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ABSTRACT
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an Early Childhood Intervention in 
Colombia*

We evaluate impacts heterogeneity of an Early Childhood Intervention in Colombia, with 

respect to the Educational Attainment Polygenic Score (EA4 PGS) constructed from DNA 

data based on GWAS weights from a European population. We find that the EA4 PGS 

is predictive of several measures of child development, mother’s IQ and, to some extent, 

educational attainment. We also show that the impacts of the intervention are significantly 

greater in children with low PGS, to the point that the intervention eliminates the initial 

genetic disadvantage. Lastly, we find that children with high PGS attract more parental 

stimulation; however, the latter increases more strongly in children with low PGS.
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1 Introduction

It is well established that the early years are critical to child development, with children in

deprived environments accumulating deficits that are later difficult to reverse, (Heckman,

2006; Rubio-Codina, Attanasio, Meghir et al., 2015). Appropriate parenting interventions

have been shown to compensate, at least in part, for the effects of deprivation (Grantham-

McGregor, Powell, Walker et al., 1991; Heckman, Moon, Pinto et al., 2010; Grantham-

McGregor, Adya, Attanasio et al., 2020; Schepan, Sandner, Conti et al., 2025) often with

long-term impacts on individual cognition, earnings and health, among others (see, e.g.,

Gertler, Heckman, Pinto et al. (2014); Campbell, Conti, Heckman et al. (2014)). Early years

interventions have therefore received a lot of attention in the policy debate on how to reduce

long-term poverty and its transmission across generations, as discussed in Attanasio, Cattan,

and Meghir (2022).

A frequently overlooked fact is that the effects of such interventions vary widely, with

significant benefits for some groups and smaller effects for others. The well-known Jamaica

study demonstrated remarkable gains in cognitive development (Grantham-McGregor, Pow-

ell, Walker et al., 1991), which later translated into substantial improvements in adult labor

market outcomes (Gertler, Heckman, Pinto et al., 2014); however, the participants were

malnourished children living in urban slums. In contrast, neither the Odisha intervention

(Grantham-McGregor, Adya, Attanasio et al., 2020), that targeted the rural poor, nor the

Cuttack one (Andrew, Attanasio, Augsburg et al., 2019), which focused on urban slum

dwellers, screened for malnutrition. Their impacts were only about one third of those ob-

served in Jamaica; nonetheless, within the Cuttack study, malnourished children experienced

effects comparable to those in Jamaica, suggesting that initial disadvantage may be a key

determinant of impact size. These results are consistent with established evidence that in-

terventions appear to be more effective for children facing the greatest adversity (Conti and

Heckman, 2014).
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A growing body of research has highlighted the relationship between genetic background

and outcomes such as education (Papageorge and Thom, 2019; Ahlskog, Beauchamp, Okbay

et al., 2024; Biroli, Galama, von Hinke et al., 2025), and wealth accumulation (Barth, Pa-

pageorge, and Thom, 2017; Bartscher, Kuhn, and Schularick, 2019). These studies include

genetic background not as individual genes but as a combination of genetic factors, such as

those measured through polygenic scores (PGS).1 Educational attainment polygenic scores,

for instance, have demonstrated explanatory power for educational attainment and cognitive

outcomes, at least in some populations (Okbay, Wu, Wang et al., 2022; Chen, Kim, Lam

et al., 2024).2 Rustichini, Iacono, Lee et al. (2023) incorporate genetic factors when modeling

skill transmission across generations and find that this approach significantly alters predic-

tions about intergenerational income elasticity (IGE).3 Although the underlying mechanisms

and pathways remain unclear, it is widely accepted that genetic background appears to be

predictive of certain phenotypes.

In this paper, we investigate whether the impacts of a randomized Early Childhood

Intervention (ECI) in Colombia, documented in Attanasio, Fernández, Fitzsimons et al.

(2014) and Attanasio, Cattan, Fitzsimons et al. (2020), vary depending on the child’s genetic

background. This exercise is possible due to the availability of DNA from a large fraction

of the children and their mothers in the study. Following the recent literature, we use a

polygenic score (PGS) widely used to predict individual educational attainment and which

combines a large set of genetic variations (Okbay, Wu, Wang et al., 2022).

An issue with the use of PGS in samples from developing countries is that most of the

1As we discuss in Section 2.3, a PGS combines the predictive ability of a large number of Single Nucleotide
Polymorphisms (SNPs). These are the locations in the genome where most of the variation in humans is
expressed. Each SNP is weighted by the size of the GWAS regression coefficient on an outcome of interest,
which is estimated from very large samples. The weighted SNPs are cumulated to compute an aggregate
score that represents an individual’s genetic propensity toward a certain outcome.

2In addition, PGSs have been found to predict a range of other outcomes such as resilience to exter-
nal events (Amstadter, Moscati, Maes et al., 2014), depression (Coleman, Wray, and Lewis, 2020; Lahti,
Silventoinen, and Jokela, 2024), and obesity (Khera, Chaffin, Wade et al., 2019).

3Specifically, these authors find that the IGE coefficient may be larger than previously estimated and is
influenced by the distribution of genetic endowments within the population.
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weights used to construct the PGS have been estimated on Western populations of European

genetic ancestry, in large part due to the availability of genetic data. Therefore, before

analyzing whether the intervention we consider had heterogeneous impacts depending on

PGS, we must establish that such a PGS is predictive of child development in the population

we study. This evidence is interesting in its own right.

Our paper is one of the first to consider how the impact of an early education intervention

in an LMIC context is moderated by polygenic scores that generate possible heterogeneous

impacts based on genetic background. A study close to ours is Biroli, Galama, von Hinke

et al. (2025), which considers whether a natural experiment that changes mandatory school-

ing attenuates the disadvantage associated with genetic background and, more generally,

discusses the issues involved in the use of genetic data and the interactions between ge-

netic background and environmental factors.4 Houmark, Ronda, and Rosholm (2024) study

the association of genetic background with the process of human development, looking at a

structural model that includes child development, parental investment, and genetic variables.

