𝑚𝑝𝑟. (%) - 41.9 54.1 52.3
𝑇 𝑖𝑚𝑒 (𝑚𝑖𝑛.) - 280 350 320

Table 2
Drag coefficient (𝐶𝑑) values obtained using the three surrogate
methods.

Figure 2: Objective function (𝐶𝑑) value during design itera-
tions.

but sometimes deviates from this value. In the GEKPLS
model, low values are obtained and it is seen that it is close
to the lowest value.

4. Conclusions
In this work, an optimization framework designed to

include various open-source codes to test different surrogate
models was presented. A 2D airfoil case was analyzed using
the framework and the results are discussed in detail. It
is observed that the Kriging model gives improved results
compared to the baseline geometry but is not very stable,
while GEK and GEKPLS give much lower drags compared
to the baseline airfoil. They are more stable than the Kriging
model. Although the work presented here is limited to a
single-objective function, multi-objective and multi-point
optimization cases on different flow systems will be investi-
gated with the upcoming version of this framework. Our plan
for the near future is to work on 3D cases and then solve more
advanced cases using the designed framework. Although
there are various shape optimization studies reported in
the literature with the help of SU2, there is little work
with surrogate models, especially with GEKPLS, which is a
relatively new method and has been used rarely in the field of
aerodynamic shape optimizations. The novelty of this work
lies in this aspect of the framework proposed here.
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A B S T R A C T
Droplet motion, a phenomenon prevalent in both everyday life and industrial applications, plays a
crucial role in processes such as water harvesting, biomedical technologies, and 3D printing. The
ability to control droplet transport using heterogeneous substrates can significantly influence the
performance of such applications. Herein we explore the usage of inverse design optimization methods
to define substrate heterogeneity patterns and achieve targeted droplet transport. By integrating data-
driven models with low-fidelity empirical models, a hybrid modeling approach is developed that can
predict contact line velocities and facilitate fast and accurate simulations. The results demonstrate the
potential of this method to also facilitate the design of substrate patterns that direct droplet movement.

1. Introduction
A phenomenon that occurs in our everyday life and

often goes unnoticed is droplet motion. Common everyday
examples include droplets sliding on windows due to morn-
ing dew or cooling the human body through sweating. In
an industrial context, droplet motion is the foundation for
applications that deal with water harvesting [1], biomedical
technologies [2], and 3D printing methodologies [3].

A key aspect in the study of wetting phenomena and
droplet transport, in general, pertains the study of moving
contact lines dynamics. The inherent multiscale nature of
the underlying dynamics, ranging from the molecular to
the continuum scale [4], makes numerically studies of such
problems quite challenging. Numerical studies using Direct
Numerical Simulations [5, 6] and the Lattice Boltzmann
method [7] even though feasible, typically require a daunting
amount of computational resources and time. In an effort
to reduce the associated computational costs, reduced or-
der models based on the long-wave approximation of the
Navier–Stokes equations can offer significant reductions [8,
9]. However, even after these simplifications, the associated
costs still require significant efforts [10] rendering them
infeasible for practical cases of inverse design and optimiza-
tion frameworks.
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A potential alternative lies in the synergistic use of data-
driven models and low-fidelity empirical models [11]. In
such approaches, a data-driven model acts as a corrector for
the low accuracy reduced order model. The resulting hybrid
model can achieve improved accuracy, better generazibility,
and requires fewer training samples compared to fully data-
driven approaches. In [11] the hybrid model combines the
low-fidelity asymptotic model of Lacey [12] with a data-
driven model that corrects Lacey’s predictions to obtain the
velocities along the contact lines of the moving droplets. The
contact lines are then evolved using a method of lines ap-
proach by integrating the velocities along prescribed points
on the initial contact lines. This results in a highly accurate
and computationally efficient simulation method.

This work builds upon and extends the work of [11]
by developing an inverse design optimization framework.
The aforementioned hybrid model is employed to design
the substrate heterogeneity pattern and facilitate controllable
droplet transport, as dictated by spatial variations of the
local contact angle that force the droplet to move from
hydrophobic areas to more hydrophilic.

2. AI-assisted low-fidelity model
In the limit of small contact angles, strong surface ten-

sion effects and negligible inertia, the long-wave approxima-
tion of the Navier–Stokes equations can be invoked to obtain
a fourth order parabolic, degenerate PDE that describes the
evolution of the droplet thickness ℎ(𝐱, 𝑡) as it moves along
a chemically heterogeneous substrate. In non-dimensional
form the equation becomes

𝜕𝑡ℎ + 𝛁 ⋅
[
ℎ
(
ℎ2 + 𝜆2

)
𝛁∇2ℎ
]
= 0 (1)
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where 𝜆 is the slip length, used to circumvent the stress
singularity that would appear at the moving contact line due
to the no-slip condition[13]. By invoking Lacey’s asymptotic
model [12], one obtains

�̃�𝑛 =
𝜙3
⋆(𝐜) − 𝜙3

3| ln 𝜆| (2)

where �̃�𝑛 corresponds to the leading contributions of the
asymptotic expansion to the contact line normal velocity,
𝐜 refers to the contact line position, 𝜙 refers the apparent
contact angle of the droplet and 𝜙⋆ = Φ(𝐜) with Φ(𝐱) being
the prescribed substrate local contact angle profile.

The apparent contact angle 𝜙 can be obtained by solving
the quasi-equilibrium problem that arises from Eq. (1) using
a boundary integral method following 𝑑𝐜∕𝑑𝑡 ⋅ 𝐧 = �̃�𝑛. This
method yields a highly efficient numerical method that tracks
the evolution of the droplet contact line (see [9, 14] for more
details).

Equation (2), only contains the main contact line dynam-
ics, as it corresponds to only the first term in the asymp-
totic expansion, i.e. the most dominant contribution. Incor-
porating additional terms analytically is highly non-trivial
as shown in [15, 9, 16], especially when considering 3D
settings. Thus, to improve upon the accuracy of Eq. (2),
and incorporate the additional dynamics of higher order
corrections, Layce’s model is extended with an additional
term  (𝐜, �̃�𝑛), the form of which should correspond to
Eq. (4.42) in [9], to model these corrections via a data-driven
approach. This extension results in

𝑢𝑛 = �̃�𝑛 +
 (𝐜, �̃�𝑛)
| ln 𝜆| (3)

The higher order corrections are trained using samples
computed by solving multiple solutions of Eq. (1) over a
diverse set of heterogeneity patterns Φ(𝐱). The data-driven
method employs Fourier neural operators [17] that utilize
the frequency domain as a learning space and have been
found to be highly efficient when considering complex phe-
nomena governed by PDEs. Fig. 1 depicts a comparison be-
tween the low-fidelity (green curve), the AI-assisted (orange
curve) and the reference solution (blue area), indicating the
significant accuracy gained when using the hybrid approach
in two significantly different heterogeneity patterns.

3. Inverse design optimization framework
The inverse design optimization framework is formu-

lated by defining a cost function 𝐽 as the area 𝐴 encom-
passed by the trajectory of the desired (target) and the current
droplet centroid path, as shown in Fig. 2. The trajectory of
the droplet is changed by manipulating the chemical hetero-
geneity of the substrate, making the optimization problem
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Figure 1: Contact line comparison between the low-fidelity
(Lacey’s model Eq. (2), green), the AI-assisted (Eq, (3),
orange), and reference solutions for two examples of droplet
transport. The heterogeneity variations follow shades of gray
with white color denoting hydrophilic and darker colors hy-
drophobic regions, thus directing the droplet towards lighter
shades of gray.
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Figure 2: Illustration of the optimization problem cost function
𝐴, as defined by its deviation from the target droplet path.

controlled by the design variables 𝐛 of size 𝑁 the can alter
the substrate heterogeneity pattern Φ(𝐱) via the closed-form
of function 𝐹 (𝐱,𝐛).

To perform the gradient-based optimization, it is first
necessary to compute 𝜕𝐛𝐽 . These are computed via auto-
matic differentiation within the JAX [18], and then a gradient
descent algorithm is employed to update the design vari-
ables. The example shown in Fig. 3 demonstrates a case of
inverse design in which an initially homogeneous substrate
has its heterogeneity pattern changed to turn the droplet
and reduce the cost function. On the left, the case used to
formulate the target trajectory is shown.

4. Conclusions
This study demonstrates the potential of a hybrid mod-

eling approach to improve the accuracy and reduce the com-
putational costs associated with simulations of droplet dy-
namics on heterogeneous substrates. By integrating Lacey’s
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Figure 3: Example of chemical heterogeneity patterning in an
effort to minimize the initial deviation of the target path.

asymptotic model with a data-driven model, significant en-
hancements have been achieved in the prediction of droplet
behavior, particularly in terms of contact line velocities. This
also facilitates its use as the driver in an inverse design
optimization algorithm that is low-cost, and can assist in the
design of substrate patterning.
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A B S T R A C T
Gravitational mixer settlers (GMXSs) are widely used for liquid-liquid extraction (LLE). Immiscible
fluids are mixed to promote the transfer of compounds, then separated by gravity in a settling chamber.
Micromechanical fluid interactions decisive to the separation process are complex, however studies
have shown that by optimizing settler flow pattern, separation performance can be significantly
improved. In this paper, an optimization framework for GMXSs designs is investigated which uses
experimentally validated single phase Computational Fluid Dynamics (CFD) and residence time
distribution (RTD) analyses to identify optimal combinations of design features which maximize
desirable characteristics such as resident time and pressure drop. The design of the settler is formulated
in terms of two design variables: flow rate and position of the inlet baffle. A Radial Basis Function
(RBF)-based surrogate modeling approach using a Design of Experiment (DOE) technique and a
permutation genetic algorithm was used to establish optimal process parameters. A Pareto front is built
which enables designers to explore appropriate compromises between designs with small residence
time and those with small pressure drop.

1. Introduction
Gravitational mixer settlers are used in nuclear [1],

chemical, pharmaceutical, and hydrometallurgical industries
for liquid-liquid extraction [2, 3]. Processes that define their
operation, particularly through the settling chamber, are not
fully understood and large equipment means pilot studies
are time consuming and costly. CFD provides an alterna-
tive method of investigating settler’s performance, where
gravitational settler analysis has focused on inlet geometric
and picket fence configuration by means of multiphase flow
analysis [4, 5, 6]. Alternatively, success has been found
using single phase simulation to improve settler performance
through the flow pattern, and without modeling multiphase
coalescence mechanisms [7, 8]. Coalescence is important
for settler separation and can be encouraged by minimizing
viscous shearing; droplets in the dispersed phase remain in
contact for a maximum amount of time, encouraging film
drainage and coalescence [9, 10]. Furthermore, for a given
system, there exists an optimum residence time over which
the separation will satisfactorily occur. It is thus desirable
that a maximum proportion of the dispersion flow is in
the settler for this time. Lane et al. [8] indicate that plug
flow is the ideal regime, but this is practically difficult to
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of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02495 and of the Proceedings 10.34734/FZJ-2025-
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achieve, and flow patterns significantly deviate from this
ideal, ensuing reduced efficiency. It has been shown in [8, 11]
that residence time distribution analysis is adequate to assess
settler flow pattern quality.

In the present work, a data-driven CFD-based design-
optimization framework is developed with combines sur-
rogate modeling as in [12] and residence time analysis to
investigate flow patterns in a GMXS.

2. Materials and method
Figure 1a and Fig. 1b show the geometry of the settler

model as depicted by Panda et al. [5].
2.1. Single-phase simulations

The incompressible Navier-Stokes equations for single
phase are assumed:

𝜕(𝜌𝑢)
𝜕𝑡

+ ∇ ⋅ (𝜌𝑢𝑢) − 𝜇∇2𝑢 = ∇𝑝, (1)
where u denotes fluid velocity, 𝜌 the density, 𝜇 viscosity re-
spectively and p its pressure are solved using the simpleFoam

solver in OpenFOAM subject to the boundary conditions
shown in Fig. 1a. These are solved using second order
interpolation, an orthogonal hexahedral mesh and under-
relaxation factors for velocity and pressure of 0.3 and 0.7
respectively as these are found to provide the best conver-
gence performance. In total, 0.15M elements, as exemplified
in Fig. 1b, are used together with automatic parallelization
with 8 subdomains minimizing the number of processor
boundaries.
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(a) (b)

Figure 1: Schematic of the mixer settler together with: (a) Boundary conditions and (b) example of mesh distribution.

2.2. Residence Time Distribution (RTD)
The cumulative RTD, F(t), is the proportion of the flow

with a residence time, E(t), less than or equal to time, t. This
is calculated by introducing passive scalars at the inlet and
calculating the time taken for them to leave the GMXS at the
aqueous outlet. The scalarTransportFoam solver then solves
the convection-diffusion equation for the passive scalar, c,
namely

𝜕(𝜌𝑐)
𝜕𝑡

+ ∇ ⋅ (𝑢𝑐) − ∇2(𝐷𝑇 𝑐) = 0, (2)
where the steady, single-phase flow field u is obtained at
steady state solution of Eq. (2).

Once F(t) is determined, the residence time distribution
𝐸(𝑡), the mean residence time 𝑡𝑚, and the standard deviation
𝜎𝑡 are given via

𝐸(𝑡) = 𝑑(𝐹 (𝑡)
𝑑𝑡

, (3)

𝑡𝑚 = ∫
∞

0
𝑡𝐸(𝑡)𝑑𝑡, (4)

𝜎𝑡 =

√

∫
∞

0
(𝑡 − 𝑡𝑚)2𝐸(𝑡)𝑑𝑡 . (5)

The quantity 𝜎𝑡 is useful since a smaller value indicates that
the flow is closer to the ideal flow scenario.
2.3. CFD-based optimization strategy

In this section, we consider the optimization of the
GMXS system, subject to the conflicting objectives of min-
imizing both the energy loss, i.e., 𝐸∗ = Δ𝑝 ⋅ 𝑄 ⋅ 𝜌 with
pressure dropΔ𝑝, density 𝜌 and flow rate𝑄, and the RTD 𝜎𝑡.

Two design variables are used, namely: the flow rate 𝑄, and
baffle position 𝑑𝑏 in the ranges of 0.2m3∕h ≤ 𝑄 ≤ 0.8m3∕h
and 55mm ≤ 𝑑𝑏 ≤ 200mm as indicated in Fig. 2a.

The goal is to generate a Pareto front of non-dominated
solutions, from which an appropriate compromise design
can be reached. The Pareto front is obtained by building
accurate metamodels of both 𝐸∗ and 𝜎𝑡, as a function of the
two design variables. The metamodels are constructed using
values of the 𝐸∗ and 𝜎𝑡 from numerical simulations carried
out at twenty-four Design of Experiments (DOE) points.
These points are obtained using Optimal Latin Hypercubes
(OLH), by means of a permutation genetic algorithm using
the Audze-Eglais potential energy criterion to ensure an
efficient distribution of DOE points. The points are laid
out as uniformly as possible using criteria of minimizing
potential energy of repulsive forces which are inverse square
functions of the separation of DOE points [12], i.e.,

min𝐸𝐴𝐸 = min
𝑁∑
𝑖=1

1
𝐿2𝑖𝑗

, (6)

where 𝐿𝑖𝑗 is the Euclidean distance between points 𝑖 and 𝑗
(𝑖 ≠ 𝑗) and,𝑁 = 24 is the number of DOE points. Figure 2b
reveals the uniform distribution of the DOE points within the
design space as a combination of the design variables𝑄 and
𝑑𝑏. A Radial Basis Function (RBF) method is used to build
the metamodels for 𝐸∗ and 𝜎𝑡, throughout the design space
where a cubic radial power function is used to determine the
weighting (𝑤𝑔) of points in the regression analysis at each
point [12],𝑤𝑔𝑖 = 𝑟3𝑖 . The parameter 𝑟𝑖 is the normalized dis-
tance between the surrogate model prediction location from
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(a) (b)

Figure 2: (a) Two-dimensional plane view indicating the two design variables: Inlet flow rate and baffle position. (b) DOE points
distribution.

(a) (b)

Figure 3: (a) Pressure drop in the GMXS at different Reynolds numbers. The nonlinear behavior is due to the presence of
obstacles in the system. (b) Parity plot of the dispersion number 𝑁𝐷.

the 𝑖𝑡ℎ sampling point. The Pareto front is calculated using a
multi-objective genetic algorithm (MOGA) approach as in
[12]. Points on the Pareto front are non-dominated in the
sense that it is not possible to decrease any of the objective
functions (i.e.,𝐸∗ and 𝜎𝑡) without increasing the other objec-
tive function. Hence, this provides designers the opportunity
to select the most convenient compromise point among the
optimum designs. In the next section, results of the data-
driven CFD-based design optimization are discussed.

3. Results and discussion
3.1. Validation of the method

Simulations are performed with corresponding RTD
flow analysis. Results are firstly validated against the work
by Nieves-Remacha [13], Fig. 3a, with the pressure drop
found to follow a similar power law Δ𝑃 ≈ 𝑅𝑒1.49 where
the nonlinear effect is due to the presence of baffles in the
settler and 𝑅𝑒 is the REYNOLDS number.
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Figure 4: Pareto front showing the compromises that can be
obtained in minimizing both 𝜎𝑡 and 𝐸∗.

The effectiveness of separation is expressed in terms of
following dimensionless number dispersion number (𝑁𝐷) as
noted by Manavalan et al. [14] such as

𝑁𝐷 =
1
𝑡𝑚

√
𝐻
𝑔
, (7)

where 𝑡𝑚 is the mean residence time as defined in the RTD
analysis, 𝑔 the acceleration due to gravity and 𝐻 is the
dispersion-band thickness using the correlation developed
by Panda & Buwa [6]. A parity plot of the dispersion number
𝑁𝐷 between the prediction by Jeelani and Hartland [15] and
the current work is presented in Fig. 3b.

4. Optimization
The Pareto front curve in Fig. 4 represents the results in

terms of both 𝜎𝑡 and 𝐸∗. The data reveal that any decrease
of 𝐸∗ or 𝜎𝑡 is followed by an increase of the other objective
function. A very good agreement between the metamodel
and full numerical calculations occurs demonstrating the ac-
curacy of the metamodeling approach implemented. Results
reveal that at point 𝑃4, identified to be the best compromise
design, a percentage error for around 5% and 6% for energy
𝐸∗ and 𝜎𝑡 between the CFD predictions and metamodels
suggesting the appropriateness of the data-driven model to
predict accurately 𝐸∗ and 𝜎𝑡. Further analysis, as depicted
in Fig. 5a, indicates point 𝑃4 to provide 𝐸∗ = 0.0142mWh
and 𝜎𝑡 = 8062. The Pareto and 𝐸-curves in Fig. 5b might
indicate point P3 to be also a good design, however this
corresponds to an increase of 11.4% and 25.4% in 𝐸∗ and 𝜎𝑡respectively, compared to 𝑃4. Though the 𝐸-curves, Fig. 5b,
recommend point 𝑃7 to be a good design, an increase of
203% in 𝐸∗ is observed compared to 𝑃4 then again.

(a)

(b)

Figure 5: (a) Energy loss 𝐸∗ and 𝜎𝑡 and, and (b) RTD 𝐸(𝑡) at
seven points on the Pareto front in Fig. 4.

Design 𝑃4 corresponds to a flow rate 𝑄 = 472m3∕𝑠 and a
baffle position 𝑑𝑏 = 139mm.

5. Conclusions
A data-driven CFD-based optimization methodology

has been successfully developed for the design of efficient
GMXS liquid-liquid extraction systems. Current work en-
tails a multi-fidelity approach which combines multiphase
flow analysis.

Data statement
All data underlying the results are available as part of

the article and no additional source data are required in the
Research Data Leeds Repository1.

1https://doi.org/10.5518/1578
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Turbulent fluid flows have been important use cases for high performance computing (HPC)
platforms since the first spectral simulations of the Navier-Stokes equations by Orszag and Pat-
terson in the late 1960’s. Characterized by exponential convergence that provides high accuracy
at lower computational cost, spectral-type numerical schemes are well suited for the efficient
simulation of turbulence, where the number of grid points grows faster than quadratic with the
Reynolds number when all flow features need to be resolved.

Spectral element methods (SEMs) combine the high accuracy with flexibility in terms of flow
geometry. A high-order SEM approximates the solution and data in terms of locally structured
Nth-order tensor-product polynomials on a set of globally unstructured elements. Thus, in
addition to exponential convergence for smooth solutions with increasing polynomial order, it
offers flexibility to handle complex geometries via domain decomposition. For the same accu-
racy, matrix free SEM solvers also offer low storage and computational cost. In order to exploit
the performance potential of existing and upcoming GPU-based exascale supercomputers, SEM
solvers for CPU-based HPC systems have to either be ported to GPUs, or to be rewritten from
scratch. The potential of SEM solvers for exascale computing has been underlined by the two
2023 Gordon Bell Award finalists with applications using nekRS and neko. Furthermore, the
recently developed nekCRF reactive flow plugin showcases how SEMs can be efficiently used
for computational fluid dynamics (CFD) including multi-physics effects, like combustion, on
exascale supercomputers.

The mini symposium covers spectral element CFD solvers for GPUs. Submissions can include
contributions to the development of numerical methods and/or physical models in the context
of SEM as well as application examples of CFD using SEM on current GPU HPC systems.
CFD can refer to fluid dynamics applications of flows with or without multi-physics effects,
such as combustion, multiphase or magnetohydrodynamics.
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A B S T R A C T
This work aims at demonstrating the capabilities of using high-fidelity simulations for conducting
the study of the turbulent flow in a full-scale urban geometry. This framework takes advantage of
today’s new generation of supercomputers using accelerated computing architectures, e.g. graphical
processing units (GPUs). For the simulations we consider the flow under the influence of an
atmospheric boundary layer and specifically we focus on neutral turbulent flows past an urban
geometry. For validating the computational framework two different urban geometries are tested and
the results compared against wind tunnel data with good agreement. Afterwards, the capabilities of
the numerical methodology is showcased by performing simulations on a full-scale urban geometry
corresponding with a neighborhood of the city of Barcelona. These results have shown a strong
potential to significantly advance our current understanding of urban aerodynamics.

1. Introduction
Cities have long been regarded as centers of economic

and demographic growth, resulting in a significant concen-
tration of population in their cores. According to the United
Nations, by 2030, two-thirds of the global population will
reside in urban areas. Thus, the study and understanding
of urban flows to improve forecasting and develop accurate
prediction methods is at the focus of urban sustainability.

In this regard, the use of computational fluid dynamics
(CFD), particularly high-fidelity simulations, constitutes a
reliable tool for performing these studies. Indeed, CFD
can provide a complete data field of different variables
throughout the whole domain which render the possibility of
performing a more thorough analysis of wind flow, pollutant
dispersion, street canyon ventilation, among other studies.
Urban climate studies can be conducted at different scales,
including the meteorological mesoscale, the meteorological
microscale (up to about 2𝑘𝑚), the building scale (up to a few
hundred meters), and the indoor environment (≈ 10𝑚).

Concerning urban microclimate studies, a large number
of these studies have been conducted in generic or scaled-
down geometries from two-dimensional (2D) street canyons
or 3D generic geometries in order to study fundamental fluid
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dynamics related with urban flows using both Reynolds-
Averaged Navier-Stokes (RANS) equations, see, e.g., [1, 2,
3], or using large-eddy simulations (LES) in scaled down
geometries, see, e.g., [4, 5, 6].

Only a few studies reported in the literature employ LES
in complex urban environments, e.g. [7, 8], highlighting the
significance of high-fidelity simulations for understanding
the complex turbulent interactions between buildings and the
atmospheric boundary layer (ABL). Within the framework
of the present work, we aim at characterizing the turbulent
flow in an urban environment by performing LES in order to
identify the different flow structures and regimes present and
their complex interaction, as well as the turbulent statistics of
the flow. In order to achieve this ultimate goal, high-fidelity
simulations of neutral ABLs over full-scale realistic urban
geometries are performed, the results of which are validated
against measurements from wind tunnel experiments.

2. Mathematical and Numerical Model
The isothermal and incompressible flow in an urban

environment is governed by the conservation of mass and
momentum equations. By spatially filtering these equations,
the LES formulation can be obtained by

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (1)
𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

− 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
+ 𝜌−1

𝜕𝑝
𝜕𝑥𝑖

= −
𝜕𝑖𝑗
𝜕𝑥𝑗

, (2)

where (⋅) represents the filtered variables. In the above
equations, 𝑥𝑖 are the spatial coordinates (or 𝑥, 𝑦, and  ), 𝑢𝑖(or 𝑢, 𝑣, and 𝑤) stands for the velocity components, and 𝑝
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is the pressure. 𝜈 and 𝜌 are the kinematic viscosity and the
density of the fluid, respectively. The right-hand-side term
in Eq. (2) defines the subgrid stresses modeled, where

 𝑖𝑗 − 1
3
 𝑘𝑘𝛿𝑖𝑗 = −2𝜈𝑠𝑔𝑠 𝑖𝑗 (3)

To close the above formulation, an expression for the subgrid-
scale viscosity, 𝜈𝑠𝑔𝑠 has to be introduced. In the present work,
the model proposed by Vreman [9] is used. The filtered
incompressible Navier-Stokes equations have been numer-
ically solved using SOD2D (Spectral high-Order coDe 2
solve partial Differential equations) [10], a low-dissipation
spectral element method (SEM) code. SOD2D has been
developed with the aim of efficiently leveraging the compu-
tational power that is being deployed worldwide in which
GPU play a central role. For that reason, it has been de-
veloped to be able to run on either GPU or CPU architec-
tures. Specifically, the code is written in Fortran, and uses
MPI and OpenACC to provide parallelism at both coarse
and fine-grained levels. The mesh is partitioned using the
GEMPA library, and it uses HDF5 for I/O which are efficient
and widely tested libraries for HPC. SOD2D is based on
a spectral-element version of Galerkin’s finite element-
method continuous model with a modified version of Guer-
mond’s entropy viscosity stabilization [11]. The principle
behind this methodology is that a set of diffusive terms are
added to all equations in the Navier-Stokes system, with the
related viscosity being solution-dependent. This viscosity
depends on the entropy field and is computed per node.
With the current LES implementation, there is no interaction
between the stabilization and sub-grid models. Additional
details can be found in Gasparino et al. [10]. In SOD2D,
the aliasing effects of the reduced order integration caused
by employing SEM integration for convective terms are
countered with the skew-symmetric splitting presented by
Kennedy and Gruber [12]. For the temporal discretization,
a BDF-EXT3 high-order operator splitting approach is used
to solve the velocity-pressure coupling [13].

3. Results
The main objectives of the present work are to imple-

ment high-fidelity simulations of neutral ABLs over full-
scale realistic urban geometries, and validate the current
framework for simulating the turbulent flow in a neutral
ABL. For validation purposes, two different cases of increas-
ing complexity will be considered and after that, the flow
around an urban zone in Barcelona city will be considered.

The first case studied is the wind tunnel experiment con-
ducted by Brown et al. [14], which also serves as validation
of the numerical framework. The experiment considered a
neutral ABL approaching a matrix of 7 × 7 cubes, each
with dimensions of 𝐿 = 𝑊 = 𝐻 = 0.15𝑚 (𝐿, 𝑊 , 𝐻

Figure 1: Instantaneous velocity field for the 7x7 full-scale city
block case.

being length, width and height, respectively). To simulate
the ABL in the wind tunnel experiments spires and floor
roughness elements were used to obtain an equivalent ABL
with reference velocity of 3𝑚∕𝑠 measured at building height
H and friction velocity 𝑢∗ = 0.24𝑚∕𝑠. In the present
simulations, full-scale building arrays of 𝐻 = 30𝑚 are
simulated, corresponding to a 1:200 ratio compared to the
experiments. For the domain dimensions, in agreement with
the best practice guidelines for simulating urban flows [15],
3D blocks array were placed at a distance of 6.7H from the
inlet and 10H from the lateral boundaries of the domain. A
domain height of 10H is considered. As for the boundary
conditions, the top and laterals of the computational domain
are modeled as a free-slip wall, which assumes zero normal
gradients for all the variables. At the outlet, zero static
pressure is imposed. The actual REYNOLDS number (based
up in building height, and free stream velocity, 𝑈∞) for the
case is 𝑅𝑒𝐻 = 9 ⋅ 106.

