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1.2 Th. Brückel 

1.1 Introduction:  Why Scattering?

In this chapter, we will start with a very gentle qualitative introduction entirely without 
formula to give you an idea what the course is all about. The details will follow in 
subsequent chapters.  
Imagine you leave this lecture hall, some mean looking guys dressed entirely in black 
follow, kidnap and take you to the medieval castle of Nideggen in the close-by Eifel
mountains. There you are being thrown into a pitch dark dungeon. You cannot see 
anything, but you hear some noises. Are there rats? Are there other prisoners? Are there 
dragons? Luckily you remember that you have some matches in your pocket. You light 
a match, you can see everything around you and everything becomes clear to you…
What I have just described is essentially like a scattering experiment: figuratively it 
sheds light into darkness and helps us understand the world around us. Let’s analyse 
what you did in the dungeon: first when you light the match, you start a source of 
radiation. Here the radiation is light. This light then gets scattered (reflected, 
transmitted) from the surrounding objects. In a scientific scattering experiment, we will
call this object a “sample”. Back to the dungeon: some of this radiation gets scattered 
into your eye. Your eye serves as very special radiation detector: with its lens, it is able 
to even make an image of the objects on the retina, which in the language of a physicist 
would be called an “area position sensitive pixel detector”. This image contains lots of 
information: the colour of the backscattered light tells you something about the 
absorption of certain components of the light and therefore gives information about the 
material the light is scattered from. The position of the signal on the retina gives you 
information about the spatial arrangement of the objects around you. And finally the 
time dependence of the signal tells you that the monster is actually crawling towards 
you, ready to attack. All this information has to be treated and interpreted. This is done 
by our brain, an extremely powerful computer to analyse this wealth of data.  
This little example shows you the importance of scattering for our understanding of the 
world: nearly all information that we as individuals have about the world in which we 
live comes from light scattering and imaging through our eyes. It is only natural that 
scientists mimic this process of obtaining information in well controlled scattering 
experiments: they build a source of radiation, direct a beam of radiation towards a 
sample, detect the radiation scattered from a sample, i. e. convert the signal into an 
electronic signal, which they can then treat by means of computers. In most cases one 
wants an undisturbed image of the object under investigation and therefore chooses the 
radiation, so that it does not influence or modify the sample. Scattering is therefore a 
non-destructive and very gentle method, if the appropriate type of radiation is chosen 
for the experiment.  
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1.2 X-Ray Scattering in Condensed Matter Research

What other requirements must the radiation fulfill to be useful for scattering 
experiments? In condensed matter science we want to go beyond our daily experience
and understand the microscopic atomic structure of matter, i. e. we want to find out 
where the atoms are located inside our samples and also how they move. This cannot be 
done by light scattering. Why? Well in general light is scattered from the surface and 
does not penetrate enough into many materials, such as metals, for example. On the 
other hand, if it penetrates like in the case of glass it is normally just being transmitted 
except if we have a very bad glass with lots of inhomogeneities, but the main reason is 
actually that light has too long of the wavelength, see figure 1.1.

Fig. 1.1:Electromagnetic spectrum; shown is the wavelength and frequency of 
electromagnetic waves, which have different names for different wavelength 
regions.  Also given are examples for objects with sizes comparable to the 
wavelength.  (from WIKIPEDIA)

It is quite intuitive to understand that if we want to measure the distance between the 
atoms, we need a “ruler” of comparable lengths. Now the distance between atoms is in 
the order of 0.1 nm = 10-10 m = 0.0000000001 m. Since the distance between atoms is 
such an important length scale in condensed matter science, it has been given its own 
unit: 0.1 nm = 1 Ångstrøm = 1 Å. If we compare the wavelength of light with this 
characteristic length scale, it is 4000 to 7000 times longer and therefore not appropriate 
to measure distances on an atomic lengthscale. In the electromagnetic spectrum, x-rays 
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have a well adapted wavelength of about 1 Å for studies on such a microscopic scale. 
They also have a large penetration power as everybody knows from the medical x-ray 
images. 
Classical physics describes electromagnetic radiation as propagation of electromagnetic 
waves. For a scattering experiment, we select waves of a certain wavelength and
propagation direction, so-called plane waves, since all points on a plane in space have 
the same phase. If such a wave impinges on two point-like scattering centers (in a solid 
these could be atoms), spherical waves are being emitted from these scattering centers. 
This is nothing but Huygens principle for wave propagation. The emitted waves can 
superimpose and lead to either enhancement or cancellation of the signal in certain 
directions as depicted in figure 1.2.  

Fig. 1.2:Moiré pattern for concentric circles with equal distances representing a planar 
cut through spherical waves emitted from two scattering centers. The circles 
represent surfaces of constant phase relationship. Linear superposition of the 
waves gives enhancement or cancellation of the wave amplitudes along certain 
directions. This interference effect is mimicked by the depicted Moiré pattern. 
If the distance between the scattering centers is increased, the distance in the 
interference maxima decreases and vice versa: distances in the image created 
by scattering are inverse proportional – or reciprocal - to distances in the 
original objects which motivates the introduction of a reciprocal space to 
describe scattering events compared to the real space of the object under 
investigation.  

As becomes clear from figure 1.2, scattering can be described as an interference 
phenomenon of the radiation waves. However, since de Broglie and Einstein, we know 
that quantum objects have a dual nature: the particle-wave-dualism. In the case of 
electromagnetic waves, the quanta carrying certain energy are called photons and in the 
detector, which registers the scattering pattern, we count single x-ray photons. This is 
characteristic for the quantum mechanical description: during propagation of radiation a 
wave picture is appropriate, while for the interaction with matter a particle is the 
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description of choice. Wave and particle picture are connected by the fact that the 
magnitude square of the wave at a certain position in space gives the probability density 
of finding the quantum particle at the corresponding position. Within this particle-wave-
dualism it therefore becomes natural to use elementary particles as probes for scattering 
investigations of condensed matter systems. This was realised for the first time by 
Rutherford in 1909 in his famous experiment, where he directed a beam of α-particles 
onto a gold foil and registered the transmitted and scattered particles. He found that 
many particles were backscattered and from the ratio between transmitted and 
backscattered α-particles he could conclude on the model of an atom, which is now 
generally accepted, namely consisting of a positively charged nucleus of size about 10 
femtometer = 10 fm = 10 x 10-15 m surrounded by a cloud of negatively charged 
electrons with an extension of about 1 Å = 10-10 m = 100000 fm, see figure 1.3.  

Fig. 1.3:Schematic model of an atom with the atomic nucleus consisting of neutrons 
and protons having a size of about 10 fm surrounded by electrons in a cloud of 
a size of about 1 Å.  

The real breakthrough for structure studies of condensed matter systems came with the 
idea of Max von Laue to use x-rays as scattering probes. Wilhelm Conrad Röntgen 
discovered x-rays in 1895 and soon it was concluded that x-rays were electromagnetic 
waves. Arnold Sommerfeld suggested that the wavelength of x-rays was about 1 Å. At 
the time of Max von Laue, after the experiments of Rutherford, it was accepted that 
matter consisted of atoms but their periodic arrangement in crystals was maybe 
suggested by the regular facets of the crystals but could not be really proven by 
experiment. Max von Laue was a theoretician, who derived the famous Laue equation 
describing scattering from a regular three-dimensional periodic arrangement of 
scattering centers. He convinced the two experimentalists Friedrich and Knipping to 
perform an x-ray diffraction experiment. The result is shown in figure 1.4.  
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Fig. 1.4:Early x-ray diffraction diagrams recorded by a film from copper sulphite 
single crystals [1].

While the first transmission Laue photograph showed more or less just a fat plop, the 
quality of these images was soon refined and clear so-called Laue-spots could be 
identified. The impact of this discovery cannot be over-emphasized: it was the definite 
proof that solids consist of atoms, which are arranged in a regular three-dimensional 
periodic array and that x-rays were scattered as electromagnetic waves from such an 
arrangement of atoms. It is therefore natural that Max von Laue received the Nobel 
prize in 1914 for this breakthrough discovery. However, the experimentalists Friedrich 
and Knipping were left empty-handed.  
Nearly everything we know today about the atomic structure of matter is based on this 
discovery which took place 100 years ago. Of course the techniques were significantly 
refined and nowadays x-ray diffraction is heavily being used to resolve complex 
structures of biological macromolecules in the field of protein crystallography. Such 
investigations need very intense and bright x-ray beams, which are provided from large 
accelerators, so-called synchrotron radiation sources. Many thousands of reflections are 
being recorded in a few seconds. As electromagnetic waves, x-rays are mainly scattered 
from the electronic charge distribution around the atoms and thus x-ray diffraction 
allows one to determine the electron density in solids.  

1.3 Impact of Scattering in other Fields of Science

It should be pointed out that scattering is a much more general method in science, which 
is not only used by condensed matter scientists. The world’s largest accelerator is 
located close to Geneva at the border between Switzerland and France in the CERN 
research center. CERN stands for Centre Européenne pour la Recherche Nucléaire, i. e. 
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the European organisation for nuclear research. Many accelerators are located on the 
CERN site of which the LHC, the Large Hadron Collider, is the world’s largest and 
highest energy particles accelerator. The LHC lies in a tunnel 27 km in circumference as 
deep as 175 m beneath ground level. This huge accelerator serves nothing but a 
scattering experiment, where opposing particle beams e. g. protons at energy of 7 TeV 
collide in certain interaction points, which are surrounded by huge detectors built by 
large international collaborations. In inelastic scattering events, new particles can be 
created and the hope is that this huge investment helps us to address some of the most 
fundamental questions of physics advancing the understanding of the deepest laws of 
nature. At Research Centre Jülich we have a smaller version of such a particle 
accelerator, the so-called COSY synchrotron for Hadron physics. These large 
accelerators are needed to achieve high particles energies corresponding to short 
wavelengths, which allow one to study fine structures within nucleons. Large detectors 
are needed because at these scales no imaging is possible but if all scattered particles are 
being traced a reconstruction of the scattering event in the computer can take place. 
While at the LHC new particles are being created during deep inelastic scattering 
events, the connection to x-ray diffraction is more evident for the former HERA 
accelerator, which had been in operation at DESY in Hamburg until a few years ago. 
There, electrons were being scattered from protons in head-on collisions and the inner 
structure of the proton consisting of quarks and gluons could be resolved.  

1.4 Why Neutrons?

Coming back to condensed matter science: if x-rays are so successful for structure 
determination, why do we need neutrons? Neutrons have some very specific properties 
which make them extremely useful for condensed matter studies:  

1. Neutrons are neutral particles. They are thus highly penetrating, can be used as 
non-destructive probes and to study samples in severe environment such as 
cryomagnets or furnaces.

2. The wavelengths of neutrons are similar to atomic spacings - just as is the case 
for x-rays. Therefore they can provide structural information from the picometer 
to the 100 µm range.  

3. The energies of thermal neutrons are similar to the energies of elementary 
excitations in solids. Therefore neutrons can determine molecular vibrations, 
lattice excitations and the dynamics of atomic motion. 

4. Neutrons interact with the nuclei in contrast to x-rays or electrons which interact 
with the electron cloud, see Figure 1.5. They are very sensitive to light atoms 
like hydrogen, which is difficult to detect by x-rays since hydrogen in bonds has 
often less than one surrounding electron. They can also distinguish between 
neighbouring elements in the periodic table like manganese, iron and chromium, 
for which x-rays are insensitive since these elements have nearly the same 
number of electrons. Also one can exploit isotopic substitution. A famous 
example is contrast variation in soft matter or biological macromolecules by 
replacing deuterium for hydrogen in certain molecules or functional groups. 
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Similar to tinting in light microscopy, the location and movement of these 
functional groups can then be observed on the background of the other 
molecules. 

5. Neutrons have a magnetic moment. This dipolar moment is due to the nuclear 
spin. Therefore neutrons can be used to study microscopic magnetic structures 
but also the magnetic excitations in solids, which have similar energies than the 
neutrons.  
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Fig. 1.5:Comparison of x-ray and neutron scattering from single atoms for a few 
elements of the periodic table.  The filled circles represent a measure of the 
total cross section, i,e, of the probability for scattering.  For x-rays, which are 
scattered from the electron cloud, this probability goes up with the number 
square of electrons.  Therefore Hydrogen is hardly visible for x-rays in the 
presence of heavier atoms.  The situation is quite different for neutrons, which 
are scattered from the atomic nucleus. Here the scattering varies not 
monotonically throughout the periodic table and is different for different 
isotopes of the same atom.  Blue and green circles distinguish scattering with 
and without 180° phase shift, respectively.

Figure 1.6 shows the extreme range of applicability of neutrons for condensed matter 
studies based on these special properties. Different scattering techniques have to be used 
for different applications, as indicated in the figure. 
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Fig. 1.6:Huge range of length (left side) and time (right side) scales covered by 
research with neutrons. Also indicated is the corresponding neutron technique. 

Due to the huge impact of neutron scattering for condensed matter studies, it is no 
surprise that the Nobel prize in physics was awarded to two of the pioneers of neutron 
diffraction and inelastic neutron scattering, which Clifford G. Shull and Bertram 
Brockhouse received in 1994. The famous quote “neutrons tell us where atoms are and 
how they move” is due to Clifford Shull.  
If you got the impression so far that neutrons are the ideal and most universal probe for 
condensed matter studies on an atomic scale, you are right in principle.  However, as 
with everything in life, there are also some drawbacks. While neutrons are everywhere - 
without neutrons we would not exist - they are extremely difficult to produce as free 
particles not bound in nuclei. Free neutrons are produced by nuclear physics reactions, 
which require rather large and high-tech installations. Two main routes to produce free 
neutrons are being followed today:  
(1) Fission of the uranium 235 nuclei in a chain reaction; this process happens in

research reactors.
(2) Bombarding heavy nuclei with high energetic protons; the nuclei are “heated up”

when a proton is absorbed and typically 20 - 30 neutrons are being evaporated. This
process is called spallation and requires a spallation source with a proton
accelerator and a heavy metal target station.

Since installations to produce free neutrons are rather expensive to build and to operate, 
there exist only a few sources worldwide. JCNS is present in some of the world best
sources as shown in figure 1.7.  
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Fig. 1.7:Major neutron research centres worldwide which have sources of appreciable 
flux and a broad instrumentation suite for condensed matter research. JCNS
instruments are located at four of the leading sources worldwide: the neutron 
research reactor FRM II in Garching, Germany, the Institute Laue-Langevin 
ILL in Grenoble, France, the Spallation Neutron Source SNS in Oak 
Ridge, USA and the Chinese Advanced Research Reactor CARR close to
Beijing, China. JCNS also has a leading involvement in the European 
Spallation Source project, Lund, Sweden.

The fact that there are only a few sources worldwide implies that neutron scattering 
experiments have to be organised quite different from normal lab-based experiments. 
Users have to be trained in special schools (our JCNS school is one of them) and access 
to the experiments has to be organised (see below).  
Not only the neutron research centres are rare but also free neutrons by themselves are 
rare. In a high flux reactor the neutron flux i. e. the number of neutrons passing through 
a given area in a given time is in the order of 1015 neutrons/cm2·s. If one compares this 
value with particle fluxes in gases, the neutron density in high flux sources corresponds 
to high vacuum conditions of about 10-6 mbar pressure. The neutrons have to be 
transported from the source to the experimental areas, which can either be done by 
simple flight tubes or so called neutron guides.  These are evacuated tubes with glass 
walls (often covered with metal layers to increase the performance), where neutrons are 
transported by total reflection from the side, top, and bottom walls in a similar manner 
like light in glass fibers. The neutron flux downstream at the scattering experiments is 
then even much lower than in the source itself and amounts to typically 106 - 108

neutrons/cm2·s. This means that long counting times have to be taken into account to 
achieve reasonable statistics in the neutron detector. Just for comparison: the flux of 
photons of a small Helium-Neon laser with a power of 1 mW (typical for a laser 
pointer) amounts to some 1015 photons/s in a beam area well below 1 mm2.
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However, it is not only the low flux that limits neutron scattering experiments, but also 
the fact that neutron sources are not very bright, i. e. neutron beams are rather large in 
the order of a few cm2 and therefore require in general rather large samples. Typical 
sample sizes are again in the order of a few cm2 and have masses of a few grams.
However, this does not mean that we cannot study nanosized objects with neutrons as 
you will see in the subsequent lectures. However, for neutron scattering techniques, we 
have to have many of such objects and we will obtain ensemble averages. 

1.5 The Social Practice of Neutron Scattering 

The fact that neutron sources are rare leads to a particular social practice for neutron 
scattering: there are only a few major sources in Europe and worldwide and the 
operation of each one of these sources costs several million Euro per year. Therefore 
efforts have to be made to use the existing sources as efficient as possible. This means 
(i) continuous and reliable operation of the source during a large fraction of the year; (ii)
many highly performing instruments, which can run in parallel, located around every
source; (iii) professional instrument operation with highly qualified staff and a stringent
risk management to keep the downtime of instruments and auxiliary equipment as low
as possible; (iv) and access for as many scientists as possible.
There is no commercial market for neutron scattering instruments. Therefore these 
instruments are being built by research centres, where usually one or a few staff 
scientists work closely with engineers and technicians to realise an instrument for a 
certain application of research with neutrons. These highly experienced scientists will 
then later-on operate the instruments located at a certain neutron source. The Jülich 
Centre for Neutron Science JCNS has such staff scientists located at the outstations at 
FRM II, ILL. However, neutron facilities are way too expensive to be operated just for a 
small number of scientists. Beamtime is offered to external users from 
universities, research organisations (such as Max-Planck or Fraunhofer in Germany) 
and industry. In order for these users to obtain access to a neutron scattering instrument, 
the user will obtain information from the internet on available instruments, contact the 
instrument scientist and discuss the planned experiments with the instrument scientist.
Once a clear idea and strategy for an experiment has been worked out, the user will 
write a beamtime proposal where he describes in detail the scientific background, the 
goal of the planned experiment, the experimental strategy and the prior work. The 
facility issues a call for proposals in regular intervals, typically twice a year. The 
proposals received are distributed to members of an independent committee of 
international experts, which perform a peer review of the proposals and establish a 
ranking. Typically overload factors between 2 to 3 on the neutron instruments exist, i. e. 
2 to 3 times the available beam time is being demanded by external users. Once the best 
experiments have been selected, the beamtime will be allocated through the facility, 
where the directors approves the ranking of the committee, the beamline scientist 
schedules the experiments on her or his instrument and the user office sends out the 
invitations to the external users. Many facilities will pay travel and lodging for 1 up to 2 
users per experiment. It is now up to the user to prepare his experiment as well as 
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possible. If the experiment fails because it was not well prepared, it will be very 
difficult to get more beamtime for the same scientific problem. Typical experiments last 
between 1 day and up to 2 weeks. In this time lots of data will be collected which users 
take home and usually spend several weeks or months to treat the data and model it.  
A typical neutron scattering facility will run about 200 days a year with a few hundred 
visits of user from all over the world. This is also what makes research with neutrons so 
attractive to young scientists: early-on in their career they will learn to work in large 
international collaborations, get the opportunity to work on state-of-the-art high-tech
equipment and learn to organise their research as efficient as possible. You have 
therefore chosen well to attend this laboratory course!

After this simple introduction, you can now look forward to many interesting lectures, 
where more details will be explained and where you will learn the basic principles to 
enable you to perform neutron experiments. Have lots of fun and success working with 
this special gift of nature, the free neutron! 
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Exercises

E1.1  Multiple Choice

• Electromagnetic radiation with a wavelength of 500 nm corresponds to:
□ microwaves

□ visible light
□ ultraviolet
□ X-rays

• The typical distance between atoms in a solid amounts to:
□ 10 nm

□ 1 nm

□ 0.1 nm

□ 0.01 nm

• An atomic nucleus has a typical size of:
□ 1 Å

□ 0.1 nm

□ 1 pm

□ 10 fm

• The typical wavelength of thermal neutrons is:
□ 10 nm

□ 1 nm

□ 0.1 nm

□ 0.01 nm

• Which type of radiation would you use to distinguish iron and manganese
atoms in a given compound?
□ X-rays
□ neutrons

□ electrons

□ light



1.14 Th. Brückel 

• Which type of radiation would you use to determine the charge density
distribution in a solid?
□ X-rays
□ neutrons

□ electrons

□ light

• How many neutrons per second impact on a sample with typical lateral
dimensions of 1x1 cm in a typical neutron scattering experiment?

□ 103

□ 107

□ 1012

□ 1016

• Which type of radiation would you use to determine the magnetization
density distribution in a solid?
□ X-rays
□ neutrons

□ electrons

□ light
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E1.2  Comprehension

a. What is the difference between a scattering and an imaging experiment? When
would you choose one over the other?

b. Why does one observe Laue spots when a “white” beam of X-rays is scattered
from a single crystal?  How about scattering from glass?

c. Why are neutrons sensitive to the magnetic order in a crystal?

d. Neutron scattering allows us to determine “where the atoms are and how the
atoms move” in a condensed matter system. Other scattering probes include:
light, x-rays, electrons, α-particles. Discuss qualitatively the strengths and
weakness of these probes in comparison to neutron scattering.

e. CO2 has a bad reputation as green-house gas in the atmosphere. Could it,
however, be useful as a scattering probe to replace neutrons? (A high flux of
CO2 molecules could e.g. be obtained by an expansion of pressurised CO2 gas
from a gas bottle through a nozzle - a flux many orders of magnitude higher than
the neutron fluxes used in neutron scattering experiments!)
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E1.3  Arithmetic Problem (optional):
Huygens principle and coherence

A plane wave of wavelength λ is incident on a pair of identical scatterers, which are 
separated by a distance L perpendicular to the wave propagation, see figure:  

According to the Huygens principle, spherical waves will be emitted from the two 
scatterers. In certain directions, these waves interfere constructively, i.e. the two 
scattered waves are in phase. 

a) Calculate the angles θ, where interference maxima occur in the far field limit.
b) What happens to the interference maxima, if there is a broad distribution of

wavelength in the incident wave, but the propagation direction remains well
defined?

c) What happens to the interference maxima, if the wavelength of the incident wave is
well defined, but there are many waves of different directions impinging on our
scatterers?

d) How would you design an instrument to measure the distance L between the two
scatterers, if light from a normal light bulb is being used as radiation? Which
requirement does L have to fulfil in this case?

e) According to b) and c) monochromatization and collimation are important to obtain
well resolved interference pattern. The corresponding requirements for the radiation
are called longitudinal (b) and transverse (c) coherence, respectively. Discuss
qualitatively the relation between coherence and resolution, i.e. in our example the
ability of the apparatus designed in d) to determine the distance L between the
scatterers.

L θ
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2.1 Introduction

The neutron with its unique properties as described here is used as a particularly use-
ful probe for condensed matter investigations. The neutron is an elementary particle,
a nucleon, consisting of three valance quarks, which are hold together by gluons (see
Fig. 2.1). It thus has an internal structure, which, however, is irrelevant for condensed
matter physics, since the energy scales involved in its internal excitations are much too
high. Keeping in mind the difference in lengths scales (diameter of an atom: about
0.1 nm = 10−10 m; diameter of a neutron: about 1 f m = 10−15 m), we can safely consider
the neutron as a point-like particle without internal structure for our purposes. Due to
the weak interaction, the neutron is not a stable particle. A free neutron undergoes a
β-decay into proton p, electron e− and electron-antineutrino νe after an average lifetime
of about 15 minutes []:

n
15 min−−−−→ p +e−+νe (2.1)

This leaves ample time for scattering investigations. In contrast to the massless photon,
the neutron has a mass m of about one atomic mass unit ∼ 1.675 ·10−27 kg. The neutron
has therefore a velocity well be low the speed of light and depending on its velocity can
be significantly affected by gravity. The finite neutron mass is comparable to the mass
of a nucleus and thus an appreciable amount of energy can be transferred during the
scattering process. The neutron with the current measurement limit of 10−27 does not
carry an neutron electric dipole moment and thus can be viewed as a neutral particle.
It does not does not show the strong Coulomb interaction with matter which results in
large penetration depths in mater. Finally, the neutron has a nuclear spin of 1/2 giving
rise to a magnetic dipolar moment of

µn = γµN with γ= 1.91 and µN = 5.05 ·10−27J/T (2.2)

Due to this magnetic moment, the neutron can interact with the magnetic field of un-
paired electrons in a sample leading to magnetic scattering. Thus, magnetic structures
and excitations can be studied by neutron scattering.

To calculate the interference effects during the scattering process, a neutron has to be
described as a matter wave with momentum

p = m ·v =ħk −→ p = h/λ (2.3)

and energy

E = 1

2
mv2 = ħ2k2

2m
= h2

2mλ2
≡ kBTeq , (2.4)

where v is the velocity of the neutron and Teq defines the temperature equivalent of the
kinetic energy of the neutron. In practical units:

λ[nm] = 400

v[m/s]
(2.5)
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Fig. 2.1: Schematics of the neutron being composed of three quarks and gluons and the main
quantities characterising the neutron as a particle.

E[meV] = 0.818

λ2[nm]
(2.6)

Let us consider the example of so-called thermal neutrons from a moderator at am-
bient temperature corresponding to a temperature equivalent of Teq ∼ 300 K. According
to (2.4), their wavelength is 0.18 nm, matching perfectly the distance between atoms.
The energy of thermal neutrons is around 25 meV, which matches well the energy of
elementary excitations, such as spin waves (magnons) or lattice vibrations (phonons).
Together with the usually large penetration depths (charge = 0) and the magnetic inter-
action, these properties make neutrons so extremely useful for condensed matter inves-
tigations.

In the elementary scattering theory of chapter https://ifftex.fz-
juelich.de/project/628289bc4a86a300895dc7e92.3, we saw that the relevant quantity
is the interaction potential V(r) of the probe with the system from which the probe is
scattered. This potential enters in the cross-section in kinematical theory derived either
from Born approximation or from Fermi’s golden rule. To determine this interaction
potential, we will look in more detail at the interaction of neutrons with matter. For
neutrons there exist two dominant interactions: the interaction of the neutron with
nuclei and its interaction with the magnetic field in the sample. The nuclear interaction
results from the so-called strong interaction of particle physics, which is also responsible
for the binding of neutrons and protons in the atomic nuclei. The interaction with
the magnetic field is nothing but the magnetic dipole interaction of the neutron due
to its dipolar moment with the magnetic field of unpaired electrons. There are other
interactions, which are significantly weaker. One is the interaction of the neutron with
the electric fields in the sample due to the neutrons magnetic dipole moment. This is a
purely relativistic effect. Another is the magnetic dipole interaction of the neutron with
the magnetic field produced by the nuclei. Since such interactions are several orders
of magnitude weaker than the nuclear and magnetic interaction, they can usually be
neglected and we will not discuss them further in this lecture.
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2.2 Nuclear interaction: Scattering and absorption

To evaluate the cross section σ for nuclear scattering, we have to specify the interac-
tion potential with the nucleus. To derive this interaction potential from first principles
is one of the fundamental challenges of nuclear physics. Instead, Fermi has proposed a
phenomenological potential based on the argument that the wavelength of thermal neu-
trons is much larger than the nuclear radius. This means that the nuclei are point-like
scatterers which leads to isotropic, Q-independent, (so-called s-wave) scattering. We will
therefore use the so-called Fermi-pseudo-potential

V(r) = 2πħ2

m
bδ(r−R). (2.7)

Despite the fact that the strong interaction of high energy physics is responsible for the
scattering of the neutron with the nucleus, the scattering probability is small due to the
small nuclear radius. Therefore, we can apply the first Born approximation. The quan-
tity b introduced in (2.7) is a phenomenological quantity describing the strength of the
interaction potential and is referred to as the scattering length. Tabulated values of b
can be found in [8] or at http://www.ncnr.nist.gov/resources/n-lengths/. The total cross
section of a given nucleus is σ = 4π|b|2, corresponding to the surface area of a sphere
with radius b. Since the interaction potential obviously depends on the details of the
nuclear structure, b is different for different isotopes of the given element and also for
different nuclear spin states. This fact gives rise to the appearance of so-called coherent
and incoherent scattering, see section 2.4. Figure 2.2 shows the variation of the scattering
amplitude as a function of atomic weight throughout the periodic table. The scattering
length is mostly positive but can also adopt negative values. Since −1 = exp(iπ) this neg-
ative sign corresponds to a phase shift of π (or 180°) during the scattering process. The
scattering length roughly follows the dashed line labelled potential scattering contribu-
tion, despite the fact that there are rather large excursions from this line.

In the simplest one-dimensional model shown kn Figure 2.3, we can describe the nu-
cleus as a rectangular potential well with the radius of the well equal to the nucleus
radius and the depth as V0. The kinetic energy of the neutrons is thus adjusted with the
well potential. The wave function of the neutron being scattered from such a potential
well can be written as

Ψ(r ) ∼ ei kr + f

r
ei kr , (2.8)

with f as the scattering amplitude, k as the wave vector of the neutron and r as the dis-
tance to the well center. Here the first term describes the incident plane wave and the
second term describes a spherical wave emitted from the nucleus. In the limit of a hard
sphere, the wave function on the surface of the nucleus has to vanish since the neutron
cannot penetrate inside the hard sphere. Mathematically this is described by the con-
dition Ψ(R) = 0 or − f = R. The scattering length is defined as b := − f , so that its value
is positive for most nuclei. Therefore, for pure potential scattering, where the nucleus is
assumed to be a hard sphere, b attains the value of the nuclear radius b = R, which is
plotted in Figure 2.2 as a dashed line: the potential scattering contribution. The marked
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Fig. 2.2: Scattering length as a function of atomic weight throughout the periodic table (from
Research, London 7 (1954), 257).

Fig. 2.3: The nucleus described as a potential well of radius R and depth −V0, while the neu-

tron has the kinetic energy E = ħ2k2

2m .

deviations from this overall behaviour are due to so-called resonance scattering. In a sim-
plified picture, such resonances occur, when the neutron energy is such that absorption
of the neutron in the nucleus produces a bound excited state. This can lead to a res-
onant absorption process, but it can also lead to resonance scattering, a typical second
order perturbation process: in the initial state, the nucleus is in its ground state and the
interaction with the neutron can be described as a virtual transition into an excited state
of the compound nucleus and back with a re-emission of the neutron, where the nu-
cleus decays back from the excited compound system into its ground state. This process
n +K → C∗→ K+n has a cross-section given by the famous Breit-Wigner-formula

σR = 4π

∣∣∣∣R+ const

E−ER +1/2iΓ

∣∣∣∣
2

. (2.9)

Here R is the radius of the nucleus, E the neutron energy, ER the resonance energy and
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Γ a damping term connected with the life-time of the excited state. As one can see, this
formula describes a very strong energy dependence with a pronounced maximum when
the neutron energy equals the resonance energy. Moreover, the resonance amplitude has
an imaginary part, which describes the resonance absorption. In the resonant absorption
process, the neutron is captured by the nucleus, leading to a compound nucleus in an
excited state, containing one more neutron then the original nucleus. In a subsequent
nuclear reaction, the compound nucleus gets rid of its excess energy. Examples for such
absorption reactions will be given in the subsequent section. Finally, the Breit-Wigner-
formula gives an indication that the scattering length can be negative whenever the res-
onant term is negative (i. e. E < ER), and its magnitude is larger than the contribution
from potential scattering.

2.3 Neutron absorption

As explained above, neutron absorption can occur during nuclear reactions. It can be
divided into three regions depending on the neutron energy. These regions are the low
energy named 1/v region, the intermediate energy named resonance region and the high
energy region named smooth region.

Far away from the resonance at low neutron energies, the absorption cross section is
given by

σa ∼ λ∼ 1

v
. (2.10)

This proportionality to the wavelength λ or the inverse velocity 1/v is a result of the den-
sity of states appearing in Fermi’s golden rule. One can argue that wavelength and neu-
tron velocity v are inversely proportional and thus, for longer wavelength i. e. smaller
velocity, the neutron remains correspondingly longer close to the nucleus increasing the
probability for a reaction, which leads to a higher absorption cross-section. Table 2.1
gives examples for neutron absorption processes connected with important nuclear re-
actions for neutron applications.

σa (25 meV) [barn]

5333 n+3He→ 4He*→p+3T

940 n+6Li→ 7Li*→ 3T+4He

3837 n10B→ 11B*→ 4He 7Li +γ

681 n+235U→ fission

Table 2.1: Examples for neutron absorption processes due to nuclear reactions. The absorp-
tion cross-section is given for neutrons of energy 25 meV in barn = 10−28 m2 = 100 fm2.

As an example, there is a high probability of neutrons to be absorbed by 3He nuclei, be-
cause the 4He or α-particle is very stable since it corresponds to a closed nuclear shell.
However, during the absorption of the neutron, the 4He nucleus is produced in an ex-
cited state. It gets rid of its surplus energy by decay into a proton and a triton 3T (the
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triton 3T nucleus is a hydrogen isotope with one proton and 2 neutrons). Since these two
particles have very high energies of about 0.5 MeV due to the nuclear reaction, charged
particles are created during this decay, which can be used for neutron detection in a pro-
portional counter. In a similar manner, the reaction with 6Li , 10B or 235U can be used to
build neutron detectors. It should be mentioned, however, that the neutron absorption
in 3He is very strongly dependent on the relative orientation of the nuclear spins of both
particles. While for antiparallel spin direction (singlet state), the absorption cross-section
is ∼ 6000 barn, it reduces to 2 barn for parallel spin direction (triplet state). This effect
can be used to build efficient neutron polarization filters. By optical pumping with laser
light, the nuclear moment of the 3He nuclei can be aligned along one direction (so-called
hyperpolarized 3He gas). If an unpolarized neutron beam passes a filter cell filled with
hyperpolarized 3He, the neutrons with spin moment antiparallel to the nuclear moment
of the 3He have a high probability to be absorbed, while neutrons with the other spin
direction have a high probability to be transmitted. For an appropriate thickness of the
filter cell, a very high neutron beam polarization can be achieved in this manner.

Another class of absorption processes are so-called (n,γ)− r esonances at intermediate
neutron energies. Examples are given in Table 2.2. In these processes, a nucleus is pro-
duced, which contains one additional neutron and this compound nucleus decays into
the ground state by emission of γ-radiation. Prominent (n,γ)−resonances occur for Cad-
mium or Gadolinium where, depending on the isotope, the absorption cross-section can
be very high, see Table 2.2. These metals are often used as neutron absorbers in shield-
ings or diaphragms, which define the size of the neutron beam. One should, however,
be aware that in these reactions, γ-radiation of very high energy is being released, which
requires additional lead shielding for radiation protection.

Nucleide σγ [barn] Eresonance [meV]
113Cd 20600 178
151Eu 9200 321
155Gd 60900 26.8
157Gd 254000 31.4

Table 2.2: Examples for (n, γ)-resonances with the cross-section in barn and the resonance
energy in meV.

As described by the Breit-Wigner-Formula, these resonance absorption cross-sections
have very strong energy dependencies. The simple proportionality to the wavelength
given in equation (2.10) no longer holds close to the resonance energies.

At high neutron energies, the resonances cannot be resolved anymore and thus the ab-
sorption cross-section appears to be smooth. Due to the high neutron energy, these
cross-sections are typically small.

As an example, we show the energy dependence of the absorption cross-section for Cad-
mium and Gadolinium in Figure 2.4. Such data can be found JANIS Books provided by
NEA [11].

Figure 2.4 shows that for lower energies, i. e. long wavelengths, the proportionality of the
absorption cross-section to the wavelength holds to very good approximation. However,
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Fig. 2.4: Absorption cross-section of the element Cadmium and Gadolinium as a function of
energy in a double logarithmic representation. The cross-sections for Cadmium at 0.64 Å and
0.2 Å are marked with lines. Tabulated values for the absorption cross-section MT = 102 were
taken from the JENDL database [11].

there is a strong resonance for a wavelength of 0.64 Å, where the cross-section attains
a maximum of about 20 kbarn. Above this energy, i. e. for shorter wavelengths, the
absorption cross-section drops drastically. At a wavelength of 0.2 Å, it attains a value
of only 8 barn. This shows that in the thermal energy range, Cadmium can be used
as an efficient neutron absorber. However, one has to be careful and not use it for the
same purpose in case of hot neutrons, where Cadmium becomes virtually transparent.
There are many more resonances for higher neutron energies, which are not relevant
for neutron scattering, where only hot (Teq = 2000 K), thermal (Teq = 300 K) and cold
(Teq = 20 K) neutrons are being used.

A similar strong energy dependence occurs for the element Gadolinium. Usually, neu-
tron scatterers try to avoid samples containing Gadolinium since it is the most absorb-
ing element, especially the isotope 157Gd. However, the resonances lay right in the ther-
mal neutron energy range. If the scattering experiment is performed with hot neutrons,
the absorption cross-section of Gadolinium becomes much smaller and scattering exper-
iments become feasible1.

2.4 Coherent and incoherent scattering

As mentioned above, the nuclear interaction potential depends on the details of the nu-
clear structure and thus, the scattering length b is different for different isotopes of a
given element and also for different nuclear spin states. In this section, we will discuss
the effects of these special properties of the interaction of neutrons and nuclei for the
scattering from condensed matter. Let us assume an arrangement of atoms with scatter-

1 Another possibility is to use isotope enriched Gadolinium. While the isotope 157Gd with natural abundance
15.7% has a thermal absorption cross section of 259000 barn, the isotope 158Gd, which is the most abundant
with 24.8%, has an absorption cross section of only 2.2 barn.
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ing lengths bi on fixed positions Ri . For this case, the scattering potential writes

V(r) = 2πħ2

mn

∑
i

biδ(r−Ri ). (2.11)

The scattering amplitude is obtained from a Fourier transform

A(Q) =
∑

i
bi ei QRi . (2.12)

When we calculate the scattering cross section, we have to take into account that the dif-
ferent isotopes are distributed randomly over all sites. Also the nuclear spin orientation
is random, except for very low temperatures in high external magnetic fields. Therefore,
we have to average over the random distribution of the scattering length in the sample

dσ

dΩ
(Q) ∼ |A(Q)|2 = 〈∑

i
bi ei QRi ·

∑
j

b∗
j e−i QR j 〉 . (2.13)

In calculating the expectation value of the product of the two scattering lengths at sites
i and j , we have to take into account that according to the above assumption, the dis-
tribution of the scattering length on the different sites is completely uncorrelated. This
implies that for i ̸= j , the expectation value of the product equals to the product of the
expectation values. Only for i = j a correlation occurs, which gives an additional term
describing the mean quadratic deviation from the average:

〈bi b j 〉 =
{
〈b〉〈b〉 = 〈b〉2 , i ̸= j

〈b2〉 = 〈(b −〈b〉)2〉 , i = j
(2.14)

The line for i = j results from the identity

〈(b −〈b〉)2〉 = 〈b2 −2b 〈b〉+〈b〉2〉 = 〈b2〉−〈b〉2 . (2.15)

Therefore, we can write the cross section in the following form:

dσ

dΩ
(Q) = 〈b〉2

∣∣∣∣∣
∑

i
ei QRi

∣∣∣∣∣
2

"coher ent"

+N〈(b −〈b〉)2〉 "i ncoher ent"

(2.16)

The scattering cross section is as a sum of two terms. Only the first term contains the
phase factors ei QRi , which result from the coherent superposition of the scattering from
pairs of scatterers. This term takes into account interference effects and is therefore
named coherent scattering. The scattering length averaged over the isotope- and nuclear
spin-distribution enters this term. The second term in (2.16) does not contain any phase
information and is proportional to the number N of atoms (and not to N2 as for coher-
ent scattering in fully constructive interference!). This term is not due to the interfer-
ence of scattering from different atoms. As we can see from (2.15) (line i = j ), this term
corresponds to the scattering from single atoms, which subsequently superimpose in an
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Fig. 2.5: Two-dimensional schematic illustration of the scattering process from a lattice of
N atoms of a given chemical species, for which two isotopes (small dotted circles and large
hatched circles) exist. The area of the circle represents the scattering cross section of the single
isotope. The incident wave (top part of the figure for a special arrangement of the isotopes) is
scattered coherently only from the average structure. This gives rise to Bragg peaks in certain
directions. In the coherent scattering only the average scattering length is visible. Besides these
interference phenomena, an isotropic background is observed, which is proportional to the
number N of atoms and to the mean quadratic deviation from the average scattering length.
This incoherent part of the scattering is represented by the lower part of the figure.

incoherent manner (adding intensities, not amplitudes!). This is the reason for the inten-
sity being proportional to the number N of atoms. Therefore, the second term is called
incoherent scattering. Coherent and incoherent scattering are illustrated in Figure 2.5.

The most prominent example for isotope incoherence is elementary nickel. The scatter-
ing lengths of the nickel isotopes are listed together with their natural abundance in Ta-
ble 2.3 [8]. The differences in the scattering lengths for the various nickel isotopes are
enormous. Some isotopes even have negative scattering lengths. This is due to resonant
bound states, as compared to the usual potential scattering.

Isotope Natural Abundance Nuclear Spin Scattering Length [fm]
58Ni 68.27% 0 14.4(1)
60Ni 26.10% 0 2.8(1)
61Ni 1.13% 3/2 7.60(6)
62Ni 3.59% 0 -8.7(2)
64Ni 0.91% 0 -0.37(7)

Ni 10.3(1)

Table 2.3: The scattering lengths of the nickel isotopes and the resulting scattering length of
natural 28Ni [8].

Neglecting the less abundant isotopes 61Ni and 64Ni, the average scattering length is cal-
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culated as

〈b〉 ≈ [0.68 ·14.4+0.26 ·2.8+0.04 · (−8.7)] f m ≈ 10.2 f m, (2.17)

which gives the total coherent cross section of

⇒σcoher ent = 4π〈b〉2 ≈ 13.1 bar n (exact : 13.3(3) bar n). (2.18)

The incoherent scattering cross section per nickel atoms is calculated from the mean
quadratic deviation:

σ
Isotope
i ncoher ent = 4π

[
0.68 · (14.4−10.2)2 +0.36 · (2.8−10.2)2 +0.04 · (−8.7−10.2)2] f m2

= 5.1 bar n (exact : 5.2(4) bar n)
(2.19)

Values in parentheses are the exact values taking into account the isotopes 61Ni and 64Ni
and the nuclear spin incoherent scattering (see below). From equations (2.18) and (2.19),
we learn that the incoherent scattering cross section in nickel amounts to more than one
third of the coherent scattering cross section.

The most prominent example for nuclear spin incoherent scattering is elementary hy-
drogen. The nucleus of the hydrogen atom, the proton, has the nuclear spin I = 1/2. The
total nuclear spin of the system H+n can therefore adopt two values: J = 0 and J = 1.
Each state has its own scattering length: b− for the singlet state (J = 0) and b+ for the
triplet state (J = 1) - compare Table 2.4.

Total Spin Scattering Length Abundance

J = 0 b− = -47.5 fm 1
4 (one mJ state)

(singlet: mJ = 0)

J = 1 b+ = 10.85 fm 3
4 (three mJ state)

(triplett: mJ =−1,0,+1)

〈b〉 =−3.739(1) fm

Table 2.4: Scattering lengths for hydrogen [8].

Just as in the case of isotope incoherence, the average scattering length can be calculated

〈b〉 =
[

1

4
(−47.5)+ 3

4
(10.85)

]
f m =−3.74 f m. (2.20)

This corresponds to a coherent scattering cross section of about ≈ 1.76 barn [8]

⇒σcoher ent = 4π〈b〉2 = 1.7568(10) bar n. (2.21)

The nuclear spin incoherent part is again given by the mean quadratic deviation from
the average

σ
nucl ear spi n
i ncoher ent = 4π

[
1

4
(−47.5+3.74)2 + 3

4
(10.85+3.74)2

]
f m2 = 80.2 bar n

(exact : 80.26(6) bar n).
(2.22)
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Comparing (2.21) and (2.22), it is immediately clear that hydrogen scatters mainly inco-
herently. As a result, we observe a large background for all samples containing hydrogen.
We should avoid all hydrogen containing glue for fixing our samples to a sample stick.
Finally, we note that deuterium with nuclear spin I = 1 has a much more favourable ratio
between coherent and incoherent scattering:

σD
coh. = 5.592(7) bar n; σD

i nc. = 2.05(3) bar n (2.23)

The coherent scattering lengths of hydrogen (-3.74 fm) and deuterium (6.67 fm) are sig-
nificantly different. This can be used for contrast variation by isotope substitution in
all samples containing hydrogen, i. e. in biological samples or soft condensed matter
samples, see corresponding chapters. A further important element, which shows strong
nuclear incoherent scattering, is vanadium. Natural vanadium consists to 99.75 % of the
isotope 51V with a nuclear spin 7/2. By chance, the ratio between the scattering lengths
b+ and b− of this isotope are approximately equal to the reciprocal ratio of the abun-
dances. Therefore, the coherent scattering cross section is very small and the incoherent
cross section dominates [8] with

σV
coh. = 0.01838(12) bar n, σV

i ncoh. = 5.08(6) bar n. (2.24)

For this reason, Bragg scattering from vanadium is difficult to observe above the large
incoherent background. However, since incoherent scattering is isotropic, the scattering
from vanadium can be used to calibrate multi-detector arrangements.

Here, we will not discuss scattering lengths for further elements and refer to the values
tabulated in [8].

2.5 Magnetic neutron scattering

So far, we have only discussed the scattering of neutrons by the atomic nuclei. Apart
from nuclear scattering, the next important process is the scattering of neutrons by the
magnetic field created within the sample from the moments of unpaired electrons. This
so-called magnetic neutron scattering comes about by the magnetic dipole-dipole inter-
action between the magnetic dipole moment of the neutron and the magnetic field of
the unpaired electrons, which has spin and orbital angular momentum contributions.
This magnetic neutron scattering allows us to study the magnetic properties of a sample
on an atomic level, i. e. with atomic spatial- and atomic energy- resolution. Here we
do not discuss magnetic neutron scattering any further and refer to the corresponding
chapter on "Spin Dependent and Magnetic Scattering".

2.6 Comparison of probes

In this lecture, we have so far introduced the elementary formalism to describe the scat-
tering process and discussed the interaction of neutrons with matter. We now want to
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ask the question, for which problems in condensed matter research neutrons can be uti-
lized successfully also in comparison to other probes, such as x-ray scattering or elec-
tron microscopy and electron scattering. To answer this question, we have to look at the
ranges of energies, wavelengths or scattering vectors, which can be covered by various
probes as well as the different contrast mechanisms.

Fig. 2.6: Comparison of the three probes - neutrons, electrons and photons - in a double loga-
rithmic energy-wavelength diagram.

Figure 2.6 shows a double logarithmic plot of the dispersion relation "wavelength versus
energy" for the three probes neutrons, electrons and photons. The plot demonstrates
how thermal neutrons of energy 25 meV are ideally suited to determine interatomic dis-
tances in the order of 0.1 nm, while the energy of x-rays or electrons for this wavelength
is much higher. However, with modern techniques at a synchrotron radiation source, en-
ergy resolutions in the meV-region become accessible even for photons of around 10 keV
corresponding to a relative energy resolution ∆E/E ≈ 10−7. The graph also shows that
colloids with a typical size of 100 nm are well suited for the investigation with light of
energy around 2 eV. These length scales can, however, also be reached with thermal neu-
tron scattering in the small angle region. While Figure 2.6 thus demonstrates for which
energy-wave-length combination a certain probe is particularly useful, modern experi-
mental techniques extend the range of application by several orders of magnitude.

It is therefore useful to compare the scattering cross sections as it is done in Figure 2.7
for x-rays and neutrons. Note that the x-ray scattering cross sections are in general a
factor of 10 larger as compared to the neutron scattering cross sections. This means that
the signal for x-ray scattering is stronger for the same incident flux and sample size. But
caution has to be applied that the conditions for kinematical scattering are fulfilled. For
x-rays, the cross section is proportional to the square of the number of electrons and
thus varies in a monotonic fashion throughout the periodic table. Clearly it will be diffi-
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cult to determine hydrogen positions with x-rays in the presence of heavy elements such
as metal ions. Moreover, there is a very weak contrast between neighbouring elements
as can be seen from the transition metals Mn, Fe and Ni in Figure 2.7. However, this
contrast can be enhanced by anomalous scattering, if the photon energy is tuned close
to the absorption edge of an element. For neutrons the cross section depends on the de-
tails of the nuclear structure and thus varies in a non-systematic fashion throughout the
periodic table. For example, there is a very high contrast between Mn and Fe. With neu-
trons, the hydrogen atom is clearly visible even in the presence of such heavy elements
as Uranium. Moreover there is a strong contrast between the two Hydrogen isotopes H
and D. This fact can be exploited for soft condensed matter investigations by selective
deuteration of certain molecules or functional groups. This will vary the contrast within
the sample.

Fig. 2.7: Comparison of the coherent scattering cross-sections for x-rays and neutrons for a se-
lection of elements. The area of the colored circles represent the scattering cross section, where
in the case of x-rays a scale factor 10 has to be applied. For neutrons, the blue and green circles
distinguish the cases where the scattering occurs with or without a phase shift of π. For 1H and
28Ni, scattering cross sections for certain isotopes are given in addition to the averaged values
for the natural element.

Finally, both neutrons and x-rays allow the investigation of magnetism on an atomic
scale. Magnetic neutron scattering is comparable in strength to nuclear scattering, while
non-resonant magnetic x-ray scattering is smaller than charge scattering by several or-
ders of magnitude2. Despite the small cross sections, non-resonant magnetic x-ray
Bragg scattering from good quality single crystals yields good intensities with the bril-
liant beams at modern synchrotron radiation sources. While neutrons are scattered from
the magnetic induction within the sample, x-rays are scattered differently from spin and

2 Typically between 6 to 9 orders of magnitude.
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orbital momentum and thus allow one to measure both form factors separately. Inelas-
tic magnetic scattering e.g. from magnons or so called quasielastic magnetic scattering
from fluctuations in disordered magnetic systems is a clear domain of neutron scatter-
ing. Finally, resonance exchange scattering XRES of synchrotron x-rays allows one not
only to get enhanced intensities, but also to study magnetism with element- and band
sensitivity.

With appropriate scattering methods, employing neutrons, x-rays or light, processes in
condensed matter on very different time and space scales can be investigated. Which
scattering method is appropriate for which region within the "scattering vector Q - en-
ergy E plane" is plotted schematically in Figure 2.8. A scattering vector Q corresponds to
a certain length scale, an energy to a certain frequency, so that the characteristic lengths
and times scales for the various methods can be directly determined from the figure.
Examples for applications and information on instrumentation will follow in subsequent
lectures.

Fig. 2.8: Regions in frequency v and scattering vector Q or energy E and length d, which can
be covered by various scattering methods.
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Exercises

E2.1 Multiple choice

1. 1. The typical diameter of an atom is closest to

� 1 µm

� 1 mm

� 1 pm

� 1 f m

2. The typical diameter of a neutron is closest to

� 1 µm

� 1 mm

� 1 pm

� 1 f m

3. Neutrons are neutral particles, neutron counting is done electronically, i.e. an elec-
tronic pulse has to be generated in a neutron detector. What would you use as
counting gas in order to build a neutron detector:

� 3He

� 4He

� H

� D

4. You have to build a slit in order to define a beam size for neutrons of wavelength
1 Å. Which material could you use:

� Pb

� Gd

� Cd

� Al

5. For a scattering experiment on Ni, you need a sample with strong coherent scatter-
ing, but as little background as possible. Which isotope mixture would you chose?

� 100%58Ni

� 100%61Ni

� 100%64Ni

� 57%62Ni + 43%61Ni
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6. Kinematic scattering theory takes into account

� refraction

� attenuation

� multiple scattering

� none of the above

7. You have measured the scattered intensity I(Q) as a function of the scattering vec-
tor Q. Which of the following statements are correct for kinematic scattering:

� The Fourier transform of I(Q) is proportional to the scattering density.

� I(Q) is always described by the Laue function.

� I(Q) is the Patterson- or static pair correlation function.

� The phase problem does not allow one to determine the atomic position di-
rectly by a simple mathematical procedure.

E2.2 Bragg scattering

Bragg had the idea to describe scattering from a three-dimensional periodic arrangement
of scatterers (e.g. atoms in a crystal) by the interference of waves reflected from parallel
atomic planes, see sketch below. For constructive interference, sharp intensity maxima
appear as a function of scattering angle. These peaks are called “Bragg reflections”.

a) After scattering, the waves reflected from the two planes show a path length dif-
ference. Which relation does this path length difference have to fulfil in order to
achieve coherent superposition and thus an intensity maximum?

b) Derive the condition for the occurrence of such a Bragg peak in terms of wave-
length λ, scattering angle 2Θ and distance between the planes d , the so-called
Bragg equation.

c) How does the Bragg equation relate to the Laue conditions?
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E2.3 Neutron scattering from Ti-Zr alloys

Ti and Zr form a continuous alloy series with hexagonal crystal structure. Your task is
to build a sample chamber from a TixZr1-x alloy for diffraction experiments with ther-
mal neutrons. The chamber should produce as little background due to coherent Bragg
reflections as possible.

a) Which stoichiometry would you choose for the alloy? (It is sufficient to specify the
condition, the actual calculation is optional)

b) What is the disadvantage of such a sample chamber?

nuclid natural scattering nuclid natural scattering

abundance length b [fm] nuclid abundance length b [fm]
46Ti 8.2% 4.93 90 Zr 51.45% 6.4
47Ti 7.5% 3.63 91 Zr 11.32% 8.7
48Ti 73.8% -6.08 92 Zr 17.19% 7.4
49Ti 5.4% 1.04 94 Zr 17.28% 8.2
50Ti 5.2% 6.18 96 Zr 2.76% 5.5

E2.4 Neutron absorption

Aluminium has a face centred cubic crystal structure (cubic close packed lattice) with a
lattice constant of a0 = 4.04959 Å. The absorption cross section for neutrons of velocity
2200 m/s amounts to 0.231 barn.

a) Calculate the absorption cross section of Aluminium for neutrons of wavelength
λ= 1 Å.

b) Besides pure absorption, do we have to take into account other processes when
calculating the total attenuation?

The following exercise parts c and d are optional!

c) Due to absorption, the neutron beam is attenuated according to dI = −µ · I ·d x or
I = I0e−µ·x where µ is the linear absorption coefficient. Calculate µ for neutrons
of wavelength 1 Å for Aluminium.(Hint: Calculate the absorption cross section per
unit cell and compare to the unit cell dimensions).

d) Determine the attenuation of a 1 Å neutron beam in an Al slab of 10 cm thickness
due to absorption only in percentage of the incident flux.

E2.5 Gravity

Due to the mass of the neutron and the low velocities at lower energies, the neutron ex-
periences gravitational forces with g = 9.8m/s2. Depending on the neutron energy, these
disturbance might not be negligible.
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a) Calculate the velocity of neutrons with energies of 1 meV, 25 meV, 10 eV and 1 MeV.

b) Typical instrument lengths for neutron scattering range from a few meters up to
150 m. What is the vertical deviation for instruments of 100 m length for the before
specified energies?

c) What impact could the deviation from the flight path have? How could this be
compensated?
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3.1 Introduction 
 
The neutron is a baryon without electric charge. In contrast to the charged proton, it doesn’t 
exist as a stable free particle, but only in bound states together with protons in atomic nuclei. 
The free neutron has been observed first in 1930 by W. Bothe and H. Becker. They found that 
if energetic α particles emitted from polonium impinge on certain light elements as e.g. 
beryllium, boron, or lithium, an unusually penetrating radiation was produced [1]. 
In 1932 J. Chadwick proved that this radiation consistes of neutral particles with about the same 
mass as the proton. This particle had earlier been proposed as a part of atomic nuclei by E. 
Rutherford. Since then, it was named neutron. Chadwick has been awarded the nobel prize in 
physics in 1935 for the discovery of the neutron [2].  
 
In contrast to the bound neutron, the free neutron experiences a β decay  
 
 (3.1)  

 
into proton, electron, and electron antineutrino with a lifetime of almost 15 minutes. This 
lifetime is long enough to be able to use the neutron as a probe for the investigation of other 
objects as e.g. a solid material.  
The mass mn of the free neutron (compare: mp of the free proton) is 
 
 

(3.2)  

 
If the energy E of the neutron is taken into account, we always mean the kinetic energy.  
 
 

(3.3)  

 
with the velocity vector v and the kinetic momentum p.  A temperature equivalent T of the 
kinetic energy can be defined using the Boltzmann constant kB. 
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The neutron’s wavelength λ is obtained from the de Broglie relation  
 
 

(3.5)  

 
and the wave vector k describes the propagation of the neutron wave  
 
 (3.6)  

 
A useful unit for the wavelength λ is the Ångstrøm: 1 Å = 0.1 nm = 10-10 m and for the energy 
E it's the electron Volt: 1 eV = e * 1 V = 1.6022 * 10-19 J with the electron’s charge e. 
Some useful conversions are 
 
 (3.7)  

 (3.8)  

 
The following table 3.1 shows the relations between energy, velocity, wavelength, and tempera-
ture of the neutron for a few examples which are commonly used. From these numbers, it 
immediately becomes obvious that neutrons with a temperature around room temperature have 
a wavelength comparable to interatomic distances, so they are useful to investigate the atomic 
order of condensed matter. 
 