Therefore, we innovate in two dimensions: we provide some validation of the specific

PGS we use, in a context where genetic information is scarce, and we show how a randomized

intervention interacts with this PGS to produce heterogeneous impacts on early childhood

development.

First, we show that the PGS we use is predictive of child cognitive development both at

baseline and at the first follow-up of the randomized controlled trial (RCT) we study, when

the children were about 30 months old. We also show that caregivers’ PGS is predictive

of their own performance in the Raven test, a measure of intelligence, and, to an extent,

correlated with their educational attainment. Interestingly, child PGS is also predictive of

parental investment, in agreement with the evidence presented by Wertz, Moffitt, Agnew-

Blais et al. (2020).

4See Conti and Heckman (2010) for one of the first papers laying out a framework for the analysis of
gene-environment interactions.
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Child PGS’s are obviously correlated with parental PGS’s. This correlation makes

it difficult to interpret the relationship between the child’s PGS and the developmental

outcomes. As already observed in the literature (Wertz, Moffitt, Agnew-Blais et al., 2020),

it is possible that parental and child PGS’s are correlated with observed and unobserved

investments in children, including social influences reflected in parental phenotypes and

correlated with child PGS. These difficulties can severely alter the interpretation of the role

of child PGS.

Second, we find that the impacts documented in Attanasio, Fernández, Fitzsimons et al.

(2014) and Attanasio, Cattan, Fitzsimons et al. (2020) are heterogeneous by the PGS of

children. In particular, we find that the impact of the intervention is much higher in children

with relatively low PGS, which points to lower genetic propensity to acquire education.

The difference is such that the intervention seems to eliminate the “genetic disadvantage”

experienced by children with low PGS. This result shows an important gene-environment

interaction and is one of the first to be documented within an RCT designed to evaluate a

specific intervention.

Interestingly, we obtain a similar result for parental investment. Attanasio, Cattan,

Fitzsimons et al. (2020) show that the intervention had a strong and positive impact on

some components of parental investment and argue that most of the impact is mediated

by increased investment. Here we find not only that high PGS children receive higher

parental investments, but also that the impact of the intervention on parental investment is

particularly high in children with a low PGS.

The remainder of the paper is organized as follows. In Section 2, we describe the RCT

performed in Colombia and the data collected to evaluate it, including DNA material. In

Section 2.3, we discuss the PGS used in this context. In Section 3, we show that such a PGS

is predictive of both children’s and caregivers’ outcomes. Finally, in Section 4, we report the

results of the impact heterogeneity by PGS. Section 5 concludes the paper.
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2 Data and Context

The data we use in this article was collected in connection with a randomized controlled

trial that was carried out in the central region of Colombia in 2008-2009. In this section,

we briefly describe the intervention and its impacts, as well as the context within which the

DNA data we use was collected.

2.1 An early years intervention in Colombia and its impacts

In 2010, a RCT was used to evaluate: (i) an ECD parenting intervention focused on child

stimulation and inspired by the Reach Up program (Jervis, Coore-Hall, Pitchik et al., 2023),

(ii) a nutrition intervention (which consisted of the delivery of nutritional supplements),

and (iii) their interaction. 96 towns, with a population between 2000 and 42000 in eight

departments in Colombia, were randomly allocated to four groups: a control sample, a

stimulation sample, a nutrition sample and a sample that received both interventions. The

intervention, which lasted 18 months, targeted families with children aged 12 to 24 months

at its start and who were beneficiaries of a Conditional Cash Transfer (CCT) program in

Colombia. The intervention was carried out by local women, who were beneficiaries of the

same CCT and who had been elected as representatives of groups of beneficiaries. These

women, called Madres Ĺıderes (ML), were hired and trained (in treatment towns) to deliver

the appropriate intervention. During the duration of the intervention, they were mentored

and advised by the same professionals who trained them at the start of the study.

The 1440 children in the sample were administered a variety of developmental tests at

baseline and at the end of the study, approximately 18 months later. Various anthropometric

measures were also obtained, including height, weight, and anemia. Their families were

administered a rich survey that included standard socioeconomic and demographic variables

as well as parent-reported measures of child development.

The impacts of the two interventions and their interaction were reported in Attanasio,
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Fernández, Fitzsimons et al. (2014). The first noteworthy result is that the nutrition inter-

vention, which included the delivery of micro nutrients, did not have any effect, somewhat

surprisingly, as the prevalence of anemia at baseline was high in the sample. However, the

stimulation intervention, both alone and in combination with the nutrition intervention, was

shown to have sizable and statistically significant effects on child development, which was

measured using the Bayley Scales of Infant Development (BSID), and other scales. For ex-

ample, the cognitive scale of the BSID improved by 0.26 of a standard deviation, with a

p-value of 0.002, while the receptive language scale improved by 0.22 of a standard deviation

(p-value =0.032).5

In a subsequent paper, Attanasio, Cattan, Fitzsimons et al. (2020) show that the stim-

ulation intervention increased parental investment in children, both in terms of time and

materials. Furthermore, the mediation analysis performed in that paper shows that the

impact of the stimulation intervention can be almost completely explained by the observed

increase in parental investment.

Several years after the end of the intervention, in 2013, a second follow-up was col-

lected for this sample. In this survey, in addition to information on child development,

parental investment, and other standard information, DNA material for both the children

in the evaluation sample and their principal caregiver was also collected, which we discuss

in the following section. The evidence from the second follow-up indicated that the impacts

observed at the end of the interventions on child development had waned completely, as

discussed in Andrew, Attanasio, Fitzsimons et al. (2018). Similarly, child investment also

decreased, which may have contributed to the fading out of the impacts.

Given this evidence, in the analysis that follows, we focus on the child development

outcomes at the first follow-up. In particular, we first consider whether child development

outcomes are predicted by genetic background. We also consider whether the PGS’s available

5These are step-down p-values allowing for testing of 12 hypotheses (Romano and Wolf, 2005).
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to us are predictive of parental investment and of mothers’6 outcomes. As discussed in the

Introduction, these results are important in their own right. Having shown the relevance of

the DNA data, we consider the possibility that the impacts at the end of the intervention are

heterogeneous depending on children’s genetic background, that is, we study the interaction

between the educational attainment polygenic score and an environmental factor.