To impose a realistic turbulent ABL inlet condition, a
precursor simulation is employed, from which the outlet
plane is used to “drive” the inlet of the domain of interest.
Three different 𝑝 = 4 grid meshes are used in order to assess
the influence of the numerical resolution on the accuracy of
the results. For these meshes, in the zone of interest, i.e., in
the 3D blocks, resolutions of 1.87𝑚, 1.25𝑚, and 0.75𝑚 for a
total number of 22.8 ⋅ 106, 62.2 ⋅ 106, and 219.4 ⋅ 106 grid
points are considered.

In Fig. 1, an overview of the turbulent flow around the
city can be observed, while in Fig. 2 results obtained with
the different levels of refinements are compared against the
experimental data. In the figure, both streamwise velocity
and turbulent kinetic energy (TKE) at different locations are
plotted.

A very good agreement at all stations is observed for
both streamwise velocity and TKE. To ensure temporal
convergence, data is gathered over 18,000 seconds, covering
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Figure 2: Vertical profiles of the streamwise velocity (top) and
turbulent kinetic energy (bottom) at different stations. Com-
parison between the different meshes and with experimental
data from Brown et al. [14].

40 flow-throughs. The simulation has been run on MareNos-
trum V, utilizing 2 nodes from the accelerated partition,
each equipped with 4 H100 GPUs. This setup achieves a
performance of 0.1344𝑠∕𝑖𝑡𝑒, equivalent to 2.154𝑛𝑠∕𝑑𝑜𝑓 .
For statistical data collection on the finest grid (219.4 ⋅ 106
grid points), the 40 flow-throughs requires a wall time of 7.5
days. This efficient configuration led to a computational cost
of 57,600 GPU-hours, highlighting its effectiveness for high-
accuracy urban environment simulations.

The second case simulated is a semi-idealized city
(“Michel-Stadt”; CEDVAL-LES database, case reference:
BL3-3). The modeled city area measures 1,320𝑚 in length
by 830𝑚 in width, with all buildings featuring flat roofs to

Figure 3: Vertical profiles of the streamwise velocity (top) and
root-mean-square (rms) values of the fluctuations (bottom) at
different stations. Comparison between the different meshes
and with experimental data2.

simplify wind flow interactions. In this experiment, a stream-
wise reference wind velocity of approximately 6.1𝑚∕𝑠 was
maintained at a height of 100𝑚 . The inflow boundary layer
was designed to simulate a very rough flow environment,
characterized by a surface roughness length ( 0) of 1.53𝑚
corresponding to a friction velocity (𝑢∗) of 0.596𝑚∕𝑠. As in
the previous setup, three grid refinement levels - 22.6 ⋅ 106,
78.11 ⋅ 106, and 217.84 ⋅ 106grid points - are evaluated.
These refinements correspond to resolutions of 3𝑚, 1.5𝑚,
and 0.75𝑚 at pedestrian level. To compute this case, 20 flow-
throughs are collected to gather statistical data. The finest
grid requires a wall time of 4 days on 32 GPUs, amounting
to a total computation time of 61,440 GPU hours. In Fig. 3,
results obtained with the different levels of refinement in
comparison against results from wind tunnel are presented.
Both streamwise velocity and root-mean-square (rms) values
of its fluctuations are pretty well predicted with the different
meshes.
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Figure 4: Instantaneous wind velocity map at pedestrian level. Top: Complete domain; Bottom left: Zoom of A; Bottom right:
Zoom of B.

After validation of the current framework, the methodol-
ogy has been applied to a 1700𝑚 long and 1900𝑚 wide urban
neighborhood of the city of Barcelona. For the simulation,
the city is located at a 2𝐿 distance from the inlet, 3𝐿 from
the lateral boundaries of the domain, whereas the outlet is
located at 4𝐿, 𝐿 being 10 times the height of the highest
building which in this case is 67𝑚. The inlet conditions have
been set similar to that of Michelstadt case. The computa-
tional mesh used for solving this case is a 4th-order mesh,
yielding a total of about 483⋅106 grid points with a resolution
of 1.25𝑚 at ground level.

Results from the study are shown in Fig. 4 which show-
cases the capacity of the current methodology for running
these simulations. At this stage, simulations with different
wind directions are being conducted which will allow to
analyze the influence of this in the flow configuration and
characteristics in the different street canyons.

2Reference: Prof. Leitl and Dr. Frank Harms, University of Hamburg,
Environmental Wind Tunnel Laboratory, https://www.mi.uni-hamburg.de/

en/arbeitsgruppen/windkanallabor/data-sets.html

4. Conclusions
High-accuracy simulations of neutral atmospheric boundary-

layers (ABL) over full-scale urban scenarios are conducted
using a high-order numerical framework. In this approach, a
precursor simulation is used. The precursor domain allows a
fully developed inflow and generates stochastic fluctuations
that adequately represent turbulence at inlet boundary con-
ditions of the domain of interest.

To validate the framework’s accuracy, two cases with
available wind tunnel data are tested. The influence of grid
refinement on the results is assessed by comparing simula-
tion outputs directly with experimental data, showing good
overall agreement. This supports the framework’s suitability
for urban Large Eddy Simulation (LES) studies. Results
demonstrate accurate mean velocities and turbulence statis-
tics across all grid resolutions, though a 1-meter resolution
at pedestrian level yields better predictions for second-order
flow statistics.

The methodology is also successfully applied to a real,
full-scale urban scenario corresponding to a neighborhood
of the city of Barcelona, yielding promising results. Future
work will explore the effects of varying wind incidence
angles to assess how wind direction impacts flow statistics
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based on different street canyon configurations. Overall, this
framework shows strong potential for advancing our under-
standing of urban aerodynamics, especially in characterizing
and predicting unsteady flow behaviors.
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A B S T R A C T
This work presents the parallel performance of the CFD code SOD2D in different brand-new HPC
platforms. SOD2D is a Continuous Galerkin High-Order Spectral Element Code designed to solve
simulations of both turbulent compressible and incompressible flows. Furthermore, an exhaustive and
comprehensive comparison of different communication patterns for the MPI Communications in the
code is presented, showing the relevance of the CUDA-aware MPI library when running on GPUs.

1. Introduction
Nowadays, the trend in new High-Performance Comput-

ing (HPC) platforms is, in general, to achieve higher comput-
ing performances by installing larger and larger accelerated
partitions based on General-Purpose Graphical Processing
Units (GPGPUs) [1]. For example, in the HPC platforms
deployed by the Oak Ridge Leadership Computing Facility
(OLCF1), the percentage of peak performance provided by
GPUs has increased up to above the 98% in their most new
HPC cluster [2], Frontier, which is the actual first-ranked
supercomputer in the TOP500 list2.

Therefore, the new scientific computing codes must use
GPUs efficiently to exploit all the potential FLOPS that
the latest HPC platforms are installing. The codes must
be able to leverage the fine-grained parallelism and large
data throughput that GPUs offer, along with the coarse-
grained parallelism based on the decomposition of the whole
problem in different partitions, each one of them is solved by
a different processing unit. This decomposition and distribu-
tion of the calculations in different processing units involves
and requires data communication between them to solve
the global problem. In general, this data communication in
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distributed processes is done using the Message Passing In-
terface (MPI), which is a standardized and portable message-
passing standard designed to function on parallel computing
architectures3.

Therefore, the performance of a scientific parallel code
running in GPUs is highly influenced by its capability of ef-
ficiently exploiting the GPU fine-grained parallelism within
computational loops, as well as its communication perfor-
mance, basically determined by the time spent between the
processes exchanging data. In the present work, these aspects
are analyzed and assessed in the CFD code SOD2D4 [3],
designed to run efficiently in heterogeneous HPC platforms
and aiming to exploit all their computational performance.

2. Physical model
2.1. Mathematical formulation

SOD2D is a Computational Fluid Dynamics (CFD) code
designed to solve simulations of both turbulent compressible
and incompressible flows. Hence, the governing equations
aimed to solve are the Navier-Stokes equations in an n-
dimensional domain, which in the compressible form [4]
reads as:

𝜕𝑡𝜌 + ∇ ⋅ (𝜌𝐮) = 0,
𝜕𝑡 (𝜌𝐮) + ∇ ⋅ (𝜌𝐮 ⊗ 𝐮) + ∇𝑝 − ∇ ⋅ 𝝉 = 𝐟 ,

𝜕𝑡𝐸 + ∇ ⋅ ((𝐸 + 𝑝)𝐮) − ∇ ⋅ (𝝉𝐮) − ∇ ⋅ (𝜅∇𝑇 ) = 𝑆,

defined on Ω × (𝑡0, 𝑡𝑓 ). In the above, the tensor 𝝉 =
𝜏𝑖𝑗 introduces the viscous stresses into the model. For in-
compressible flows, the required equations can be derived
straightforwardly assuming constant density 𝜕𝑡𝜌 = 0 and
uniform viscosity, resulting in ∇ ⋅ 𝝉 = 𝜇∇2𝐮.

3https://hpc.nmsu.edu/discovery/mpi/introduction/
4https://gitlab.com/bsc_sod2d/sod2d_gitlab/
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(a) Weak Speedup.

(b) Strong Speedup.

Figure 1: Speedup GPU (MN5).

3. Numerical model
The set of Partial Differential Equations (PDEs) describ-

ing the physics of turbulent flows presented above can be
converted into a solvable set of algebraic equations employ-
ing different numerical methods. In the present work the
employed method is the spectral formulation of the Continu-
ous Galerkin Finite Elements model. This model is selected
since it does not require the reconstruction of fluxes between
the elements, which could introduce numerical dissipation.
Moreover, using spectral elements is advantageous when
using hexahedra for discretizing the spatial domain Ω. The
Lobatto-Gauss-Legendre (LGL) quadrature is used in the
developed algorithm. The proposed scheme is stabilized
by employing a modified version of the Entropy Viscosity
model proposed by Guermond et al. [5]. Different integration
schemes are implemented: a fully 4𝑡ℎ order Runge-Kutta ex-
plicit scheme and an Implicit-Explicit Runge-Kutta (IMEX-
RK) for the compressible solver, and the velocity-correction

(a) Mesh comparison (MN5).

(b) Platform comparison.

Figure 2: Iteration wall-clock time GPU.

integration scheme BFD/EXT-3 proposed by Karniadakis et
al. [6, 7] for the incompressible solver.

4. Scalability analysis
The parallel performance of the algorithm detailed in the

previous sections has been thoroughly analyzed and assessed
in different HPC platforms. Specifically, in the present work
results for the following HPC platforms are presented: i)
the MareNostrum 5 supercomputer, placed at the Barcelona
Supercomputing Center (BSC) and equipped with GPUs
NVIDIA H100 (Hopper)5; ii) the Leonardo HPC system,
hosted by CINECA, based on NVIDIA A100 GPUs with
all the nodes interconnected through an NVIDIA Mellanox
network, with Dragon Fl+6, iii) and the Karolina supercom-
puter, located at the IT4Innovations National Supercomput-
ing Center at VSB, the Technical University of Ostrava7,
based as well on NVIDIA A100 GPUs.

5https://www.bsc.es/supportkc/docs/MareNostrum5/overview
6https://leonardo-supercomputer.cineca.eu/hpc-system/
7https://www.it4i.c /en/infrastructure/karolina/
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(a) 32 GPUs (b) 128 GPUs

Figure 3: Communication patterns comparison.

The study is done running simulations of a Taylor-
Green Vortex (TGV) at Ma = 0.1 and Re = 1600, so it
can be solved using both compressible and incompressible
solvers. The case is solved in fully 3D-periodic meshes of
𝑁3 elements, with 𝑁 being the number of elements per
side. In the compressible solver, communications at each
time-integration step are required for the solved variables,
i.e., mass, energy, the three velocity components and the
entropy used for stabilization. On the other hand, in the
incompressible solver, the variables communicated at each
time-step are the three velocity components and the entropy
used for stabilization, besides the communications required
in the solvers.

The results for both strong and weak speedup in the
MareNostrum 5 supercomputer for the explicit compressible
solver are depicted in Fig. 1 for meshes of order 𝑝 = 4
ranging from 81M up to 1290M degrees of freedom (DoF).
As can be seen, the scalability is very good for all the
load ratios. This excellent scalability is also reflected in
Fig. 2 where the iteration wall-clock is shown: on the left,
results comparing different mesh sizes in the same cluster
(MareNostrum 5); and on the right, the results for a specific
mesh (the one with 647𝑀 DoF) in the three analyzed HPC
platforms.

5. Communication patterns
Message Passing Interface (MPI) is a standard specifica-

tion of message-passing interface for parallel computation
in distributed-memory systems8. The MPI library allows
multiple communication patterns between all the processes
involved in the parallel execution, essentially: Point-to-point,
Collective and One-sided communications.

8https://hpc.nmsu.edu/discovery/mpi/introduction/

In classical MPI implementation, only chunks of mem-
ory allocated in host memory can be sent and received
using MPI messages. Nonetheless, when using GPUs the
computing data is stored in GPU memory. Therefore, the
sender GPU first have to be copied into host memory, then
perform the MPI communication between the hosts, and then
the host receiver copies the data in its GPU memory. On
the other hand, if using the CUDA-aware MPI library along
with the GPUDirect feature then it is not required to stage
the GPU buffers through host memory, and the GPU buffers
can be directly passed to MPI.

It is of interest to analyze the most efficient communica-
tion pattern for CFD codes like SOD2D. The main data sent
and received through MPI messages is the data exchanged
between ranks sharing an MPI boundary since the nodes
replicated in different MPI ranks need to exchange data
with its/their ’clones’ in the neighbor MPI ranks. Therefore,
an exhaustive analysis comparing different point-to-point
and one-sided communication patterns has been carried out.
The influence of CUDA-aware MPI library in communi-
cations is also analyzed. The study is carried out using
a tool that mimics the communications required during a
standard SOD2D run, i.e., the data exchange between ranks
sharing MPI boundary nodes. Results for different meshes
running in 32 and 128 are shown in Fig. 3. The cases using
CUDA-aware MPI library are noted by (𝐶). It is clear that
using CUDA-aware MPI communications notably reduces
communication times. Moreover, asynchronous two-sided
Send-Receive (𝑖𝑆𝑅) is the communication pattern with the
smallest communication time, and therefore, the chosen as
default in SOD2D. Nonetheless, one-sided Put and Get com-
munications give very similar times and perform efficiently.
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6. Conclusions
The present work has assessed and analyzed the par-

allel performance of the CFD code SOD2D, a Continu-
ous Galerkin High-Order Spectral Element Code aimed
to solve simulations of both turbulent compressible and
incompressible flows. The obtained results in different HPC
platforms demonstrate that the developed code presents
very good scalability in GPUs, for both strong and weak
speedups. Moreover, the study on communication patterns
shows that the most efficient communication scheme is the
asynchronous two-sided with CUDA-aware MPI. The one-
sided communication schemes also showed good efficiency.
Nonetheless, the most relevant conclusion is the impact of
CUDA-aware MPI, which dramatically improves communi-
cation times when running on GPUs.
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A B S T R A C T
Understanding the intrinsic instabilities of hydrogen flames is crucial for achieving net zero emissions.
Direct Numerical Simulation (DNS) serves as a pivotal tool for this purpose, despite its high
computational cost. With advancements in High Performance Computing (HPC) shifting towards
GPUs, the deficient reactant model has been integrated into the NekRS framework to improve
efficiency. This study validates the deficient reactant thermochemical model within the low-MACH
number governing equations in NekRS. In addition, we present the strong scaling performance of this
implementation.

1. Introduction
The use of hydrogen as an alternative to carbon-based

fuels presents unique challenges due to intrinsic premixed
flame instabilities that can profoundly impact flame char-
acteristics [1]. To explore these instabilities Computational
Fluid Dynamics (CFD) can be a pivotal tool, where us-
ing high fidelity Direct Numerical Simulation (DNS) plays
a crucial role in analyzing flame morphology. However,
achieving a practical implementation of DNS in complex
combustion simulations requires substantial computational
resources. Hence, all of the physical scales of flow and flame
have to be resolved, and using High Performance Computing
(HPC) capabilities becomes crucial [2]. NekRS [3] is a state-
of-the-art GPU-accelerated CFD solver that relies on the
high-order Spectral Element Method (SEM). In the present
study, validation and scaling of the deficient reactant thermo-
chemical model [1, 4] within the low-MACH number govern-
ing equations [5] implemented and coupled to NekRS, based
on a well-established 2D DNS data set [1, 4, 6, 7] of intrinsic
instabilities of premixed flames is presented.
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2. Numerical method
The deficient reactant model employs a single-step, ir-

reversible reaction with constant transport properties, in-
tegrated into the low-MACH equations, coupled with the
equation of state to solve through high-order SEM. The di-
mensionless transport equations are expressed as follows [6]

𝜌𝐷𝒖
𝐷𝑡

= −∇𝑝2 +
1
𝑅𝑒

∇

⋅
(
∇𝒖 + (∇𝒖)𝑇 − 2

3
(∇ ⋅ 𝒖)𝑰

)
, (1)

𝜌𝐷𝜃
𝐷𝑡

= ∇ ⋅ (𝛿𝑐∇𝜃) +
Ω
𝛿𝑐
, (2)

𝜌𝐷𝑌
𝐷𝑡

= ∇ ⋅ (
𝛿𝑐
𝐿𝑒

∇𝑌 ) − Ω
𝛿𝑐
. (3)

The continuity equation is represented by the non-zero ve-
locity divergence resulting from both the heat release rate
and thermal diffusion, as a restriction on velocity divergence,
becomes

∇ ⋅ 𝐮 = (𝜎 − 1)
[
∇ ⋅ (𝛿𝑐∇𝜃) +

Ω
𝛿𝑐

]
, (4)

𝜌 = (𝜃(𝜎 − 1) + 1)−1, (5)
Ω = 𝑍𝑒2

2𝐿𝑒
𝑌 exp

(
𝑍𝑒(𝜃 − 1)

1 + (1 − 𝜎−1)(𝜃 − 1)

)
, (6)

where Ω represents the source or sink term based on a
single-step Arrhenius reaction and 𝐈 is the identity tensor.
Also variables including the velocity 𝐮, the hydrodynamic
pressure 𝑝2, temperature 𝜃 = (𝑇 − 𝑇𝑢)∕(𝑇𝑎𝑑 − 𝑇𝑢), the mass
fraction of the deficient reactant 𝑌 are non-dimensionalized.
In addition, the LEWIS number𝐿𝑒, ZELDOVICH number𝑍𝑒,
REYNOLDS number 𝑅𝑒, the unburnt-to-burned density ratio
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(a) CPUs. (b) CPUs and GPUs.

Figure 1: Validation of the EoS independent formulation in NekRS for CPUs and GPUs.

Figure 2: Strong scaling on JUWELS BOOSTER.

𝜎 = 𝜌𝑢∕𝜌𝑏 are non-dimensional parameters (see [4] for fur-
ther details). The only distinction with [6] lies in scaling the
non-dimensional flame thickness 𝛿𝑐 , with respect to the cut-
off wavelength 𝜆𝑐 rather than the reference hydrodynamic
length 𝐿, as further detailed in [8].

3. Results
The deficient reactant model has been implemented and

extensively utilized in various references [1, 4, 6] within
Nek5000, employing a reference solution of a 1D laminar
lean hydrogen-air premixed flame to validate the NekRS
code. In the Fig. 1a the results of 1D solution, for SERIAL
back-end which uses CPUs taking advantage of the Mare-
Nostrum 4 cluster at Barcelona Supercomputing Center
(BSC), for two different polynomial order of𝑁 = 7 and𝑁 =

Figure 3: Isosurface of the progress variable of the flame
simulation.

9, were compared with the reference solution of Nek5000.
The comparison shows a good agreement for 𝑇 , 𝑌 , 𝜔, 𝜌
for all three cases. Also, Fig. 1b compares the results of
CUDA back-end using CTE-POWER cluster at BSC, with
the validated SERIAL back-end with consistent validation
results.

In order to perform a strong scaling of the code, a test
case of thermo-diffusive unstable flame with around 18.5 M
spectral elements of polynomial order of 7, translating into
6.3 B gird point has been tested on JUWELS Booster cluster
in Forschungszentrum Jülich. Each node of this cluster is
equipped with four NVIDIA A100, 40GB GPUs and the
least amount of nodes needed for the test case to fit the
device memory is 130 which has 520 MPI rank. To compare
the speed-up across different MPI ranks, we selected a time
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instance where the flame is corrugated, as a restart point. The
calculation time for a single time-step, averaged over one
thousand time-steps, is selected as the speed-up metric. As it
can be seen in Fig. 2 different MPI ranks speed-up reported
and the baseline is the 130 nodes, where the speed-up is
compared to it. As can be seen in Fig. 2 the MPI rank 920
is the highest rank which is close to the ideal speed-up line,
while increasing the rank will lead to efficiency reduction.
In addition, to demonstrate the domain and flame, Fig. 3
represents an isosurface of progress variable of 0.7, showing
a corrugated flame.

4. Conclusions
This study emphasizes the importance of understanding

hydrogen flame instabilities for achieving net zero emis-
sions. DNS is crucial despite its computational demands.
Implementing the deficient reactant model in NekRS en-
hances efficiency and offers insights into flame behavior.
The validation of a low-MACH formulation alongside strong
scaling analysis showcases promising performance gains
across different computational architectures, advancing our
understanding of complex combustion dynamics. In addi-
tion, to advance this study and consider species effects in
hydrogen flames, NekCRF [9], a detailed kinetic chemistry
solver, will be employed for comparative analyses. This
approach is expected to yield deeper insights into flame
behavior and enhance our understanding of these complex
combustion processes.

Acknowledgment
The authors acknowledge computing time grants for the

projects TurbulenceSL and rfcd by the JARA-HPC Ver-
gabegremium provided on the JARA-HPC Partition part
of the supercomputer JURECA at Jülich Supercomputing
Centre, Forschungszentrum Jülich and the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercom-
puter JUWELS at Jülich Supercomputing Centre (JSC).

Part of this work has been performed under the Project
HPC-EUROPA3 (INFRAIA-2016-1-730897), with the sup-
port of the EC Research Innovation Action under the H2020
Programm; in particular, P.E.L. gratefully acknowledges the
support of the Computer Applications in Science & Engi-
neering (CASE) Department and the Propulsion Technolo-
gies Group at the Barcelona Supercomputing Center, and Dr.
Guillermo Oyarzun for the support in the implementation of
the deficient reactant combustion model in nekRS.

References
[1] F. Creta, P. E. Lapenna, R. Lamioni, N. Fogla, M. Matalon,

Propagation of premixed flames in the presence of darrieus–
landau and thermal diffusive instabilities, Combustion and
Flame 216 (2020) 256–270. doi:10.1016/j.combustflame.2020.
02.030.

[2] D. Mira, E. J. Pérez-Sánchez, R. Borrell, G. Houzeaux, Hpc-
enabling technologies for high-fidelity combustion simula-
tions, Proceedings of the Combustion Institute 39 (4) (2023)
5091–5125. doi:10.1016/j.proci.2022.07.222.

[3] P. Fischer, S. Kerkemeier, M. Min, Y.-H. Lan, M. Phillips,
T. Rathnayake, E. Merzari, A. Tomboulides, A. Karakus,
N. Chalmers, et al., Nekrs, a gpu-accelerated spectral element
navier–stokes solver, Parallel Computing 114 (2022) 102982.
doi:10.1016/j.parco.2022.102982.

[4] F. Creta, R. Lamioni, P. E. Lapenna, G. Troiani, Interplay of
darrieus-landau instability and weak turbulence in premixed
flame propagation, Physical Review E 94 (5) (2016) 053102.
doi:10.1103/PhysRevE.94.053102.

[5] A. Tomboulides, J. Lee, S. Orszag, Numerical simulation of
low mach number reactive flows, Journal of Scientific Com-
puting 12 (1997) 139–167. doi:10.1023/A:1025669715376.

[6] R. Lamioni, P. E. Lapenna, G. Troiani, F. Creta, Flame induced
flow features in the presence of darrieus-landau instability,
Flow, Turbulence and Combustion 101 (4) (2018) 1137–1155.
doi:10.1007/s10494-018-9936-0.

[7] H. Kavari, P. E. Lapenna, D. Mira, F. Creta, Flow features
induced by thermo-diffusive instability: comparison between
two-dimensional and three-dimensional flames, in: Proceed-
ings of the 11th European Combustion Meeting 2023, 2023.

[8] P. E. Lapenna, R. Lamioni, G. Troiani, F. Creta, Large scale
effects in weakly turbulent premixed flames, Proceedings of
the Combustion Institute 37 (2) (2019) 1945–1952. doi:10.

1016/j.proci.2018.06.154.
[9] S. Kerkemeier, C. E. Frouzakis, A. G. Tomboulides, P. Fischer,

M. Bode, nekCRF: A next generation high-order reactive low
Mach flow solver for direct numerical simulations (2024).
arXiv:2409.06404.

237



ParCFD2024
35𝑡ℎ International Conference on Parallel Computational Fluid Dynamics

Sep. 02-04, 2024, Bonn, Germany

Computational Investigation of the Atmospheric Boundary Layer in the
GABLS Benchmark Problem Using the Spectral Element Code NekRS
Damaskinos Koniorisa, Dimitrios Papageorgioua,∗, Ioannis Kavroulakisa, Mathis Bodeb,
Misun Minc, Paul Fischerc,d and Ananias Tomboulidesa

aAristotle University of Thessaloniki, Department of Mechanical Engineering, Egnatia Street, 54124 Thessaloniki, Greece
bForschungszentrum Jülich (FZJ) GmbH, Jülich Supercomputing Centre (JSC), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
cArgonne National Laboratory, Mathematics and Computer Science Division, 9700 S. Cass Avenue, Lemont, IL 60439, USA
dUniversity of Illinois at Urbana-Champaign, Department of Computer Science, 901 West Illinois Street, Urbana, IL 61801, USA

A R T I C L E I N F O†

Keywords:
Atmospheric Boundary Layer;
Turbulence;
Large-Eddy Simulation;
NekRS;
High-Performance Computing;
Graphics Processing Unit

A B S T R A C T
This paper investigates the stable atmospheric boundary layer (ABL) using the spectral element code
NekRS. Simulations were performed with various grid resolutions to study grid independence and
performance. The results show that grid independence is achieved at higher grid resolutions, with
minor differences observed between the finest grids. Performance tests on two high-performance
computing (HPC) systems, Summit and JUWELS-Booster, reveal that newer generation GPUs offer
significant performance improvements. The study underscores the critical role of advanced HPC
systems in enabling detailed simulations of complex ABL phenomena and highlights the potential
of exascale computing and hybrid CPU-GPU architectures for future research.

1. Introduction
The Atmospheric Boundary Layer (ABL) is pivotal in

regulating atmospheric dynamics, facilitating the exchange
of heat, moisture, and pollutants between the Earth’s surface
and the free atmosphere. Its accurate representation is es-
sential for various practical applications, including renew-
able energy generation and pollution dispersion. Numerical
weather prediction models, climate simulations, and envi-
ronmental impact assessments heavily rely on precise ABL
modeling [1]. ABL flows exhibit high turbulence and density
stratification due to factors like surface heating, Coriolis ef-
fects, and complex weather patterns. Large eddy simulation
(LES) is commonly employed for ABL studies, utilizing
subgrid-scale (SGS) models to capture smaller flow scales.
However, LES demands dense grids for high-fidelity results,
as accuracy correlates strongly with grid resolution [2].
HPC systems enable computationally intensive simulations
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of ABL phenomena, a capability further enhanced by the
upcoming transition to exascale computing and the evolution
of hybrid CPU-GPU architectures [3].