 
Energy E Velocity v Wavelength λ Temperature T 

1 MeV 1.38 * 107 m/s 2.86 * 10-4 Å 1.16 * 1010 K 
1 eV 13800 m/s 0.286 Å 11600 K 
230 meV 6600 m/s 0.6 Å 2700 K 
82 meV 4000 m/s 1 Å 950 K 
26 meV 2230 m/s 1.77 Å 300 K 
10 meV 1380 m/s 2.86 Å 116 K 
1.7 meV 570 m/s 6.9 Å 20 K 

 
Table 3.1: Relation between energy, velocity, wavelength, and temperature of the neutron. 
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3.2 Neutron Production 
 
Stable neutrons only exist in a bound state in atomic nuclei. A nuclear reaction is always needed 
to release a neutron from a nucleus. In most cases, energy is needed to release a free neutron, 
in all cases an activation barrier has to be overcome. Today, many reaction paths are known 
that yield free neutrons which are presented in the following. 
 

3.2.1 Radioactive neutron sources: (α,n) reaction 
 
The production of neutrons with α radiation has historically led to the discovery of the neutron 
[1,2]. The reaction  
 
 (3.9)  

 
is still used today for small neutron sources used for detector calibration or constant activation 
purposes, e.g. in smoke detectors. Today’s most common alpha emitter used in neutron sources 
is 241Am (432 years half-life), artificially produced by Pu breeding in a nuclear reactor. Also 
238Pu or natural 226Ra can be used together with Be to produce small neutron sources.  
 

 
 
Fig. 3.1:  AmBe neutron source used for detector calibration. The source’s α activity is 350 

MBq, yielding a neutron production of 20000 n/s. The measured dose rate emitted 
by this source is about 10 µSv/h. 
 

γnCCαBe 12*139 ++→→+
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The neutron yield of an AmBe neutron source is about 6 * 104 neutrons per GBq α activity. 
These neutron sources are hermetically sealed, so that the material can be handles safely and 
the α radiation is properly shielded. The strongly penetrating neutron and γ radiations are 
emitted. 
Figure 3.1 shows an AmBe neutron source used in our laboratory to calibrate neutron detectors 
for the radiation safety interlock system. The white "pig" on the picture is a neutron detector 
encapsulated in a polyethylene thermal moderator making it possible to measure the intensity 
of thermal and fast neutron fields (see section 3.1) for radiation safety purposes. 
 

3.2.2 Photoneutrons: (γ,n) reactions 
 
The absorption of highly energetic γ photons can be used to excite a lot of nuclei to release a 
neutron. This works as well with light nuclei as Be as with heavy nuclei as W or Pb. A 
combination of 123Sb (activated to 124Sb as γ source) and Be (as neutron source) can be activated 
in a the neutron field of a nuclear reactor and emits monoenergetic neutrons with an energy of 
24 keV [3]. The half-life of this source is 60 days. Because of its low neutron energy it is used 
to keep a residual neutron field in a nuclear reactor during shutdown. 
Another application of (γ,n) reactions is a Compact Accelerator based Neutron Source (CANS) 
based on an electron accelerator and a thick heavy metal target. With an electron beam of some 
100 MeV energy impinging on the target, a lot of highly energetic bremsstrahlung is produced 
whose energy is sufficient to release neutrons from the same target material. An example of this 
type of neutron source is the HUNS source at Hokkaido university, Japan [4]. The drawback of 
this kind of accelerator driven neutron source is the fact that the γ radiation produced by the 
electrons has an energy such high that is difficult to shield and that also in the shielding material 
neutrons are released by (γ,n) processes which again have to be shielded. 
 

3.2.3 (p,n) and (d,n) reactions 
 
Accelerated protons or deuterons impinging on a metal target can be used to induce neutron 
production in a very efficient manner. Light ions can be accelerated in an electrostatic or a RF 
linear accelerator to energies in the range of a few MeV to a few 10 MeV. For most target 
materials the first neutron production channels open well below 20 MeV activation energy with 
additional contributions up to 100 MeV and higher. In case of deuteron beams, also the stripping 
of the deuteron’s neutron increases the neutron production rate. Figure 3.2 shows the energy 
dependence of the probability of different neutron production reaction channels for deuterons 
impinging on Be. For the deuteron stripping, there is no energy threshold, the neutron emission 
from Be starts at about 2 MeV deuteron energy [5]. 
Due to the flexibility of the light ion accelerators, this kind of neutron source can be operated 
in pulsed mode at high intensities. The low energy protons or deuterons are stopped after a short 
penetration length in the target material. Therefore, the volume where primary neutrons are 
produced is small, so that the neutrons can efficiently be coupled into a thermal moderator. 
Based on this principle is the design of most of the Compact Accelerator based Neutron Sources 
(CANS), as they are being operated in many places in Asia and the United States.  
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Fig. 3.2:  Calculated energy dependence of the cross sections of different neutron emitting 

reactions for deuterons impinging on Be based on the TENDL nuclear data library 
[5]. 

 
This concept of low-energy accelerator driven neutron sources is well scalable from 100 W to 
100 kW average proton beam power at the target. The smaller sources are suitable for laboratory 
characterization of samples along with the sample preparation or for quality control of industrial 
processes using dedicated instruments. The larger sources can be equipped with neutron 
scattering or analysis instrumentation that is competitive with the instruments installed at 
today’s high flux research reactors. 
 

 
 

Fig. 3.3:  JULIC Neutron Platform. 
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Here in Jülich and in several partner institutions in Europe, we have developed plans for High-
Current Accelerator-driven Neutron Sources (HiCANS). The project of the High Brilliance 
neutron Source (HBS) comprises a pulsed 70 MeV proton accelerator that serves 3 target 
stations with different pulse schemes to provide the most suitable neutron beams for up to 36 
instruments [6]. 
As a proof for the feasibility of the technology developed for the HBS neutron source, we have 
built a full-scale demonstrator at the pulsed JULIC proton accelerator of the Nuclear Physics 
Institute (IKP). Figure 3.3 shows the JULIC Neutron Platform which has been equipped with 6 
beamlines for neutron imaging, reflectometry, moderator spectroscopy, diffraction, and 
detector tests and is in operation since 13.12.2022. 
 

3.2.4 Nuclear fusion: d+d or d+t reactions 
 
The neutron production by nuclear fusion of deuterium (d or 2H) and tritium (t or 3H) can be 
induced at a low ion energy (below 100 keV) that can easily be achieved with a small 
accelerator. The two reactions available yield monochromatic neutrons: 
 
 (3.10)  
 (3.11)  

 
Technologically demanding is the fact that the target material is a gas. This is solved by using 
a metallic hydride as target. From time to time the target is burnt up and must be refreshed. 
Figure 3.4 shows a commercial neutron generator based on the reaction (3.10). It can produce 
up to 108 n/s in continuous or pulsed operation. 
 
 

 
Fig. 3.4:  A fusion neutron generator GENIE 16 GT commercially available from EADS 

Sodern. The tritium loaded metal hydride neutron production target is located 15 cm 
from the end of the long cylinder. 

 

MeV) (14nHeHH 432 +→+

MeV) (2.5nHeHH 322 +→+
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3.2.5 Nuclear fission reactors 
 
Nuclear fission reactors are high-intensity neutron sources available since the 1940s. If 235U is 
irradiated with thermal neutrons, the nucleus absorbs the neutron and breaks into typically two 
fission fragments. In this process neutrons are emitted with an average of 2.3 neutrons per 
fission process. 
In a nuclear reactor, these fission neutrons are used to sustain a chain reaction. A sufficient 
amount of 235U (more than the critical mass) together with a suitable thermal moderator (see 
section 3.3.1) that slows down the originally fast fission neutrons makes it possible that at least 
1 of the 2.3 fission neutrons can again be absorbed by a 235U nucleus. The remaining neutrons 
either escape from the core region (e.g. into a neutron beamline towards a neutron scattering 
experiment), or they are absorbed by the moderator or any structure material. The excess 
neutrons need to be absorbed by a reactor control system that can tune the chain reaction to a 
stable level or a slight deviation for an increase or decrease of the reaction speed, i.e. the reactor 
power. 
 
 

     
 
Fig. 3.5:  A model of the fuel element of the FRM II research reactor. The inclined plates 

contain the fuel, the cooling water flows in between the fuel plates. The central 
channel is the position of the control rod. The core of FRM-2 is the most compact 
235U reactor core ever built. (Copyright W. Schürmann, TU Munich) 
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For the reactor control it is important that a small fraction of the neutrons (0.65% in the case of 
235U are not emitted immediately after the fission, but about 10 to 20 s later. If the chain reaction 
is leveled so that the prompt neutrons are not sufficient to sustain the chain reaction, the delayed 
neutrons can be used to control a slow change in reactor power. The reactor must never be 
operated in a state where the prompt neutrons alone sustain the chain reaction (“prompt critical 
reactor”) [7]. In this case, the reactor power rises exponentially in an uncontrollable manner. 
This happened for example at the Chernobyl accident. 
In contrast to a nuclear power plant with an extended core for optimal cooling conditions, the 
fuel of a research reactor is arranged in a compact way to achieve high neutron fluxes that can 
be used for irradiation inside the moderator region or for the extraction of intensive neutron 
beams with relatively low thermal power. Figure 3.5 shows a model of the fuel element of the 
FRM II research reactor in Garching near Munich. The reactor core consists of this single fuel 
element loaded with highly enriched 235U, a light water cooling circuit passing vertically 
through the fuel element and a heavy water moderator and reflector that brings back thermal 
neutrons to the core to sustain the chain reaction, and that feeds tangential beam tubes to extract 
neutrons from the reactor to use them in neutron beam lines outside the reactor vessel. The 
reactor power is controlled by a neutron absorber rod located in the centre of the fuel element. 
Historically, and still today, nuclear reactors are the main source of high-intensity neutron 
beams for research applications. As most research reactors have been built in the years 1950 – 
1970, they are aging and more and more of them are shut down. Their role as a supply of neutron 
beams for research is gradually taken over by CANS and by spallation neutron sources. 
 

3.2.6 Spallation neutron sources 
 
Spallation is the interaction of heavy nuclei with high-energy protons, i.e. protons with energy 
in the GeV range. In the collision of a nucleus with a proton at such high energy, the nucleus is 
completely disintegrated. At energies above 150 MeV the de Broglie wavelength of the proton 
is small enough that the proton interacts with the individual nucleons in the target nucleus. The 
nucleus is highly excited, up to 30 neutrons are evaporated from a single nucleus and several 
small nuclei are formed [8]. 
Spallation is most energy-efficient process of neutron production, but a lot of the energy is 
transferred onto the neutrons, so that neutrons with energies up to 500 MeV need a high effort 
to design a suitable shielding for the operation of such a source. Due to the large stopping length 
of the high energy protons, the neutron production zone is elongated to several 10 cm.  
Today’s strongest pulsed neutron sources are spallation sources. The European Spallation 
Source ESS, which is currently being built in Lund (Sweden) will be the strongest research 
neutron source worldwide [9]. It is designed with a 600 m long linear proton accelerator to 
achieve 2000 MeV proton energy. The protons impinge on the target which is shown in figure 
3.6. The wheel is 2.6 m in diameter and consists of hundreds of heavy metal Tungsten bricks 
encased in a disk of stainless-steel shielding. The unit weighs 11 tonnes and rotates at 23.3 
rotations per minute to distribute the heat load to the entire tungsten volume, where it is 
removed by a He gas cooling circuit. Above and below of the target wheel are the moderators 
to convert the primary high-energy neutrons to a useful energy (see section 3.3.1). 
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Fig. 3.6:  Model of the ESS target wheel and moderator-reflector system (from [9]).  
 
The ESS is designed as a long pulse spallation source which receives proton pulses of 2.86 ms 
length immediately from the linear accelerator. Other spallation sources, e.g. ISIS (UK) or SNS 
(USA), are constructed as short pulse spallation sources with pulse lengths down to 1 µs. Figure 
3.7 shows the schematic setup of such a source. The protons are accelerated in a linear 
accelerator in the form of H- ions. The bunches coming from the linear accelerator are 
subsequently injected into a compressor ring for protons. At the point of injection (which is 
located inside a strong magnetic field) the electrons are stripped off by a carbon sieve, so that 
the injection of the H- ions is performed with the opposite direction of curvature compared to 
the naked protons circulating in the ring.  
The time of one revolution inside the ring is equal to the time distance between the bunches 
from the linear accelerator, so that the newly injected protons meet the already circulating 
protons in phase. With this technique, the length of the pulse can be reduced by ~1000 while 
the peak current is increased by the same factor. 
For some instruments, the shorter neutron pulses have advantages for the energy and 
wavelength resolution of the measurements. 

 
Fig. 3.7:  Schematic of a short pulse spallation source with a compressor ring.  
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3.2.7 Efficiency of the neutron production 
 
Table 3.2 shows the neutron yield and the heat deposition per neutron for different neutron 
production reaction. From this point of view, fusion is the most attractive opportunity, but the 
technology is not yet ready to use this for a high-flux neutron source. 
Spallation is more attractive than fission, but the investments necessary for building a high 
energy proton accelerator are high, so that not many sources of that kind have been built yet. 
The (p,n) reactions seem to be not attractive, but the well confined neutron cloud emitted from 
the compact target compensates quite well the reduced neutron emission probability. 
 

Reaction Energy/event Yield (neutron/event) Deposited heat (MeV/neutron) 

(d,t) fusion 
 

 ~1 neutron/fusion 3 
235U fission  

 
 ~1 neutron/fission 180 

Pb spallation  1 GeV ~ 20 neutron/proton 23 

Be (p,n)  25 MeV 0.006 neutron/proton 1200 
 
Table 3.2: Efficiency of different neutron production reactions. 
 
 

3.3 Manipulation of travelling neutrons 
 

3.3.1 Moderation 
 
Primary free neutrons that are produced in a nuclear reaction typically have an energy of a few 
MeV, in case of spallation it might be a lot higher. To make these neutrons useful to investigate 
atomic matter, this energy has to be reduced below 1 eV according to table 3.1. The useful 
neutron energies correspond to about room temperature, for crystallography maybe higher, for 
investigations of complex matter (e.g. macromolecules or layered structures) even lower. This 
neutron energy can be reached by bringing the neutron field into thermal equilibrium with 
something that has the proper temperature and that interacts strongly with the neutrons. 
One important candidate to do so is hydrogen in any compound that has a high density. The 
hydrogen atom has approximately the same weight as the neutron, so collisions between a 
neutron and a hydrogen nucleus (i.e. a proton) can optimally transfer momentum from the 
neutron to the proton. In addition, the inelastic scattering cross section that describes the 
probability of an energy transfer between hydrogen nuclei and neutrons is high. 
So, for neutron moderation to thermal temperatures water H2O or heavy water D2O are ideal. 
H2O has the advantage that it is easily available and does not produce any radioactive waste, 
but the disadvantage of a non-negligible neutron absorption. Thermalization of a MeV neutron 
in H2O needs about 7 collisions and 10 µs of time. 
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D2O has the advantage that it hardly absorbs neutrons, but if it does, radioactive tritium is 
produced. In addition, the interaction between neutrons and D2O is weaker compared to H2O, 
so that the moderator volume needs to be bigger and the neutron field is diluted. If the thermal 
load is low, also solid polyethylene is a good thermal neutron moderator, but it cannot be cooled 
as efficiently as liquid water. Another useful thermal moderator is Be which is solid but with a 
high thermal conductivity and has almost no neutron absorption. A thermal moderator 
efficiently delivers neutrons in the wavelength range between 0.7 and 2.5 Å.  
If neutrons with longer wavelengths are desired, a "cold neutron source" is used to moderate 
thermal neutrons to even lower temperatures. Liquid H2, liquid D2, solid methane CH4 or solid 
mesitylene C9H12 are the most frequently used substances in a cold neutron source. A cold 
neutron source efficiently delivers neutrons in the wavelength range between 2 and 8 Å. 
Depending on the realization, sometimes neutrons with wavelengths up to 20 Å can be used for 
special applications. 
In some research reactors specialized beamlines for crystallography and high-energy 
spectroscopy are fed by a hot neutron source. A hot neutron source is a graphite moderator 
heated (by the γ radiation close to the fuel element) to temperatures between 2500 and 3000 K. 
This moderator efficiently delivers neutrons with wavelengths down to 0.2 Å corresponding to 
an energy up to 2 eV. 
Figure 3.8 shows the neutron spectra available at the FRM II reactor. This reactor has a large 
D2O tank as thermal moderator where a cold source with liquid D2 and a hot source with a 
graphite moderator are inserted. 
 

 
Fig. 3.8:  Neutron spectra available at the beam tubes of FRM II.  
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3.3.2 Monochromatization 
 
In a neutron scattering experiment it is in most cases necessary to know the neutron's 
wavelength or energy when it interacts with the sample. There are three methods of 
monochromatization commonly used: 
 
Time-Of-Flight (TOF) 
The TOF method uses the energy dependent velocity of the neutrons (eq. (3.5) and (3.7) ). The 
neutron beam is structured in time by a rotating chopper that is transparent only for a short 
fraction or it is emitted from a pulsed source. When the neutron beam travels the distance 
between source / chopper to the detection system, the neutrons with shorter wavelength arrive 
earlier at the detector. With the control of the timing between source / chopper and the detector 
system, the wavelength of every neutron can be reconstructed from the arrival time. Figure 3.9 
shows a schematic diagram of the definition of an instrument’s band width and resolution in 
time-of-flight by several choppers. This instrument is located at a continuous source (i.e. at a 
research reactor). 
 

 
Fig. 3.9:  Time-of-flight diagram for an instrument with three choppers.  
 
It can be seen that the neutrons are only used during the opening time of the first chopper, all 
the remaining time the neutrons are discarded. In the case of an accelerator driven source this 
can be optimized so that neutrons are only produced when they can be accepted by the 
instruments. A duty cycle of some 2% of the source are sufficient to provide useful 
measurement data at the detector for some 95% of the time by just using one wavelength after 
the other. 
 
Velocity selector 
A velocity selector is a rotating turbine wheel with neutron absorbing channel walls, as can be 
seen in figure 3.10. The neutron beam impinges in a direction parallel to the turbine axis. If the 
speed of the neutrons matches the rotational motion of the channel, the neutrons of this speed 
can pass the velocity selector. This technique is used for instruments that need a monochromatic 
beam with moderate wavelength resolution (10-20%). 
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Fig. 3.10: Turbine wheel of the velocity selector used at KWS-3. The selector blades consist of 

a MgLi alloy with neutron absorbing 6Li. 
 
Monochromator crystals 
Bragg reflections on a single crystal happen only, if wavelength and angle of incidence on a 
suitable lattice plane match. Therefore, a neutron beam with well-defined direction can be 
monochromatized by Bragg reflection from a monochromator crystal. Depending on the quality 
of the crystal, a wavelength resolution between 0.05% and 1.5% can be achieved. Sometimes 
"too good" crystals are treated mechanically to disturb the perfection of the lattice to be able to 
reflect a wider wavelength band. 
Fig. 3.11 shows a double focusing Cu monochromator. It is equipped with 105 single crystals 
that have been hammered to increase the reflectivity. This monochromator can be focused 
vertically to be able to illuminate small samples more strongly and it can be focused 
horizontally to be able to transport a larger wavelength band (due to different Bragg angles of 
the individual columns of the monochromator) to the sample on the expense of a higher beam 
divergence. 

 
 
Fig. 3.11: Double focussing monochromator equipped with 105 Cu single crystals.  
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3.4 Neutron Transport 
 
Originally, thermal or cold neutrons are emitted isotropically from the moderator. Instruments 
directly located at a beamtube of a nuclear reactor can use the entire solid angle that is 
illuminated through the opening of the reactor shielding. But, as space around the shielding is 
very limited, a way to bring neutrons efficiently to instruments at a larger distance is necessary. 
Neutron guides based on the principle of total reflection (see lecture 9) are used to transport 
neutron beams with a limited divergence but with low losses over distances of up to 200 m. The 
walls of neutron guides are polished glass plates with a metal coating. A simple Ni coating 
offers total reflection up to the critical angle  
 (3.12)  

for neutrons with the wavelength λ. These neutrons are transported without losses. Today's 
supermirror technology has achieved to increase the reflection angles up to m=6 times θc with 
reflectivities between 95% (for m=2) down to 60% (for the highest angles with m=6). From eq. 
(3.12) it is obvious that neutron guides are more efficient for cold neutrons with long 
wavelengths than for thermal neutrons. Therefore, most cold neutron instruments are located at 
increased distance from the reactor surface while only thermal instruments are located directly 
at the beamtubes. 
Fig. 3.12 shows the neutron guides serving all cold neutron instruments of the neutron guide 
hall at the former research reactor in Jülich. Straight and slightly curved guides allow to supply 
neutrons to instruments that have sufficient space to be operated independently.  
 

 
 
Fig. 3.12: Neutron guides serving the cold neutron instruments at the former FRJ-2 research 

reactor in Jülich.  
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3.5 Neutron detectors 
 
Neutrons cannot be detected electronically because they carry no charge. Again, a nuclear 
reaction is necessary to produce charges that can be treated with electronic devices. The capture 
of the neutron in a suitable converter material releases charged secondary particles with high 
energy which are able to ionize detector material [10]. 
The most important nuclear capture reactions for neutron detection are 
 
 (3.13)  
 (3.14)  
 (3.15)  

 
Gas detectors use the ionization of gas by particle radiation within an electrical field. The ions 
and electrons are moving to the electrodes and induce a charge signal that can be detected by 
electronics. Typical detector gases for the detection of thermal or slow neutrons are 3He and 
10BF3.  
In Scintillation detectors, the neutron converter is embedded in a transparent solid matrix and 
the energy of the secondary particles is converted into excited states of the matrix that decay 
with the emission of photons. These photons in a second step can be converted into electronic 
signals in a photomultiplier. A typical neutron scintillator material is glass with embedded 6LiF. 
Both detector techniques can be used to build a position sensitive detector, where the charges 
are detected in a spatially resolved way. 1D or 2D spatial resolution can be achieved down to 
50 µm. 
 
 
 
 

  
 

MeV764.0pHnHe 33 ++→+

MeV78.4αHnLi 36 ++→+

MeV) (0.48 γMeV 2.31αLinB 710 +++→+
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Exercises 
 

E3.1 Basic relations * 
 
Calculate the velocity (in m / s), the kinetic energy (in meV), and the temperature (in K) for 

• hot neutrons (λ = 0.5 Å), 
• thermal neutrons (λ = 1.8 Å), 
• cold neutrons (λ = 6 Å). 

 
mn = 1.675 * 10-27 kg 
h = 6.626 * 10-34 Js 
e = 1.602 * 10-19 As 
kB = 1.38 * 10-23 J / K 

 
 

E3.2 Neutron production in a fission reactor ** 
 
Calculate the neutron production of a 20 MW fission reactor (in 1 / s). What would be the 
neutron production of a hypothetical spallation source with the same thermal power? 
 
Assuming that the reactor core is a point source and the neutrons just diffuse out of the core 
without absorption in the moderator: Calculate the neutron flux in 2 m, 10 m and 50 m 
distance from the core (in 1 / cm² s). 
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Fig. 4.1: A sketch of the scattering process for monochromatic radiation in the Fraunhofer
approximation. It is assumed that plane waves are incident on sample and detector due to the
fact that the distances source-sample and sample-detector, respectively, are significantly larger
than the size of the sample.

4.1 Introduction

After the very qualitative introduction given in chapter 1, we now have to move to a more
quantitative description of neutron scattering, giving the basic formulas for the simplest cases.

This lecture is organized as follows: First we give a very basic general introduction into
elementary scattering theory for elastic scattering. Then a more rigorous derivation in the
framework of the Born series follows. This section can be skipped by beginners but is pro-
vided for completeness.

We will introduce the concepts of coherence and pair correlation functions. Then we will
discuss, which probes are most relevant for condensed matter investigations and present in
some detail the interaction of neutrons with matter leading to the absorption and scattering
cross-sections. More details can be found in [1–7]. Finally, we will discuss details of neutron
diffraction experiments, in particular, how to calculate diffraction intensities and practical
realizations of single and powder diffraction experiments.

We will frequently make use of the particle-wave dualism of quantum mechanics, which
tells us that the radiation used in the scattering process can be described in a wave picture,
whenever we are interested in interference phenomena, and in a particle picture, when the
interaction with matter is relevant, e. g. for the detection process.

4.2 Elementary scattering theory: Elastic scattering

Throughout this lecture we assume that the atoms within our sample are rigidly fixed on
equilibrium positions in space. Therefore we only look at those processes, in which the re-
coil is being transferred to the sample as a whole so that the energy change for the radiation
is negligible and the scattering process appears to be elastic. In subsequent lectures, this re-
striction will be dropped and so-called inelastic scattering processes will be discussed. These
are due to excitations or internal fluctuations in the sample, which give rise to an energy
change of the radiation during the scattering process. A sketch of the scattering experiment
is shown in Figure 4.1.
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Here we assume the so-called Fraunhofer approximation, where the size of the sample is
much smaller than the distance between sample and source and the distance between sample
and detector, respectively. This assumption holds in all cases discussed in this lecture. In
addition, we assume that the source emits radiation of one given energy, i. e. so-called
monochromatic radiation. Then the wave field incident on the sample can be considered as a
plane wave, which is completely described by a wave vector k. The direction of k indicates
the propagation direction of the wave. The same holds for the wave incident on the detector,
which can be described by a vector k′. In the case of elastic scattering (diffraction) we have
(-with λ as wavelength):

k = |k| = |k′| = k′ =
2π

λ
(4.1)

Let us define the so-called scattering vector by

Q = k′ − k (4.2)

�Q represents the momentum transfer during scattering, since according to de Broglie, the
momentum of the particle corresponding to the wave with wave vector k is given by p = �k.
The magnitude of the scattering vector can be calculated from wavelength λ and scattering
angle 2θ as follows

Q = |Q| =
√
k2 + k′2 − 2kk′ cos 2θ ⇒ Q =

4π

λ
sin θ (4.3)

A scattering experiment comprises the measurement of the intensity distribution I(Q) as a
function of the scattering vector Q. The scattered intensity is proportional to the so-called
cross section, where the proportionality factors arise from the detailed geometry of the exper-
iment. For a definition of the scattering cross section, we refer to Figure 4.2. If n′ particles
are scattered per second into the solid angle dΩ seen by the detector under the scattering an-
gle 2θ and into the energy interval between E ′ and E ′+dE ′, then we can define the so-called
double differential cross section by:

d2σ

dΩdE ′ =
n′

jdΩdE ′ (4.4)

Here j refers to the incident beam flux in terms of particles per area and time. If we are
not interested in the change of the energy of the radiation during the scattering process, or
if our detector is not able to resolve this energy change, then we will describe the angular
dependence by the so-called differential cross section:

dσ

dΩ
(θ) =

∫ ∞

0

d2σ

dΩdE′

∣∣∣∣
θ

dE′ (4.5)

Note that the integral has to be taken for the constant scattering angle of the detector. Fi-
nally, the so-called total scattering cross section gives us a measure for the total scattering
probability independent of changes in energy and scattering angle:
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Fig. 4.2: Geometry used for the definition of the scattering cross section.

σ =

∫ 4π

0

dσ

dΩ
dΩ (4.6)

For elastic scattering our task is to determine the arrangement of the atoms in the sample
from the knowledge of the scattering cross section dσ/dΩ. The relationship between scat-
tered intensity and the structure of the sample is particularly simple in the so-called Born
approximation, which is often also referred to as kinematic scattering theory. In this case,
refraction of the beam entering and leaving the sample, multiple scattering events and the
attenuation of the primary beam due to scattering within the sample are neglected. For sim-
plicity, we assume that the incident beam is ideally collimated (i.e. has no angular spread)
and monochromatized (i.e. has no wavelength spread) and describe it as a plane wave.

Following Figure 4.3, the phase difference between a wave scattered at the origin of the
coordinate system (A) and at position r (D) is given by

∆Φ = 2π · (AB − CD)

λ
= k

′ · r − k · r = Q · r (4.7)

Here we see the other meaning of the scattering vector Q : besides the momentum transfer
�Q (“particle picture”), it determines the phase shift Q ·r during scattering (“wave picture”).

The amplitude of the scattered beam at position r depends on the type of radiation used and
the interaction of this radiation with the sample. In fact, the probability for a scattering event
to occur is directly proportional to the interaction potential V , as will be shown in paragraph
4.3. The total scattering amplitude is given by a coherent superposition (i.e. taking the phase
∆Φ into account) of the scattering from all points within the sample, i. e. by the integral
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Fig. 4.3: A sketch illustrating the phase difference between a ray scattered at the origin of the
coordinate system and a ray scattered at the position r.

A(Q) ∼ A0 ·
∫

Vs

V (r) · eiQ·rd3r (4.8)

Here A0 denotes the amplitude of the incident wave field. Eqn. 4.8 demonstrates that the
scattered amplitude is connected with the interaction potential V (r) by a simple Fourier
transform. Knowledge of the scattering amplitude A for all scattering vectors Q allows us to
determine via a Fourier transform the potential V (r) uniquely. This is the complete informa-
tion on the sample, which can be obtained by an elastic scattering experiment. Unfortunately,
nature is not so simple. On one hand, there is the more technical problem that one is unable
to determine the scattering cross section for all values of momentum transfer �Q. The more
fundamental problem, however, is that normally the amplitude of the scattered wave is not
measurable. Instead only the scattered intensity

I(Q) ∼ |A(Q)|2 (4.9)

can be determined. Therefore, the phase information is lost and the simple reconstruction of
the scattering potential via a Fourier transform is no longer possible. This is the so-called
phase problem of scattering. There are ways to overcome the phase problem, e. g. by
use of reference waves (e. g. holography). Then the scattering potential becomes directly
accessible. The question, which information we can obtain from a conventional scattering
experiment despite the phase problem will be addressed below.

Which wavelength do we have to choose to obtain the required real space resolution? For
information on a length scale L, a phase difference of about Q · L ≈ 2π has to be achieved.
Otherwise according to Eqn. 4.7, k′ and k will not differ significantly. According to Eqn.
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4.3, Q ≈ 2π/λ for typical scattering angles (2θ ∼ 60◦). Combining these two estimates, we
end up with the requirement that the wavelength λ has to be in the order of the real space
length scale L under investigation. To give an example: with the wavelength in the order of
1Å = 0.1 nm, atomic resolution can be achieved in a scattering experiment.

4.3 Fundamental scattering theory: The Born series

In this chapter, we will give a simple formulation of scattering theory. Our purpose is to
derive 4.8 from fundamental principles. The conditions under which 4.8 holds and the limi-
tations of kinematical scattering theory will thus become clearer. The derivation will be done
for particle beams - in particular neutrons - for which the Schrödinger equation holds. This
is bonus-material: Beginners can skip this chapter and continue with chapter 4.4 .

In quantum mechanics, neutrons are described as particle wave through the Schrödinger equa-
tion:

HΨ =

(
− �2

2m
∆+ V

)
Ψ = i�

∂

∂t
Ψ (4.10)

ψ is the probability density amplitude, V the interaction potential. In case of purely elastic
scattering E = E ′, the time dependence can be described by the factor exp

(
−iE� t

)
. As-

suming this time dependence, a wave equation for the spatial part of the probability density
amplitude ψ can be derived from 4.10:

∆Ψ+ k2(r)Ψ = 0 (4.11)

In Eq. 4.11, we have introduced a spatially varying wave vector with the magnitude square:

k2(r) =
2m

�2
(E − V (r)) (4.12)

Solutions of 4.10, in empty space (i. e. V ≡ 0 ) can be guessed immediately. They are
given by plane waves Ψ = Ψ0 exp

[
i
(
k · r − E

� t
)]

with k2 = 2m
�2 E. The relations between

magnitude of the wave vector k, wave length λ, and energy of the neutron E can be written
in practical units:

k
[
Å−1

]
≈ 0.695

√
E[meV] (4.13)

λ[Å] ≈ 9.045/
√

E[meV] (4.14)

E[meV] ≈ 81.8/λ2[Å] (4.15)

To give an example, neutrons of wavelength λ = 2.4 Å = 0.24 nm have an energy of E =

14.2meV with a magnitude of the neutron wave vector of k = 2.6 Å
−1

.

To obtain solutions of the wave equation 4.11 in matter, we reformulate the differential equa-
tion by explicitly separating the interaction term:
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Fig. 4.4: The scattering from a point-like scatterer (δ-potential) gives an emitted spherical
wave

(
∆+ k2

)
Ψ =

2m

�2
V ·Ψ =: χ (4.16)

Here k denotes the wave vector for propagation in empty space. The advantage of this for-
mulation is that the solutions of the left-hand side are already known. They are the plane
waves in empty space. Equation 4.16 is a linear partial differential equation, i.e. the su-
perposition principle holds: the general solution can be obtained as a linear combination of
a complete set of solution functions. The coefficients in the series are determined by the
boundary conditions. To solve 4.16 one can apply a method developed for inhomogeneous
linear differential equations. For the moment, we assume that the right-hand side is fixed
(given as χ ). We define a Greens-function by:

(
∆+ k2

)
G (r, r′) = δ (r − r′) (4.17)

A solution of 4.17 is given by:

G (r, r′) =
eik|r−r′|

4π |r − r′|
(4.18)

The physical meaning of 4.18 is immediately clear: the scattering from a point-like scatterer
(δ-potential) gives an emitted spherical wave. In a schematic graphical representation: Using
the Greens-function G (r, r′), we can write down a formal solution of the wave equation
4.16:

Ψ = Ψo +

∫
G (r, r′)χ (r′) d3r′ (4.19)

Here, we have taken the initial conditions of an incident plane wave Ψ◦ into account. Eqn.
4.19 is indeed a solution of Eqn. 4.16 as can be easily verified by substituting 4.19 into 4.16.
If we finally substitute the definition of χ, one obtains the so-called Lippmann-Schwinger
equation:

Ψ(r) = Ψo(r) +
2m

�2

∫

Vs

G (r, r′)V (r′)Ψ (r′) d3r′ (4.20)
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Fig. 4.5: Physical interpretation of eqn. 4.20.

Eqn. 4.20 has a simple interpretation: the incident plane wave Ψ◦(r) is superimposed by
spherical waves emitted from scattering at positions r′. The amplitude of these spherical
waves is proportional to the interaction potential V (r′) and the amplitude of the wave field
at the position r′. To obtain the total scattering amplitude, we have to integrate over the
entire sample volume Vs. However, we still have not solved 4.16: our solution Ψ appears
again in the integral in 4.20. In other words, we have transformed differential equation 4.16
into an integral equation. The advantage is that for such an integral equation, a solution can
be found by iteration. In the zeroth approximation, we neglect the interaction V completely.

This gives Ψ = Ψo. The next higher order approximation for a weak interaction potential
is obtained by substituting this solution in the right-hand side of 4.20. The first non-trivial
approximation can thus be obtained:

Ψ1(r) = eik·r +
2m

�2

∫
exp (ik |r − r′|)

4π |r − r′|
V (r′) eik·r

′
d3r′ (4.21)

4.21 is nothing else but a mathematical formulation of the well-known Huygens principle for
wave propagation.

The approximation 4.21 assumes that the incident plane wave is only scattered once from
the potential V (r′). For a stronger potential and larger sample, multiple scattering processes
will occur. Again, this can be deduced from the integral equation 4.20 by further iteration.
For simplification we introduce a new version of equation 4.20 by writing the integral over
the "Greens function” as operator Ĝ :

Ψ = Ψo + ĜVΨ (4.22)

The so-called first Born approximation, which gives the kinematical scattering theory is ob-
tained by substituting the wave function Ψ on the right hand side by Ψ◦ :

Ψ1 = Ψo + ĜVΨo (4.23)

This first approximation can be represented by a simple diagram as a sum of an incident
plane wave and a wave scattered once from the potential V :
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Fig. 4.6: This first approximation in Graphical representation.

The second approximation is obtained by substituting the solution of the first approximation
4.23 on the right-hand side of equation 4.22:

Ψ2 = Ψo + ĜVΨ1 = Ψo + ĜVΨo + ĜV ĜVΨo (4.24)

Or in a diagrammatic form:

Fig. 4.7: This second approximation in Graphical representation.

I.e. in the second approximation, processes are being taken into account, in which the neutron
is scattered twice by the interaction potential V . In a similar manner, all higher order approx-
imations can be calculated. This gives the so-called Born series. 1 For weak potential and
small samples, this series converges rather fast. Often, the first approximation, the kinematic
scattering theory, holds very well. This is especially the case for neutron scattering, where
the scattering potential is rather weak, as compared to x-ray or electron- scattering. Due to
the strong Coulomb interaction potential, the probability for multiple scattering processes of
electrons in solids is extremely high, making the interpretation of electron diffraction exper-
iments difficult. But even for neutrons, the kinematic scattering theory can break down, for
example in the case of Bragg scattering from large ideally perfect single crystals, where the
Born series does not converge. The wave equation has to be solved exactly under the bound-
ary conditions given by the crystal geometry. For simple geometries, analytical solutions can
be obtained. This is then called the dynamical scattering theory. Since for neutrons, the kine-
matical theory holds in most cases, or multiple scattering events can often be corrected for,
we will no longer discuss dynamical theory in what follows and refer to [3, 7].

Let us return to the first Born approximation 4.21. In a further approximation, the Fraun-
hofer approximation, we assume that the size of the sample is significantly smaller than the
distance sample-detector. The geometry to calculate the far field limit of 4.21 is given in
Figure 4.8 . Under the assumption |R| >> |r′|, we can deduce from Figure 2.4 the following
approximation for the emitted spherical wave:

exp (ik |r − r′|)
|r − r′|

≈ exp (ik (R− r′ ·R))

R
≈ exp(ikR)

R
· e−ik′·r′

(4.25)

1 Note that Born approximation or the Born series violates energy conservation: scattered waves are created with-
out weakening of the incident plane wave. Born series can therefore only be applied in the limit of very weak
scattering potentials.
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Fig. 4.8: Scattering geometry for the calculation of the far field limit at the detector. In the
Fraunhofer approximation, we assume that |R| >> |r′|.

The probability density amplitude for the scattered wave field in the limit of large distances
from the sample is thus given by:

⇒ Ψ1(R) = eik·R +
2m

�2
eikR

4πR

∫
V (r′) eiQ·r′d3r′ (4.26)

This is just the sum of an incident plane wave and a spherical wave emitted from the sample
as a whole. The amplitude of the scattered wave is given according to 4.26:

A(Q) =
m

2π�2

∫
V (r)eiQ·rd3r ∼ F [V (r)] (4.27)

The integral in the above equation is nothing but the transition matrix element of the inter-
action potential V between the initial and final plane wave states, therefore:

dσ

dΩ
=

( m

2π�2
)2

|〈k′|V |k〉|2 (4.28)

This formula corresponds to Fermi’s Golden Rule from time-dependent perturbation theory,
where the transition probability per time interval from state k to states k′ is given by:

Wk′k =
2π

�
|〈k′|V |k〉|2 · ρ (Ek′) (4.29)

Here, ρ (Ek′) denotes the density of states for the final states k′.

With this exact derivation of the scattering cross section, we can now confirm by comparison
with 4.8 that the scattering probability in the simple derivation of chapter 4.2 is given by
m

2π�2V (r) for particle beams governed by the Schrödinger equation.

We now allow for inelastic processes, where the sample undergoes a change of its state from
α to α′ (α denotes a set of quantum numbers characterizing an eigenstate of the sample). In
this case, due to the different length of the wavevectors for incoming and outgoing waves,
we have to introduce factors k′ and k, which arise from the density of states factor in 4.29.
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Since the scattering event must fulfill energy and momentum conservation, we arrive at the
double differential cross section (without detailed derivation):

d2σ

dΩdω
=

k′

k

( m

2π�2
)2 ∑

α

pα
∑
α′

|〈k′, α′|V |k, α〉|2 · δ (�ω + Eα − Eα′) (4.30)

The first summation is carried out over all possible initial states α of the system, weighted
with their thermodynamic occupation probability pα. The sum over α′ is the sum over all
final states allowed by energy conservation, which is guaranteed through the δ-function. �ω
denotes the energy transfer of the neutron to the system. This double differential cross section
will be discussed in the following lectures on inelastic scattering.

4.4 Coherence

In the above derivation, we assumed plane waves as initial and final states. For a real scat-
tering experiment, this is an unphysical assumption. In the incident beam, a wave packet is
produced by collimation (defining the direction of the beam) and monochromatization (defin-
ing the wavelength of the incident beam). Neither the direction k, nor the wavelength λ have
sharp values but rather have a distribution of finite width about their respective mean values.
This wave packet can be described as a superposition of plane waves. As a consequence,
the diffraction pattern will be a superposition of patterns for different incident wavevector
k and the question arises, which information is lost due to these non-ideal conditions. This
instrumental resolution is intimately connected with the coherence of the beam. Coherence
is needed, so that the interference pattern is not significantly destroyed. Coherence requires
a phase relationship between the different components of the beam. Two types of coherence
can be distinguished.

• Temporal or longitudinal coherence due to a wavelength spread.

A measure for the longitudinal coherence is given by the length, on which two components
of the beam with largest wavelength difference ( λ and λ+∆λ ) become fully out of phase.

According to the Figure 4.9, this is the case for l‖ = n · λ =
(
n− 1

2

)
(λ + ∆λ). From this,

solving for n and assuming ∆λ << λ, we obtain the longitudinal coherence length l‖ as:

l‖ =
λ2

2∆λ
(4.31)

• Transversal coherence due to source extension

Due to the extension of the source (transverse beam size), the phase relation is destroyed for
large source size or large divergence. According to the Figure 4.10, a first minimum occurs
for λ

2
= d · sin θ ≈ d · θ.
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Fig. 4.9: A sketch illustrating the longitudinal coherence due to a wavelength spread.

Fig. 4.10: A sketch illustrating the transverse coherence due to source extension.

From this, we obtain the transversal coherence length l⊥ as

l⊥ =
λ

2∆θ
(4.32)

Here ∆θ is the divergence of the beam. Note that l⊥ can be different along different spatial
directions: in many instruments, the vertical and horizontal collimations are different.

Together, the longitudinal and the two transversal coherence lengths (in two directions per-
pendicular to the beam propagation) define a coherence volume. This is a measure for a
volume, in which the amplitudes of all scattered waves superimpose within the sample to
produce an interference pattern. Normally, the coherence volume is significantly smaller
than the sample size, typically a few 100 Å for neutron scattering, up to µm for synchrotron
radiation. Scattering between different coherence volumes within the sample is no longer
coherent, i.e. instead of the amplitudes the intensities of the contributions to the scattering
pattern have to be added. This limits the real space resolution of a scattering experiment to
the extension of the coherence volume.
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4.5 Pair correlation functions

After having clarified the conditions under which we can expect a coherent scattering pro-
cess, let us now come back to the question, which information is accessible from the intensity
distribution of a scattering experiment. From 4.9 we see that the phase information is lost
during the measurement of the intensity. For this reason the Fourier transform of the scat-
tering potential is not directly accessible in most scattering experiments (note however that
phase information can be obtained in certain cases).

Substituting 4.8 into 4.9 and applying the variable substitution R = r
′ − r , we obtain for

the magnitude square of the scattering amplitude, a quantity directly accessible in a scattering
experiment:

I ∼ |A(Q)|2 ∼
∫

d3r′V (r′) eiQ·r′
∫

d3rV ∗(r)e−iQ·r =
�

d3r′d3rV (r′)V ∗(r)eiQ·(r′−r)

(4.33)

=
�

d3Rd3rV (R+ r)V ∗(r)eiQ·R (4.34)

This shows that the scattered intensity is proportional to the Fourier transform of a function
P (R) :

I(Q) ∼
∫

d3RP (R)eiQ·R (4.35)

This function denotes the so-called Patterson function in crystallography or more general the
static pair correlation function:

P (R) =

∫
d3rV ∗(r)V (r +R) (4.36)

P (R) correlates the value of the scattering potential at position r with the value at the
position r + R, integrated over the entire sample volume. The Patterson function P (R)
vanishes, if no correlation exists between the values of the potential at position r and r+R,
when averaged over the sample. If, however, a periodic arrangement of a pair of atoms exists
in the sample with a difference vector R between the positions, then the Patterson function
will have an extremum for this vector R. Thus, the Patterson function reproduces all the
vectors connecting one atom with another atom in a periodic arrangement. Quite generally,
in a scattering experiment, pair correlation functions are being determined. In a coherent
inelastic scattering experiment, we measure the scattering law S(Q,ω), which is the Fourier
transform with respect to space and time of the spatial and temporal pair correlation function:

d2σ

dωdΩ
∼ S(Q, ω) =

1

2π�

∫ +∞

−∞
dte−iωt

∫
d3reiQ·rG(r, t) (4.37)

While the proportionality factor between the double differential cross section and the scatter-
ing law depends on the type of radiation and its specific interaction potential with the system
studied, the spatial and temporal pair correlation function is only a property of the system
studied and independent of the probe used:
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G(r, t) =
1

N

∑
ij

∫
d3r′ 〈δ (r′ − rj(0)) · δ (r′ + r − ri(t))〉 =

1

N

∫
d3r′ 〈ρ (r′, 0) ρ (r′ + r, t)〉

(4.38)
Here, the pair correlation function is once expressed as a correlation between the position of
N point-like particles (expressed by the delta functions) and once by the correlation between
the densities at different positions in the sample for different times. In a magnetic system,
we scatter from the atomic magnetic moments, which are vector quantities. Therefore, the
scattering law becomes a tensor - the Fourier transform of the spin pair correlations:

Sαβ(Q, ω) =
1

2π

∑
l

∫
dtei[ϕ(Rl−R0)−ωt]

〈
Sα
0 (0)S

β
l (t)

〉
(4.39)

α, β denote the Cartesian coordinates x, y, z;R0 and Rl are the spatial coordinates of a ref-
erence spin 0 and a spin l in the system.

4.6 Form-factor

So far we have not specified the nature of our sample. Now we assume an assembly of N
scatterers of finite size, see Figure 4.11. These could be atoms in a solid, or colloidal particles
in a homogeneous solution. In what follows, we will separate the interference effects from
scattering within one such a particle from the interference effects arising from scattering
between different particles. With the decomposition of the vector r into the centre-of-gravity-
vector rj of particle number j and a vector r′ within the particle, the scattering amplitude
can be written as (all particles are assumed to be identical):

A ∝
∫

Vs

d3rV (r)eiQ·r =
N∑
j=1

∫

Vj

d3rV (r)eiQ·r (4.40)

=
N∑
j=1

eiQ·rj
∫

V 0
j

d3r′V (r′) eiQ·r′
=:

N∑
j=1

eiQ·rjV tot
j fj(Q) (4.41)

With 4.41, we have separated the scattering from within the single particles from the inter-
ference between different particles. V tot

j denotes the total scattering power of the particle.
The form-factor f(Q) is defined as the normalized amplitude of scattering from within one
particle 2 (it describes the "form” of the particle):

f(Q) ≡

∫
V 0
j
d3r′V (r′) eiQ·r′

∫
V 0
j
d3r′V (r′)

(4.42)

For a homogeneous sphere

2 For simplicity we now drop the index j
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Fig. 4.11: Sketch showing the assembly of N scatterers of finite size and defining the quantities
needed for the definition of the form factor.

V (r) =

{
0 |r| > R

C |r| ≤ R
(4.43)

, the form-factor can be calculated by using spherical co-ordinates:

⇒ f(Q) = 3 · sinQR−QR · cosQR

(QR)3
(4.44)

The function in Eqn. 4.44 is plotted in Figure 4.12. In forward direction, there is no phase
difference between waves scattered from different volume elements within the sample (note:
we assume the Fraunhofer approximation and work in a far field limit): the form factor
takes its maximum value of one. For finite scattering angles 2θ, the form-factor drops due
to destructive interference from waves scattered from various parts within one particle and
finally for large values of the momentum transfer shows damped oscillations around 0 as a
function of QR.

4.7 Scattering from a periodic lattice in three dimensions

As an example for the application of 4.8 and 4.9, we will now discuss the scattering from
a three dimensional lattice of point-like scatterers. As we will see later, this situation corre-
sponds to the scattering of thermal neutrons from a single crystal. More precisely, we will
restrict ourselves to the case of a Bravais lattice with one atom at the origin of the unit cell.
To each atom we attribute a "scattering power” 3 β. The single crystal is finite with N,M
and P periods along the basis vectors a, b and c. The scattering potential, which we have to
use in 4.8 is a sum over δ-functions for all scattering centers:

3 We will later see that this “scattering power” is connected to the so-called scattering length of the atom.
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Fig. 4.12: Form-factor for a homogeneous sphere according to 4.44

V (r) =
N−1∑
n=0

M−1∑
m=0

p−1∑
p=0

β · δ(r − (n · a+m · b+ p · c)) (4.45)

The scattering amplitude is calculated as a Fourier transform:

A(Q) ∼ β

N−1∑
n=0

einQ·a
M−1∑
m=0

eimQ·b
p−1∑
p=0

eipQ·c (4.46)

Summing up the geometrical series, we obtain for the scattered intensity:

I(Q) ∼ |A(Q)|2 = |β|2 ·
sin2 1

2
NQ · a

sin2 1
2
Q · a

·
sin2 1

2
MQ · b

sin2 1
2
Q · b

·
sin2 1

2
PQ · c

sin2 1
2
Q · c

(4.47)

The dependence on the scattering vector Q is given by the so-called Laue function, which
factorizes along to the three directions in space. One factor along one lattice direction a is
plotted in Figure 4.13.

The main maxima occur at the positions Q = n · 2π/a. Q = n · 2π/a = ha∗, where a∗ is the
reciprocal lattic vector (please see definition of reciprocal lattice at section 4.9, here, h, and
n are integers.). The maximum intensity scales with the square of the number of periods N2,
the half width is given approximately by ∆Q = 2π/(N · a). The more periods contribute
to coherent scattering, the sharper and higher are the main peaks. Between the main peaks,
there are N − 2 side maxima. With increasing number of periods N , their intensity becomes
rapidly negligible compared to the intensity of the main peaks. The main peaks are of course
the well-known Bragg reflections, which we obtain for scattering from a crystal lattice. From
the position of these Bragg peaks in momentum space, the metric of the unit cell can be
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Fig. 4.13: Laue function along the lattice direction a for a lattice with five and ten periods,
respectively.

deduced (lattice constants a, b, c and unit cell angles α, β, γ ). The width of the Bragg peaks
is determined by the coherently scattering volume (parameters N,M , and P ) - and some
other factors for real experiments (resolution, mosaic distribution, internal strains, ...). For
large N, the factors in 4.47, approaches a δ function, and the scattering intensity can be
written as

I(Q) ∼ |A(Q)|2 = N |β|2VBZ

∑
h

δ(Q−Gh) (4.48)

where VBZ is the Brillouin zone volume. The physical meaning of the 4.48 is that the Bragg
reflections occurs when momentum transfer (Q) is equal to the reciprocal lattice vector (G),
which is precisely the Laue condition that will be discussed later.

4.8 Probes for scattering experiments in condensed matter
science

In this chapter, we will discuss which type of radiation is suitable for condensed matter
investigations. For neutron beams, we will then discuss the relevant interaction processes
with matter in detail.

A list of requirements for the type of radiation used in condensed matter investigations looks
as follows:

1. The achievable spatial resolution should be in the order of the inter-particle distances,
which implies (see section 4.2) that the wavelength λ is in the order of the inter-particle
distance L.
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2. If we want to study volume effects, the scattering has to originate from the bulk of
the sample, which implies that the radiation should be at most weakly absorbed within
matter.

3. For a simple interpretation of the scattering data within the Born approximation (see
section 4.2), multiple scattering effects should be negligible, i. e. the interaction of the
radiation with matter should be weak.

4. For the sake of simplicity, the probe should have no inner degrees of freedom, which
could be excited during the scattering process (i. e. avoid beams of molecules, which
have internal vibrational or rotational degrees of freedom).

5. To study magnetic systems, we need a probe which interacts with the atomic magnetic
moments in the sample.

6. If, in addition to structural studies, we want to investigate elementary excitations, we
would like the energy of the probe to be in the order of the excitation energies, so that
the energy change during the scattering process is easily measurable.

This list of requirements leads us to some standard probes in condensed matter research. First
of all, electromagnetic radiation governed by the Maxwell equations can be used. Depending
on the resolution requirements, we will use x-rays with wavelength λ of about 0.1 nm to
achieve atomic resolution or visible light (λ ∼ 350− 700 nm ) to investigate e. g. colloidal
particles in solution. Besides electromagnetic radiation, particle waves can be used. It turns
out that thermal neutrons with a wavelength ∼ 0.1nm are particularly well adapted to the
above list of requirements. The neutron beams are governed by the Schrödinger equation of
quantum mechanics. An alternative is to use electrons, which for energies of around 100 keV
have wavelengths in the order of 0.005 nm. As relativistic particles, they are governed by
the Dirac equation of quantum mechanics. The big drawback of electrons as a condensed
matter probe is the strong Coulomb interaction with the electrons in the sample. Therefore,
neither absorption, nor multiple scattering effects can be neglected. However, the abundance
of free electrons and the relative ease to produce optical elements makes them very suitable
for imaging purposes (electron microscopy). Electrons, but also atomic beams, are very
powerful tools for surface science: due to their strong interaction with matter, both types of
radiation are very surface sensitive. Low Energy Electron Diffraction LEED and Reflection
High Energy Electron Diffraction RHEED are both used for in-situ studies of the crystalline
structure during thin film growth, e.g. with Molecular Beam Epitaxy MBE. In what follows
we will concentrate on neutron scattering as one of the probes, which is best suited for
bulk studies on an atomic scale. We will introduce the properties of the neutron, discuss
the absorption of neutrons in matter and derive the scattering cross sections for the main
interaction processes with matter.

As mentioned earlier, each scattering experiment performed with any type of radiation -
regardless of whether it involves massive particles like neutrons and electrons or electro-
magnetic waves like x-rays or visible light - has a total of four attributes which altogether
characterize the type of the scattering experiment as well as the information that can be
obtained from such an experiment. These attributes and their characteristics are:

Elastic scattering, which involves the conservation of the energy of the particle or quantum
during the scattering process, inelastic scattering, corresponding to a loss or gain of parti-
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cle or quantum energy during the scattering event, coherent scattering which involves the
interference of waves (recall that, according to the particle-wave dualism first stated by de
Broglie (1924), each particle may also be described by a wave which can interfere with other
particle waves) and finally incoherent scattering which is scattering without interference.

In the following, we will deal exclusively with neutron diffraction which is, in the above
nomenclature of a general scattering experiment, equivalent to elastic, coherent scattering
of neutrons.

It is assumed that most of the readers of this chapter will be familiar with x-ray diffraction
from crystals, which has been demonstrated for the first time by Laue in 1912 and, since
then, has developed into the most powerful method for obtaining structural information on
crystalline materials. Diffraction - in sharp contrast to imaging techniques like optical or
electron microscopy - has no principal limitation as to the spatial resolution, expressed in
units of the wavelength of the radiation used for diffraction or imaging: While the resolution
of imaging is limited to half the wavelength (recall the Abbe diffraction limit) diffraction can
yield useful information, for instance, on bond distances between atoms on a length scale
that is by two to three orders of magnitude smaller than the wavelength. On the other hand,
diffraction, other than imaging, requires 3-dimensional periodicity (see chapter 5).

This chapter will discuss the basics and some peculiarities of neutron diffraction from either
single or polycrystalline matter. We will start by discussing the geometry of diffraction
from crystals, treat the subject of diffraction intensities and end with a discussion of a few
experimental issues connected to the instruments which will be used in the practical part
of the course. Examples of applications of these methods will be given in a later chapter
on “Structural Analysis”. The subject of magnetic neutron diffraction and scattering will be
discussed in a separate chapter.

4.9 Diffraction geometry

For purely elastic scattering, the scattering function S(Q, ω) reduces to the special case with-
out energy transfer (E0 = E1 and �ω = E0 − E1 = 0) and equal length of the wave vectors
of the incident and scattered beams (|k0| = |k1|) .S(Q, ω = 0). The scattering intensity then
only depends on the scattering vector Q = k1−k0. The coherent elastic neutron scattering (
≡ neutron diffraction) yields information on the positions (distribution) of the atomic nuclei
and the arrangement of the localized magnetic spins in crystalline solids, the pair correlation
function of liquids and glasses, and the conformation of polymer chains.

Figure 4.14 shows a sketch of a general diffraction experiment. More specifically, it is
a typical setup of a constant wavelength, angular dispersive diffraction experiment. There
are other methods to perform a diffraction experiment (e.g. time of flight- (TOF), Laue-,
energy-dispersive diffractometers etc.) but these are outside the scope of this introductory
lecture.

For constant wavelength diffraction, the energy (wavelength) and direction (collimation) of
the incident neutron beam needs to be adjusted. For that purpose, the diffractometer is
equipped with a crystal monochromator to select a particular wavelength band (λ ± ∆λ/λ)
out of the “white” beam. Collimators are used to define the beam direction and divergence
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Fig. 4.14: Schematic representation of a constant wavelength diffractometer.

pretty much as it is done in x-ray diffraction.

In the case of a crystalline sample, the diffraction geometry is most conveniently described by
the concepts of the reciprocal lattice and the Ewald construction which are both well-known
from x-ray-diffraction.