2.2 DNA procedure and data

DNA material was obtained through buccal swabs (gum mucosa), which were collected from

the target children and their principal caregivers (PC) during the second follow-up phase

of the study, with the aim of investigating whether genetic factors influenced the impact of

the intervention. DNA obtained from buccal cells is comparable to the material obtained by

blood collection.

Qualified staff employed by the data collection company were trained to assist in the

process. Buccal swabs were collected exclusively from households that consented to partici-

pate. The procedure was carried out in a health center or community hall within each of the

sample villages after obtaining consent from the participants. We provide additional details

on the DNA data collection and the consent procedure in the Appendix.

DNA material was obtained from 986 caregivers who consented (a consent rate of 78%,

based on a total follow-up sample of 1,257 observations) and 1,080 target children (a consent

rate of 86%). In particular, we obtained 983 complete caregiver-child pairs; for 97 children,

PC DNA was not collected; finally, we had 3 children for whom we collected PC DNA but

not child DNA. This collection rate compares well with large studies such as the Fragile

Families and Child Wellbeing Study (FFCWS) and the UKMillennium Cohort Study (MCS),

where just over 83% of the eligible mothers provided a saliva sample (see Ware Erin (2021);

Fitzsimons, Moulton, Hughes et al. (2022)).

6The principal caregiver is the mother in the majority of instances, so from now on we use these terms
interchangeably.
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As mentioned above, the DNA samples were held in the utmost confidentiality and

were not linked directly with the household ID or any personal identifier. Unfortunately,

difficulties in field work, which we discuss in detail in the Appendix Section A.2, made it

impossible to link some of the DNA material to the survey data and to the children’s results.

This led to the loss of sample units. Below we present evidence that the observations are

missing at random.

DNA extraction was performed at the Genome Center of Queen Mary University of

London; samples were then assayed with the Illumina Global Screening Array (GSA) at the

HuGe-F facility of Erasmus University Rotterdam (mothers’ sample) and at King’s College

London NIHR Maudsley Biomedical Research Centre (BRC) (children’s sample). Further

details on the genotyping are provided in the Appendix. Due to duplicates, poor quality

performance, low stock volume, or failed Qubit measurements, the sample size assayed with

Illumina GSA was reduced to a total sample of 1,362 individuals, consisting of 656 (out of

986) caregivers, and 706 (out of 1,080) target children, yielding 522 (out of 983) caregiver-

child pairs.

In addition, we performed extended quality control to check: i) that the phenotypic

gender is confirmed by the extracted DNA, ii) family relationship (most principal caregivers

are the biological mothers) and iii) ancestry (most samples have Colombian, Mexican, or

Puerto-Rican ancestry, as expected). Given all this, the data of the target children sample

we use is restricted to 528 observations (out of 706). In the analysis we report below, we

also exclude 2 extreme outliers, defined as those with a PGS more than 4 SDs distant from

the mean.

In the Appendix, Table A1 presents balance tests for the sample in which we have

linked child genetic information, as well as for the sample in which we have DNA data

for the primary caregivers. Reassuringly, the characteristics of the DNA sample are well

balanced, with no significant differences between treatment and control samples.
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Given the limited size of the sample for which genetic data is available, we further

test whether DNA data are missing at random. The outcome variable is a cognitive score

factor constructed from three Bayley subscales: cognition, receptive language, and expressive

language.7 In Table 1, we regress the outcome of the intervention on treatment status and

a set of controls, including child age and gender, a quadratic in mother’s age, interviewer’s

dummies, and baseline values for: Bayleys and its square, mother education dummies, a

poverty index, indicators for anemia and stunting, and mother depression. Column (1)

reports the results on the entire sample. In column (2), we add a missing DNA variable:

this is not significant and does not change the estimated impact much. Finally, in column

(3), we estimate the impact only on the subsample where the DNA is not missing. The

impact remains almost unchanged, albeit with a higher standard error reflecting the loss in

the sample.8 The conclusion is that the DNA data is missing at random, and that the cost

of this loss is not bias, but power to detect effects.

2.3 The Educational Attainment Polygenic Score

Polygenic scores (PGS) are genetic predictors that aggregate the estimated effects of many

SNPs on a phenotype y. A typical PGS is computed from SNP information as follows.

PGSy
i =

∑
j

β̂y
j xij (1)

for all individuals i. In equation (1) xij is i’s genotype at SNP j taking the values 0, 1, or 2

depending on whether the individual has inherited 0, 1, or 2 copies of the allele in question.

β̂y
j is the strength of the association of that allele with the trait in question, which in our case

7Here we use this composite factor to increase the power of the analysis. The results for the raw scores
for each sub-scale and other domains in the Bayley are reported in Attanasio, Fernández, Fitzsimons et al.
(2014)

8We lost a variable proportion of observations within each community (cluster) and only in the two cases
we lost the entire cluster. In our data, the spatial correlation is about 4%, implying that the power lost
from missing observations is lower than it would have been if the observations had been independent of each
other.
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Table 1: DNA data missing at random: Child Cognitive Development

Complete sample Complete sample Non missing DNA
(1) (2) (3)

treat 0.164*** 0.169* 0.146*
(0.057) (0.089) (0.086)

Missing DNA 0.037
(0.060)

treat on -0.008
missing DNA (0.105)

Observations 1144 1144 437
R2 0.315 0.315 0.323

This Table displays coefficients from linear regressions of follow up Bayley’s cognitive index on an indicator of whether
the child was treated or not. In column 2, the regression also includes a dummy that indicates the observations
for which DNA information is missing and the interaction of this dummy with treatment status. In column 3,
estimation of treatment effect is limited to the sample with non-missing DNA information. The set of controls
included in all columns are child age and gender, a quadratic in mother’s age, interviewer’s dummies, and baseline
values for: Bayleys and its square, mother education dummies, a poverty index, indicators for anemia and stunting,
and mother depression. Standard errors (in parenthesis) are clustered at the village level. * p < 0.10, ** p < 0.05,
*** p < 0.01. a The RW p-values are adjusted for 2 hypotheses in column 2, for 3 hypotheses in column 3 and 4
hypotheses in column 4.

is educational achievement. These parameters are estimated in very large samples, typically

from Western populations.