To quantify the effects of numerical modeling and dis-
cretization choices, the ABL community has set up a se-
quence of benchmark problems, GABLS1–3, which is an
acronym for the GEWEX (Global Energy and Water Cycle
Experiment) Atmospheric Boundary Layer Study (GABLS).
In this work, the GABLS1 case, was simulated using the
massively parallel high-order spectral element GPU-based
code NekRS [4] in order to investigate the horizontal flow
through a stable atmospheric boundary layer utilizing an
LES approach. Various grid resolutions were utilized in
order to study the convergence of the tested SGS model
as a function of mesh refinement. Strong and weak scaling
tests were also performed to better understand the code’s
attributes and possible limitations.

2. Simulation setup
In this work, the GABLS1 benchmark problem [5] is

considered, emulating a stable ABL in which the basic
temperature (at z = 0) is cooler than the air temperature and
where the ground temperature continues to cool during the
simulation. The simulation domain is Ω = Lx × Ly × Lz =
400 m × 400 m × 400 m, where x, y,z is the streamwise,
spanwise direction and vertical direction respectively. The
simulations are initialized (at t = 0) with constant velocity
in the downstream direction equal to the geostrophic wind
speed U = 8 m/s. The initial potential temperature is 265
K at 0 ≤ z ≤ 100 m and increases linearly at a rate of 0.01
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Figure 1: NekRS grid convergence plot for the GABLS1 case of the spanwise and streamwise velocity profiles (left) and potential
temperature (right) at t = 9h for grid resolutions of 1283, 2643, 5123, 1,0243 and 2,0483 total grid points.

(a) Strong scaling. (b) Weak scaling.

Figure 2: Strong scaling (a) and weak scaling (b) of GABLS case with 2,0483 grid points on Summit (NVIDIA V100) [3] and
JUWELS-BOOSTER (NVIDIA A100).

K/m at 100 m ≤ z ≤ 400 m. The reference temperature is
263.5 K. The REYNOLDS number is Re = 𝑈𝐿𝑏∕𝜈, where
𝐿𝑏 = 100 m is the thickness of the initial thermal boundary
layer and 𝜈 is the molecular viscosity, and is approximately
50M. An initial perturbation is added to the temperature with
an amplitude of 0.1 K at the potential temperature for 0≤ z ≤ 50 m. Periodic boundary conditions are used in the
streamwise and spanwise directions. At the top boundary, (z
= 400 m), a stress-free rigid cap is applied to the momentum
and a heat flux condition to the energy equation according
to the temperature gradient of 0.01 K/m initially set at the
upper region of the flow. In the lower boundary, traction
BCs are applied for the velocity where the shear stress is
obtained from the Monin-Obukhov similarity theory [6], and
a heat flux BC is applied for the energy equation. The surface
temperature is obtained from the GABLS specification fol-
lowing the rule 𝜃𝑏(t) = 265 – 0.25t, where t is in hours. For

the SGS stresses, a Smagorinsky (SMG) model [7] for the
isotropic part of SGS stresses in conjunction with the mean-
field eddy viscosity (MFEV) approach for their anisotropic
part [8] are utilized. The convergence capabilities of this
SGS approach was tested for various grid resolutions, with
1283, 2563, 5123, 1,0243 and 2,0483 total grid points. The
simulation was performed until 𝑡 = 9 hours.

3. Results
A grid independence analysis was conducted with NekRS,

utilizing grid resolutions of 1283, 2643, 5123, 1,0243 and
2,0483 total grid points. The horizontally averaged spanwise
and streamwise velocity profiles at 𝑡 = 9 hours are illustrated
in Fig. 1 (left) whereas the horizontally averaged potential
temperature profiles are shown in Fig. 1 (right). The results
indicate that grid independence is practically achieved at a
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grid resolution equal or higher than 5123 as the differences in
the velocity and potential temperature profiles between the
5123 and 1,0243 grids are minor. These results are compared
with the results from the 2,0483 mesh to confirm this.

Next, we evaluate GPU performance for the larger
cases (5123, 1,0243 and 2,0483) on two HPC systems: Sum-
mit, which employs NVIDIA V100 GPUs, and JUWELS-
Booster, which utilizes NVIDIA A100 GPUs. The results,
depicted in Fig. 2, show on the left side performance for
strong scaling and on the right side performance for weak-
scaling as a function of the number of GPUs. Ideal speed-
up curves are also presented for comparison. Our findings
indicate that, for the same number of grid points, the perfor-
mance of the code on A100 GPUs on the Jewels Booster
is superior by a factor of 1.5 compared to V100 GPUs
on Summit. Despite this difference in raw performance,
the parallel efficiency remains consistent for both GPU
types when normalized by the number of grid points per
GPU. However, a significant decline in parallel efficiency
is observed when the grid points per GPU drop below 2.5
million, with efficiency falling below 80%.
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A B S T R A C T
This paper discusses in-situ visualization in the context of high-order GPU-based CFD solvers. For
this purpose, ASCENT was coupled with NekRS and successfully used on JUWELS Booster and
Frontier to visualize CFD applications, a Rayleigh-Bénard convection case and a Pebble Bed reactor,
at scale. The setup allowed time-resolved visualization at low additional computational cost.

1. Introduction
Exascale supercomputers make it possible to address

larger scientific problems using numerical methods and/or
to solve them in a shorter time. This enables, for example,
the simulation of flow problems with ever increasing scale
separation, on the one hand as a result of turbulence or on the
other hand due to multi-physics effects such as combustion,
or the training of ever larger networks with ever more data.
One energy-efficient way to realize an exascale supercom-
puter is by exploiting GPUs. Systems such as Frontier, the
first US exascale supercomputer, or JUPITER, probably the
first European exascale supercomputer, obtain the majority
of their FLOP/s (floating point operations per second) from
GPUs. The resulting heterogeneous systems with CPUs and

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
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GPUs increase the level of complexity by a further level,
which makes data handling in particular more difficult. In
the negative case, separate CPU and GPU memory forces
a large number of expensive copy operations. Conversely,
applications are generally only computationally efficient if
they avoid copy operations to the HDD and limit copy
operations between CPU and GPU memory.

Irrespective of the efficient supercomputer utilization
described above, the size of the data generated by exascale
simulations can be a further obstacle to successfully solv-
ing the scientific problem on which a simulation is based.
Checkpoint files from exascale simulations can be several
100 TB in size, which is often too large for conventional tools
for analysis and visualization. This means that writing the
results is not only very expensive, which limits the number
of checkpoint files that can be written, but the handling of
checkpoint files in post-processing is also difficult.

In-situ analysis and visualization, i.e. the immediate
processing of data while it is still in the computing memory,
can both reduce copying operations and save the time-
consuming handling of checkpoint files. Furthermore, they
enable real-time information on the simulation, which can
be used for simulation monitoring. Hence, in-situ analysis
and visualization give researchers immediate access to visu-
alizations even in the exascale era, enabling faster decision-
making, and a deeper understanding of the phenomena under
investigation.

Fluid mechanics often features transient or fluctuating
processes and is therefore an ideal field of application for
in-situ analysis and visualization. Especially in the context
of flow solvers, which mainly run on GPUs, enormous

241



J. Göbbert et al.: In-Situ Visualization With Ascent and NekRS for Large-Scale CFD Problems on GPUs

Figure 1: RBC overview for 𝑅𝑎 = 106 (left) and 𝑅𝑎 = 1012 (right) in the top line. Bottom line shows cut planes through the
boundary layers at the top and bottom.

advantages can arise. This is demonstrated in this paper
using the example of NekRS [1] for two applications.

In the following, it is first explained how in-situ visual-
ization can be integrated into NekRS using ASCENT. Sub-
sequently, measurements for a Rayleigh-Bénard convection
(RBC) case on JUWELS Booster and a pebble bed reactor
(PBR) on Summit and Frontier are presented. This work
finishes with conclusions.

2. Methodology
This work couples the state-of-the-art GPU-based CFD

solver NekRS with the in-situ visualization library ASCENT
to reduce the overall time-to-solution (incl. visualization)
of large-scale CFD simulations. In selecting a suitable in-
situ analysis and visualization library for this work, AS-
CENT emerged as the preferred choice due to several distinct
advantages. First and foremost, its lightweight design and
ease of integration into existing simulation code bases sig-
nificantly reduce the implementation overhead. In addition,
ASCENT supports zero-copy GPU-to-GPU data passing,
which allows the direct transfer of device pointers between
the simulation code and ASCENT, ensuring that data re-
mains exclusively on the GPU. Such an approach effectively
eliminates the need to pass data back to the CPU, eliminating
a common bottleneck in high-performance computing appli-
cations.

The implications of this GPU-centric data handling strat-
egy are profound, particularly in terms of minimizing the

memory footprint of the in-situ visualization process. Tra-
ditional data movement to the CPU introduces significant
memory overhead and duplication [2], and by bypassing this
transfer, ASCENT facilitates more efficient use of computa-
tional resources.

3. Applications
The coupled in-situ workflow was successfully used

for two applications. The focus in each case was to avoid
data copying and to visualize directly on the GPUs. The
visualization frequency was chosen to capture the smallest
temporal scales and the computational overhead was mea-
sured. The first use case was Rayleigh-Bénard convection
(RBC) on JUWELS Booster. JUWELS Booster has 936
GPU-accelerated nodes, is fully directly liquid cooled, and
is based on Atos’ Sequana XH2000 architecture. Each node
relies on 2x AMD EPYC 7042 processors that orchestrate
4x NVIDIA A100 GPUs. These GPUs have the SXM4 form
factor, and are integrated in a so-called Redstone board,
in which the GPUs are interconnected in direct all-to-all
NVLink3 fabric. The RBC simulation [3] used up to 900
nodes for RAYLEIGH numbers (𝑅𝑎) up to 1012 that ran on
46.7 billion grid points. The resulting visualizations of two
different RAYLEIGH numbers, 106 and 1012, are presented in
Fig. 1.

The second example is the full core of pebble bed reactor
(PBR), illustrated in Fig. 2, which has 352,625 spherical
pebbles and the fluid mesh comprising 98 million spectral
elements of order 7, or 33.8 billions grid points. The PBR
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Figure 2: Full core LES of PBR with 352k pebbles and (right) close-up showing velocity distribution.

was the first wall-resolved large Eddy simulation (LES) for
the full reactor core [4]. It has been demonstrated NekRS can
simulate a single flow-through time in less than 6 hours using
the entire Summit, a post-petascale machine in OLCF. The
in-situ workflow makes it possible to visualize high fidelity
transient solutions at a very high resolution which provides
more insights in dynamic turbulent structure. Using 1,400
nodes on Frontier, the PBR case renders 8K images (8,192 x
8,192 pixels) every 20 timesteps and producing 710 images
in just 4 hours.

4. Discussion and conclusions
The implemented in-situ workflow allows to reduce the

overhead for a time-resolved visualization below 10 % for
the RBC application and enables the realization of high-
resolution images for the PBR case. In this work, the focus
was on avoiding copying processes between GPU and CPU.
In the future, it could be interesting to do the visualization in
parallel on the otherwise idling CPUs, although this requires
a periodic copy operation. For more complex visualizations
and if the CPU is otherwise not used at all, this could be the
most efficient solution overall.
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A B S T R A C T
Ammonia-hydrogen blends are crucial for future carbon-free combustion systems, with staged-
combustion technologies like rich-quench-lean being proposed to minimize emissions. However,
the combustion behavior of turbulent rich ammonia-hydrogen mixtures is not well understood,
particularly regarding phenomena like partial cracking, hydrogen slip, and post-flame stratification.
Recent HPC advancements, particularly in GPU-based systems, enable combustion DNS beyond
academic configurations. Utilizing nekCRF, a new GPU-based spectral element solver based on
nekRS, we perform finite-rate chemistry DNS of a rich, turbulent premixed jet flame. The analysis
focuses on NH3/H2 interaction, revealing residual H2, minimized NH3 slip, and enhanced heat release
through turbulent mixing. By leveraging GPU acceleration and employing a novel spectral element
solver, this research not only advances our understanding of ammonia combustion but also showcases
a paradigm shift in computational efficiency, offering a promising avenue for developing sustainable
energy solutions.

1. Introduction
To address the pressing issue of climate change, society

confronts the formidable task of transitioning away from
fossil fuels in our energy system. Gas turbines for power
generation and aviation are at the heart of our energy infras-
tructure. Renowned for their high thermal efficiencies and
unmatched power densities, these machines have tradition-
ally used hydrocarbon-containing fuels. Efforts are under-
way to develop gas turbines that efficiently use zero-carbon
fuels, leading to a sustainable energy future. Although gas
turbines are theoretically fuel-flexible, they can face signif-
icant operational challenges related to flame stability and
emissions due to the vastly different combustion properties
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of H2 and NH3 fuels compared to conventional hydrocarbon
fossil fuels [1].

For example, hydrogen’s high diffusivity and reactivity
drive its strong turbulent burning rate, influenced by turbu-
lent fluctuations and intense thermo-diffusive instabilities
from differential diffusion [2, 3]. Conversely, ammonia, a
promising hydrogen carrier, requires precise NOx emission
control during partial decomposition. Recent experimen-
tal and numerical evidence indicates that an RQL (Rich-
Quench-Lean) operational strategy ensures both flame sta-
bilization and low emissions in ammonia-fired combustors
[4, 5, 6]. This study aims to fill the knowledge gap on
pressure effects on these fuels, focusing on H2/NH3 flames
with controlled flame propagation. By leveraging advanced
high-performance computing tools, we seek to unlock the
potential of fuel-flexible, high-power density combustion
systems for zero-carbon gas turbines.

To fully exploit the potential of current and future HPC
centers, a highly scalable reactive flow simulation code
(nekCRF) [7] based on nekRS as part of the Center of Ex-
cellence in Combustion (CoEC) project during the last three
years was developed, enabling high-fidelity direct numerical
simulations (DNS) of configurations at technically relevant
operating conditions. Here, nekCRF will be leveraged to
study ammonia-hydrogen jet flames. The novel benchmark
data will enable the assessment and further development of
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Figure 1: Schematic depiction of the McKenna burner configuration. Zoom shows the jet-flow field.

combustion models urgently needed for designing ammonia-
hydrogen-fueled gas turbines.

2. Computational methodology
As simulation framework, nekRS [8] is used in com-

bination with the chemistry plugin nekCRF developed as
part of CoEC. It employs high-order spectral elements in
which the solution, data, and test functions are represented
as locally structured Nth-order tensor product polynomials
on a set of 𝐸 globally unstructured conforming hexahe-
dral brick elements. Time integration in nekRS employs a
semi-implicit splitting scheme, utilizing 𝑘th-order (𝑘 up to
three) backward differences (BDF𝑘) to approximate the time
derivative, resulting in an implicit treatment of the viscous
and pressure terms, and 𝑘th-order extrapolation (EXT𝑘) for
the advection and forcing terms. The discretization leads
to a sequence of symmetric positive definite linear systems
for pressure, velocity and temperature. Its scalability to
millions of MPI ranks is based on the gsLib communication
library, which handles all near-neighbor and other stencil
type communications [8].

The thermochemistry (energy and species equations) is
treated with the highly optimized chemistry plugin nekCRF
that generates optimized kernels for the source term, ther-
modynamic and transport properties evaluation for GPUs.
It also provides consistent advection and diffusion transport
operators acting efficiently on multiple scalars. The resulting
large system is integrated without further splitting of the
convection, diffusion and reaction term using CVODE [9].

3. Configuration
The setup involves a turbulent premixed NH3/H2/N2jet flame operating under slightly rich conditions with an

equivalence ratio of Φ = 1.2. This configuration, illustrated
in Fig. 1, is adapted from a McKenna burner studied ex-
perimentally at TU Darmstadt. This offers the advantage of
benchmarking the base operating condition with 45 vol-%
H2 against available experimental data, enabling the explo-
ration of uncertainties in the chemical mechanism. For the
experimental conditions, the central jet velocity is set to
50 m/s, resulting in a REYNOLDS number of 15,000. The
coflow, which stabilizes the flame, operates with a fuel-lean
hydrogen mixture at an equivalence ratio of Φ = 0.7. The
flame is stabilized directly above the burner exit, and the
exhaust gas velocity of the flame is used as an inlet condition
for the DNS domain. The overall objective is to unravel the
fundamental combustion physics of propagating hydrogen
and ammonia flames under diverse operating conditions,
spanning from atmospheric to high pressure (unlike the
experiments). A critical free parameter in NH3/H2 com-
bustion is the precracking ratio of ammonia. Determining

Figure 2: Instantaneous temperature of field of the McKenna
burner.
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Figure 3: Top row: Instantaneous scatter plots of the thermochemical state together with unity Lewis numbers and mixture-
averaged flamelets. Bottom row: Conditional averaged of DNS data.

an optimum balance between flame stability (with high H2content), low emissions, and energy efficiency (with high
NH3 content) is crucial. Given the fully premixed state, this
configuration is predestined for the analysis of turbulence-
chemistry interactions. Of particular interest are processes of
thermal ammonia decomposition, the impact of equivalence
ratio variations on NOx formation.

4. Results
The flame depicted in Fig. 2 exhibits significant influ-

ence from turbulent flow, leading to intricate interactions
between chemical reactions and mixing processes. In the
instantaneous temperature field, sharp gradients and fluctu-
ating regions of high and low temperatures are observed.
These variations highlight the intense mixing and reaction
zones within the flame, where hot combustion products and
cooler reactants interact continuously, creating a highly dy-
namic and ever-changing thermal structure. Capturing these
dynamics remains a challenge for state-of-the-art combus-
tion models.

Figure 3 showcases the high-fidelity data from these
DNS studies, illustrating flame structures as a function of
temperature for the main fuel species (NH3, H2), and the
OH and H radicals. Additionally, one-dimensional freely
propagating flames with unity LEWIS number and mixture
fractions are displayed, which are used to build manifold-
based combustion models [3]. The scatter in the DNS data
demonstrates reasonable agreement with both models. To
establish a better comparison, temperature conditional av-
eraging of the DNS data is performed, shown in the bottom
row of Fig. 3. This comparison shows a favorable match of

the conditional average with the mixture-averaged flamelets
for both fuel species, with high-temperature differences at-
tributed to unmodeled mixing with the surrounding co-flow
of burnt gases, and low-temperature deviations due to tur-
bulent mixing with ammonia pre-cracking. These effects are
not included in current combustion models, which require
extensions. Notably, the radicals OH and H also align well
with the mixture-averaged flamelet. As these species are
markers for curvature and strain impacts on turbulent flame
structures, it can be concluded that NH3/H2 flames are less
sensitive to curvature and strain than hydrogen flames, as
reported in previous studies [3]. The scatter data used for
conditional averaging are derived from the entire domain.
Given that the co-flow is fuel-lean (providing sufficient oxy-
gen for the flame) and the jet is fuel-rich, a mixing process
occurs. This process involves the mixing of flue gases from
the jet flame with the surrounding co-flow, resulting in
the tails observed in the conditionally averaged DNS data.
Additionally, the excess hydrogen burns in a weak secondary
flame, which is suggested by the temperature increase after
the main flame.

5. Conclusions and outlook
In this study, a series of SEM DNS simulations of

NH3/H2 flames is conducted to explore the complexity of
this novel fuel blend. Utilizing the advanced GPU flow
solver NekRS with the chemistry plugin NekCRF, we vary
parameters such as pressure and pre-cracking ratio. These
high-fidelity results enable a thorough evaluation of state-
of-the-art combustion models, including the manifold-based
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models demonstrated here. At the conference, this assess-
ment will be expanded to cover the entire parameter space
and include a performance evaluation of the reactive flow
solver.
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A B S T R A C T
We study the behavior of boundary layers in thermal convection at RAYLEIGH numbers ranging from
105 to 1012 in a box of aspect ratio Γ = 4, and periodically extended sides. We use the GPU accelerated
spectral element solver, NekRS, for our simulations. At the highest RAYLEIGH number, the simulations
utilize nearly 3400 A100 GPUs of the JUWELS Booster facility, to cover as many as 40 free-fall time
units, enabling us to obtain reliable statistics in steady-state. This demonstrates the excellent scalability
of the solver. Moreover, since the focus of the study is on the boundary layers at the top and bottom
walls, we ensure that the near-wall regions are well-resolved. We observe that the boundary layers have
both shear dominated and plume dominated regions, with a nearly constant area-fraction between these
regions. We also study the structure of wall shear-stress fields and their connection to plume structures
emanating from the walls.

1. Introduction
Thermal convection has remained a fertile benchmark

for computational studies of fluid flows starting from the
earliest works of [1]. The ubiquity of the phenomenon as
well as the simplicity of the Rayleigh-Bénard convection
(RBC) setup typically used to study natural convection has
greatly impelled the progress in this field for more than half
a century.

In RBC, a thin layer of fluid is confined between a pair
of parallel, horizontal plates, with gravity acting along the
vertical direction. The plates are isothermal, with the top
plate maintained at a lower temperature than the bottom
plate [2]. Ideally, the plates extend infinitely in the hori-
zontal directions. One can numerically approximate this by
using a moderately large aspect ratio for the computational
domain, and by using periodic boundary conditions along
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the horizontal directions. This is a key design aspect of the
simulations reported here.

Experiments of RBC are typically performed in closed
domains with no-slip side-walls, which impact the orga-
nization of the flow. Our simulations alleviate this effect,
thus eliminating the large-scale circulation (LSC) flow. This
imparts a markedly different structure to the boundary layer
flow, whose analysis is the focus of this work.

2. Problem Setup and Numerical Method
We solve the non-dimensionalized Navier-Stokes equa-

tions with Boussinesq approximation along with the energy
equation [3],

𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮 = −∇𝑝 + 𝑇  ̂ +
√

𝑃𝑟
𝑅𝑎

∇2𝐮, (1)

𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ ∇𝑇 = 1√
𝑅𝑎𝑃𝑟

∇2𝑇 . (2)

Here, 𝐮, 𝑝 and 𝑇 denote the velocity, pressure and tem-
perature fields respectively. Moreover, mass conservation is
imposed in the form of the continuity equation, ∇ ⋅ 𝐮 = 0.
The dimensionless parameters 𝑅𝑎 (RAYLEIGH number) and
𝑃𝑟 (PRANDTL number) dictate the nature of the flow and its
properties. While 𝑅𝑎 represents the strength of convective
forcing, 𝑃𝑟 is the ratio between the diffusion of momentum
and temperature. We keep 𝑃𝑟 fixed at 0.7 (corresponding to
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𝑅𝑎 𝑁𝑒 𝑝 grid-points 𝑁𝐵𝐿 𝑑𝑡 Δ𝑡 𝑁GPUs
105 100 × 100 × 64 5 80 million 71 1.33 × 10−2 1000 24
106 100 × 100 × 64 7 220 million 57 5.73 × 10−3 1000 48
107 100 × 100 × 64 9 467 million 42 2.45 × 10−3 1000 100
108 150 × 150 × 96 7 740 million 24 1.82 × 10−3 1000 160
109 150 × 150 × 96 9 1.6 billion 15 9.49 × 10−4 400 240
1010 400 × 400 × 200 7 11 billion 16 4.59 × 10−4 100 1000
1011 500 × 500 × 256 7 22 billion 16 2.73 × 10−4 100 1440
1012 500 × 500 × 256 9 46.7 billion 10 2.02 × 10−4 40 3360

Table 1
Details of the simulations.

(𝑎) (𝑏)

Figure 1: Scaling of 𝑁𝑢 and 𝑅𝑒 with 𝑅𝑎.

air) for all our simulations, but vary 𝑅𝑎 from 105 to 1012 (see
Table 1).

The simulations are performed in a Cartesian box of
length (𝐿), width (𝑊 ) and height (𝐻) defined as 𝐿 = 𝑊 =
Γ𝐻 , where Γ is the aspect ratio of the box. We use a constant
Γ = 4 in all our simulations [4]. The top and bottom walls
are isothermal, no-slip plates maintained at 𝑇 = 0 and
1 respectively, whereas periodic boundary conditions are
imposed on the sides.

Furthermore, the boundary layers (BLs) become thinner
as 𝑅𝑎 increases, which demands larger grids to resolve the
BLs properly. Consequently the grid sizes also increase with
𝑅𝑎, going up to nearly 47 billion points at 𝑅𝑎 = 1012.
Even at this 𝑅𝑎, we maintain 10 collocation points in the BL
(denoted by 𝑁𝐵𝐿). Table 1 also lists the number of spectral
elements, 𝑁𝑒, polynomial order, 𝑝, average time-step, 𝑑𝑡,
total free-fall times in steady state, Δ𝑡, and the number of
GPUs required, 𝑁GPUs.

We use the spectral element method (SEM) [5, 6] to solve
the governing equations. Specifically, we use NekRS [7],
which is a GPU accelerated implementation of SEM, derived
from the renowned Nek5000 solver. We performed our sim-
ulations on the JUWELS Booster at Jülich, utilizing almost
the full-cluster (840 nodes) for the 𝑅𝑎 = 1012 case. This
case was run for nearly 30 hours over 4 reservations, using
more than 1.1 million GPU core hours.

3. Results and Discussion
Two quantities of key interest in simulations of RBC are

NUSSELT number (𝑁𝑢) and REYNOLDS number (𝑅𝑒). The
rate of convective heat flux across the top and bottom plates
is quantified by 𝑁𝑢, whereas 𝑅𝑒 is a measure of momentum
transport by the convective flow. The scaling laws for both
𝑁𝑢 and 𝑅𝑒 with respect to 𝑅𝑎 are subjects of continuous
investigation [8, 9]. Figure 1 shows the scaling of 𝑁𝑢 (a)
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𝑧 = 𝛿𝑇 𝑧 = 𝛿𝑇 𝑧 = 0.1 ≈ 25𝛿𝑇 𝑇𝜙

(a) (b) (c)

Figure 2: Structure of boundary layer flow and plumes at 𝑅𝑎 = 1010.

and 𝑅𝑒 (b) obtained from our simulations, compared against
previous results from literature [10, 11].

The 𝑁𝑢 scaling seems to collapse well with the classical
1∕3 scaling for 𝑅𝑎 ≥ 1011, whereas the 𝑅𝑒 scaling shows
a significant geometry dependence. The previous works
of [10] and [11] used cylindrical domains of aspect ratios
1∕10 and 1 respectively, and their representative shapes are
drawn in the plot for clarity.

In Fig. 2, the BL flow and structure of plumes are shown
near the bottom plate for 𝑅𝑎 = 1010. The thermal BL
thickness for this case is 𝛿𝑇 = 3.72 × 10−3. Panel (a)
shows the angle of the flow, 𝜙 ∈ [−𝜋, 𝜋], in the plane
parallel to the plate. Regions with smooth color variations
denote patches of coherent shear flow, whereas the areas
with grainy fluctuations are decoherent regions of plume
upwelling. In (b), the plume dominated regions are isolated
by thresholding the planar velocity, 𝑢ℎ = (𝑢2𝑥 + 𝑢2𝑦)

1∕2. The
grey regions indicate areas with 𝑢ℎ < 𝑈ℎ

rms, where 𝑈ℎ
rms is

the root-mean-square value of 𝑢ℎ averaged over the whole
plane. Finally the temperature field at  = 25𝛿𝑇 plotted in (c)
highlights the alignment between plumes and the decoherent
patches on the plate.