Reciprocal lattice

The characteristic feature of the crystalline state (see chapter 5a) is its periodic order, which
may be represented by a (translation) lattice. In the 3D case, a,b, and c being primitive
lattice vectors of the direct lattice. Each lattice node of the crystal lattice can be addressed
by a general lattice vector

R = n1a+ n2b+ n3c (4.49)

which results from a linear combination of the basis vectors with with n1, n2, and n3 integers
(positive or negative integers, including 0 ). The position of atom j in the unit cell is given
by the vector

rj = xja+ yjb+ zjc (4.50)

The coefficients xj, yj, and zj are called atomic coordinates
(0 ≤ xj < 1; 0 ≤ yj < 1; 0 ≤ zj < 1). Given a (direct) lattice of points R, a point G is
a point in the reciprocal lattice if and only if

eiG·R = 1 (4.51)
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for all points R of the direct lattice.

We now make two key claims:

(1) We claim that the reciprocal lattice (defined by Eq. 4.51) is a lattice in reciprocal space
(thus explaining its name).

(2) We claim that the primitive lattice vectors of the reciprocal lattice (which we will call
a∗,b∗, and c∗ ) are defined to have the following property:

ai · a∗
j = 2πδij (4.52)

where δij is the Kronecker delta.

We can certainly construct vectors a∗
i to have the desired property of Eq. 4.52, as follows:

a∗ = 2π
b× c

a · (b× c)

b∗ = 2π
c× a

a · (b× c)

c∗ = 2π
a× b

a · (b× c)

It is easy to check that Eq. 4.52 is satisfied. For example,

a · a∗ = 2π
a · (b× c)

a · (b× c)
= 2π

b · a∗ = 2π
b · (b× c)

a · (b× c)
= 0

Now, given vectors a∗,b∗, and c∗ satisfying Eq. 4.52, we have claimed that these are in fact
primitive lattice vectors for the reciprocal lattice. Let us write an arbitrary point in reciprocal
space as

G = m1a
∗ +m2b

∗ +m3c
∗ (4.53)

In order to fulfill condition eiG·R = 1, m1,m2,m3 need to be integers. Thus, points in re-
ciprocal lattice are preciously given by equaiton 4.53. A plane with Miller indices h, k, l, is
notmal to the reciprocal lattice vector G = ha∗ + kb∗ + lc∗

Performing a diffraction experiment on a single crystal actually means doing a Fourier
transform of the 3D-periodic crystal (see section 4.2) followed by taking the square of the
resulting (complex) amplitude function. The Fourier transform of the (infinite) crystal lat-
tice is essentially the reciprocal lattice derived above and yields directly the positions of the
reflections in space (directions of the diffracted beams). The Fourier transform of the unit
cell contents (kind and positions of all atoms) determines the reflection intensities. These
reflection intensities may be envisaged as a weight attached to the nodes of the reciprocal
lattice. Doing a (single crystal) diffraction experiment therefore corresponds to measuring
the positions and weights of the reciprocal lattice points.
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Fig. 4.15: Ewald construction in reciprocal space, showing the diffraction condition for reflec-
tion (hkl)

Ewald construction

The concept of reciprocal lattice (reciprocal space) also provides a handy tool to express ge-
ometrically the condition for Bragg diffraction in the so-called Ewald construction. In this
way geometrical aspects of the different diffraction methods can be discussed. We consider
the reciprocal lattice of a crystal and choose its origin (0, 0, 0). In Fig. 4.15 the wave vector
k0 ( |k0| = 2π/λ ) of the incident beam is marked with its end at (0, 0, 0) and its origin
at P. We now draw a sphere of radius |k0| = 2π/λ around P passing through (0, 0, 0).
Now, if any point hkl of the reciprocal lattice lies on the surface of this “Ewald sphere”,
then the diffraction condition for the (hkl) set of lattice planes is fulfilled: The wave vec-
tor of the diffracted beam k (with its origin also at P ) for the set of planes (hkl), is of
the same length as k0 (|k| = |k0|) and the resulting vector diagram satisfies k = k0 + G
(Q (= k− k0) = G). Introducing the scattering angle 2θ (and hence the Bragg angle θhkl,
we can deduce immediately from 2 |k| · sin θ = |G | the Bragg equation 2 dhkl · sin θhkl = λ
(remember dh,k,l = 2π

|G| ). In the case of single crystal diffraction a rotation of the crystal and
therefore also of the corresponding reciprocal lattice (which is rigidly attached to the crystal)
is of often used to set the diffraction conditions for the measurement of intensities I(G).
If |G| > 4π/λ (then dhkl < λ/2π ) the reflection hkl cannot be observed. This condition
defines the so called limiting sphere, with center at 000 and radius 4π/λ : only the points
of the reciprocal lattice inside the limiting sphere can be rotated into the diffraction position.
Vice versa if λ > 2 dmax, where dmax is the largest interplanar spacing of the unit cell, then
the diameter of the Ewald sphere is smaller than |G|min. Under these conditions no node of
the reciprocal lattice can intercept the Ewald sphere. That is the reason why diffraction of
visible light (wavelength ∼= 5000Å ) can never be obtained from crystals. λmin determines
the amount of information available from a diffraction experiment. Under ideal conditions,
λmin should be short enough to measure all points of the reciprocal lattice with significant
diffraction intensities. For a real crystal of limited perfection and size the infinitely sharp
diffraction peaks (delta functions) evolve into broadened reflections. One reason can be the
local variation of the orientation of the crystal lattice (mosaic spread) implying some angu-
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Fig. 4.16: Ewald-construction: Influence of the horizontal beam divergence on the experimen-
tal conditions for the measurement of Bragg-intensities.Inset: A typical ω-scan of a reflection.

lar splitting of the vector G. A spread of interplanar spacings ∆d/d, which may be caused
by inhomogeneities in the chemical composition or by inhomogeneous strain in the sample,
gives rise to a variation of its magnitude |G|. The previously assumed ideal diffraction ge-
ometry also needs to be modified: In a real experiment the primary beam has a nonvanishing
divergence and wavelength spread. The detector aperture is also finite. A gain of intensity,
which can be accomplished by increasing the angular divergence and wavelengths bandwidth,
has to be paid for by some worsening of the resolution function (see below) and hence by a
limitation of the ability to separate different Bragg reflections.

All of these influences can also be studied by the Ewald construction. As an example, the
influence of a horizontal beam divergence on the experimental conditions for a measurement
of Bragg-intensities of a single crystal is illustrated in Fig. 4.16. Strictly monochromatic
radiation (only one wavelength λ with ∆λ/λ = 0 ) is still assumed. To collect the com-
plete intensity contained in the spread out reflection, a so-called ω-scan, where the crystal
is rotated around the sample axis perpendicular to the diffraction plane, needs to be used.
The summation over the whole reflection profile yields the so-called integral diffraction in-
tensities. As a final example, the geometry of powder diffraction experiments can also be
discussed in terms of the Ewald-construction:

An ideal polycrystalline sample is characterized by a very large number of arbitrarily oriented
small crystallites. Therefore, the reciprocal lattice points hkl are smeared out on a sphere and
the 3D-information contained in vector G is reduced to only 1D information contained in
|G|. In Figure 4.17 the corresponding sphere with radius |G| = 2π/dhkl is drawn around the
origin of the reciprocal lattice at 0, 0, 0. For each Bragg reflection the circle of intersection of
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Fig. 4.17: Ewald construction for a powder diffraction experiment.

Fig. 4.18: Sketch of a powder diffraction experiment, diffraction cones are recorded on a 2D-
or 1D-detector (reproduced from [9]).
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the “reciprocal lattice sphere” with the Ewald sphere yields a diffraction cone. These cones
(Fig. 4.18) are recorded on a point or position sensitive detector. The resulting information
is plotted as an intensity vs. diffraction angle (or Q ) diagram. All reflections with equal
interplanar spacing dhkl are perfectly superimposed and cannot be separated experimentally.

4.10 Diffraction intensities

Without the phase information, we need an approximate model of the crystal structure and
a formula to calculate diffraction intensities from the model. In the kinematical scattering
approximation we use the so called structure factor formula for that purpose (see below).
The model is then iteratively improved to give an optimum match between observed and
calculated intensities. This is referred to as the structure refinement.

Structure factor and Bragg intensities

In the kinematical approximation, which assumes that the magnitude of the incident wave
is the same at all points in the specimen (this implies a small sample size, weak interaction
between radiation and matter, no multiple diffraction and negligible absorption) and that the
diffracted beams are much weaker than the primary beam, the diffracted intensity is propor-
tional to the square of the amplitude of the scattered wave for each individual reflection; it
can be regarded as a weight ascribed to the reciprocal lattice nodes.

I(G) ∼ |F (G)|2 (4.54)

The structure factor F(G) is the Fourier transform of the scattering density within the unit
cell. For a 3D-periodic scattering density function composed of discrete atoms (the crys-
tal), the three fold spatial integral describing the Fourier transform in its most general form,
simplifies to a sum over all atoms j in the unit cell The structure factor F(G) contains the
complete structural information, including the atomic coordinates rj = xja +yjb + zjc (see
eqn. 4.50), site occupations and the thermal vibrations contained in Tj.

F (G) =
∑
j

bj exp[i(G · rj)]Tj (4.55)

In the case of nuclear scattering of neutrons the structure factor has the dimension of a length,
as has the scattering length bj(G) = bj = const. of nucleus j. Tj(G) is the Debye Waller
factor which takes into account dynamical and static displacements of the nucleus j from its
average position rj in the unit cell.

Tj = exp(−Bj
sin2 θ

λ2
)

Where Bj = 8π2
〈
u2
j

〉
, is known as isotropic displacement parameter. Here, uj(t) is the

displacement of atom of atom j from the equilibrium position at time t. With the fractional
coordinates xj, yj and zj, the scalar product in the exponential function can be written as
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G · rj = 2π(hxj + kyj + lzj) (4.56)

In a diffraction experiment normally only relative Bragg intensities are measured. A scale
factor SCALE takes into account all parameters which are constant for a given set of diffrac-
tion intensities. Additional corrections have to be applied, which are a function of the scat-
tering angle. For nuclear neutron diffraction from single crystals the integrated relative in-
tensities are given by

I(G) = SCALE · L · A · E · |F (G)|2 (4.57)

The Lorentz factor L is instrument specific. The absorption correction A depends on the
geometry and linear absorption coefficient of the sample and the extinction coefficient E
takes into account a possible violation of the assumed conditions for the application of the
kinematical diffraction theory.

Information on the crystal system, the Bravais lattice type and the basis vectors a, b, c of
the unit cell (lattice parameters a, b, c, α, β, γ ) may be directly deduced from the reciprocal
lattice. Systematic absences (zero structure factors) can be used to determine non-primitive
Bravais lattices or detect the presence of symmetry operations with translation components
(screw axes, glide planes).

As an example, consider a body centered cubic lattice with atoms at (0, 0, 0) and
(1/2, 1/2, 12). Using eqn. 4.55 and dropping the Debye-Waller factor for the moment, the
structure factor equation may be rewritten as:

F (hkl) =
∑
j

bj · exp [2πi (hxj + kyj + lzj)] (4.58)

= b · exp[2πi(h0 + k0 + l0)] + b · exp[2πi(h/2 + k/2 + l/2)]) (4.59)

For this simple structure, index j just runs over the two equivalent atoms with scattering
length b within the unit cell. For a centrosymmetric structure, F is a real quantity (instead
of being complex), the exponentials in (4.59) reduce to cosines and the phase factor assumes
only the values + or -1 .

Thus we get:

F (hkl) = b · cos[2π(h · 0 + k · 0 + l · 0] + b · cos[2π(h/2 + k/2 + l/2)]

The first term cos(0) = 1 and we therefore have:

F (hkl) = b+ b · cos[2π(h/2 + k/2 + l/2)] = b · (1 + cos[π(h+ k + l)])

If h + k + l is even, the cosine term is +1 , otherwise it is -1 .

Reflections with h + k + 1 = 2n + 1 are therefore systematically absent.

These statements apply equally well to x-ray and neutron diffraction and to powder as well
as to single crystal diffraction data.
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Fig. 4.19: Principle components of a constant wavelength single crystal diffractometer (Picture
courtesy, Navid Qureshi (ILL, Grenoble)).

In the case of a powder sample, orientational averaging leads to a reduction of the dimen-
sionality of the intensity information from 3D to 1D: Diffraction intensity I is recorded as a
function |G| = 2π/dhkl or, by making use of Bragg’s law, of sin(θ)/λ or just as a function
of 2θ. For powders, two additional corrections ( M and P in eqn. 4.60) need to be ap-
plied in order to convert between the measured intensities I and the squared structure factor
magnitudes F2 :

I(|τ |) = SCALE · L · A · E ·M · P · |F (|G|)|2 (4.60)

M is the multiplicity of the individual reflections and takes into account how many symmet-
rically equivalent sets of lattice planes correspond to a given hkl. In the cubic crystal system,
for instance, M111 = 8 (octahedron) while M100 = 6 (cube). P is the so-called preferred
orientation parameter which corrects the intensities for deviations from the assumption of
randomly oriented crystals in the powder sample.

4.11 Diffractometers

Single Crystal Neutron Diffractometry

Monochromator and collimator

For constant wavelength diffraction, the energy (wavelength) and direction (collimation) of
the incident neutron beam needs to be adjusted. For that purpose, the diffractometer is
equipped with a crystal monochromator to select a particular wavelength band (λ ± ∆λ/λ)
out of the “white” beam according to the Bragg condition for its scattering plane (hkl)
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2 dhkl · sin θhkl = λ (4.61)

with the interplanar spacing dhkl and the monochromator scattering angle 2θhkl = 2θM. The
width of the wavelengths band ∆λ/λ, which is important for the Q-resolution, depends on
the divergences of the beam before and after the monochromator (collimations α1 and α2),
on the mosaic spread of the monochromator crystal, and on the monochromator angle 2θM.
In order to increase the intensity of the monochromatic beam at the sample position the
monochromator crystal is often bent in vertical direction perpendicular to the diffraction
plane of the experiment. In this way the vertical beam divergence is increased leading to
a loss of resolution in reciprocal space. The diffracted intensity from the sample is measured
as a function of the scattering angle 2θ and the sample orientation (especially in case of a
single crystal). 2θ is again defined by collimators.

As there is no analysis of the energy of the scattered beam behind the sample, the energy
resolution �E/E of such a 2-axes diffractometer is not well defined (typically of the order of
some %). In addition to the dominant elastic scattering also quasi-elastic and some inelastic
scattering contributions are collected by the detector.

Neutron filters and the problem of λ/2 contamination

Unfortunately, the monochromator crystals not only “reflect” the desired wavelength λ by
diffraction from the set of lattice planes (hkl) but also the higher orders of λ/2 or λ/3 etc.
from 2h, 2k, 2l or 3h, 3k, 3l to the same diffraction angle:

sinθ = λ/dhkl = (λ/2)/d2h 2k 2l = (λ/3)/d3h 3k 3l (4.62)

The only requirement is, that the higher order reflection (2h, 2k, 2l) or (3h, 3k, 3l) has a
reasonably large structure factor. Higher order contamination causes sizeable reflection in-
tensities at “forbidden” reflection positions and in addition to that can modify intensities at
allowed positions. Thus it can very much affect the correct determination of the unit cell as
well of the space group symmetry (from systematically absent reflections). The solution to
this problem is to minimize the λ/2 contamination by using filters which suppress the higher
orders stronger than the desired wavelength. One such type of filters uses resonance absorp-
tion effects - completely analogous to the suppression of the Kβ line in x-ray diffractometers.
Another way to attenuate short wavelengths is to use the scattering from materials like beryl-
lium or graphite. These filters use the fact that there is no Bragg diffraction if λ > 2dmax,
where dmax is the largest interplanar spacing of the unit cell. As we have shown above, for
such long wavelengths the Ewald sphere is too small to be touched by any reciprocal lattice
point. Below this critical wavelength, the neutron beam is attenuated by diffraction and this
can be used to suppress higher order reflections very effectively. Frequently used materials
are polycrystalline beryllium and graphite. Due to their unit cell dimensions, they are par-
ticularly suitable for experiments with cold neutrons because they block wavelengths smaller
than about 3.5 Å and 6 Å, respectively.
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Fig. 4.20: Left: Experimental setup of the four circle single crystal diffractometer HEiDi at
FRM II. Right: Resolution function of HEiDi for different collimations, monochromator: Cu
(220), 2ΘMono = 40° → λ = 0.873 Å

Resolution function:

An important characteristic of any diffractometer is its angular resolution. Fig. 4.20 shows
(on the right) the resolution function (reflection half width as a function of scattering angle)
for the four circle single crystal neutron diffractometer HEiDi at FRM II shown on the left.
The resolution depends on a number of factors, among them the collimation, the monochro-
mator type and quality, the 2θ and (hkl) of the reflection used for monochromatization etc.

Powder Neutron Diffractometry:
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Fig. 4.21: Left: Neutron powder diffractometer D20 at ILL, Grenoble. Right: Typical setup of
a (constant wavelength) powder neutron diffractometer with position sensitive detector (PSD).

Neutron Rietveld analysis:

The conversion from 3D- to 1D-intensity data caused by the averaging over all crystal-lite
orientations in a powder sample severely restricts the informative value of powder neutron
(or x-ray) diffraction experiments and makes the resolution function of the instrument even
more important than in the single crystal case. Even with optimized resolution, the severe
overlap of reflections on the 2θ-axis often prohibits the extraction of reliable integrated in-
tensities from the experiment. Instead, the Rietveld method, also referred to as full pattern
refinement, is used to refine a given structural model against powder diffraction data. The
method, which is widely used in powder x-ray diffraction, has actually been invented by
Hugo Rietveld in 1969 [10] for the structural analysis from powder neutron data. Full pat-
tern refinement means that along with the structural parameters (atomic coordinates, thermal
displacements, site occupations) which are also optimized in a single crystal structure re-
finement, additional parameters like the shape and width of the reflection profiles and their
2θ-dependence, background parameters, lattice parameters etc. need to be refined.
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Fig. 4.22: Results of a Rietveld refinement at the magnetic phase transition of CoGeO3 [8],
red: measured intensity, black: calculated from model, blue: difference, green: tick-marks
at allowed reflection positions. The figure shows the low-angle part of two diffractograms
measured at SPODI at 35K and 30K. Note the strong magnetic reflection appearing below the
magnetic ordering transition (in the inset). .
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Fig. 4.23: Bragg scattering

Exercises

E4.1 Multiple choice

Kinematic scattering theory takes into account

� refraction

� attenuation

� multiple scattering

� none of the above

E4.2 Multiple choice

You have measured the scattered intensity I(Q) as a function of the scattering vector Q.
Which of the following statements are correct for kinematic scattering:

� The Fourier transform of I(Q) is proportional to the scattering density.

� I(Q) is always described by the Laue function.

� I(Q) is the Patterson- or static pair correlation function.

� The phase problem does not allow one to determine the atomic position directly by a
simple mathematical procedure.

E4.3 Bragg scattering

Bragg had the idea to describe scattering from a three-dimensional periodic arrangement of
scatterers (e.g. atoms in a crystal) by the interference of waves reflected from parallel atomic
planes, see sketch below. For constructive interference, sharp intensity maxima appear as a
function of scattering angle. These peaks are called “Bragg reflections”.

1. After scattering, the waves reflected from the two planes show a path length differ-
ence. Which relation does this path length difference have to fulfill in order to achieve
coherent superposition and thus an intensity maximum (See Figure 4.23) ?
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2. Derive the condition for the occurrence of such a Bragg peak in terms of wavelength
λ, scattering angle 2θ and distance between the planes d, the so-called Bragg equation.

3. How does the Bragg equation relate to the Laue conditions?

E4.4 Reciprocal lattice

A two-dimensional rectangular crystal has a unit cell with sides a1 = 0.468 nm and a2 =
0.342 nm.

(a) Find out the reciprocal lattice vectors and Draw to scale a diagram of the reciprocal
lattice.

(b) Label the reciprocal lattice points for indices in the range 0 ≤ h ≤ 3 and 0 ≤ k ≤ 3.

E4.5 Types of Scattering Experiments

a) Discuss/define the following terms: A. Elastic scattering, B. Inelastic scattering, C. Coher-
ent scattering, D. Incoherent scattering

b) What does the term “diffraction” correspond to in this context?

E4.6 Filtering

a) What is the purpose of a beryllium (or graphite) filter for neutron diffraction?

b) To discuss how it works: Use the Ewald construction for a given reciprocal lattice and a
very short / very long wavelength.

E4.7 Structure factor equation

The structure factor equation is the central formula that allows us to calculate diffracted
intensities from structural parameters. It corresponds to a Fourier-transform of the unit cell
contents.

a) Write down the structure factor equation

b) Identify and discuss all parameters in the formula.

c) Under which conditions does this formula hold (kinematical diffraction conditions)?

d) Explain the difference in diffraction pattern (x-ray powder) although both have fcc NaCl
type crystal structure (Figure 4.24).

E4.8 Neutron diffractometers

a) What is the purpose of a monochromator?
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Fig. 4.24: X-ray powder diffraction of KCl and KBr.
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Fig. 4.25: Powder diffraction of neutrons from PrO2. The wavelength of the neutron beam is λ =
0.123 nm. (One should assume that Lorentz corrections have been removed from the displayed
intensities.). The approximate peak positions are: a: 22.7°, b: 26.3°, c: 37.7°, d: 44.3°, e: 46.2°,
f: 54.2°

b) How does it work?

c) What does the term “collimation” mean?

d) What is the resolution function of a diffractometer? (sketch)

e) Why is it important?

f) What is the purpose of a hot neutron source?

g) How does it work?

E4.9 Calculation of lattice constant

Consider the powder diffraction data from PrO2 shown in the above Figure (Fig. 4.25).

a) Find out the lattice type (assume some sort of Cubic structure).

b) Find out the lattice constant.
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5a.2 M. Zobel

5a.1 Introduction
The term “crystal” derives from the Greek κρύσταλλοςwhich was first used as a description 
of ice and later - more generally - of transparent minerals with regular morphology (regular 
crystal faces and edges), see Fig. 5a.1 as an example.

Fig. 5a.1: Example: Quartz (SiO2), mineral specimen from the Gotthard-Massif.

Matter is usually classified into three states: gaseous – liquid – solid. Crystals are representa-
tives of the solid state. Crystalline solids are thermodynamically stable in contrast to glasses 
and are characterised by a regular three-dimensional periodic arrangement of atoms (ions,
molecules) in space. More than 90 % of matter are (partially) crystalline. In this chapter we 
discuss basic concepts which are used to describe the structure of crystals. The field of “Crys-
tallography”, though, is not only limited to the concept of crystal symmetry, but further encom-
passes the techniques which allow us to characterize the structure and dynamics of matter, with 
X-ray and neutron scattering being the key techniques. The importance of this field is mirrored 
in a range of Nobel Prizes in relation to crystallography and structure characterization, see Fig. 
5a.2.

Fig. 5a.2: Nobel Prizes in relation to Crystallography 
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5a.2 Crystal lattices
The three-dimensional periodicity of crystals can be represented by the so-called crystal lattice. 
The repeat unit in form of a parallelepiped - known as the unit cell – is defined by three non-
linear basis vectors a, b, and c, whose directions form the reference axes X, Y, and Z of the 
corresponding right-handed crystallographic coordination system. The six lattice parameters 
are given as the lengths of the basis vectors a = a, b = b, c = c and the angles between 
the basis vectors: angle(a,b) = , angle(b,c) = , angle(c,a) = . The faces of the unit cell are 
named as face(a,b) = C, face(b,c) = A, face(c,a) = B, see Fig. 5a.3
If the vertices of all repeat units (unit cells) are replaced by points, the result is the crystal lattice 
in the form of a point lattice. Each lattice point is given by a vector τ = ua + vb + wc, with u,
v, w being integers. a, b, c act as the symmetry operation of parallel displacement also known 
as a translation and maps the atomic arrangement of the crystal (crystal structure) onto itself.

Fig. 5a.3: Point lattice with unit cell, basis vectors, B- and C-face, and notation for: lattice 
point 210, lattice direction [121] and lattice plane (211)

A lattice point is named “uvw”, according to the coefficients (integers) of the translation vector 
τ = ua + vb + wc from the origin to the lattice point. A lattice direction - given by the symbol 
[uvw] - is defined by the direction of the corresponding translation vector. Nota: Watch out for 
the different brackets employed in crystallographic nomenclature.
A plane passing through three lattice points is known as a lattice plane. Since all lattice points 
are equivalent (by translation symmetry) there will be infinitely many parallel planes passing 
through all the other points of the lattice. Such a set of equally spaced planes is known as a set 
of lattice planes. If the first plane from the origin of a set of lattice planes makes intercepts a/h,
b/k, c/l on the X, Y, Z axes, respectively, where h, k, l are integers, then the Miller indices of
this set of lattice planes are (hkl), the three factors h, k, l being enclosed in parentheses.
The equation of lattice planes can be written in intercept form as

(ℎ𝑥𝑥𝑎𝑎 ) + (𝑘𝑘𝑘𝑘𝑏𝑏 ) + (𝑙𝑙𝑙𝑙𝑐𝑐 ) = 𝑛𝑛, 5a.1

where n is an integer. If n = 0 the lattice plane passes through the origin; if n = 1, the plane 
makes intercepts at a/h, b/k, c/l on the X, Y, Z axe respectively; if n = 2, the intercepts are 2a/h,
2b/k, 2c/l; and so on. 
The line of intersection of any two non-parallel lattice planes is a row of lattice points common 
to both planes. This lattice point row defines a lattice direction [uvw] which is known as zone 
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axis. All lattice planes intersecting in a common lattice-point row are said to lie in the same 
zone. The condition for lattice planes to be parallel to a lattice vector τ = ua + vb + wc is the 
zone equation

uh + vk + wl = 0 5a.2
The zone axis symbol [uvw] for the zone containing the two planes (h1k1l1) and (h2k2l2) is ob-
tained by solving the simultaneous equations uh1 + vk1 + wl1 = 0 and uh2 + vk2 + wl2 = 0,

[uvw] = [k1l2-k2l1, l1h2-l2h1, h1k2-h2k1] 5a.3

5a.3 Crystallographic coordinate systems
The first step in the description of a crystal structure is to choose the basis vectors of a unit cell 
as the smallest repeat unit of the crystal. While in physics and chemistry, Cartesian coordinate 
systems are commonly used, crystallography uses symmetry adapted coordinate systems. In 
this way a crystal-specific coordinate system is defined which is then used to localize all the 
atoms in the unit cell. Crystal symmetry requires, in three dimensions, 7 different crystal sys-
tems and hence 7 crystallographic coordinate systems to be defined:

name of system minimum symmetry conventional unit cell

triclinic 1 or 1̅ a  b  c;
    

monoclinic one diad, i.e. 2 or m (‖Y) a  b  c;
 =  = 90°,  > 90°

orthorhombic three mutually perpendicular di-
ads, i.e. 2 or m (‖X, Y and Z)

a  b  c;
 =  =  = 90°

tetragonal one tetrad, i.e. 4 or 4̅ (‖Z) a = b  c;
 =  =  = 90°

trigonal
(hexagonal cell) one triad, i.e. 3 or 3̅ (‖Z) a = b  c;

 =  = 90°,  = 120°

hexagonal one hexad, i.e. 6 or 6̅ (‖Z) a = b  c;
 =  = 90°,  = 120°

cubic four triads, i.e. 3 or 3̅
(‖ space diagonals of cube)

a = b = c;
 =  =  = 90°

The choice of the origin of the coordinate system is arbitrary, but for convenience it is usually 
chosen at a centre of symmetry (inversion centre), if present, otherwise at a point of high sym-
metry.
In order to complete the symmetry conventions of the coordinate systems, it is necessary to add 
to the seven so-called primitive unit cells of the crystal systems (primitive lattice types with 
only one lattice point per unit cell) seven centred unit cells with two, three or four lattice points 
per unit cell (centred lattice types). These centred unit cells are consequently two, three or four 
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times larger than the smallest repeat units of the crystal. The resulting 14 Bravais lattice types
with their centrings are compiled in figure 5a.4. Hereby the capital letters represent the type of 
centering: P = primitive (no centering); A, B, C = face-centered in A, B, C, respectively; F = 
face-centered on all faces; I = body centered; R = centering of the rhombohedral unit cell.

Fig. 5a.4: The 14 Bravais lattices consisting of the 7 primitive lattices P for the 7 crystal 
systems with only one lattice point per unit cell and the 7 centred (non-primitive) lat-
tices A, B, C, I, R and F with 2, 3 and 4 lattice points per unit cell.

triclinic P monoclinic P
monoclinic axis‖c

monoclinic A
(0,0,0 + 0, ½, ½)

orthorhombic P

orthorhombic I
(0,0,0 + ½, ½, ½)

orthorhombic C
(0,0,0 + ½, ½,0)

orthorhombic F
(0,0,0 + ½, ½,0

½,0, ½ + 0, ½, ½)

tetragonal P

tetragonal I hexagonal P hexagonal/
rhombohedral R

cubic P

cubic I cubic F
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A set of lattice planes (hkl) is separated by a characteristic interplanar spacing d(hkl). According 
to the different crystallographic coordinate systems these d(hkl) values are calculated in a spe-
cific manner:

For the cubic lattice (a = b = c,  =  =  = 90°)

 
1

2 2 2 2( )d hkl a h k l
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For the hexagonal lattice (a = b, c,  =  = 90°,  = 120°)
1

2 2 2 2
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For the tetragonal lattice (a = b, c,  =  =  = 90°)
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a c
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For the orthorhombic lattice (a, b, c,  =  =  = 90°)
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For the monoclinic lattice (a, b, c,  =  = 90°,  > 90°)
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For the triclinic lattice (a, b, c, , , ), the most general case,
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5a.4 Crystallographic symmetry operations and symmetry 
elements

The symmetry operations of a crystal are isometric transformations or motions, i.e. mappings 
in space which preserve distances and, hence, also angles and volumes. An object and its trans-
formed object superpose in a perfect manner, they are indistinguishable.
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The simplest crystallographic symmetry operation is the translation, which is a parallel dis-
placement of the crystal by a translation vector τ (see chapt. 4.2). There is no fixed point, the 
entire lattice is shifted and, hence, the crystal lattice is considered to be infinite.

Crystallographic rotations n around an axis by an angle  = 360°/n (n-fold rotations) and ro-
toinversions (combination of rotations and inversions) �̅�𝑛 are called point symmetry operations 
because they leave at least one point in space invariant (at least one fixed point), see Fig. 5a.5.
An important fact of crystallographic symmetry is the restriction of the rotation angles to  =
60, 90, 120, 180 and 360°, resulting in the rotation axes 1, 2, 3, 4 and 6. This derives from the 
assumption of three-dimensional translational symmetry. Only for such crystallographic rota-
tions the space can be covered completely without gaps and overlaps. The rotoinversion �̅�𝑛 = 1̅
is an inversion at a point �̅�𝑛 = 2̅  m (mirror plane) describes a reflection through a plane.

rotations rotoinversions

1=identity

2-fold = 180°-rotation 2-fold rotation combined
with inversion = reflection

inversion

1
5

2

3

4
6
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Fig. 5a.5: Rotations: n=1 (identity), n=2 (angle 180°), n=3 (120°), n=4 (90°), n=6 (60°).
Rotoinversions:1 (inversion),2  m (reflection), 3 = 3 +1,4,6 = 3/m.

The combination of n-fold rotations with (m/n)a translation components (m < n) parallel (‖)
to the rotation axis leads to the so-called screw rotations nm, e.g. 21, 32, 42, 65. These symmetry 
operations have no fixed points, see Fig. 5a.6.
The combination of a reflection through a plane (glide plane) with translation components 
(glide vectors) of a/2, b/2, c/2, (a+b)/2, … ‖ to this plane are known as glide reflections a, b, 
c, n, …, d, see Fig. 5a.7. Again, no fixed points exist for these symmetry operations.
The objects which actually realte to the symmetry operations are the symmetry elements. They 
form the geometrical locus, oriented in space, of the symmetry operation (a line for a rotation, 
a plane for a reflection, and a point for an inversion) together with a description of this opera-
tion. Symmetry elements are mirror planes, glide planes, rotation axes, screw axes, rotoinver-
sion axes and inversion centres. The geometrical descriptions of selected crystallographic sym-
metry operations are illustrated in Figs. 5a.4 - 5a.6.
A symmetry operation transforms a point X with coordinates x, y, z (corresponding to a posi-
tion vector X = xa1 + ya2 + za3) into a symmetrically equivalent point X’ with coordinates x’, 
y’, z’ mathematically by the system of linear equations 

x’ = W11x + W12y + W13z + w1

y’ = W21x + W22y + W23z + w2

z’ = W31x + W32y + W33z + w3

5a.10

Symmetry operation in matrix notation:



































































3

2

1

333231

232221

131211

w
w
w

z
y
x

WWW
WWW
WWW

z'
y'
x'

 ; X’ = WX + w = (W, w)X 5a.11

The (33) matrix W is the rotation part and the (31) column matrix w the translation part of 
the symmetry operation. The two parts W and w can be assembled into an augmented (44)
matrix W according to
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 = WX 5a.12

Since every symmetry transformation is a “rigid-body” motion, the determinant of all matrices 
W and W is det W = det W =  1 (+ 1: preservation of handedness; - 1: change of handedness 
of the object).
The sequence of two symmetry operations (successive application) is given by the product of 
their matrices W1 and W2 according to eq. 4.13, where W3 is again a symmetry operation.

W3 = W1W2 5a.13
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Fig. 5a.6: Screw rotations nm: combination of rotations n and translation components 
(m/n)a ‖ to the rotation axis.

Fig. 5a.7: Examples of reflections and glide reflections.

a

120°

1/3

31 = 3 + 1/3 

+ 42, 43 and 65

60°

4/6

a

64 = 6 + 4/6 

2/6

a
60°

62 = 6 + 2/6 

a
m

reflection: mirror plane m  image plane (plane of the paper)

a
1

a/2

glide reflection: glide plane a  with glide vector a/2

a
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5a.5 Crystallographic point groups and space groups
The symmetry of a macroscopic crystal and of its crystal structure relates to the different pos-
sibilities to fill 3D space and available point symmetry operations. All possible combinations 
of the crystallographic point symmetry operations in three-dimensional space lead to exactly 
32 crystallographic point groups (also called crystal classes).
Nota: The symmetry of the crystal structure can be described by mathematical group theory. 

The symmetry operations are the group elements of a crystallographic group G, and the 
combination of group elements is the successive execution of symmetry operations. The 
32 point groups are each of finite order, with the order being the number of elements of 
the group (maximum order: 48 for the cubic crystal class).

If we now combine the 32 point groups with the 14 Bravais lattice types as well as the transla-
tion-containing symmetry operations of the screw axes and glide reflections and translational 
symmetry, we result in 230 space groups. Fig. 5a.8 represents this schematically.

Fig. 5a.8: Going from elemental meshes to space groups by combining the concept of unit 
cells (with and without centering), point symmetry, translation-containing symmetry 
elements.

In Fig. 5a.8, an exemplary space group is given as “Cmc21”. This is the Hermann-Mauguin
symbol, which is internationally employed in the field of crystallography to display in a com-
pact form the symmetry information of the crystal. Three independent main symmetry direc-
tions (“Blickrichtungen”) describe the entire symmetry of a crystal. These Blickrichtungen are 
specifically defined for the seven crystal systems, and they define the sequence, in which the 
symmetries are listed in the Hermann-Mauguin symbols. As an example, the Blickrichtungen 
of the cubic system are shown in Fig. 5a.9.
Besides the Hermann-Mauguin symbol, the Schoenflies symbol is used alternatively to describe 
symmetry. Yet, the Schoenflies symbol only describes point group symmetry without contain-
ing information on translational symmetry. It is frequently used in chemistry to describe the 
symmetry of molecules, for instance in the fields of infrared and nuclear magnetic resonance 
spectroscopy.
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Fig. 5a.9: Symmetry directions (“Blickrichtungen”) of the cubic lattice (a = b = c, 
      90°): [100] with symmetry 4/m, [111] with �̅�𝟑, and [110] with 2/m. 

The point group symmetries determine the anisotropic (macroscopic) physical properties of
crystals, i.e. mechanical, electrical, optical and thermal properties. The crystal class can be de-
duced from a diffraction experiment. However, diffraction introduces an (additional) centre 
of symmetry, so that only the 11 centrosymmetric Laue classes can be distinguished:

Crystal system Laue class
triclinic 1

Monoclinic 1 2/m 1 = 2/m
Orthorhombic 2/m 2/m 2/m = m m m

Tetragonal 4/m
4/m 2/m 2/m = 4/m m m

Trigonal 3
3 2/m = 3 m

Hexagonal 6/m
6/m 2/m 2/m = 6/m m m

Cubic 2/m 3 = m 3
4/m 3 2/m = m 3 m

In three dimensions all possible combinations of the point symmetries of the 32 crystallo-
graphic point groups with the lattice translations of the 14 Bravais lattices lead to exactly 
230 space groups, all of infinite order. As already mentioned, the combination of point sym-
metry operations with translations results in new symmetry operations: screw rotations and 
glide reflections. The conventional graphical symbols for the three dimensional space group 
symmetry elements according to the International Tables for Crystallography Vol. A (ITA, 
2002 [1]) are shown in figure 5a.9.

[100] [111] [110]

x
y

z

x
y

zz

y
x

m
2

m
4 3
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Fig. 5a.10: Conventional graphical symbols for symmetry elements: Left: axes (a) perpen-
dicular, (b) parallel, and (c) inclined to the image plane; Right: planes: (d) perpen-
dicular and (e) parallel to the image plane.

In the International Tables for Crystallography Vol. A [1] all space groups are described in 
detail with their Hermann-Mauguin symbols and corresponding crystal classes, the relative lo-
cations and orientations of the symmetry elements with respect to a chosen origin and the crys-
tal-specific basis vectors, a listing of the general and all special positions (with their symmetri-
cally equivalent points) and the related reflection conditions.

Side-note: It was the first institute director of the Institute of Crystallography, RWTH Aachen 
University, Prof. Theo Hahn, who served the International Union of Crystallography for 
40 years as Chair of the Commission on International Tables, as editor of the Interna-
tional Tabes A (five editions). The editions of the new International Tables Volume A, 
form a major part of his lifetime achievements.

5a.6 Example: crystal structure description of YBa2Cu3O7-

Crystal structure determination with atomic resolution is achieved by diffraction experiments 
with X-rays, electron or neutron radiation. As an example, the results of a structure analysis by 
neutron diffraction on a single crystal of the ceramic high-TC superconductor YBa2Cu3O7- with
TC = 92 K are presented. The atomic arrangement of the orthorhombic structure, space group 
Pmmm, and the temperature-dependent electrical resistivity is shown in figure 5a.10.
Information from ITA on the relative locations and orientations of the symmetry elements (sym-
metry operations 1, 2z, 2y, 2x,1, mz, my, mx) of the orthorhombic space group Pmmm, together 
with the choice of the origin (in an inversion centre), is shown in figure 5a.11. The general 
position (site symmetry 1) of multiplicity 8 (symmetry produces 7 additional copies of this atom 
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in the unit cell) and all special positions with their site symmetries are listed in figure 5a.12.
There are no special reflection conditions for this space group.

Fig. 5a.11:Unit cell of YBa2Cu3O7- with CuOx-polyhedra (left) and the electrical resistivity as 
a function of temperature ‖ and  to the [001] direction (right).

Fig. 5a.12: Description of the orthorhombic space group Pmmm in [1].

a

b

a

c

c

b

 

, 

TC
YBa2Cu3O7-
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Fig. 5a.13: General and special positions (coordinates of all symmetrically equivalent po-
sitions) of space group Pmmm with their site symmetries and multiplicities as well as 
reflection conditions [1]. The special positions occupied in the YBa2Cu3O7- -structure
are indicated by frames.

YBa2Cu3O7-
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The atomic parameters for YBa2Cu3O6.96 obtained from the structure refinement of single crys-
tal neutron diffraction data taken at room temperature [2] are given in the following Table:
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tan/

0½02/m 2/m 2/m1O4/O2-

0.37631(2)0½m m 22O3/O2-

0.37831(2)½0m m 22O2/O2-

0.15863(5)00m m 22O1/O2-

0.18420(6)½½m m 22Ba/Ba2+

½½½2/m 2/m 2/m1Y/Y3+

0.35513(4)00m m 22Cu2/Cu2+

0002/m 2/m 2/m1Cu1/Cu2+

zyxsite symmetrymultiplicityatom/ion

Atomic positions of YBa2Cu3O6.96
orthorhombic, space group type P 2/m 2/m 2/m

a = 3.858 Å, b = 3.846 Å, c = 11.680 Å (at room temperature)
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E5a.2 Crystal structure of YBa2Cu3O7-

The following figure reproduces the arrangement of the symmetry elements in the unit cell of 
YBa2Cu3O7-δ, see the upper left projection (of fig. 5a.12, taken from the international tables).

Make sure you understand the meaning of the symbols for the symmetry elements.
(see fig. 5a.10)

a) Draw the positions of all atoms (Y, Ba, Cu, O) into the above given projection. 
(Take the coordinates from the table of the atomic positions given in the lecture book; mark 
the heights (z-coordinates) of the atoms along the projection direction by attaching the corre-
sponding coordinates to the atoms.)

b

a

c
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b) Given the space group P2/m2/m2/m: What is the crystal system (refer to the conditions for 
the lattice parameters on page 4.17) and the Bravais lattice type (see the space group symbol) 
of YBa2Cu3O7-?

c) How many formula units are in one unit cell of YBa2Cu3O7-?
(refer to fig. 4.10)

d) Give the coordination numbers and describe the polyhedra of oxygen around atoms Cu1 
and Cu2 (refer, for simplicity, to fig. 5a.10).

e) For all atoms: Check if the atom sits on an inversion centre (either from the above plot or 
from fig. 5a.10 or from the table on page 4.17.)

Cu1:   Cu2:           Y:            Ba:          O1:           O2:           O3:           O4:   

f) Calculate the interplanar spacings d(hkl) (choose the appropriate formula on page 4.6) for 
the lattice planes (100), (200), (020), (002), (00-2).

g) List all symmetry equivalent lattice planes with identical d-spacing (including all different 
orientation possibilities) for the following types of lattice planes of YBa2Cu3O7-:

(h00), (00l), (0kl), and (hkl)

Example for (h0l) in the orthorhombic crystal system: d(h0l) = d(ℎ̅0l) = d(ℎ̅0𝑙𝑙)̅ = d(h0𝑙𝑙)̅.

h) How many symmetry-equivalent lattice planes result in each case? (This is the multiplicity 
factor M of reflections needed as a correction factor in powder diffraction.)
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5b.1 Introduction 
 
The analysis of crystal structures and magnetic ordering is usually based on diffraction 
phenomena caused by the interaction of matter with x-rays, neutrons or electrons. Even 
though modern electron microscopy (HRTEM) can achieve atomic resolution, more 
detailed and quantitative information on the 3D atomic arrangement in crystals and on 
3D magnetic structures and spin densities requires diffraction methods. In a more general 
nomenclature, diffraction is equivalent to coherent, elastic scattering. The basic theory of 
diffraction used for structural analysis (the so called kinematical theory) is similar for all 
types of radiation. Due to the different properties of x-rays, neutrons and electrons and 
their specific interaction with matter, complementary information is obtained from 
experiments with different types of radiation. 
Considering only x-rays and thermal neutrons one finds that their wavelengths are similar 
(0.5 Å < l < 2.4 Å) but they are scattered very differently by matter: While the 
electromagnetic x-radiation is scattered from the electrons and yields the total electron 
density distribution in the crystal, the nuclear scattering of neutrons is sensitive to the 
density distribution of the nuclei and the magnetic neutron scattering probes the 
magnetisation density of unpaired electrons. 
x-ray diffraction using conventional laboratory equipment and/or synchrotron 
installations is the most frequently used method for structure analysis. Neutrons are, 
however, indispensable in a number of applications. The purpose of this chapter is to 
discuss a few typical examples of structural analysis, for which, instead of or 
complementary to x-rays, neutrons are required to solve structural problems.  

 

5b.2 Diffraction Contrast Variation 
 
A great advantage of neutrons over x-rays in the context of structural analysis is the very 
much different variation of the scattering length of atoms within the periodic system of 
the elements: The contrast in conventional x-ray diffraction is directly related to the ratio 
of the number of electrons Zj of the different atoms or ions j involved. The atomic 
scattering factor fj in the structure-factor formula, which represents the Fourier transform 
of the atomic electron density distribution, is proportional to Zj (fj = Zj for sinq/l = 0). 
Standard x-ray techniques can hardly differentiate between atoms/ions with a similar 
number of electrons (like Si and Al or Cr and Mn). Even if the atoms are fully ordered on 
different sites, x-ray diffraction just ‘sees’ the average structure.  
For neutrons the atomic scattering factor fj is replaced by the nuclear scattering length (or 
coherent scattering amplitude) bj, which is of the same order of magnitude for all nuclei 
but varies from nucleus to nucleus in a non-systematic way. bj values can be either 
positive or negative and depend on the isotopes and nuclear spin states of the element j 
(see previous chapters). 
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Crystal structure and site occupation of (Mn1-xCrx)1+ddSb. 
 
As an example of contrast variation, the combination of x-ray and neutron diffraction 
information is demonstrated for the intermetallic compounds (Mn1-xCrx)1+dSb, with 0 £ x 
£ 1 [1]. This solid solution system is interesting for its magnetic properties: One end 
member of the solid solution series (Mn1+dSb) shows isotropic ferromagnetic behaviour 
while the other one (Cr1+dSb) is a uniaxial antiferromagnet. Intermediate compositions 
are characterized by competing magnetic interactions leading to a complex magnetic 
phase diagram. The crystal structure is closely related to the hexagonal NiAs-type 
structure (space group: P63/mmc) with some additional partial occupation (£ 0.14) of the 
interstitial site 2(d) (see Fig. 5b.1): 

 
         
Fig. 5b.1:  Left: NiAs structure, right: (Mn1-xCrx)1+ddSb structure  
 
Conventional x-ray diffraction can hardly differentiate between chromium (ZCr= 24) and 
manganese (ZMn= 25) but still yields information on the overall occupation probabilities 
by (Mn,Cr) for site 2(a) (denoted as a) and site 2(d) (denoted as d). The Sb position is 
assumed to be fully occupied, thus serving as an internal standard for the scattering power. 
The compound formula can now be reformulated site-specifically as: 
 
     (Mn1-y Cry)a (Mn1-z Crz)d Sb 
        site 2(a)         site 2(d) 
 
corresponding to a chemical composition of Mn[(1-y)a + (1-z)d] Cr[ya +zd] Sb.  
 
On the other hand, the nuclear scattering lengths of Cr and Mn for neutron diffraction are 
extremely different with bCr = +3.52 fm and bMn = -3.73 fm (see also chapter 4). 
In the structure analysis of the neutron data, site-specific effective scattering lengths beff 
(2a) and beff (2d) are refined, which in turn are expressed as: 

beff(2a) = a·[(1-y)·bMn + y·bCr]   and   beff(2d) = d·[(1-z)·bMn + z·bCr] 
solving for the unknown parameters y and z gives: 

y = [beff(2a)/a - bMn] / [bCr - bMn]   and   z = [beff(2d)/d - bMn] / [bCr - bMn]. 
The combination of the overall occupation probabilities a and d - from conventional x-
ray studies – with the effective scattering lengths beff(2a) and beff(2d) determined in a 
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neutron diffraction experiment allows the evaluation of the Cr and Mn concentrations on 
the different sites 2(a) and 2(d). 
It is evident, that the individual (Cr,Mn) distributions on the two crystallographically 
different sites 2(a) and 2(d) are not accessible merely by a chemical analysis. For most of 
the samples studied, the site 2(a) was found to be fully occupied: a » 1.0. But the formula 
(Mn1-xCrx)1+dSb used normally is only correct for the special case of equal Cr : Mn ratios 
on both sites: 

x = y = z   and   1 + d = a + d. 

Note that, in general, a statistical occupation of one crystallographic site with three kinds 
of scatterers - e.g. Mn, Cr and "vacancies" - requires at least two independent experiments 
with sufficiently different relative scattering power of the atoms involved to determine 
the fractional occupancies.  
The detailed information on the (Cr,Mn) distribution is needed to explain the magnetic 
properties of these intermetallic compounds, but we will not further elaborate on this. 
 
 

5b.3 The hydrogen problem in structural analysis 
 
The determination of the structural parameters (coordinates, displacement parameters) of 
hydrogen atoms in crystals is a special problem involving again the different properties 
of x-rays and neutrons. It is obvious that H or D atoms with Z = 1 give only a small 
contribution to the electron density and, therefore, they are hardly visible in x-ray 
structure analysis, particularly if heavy atoms are also present in the structure. However, 
there is an even more fundamental problem: The single electron of H or D is engaged in 
the chemical bonding and is by no means localised at the proton/deuteron position. 
Therefore, bond distances from x-ray diffraction involving hydrogen are notoriously 
wrong and any comparison with quantum mechanical calculations is quite hard to 
perform. This lack of sound experimental information is in sharp contrast to the 
importance of hydrogen bonding in solids, particularly in biological molecules like 
proteins, where hydrogen bonds govern to a large extent structures and functionalities of 
these ‘bio-catalysts’. A combination with neutron diffraction experiments is important to 
determine the structural parameters of the H/D atoms properly. More generally, the 
structure analysis by neutron diffraction yields separately and independently from the x-
ray data the structure parameters of all atoms including the mean square displacements 
due to static and dynamic (even anharmonic) effects.  
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H/D ordering in ferroelectric RbH2PO4 (RDP): 
 
The hydrogen problem in crystal structure analysis is of special importance for structural 
phase transitions driven by proton ordering. KH2PO4 (KDP) is the most well-known 
representative of hydrogen-bonded ferroelectrics. Here, we discuss the isotypic RbH2PO4 
(RDP). The crystal structure consists of a three-dimensional network of PO4-groups 
linked by strong hydrogen bonds (Fig. 5b.2). 
 
 

 
         
Fig. 5b.2: Crystal structure of the paraelectric phase of RDP  (RbH2PO4) with a split-

model representation of the hydrogen disorder [3].  
 
In the paraelectric phase at room temperature KDP as well as RDP crystallise in the 
tetragonal space group I`42d, where the H-atoms are dynamically disordered in 
symmetric O···H···O bonds, which are almost linear with short O–O distances, typically 
in the range of 2.5 Å. The disordered H-distribution may be interpreted as corresponding 
to a double-well potential [2].  
Figures 5b.3 and 5b.4 show the corresponding results for RDP, obtained from single 
crystal neutron diffraction [3]. 
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Fig. 5b.3: Local configuration of two PO4-tetrahedra in the paraelectric phase of RDP  

(RbH2PO4)(at Tc + 4 K) linked by a strong, disordered hydrogen bond [3].  
 
 

 
 
Fig. 5b.4: Difference-Fourier-plot of the negative proton density in the hydrogen bond 

of paraelectric RDP indicated by broken contour line [3]. The double-well 
potential model used to describe this density is inscribed in green. 

 
The two very close hydrogen positions with 50% occupation probability are, of course, 
an artefact of the time-space averaging that is inherent to diffraction. In this case, the 
hydrogen disorder is assumed to be a dynamic hopping process between the two 
energetically degenerate sites.  
At Tc = 147 K, RDP transforms to a ferroelectric phase of orthorhombic symmetry 
(space group: Fdd2) in which the protons order in short asymmetric O-H···O bonds 
(Fig. 5b.5).  The PO4-tetrahedra show a characteristic deformation with two shorter and 
two longer P-O distances due to a transfer of electron density to the covalent O–H 

 model: dynamic H-disorder according to a double-well potential 
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bonds. The electrical dipole moments are oriented ||z which give rise to a polarisation 
along the c-direction. 
 
 

 
 
Fig. 5b.5: Ferroelectric, hydrogen-ordered structure of RDP close to the phase 

transition at TC – 1 K (major changes indicated by arrows, presentation as 
in Figure 5b.3) [3].  

 
The phase transition temperatures of KDP-type compounds change drastically when H is 
substituted by D. For K(H,D)2PO4, for instance, the para- to ferroelectric TC changes from 
122 K in the protonated to 229 K in the deuterated compound. This huge H/D-isotope 
effect proves that hydrogen-ordering and -dynamics is the major factor controlling this 
phase transition. Another type of H/D-isotope effect was found for Tl(H,D)2PO4 
(TDP/DTDP) and  Rb(H,D)2PO4 (RDP/DRDP), where a different polymorphism between 
the protonated and deuterated phases exists. 
Clearly, the use of neutron diffraction is detrimental to a better understanding of these 
compounds and their interesting physical properties. 
 

5b.4 Atomic coordinates and displacement parameters 
 
As discussed above, neutron diffraction is very useful for obtaining precise atomic 
coordinates and displacement parameters. The improved accuracy (compared to x-rays) 
stems mainly from the absence of the form-factor fall-off. We will use measurements on 
Cobalt-olivine, Co2SiO4, (crystal size 3 x 2 x 2 mm) taken at the four-circle diffractometer 
HEiDi at the hot-neutron source of the FRM II reactor (l = 0.552 Å) for demonstrating 
this advantage for the thermal displacements: 



5b.8  G. Roth 

 
Fig. 5b.6: Structure  of  Co2SiO4  olivine  at  room  temperature, projected along c. 

Green: SiO4-tetrahedra, Dark blue: Co(1)O6-octahedra, light blue: Co(2)O6-
octahedra. Displacement ellipsoids are plotted at the 95% probability level 
(from [4]). 

The olivine structure (fig. 5b.6) consists of chains of two types of edge-sharing CoO6-
octahedra connected by SiO4-tetrahedra. A large data set with 1624 independent 
reflections up to sin θ/λ = 1.05 Å-1 had been measured. The data were then successively 
cut off in shells of sin θ/λ and the resulting partial data sets were used to analyse the 
displacement parameters. Figure 5b.7 shows two interesting observations: First of all, the 
precision improves significantly with increasing (sin θ/λ)max, as is evident from the 
decreasing size of the error bars. In the x-ray case, high angle reflections are usually very 
weak and their measurement does often not lead to improved precision. Secondly, there 
is a systematic change of the displacement values themselves, resulting from systematic 
errors that vary with (sin θ/λ)max. 

 
 

 
 

 
 

 
 
Fig. 5b.7: Left: Statistical (error bars) and systematic errors of isotropic displacements 

parameters in Co2SiO4 as a function of measured sin θ/λ range from single-
crystal neutron diffraction data at room temperature [4]. Right: Clinographic 
view of the CoO6 and SiO4 polyhedra in Co2SiO4 at room temperature [4]. 

High dhkl-value resolution data from neutron diffraction is also useful to derive precise 
temperature dependent displacement parameters (fig. 5b.8): 
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Fig. 5b.8: Temperature dependence of the isotropic displacement parameters of 

Co2SiO4 [4]. 
Just as in the case of high quality single crystal x-ray diffraction data, anisotropic 
displacement parameters can be determined as well. In addition to that, the quality of 
single crystal neutron data also often allows refining anharmonic displacement 
parameters. Anharmonic oscillations of atoms in crystals occur if the atoms are vibrating 
in a non-parabolic potential well. In such cases, the harmonic approximation, which is the 
basis of the description of thermal displacements by the Debye-Waller factor, fails. 
Analysis of the anharmonic displacements allows to reconstruct the non-parabolic 
potential at the site of the vibrating atom.  
 

5b.5 Magnetic structures from neutron diffraction 
Cobalt-Olivine, Co2SiO4, orders magnetically below about 50 K. The magnetic moments 
of the Co2+-ions turn from a paramagnetic phase with no long range order of the magnetic 
moments into an antiferromagnetically ordered arrangement. We use Co2SiO4 again to 
briefly demonstrate the application of neutron diffraction to the structural analysis of 
magnetic structures. This time, a powder neutron diffraction experiment has been 
performed at the diffractometer D20 (ILL, France) in its high-resolution mode, at 
temperatures between 70K and 5K, with a neutron wavelength of l = 1.87 Å and 
approximately 2 g of powdered Co2SiO4 [4]. 
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Fig. 5b.9: Thermal evolution of the neutron powder diffraction pattern (low angle 

part) of Co2SiO4 [4]. 
 
At about 50 K, new magnetic reflections (001), (100), (110), (300) etc. appear (fig. 5b.9). 
The nuclear reflections don’t change much at the magnetic phase transition. The new 
reflections can be indexed with the same unit cell as the nuclear reflections, but they were 
forbidden in the paramagnetic phase with space group P n m a. Obviously, the symmetry 
has changed at the magnetic ordering transition. The task is then - just as in ‘ordinary’ 
structure determination - to find a structural model (that is: magnetic moments and their 
orientation on the magnetic ions, here Co2+) that fits the observed positions and intensities 
of the magnetic Bragg peaks. Magnetic structure determination is outside the scope of 
this chapter, but assumed such a model has been constructed, it can be refined - in the 
case of powder data by the Rietveld method (fig. 5b.10). 