Although individual genetic variants have tiny effects on complex phenotypes such as so-

cial and behavioral outcomes, PGSs are much more predictive. The PGS we use in this study

is a genetic predictor for educational attainment. It was constructed using the estimated

effects of SNPs from a genome-wide association study (GWAS) of educational attainment

carried out on a sample of ∼ 3 million individuals of European genetic ancestry (Okbay,

Wu, Wang et al., 2022). This PGS is reported to explain 12.9% and 17% of the variance in

educational attainment for individuals of European genetic ancestries in the Health and Re-

tirement Study (HRS) and the National Longitudinal Study of Adolescent to Adult Health

(Add Health) samples. We report details on the computation of the PGS we use in the

Appendix.

PGS have been demonstrated to have poor predictive power when constructed using
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SNP effects estimated in GWAS discovery samples of a genetic ancestry that is different

from the validation sample’s. For example, Okbay, Wu, Wang et al. (2022) estimate the

predictive power of the educational attainment PGS to be 1.3% and 2.3% for individuals of

African genetic ancestry in HRS and Add Health, respectively, representing an attenuation

of 89% and 85%. Various factors have been shown to contribute to this drop in predictive

power, including but not limited to differences between populations in causal variant effect

sizes, in alleles frequencies and in the correlation between causal variants and SNPs included

in the GWAS, as well as gene×environment interactions. In general, the portability of PGS

decreases with increased genetic differentiation between ancestries (Wang, Guo, Ni et al.,

2020).

The Colombian population is known to be an admixture of genetic ancestries from the

Americas, Europe, and Africa, with percentages depending on the region (Ossa, Aquino,

Pereira et al., 2016). As such, we expect the decrease in the predictive power of the PGS in

our sample to be lower than that observed in Okbay, Wu, Wang et al. (2022) for individuals of

African genetic ancestry, provided that the dominant factor contributing to the loss is genetic

differences rather than gene×environment interactions. The extent to which the PGS we

consider is predictive of developmental outcomes in our sample is therefore an interesting

question.

3 Is the PGS Predictive of Maternal and Child Outcomes?

Having collected DNA data and calculated an educational attainment polygenic score, we

can evaluate its predictive validity in the current context. In particular, we check whether

the polygenic scores we calculate are predictive of a set of different outcomes. Such an exer-

cise is interesting in its own right, given the paucity of data from developing countries and

non-Western populations. At the same time, it will be the first step in establishing whether

the impacts of the intervention implemented in the population considered are heterogeneous
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by values of the polygenic scores. To mitigate any measurement error and to make the inter-

pretation of the estimated coefficients easier, we decided to use a binary indicator throughout

for PGS above/below our own sample median.9

Before showing the extent to which the PGS is predictive of child development, we should

stress that these correlations are not causal. The PGS can be correlated with parental

genotypes and phenotypes, as well as with other socioeconomic variables that we do not

observe and that could be the main causal factors driving child development.

Table 2: Predictability of child and mother (PC) outcomes by their respective PGS

Child Cognitive Domain - Bayley Maternal Cognition and Education
(1) (2) (3) (4) (5) (6) (7) (8)

Baseline Follow-up Baseline Follow-up Raven Years of Ed Raven Years of Ed

PGSa ≤ median -0.289*** -0.324*** -0.175** -0.193** -2.551*** -0.805* -1.884** -0.498
(0.095) (0.101) (0.087) (0.089) (0.933) (0.435) (0.925) (0.435)
[0.002] [0.002] [0.081] [0.081] [0.027] [0.048] [0.103] [0.230]

Controls Basic Basic Full Full Basic Basic Full Full

Observations 491 479 450 437 323 312 301 299
R2 0.081 0.125 0.162 0.356 0.103 0.091 0.178 0.184

aIn Columns 1-4 PGS is that of the child. In Columns 5-8 PGS is that of the mother. In the first two columns, a basic set of
controls includes the first 20 principal components of the child’s SNPs as well as interviewers’ dummies and child gender and age
in months. In column 3 and 4, the set of controls also includes indicators for stunting and anemia at baseline as well as a PC’s age
and its square, an indicator for depression at baseline, a poverty index. The RW p-values are adjusted for 2 hypotheses in columns
1 and 2 and for 2 hypotheses in columns 3 and 4 reported in square brackets. In Columns 5-8 Basic controls include interviewer
dummies and 20 principal components of the PGS’s SNPs. Full control also include PC’s age and a depression index as well as a
poverty index. The RW p-values are adjusted for 2 hypotheses in column 5 and 7 and 2 hypotheses in column 6 and 8 in square
brackets. Standard errors (in parenthesis) are clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01. a Standard
errors (in parenthesis) are clustered at the community level.

Predicting Child Developmental Outcomes with an Education PGS. We start

by considering the predictability of the cognitive development of children by PGS. These

are reported in the first four columns of Table 2. We used the subsample of our survey

in which the DNA information was successfully matched, allowing the calculation of the

educational attainment PGS. As we discussed above, DNA is missing at random, so the

sample we are using is representative. For this sub-sample, we construct a cognitive measure

that combines three subscales of the Bayley Scales of Infant Development III (namely, the

9Tables using the specification with continuous PGS yield very similar results and are available upon
request.
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cognition, expressive, and receptive language subscales). These measures were collected both

at baseline, when the children were about one year old, and 18 months later, at the first

follow-up of the study, which we will use for the main analysis of this paper.

In addition to the PGS variable, we add interviewer dummies and controls for child

gender and age in months, and strata controls. We also control for child’s indicators of

stunting and anemia at baseline, as well as for the Principal Caregiver’s age and its square,

education, depression, and an index of poverty. Furthermore, as is common practice in

the literature on PGS, we also include the first 20 principal components of genomic data

to control for confounding due to population stratification (Price, Patterson, Plenge et al.,

2006). This set of controls will also be used in the analysis of the interaction between

treatment effects and genetic background.