Furthermore, we investigated the mean velocity profiles
and compared them with Blasius profile to probe for signa-
tures of flat-plate BL flow. We also compared the different
measures of momentum and thermal BL thicknesses. Signif-
icantly, we do not observe a coherent large-scale circulation
typically seen in RBC experiments in closed cylindrical cells
of aspect ratio 1 and smaller. This has potential implications
on our understanding of the boundary layers dynamics in
RBC. Further details and analysis can also be found in [4].
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A B S T R A C T
The diversification in hardware architectures has become a challenge for computational science:
software stacks implemented for a specific hardware architecture often fail to port to other systems.
To counter this problem, simulation software stacks increasingly rely on portability layers or software
stacks that feature backends for different hardware architectures. We present Ginkgo, a math library
that takes platform portability as a central design principle and can be used for numerical calculations
in the nekRS CFD code. A runtime and scalability analysis for CFD applications demonstrates that
Ginkgo enables platform portability at high performance and scalability.

1. Introduction
In the latest TOP500 list1 ranking the fastest supercom-

puters, only one of the fastest ten systems does not feature
GPUs. But while the trend incorporating GPU accelerators
into the HPC systems is universal, the community still strug-
gles to agree on a universal programming language to imple-
ment software for the GPUs of the different vendors. Instead,
each vendor supports their own programming ecosystem, of-
ten hindering or even blocking portability of software stacks.
At the same time, it is impossible for scientific software
stacks to develop and maintain multiple versions targeting
different hardware architectures. Simulation software stacks
currently implement two strategies to tackle the hardware
diversification: the use of a portability layer and the use of
portable software components. The use of a portability layer
requires the rewrite of the simulation software in a portable
programming language that can then be compiled for differ-
ent hardware architectures. Examples for portability layers

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02503 and of the Proceedings 10.34734/FZJ-2025-
02175.
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1Top500 as of 06/2024 https://www.top500.org/lists/top500/2024/06/

are the SYCL abstraction2, Kokkos3, RAJA4, and OCCA5,
cf. [1]. Using a portable language enables execution on the
architectures that support the portability layer. A disadvan-
tage is that a portability layer has to trade specialization
against generalization, and thus can never exploit the latest
features of a specific hardware that are not available on other
hardware. Hence, a portability layer typically pays some
performance penalty to enable the execution on a wide range
of hardware. The second approach is to utilize software com-
ponents that are more limited in functionality, i.e., can not
be used for the complete simulation code, but provide high
performance on a range of architectures. A viable strategy
is to identify the computationally most expensive building
blocks in the simulation code, e.g., the numerical compu-
tations, and rely on specialized platform-portable libraries
for these building blocks. Obviously, the two strategies can
also be used in combination: a portability layer enables the
execution on a wide range of hardware, a dedicated library
ensures high performance for the most expensive building
blocks of the simulation code. We here present how the
Ginkgo math library can be used to accelerate computational
fluid simulations on GPU-accelerated systems. In particular,
we demonstrate that the nekRS CFD solver can benefit from
using Ginkgo for solving the underlying linear equations by
new solver options and platform portability.

2SYCL https://www.khronos.org/sycl/
3Kokkos https://kokkos.github.io
4RAJA https://raja.readthedocs.io
5OCCA https://github.com/libocca/occa

253



Y. M. Tsai et al.: Portable Linear Solvers for High-Order Spectral Element Methods on GPUs

Figure 1: Overview of the Ginkgo library design using the backend model for platform portability [2].

Listing 1: Using Ginkgo as the coarse solver and set the ginkgo
solver from the config.json file.

1 [PRESSURE]

2 preconditioner = multigrid

3 coarseSolver = ginkgo

4 [GINKGO]

5 configFile = config.json

Listing 2: Configuration file for selecting the numerical meth-
ods and configuring the parameters.

1 {

2 "type": "solver::Cg",

3 "criteria": [

4 {"type": "Iteration", "max_iters": 4},

5 {"type": "ImplicitResidualNorm",

6 "reduction_factor": 1e-4,

7 "baseline": "initial_resnorm"}

8 ]

9 }

2. The nekRS and Ginkgo software packages
The nekRS framework6 [3] is a CFD solver based on

libParanumal7 [4] and Nek50008. It is implemented in C
and C++ including Fortran bindings for Nek5000 and uses
an MPI + OCCA approach for parallelization, where OCCA
acts like a language translator without overhead associated
to it during runtime. Numerically, it relies on the spectral
element method (SEM), which makes it well suited for the
efficient simulation of turbulence, where the number of grid

6nekRS https://github.com/Nek5000/nekRS
7libParanumal https://github.com/paranumal/libparanumal
8Nek5000 https://github.com/Nek5000/Nek5000

points grows faster than quadratically with the REYNOLDS
number when all flow features must be resolved.

Ginkgo is a software library developed under the US
Exascale Computing Project (ECP) that focuses on the ef-
ficient handling of sparse linear systems on GPUs. Ginkgo
is implemented in modern C++ to accommodate a large
number of scientific application codes. The software features
multiple backends in hardware-native languages: CUDA for
NVIDIA GPUs, HIP for AMD GPUs, and SYCL for Intel
GPUs. Ginkgo contains a set of iterative solvers, including
Krylov solvers, algebraic multigrid (AMG), and parallel
preconditioners that serve as a valuable toolbox for appli-
cation codes. Ginkgo aims to provide not only functional
portability but also performance portability [2]. To achieve
this, Ginkgo uses a backend model that lifts portability to the
software design level. The idea is to rely on a set of kernels
implemented using vendor-native programming models, for
each hardware target [2]. These kernels are then used to
implement the high-level algorithms. This is reflected in
Fig. 1 visualizing the backend model used in the Ginkgo
library design9.

Ginkgo provides a wide range of numerical methods for
the solution of sparse linear systems, see [2] for an overview
of functionality supported by Ginkgo on different hardware.
While there are some solvers and preconditioners known
to provide good performance for a wide range of nekRS
simulations, it is of interest to test a large variety of methods
and configuration parameters to identify the best method for
a specific simulation. To enable the easy and fast analysis of
a wide range of numerical methods, we enabled the use of
configuration files that use JSON to encode solver and pa-
rameter configurations, The example configuration in Lst. 1

9Ginkgo uses SYCL as one of its backends, which is a portability layer
in itself.
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Solver CG(4 iter) BiCGstab(4 iter) BiCGstab(20 iter) GMRES(20 iter)
#coarseSolver 44 41 37 38
runtime[s] 2.03469e-01 3.02990e-01 3.80737e-01 6.32582e-01

Table 1
Performance of different solver settings of GABLS test case with 32 elements per each axis.

Figure 2: Runtime of the coarse solver on the GABLS test case
using different discretizations (16, 32, and 64 elements in each
dimension) on 2 machine nodes (8 A100 GPUs/MPI nodes).

enables ginkgo in nekRS with the configuration file. This
concept avoids any compilation of the code, but exclusively
works with already compiled libraries. An example for a
configuration file is given in Lst. 2. We can try different
kinds of solver like CG, BiCGstab, and GMRES or use more
iterations in Tab. 1.

3. Preliminary experiments on integration
For testing the correctness, performance and scalability

of the integration of the Ginkgo backend, we focus on
the GABLS test case that was established by the atmo-
spheric boundary layer community and is an acronym for
the GEWEX (Global Energy and Water Cycle Experiment)
Atmospheric Boundary Layer Study (GABLS). It is used to
quantify the effects of numerical modeling and discretization
choices. We initially fix the computational resources to 8
NVIDIA A100 GPUs in two nodes of the Jureca supercom-
puter and vary the discretization of the unit cube from 163 to
643. For the different discretizations, we visualize in Fig. 2
the Ginkgo coarse grid solver runtime used in a four level
multigrid. We observe an only mild increase in the coarse
grid solver runtime for the increasing coarse grid problem
sizes. We next investigate the strong and weak scalability
of the nekRS simulation using Ginkgo for the numerical
computations. We analyze the solving time from 3,000-th
time step to 3,100-th time step of the nekRS simulation using
the 643 discretization on 4, 7, and 14 physical nodes (16, 28,
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(a) The performance of GABLS with 64 elements in each dimension
on 4, 7, and 14 physical nodes.
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(b) The performance of GABLS with 128 elements in each dimension
on 28, 55, and 110 physical nodes.

Figure 3: Performance of GABL: solving time.

and 56 GPUs respectively ) in Fig. 3a and 1283 discretization
on 28, 55, and 110 physical nodes (112, 220, and 440 GPUs
respectively) in Fig. 3b with Ginkgo’s CG, algebraic Multi-
grid with CG as coarse solver, and OCCA smoother. In these
two cases, CG from ginkgo can get 1.1x speedup against
smoother from nekRS. We choose the number of nodes in
Fig. 3a and Fig. 3b such that the averaged local sizes are the
same between two cases and we can have weak scalability
plot in Fig. 4a. We focus the weak scaling efficiency between
Ginkgo CG and nekRS smoother in Fig. 4a. Ginkgo CG
only performs slightly better weak scalability from GABLS
(643) on 4 nodes to GABLS (1283) on 28 nodes than nekRS
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(a) The weak scaling efficiency of Ginkgo CG and nekRS smoother
between GABLS with 64 and 128 elements in each dimension. We
choose the number of nodes between the two cases to make the
averaged local size the same.

(b) Solving time of GABLS (16 elements in each dimension) on 2,
4, and 8 AMD MI100 in one machine. It is our self-host machine,
so the performance and scaling behavior may be changed in the
supercomputer.

Figure 4: Performance of GABLS: weak scaling and solving time on AMD MI100.

smoother, but other cases are quite similar. This preliminary
experiments shows that the new ginkgo integration keeps the
scalability of nekRS and brings the new solver options to
nekRS. Moreover, we run the GABLS with 16 elements in
each dimensions on 2, 4, and 8 AMD MI100 GPUs to show
the portability of Ginkgo with nekRS in Fig. 4b.
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A B S T R A C T
This paper presents nekCRF, a GPU-accelerated finite-rate chemistry solver for complex combustion
problems. An application to hydrogen is shown and especially the performance compared to CPUs is
discussed.

1. Introduction
The nekCRF code follows a low MACH (𝑀𝑎) approach

[1, 2] to solve the resulting system of equations for reactive
flows. The conservation equation for the gaseous species
mass fractions 𝑌𝑘, 𝑘 = 1,⋯ , 𝑁 , temperature 𝑇 , and velocity
𝐯 fields result in

1
𝜌
𝜕𝑌𝑘
𝜕𝑡

= 𝐯 ⋅ ∇𝑌𝑘 − ∇ ⋅ 𝜌𝑌𝑘𝐕𝑘 + �̇�𝑘

𝑘 = 1,⋯ , 𝑁, (1a)
1
𝜌𝑐𝑝

𝜕𝑇
𝜕𝑡

= −𝐯 ⋅ ∇𝑇 + ∇ ⋅ 𝜆∇𝑇 +
𝑁∑
𝑘=1

ℎ0𝑘�̇�𝑘

− ∇ ⋅ 𝜌𝑇
𝑁∑
𝑘=1

𝑐𝑝,𝑘𝑌𝑘𝐕𝑘 +
𝑑𝑝0
𝑑𝑡

, (1b)
1
𝜌
𝜕𝐯
𝜕𝑡

= −𝐯 ⋅ ∇𝐯 − ∇𝑝1

+ ∇ ⋅ 𝜇
(
∇𝐯 + (∇𝐯)𝑇 − 2

3
(∇ ⋅ 𝐯)𝐈

)
, (1c)

∇ ⋅ 𝐯 = 𝑄𝑇 , (1d)
𝑝0𝑉 = 𝑛𝑅𝑇 , (1e)

where 𝑡 is time, 𝐕𝑘, ℎ0𝑘, 𝑐𝑝,𝑘 the diffusion velocity, enthalpy
of formation and heat capacity of species 𝑘, respectively, 𝑁
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the number of the gaseous chemical species, 𝜌, 𝑐𝑝, 𝜆, 𝜇 the
mixture density, heat capacity at constant pressure, thermal
conductivity and dynamic viscosity,𝑅 the ideal gas constant,
𝑉 volume, and 𝑛 the total number of moles. The pressure
field 𝑝(𝐱, 𝑡) = 𝑝0(𝑡) + 𝛾𝑀𝑎2𝑝1(𝐱, 𝑡) is decomposed in the
thermodynamic pressure 𝑝0(𝑡), which can only vary in time,
and the hydrodynamic pressure 𝑝1(𝐱, 𝑡). Here, 𝛾 = 𝑐𝑝∕𝑐𝑣 is
the heat capacities ratio.

Ignoring the Soret and Dufour effects, the species dif-
fusion velocities 𝐕𝑘 are computed by a mixture averaged
transport model as

𝐕𝑘 = −
𝐷𝑘
𝑋𝑘

∇𝑋𝑘 + 𝐕𝑐 , (2)

with 𝑋𝑘 being the mole fraction and 𝐷𝑘 the mixture-
average diffusivity of species 𝑘. The correction velocity
𝐕𝑐 = −

∑𝑁
𝑘=1 𝑌𝑘𝐕𝑘 needs to be introduced [3] to ensure∑𝑁

𝑘=1 𝑌𝑘𝐕𝑘 = 0, and thus global mass conservation.
The thermal divergence, the non-zero divergence of the

velocity field

𝑄𝑇 = −1
𝜌

𝐷𝜌
𝐷𝑡

= 1
𝑇
𝐷𝑇
𝐷𝑡

+𝑊
𝑁∑
𝑘=1

1
𝑊𝑘

𝐷𝑌𝑘
𝐷𝑡

+
𝑑𝑝0
𝑑𝑡

, (3)

with 𝑊 being the mean molecular weight, acts as a con-
straint and its imposition requires the solution of a variable
pressure Poisson equation for the hydrodynamic pressure 𝑝1.

Highly optimized kernels are used to evaluate the costly
species production rates as well as the thermodynamic
and transport properties. For this purpose, a JIT (just-in-
time) kernel generator has been developed, which translates
a combustion model (reaction rates, thermodynamic and
transport properties) expressed in Cantera format [4] into
platform-specific source code.
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Figure 1: Overview of confined flame kernel simulations at different turbulent intensities. The flame surfaced is colored by the
local speed relative to the laminar burning velocity.

2. Application
Flame kernels are important benchmark configurations

to better understand complex combustion effects such as
thermo-diffusive instabilities. They are often calculated with
periodic boundary conditions, but nekCRF also allows to
handle confined geometries effectively.

Lean hydrogen flame kernels in confined geometry were
calculated under three different turbulent conditions for this
work. The turbulent intensity was fixed relative to the lami-
nar burning velocity 𝑠𝐿 and varied between 𝑢′ = 3, 5, 10𝑠𝐿.
The mixture corresponded to 𝜙 = 0.4, the ambient temper-
ature was 𝑇𝑢 = 700K, the wall temperature 𝑇𝑤 = 450K
and the pressure 𝑝0 = 2 atm. The mechanism considered 9
species. Figure 1 shows the development of the flame kernels
at different times. The effect of confinement is made clear
by the selected coloring. In addition, the coloring illustrates
the faster expansion speed at higher turbulence. A similar
effect can also be observed for the internal heat release rate,
which increases with increasing turbulent intensity and is
significantly higher than the heat release rate of a laminar
flame in all cases.

3. Discussion and conclusions
The application of the lean hydrogen flame kernels

demonstrates that nekCRF is capable of performing large-
scale simulations of reactive flows. The accuracy of nekCRF
[5] was also compared with other codes as well as Cantera
(cf. Fig. 2) and showed that the accuracy of the results
is in line with the models used. Finally, the performance
of nekCRF as a GPU-accelerated code compared to an
implementation on CPUs will be discussed. For this purpose,
a test case with nekCRF and nek5000 with LAVp (this
corresponds to the same models once on GPU and once on
CPU) was calculated and the theoretical and practical (due to
cache effects and resulting limited throughput) performance
compared. Theoretically, nekCRF is up to 22 times faster.
Practically still 14 times faster. This means that a simulation
for which nek5000 needs two weeks with LAVp can be
calculated by nekCRF in one day. This is a significant game

Figure 2: Resulting maximum differences between nekCRF and
Cantera for a premixed test case.
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changer both for the realization of beyond the state-of-the-art
simulations and for model development due to much faster
iteration times.
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A B S T R A C T
This paper presents a collection of large-scale engine direct numerical simulations performed with
NekRS on JUWELS Booster. Twelve cycles each for two different engine speeds, 1,500 rpm and
2,500 rpm, of the TU Darmstadt engine were calculated, processed and analyzed.

1. Introduction
Internal combustion engines (ICEs) are still the most

widespread mobility drive. Due to their enormous spread,
even small improvements can lead to significant global sav-
ings. Furthermore, the fight against climate change also
requires the use of climate-neutral fuels, such as ammonia
for the heavy-duty sector. This requires the fastest possible
optimizations, which are not possible without the use of
simulations.

Due to the extreme conditions and complex/moving
geometries, direct numerical simulations (DNSs) of engines
are very challenging. This work has calculated twice twelve
cycles of the TU Darmstadt ICE at different engine speeds
using NekRS on JUWELS Booster.

2. Case setup and numerics
The direct injection engine at TU Darmstadt is a single,

optically accessible cylinder with a pent-roof, four-valve
head and an inlet port designed to promote tumble flow.
The setup is designed to provide well-defined boundary
conditions and reproducible operation. The cylinder of the
square engine has a bore of 𝐵 = 86mm, which is typical
for a passenger car engine. Detailed information about the
engine and the associated test facility can be found in [1],
while the engine operating conditions considered here are
listed in Tab. 1.
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The multi-cycle DNS was performed using the spectral
element solver NekRS/NekCRF [2, 3]. The construction
of computational meshes that accurately represent complex
ICE geometries is a significant challenge for NekRS due to
its requirement for conformal hexahedral meshes. The mesh
generation using Coreform Cubit (version 2022.11) involved
first filling the cylinder head volume with tetrahedral ele-
ments (TETs), which were then divided into four hexahe-
drons (HEXs) each. The mesh of the lower horizontal plane
of the cylinder head was then extruded to the piston to create
tensor product element layers capable of accommodating the
vertical mesh deformation caused by piston motion while
minimizing distortion. The Arbitrary Lagrangian/Eulerian
(ALE) formulation [4] was used to account for the mesh
deformation resulting from piston motion, with the mesh
velocity scaling linearly with the instantaneous piston ve-
locity at the piston and decaying to zero at top dead center
(TDC). To compensate for the distortion of the elements as
the mesh was compressed, four meshes were constructed
with different numbers of spectral elements ranging from
𝐸 = 4.8 to 9.3M. This strategy aimed to maintain good mesh
quality throughout the cycle by removing layers as needed.
Specifically, the grids were adjusted at different stages: from
600 – 660 crank angle degrees (CAD), 𝐸 = 9.3𝑀 elements
were used; from 660 – 690 CAD, the number was reduced

Engine speed Intake 𝑝 No.
[rpm] [bar] 𝑅𝑒 cycles OP

1,500 0.95 18,368 12 C

2,500 0.95 30,615 12 E

Table 1
Engine operating conditions (𝑝=pressure; 𝑅𝑒 =Reynolds
number).

260



B.A. Danciu et al.: Large-Scale Engine Direct Numerical Simulations With NekRS: A Multi-Cycle Database

Figure 1: Visualizations of 1,500 rpm (left) and 2,500 rpm (right) for two different CA.

to 𝐸 = 6.7𝑀 ; from 690 – 710 CAD, it was further reduced
to 𝐸 = 4.9𝑀 ; and from 710–750 CAD, 𝐸 = 4.4𝑀
elements were maintained. A scalable high-order spectral
interpolation was used to transition the solution from one
grid to the next without compromising the accuracy of the
high-order method. Polynomial orders of 𝑁 = 7 and 𝑁 = 9
were chosen for the 1,500 and 2,500 rpm cases, respectively,
yielding meshes with 1.5 to 6.8 billion unique grid points.
The mesh achieved an average resolution of 30 µm and 23 µm
in the bulk, with the first grid point located 3.75 µm and 3 µm
away from the wall for 1,500 and 2,500 rpm, respectively.

3. Results and conclusions
Multi-cycle (12 for each engine speed) DNS of a labo-

ratory-scale engine were performed at the practically rel-
evant engine speeds of 1,500 and 2,500 rpm under full-
load engine operation (visualizations see Fig. 1. The results
confirm previous experimental and numerical findings that
the boundary layer (BL) in ICE differs from idealized steady-
state turbulent boundary layers, conditions commonly as-
sumed in deriving scaling laws for wall model closures.
The large-scale tumble flow generated by the intake process
leads to a dynamically changing behavior of the BL, both
temporally and locally. Above the piston, the flow undergoes
a deceleration-stagnation process, where the tumble vortex

hits the piston and then accelerates as the flow diverges from
the impact area.

An analysis of the 3D motion of the tumble vortex re-
vealed that the flow also rolls off the cylinder wall, resulting
in horizontal vortex structures that are more toward the inlet
side at lower heights above the piston and progressively
toward the outlet side at higher heights within the cylinder.
These structures appear at distances as low as 1mm from the
piston surface during later stages of compression and affect
the BL especially at higher engine speeds. As a result, these
fluctuations lead to alternating pressure gradients in both
the streamwise and spanwise directions, ultimately invalidat-
ing the assumption of flow equilibrium. Furthermore, both
the BL thickness and the viscous sublayer thickness were
found to scale inversely with engine speed and increasing
REYNOLDS number 𝑅𝑒 in the bulk, reaching values as low
as 0.41mm and 13 µm, respectively, at the highest engine
speed investigated, posing a significant challenge to both
numerical and experimental studies in terms of resolution
requirements to properly resolve such BL.

The thermal BL was also found to deviate significantly
from ideal scaling laws, even at high engine speeds. Similar
to the velocity BL, the thickness of the thermal BL was found
to scale inversely with engine speed, but to increase with
increasing bulk temperature in the cylinder. In contrast, the
thermal displacement thickness, which is sometimes used as
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an approximation of the thermal BL thickness, was found
to decrease with increasing bulk temperature. Examination
of the heat flux distribution confirmed the similarity be-
tween the flow and heat flux patterns and revealed areas of
increased heat flux, particularly at locations characterized
by strong wall-directed flow caused by the tumble vortex
impinging on the piston and cylinder head or the horizontal
swirl vortices impinging on the cylinder liner. In addition,
significant cyclic variations in the surface-averaged wall
heat flux were observed for both operating conditions. An
analysis of the cyclic tumble ratio revealed that the cycles
in which the tumble ratio reaches lower values near TDC,
indicating earlier tumble breakdown, also exhibit higher
surface-averaged wall heat fluxes.

These first-of-a-kind simulations [5], resulting in one
of the largest databases of ICE flows, represent an impor-
tant step toward the next generation of ICE simulations
using GPU-accelerated HPC platforms. This advancement
is critical to improve our understanding and optimization
of engine performance under various operating conditions
with climate-friendly fuels, and to ensure the practical appli-
cability of the developed technologies in real-world engine
designs.
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Other Topic 1:

Academic Flows

Academic flows have intensively been studied with some cases featuring analytic solutions or
experimental evidence. They are hence popular in validating simulation codes, for performing
proof-of-concepts, or for understanding the fundamental physics. This session brings together
contributions to the ParCFD International Conference 2024 discussing academic flow cases like
the hypersonic flow past an open cavity and particle-bed interaction dynamics in viscous fluids.
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A B S T R A C T
The study of flow around single or multiple piles has been conducted extensively due to its significance
in both engineering applications and fluid mechanics. In this work, we aim to investigate cases
involving multiple piles at different positions and examine how they differ from more extensively
studied scenarios, such as a single circular cylinder in a wide channel. Our approach involves
solving three-dimensional Navier-Stokes-Exner equations on arbitrary geometries. The numerical
formulation is based on a projection method, and the discretization is obtained by combining a second-
order unstructured finite-volume method and a sigma transformation. However, three dimensional
simulations are computationally expensive, especially when investigating long-term behaviors such
as scour around structures. To address this challenge, we introduce a MPI parallelization technique to
enhance the Multi-Color Successive Over-Relaxation method using a block domain decomposition.
We validate the code by solving the three-dimensional problem and comparing the results against well-
established benchmarks featuring complex flows. Specifically in this paper, we focus on an equilateral-
triangular configuration involving three circular cylinders.

1. Introduction
Recent research has primarily focused on flow around

one or two cylinders, with little attention to more complex ar-
rangements. This paper investigates an equilateral-triangular
configuration involving three cylinders, a fundamental con-
figuration in tube arrays and offshore structures [1]. Flow-
induced vibrations in cylinders are closely linked to fluctu-
ating forces caused by vortex shedding and flow patterns.
Therefore, studying the forces and flow characteristics in this
arrangement can enhance understanding of the relationship
between fluctuating forces and vortex shedding behavior [2].

While this configuration may appear simple, the in-
vestigation and analysis of fluid flow depends on different
flow fields upstream and downstream of the cylinders. For
instance, the flow patterns and velocity characteristics in
an equilateral-triangular arrangement become more com-
plicated compared to a configuration with three cylinders
in tandem. This complexity of the problem and the com-
putational effort required for numerical simulations make
it rare to find research on this problem. Additionally, the
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majority of numerical studies were mainly conducted using
two-dimensional (2D) models [2, 3]. In recent years, there
has been a concerted effort to develop three-dimensional
(3D) numerical techniques to study the flow among three
cylinders in an equilateral-triangular configuration [4, 5].
Nevertheless, these models are constrained by periodic or
slip boundary conditions in the vertical direction, emulating
an infinite cylinder configuration. To enhance the compre-
hension of this phenomenon, the present study introduces 3D
parallel simulations using three circular cylinders arranged
in an equilateral-triangular configuration under scenarios
including both fixed and erodible bed bottoms.

2. Governing equations
This work employs Large-Eddy Simulation (LES) for

the hydrodynamic model due to its effectiveness in handling
flows around structures [6]. Unlike Direct Numerical Simu-
lation (DNS), which resolves all turbulent scales, LES uses
a spatial filter to separate larger turbulent motions, which
are explicitly resolved, from smaller, unresolved scales that
are modeled separately. The resulting filtered Navier-Stokes
equations are:

𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

= −1
𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

[
𝜈
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑖
𝜕𝑥𝑖

)]

−
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝑓𝑖, (1)
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (2)
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where 𝑥𝑖 (𝑖 = 1, 2, 3) represents the 𝑖th Cartesian coordinate,
𝑢𝑖 denotes the 𝑖th velocity component, 𝑝 is the pressure,
𝜌 stands for the density, 𝜈 is the kinematic viscosity, 𝑓𝑖 is
an external force, and 𝜏𝑖𝑗 is the sub-grid scale (SGS) stress
tensor that accounts for unresolved length scales. In this
paper, the SGS tensor is modeled by 𝜏𝑖𝑗 = 2𝜈𝑡𝑆𝑖𝑗 +

1
3𝜏𝑗𝑗𝛿𝑖𝑗 ,where 𝛿𝑖𝑗 is the Kronecker delta, 𝜈𝑡 is the sub-grid scale

turbulent viscosity, and 𝑆𝑖𝑗 is the rate-of-strain tensor for
the resolved scale. Using the Smagorinsky model, the eddy
viscosity is modeled as 𝜈𝑡 = 𝐿2

𝑠|𝑆|, where |�̄�| =
√

2𝑆𝑖𝑗𝑆𝑖𝑗
and 𝐿𝑠 is the sub-grid length scale.