 
Fig. 5b.10: Neutron powder diffraction pattern (dots), Rietveld fit (black line) and 

allowed Bragg reflections (green marks) at 5 K of Co2SiO4 [4]. 
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The lower trace (blue) is the difference Iobs - Icalc on the same scale.  The upper row of 
the green marks shows Bragg reflections corresponding to the nuclear phase and the lower 
row represents the allowed positions of the magnetic peaks. Some of the Bragg peaks are 
indexed. ‘N’ and ‘M’ denote the nuclear and magnetic contributions, respectively [4]. 
Note that the magnetic Bragg peaks are only visible at low diffraction angles. 

 
Fig. 5b.11: Graphical representation of the magnetic structure of Co2SiO4 below 50 K. 

The non-magnetic atoms (Si and O) are excluded for simplicity. The figure 
shows the zigzag chains of Co(1) and Co(2) in layers perpendicular to the  c 
axis [4]. 

 
From the Rietveld refinements, one can derive the exact spin orientation (fig. 5b.11) as 
well as parameters describing quantitatively the magnetic moments on the two 
symmetrically non-equivalent Co2+-sites (see table below). However, magnetic neutron 
diffraction from single crystals often gives additional and more accurate information: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The table shows cartesian (Mx, My and Mz) and spherical (M, φ and θ) components of the 
Co1 and Co2 magnetic moments according to the single-crystal neutron diffraction data 
at 2.5 K. The directions of the magnetic moments for other cobalt ions in the unit cell can 
be obtained by applying the symmetry operations of the magnetic space group 
(Schubnikov group) Pnma. 
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5b.6 Electron densities from x-rays and neutrons 
 
Another advanced application of neutron diffraction in structural analysis is the 
determination of 3-dimensional high resolution maps of the electron density in the unit 
cell to study, for instance, details of the chemical bonding. The most involved method of 
electron density studies (called x-N-synthesis) uses a combination of high quality single 
crystal neutron and x-ray diffraction experiments. In the present case, a single crystal of 
Co2SiO4 with dimensions 3 x 2 x 2 mm, was measured on the four-circle diffractometer 
HEiDi at the hot-neutron source of the FRM II reactor (Garching) at l = 0.552 Å, the 
single crystal x-ray (synchrotron) experiment was performed on Diffractometer D3 at the 
synchrotron facility HASYLAB/DESY (Hamburg) with a Co2SiO4-sphere, diameter 150 
μm as the sample and an x-ray wavelength of l = 0.5 Å.  
The next step is to take the x-ray-data, do a Fourier-transform (Fourier-synthesis) to 
obtain the electron density map: 
 
 r(r) = 1/V ·      F(tt) · exp[2pi(tt·r)],   with  F(tt) = |F(tt)|·exp[ij(tt)].  
 

The  phases j(tt) are calculated from the atomic model (structure factor equation, see ch. 
4), the moduli |F(tt)| are taken from the measured x-ray intensities. The result is a 3-
dimensional map of the total electron density r(r) within the unit cell: 
 

 
 
 
Fig. 5b.12: Electron density distribution r(r) of Co2SiO4 at 12 K from Fourier synthesis 

of x-ray data. Contours range from −8 e/Å3 (blue) to 10 e/Å3 (red). A plane 
which intersects the Co1O6 octahedron and contains the Co1, O1 and O3 
atoms is shown together with a sketch of the crystal structure [4]. 

 

 
å
t
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In favourable cases, such a map already shows interesting features of the (anisotropic) 
bonding electron density, however, the information content of the map can be very 
significantly improved by taking the coordinates and displacement parameters from the 
more accurate neutron diffraction experiment (see above for the reasons) and calculate, 
in a second step, the so called deformation density. This is done by subtracting from the 
total electron density r(r) the density ρ(r)spherical corresponding to a superposition of 
spherical atoms at the nuclear positions. More specifically: atomic positions xj, yj, zj and 
thermal displacements Tj of atoms j derived from the neutron experiment, ‘decorated’ 
with the calculated spherical single atom electron densities. 

ρ(r)deform = ρ(r) −  ∑ ρ(r)spherical, where the sum runs over all atoms in the unit cell.  
ρ(r)spherical corresponds to the expectation value of the electron density within the unit cell 
without any effects which are due to chemical bonding. The deformation density then 
represents the deformation of the charge distribution as a result of the formation of 
chemical bonds. Figure 5b.13 shows such a deformation density map for Co2SiO4. In 
favourable cases, the electron density in the hybridized bonding orbitals (in this case of 
Co3d- and O2p character) can be directly observed. 
 

 
 
 
Fig. 5b.13: Deformation density from the x-N-difference Fourier map of Co2SiO4  at  

300 K: Section through the O1–Co1–O3 plane  The difference density varies 
from −1.25 e/Å3  (blue) to 1.15 e/Å3  (red) [4]. 
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5b.7 Magnetization densities from neutron diffraction 
As a final example for the application of neutron diffraction in structural analysis, we 
briefly sketch how a 3-dimensional map of the magnetization density, that is: the density 
of magnetic moments (spin- as well as orbital-moments) within the unit cell can be 
determined. These maps are sometimes lucidly called ‘spin density maps’, but in systems 
with non-vanishing orbital moments, the term magnetization density is really the correct 
one. 
The experiment is performed by polarized neutron diffraction on a single crystal using 
the flipping ratio method For details on the experimental method see the chapter on 
magnetic scattering. The flipping ratio method allows to separate nuclear and magnetic 
contributions to the diffracted intensities. It is performed above the magnetic phase 
transition in the paramagnetic state (in the case of Co2SiO4 above TN=50K) and the 
sample is in a strong external magnetic field (here: 7 T). 207 Bragg reflection flipping 
ratios were measured at diffractometer 5C1 of the ORPHÉE reactor (Laboratory Léon 
Brillouin, CEA Saclay, France) for Co2SiO4 at 70K  up to sin θ/λ ≈ 0.62 Å−1 at a neutron 
wavelength of λ = 0.845 Å. Given the flipping ratios and the nuclear structure factors, the 
magnetic structure factors can be calculated which are then Fourier transformed to give 
the spatially resolved magnetization density shown in figure 5b.14 in a section through 
the unit cell of Co2SiO4. 
 

 
 
Fig. 5b.14: Reconstruction of  the density (projected along the b axis) corresponding to 

the observed magnetization distribution of Co2SiO4  at 70 K with contours 
ranging from 0 μB/Å3  (blue) to 2 μB/Å3  (red) [4]. 
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Among the interesting features of this map is the observation of magnetization density on 
the, nominally non-magnetic, oxygen atoms coordinating the Co2+-ions. These 
‘transferred moments’ are direct experimental evidence for the hybridization of the 
oxygen 2p- with Co-3d-orbitals which is not only responsible for covalent bonding but 
also for the magnetic exchange interaction along the Co-O-Co-bond network. 
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Exercises 
 

E5b.1  Displacement Parameters 
 
The Debye-Waller-factor Tj(tt) enters the structure factor formula as the exponential factor 
exp [ B . (sin2q/l2) ]. 
 
a) Discuss the physical origin of this factor. 
 
 
b) Describe the overall effect of this displacement factor on the diffracted intensities. 
 
 
c) It is generally said, that neutron diffraction yields much more precise displacement 
parameters than x-ray diffraction. Is that statement correct? If so: Why? 
 
 
d) What are anisotropic displacement parameters and how can they be visualized? 
 
 
e) Is it correct, that all atoms in cubic crystals have to vibrate isotropically? (Yes/No, Why?) 
 
 
f) Discuss the non-zero values of the displacements parameters in fig.5b.8 for T => 0 K: 
(Is it real? An artefact? Why?) 

 
E5b.2  Diffraction contrast & site occupancies 
 
 
a) Assume you have grown a compound containing both Pb and Bi. Which kind of diffraction 
experiment is better suited to distinguish Pb and Bi: X-ray or neutron? Why? 
 
Check http://webster.ncnr.nist.gov/resources/n-lengths/ for the coherent neutron scatterings 
lengths and use your knowledge of the PSE for the x-ray scattering lengths. 
 
 
b) Assumed Bi and Pb sit on the same site in your structure and this site is also supposed to 
contain vacancies. Is one diffraction experiment sufficient to uniquely determine the 
occupation probabilities? (Yes/No, Why?) 
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E5b.3  Choice of neutron wavelengths 
 
a) Magnetic neutron diffraction experiments are usually done with rather long wavelengths (see 
chapter 8.7:  l = 1.87 Å): Why? 
 
b) Diffraction experiments aiming at obtaining precise atomic coordinates and displacements 
are done with much shorter wavelengths (see chapter 8.8: l = 0.552 Å): Why? 
 
c) Powder diffraction experiments usually use longer wavelengths than single crystal 
experiments: Why? 
 
Discuss this issue in terms of the competition between angular resolution (separation of 
reflections) and direct space resolution (separation of atoms). 
 
 

E5b.4  Hydrogen bonded crystals 
 
Assume you have grown a new hydrogen-bonded compound in the form of a single crystal 
and you want to know how the hydrogen bonds are arranged within the structure. 
 
a) Collect arguments Pro & Con the usage of a single crystal x-ray- vs. single crystal neutron 
diffraction experiment to study your new crystal. 
 
Consider, for instance, factors like: Availability / costs of the experiment; time and effort 
required to get beam time; required size of the crystal; scattering power of hydrogen; 
expected precision of the H- position; absorption & incoherent scattering; additional effort 
needed for deuteration etc. 
 
 

E5b.5  Density maps from diffraction experiments 
 
a) How can one obtain (from diffraction) the bonding electron density map? 
(discuss briefly the experiment(s), the necessary calculations and the information obtained) 
 
b) Discuss the difference between the bonding electron density map and a magnetization 
density map. (kind of data used, specific information the experiment will yield?) 
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6.1 Introduction

Small-Angle Scattering (SAS) investigates structures in samples that generally range from
approximately 0.5 nm to a few 100 nm. This can both be done for isotropic samples such as
blends and liquids, as well as anisotropic samples such as quasi-crystals. In order to obtain
data about that size regime scattered intensity, mostly of x-rays or neutrons, is investigated
at angles from close to zero, still in the region of the primary beam up to 10◦, depending on
the wavelength of the incoming radiation.

The two primary sources for SAS experiments are x-ray (small-angle x-ray scattering, SAXS)
sources and neutron (small-angle neutron scattering, SANS) sources, which shall be the two
cases discussed here. Also scattering with electrons or other particle waves is possible, but
not the main use case for the purpose of this manuscript.

For most small-angle scattering instruments, both SAXS and SANS, the science case covers
the investigation of self-assembled polymeric and biological systems, multi-scale systems
with large size distribution of the contained particles, solutions of (nano-)particles and soft-
matter systems, protein solutions, and material science investigations. In the case of SANS
this is augmented by the possibility to also investigate the spin state of the sample and hence
perform investigations of the magnetic structure of the sample.

In the following sections the general setup of both SAXS and SANS instruments shall be
discussed, as well as data acquisition and evaluation and preparation of the sample and the
experiment in general. The information contained herein should provide sufficient informa-
tion for planning and performing a SAS experiment and evaluate the gathered data.

6.1.1 General concept

All SAS experiments, irrespective of the setup used in any specific case, rely on the concept
of pinhole cameras to work. Fig.6.1 illustrates the geometric concept of the interplay between
pinhole cameras and SAS.

In the usual case, pinhole cameras map every point of the sample (object) to a discrete point
on the screen (film or detector). The smaller the hole, the better the point-to-point mapping
works, since in the ideal case only a single path between object and image is available.
However, this of course comes with a penalty in intensity, since the smaller hole lets less light
pass through. Due to the geometry, an image taken with a pinhole camera is always upside
down. While the mathematical implications shall be discussed later on in this manuscript at
this point we only want to grasp the underlying concept. The information about the object is
at the beginning stored in real space. Colors (wavelength) and locations are given as points
on the surface of the object. When all beams have converged to the single point that is ideally
the pinhole, the information is then encoded in direction of the path (or light-beam) and the
wavelength of the light. This is the change between direct and indirect space, locations and
directions. When the light falls onto the screen the information is reversed again, to location
and color of a spot on the screen, into direct space.

This concept is exploited by SAS. Since we are looking at very small objects (molecules
and atoms) the determination of the location with the naked eye, or even a microscope, and
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a)

b)

Fig. 6.1: a) Sketch of a pinhole camera and b) a simplified SAS instrument. The encoding of
the real space information is in one case done inside the pinhole, in the other case the direction
(and wavelength) encoded information is directly displayed on the screen (shaded area with
waves). Positioning of the screen farther away improves the angular resolution and therefore
the encoded information.
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Fig. 6.2: Laboratory SAXS setup. The left box is a sketch of a x-ray tube, all the components are
in vacuum. The flight path is also usually evacuated. L1 and L2 are the collimation and sample
detector distance (SDD) respectively. In the case of laboratory setup those range usually from
about 20 cm up to 1-2 m in modern setups. The collimation blocks for L1 and L2 are usually
set up in both x and y direction to constrict the flight path, widely used openings are around
1 mm×1 mm or below. In some setups, also a slit collimation instead of a point collimation is
realized to increase the intensity.

encoding of direction is easily achievable by increasing the distances and adjusting the size of
the pinhole. However, instead of using the information that has been transferred to real space
again, this time the object in real space is put close to the window. This way, the information
about the location of atoms and molecules in the sample is encoded into direction or indirect
space. Since there should be no information about the light before the pinhole, the light
needs to be collimated down to a small, point-like source with no angular divergence.

6.2 SAXS instruments

In general there are two classes of SAXS instruments. One is the laboratory type setup that
can be set-up in a single laboratory with a conventional x-ray tube, or more general any
metal anode setup, while the other one is a large-scale facility setup at a synchrotron that
can provide higher intensities. Since the setup of both instruments differs, and also the use
case is not fully identical, we shall discuss both setups separately. One thing that should be
kept in mind is that the fundamental principle is identical, i.e. any experiment that can be
performed at a synchrotron can also in principle be performed at a laboratory SAXS setup
and is only limited in intensity. This is important for the preparation of beamtimes at a
synchrotron, which in general should be thoroughly prepared in order to fully exploit all
capabilities offered there.
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Fig. 6.3: Characteristic x-ray spectrum from a metal anode x-ray tube. The high-energy cut-off
wavelength is given for the case that a single electron, fully accelerated by the voltage in the
x-ray tube, deposits all its kinetic energy in a single photon. In an optimal setup this distribution
is very narrow. Then the Kα line fully dominates the spectrum and gives a clean wavelength to
perform a SAXS instrument.

6.2.1 Laboratory SAXS setup

Over the years a wide range of specialized SAXS instruments has become commercially
available. The oldest concepts date back to the early 20th century, right after the discov-
ery of x-rays. [1] Most of them offer specific advantages in certain use cases, such as the
measurement of isotropic samples in a Kratky Camera [2], or highly adaptable sample en-
vironments. Here we shall only concentrate on the basic principle of operation. A general
sketch of a SAXS instrument is shown in Fig.6.2. The x-rays are produced in an x-ray tube
and then collimated by a set of slits. Here the collimation as such is already sufficient to ob-
tain a coherent beam, since most of the intensity of standard x-ray tubes (and essentially all
metal target x-ray sources) is concentrated into the characteristic spectral lines of the target
material (see Fig.6.3). Common materials for the target anode are copper and molybdenum,
delivering wavelengths of the most intensive K-α lines of 1.54 Å and 0.71 Å respectively.
Under the assumption of a usual characteristic spectrum for the anode material the x-ray
tubes can be considered monochromatic sources.

In order to achieve spatial as well as wavelength coherence most x-ray tubes work with a
focused beam that is as small as technically feasible. This allows very narrow collimation
slits, since it is not improving the coherence, and therefore the signal-to-noise ratio, to narrow
the slit further than the initial beam spot or the pixel size of the detector, whichever be
smaller. This however leads to a very high energy density, why some x-ray tube designs
forgo a solid anode all together and either opt for a rotating anode, where the energy of the
beam spot is distributed over a larger surface or a metal-jet anode, where the material is
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Parameter value

SDD 0.8-4 m
Pixel resolution 172×172µm
Flux 107 photons s−1

wavelength λ 1.35 Å
Q-range 4 · 10−3-8 · 10−1 Å−1

Table 6.1: Performance parameters for state of the art laboratory SAXS setups, in this case
with a liquid metal jet anode at the GALAXI instrument. [3]

refluxed and can therefore not heat up beyond the point of deformation and therefore also
defocussing of the beam.

Some performance figures of current laboratory SAXS setups are given in Tab.6.1. It is
worth noting that with the last generation of metal-jet anode setups even laboratory setups
can achieve intensities comparable to what was achievable one or two decades ago at a world-
class synchrotron. While this of course allows for faster measurements and smaller beam, it
also means that beam damage to the sample has to be taken into account.

6.2.2 Synchrotron SAXS setups

While the setup in general is similar to that of a laboratory setup there are some key dif-
ferences between a synchroton and a laboratory SAXS setup. Most of the differences are
based on radio protection needs and are therefore immaterial to this description in terms
of the SAXS measurement itself. The other main difference is in the production of the x-
rays itself. Current setups at synchrotrons use undulators in order to periodically accelerate
charged particles (usually electrons/positrons) perpendicular to the direction of propagation of
the particle beam. This creates a very brilliant, nearly perfectly monochromatic x-ray beam
along the direction of the electron beam. The monochromaticity can further be improved by
a monochromator crystal. Fig.6.4 shows an example of an synchrotron SAXS setup. After
that, the collimation is very similar to that of a laboratory SAXS setup, only the materials
are chosen to be thicker in most cases to improve the absorption characteristics. Due to the
monochromaticity the brilliance, coherence and signal-to-noise ratio are significantly better
than that of a laboratory SAXS setup, since there is no bremsstrahlung spectrum to con-
tribute to the background. In terms of achievable wavelength there is no limitation to use a
specific K-α line of any specific material. Often common wavelengths are chosen to better
correspond to laboratory measurements on identical samples. One option that is also avail-
able in some synchrotrons is the tunability of the wavelength in order to measure resonance
effects in the atomic structure of the sample (anomalous SAXS, ASAXS) [4] or better chose
the accessible Q-space. Tab.6.2 summarizes some of the performance figures of current syn-
chrotron SAXS setups. For most synchrotron SAXS beamlines beam damage, especially for
organic samples, is an issue and has to be taken into account when planning an experiment.
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Parameter value

SDD 0.8-4 m
Pixel resolution 172×172µm
Flux 1018 photons s−1

wavelength λ 0.54 - 1.38 Å

Table 6.2: Performance parameters for a state of the art synchrotron SAXS beamline, here P03
at DESY. [5]

Fig. 6.4: Synchrotron SAXS setup. Here the radiation is produced in the storage ring of a
synchrotron. In earlier designs, the x-rays were produced at the bending magnets in the ring
(kinks in the ring here). This however lead to a wide spread of the produced wavelength and a
high angular distribution of the radiation. An undulator from a magnet array as depicted here
produces a narrow distribution of wavelength and angular divergence. The rest of the setup is
comparable to the laboratory setup, albeit the intensity of the radiation is orders of magnitude
higher, which allows for finer collimation slits and longer collimation distances and SDDs.
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6.3 SANS setups

In contrast to x-rays, sufficient numbers of free neutrons can only be obtained by nuclear
processes, such as fission, fusion and spallation. As large-scale facilities are needed to create
the processes at a suitable rate to perform scattering experiments with them, the only facilities
where neutron scattering today can be performed is at fission reactor sources and spallation
sources. This of course also leads to larger efforts in terms of biological shielding.

It is an inherent feature of those reactions that the reaction products show a wide distribution
of energies, with peak energies ranging up to 3 MeV kinetic energy per neutron. This leads
to deBroglie wavelengths in the fermi meter region, which is unsuitable for SANS scattering
experiments. Thus, in order to obtain a coherent beam it is not only necessary to collimate
the neutrons but also to moderate and monochromatize them. Both processes result in losses
in usable flux, since the phase space of neutrons cannot be compressed by lenses, as is the
case for photons.

The moderation process is performed by collision processes in a moderator medium. The
moderator is a material at temperatures around 25 K or below and the resulting neutron
spectrum is a Maxwell-Boltzmann spectrum of the corresponding temperature. This results
in peak wavelengths around 4 Å for the neutron beam. Neutron scattering instruments can
be run both in time-of-flight mode or monochromatic mode.

A schematic of a SANS instrument is shown in Fig.6.5. Both cases with a monochromator
and a chopper setup for time-of-flight are presented. In a continous source the neutron flux
has to be interrupted for the timing of time-of-flight mode while for pulsed sources there is
an inherent interruption of the neutron flux.

This moderation and collimation process in consequence means that neutrons always show
an albeit small distribution of wavelenghts and therefore a lower signal to noise level than
x-ray sources. Spin and isotopic incoherence add to that. Beam damage however is nigh on
impossible with the weakly interacting neutrons.



6.10 Sebastian Jaksch

a)

b)

Fig. 6.5: a) Continuous source SANS setup and b) pulsed source SANS Setup. In both cases
the neutron source (red) creates hot neutrons of a short wavelength. A cold source (blue) vessel
(usually filled with cold 2H or 2D) is moderating the neutrons down to slower speeds, i.e. longer
wavelengths. In both cases the collimation distance and SDD is widely adjustable for most
instruments, with lengths between 1 m up to 30 m. In a SANS instrument at a continuous
source a monochromator (a turbine with slightly inclined channels) selects a certain wavelength
(usually between 3 and 15 Å) and afterwards the setup is very much like the one shown for SAXS
setups, except that the whole instrument is larger. In case of a pulsed source choppers (rotating
discs with transparent openings for neutrons) define a start and an end time for each pulse.
Since neutrons, different from x-rays, are particle waves, their wavelength determines their
speed. Thus, the wavelength is determined by measuring the time of arrival at the detector for
each neutron. For an optimized neutron transport all components are usually evacuated.
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Fig. 6.6: Construction of Q. The incoming and final wavevectors ki and kf define both the
scattering vector Q as well as the path length difference δ = ∆s1 −∆s2. Here it is important
to note that the selection of the center of origin is arbitrary and thus can be chosen to be at the
center of the construction. The calculation of the length of Q is then given by Eq.6.2.

6.4 Indirect space and Small-Angle Scattering

The need for the resolution of small angles can be directly derived from Bragg’s equation

nλ = 2d · sin δ (6.1)

with n being the order of the diffraction, d being the distance between two scatterers, θ as
the scattering angle and λ the wavelength of the incoming beam. In order to get interference
the incoming beam has to have a wavelength that corresponds to the investigated size regime,
which in both cases is on the order of a few Angstroms. Using Bragg’s equation with n = 1,
d = 50Å and λ = 1Å we arrive at 0.01 = sin θ ≈ θ. Thus, the largest structures to be
resolved are determined by the smallest achievable angle.

In order to allow for a setup and wavelength independent data evaluation the data is recorded
in terms of Q or indirect space. The construction of that Q-space from two scattering points
is shown in Fig.6.6. From that the magnitude of Q, which here for simplicity is |Q| = Q,
can be derived as

Q =
4π

λ
sin θ. (6.2)

Even though Q is strictly speaking a vector, for most small angle problems only the absolute
value Q is of interest, hence this simplification is reasonable. This is due to the isotropic
scattering picture of a majority of small-angle scattering data. Another simplification that is
often used is the small-angle approximation for the sine with sin θ = θ, which is very well
valid for small angles. Combining Eqs.6.1 and 6.2 also delivers a useful expression for the
approximation of inter-particle distances or correlation lengths

d =
2π

Q
. (6.3)
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6.5 Resolution limits

SAS is working based on the interference of coherent radiation. That in itself imposes some
limitations on the samples and properties that can be investigated.

In term of size, the object under observation has to be of the same order of magnitude as
the wavelength of the incoming radiation, analogous to light interference at a double slit.
Concerning the analysis in indirect space, also the limited size of the detector and coherence
volume of the sample has to be taken into account.

The second limitation that should always be considered is that only elastic scattering renders
useful results, i.e. any change in speed or wavelength of the incoming radiation will render
unusable results.

Finally, multiple scattering is usually not considered for the evaluation of SAS data. This
means, mostly thin samples, or those with a high transmission (usually 90% or higher), can
be investigated.

6.6 Fourier Transform and Phase Problem

Considering the spacing of only two scattering centers as in the last section needs to be ex-
tended to an arrangement of scattering centers for evaluation of macroscopic samples, where
each atom/molecule can contribute to the scattered intensity. Since the incoming wave at
location x can be considered to be an even wave it can be described by

A(x, t) = A0 exp
(
i2π(νt− x

λ
)
)

(6.4)

With a A being the amplitude as a function of position x and time t. A0 is the modulus of
the amplitude, ν the frequency and lambda the wavelength.

In order to calculate the correct phase shift ∆φ after scattering from two centers as in Fig.6.6
we need to know the differences in travelled distance between the two waves δ. This then
yields

∆φ =
2πδ

λ
= Qr, (6.5)

which is equivalent to the expression 2πx/λ in Eq.6.4. Here also the relation Q = kf − ki

was used. This then leaves us with the spherical wave scattered by the first scattering center

A1(x, t) = A0b exp(i2π(νt− x/λ)) (6.6)

and the corresponding scattered wave from the second scattering center
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A2(x, t) = A1(x, t) exp i∆φ (6.7)
= A0b exp(i2π(νt− x/λ)) exp iQr (6.8)

This can then be combined into the full description of the amplitude with both contributions
to

A(x, t) = A1(x, t) + A2(x, t) (6.9)
= A0b exp(i2π(νt− x/λ))(1 + exp iQr) (6.10)

here an arbitrary scattering efficiency b for each scattering center has been introduced, which
will later be discussed for both x-rays and neutrons.

Since only intensity can be observed at the detector, we need to consider the square, calcu-
lated with the complex conjugate of the expression itself

I(Q) = A(x, t)A∗(x, t) (6.11)
= A2

0b
2(1 + exp (iQr))(1 + exp (−iQr)). (6.12)

Here the time and absolute location dependencies in Eq.6.10 have cancelled each other out,
so we can neglect them and are left with a function that solely depends on the scattering
vector Q and the location of the particles r. Neglecting those dependencies allows us to
generalize Eq. 6.10 to the case of N identical scattering centers with

A(Q) = A0b

N∑
i=1

exp(iQri). (6.13)

The ri here signify the relative locations of all scattering centers in the sample, relative to
either simply the first scattering center or any arbitrary center chosen. Indeed all arrange-
ments are mathematically identical. Replacing the sum by a weighed integral allows also the
calculation for the case of a (quasi)continuous sample with number density ρ(r):

A(Q) = A0b

∫

V

ρ(r) exp iQrdr (6.14)

This is the Fourier transform of the number density of scattering centers with scattering
efficiency b, it can also be applied for numerous scattering efficiencies.

However, since the phase information got lost while obtaining the intensity as an absolute
square of the amplitudes, there is no direct analytic way of performing an inverse Fourier
transform. This is why this is called the phase problem. Also, as described above, in a wide
range of cases it is enough to investigate the modulus of Q, neglecting its vector nature.
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6.7 Scattering Efficiency

Since the physical scattering event is very dissimilar for x-rays and neutrons they shall be
discussed separately here. However, it should be noted, that the nature of the scattering
process does not impact on the method of data evaluation in general. Only in very specific
cases, such as contrast matching or polarized scattering there is any discernible difference.

6.7.1 Scattering with x-rays

X-rays, as photons, interact with the sample via electromagnetic interaction. For the purpose
of this manuscript it is sufficient to note that the vast majority only interact with the electron
shell around the atoms and thus effectively map the electron density within the sample. Inter-
actions with the nucleus would only occur at very high energies, which are not usually used
in elastic scattering. In a rough approximation the strength of the electromagnetic interaction
scales with Z2, meaning that heavy elements, such as a wide range of common metals, scat-
ter considerably stronger than light ones, like hydrocarbon compounds. For element analyses
there is also the possibility of resonance scattering, where the chosen x-ray energies are close
to the resonance gaps in the absorption spectrum of specific elements (ASAXS). [4]

Based on Thomson scattering the scattered intensity at angle 2θ is

I(2θ) = I0

(
e2

mc2

)
1 + cos2 2θ

2
(6.15)

I

I0
=

(
dσ

dΩ

)

2

= r2e
1 + cos2 2θ

2
(6.16)

Here we also introduced the differential scattering cross section dσ
dΩ

for a single electron and
re being the radius of an electron. This means that the total probability for a scattering
event to occur into a solid angle dΩ is exactly that value for a single, isolated electron. This
probability is in units of an area. Thus, the scattering length for a single electron be is defined
as the square root of that:

be = re

√
1 + cos2 2θ

2
(6.17)

With those previous equations it is again important to note that small-angle scattering is
mainly concerned with small angles, thus that cos 2θ ≈ 1 is a very good approximation.
This is also, together with backscattering, the location of the highest intensity and negligible
polarization effects. The numeric values for the constants used here are re = 2.818 × 10−15

m and the scattering cross section for a single electron σe = 6.65× 10−29 m2 = 0.665 barn
after integration over the full solid angle. As apparent with integration over the full solid
angle, the relation is σ = 4πb2e.

Since usually the goal is to find the distribution of scattering centers in a volume, the density
of scattering length per unit volume is of interest. This is the scattering length density (SLD)
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ρ(r) =
be(r)

V
. (6.18)

A very common way of expressing scattering efficiency is using electron units. As can be
seen in Eq.6.13 the scattering amplitude is only determined by the SLD of a single electron
apart from the Fourier transform of the local density. This means the scattering intensity in
electronic units can be expressed as

Ieu(Q) =
I(Q)

I0b2e
(6.19)

This means, with appropriate calibration, if there is an intensity of Ieu = 200 b2e at a certain
Q, that the size scale corresponding to that Q vector has 200 electrons per unit volume.

Since photons interact mainly with the electron shell, there is also an angle dependency
accounting for the time averaged location probability of the electrons in the shell, which may
or may not be spherical, depending on the electronic configuration of that specific atom. This
would then lead to a SLD in terms of be(Q) = befs(Q) with fs being the atomic scattering
factor for any specific element. This important to take note of, when there is a structure or
form factor on the same size scale as a single atomic distance Q = 2π

1.54 Å = 4.08 Å
−1

. This
is usually not in the regime of interest for small-angle scattering and will mostly vanish in
the incoherent background.

Another incoherent background effect is Compton scattering, where inelastic processes
change the wavelength during the scattering process. This is however again strongly sup-
pressed at small angles. The wavelength shift occurring based on Compton scattering is
following this expression

∆λ =
h

mc
2 sin2 θ (6.20)

The prefactor is h
mc

= 0.02426 Å. It is also obvious that at large angles 2θ = 180◦the energy
transfer is maximal. Since we are always investigating angles close to θ = 0 the wavelength
shift and hence the incoherent background is negligible compared to other experimental fac-
tors, such as slits and windows scattering.

6.7.2 Scattering with neutrons

Neutrons interact with the nuclei directly, which results in the atomic form factor being al-
ways spherically symmetric (billiard balls) and them being sensitive to different isotopes and
spin-spin coupling. In contrast to x-rays, there is no simple expression for scattering strength
as a function of isotope or atomic number. Directly neighboring elements and isotopes may
have vastly different cross sections.

This is due to the fact that the Schrödinger equation has to be solved for each combination
of incoming neutron and nucleus. The solution for the problem is illustrated by Hammouda
or Tong [6, 7] in more detail. For here it is sufficient to note that SchrÃ¶dinger’s equations
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Fig. 6.7: Behavior of scattering length b as a function of nuclear radius R and momentum
transfer Q. Using representative values for example for hydrogen (R = 8.5 · 10−16 m) and
deuterium (R = 2.1 · 10−15 m) and reasonable Q-values for small angle scattering (such as
forward scattering with Q = 1 · 10−5Å−1) it becomes apparent how those strong differences in
scattering length happen, and also why this has an especially strong impact for light elements,
where the radius strongly changes by adding or removing one nucleon. Values for hydrogen
and deuterium are marked.

is solved by taking into account an approximately MeV deep square well for the nucleus
with a free particle outside the well. This results in an approximate solution for the relation
between the radius of the atomic nucleus R and the scattering length b:

b

R
= 1− tan qR

qR
(6.21)

A reprensentation of this is given in Fig. 6.7. The strong variation due to minute changes in
the numerical value make it clear, why tabulated values are used in most cases.

Based on that we usually rely on tabulated values for the cross sections and scattering lengths
of different elements and isotopes (see Tab.6.3) and can then write the cross section and
scattering length relation as

dσ

dΩ
= b2 (6.22)

That said, only coherent scattering can form interference patterns, i.e. no change of the nature
of the radiation can take place during the scattering process. However, since the neutron
can change its spin orientation through spin-spin coupling during the scattering process that
may happen, depending on the spin orientation of the sample nuclei. Those are completely
statistical processes.

As neutrons are fermions, which have spin 1/2 the possible outcomes after a scattering pro-
cess with a nucleus of spin i are i+ 1/2 and i− 1/2, and the associated possible spin states
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Element scattering length bcoh/10−14m
1H -0.374
2D 0.667
C 0.665
N 0.936
O 0.580
Si 0.415
Br 0.680

Table 6.3: Coherent scattering length of several elements and isotopes.

are

number of states i+ 1/2 : 2(i+ 1/2) + 1 = 2i+ 2 (6.23)
number of states i− 1/2 : 2(i− 1/2) + 1 = 2i (6.24)

total number of states : 4i+ 2. (6.25)

This immediately shows, that only for the case i = 0 there can be only two states. Since it
is impossible to know the spin state of non-zero spin nuclei under ambient conditions, the
differential cross section becomes a two-body problem of the form:

dσ

dΩ
=

∑
i,j

〈bibj〉 exp−iQ(ri − rj) (6.26)

Here 〈bibj〉 is the expectation value of the SLD for each bibj combination possible given
isotope and spin variability. For this there is only one coherent outcome, where bi = bj ,
which then results in

〈bibi〉 =
〈
b2i
〉
=

〈
b2
〉
. (6.27)

All other cases result in bi �= bj and therefore

〈bibj〉i �=j = 〈bi〉 〈bj〉 = 〈b〉2 . (6.28)

This then results in

dσ

dΩ
= 〈b2〉 ·

∑
j,k

exp (−iQ(ri − rj)) +N(〈b2〉 − 〈b〉2). (6.29)

Here
√

〈b2〉 = bcoh signifies the coherent scattering length density, since it contains informa-
tion about the structure of the sample via rij and

√
〈b2〉 − 〈b〉2 = binc is the incoherent cross

section not containing any information about the sample structure. This cannot be suppressed
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Fig. 6.8: Coherent cross-sections for selected elements for x-rays (top) and neutrons (bottom).
The coherent scattering cross section scales linearly with the diameter of the circles. It is appar-
ent, that the Z2 dependency strongly emphasizes heavy elements in x-ray scattering, whereas
for neutrons even single isotopes can be distinguished. However, for neutrons there is no simple
analytic expression for the scattering cross-sections.

instrumentally, therefore often isotopes with low incoherent scattering length are chosen in
neutron scattering to suppress the incoherent background. Both coherent and incoherent scat-
tering lengths can separately used together with Eq.6.18 to obtain the corresponding scatter-
ing length densities.

6.7.3 Scattering Cross Section and Contrast Matching

As described above there is a Z2 dependency of the cross section of atoms in case of x-
rays and the cross section values for neutrons are taken from tabulated values. The resulting
differences in cross section are illustrated in Fig.6.8. Because different isotopes have very
different cross sections for neutron scattering, in some cases it is possible to replace certain
isotopes in order to arrive at desired contrast conditions.

One of the most important examples for that technique, called contrast matching, is replacing
hydrogen by deuterium. This leaves the chemical composition of the sample unchanged, and
hydrogen is extremely abundant in most organic compounds. The concept can in some cases
be extended to be used as the Babinet principle, in order to suppress background scattering,
since it is extremely preferable to have a solvent with a low background and a solute with a
higher background than vice versa. A sketch of the concept is shown in Fig.6.9.

This method allows highlighting otherwise hidden features of the sample or suppressing dom-
inant scattering in order to better determine a structure with a lower volume fraction and
therefore less scattering contribution. Examples for that application are highlighting the shell
of a sphere, by matching the core or vice versa. Also for protein samples certain structures
can be matched, so that only distinct features are visible.

In order to apply contrast matching, mostly the solvent is changed. In some rare cases also
the polymer or other sample is synthesized with a different isotope composition. Here the
finding of the correct H/D fraction of the solvent shall be shown. Fig.6.10 gives an example
of how to find the correct H/D fraction in a semi-analytic way. The underlying principle is
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Fig. 6.9: Illustration of the concept of contrast matching. In step � there are micelles with
a corona (pink) dissolved in a solution (blue). The scattering length density of the corona is
between the SLD of the solvent and its deuterated counterpart (red). In step � the deuterated
solvent is added to the solution, which changes the contrast conditions. Finally, in step � a
sufficient amount of deuterated solvent has been added, so the contrast between the corona and
the solvent has vanished. Now the micellar cores can be measured directly.

Fig. 6.10: Semi-analytic way to determine the necessary solvent deuteration for contrast match-
ing. The concentration at the matching point, where the solvent has the same SLD as the poly-
mer particles, is determined by the crossing of the mixed D2O/H2O SLD line and the SLD line of
the respective polymer. For the calculation the scattering length density of water is calculated
to -0.6·10−6Å2 and the SLD of heavy water is calculated to 6.3·10−6Å2.
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expressed by

SLDsample = SLDH2O ×H + SLDD2O ×D (6.30)
H ≡ 1 (6.31)

D =
SLDsample − SLDH2O

SLDD2O

. (6.32)

This way the volume of heavy water for each unit volume of protonated (usual) water can
be calculated. It is also apparent from that calculation that only mixtures with a scattering
length density between water and heavy water can be matched, and that the equations above
only cover the non-trivial cases, where pure water or heavy water is not suitable. The actual
volumes can then be calculated with Vwater =

H
H+D

and Vheavy water =
D

H+D
.

A prominent example for contrast matching is the matching out of the shell or core of a
micelle. The contrast behavior and the resulting scattering curves are shown in Fig.6.11.
Essentially contrast matching can improve the fitting procedure, if well known parts of the
structure are matched out or emphasized by the contrast matching. This then delivers two
or more different data sets that all should return comparable results. Another option is the
reconstruction of embedded particles in a larger structure. Also here, the overall fitting pro-
cedure can profit from two fits with mutually corroborating results.

One concept that shall also be mentioned here is magnetic (spin-) contrast. In this context
Fig.6.9 can be understood to be particles with a magnetic shell. As long as the spins are not
aligned there is no contrast between the shell and the solvent (step �). When an external
magnetic field aligns the spins in the shell, a contrast between the shell and the solvent
emerges (�). Several other possibilities with and without polarization analysis are possible,
however that is beyond the scope of this manuscript.

6.8 Form factors

As described above, the phase problem usually prevents an analytic reconstruction of the
structure from the scattered intensity by an inverse Fourier transform. There are approaches
attempting the direct reconstruction of direct space information [8] or reconstruction from
bead model annealing / Monte Carlo simulation [9, 10]. All these approaches have in com-
mon that a direct analytic expression for the scattering is not foreseen, and can therefore
not be used as a starting point of the analysis. In the past, the model based analysis
has been the most applied approach for the analysis of small-angle scattering data. Here,
predetermined structures undergo a Fourier transform, whose result is then used to calcu-
late a scattering pattern. This results in the most cases in analytic expressions that can
be directly fitted to the data and are often used in a catalog-like manner in order to de-
termine the structure of the sample. As most geometric forms can be approximated ei-
ther as a sphere, a disk or a rod (see Fig.6.12) these are the forms that are going to be
discussed here. More elaborate structures are available and can in principle be calculated
for any structure where the form can be described by an analytic expression. A short,
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Fig. 6.11: Scattering curves for micelles with unmatched, partially matched and completely
matched corona. The curves correspond to the scenarios �, � and � in Fig.6.9. Here two ef-
fects can be observed. The corona is only 50% of the radius of the core, hence it influences the
scattered intensity at higher angles than the core itself, the scattering feature at Q=0.15Å−1 cor-
responding to the micellar core is therefore quite stable, while the intensity at higher Q changes
drastically. Considering the forward scattering the dependence of the scattering contrast be-
tween solvent and core is directly visible. The matched out corona shows the least contrast, and
therefore the lowest forward scattering intensity, while the unmatched corona has the highest
contrast and the highest intensity. This approach is also used, when an analytic approach to
find the matching D2O/H2O concentration cannot be found. Several concentrations are tested
and where a minimum in the scattered intensity is found, the contrast can be assumed to be
matched.
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Fig. 6.12: Form factors for several scattering geometries. The slopes at the onset of the form
factor after the plateau are shown, which is mostly determined by the fractal dimension of the
scattering object. Here it also becomes apparent that solely relying on that slope may lead to
misinterpretation between similarly scaling objects, here Gaussian coils and discs.

and by no means complete, list of programmes for the evaluation of SAS data is SasView
(https://www.sasview.org), SasFit (https://kur.web.psi.ch/sans1/SANSSoft/sasfit.html) and
Scatter (http://www.esrf.eu/UsersAndScience/Experiments/
CRG/BM26/SaxsWaxs/DataAnalysis/Scatter#).

6.8.1 Sphere

The analytic expression for the scattering created by a sphere of radius R is

I(Q) = N

[
3V ρ0 ·

sin(QR)−QR cos(QR)

(QR)3

]2
(6.33)

with N being the number of the scattering particles, V being the volume of a single sphere
and ρ0 being the SLD contrast between the sphere and the solvent.

This expression can be reached by using a SLD description like a step function as depicted
in Fig.6.13. As a sphere is already spherically symmetric this can be directly put into the
Fourier transform
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Fig. 6.13: Depiction of the SLD distribution along the radius of a sphere. ρ0 is the SLD contrast,
i.e. the SLD difference between the scattering particle and the solvent. R is the radius of the
sphere.

A(Q) = F(ρ(r)) · (2π)3 (6.34)

=

∫

V

ρ(r) exp (−iQr)) dV (6.35)

=

∫ 2π

φ=0

∫ π

θ=0

∫ R

r=0

ρ(r) exp (−iQr)) r2 sin θdrdθdφ (6.36)

=

∫ 2π

φ=0

∫ π

θ=0

∫ R

r=0

ρ(r) exp (−iQr cos θ)) r2 sin θdrdθdφ (6.37)

=

∫ 2π

φ=0

∫ 1

u=−1

∫ R

r=0

ρ(r) exp (−iQru)) r2drdudφ (6.38)

= 4π

∫ R

r=0

ρ(r)

(
exp(iQru)− exp(−iQru)

iQr

)
r2dr (6.39)

= 4π

∫ R

r=0

ρ(r)

(
sinQr

Qr

)
r2dr (6.40)

= 4πρ0

∫ R

r=0

sinQr

Qr
r2dr (6.41)

= 4πρ0
sinQR−QR cosQR

Q3
(6.42)

= 4πρ0
sinQR−QR cosQR

Q3
(6.43)

= V ρ0
3sinQR−QR cosQR

R3Q3
(6.44)

Here Eq.6.37 used the identity of Qr = Qr cos θ with theta being the enclosed angle and
in Eq. 6.38 cos θ was replaced by u. In addition, spherical symmetry was exploited for the
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integration over the solid angle. The factor (2π)3 is to correct for scaling differences during
the Fourier transform.

This corresponds exactly to the squared term in Eq.6.33 which is nothing else than the
squared amplitude that we calculated here. As this is only the scattering for a single, isolated
sphere, the number density needs to be included to reflect the absolute scattered intensity. In
case of neutron scattering this is the case for most of the instruments. X-ray instruments are
often not calibrated to absolute scattering intensities and therefore need an arbitrary scaling
factor. Similar approaches can be used for other analytic representations of form factors.

6.8.2 Thin Rod

The scattered intensity by a dilute solution of thin rods of length L is given by

I(Q) = ρ20v
2

(
2

QL cos θ

)
sin2

(
QL

2
cos θ

)
(6.45)

→ ρ20v
2 2

QL

(
Si(QL)− 1− cosQL

QL

)
. (6.46)

Here v is the volume of the particle and the average over all orientations has been performed
in the second step. The substitution Si(QL) =

∫ QL

0
sinu
u

du was used.

6.8.3 Circular Disc

An infinitely thin circular disk of radius R scatters the incoming intensity as follows:

I(Q) = ρ0v
2 2

Q2R2

(
1− J1(2QR)

QR

)
(6.47)

J1 here is the first order Bessel function.

6.8.4 Non-particulate scattering from a flexible chain

A flexible chain in solution cannot be described by a simple analytic form, since one needs to
integrate over all possible conformations of the chain. Nevertheless, an analytic expression,
the Debye scattering, can be found:

I(Q) = ρ20v
2
2(exp(−Q2R2

g) +Q2R2
g − 1)

Q2R2
g

(6.48)

Here Rg = 1
V

∫
V
r2ρ0dr is the radius of gyration (in this case for constant SLD). A very

important aspect of that scattering curve is, that it essentially scales with Q2.
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For better comparison the radius of gyration for a solid sphere of radius R is Rg =
√

3
5
R,

the one for a thin rod of length L is Rg = 1√
12
L and the one for a very thin circular disc

with radius R is Rg =
1√
2
R

6.8.5 Polydispersity

All analytic form factors, that deliver the scattered intensity, are determining the scattered
intensity for particles of one exact size. In real systems, however, there are mostly distri-
butions of different sizes. This leads to a superposition of scattering from different particle
sizes. Since most particle sizes follow a Gaussian distribution, this is also a good way to
fold in the particle size distribution analytically. For extremely long, or very polydisperse,
particles then Schulz-Zimm distribution is used, which looks very similar to the Gaussian
distribution, however has a cut-off at zero to prevent negative sizes of the particles. For
specialized problems also other distributions, such as La-Place, multi-modal or other size
distribution functions can be used.

The general idea is that the scattered intensity I(Q, r) is folded with the size distribution
function f(r)

Ireal(Q, r) = Iideal(Q, r) ∗ f(r). (6.49)

Here the subscripts real and ideal identify the real measured intensity or the ideal intensity
for any calculated particulate size and form.

The effects of the convolution can be seen in Fig.6.14. Most notably, the minima are smeared
out, and in some cases vanish completely, so they can only be estimated. Another important
effect is that the slopes of inclinations cannot be completely reproduced anymore, which is
especially important to distinguish scattering from different contributions. The magnitude of
the polydispersity is described by the polydispersity index PDI = σ(f(r))/µ(f(r)) where
σ(f(r)) is the standard deviation of the size distribution function and µ(f(r)) is the mean of
the size distribution function. Values of PDI ≥ 0.3 are usually discarded during fitting, as
then the results become unreliable in such a polydisperse sample.

In addition to this, the usual polydispersity (approximated by a Gaussian distribution) is by
its very nature similar to a resolution smearing of the instrument itself. Therefore, it can
easily happen to overestimate the polydispersity. If the resolution function of the instrument
is known, it should be used for deconvolution before performing the fits.

6.9 Structure Factors

Structure factors in general describe the scattered intensity due to the arrangement of single
particles. This can be because the solution is becoming to dense, and therefore the particles
arrange following a nearest neighbor alignment or because the particles are attractive to each
other and form aggregates. Thus, more generally a structure factor S(Q) is a measure of
interaction between the single particles in the solution and connected with the correlation
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Fig. 6.14: Effect of polydispersity. While the positions of the minima can still be found at higher
polydispersity, the higher order undulations of the form factor vanish.

function c(r) (the probability to find a particle at a certain distance) with the relation

S(Q) =
1

1− nc(Q)
. (6.50)

Since the structure factor and the form factor need to be convolved in real space, in indirect
space this converts to a multiplication, following the convolution theorem. Therefore the
scattered intensity, described by form factor F (Q) and structure factor S(Q)

I(Q) = F (Q) · S(Q). (6.51)

From this equation it also follows, that for a system of uncorrelated, identical particles the
structure factor must be S(Q) = 1. Since the correlation between particles usually leads to
either an aggregation or repulsion of particles over long length scales the contribution of the
structure factor is most prominent at low Q-values. Also, this means that for large distances
the structure factor has to level out to unity, to preserve the fact that at large Q only the inner
structure of the particle is visible, not its arrangement in space. A few instructive examples
for the structure factor are shown in Fig.6.15.

6.9.1 Hard Sphere Structure Factor

The hard sphere structure factor assumes an infinitely high potential below a radius R and a
zero potential at higher radii. This can be described by

V (r) =

{
∞ for r ≤ R

0 for r > R.
(6.52)
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Fig. 6.15: Examples for structure factors. The intensity of the peaks roughly scales with the
volume fraction η of the particles. Also the position of the peaks is slightly dependent on that
volume fraction, which makes a direct calculation of R = 2π

Qmax
invalid (The hard sphere radius

used here was 60 Å). A distinct difference can be noted at low Q. Here, in general, attractive
interaction (sticky hard spheres) leads to an increase in scattering, while repulsive interaction
leads to a decrease in intensity.

Using Eq.6.50 this can be rewritten as

S(Q) =
1

1 + 24ηHSG(2QR)/2QR
. (6.53)

Here G(x) is defined as

G(x) = α
(sin(x)− xcos(x))

x2
+ (6.54)

= β
(2x sin(x) + (2− x2) cos(x− 2))

x3
+ (6.55)

= γ
(−x4 cos(x) + 4 [(3x2 − 6) cos(x) + (x3 − 6x) sin(x) + 6])

x5
(6.56)

with these definitions for α, β and γ:

α =
(1 + 2ηHS)

2

(1− ηHS)4
; β =

6ηHS(1 + ηHS/2)
2

(1− ηHS)4
; γ =

ηHS/2(1 + 2ηHS)
2

(1− ηHS)4
.

(6.57)

In all equations the volume fraction that is occupied by hard spheres of radius R is designated
ηHS .
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Fig. 6.16: Diverse scattering curves from identical spherical form factor and different structure
factors.

6.10 Reading a curve

In an experimental environment it can be useful to determine the fundamental features in a
preliminary fashion without computer aided data evaluation, also known as fitting. In addi-
tion, this helps determining good starting parameters for fits. In order to do so, we are going
to look at the curves shown in Fig.6.16. There we can determine different regions of the
scattered intensity (forward scattering, Guinier regime, Debye regime and Porod regime) and
determine several properties of the sample from that intensity. When applying the described
techniques for directly reading a curve it has to be kept in mind that most of them are either
restricted in their validity concerning the Q-space or are very general and rough descriptions
of the sample.

6.10.1 Forward scattering

As pointed out in the discussion of the structure factor, large aggregates mostly show their
presence by an increased scattering intensity at low Q. This also becomes apparent when tak-
ing Eq.6.3 into account. This means, in general, an increased scattering at low Q is indicative
of large aggregates being present in the sample. This also correlates with an attractive poten-
tial between the single particles.

Another possibility is strongly suppressed scattering at low Q. This can be the case for
strongly repulsive interaction potentials between the particles, close to what is described for
the hard sphere factor above.

A leveling out of the intensity at low Q is indicative of an either dilute solution or a very
weak potential between the particles. Then there is no influence at low Q and only the
structure factor of the single particles is visible.
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Fig. 6.17: Sphere form factor and Guinier approximation from Eq.6.58 in a Guinier plot. The
radius of gyration is 25.8 Å. The estimated slope by eye was m = −185. With Rg =

√
−3 ·m =

23.5Å the error is within 10%, which is suitable for a naked eye approximation.

6.10.2 Guinier regime

The Guinier regime is usually the crossover region, where the forward scattering is not dom-
inant anymore and the slope of the scattering curve changes to the scattered intensity of the
form factor. In this regime the overall size of the particle can be examined. This is similar
to seeing something from far away: One may be able to discern the size of the particle but
the distinct form remains hidden. Imagine a football and a pumpkin seen from 100 m away.
They are close in size, you can properly judge it to be approximately 20 cm in diameter,
but the exact form (ridges, stem of the pumpkin) remains hidden. A description that is only
taking into account the scattered density of the particles as a whole, valid in that scattering
regime is the Guinier Law:

I(Q) = ρ0v
2 exp(−

Q2R2
g

3
) (6.58)

For details of derivation, which include a Taylor series expansion around zero of the scattered
amplitude (Eq.6.36) and an averaging over all directions, please refer to the literature. [11,12]
Another option is to develop a series expansion for the Debye Law (Eq.6.48) at low Q.

In order to evaluate the data using the Guinier Law, the data needs to be plotted as shown
in Fig.6.17. The log-log representation and plotting versus Q2 allow to directly read the
inclination of the system, multiply by 3 and use the square root in order to retrieve the
particle radius.
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6.10.3 Debye regime

In contrast to the Guinier regime, where the data can be evaluated by the Guinier law, the
Debye regime signifies the area, where the particulate form manifests in the scattering, which
in general cannot be fitted by the Debye law. The Debye law is only valid for the scattering
from Gaussian chains. As can be seen in the form factors section 6.8, there is a direct
correlation to the dimensionality of the scattering particle (sphere, disc, rod) and the slope in
log-log plot, since the scattering scales with I(Q) ∼ Q−D, where D is the dimensionality of
the scattering object (sphere: D = 3; disc: D = 2; rod: D = 1). Also the scattering from
fractal objects is possible, which then results in non-integer numbers for the slope. It should
be noted that this is an approximation that is only valid for the case when 1/particle radius �
Q � 1/fundamental building block. The fundamental building block in this case can be for
example atoms or single monomers of a chain.

6.10.4 Porod regime

The Porod regime, is the regime where the interface between the particle and the solvent
dominates the scattered intensity. It is valid for large Q (before leveling out into the inco-
herent background) and therefore a good approach is extrapolating the sphere form factor to
large Q. The decisive property of the scattered intensity is the scaling of I(Q) ∼ Q−4. This
behavior can be derived from an extrapolation of the sphere form factor (Eq.6.33) to very
large Q:

I(Q) ∝
(
4

3
πR3

)2
9(sinQR−QR cosQR)2

Q6R6
(6.59)

= 8π2

(
R2(1 + cos 2QR)

Q4
− 2R sin 2QR

Q5
+

1− cos 2QR

Q6

)
(6.60)

The higher order terms vanish at large Q delivering the characteristic Q−4 behavior of the
scattered intensity. Here only proportionality is claimed, which is strictly true in this case.
If the scattered intensity is recorded in absolute intensities, here also information about the
surface of the particles can be obtained. This then follows the form

lim
Q→∞

I(Q) =
8π∆ρS

Q4
. (6.61)

∆ρ is here the SLD difference between the particle and the surrounding medium and S the
inter-facial area of the complete sample between particles and medium. This means, the
absolute intensity of the Porod regime allows to determine the complete amount of surface
in the sample.
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6.10.5 Estimation of particle and feature Size

As described previously for low Q in most cases it is a good approximation to assume all
particles in the sample have spherical symmetry (Section 6.10.2). The roots of the expression
for the spherical form factor are in the locations tan(QR) = QR, which is true for QR ≈
4.49, 7.73, 10.90..... In many cases anyway only the first minimum of the form factor will be
visible. This allows a fast approximation of the radius with R ≈ 4.5/Qmin. Here it needs
to be noted, that this is the rotational average of the particle, neglecting any structure of the
particle whatsoever.

Another approach of determining the size or correlation of features is using Eq.6.3:

d =
2π

Q
.

Although this is in general only strictly true for lamellar systems and the corresponding
correlations, it is still a good approximation for a summary data examination during the
experiment. With that restriction in mind it can be used for virtually any feature in the
scattering curve and the size of the corresponding feature in the sample.

6.11 Further Reading

Most of the concepts shown in this manuscript are based on previous publications. The
following selection of textbooks gives the reader a good overview of the principles of SAS.

6.11.1 A. Guinier: X-ray diffraction in crystals, imperfect crystals, and
amorphous bodies

This early textbook concentrates on SAXS, as neutron scattering at the time of writing was
still in its infancy. While some of the terminology may have changed slightly over time, in
many aspects this book still gives a good fundamental overview of what can be done with
small-angle scattering, and how to perform a solid data analysis. In addition, this is literally
the book on the Guinier Law, and where some of the basic ideas of reading scattering curves
were first collected.

6.11.2 R.J. Roe: Methods of x-ray and neutron scattering in polymer sci-
ence

Here the author nicely manages to emphasize the commonalities and differences between x-
ray and neutron scattering. An overview of the methods and technologies is given, as well
as a helpful mathematical appendix, reiterating some of the concepts used in the book.
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6.11.3 G. Strobl: The physics of polymers

For soft-matter researchers this book, even though not being focused on scattering as such,
gives a good overview of applicable concepts for scattering with soft-matter samples. A wide
range of helpful examples highlight in which particular area any evaluation concept of the
data is applicable and useful.
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Exercises

1.) The resolution of a SANS experiment is determined by

( ) The chosen wavelength

( ) The proportion of elastic and inelastic scattering from the sample

( ) The sample size

2.) Which components of a SANS instrument define the beam?

( ) Monochromator/Choppers

( ) Slits

( ) Detector

3.) Which pairs are correct, when trying to understand a SANS curve?

( ) Forward scattering: Aggregation

( ) Gunier Regime: Size of particles

( ) Porod Regime: Size of particles

4.) The difference between coherent and incoherent scattering in SANS and SAXS is

( ) Core/neutron interactions do not allow for pure elastic scattering

( ) Current SANS instruments are not developed enough to suppress incoherent scattering

( ) For isotopically pure samples, there would be no difference

5.) Form Factors ...