The results indicate that the PGS can predict the baseline Bayley cognitive score. In

particular, at baseline and follow-up, children with a PGS below the median have measures of

cognitive development -0.29 and -0.32 standard deviations lower, respectively, than children

with a PGS above the median when we use a basic set of controls, including 20 principal

components of the PGS SNPs, interviewer dummies and child age and gender. These as-

sociations are strongly significant with a Romano Wolf-corrected p-value of 0.002. When

we add a richer set of controls, including Principal Caregiver age, education and depression,

as well as an indicator of stunting and one of poverty, the association is much lower, with

coefficients of 0.18 and 0.19 at baseline and follow-up, respectively. These coefficients have

RW adjusted p-values of 0.08.10 Thus, there is some evidence that PGS predicts lower child

performance.

Predicting Primary Caregiver Education Attainment We now turn to the pre-

dictability of adult outcomes among the principal caregivers (PC) in our sample with respect

10The alternative specifications with a continuous PGS deliver very similar results, and are presented in
the appendix.
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to their own educational PGS11. The results are reported in columns 5-8 of Table 2. We

consider two outcomes, the Raven score obtained from the principal caregiver, and their ed-

ucational attainment, measured by the number of years of formal schooling. We report two

sets of results, one with only a basic set of controls, which include interviewers’ dummies

and the first 20 principal components of the PC genomic data, and another one with an

extended set, which also includes PC’s age and depression index at baseline and a poverty

index. The p-values for the significance of the PGS coefficients are adjusted for multiple

hypotheses testing (considering the Raven test and education).

When considering only the basic set of controls, the coefficient on the low PGS dummy

is negative and strongly significant for the Raven tests. Under conventional single-hypothesis

standards, the p-value for the predictability of the Raven when we include only basic controls

is 0.008. For educational attainment, the coefficient is also negative with an adjusted RW

p-value of 0.048. When controlling for some additional variables, such as age, depression, and

a poverty index, the size of the coefficient decreases, and the RW adjusted p-values for the

two coefficients are 0.103 and 0.230. Considering our relatively small sample, we interpret

the results on the correlation between Raven scores and PGS as quite strong evidence of

predictability. However, in this sample, we find little evidence that it predicts educational

attainment, possibly reflecting the limited variability of education in the sample.

Investments and the PGS. Finally, we examine whether parental investments in children

are predicted by child PGS. We include the same controls as for the regressions in Table

2. The investment measures for materials are composites of books and developmentally

appropriate toys found in the household, while time investments are a composite of time

spent with the child in developmentally relevant activities. These measures were collected

during the baseline and follow-up interviews and are described in detail in Attanasio, Cattan,

Fitzsimons et al. (2020). Observing the predictability of these investments based on the child

11For those for whom we have DNA, most of whom are the children’s biological mothers.
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Table 3: Parent Investment at Baseline

Material Investment Time Investment
(1) (2) (3) (4)

Child PGS -0.204** -0.128 -0.173*** -0.110*
≤ median (0.086) (0.084) (0.063) (0.063)

[0.043] [0.226] [0.050] [0.266]

Controls basic full basic full

Observations 465 453 465 453
R2 0.136 0.227 0.129 0.221

Dependent variables: Columns 1-2 Material Investment at baseline; Columns
3-4 Time Investment at baseline. A basic set of controls, included in columns
1 and 3, are child age and gender, a quadratic in mother’s age, interviewer’s
dummies and the first 20 principal components of the PGS’ SNPs. In columns
2 and 4 , the set of controls also includes indicators for mother’s depression at
baseline, education dummies, a poverty index and an indicator for stunting
at baseline. Standard errors (in parenthesis) are clustered at the village level.
* p < 0.10, ** p < 0.05, *** p < 0.01. a The RW p-values, reported in square
brackets are adjusted for 2 hypotheses in column 1 and 3 and 2 hypotheses
in column 2 and 4.

PGS points to possible mechanisms through which child PGS may affect final outcomes.

Table 3 shows the results. In all cases, the estimates point to lower investments for

children with low PGS, which would be consistent with their lower level of achievement,

shown in Table 2. However, the effects become considerably smaller and mostly insignificant

once we include the full set of controls, both for material and time. The implication is that

observable characteristics of mothers and children that are correlated with PGS also drive

investments.

4 The Polygenic Score and The Intervention Impacts

In this Section, we examine the possibility that the intervention had different impacts on

children with different polygenic scores, which we have shown to be predictive of several

developmental outcomes. As mentioned in Section 2.2, the outcome variable we consider

is the cognitive score factor constructed from the three Bayley subscales. Similar results

are obtained with the individual subscales (cognition and receptive language) for which we

record a positive impact.
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Heterogeneous Intervention Impacts on Child Development Our main results on

the differential impacts of the interventions are presented in Table 4. In column (1), for ease

of presentation, we report again the estimates without any DNA indicators, as in Table 1.

In column (2), we report estimates of the impacts of the intervention for children with a

value of the PGS above and below the median. Since we are testing two hypotheses (impact

of the intervention for low and high PGS) we present Romano and Wolf (2005) stepdown

pvalues (RW) that adjust for multiple hypotheses testing.

Table 4: Treatment impact heterogeneity on Bayley cognitive index by PGS and education

(1) (2) (3) (4)

treatment 0.146* 0.424***
(0.086) (0.121) [0.003]

treatment× low PGS 0.287** 0.538***
(0.121) [0.043] (0.159) [0.002]

treatment× high PGS -0.041 0.255*
(0.119) [0.720] (0.137) [0.079]

treatment × complete primary -0.320* -0.343**
(0.160) [0.050] (0.166) [0.028]

treatment × more than primary -0.512*** -0.487***
(0.175) [0.007] (0.170) [0.01]

Child PGS ≤ median -0.299*** -0.279**
(0.108) (0.107)

Observations 437 437 443 437
R2 0.323 0.380 0.338 0.393
p. val. treatment × low PGS= 0.051 0.084
treatment× high PGS

Dependent variable Bayley’s cognitive index. A set of controls included in all columns are child age and gender, a
quadratic in mother’s age, interviewer’s dummies , and baseline values for: Bayleys and its square, mother education
dummies, a poverty index, indicators for anemia and stunting, and mother depression. The regression which include
the child PGS also include the first 20 principal components of the PGS’ SNPs. Standard errors (in parenthesis) are
clustered at the village level. * p < 0.10, ** p < 0.05, *** p < 0.01. a The RW p-values,reported in square brackets,
are based on 2 hypotheses in column 2, 3 hypotheses in column 3, and 4 hypotheses in column 4.