The morphological evolution of the sediment bed is
described by the Exner equation:

(1 − 𝜂)
𝜕 𝑏
𝜕𝑡

+
𝜕𝑞𝑏𝑖
𝜕𝑥𝑖

= 0, (3)

where 𝜂 = 0.4 is the porosity of the bed,  𝑏 is the bed
elevation, and 𝑞𝑏𝑖 (𝑖 = 1, 2) is the bedload transport rate
given by the formula proposed by Engelund and Fredøe:
𝑞𝑏𝑖 = 𝜋𝑑

6 𝑝
𝐸𝐹

𝑢𝑏𝑖. Here, 𝑑 is the particle diameter, 𝑝
𝐸𝐹

is
the percentage of particles in motion modeled, and 𝑢𝑏𝑖 are
the mean velocity components of a sediment particle in
movement. For more details on the model, please refer to
[6].

3. Numerical method
In the present work, the Three-dimensional Navier-

Stokes Multiphase Flow (NSMP3D) is utilized as the com-
putational model to solve the hydrodynamics and morpho-
dynamics of the problem. This is a research in-house code
developed in FORTRAN. The temporal discretization em-
ploys a Crank-Nicholson formulation, and the velocity field
and pressure are decoupled using the projection method.
NSMP3D is a second-order finite-volume numerical model
in both time and space, specifically designed to solve equa-
tions (1)-(3) in 𝜎-coordinates across unstructured mesh
grids. The transformation from Cartesian to 𝜎-coordinates
allows for accurate modeling of vertical domain changes,
such as those caused by bed alterations due to erosion. Fig-
ure 1 illustrates an example of a physical domain along with
its corresponding transformed computational domain. This
figure also depicts a three-dimensional prismatic control vol-
ume used in our model. For a comprehensive understanding
of this numerical model, detailed descriptions can be found
in [6, 7].

As a consequence of approximating the volume and
surface integrals over prism elements, information about
the unknown variable is required at both the center and
vertices, see Fig. 1. We address this issue by incorporating an
interpolation technique that calculates the value of a vertex

point using its surrounding elements. Thus, the finite volume
method leads to a linear system of equations

𝐴𝝓𝑐 + 𝐵𝝓𝑣 = 𝐟 , (4)
where 𝐴 and 𝐵 are matrices containing the coefficients
from the discretization, the vectors 𝝓𝑐 and 𝝓𝑣 consist of
the unknown variable (pressure or velocity component) at
the center and vertex points, respectively, and the vector
𝐟 corresponds to the known right-hand side values. The
resulting matrix 𝐴 is a sparse matrix due to both the 𝜎-
transformation, unstructured mesh, and the interpolation
technique. Furthermore, it is difficult to express the matrix
𝐵 explicitly and it would require more computer memory.
Therefore, instead of 𝐵𝝓𝑣, we consider a vector 𝐛𝑣 that
contains all the values related to the solution at the auxiliary
vertex unknowns obtained from the interpolation.

The resulting linear systems are solved using the Multi-
Color Successive Over-relaxation Method. The program op-
erates in parallel using domain decomposition and through
the Message Passing Interface (MPI). This improvement ac-
celerates the resolution of the resulting sparse linear system
governing pressure and velocity components [7].

4. Equilateral-Triangular Configuration
This work employs non-dimensional equations using the

diameter of the pile, 𝐷, and the mean flow velocity, 𝑈 , as
reference scales for the length and velocity, respectively.
This selection of reference scales, allows the governing
equations to be expressed in terms of the REYNOLDS number
Re𝐷 = 𝑈𝐷∕𝜈, which is based on the cylinder diameter, the
mean flow velocity, and kinematic viscosity.

Figure 2 shows the computational domain used in nu-
merical simulations using three circular cylinders in an
equilateral triangular configuration. The arrangement of the
cylinders follows the distribution presented in [4]. The spac-
ing ratio is defined as 𝓁∕𝐷 = 2, where 𝓁 denotes the
center-to-center distance between the cylinders, see Fig. 2.
The computational domain consist of 10𝐷 upstream, 20𝐷
downstream, and 15𝐷 laterally of the center of this triangular
configuration. The 𝑥, 𝑦, and  axes are aligned with the
streamwise, spanwise, and vertical directions, respectively.
The water depth is set to be ℎ = 3𝐷. The domain is
discretized in 25, 332 triangular elements and 13, 021 vertex
points in the horizontal direction, with a high-resolution
mesh employed in the vicinity of the cylinder. For validation
and comparison, we will also conduct numerical simula-
tions using a single cylinder. In this scenario, the domain
dimensions are as previously described, and the horizontal
mesh contains 25,895 triangular elements and 13,146 vertex
points.

The boundary conditions for the flow field, described in
Fig. 2, are defined as follows: At the inlet, transverse and
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Figure 1: Example of a physical and its corresponding computational domain used in NSMP3D. It also depicts the components
of a three-dimensional prismatic control volume employed for the discretization.

30D

15D

15D

Figure 2: Geometry of the computational domain with specification of the boundary conditions (left), and equilateral-triangular
configuration of the three cylinders (right).

vertical velocities are set to zero, and the inflow velocity
follows a uniform profile with a unit mean non-dimensional
value. At the outlet, zero-gradient conditions are applied to
all variables. Neumann conditions are used for the boundary
in the spanwise direction. No-slip wall boundary conditions
are applied to the cylinder surfaces. While a rigid surface
is imposed at the top, the type of boundary condition at
the bottom varies depending on the specific test case being
investigated: free slip (Neumann), fixed (no-slip wall) or
mobile (live-bed scour).

5. Numerical results
In this paper, we initially focus on a free-slip bed simu-

lation with a low REYNOLDS number to validate our results
against experimental data and other numerical models, as
well as to study the performance of our method. For a single
cylinder, it is well-known [8] that at lower REYNOLDS num-
ber (Re𝐷 < 47), the flow will form a stable re-circulation
bubble behind the cylinder; if Re𝐷 increases up to 200,

then a stable 2D vortex shedding is formed. Re𝐷 = 200
is the critical REYNOLDS number for the flow past a single
cylinder transitioning from 2D to 3D. For Re𝐷 > 1,000,
flows become fully 3D.

All the simulations are initially performed using 20
vertical layers for 100 time units (𝐷∕𝑈 ) until statistical
stability is achieved, then restarted for another 100 time
units to gather the time-averaged data. Under the same
conditions, Fig. 3 shows an stage of the instantaneous ve-
locity field around a single and the three-cylinder equilateral
arrangement using Re𝐷 = 100. As expected, even at a low
REYNOLDS number, the vortices exhibit a complex behavior
behind the cylinders. However, it is found that the velocities
magnitudes are similar and the flow behind the structures is
still 2D.

The time average velocity profile using Re𝐷 = 100 is
shown in Fig. 4 for both scenarios. Note that the recirculation
length (𝐿∕𝐷) differs for each of the three cylinders, and none
matches the length observed in the single-cylinder results.
To validate the numerical model, simulations of flow past a
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Figure 3: Instantaneous velocity field around the single and the three cylinders arrangement using Re𝐷 = 100: streamlines (left),
and vorticity contours (right) colored by the velocity magnitude.

D

L/D

Figure 4: 2D view of the time average velocity using Re𝐷 = 100 for both cylinder configurations.

single cylinder at REYNOLDS numbers from 50 to 200 are
performed. The evolution of the recirculation length as a
function of the REYNOLDS numbers is presented in Fig. 5.
Note that the numerical results for the single cylinder case
are close to the experimental measurements of Nishioka
and Sato (1974) and the computational results using a high
resolution provided by Park et al. (1998) [6].

It is important to emphasize that accurately representing
behavior near structures requires a fine mesh resolution,
which translates to more mesh elements and higher compu-
tational costs. In terms of computational performance, using
a mesh resolution of approximately 500,000 3D control
volumes, the sequential setup requires about 120 minutes of
CPU time to obtain one time unit. However, with a parallel
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Figure 5: Evolution of the recirculation length as function of
the Reynolds number for a single cylinder.

formulation using 16 processors, the same calculation is
reduced to 10 minutes of CPU time.

While the performance at low REYNOLDS number of
our simulations is adequate for short-term studies, erosion
test cases require thousands of non-dimensional time units
to analyze sediment bed evolution. Additionally, due to the
turbulent behavior of the flow, both fixed- and live-bed
cylinder test configurations necessitate finer mesh resolution
in the horizontal and vertical directions to achieve successful
simulations. Initial simulations, although not presented here,
have shown that this setup can achieve 1,000 seconds of
real-time simulation within one week of CPU time using 64
processors and a mesh resolution of approximately 5 million
elements. These results indicate a relatively slow simulation
capacity, highlighting the potential for enhancement, partic-
ularly speedup improvements employing more processors.

6. Conclusions
This work presents an improved unstructured finite-

volume method capable of simulating the flow around multi-
ple piles in parallel. Taking advantage of the applicability of
the proposed numerical techniques, we validate our findings
with a single-cylinder configuration at low REYNOLDS
numbers and extend the model’s capabilities by examining
the behavior of three cylinders in an equilateral arrangement.
Outgoing work includes conducting rigid bed calculations
at moderate REYNOLDS numbers to investigate flow charac-
teristics such as horseshoe vortex behavior. Additionally, a
live-bed scour simulation at high REYNOLDS numbers will
be performed to test the morphological model.
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A B S T R A C T
Simulating hypersonic flow presents many computational challenges and requires use of software that
can handle a wide range of external conditions. In general, hypersonic flight occurs at high altitude with
flow regimes from the continuum, where the conventional no-slip boundary condition is appropriate,
through to the free molecular regime, where the molecules no longer collide. This requires quite
distinct software to handle the disparate flow regimes. In this research, we are using an in-house
solver, ASTR, which is a high-order finite difference code suitable for continuum problems (altitudes
below 70km), and a direct simulation Monte Carlo code, SPARTA, which is suitable for rarefied flows.
Both codes are open-source and are very well suited to HPC. We are applying these codes to simulate
hypersonic flow (Mach 6.9) past an open cavity (length-to-depth ratio of 2) at altitudes up to 120km.

1. Introduction
Cavities offer a fascinating fluid dynamics problem to

study and can involve flow separation and reattachment,
quasi-unsteady phenomena, and significant changes to drag
and heat transfer. For such a simple geometry, the flow
physics associated with cavities is extremely rich. Conse-
quently, cavities have been the subject of many studies,
including theoretical [1, 2], experimental [3, 4, 5], and com-
putational [6, 7]. Due to the flow complexity and unsteady
motion of the free shear layer, high-performance computing
(HPC) is essential to resolve the fluid motion.

In order to separate the different flow characteristics
associated with cavities, it is helpful to classify the various
configurations using the length, 𝐿, depth, 𝐷, as illustrated
in Fig. 1, and the length-to-depth ratio, 𝐿∕𝐷. There are
essentially two main cavity configurations corresponding to
“open” and “closed” cavity flows. In an open cavity, the
flow separates and reattaches to the downstream face. Open
cavities often suffer from resonance effects due to the shear
layer oscillating. Conversely, a closed cavity occurs when the
shear layer separates and reattaches to the cavity floor before
impinging the downstream face. This creates two distinct
recirculating regions with a separation wake forming behind
the upstream face, and a recompression wake formed before
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the downstream face. No single value of 𝐿∕𝐷 provides a
demarcation between the two types and it has been found
experimentally that a hysteresis region exists between the
two states. It is also important to distinguish between “deep”
and “shallow” cavities because the flow features can be quite
different. Cavities with 𝐿∕𝐷 < 1 are referred to as deep
cavities. In contrast, when 𝐿∕𝐷 > 1 they are referred to as
shallow.

In this study, we are interested in hypersonic flow past
both deep and shallow cavities and at all altitudes. In partic-
ular, to simplify the analysis, we will focus on an open cavity
configuration with 𝐿∕𝐷 = 2. In the next sections, we will
briefly outline the software used and present some recent
results. All simulations have been performed on ARCHER2,
the UK’s national supercomputer1 which is a HPE Cray
system.

2. Numerical methods
2.1. Continuum flow

The approach we have adopted for this work is to use
Direct Numerical Simulation (DNS) to solve the Navier-
Stokes equations. This is based on an in-house compu-
tational fluid dynamics (CFD) code, ASTR, employing a
high-order finite difference methodology. A seventh-order
low-dissipative monotonicity-preserving (MP7-LD) scheme
proposed by Fang et al. [8] is used to capture shock-waves
in high-speed flows, and a sixth-order central scheme is
adopted to solve the diffusion terms in the Navier-Stokes
equations. After the spatial terms are solved, a three-step
third-order total variation diminishing Runge–Kutta method
is used for the temporal integration. The code has been

1https://www.archer2.ac.uk/
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Figure 1: Schematic of generic cavity (not to scale).

applied and validated for a series of high-speed flows [9, 10].

2.2. Rarefied flow
DSMC is a particle method based on kinetic theory for

the simulation of dilute gases. The discrete molecular nature
of a gas is taken into account by tracking the evolution and
collisions of particles that represent a collection of real gas
molecules. Being a molecular-level method, DSMC is valid
for the entire range from continuum to the free-molecular
regime. A detailed explanation of the steps involved in the
DSMC method can be found in [8]. Previous studies by John
et al. [11, 12, 13] have demonstrated the method’s capabil-
ities on a range of problems, including thermal aspects in a
lid-driven cavity. All DSMC simulations in this work have
been carried out using SPARTA, which is a highly scalable
parallel open-source DSMC code by Plimpton et al. [14].
2.3. Initial conditions

The open cavity configuration is presented in Fig. 1
where the upstream (i.e., left-hand) boundary is defined as
the inflow, at which freestream flow conditions are imposed.
The geometric parameters and freestream MACH number
follow the experiment of Wieting [3]. Specifically, here
we consider a length to depth ratio of 2 and a freestream
MACH number of 6.9. The total (stagnation) temperature
considered is 1650K, whereas the wall temperature is fixed
at 294K. For continuum flows, the classic no-slip boundary
condition is applied at the wall. In the case of high-altitude
flight, any variation in KNUDSEN number (𝐾𝑛) is achieved
by changing the flow density conditions, i.e. through the
reference pressure, 𝑃∞, at which the simulation is carried
out. The mean free path, 𝜆, is defined as in Eq. (1),

𝜆 = 𝜇
𝑃∞

√
𝜋𝑅𝑇∞
2

, (1)

where 𝜇 is the viscosity of the gas based on the reference
temperature, 𝑇∞ , and 𝑅 is the specific gas constant. In
addition to continuum flow (𝐾𝑛 = 0), four KNUDSEN
numbers have been considered, i.e., 𝐾𝑛 = 0.01, 𝐾𝑛 = 0.1,
𝐾𝑛 = 1, and 𝐾𝑛 = 100, which roughly corresponds to
atmospheric altitudes of H=50km, H=65km, H=80km and
H=115km, for the cavity geometry considered in the present
work. All simulations are laminar.

3. Parallel performance
For this particular problem, we make use of the UK’s

national HPC facility, ARCHER2 (https://www.archer2.ac.
uk/). This is a HPE Cray EX machine using the AMD EPYC
7742 2.25 GHz processor with each node having a dual-
CPU arrangement and 128 cores per node. The full system
configuration has 750,080 cores and uses the HPE Cray
Slingshot network. Both codes make extensive use of this
facility to model a variety of problems. A direct comparison
of each code’s performance is not considered due to the very
different nature of solution strategy required by each code.

Figure 2: Weak scalability plot for SPARTA up to 128,000
cores (1,000 nodes).

272



D. R. Emerson et al.: Hypersonic Flow Past an Open Cavity Using HPC and Open-Source Software

20 50 2k 5k 200k10 1k 100k
0.2

0.5

2

5

20

50

200

500

2000

1

10

100

1000

Sp
ee

d 
U

p

N (number of cores)

 Ideal acceleration: N
 Fitted N0.9

 Performance of ASTR
20 50 2k 5k 200k10 1k 100k

0.2

0.5

2

5

0.1

1

10

 Ideal acceleration: 1
 Performance of ASTR

Sp
ee

d 
U

p

N (number of cores)

Figure 3: Strong (left) and weak (right) scalability of ASTR code on ARCHER2.

Figure 4: Comparison between continuum (right) and DSMC (left) at 𝐾𝑛 ∼ 0.001.

3.1. Parallel performance of SPARTA
The DSMC code, SPARTA, is a well-established code

for simulating rarefied gas dynamics and has been featured
in the Exascale Computing Project and used on a wide range
of architectures. Here, we provide some results for a typical
scalability study using ARCHER2 in Fig. 2. The scalability
study considered flow in a 3D closed box with reflective wall
boundaries and range from very large simulations with 10
billion (B) cells and 100 billion particles to relatively smaller
simulations with 10 million (M) cells and 100 million par-
ticles. The code performs excellently with both increase
in load and increase in number of cores for all the cases
considered.
3.2. Parallel performance of ASTR

The DNS code, ASTR, is under development in the
group and has been used to study a wide range of high-
speed flow problems. A strong scalability is test for a 1,0243
Taylor- Green vortex case on ARCHER2. The speed-up is
plotted in Fig. 3 (left), and a linear acceleration can be
roughly maintained up to 24,576 cores. The weak scalability

is also tested for the Taylor-Green vortex case. The test is
conducted by fixing the number of grid nodes on each core,
and the data is reported in Fig. 3 (right). However, for the
present 2D cases, only a small number of computing cores
(8×128) are required.

4. Results and brief conclusions
Two open-source codes, ASTR and SPARTA, have been

used to simulate hypersonic flow past an open cavity with
𝐿∕𝐷 = 2. Due to the computationally intense nature of
unsteady cavity flow, parallel computing was essential to
capture the complex flow features.

Figure 4 illustrates a validation test that compares both
ASTR and SPARTA at very low KNUDSEN number, corre-
sponding to continuum flow. The results show very good
agreement between the two approaches. For very low KNUD-
SEN numbers (i.e. near-continuum regime), DSMC simu-
lations are computationally very expensive mainly due to
the requirement of cell sizes to be a fraction of the mean
free path, which results in an excessively large number of
cells and particles. The DSMC simulations for 𝐾𝑛 = 0.001
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utilized 250 nodes (32,000 cores) on ARCHER2 with a
compute time of about 8 hours. The corresponding CFD
solution at the same KNUDSEN number utilized only 8 nodes
(1,024 cores) with a compute time of about 12 hours. More
detailed results will be presented at the conference that
investigates the unsteady flow features and the impact of
rarefaction on the flow physics.
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Other Topic 2:

Aerospace

This session highlights recent advancements in aerospace computational fluid dynamics, with
a focus on high-fidelity simulations and turbulence modeling. Presentations cover RANS com-
putations of 3D flows around JAXA and NASA models using various turbulence models, and
the study of flow around a rigid oscillating airfoil. Furthermore, the HEMLAB algorithm’s
applications to delta wing geometries and the 7th AIAA CFD Drag Prediction Workshop are
discussed.
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A B S T R A C T
This work presents delta wing simulations using two different geometries: Delta wing geometry
provided in the International Workshop on High-Order CFD Methods and the Sydney Standard
Aerodynamic Models (SSAM) for a generic fifth-generation high-performance aircraft. This study
aims to accurately compute the lift and drag coefficients of each model and to generate low speed, high
angle of attack flows for delta wings in order to obtain a further insight into vortex dominated flow
physics. The calculations are carried out utilizing a vertex based finite-volume algorithm HEMLAB
which is combined with an anisotropic mesh adaption library pyAMG from INRIA in order to further
increase its computational efficiency. The main purpose of this study is to validate the HEMLAB
solver and use the anisotropic mesh adaptation method with different adaptation functions to get more
accurate solutions with optimized mesh resolution in necessary regions.

1. Introduction
The flow study of delta wings have been a challenge due

to different flow phenomena. The sharp edge at the front of
the body, high sweep angles and high angle of attacks make
the study even more challenging. Delta wings flow behavior
includes several vortex regimes, separations bubbles, sharp
edge/corner problems which are the parts of the flow that
have to be examined. Therefore, the numerical calculations
has been carried out utilizing the HEMLAB algorithm [1].

The HEMLAB solver is an in house compressible Rey-
nolds averaged Navier-Stokes (RANS) solver with an effi-
cient edge-based (quad- and half-edge) data structure de-
signed for a vertex based finite-volume method algorithm on
hybrid unstructured meshes in two- and three-dimensions.
The algorithm can use several inviscid flux schemes such as
Roe, AUSM+up and HLLC. The unweighted least squares
reconstruction is used for the inviscid fluxes, meanwhile the
Green-Gauss approach is used for the viscous fluxes. The
classical negative Spalart-Allmaras (SA-noft2) turbulence
model is used for turbulence modeling. The algorithm uses
a fully coupled nonlinear Newton method based on matrix-
free approach within the PETSc-3.21.0 library (PETSc-
SNES). The algorithm is integrated with the anisotropic
mesh adaptation library pyAMG from INRIA1.
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The main goal if this study is to validate the recent
version of the HEMLAB solver applying on a simple and
complex delta wing case and optimizing the mesh resolution
with the anisotropic mesh adaptation for better solution time
and accuracy. By using the mesh adaptation method instead
of generating the mesh field according to the guess of the
flow behavior, the method uses the past solution to upgrade
and optimize the new mesh resolution in necessary regions.

2. Delta wing cases
2.1. International Workshop of High Order CFD

Delta Wing
The first case is a low REYNOLDS number high angle

of attack case for the initial simulations. The case was
defined and detailed in the reference [2]. The case execution
details were explained in detail at the reference [3]. The case
used different mesh adaptation norm (L2 and L4), different
inviscid flux interpolations (second and third), and different
blending parameters between upwind methods and central
schemes. The simulation parameters are shown in Tab. 1.

Simulation Mesh - AN Beta (𝛽) Upwind LS
1 Mesh 1-2 1 2nd
2 Mesh 2-4 1 2nd
3 Mesh 2-4 1/3 2nd
4 Mesh 2-4 1 3rd

Table 1
Simulation parameters including the adaptation norm (AN),
the 𝛽 value, and the upwind Least Squares (LS) order.
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Figure 1: Lift (left) and drag (right) coefficient values for each simulation with vs mesh size ℎ values compared with the reference
values.

Figure 2: Simulation 1 (left) and simulation 3 (right) laminar delta wing with slice (y = 0) contour of Mach number and an
isosurface of 0.2 Mach.

Figure 1 shows the lift and drag coefficient values with
respect to approximate mesh size ℎ value with each mesh
adaptation iteration. As it may be seen, as the mesh reso-
lution increases the values converge closer to the reference
values.

Figure 2 shows the comparisons of simulation 1 and
simulation 3 with the slice contour of the MACH number and
an isosurface of 0.2 MACH number. While the different mesh
adaptation processes have different solution, the contour
shows similar behavior.

2.2. Sydney Standard Aerodynamic Models 5th
Generation Fighter Model

The second case is the SSAM 5th Generation Fighter
model [4]. This case has a much complicated geometry
compared to that of the previous delta wing. This case is also
studied with the anisotropic mesh adaptation. Computational
mesh edge information were also included in the adaptation
process in order to retain the sharp geometrical entities. This
case uses several different anisotropic mesh adaptation sen-
sor functions which include distance, MACH, entropy, and
their combinations in order to better capture the flow details.
The geometry and benchmark provided mesh distribution is
shown on the left in Fig. 3 below. The right side of Fig. 3
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Figure 3: SSAM 5th Generation Fighter Model geometry and mesh [4] (left) and mesh distribution after mesh refinement (right).

Figure 4: Lift (left) and drag (right) coefficient vs alpha plot compared with the experimental solutions.

shows the present anisotropic adaptive mesh distribution
at zero degree. Detailed flow and geometry parameters are
mentioned in the reference [4].

The several flux schemes were tested using the mesh
distribution shown in Fig. 3 (left), then HLLC flux scheme
were executed for angles from 0◦ to 30◦. The computed aero-
dynamic loads were compared with the experimental data
in Fig. 4 and the results are relatively in a good agreement.
However, there is slight underprediction of computed forces,
which may be due to poor fixed resolution issues.

For the last simulations the anisotropic mesh adaptation
was used and the mesh resolution shown in Fig. 3 (right)
was generated. As it may be seen the mesh resolution is
significantly increased in the vortical and boundary layer

regions. For the adaptation sensor, MACH and distance func-
tions were used in collaboration. Figure 5 shows the mesh
adaptation at 12 degrees with the pressure coefficient con-
tour on the surface and the contours are compared with the
reference fixed mesh calculations. The adaptive calculation
captures the leading edge vortex better.

3. Conclusions
In conclusion, the SSAM 5th generation fighter model

and delta wing geometry provided in the International Work-
shop on High-Order CFD Methods were studied. The HEM-
LAB algorithm was used as the flow solver with the pyAMG
anisotropic mesh adaptation library. Different adaptation
parameters were studied for the HiOCFD delta wing case.
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Figure 5: Pressure coefficient contours in the surface for the anisotropic mesh adaptation simulation (left) and the reference
study [4] (right).

By using those parameters the SSAM model was studied.
Different flux schemes and mesh adaptation sensor functions
were tested. While volume mesh resolution was enhanced
with the mesh adaptation, better surface mesh could be
achieved with different sensor functions.
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A B S T R A C T
This article presents the numerical analysis of the wing-body configuration of the NASA Common
Research Model (CRM) within the context of the 7𝑡ℎ AIAA CFD Drag Prediction Workshop (DPW-
7), using the Reynolds-averaged Navier-Stokes flow solver HEMLAB. Estimating the effect of shock-
induced separation on the aerodynamic force, moment coefficients, and pressure distribution in the
wing-body configuration that deforms at each given angle of attack in transonic flight is the main goal
of the workshop. To achieve this goal, anisotropic mesh adaptation calculations for the NASA-CRM
wing-body configuration were carried out as part of test case 4 (alpha sweep). The HEMLAB flow
solver algorithm uses an efficient edge-based data structure designed for a vertex based unstructured
finite-volume method and is integrated with a python-based anisotropic mesh generation library
pyAMG from INRIA to enhance its computational efficiency. The classical negative Spalart-Allmaras
turbulence model is employed for turbulence modeling. The computations for the required DPW-7
cases were conducted using the fully coupled nonlinear Newton method available in the PETSc library.

1. Introduction
The Drag Prediction Workshop (DPW) series, initiated

in 2000 by the Applied Aerodynamics Technical Committee
of the American Institute of Aeronautics and Astronautics,
has been instrumental in assessing the accuracy of com-
putational fluid dynamic methods for predicting aerody-
namic forces and moments in industry-relevant scenarios.
The 7𝑡ℎ Drag Prediction Workshop, focused on predicting
the impact of shock-induced separation on lift and pitching
moment variations under transonic conditions. Participants
utilized computational methods to analyze geometry and
grid configurations, aiming to enhance predictive capabil-
ities in transonic aerodynamics. Therefore, the HEMLAB
algorithm [1] is utilized here to assess its capabilities. The
HEMLAB solver is a compressible Navier-Stokes solver
designed for unstructured hybrid meshes in both two- and
three-dimensions. It employs a vertex-based finite-volume
algorithm and utilizes a quad/half-edge data structure for
cache efficiency. The inviscid state vectors are computed
with second- and third-order upwind least squares interpo-
lation, and inviscid fluxes are determined using the Roe [2]
and HLLC [3] scheme. The exact Jacobian matrices for
the inviscid fluxes are determined using the source code

†This paper is part of the ParCFD 2024 Proceedings. A recording
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is 10.34734/FZJ-2025-02509 and of the Proceedings 10.34734/FZJ-2025-
02175.

∗Corresponding author
asar17@itu.edu.tr (I. Asar); msahin.ae00@gtalumni.org (M. Sahin)

ORCID(s): 0000-0002-0951-2227 (I. Asar); 0000-0001-6502-2209 (M.
Sahin)

transformation from TAPENADE [4] library. The gradi-
ent evaluations for viscous fluxes at edge mid-points are
performed using the Green-Gauss theorem. The PETSc-
3.21.0 [5] Scalable Nonlinear Equations Solvers (SNES)
with a line search technique is employed for the solution of
resulting algebraic equations. The METIS library is used for
a balanced domain decomposition.