( ) ... are used to deal with the phase problem

( ) ... are used because experimenters are lazy and like quick answers

( ) ... do not render unique results

6.) Contrast matching experiments

( ) are unique to neutron experiments

( ) are possible because different isotopes give different contrasts

( ) distort the results, because the sample chemistry is changed

7.) The Structure Factor

( ) can be calculated by the experimental setup of the instrument
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( ) encodes the correlation between particles in the sample

( ) shows the structure of the scattering particles

8.) Find the first two root of the intensity scattered by a sphere. Use this value to create a
sketch that:

1.) Shows the scattered intensity by a sphere

2.) Indicate a change happening by increased polydispersity

3.) Indicates aggregation of large particles in the sample

Bonus: What would this curve look like if there was no aggregation, but the particles would
push away from each other?

9.) Decide and explain which properties of the scattering curve you need to evaluate if you
are interested in

a) the particle size

b) the size distribution

c) shape of the particle

d) interaction between the particles

10.) At zero-th order, all particles can be approximated by a sphere. Conceptualize that
thought. Using this knowledge, derive a solution for the Q-dependence of the Porod-Regime
and the Guinier Regime.
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7.2  J. Stellbrink 

7.1 Introduction 
Macromolecules are an integral part of Soft and Living Matter. In Living Matter, 
macromolecule-based functional systems are built from molecular units consisting of 
only a few different building blocks: amino acids are assembled into proteins, which in 
turn function individually, or cooperatively in nano- and micro-machines. The secret of 
success is the intrinsic hierarchical structuring over a large range of length scales. In Soft 
Matter, synthetic macromolecules are of much simpler structure. Nevertheless, there is a 
vast variety of material properties that can be realized with synthetic macromolecules. 
Theoretical concepts have been developed, and are essential for the rational design of soft 
materials, that are of paramount importance in a multitude of technical applications. 
Synthetic polymers have crucially changed daily life since its development in the 1930ies. 
Modern polymers can be divided into two major classes (i) commodity polymers for daily 
life use which are produced in millions of tons per year and (ii) specialty polymers for 
high-performance applications which are niche products but highly profitable [1]. Typical 
commodity polymers are polyolefines like polyethylene (PE) or polypropylene (PP) used 
for packaging, films etc. Examples for specialty polymers are polydimethylsiloxane 
(PDMS) derivatives used in dental implants. 
Currently, both classes of polymers in use are based on petrochemical feedstock, thus 
considered not “carbon-neutral” and “environment-friendly”. Due to changing global 
conditions and growing concerns about the mounting disposal problems, research on 
sustainable commodity polymers has been intensified during the last decade, both on the 
level of fundamental research and applied science [2]. To find the required balance 
between material properties and bioavailability/-degradability is the key for establishing 
sustainable polymers on a large scale industrial level and therefore a major challenge of 
future polymer science. 
The development of new biomimetic specialty polymers is another major challenge. 
Biopolymers, like spider silk, are high-performance materials with material properties 
superior to any synthetic polymer. To transfer these properties to artificial biomimetic 
polymers, one has to fully understand, on the molecular level, the structure-property-
relationships and enzymatic synthesis processes in living organisms. 
In this lecture some recent applications of neutron scattering methods to characterize 
quantitatively on a microscopic length scale structure and interactions of synthetic 
macromolecules and its hierarchical structuring are given. A more comprehensive 
overview is found e.g. in [3]. 

7.2 Polymers in dilute solution 
7.2.1  Linear polymers 
A linear polymer is a sequence of molecular repetition units, the monomers, continuously 
linked by covalent bonds. The degree of polymerisation, Dp, i.e. the number of monomers 
constituting the polymer, the (weight average) molecular weight, Mw=Dp Mm, with Mm 
the molecular weight of the monomer, and the radius of gyration, , are the most 
important structural parameters of a polymer. On a coarse-grained level, structural details 
arising from the explicit chemical composition of the polymer like bond lengths and 
angles can be neglected and what remains is the so-called scaling relation given above 

n
wg MR ~
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that links molecular weight to size and which is generally valid for all polymers [4]. The 
numerical value of the scaling exponent ν depends on the strength of interactions. In the 
so called θ-state, when monomer-monomer interactions are as strong as monomer solvent 
interactions, the polymer structure can be described by a random walk, therefore Gaussian 
chain statistics are valid and ν=1/2, see Appendix A7.1. When monomer solvent 
interactions are stronger than monomer-monomer interactions, so called excluded volume 
forces are effective, the polymer chain is “swollen” and ν=3/5. 
Here one has to emphasize that synthetic polymers, unlike biopolymers, always have an 
intrinsic polydispersity, i.e. there is a distribution of molecular weights. The 
polydispersity is given usually in terms of Mw/Mn, with Mn the number average molecular 
weight. Its precise number depends on the polymerisation reaction by which the polymer 
was synthesized. For a (theoretical) monodisperse polymer Mw/Mn=1 holds, the most 
monodisperse synthetic polymers with Mw/Mn=1.02 can be synthesized by “living” 
anionic polymerisation, classical polycondensation yields Mw/Mn =2, radical 
polymerisation can even result in extremely broad distributions, Mw/Mn >10. 
Although in technical applications polymers are mostly used as bulk materials, polymer 
characterisation is usually performed in (dilute) solution. Historically, light scattering was 
the method of choice to characterise synthetic polymers [5], but nowadays size exclusion 
chromatography (SEC), also called gel permeation chromatography (GPC), is the 
standard technique to characterize routinely polymers [6]. 
Neutron scattering, due do its limited accessibility and high experimental costs, usually 
is found in basic academic research, but here it played a crucial role in confirming 
fundamental theoretical concepts of polymers [3]. 
For macromolecules the measured intensity I(Q) can be expressed in first approximation 
as a product of particle form factor P(Q) given by the intramolecular architecture, i.e. the 
particle geometry, and structure factor S(Q) given by the intermolecular structure arising 
due to particle-particle interactions. Please note, that both P(Q) and S(Q) must be properly 
normalized, 𝑃𝑃(𝑄𝑄)!"# = 1	and 𝑆𝑆(𝑄𝑄)!$≫& = 1, for details see chapter 6.9: 

 

𝐼𝐼(𝑄𝑄) =
Δ𝜚𝜚'

𝑁𝑁(
	𝜙𝜙	𝑉𝑉) 	𝑃𝑃(𝑄𝑄)	𝑆𝑆(𝑄𝑄)		 (7.1)  

 

Here *+
!

,"
	is the contrast factor, f  is the polymer volume fraction and is the 

molecular volume and d the polymer density in [g/cm3]. 
To characterize properly the intramolecular form factor P(Q) one has therefore to 
investigate a concentration series in the dilute regime and extrapolate finally to infinite 
dilution. The form factor of a Gaussian chain (Debye function) is given by (for its 
derivation see Appendix A7.1). 

 (7.2)  

With x=Q2Rg2 and Rg the radius of gyration describing the overall dimension of the single 
polymer chain. 

dMV ww =

)1)(exp()( 2
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The Debye function describes the (ideal) polymer scattering well from length scales of 
the overall coil down to length scales where the polymer becomes locally rigid. The 
corresponding asymptotic limits are: 
 

𝑃𝑃(𝑄𝑄)~𝑁𝑁	(1 −	&
-
	𝑄𝑄'	𝑅𝑅.') for small Q (7.3)  

~	2𝑁𝑁	/	(𝑄𝑄'	𝑅𝑅.') for large Q (7.4)  

Equation 7.3 describes the conventional Guinier scattering of the overall polymer 
(compare chapter 6.10.2, equation 6.58), equation 7.4 describes a power law. At these 
length scales, the sub-chains of different lengths are self-similar and so they reveal a 
fractal behaviour. The prefactor is connected to the magnitude Rg2/N that is the effective 
segment size. From this magnitude, one can calculate back to the local rigidity that is 
responsible for the effective segments. 

 
Figure 7.1: The theoretical Debye function, equation 7.2, describes the polymer 
scattering of independent polymers without interaction. The two plots show the function 
on a linear and double logarithmic scale. 
 
Particle-particle interactions as seen in S(Q) are weak in the dilute regime, but still 
effective, so that one can apply the virial expansion. 
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 (7.5)  

Equation 7.5 is formulated neglecting the contrast factor so it holds for all types of 
scattering experiments, i.e. SANS, SAXS and SLS. A crucial concentration separating 
dilute and semi-dilute regime is the so-called overlap concentration 𝜙𝜙∗ =
(	𝑉𝑉)/𝑁𝑁() 	(0	2

-
	𝑅𝑅.-	)4 , which describes the “internal concentration” per volume of a single 

polymer chain.  

 
The value of the second virial coefficient A2 directly reflects particle-particle interactions, 
i.e. a positive A2 is found for repulsive interactions (good solvent i.e. excluded volume 
interactions), a negative one for attractive interactions (marginal/bad solvent) and finally 
A2=0 characterizes no interactions (θ-solvent). Without any data fitting, this distinction 
can easily be made by plotting the intensity data I(Q) of a concentration series normalized 
to the corresponding volume fractions I(Q)/f  (Since scattering arises due to an exchange 
of a volume element of solvent by a volume element of polymer with different scattering 
contrast, the natural concentration unit for any scattering experiment should be volume 
fraction f). This is schematically shown in Figure 7.2. If no particle-particle interactions 
are present all data for all Q-vectors exactly fall on top of each other. 

 
Absolute intensity I(Q) [cm-1] Normalized intensity I(Q)/Φ [cm-1] 
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Figure 7.2: Calculated scattering intensities in absolute units I(Q) (left) and normalized 
to polymer volume fraction I(Q)/ f (right) for solutions of a linear polymer at different 
volume fractions given in percent, see legends, assuming a virial ansatz for particle 
interactions. From top to bottom: No interactions A2=0 (θ-solvent, repulsive interactions 
A2>0 good solvent, attractive interactions A2<0 marginal or bad solvent). 
 
Irrespective what kind of interactions are present this also holds for high Q-vectors, since 
high Q-vectors mean small length scales and the local (intramolecular) structure is not 
affected by particle-particle interaction (S(Q)=1). In contrary, at low Q-vectors there are 
crucial differences between the individual concentrations in this representation. For 
repulsive interactions the forward scattering is reduced by S(Q) therefore the lowest 
concentration shows the highest normalized intensity. For attractive interactions, on the 
other hand, the forward scattering is increased by S(Q), therefore the lowest concentration 
shows the lowest normalized intensity. This sequence can be easily understood, because 
attractive interactions finally result in clustering of the individual particles. 
For more details about synthesis and characterisation of macromolecules the interested 
reader is referred to standard textbooks e.g. [7], [8]. 
 

7.2.2  Branched polymers 
Branching crucially influences the mechanical properties of polymers therefore 
characterisation and control of branching reactions during polymerisation processes are 
of vital interest not only for polymer industry to tune semi-empirically material 
properties, but also for fundamental research to derive a proper quantitative structure 
property relationship. 
The simplest branched polymer is a regular star polymer, where f arms, each of same 
molecular weight Mw,arm , are emanating from a microscopic central branch point, the star 
core. Experimentally, such regular star polymers are nowadays most precisely realized 
by using chlorosilane dendrimers as branch points. The arms forming the star corona or 
shell are grafted to the dendrimer core by “living” anionic polymerisation [9]. The precise 
control of the dendrimer generation is reflected in the precise functionality of the final 
star polymer so that functionalities as high as f=128 can be achieved. However, with 
increasing functionality there is a polydispersity in functionality since the last arms are 
extremely difficult to graft since they have to diffuse through the already very crowded 
star polymer corona to react at the star core [10]. 
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Figure 7.3: Schematic illustration of different polymer architectures: a) linear 
homopolymer, b) linear block copolymer, c) regular mikto-arm star polymer (f=4), d) 
regular star polymer (f=8), and e) comb polymer. 
 
The form factor of a regular star polymer with Gaussian chain statistics has been derived 
by Benoit already in 1953 [11]. 

 
(7.6)  

The overall size of the star polymer Rg,star is related to the size of the individual arm by 

. 

There is no rigorous analytical formula for a star polymer with swollen chain statistics, 
but experimental data for star polymers in a good solvent can be nicely described either 
by the Dozier function [12] or the approach derived by Beaucage [13]. His equation can 
be viewed as a "universal form factor" for an arbitrary mass fractal that can also be applied 
to many other polymeric systems: 

 
(7.7)  

with Q* = Q/[erf(QkRg/ )]3. Here erf is the error function and G and B are amplitudes, 
which for mass fractals can be related to each other by  (polymeric 
constraint). P is the fractal dimension of the internal substructure, k an empirical constant 
found to be ≈ 1.06 and G is the Gamma function. The fractal dimension is related to the 
scaling exponent by P=1/ν. The Beaucage expression can be nicely extended to describe 
hierarchical structures over multiple levels i  where Pi(Q) are given by 

Equation 7.7. Figure 7.4 shows form factors obtained for polybutadiene (PB) star 
polymers with varying functionality f  but same Rg≈50nm in d-cis-decalin.  
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Figure 7.4: SANS intensity I(Q) normalized by volume fraction f  for regular 
polybutadiene star polymers with varying functionality f but same radius of gyration 
Rg≈50nm. The asymptotic power law observed at high scattering vectors I~Q-5/3 clearly 
indicates excluded volume interactions relevant in a good solvent , i.e. swollen chain 
statistics [14] (Reprinted by permission of Springer Nature: Springer, Appl. Physics A: 
Materials Science & Processing, partial structure factors in star polymer/colloid 
mixtures, J. Stellbrink et al., copyright 2007) 
At low Q-vectors, Q ≤ 8×10−3 Å−1, data could be modelled using the Benoit form factor, 
Equation 7.6 for a Gaussian star, which gives the explicit dependence on functionality f. 
For describing the complete data set we used the Beaucage form factor, Equation 7.7, 
which describes also the observed power law at high Q-vectors. One should note that this 
power law extends over more than one order of magnitude in Q and starts at the same Q-
value of ≈ 8×10−3 Å−1 for all f due to the same Rg. The observed power law slope of I(Q) 
~ Q−5/3 reflects the good solvent quality of cis-decalin for polybutadiene and decreases 
slightly with increasing f , indicating increasing arm stretching due to the increasing 
monomer density in the star corona. 
The effect of branching becomes easily visible by using a so called Kratky representation, 
I(Q) Q2 vs. Q. Whereas a linear polymer with Gaussian chain statistics reaches 
monotonically an asymptotic plateau, any branched structure shows a maximum. For the 
here discussed regular star polymer the height quantitatively depends on the arm number 
or functionality f, see figure 7.5. 
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Figure 7.5:  Kratky representation I(Q) Q2 vs. Q for same data as in Figure 7.4. The 
increasing peak height with increasing functionality f due to branching becomes clearly 
visible as well as the discrepancy between experimental data (symbols) and Beaucage 
function used to model the data. The fact that no asymptotic plateau is observed results 
from the excluded volume interactions relevant in a good solvent, i.e. swollen chain 
statistics. 
 
7.2.3  In-situ experiments during polymerisation 
For understanding and controlling any chemical reaction a detailed understanding of 
reaction mechanism, type and role of intermediate species as well as reaction kinetics are 
prerequisite. How the microscopic structure of a growing polymer chain is evolving in 
the different steps of polymerisation reactions has to be resolved by non-invasive, real-
time measurements. The ideal tool is small angle neutron scattering (SANS), since the 
microscopic structure of polymer-based materials can be resolved on a micrometer-to- 
nanometer-level by modern neutron scattering techniques. In addition, contrast variation, 
i.e. H/D exchange, can even “stain” certain parts of the polymers giving access to 
unprecedented structural information. So neutron scattering is a unique and outstanding 
technique to investigate polymerising systems in real-time, in particular since new, more 
powerful neutron sources became available worldwide (FRM-2, SNS, J-PARC). But for 
a complete description of the polymerisation process additional information in terms of 
reaction kinetics etc. are prerequisite. Thus, in-situ SANS experiments have to be 
supported by complementary methods like NMR, SEC, UV/VIS and IR spectroscopy, 
favourably also in real-time mode. 
Recently we investigated reaction mechanism and kinetics of different polymerisation 
techniques like “living” anionic polymerisation [15] or post-metallocene catalyzed olefin 
polymerisation [16] by such an in-situ multi technique approach. Figure 7.6 shows time 
resolved SANS intensities I(Q) in absolute units obtained during the polymerisation of 1-
octene by a pyridylamidohafnium catalyst in toluene at 20°C. Experiments have been 
performed using the KWS-1 instruments at the former FRJ-2 reactor in Jülich which 
allowed a temporal resolution of about several minutes.  
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Figure 7.6:  Time resolved SANS intensities I(Q) in absolute units obtained during the 
polymerisation of 1-octene by a pyridylamidohafnium catalyst in toluene at 20°C [16] 
(reprinted with permission from Macromolecules, 42, 1083, 2009. Copyright 2009, 
American Chemical Society) 
The monomer solution shows a Q-independent intensity over the whole accessible SANS 
Q-range typical for small molecules, which act as “incoherent scatterers”. Note by: the 
actual incoherent background for all components, as described in Chapter 6, can be 

estimated by  34(6)
8

9:;
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  . After four minutes a polymer is already formed and the 
Q-dependence of the intensity can be described by a Beaucage form factor, equation 7.7. 
With ongoing polymerisation, increasing polymerisation time t the general shape of I(Q) 
does not change any further, only the forward scattering I(Q=0) is increasing due to the 
increasing molecular weight and concentration of the growing polymer chain. Finally, the 
polymerisation is almost finished after half an hour as can be seen by comparison with 
the terminated polymer. A detailed quantitative analysis of I(Q,t) reveals that during this 
type of polymerisation reaction no aggregation phenomena of the growing polymer chain 
are relevant. Similar experiments at high flux sources allow today temporal resolutions 
smaller than 1 second if experiments are repetitively performed using a stopped flow 
mixer. 
 

7.3 Block copolymer Micelles 
When amphiphilic block copolymers are dissolved in a selective solvent, i.e. a solvent 
which is good for one block but a precipitant for the other, they spontaneously self-
assemble into supramolecular aggregates known as micelles, in which the insoluble block 
forms the inner part or core, whereas the soluble block forms a solvent-rich shell or 
corona. The general behaviour of block copolymers in selective solvents has been subject 
of copious theoretical and experimental studies during the past decades. They are 
reviewed in several books [17] [18] and review articles [19][20] related to this topic. 
Extensive studies demonstrated that the micellar morphology can be tuned (going from 
spheres, cylinders, worms and vesicles) by varying the block-copolymer molecular 
weight, the chemical nature and the ratio of the blocks. One of the most extensively 
studied block-copolymers is poly(butadiene-ethylene oxide) (PB-PEO). As a function of 
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the hydrophilic block length (in term of PEO weight fraction wPEO) spherical micelles 
(wPEO >0.6), worm-like micelles, WLM (0.47 £wPEO £ 0.59) or bilayers (wPEO <0.47) are 
formed. Different theoretical studies contributed to define the scaling laws for the 
parameters of equilibrium structures. Among them, a quantitative theory defining the 
thermodynamic stability of different morphologies in selective solvents has been recently 
developed [21]. The theory expresses the free energy contributions of the core, the corona 
and the interface as a function of the blocks structural parameters and the interfacial 
tension between the solvent and the insoluble block for different micellar morphologies. 
Solvent selectivity can be more easily tuned than the above mentioned parameters 
(molecular weight, block ratio etc) and moreover in a continuous way by varying the 
solvent composition. Therefore, solvent composition is a very natural and easy parameter 
to control the micellar structures. The change in the morphology of the self-assembled 
structures can be attributed to a change of solvent selectivity, which influences the 
different energy contributions responsible for the morphology: core-chain stretching, 
corona-chain repulsion and interfacial tension between the core and the solution.  
The interest is to relate changes on the smallest relevant length scale, i.e. diameter and 
aggregation number per unit length, density profile in the corona, to changes in the 
macroscopic structure, i.e. the contour and persistence length of wormlike micelles and 
the transition from wormlike-to-spherical micelles etc. This molecular level 
understanding can help to elucidate the mechanisms involved in non-equilibrium 
conditions. Besides, it is expected that these quantities have a pronounced effect on the 
rheological behavior of the systems, and as such solvent composition could be used to 
tune the flow properties of micellar solutions. 
 
7.3.1  Form factor 
Figure 7.7 (left) shows the partial form factor normalized to volume fraction Φ, P(Q)/Φ, 
in shell and core contrast for micelles formed by a symmetric amphiphilic block 
copolymer poly(ethylene-alt-propylene)–poly(ethylene oxide), h-PEP4-dh-PEO4 (the 
numbers denote the block molecular weight in kg/mol) [22]. Already, a qualitative 
discussion of the data reveals important features of the micellar architecture. First, the 
forward scatterings, I(Q=0), in the two contrasts are the same. This is expected for 
micelles formed by a symmetric diblock copolymer in shell and core contrast (we should 
note that the two blocks have the same molar volume Vw) and is in this sense a proof of 
the applied contrast conditions. This means that the scattering profiles shown in figure 
7.7 are directly reflecting pure shell and core properties. Second, both scattering profiles 
show well defined maxima and minima, up to four in core contrast, which arise from 
sharp interfaces typical for a monodisperse, compact spherical particle, see chapter 6, 
equation 6.33. These minima occur whenever QR = tan(QR), i.e. at QR = 4.493, 7.725, 
… (n + 1/2) π (We should note that one has to consider that these oscillations are already 
smeared by the instrumental resolution function, so the data shown offer even more 
confirmation of the strong segregation between the core and corona and the low 
polydispersity of the micelles). 
 
Also shown is Porod’s law I ∼ Q−4, which describes the limiting envelope of all form 
factor oscillations. We should emphasize that in core contrast no blob scattering is visible 
[22]. This also corroborates the compact PEP core. A quantitative analysis in terms of a 
core–shell model gave the following micellar parameters: aggregation number P = 1600, 
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core radius Rcore = 145 Å and shell radius Rm = 280 Å with a polydispersity of ≈5%. The 
solvent fraction in the swollen shell is Φsolv = 60%. 
Figure 7.7 (right) shows the corresponding partial form factor data, P(Q)/Φ, in shell and 
core contrast for an asymmetric h-PEP1-dh-PEO20. The differences compared to figure 
7.7 (left) are obvious: the difference in forward scattering of the two contrasts is reflecting 
the asymmetry of the block copolymer. Moreover, no maxima or minima are visible (also 
not at high Q in core contrast) and the power law observed in shell contrast has a slope of 
only I ∼ Q−5/3, which is typical for a polymer chain in a good solvent and arises from the 
swelling of the PEO in the shell (blob scattering). A quantitative analysis gives the 
following micellar parameters: aggregation number P = 130, core radius Rcore = 34 Å and 
shell radius Rm = 260 Å. 
 

  
Figure 7.7: Form factors of block copolymer micelles with varying architecture in core 
(red) and shell contrast (blue). Left symmetric PEP4-PEO; right asymmetric PEP1-
PEO20, the numbers denote the block molecular weight in kg/mole [22] (Reprinted by 
permission of IOP Publishing, copyright 2004). 
 
7.3.2  Micellar exchange dynamics 
Polymeric micelles are macromolecular analogues of well-known low-molecular 
surfactant micelles. As a consequence of random stochastic forces, the constituting chains 
will continuously exchange between the micelles. From the theory of Halperin and 
Alexander (HA), this exchange kinetics is expected to be dominated by a simple 
expulsion or insertion mechanism where single chains (unimers) are required to overcome 
a defined potential barrier [23]. Higher order kinetics including fusion and fission is not 
expected to take place since these mechanisms are neither favoured energetically nor 
entropically [24]. Experimentally, relatively few studies have been devoted to the 
exchange kinetics of polymeric micelles in equilibrium. This is most likely related to the 
associated experimental difficulties. Recently, we used a newly developed time resolved 
small angle neutron scattering (TR-SANS) technique [25]. This technique is perfectly 
suited for determination of exchange kinetics in equilibrium as, unlike other techniques; 
virtually no chemical or physical perturbations are imposed on the system. The labelling 
is restricted to a simple hydrogen/deuterium (H=D) substitution using fully hydrogenated 
(h) and fully deuterated (d) polymers with identical molar volumes and compositions. By 
mixing the corresponding H- and D-type micelles in a solvent with a scattering length 
corresponding to the average between the two, the kinetics can be determined. The 
average excess fraction of labelled chains residing inside the micelles is then simply 
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proportional to the square root of the excess SANS intensity. The corresponding 
correlation function is given by  was measured from 
a reference sample where the polymers have been completely randomized and I(t=0) from 
the scattering of the reservoirs at low concentrations. 
 

 

  
Figure 7.8: Left: Schematic illustration of the TR-SANS technique to follow micellar 
exchange kinetics. Right: Corresponding time-resolved SANS data forPEP1-PEO20 
micelles in H2O/DMF 7:3 showing slow exchange (5min, 2h @ 50°C) (Reprinted by 
permission of Springer Nature: Adv. Polymer Sci., 184, 1, 2013, Kinetics of Block 
Copolymer Micelles Studied by Small-Angle Scattering Methods, R. Lund et al., copyright 
2013). 

 
7.3.3  Structure factor 
How the structure factor S(Q) can be derived from the pair correlation function g(r) by 
liquid state theory has been shown in Chapter 6.9. g(r) finally results from the effective 
pair potential V(r), which describes the direct interactions between the solute only, after 
eliminating the rapidly moving degrees of freedom of the solvent molecules. From the 
position Qmax of the first peak in S(Q) the average distance D between scattering particles 
can be derived by D= 2π/Qmax. 
We recently showed that micelles formed by the amphiphilic block copolymer 
poly(ethylene-alt-propylene)– poly(ethylene oxide) (PEP–PEO) provide an interesting 
system to conveniently tune the ‘softness’ in terms of particle interactions (intermolecular 
softness) and the deformability of the individual particle (intramolecular softness). This 
is achieved by changing the ratio between hydrophobic and hydrophilic blocks from 
symmetric (1:1, Hard Sphere-like) to very asymmetric (1:20, star-like). One must 
emphasize that to approach the star-like regime is not a trivial task. 
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Figure 7.9: Different effective interaction potentials. The one for star polymers, i.e. soft 
colloids, is in-between the two limits Gaussian Chain (left) and Hard Spheres (right). 

 
Figure 7.9 compares the effective interaction potential for soft colloids to those of the 
limiting cases Gaussian Chain, i.e. no interactions, and Hard Spheres, i.e. infinite strength 
of the potential at contact. The explicit form of V(r) for star polymers, the limiting ultra-
soft colloids, was derived by Likos et al. [26] and is explained in detail in Appendix 7.1. 
 
Figure 7.10 shows the corresponding experimental structure factors S(Q) for Hard 
Sphere and Soft interactions and its comparison with theoretical predictions. 

 
 

 
Figure 7.10: Experimental structure factor S(Q) of block copolymer micelles with 
varying architecture obtained by SANS in core contrast (symbols) and the theoretical 
description (lines) resulting from the corresponding interaction potentials: Symmetric 
PEP4-PEO4 / Hard Sphere potential left, asymmetric PEP1-PEO20/ ultra soft potential 
right, see text and [22] (Reprinted by permission of IOP Publishing, copyright 2004) [28] 
(Reprinted by permission of American Physical Society, copyright 2005). 
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Appendices 
 
A7.1  Scattering of a polymer 
In this section we derive the scattering of a single (isolated) polymer coil. This model is 
the basis for many more complicated models of polymers in solution, polymeric micelles, 
polymer melts, diblock and multiblock copolymers and so on. So the understanding of 
these concepts is rather important for scattering experiments on any kind of polymer 
systems. 
 
This example starts apart from many other calculations from point-like. These monomers 
are found along a random walk with an average step width of lK. We try to argue for non-
ideal chain segments, but finally will arrive at an expression for rather ideal polymers. 
 
For the scattering function we obtain: 
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At this stage, we use statistical arguments (i.e. statistical physics). The first rearrangement 
of terms (equation 7.8) moves the ensemble average of the monomer positions (and 
distances ΔRjk) from the outside of the exponential to the inside. This is an elementary 
step which is true for polymers. The underlying idea is that the distance ΔRjk arises from 
a sum of |j-k| bond vectors which all have the same statistics. So each sub-chain with the 
indices jk is only distinguished by its number of bond vectors inside. The single bond 
vector bj has a statistical average of <bj>= 0 because there is no preferred orientation. The 
next higher moment is the second moment <bj2>=lK2. This describes that each bond vector 
does a finite step with an average length of lk. For the sub-chain we then find an average 
size <ΔRjk2>=|j-k| lK2. The reason is that in the quadrature of the sub-chain only the 
diagonal terms contribute because two distinct bond vectors show no (or weak) 
correlations. 
 
Back to the ensemble average: The original exponential can be seen as a Taylor expansion 
with all powers of the argument iQΔRjk. The odd powers do not contribute with similar 
arguments than for the single bond vector bj=0. Thus, the quadratic term is the leading 
term. The reason why the higher order terms can be arranged that they finally fit to the 
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exponential expression given in equation 7.9 is the weak correlations of two distinct bond 
vectors. The next line equation 7.10 basically expresses the orientational average of the 
sub-chain vector ΔRjk with respect to the Q-vector in three dimensions. 
This derivation can be even simpler understood on the basis of a Gaussian chain. Then 
every bond vector follows a Gaussian distribution (with a centre of zero bond length). 
Then the ensemble average has the concrete meaning 

. This distribution immediately explains the 
rearrangement of equation 7.4. The principal argument is the central limit theorem: When 
embracing several segments as an effective segment any kind of distribution converges 
to yield a Gaussian distribution. This idea came from Kuhn who formed the term Kuhn 
segment. While elementary bonds still may have correlations at the stage of the Kuhn 
segment all correlations are lost, and the chain really behaves ideal. This is the reason 
why the Kuhn segment length lK was already used in the above equations. 
 
In the following we now use the average length of sub-chains (be it Kuhn segments or 
not), and replace the sums by integrals which is a good approximation for long chains 
with a large number of segments N. 
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 (7.12)  

 (7.13)  

In this integral one has to consider the symmetry of the modulus. The result is basically 
the Debye function which describes the polymer scattering well from length scales of the 
overall coil down to length scales where the polymer becomes locally rigid. 
 

A7.2  The ultra-soft potential (Likos-Potential) 
The effective potential V(r)/kbT between star polymers as a function of functionality f and 
interaction length s was derived by by Likos et al. [26]. The interaction length s is the 
distance between two star centres when the outermost blob overlaps. For larger distances 
two stars interact via a screened Yukawa-type potential whereas at distances smaller than 
s when there is overlap of the star coronas, the potential has an ultra-soft logarithmic 
form. 

 (7.14)  
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All numerical factors have been chosen in such a way that the potential as wells as its first 
derivative are smooth at crossover. Figure 7.12 shows the Likos-potential for different 
functionalities. At  the Hard Sphere potential is recovered. 

 
Figure 7.12: Effective potential V(r)/kbT between star polymers with varying 
functionality f. 
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Exercises 
 
E7.1*  Contrast or no contrast? 
Due to synthetic (and financial) limitations only protonated material is available for a SANS 
experiment, for both polymer (poly(ethylene propylene), PEP, and solvent dimethyl-
formamide, DMF. 

a) Calculate the contrast factor  following equation 5.16 and 7.1. 

b) What is the necessary molecular weight Mw to achieve a signal-to-background ratio of 5 at 
Q=0 for a given polymer volume fraction f =0.01? (Remember: The incoherent scattering 
contributes to the background too and there is an empirical “rule of thumb” that the 
experimental incoherent scattering is twice the theoretical value due to inelastic and multiple 
scattering!) 
c) At which Q-value the signal vanishes in the background? 
(Assuming good-solvent conditions with a prefactor 0.01 [nm] for the Rg-Mw-relation and 
assuming the Guinier approximation for P(Q)) 

d) For which combination of molecular weight and volume fraction f the experiment could be 
performed in the dilute regime, i.e. f≤0.1f*? 

Given are sum formulae and densities 

h-PEP = C5H10, dPEP=0.84g/cm3 
h-DMF = C3H7NO, dPEO=0.95g/cm3 

and coherent and incoherent scattering lengths bcoh and binc in units [cm]: 
C: bcoh =6.65E-13, binc = 0 

H: bcoh =-3.74E-13, binc = 2.53E-12 
D: bcoh =6.67E-13, binc = 4.04E-13 

O: bcoh =5.80E-13, binc = 0 
N: bcoh =9.36E-13, binc = 0 

  

AN

2rD
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E7.2  Contrast Variation Experiment on Micelles 

The three symbols □, ○ and r indicate the characteristic small angle scattering of spherical 
polymer micelles under different important contrast conditions. There are three conditions 
called: shell contrast, core contrast and zero average contrast. The shell contrast highlights the 
shell of the micelle (being hydrogenated) while the rest is deuterated. The core contrast 
highlights the core of the micelle (being hydrogenated) while the rest is deuterated. For the zero 
average contrast the average contrast of the deuterated core and the hydrogenated shell matches 
with the solvent. 
Which condition can be connected to which symbol (or curve)? 

A  r-shell ○-core and □-zero 

B  ○-shell □-core and r-zero 

C  □-shell r-core and ○-zero 

Why? 
 

E7.3  Aggregation number of micelles 
In aqueous solution, the diblock copolymer poly(ethylene propylene-block-ethylene oxide), 

PEP-PEO, forms spherical micelles, with PEP the non-soluble and PEO the soluble block. In 

dilute solution using core contrast, i.e. the scattering length density of the solvent is matched to 

the scattering length density of the micellar shell (formed by the soluble block PEO), the first 

form factor minimum is observed at Q=0.12 Å-1. 

 
Calculate  
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a.) the aggregation number Nagg, i.e. the number of diblock copolymers forming a single 
micelle, assuming full segregation, i.e. a non-swollen micellar core. 
 
b.) How can Nagg derived in this way be cross-checked without performing another experiment? 
 
 
Known are the monomer sum formulae and densities 
h-PEP = C5H10, dPEP=0.84g/cm3 
h-PEO = C2H4O, dPEO=1.12g/cm3 
 
and the degree of polymerisation, Dp, of the blocks: 
Dp,PEP = 15 
Dp,PEO = 40 
 
 
 

E7.4  Interactions of Gaussian chains 
Calculate S(Q) for Gaussian chains at a volume fraction f = f*. 

 
E7.5  Peak position in S(Q) 
A solution of compact spherical colloids, R=250Å, with volume fraction 0.25 should be 
characterised by SANS. At which Q-vector do you expect the first peak in the structure factor 
S(Q) to appear? 
 
E7.6  Structure factor contributions 
 
Which type of particle interactions can be determined from the total scattering intensity I(Q) at 
high scattering vectors only? 
 
A. Repulsive interactions 
B. Attractive interactions 
C. No interactions at all 
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8.1 Introduction

Among the properties that make the neutron a unique and valuable probe for condensed
matter research, its spin and magnetic moment is of particular importance in the scattering
process. There are two aspects to consider, firstly, the strong nuclear interaction of the neu-
tron with an nucleus depends on the either parallel or antiparallel alignment of the spins of
neutron and nucleus, and secondly, the neutron’s magnetic moment interacts with the unfilled
electron shells of atoms or ions in magnetic scattering. The scattering process will also have
an impact on the spin state of the neutron probe. Hence, one may expect that controlling
the neutron spin in a scattering experiment will provide further valuable information, which
leads us to the subject of this lecture: polarized neutron scattering and polarization analysis.
Indeed, it is possible by working with polarized neutron and polarization analysis to separate
scattering terms with respect to their different structural or magnetic origins, and moreover,
to uncover scattering contributions that remain hidden in usual unpolarized scattering exper-
iments.

The method of polarized neutron scattering is mature and well developed. The theoretical
description of magnetic neutron scattering by Halpern and Johnson 1939 [1] was essentially
completed by the general theory by Blume and Maleyev, independently, in 1963 [2, 3]. The
first implementation of neutron polarization analysis by Moon, Riste and Koehler [4] laid
the foundation for experimental work and some of their examples will be discussed in this
lecture. In 1972, Mezei [5] developed the neutron spin echo technique, ten years later Schärpf
accomplished the XYZ polarization analysis on a multidetector spectrometer, the D7 at ILL
[6], and from 1988 Tasset and Brown developed neutron polarimetry [7, 8].

This lecture will give an introduction first to polarized neutrons, how they interact with mag-
netic fields and upon experimental devices. The following sections will cover the scattering
interaction of polarized neutrons with matter, the nuclear and magnetic scattering, followed
by applications.

8.2 Neutron spins in magnetic fields

Basic properties

The neutron has a spin S = ±1/2 with angular momentum L = ℏS. The magnetic mo-
ment of the neutron results from the spins of the individual quarks and their orbital motions,
and the relation between spin and magnetic moment is given by the neutron g-factor, gn =
−3.8260837(18), in units of the nuclear magneton µN = eℏ

2mp
= 5.05078324(13) · 10−27JT−1

µn = gnSµN ≃ ∓1.913µN = ±γnµN ,

where γn = −gnS is the gyromagnetic factor of the neutron (see Refs. [9]) . Because of
the small ratio µn/µB = me/mp, the neutron magnetic moment µn is small compared to the
magnetic moment of the electron µe = geSµB ≈ 1µB, with the Bohr magneton µB = eℏ

2me

and the Lande-factor ge = 2(1 + α/2π − 0.328α2/π2) ≈ 2 (see Refs. [10] ), α is the fine
structure constant. A peculiarity to note is that different to the electron and proton, the
neutron magnetic moment is aligned opposite to its spin.
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Polarization

Next we consider the many particle ensemble of neutrons in a neutron beam. Polarization of
a neutron beam is defined by the normalized average over the neutron spins.

P = 2⟨S⟩ (8.1)

Applying a magnetic field H defines a quantization axis and the neutrons split in spin up and
down states, n↑ and n↓ respectively. Measuring the beam polarization will take the projection
of the spins in up- and down state states with proper normalization.

−1 < P =
n↑ − n↓

n↑ + n↓
< 1. (8.2)

8.2.1 Interaction of neutrons with magnetic fields

Zeeman splitting

The dipolar interaction potential of a neutron with the magnetic field is given by

Vm = −µn · B (8.3)

where B is the magnetic induction. For neutrons passing from zero-field into a magnetic field
the potential energy changes by the Zeeman term ±µnB depending on the relative orientation
of the magnetic moment. The according change in kinetic energy to conserve the total energy
is small, 0.06µeV/T, which in experimental practice is of relevance only in rare cases.

Equation of motion and Larmor precession

The characteristic motion of the neutron magnetic moment in a magnetic field is Larmor
precession, which for simplicity can be considered in a classical treatment. In fact, even the
quantum mechanical treatment, which introduces Pauli spin matrices σ̂ into the Schrödinger
equation, is effectively a classical treatment considering the origin of these matrices. Orig-
inally [11], they result from the problem of mapping three dimensions onto two by intro-
ducing a complex component describing the classical problem of a spinning top. [12] The
magnetic interaction tends to align the neutron moment with the magnetic induction in order
to minimize the interaction energy. The magnetic moment is related to the angular momen-
tum as

µ = γL, (8.4)

where γ is the gyromagnetic ratio given by γ = 2µn/ℏ = 2γnµN/ℏ = −1.83 · 108 s−1T−1

or, in cgs units, γ/2π = −2916Hz/Oe. There is a torque µ × B = L̇ equal to the time
derivative of the angular momentum, which leads to the Bloch equation of motion:

µ̇ = γ µ ×B. (8.5)

Because of the cross product, the time derivative of the magnetic moment is always per-
pendicular to the moment itself. Therefore, the resulting motion is a precession, where the
angular momentum, the component Lz along the field, and the energy are constants of the
motion, see Fig.8.1. The precession frequency is the Larmor frequency ωL = −γB, and
ℏω = 2µB, the Zeeman splitting energy.
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ωB >>ω LarmorFig. 8.2: Neutron polarization can be best preserved in the asymptotic cases of either slowly
or suddenly varying fields. The second case is used in a cryoflipper to reverse the polarization
with respect to the external field.

has a large absorption cross-section while all neutrons with parallel spins may pass the fil-
ter cell. The first two methods use an interference effect of nuclear and magnetic scattering
amplitudes having the same absolute value as discussed below.

(i) Polarizing total reflecting supermirrors are an easy experimental tool to obtain a broad
wavelength band of cold polarized neutrons. The angle of total reflection for a single ferro-
magnetic (FM) layer is given by

Θ±
c = λ

√
n(b± p)/π. (8.6)

Hence, the critical angle may vanish for one orientation of the neutron spin and there is total
reflection for the other one. Here n denotes the particle density and b and p the nuclear and
magnetic scattering lengths, respectively. However, the critical angle can be further increased
by artificial multi-layers (supermirrors) of alternating FM and non-magnetic layers of varying
thickness [13], see Fig. 8.3. The λ dependence of the total reflectivity makes this type of
polarizer less favorable for thermal neutrons of shorter wave length as it reduces the accepted
divergence of the beam.

Fig. 8.3: Spin dependent reflectivity and polarisation of Fe/Si polarizing supermirror m = 5.5.
m=1 corresponds to the total reflectivity of Ni. (from SwissNeutronics.ch [14])
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(ii) Bragg reflection from a crystal monochromator with similar nuclear and magnetic
scattering amplitudes b and p, which yields constructive interference b + p for one spin
state and destructive interference b − p for the other. E.g. the (111) Bragg reflection of the
Cu2MnAl Heusler alloy gives 95 % polarization. However, the reflectivity of such crystals
is low compared to usual non-polarizing monochromators and a saturating field is required
over the entire monochromator, which makes it technically more complicated to combine
with focusing though this is feasible.

(iii) 3He filter cells, see Fig. 8.4, are of growing importance for polarizing neutrons, partic-
ularly for the more challenging case of thermal neutrons, although such cells are technically
rather demanding and still under development. In case of spin-exchange optical pumping
(SEOP) the spin polarization of 3He gas is achieved in several steps. The cell is filled with
additional Rb, K and N2 vapor. Rb electrons are polarized with a a circular polarized laser,
by collisions the spin is exchanged with K, which most efficiently exchanges spin with 3He.
Since polarization results from absorption, such a device does not interfere with the beam
divergence. One may note that requirements for field homogeneity are very high and it is
a kind of art and glass alchemy to make cells with small depolarization all determining the
lifetime of 3He polarization. The neutron polarization P raises with increasing 3He cell size
or pressure, while the transmission T decreases. The optimum in efficiency is usually chosen
by the maximum of a quality factor P 2T .

Si

⦰

= 9 cm
100 h 200 hdecay

steady state

Fig. 8.4: (left) 3He-cells made of Si-crystal (avoiding small angle scattering background) and
of glass (for wide angle diffraction). 3He in-situ polarization of a SEOP He-3 cell and measured
polarization of neutron beam in transmission. (from Babcock et al. [15])

Guide-fields

A magnetic guide field is used to maintain the direction of the spin and the polarization
of the neutron beam. The guide field preserves the quantization axis to which the neutron
moments have to align either parallel or anti-parallel. Typical guide fields in the order of 10
G are strong compared to earth field and other possible stray fields and usually sufficient to
prevent depolarization along the beam path. Such guide fields are usually too weak to have
any significant impact on the sample magnetization.

Depolarization effects may occur for an inhomogeneous distribution of field directions over
neutron beam cross-section, which is typically a few cm2. This can easily occur if a fer-
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romagnetic material is used close to the beam or if the sample itself is ferromagnetic. A
neutron beam passing through a ferromagnet is usually completely depolarized by differently
oriented ferromagnetic domains in the beam path, unless a saturating magnetic field is used
to align the domains. Depolarization will depend also on the path length through the sample,
therefore, usually such effects are negligible in neutron reflectometry of thin ferromagnetic
films.

XYZ-coils

In order to probe the orientation of the magnetic moments in the sample, it is desirable to
align the polarization to any desired direction at the sample position. This can be done with
a set-up of three orthogonal pairs of so-called xyz-coils. Fig. 8.5 illustrates the field setting
along x-direction. In the example, one can see that the z-coil has been used to compensate
the guide field at the sample position, and that the x-coils produce a field of a few Gauss. The
field needs to be sufficiently strong so that the neutron polarization can follow the smooth
variation of the field direction adiabatically, finally turning back into the z-direction of the
guide field outside the xyz-coils.

-40 0 40
d (cm)

0

5

B 
 (G

au
ss

) Bx Bz

By=0

Fig. 8.5: (left) Magnetic field setting in a xyz-coil system for an adiabatic nutation of the
polarization of cold neutrons in horizontal x-direction at the sample turning to a vertical (guide)
field Bz at further distance from the sample. (right) A photo of the xyz-coil system in the DNS
instrument at the FRM-2.

Flipper

The purpose of a π-flipper is to reverse the polarization and to detect whether the sample
causes spin-flip scattering.

When applying a magnetic field perpendicular to the polarized neutron beam, the polarization
immediately starts its Larmor precession. A flipper that reverses the neutron polarization with
respect to the guide field has to induce a well-defined field pulse so that the polarization
precesses by an angle π. For this purpose one can use the homogeneous field of a Mezei
flipper, a long rectangular coil, see Fig. 8.6. Neutrons see a sudden field change when they
enter and exit the coil, in between they precess around the perpendicular flipping field, whose
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magnitude is tuned with respect to the time of flight that the neutrons spend inside the coil.
Therefore, the device is λ-dependent and currents (fields) need to be proper tuned for a π-flip.

“Flipper”    changes the polarization with respect to the external field 

inside  
Larmor precession  

of angle ! 

! 

H "Hcoil

sudden field changes 
+ Larmor precession 

! 

B"Bcoil

Fig. 8.6: Principle of a neutron π-spin flipper. The neutrons perform a Larmor-precession
of 180o inside a long rectangular coil. The field B is perpendicular to spin orientation and
adjusted to the speed of the neutrons.

The purpose of a π/2-flipper is to set the polarization in precession mode by turning the
polarization perpendicular to the guide field. A precessing polarization is used for instance
in high resolution Neutron Spin Echo spectroscopy and for Larmor diffraction, see below.
Both methods use the property of the neutron spin as an internal clock independent of the
scattering process itself and achieve highest resolution.

The classical experimental set-up of Moon, Riste and Koehler (1969) combines the above
discussed devices for polarized neutron scattering with so-called longitudinal polarization
analysis. Principles and examples from this study [4] will be discussed in the following
section.

Fig. 8.7: The scheme of the triple axis instrument equipped for polarization analysis as used
by Moon, Riste and Koehler (1969). Reprinted from [4]. Copyright (1969) by the American
Physical Society.
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8.3 Polarized neutron scattering and applications

8.3.1 Nuclear interaction of neutrons with matter

For thermal and cold neutrons, the range of the nuclear interaction is small compared to the
neutron wavelength and can be described by a point-like and isotope-specific Fermi potential,
which is proportional to the scattering length b,

V (r) =
2πℏ2

mn

b δ(r −R) (8.7)

The scattering amplitude NQ for an ensemble of nuclei is determined by the transition matrix
elements for the scattering potential VQ

NQ = ⟨k′S′|VQ|kS⟩ (8.8)

which in general depends on the scattering vector k − k′ = Q, the related energy transfer,
and the spin states before and after the scattering process.

First, we consider the scattering of nuclei of one element only and assume further that these
nuclei have zero spin ( e.g. 12C, 16O ..., and typically ”gg” isotopes with even number of
protons and neutrons ). The scattering length operator b̂ is a scalar and the scattering will be
independent of the neutron spin orientation. This leads to the scattering intensity, where we
replace the actual scattering length by the average bl and deviations, by including the mean
square deviations

dσ

dΩ
= N

∑
ll′

blbl′e
iQ(Rl−Rl′ ) = N(b2 − b

2
) + b

2 ∑
ll′

eiQ(Rl−Rl′ ). (8.9)

The first term on the right side is the isotopic incoherent scattering, it relates to random fluc-
tuations in the scattering length. In contrast, the second term, the coherent nuclear scattering,
is proportional to b

2
and contains phase information.

Next we consider that scattering nuclei may have a spin I ̸= 0 and that the interaction is
spin-dependent. There are two possible spin states of the compound, coupling the neutron
spin with the spin of a nucleus, which are either J = J+ = I + 1/2 or J = J− = I − 1/2,
associated with different scattering lengths b+ and b−. The multiplicity of the spin states
2J + 1 equal 2I + 2 and 2I for parallel and anti-parallel spin alignment respectively. For an
equiprobable occupation of all states, the probabilities for the J+ and J− states are

p+ =
I + 1

2I + 1
, p− =

I

2I + 1
, (8.10)

defining the weights for the average coherent scattering length and its mean square average

b = p+b+ + p−b−, b2 = p+b
2
+ + p−b

2
−. (8.11)

Again this will lead to a scattering intensity as given by Eq.(8.9), only that the spin-incoherent
scattering term is now related to the randomness of spin states.
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In order to understand what will happen to the spin states of neutron and nuclei, we consider
the transition matrix element Eq. (8.8) for the scattering length operator, which is the sum of
the average, coherent part, A (= b), and the fluctuating spin-dependent part, B = b+−b−

2I+1
,

b̂ = A+ B σ̂ · Î. (8.12)

Here, σ̂ is the Pauli spin operator given by Pauli spin matrices

σ̂ x =
(

0 1

1 0

)
, σ̂ y =

(
0 −i

i 0

)
, σ̂ z =

(
1 0

0 −1

)
. (8.13)

We choose the quantization axis z for the neutron polarization P = 2⟨Ŝ⟩ = ⟨ σ̂⟩, with
spin-up states |+⟩ = (1

0
) and spin-down states |−⟩ = (0

1
). With

σ̂x|+⟩ = |−⟩, σ̂ y|+⟩ = i|−⟩, σ̂ z|+⟩ = |+⟩
σ̂x|−⟩ = |+⟩, σ̂ y|−⟩ = −i|+⟩, σ̂ z|−⟩ = −|−⟩ (8.14)

we obtain the transition matrix elements

⟨S′|b̂|S⟩ =

⟨+|b̂|+⟩ = (A+ BIz) ⟨+|+⟩ nsf

⟨−|b̂|−⟩ = (A− BIz) ⟨−|−⟩ nsf

⟨+|b̂|−⟩ = B(Ix − iIy) ⟨+|+⟩ sf

⟨−|b̂|+⟩ = B(Ix + iIy) ⟨−|−⟩ sf

(8.15)

for the non-spinflip (nsf) and spinflip (sf) scattering amplitudes, respectively. The non-
spinflip scattering is given by the coherent scattering and one third of the spin-incoherent
scattering, while two thirds of the spin-incoherent scattering is spinflip scattering. If we con-
sider only coherent scattering, the final polarisation P′ = P, whereas in case of only spin-
incoherent scattering P′ = −1

3
P. The combination of coherent and spin-incoherent scattering

may result in a change of magnitude and sign of polarization, however, the final polarization
will not deviate from the initial polarization axis. Furthermore, the obtained result is simply
independent of the direction of P with respect to Q. This is an important feature, which is
in contrast to the dipolar magnetic interaction that will be discussed below.

In summary, we can distinguish three contributions to the nuclear scattering |NQ|2 aris-
ing from the total nuclear scattering amplitude NQ =

∑
j bje

iQ·Rj , the average coherent
scattering, the isotopic, non-spin dependent part of the incoherent scattering, and the spin-
incoherent scattering

dσ

dΩ

N

Q
= |NQ|2 =

dσ

dΩ

N

spin−inc
+

dσ

dΩ

N

isotope−inc
+

dσ

dΩ

N

Q,coh
. (8.16)

The sum of the coherent and isotopic incoherent nuclear scattering can be separated from the
spin-incoherent scattering by measuring spin-flip and non-spin-flip scattering.

dσ

dΩ spin−inc
=

3

2

dσ

dΩ

SF

(8.17)

dσ

dΩ

N

Q,coh
+

dσ

dΩ

N

isotope−inc
=

dσ

dΩ

NSF

− 1

2

dσ

dΩ

SF

(8.18)
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Fig. 8.8: Left: Nuclear isotopic incoherent scattering from nickel obtained by rocking the
analyzer crystal through the elastic position, which is essentially all non-spin-flip scattering.
Right: Nuclear spin-incoherent scattering from vanadium show 2/3 and 1/3 contributions in the
spin-flip and non-spin-flip channel respectively. There is no dependence on the direction of P
relative to Q for all nuclear scattering. Reprinted from [4]. Copyright (1969) by the American
Physical Society.

There are two good examples of isotope and spin-incoherent scattering, Nickel and Vana-
dium respectively. Because Vanadium has essentially no coherent scattering, it is often used
as a reference sample to calibrate data for detector efficiencies. It consists to 99.75% of
the stable isotope 51V with a nuclear spin I = 7/2. Polarization analysis reveals that 2/3
of the spin-incoherent scattering is spinflip and 1/3 is non-spinflip scattering, see Fig. 8.8.
The second example Nickel consists of various isotopes, mostly with I = 0. As expected,
the related isotope incoherent scattering is purely non-spinflip scattering, as also shown in
Fig. 8.8. Note, the magnetic scattering vanishes for applying a saturating field H ∥ Q, see
also Fig. 8.7.

Applications to local order in disordered hydrogeneous materials

Typical soft matter samples contain hydrogen which causes a huge spin-incoherent back-
ground (σinc(H) = 80 b) in the wide-angle scattering that contains information about local
correlations (σcoh(H) = 1.76 b). Here, a precise determination of coherent scattering can
be achieved by measuring spin-flip and non-spin-flip scattering. It is particularly valuable to
combine this further with the method of contrast variation using H and D isotopes, having
rather distinct scattering lengths, bcoh(H) = −0.374 ·10−12cm and bcoh(D) = 0.667 ·10−12cm.
Fig. 8.9 shows the separated coherent scattering of a polymer glass. Such results provide
most useful information about local order that can be compared to molecular dynamics sim-
ulations of theoretical polymer models [17].
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Fig. 8.9: Neutron polarisation analysis separates coherent scattering from spin-incoherent
scattering, which is typically a disturbing large background in materials that contain hydro-
gen, while here it provides a precise intrinsic calibration. In addition, H/D contrast varies the
coherent scattering of a polymer glass PMMA. [17]

Applications to dynamics in liquids

Since in a liquid all atoms are moving around, the scattering is not elastic as in the case
of Bragg peaks from a solid, single crystal. Diffraction - the energy integrated scattering
- provides us with structural properties from a snap-shot of typical atomic configurations.
Since neutron energies are comparable to thermal energies involved in atomic motions, it is
relatively simple to achieve an adequate energy resolution to study the dynamics for instance
in liquids, see example in Fig. 8.10.

Fig. 8.10: Time-of-flight spectra of a) spin-incoherent and b) coherent scattering of liquid
sodium at T=840 K separated by polarization analyis (from O. Schärpf. [18]). The dotted
mesh corresponds to the coordinates of time-of-flight and scattering angles.

Therefore, a typical instrument set-up uses the time-of-flight technique: the monochromatic
beam is pulsed by a mechanical chopper and the measured time-of-flight of the neutrons can
be related to an energy transfer in the sample. Note, the separation by polarization analysis
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in coherent scattering and spin-incoherent scattering distinguishes pair-correlations from
single particle correlations, respectively. The study of liquid sodium [18], see Fig. 8.10,
demonstrates instructively the complementary information that can be obtained. From simple
liquid models one expects that the incoherent scattering has a Lorentzian shape in energy at
constant Q, related to exponential relaxations in time, with a width that for the macroscopic
limit, Q → 0, is related to the diffusion constant. In contrast, the coherent scattering very
differently exhibits a pronounced peak related to typical nearest neighbor distances reflecting
precursors of Bragg peaks and crystalline order.

8.3.2 Magnetic interaction of neutrons with matter

Spin and orbital moments exert dipolar fields

BS = ∇× (
µe ×R

R3
), BL =

e

c
(
ve ×R

R3
) (8.19)

and result in a dipolar magnetic interaction potential for the neutron

Vm = − µ · (BS +BL). (8.20)

The derivation of the scattering law is lengthy and can be found in [16]; it leads to

dσ

dΩmag
= (γnr0)

2| 1

2µB

⟨S ′
Z |σ̂ · M̂⊥

Q|SZ⟩|2, (8.21)

where r0 is the classical electron radius. M̂⊥
Q is the operator of the magnetic interaction

vector, defined in units of µB,

M⊥
Q = eQ ×MQ × eQ (8.22)

which is reduced to only the perpendicular components of MQ with respect to Q. MQ rep-
resents the total Fourier transform of the spin and orbital contribution to the magnetization
density. Consequently, and in fundamental contrast to nuclear scattering, the magnetic scat-
tering depends on a form factor, similarly to x-ray scattering. Because unpaired electrons
are typically in the outer shells, such as the 3d or 4d shell of transition elements or the 4f
shell of rare earth elements, the form factor drops typically faster than for the total electron
cloud as seen in the x-ray form factor. Measuring the form factor in detail can reveal the
relevant spin and orbital contributions to the magnetic moments.

The anisotropy of the interaction is due to the dipolar interaction of the neutron spin with
the magnetic moments, which is illustrated in Fig. 8.11. The components of a magnetic
dipole field parallel to the scattering vector Q cancel out. Therefore, in contrast to the spin-
incoherent scattering, magnetic scattering is anisotropic with respect to Q and only M⊥

Q, the
components perpendicular to Q can be observed.