According to these results, the intervention completely compensates for low PGS, which

is associated with disadvantage, as shown in Table 2. The size of this compensating effect

can be seen in column (2) by comparing the coefficient of the low PGS dummy (-0.299)

to that interacted with treatment (0.287, RW p-value 0.043). The intervention appeared to

have no impact for children with high PGS (-0.041, RW p-value 0.7). The difference between
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the impacts is significant, implying that the intervention did little for children with higher

PGS, an issue that is interesting and troubling at the same time, since these children are

not well off by any definition.12

In columns (3) and (4), we explore heterogeneity with respect to primary caregiver

education (PC) and by both PGS and education. Our definition of education (less than

primary, complete primary, and more than primary) splits our sample roughly into three

equal parts. Column (3) implies that the impact of the intervention can be accounted for by

children whose mothers completed less than primary education. Again, the impact seems to

be greater for the most disadvantaged children.

In column (4), we consider together heterogeneity by the education of the PC and

by PGS. Our point estimates indicated that the greatest impact of the intervention is for

children with low PGS whose mothers have education less than primary; next is the group

with high PGS and mothers with this lowest education. These results tell a more complete

story: the intervention improved the outcomes of children whose mothers have the lowest

level of education, with the effect being greater for those in this group who have a low PGS

(p-value for the difference 0.084). It appears that part of the heterogeneity attributed to

the PGS can be explained by mother’s education, with the intervention having a stronger

impact on the children of mothers with the lowest education.

Heterogeneous Intervention Impacts on Parental Investment. To interpret these

results, we now turn to the parental investment behavior, which was shown to be the key

mediator in this intervention by Attanasio, Cattan, Fitzsimons et al. (2020). Table 5 presents

the results for time investments (columns 1-4) and material investments (columns 5-8), mir-

roring the specifications we estimate for child development in Table 4.

Consistent with the results for the entire sample, treatment increased both time (col

12It would have been desirable to also control for the PGS of the principal caregiver, but the number of
observations where both are available is too small, so the estimates become very noisy.
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Table 5: Time and Material Investment

Time Investment Material Investment
(1) (2) (3) (4) (5) (6) (7) (8)

treatment 0.199** 0.330*** 0.117 0.218**
(0.083) (0.123) (0.087) (0.106)

[0.005] [0.059]

treatment× 0.325*** 0.457*** 0.128 0.199
low PGS (0.105) (0.139) (0.115) (0.137)

[0.006] [0.001] [0.273] [0.164]

treatment× 0.082 0.248 0.087 0.182
high PGS (0.126) (0.150) (0.122) (0.135)

[0.501] [0.109] [0.473] [0.197]

treatment× -0.258* -0.264 -0.079 -0.012
(0.146) (0.163) (0.140) (0.152)

primary [0.051] [0.128] [0.590] [0.960]

treatment× -0.167 -0.199 -0.220 -0.227
≥ primary (0.167) (0.162) (0.143) (0.146)

[0.180] [0.2216] [0.140] [0.134]

Child PGS -0.078 -0.066 -0.131 -0.126
≤ median (0.116) (0.114) (0.108) (0.106)

Observations 451 451 457 451 451 451 457 451
R2 0.266 0.316 0.262 0.313 0.300 0.351 0.303 0.354
p.val.treat. × lowPGS 0.137 0.825 0.307 0.913
=treat× high PGS

Dependent Variable columns 1-4 Time Investment and Columns 5-8 Material Investment. A set of controls included in all columns are child
age and gender, a quadratic in mother’s age, interviewer’s dummies , and baseline values for: Bayleys, time investment, mother education
dummies, a poverty index, indicators for anemia and stunting, and mother depression. The regressions which include the child PGS also
include the first 20 principal components of the PGS’ SNPs. Standard errors (in parenthesis) are clustered at the village level. * p < 0.10,
** p < 0.05, *** p < 0.01. a The RW p-values are in square brackets and are adjusted for 2 hypotheses in column 2, for 3 hypotheses in
column 3 and 4 hypotheses in column 4.

1) and material (col 5) investments, although the latter is not significant in our smaller

sample. When we interact treatment with low/high PGS we find that time investments

increase much more for children with low PGS than for those with high PGS, and the

difference is significant at the 10% level. The pattern is similar for material investments, but

unfortunately the effects are too noisy relative to their size to draw stronger conclusions.

Similarly to the evidence on the impacts of intervention on child development, in columns

(3) and (7), we also explore heterogeneity by mother’s education. Consistent with the results
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on child development, there is some suggestive evidence that the increase in investment came

from mothers with the lowest education for both time and material investments. The impact

on time investment is strongly significant for mothers with less than primary education.

However, although the point estimates indicate smaller impacts for mothers with higher

education, these impacts are not statistically significant.

In columns (4) and (8), we include all interactions (education and low/high PGS). For

time investment, we find that most of the investment increase came from mothers with low

PGS children. For materials, the picture is again less clear.

Summary. The results we presented show that the intervention has a strong impact for

children with low PGS and particularly for those with low-educated mothers. We do not

have the power to distinguish whether the PGS or the education moderator are the main

source of heterogeneity. However, these results suggest that the intervention closed the gap

between the least and most deprived, without changing much for the former.

When we consider investment behavior, a possible explanation emerges: the interven-

tion mainly increased time investments for the least better off and not as much for the rest.

In Table 3, we show that children with lower PGS seem to attract less parental investment.