2. Numerical results
The CRM was created in collaboration with the DPW

Organizing Committee and the NASA Subsonic Fixed Wing
Aerodynamics Technical Working Group [6]. This model
represents a contemporary transonic commercial transport
aircraft, incorporating key components such as a low wing,
fuselage, horizontal tail and engine nacelles mounted under
the wing. The details of the geometry can be found on the
website of the 7𝑡ℎ AIAA CFD Drag Prediction Workshop1.
The analysis results presented in this section were computed
under the flow conditions of a freestream MACH number
𝑀 = 0.85, a REYNOLDS number 𝑅𝑒 = 20 ⋅ 106, and a refer-
ence temperature 𝑇 = −250◦F. The calculations are carried
with anisotropic mesh adaptation. This method allows the
dynamic adjustment of the computational domain resolu-
tion, aligning with the flow characteristics. Consequently,
it enables a detailed focus on critical flow aspects, while
simultaneously increasing the mesh resolution in areas of
high gradients. As shown in Fig. 1, the resolution is primarily
focused on the shock region over the main wing, allowing
for a sharp capture of the flow physics. The boundary layer

1http://aiaa-dpw.larc.nasa.gov
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(a) Adapted mesh. (b) Wing midspan volume mesh.

Figure 1: CRM wing surface.

Level Vertex Element Surface 𝐶𝐷 𝐶𝐿 𝐶𝑀
number number element

number
Iteration 1-100 2,988,399 17,199,949 455,201 0.03404 0.58581 -0.13483
Iteration 101-200 4,599,847 26,393,588 793,573 0.03121 0.61015 -0.12777
Iteration 201-300 5,193,755 29,813,758 863,203 0.03105 0.61490 -0.13034
Iteration 301-500 5,561,202 31,955,097 896,778 0.03130 0.61367 -0.12978
Iteration 501-700 5,684,338 32,673,574 906,224 0.03127 0.61376 -0.13005

Table 1
Refinement data.

and the wake are also resolved with relatively fine detail. In
this analysis, Dell PowerEdge R630 computer with a single
node containing a 14-core Intel(R) Xeon(R) CPU E5-2680
v4 at 2.40GHz and 264GB memory was used, and paral-
lelization was achieved using Open MPI. Table 1 provides
detailed information on mesh refinement and its impact on
aerodynamic coefficients over multiple iterations. The table
shows an increase in the number of vertices and elements,
indicating finer mesh resolution with each iteration.

Figure 2a shows the residual convergence of density, 𝑥−,
𝑦−,  − momentum, energy, turbulence equations. Figure 2b
depicts 𝐶𝐿, 𝐶𝐷, and 𝐶𝑀 aerodynamic loads with Newton
iteration number. At a 3◦ angle of attack, the coefficient of
lift 𝐶𝐿 converges to 0.61376, while the coefficient of drag
𝐶𝐷 converges to 0.03127. The strong fully coupled nonlinear
Newton method (PETSc-SNES) can lead to convergence
at machine precision. The present initial calculations were
executed without a limiter function and as the mesh becomes
finer, it becomes more difficult to achieve machine precision.
In the future, we will try to freeze the limiter after a certain
residual threshold.

Figure 3a shows the pressure coefficient distribution con-
tours and streamlines on the main-wing top surface, and
Fig. 3b the wing midspan MACH contours. As expected, the
shock waves were captured sharply on the wing mid-span
section. In addition the shock induced separation bubble can
be clearly observed over the main wing.

3. Conclusions
In conclusion, this study was to examine the NASA-

CRM under the transonic conditions with the HEMLAB
solver. The mesh resolution enhanced by using the pyAMG
library from INRIA. Adaptive meshing successfully cap-
tured regions with high gradients such as shocks, wakes,
tip vortices, etc. The effect of shock-induced separation on
the force, moment coefficients, and pressure distribution in
a wing-body configuration at a 3◦ angle of attack has been
investigated in detail and highly accurate numerical results
are obtained.
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(a) Residual. (b) 𝐶𝐿, 𝐶𝐷, and 𝐶𝑀 .

Figure 2: Convergence of the simulation.

(a) Wing surface pressure coefficient. (b) Wing midspan Mach contours.

Figure 3: Simulation results.
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Other Topic 3:

Numerical Methods

In this session, advanced numerical Methods are discussed. Topics include parallel-in-time
spectral deferred correction for the incompressible Navier-Stokes equations and a comparison
of eddy-viscosity models in reactor vessel auxiliary cooling systems. Additionally, a GPU-
implementation of a multigrid accelerated projection method and a parallel unstructured con-
servative level-set (UCLS) method for liquid-vapor phase change phenomena are shown. Atten-
dees gain insights into these sophisticated techniques and their implications for computational
fluid dynamics and multiphase flow modeling.
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A B S T R A C T
This study assesses the performance of both high and low REYNOLDS number eddy-viscosity
turbulence models in simulating a simplified Reactor Vessel Auxiliary Cooling System with conjugate
heat transfer. For forced convection, the standard 𝑘−𝜀model and the low REYNOLDS number Launder-
Sharma model show good agreements in streamwise velocity and fluid temperature compared to Direct
Numerical Simulation data. For natural convection, the Launder-Sharma model is the most effective
at capturing flow and thermal fields.

1. Introduction
Reactor Vessel Auxiliary Cooling Systems (RVACS) are

key for nuclear reactor passive cooling, operating solely
on convective heat transfer principles without reliance on
electrical systems. They efficiently dissipate residual heat
through convective exchange between ambient air and struc-
tural components. A typical RVACS configuration (see
Fig. 1) features the entrance of cold air into a duct, where-
upon its downward acceleration induces separation before
impinging upon the lower structure. The ensuing upward
flow cycle facilitates heat extraction from the reactor vessel,
gradually re-attaching to a baffle. This process leads to
complicated phenomena of fluid dynamics and heat transfer,
accentuated by the interaction between structural elements
and flow dynamics through conjugate heat transfer (CHT)
mechanisms.

While Direct Numerical Simulation (DNS) offers good
accuracy by fully resolving the turbulence and the heat
transfer, its application to industrial contexts is hampered
by computational resource constraints and time-intensive

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02510 and of the Proceedings 10.34734/FZJ-2025-
02175.

∗Corresponding author
wei.wang@stfc.ac.uk (W. Wang); bo.liu@stfc.ac.uk (B. Liu);

greg.glover@stfc.ac.uk (G. Cartland-Glover); jundi.he@sheffield.ac.uk
(J. He); charles.moulinec@stfc.ac.uk (C. Moulinec);
stefano.rolfo@stfc.ac.uk (S. Rolfo); s.he@sheffield.ac.uk (S. He)

ORCID(s): 0000-0002-7829-7479 (W. Wang); 0000-0002-6840-041X (B.
Liu); 0000-0002-2647-2757 (G. Cartland-Glover); 0000-0002-2340-0694 (J.
He); 0009-0003-7011-7327 (C. Moulinec); 0000-0001-6325-7629 (S. Rolfo);
0000-0003-0326-2447 (S. He)

Figure 1: Schematic of a RVACS [1].

computations. Consequently, the pragmatic approach of-
ten lies in employing Reynolds-Averaged Navier–Stokes
(RANS) modeling. An evaluation of several turbulence
models within the context of RVACS not only provides an
insight into model selection for simulation scenarios but also
serves as a validation benchmark for RANS models applied
to nuclear reactor design.

2. Numerical methods and configuration
2.1. Numerical settings

A simplified geometry (see Fig. 2) is utilized to represent
the essential components of a complex RVACS setup. The
simulation is conducted using a pseudo-3D configuration
with only one layer of mesh in the spanwise (z) direction for
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Figure 2: Simplified geometry.

all the simulations conducted in this work. The height of the
inlet channel is designated as 𝛿1 = 0.15 m, with the baffle
material specified as stainless steel (SS310), which has a
thickness of 𝛿3 = 0.1𝛿1. For forced convection scenarios, an
entrance length 𝐿4 of 5𝛿1 is employed, whereas, for natural
convection, it is reduced to 2𝛿1 with sealed inlet and outlet.
At the inlet boundary, a fully developed turbulent velocity
profile with a bulk velocity of 0.6 m∕s and a constant
temperature of 300 K are prescribed. The inlet REYNOLDS
number is 5,729. CHT phenomena are accounted for on the
baffle surface. The inner wall is 700 K with a heat transfer
coefficient of 200W∕m2K, while the outer wall is initialized
at a temperature of 400 K for the forced convection case
and 300 K for the natural convection case, both with a heat
transfer coefficient of 200 W∕m2K. The working medium
throughout the system is air maintained at atmospheric pres-
sure, with its temperature-dependent thermal properties ref-
erenced from the NIST Standard Reference Database [2].
Similarly, the baffle exhibits constant thermophysical prop-
erties pertinent to the conjugate heat transfer analysis [2].
2.2. Numerical method

The software code_saturne1 is used in this study. Several
high and low REYNOLDS number eddy-viscosity models
are used to assess their behavior in both forced and natural
convection in a simplified RVACS. The high REYNOLDS
number models use wall-functions to account for the wall

1https://www.code-saturne.org/cms/web/

effects, while the low REYNOLDS number models do not
rely on functions but require high mesh resolution near
the wall to capture the near-wall flow features. The high
REYNOLDS number RANS turbulence models studied here
include the 𝑘−𝜀model (KE-HiRe) and the SST 𝑘−𝜔model
(KOMG-HiRe) with wall functions. The low REYNOLDS
number RANS turbulence models include the Launder-
Sharma model (KE-LS-LoRe), the standard SST 𝑘−𝜔model
(KOMG-LoRe) and the V2F model (V2F-LoRe). Details of
the implementation of these models can be found in [3].

After a grid sensitivity study using three sets of mesh for
each study, the final mesh setup is: a mesh made of 7,775
hexahedral cells is used for the high REYNOLDS number
RANS modeling, where the first mesh layer has a 𝑦+ not
smaller than 11. A mesh of 927,835 hexahedra is used for
the low REYNOLDS number RANS modeling, where the first
mesh layer has a 𝑦+ not greater than 1.

3. Simulation results
Defining the line 𝑦∕𝛿1 = 0 at the bottom wall as the

current coordinate system, data along two lines at 𝑦∕𝛿1 = 5
and 11 are selected to show the simulation profiles. The
right side (𝑥∕𝛿1 > 0.77) of these lines is for the downward
flow for forced and mixed convection, whilst the left side
(𝑥∕𝛿1 < 0.67) is for the upward flow. The DNS data are
used as a reference.
3.1. Forced convection

Figures 3a and 3b show the streamwise velocity 𝑢𝑦 along
the two specified lines. Without going into details in this
abstract, we could say the KE-HiRe model captures well the
streamwise velocity in the downward flow, while the KE-LS-
LoRe model gives the best agreement to the DNS data in the
upward flow.

Figures 3c and 3d show the temperature along the two
specified lines. In general, the KE-HiRe model provides a
good prediction of the thermal field, and the KE-LS-LoRe
model is the best to capture both the fluid and the baffle
temperature.
3.2. Natural convection

Figures 4a and 4b compare the performance of several
RANS models in capturing the streamwise velocity. For the
region with 𝑥∕𝛿1 > 0.77, all models overpredict the stream-
wise velocity near the cold wall and underpredict it near the
hot wall, and low REYNOLDS number models show better
results than those high REYNOLDS number models. For the
region with 𝑥∕𝛿1 < 0.67, the KE-LS-LoRe model provides
the closest results to the DNS reference. Figures 4c and 4d
show the temperature along the two specified lines. Similar
as for forced convection, the KE-LS-LoRe model provides
the best results of the flow and the baffle temperature.
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(a) Streamwise velocity 𝑢𝑦 at 𝑦∕𝛿1 = 5. (b) Streamwise velocity 𝑢𝑦 at 𝑦∕𝛿1 = 11.

(c) Temperature 𝑇 at 𝑦∕𝛿1 = 5. (d) Temperature 𝑇 at 𝑦∕𝛿1 = 11.

Figure 3: Forced convection: Streamwise velocity 𝑢𝑦 and temperature 𝑇 .

4. Conclusions
The behaviors of several high and low REYNOLDS num-

ber eddy-viscosity turbulence models are assessed for mod-
eling a simplified Reactor Vessel Auxiliary Cooling System
with Direct Numerical Simulation data as a reference. For
the forced convection, the standard 𝑘 − 𝜀 model and the
low REYNOLDS number Launder-Sharma model provide
the best comparison regarding the streamwise velocity and
temperature distributions. For natural convection, the low

REYNOLDS number Launder-Sharma model is the best at
capturing flow and thermal fields.
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(a) Streamwise velocity 𝑢𝑦 at 𝑦∕𝛿1 = 5. (b) Streamwise velocity 𝑢𝑦 at 𝑦∕𝛿1 = 11.

(c) Temperature 𝑇 at 𝑦∕𝛿1 = 5. (d) Temperature 𝑇 at 𝑦∕𝛿1 = 11.

Figure 4: Natural convection: Streamwise velocity 𝑢𝑦 and temperature 𝑇 .

References
[1] S. Lee, Y. J. Choi, J. I. Lee, Y. H. Jeong, Investigation of various

reactor vessel auxiliary cooling system geometries for a hybrid
micro modular reactor, Nuclear Engineering and Design 379
(2021) 111239. doi:10.1016/j.nucengdes.2021.111239.

[2] E. W. Lemmon, I. H. Bell, M. L. Huber, M. O. McLin-
den, NIST Standard Reference Database 23: Reference Fluid
Thermodynamic and Transport Properties-REFPROP, Version
10.0, National Institute of Standards and Technology (2018).
doi:10.18434/T4/1502528.

[3] Fluid Dynamics, Power Generation and Environment Depart-
ment and Single Phase Thermal-Hydraulics Group, EDF R&D,
code saturne documentation: code saturne 8.0 Theory Guide
(2023).
URL https://code-saturne.org/documentation/8.0/theory.pdf

291



ParCFD2024
35𝑡ℎ International Conference on Parallel Computational Fluid Dynamics

Sep. 02-04, 2024, Bonn, Germany

Multigrid Accelerated Projection Method on GPU
Tzu-Hsuan Chiua, Chao-An Lina,∗

aNational Tsing Hua University, Department of Power Mechanical Engineering, 30013, Hsinchu, Taiwan

A R T I C L E I N F O†

Keywords:
Projection Method;
Multigrid;
Coarse Grid Aggregation;
Graphics Processing Unit (GPU);
Incompressible Flow

A B S T R A C T
This study introduces a GPU-accelerated numerical framework based on the projection method
(PM) for simulating incompressible flows. The core of this approach is an efficient solution of the
pressure Poisson equation using a V-cycle geometric multigrid scheme, further enhanced by Coarse
Grid Aggregation (CGA) to optimize multigrid levels across multiple GPUs, resulting in substantial
performance improvements. Benchmark results demonstrate that, for a 2563 grid, the proposed
implementation not only matches the efficiency of the Lattice Boltzmann Method (LBM) but also
surpasses the Dual Time-Stepping Artificial Compressibility (DTAC) method and the explicit weakly
compressible General Pressure Equation (GPE) scheme by factors of eleven and three, respectively.

1. Introduction
The graphics processing unit (GPU) has emerged as

a powerful computing platform, valued for its exceptional
thread parallelism and high memory bandwidth, making
it especially effective for large-scale scientific simulations.
These advantages have positioned GPUs as an ideal choice
for computational fluid dynamics (CFD) applications, where
high computational demands are common. Consequently,
numerous studies have harnessed GPUs in CFD, achiev-
ing substantial performance gains, often surpassing an or-
der of magnitude compared to traditional CPU-based ap-
proaches [1, 2].

The multigrid scheme is renowned for its effective-
ness in mitigating low-frequency errors, a critical advan-
tage for achieving efficient and accurate numerical sim-
ulations [3]. Leveraging these benefits, this study intro-
duces a GPU-enabled projection method augmented with a
Coarse Grid Aggregation (CGA)-enhanced multigrid frame-
work for simulating incompressible flows on GPU clusters.
By incorporating CGA, we increase the maximum multi-
grid level attainable on each GPU, leading to significant
improvements in scalability and computational efficiency.
The focus of this work is to evaluate the relative perfor-
mance gains of our method against the Lattice Boltzmann
Method (LBM) [4], the General Pressure Equation (GPE)
solver [5], and the Dual Time-Stepping Artificial Compress-
ibility (DTAC) method [2].

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02511 and of the Proceedings 10.34734/FZJ-2025-
02175.

∗Corresponding author
calin@pme.nthu.edu.tw (C. Lin)

ORCID(s): - (T. Chiu); - (C. Lin)

2. Governing equation and discretization
The four-step projection algorithm [6, 7] with a third-

order, TVD Runge-Kutta (RK) scheme [8] is carried out in
the following equations

𝒖(𝟏) = 𝒖𝒏 + 𝛿𝑡 (𝜈Δ𝒖𝒏 − ∇⋅(𝒖𝒏𝒖𝒏) − 1
𝜌
∇𝑝𝑛)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑢(𝒖𝒏)

,

𝒖(𝟐) = 3
4
𝒖𝒏 + 1

4
[𝒖(𝟏) + 𝛿𝑡𝐿𝑢(𝒖(𝟏))],

𝒖∗ = 1
3
𝒖𝒏 + 2

3
[𝒖(𝟐) + 𝛿𝑡𝐿𝑢(𝒖(𝟐))], (1)

𝒖∗∗ − 𝒖∗
𝛿𝑡

= 1
𝜌
∇𝑝𝑛, (2)

1
𝛿𝑡
∇⋅𝒖∗∗ = 1

𝜌
Δ𝑝𝑛+1, (3)

𝒖𝒏+𝟏 − 𝒖∗∗
𝛿𝑡

= −1
𝜌
∇𝑝𝑛+1. (4)

Equations (1) to (4) are primarily explicit, with the
exception of Eq. (3), which represents the pressure Poisson
equation and is the most computationally demanding com-
ponent of the scheme. To enable an explicit formulation on
the GPU, we apply the Jacobi point scheme by introducing
a pseudo-time derivative in the third step of the projection
method, as shown in Eq. (3). This approach parallels the
dual time-stepping scheme utilized by Shi et al. [2] and was
also adopted by Chiu and Lin [9]. As a result, the pressure
Poisson equation in Eq. (3) is replaced by the following
equation
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1
𝛽
𝑝𝑘+1 − 𝑝𝑘

𝛿𝜏
+ 1

𝛿𝑡
∇⋅𝒖∗∗ − 1

𝜌
(Δ𝑑𝑝

𝑘+1 + Δ𝑜𝑑𝑝
𝑘) = 0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑝0(𝑝)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑝(𝑝)

, (5)

where 𝑘 represents the time level in the pseudo-time itera-
tion, while 𝛿𝜏 corresponds to the time step. The operators
𝐿𝑝(𝑝) and 𝐿𝑝0(𝑝) refer to the versions of the operators that
include and exclude the pseudo-time term, respectively. Ad-
ditionally, Δ represents the sum of the Laplacian operators,
Δ𝑑 and Δ𝑜𝑑 , where are the diagonal and off-diagonal parts,
respectively. Equation (5) is iterated in pseudo-time until a
steady state is reached, resulting in an approximation where
𝑝𝑘+1 ≈ 𝑝𝑘 = 𝑝𝑛+1, effectively recovering Eq. 3.

The present V-cycle multigrid procedure follows the
approach presented in [2]. Before delving into the multigrid
scheme for solving the pressure Poisson equation, it is nec-
essary to introduce some notations. The pressure variable at
different grid levels is denoted as 𝑝ℎ, where ℎ represents the
level of the multigrid layers, with ℎ = 0 corresponding to
the finest level. The restriction operator transfers data from
the ℎ-th level to the (ℎ + 1)-th level, and vice versa for the
prolongation operator. It should be noted that both the time
step Δ𝑡 and the pseudo-time step Δ𝜏 need to be adjusted
at different grid levels based on the CFL condition. The
restriction and prolongation operators are defined as follows

�̃�ℎ+1 = 𝐼ℎ+1ℎ 𝑝ℎ, �̂�ℎ = 𝐼ℎℎ+1𝑝
ℎ+1, (6)

where �̃� and �̂� denote the restricted and prolonged pressure,
respectively. The operators 𝐿ℎ

𝑝 (⋅) and 𝐿ℎ
𝑝0(⋅) are employed to

solve the discrete equations at grid level ℎ, as expressed in
Eq. (5). The residual of the pressure evolution equation at
grid level ℎ is computed as follows

𝑅ℎ
𝑝 = (

1
𝛿𝑡
∇⋅𝒖∗∗ − 1

𝜌
Δ𝑝𝑘+1)ℎ. (7)

It is important to note that the residual is not zero
when the pseudo time steady state has not been reached in
Eq. (5), i.e., 𝑝𝑘+1 ≠ 𝑝𝑘. The non-zero residual indicates that
further iterations are required to converge to the steady-state
solution in the pseudo time.

The coarse-grid version of the pressure Poisson equation
can be formulated by considering the restricted approximate
solutions and residuals as a source term. This is expressed
by the following equation

𝐿ℎ+1
𝑝 (𝑝ℎ+1) = 𝐿ℎ+1

𝑝0 (�̃�ℎ+1) − 𝐼ℎ+1ℎ (𝑅ℎ
𝑝 −

 𝑒𝑟𝑜 𝑎𝑡 ℎ = 0
⏞⏞⏞
𝑅𝐻𝑆ℎ

𝑝 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑅𝐻𝑆ℎ+1
𝑝

, (8)

where the 𝑅𝐻𝑆 is not computed on the finest grid level
(ℎ = 0). Therefore, we further describe the right-hand side
of Eq. (8) as in the following:

𝑅𝐻𝑆ℎ+1
𝑝 = ( 1

𝛿𝑡
∇⋅�̃�∗∗ − 1

𝜌
Δ�̃�𝑘+1)ℎ+1

−𝐼ℎ+1ℎ (𝑅ℎ
𝑝 − 𝑅𝐻𝑆ℎ

𝑝 ). (9)
Noted that the pseudo-time derivative terms are not included
while computing the 𝑅𝐻𝑆 value. The procedure involves
several steps to iteratively solve the pressure Poisson equa-
tion at different grid levels.

3. Results
Figure 1 presents the solution times for the pressure

Poisson equation, solved with and without Coarse Grid
Acceleration (CGA), across various grid resolutions on an 8-
GPU cluster. The CGA implementation achieves a consistent
speedup of approximately 2.3 to 2.6 times, highlighting
the performance benefits of additional multigrid levels. The
optimized computational times for grid sizes of 1283, 2563,
5123 and 10243, are 0.16, 0.32, 0.89, and 4.2 seconds,
respectively.

We further compare the performance of our proposed
method with several established approaches: the Dual Time-
Stepping Artificial Compressibility (DTAC) method [2], a
general pressure equation (GPE) solver [5], and the Lattice
Boltzmann Method (LBM) [4]. Additionally, an explicit
CPU-based projection method employing the conjugate gra-
dient algorithm is included for reference. The test case
employed in these comparisons is the unsteady lid-driven
cavity flow at Re=3200, starting from a stationary state, with
simulations conducted until a physical time of t=1 on either
two NVIDIA Tesla V100 GPUs or an Intel i7-6900K CPU.

Both the GPE solver [5] and the LBM method [4] in these
comparisons are weakly compressible, non-iterative, and
fully explicit schemes. For DTAC, multigrid acceleration is
applied to the inter-time subiterations in the artificial com-
pressibility framework. GPU implementations for DTAC,
GPE, and LBM were developed by Shi et al. [2], Shi and
Lin [5], and Lee et al. [4], respectively, with a constant
CFL number of 0.7. To mitigate compressibility effects on
incompressible flows, the MACH number for the weakly
compressible GPE and LBM methods is set to Ma=0.05.
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Figure 1: Solution time for pressure Poisson equation
with/without optimized CGA level using 8 GPUs- unsteady
lid-driven cavity at 10th physical time step (Re=1000).

The stopping criterion for the Poisson subiteration of the
present projection method is set to |∑ 𝜌𝑈𝐴| < 10−8 or
|∑ 𝜌𝑈𝐴| < 10−10 at each physical time step. However, the
divergence accuracy at |∑ 𝜌𝑈𝐴| < 10−8 is acceptable for
most simulations.

Figure 2 presents the computational times needed to
achieve one second of physical simulation across vari-
ous grid resolutions. The proposed GPU-based projection
method achieves substantial speedups over both the DTAC
and GPE methods, offering a threefold performance im-
provement over the GPE method while remaining compat-
ible with LBM for a convergence criterion of |∑ 𝜌𝑈𝐴| <
10−8. Although the LBM approach is highly efficient, it has
limitations with non-uniform grid implementation—essential
for simulations of wall-bounded turbulent flows—and re-
quires significantly more memory compared to our method.

As anticipated, the performance decreases with a stricter
criterion of |∑ 𝜌𝑈𝐴| < 10−10, but remains comparable to
that of the GPE method. Benchmarking results for a 2563
grid show that our implementation not only matches the
efficiency of the Lattice Boltzmann Method (LBM) but also
surpasses the Dual Time-Stepping Artificial Compressibility
(DTAC) method and the explicit weakly compressible Gen-
eral Pressure Equation (GPE) scheme by factors of eleven
and three, respectively.
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A B S T R A C T
This work introduces a parallel unstructured conservative level-set method for liquid-vapor phase
change phenomena. The finite-volume method discretizes transport equations on three-dimensional
collocated unstructured meshes. Mass transfer induced by the liquid-vapor phase change is calculated
using temperature gradients in the liquid and vapor phases around the interface. The fractional-step
projection method solves the pressure-velocity coupling. Unstructured flux-limiter schemes solve
the convective term of transport equations to avoid numerical oscillations around the interface and
minimize numerical diffusion. Verification and validation of numerical method are presented, which
prove the robustness and accuracy of the UCLS solver for liquid vapor phase change on unstructured
meshes.

1. Introduction
Liquid-vapor phase change phenomena are common

in natural and industrial processes [1]. Many engineer-
ing devices, such as condensers and cooling towers in
power plants, refrigeration systems, and unit operations in
chemical engineering, involve the generation of bubbles
or droplets through liquid-vapor phase change processes,
including boiling, evaporation, and condensation. While
empirical correlations are available to predict heat transfer in
boiling flows, uncertainties in experimental measurements
and significant physical simplifications in analytical results
limit their range of applicability. Consequently, developing
predictive computational methods based on first physical
principles, such as Direct Numerical Simulation (DNS) of
liquid-vapor phase change, is justified as a complement to
experimental measurements and theoretical methods.

In the context of DNS of two-phase flows, multiple
techniques have been reported in the literature [2], includ-
ing front-tracking [3], Volume-of-Fluid (VoF) [4], level-set
(LS) [5], coupled VoF-LS [6, 7], and conservative level-
set [8, 9, 10, 11]. Further extensions of interface capturing
to film boiling heat transfer have also been proposed [12,
13, 2]. Nevertheless, to the best of the authors’ knowl-
edge, liquid-vapor phase change phenomena have not been

†This paper is part of the ParCFD 2024 Proceedings. The DOI
of this document is 10.34734/FZJ-2025-02512 and of the Proceedings
10.34734/FZJ-2025-02175.
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researched using the Unstructured Conservative Level-Set
(UCLS) method [9, 10, 11].

Building upon our previous research in liquid-vapor
phase change [14, 15], this work represents a further step
in the development of the parallel UCLS method for film
boiling heat transfer in 3D unstructured meshes. The UCLS
method [9, 10, 11] offers several advantages: it avoids the
accumulation of mass conservation errors common in stan-
dard level-set methods, unstructured meshes can be easily
adapted to complex domains [14], and it enables accurate
computation of surface tension forces [16, 11]. Addition-
ally, the UCLS method ensures numerical stability at high
physical property ratios [11], and the appropriate selection
of unstructured flux-limiter convective schemes proposed
by Balcazar-Arciniega et al. [9, 10, 11] avoids numerical
oscillations around the interface and minimizes numerical
diffusion.