In analogy to the spin-dependent nuclear interaction, we obtain the transition matrix elements
for the magnetic interaction, choosing z-polarization and x parallel to Q, M⊥

x,Q = 0, and

⟨S′| σ̂ · M̂⊥
Q|S⟩ =

⟨+| σ̂ · M̂⊥
Q|+⟩ = M⊥

z,Q , nsf

⟨−| σ̂ · M̂⊥
Q|−⟩ = −M⊥

z,Q , nsf

⟨+| σ̂ · M̂⊥
Q|−⟩ = −iM⊥

y,Q , sf

⟨−| σ̂ · M̂⊥
Q|+⟩ = iM⊥

y,Q , sf

(8.23)
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show constructive interference, for M ∥ Q destructive interference. Right: Polarized small
angle scattering (Q = 0 in centre) probing the magnetization of iron oxide nanoparticles. [19]

Hence, as illustrated in Fig. 8.12, the component of P parallel to M⊥
Q remains unchanged,
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Q reverses sign, the parallel component of P is invariant.

while the component of P perpendicular to M⊥
Q reverses its sign. This selection rule com-

bined with the Q-dependence provides another simple rule: If P ∥ Q, the total magnetic
scattering will be spin-flip.

Therefore, as exemplified in Moon, Riste, Koehler’s seminal paper [4] nuclear and mag-
netic Bragg peaks can be separated from non-spin-flip and spin-flip scattering respectively
by scanning with P ∥ Q, see the separation for Fe2O3 in Fig. 8.13.
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the American Physical Society.
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8.3.3 Scattering and polarization analysis, the Blume-Maleyev equations

However, turning from the individual expressions for the scattering amplitudes to scattering
and interference of nuclear and magnetic scattering amplitudes, we have to face more com-
plex expressions. A complete description of magnetic and nuclear neutron scattering has
been given by Blume [2] and Maleyev [3] by two master equations. The first equation gives
the scattering cross-section σQ, the second one describes the final polarization P′,

σQ = |NQ|2 + σisotope,inc + σspin,inc + |M⊥
Q|2 (8.24)

+P(N−QM
⊥
Q +M⊥

−QNQ) + iP(M⊥
−Q ×M⊥

Q)

P′σQ = |NQ|2P+ σisotope,incP− 1

3
σspin,incP (8.25)

+M⊥
Q(PM⊥

−Q) +M⊥
−Q(PM⊥

Q)−PM⊥
QM

⊥
−Q

+M⊥
QN−Q +M⊥

−QNQ + iM⊥
Q ×M⊥

−Q + i(M⊥
QN−Q −M⊥

−QNQ)×P

The notation uses −Q to denote the complex conjugate. Here, for simplicity only the Q-
dependence is specified for Bragg scattering or diffuse scattering. However, in the more
general form the scattering cross sections apply to inelastic scattering and can be related to
van Hove correlation functions in space and time.

These equations readily show the different information that can be obtained from an unpo-
larized with respect to a polarized experiment. While unpolarized neutrons only measure
the sum of nuclear and magnetic intensities, for polarized neutrons additional intensity may
arise first, due to possible structural-magnetic (NM-terms) interference and second, due to
cross products of the magnetic interaction vector iM⊥

Q ×M⊥
−Q describing chiral correlations

in non-collinear spin systems. A look at the second equation for the final polarization re-
veals that we can identify such terms ”NM” and ”M×M” even with unpolarized neutrons,
because they may create final polarization (set P = 0).

Eq. 8.25 can be written as a tensor equation [8] (neglecting for brevity the incoherent parts)

P′σ = (|N |21+R)P+P′′ (8.26)

in which the first term (|N |21+R)P consists of the scalar nuclear scattering |N |2, 1 is the
unity matrix , the matrix R describes the rotation of P, and P′′ is the created polarization.

Using the common convention for the specific orthogonal setting x parallel to Q, and y and
z perpendicular to Q, horizontally and vertically set to the scattering plane respectively, R
and P” are obtained as

R =




−|My|2 − |Mz|2 2 Im [NMz] 2 Im [NMy]

−2 Im [NMz] +|My|2 − |Mz|2 2Re [MyMz]

−2 Im [NMy] 2Re [MzMy] −|My|2 + |Mz|2


 (8.27)

P′′ = (−2 Im [MyMz] , 2Re[NMy] , 2Re [NMz]) (8.28)

The diagonal elements can be obtained by longitudinal polarization analysis, in which we
consider spin-flip and non-spinflip for either x, y or z direction of initial and final polariza-
tion. For measuring the off-diagonal elements, for example Ryz obtained by P = (0, Py, 0)
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and P′ = (0, 0, P ′
z), the magnetic field needs to switch from y to z-direction, which can be

achieved by a zero-field at the sample. Alternatively, but so far not much used in practice,
one can work with precessing neutron polarization [20,21]. The conventional approach, how-
ever, is to access all elements of the tensor R by spherical neutron polarimetry (SNP).
Experimentally, a zero-field can be achieved with a CryoPad or MuPad device [22] using
superconducting material or a µ-metal [23] to shield the sample area from magnetic fields.
In particular, SNP allows to distinguish a rotation of P′ from a depolarization of the beam.
Depolarization may occur due to an incoherent superposition of intensities with different
polarization, this includes spin-incoherent scattering, and more important for determining
magnetic structures, intensity from different magnetic domains. See Ref. [8] for detailed
examples and analysis. The interested reader is also referred to the recent user software
Mag2Pol: a program for the analysis of spherical neutron polarimetry and flipping ratio data,
see below [24].

It is noteworthy that the information in the off-diagonal elements, related to nuclear-magnetic
interference and chirality, reappears in the diagonal elements in P′′ and can therefore also be
obtained by conventional longitudinal polarization analysis. Polarization reversal and consid-
ering the sum and differences of intensities will separate P′′ from the trace of R [25].

Next we consider two important cases, the so called (i) ”flipping ratio” or ”half-polarized”
experiments to determine the magnetic structure or spin density, and (ii) XYZ polarization
analysis with multi-detectors.

Magnetization and spin density distribution. The usual approach [26] is to measure the
”flipping ratio” of Bragg reflection, defined as the intensity ratio between spin-up and spin-
down neutrons with respect to a vertical applied magnetic field

and is given by

R =
I+

I−
=

NQN−Q + (NQM
⊥
−Q +N−QM

⊥
Q) +M⊥

QM
⊥
−Q

NQN−Q − (NQM⊥
−Q +N−QM⊥

Q) +M⊥
QM

⊥
−Q

. (8.29)

To illustrate the advantage of polarized neutrons consider the case of a weak magnetic ampli-
tude, Mz = 0.1N . For unpolarized neutrons the interference term NMz vanishes. Therefore,
the unpolarized intensity I is less interesting, but in contrast the ratio I+/I− is very sensitive:

I = 1.01|N |2, and
I+

I−
=

(1 + 0.1)N2

(1− 0.1)N2
=

1.21

0.81
≈ 1.5. (8.30)

In order to solve Eq. 8.29 for the magnetic amplitudes and the magnetic structure, we need
apriori an accurate crystallographic structure determination for the nuclear amplitudes N .

In the experiment a flipper is used to switch the polarization with respect to the applied field,
which led to the name ”flipping ratio”. The term could be misleading, since the scattering
process is purely non-spinflip as P||M⊥

Q||z. In such an experiment one uses polarized neu-
trons without polarization analysis, which has led to another deceptive term, describing this
as a ”half-polarized” set-up. Still, P is favorably large, close to one, just P′ does not matter.

With respect to applications, the samples could be ferromagnets, where the magnetization is
best near saturation using a strong field. However, one can also study paramagnets, and the
induced magnetic moments will represent the spin density distribution. An example is given
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in Figure 8.14 for the organic compound [Cu2(t−Bupy)4(N3)2](ClO4)2. Here, the two Cu
spins are the triplet ground state, and a part of the spin density is spreading from the Cu sites
to ligands. The contours of the map start at a level of 0.01 µB, which nicely demonstrates
the sensitivity of such measurements.

Fig. 8.14: [Cu2(t−Bupy)4(N3)2](ClO4)2 spin density map
(unit cell in ab, integration ±0.25 in c), adapted with per-
mission from [27]. Copyright 1998 American Chemical
Society.

One may also study the response with respect to different field directions, which yields the
susceptibility tensor on atomic scale. Strong anisotropies can be found for f -electrons of rare
earth ions. It is noteworthy that such information can be obtained also from powder sam-
ples, when using a 2D detector which identifies the actual inclination of the Bragg planes
with respect to the applied vertical magnetic field [28]. These are typical applications us-
ing Bragg intensities providing local information on atomic scale. If we turn to low Q and
small angle neutron scattering, the intensities relate to the morphologies of magnetic struc-
tures, which refers to an example discussed already before: Fig. 8.11 shows the interference
pattern MN(Q) and contains the information on the magnetic morphology of iron oxide
nanoparticles [19].

Chirality. The last term in Eq. 8.24 refers to the vector product of spin components perpen-
dicular to Q, and therefore, iM⊥

−Q×M⊥
Q itself points in Q-direction. The magnetic moments

in real space are real quantities and the imaginary sign i says that this term is antisymmet-
ric in Q and relates to the sin-Fourier transform of chiral pair correlations Sy(R)Sz(R

′),
which also implies the characteristic chiral feature of point inversion symmetry. A beautiful
example depicted in Fig. 8.15 shows the antisymmetric chiral scattering from a spin liquid
obtained by polarization reversal with respect to Q and taking the difference of the intensi-

Fig. 8.15: Chiral spin liquid ground state in YBaCo3FeO7, Ref. Schweika et al. PRX 2020 .
(left) Chiral scattering measured with polarization reversal along Q.
(right) Fourier analysis and model scattering based on purely cycloidal chiral correlations.
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ties [29]. The antisymmetry perpendicular to Q, reveals that C = S × S′ is perpendicular
to the propagation, i.e. a cycloidal chirality. In contrast for a helix, the antisymmetry and C
would be in Q direction.

Depending on the propagation direction parallel or perpendicular to Q, we can distinguish
a helix from a cycloid spin structure, respectively. The chiral intensity can be separated
by polarized neutron scattering with measuring the intensity difference for P parallel and
antiparallel to Q, which cancels out other nuclear and magnetic intensities, while there are
no NM terms parallel to Q. The chiral interference is purely spinflip scattering, however, it
can be separated without applying polarization analysis like the NM interference.

XYZ Polarization analysis with multi detectors
So far it has been implicitly assumed that the data are measured with a single detector related
to a single Q set parallel to x. Multi-detector systems can collect scattering data in a much
more efficient way and were used also for the previous example Fig. 8.15. The instrument D7
at ILL in Grenoble [30] was pioneering with covering a wide angle range with supermirror
based polarization analyzers in front of a multi-detector. A similar instrument DNS [31] is
operated by JCNS at the MLZ and FRM-2 in Munich, see Fig. 8.16.
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Fig. 8.16: Polarization analysis on a time-of-flight multi-detector instrument, the DNS instru-
ment at FRM-2, see Ref. [25] for the specific setting of polarization.

Instead of measuring each data point with P ⊥ Q, using Pythagoras’ theorem, we can
construct the parallel and perpendicular components to Q from any two orthogonal settings
(x′, y′) in-plane and measure simultaneously with a multi-detector. Assuming isotropy, e.g.
for powders and paramagnets, the pure magnetic scattering contribution separated from nu-
clear scattering can be obtained by either of the two combinations of spin flip and non-
spinflip scattering, which is the ”XYZ-method” introduced by Otto Schärpf [33]:

dσ

dΩmagn
= 2

(
dσ

dΩ

SF

x
+

dσ

dΩ

SF

y
− 2

dσ

dΩ

SF

z

)
= −2

(
dσ

dΩ

NSF

x
+

dσ

dΩ

NSF

y
− 2

dσ

dΩ

NSF

z

)
, (8.31)

The magnetic contribution is separated by the directional dependence with respect to P and
identifies the magnetic contribution, while all nuclear scattering is independent of the direc-
tion of P.
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An application example for the XYZ-separation is given in Fig. 8.17 and identifies the weak
magnetic diffuse scattering from a Keplerate, a molecular magnet Mo72Fe30X of high sym-
metry with 30 magnetic vertex sites of Fe (X represents a larger number of H, C, and N
atoms). The magnetic intensity (right figure) agrees favorably with the predicted structure
resulting from a model with antiferromagnetic exchange between the Fe moments.

Fig. 8.17: Mo72Fe30X molecule (magnetic Fe-ions at vertices, Mo-purple; X: O-black, H, C not
shown) and a 3-sublattice non-collinear spin model resulting from AF Heisenberg exchange
(left). XYZ-separation of weak magnetic intensities (middle). Comparison of the magnetic
intensity and the spin-model calculation (right). [34]

Of course, single crystals can be also measured efficiently with multi-detectors by rotating the
sample, i.e. by rotating the Ewald circle in the scattering plane. In the following example, see
also Fig. 8.18, a study [35] on the ”spin-ice” system Ho2Ti2O7, a cubic pyroclore structure,
the horizontal scattering plane has been mapped with measuring spin flip scattering and P
vertical, obtaining the in-plane magnetic scattering (plus some weak flat background from
spin-incoherent scattering). The tetrahedral network and Ising ⟨111⟩ spin-anisotropy leads to
strong frustration for ferro-type exchange. In the ordered state the local spin-correlations can
be described for each tetrahedra by a simple rule: two spins are pointing along the ⟨111⟩
cube diagonals towards the center of the tetrahedra and two spins point outwards. Actually
this rule is the perfect analogue to the ice rules in hexagonal ice, describing the hydrogen
bonds around the tetrahedral environment of the O ions.

Hence Pauling’s famous ice model also explains why there should be a residual entropy due
to remaining disorder in spin-ice, which is the origin of the broad diffuse scattering at low
temperatures.

The extraordinary features of this diffuse scattering are so-called pinch-points, the saddle-
points in intensity at (111) and (200) positions; on one hand the intensity variation radially,
along the modulus of Q, is rather smooth, involving short-range correlations, on the other
hand the transverse variation at constant Q is almost discontinuous and singular, which in-
volves many Fourier coefficients and long-range correlations. The explanation is that the
ice-topology creates effectively long-range interactions, – any local decision for a specific
two-in two-out spin configuration imposes far-reaching constraints for the other tetrahedra –,
an effective interaction that can be mapped to Coulomb interaction between monopoles and
provides a picture, where the dipole moments in their local sums over four tetrahedral sites
can be viewed as two separated monopoles. [35]
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Fig. 8.18: Spin-ice. left: Topological magnetic monopoles, middle: measured diffuse scattering
from Ho2Ti2O7 at T=1.7K with P∥ z in spin-flip mode; note pinch points at (002) and (111);
right: Monte Carlo simulations of based on a nearest neighbor exchange model. From [35].
Reprinted with permission from AAAS.

From the methodological point of view, for the case above, polarization analysis with mea-
suring spin flip intensities for P = Pz is simple and most appropriate to access correlation
of spin components in the scattering plane. However, for a rigorous and systematic sep-
aration the interested reader is referred to two important recent extensions of the classical
XYZ-method of Schärpf [33]: (i) for single crystals and multi-detectors separating all mag-
netic and nuclear contributions by including polarization reversal [25], (ii) for a separation
of out-of-plane scattering using 2D detector systems using two additional measurements with
orthogonal in-plane polarizations. [36]

8.4 Final remarks and outlook

Polarized neutrons certainly prove to be very useful and may reveal structural and dynamic
properties that are hidden to conventional neutron scattering. Applications are growing,
slowly, since experimental techniques are more challenging and also because of the addi-
tional time requests for experiments. While there has been little gain in the average bright-
ness of neutron sources since the early days, instrumentation has become much more effi-
cient. Looking at count rates of Ni of MRK in Fig. 7.8 a comparison to the instrument DNS
using multiple detectors shows a gain of about three orders of magnitude.

The most modern and intense neutron sources are the MW pulsed spallation sources SNS in
the USA, JPARC in Japan and in near future the European Spallation Source ESS. There
is a great challenge and potential gain in using a pulsed beam with wide wavelength band
rather than a monochromatic beam.

At ESS, there is currently a dedicated polarized instrument under construction called MAGIC.
Its scheme is depicted in Fig. 8.19. Based on a time-of-flight Laue technique combined with
position sensitive area detectors, it gives access to large volumes in reciprocal space with fa-
vorable resolution. Characteristic features are a 1.7 Å bandwidth of highly polarized neutrons
within a spectrum of 0.6 to 6 Å wavelength from the peak fluxes of the thermal and cold
moderators.
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Fig. 8.19: Scheme of the ESS instrument MAGIC

In virtual experiments, simulating instrument, sample and scattering, the performance of this
instrument has been studied and optimized. A few examples are shown in Fig. 8.20.
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Fig. 8.20: Virtual experiments (McStas, Xavier Fabreges) on the ESS instrument MAGIC.
left: time-of-flight Laue diagram from a 1mm3 sample of C60;
middle: reconstructed spin density map (in µB) from a molecular nano-magnet
right: Ho2Ti2O7 spin-ice scattering with 3 dim mapping in Q space..

The first one shows a Laue pattern from a small mm3 crystal (C60). In contrast to normal
Laue diffraction, with measuring the time-of-flight of the pulsed white beam all Bragg peaks
are separated with a 3D access to reciprocal space. The gain compared to a conventional
monochromatic instrument with a single detector is of course very high. Considering the
determination magnetic structures with spin densities and weak moments, see Fig. 8.14 for
comparison, it took two weeks counting with a single detector, while the best current instru-
mentation with a multi-detector and monochromatic beam would require two days, and the
simulations, see middle of Fig. 8.20, show this will be possible with the same high quality
already in 15 minutes. The example Fig. 8.20 (right) shows the simulation of the spin-ice
scattering of Ho2Ti2O7 based on the model of [37]. Here, with shorter wavelength a larger
Q-range can be seen, compare Fig. 8.18 and again, with white beam and position sensitive
detectors the Q-space is explored in 3D. The gain in efficiency, which is about three orders
of magnitude will open capabilities to measure even very small samples and weak magnetic
features.
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Exercises

Exercise 1: How good is the polarization? Consider a few cases:

(i) Spins are evenly distributed within a cone of ±π/4 around z.a

b

a

b
Make first a good estimate and calculate Pz.

(ii) An initially ideally polarized beam scatters from a Vanadium sample. What is the polar-
ization after scattering? Next, looking more closely, if the sample is relatively thick and has
a 20% scattering probability, calculate the polarization for two consecutive scattering events.

(iii) Among the isotopes of Ni (see https://ncnr.nist.gov/resources/n-lengths/elements/ni.html),
you find few, which give spin-incoherent scattering causing a bit of spin-flip scattering. What
is the polarization after scattering from natural Ni?

(iv) Actually, Ni is a ferromagnet, so how can we explain the figure 7.8 (left) and would
one not expect also magnetic scattering and spin-flip scattering? However, by applying a
magnetic field, how could you avoid magnetic scattering?

Exercise 2: Which is the required field in a flipper coil to rotate the polarization by π with
respect to a external guide field Hz. Consider neutrons of 4 Å wavelength and a path of 1
cm in the flipper.

Exercise 3: Sprint competition of spin up and spin down neutrons. The course is 1 m and
neutrons start with a speed of 4000 m/s. Immediately after the start a field of 1 T is switched
on, when do the spin-up and spin-down neutrons arrive at the goal?

Exercise 4: Recall the rules about magnetic scattering:

(i) which component of the magnetic moments with respect to Q are not scattering?

(ii) which components with respect to P cause spinflip and non-spinflip scattering, respec-
tively.

Exercise 5:

a

b

a

b
The unit cell displays two sites of different atoms , whose spins are antiferromagnetically
ordered. This is an example of a so-called q=0 structure, where magnetic and the nuclear
crystallographic Bragg peaks coincide. a) How to distinguish the contributions with polar-
ization analysis and which Bragg peaks would you measure? b) Do you see a possibility to
distinguish magnetic from nuclear scattering without polarization analysis?







9 Reflectometry and grazing incidence small
angle scattering

E. Kentzinger
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9.1 Introduction

Neutron reflectometry is a very efficient tool to determine the nuclear and magnetic density
profiles along the depth of nanometric thin films. It has been used a lot to solve soft matter
problems like the self organization of diblock copolymers, the structure of liquid-liquid in-
terfaces or the structure of biomembranes [1]. Those studies benefit a lot from the possibility
of contrast variaiton, i.e. the exchange of hydrogen by deuterium.

In the mid 1980’s a new field of application of neutron reflectometry emerged. Following the
discoveries of interlayer exchange coupling and giant magnetoresistance effect in magnetic
multilayers [2], there has been an interest to determine, depth-resolved, the magnetic profile
(see lecture 10 of this book).

More recently, the interest evolved towards the determination of the correlations of in-plane
fluctuations in thin films. Those fluctuations can be nuclear or magnetic, in the bulk of the
layers or at their interfaces, or nanometric objects deposited on a surface. The breaking of
in-plane invariance introduced by those fluctuations produce scattering of radiation out of the
specular direction, called grazing incidence small angle scattering (GISAS).

In this lecture, we will concentrate on neutron and x-ray reflectometry and GISAS for the
determination of nuclear and chemical profiles. Section 9.2 shows the calculation of specu-
lar reflection at flat and homogeneous surfaces, introducing the concepts of scattering length
density, index of refraction and total external reflection. It then describes the reflectivity
from various types of layered structures and the effect of interfacial roughness and interdiffu-
sion. Finally, an example of the application of grazing incidence small angle x-ray scattering
(GISAXS) for the depth-resolved investigation of the lateral arrangement of nanoparticles is
depicted (section 9.3).

9.2 Description of specular reflection1

A monochromatic, well collimated beam impinges under a well defined, small angle αi = θ
(in most cases θ � 5o) onto the surface of the sample. It is then partly reflected specularly
from the surface, i.e. the outgoing angle αf = θ as well, and partly refracted into the material
(See Fig. 9.1). As we will derive below, the reflection from a laterally homogeneous medium
can be treated according to classical optics. Only the proper index of refraction n has to be
used.

For most material, the index of refraction for neutrons is slightly smaller than 1, leading
to total external reflection for small angles of incidence θ < θc, where θc depends on the
material.

In the case of a single layer on the substrate, reflection and refraction take place at both the
surface and the interface (Fig. 9.2). Then, the reflected beams from the different interfaces
interfere with each other. Maximum intensity is received, when the path length difference
between the two reflected beams is an integer multiple of the wavelength.

1 A large part of this section is taken from Ref. [3–5].
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For the case of perfectly smooth surface and interfaces, an exact description of the reflected
and transmitted intensity can be deduced from quantum theory, as will be shown in the next
subsections.

When the in-plane invariance of the layers or interfaces is broken, some diffuse signal can
be observed out of the specular direction (Fig. 9.3). This is grazing incidence small angle
scattering (GISAS). Its theoretical description goes beyond the scope of this lecture [6, 7].

Fig. 9.1: Reflection and refraction from a free surface

Fig. 9.2: Reflection and refraction from a single layer on a substrate

9.2.1 Wave equation in homogeneous medium. Optical index

The starting point is the Schrödinger equation for the wave function of the neutron:

[
− ℏ2

2m
∆+ V (r)

]
ψ(r) = Eψ(r) (9.1)

The kinetic energy of the neutron is given by E = ℏ2k2/(2m) with the modulus k = 2π/λ
of the wave vector k.
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Fig. 9.3: Reflection, refraction and grazing incidence small angle scattering (GISAS) from a
single layer on a substrate showing broken in-plane invariance

Due to the small |Q| values that are probed, a reflectometry experiment does not resolve
the atomic structure of the sample in any of the three directions. Therefore, it is a valid
approximation to describe the potential V1 of the homogeneous material as

V1 =
2πℏ2

m
ρ (9.2)

where ρ if the scattering length density (SLD) defined by

ρ =
∑
j

Njbj (9.3)

where Nj is the number of nuclei per unit volume and bj is the coherent scattering length of
nucleus j. With that we receive

[
∆+

(
k2 − 4πρ

)]
ψ(r) =

[
∆+ k2

(
1− λ2

π
ρ

)]
ψ(r) =

[
∆+ k2

1

]
ψ(r) = 0 (9.4)

with the wave vector k1 inside the medium. From this equation, it is justified to introduce
the index of refraction in the material

n =
k1
k

n � 1− λ2

2π
ρ (9.5)

It is a number very close to 1 for thermal and cold neutrons. The quantity 1−n is of the order
of 10−6 to 10−5. For most materials it is positive (because the coherent scattering length bj
is positive for most isotopes), so that n is smaller than 1. This means that the transmitted
beam is refracted towards the sample surface, which is opposite to the daily experience with
light refracted at a glass or liquid surface.
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9.2.2 Solution for a sharp surface. Fresnel’s formulas

In analogy to classical optics, we can derive e.g. Fresnel’s formulas. For the solution of the
wave equation at a sharp surface between air and a semi-infinite medium, we assume the
surface of the sample to be at z = 0. The potential is then

V (z) =

{
0 for z < 0

V1 for z ≥ 0
(9.6)

As the potential V is independent of the in-plane coordinates x and y, the wave function in
the Schrödinger equation (9.4) is of the form

ψ(r) = ei(kxx+kyy)ψz(z) (9.7)

with the in plane components kx and ky of k independent of z. The Schrödinger equation
then reduces to the one dimensional equation

d2ψz(z)

dz2
+ k2

z(z)ψz(z) = 0 (9.8)

with kz(z) depending on the medium. The general solution is given by

ψzl(z) = tle
ikzlz + rle

−ikzlz, (9.9)

where the index l distinguishes between vacuum (l=0) and medium (l=1) and where

kz0 =
2π

λ
sin(θ) and k2z1 = k2

z0 − 4πρ. (9.10)

The unique solution is determined by the boundary conditions. The incoming wave in the
vacuum before interaction with the sample is a plane wave of norm 1, i.e. t0 is equal to 1.
In a half-infinite medium, there is no reflected wave, because there is nothing to reflect from,
i.e. r1 vanishes. In addition, the wave function and its first derivative must be continuous at
the interface. So we receive the following boundary conditions:

t0 = 1 ; r1 = 0 ; ψz0(z = 0) = ψz1(z = 0) ;
dψz0

dz
(z = 0) =

dψz1

dz
(z = 0). (9.11)

When we insert (9.9) into (9.11) we receive the continuity equations for the wave function:

1 + r0 = t1 ; kz0(1− r0) = kz1t1. (9.12)

t1 is the amplitude of the transmitted wave and r0 is the amplitude of the reflected wave. The
reflectivity R is defined as the modulus squared of the ratio of the amplitudes or reflected and
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incoming waves, the transmissivity T is defined as the modulus squared of the ratio of the
amplitudes or transmitted and incoming waves.

R = |r0|2 ; T = |t1|2 (9.13)

In conclusion, we arrive at the Fresnel’s formulas for the reflection and the refraction at a
flat interface

Reflectivity : R =

∣∣∣∣
kz0 − kz1
kz0 + kz1

∣∣∣∣
2

(9.14)

Transmissivity : T =

∣∣∣∣
2kz0

kz0 + kz1

∣∣∣∣
2

(9.15)

The reflectivity and transmissivity are plotted below as a function of θ.

Fig. 9.4: Reflectivity and transmissivity of a substrate as a function of the angle of incidence

9.2.3 Total external reflection

For k2
z1 < 0 in Eq. (9.10) i.e. for angles of incidence θ below the so called critical angle θc

with

θc � λ

√
ρ

π
(9.16)

total reflection is observed, i.e. all intensity is reflected and no wave propagating in z-
direction exists in the sample. Only an evanescent wave in the z-direction with propagation
parallel to the surface is induced (kz1 is purely imaginary). For an angle of incidence above
θc, the beam can partially penetrate the sample and is only partly reflected. Fig. 9.5 provides
a calculation of the penetration depth Λ, defined as the inverse of the imaginary part of kz1.
Λ is equal to 10 nm at θ = 0 and increases sharply (be attentive to the logarithmic scale)
when θ crosses θc. It stays finite above θc because of absorbtion (ρ has actually an imaginary
part).
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Fig. 9.5: Penetration depth of 6 Å wavelength neutrons in a nickel substrate

Note also in Fig. 9.4 that the transmissivity increases monotonously up to a value of 4 at
θc and decreases to 1 at large angles. This result might look very surprising at first sight.
The value of 4 for the transmissivity comes from the fact that the incident and the reflected
waves in vacuum superpose to form a stationary wave of amplitude exactly equal to 2 at the
interface with the medium. For the intensity, we obtain a factor of 4.

9.2.4 Reflectivity from layered systems

In a layered system, the same Ansatz as in Eq. (9.9) can be written in each layer l. The co-
efficients of reflection rl and transmission tl can be deduced recursively from the continuity
relations of the wave function and its derivative at each interface. If N is the number of lay-
ers, and considering the vacuum on top of the multilayer and the substrate below, 2(N+2) co-
efficients have to be calculated. The number of interfaces being N+1, the continuity relations
lead to 2(N+1) equations. Two other equations are obtained considering that the transmission
into the vacuum is equal to one (t0 = 1) and that, in the substrate, there is no reflected wave
(rN+1 = 0), leading in total to a number of equations equal to the number of coefficients
to determine. The calculation of the coefficients of reflection and transmission in each layer
and, in particular, the calculation of the reflectivity in air are therefore possible [9].

Here we just want to demonstrate with very simple arguments how interference effects from
layered structures arise and how the intensity modulations in Q-space are related to real space
length scales.

Fig. (9.2) shows how interference can occur in a system composed of a single layer of
thickness d deposited on a substrate. Interference occurs between beams reflected from the
surface and those first transmitted in the layer, reflected from the interface between layer and
substrate and then leaving the layer into vacuum. To a good approximation, refraction at the
top surface can be neglected for incident angles twice the critical angle or total reflection. In
this case θ = θ1 in Fig. (9.2) holds. Since the index of refraction of the neutrons is very
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close to one, this approximation is valid even for rather small angles of incidence. Then the
optical path length difference between the two beams is:

∆ = 2d sin θ (9.17)

We can now determine the distance between interference maxima from the condition that the
path length difference has to differ by one wavelength: λ = 2d · δ(sin θ) � 2d · δθ. With
Q = 4π

λ
sin θ � 4π

λ
θ we final obtain:

δQ � 2π

d
(9.18)

Fig. 9.6: Reflectivity of a Si substrate and reflectivity of a Ni layer (ρ = 9.41 × 10−6 Å−2) on
Si substrate (ρ = 2.15× 10−6 Å−2). Simulations are performed for two layer thicknesses d.

We can see that the interference phenomena in Q-space are connected with real space length
scales in a reciprocal way. (9.18) tells us that there will be a number of interference maxima
at a distance in Q of 2π

d
. These interference phenomena are called “Kiessig fringes”. Fig.

9.6 shows calculations of the reflectivity of a Ni layer deposited on a Si substrate. One
observes that the reflectivities above the critical angle for total reflection decrease rapidly,
therefore the ordinate is on a logarithmic scale. The oscillations of the reflectivity due to the
above described interference effect can be observed. At small angles, due to the effect of
refraction, the interference maxima are a bit denser distributed than at higher angles where
formula (9.18) can be used to determine the layer thickness from the distance between the
interference maxima. The thinner layer corresponds to an interference scheme with a bigger
period. In both cases the minima of the interference scheme lay on the reflectivity of the Si
substrate.
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Note that for a 100 Å thick layer of Ni, that has a scattering length density (SLD) approx-
imately 4 times larger than the one of Si, the critical angle of total reflection is determined
by the SLD of Si and not by the one of Ni. This comes from the penetration depth of the
neutrons that is bigger than 100 Å. For a 400 Å thick Ni layer, the θc approaches the one of
Ni and the total reflection plateau is somewhat rounded.

Fig. 9.7: Reflectivities of a Ni/Ti bilayer and of a Ni/Ti multilayer on Si substrate. Simulations
are performed for Ni and Ti thicknesses of 70 and 30 Å respectively.

Fig. 9.7 shows the simulation of the neutron reflectivity from a multilayer on a Si substrate.
This multilayer is composed of 10 double layers of 70 Å Ni and 30 Å Ti. On can clearly
see the pronounced maxima due to the periodicity of the Ni/Ti double layer of thickness 100
Å. In between, one observes many weaker oscillation (be attentive to the logarithmic scale)
with a period given by the total thickness of the multilayer.

9.2.5 Roughness and interdiffusion

Until now we assumed perfectly flat interfaces. A real interface will, however, always show a
certain roughness at the atomic level, as shown in Fig. 9.8. The height profile of the interface
is completely described by the parametrization z(x, y). Such a detailed information is not at
all interesting. Much more interesting are parameters that statistically describe the interface,
such as the mean squared deviation from an ideally flat interface, or the lateral correlation
length. Those parameters can be determined from reflectometry and scattering under grazing
incidence [6].

As simplest model, we assume that the height coordinate z follows a random distribution
of values around the nominal value zj of the flat interface. The random distribution being
described by a Gaussian function

P (∆z) =
1

σ
√
2π

exp

(
−∆z2

2σ2

)
, (9.19)
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Fig. 9.8: Roughness of a real interface, characterized by the parametrization z(x, y) and de-
pendency of the refractive index on z.

the profile of index of refraction between layers j and j + 1 takes the form:

n(z) =
nj + nj+1

2
− nj − nj+1

2
erf

(
z − zj√
2σj

)
(9.20)

with the “Error” function:

erf(z) =
2√
π

∫ z

0

e−t2dt. (9.21)

The reflectivity from such a rough interface is obtained from the average of the reflectivities
from a sequence of layers that describe the profile of refraction index. This average is per-
formed in detail in Ref. [10, 11]. As a result one obtains that the Fresnel coefficient for an
ideally flat interface has to be modified by an exponential damping factor in the following
way:

Rrough = Rflat · exp
(
−4σ2

jkzjkzj+1

)
. (9.22)

In this equation, σj is the root mean squared deviation from the nominal position of the flat
interface.

The effects of interfacial roughness on the neutron reflectivity from a Si substrate and from
a Ni layer on Si substrate have been simulated in Fig. 9.9. On the left side of Fig. 9.9 one
can observe that the effect of roughness is to decrease the reflectivity at large wave vector
transfers. The effect of roughness will be seen if the value of the scattering wave vector gets
bigger than 1/σ. Therefore, if one wants to determine very small roughness amplitudes, one
has to measure the reflectivity till very large reflection angles and over a large dynamical
range.
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The right side of Fig. 9.9 shows the effect of the roughness of a single layer. The simulations
have been performed for ideally flat interfaces, for a rough surface of the layer, for a rough
interface between layer and substrate and for the case where both interfaces are rough. One
can see that the four cases can be well differentiated. When only one of the two interfaces is
rough, the interference pattern due to the reflection on the top and bottom interfaces is sup-
pressed at large wave vectors. If both interfaces are rough, a faster decrease of the averaged
reflectivity takes place.

Fig. 9.9: Left: Neutron reflectivity at the interface between vacuum and Si. Right: Neutron
reflectivity from a 400 Å thick Ni layer on Si substrate. Effect of interfacial roughness.

Finally, one should point out that a specular reflectivity measurement can only describe the
profile of scattering length density normal to the interface. This means that a reflectivity
measurement can not differentiate between interfacial roughness and interdiffusion, as inter-
diffusion will induce the same profile of refraction index as in Fig. 9.8. But what happens to
the intensity loss described by the exponential factor of Eq. (9.22)? In the case of a diffuse
interface, this intensity goes into the transmitted beam because there is no potential gradient
in a direction different than the one normal to the interface. On the other hand, in the case
of a rough interface, the intensity loss comes from scattering by lateral fluctuations of the
potential, leading to intensities that can be observed in directions other than the specular di-
rection: this is off-specular diffuse scattering. A statistical function like the height-height pair
correlation function can be determined from the measurement of off-specular scattering [6].

9.3 Crystallography at the nanoscale: GISAXS from a
nanoparticle assembly

The prime aim of this section is to emphasize on the added information provided by Graz-
ing Incidence Small Angle Scattering (GISAS) with respect to other surface characterization
techniques like Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM).
AFM and SEM give information on the in-plane fluctuations of the order parameter, while
GISAS allows a full 3 dimensionnal investigation, i.e. gives depth-resolved infomation on
those in-plane fluctuations.
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The study reported here [12] concerns the investigation of the ordering in an assembly of
magnetic nanoparticles deposited on a surface. Those nanoparticles, of truncated cubic shape,
were deposited under an applied magnetic field, leading to the formation of mesocrystals, i.e.
columns (see Fig. 9.10), several hundreds nanometres high and several micrometres diameter,
composed of a single crystalline arrangement of nanoparticles (see insert of Fig. 9.11). The
whole assembly is a 2 dimensional orientational average of such mesocrystals.

The in-plane arrangement of the nanoparticles in each mesocrystal has been determined by
SEM and consists of a square lattice (see insert of Fig. 9.11) of lattice parameter 13.1 nm.
Only five different cubic and tetragonal Bravais lattices are compatible with this 2 dimen-
sional arrangement: simple cubic (sc), simple tetragonal (st), body centred cubic (bcc), body
centred tetragonal (bct) and face centred cubic (fcc). Two (bcc and fcc) of those five lattices
can be excluded from packing and geometrical conditions.

The actual three-dimensional Bravais lattice has been determined by GISAXS, the geometry
of the experiment being depicted in Fig. 9.10: a beam of x-rays, well collimated in both
directions perpendicular to ki, impinges on the surface under an angle of incidence αi and
the scattered x-rays are collected on a position sensitive detector. Each detector pixel is
defined by the values of the angles θ and αf . Taking into acount the smallness of those three
angles, the components of the scattering wave vector along the three axes depicted in Fig.
9.10 are given by:

Qx = k
(
α2
i − α2

f − θ2
)
/2, Qy = kθ, Qz = k (αi + αf ) , with k =

2π

λ
. (9.23)

Fig. 9.10: Atomic Force Microscopy (AFM) image of the assembly of magnetic nanoparticles
and geometry of the GISAXS experiment. GISAXS signal is collected on a 2 dimensional posi-
tion sensitive detector. Taken from [12].



Reflectometry and GISAS 9.13

Fig. 9.11: GISAXS pattern of the assembly of magnetic nanoparticles. Insert: Scanning Elec-
tron Microscopy (SEM) image of the top of a mesocrystal of nanoparticles; scale bar represents
100 nm. Taken from [12].

The thus obtained GISAXS pattern at a certain angle of incidence αi of the incoming beam
close to the critical angle of total reflection is given in Fig. 9.11. This pattern shows a
whole bunch of local intensity maxima at positions in Qy and Qz that are characteristic of
the crystalline stacking respectively in-plane and out-of-plane. A relation connecting all the
Qz coordinates of the local maxima to their Qy coordinates is obtained by a combination of
Snell’s law and Bragg’s law leading to an extinction rule and an out-of-plane lattice parame-
ter (17.8 nm) characteristic of a bct packing of the nanoparticle lattice.

9.4 Conclusion

This chapter has given an overview of reflectometry and GISAS as a tool for the investi-
gation of thin films, their interfaces or mesocopic objects deposited on a surface. We have
presented a formalism which makes it possible to describe the specular reflectivity on non-
magnetic systems. The formalism of neutron reflectometry for the investigation of the mag-
netic moment orientations in magnetic multilayers is presented in the next chapter of this
book, together with several application examples.
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9.5 Take-Home Message

Reflectometry of X-rays and neutrons from thin films with thicknesses in the mesoscopic
range gives access to the scattering length density profile along their depth. The information
is an average over the in-plane coordinates. With GISAS, in-plane correlations of the scatter-
ing length density can be investigated. Moreover, depth resolution is accessed by interpreting
the GISAS signal as a function of αi or αf .
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des Forschungszentrum Jülich, Materie und Material, Band 34, 2007). Lecture D4

[4] Th. Brückel and E. Kentzinger in Magnetische Schichtsysteme, 30. Ferienkurs des IFF
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Exercises

In the following the nuclear scattering length densities (in 10−6 Å−2) of several elements are
displayed:

Cu: 6.53; Ag: 3.5; Si: 2.15; Au: 4.5

E9.1 * Reflection and transmission by a flat substrate

The following figure shows the neutron reflectivity from a flat substrate.

Fig. 9.12: Reflectivity from a substrate.

• Determine the element of which this substrate is made of

• Explain why the amplitude of the wave transmitted in the substrate is equal to 2 at an
angle of incidence equal to the critical angle of total reflection
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E9.2 * Layers on substrate

The figure below shows two simulations of reflectivity from a Cu layer deposited on Ag
substrate. Determine for both cases (red and blue curves) the thickness of the Cu layer.

Fig. 9.13: Layer of Cu on Ag substrate

In the next figure, the reflectivity from a [Cu/Au]×n multilayer is depicted. Determine the
[Cu/Au] thickness, the total thickness of the multilayer and the number n of bilayers the
multilayer is composed of.

Fig. 9.14: Cu/Au multilayer on Ag substrate
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E9.3 * GISAXS from nanoparticles on surface

The figure below shows a simulation of GISAXS from a square lattice of cubic nanoparticles
of 5 nm edge length. The radiation wavelength is 1 Å and the plane of incidence of the
X-rays is parallel to one edge of the cubes. Determine the lattice parameter.

Fig. 9.15: GISAXS from a square lattice of cubic nanoparticles. The horizontal axis shows θ
and the vertical one αf as defined in Fig. 9.10. This simulation was performed by Asma Qdemat
(JCNS-2) using the BornAgain software [7].
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10.1 Introduction

The physical properties of a layered structure of nanometer size, as it is shown schematically 
in Fig. 10.1, differ from the bulk properties of the constituents. There are several origins of new 
effects due to miniaturization:
The ratio between surface and volume is much higher than in bulk. Therefore, the number of 
atoms with reduced coordination is significant and can change the crystalline structure as well 
as the electronic structure of the whole layer. Boundary conditions, e.g. for the magnetic 
induction B become important, introducing shape anisotropies. The magnetization tends to 
align along the long edges of the magnetic nanostructure because the dipolar fields are smaller 
then. At the interface between two layers, the electronic structures and the crystal lattices have 
to be matched, which leads to structural stress, interfacial disorder and electronically to charge 
transfer (e.g. a Shottky barrier in semiconductor heterostructures) or splitting of the layers’ 
bandstructures.
Nanostructures can be prepared in several dimensions: thin films with a thickness in the nm 
range are 2D nanostructures, stripes with thickness and width in the nm range are 1D nano-
structures, and dots or nanoparticles with all three dimensions in the nm range are 0D nano-
structures. The dimension number indicates, in how many directions the dimension remains 
macroscopic.
Magnetic nanostructures are nanostructures which contain at least one magnetic constituent. 
Typical systems are layered structures with ferromagnetic and nonmagnetic layers or arrays of 
ferromagnetic dots on a nonmagnetic substrate. The interesting aspect of 2D magnetic 
nanostructures is the fact that two ferromagnetic (FM) layers with a nonmagnetic (NM) spacer 
in between have a connection between their electronic systems across the spacer layer. This 
connection influences as well the magnetic behaviour as the electron transport through the 
system.

Fig. 10.1: Sketch of a layered structure of two materials
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The first fundamental phenomenon found in magnetic layered structures has been the 
oscillating magnetic interlayer coupling in FM / NM / FM trilayer structures. Depending on the 
NM interlayer thickness, the magnetizations of the two FM layers tend to align parallel or 
antiparallel to each other [1]. It turned out that the coupling is mediated by electronic states in 
the NM interlayer close to the Fermi surface [2].
Subsequently, the most important discovery followed, the Giant Magnetoresistance Effect 
(GMR) [3] [4]. For this discovery, P. Grünberg and A. Fert were honoured with the Nobel Prize 
for Physics 2007. They have found out that the resistivity of a layered structure containing more 
than one ferromagnetic layer depends on the mutual orientation of the magnetization directions, 
see Fig. 10.2. They used the antiferromagnetic coupling in Fe / Cr / Fe trilayer structures to be 
able to influence the mutual orientation of the magnetization of the Fe layers by changing the 
applied magnetic field. 

Fig. 10.2: Giant Magnetoresistance effect in an Fe / Cr / Fe trilayer compared to the aniso-
tropic magnetoresistance effect in a single Fe layer. Reprinted figure with per-
mission from G. Binasch et. al., Phys. Rev. B. 39 (1989), 4828 [3]. Copyright 1989
by the American Physical Society.

It turns out that the resistivity is highest in the case of antiparallel alignment of the two 
magnetization directions. This effect is much stronger and much more sensitive to changes in 
the magnetization direction of each ferromagnetic layer than the anisotropic magnetoresistance 
effect in single ferromagnetic layers, which was known before. The microscopic origin of the 
GMR effect is the matching between the spin-split bandstructures of the two ferromagnetic 
layers.  The conductivity of the entire structure is the sum of the conductivities for the two spin 
channels. As the Fermi surface is different for the two spin channels, the matching between the 
FM and the NM layer is different.

Fe/Cr/Fe
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Fig. 10.3: Different matching of the bandstructures between ferromagnetic and non-
magnetic layers changes the resistivity for the different spin channels

As shown in Fig. 10.3, in the case of parallel alignment, the scattering probability of a con-
duction electron is the same at both interfaces. For one spin channel, the scattering probability 
is high while for the other one it is low. The conductivity is then dominated by the spin channel 
with the smaller scattering probability. The resistivity of the entire structure, which can be 
described as a parallel wiring of the two resistors for the two spin channels, is small.
In the case of antiparallel alignment, the scattering probability for each spin channel is high in 
one of the FM layers. This results in a relatively low conductivity for both spin channel, so that 
the resulting resistivity is much higher compared to the case of parallel magnetization.
As GMR structures are easy to prepare and easy to use, the sensor technology based on this 
effect quickly became standard in the readout system of computer harddisks and many other 
applications. Today, it has been replaced by Tunneling Magnetoresistance (TMR), where the 
nonmagnetic interlayer is insulating and electrons travel across this tunneling barrier while 
preserving their spin state. Then, the height of the tunneling barrier depends on the spin of the 
electron and the magnetization direction of both ferromagnetic layers. A detailed overview over 
the field of spin transport in layered systems is given in Ref. [5].

10.2 Why are neutrons useful to investigate magnetic nano-
structures?

For the investigation of magnetism, many methods are well known. In most cases the magne-
tization of a sample is measured. A different, but more indirect approach is the measurement of 
spin-dependent bandstructures by absorption and photoemission spectroscopy of polarized light 
or x-rays.
The first (and oldest) approach is to measure the integral magnetization of a sample by classical 
magnetometry, e.g. by using a Vibrating Sample Magnetometer (which measures the induction 
when moving the magnetic sample in a coil), a Faraday balance (which measures the force on 
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the magnetic sample in a field gradient), or more recently a SQUID magnetometer (which 
measures the magnetic flux inside a superconducting loop). In case of magnetic nanostructures
deposited on any macroscopic substrate, the small signal coming from the nanostructure is 
always superimposed by the signal from the substrate which is typically 10000 times larger in 
volume. Even if the nanostructure is ferromagnetic and the substrate only diamagnetic, the 
correction due to the substrate is in most cases much stronger then the signal itself.
Better adapted to thin structures are methods that are surface sensitive. The magnetooptical 
Kerr effect (MOKE) measures magnetization with polarized light reflected from a magnetic 
surface. Due to the magnetization of the sample the polarization direction of the light is 
modified. This method is surface sensitive in the range of the penetration depth of the light used 
(typically some 10 nanometers). At synchrotron x-ray sources one can use X-ray Magnetic 
Circular Dichroism (XMCD). The energy dependence of the absorption of circularly polarized 
(soft) x-rays is measured at the absorption edges of the magnetic materials. Again, the 
information is integrated over the penetration depth of the x-ray photons used, but it is element 
specific due to the choice of the x-ray energy in resonance with the magnetic orbitals of a certain 
element.
Magnetic domains can be imaged using e.g. Magnetic Force Microscopy (surface sensitive,
measuring the stray fields above the sample), Lorentz microscopy (the transmission of electrons 
through a very thin sample is observed; due to the Lorentz forces the electrons are deviated 
according to the magnetization strength and direction), or Kerr microscopy (observing the 
MOKE using an optical microscope; again it integrates over the penetration depth of the light, 
with the lateral resolution of the optical microscope). Photoemission electron microscopy 
(PEEM) with soft x-rays can give an overview about the density of certain electronic states with 
a lateral resolution in the nanometer range and time resolution down to nanoseconds. In 
combination with XMCD, XMCD-PEEM can visualize the evolution of magnetic domains 
under variable magnetic fields. But again, the depth resolution is only determined by the 
penetration depth and the element specific absorption of the x-rays.
What is missing is a method that can access the magnetism of buried layers using the depth 
information. Here, we need a probe that is sensitive to magnetic fields while having a spatial 
resolution (at least in depth) in the nm regime. Cold neutrons have a wavelength appropriate 
for resolving nm length scales and they carry a spin that interacts with the magnetic fields. For 
most of the magnetic investigations, the neutron’s spin has to be prepared in a certain state, so 
we use polarized neutrons for the investigation of magnetic nanostructures.
Polarized neutron reflectometry with polarization analysis is a method for depth-resolved 
investigation of magnetic layered structures; I will introduce this method in the following 
chapter. Together with the analysis of off-specular scattering, lateral structures in the µm range 
can be investigated, allowing to access magnetic domains in buried layers. Polarized SANS 
reveals information about magnetic structures in the nm range perpendicular to the beam 
direction, while polarized GISANS (Grazing Incidence Small Angle Neutron Scattering) 
combines the possibilities of both methods and allows to access lateral magnetic structures in 
the nm range in buried layers.
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10.3 Specular reflectivity of polarized neutrons

In the previous lecture, you have learned about specular reflectivity of neutrons on layered 
structures with nuclear scattering contrast. For the investigation of magnetic layered structures, 
we have to remind that the neutron is a spin ½ particle and therefore interacts with the magnetic 
induction B.
To treat the neutron’s spin properly, we have to work with wave functions in the 2-dimensional 
quantum mechanical spin space, where the usual space-dependent functions, e.g. the potential, 
become operators on the neutron’s spin.
In analogy to eq. (9.2), the potential of a homogeneous magnetic material in layer number l can 
be separated into two parts

M
l

N
ll VVV ˆ1̂ˆ += (10.1)

where V1
N is the nuclear interaction known from eq. (9.2), and 1̂ is the unity operator, which 

does not affect the spin state, so that the nuclear interaction is described independently on the 
neutron’s spin. The magnetic dipole interaction is described by the operator l

M
lV Bσ −= ˆˆ

n
which is a scalar product of the neutron magnetic moment operator σ̂n and the magnetic 
induction Bl inside the material.
For the description in coordinates, we need to define a coordinate system which is convenient 
to describe the experiment. Typically, the magnetic field H is applied in the plane of the sample. 
We choose this direction to be the x-direction of the coordinate system H = Hex and also as the 
quantization axis for the neutron spin. Under this assumption, the spin operator 
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In analogy to chapter 9.2, the Schrödinger equation can be solved in coordinate and spin space, 
where the eigenvectors + and − of the operator x0ˆ =bσ with the eigenvalues +1 and -
1, respectively, define states of the neutron with “spin up” and “spin down”. The solution of the 
Schrödinger equation is the neutron wave function )(r , which is again a linear combination 
of those two spin states.
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After some calculation which you can find in Ref [6] we end up with a set of two coupled one-
dimensional linear differential equations for every layer, which are the analogue to equation 
(9.8).
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In these formulae, you find the nuclear scattering length density N that you know from 
eq. (9.3) together with its magnetic analogue M , the magnetic scattering length density. It is 
proportional to the net magnetization M of the material. In case of a ferromagnetic material, the 
magnetization vector M typically is aligned in some direction, which is described by the unit 
vector m = M / M.
Now, we can have a closer look at the different terms in equation (10.4) and (10.5). As Non-
Spinflip (NSF) interaction, one finds in (10.4) for spin + (“spin up”) the sum of the nuclear 
interaction and the magnetic interaction with the magnetization along the quantization direction 
and in (10.5) for spin – (“spin down”) the difference. In case of a magnetically saturated layer 
(all the magnetization is aligned with the external field), the scattering length density for spin 
+ neutrons is enhanced and for spin – neutrons reduced compared to the nonmagnetic case.

Fig. 10.4: The total reflection angle θc of the surface of a magnetized material is different 
for both spin directions

This has an influence on the index of refraction, on the total reflection angle, and of course on 
the reflectivity, which is a function of the change of the index of refraction at a certain interface. 
Fig. 10.4 shows schematically the splitting of the total reflection angle.
In case that the magnetization is not fully aligned with the field, the component along the field 
direction influences the scattering length density for NSF. The in-plane magnetization 
component perpendicular to the field induces a spin-flip (SF) interaction that is equally strong 
for both spin-flip channels +– and –+, as is described in the last term of eq. (10.5) or (10.4),
respectively.
Specular reflectivity of polarized neutrons is not sensitive to any magnetization component 
perpendicular to the layer plane. This agrees with the statement in lecture 8 (eq. (8.22) f.) that 
only the magnetization component M⊥ perpendicular to Q contributes to the magnetic 
interaction with the neutron’s spin.

R+R- T- T+T- T+

θc
- θc

-θc
+ θc

+
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As an example, I would like to show the polarized neutron reflectivity of a [Co / Cu] multilayer. 
The respective nuclear and magnetic scattering length densities are

Co: ρN = 2.30 ∙10-6 Å-2       ρM = 4.24 ∙10-6 Å-2

Cu: ρN = 6.53 ∙10-6 Å-2       ρM = 0.
Obviously, the sum of the magnetic and the nuclear scattering length density of Co is almost 
equal to the scattering length density of Cu. In the case of magnetic saturation, spin + neutrons
will not feel any contrast at the Co / Cu interfaces because they see the sum of nuclear and 
magnetic scattering length density in the Co layer. The multilayer structure is invisible for spin 
+ neutrons. In contrast, spin – neutrons experience the difference of nuclear and magnetic 
scattering length density (which is in fact negative), so that the contrast is huge.
Fig. 10.5 makes the contrast situation visible by using colours representing the different
scattering length densities.

Fig. 10.5: The contrast between Co and Cu depends on the magnetization state. It almost 
vanishes for spin up neutrons, but is strong for spin down.

Fig. 10.6 shows the measured polarized neutron reflectivity of such a multilayer. The total 
reflection edge is identical for both spin channels, because the biggest scattering length density 
in the layered structure is the one of Cu, which is not magnetic. But the multilayer Bragg peaks 
at 2 = 3° and 2 = 6° are strongly spin split. For spin – neutrons, the Bragg peak is about 30 
times stronger than for spin + neutrons. Here, one can see that the contrast is responsible for 
the reflectivity, not the strength of the scattering potential, as the scattering length density 
(which describes the scattering potential) is higher for spin +, but the contrast between the layers 
is much stronger for spin –.
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Fig. 10.6: Specular reflectivity of polarized neutrons from a [Co / Cu] multilayer with 20 
periods at magnetic saturation

10.4 Layer-by-layer magnetometry

One important application of polarized neutron reflectometry with polarization analysis is 
layer-by-layer magnetometry. As an example, I present the magnetization evolution in 
exchange bias multilayers of the type [IrMn / CoFe]N with the number of periods [7]. The 
exchange bias effect is the coupling between a ferromagnetic layer and a neighbouring 
antiferromagnetic layer. If the antiferromagnet has been cooled below its Néel temperature with 
the ferromagnet being saturated, it conserves the interface magnetization without being 
sensitive to the applied magnetic field. This induces an additional unidirectional anisotropy on 
the ferromagnetic layer, i.e. the original magnetization direction is preferred over all others. 
The hysteresis loop is shifted away from H = 0.
The green curve in Fig. 10.7 shows the exchange biased magnetization curve of an IrMn / CoFe 
double layer shifted left together with the magnetization loop of the NiFe buffer layer, which is 
not affected by exchange bias and therefore symmetric around H = 0 field. The CoFe layer 
shows a nice square hysteresis loop, indicating spontaneous magnetization flip at the coercive 
field.
Strangely, the shape of the magnetization loop of the exchange biased CoFe layers changes, 
when the number of [IrMn / CoFe]N bilayers is increased. In addition, the strength of the 
exchange bias is increased.
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Fig. 10.7: SQUID magnetization measurements (at room temperature, left) and AFM 
micrographs of the surface (right) of polycrystalline multilayers of the type 
SiO2 / 10 nm NiFe / [5 nm IrMn / 3 nm CoFe]N with N = 1, 3, or 10, resp.

An AFM study of the surfaces shows that the grain size of the polycrystalline layers is reduced 
from layer to layer during the preparation procedure, but no information could be found that 
justifies the slope of the magnetization curves and that could eventually explain the origin of a 
magnetization rotation process responsible for the gradual evolution of the magnetization as a 
function of the applied field.
Therefore, a polarized neutron reflectivity study was performed, to investigate the individual 
behaviour of the ferromagnetic layers in the multilayer structure. As an example, Fig. 10.8
shows the specular polarized neutron reflectivity at one of the coercive fields (i.e. the net 
magnetization vanishes) together with the fit. 
The polarized neutron measurement shows no spin flip signal at all, immediately excluding the 
idea of a magnetization rotation process. Furthermore, the fit of the measured data shows that 
the magnetization of the upper 5 CoFe layers is aligned antiparallel to the field while the 
magnetization of the lower 5 CoFe layers is still aligned along to the field. I.e., the exchange 
bias on the upper layers (with smaller grains) still can hold the magnetization in the preferred 
direction, while the magnetization of the lower layers already has followed the field. 