Therefore, on the one hand, these results indicate that managing to increase parental invest-

ments is key to the success of such an intervention and that the least advantaged can benefit

substantially (at least in the short run). On the other hand, we need to ask the question

as to why mothers who are better educated or have children who are less disadvantaged,

as implied by the high PGS, do not respond as much to the intervention that promotes

engagement with children.
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5 Conclusions

In the context of a randomized early childhood intervention in Colombia that was shown

to have significant short-term results, we examine the heterogeneity of impacts by a genetic

marker, the educational polygenic score (PGS), and by the education of the mother.

The use of PGS in this population and for this purpose is novel. We show that child

PGS is predictive of child outcomes. The mother’s own PGS is less predictive of her IQ and

education, once we control for observable characteristics. We then show that the intervention

mainly affected children with low PGS and those whose mothers had the lowest education.

Finally, we show that the intervention increase parental investment more for children with a

relatively low PGS (who also, in the control group, attract less investment). In our sample,

we do not find large and significant differences in the impacts on investment by mothers’

education.

There are two broad conclusions from these results. First, the educational PGS we use in

this population is predictive of child development and, therefore, summarizes characteristics

that indicate disadvantage. Second, the Colombian intervention we have studied mainly

affected the least-disadvantaged children, based on their own PGS or based on the mother’s

education.

The results we obtain in this paper point to an interesting research agenda that would be

made possible by the availability of genetic data in studies of early childhood interventions.

Richer data, including large samples where DNA observations of both parents as well as the

child were available, would be important to control for confounding factors arising from the

correlation of parental DNA with both parental phenotypes and child genetics. This would

also allow us to better understand how the genetic background relates to parental behavior

toward children (such as investments in their upbringing) and to better explore the role of

gene-environment interactions in mediating the impact of interventions. Recognizing het-

erogeneity by genetic background can in principle allow us to design improved interventions
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in a way that improves the well-being of all children.

Finally, it is important to realize that all children in our sample are deeply deprived,

whether they have a high or a low PGS. While it is comforting to know that the intervention

compensated for the deprivation associated with a low PGS, having the ability to improve

the results for all, including those with a high PGS is of fundamental importance.
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A Appendix

A.1 DNA data collection details

The DNA data collection was started requiring the participants to provide consent. In par-

ticular, the consent form requested permission to collect buccal cell samples from target

children and/or their caregivers. Consent could be provided by caregiver, the caregiver on

behalf of the child, or for both him/herself and the target child. To minimize nonparticipa-

tion, caregivers were asked to collect their own and/or their child’s buccal cell samples. The

consent form outlined the procedure for collecting the buccal mucosa, the associated risks

and benefits, and emphasized that the procedure was painless and completely safe. It also

detailed the measures taken to protect participants’ confidentiality and security.

Upon signing the consent form, the staff explained the buccal cell collection procedure

to the mother using a set of five posters designed to clearly illustrate the instructions. In

particular, each poster stressed the following points:

• The procedure takes no more than a few minutes per subject.

• To minimize external contamination, both the staff and the caregiver wore protective

gloves and face masks when handling materials.

• The caregiver received a glass of water to rinse her mouth and remove any food residue

(staff provided water and glass).

• The caregiver was asked to massage his/her cheeks with his/her fingers to stimulate

saliva production. The caregiver then used 2 to 3 cotton swabs to wipe the inside of

her cheeks and tongue for 20 seconds each, placing each swab in a tube containing a

solution that will break cells and extract DNA (using the Gentra Puregene Buccal Cell

Kit (400) Cat No 158867, sold by qiagen). A unique code was recorded both on the

sample tube and in the questionnaire.
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• The caregiver then repeated the same procedure for the target child, using a new tube

for the child’s sample.

Following a recommendation from the Research and Ethics Committee, each sample

was identified in the database using a unique code, distinct from the participant’s ID used

in the rest of the survey, and without any personal identifiers. This measure implied that

participants’ data could not be linked to their identities, making individual results untrace-

able.13

A.2 DNA Collection and linkage to Survey

In collecting DNA material, we strove to maintain confidentiality. Unfortunately, the data

collection company interpreted the commitment to confidentiality too strictly and discarded

the personal identifier before matching the DNA data with the household survey and the

children’s developmental measures, despite the fact that IRB approval was obtained for this

link. Eventually, linking the DNA data to the survey was made possible by the fact that

the interviewers collecting the DNA were instructed to label the tubes sequentially in each

village. Furthermore, the staff recorded location data and followed a certain order, which

was preserved on their field work sheets. Since there are on average only 15 households

per locality, we were able to reproduce the interview patterns from the field work sheets

to associate the unique code of the DNA tube with the unique individual identifier of the

survey data set for 93% of DNA observations. However, labeling instructions were not

followed everywhere. For 145 tubes it was not possible to link the unique code of the DNA

tube with the unique individual identifier of the survey data set. As a consequence these

data are not used in this paper.

13To ensure proper sample preservation, the staff were trained to seal each tube securely with Parafilm,
place them inside pressure-resistant boxes to prevent damage, store them at room temperature in a closed
container, track collection progress, and report to the field supervisor. Once collected, the samples were
shipped to the Human Population Lab at University College London’s Department of Genetics, Evolution,
and Environment, where DNA was stored.
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A.3 Genotyping

The analysis of the DNA material included genotyping and epigenotyping assessments to

evaluate the role of genetic factors in response to the intervention. The DNA was assayed

using the Illumina Global Screening Array (GSA; HuGe-F at Erasmus and King’s College

London lab), suited for multi-ethnic samples. It also included extended quality control and

imputation.

A.4 Details on PGS computation

GWAS are performed by running regressions of the phenotype on each of millions of SNPs

separately, controlling for some basic covariates. Because of this, estimated SNP effects

capture the effect of the predictor SNP as well as those around it that are correlated with

it. The correlation between proximal SNPs, called “linkage disequilibrium (LD)” arises

because the probability of co-inheritance is inversely proportional to the distance between

two SNPs. Therefore, including all SNPs in a PGS results in double-counting of effects.

To address this issue, we followed the same procedure as Okbay, Wu, Wang et al. (2022)

and adopted a Bayesian methodology, called SBayesR (Lloyd-Jones, Zeng, Sidorenko et al.,

2019), implemented in the software package GCTB (Zeng, De Vlaming, Wu et al., 2018).