2. Mathematical Formulation and Numerical
Methods
The Navier-Stokes equations for two-phase flow with

phase change are written in the framework of the so-called
one fluid formulation [2], adapted to the UCLS method [14,
15]:

𝜕
𝜕𝑡
(𝜌v) + ∇ ⋅ (𝜌vv) = − ∇𝑝 + ∇ ⋅ (𝜇 (∇v))

+ ∇ ⋅
(
𝜇(∇v)𝑇 ) + 𝜌g + f𝜎 ,

(1)

∇ ⋅ v =
(
𝜌−1𝑣 − 𝜌−1𝑙

)
�̇�𝑙𝑣𝛿Γ, (2)

Here, 𝑝 is the pressure, v is the velocity, g is the gravity,
f𝜎 is the surface tension force concentrated at the interface.
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Figure 1: (a) Example of extruded mesh configuration. Ω is discretized by 3.89 ⋅ 106 hexahedral control volumes, distributed on
192 CPU cores. (b) Film boiling, Pr = 10, Ja = 1, Gr = 225.1, 𝜌𝑙∕𝜌𝑣 = 𝜇𝑙∕𝜇𝑣 = 10, 𝜆𝑙∕𝜆𝑣 = 𝑐𝑝,𝑙∕𝑐𝑝,𝑣 = 1. Snapshots of the interface
at 𝑡∗ = 𝑡 𝑡−1𝑠 = {11.8, 14.2, 28.4}.

Figure 2: (a) Vorticity vectors (∇ × v) on the interface. (b) The Nusselt number calculated by the parallel UCLS method is
compared against Klimenko’s correlation [17, 18] and Berenson’s correlation [19].

The density 𝜌 and dynamic viscosity 𝜇 are given by 𝜌 =
𝜌𝑙𝐻𝑙 + 𝜌𝑣𝐻𝑣 and 𝜇 = 𝜇𝑙𝐻𝑙 + 𝜇𝑣𝐻𝑣, respectively, where
subscripts 𝑙 and 𝑣 refers to the liquid and vapor phases. 𝐻𝑣is the Heaviside step function, 1 in Ω𝑣 (vapor phase) and 0
elsewhere, 𝐻𝑙 = 1 −𝐻𝑣. Furthermore, 𝛿Γ is the Dirac delta
function concentrated at the interface, and �̇�𝑙𝑣 is the mass
transfer rate promoted by the phase change.

Interface capturing is performed by the Unstructured
Conservative Level-Set (UCLS) method proposed by Bal-
cázar et al. [10, 9, 11]. The interface advection equation with
phase change [14, 15] and the unstructured re-initialization
equation [9, 10] are solved as follows:
𝜕𝜙
𝜕𝑡

+ ∇ ⋅ (𝜙v) = − 1
𝜌𝑙
�̇�𝑙𝑣𝛿

𝑠
Γ,

𝜕𝜙
𝜕𝜏

+ ∇ ⋅
(
𝜙(1 − 𝜙)n0)

= ∇ ⋅ (𝜀∇𝜙) ,
(3)

where 𝜙 is the level-set function [9, 10], 𝛿𝑠Γ = ||∇𝜙|| is
the smoothed Dirac delta function [10, 9, 14], 𝜀 = 0.5ℎ0.9
is the interface thickness parameter [10, 11, 9], ℎ is the
local grid size. The re-initialization equation is advanced in
pseudo-time 𝜏 [9, 20, 10, 11], n0 is the interface normal unit
vector evaluated at 𝜏 = 0 [9, 10, 11]. At the discretized
level, two re-initialization steps (Δ𝜏) are enough to keep
a constant level-set profile [10, 11, 9]. The Heaviside step
function is regularized as 𝐻𝑠

𝑙 = 1 − 𝐻𝑠
𝑣 = 𝜙 [14, 15].

The Continuous Surface Force (CSF) model [21] calculates
the surface tension force in the framework of the UCLS
method [10, 16, 22, 23, 9]. Consequently, f𝜎 = 𝜎𝜅∇𝜙, where
𝜎 is the surface tension coefficient. Interface unit normal and
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curvature are given by n = ∇𝜙 ⇑ ∇𝜙 ⇑−1 and 𝜅 = −∇ ⋅ n,
respectively. The thermal energy equation is solved on Ω𝑣:

𝜕𝑇
𝜕𝑡

+ ∇ ⋅ (v𝑇 ) = 1
𝜌𝑐𝑝

∇ ⋅ (𝜆∇𝑇 ), (4)

where 𝑐𝑝 = 𝑐𝑝,𝑣 is the specific heat capacity at constant pres-
sure, 𝜆 = 𝜆𝑣 is the thermal conductivity. Ω𝑙 and the vapor-
liquid interface are at the saturation temperature 𝑇𝑠𝑎𝑡. The
mass transfer rate (�̇�𝑙𝑣) induced by the phase change is given
by �̇�𝑙𝑣 = ℎ−1𝑙𝑣

(
𝜆𝑣(∇𝑇 ⋅ n)𝑣 − 𝜆𝑙(∇𝑇 ⋅ n)𝑙

) [14]. Here, ℎ𝑙𝑣refers to the heat of vaporization, whereas gradients are
extended on the interface cells following an unstructured ex-
trapolation method proposed by [14]. Concerning the finite-
volume approach, convective term of transport equations is
discretized by unstructured flux-limiters schemes [9, 10,
11, 24] (SUPERBEE limiter). The fractional-step projection
method [25, 2] solves the pressure-velocity coupling [14,
15]. Further technical details on the finite-volume discretiza-
tion of transport equations on 3D collocated unstructured
meshes can be found in [10, 11].

3. Numerical Experiments and Discussion
Previous validations and verifications of the UCLS

method [9, 10, 11] include thermocapillarity motion of
droplets [16, 23], gravity-driven bubbles [9, 26, 27], bubbly
flows [20, 27, 10, 28, 11], binary droplet collision [20], col-
lision of a droplet against a fluid-fluid interface [20], falling
droplets [22], mass transfer in bubble swarms [10, 11], and
liquid-vapor phase change [14, 15]. This work represents a
further step toward developing computational methods for
film boiling heat transfer on 3D unstructured meshes within
the UCLS framework proposed by Balcazar-Arciniega et
al. [10, 23, 16, 26, 20, 9, 29, 11].

Film boiling heat transfer is characterized by the PRANDTL
number Pr = 𝜇𝑣 𝑐𝑝,𝑣 𝜆−1𝑣 , GRASHOF number Gr = 𝜌𝑣 (𝜌𝑙 −
𝜌𝑣) 𝑔 𝑙3𝑠 𝜇

−1
𝑣 , JAKOB number Ja = 𝑐𝑝,𝑣 (𝑇𝑤 − 𝑇𝑠𝑎𝑡)ℎ−1𝑙𝑣 , phys-

ical properties ratios 𝛽𝑣 𝛽−1𝑙 where 𝛽 = {𝜌, 𝜇, 𝑐𝑝, 𝜆}. Here,
𝑔 = ||g||, 𝑙𝑠 =

(
𝜎 𝑔−1 |𝜌𝑙 − 𝜌𝑣|−1

)1∕2 is the capillary length
scale, 𝑣𝑠 = (𝑔 𝑙𝑠)1∕2 is the characteristic velocity, and 𝑡𝑠 =
𝑙𝑠∕𝑣𝑠 is the characteristic time scale. On the other hand, the
NUSSELT number is given by Nu = 𝑇 −1 ∫ 𝑡0+𝑇

𝑡0
Nu∗(𝑡) 𝑑𝑡,

where Nu∗(𝑡) = 𝐴−1
𝑤 ∫𝐴𝑤

Nu∗∗(x𝑤, 𝑡)𝑑𝐴 and Nu∗∗(x𝑤, 𝑡) =
𝑙𝑠 (𝑇𝑤 − 𝑇𝑠𝑎𝑡)−1 (∇𝑇 ⋅ e𝑤)(x𝑤, 𝑡), e𝑤 is a unit vector perpen-
dicular to the bottom wall (𝑦 = 0) pointing toward the fluids,
𝐴𝑤 is the surface of the bottom wall (𝑦 = 0), and 𝑇 is the
period of averaging.

The computational set-up is depicted in Fig. 1a,
Ω is a rectangular domain of size (𝐿𝑥, 𝐿𝑦, 𝐿 ) =
(10.9 𝑙𝑠, 27.2 𝑙𝑠, 10.9 𝑙𝑠), discretized by 3.89 ⋅106 hexahedral
control volumes, distributed on 192 CPU cores. The

mesh is generated by a constant step extrusion ℎ𝑚𝑖𝑛 of
a bi-dimensional mesh along the  −axis. The mesh is
refined close to the bottom wall (𝑦 = 0), with a grid size
ℎ𝑚𝑖𝑛 = 𝐿𝑥∕200, consistently with the grid convergence
study reported in [15]. At the top boundary (𝑦 = 𝐿𝑦)
the mesh is coarser, with a grid size ℎ𝑚𝑎𝑥 = 4ℎ𝑚𝑖𝑛. At
𝑡 = 0, the interface position is set by 𝑦Γ = (4∕64)𝐿𝑥 +
(1∕64)𝐿𝑥

(
cos(2𝜋 𝑥𝐿−1

𝑥 ) + cos(2𝜋 ( − 0.5𝐿 )𝐿−1
 )
),

with the vapor film in the region 𝑦 < 𝑦Γ. Furthermore,
both fluids are quiescent at the temperature 𝑇 (x, 0) = 𝑇𝑠𝑎𝑡.No-slip boundary condition is set for the velocity at 𝑦 = 0,
and 𝑇 (x𝑤, 𝑡) = 𝑇𝑤 > 𝑇𝑠𝑎𝑡. Symmetry boundary condition is
applied at the lateral boundaries, and Neumann conditions
are applied at the top boundary.

Figure 1b illustrates the interface time evolution of film
boiling at 𝑡∗ = 𝑡 𝑡−1𝑠 = {11.8, 14.2, 28.4}, with dimension-
less numbers Pr = 10, Ja = 1, Gr = 225.1, 𝜌𝑙∕𝜌𝑣 =
𝜇𝑙∕𝜇𝑣 = 10, 𝜆𝑙∕𝜆𝑣 = 𝑐𝑝,𝑙∕𝑐𝑝,𝑣 = 1. Figure 2a depicts the
vorticity vectors (∇ × v) on the interface. Figure 2b shows
the time evolution of the NUSSELT number (Nu∗(𝑡)) and
the time-averaged NUSSELT number (Nu), demonstrating a
close agreement against empirical correlations reported by
Klimenko [17, 18] and Berenson [19]. Consequently, these
numerical results validate and prove the robustness of the
parallel UCLS method for film boiling heat transfer.
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A B S T R A C T
In this work, spectral deferred corrections (SDC) methods are considered as parallel-in-time integra-
tors for the solution of the unsteady incompressible Navier-Stokes equations. These temporal methods
are coupled with a high-order finite element spatial approximation. The goal of this work is to illustrate
and analyze the properties of the parallel-in-time method through numerical experiments, including
flow past a cylinder (using the standard DFG 2D-3 benchmark) which is selected as an example of
unsteady flow.

1. Introduction
The numerical simulation of the Navier-Stokes equations

(NSE) in the primitive formulation for incompressible flow
is an active research topic. Yet, the challenge of accurately
resolving these equations in both space and time necessitates
the deployment of advanced high-performance computing
systems. While spatial parallelization can reduce the runtime
per time step, temporal integration of time-sensitive applica-
tions often requires a large number of time steps. Therefore,
for further speedup, parallel-in-time integrators are required
for more parallelism in the temporal domain. One of the time
integrators that can be used to enable efficient parallel-in-
time integration is the spectral deferred corrections methods
introduced in 2000 by Dutt et al. [1], as a more stable variant
of the classical deferred corrections approach for solving
ordinary differential equations (ODEs). SDC are an iterative
approach for the numerical solution of ordinary differential
equations. It works by refining the numerical solution for an
initial value problem by performing a series of correction
sweeps using a low-order time-stepping method, and can
be interpreted as a preconditioned Picard iteration to solve
a fully implicit collocation problem. SDC has been widely
used for various initial value problems, using explicit, im-
plicit or implicit-explicit Euler and other low-order methods
as preconditioner [2, 3, 4, 5]. Moreover, two strategies to
enable parallelization across the method for spectral deferred
corrections are presented by R. Speck [6]. In this work the
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SDC methods implemented in pySDC [7] are combined
with the finite element method (FEM), as facilitated by the
frameworks FEniCS providing a powerful tool for computa-
tional fluid dynamics applications. FEM excels at accurately
representing complex geometries and boundary conditions,
making it an ideal choice for spatial discretization. This
coupling results in a robust and accurate numerical solution
to the Navier-Stokes equations, benefiting from the parallel
computing capabilities of both methods.

2. SDC for Navier-Stokes
LetΩ ⊂ ℝ𝑑 be a bounded domain with the boundary 𝜕Ω

and [0, 𝑇 ] is a time interval. The governing equations consist
of the incompressible Navier-Stokes equations

{𝜕𝐮
𝜕𝑡

= −𝐮 ⋅ ∇𝐮 − ∇𝑝 + 𝜈∇2𝐮 + 𝐠,
∇ ⋅ 𝐮 = 0,

(1)

where 𝐮 is the velocity vector, 𝑝 is the pressure, 𝜈 is the
kinematic viscosity, and 𝐠 represents external forces. To
solve these equations, we begin by subdividing the time
interval into sub-intervals [𝑡𝑛, 𝑡𝑛+1]. Then, using Chorin’s
projection scheme, we first compute an intermediate velocity
field 𝐮∗ with the momentum equation

⎧⎪⎨⎪⎩

𝐮∗ − 𝐮𝑛
Δ𝑡

= −𝐮𝑛 ⋅ ∇𝐮𝑛 + 𝜈∇2𝐮∗ + 𝐠𝑛+1,
𝑢∗ = 0 on 𝜕Ω.

(2)

In the next step, the intermediate velocity is projected to the
space of divergence free vector fields to get the next update
of velocity and pressure

𝐮𝑛+1 − 𝐮∗ = −Δ𝑡∇𝑝𝑛+1. (3)
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Taking the divergence and requiring the incompressibility
condition ∇ ⋅ 𝐮𝑛+1 = 0, we obtain the equation

Δ𝑡∇2𝑝𝑛+1 = ∇ ⋅ 𝐮∗, (4)
which is a Poisson problem for the pressure 𝑝𝑛+1. Finally, the
velocity 𝐮𝑛+1 can be corrected using Eq. (3).
2.1. Spatial discretization

To tackle the space discretization, we utilize the mixed
finite element approach. We will focus on Eq. (2) as it is the
only one requiring to be solved using the SDC methods. The
matrix form of a weak formulation for Eq. (2) can be written
as

[𝙼]𝑑𝐮
𝑑𝑡

= 𝐟 (𝑡,𝐮) = 𝐟𝐼 (𝑡,𝐮) + 𝐟𝐸(𝑡,𝐮), (5)
where [𝙼] is the finite element mass matrix, 𝐟𝐼 (𝑡,𝐮) =
−[𝙺]𝐮+[𝙼]𝐠(𝑡) is the implicit part of 𝐟 with [𝙺] is the stiffness
matrix, and 𝐟𝐸(𝑡,𝐮) = −[𝙲(𝐮)]𝐮 is the non-linear advection
part that should be treated explicitly.
2.2. Parallel-in-time SDC

We write the Picard form of the problem in Eq. (5) as
follows

[𝙼]𝐮(𝑡) = [𝙼]𝐮0 + ∫
𝑡

𝑡𝑛
𝐟 (𝑠,𝐮(𝑠))𝑑𝑠, (6)

𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1,
where 𝐮0 = 𝐮(𝑡𝑛). The integral in Eq. (6) can be approxi-
mated using a spectral quadrature rule. For this reason we
discretize the time interval [𝑡𝑛, 𝑡𝑛+1] using M quadrature
nodes such that 𝑡𝑛 < 𝜏1 <⋯ < 𝜏𝑀 = 𝑡𝑛+1. Thus the Eq. (6)
can be written as

[𝙼]𝐮𝑚 = [𝙼]𝐮0 + Δ𝑡
𝑀∑
𝑗=1

𝑞𝑚,𝑗𝐟 (𝜏𝑗 ,𝐮𝑗), (7)

𝑚 = 1,… ,𝑀,
where 𝐮𝑚 ≈ 𝐮(𝜏𝑚) and 𝑞𝑚,𝑗 = ∫ 𝜏𝑚

𝑡0
𝐿𝑗(𝑠)𝑑𝑠, 𝑗 = 1,⋯ ,𝑀

are the set of quadrature weights with 𝐿𝑗 is the Lagrange
polynomial defined on the quadrature node {𝜏𝑗}. Next, we
combine these M equations into one system of linear or non-
linear equations which is called the collocation problem

( − Δ𝑡𝐐𝐅) (�⃗�) =�⃗�0, (8)
where  = [𝙼] ⊗ 𝐈𝑀 , �⃗� = (𝐮1,⋯ ,𝐮𝑀 )𝑇 , �⃗�0 =
(𝐮0,⋯ ,𝐮0)𝑇 , 𝐐 = (𝑞𝑖𝑗)𝑖,𝑗 is the matrix gathering the
quadrature weights and the vector function 𝐅 is given by
𝐅(�⃗�) =

(
𝐟 (𝐮1),⋯ , 𝐟 (𝐮𝑀 )

). Moreover, if 𝑑 ≥ 2 then 𝐐 andmust be replaced by 𝐐⊗ 𝐈𝑑 and⊗ 𝐈𝑑 , respectively. It
should be noted that this system of equation is equivalent
to the fully implicit Runge-Kutta method with 𝐐 being
the Butcher tableau. Generally, this system is dense and
requires an iterative solution. SDC can be presented as

precondtionated Picard iteration for the collocation problem
in Eq. (8) as

( − Δ𝑡𝐐Δ𝐅
)
(�⃗�𝑘+1) = �⃗�0

+Δ𝑡
(
𝐐 −𝐐Δ

)
𝐅(�⃗�𝑘). (9)

The ODE (5) contains both stiff and non-stiff components.
Therefore, semi-implicit SDC (SISDC) is considered for the
solution of Eq. (5). Consequently, the iteration in Eq. (9)
becomes

( − Δ𝑡𝐐Δ,𝐼𝐅𝐼 − Δ𝑡𝐐Δ,𝐸𝐅𝐸
)
(�⃗�𝑘+1)

= �⃗�0 + Δ𝑡
(
𝐐 −𝐐Δ,𝐼

)
𝐅𝐼 (�⃗�𝑘)

+Δ𝑡
(
𝐐 −𝐐Δ,𝐸

)
𝐅𝐸(�⃗�𝑘), (10)

where 𝐐Δ,𝐼 and 𝐐Δ,𝐸 are lower and strictly lower triangular
matrices It has been shown in [6] that SDC can be parallelize
over the quadrature nodes using diagonal preconditioners
(i.e., diagonal matrix 𝐐Δ). In this work the following di-
agonal preconditioners are considered: 𝐐Δ,𝐼 = 𝐐𝐼𝐸𝑝𝑎𝑟

Δ ,
𝐐𝑀𝐼𝑁
Δ , 𝐐𝑀𝐼𝑁_𝑆𝑅_𝑆

Δ and 𝐐𝑀𝐼𝑁_𝑆𝑅_𝑁𝑆
Δ , (see [6, 8] for

more details). Given that the matrix 𝐐Δ,𝐸 must be lower
triangular, the null matrix 𝐐Δ,𝐸 = 𝟎 is considered for the
explicit part.

3. Numerical results
In this section, we will consider the benchmark of flow

past a cylinder. The geometry and parameters are taken from
the DFG 2D-3 benchmark in FeatFlow, see Fig. 1. The inflow
velocity profile is

𝐮𝑖𝑛 =
(
4𝑈𝑦(0.41 − 𝑦)

0.412
, 0
)

(11)

𝑈 = 𝑈 (𝑡) = 1.5 sin
(𝜋𝑡
8

)
(12)

and the kinematic viscosity is given by 𝜈 = 0.001.
In Fig. 2 we show the lift coefficients in the unsteady

Navier-Stokes equations subject to the time-dependent in-
flow profile 𝐮𝑖𝑛. These results are computed using 2, 3,
and 5 Gauß–Radau nodes with two different time steps
Δ𝑡 = 1∕1,600 and Δ𝑡 = 1∕1,000. The data provided by
FEATFLOW is also included in the figure as a reference
solution. Based on Fig. 2, it is clear that the different SDC
methods solves accurately the Navier-Stokes equations. It
should be mentioned that there are slight differences between
the results obtained using Δ𝑡 = 1∕1,600 and Δ𝑡 = 1∕1,000
because of the CFL constraint required by the semi-implicit
scheme. Moreover, the average number of iterations for five
different choices of 𝐐Δ,𝐼 after 50 time steps at four different
time points throughout the simulation are displayed in Fig. 3.
These choices are the LU trick (𝐐𝐿𝑈

Δ ) as reference as well
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Figure 1: Computational geometry for the DFG 2D-3 benchmark.

Figure 2: Lift coefficient using different SDC methods and
different time steps.

as the four diagonal matrices listed in the previous section.
From this figure, it can be clearly seen that the standard
option is the best choice for all tests. It can be also seen that
the 𝐐𝐼𝐸𝑝𝑎𝑟

Δ requires at least double the number of iterations
to converge, while the minimization-based preconditioners
𝐐𝑀𝐼𝑁
Δ and 𝐐𝑀𝐼𝑁_𝑆𝑅_𝑁𝑆

Δ seem to be reliable and converge
about as fast as the standard choice 𝐐𝐿𝑈

Δ for the considered
problem. However, the choice 𝐐𝑀𝐼𝑁_𝑆𝑅_𝑆

Δ requires slightly
more iterations to converge.

4. Conclusion
Combining SDC with FEM accurately solves the Navier-

Stokes equations. Diagonal preconditioners enable parallel
SDC, and with minimization-based preconditioners, diago-
nal SDC converges as fast as standard SDC. The future goal
is to use a fully implicit monolithic scheme for the NSE to
avoid the CFL limitations of semi-implicit schemes.
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Other Topic 4:

Scalable Solvers

Achieving scalability of methods for numerical simulations is crucial for ever-growing problem
sizes and for effectively utilizing high-performance computing (HPC) systems for this purpose.
With new appearing hardware technologies, novel algorithms need to be designed. This session
brings together contributions to the ParCFD International Conference 2024 dealing with scal-
able solvers running on HPC systems, e.g., using parallel computing for space-time simulations
and domain decomposition methods in aeroacousics.
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A B S T R A C T
A three-dimensional finite volume method solver that runs on an adaptive overset mesh is developed
for supersonic flows. The solver utilizes the open source libraries of p4est and OpenFOAM utilities to
generate, maintain, and readapt the computational grids in a distributed memory architecture during
parallel runs supported by MPI. We achieve to assemble the overset grid using our newly developed
in-house strategy and code. We validated the solver by considering experimental data available in the
literature for a supersonic flow over a cylinder with a hemisphere tip.

1. Introduction
The major challenges in hypersonic flow regimes are

due to the determination of heat loads and its prevention.
Dealing with hypersonic flow problems also requires mod-
eling complex flow physics such as shock-shock and shock-
boundary layer interactions. Considering complex geome-
tries, the computational cost may considerably scale to un-
feasible levels. One can overcome the cost challenge by com-
bining an efficient adaptive mesh refinement ( AMR ) solver
and composite grid strategies also known as overset grids
[1] such that the grid is strategically distributed to resolve
off body flow regions of interest without compromising the
near body grid quality. This approach has been previously
attempted and developed upon in the literature. Kenway et
al. [2] has proposed a method to efficiently assemble overset
grid system in parallel. Peron et al. [3] has proposed an
octree data structure to manage the background grid and its
adaptation. While some studies has attempted developing
efficient parallel overset assembly and management methods
that may be extended to structured background grids such as
in [4, 5], to our knowledge the integration of p4est, a highly
scalable, multi-octree parallel management library [6] to a
block based dynamic AMR capable overset finite volume
method Navier Stokes supersonic solver in a distributed
parallel environment has not been attempted.

In this paper, we outline the process of developing
and integrating a parallel solver with overset based AMR

†This paper is part of the ParCFD 2024 Proceedings. A recording
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is 10.34734/FZJ-2025-02514 and of the Proceedings 10.34734/FZJ-2025-
02175.
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capabilities through the combined use of open source li-
braries p4est, MPI, and meshing/partitioning tools of Open-
FOAM [7].

2. Numerical Strategy
2.1. Governing equations, numerical method, and

base solver
In the present study, viscous turbulent compressible

flows are considered. Favre averaged Navier Stokes equa-
tions and turbulence model k-omega SST [8] are preferred
to model the flow.

The base solver used in the study is our in-house finite
volume Navier-Stokes solver [9]. An upwind flux splitting
scheme and the 2nd order central scheme are used to compute
convection and diffusion fluxes. The face reconstruction is
1st order. Time integration is performed using Euler explicit
scheme. 1st order direct interpolation, a non-conservative in-
terpolation scheme, is used to combine separate grids types.
Grids of different refinement level are treated as hanging
nodes at their interfaces which is conservative.
2.2. Generation, assembly, partitioning and

adaptation of the grid system
An overset grid system that consists of two separate

structured grids, a conformal and a Cartesian grids is used
in the present study. The former conforms to the geometry
and resolves near body flow physics. Extending to the far
field, the latter engulfs the former and fills the interior of the
geometry. The latter consists of a collection of grid blocks
with own refinement level. The conformal grid is generated
and partitioned using OpenFOAM grid tools; blockMesh
and decomposePar. The Cartesian grid is generated and
partitioned using p4est, a C based library that manipulates
a collection of connected adaptive octrees, called forest.
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Figure 1: p4est forest (left) and it’s overset assembly (right) for a conformal grid over a sphere.

The overset grid assembly, OGA, uses an in-house
method, “halo”. Briefly, the method identifies a seed octant
in the p4est forest. Starting from the seed, a flooding process
is initiated. The flood excludes octants within the geometry
and up to the outmost cell layer of the conformal grid, the
receiver layer, see Fig. 1. Then, the grid blocks are generated.

p4est allows for block based mesh adaptation through
a collection of subroutines. It also allows for balancing
where neighboring blocks are of maximum 1 refinement
level difference. In the developed solver, balancing is called
after coarsening and refinement. A balancing call after coars-
ening may lead to re-refinement of a recently coarsened grid
blocks and thereby loss of required resolution. The solver
avoids this by temporarily storing severed children data. The
solver identifies block grids for adaptation using a sensor
function; the undivided difference [10]. The function output
is compared against a threshold range where cells with
values below or over that range are marked for refinement
or coarsening. The threshold range is set using an iterative
bi-sectioning method [3].
2.3. Solver parallelization and communication

process
Solver parallelization is achieved by implementing three

communication modes. Those are inner Conformal ( C1 ),
Inner Cartesian ( C2 ), and Conformal donor or receiver front
( C3 ) grid communication, see Fig. 2. The mode C1 is done
using a communication table which associates neighboring

cells and their target/source cores. Mode C2 is achieved
via p4est where it’s subroutines generate ghost octants and
exchanges them between neighboring octants cores. Finally,
C3 is done using a gather & broadcast method; the donor or
receiver cells data are exchanged to a master core which then
submits the data to all other cores. Methods in C1 and C3 are
explicitly implemented using MPI subroutines.

Through using p4est’s ghost octants generation and ex-
change subroutines as well as by enforcing a sufficient num-
ber of recursion for the flooding process, the solver suc-
cessfully implements OGA and AMR process on parallel
environment.