AFM micrographs

N=1

SiO2/NiFe(10.0nm)/[IrMn (5.0nm) /CoFe (3.0nm)]xN

N=3

N=10

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

Gr
ai

n 
si

ze
s 

(n
m

)

No. of bilayers (N)

AFM micrographs

N=1

SiO2/NiFe(10.0nm)/[IrMn (5.0nm) /CoFe (3.0nm)]xN

N=3

N=10

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

Gr
ai

n 
si

ze
s 

(n
m

)

No. of bilayers (N)

AFM micrographs

N=1

SiO2/NiFe(10.0nm)/[IrMn (5.0nm) /CoFe (3.0nm)]xN

N=3

N=10

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

Gr
ai

n 
si

ze
s 

(n
m

)

No. of bilayers (N)



Magnetic Nanostructures 10.11

Fig. 10.8: Polarized neutron reflectivity of the sample with N = 10 at μ0H = -0.1 mT after 
positive saturation

Together with measurements at several other magnetic field values on both branches of the 
hysteresis loop it turned out that every single layer has a square magnetization loop, but the 
strength of the exchange bias effect (i.e. the shift of the centre of the loop away from H = 0)
increases with reduced grain size. The overlaying of the differently shifted square loops then 
results in the inclined net magnetization loop measured with magnetometry.

10.5 Vector magnetometry

The second important application of polarized neutron reflectometry with polarization analysis 
is vector magnetometry in layered structures. The ability to distinguish between SF and NSF 
channels offers an independent access to the in-plane magnetization components perpendicular 
and parallel to the field direction. As a magnetization direction perpendicular to the sample 
surface is rare (due to the shape anisotropy) one can determine the full magnetization vector in 
most cases.

Fig. 10.9: Layer sequence of an epitaxially grown and 
antiferromagnetically coupled [Fe / Cr]N
multilayer

I would like to explain the power of vector magnetome-
try using the example of an epitaxially grown and 
antiferromagnetically (AF) coupled [Fe / Cr]N multi-
layer with an odd number of Fe layers [8]. Fig. 10.9
shows the layer sequence of such a sample grown on 
a GaAs single crystal with a Ag buffer layer to improve 

...
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the surface quality. The magnetic behaviour is determined by the competition between 3 
different interactions (see Fig. 10.10): The crystalline anisotropy in the single crystalline Fe 
layers tries to align the magnetization in every Fe layer along one of the in-plane [100] 
directions. This results in 4 equivalent easy axes. The antiferromagnetic coupling (mediated by 
the Cr interlayer) has the tendency to align the magnetization of two neighbouring Fe layers 
antiparallel to each other. The Zeeman term tries to align the magnetization of every 
ferromagnetic layer along the applied field.

Fig. 10.10: The magnetic behaviour in an applied magnetic field is governed by 3 competing 
interactions

As the multilayer under investigation has an odd number of Fe layers, the antiparallel 
orientation of the magnetization in remanence (where the Zeeman term is weak) will leave the 
magnetization of one layer uncompensated, so that the Zeeman energy does not vanish even at 
very small fields. This effect is supposed to align the remanent magnetization of all layers along 
or antiparallel to the field direction.
Fig. 10.11 shows MOKE measurements of such a sample with N = 7 Fe layers in the multilayer 
sequence. The MOKE signal is a function of the magnetization, but not proportional to it, 
because it is a superposition of the longitudinal Kerr effect (proportional to the magnetization 
along the field) and the transverse Kerr effect (proportional to the magnetization perpendicular 
to the field). Furthermore, the weight of the layers close to the surface is much higher than the 
weight of lower lying layers due to the limited penetration depth of the light. Therefore, one 
should not worry about the MOKE curve not being monotonous. Nevertheless, a jump in the 
MOKE curve always indicates a spontaneous change of the magnetization state.
In addition, Fig. 10.11 shows a simulation of the integral magnetization component along the 
field based on a numerical minimization of the three energy terms mentioned above. This kind 
of simulation cannot reproduce effects of activation barriers leading to hysteresis.
The simulation and the MOKE measurement have a good qualitative agreement. In saturation, 
the magnetic moment of every layer is aligned with the field. In the intermediate field range, 
the magnetization is alternatingly pointing left or right from the field direction, so that the 

Fe single crystal layers: 4 easy axes
[100]

AF coupling through Cr interlayer

Applied field: Zeeman energy

H
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magnetization component along the field is almost equal for every layer and the magnetization 
components perpendicular to the field fulfil as much as possible the AF coupling. 
At remanence, the magnetization of all layers is turned by 90°, so that 4 layers have the 
magnetization along the field and 3 layers antiparallel to the field. This configuration fulfils as 
well the AF coupling condition as the alignment of the net magnetization along the applied 
field.

Fig. 10.11: MOKE measurement of [Fe / Cr]N multilayers with N = 7 Fe layers. 
The simulation of the magnetization curve is based on minimization
of the total energy.

Fig. 10.12 shows the polarized neutron reflectivity together with the offspecular scattering at 
saturation field. One can see a structured signal with total reflection and several Bragg peaks 
according to the periodicity in the multilayer structure only in the R++ channel. For spin –
neutrons the contrast between fully magnetized Fe and Cr vanishes, so the R– – shows only the 
total reflection (with a reduced critical angle compared to R++), but no Bragg peaks. As no 
magnetization component perpendicular to the field direction exists, there is no real spin flip 
signal. What you see in R+– and R –+ is a parasitic signal due to the limited efficiency of the 
polarizing equipment of the instrument. The Bragg sheets crossing the specular Bragg peaks 
are due to vertically correlated roughness of the Fe / Cr interfaces.
Fig. 10.13 shows the same in the intermediate field range. Additional Bragg peaks of half order 
appear, which are stronger in SF compared to NSF. This is the indication of the alternation of 
the magnetization directions due to the antiferromagnetic coupling. Mainly the magnetization 
component perpendicular to the field oscillates while the component remaining along the field 
is modulated less. As the sample is no more saturated, the magnetization component in field 
direction is reduced, so that the contrast for spin – neutrons does not
vanish any more. Therefore, the full order Bragg peaks also come up in R– –. They are now 
mainly induced by the nuclear structure while the magnetic contribution is collected in the half 
order signal. The strong off-specular signal around the half order Bragg peaks in the SF 
channels is a signature of magnetic domains.
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Fig. 10.12: Polarized neutron 
reflectivity and offspecular 
scattering of an AF-coupled 
[Fe / Cr]7 multilayer in satu-
ration field of 300 mT.
Indicated are the primary beam 
(1) blocked by the beamstop, the
plateau of total reflection (2),
the first (3), second (4) and third 
order (5) Bragg peak (giving 
information about the layer 
structure), and the Bragg sheets 
(6) (giving information about 
correlated roughness).

Fig. 10.13: Polarized neutron 
reflectivity and offspecular 
scattering of an AF-coupled 
[Fe / Cr]7 multilayer in inter-
mediate field of 30 mT.
Indicated are the AF super-
structure Bragg peaks of the 
order ½ (1) and 1½ (2).
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At remanence, as shown in Fig. 10.14, all half order peaks appear only in the NSF channels. 
The small contribution in the SF channels can be explained due to the limited polarization of 
the neutron beam. This shows that the magnetization of all layers of the [Fe / Cr]7 sample is 
aligned alternatingly parallel and antiparallel to the field direction, as has been proposed by the 
simulation for the MOKE measurement.

In addition to the qualitative description presented here, a quantitative analysis of the 
measurements allows to determine the angle of the magnetization vector of every layer 
independently. This analysis is presented in Ref. [8].

Fig. 10.14: Polarized neutron 
reflectivity and offspecular 
scattering of an AF-coupled 
[Fe / Cr]7 multilayers in rema-
nence field of 5 mT. 
Indicated are the AF superstruc-
ture Bragg peaks of order ½ (1).
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10.6 Conclusion

Neutron reflectometry with polarized neutrons and polarization analysis is a tool to determine 
depth-dependent magnetization in layered magnetic nanostructures. 

Non-Spinflip (NSF) reflectivity contains information about the magnetization components 
along the field direction of the different layers inside the structure. As (in magnetic saturation) 
the spin + neutrons are sensitive to ρN + ρM and the spin – neutrons to ρN – ρM, the contrast seen 
by the neutrons with different spin is different due to the magnetized layers.

Spinflip (SF) reflectivity is purely induced by magnetization components perpendicular to the 
field direction. This is a very sensitive tool to determine magnetization rotation or tilting 
processes in magnetic structures. 

Together with a quantitative modeling of the 4 reflectivity components, the user can determine 
size and direction of the in-plane components of the magnetization vector in all layers in a 
layered magnetic structure.
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Exercises

E10.1 Magnetic contrast

We measure the polarized neutron reflectivity of a [Ni2Fe / Pt]N multilayer structure in magnetic 
saturation. The Ni2Fe alloy is ferromagnetic. 

* a) Calculate the nuclear and magnetic scattering length densities for the two constituents of 
the multilayer:

Ni Fe Pt
density [g/cm³] 8.90 7.86 21.4
atomic weight [g/mol] 58.71 55.85 195.09
nuclear scattering length [1E-14 m] 1.03 0.954 0.95
magnetic scattering length density 
[1E-6 Å-2]

1.52 5.12 0

If you don’t want to calculate all the values yourself, you may continue with the tabulated values 
of the nuclear scattering length densities: 
Ni: 9.41E-6 Å-2, Fe: 8.09E-6 Å-2, Pt: 6.29E-6 Å-2.

** b) Which of the 5 reflectivity curves presented below is the one measured on this alloy? 
Think about the critical angle (has to do with the highest scattering length density in all 
layers) and the contrast between adjacent layers (influences the height of the diffraction 
peaks) for both spin directions parallel (R+ +) and antiparallel (R– –) to the applied 
magnetic field (saturation!).
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** c) The other 4 curves have been measured on different samples. Which curve belongs to 
which sample?

I. The sum of nuclear and magnetic scattering length density of the magnetic layers is 
equal to the nuclear scattering length density of the nonmagnetic layers

II. The sample contains an additional nonmagnetic layer with a scattering length density 
higher than the sum of the magnetic and nuclear scattering length densities of Ni2Fe 
on top of the [Ni2Fe / Pt]N multilayer

III. No layer is magnetic 
IV. The nuclear scattering length density of the nonmagnetic layers is somewhere 

between the sum and the difference of nuclear and magnetic scattering length density 
of the magnetic layers 

E10.2 Vector magnetometry

** The following figures show polarized neutron reflectivity measurements with polarization 
analysis from a ferromagnetic single layer on a nonmagnetic substrate. Find out which figure 
belongs to which magnetization state:

I. The sample is magnetized perpendicular to the field direction
II. The sample is magnetized parallel to the field direction

III. The magnetization of the sample is inclined by 45° against the field direction
IV. This set of curves is wrong. (Why?)
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11.1 Introduction

One of the most important benefits of neutron scattering is the possibility to do inelastic
scattering and by this way gain insight into the dynamics of materials as well as the structure.
Neutrons tell us where the atoms are and how they move [1]. Although this feature is shared
with inelastic x-ray scattering and dynamic light scattering, there is still a considerable range
of slow dynamics in molecular systems which can be studied exclusively by inelastic neutron
scattering.

This lecture can only present a short glimpse on the theoretical foundations and instrumental
possibilities of inelastic neutron scattering. For those who are interested in more details,
several textbooks can be recommended [2–6]. Also supplementary information on correlation
functions [7] and Fourier transforms [8] may be found in earlier editions of this school.

k

k'

2θ

Q

Fig. 11.1: Definition of the scattering vector Q in terms of the incident and final wave vectors k
and k′. The black (isosceles) triangle corresponds to elastic scattering. The blue and red ones
correspond to inelastic scattering with energy loss or gain of the scattered neutron, respectively.

11.2 Theory

11.2.1 Kinematics of neutron scattering

Up to this lecture it has always been tacitly assumed that the wavelength (or wave vector,
or energy) of the neutrons is the same before and after scattering. The defining quality of
inelastic neutron scattering is that this is not anymore the case. The neutrons may lose or
gain energy in the collision with the nuclei. The characteristic quantity for the inelasticity is
the energy transfer,

ℏω = ∆E = E ′ − E . (11.1)

Here, E and E ′ are the energies of the neutron before and after the scattering. In the follow-
ing the notation ℏω will be used preferentially because it reveals the meaning of the energy
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transfer controlling the time scale of the observed dynamics, 1/ω.

Note that in some books E and E ′ represent the energy of the scattering system. This leads
to a change of sign in ∆E. Even the wording “energy gain/loss” becomes ambiguous and
should always be supplemented by “of the neutron” or “of the system”. Also, some authors
prefer to write E = Efinal − Einitial. So, it should always be checked whether E denotes the
incident energy or the energy transfer.

ℏω ̸= 0 implies k′ ̸= k. As a consequence, Q now does not anymore result from the isosceles
construction drafted in black in Fig. 11.1 but from scattering triangles as those in blue and
red. Application of the cosine theorem leads to the following expression for Q in the inelastic
situation:

Q =

√
k2 + k′2 − 2kk′ cos(2θ) (11.2)

=

√
8π2

λ2
+

2mω

ℏ
− 4π

λ

√
4π2

λ2
+

2mω

ℏ
cos(2θ) . (11.3)

Note that there is a fundamental difference to the simpler expression for elastic scattering,

Qel =
4π

λ
sin θ , (11.4)

used in the preceding lectures. Q now also depends on the energy transfer ℏω implying that
Q is not anymore constant for a single scattering angle. Fig. 11.2 shows the magnitude of
this effect for typical parameters of a neutron scattering experiment. It can be seen that it
is by no means negligible for typical thermal energies of the sample even at temperatures as
low as 100 K.

The other fundamental difference to elastic scattering to be considered is that the total scat-
tering cross section is not identical anymore to the bound scattering cross section read from
tables. In the extreme case of a free nucleus the scattering cross section is reduced to [2]

σ =
4πb2

(1 +m/M)2
(11.5)

where M is the mass of the scattering nucleus. It can be seen that in the worst case (scatter-
ing from a gas of atomic hydrogen) this is a reduction by 1/4.

11.2.2 Scattering from vibrating atoms

The most important case of inelastic neutron scattering from vibrating atoms is that of scatter-
ing from phonons in crystals. In this field, inelastic neutron scattering is the most important
tool of research. At first, a short recapitulation of the phonon picture will be presented [9,10].

As a simplified model for the crystal one can consider a chain of N atoms with mass M
regularly spaced by a distance a and connected by springs with the spring constant K. For
this system the equations of motion can readily be written down:

d2uj

dt2
=

K

M
(uj+1 − 2uj + uj−1) . (11.6)
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Fig. 11.2: Scattering vectors Q accessed by a neutron scattering experiment with the detector at
scattering angles 2θ = 10 . . . 170◦ vs. the energy transfer ℏω (incident wavelength λ = 5.1 Å).
For comparison the thermal energy kBT corresponding to 100 K is indicated by an arrow.

In addition, it has to be specified what the equations of motions are for the first and the last
atom (boundary condition). This is usually done by identifying the left neighbour of the first
atom with the last and vice versa, u0 = uN and uN+1 = u1, as in a closed necklace rather
than an open chain. This is the most natural choice for large N and called the Born-von-
Kármán boundary condition. The equation system (11.6) can be solved by the ansatz

uj(t) =
∑
k

Uk(t) exp

(
i
kj

N

)
(11.7)

with integer k (k ∈ Z). Here, Uk are the normal coordinates and each of them fulfils the
equation of motion of a single harmonic oscillator:

d2Uk

dt2
=

2K

M

(
cos

2πk

N
− 1

)
Uk . (11.8)

By introducing these normal coordinates, the system of differential equations (11.6) can be
decoupled into a set of differential equations which can be solved separately. The solutions
are

Uk(t) = Ak exp (iΩkt) with (11.9)

Ωk =

√
2K

M

(
1− cos

2πk

N

)
= 2

√
K

M

∣∣∣∣sin
πk

N

∣∣∣∣ . (11.10)

The second equation gives a relation between the index of the oscillator k and the frequency.
On the other hand, the index determines via equation (11.7) the wavelength of the vibration.
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q

ω

/ a+π/ a−π

Fig. 11.3: Dispersion relation in a linear chain with N = 40 atoms (Born-von-Kármán bound-
ary condition).

One wavelength covers N/k lattice positions, corresponding to λvib = Na/k in actual length.
The corresponding wave ‘vector’ is q = 2π/λvib = 2πk/Na1. This implies that there is a
relation between the wave vector and the frequency called the dispersion relation (Fig. 11.3):

Ω(q) = 2

√
K

M

∣∣∣sin qa

2

∣∣∣ . (11.11)

This relation does not contain the number of atoms anymore. For large N the points con-
stituting the curve in Fig. 11.3 will get closer and closer, finally leading to the continuous
function (11.11). The individual positions of these points depend on the boundary condition.
But because they are getting infinitely dense for N → ∞ the exact boundary conditions do
not matter for a large system.

It can be seen that the dispersion relation (11.11) is periodic in q. On the other hand, there
are only N normal coordinates necessary to solve the N original equations of motion. This
is exactly the number of wave vectors found in a q interval of length 2π/a. The usual choice
is −π/a . . . π/a as a representative zone for the dispersion relation.

There are two modifications necessary when considering a real three-dimensional crystal in-
stead of this simplified model: (1) The crystal is periodic in three dimensions. (2) The vibra-
tions are governed by quantum mechanics. The first requirement leads to the consequence
that instead of a scalar, one has to use a real wave vector, q → q = (qx, qy, qz) in reciprocal
space. The interval defined in Fig. 11.3 changes into a polyhedron called the first Brillouin
zone (Fig. 11.4) [9, 10]. It is constructed in the same way as the Wigner-Seitz cell in real
space: The Brillouin zone contains all points which are closer to the origin than to any other
lattice point. Its surfaces are the bisecting planes between the origin and its neighbours (in
reciprocal space).

1 As will be seen later, there is a close connection between this lower case q and the scattering vector upper case
Q. Nevertheless, they are not the same and care has to be taken not to mix up both q-s.



11.6 R. Zorn

Fig. 11.4: Brillouin zones for cubic lattices: (a) simple cubic, (b) face-centred cubic, (c) body-
centred cubic. From [10].

For every amplitude Ak equation (11.9) gives a valid solution of the equations of motion.
This means that in the classical picture the vibrations can have any energy. The quantum
mechanical treatment (which is too complex to be treated here in detail) leads to the result
that only certain energies with a distance of ℏΩk are allowed. This quantisation implies that
the vibrations can be treated as quasiparticles with the energy ℏΩk called phonons. The
increase of the vibrational amplitude corresponding to an energy change of +ℏΩk is then
seen as a creation, the inverse process as an annihilation of a phonon. Then it makes sense
to define ℏq as the momentum of the phonon. In this way the dispersion relation Ω(q) is
similar to the relations shown in Fig. 4.2 of lecture 4 for real particles.

The introduction of the quasiparticle (phonon) concept leads to the simple interpretation of
inelastic neutron scattering by vibrating lattices: The scattering process can be viewed as a
collision between phonons and neutrons. In this process the energy as well as the momentum
has to be conserved:

E ′ − E = ℏω = ±ℏΩ(q) , (11.12)
k′ − k = Q = ±q+ τ . (11.13)

The second equation shows that the analogy with a two-particle collision is not complete.
A wave vector, changed by a lattice vector τ in reciprocal space, corresponds to the same
phonon. In the one-dimensional case, this can be seen from equation (11.7): If one adds
an integer multiple of N to k (corresponding to a multiple of 2π/a in q) all values of the
complex exponential remain the same. Analogously, in the three dimensional case adding a
lattice vector

τ = hτ1 + kτ2 + lτ3 (h, k, l ∈ Z) (11.14)

does not change anything and momentum has only to be conserved up to an arbitrary recip-
rocal lattice vector. The condition (11.13) can also be visualised by the Ewald construction
as done in lecture 4 for elastic scattering.
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Fig. 11.5: Left: Phonon dispersion of NiO measured by inelastic neutron scattering. Frequen-
cies are expressed as ν = ω/2π and the wave vector is expressed in units of ζ = π/a. The
lattice is simple cubic, thus the symbols below the abscissa correspond to those in Fig. 11.4(a).
Right: Phonon density of states (see section 11.2.3) of NiO plotted to the same scale in fre-
quency. From [11].

From the conservation laws (11.12) and (11.13) one expects that the scattering intensity has
sharp peaks at the positions where both conditions are fulfilled and is zero everywhere else.
This is indeed so for coherent scattering, unless effects as multi-phonon scattering and an-
harmonicity are strong (usually at higher temperatures). Therefore, inelastic scattering allows
the straightforward determination of the phonon dispersion relation as shown in Fig. 11.5.

In this figure, it can be seen that some of the phonon ‘branches’ start at the origin (acoustic
phonons), as in the simple calculation of the one-dimensional chain. Others are ‘floating’
around high frequencies (optical phonons). The latter occur in materials with atoms of dif-
ferent weight or bond potential. (The one-dimensional chain would also produce these solu-
tions if the masses were chosen differently for even and odd j.) In this case, a mode where
all atoms of a unit cell move roughly in phase has the usual behaviour expected from the
monatomic chain. In particular the dispersion relation at low q is a proportionality:

Ω(q) = vq . (11.15)

This relation is typical for sound waves. v is the sound velocity, longitudinal or transverse
according to the type of phonons considered. In the polyatomic crystal or chain, there are ad-
ditional modes where the atoms move in anti-phase. This implies a much higher deformation
of the bonds. These vibrations constitute the optical phonon branches.

There is another difference between the one-dimensional chain and the three-dimensional
crystal visible. The atomic displacements are not simply scalars uj but vectors uj which
have a direction. This direction can be either parallel or perpendicular to to the wave vector
q. Depending on this, one speaks of longitudinal and transverse phonons. The usual no-
tation is LA, TA, LO, TO, where the first letter indicates the phonon polarisation and the
second whether it is acoustic or optical. An additional index as T1A is used for q directions
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where the symmetry allows a distinction between the perpendicular orientations of uj . The
full mathematical expression for the phonon scattering [2] includes an intensity factor pro-
portional to |Q · uj|2. This factor obviously vanishes if Q and uj are perpendicular, implying
that purely transverse modes are unobservable in the first Brillouin zone where Q = q.

It has to be noted, that the above arguments only hold for coherent neutron scattering (see
equation (11.22) below) from crystalline materials. If the material is amorphous the coherent
scattering will be diffuse (as it is for incoherent scattering always). The readily understand-
able reason for this is that the definition of the phonon wave vector q requires a lattice.

Finally, an indirect effect of vibrations on the elastic scattering should be mentioned. The
elastic scattering (also for x-ray scattering) is reduced by the Debye-Waller factor. This
reduction can be understood from a ‘hand-waving’ argument: Due to the thermal vibrations,
atoms are displaced by uj from their nominal lattice position. Although on the average ⟨u⟩
is zero, there will be a finite mean-square displacement ⟨u2⟩. The Debye-Waller factor can
be shown [2, 9] to be

exp (−⟨(Q · u)⟩) = exp
(
−Q2⟨u2⟩/3

)
(11.16)

where the second expression is only valid for isotropic conditions. It can be seen that the
attenuation of diffraction peaks increases with increasing Q and increasing mean-square dis-
placement, that is at higher temperature. Note, that this does not mean that elastic scattering
can observe dynamics, because a permanent static displacement of the atoms would have the
same effect.

The treatment of inelastic scattering by spin waves is very similar to that of deformation
waves above. In analogy to the phonon the quasiparticle “magnon” is introduced. Thereby,
the displacement uj is replaced by the orientation of the spin. The construction of normal
modes (Bloch waves) and the quantisation proceeds in the same way as for phonons. As
explained in lecture 7 neutrons interact with the nuclei as well as with the magnetic moments
of nuclei and electrons. Therefore, inelastic neutron scattering is also a tool for the detection
of magnons and this has been one of its first applications [12].

11.2.3 Scattering from diffusive processes

For the inelastic scattering from vibrational motions it was practical to consider the scattering
as a process between (quasi)particles, neutrons and phonons/magnons. But there are many
types of molecular motions, mostly irregular and only statistically defined, which cannot be
treated in this concept, e.g. thermally activated jumps or Brownian motion. For these motions
it is more adequate to use a concept of correlation functions to calculate the scattering.

Because these ‘diffusive’ processes are usually much slower than phonon frequencies it is in
most cases not necessary to treat them quantum-mechanically. Therefore, in this section, a
picture of the scattering material will be used where the positions of all scatterers are given
as functions of time rj(t) (trajectories)2. In this picture the double differential cross-section,
defined as the probability density that a neutron is scattered into a solid angle element dΩ

2 This treatment also ignores that in the scattering process the trajectories of the scattering particles are modified,
i.e. recoil effects. The consequences of this approximation are outlined by the end of this section.
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with an energy transfer ℏω . . . ℏ(ω + dω), is

dσ

dΩdω
=

1

2π

k′

k

∫ ∞

−∞
e−iωtdt

N∑
j,k=1

b∗jbk
〈
eiQ·(rk(t)−rj(0))

〉
. (11.17)

In order to derive a quantity similar to the structure factor S(Q) in lectures 4 and 5, one
assumes again a system of N chemically identical particles. Because the neutron scatter-
ing length is a nuclear property, there may still be a variance of scattering lengths. And
even in monisotopic systems, there may be such a variance due to disorder of the nuclear
spin orientations, since the scattering length also depends on the combined spin state of
the scattered neutron and the scattering nucleus3. Therefore, it is assumed that scatter-
ing lengths are randomly distributed with the average b = (1/N)

∑
j bi and the variance

|b|2 −
∣∣b∣∣2 =

∣∣b− b
∣∣2 = (1/N)

∑
i

∣∣bj − b
∣∣2. As will be seen later, this gives rise to the in-

coherent scattering contribution which is usually found in neutron scattering (in contrast to
x-ray scattering). The sum in expression (11.17) can be decomposed into one over different
indices and one over identical indices:

N∑
j,k=1

b∗jbke
iQ·(rk(t)−rj(0)) =

N∑
j ̸=k=1

b∗jbke
iQ·(rk(t)−rj(0)) +

N∑
j=1

|bj|2eiQ·(rj(t)−rj(0)) . (11.18)

They have to be averaged in different ways with respect to the distribution of scattering
lengths. In the first term b∗j and bk can be averaged separately because the different particle
scattering lengths are uncorrelated: b∗ b = b

∗
b = |b|2. In the second term one has to average

after taking the absolute square:

=
N∑

j ̸=k=1

|b|2eiQ·(rk(t)−rj(0)) +
N∑
j=1

|b|2eiQ·(rj(t)−rj(0)) . (11.19)

In order to avoid the sum over distinct particles, the first sum is complemented by the j = k
terms, |b|2eiQ·(rj(t)−rj(0)), and to compensate, these terms are subtracted in the second sum:

=
N∑

j,k=1

|b|2eiQ·(rk(t)−rj(0)) +
N∑
j=1

(
|b|2 − |b|2

)
eiQ·(rj(t)−rj(0)) . (11.20)

With this result it is possible to express the double differential cross section as

∂σ

∂Ω∂ω
= N

k′

k

(∣∣b∣∣2 Scoh(Q, ω) +
(
|b|2 −

∣∣b∣∣2
)
Sinc(Q, ω)

)
(11.21)

with

Scoh(Q, ω) =
1

2πN

∫ ∞

−∞
e−iωtdt

N∑
j,k=1

〈
eiQ·(rk(t)−rj(0))

〉
(11.22)

and

Sinc(Q, ω) =
1

2πN

∫ ∞

−∞
e−iωtdt

N∑
j=1

〈
eiQ·(rj(t)−rj(0))

〉
. (11.23)

3 In this section only nuclear non-magnetic scattering will be considered. For a full treatment of magnetic scattering
see lecture 7 or vol. 2 of ref. 2.
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The quantities defined by (11.22) and (11.23) are called coherent and incoherent scattering
function or dynamic structure factors. It is a peculiarity of neutron scattering that there is
also the incoherent term, which solely depends on the single particle dynamics due to the
variance of the scattering lengths.

The prefactors of the scattering functions in expression (11.21) are often replaced by the
scattering cross sections

σcoh = 4π
∣∣b∣∣2 , σinc = 4π

(
|b|2 −

∣∣b∣∣2
)
. (11.24)

They give the scattering into all directions, i.e. the solid angle 4π (for the incoherent part in
general and for the coherent in the limit Q → ∞).

As demonstrated in ref. 2, it is also possible to use the concept of correlation functions
for phonons. In this way it is possible to calculate the scattering from phonons in terms
of Scoh(Q, ω) and Sinc(Q, ω). The result for the coherent scattering gives non-vanishing
contributions only for (Q, ω) combinations which fulfil the conservation laws (11.12) and
(11.13). This was already shown in section 11.2.2 but the explicit calculation gives also
the intensity of the phonon peaks, e.g. the mentioned result that transverse phonon peaks
vanish in the first Brillouin zone. But with this mathematical approach it is also possible to
calculate the incoherent scattering which is not bound to the momentum conservation (11.13).
The result is for inelastic incoherent neutron scattering from cubic crystals in the one-phonon
approximation [2]:

Sinc(Q, ω ̸= 0) =
ℏQ2

2M
exp(−2W (Q))

g(|ω|)
ω

1

exp(ℏω/kBT )− 1
(11.25)

high T limit−−−−−−→ exp(−2W (Q))
Q2kBT

2M

g(|ω|)
ω2

. (11.26)

(Here, exp(−2W (Q)) is a shorthand for the Debye-Waller factor (11.16).) From this expres-
sion it can be seen that the incoherent scattering is determined by the phonon density of states
g(ω) alone and does not depend on the full details of the phonon dispersion. The density
of states g(ω) is the projection of the phonon dispersion curves onto the frequency axis, as
demonstrated in Fig. 11.5. Besides nuclear inelastic scattering, which requires Mößbauer-
active nuclei, inelastic incoherent neutron scattering is the most important method to deter-
mine g(ω).

In some cases it is interesting to consider the part of expression (11.22) before the time-
frequency Fourier transform, called intermediate coherent scattering function:

Icoh(Q, t) =
1

N

∑
jk

〈
eiQ·(rk(t)−rj(0))

〉
. (11.27)

Its value for t = 0 expresses the correlation between atoms at equal times. A theorem on
Fourier transforms tells that this is identical to the integral of the scattering function over all
energy transfers:

Icoh(Q, 0) =
1

N

∑
jk

〈
eiQ·(rk−rj)

〉
= S(Q) =

∫ ∞

−∞
Scoh(Q, ω)dω . (11.28)
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(S(Q) is the structure factor as derived in lectures 4 and 5 for the static situation.) This
integral relation has a concrete relevance in diffraction experiments. There, the energy of
the neutrons is not discriminated: The diffraction experiment implicitly integrates over all
ℏω 4. Equation (11.28) shows that this integral corresponds to the instantaneous correlation
of the atoms. The diffraction experiment performs a ‘snapshot’ of the structure. All dynamic
information is lost in the integration process and therefore it is invisible in a diffraction
experiment.

Similarly the incoherent intermediate scattering function is

Iinc(Q, t) =
1

N

N∑
j=1

〈
eiQ·(rj(t)−rj(0))

〉
(11.29)

with

Iinc(Q, 0) =
1

N

N∑
j=1

〈
eiQ·(rj−rj)

〉
= 1 =

∫ ∞

−∞
Sinc(Q, ω)dω . (11.30)

Note that this result is independent of the actual structure of the sample. Integration of the
double-differential cross section (11.21) over ω shows that also the static scattering contains
an incoherent contribution. But because of (11.30), this term is constant in Q. It contributes
as a flat background in addition to the S(Q)-dependent scattering. In some cases (e.g. small-
angle scattering) it may be necessary to correct for this, in other cases (e.g. diffraction with
polarisation analysis) it may even be helpful to normalise the coherent scattering.

In the paragraphs before it was shown, that the value of the intermediate scattering functions
at t = 0 corresponds to the integral of the scattering function over an infinite interval. This
is a consequence of a general property of the Fourier transform. There is also the inverse
relation that the value of S(Q, ω) at ω = 0 is related to the integral of I(Q, t) over all
times. The most important case is here when I(Q, t) does not decay to zero for infinite
time, but to a finite value f(Q). In that case the integral is infinite, implying that S(Q, ω)
has a delta function contribution at ω = 0. This means that the scattering contains a strictly
elastic component. Its strength can be calculated by decomposing the intermediate scattering
function into a completely decaying part and a constant for the coherent and the incoherent
scattering:

I[coh|inc](Q, t) = I inel[coh|inc](Q, t) + f[coh|inc](Q) . (11.31)

Because the Fourier transform of constant one is the delta function this corresponds to

S[coh|inc](Q, ω) = Sinel
[coh|inc](Q, ω) + Sel

[coh|inc](Q)δ(ω) , (11.32)

where Sel
[coh|inc](Q) = f[coh|inc](Q), the elastic coherent/incoherent structure factor (EISF), can

4 Strictly speaking, this is only an approximation. There are several reasons why the integration in the diffraction
experiment is not the ‘mathematical’ one of (11.28): (1) On the instrument the integral is taken along a curve of
constant 2θ in Fig. 11.2 while constant Q would correspond to a horizontal line. (2) The double differential cross-
section (11.21) contains a factor k′/k which depends on ω via (11.2). (3) The detector may have an efficiency
depending on wavelength which will introduce another ω-dependent weight in the experimental integration. All
these effects have been taken into account in the so-called Placzek corrections [8, 13, 14].
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be written as

Sel
coh(Q) =

1

N

N∑
j,k=1

〈
eiQ·(rk(∞)−rj(0))

〉
, (11.33)

Sel
inc(Q) =

1

N

N∑
j=1

〈
eiQ·(rj(∞)−rj(0))

〉
. (11.34)

Here, t = ∞ indicates a time which is sufficiently long that the correlation with the position
at t = 0 is lost. For the EISF this lack of correlation implies that the terms with initial and
final positions can be averaged separately:

Sel
inc(Q) =

1

N

N∑
j=1

〈
eiQ·rj

〉 〈
e−iQ·rj

〉

=
1

N

N∑
j=1

∣∣e−iQ·rj
∣∣2 (11.35)

=
1

N

N∑
j=1

∣∣∣∣
∫

V

d3r exp (iQ · r) ρj(r)
∣∣∣∣
2

. (11.36)

Here, ρj(r) denotes the ‘density of particle j’, i.e. the probability density of the individ-
ual particle j being at r. From (11.35) one can see that the normalisation of the EISF
is Sel

inc(0) = 1 (in contrast to that of the structure factor, limQ→∞ S(Q) = 1). One can
say that the EISF is the form factor of the volume confining the motion of the parti-
cles. E.g. for particles performing any kind of motion within a sphere, the EISF would
be Sel

inc(Q) = 9 (sin(QR)−QR cos(QR))2 /Q6R6 as derived in lecture 5.

As in the static situation, the scattering law can be traced back to distance distribution func-
tions. These are now (in the treatment of inelastic scattering) time-dependent. They are
called van Hove correlation functions:

G(r, t) =
1

N

〈
N∑

j,k=1

δ(r− rk(t) + rj(0))

〉
, (11.37)

Gs(r, t) =
1

N

〈
N∑
j=1

δ(r− rj(t) + rj(0))

〉
. (11.38)

Insertion into
I[coh|inc] =

∫

Vd

G[s](r, t) exp(iQ · r)d3r (11.39)

directly proves that the spatial Fourier transforms of the van Hove correlation function are
the intermediate scattering functions.

The two particle version can be reduced to the microscopic density,

ρ(r, t) =
N∑
j=1

δ(r− rj(t)) . (11.40)
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Its autocorrelation function in space and time is

⟨ρ(0, 0)ρ(r, t)⟩ . (11.41)

The 0 is showing that translational symmetry is assumed. So the correlation function can be
replaced by its average over all starting points r1 in the sample volume:

⟨ρ(0, 0)ρ(r, t)⟩ = 1

V

∫

V

d3r1⟨ρ(r1, 0)ρ(r1 + r, t)⟩ . (11.42)

Insertion of (11.40) gives

⟨ρ(0, 0)ρ(r, t)⟩ =
1

V

〈
N∑

j,k=1

∫

V

d3r1δ(r1 − rk(t))δ(r1 + r− rj(t))

〉
(11.43)

=
1

V

〈
N∑

j,k=1

δ(rk(t) + r− rj(t))

〉
. (11.44)

Together with (11.37) this implies

G(r, t) =
1

ρ0
⟨ρ(0, 0)ρ(r, t)⟩ . (11.45)

Again setting t = 0 results in the static scattering situation:

G(r, 0) =
⟨ρ(0, 0)ρ(r, 0)⟩

ρ0
= δ(r) + ρ0g(r) (11.46)

with g(r) as defined in lecture 5.

As in the case of static scattering there is an alternative way to derive the scattering function
by Fourier-transforming the density

ρQ(t) =

∫
d3reiQ·rρ(r, t) =

N∑
j=1

eiQ·rj(t) (11.47)

and then multiplying its conjugated value at t = 0 with that at t:

Icoh(Q, t) =
1

N

〈
ρ∗Q(0)ρQ(t)

〉
(11.48)

and
Scoh(Q, ω) =

1

2πN

∫ ∞

−∞
e−iωt

〈
ρ∗Q(0)ρQ(t)

〉
dt . (11.49)

(This is a consequence of the cross-correlation theorem of Fourier transform which is the
generalisation of the Wiener-Khintchine theorem for two different correlated quantities.)

Note that a reduction of the self correlation function Gs(r, t) to the density is not possible
in the same way. The multiplication ρ(0, 0)ρ(r, t) in equation (11.45) inevitably includes all
combinations of particles j, k and not only the terms for identical particles j, j. Therefore,
the incoherent scattering cannot be derived from the density alone but requires the knowledge
of the motion of the individual particles.
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From the definitions (11.37) and (11.38) it is immediately clear that the van Hove correlation
functions (as defined here) are symmetric in time

G[s](r,−t) = G[s](r, t) . (11.50)

if the system is dynamically symmetric to an inversion of space. From (11.50) and general
properties of the Fourier transform it follows that I(Q, t) is real and that it is also symmetric
in time:

I(Q,−t) = I(Q, t) . (11.51)

In turn this implies that the scattering functions are real and symmetric in energy transfer
ℏω:

S(Q,−ω) = S(Q, ω) . (11.52)

It can be seen that this identity violates the principle of detailed balance. Up- and downscat-
tering should rather be related by

S(Q,−ω) = exp

(
ℏω
kBT

)
S(Q, ω) . (11.53)

The reason for this is that (as mentioned in footnote 2) the influence of the neutron’s im-
pact on the motion of the system particles is neglected. This would be included in a full
quantum-mechanical treatment as carried out in ref. 2 or ref. 8 where the detailed balance re-
lation (11.53) emerges in a natural way. Note that equation (11.53) implies that both I(Q, t)
and G[s](r, t) are complex functions. (This is not ‘unphysical’ because they are no directly
measurable quantities in contrast to S(Q,ω) which is proportional to dσ/dΩdω. Even neu-
tron spin-echo measures only the real part of I(Q, t), see equation (11.70).)

Because the detailed balance relation (11.53) is also valid in classical thermodynamics (and
also recoil can be understood in the framework of classical mechanics) there should be a way
to derive a correct result from a classical treatment of the system too. This task is important
because only rather simple systems can be treated quantum-mechanically. Especially, results
from molecular dynamics computer simulations are classical results. The result for S(Q, ω)
derived here is obviously only a crude approximation. Better approximations can be obtained
by applying correction factors restoring (11.53) [16–18]. The exact classical calculation is
rather complicated [19] and requires knowledge of the system beyond just the trajectories of
the particles.

Inelastic scattering is often also called neutron (scattering) spectroscopy. That there is indeed
a relation to better-known spectroscopic methods as light spectroscopy, can be seen from the
dependence of the scattering function on a frequency ω. It can be said that inelastic neutron
scattering, for every Q, produces a spectrum, understood as the frequency dependence of a
quantity, here the scattering cross section. The optical methods Raman- and Brillouin spec-
troscopy are completely analogous in this respect, yielding the same S(Q, ω) but different
measured double-differential cross-sections because photons interact with matter differently.
Other methods, as absorption spectroscopy, impedance spectroscopy or rheology do not yield
a Q dependence and are thus insensitive to the molecular structure. They provide only in-
formation about the overall dynamics. The deeper reason for this analogy is that scattering
experiments as well as ‘ordinary’ spectroscopy can be explained by linear response theory
(appendix B of ref. 2 or ref. 15).
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Example: diffusion

For simple diffusion the density develops in time following Fick’s second law,

∂ρ

∂t
= D∆ρ ≡ D

(
∂2ρ

∂x2
+

∂2ρ

∂y2
+

∂2ρ

∂z2

)
. (11.54)

The underlying mechanism is Brownian motion, i.e. random collisions with solvent
molecules. Therefore, it can be concluded from the central limit theorem of statistics that
the density of particles initially assembled at the origin is a Gaussian in all coordinates:

ρ1 =
1√
2πσ

exp

(
− x2

2σ2

)
1√
2πσ

exp

(
− y2

2σ2

)
1√
2πσ

exp

(
− z2

2σ2

)

=
1

(2π)3/2σ3
exp

(
− r2

2σ2

)
. (11.55)

The index 1 should remind that the prefactor is chosen such that the total particle number∫
ρ1 d

3r is normalised to one. The width of the distribution, σ has the dimension length. The
only way to construct a length out of D (dimension length2/time) and time is σ = c

√
Dt

where c is a dimensionless constant. Inserting this into (11.55) yields:

ρ1 =
1

c3(2πDt)3/2
exp

(
− r2

2c2Dt

)
. (11.56)

The derivatives of this expression with respect to t and x, y, z can be calculated and inserted
into (11.54):

√
2 (r2 − 3c2Dt)

8π3/2c5D5/2t7/2
exp

(
− r2

2c2Dt

)
=

√
2 (r2 − 3c2Dt)

4π3/2c7D7/2t7/2
exp

(
− r2

2c2Dt

)
. (11.57)

One can see that the right- and left-hand side are identical if c =
√
2. This proves that the

‘guess’ (11.55) is indeed a solution of Fick’s second law and also determines the unknown
c. With the value of c substituted, the ‘single particle density’ is

ρ1 =
1

(8πDt)3/2
exp

(
− r2

4Dt

)
. (11.58)

Diffusion-like processes are often characterised by the mean-square displacement ⟨r2⟩ 5. Be-
cause of the statistical isotropy, the average displacement ⟨r⟩ is always zero. Therefore, the
characterisation of the mobility of a diffusional process has to be done using the second
moment, which is the average of the square of the displacement. For the simple Fickian
diffusion this can be calculated from (11.58):

⟨r2⟩ =
∫

ρ1r
24πr2d3r = 6Dt . (11.59)

5 Here, the definition is “displacement from the position at t = 0” rather than “displacement from a potential
minimum” on page 8. This is an obvious choice because the diffusing particle is not subjected to a potential as
the atom in a crystal. Therefore, there is nothing like an ‘equilibrium position’. This difference is indicated by the
usage of ⟨r2⟩ instead of ⟨u2⟩. Because in the case of motion in a potential the displacement between time zero and
time t can be understood as the difference of the displacements at time zero from the equilibrium position and that
at time t, it follows that ⟨r2⟩ = 2⟨u2⟩
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For incoherent scattering the starting position r(0) is irrelevant. Therefore, expression (11.58)
is also Gs(r, t). Because the Fourier transform of a Gaussian function is a Gaussian itself,
the corresponding incoherent intermediate scattering function is

Iinc(Q, t) = exp
(
−DQ2t

)
, (11.60)

and because the Fourier transform of an exponential decay is a Lorentzian the incoherent
scattering function is

Sinc(Q,ω) =
1

π

DQ2

ω2 + (DQ2)2
. (11.61)

This function is centred around ω = 0, and for that reason the scattering is called quasielas-
tic. This is typical for diffusionlike processes in contrast to vibrational processes which yield
(phonon) peaks at finite energy transfers. For this reason, many textbook authors distinguish
between inelastic and quasielastic neutron scattering instead of subsuming the latter under
the former as done here6.

From expression (11.60) one can see that Iinc(Q, t) decays faster with time for larger Q and
from (11.61) that Sinc(Q,ω) is getting broader. This is understandable because Q defines the
spatial resolution of a neutron scattering experiment in a reciprocal way. So a larger Q means
observation on shorter distances which can be travelled faster by the diffusing particle.

Finally, one can see that

Iinc(Q, t) = exp

(
−Q2⟨r2⟩

6

)
. (11.62)

Because this expression is derived independently of the specific form of σ(t) in (11.55) it is
generally valid if the distribution of displacements Gs(r, t) is a Gaussian. Even if this is not
the case, equation (11.62) is often a good low-Q approximation called the Gaussian approx-
imation7 and is the dynamical analogue of to the Guinier approximation of static scattering.

In general, the incoherent intermediate scattering function cannot be derived from the mean-
square displacement alone. Because equation (11.62) is the first term of the cumulant expan-
sion exp(aQ2+ bQ4+ . . . ) of Iinc(Q, t) [20] the mean-square displacement can be calculated
as

⟨r2⟩ = − lim
Q→0

6

Q2
ln Iinc(Q, t) or (11.63)

⟨r2⟩ = − d ln Iinc(Q, t)

dQ2

∣∣∣∣
Q=0

. (11.64)

By replacing Iinc(Q, t) by its value at infinite time, the EISF Sel
inc(Q), the limiting mean-

square displacement of a confined motion can be obtained. This is the principle of the elastic
scan technique often used on neutron backscattering spectrometers [21].

6 There are two reasons for the choice made here: (1) The correlation function approach is also applicable to
phonons. So, if this method is used, there is no conceptual difference between the treatment of vibrations and
diffusion. (2) There are models as the damped harmonic oscillator which yield a continuous transition between
inelastic scattering in the underdamped case and quasielastic scattering in the overdamped case.
7 In the literature, denominators 1, 2, and 3 are also found in this expression. Most of these formulae are never-
theless correct. Some authors use ⟨r2⟩ as mean-square displacement from an average position (what is called ⟨u2⟩
here). Then, 3 is the correct denominator because of ⟨r2⟩ = 2⟨u2⟩ (footnote 5). If the displacement is considered
only in one coordinate (⟨x2⟩), then 2 is the right denominator.
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Fig. 11.6: Schematic setup of a triple-axis spectrometer.

11.3 Instrumentation

11.3.1 Triple axis spectrometer

The basic objective of inelastic neutron scattering is to measure the momentum transfer
q = k′ − k and the energy transfer ℏω = E ′ −E. This task in general requires a monochro-
mator for the incoming neutron beam and an analyzer for the scattered neutrons. In the
most straightforward setup, the triple-axis spectrometer (3AX), one uses the Bragg planes of
crystals similar to the diffracting grids in an optical spectrometer (figure 11.6).

Axis 1 turns the monochromator crystal. By doing this the neutron wavelength fulfilling the
Bragg condition can be changed. In this way the wave vector k = 2π/λ of the neutrons
impinging on the sample is determined. Axis 2 turns the arm carrying the analyser crystal
around the sample position. This defines the scattering angle 2θ. Finally, axis 3 turns the
analyser crystal around its own axis such that only the desired k′ is admitted to the detector.

For a given setting of axis 1 all points in the kinematically allowed (Q,ω) area (see Fig. 11.2)
can be addressed by suitable settings of axis 2 and 3. E.g., for the study of phonons usually
a ‘constant-Q scan’ is performed where Q = k′ − k is held constant and only ℏω = E ′ − E
is varied. For this purpose a coordinated change of the angles of axis 2 and 3 is required
which is accomplished by computer control.

Historically, the triple-axis spectrometer is the first inelastic neutron scattering instrument.
The first prototype was constructed in 1955 by Bertram N. Brockhouse. In 1994, Brockhouse
received the Nobel prize for this accomplishment (together with Clifford G. Shull for the
development of neutron diffraction).

The 3AX spectrometer is still widely in use for purposes where a high Q resolution is nec-
essary and only a small region in the (Q,ω) plane has to be examined. This is mostly the
study of phonons and magnons in crystals. In other fields, e.g. for ‘soft matter’ systems,
it has been replaced by instruments showing better performance. The most important ones
will be discussed here: time-of-flight (TOF) spectrometer, backscattering (BS) spectrometer,
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Fig. 11.7: Schematic setup of a time-of-flight spectrometer with crystal monochromator.

inverse TOF spectrometer, and neutron spin echo (NSE) spectrometer.

11.3.2 Time-of-flight spectrometer

The main disadvantage of the 3AX spectrometer is that it can only observe one (Q,ω) point
at a time. While for samples where the scattering is concentrated into Bragg peaks this may
be acceptable, for systems with diffuse scattering a simultaneous observation of a range of Q
vectors and energy transfers ℏω is desired. This is accomplished by surrounding the sample
position with an array of detectors (figure 11.7). In addition the energy of the scattered
neutrons E ′ is here measured by their time of flight: A chopper in the incident beam defines
the start time of the neutrons. The electronic pulse from their registration in the detector
gives the end of their flight through the spectrometer. From the time difference the velocity
of the neutrons can be calculated and from this in turn the energy transfer. The relation
between time-of-flight and energy transfer is given by

ℏω =


 l1

2


l0 −


2E/mntflight

2 − 1


E . (11.65)

As in all inelastic neutron scattering experiments, the lower limit of the energy transfer is
−E. (The neutrons cannot lose more than their incident energy.) Because scattered neutrons
with arbitrary high energies arrive at the detector in a finite time there is no principal upper
limit. Nevertheless, at high energy transfers the time-of-flight scale gets so compressed that
energy resolution worsens. This sets a practical upper limit at 5 . . . 10E.

The monochromatization of the incoming neutron beam can either be done by Bragg reflec-
tion from a crystal or by a sequence of choppers which are phased in order to transmit a
single wavelength only. The former principle usually yields higher intensities while the latter
is more flexible for the selection of the incident energy E and attains better energy resolution.
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Fig. 11.8: Left: raw data from TOF spectrometer: neutron counts in a time channel of 10µs
during one hour registration time. The sample is a mesoscopically confined glass-forming liq-
uid. The floating non-linear axis indicates the energy transfers calculated by equation (11.65).
Because of the strength of the elastic scattering that part of the spectrum has been reduced by
a factor of 200. Right: the same TOF data converted to S(Q,ω), elastic line reduced by factor
1000. The characteristic vibrational modes of the material at ℏω ≈ 1.7meV (14 cm−1) become
only visible after the transformation.

Instrument Type λi [Å] Qmax [Å−1] ∆ℏω [meV]
PANTHER (ILL) TX 0.86–3.3 3.5–14 0.4–6
IN5 (ILL) CC 2–15 0.8–5.7 0.01–6
SHARP (ILL) CX 4.1–5.9 1.8–2.6 0.05–0.17
TOFTOF (MLZ) CC 1.5–5 2.0–6.5 0.1–3

Table 11.1: Basic specifications of representative neutron time-of-flight spectrometers. Instru-
ment types: TX–thermal, crystal; CX–cold, crystal; CC–cold, chopper. The maximal Q and
the energy resolution ∆ℏω depend on the incident wavelength; the upper limits of their ranges
correspond to the lower limit of the incident wavelength λi and vice versa. Institutions: ILL–
Institut Laue-Langevin, MLZ–Maier-Leibnitz Zentrum.

Table 11.1 shows some representative TOF instruments with their basic specifications. De-
pending on the desired incident wavelength the instruments are constructed either using neu-
trons directly from the reactor moderator (thermal neutrons, λmax ≈ 1.8 Å) or a cold source,
where an additional moderation, e.g. by liquid hydrogen, takes place (λmax ≈ 4 Å). Thermal
neutrons make a larger Q range accessible while cold neutrons yield better energy resolution.
Therefore, the choice of the instrument depends on the system to be observed but in general
‘cold neutron’ instruments are preferred for inelastic neutron scattering in soft matter systems
while ‘thermal neutron’ instruments are used for studies of phonons and magnetism.

11.3.3 Backscattering spectrometer

A recurring problem of inelastic neutron scattering investigations is that processes are too
slow to be observed. Without resorting to extreme setups which lead to a loss of intensity,
the energy resolution of TOF spectrometers is limited to about 10µeV, which corresponds to
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Fig. 11.9: Schematic setup of a backscattering spectrometer.

a maximal timescale of 200 ps. This is often not sufficient for e.g. the large scale motions in
polymers, biological systems, or glass-forming materials. Therefore, instruments with highest
energy resolution are often needed, the backscattering (BS) and neutron spin echo (NSE)
spectrometer.

The energy resolution of a TOF spectrometer is limited by the selectivity of the monochro-
mator crystal8. If perfect crystals are used the spread of the selected wavelengths ∆λ/λ is
determined by the uncertainty of the scattering angle α at the monochromator and analyser,
∆α. Differentiating the Bragg condition λ = 2 sin(α/2)/d one obtains

∆λ/λ = cotα ·∆α/2 . (11.66)

This expression becomes zero for α = 180◦. In practice this means that the wavelength
spread becomes minimal if the neutron beam is reflected by 180◦, i.e. in backscattering con-
dition.

Figure 11.9 shows schematically the instrument based on this principle. The first crystal in
the beam is only a deflector with low wavelength selectivity. The actual monochromatiza-
tion takes place upon the second reflection by the crystal in backscattering position. The
monochromatized neutrons are then scattered by the sample which is surrounded by analyzer
crystals placed on a spherical surface. There they are again scattered under backscattering
condition. The reflected neutrons pass once more through the sample and finally reach the
detector.

It can be seen that the backscattering condition leads to technical problems in several places:
(1) The deflector must not accept all neutrons otherwise the monochromatized beam would
be scattered back into the source. This can be solved by reducing its size deliberately below

8 For chopper spectrometers the limit is given by the pulse length which could in principle be arbitrary small. But
since the counted intensity decreases quadratically with pulse length the resolution limit of an efficient experiment
is in the same range.
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Instrument Type λ [Å] Qmax [Å−1] ∆ℏω [µeV] ℏωmax [µeV]
SPHERES (JCNS) CD 6.27 1.8 0.7 30
HFBS (NIST) CD 6.27 1.7 0.9 30
IN16B (ILL) CD 3.23–6.27 1.8–3.5 0.3–2.0 31–59
IN13 (ILL) TH 2.23 5.5 8 300

Table 11.2: Basic specifications of representative neutron time-of-flight spectrometers. In-
strument types: CD–cold, Doppler monochromator; TH–thermal, heated monochromator. The
maximal Q and the energy resolution ∆ℏω depend on the incident wavelength; the upper limits
of their ranges correspond to the lower limit of the incident wavelength λi and vice versa. In-
stitutions: JCNS–Jülich Centre for Neutron Science, NIST–National Institute of Standards and
Technology, ILL–Institut Laue-Langevin

the neutron beam area or putting it on a rotating disk which removes it at the moment when
the neutrons come back from the monochromator. Of course all these measures are taken
at the expense of intensity. (2) The second passage of the scattered neutrons through the
sample causes additional multiple scattering and absorption. Both problems can be avoided
by leaving exact backscattering condition but with the consequence that the energy resolution
degrades.

So far it seems that the backscattering instrument can only observe elastic scattering (E ′ =
E) if the same crystals are used for monochromator and analyzer. In order to do inelas-
tic scattering one has to change either E or E ′. It turns out that this is much easier for
the incident energy by either using a moving monochromator (Doppler effect) or a heated
monochromator (thermal expansion modifying the lattice plane distance d). The latter tech-
nique usually allows larger energy transfers. For very large energy transfers, different crys-
tals are used for monochromator and analyzer, yielding an offset of the whole ℏω range.
Table 11.2 comprises specifications of representative BS spectrometers.

11.3.4 Inverse TOF spectrometer

The inverse TOF spectrometer is a kind of of hybrid between the TOF spectrometer and the
backscattering spectrometer. Usually, such instruments are built at spallation sources which
produce short pulses of neutrons. If the neutrons are produced in pulses one can use their
creation time to start the TOF clock and in principle there is no need for a chopper. In this
way, on a pulsed source, all neutrons can be used in contrast to conventional TOF spec-
trometers which use only a few percent. The principle can also be realised by chopping a
continuous beam into pulses on reactors with a loss of intensity comparable to that of an or-
dinary TOF instrument (e.g. BATS in Table 11.3). Because the energy resolution depends on
the length of the pulses this ‘pulse shaping’ may also be necessary on a long-pulse spallation
source.