SBayesR imposes a flexible finite mixture of normal distributions on the SNP effects. To

estimate the posterior mean SNP effects adjusted for LD, it requires a reference data set

containing correlation estimates between SNPs. For this purpose, we used the LD matrix

for the 2,865,810 pruned common variants from the full UKB European-genetic-ancestry

(N ≈ 450, 000) data set from Lloyd-Jones, Zeng, Sidorenko et al. (2019), excluding 3,638

SNPs in the MHC region (Chr6 : 28-34Mb) to improve model convergence.

We ran SBayesR assuming a four-component normal mixture model, with initial mixture

probabilities π = (0.95, 0.02, 0.02, 0.01), and γ = (0.0, 0.01, 0.1, 1), where γ is a parameter

that constrains the variance of the distribution of genetic effects for each of the four compo-
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nents. The MCMC was run for 10,000 iterations with 2,000 taken as burn-in. We obtain the

adjusted weights for the overlapping SNPs between the ∼ 2.8 million SNPs available in the

LD matrix and the GWAS educational achievement. Using these weights, we calculated the

PGS in Plink2 (Chang, Chow, Tellier et al., 2015) by multiplying the genotype at each SNP

by the corresponding estimated posterior mean calculated by SBayesR, and then summing

all included SNPs.

In order to control for population stratification in models that include the PGS, we

constructed 20 principal components (PCs) of the genomic data. Prior to constructing

the PCs, we excluded SNPs with an imputation accuracy less than 70% or minor allele

frequency less than 1%. Next, we obtained a set of approximately independent SNPs by

LD-pruning the remaining variants using a 1Mb rolling window (incremented in steps of

5 variants) and an r2 cutoff of 0.1. We obtained a genetic relatedness matrix using these

approximately independent SNPs, and identified all closely related individuals (pairwise

relatedness coefficient greater than 0.05 as calculated by Plink 1.9; Chang, Chow, Tellier

et al. (2015)). We excluded one individual from each of these pairs, estimated the PC

loadings in the unrelated sample, and projected the remaining individuals onto the PC

space.
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A.5 Imputation

Figure A1 shows the imputation performed on the University of Michigan server via IBS/IBD

distance analysis using AIMS variants with a 1000G panel which has the optimal mix (it is

the same used for the MCS).

Figure A1: Imputation

Note: Our sample is black. Red=European. Blue=Asian. Green=African. Yellow=Colombian.
Cyan=Mexican Coral=Puerto Rican. Brown=African American.

A.6 Balance Test

Table A1: Balance

PC Years of PC Raven PC Wealth Play Play PC Child Cognition Expressive Receptive Child Bayley

Education score Age Index materials activities EA-PGS age Language Language EA-PGS Factor

Panel A: Child genetic sample

Treat -0.561 -0.007 1.014 0.086 0.002 -0.178 -0.195 -0.205 -0.048 0.007 -0.135 -0.007 -0.081
(0.356) [0.192] (0.839) [1.000] (0.572) [0.079] (0.097) [0.377] (0.148) [0.128] (0.170) [0.464] (0.147) [0.189] (0.376) [0.587] (0.097) [0.914] (0.102) [0.946] (0.105) [0.412] (0.137) [0.960] (0.120) [0.499]

Obs. 493 493 497 511 511 511 334 511 508 507 508 511 507

Panel B: Child genetic sample, with interviewer fixed effects

Treat -0.670 -0.052 1.047 0.077 0.034 -0.120 -0.323 -0.080 -0.081 -0.024 -0.198 -0.051 -0.139
(0.338) [0.081] (0.864) [0.997] (0.508) [0.042] (0.095) [0.420] (0.157) [0.963] (0.183) [0.747] (0.130) [0.015] (0.387) [0.837] (0.098) [0.748] (0.107) [0.828] (0.096) [0.098] (0.118) [0.663] (0.108) [0.204]

Obs. 493 493 497 511 511 511 334 511 508 507 508 511 507

Panel C: Primary Caregiver genetic sample

Treat -0.254 0.190 1.354 0.117 0.017 -0.297 -0.195 -0.038 -0.178 -0.060 -0.211 0.009 -0.193
(0.356) [0.766] (0.839) [0.973] (0.696) [0.055] (0.114) [0.309] (0.148) [0.996] (0.170) [0.221] (0.147) [0.189] (0.477) [0.937] (0.097) [0.398] (0.102) [0.642] (0.105) [0.322] (0.142) [0.948] (0.126) [0.129]

Obs. 322 323 324 334 334 334 334 334 332 331 332 334 331

Panel D: Primary Caregiver genetic sample, with interviewer fixed effects

Treat -0.601 -0.102 1.387 0.098 0.047 -0.219 -0.323 0.130 -0.249 -0.115 -0.308 -0.093 -0.293
(0.338) [0.128] (0.864) [0.988] (0.593) [0.022] (0.115) [0.395] (0.157) [0.953] (0.183) [0.448] (0.130) [0.015] (0.501) [0.796] (0.098) [0.272] (0.107) [0.436] (0.096) [0.091] (0.129) [0.473] (0.122) [0.019]

Obs. 322 323 324 334 334 334 334 334 332 331 332 334 331

Note: Table displays results from balancing tests. Panels A and C display coefficients from linear regressions of the baseline characteristics indicated
in the column and a binary indicator for treatment. Panels B and D display coefficients from specifications which include binary indicators for
interviewer. Clustered standard errors at the village level in parenthesis, and Romano-Wolf adjusted two tailed p-values (Romano and Wolf (2005,
2016)) in squared brackets (5000 replications). For those cases where there is no Romano-Wolf adjustment the p-value is presented in the squared
brackets. Romano-Wolf implemented on the following blocks: (1) PC Years of Education and PC Raven Score; (2) Play Materials and Play
Activities; (3) Bayley Cognitive, Bayley Expressive Language and Bayley Receptive Language. * p < 0.10, ** p < 0.05, *** p < 0.01.
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