3. Solver Validation and Conclusions
An experimental study in the literature [11], where a

supersonic turbulent flow over a hemisphere tip cylinder
is considered for validation. The flow is at MACH 2 and
REYNOLDS number that is equal to 1.31 ⋅ 106 . An overset
grid is generated with a starting total cell count that is
equal to 348,461. A case with a classical grid approach, a
single body conforming grid is also considered. The cases
are run on a cluster with Intel(r) Xeon(r) gold 6130 CPU
@ 2.10GHz. 12 cores. The obtained pressure coefficient
distribution shows that the solver achieves satisfactory re-
sults against the reference data with an error of 4.5% at the
stagnation point. It also successfully tracks and captures the
shock properly, see Fig. 3.
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Figure 2: Communication modes C1 (left) C2 (middle) and C3 (right).

Figure 3: Coefficient of pressure plot against [11] along the surface of the hemisphere tipped cylinder (left) and Mach contour
plot in overset grid system view (right).

A preliminary strong scaling parallel performance test
is considered. The case is run on a computing node with
32 cores. The performance of sonicFoam that is one of
OpenFOAM supersonic solvers is used for comparison with
a single grid of equivalent total cell count. The comparison
of the solver performance shows similar trend in parallel
efficiency and speedup factor. Our in-house solver exhibits a
slightly lower efficiency and speedup factor, see Fig. 4. This
is likely due to the added interpolation stage in overset. On
performing a high AMR cycle setting test, it can be seen
that the cell count is reasonably equally distributed between
all cores. Hence, load balance is maintained by p4est, see
Fig. 5. The small difference in cell per core is attributed to

partitioning bias rule where related children are held on the
same core.

In summary, we developed an overset based AMR capa-
ble parallel solver which uses p4est and an in-house overset
grid assembling utilities. The solver is validated against ex-
perimental data in the literature, hemisphere tipped cylinder.
The obtained preliminary results prove that the developed
solver and its capabilities are promising in terms of mesh
adaptation, parallel scalability and load balancing.
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Figure 4: Speedup factor (left) and parallel efficiency plots (right) of the inhouse and sonicFoam solvers.

Figure 5: Cell count per core during AMR cycles (left) and domain decomposition plot after AMR cycle 16 (right).
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A B S T R A C T
We aim to answer the following question: is the complexity of numerically solving Poisson’s equation
increasing or decreasing for very large DNS and LES simulations of incompressible flows? Physical
and numerical arguments are combined to derive power-law scalings at very high REYNOLDS
numbers. Theoretical convergence analysis for both Jacobi and multigrid solvers defines a two-
dimensional phase space divided into two regions depending whether the number of solver iterations
tend to decrease or increase with the REYNOLDS number. Numerical results seem to confirm that we
are in the latter region, i.e., in the foreseeable future the numerical complexity of solving Poisson’s
equation will increase and, therefore, better and better preconditioning techniques will be needed.

1. Introduction: Two competing effects
The never-ending increasing capacity of modern HPC

systems enables DNS simulations at higher and higher
REYNOLDS numbers, 𝑅𝑒 = 𝑈𝑙∕𝜈. The number of grid
points, 𝑁𝑥, and time-steps, 𝑁𝑡, can be estimated with the
classical Kolmogorov theory (K41)

𝑁𝐾41
𝑥 =

𝐿𝑥
Δ𝑥

∼ 𝑙
𝜂
∼ 𝑅𝑒3∕4,

𝑁𝐾41
𝑡 =

𝑡sim
Δ𝑡

∼
𝑡𝑙
𝑡𝜂
∼ 𝑙

𝜂
𝑢
𝑈
∼ 𝑅𝑒3∕4𝑅𝑒−1∕4 = 𝑅𝑒1∕2,

(1)

where 𝐿𝑥 and 𝑡sim are the domain size and the time integra-
tion period, which are assumed to be similar to the size of the
largest scales, 𝑙, and its corresponding characteristic time,
𝑡𝑙 ∼ 𝑙∕𝑈 , i.e. 𝐿𝑥 ∼ 𝑙 and 𝑡sim ∼ 𝑡𝑙. For a DNS, we assume
thatΔ𝑥 ∼ 𝜂 andΔ𝑡 ∼ 𝑡𝜂 ∼ 𝜂∕𝑢, where 𝑡𝜂 ∼ 𝜂∕𝑢 and 𝑢 are the
characteristic time and velocity of the Kolmogorov scales,
𝜂. Plugging this into the CFL condition, i.e. Δ𝑡conv ∼ Δ𝑥∕𝑈
and Δ𝑡diff ∼ Δ𝑥2∕𝜈 leads to

𝑁conv
𝑡 ∼

𝑡𝑙
Δ𝑡conv ∼

𝑙
𝑈

𝑈
𝑙𝑅𝑒−3∕4

= 𝑅𝑒3∕4,

𝑁diff
𝑡 ∼

𝑡𝑙
Δ𝑡diff ∼

𝑙
𝑈

𝜈
𝑙2(𝑅𝑒−3∕4)2

= 𝑅𝑒1∕2.
(2)
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Therefore, we can conclude that
Δ𝑡∕𝑡𝑙 ∼ 1∕𝑁𝑡 ∼ 𝑅𝑒𝛼 , (3)

where 𝛼 = −1∕2 for the K41 theory, see Eq. (1), or diffusion
dominated, see Eq. (2) (right), and 𝛼 = −3∕4 for convection
dominated, see Eq. (2) (left). Therefore, higher 𝑅𝑒 lead to (i)
larger meshes and (ii) smaller time-steps, Δ𝑡. These are two
competing effects on the convergence of Poisson’s equation:
namely, the former increases the condition number of the
discrete Poisson equation whereas the latter leads to better
initial guess. Who is eventually the winner at very high 𝑅𝑒?
Read on...

2. Analysis of the residual of Poisson’s
equation
Although FFT-based direct solvers are very well-suited

for canonical flows with periodic directions [1], the forth-
coming analysis assumes that multigrid (MG) methods will
eventually be the preferred option for extreme-scale simu-
lations. Then, the next step is to analyze the residual of the
Poisson’s equation as a function of the REYNOLDS number.
Relevant aspects are twofold: the magnitude and the spectral
distribution. To study them, we consider a fractional step
method where 𝒖𝑝 is the predictor velocity. Imposing that
∇ ⋅ 𝒖𝑛+1 = 0, leads to a Poisson equation for pressure, 𝑝𝑛+1,

𝒖𝑛+1 = 𝒖𝑝−Δ𝑡∇𝑝𝑛+1
∇⋅
⟹ ∇2𝑝𝑛+1 = 1∕Δ𝑡∇⋅𝒖𝑝. (4)

309



F. X. Trias et al.: Roadmap for Extreme-Scale Simulations: On the Evolution of Poisson Solvers






 






 

 




 

  















 





  


















Figure 1: Left: illustrative explanation of the two competing effects on the solution of Poisson’s equation when increasing 𝑅𝑒
number: time-step, Δ𝑡, decreases whereas the range of scales increases. Right: {�̃�, 𝛽} phase space. Solid black line corresponds
to ∝ 𝑅𝑒0 in Eqs. (15) and (16), i.e. neutral effect of 𝑅𝑒-number in the total number of iterations.

Assuming∇⋅𝒖𝑛 = 0 and taking 𝑝𝑛 as initial guess, we obtain
the following initial residual

𝑟0 = ∇2𝑝𝑛 − 1
Δ𝑡
∇ ⋅ 𝒖𝑝,𝑛+1

(4)
= 1
Δ𝑡
(
∇ ⋅ 𝒖𝑝,𝑛 − ∇ ⋅ 𝒖𝑝,𝑛+1

)

≈ 𝜕𝑡∇ ⋅ 𝒖𝑝.

(5)

Alternatively, we can also consider 𝑟0 = Δ𝑡𝑟0. In this case,
the residual reads

𝑟0 = ∇2�̃�𝑛 − ∇ ⋅ 𝒖𝑝,𝑛+1

(4)
=
(
∇ ⋅ 𝒖𝑝,𝑛 − ∇ ⋅ 𝒖𝑝,𝑛+1

)

≈ Δ𝑡𝜕𝑡∇ ⋅ 𝒖𝑝,

(6)

where �̃� = 𝑝Δ𝑡 is a pseudo-pressure. Notice that the second
residual, 𝑟0, is more meaningful from a physical point-of-
view, since it directly translates how accurately we impose
the incompressibility constraint. Then, recalling that ∇ ⋅ 𝒖𝑝
can be expressed as follows [2]

∇ ⋅ 𝒖𝑝 ≈ Δ𝑡∇ ⋅ (𝒖 ⋅ ∇𝒖) = 2Δ𝑡𝑄𝖦, (7)
leads to

𝑟0 ≈ 2Δ𝑡 𝜕𝑡𝑄𝖦 and 𝑟0 ≈ 2Δ𝑡2𝜕𝑡𝑄𝖦, (8)
where 𝑄𝐺 = −1∕2𝑡𝑟(𝖦2) is the second invariant of the
velocity gradient, 𝖦  ∇𝒖. Therefore, smaller Δ𝑡 decrease
the magnitude of 𝑟0 (also 𝑟0) leading to a better convergence.

On the other hand, increasing 𝑅𝑒 also leads to finer
meshes, see Eq. (1), and, therefore, to more ill-conditioned
systems with a wider and wider range of scales to be re-
solved. In the forthcoming analysis, the spectral distribution

of the initial residual, �̂�0𝑘, plays a crucial role. In general, we
can assume a power-law scaling within the inertial range

𝜕𝑡𝑄𝖦 ∝ 𝑘𝛽 ⟹ �̂�0𝑘 ∝ Δ𝑡
𝑝𝑘𝛽 , (9)

where 𝑘 is the wave number and 𝑝 ∈ {1, 2} depends on the
definition of the residual: 𝑝 = 1 for Eq. (5) and 𝑝 = 2 for
Eq. (6). Then, a power-law scaling for 𝑄𝖦 can be derived
from Eqs. (4) and (7), and the 𝑘−7∕3 scaling of the shell-
summed squared pressure spectrum [3],

(�̂�𝖦)𝑘 ∝ 𝑘2(𝑘−7∕3)1∕2 = 𝑘5∕6. (10)
Then, the value of 𝛽 in Eq. (9) can be estimated from
the dynamics of the invariants obtained from the so-called
restricted Euler equations [4],

𝜕𝑡𝑄𝖦 = −(𝒖 ⋅ ∇)𝑄𝖦 − 3𝑅𝖦, (11)
where 𝑅𝖦 = 𝑑𝑒𝑡(𝖦) = 1∕3𝑡𝑟(𝖦3) is the third invariant of
𝖦. The two terms in the right-hand-side of this equation are
expected to have different power-law scalings. Namely,

( ̂(𝒖 ⋅ ∇)𝑄𝖦)𝑘 ∝ (∇̂𝑄𝖦)𝑘 ∝ 𝑘(𝑘5∕6) = 𝑘11∕6,
(�̂�𝖦)𝑘 ∝ (𝑘5∕6)3∕2 = 𝑘5∕4. (12)

where the Taylor’s frozen-turbulence hypothesis is applied
to approximate (𝒖 ⋅∇)𝑄𝖦, which is eventually the dominant
term in the right-hand-side of Eq. (11). Combining this with
the results obtained in Eqs. (9) and (12) leads to

�̂�0𝑘 ∝ Δ𝑡
𝑝𝑘𝛽

with 𝛽 = 11∕6

and 𝑝 =
{

1 if �̂� defined as Eq. (5)
2 if �̂� defined as Eq. (6)

} (13)
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Figure 2: From top to bottom: compensated spectra for
pressure, 𝑄𝖦, 𝑅𝖦, and the initial solver residual, 𝑟𝑜. Results
correspond to forced homogeneous isotropic turbulence at
𝑅𝑒𝜆 = 325. Compensation factors corresponds to those derived
in Eqs. (10), (12) and (13), respectively.

In summary, there are two competing effects (see Fig. 1,
left) when increasing 𝑅𝑒 number: time-step, Δ𝑡, decreases
whereas the range of scales increases. The next step is to
analyze how the solver convergence is affected.

3. Analysis of the solver convergence and
conclusions
We want to study whether the number of iterations inside

the Poisson’s solver increases or decreases with𝑅𝑒. To do so,
we can relate the L2-norm of the residual with the integral
of �̂�𝑘 for all the wave numbers using the Parseval’s theorem,
i.e. ||𝑟||2 = ∫Ω 𝑟2𝑑𝑉 = ∫ 𝑘max

1 �̂�2𝑘𝑑𝑘, where 𝑘max ≈ 1∕𝜂 ∼
𝑅𝑒3∕4. Then, the residual after 𝑛 iterations can be computed
as
||𝑟𝑛||2 = ∫

𝑘max

1

(
�̂�𝑛
𝑘�̂�
0
𝑘
)2 𝑑𝑘

(3)(13)
≈ ∫

𝑅𝑒3∕4

1
�̂�2𝑛𝑘 𝑅𝑒2�̃�𝑘2𝛽𝑑𝑘, (14)

where �̂�𝑘 = �̂�𝑛+1𝑘 ∕�̂�𝑛𝑘 is the convergence ratio of the solver
and �̃� = 𝑝𝛼. For instance, for a Jacobi solver, �̂�𝑘 =
cos(𝜋2 𝜌) where 𝜌  𝑘∕𝑘max. In this case, using a quadratic
approximation of cos(𝑥) ≈ 1 − 4𝑥2∕𝜋2 leads to

||𝑟𝑛||2 ≈ 𝑅𝑒2(�̃�+3∕4(𝛽+1∕2))

2(2𝑛 + 1)
. (15)

We can extend this analysis for a MG solver with the Jacobi
smoother
||𝑟𝑛||2 ≈ 𝑅𝑒2(�̃�+3∕4(𝛽+1∕2))

2(2𝑛 + 1){(𝑙max∑
𝑙=0

(3∕4)2𝑛+1

22𝑙

)
+ 1
22𝑙max+1

}
.

(16)

where 𝑙max ∼ log2𝑁𝑥 ∼ (3∕4) log2𝑅𝑒 is the number of
levels. Compared to Eq. (15), MG is strongly accelerated by
the term in brackets, which tends to (3∕4)2𝑛. Nevertheless,
the 𝑅𝑒-scaling is the same; therefore, the regions defined
in the {�̃�, 𝛽} phase space remain unchanged (see Fig. 1,
right). Numerical results displayed in Fig. 2 seem to confirm
our theory: namely, the slopes of the invariants 𝑄𝖦 and
𝑅𝖦 correspond well with the values predicted in Eqs. (10)
and (12), respectively. More importantly, the slope of the
solver residual, �̂�𝑘, fits with the predicted value of 𝛽 = 11∕6
(see Eq. (13). Altogether leads to the preliminary conclusion
that the number of iterations tends to increase with 𝑅𝑒.
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A B S T R A C T
This contribution focuses on a Schwarz-type domain decomposition method for solving an ill-
conditioned dense linear problem overdetermined with complex coefficients arising from the inverse
problem of determining, by the method of equivalent sources, the aeroacoustic noise generated by a
fluid on the surface of a body.

1. Introduction
The Equivalent Source Method (ESM) aiming at the

simulation of realistic Frequency Response Functions (FRF)
substitutes the acoustic behavior of a radiating object by
a set of 𝑁𝑠 acoustic monopoles 𝑞 calibrated with respect
to the boundary condition 𝑣 on its skin. The method is a
meshless approach so that it is easy and simple to implement,
and it does not have a numerical singularity problem that
occurs in the boundary element method [1]. Such a method
allows to perform 3D Conventional Beamforming (CBF)
with FRF considering the acoustic environment and the
influence structure [2, 3].

The set 𝜔 of 𝑁 boundary points at position (𝑟𝑗)𝑗≤𝑁 on
the object skin and the set Ω of 𝑁𝑠 equivalent sources at
the position (𝑟𝑙)𝑙≤𝑁𝑠

, allow to build the matrix coefficients
of the transfer function for the wave number 𝑘 between the
equivalent sources and the normal velocity, with 𝜃𝑗𝑙 the
angle of 𝑟𝑗 − 𝑟𝑙 and the normal to the object skin at 𝑟𝑗 , as

𝐴𝑗𝑙 = 𝑒𝑖𝑘||𝑟𝑗−𝑟𝑙||2
4𝜋||𝑟𝑗 − 𝑟𝑙||22

(1 − 𝑖𝑘||𝑟𝑗 − 𝑟𝑙||2) cos(𝜃𝑗𝑙).

This contribution presents a Schwarz-type domain decom-
position method for solving this overdetermined, dense and
ill-conditioned linear system 𝐴𝑞 = 𝑣, 𝐴 ∈ ℂ𝑁×𝑁𝑠 . The
ESM suffers from the numerical instability that is associated
with the ill-conditioned matrix 𝐴 due to the random distri-
bution of equivalent sources [1, 4].

†This paper is part of the ParCFD 2024 Proceedings. A recording
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is 10.34734/FZJ-2025-02516 and of the Proceedings 10.34734/FZJ-2025-
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2. Schwarz-type domain decomposition
The Restricted Additive Schwarz domain decomposition

method (DDM), see, e.g., [5] and references therein, with a
well-posed linear system has convergence/divergence prop-
erties allowing its acceleration of the convergence to the
correct solution. Here, difficulties arise because the matrix
𝐴 is a complex non-square matrix, and it is also a dense
matrix, where each source contributes to each control point.
Consequently, there is no natural interface to control the
splitting of the domain(s).
2.1. Schwarz DDM based on the geometrical

splitting
To define the DDM partitioning in m pairs {(𝜔𝑙,Ω𝑙), 𝑙 =

1,… , 𝑚} of subdomains overlapping or not, 𝜔 and Ω are
split as follows: from a mesh of the surface (where the
vertices are the control points), and the equivalent sources
within the object, we divide the surface in m partitions using
the METIS graph partitioning library, based on the vertices
adjacency. Then, we assign to each equivalent source the
rank of the nearest control point using a K-D tree.

With the given partitioning, we iteratively solve Eq. (1),
where 𝐴𝑖𝑗 represents the block of the original matrix with
respect to the partition renumbering and 𝐴+

𝑖𝑖 is the pseudo
inverse of the block 𝐴𝑖𝑖, in order to update the iterated
solution 𝑥(𝑘+1)𝑖 with respect to the iterated solution 𝑥(𝑘), i.e.,

𝑥(𝑘+1)𝑖 = 𝐴+
𝑖𝑖

(
𝑏𝑖 −

𝑚∑
1=𝑗≠𝑖

𝐴𝑖𝑗𝑥
(𝑘)
𝑗

)
. (1)

Nevertheless, the resulting method is a divergent method
(even with the addition of a relaxation parameter where
it converges before diverging). The pure linear conver-
gence/divergence is lost due to ill-conditioning and solving
of Eq. (1) in the least squares sense. Moreover, the singular
value decomposition (SVD) of the 𝐴𝑖𝑗 blocks shows that
some of them contribute strongly to the 𝑏𝑖 RHS, see Fig. 2a.
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Figure 1: From the left to the right: surface 𝜔 of control points, non-overlapping partition of 𝜔, volume Ω of randomly distributed
equivalent sources, partitioning of the volume with respect to the 𝜔 partitioning, example of two resulting subdomain pairs
(𝜔𝑙,Ω𝑙).

(a) (b) (c) (d)

25, 28, 27, 1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω1

, 17, 18, 13, 2
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω2

, 31, 29, 26, 4
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω3

, 7, 3, 32, 24
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Ω4

, 30, 23, 19, 8
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω5

, 20, 5, 11, 22
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω6

, 16, 15, 14, 9
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω7

, 6, 21, 10, 12
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω8

Figure 2: Numerical criterion splitting process starting from a geometrical partitioning of 32 partitions to obtain a partitioning
with 8 partitions.

2.2. Numerical criterion splitting
Figure 2 shows the partitioning based on a numerical

criterion. The idea is to take into account the factor 1∕𝑟2
in the matrix coefficients. Starting from the geometrical
partitioning with a greater number of partitions than the
expected final number, we compute the SVD of each block,
see Fig. 2a, and define the threshold criterion 𝜏 as % of
the number of singular values greater than a given 𝜖 (here
𝜖 = 10−12). It produces an adjacency matrix (b) of blocks
satisfying this criterion, see Fig. 2b. We reduce the profile
of this adjacency matrix with the reverse Cuthill MacKnee’s
algorithm, see Fig. 2c. We then gather the adjacent blocks to
define the new partitioning, see Fig. 2d.
2.3. Projected Schwarz algorithm to handle

over-determined systems
We use the SVD 𝑈𝑗𝑖𝑆𝑗𝑖𝑉 ∗

𝑗𝑖 = 𝐴𝑗𝑖 of each block 𝐴𝑗𝑖 of
the new partitioning to define a projected Schwarz algorithm
where the right hand side of the local problem is projected
on the left singular vectors associated with singular values
greater than 𝜖 of each block acting on the components of
𝑥(𝑘+1)𝑖 . This leads to solving a compressed system with a 𝜉

percentage of the 𝑁 rows of the original one. The solution
of the 𝑖𝑡ℎ partition reads

�̄�𝑖𝑥
(𝑘+1)
𝑖 = 𝕌∗

𝑖
(
𝑏 − �̃�
)
, (2)

with

�̄�𝑖 =
⎛⎜⎜⎝

𝑆1𝑖𝑉 ∗
1𝑖

⋮
𝑆𝑚𝑖𝑉 ∗

𝑚𝑖

⎞⎟⎟⎠
, 𝕌∗

𝑖 =
⎛⎜⎜⎝

𝑈∗
1𝑖

⋱
𝑈∗
𝑚𝑖

⎞⎟⎟⎠
, 𝑏 =

⎛⎜⎜⎝

𝑏1
⋮
𝑏𝑚

⎞⎟⎟⎠
and

�̃� = 𝐴
(
𝑥(𝑘)1 ,… , 𝑥(𝑘)𝑖−1, 0𝑖, 𝑥

(𝑘)
𝑖+1,… , 𝑥(𝑘)𝑚

)𝑡

=
⎛⎜⎜⎝

𝐴11⋯𝐴1𝑖−1 𝐴1𝑖+1⋯𝐴1𝑚
⋮ ⋮

𝐴𝑚1⋯𝐴𝑚𝑖−1 𝐴𝑚𝑖+1⋯𝐴𝑚𝑚

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑥(𝑘)1
⋮

𝑥(𝑘)𝑖−1
𝑥(𝑘)𝑖+1
⋮
𝑥(𝑘)𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

This compressed local system Eq. (2) is solved by SVD with a
better conditioning than the full system with about 10 orders
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𝑁𝑠 = 3,200 1 2 3 4 5 6 7 8
1 390 352 313 360 252 166 151 159
2 369 409 365 364 319 257 264 224
3 323 325 408 316 302 211 327 249
4 347 373 321 394 393 290 223 275
5 258 335 314 393 401 402 254 344
6 171 254 212 276 381 404 273 398
7 151 244 285 206 243 259 395 351
8 166 224 240 284 360 400 340 399

𝑁 = 6,400 2,175 2,516 2,458 2,593 2,651 2,389 2,227 2,399
𝜉 = 100% 34% 39% 38% 41% 41% 37% 35% 37%

Table 1
Size of system �̄�𝑖 for the sphere problem, 𝑁𝑠 = 3,200, 𝑁 = 6,400, 𝑘 = 400Hz, 𝜖 = 10−12, 𝜏 = 0.8.

𝑙𝑜𝑔10(𝑐𝑜𝑛𝑑(𝐴)) 𝑙𝑜𝑔10(𝑐𝑜𝑛𝑑(�̄�𝑖))
1 2 3 4 5 6 7 8

18.87 9.37 7.98 9.12 7.65 7.86 8.71 9.02 7.88

Table 2
The quantity 𝑙𝑜𝑔10(𝑐𝑜𝑛𝑑(�̄�𝑖)) for the sphere problem, 𝑁𝑠 = 3,200, 𝑁 = 6,400, 𝑘 = 400Hz, 𝜖 = 10−12, 𝜏 = 0.8.

of magnitude, see Tab. 2. Recalling the SVD complexity of
𝑂(𝑁 𝑁𝑠 min(𝑁,𝑁𝑠)) for 𝐴 ∈ ℂ𝑁×𝑁𝑠 , we have for the SVD
computing of �̄�𝑖 a theoretical numerical speed-up of 𝑚∕𝜉
and 𝑚2∕𝜉 if it is done in parallel over 𝑚 processes.

3. First results and conclusion
We consider a monopole scattered by a rigid sphere

problem as described in [2].

Table 1 gives the size of the �̄�𝑖 system after compression,
for the sphere problem with: 𝑁𝑠 = 3,200, 𝑁 = 6,400, 𝑘 =
400Hz, 𝜖 = 10−12, 𝜏 = 0.8 and the last row represents the 𝜉
percentage of compression of �̄�𝑖 with respect to the original
size of 𝑁 = 6,400. The value of 𝜉 is between 34% and
41%. Table 1 also gives details of the size of the compressed
system resulting from the 𝐴𝑗𝑖 block. For example, 𝐴81 has
399 rows and the compressed block 𝑆81𝑉 ∗

81 has 166 rows.

(a) 𝑥(0) = 0. (b) SVD solution of 𝐴𝑥(0) = 𝑏.

Figure 3: Convergence of the Schwarz DDM on 8 partitions with respect to the iterations for two initial guesses for the monopole
scattered by a rigid sphere with 𝑁𝑠 = 3,200, 𝑁 = 6,400, 𝑘 = 400Hz, 𝜖 = 10−12, 𝜏 = 0.8.
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Table 2 exhibits the conditioning number for �̄�𝑖 for the
sphere problem. They are up to ten orders lower than for the
original full system.

Figure 3 shows the convergence behavior of the pro-
jected Schwarz algorithm with respect to the iterations. It
exhibits a fast convergence starting from the arbitrary initial
guess 𝑥(0) = 0 followed by a slow convergence, see Fig. 3a,
and an improvement on the solution starting from the initial
guess solution of 𝐴𝑥(0) = 𝑏 computed by SVD , see Fig. 3b.
Let us notice that the algorithm is still stable after the
convergence.

The talk will also focus on the numerical and parallel
performances of the proposed projected Schwarz algorithm
on larger size problems using the PETSc and SLEPc libraries
for the implementation.
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Epilogue

This proceedings document is a collection of all the accepted mauscripts submitted to the 35th
Parallel CFD International Conference 2024. The presentations on the conference and the
content of the papers clearly show that the field of CFD is transitionining to an era, where new
computing and AI technologies, and advanced tool sets play a key role in reaching unprecendent
accuracy, speed, and confidence. These technologies become more and more interwined and
open up opportunities for simulating more realistic scenarios and for further research. It is up
to the CFD research community to advertise these new technologies and support bringing them
into pratical application in industry. This document and all the containing manuscripts are
licensed under CC-BY 4.0.

The next 36th Parallel CFD International Conference 2025 will take place in Merida, Yucatan,
Mexico, from Nov. 24-26, 2025. The ParCFD 2025 Chair Dr. Juan Carlos Cajas Garćıa, ENES-
Mérida, UNAM, the local organization committee, comprised of Dr. Erick Salcedo Álvarez,
ENES-Mérida, UNAM, Dr. Juan Manuel Rivero, ENES-Mérida, UNAM, M.C. Edwin Enrique
Pérez R., ENES-Mérida, UNAM, and Dr. Carlos Francisco Brito L., Universidad Autónoma
de Yucatán, the ParCFD Committee, and the mini-symposia organizers are looking forward to
meet you at the next event. More information can be found on the website of ParCFD 2025 4.

4ParCFD 2025 https://www.parcfd2025.org
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