For inverse TOF instruments, the incident energy E is variable and measured by the time-of-
flight and the final energy E ′ is kept constant by a fixed set of analyser crystals. This is often
called “inverse geometry” or “inverse time-of-flight”. By putting the analyser crystals into
near backscattering position it is possible to obtain a very good energy resolution already
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Instrument Source λ [Å] Qmax [Å−1] ∆ℏω [µeV] ℏωmax [meV]
IRIS (RAL) S 6.7–20 0.6–1.9 1–18 0.4
BATS (ILL) R 3.3–6.3 1.8–3.5 1.2–59 0.34–1.1
DNA (J-PARC) S 3.3–6.3 2.0–3.4 1.4–19 0.08–1.5

Table 11.3: Basic specifications of representative inverse time-of-flight spectrometers. The
maximal Q and the energy resolution ∆ℏω depend on the incident wavelength; the upper limits
of their ranges correspond to the lower limit of the incident wavelength λi and vice versa. R–
reactor source, S–pulsed spallation source. Institutions: RAL–Rutherford-Appleton Laboratory,
ILL–Institut Laue-Langevin, J-PARC–Japan Proton Accelerator Research Complex.

close to true backscattering spectrometers and combine it with the large energy range of
a TOF instrument. Because of the analyser positioning these instruments are sometimes
also called “backscattering” although the way the energy transfer is measured is completely
different from that of the instruments described in section 11.3.3.

11.3.5 Neutron spin echo spectrometer

In order to access even slower processes a very high resolution technique is needed allowing
to reach more than 100 nanoseconds corresponding to energy transfers in the neV range.
Such a technique is provided by neutron spin echo (NSE) spectrometers [22] which are able
to measure directly energy changes of the neutron due to scattering.

This distinguishes NSE from conventional inelastic neutron scattering techniques which pro-
ceed in two steps: (1) monochromatization of the incident beam to E, (2) analysis of the
scattered beam (E ′). The energy transfer is then determined by taking the difference E ′−E.
In order to achieve high energy resolutions with these conventional techniques a very narrow
energy interval must be selected from the relatively low-intensity neutron spectrum of the
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Fig. 11.11: Schematic setup of a neutron spin echo spectrometer.

source. Conventional high-resolution techniques therefore inevitably run into the problem of
low count rates at the detector.

Unlike these methods, NSE measures the individual velocities of the incident and scattered
neutrons using the Larmor precession of the neutron spin in a magnetic field. The neutron
spin vector acts as the hand of an internal clock, which is linked to each neutron and connects
the result of the velocity measurement to the neutron itself. Thereby the velocities before and
after scattering on one and the same neutron can be compared and a direct measurement of
the velocity difference becomes possible. The energy resolution is thus decoupled from the
monochromatization of the incident beam. Relative energy resolutions in the order of 10−5

can be achieved with an incident neutron spectrum of 20% bandwidth.

The motion of the neutron polarization P(t)—which is the quantum mechanical expectancy
value of the neutron spin—is described by the Bloch equation

dP

dt
=

γµ

ℏ
(P×B) (11.67)

where γ is the gyromagnetic ratio (γ = −3.82) of the neutron, µ the nuclear magneton and B
the magnetic field. Equation (11.67) is the basis for manipulation of the neutron polarization
by external fields. In particular, if a neutron of wavelength λ is exposed to a magnetic field
B over a length l of its flight path, its spin is rotated by

ϕ =

(
2π|γ|µλm

h2

)
Bl . (11.68)

The basic setup of an NSE spectrometer is shown in figure 11.11. A velocity selector in the
primary neutron beam selects a wavelength interval of 10–20% width. In the primary and
secondary flight path of the instrument precession fields B and B′ parallel to the respective
path are generated by cylindrical coils. Before entering the first flight path the neutron beam
is polarized in forward direction9. Firstly, a π/2 flipper rotates the polarization to the x
direction perpendicular to the direction of propagation (z). This is done by exposing the
neutrons to a well defined field for a time defined by their speed and the thickness of a

9 This is done by a a “polarizing supermirror” which only reflects neutrons of that spin—similar to the Nicol prism
in optics.
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flat coil (Mezei coil). Beginning with this well-defined initial condition the neutrons start
their precession in the field B. After being scattered by the sample the neutrons pass a π
flipper and then pass the second precession field B′. Finally, the neutrons pass another π/2
coil which, under certain conditions, restores their initial polarization parallel to their flight
direction. In order to understand what that condition is, one has to trace the changes of the
spin vector (z always denoting the direction parallel to neutron propagation):

(nx, ny, nz) neutronic device

(0,0,1)
π/2 flipper

(1,0,0)
field B

(cosϕ, sinϕ, 0)
π flipper

(cosϕ,− sinϕ, 0) =
(cos(−ϕ), sin(−ϕ), 0)

field B′

(cos(ϕ′ − ϕ), sin(ϕ′ − ϕ), 0)
π/2 flipper

(0, sin(ϕ− ϕ′), cos(ϕ− ϕ′))

In total, the spin is rotated by ϕ − ϕ′ around the x axis when a neutron passes through
the spectrometer. This means that the final polarization is identical to the incident if
ϕ = ϕ′ (+2πn), especially if λi = λf (elastic scattering) and

∫ l

0
Bdz =

∫ l′

0
B′dz (for ho-

mogeneous fields: Bl = B′l′) as follows from (11.68). This condition is called “spin echo”
and is independent of the individual velocities of the neutrons because their difference alone
determines ϕ− ϕ′.

Leaving spin echo condition the probability of a single neutron to reach the detector is re-
duced due to the polarization analyzer by cos(ϕ′ − ϕ). If we keep the symmetry of the
instrument, Bl = B′l′, but consider inelastic scattering the precession angle mismatch can be
approximated by

ϕ′ − ϕ =

(
2π|γ|µm

h2

)
Bl(λf − λi)

≈ |γ|µmn
2λ3Bl

h3︸ ︷︷ ︸
=tNSE(B)

ω (11.69)

for small energy transfers where ∆λ ≈ ℏω
/

dE
dλ

can be used. Because the energy transfer
for inelastic scattering is not fixed but distributed as determined by the scattering function
S(Q,ω) we have to average the factor cos(ϕ′ − ϕ) weighted by S(Q,ω) to get the reduction
of count rate at the detector, the effective polarization

P (Q, tNSE) =

∫∞
−∞ S(Q,ω) cos(ωtNSE)dω∫∞

−∞ S(Q,ω)dω
. (11.70)

Expression (11.70) reverses the temporal Fourier transform of equation (11.22) and therefore
the result of the NSE experiment

P (Q, tNSE(B)) =
I(Q, tNSE(B))

I(Q, 0)
(11.71)
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is the normalised intermediate scattering function. This function is often more understandable
and easier to interpret than the frequency dependent scattering function.

In order to estimate typical Fourier times tNSE which can be accessed by NSE we consider
maximum fields of B = B′ = 500Gauss in precession coils of l = l′ = 2 m length operating
at λ = 8 Å. Then (11.69) results in a time of about 10 ns which can be reached.

From this equation it also becomes clear that the most efficient way to enlarge this time
is to use longer wavelengths because λ enters in the third power. This in turn reduces the
accessible Q range which constitutes a drawback for studies on low molecular materials but
not for the large scale properties of polymers which have to be observed at low Q anyway.

Because NSE works in time domain, there is no well-defined way to relate the maximum
Fourier time tmax of an NSE spectrometer to the resolution ∆ℏω of one of the instru-
ments mentioned before. A rule of thumb would be that 1 ns corresponds to 1µeV, thus
∆ℏω/µeV = ns/tmax. Because of the inverse relation between time and frequency, the cor-
responding limit to ℏωmax on backscattering and inverse TOF, on an NSE spectrometer is
the smallest time accessible, tmin. This time depends strongly on the technical set-up of the
spectrometer. In most cases it is about three orders of magnitude below tmax.

There are two restrictions of the application of NSE which may impede its use even if the
dynamical range is adequate for the system to be studied:

• If the sample changes the polarisation of the beam the information encoded in the
neutron spins gets ‘scrambled’. This is the case for magnetic samples but also for
systems with spin-incoherent scattering. Because 1H hydrogen is a spin-incoherent
scatterer this often makes chemical deuteration necessary. Nowadays, NSE experiments
are often still feasible because there may be a stochastic relation between the numbers
of neutrons scattered. This would be 1/3 ‘up’ and 2/3 ‘down’ in the case of pure spin-
incoherent scattering. Nevertheless, there are combinations of nuclei which bring the
probabilities close to 1/2 or uncontrollable situations as in ferromagnets where NSE
measurements are impossible.

• Because the value of λ in equation (11.69) varies by 10. . . 20% from neutron to neutron
the relation between the phase difference and the energy transfer is somewhat ‘blurred’.
For processes like diffusion which have a broad distribution of ω (see (11.61)) this is
usually not important. But for mechanisms which produce well-defined energy trans-
fers ℏω this is problematic and neutron backscattering is preferable.

Exemplary NSE spectrometers with their specifications are listed in table 11.4. NSE spec-
trometers are very flexible instruments often used with different setups of which only “typi-
cal” ones have been included. As special features have to be mentioned that IN11 and WASP
have one-dimensional detector arrays which span 60◦ and 130◦ degrees respectively, allow-
ing the simultaneous observation of a range of Q values. The instruments IN15 and J-NSE
have two-dimensional detector arrays which can be used for studying anisotropies but cover
a smaller angular range. IN15 uses a focusing mirror in order to increase neutron flux which
would be otherwise very low due to its long precession coils.

A straightforward optimisation is the use of multidetectors covering a large angular range
as in TOF or BS spectrometers. This is indeed possible by adopting a radial magnetic field
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Instrument λ [Å] Qmax [Å−1] tmax [ns] features options

IN11† (ILL) 4.5–12 0.9–2.4 2–45 multidetector,
three-axes

J-NSE (JCNS) 4.5–16 0.4–1.5 10–350 multidetector,
superconducting
coils

IN15 (ILL) 8–25 0.13–0.4 30–1000 mirror optics time-of-flight
WASP (ILL) 3–12 1.0–3.9 0.6–18 radial geometry
NSE (ORNL) 2–14 0.4–3.1 1–280 time-of-flight,

superconducting
coils

Table 11.4: Basic specifications of representative neutron spin echo spectrometers. The maxi-
mal Q and the maximal Fourier time tmax depend on the incident wavelength; the upper limit of
the Q range and the lower limit of tmax correspond to the lower limit of the incident wavelength
λ and vice versa. Institutions: ILL–Institut Laue-Langevin, JCNS–Jülich Centre for Neutron
Science, ORNL–Oak Ridge National Laboratory. †IN11 is not in operation anymore but in-
cluded for historical reasons.

configuration. The drawback is that the field integral is less well defined in this setup. This
leads to a reduction of the time range by a factor of about 10 compared to a conventional
NSE spectrometer.

Also for NSE it is possible to optimise the instrument for pulsed sources by using time-of-
flight. The idea is that one omits the velocity selector and uses the fact that the neutrons
arrive ‘sorted’ by velocity at the instrument. So one works with a very large wavelength
range. But still individual wavelengths can be identified from the time of registration in the
detector. The different wavelengths generate different Q values at the same detection angle.
This saves the often necessary step to vary either the scattering angle or the wavelength to
collect several Q values.
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Exercises

Note: Exercises are labelled by stars (* through ***) indicating the level of difficulty. Try to
solve the easier ones first.

E11.1 Scattering triangle∗

For the feasibility of an inelastic neutron scattering experiment it is essential that the desired
Q, ℏω combination (in the scattering function S(Q,ω) can be reached at a certain combina-
tion of incident neutron wavelength λ and angle 2θ.

1. λ = 5.1 Å, 2θ = 90◦ and ℏω = 5 meV, which value has Q? Which value would Q
have calculated from the formula for elastic scattering?

2. λ = 5.1 Å, Q = 1 Å−1, what is the largest energy gain and largest absolute energy loss
one can reach? What do you have to do if you need larger values of |ℏω|?

Hints: ℏ = 1.0546×10−34 Js, neutron mass: m = 1.6749×10−27 kg, 1 eV = 1.6022×10−19 J.

E11.2 Q dependence of characteristic time∗∗∗

In many cases, the incoherent intermediate scattering function can be written in the form
Iinc(Q, t) = exp

(
−(t/τ(Q))β

)
with τ(Q) ∝ Q−x. E.g. in the lecture diffusion (x = 2,

β = 1) and the ideal gas (x = 1, β = 2) were presented. In a later lecture you will learn that
for polymers in the melt x = 4, β = 1/2 holds. For polymers in solution the Zimm model
predicts x = 3, β = 2/3. In all cases x · β = 2. What is the reason for this nearly universal
relation?

E11.3 Choice of instruments∗∗

The most important aspect of planning an inelastic neutron scattering experiment is the
choice of the right instrument matching the time scale of the process to be observed.

1. What is the range of energy transfers corresponding to the right-hand side of Fig. 11.5
in meV? Which instrument would you chose?

2. The diffusion coefficient of benzene at room temperature is about 2 × 10−5 cm2/s.
Which instrument would you use to study this diffusion on the length scale of 0.5 nm?
(Hints: As you may know from the lectures of diffraction and SANS, the lengths are
related roughly roughly by Q = 2π/l. From that value calculate the width of the
quasielastic scattering in (11.61) and convert it to meV.)

3. The diffusion coefficient of the protein alcohol dehydrogenase in water is 23.5µm2/s.
Which instrument would you use to study this diffusion on the length scale of 3 nm?
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4. When molecules containing methyl groups are cooled down to near absolute zero, their
rotation does not completely stop because quantum tunnelling between the energy min-
ima is possible. This leads to a splitting of the ground state, which can be very different
in chemically similar molecules: methane (CH4): 142 µeV, methyl fluoride (CH3F):
23.1 µeV, methyl iodide (CH3I): 2.44 µeV. Which instrument may be used for which
compound?
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12.1 Introduction 
 
Mankind faces several challenges these days: it is necessary to stop the climate change, fight 
diseases, keep the biodiversity and reach a sustainable economy and ecological food and 
water supply for everybody. To achieve all that, new technologies and materials are needed, 
which require research to understand the processes underlying the problem and to find and 
test new materials. This requires a variety of methods to investigate matter. 
Neutron scattering is an important method for this research, especially to study biological 
systems, magnetic materials and energy materials, because it makes magnetic structures and 
light atoms visible (especially H atoms) and can distinguish atoms close to each other in the 
periodic system and is even isotope sensitive. 
Dedicated instruments were built to determine atomic structures or structures in the nm-scale, 
to study inelastic processes in a certain time and length range, to take images of the interior of 
an object or to analyse its atomic composition. 
Practically all instruments are prototypes, adapted to the source and the planned scientific 
applications. The construction is expensive, and the flux is lower than that of other beams. 
This results in long measuring times and makes beam time precious. As a consequence, it is 
necessary to build optimized instruments and use beamtime efficiently. To build optimized 
instruments, they are first designed analytically and then simulated by Monte Carlo 
simulations. This allows comparing different setups and parameter choices and even enables 
numerical optimization. 
Usually, the simulations include scattering of neutrons in known samples and determining the 
distribution of neutrons on the detector. They are then called virtual experiments.  Often, the 
simulated spectra are evaluated using the data evaluation software foreseen for the real 
experiments. 
Virtual experiments also useful for teaching purposes, training to handle the instrument, 
preparation of the real experiment and even for testing the data evaluation software. 

 
 

12.2 Simulation of neutron scattering instruments 
 

12.2.1 Monte Carlo simulations 
 
Monte Carlo (MC) simulations are used in many fields, e.g. traffic simulations, 
telecommunication or physics. The basic idea is to create a large number of events by random 
number choices. As an example, in a simulation of the traffic in a town, an 'event' is the ride 
from point A to B in the town, e.g. a commute to work in the morning. The random number 
choices would be: the home address (mainly in living area), work address (usually in the city 
centre or a business park) and the starting time. 
Similarly, in neutron scattering, the events are the possible trajectories of a neutron through 
the instrument including the scattering possibilities in the sample. Accordingly, the 
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parameters determined by random choices for each event are: the starting position (on the 
moderator surface), the flight direction from the moderator, the neutron wavelength and the 
starting time at the moderator for time-of-flight instruments (see 0). Dependent on the 
instrument, additional choices may be needed, e.g. for the scattering in the sample or the 
detection process in the detector. 
The trajectory of each neutron through the instrument is then calculated treating them as 
classical particles usually under the influence of gravity until they are absorbed, missing a 
component or reaching the sample. Here they are scattered into a chosen solid angle and 
counted, if they reach the detector. Each trajectory is given a weight in neutrons per second, 
which enable to monitor the neutron intensity at any point of the instrument and in any 
monitor channel or detector cell. 

 
Why not scanning the parameters? A 'dense' distribution of each parameter is only possible in 
1- or 2-dimensional parameter space, not in 6 or more dimension. As an example, if there are 
6 parameters and 1 million events, there can be only 10 different values for each parameter. 
For the instrument simulation described above, only 10 different wavelength values, e.g. 1, 2, 
... 10 Å. So, peaks generated by neutrons of e.g. 2.45 or 3.6 Å will not be visible. 

 
Name and history: First Monte Carlo simulations were performed within the Manhattan 
Project to develop the atomic bomb; they called it Monte Carlo method as it reminded them 
on gambling in a casino. It was also the start of the MCNP program, which is still used today. 
It is one of a few programs to simulate shielding and the target-moderator-reflector system, 
where neutrons are generated and slowed down. 
A branch of the MCNP program was converted to NISP [1] to simulate neutron scattering 
instruments with the idea to accelerate simulation by only considering neutrons on their way 
to sample and detector. As it was difficult to use, it was only continued as long as the author 
supported the simulations. In the late 90s, new programs were developed (e.g. VITESS [2], 
McStas [6]). They were designed for a broad user community, are easy to use and can be 
employed for all kinds of instruments at all kinds of neutron sources. 

 
 

 
Fig. 12.1: Concept of Monte Carlo simulations as used in virtual experiments on neutron 

scattering instruments showing 3 of the 6 parameters determined by random 
choices: y, ehor, Θs. In the other dimension (not shown here), there are 3 more: z, 
evert, Φs. 
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12.2.2 Instrument design 
 
A new instrument first needs a design concept and analytical calculations starting from the 
scientific applications foreseen for the instrument. The analytical calculations allow already 
an estimation of its resolution and the flux at the sample. 
Then it is simulated to see the beam properties (at the sample) and get more precise values for 
flux and resolution. It can be optimized for highest flux, highest resolution, best peak shape, 
highest signal to noise ratio or any other figure-of-merit. Therefore, many simulations are 
necessary comparing different parameter settings or even using numerical optimisation to find 
the best parameter set. 
When instruments are upgraded, both, the old and the new setup are simulated and compared. 
The simulation of the old version should reflect the experimental results. If that is the case 
and the simulation of the new setup gives a better figure-of-merit, an improved instrument 
performance can be expected (see e.g. [4]). 

 

12.2.3 Example: A diffractometer for the High Brilliance neutron Source 
(HBS) 
 
As an alternative to fission or spallation neutron sources, Compact Accelerator-driven 
Neutron Sources (CANS) have been developed, in which protons with energies of the order 
10 MeV cause the release of neutrons by nuclear reactions in neutron-rich isotopes of some 
elements (e.g. 7Li, 9Be, or 181Ta). CANS sources are scalable by adapting proton energy and 
current to the needed source strength. At the upper end, High-Current Accelerator-driven 
Neutron Sources (HiCANS) allow instrument performances as offered by current medium 
reactor and spallation sources.  
The Jülich High Brilliance neutron Source (HBS) is one of these HiCANS sources. It has 
been developed over the last years at Forschungszentrum Jülich. The Technical Design 
Report, released in 2023 contains not only a description of the facility as a whole, of the 
accelerator and the target-moderator-reflector system, but also a suggestion for the instrument 
suite, which covers all scientific applications studied using neutrons [5]. It comprises SANS 
instruments and reflectometers for large scale structure studies, spectrometers to study 
dynamics of materials, imaging instruments for 'photos' of the interior of objects and analytics 
instruments for the determination of element or isotope composition by analytics instruments 
and six diffractometers to determine atomic positions. 
One of them is the Thermal Powder Diffractometer (TPD), a time-of-flight powder 
diffractometer. It allows a large variation in flux and resolution so that it can be used for high-
resolution measurements as well as low-resolution time-resolved measurements Fehler! 
Verweisquelle konnte nicht gefunden werden.. It has been simulated in detail for the three 
different setups - high resolution, medium resolution and high intensity. The results show 
promising beam properties at the sample (see 0).  
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Fig. 12.2 Spatial (top) and divergence (bottom) distribution of the beam of the thermal 

powder diffractometer of the HBS at the sample position for the three different 
setups obtained by MC simulations using the VITESS program [1] 

 
 

12.3 Virtual experiments 
 
In the next step, a sample is added to the simulation. The sample scatters the neutrons, and 
their distribution on the detector is simulated – this is the diffraction pattern. For time-of-
flight instruments, it is converted into a function I(Q) or I(d), the intensity as a function of the 
momentum transfer Q or the d-spacing d. (see  0). This allows calculating the linewidth and 
checking the line shape. The diffraction pattern can now be used for data evaluation, e.g. by 
using the same software as for real experiments. This enables to check the instrument 
performance in terms of the final output. 
In our example, a virtual experiment of the Thermal Powder Diffractometer was performed 
using the standard sample Na2Ca3Al2F14 (NAC) for powder diffractometer. It revealed a 
symmetric linewidth and a resolution and detector count rate comparable to diffractometers 
on current neutron sources (see 0) 
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Fig. 12.3: Diffraction pattern of a NAC sample obtained by simulation of the thermal powder 

diffractometer of the HBS in the high-resolution setup. The red curve shows the 
pattern of the long wavelength frame (1.65 – 2.7 Å), the black curve that of the 
short wavelength frame (0. - 1.65 Å). The inset shows the range around 1.1 Å of the 
red curve stretched by a factor of about 50. 

 

12.4 Digital twins 
 
Simulations of the diffraction patterns have been performed for many years already. Now we 
want to emulate the real neutron scattering experiment by a simulation, in which the 
simulated system reacts just like the real system. Ideally, the graphical user interface that is 
used for the real instrument is also used for the virtual experiments. We then have a so-called 
digital twin of the instrument. This is realized in several of the experiments in the JCNS lab 
course to enable virtual experiments, when the real experiments cannot be performed. 
While most components in a real instrument have their counterpart in the virtual experiment, 
the neutron beam is usually treated differently: So far, it has been common practice to take all 
neutrons out of the consideration that are not on the way to sample and detector anymore. In a 
digital twin, we have to treat also neutrons scattered in the sample environment, passing 
through the sample without reacting with it, or interacting with the sample support (cf. 0. 
In a second step, the absorption of neutrons in the different components could be used to 
simulate the background radiation.  
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It is also required for the simulation to enable visualization of the detector screen or the 
monitors and to update this output every few seconds in order to show the advance of the 
(virtual) measurement. 
For some instruments, it is a challenge to get the simulation as fast as the experiment. Then it 
may be necessary to store events after the fixed part of the instrument and read them to 
simulate the variable part of the instrument.  
The final step to a digital twin is then to have an 'endless' simulation that reacts 
instantaneously on parameter changes. This has not been realized - presently a parameter 
change causes a restart of the simulation with the new parameter set – but this feature is 
currently in the works.  
 

 
Fig. 12.4: Trajectories of neutrons passing through or by the sample in a simulation of a 

digital twin of a neutron reflectometer.  

 
 

12.5 Applications of virtual experiments 
 

12.5.1 Training and experiment preparation 
 
If a digital twin with the same GUI exists, it can be used to learn how to set up the instrument 
and to conduct an experiment. For this purpose, the simulation should be available as a web 
application enabling the scientist to control the instrument before his beamtime starts (cf. 0). 
That will save him time at the facility so that he can use the beamtime more efficiently. 
Even without the same GUI, virtual experiments can be used to prepare experiments. Using a 
sample similar to the one to be measured, instrument settings can be varied to find out the best 
compromise between needed resolution and high counting rate. It also gives an estimation of 
the beamtime needed for each experiment, which will enable to make a realistic measurement 
plan.  
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12.5.2 Teaching 
 
Virtual experiments can also be used to learn about neutron scattering. Independent of a real 
measurement, one can exchange samples and vary instrument settings and view the results. 
One only needs a simple PC for that, install a freely available software (VITESS, McStas, ...) 
and get results after some seconds or a few minutes of simulation time.   
 

12.5.3 Test of data evaluation software 
 
One advantage of virtual experiments over real experiments is that the sample parameters are 
exactly known, because they are input parameters. So, it is possible to compare the result of 
the data evaluation with the true parameters. 
This does not only allow checking the influence of the instrument on the final result, but also 
to check the data evaluation software. 
Another possibility is to mark neutron trajectories in the simulation, e.g. where they are 
scattered. Thus, you can separate contributions from the sample environment or from multiple 
scattering from the real signal. 

 

 
Fig. 12.5: Integration of a program for virtual neutron scattering instruments into the NICOS 

operating system for instrument control of the MLZ instruments in a client-server-
application giving a digital twin of the real instrument. 
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Exercises 
 

Preparation 
- Download the current version of the program VITESS from the website: https://vitess.fz-
juelich.de 
- Start the program and prepare a new instrument simulation by defining the parameter 
directory, where the simulation is executed 
 

E12.1 Source and sample illumination* 
 

- Use 'source' as the first module and create neutrons in the wavelength range 4.5 to 5.5 Ang. 
- Choose a cold moderator of the FRM-II source (from InstallDirectory/FILES/ 
moderators/...) 
- Illuminate a 2 x 2 cm² large area in 10 meters distance. 

- Put a 2D monitor there to show the divergence distribution 
- Put a 1D monitor there to show the wavelength distribution 

- Run the simulation using 1 Mio and 100 Mio 'trajectories' (=events) and compare 
 

E12.2 SANS spectrum** 
 
- Add a 2 x 2 x 0.1 cm SANS sample of spheres of 100 nm diameter shortly behind the 
monitors 
- Add a 1 m² detector of 5 x 5 mm² cell size (using the modules 'screen') in 4 m distance from 
the sample 
- Run the simulation and monitor the intensity distribution on the detector 
- Use the module 'eval_sans' to generate the spectrum I(Q) 
 

E12.3 Resolution*** 
 
- Look at the spectrum I(q). Is it in agreement with your expectations for a spherical sample? 
- Which parameters contribute to the Q resolution? 
- Which parameters is dominating here? 
- What can be done to improve the resolution e.g. to half the value in δQ/Q ? 
 







13 Strongly correlated electrons

M. Angst
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13.1 Introduction

Materials with strong electronic correlations are materials, in which the movement of one elec-
tron depends on the positions and movements of all other electrons due to the long-range
Coulomb interaction. With this definition, one would naively think that all materials show
strong electronic correlations. However, in purely ionic systems, the electrons are confined
to the immediate neighborhood of the respective atomic nucleus. On the other hand, in ideal
metallic systems, the other conduction electrons screen the long-range Coulomb interaction.
Therefore, while electronic correlations are also present in these systems and lead for example
to magnetism, the main properties of the systems can be explained in simple models, where
electronic correlations are either entirely neglected (e.g. the free electron Fermi gas) or taken
into account only in low order approximations (Fermi liquid, exchange interactions in mag-
netism etc.). In highly correlated electron systems, simple approximations break down and
entirely new phenomena and functionalities can appear. These so-called emergent phenomena
cannot be anticipated from the local interactions among the electrons and between the electrons
and the lattice [1]. This is a typical example of complexity: the laws that describe the behavior
of a complex system are qualitatively different from those that govern its units [2]. This is what
makes highly correlated electron systems a research field at the very forefront of condensed
matter research. The current challenge in condensed matter physics is that we cannot reliably
predict the properties of these materials. There is no theory, which can handle this huge num-
ber of interacting degrees of freedom. While the underlying fundamental principles of quantum
mechanics (Schrödinger equation or relativistic Dirac equation) and statistical mechanics (max-
imization of entropy) are well known, there is no way at present to solve the many-body problem
for some 1023 particles. Some of the exotic properties of strongly correlated electron systems
and examples of emergent phenomena and novel functionalities are:

• High temperature superconductivity; while this phenomenon was discovered in 1986 by
Bednorz and Müller [3], who received the Nobel Prize for this discovery, and since then
has continually attracted the attention of a large number of researchers, there is still no
commonly accepted mechanism for the coupling of electrons into Cooper pairs, let alone
a theory which can predict high temperature superconductivity or its transition tempera-
tures. High temperature superconductivity has already some applications such as highly
sensitive magnetic field sensors, high field magnets, and power lines, and more are likely
in the future.

• Colossal magnetoresistance effect CMR, which was discovered in transition metal oxide
manganites and describes a large change of the electrical resistance in an applied magnetic
field [4]. This effect can be used in magnetic field sensors and could eventually replace
the giant magnetoresistance [5, 6] field sensors, which are employed for example in the
read heads of magnetic hard discs.

• The magnetocaloric effect [7], a temperature change of a material upon applying a mag-
netic field, can be used for magnetic refrigeration without moving parts or cooling fluids.

• Metal-insulator-transitions as observed e.g. in magnetite (Verwey transition [8]) or cer-
tain vanadites are due to strong electronic correlations and could be employed as elec-
tronic switches.
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• Multiferroicity [9], the simultaneous occurring of various ferroic orders, e.g. ferromag-
netism and ferroelectricity, in one material. If the respective degrees of freedom are
strongly coupled, one can switch one of the orders by applying the conjugate field of the
other order. Interesting for potential applications in information technology is particularly
the switching of magnetization by an electric field, which has been proposed to be used
for easier switching of magnetic non-volatile memories [10]. Future applications of mul-
tiferroic materials in computer storage elements are apparent. One could either imagine
elements, which store several bits in form of a magnetic- and electric polarization, or one
could apply the multiferroic properties for an easier switching of the memory element.

• Negative thermal expansion [11] is just another example of the novel and exotic properties
that these materials exhibit.

It is likely that many more such emergent phenomena will be discovered in the near future.
This huge potential is what makes research on highly correlated electron systems so interesting
and challenging: this area of research is located right at the intersection between fundamen-
tal science investigations, striving for basic understanding of the electronic correlations, and
technological applications, connected to the new functionalities [12].

13.2 Electronic structure of solids

Fig. 13.1: Potential energy of an electron in a solid.

In order to be able to discuss the effects of strong electronic correlations, let us first recapitulate
the textbook knowledge of the electronic structure of solids [13, 14]. The description of the
electron system of solids usually starts with the adiabatic or Born-Oppenheimer approximation:
The argument is made that the lighter electrons are moving so quickly compared to the nuclei
that the electrons can instantaneously follow the movement of the much heavier nuclei and thus
see the instantaneous nuclear potential. This approximation serves to separate the lattice- and
electronic degrees of freedom. Often one makes the further approximation to consider the nuclei
to be at rest in their equilibrium positions. The potential energy seen by a single electron in the
averaged field of all other electrons and the atomic core potential is depicted schematically for
a one dimensional system in Fig. 13.1.

The following simple models are used to describe the electrons in a crystalline solid:
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• Free electron Fermi gas: here a single electron moves in a 3D potential well with in-
finitely high walls corresponding to the crystal surfaces. All electrons move completely
independent, i.e. the interaction between the electrons is considered only indirectly by the
Pauli exclusion principle.

• Fermi liquid: here the electron-electron interaction is accounted for in a first approxima-
tion by introducing quasiparticles, so-called dressed electrons, which have a charge e,
and a spin 1

2
like the free electron, but an effective mass m∗, which can differ from the

free electron mass m. Other than this renormalization, interactions are still neglected.

• Band structure model: this model takes into account the periodic potential of the atomic
cores at rest, i.e. the electron moves in the average potential from the atomic cores and
from the other electrons.

Considering the strength of the long-range Coulomb interaction, it is surprising that the sim-
ple models of Fermi gas − or better Fermi liquid − already are very successful in describing
some basic properties of simple metals. The band structure model is particularly successful in
describing semiconductors. But all three models have in common that the electron is described
with a single particle wave function and electronic correlations are only taken into account in-
directly, to describe phenomena like magnetism due to the exchange interaction between the
electrons or BCS superconductivity [15], where an interaction between electrons is mediated
through lattice vibrations and leads to Cooper pairs, which undergo a Bose-Einstein condensa-
tion.

What we have sketched so far is the textbook knowledge of introductory solid state physics
courses. Of course there exist more advanced theoretical descriptions, which try to take into
account the electronic correlations. The strong Coulomb interaction between the electrons is
taken into account in density functional theory in the so-called “LDA+U” approximation or
in the so-called dynamical mean field theory DMFT or a combination of the two in various
degrees of sophistication [16]. Still, all these extremely powerful and complex theories often
fail to predict even the simplest physical properties, such as whether a material is a conductor
or an insulator.

Fig. 13.2: Left: Atomic potential of an electron interacting with the atomic core and the cor-
responding level scheme of sharp energy levels. Right: Broadening of these levels into bands
upon increase of the overlap of the wave functions of neighboring atoms. After [13]
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Let us come back to the band structure of solids. In the so-called tight-binding model one
starts from isolated atoms, where the energy levels of the electrons in the Coulomb potential
of the corresponding nucleus can be calculated. If N such atoms are brought together, the
wave functions of the electrons from different sites start to overlap so that electrons can hop
between neighboring atoms. This leads to a broadening of the atomic energy levels, which
eventually will give rise to the electronic bands in solids, each of which is a quasi-continuum of
2N electronic states (N possible values of k, spin σ =↑ or ↓). The closer the atoms are brought
together, the more the wave functions overlap, the more the electrons will be delocalized, and
the broader in energy are the corresponding bands (Fig. 13.2).

Fig. 13.3: Band structure of insulators and metals.

If electronic correlations are not too strong, the electronic properties can be described by a band
structure, which allows one to predict whether a material is a an insulator or a metal. This is
shown in Fig. 13.3. At T = 0 all electronic states are being filled up to the Fermi energy,
taking into account the Pauli principle. If there is an even number of electrons per atom (or
more generally per primitive unit cell), say 2m, these will fill up exactly the first m bands, and
the higher energy bands are empty. Unless there is band-overlap between the highest occupied
(valence) band and the lowest unoccupied (conduction) band (which may accidentally happen
in 3D) any electron transport would require the bump of an electron from the valence to the
conduction band, and consequently the material is an insulator (at non-zero T some electrons
may be thermally excited to the conduction band if the band gap is small, one calls the material
then a semi-conductor rather than an insulator). If there is an odd number of electrons per
primitive unit cell, say 2m+ 1, the first 2m bands will be completely full, but the band 2m+ 1
will be half-filled. In a partially filled band electrons easily move in response to a voltage, hence
the material is a metal − within the model described so far always. However, as mentioned
above this band structure model describes the electrons with single particle wave functions.
Where are the electronic correlations?
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13.3 Strong electronic correlations: the Mott transition

Fig. 13.4: Rock-salt (NaCl)-type structure of CoO.

It turns out that electronic correlations are particularly important in materials, which have some
very narrow bands. This occurs for example in transition metal oxides or transition metal
chalcogenides as well as in some light rare earth intermetallics (heavy fermion systems). Con-
sider CoO as a typical and simple example of a transition metal oxide. CoO has the rock-salt
structure shown in Fig. 13.4, with a face-centered cubic (fcc) unit cell containing four for-
mula units. The primitive unit cell of the fcc lattice, however, is spanned by the basis vectors
a′ = 1

2
a(ex + ey), b′ = 1

2
a(ey + ez), and c′ = 1

2
a(ez + ex), where a is the lattice constant,

and ex, ey, and ez, are the unit basis vectors of the original fcc unit cell. The primitive unit cell
contains only one cobalt and one oxygen atom. The electronic configurations of these atoms
are: Co: [Ar]3d74s2; O: [He]2s22p4. In the solid, the atomic cores of Co and O have the elec-
tronic configuration of Ar and He, respectively. These electrons are very strongly bound to the
nucleus and we need not consider them on the usual energy scales for excitations in the solid
state. We are left with nine outer electrons for the Co and six outer electrons for the O atom in
the solid, so that the total number of electrons per primitive unit cell is 9 + 6 = 15, i.e. an odd
number. According to our considerations in the last section, we must have at least one partially
filled band and CoO should be a metal.

What does the experiment tell us? Well, in fact, CoO is a very good insulator with a room-
temperature resistivity ρ(300K) ∼ 108 Ωcm (For comparison, the good conductor iron has
ρ(300K) ∼ 10−7 Ωcm. The resistivity of CoO is exponentially decreasing with increasing
temperature T , and the T -dependence corresponds to activation energies of about 0.6 eV or a
temperature equivalent of 7000K, which means there is a huge band gap making CoO a very
good insulator. To summarize these considerations: the band theory breaks down already for a
very simple oxide consisting of only one transition metal and one oxygen atom!

In order to understand the reason for this dramatic breakdown of band theory, let us con-
sider an even simpler example: the alkali metal sodium (Na) with the electronic configuration
[Ne]3s1=1s22s22p63s1. Following our argumentation for CoO, sodium obviously has a half-
filled 3s band and is therefore a metal. This time our prediction was correct: ρ(300K) ∼
5 × 10−6 Ωcm. However, what happens if, hypothetically, we pull the atoms further apart and
increase the lattice constant continuously? Band theory predicts that for all distances sodium
remains a metal, since the 3s band will always be half-filled. This contradicts our intuition: at a
certain critical separation of the sodium atoms, there must be a transition from a metal to an in-
sulator. This metal-to-insulator transition was predicted by Sir Nevill Mott (physics Nobel price
1977); it is therefore called the Mott transition [17]. The physical principle is illustrated in Fig.
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Fig. 13.5: Illustration of (electron) hopping between two neutral Na atoms - involving charge
fluctuations.

13.5: On the left, two neutral Na atoms are depicted. The atomic energy levels of the outer elec-
trons correspond to an energy ε3s. The wave functions of the 3s electrons will overlap giving
rise to a finite probability that an electron can hop from one sodium atom to the other one. Such
a delocalization of the electrons arising from their possibility to hop is favored because it lowers
their kinetic energy. This can be seen for example by generalizing the “particle in a box” prob-
lem: Ekin ∝ p2 = h2/λ2 (de Broglie) and λ ∼box size, and it is consistent with the uncertainty
principle ∆p · ∆x ≥ ℏ

2
. Fig. 13.5 on the right shows the situation after the electron transfer.

Instead of neutral atoms, we have one Na+ and one Na− ion. However, we have to pay a price
for the double occupation of the 3s states on the Na− ion, namely the intra-atomic Coulomb re-
pulsion between the two electrons denoted as U3s. While this is a very simplistic picture, where
we assume that the electron is either located on one or the other Na atom, this model describes
the two main energy terms by just two parameters: the hopping matrix element t, connected
to the kinetic energy, and the intra-atomic Coulomb repulsion U , connected with the potential
energy due to the Coulomb interaction between the two electrons on one site. In this simple
model, we have replaced the long range Coulomb potential proportional to 1/r with its leading
term, an on-site Coulomb repulsion U . More realistic models would have to take higher order
terms into account but already such a simple consideration leads to very rich physics. We can
see from Fig. 13.5 that electronic conductivity is connected with charge fluctuations and that
such charge transfer costs energy, where U is typically of the order of 1 or 10 eV. Only if the
gain in kinetic energy due to the hopping t is larger than the penalty in potential energy U can
we expect metallic behavior. If the sodium atoms are now being separated more and more, the
intra-atomic Coulomb repulsion U will maintain its value while the hopping matrix element t,
which depends on the overlap of the wave functions, will diminish. At a certain critical value
of the lattice parameter a, potential energy will win over kinetic energy and conductivity will
be suppressed. This is the physical principle behind the Mott transition.

More formally, this model can be cast into a model Hamiltonian, the so-called Hubbard model
[18]. In second quantization of quantum-field theory, the corresponding Hamiltonian is

Ĥ = −t
∑
j,l,σ

(ĉ†jσ ĉlσ + ĉ†lσ ĉjσ) + U
∑
j

n̂j↑n̂j↓, (13.1)

where the operator ĉ†jσ creates an electron in the atomic orbital Φ(r−Rj)|σ⟩. The first term is
nothing but the tight-binding model of band structure (in second quantization), where t is the
hopping amplitude depending on the overlap of the wavefunctions from nearest-neighbor atoms
at R1 and R2:

t =

∫
Φ(r−R1)

e2

4πε0 |r−R2|
Φ(r−R2) dr. (13.2)
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It describes the kinetic energy gain due to electron hopping.

The second term is the potential energy due to doubly-occupied orbitals. Here, n̂jσ = ĉ†jσ ĉjσ is
the occupation operator of the orbital Φ(r − Rj)|σ⟩ and U is the Coulomb repulsion between
two electrons in this orbital,

U =

∫
e2 |Φ(r1 −Rj)|2 |Φ(r2 −Rj)|2

4πε0 |r1 − r2|
dr1dr2, (13.3)

The Hubbard model is a so-called lattice fermion model, since only discrete lattice sites are be-
ing considered. It is the simplest way to incorporate correlations due to the Coulomb interaction
since it takes into account only the strongest contribution, the on-site Coulomb interaction. Still
there is very rich physics contained in this simple Hamiltonian like the physics of ferromagnetic-
or antiferromagnetic metals and insulators, charge- and spin density waves and so on [18]. A
realistic Hamiltonian should contain many more inter-site terms due to the long-range Coulomb
interaction likely to contain additional new physics.

Fig. 13.6: Illustration of hopping processes between neighboring atoms together with their
corresponding energy scales.

The most direct consequence of the on-site Coulomb interaction is that additional so-called
Hubbard bands are created due to possible hopping processes, illustrated in Fig. 13.6: The first
row shows hopping processes involving a change of the total Coulomb energy. The second
row shows hopping processes without energy change. The last row shows hopping processes
forbidden due to the Pauli principle (here, the spin enters the model, giving rise to magnetic
order). From Fig. 13.6 we can identify two different energy states. Configurations for which
the on-site Coulomb repulsion comes into play have an energy which is higher by the on-site
Coulomb repulsion U as compared to such configurations where the electrons are not on the
same atom. In a solid these two energy levels will broaden into bands (due to the delocalization
of the electrons on many atoms driven by the hopping matrix element t), which are called
the lower Hubbard band and the upper Hubbard band. If these bands are well separated, i.e.
the Coulomb repulsion U dominates over the hopping term t, we will have in insulating state
(only the lower Hubbard band is occupied). If the bands overlap, we will have a metallic state.
Note that lower and upper Hubbard band are totally different from the usual band structure
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of solids as they do not arise due to the interaction of the electrons with the atomic cores but
due to electronic correlations. As a result the existence of the Hubbard bands depends on the
electronic occupation: the energy terms for simple hopping processes depend on the occupation
of neighboring sites. The apparently simple single electron operator gets complex many body
aspects.

Fig. 13.7: Perovskite structures. The A-site atoms are shown as spheres, octahedra have Mn (or
Ti) at their center and O at their corners. Left: Ideal (cubic) structure. Middle: cubic structure
in orhorhombic setting. Right: distorted structure with rotated and tilted oxygen octahedra.

13.4 Complex ordering phenomena: perovskite manganites
as example

The correlation-induced localization leads to atomic-like electronic degrees of freedom that can
(because the possible hopping of electrons between sites means that different sites interact with
one another) order in complex ways. The electronic degrees of freedom include charge (or ion
valence), orbital (which atomic orbitals are occupied, what is the shape of the electron cloud),
and magnetic moment. In the following we will discuss these ordering processes, taking as
an example, because of their particularly simple basic structure, perovskite manganites (see
e.g. [19]). Their stoichiometric formula is A1−xBxMnO3, where A is a trivalent cation (e.g. A =
La, Gd, Tb, Er, Y, Bi) and B is a divalent cation (B =Sr, Ca, Ba, Pb). The doping with divalent
cations leads to a mixed valence on the manganese sites. In a purely ionic model (neglecting
covalency) charge neutrality requires that manganese exists in two valence states: Mn3+ (elec-
tronic configuration [Ar]3d4, note that the 4s electrons are lost first upon positive ionization in
a solid; the reason is that the 4s orbitals have electron density extending much further from the
nucleus, which leads to a Coulomb penalty given nearby negative ions) and Mn4+ ([Ar]3d3)
according to the respective doping levels: A1−xBxMnO3 →

[
A3+

1−xB
2+
x

] [
Mn3+

1−xMn4+
x

]
O2−

3 .
The structure of these mixed valence manganites is related to the perovskite structure (Fig.
13.7). Perovskite CaTiO3 is a mineral, which has a cubic crystal structure, where the smaller
Ca2+ metal cation is surrounded by six oxygen atoms forming an octahedron; these corner shar-
ing octahedra are centered on the corners of a simple cubic unit cell and the larger Ti4+ metal
cation is filling the interstice in the center of the cube. This ideal cubic perovskite structure is
extremely rare. It only occurs when the sizes of the metal ions match to fill the spaces be-tween
the oxygen atoms ideally. Usually there is a misfit of the mean ionic radii of the A and B ions,
which leads to sizeable tilts of the oxygen octahedra, described in larger cells (see Fig. 13.7).
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These tilt distortions are, however, not important for the following general considerations of the
electronic degrees of freedom.

Fig. 13.8: Energy level diagram for a Mn3+ ion in an oxygen octahedron. For the free ion, the
five 3d electron levels are degenerate. They split in a cubic environment into t2g and eg levels.
If Hunds’ rule coupling is stronger than crystal field splitting, a high-spin state results. The
degeneracy of the eg level is lifted by a Jahn-Teller distortion resulting in an elongation of the
oxygen octahedra. On the right of the figure, the a basis set of 5 real 3d orbitals are depicted.

For an isolated manganese, or other transition metal, ion, the electrons are filled into the five
d orbitals according to Hund’s rules. The first, and dominant, Hund rule implies that electrons
tend to maximize their total spin S =

∑
j sj , avoiding in particular double occupation of any

d orbital. In other words, the electrons occupy the orbitals in such a way that the spins of all
electrons are parallel as far as the Pauli principle permits. This is a consequence of the intra-
atomic Coulomb repulsion between electrons, in particular the exchange contribution to the
Coulomb repulsion. The energy gained by fulfilling the first Hund rule is called the Hund’s rule
energy JH. The second Hund rule, originating from direct intra-atomic Coulomb repulstion,
states that the total angular momentum L is maximized, as far as consistent with the first Hund
rule, i.e. orbitals are filled from high to low angular momentum. Finally, the third Hund rule, due
to spin-orbit coupling, states that total spin and orbital momentum are (anti-)parallel for more
(less) than half-filled shells. For the manganites the octahedral surrounding of the Mn ions leads
to so-called crystal field effects. To explain these we stay in the ionic model and describe the
oxygen atoms as O2− ions. The outer electrons of the Mn ions, the 3d electrons, experience the
electric field created by the surrounding O2− ions of the octahedral environment. This so-called
crystal field leads to a splitting of the electronic levels by the crystal field as depicted in Fig.
13.8: The 3d orbitals with lobes of the electron density pointing towards the negatively charged
oxygen ions (3z2 − r2 and x2 − y2; so-called eg orbitals) will have higher energies compared to
the orbitals with the lobes pointing in-between the oxygen atoms (zx, yz, and xy; so-called t2g
orbitals). For the manganites this crystal-field splitting is typically ∼2 eV. If we now consider a
Mn3+ ion, how the electrons will occupy these crystal field levels depends on the ratio between
the crystal-field splitting and the intra-atomic exchange JH: If the crystal field splitting is much
larger than Hunds’ coupling, a low-spin state results, where all electrons are in the lower t2g
level and two of these t2g orbitals are singly occupied and one is doubly occupied. Due to the
Pauli principle the spins in the doubly occupied orbital have to be antiparallel, giving rise to
a total spin S = 1 for this low-spin state. Usually, however, in the manganites Hunds’ rule
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coupling amounts to ∼ 4 eV, stronger than the crystal field splitting. In this case the high spin
state shown in Fig. 13.8 is realized, where four electrons with parallel spin occupy the three t2g
orbitals plus one of the two eg orbitals. The high spin state has a total spin of S = 2 and the
orbital angular momentum is quenched, i.e. L = 0. This state has an orbital degree of freedom:
the eg electron can either occupy the 3z2 − r2 or the x2 − y2 orbital. The overall energy can
(and thus will) be lowered by a geometrical distortion of the oxygen octahedra that shifts the
eg levels, lifting their degeneracy. This so-called Jahn-Teller effect (Fig. 13.8) further splits the
d-electron levels. For the case shown, the c-axis of the octahedron has been elongated, thus
lowering the energy of the 3z2−r2 orbital with respect to the energy level of the x2−y2 orbital.
The Jahn-Teller splitting in the manganites has a magnitude of typically ∼ 0.6 eV.

a

b

c

O

Fig. 13.9: Left: Orbital order in LaMnO3. Below the Jahn-Teller transition temperature of
780K, a distinct long range ordered pattern of Jahn-Teller distortions of the oxygen octahedra
occurs leading to orbital order of the eg orbitals of the Mn3+ ions as shown. Also shown is the
antiferromagnetic spin order which sets in below the Néel temperature TN ∼ 145K. Oxygen
atoms are represented by filled circles, La is not shown. Center: Distinct spin order of CaMnO3.
Right: Charge-, orbital- and spin-order in half-doped manganite La3+

0.5Sr2+0.5Mn3+
0.5Mn2+

0.5O3.

The Jahn-Teller effect demonstrates nicely how in these transition metal oxides electronic and
lattice degrees of freedom are coupled. Only the Mn3+ with a single electron in the eg orbitals
exhibits the Jahn-Teller effect, whereas the Mn4+ ion does not. A transfer of charge between
neighboring manganese ions is accompanied with a change of the local distortion of the oxygen
octahedron: a so-called lattice polaron. Due to the Jahn-Teller effect, charge fluctuations and
lattice distortions become coupled in these mixed-valence oxides.

Having explained the Jahn-Teller effect, we can now introduce an important type of electronic
order occurring in these materials: orbital order. Consider the structure of LaMnO3: All man-
ganese are trivalent and are expected to undergo a Jahn-Teller distortion. In order to minimize
the elastic energy of the lattice, the Jahn-Teller distortions on neighboring sites are correlated.
Below a certain temperature TJT ∼ 780K, a cooperative Jahn-Teller transition takes place, with
a distinct pattern of distortions of the oxygen octahedra throughout the crystal lattice as shown
in Fig. 13.9 left. This corresponds to a long-range orbital order of the eg electrons, not to be
confused with magnetic order of an orbital magnetic moment. In fact, the orbital magnetic mo-
ment is quenched, i.e. totally suppressed, by the crystal field surrounding the Mn3+ ions (this
is always the case for non-degenerate states with real wave functions because such functions
have pure-imaginary expectation values for an angular momentum operator). Orbital ordering
instead denotes a long-range ordering of an anisotropic charge distribution around the nuclei.
As the temperature is further lowered, magnetic order sets in at TN ∼ 145K. In LaMnO3 the
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spin degree of freedom of the Mn3+ ion orders antiferromagnetically in so-called A-type order:
spins within the a-b plane are parallel, while spins along c are coupled antiferromagnetically.
The depicted antiferromagnetic ordering results from a complex interplay between structural-,
orbital- and spin degrees of freedom and the relative strengths of the different coupling mecha-
nisms in LaMnO3, as can be seen by comparing with the different magnetic order of CaMnO3,
which does not have an orbital degree of freedom (Fig. 13.9 center).

Fig. 13.10: Resistivity in the La1−xSrxMnO3 series [20]. Left: resistivity in zero field for
various compositions from x = 0 to x = 0.5. Right: resistivity for x = 0.15 in different
magnetic fields H , and magnetoresistance, defined as the change in resistivity relative to its
value for H = 0. Reprinted with permission from [20]. © 1995 by the American Physical
Society.

Doped manganites are even more complex, because the charge on the Mn site becomes an
additional degree of freedom due to the two possible manganese valances Mn3+ and Mn4+.
In order to minimize the Coulomb interaction between neighboring manganese sites, so-called
charge order (or ion valence order) can develop. This is shown for the example of half-doped
manganites in Fig. 13.9 on the right: These half-doped manganites show antiferromagnetic spin
order, a checkerboard-type charge order with alternating Mn3+ and Mn4+ sites and a zig-zag
orbital order of the additional eg electron present on the Mn3+ sites. This is only one example
of the complex ordering phenomena that can occur in doped mixed valence manganites. These
ordering phenomena result from a subtle interplay between lattice-, charge-, orbital-, and spin
degrees of freedom and can have as a consequence novel phenomena and functionalities such
as colossal magnetoresistance.

How are these ordering phenomena related with the macroscopic properties of the system? To
answer this question, let us look at the resistivity of doped Lanthanum-Strontium-Manganites
( Fig. 13.10): The zero field resistance changes dramatically with composition. The x = 0
compound shows insulating behavior: the resistivity ρ increases with decreasing temperature T .
The higher doped compounds, e.g. x = 0.4, are metallic with ρ(T ) decreasing. Note, however,
that the resistivity of these compounds is still about three orders of magnitude higher than for
typical good metals. At an intermediate composition x = 0.15, the samples are insulators at
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higher T down to about 250K, then a dramatic drop of the resistivity indicating an insulator-
to-metal transition and again an upturn below about 210K with typical insulating behavior.
The metal-insulator transition occurs at the temperature where ferromagnetic long-range order
sets in. Around this temperature we also observe a very strong dependence of resistivity on
external magnetic field. This is the so-called colossal magnetoresistance effect. In order to
appreciate the large shift in the maximum of the resistivity curve with field (Fig. 13.10 right)
one should remember that the energy scales connected with the Zeeman interaction of the spin
1
2

electron in an applied magnetic field are very small: the energy equivalent of 1 Tesla for a
spin 1

2
system corresponds to 0.12meV, which in turn corresponds to a temperature equivalent

of 1.3K. The strong dependence of the resistance on an external field is partly due to the
so-called double exchange mechanism: the electron hopping from Mn3+ to Mn4+ (associated
with metallicity) can occur only if the t2g spins are parallel, which is automatically fulfilled
(only) in the ferromagnetic state. This phase competition and consequent tunability by external
parameters, such as temperature and field, is typical for correlated-electron systems.

It is clear that our entire discussion starting from ionic states is only a crude approximation
to the real system. Therefore we now have to pose the question how can we determine the
true valence state? Or more general, which experimental methods exist to study the complex
ordering and excitations of the charge-, orbital-, spin- and lattice- degrees of freedom in these
complex transition metal oxides?

13.5 Probing correlated electrons by scattering methods

Fig. 13.11: Polarized single crystal neutron diffraction on LuFe2O4. The (1
3
1
3
ℓ) line of spin

and charge order superstructure reflections is shown. Left: magnetic reflections in the spin-flip
channel (top) and charge order reflections in the non-spin-flip channel (bottom) at 220K. Right:
diffuse scattering in the spin-flip channel at two temperatures above TN , revealing short-range
magnetic correlations [21].

How can these various ordering phenomena be studied experimentally? Obviously we need
probes with atomic resolution, which interact with the spins as well as with the charges in the
system. Therefore neutron and x-ray scattering are the ideal microscopic probes to study the
complex ordering phenomena and their excitation spectra. The lattice and spin structure can be
studied with neutron diffraction from a polycrystalline or single crystalline sample as detailed
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Table 13.1: R0 values of cation-oxygen bonds [22] in manganese perovskites needed for the
bond valence calculation (13.4).

in chapter 8 of this course, “Structural analysis”. Fig. 13.11 shows as an example of more recent
research on a material with more complex (rhombohedral) crystal structure polarized neutron
diffraction on a single crystal of LuFe2O4, a once-proposed charge-order-based multiferroic.
Periodic arrangements of spins and/or Fe valence states in this material can be described by
an enlarged cell, which corresponds to a smaller cell in reciprocal space and therefore leads
to the emergence of superstructure reflections between the main nuclear reflections. Magnetic
reflections in the spin-flip channel yield the spin structure, while the charge-order reflections
show up in the non-spin-flip channel (c.f. chapter 7). For charge order and small structural
distortions complementary synchrotron x-ray diffraction data is often useful because of the
higher achievable q-resolution. It is beyond the scope of this lecture to discuss the experimental
and methodological details of such a structure analysis or to present detailed results on specific
model compounds. For this we refer to the literature, e.g. [21]. For the above example, we
just want to mention that the refinement of spin and charge order showed strong spin-charge
coupling, but the absence of a polar charge order, negating the proposed multiferroicity. At first
sight it might be surprising that neutron diffraction is able to give us information about charge
order. We have learnt in the introductory chapters that neutrons interact mainly through the
strong interaction with the nuclei and through the magnetic dipole interaction with the magnetic
induction in the sample. So how can neutrons give information about charge order? Obviously
charge order is not determined directly with neutrons. However, the length of the transition
metal-oxygen bond will depend on the charge (valence state) of the transition metal ion. The
higher the positive charge of the transition metal, the shorter will be the bond to the neighbor-
ing oxygen, just due to Coulomb attraction. This qualitative argument can be quantified in the
so-called bond-valence sum. There is an empirical correlation between the valence Vi of an ion
and the bond lengths Rij to its neighbors:

Vi =
∑
ij

sij = Vi =
∑
ij

e
R0−Rij

B . (13.4)

Here, the Rij are the experimentally determined bond lengths, B = 0.37 is a constant, and R0

are tabulated values for the cation-oxygen bonds, see, e.g., [22]. Table 13.1 reproduces some of
these values. The sum over the partial “bond-valences” sij gives the valence state of the ion.

Even though this method to determine the valence state is purely empirical, it is rather precise
compared to other techniques. The values of the valences found with this method differ signif-
icantly from a purely ionic model. Instead of integer differences between charges on different
transition metal ions, one finds more likely differences of a few tenth of a charge of an electron,
though rare exceptions, where near-integer valence differences were observed, exist [23].
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Fig. 13.12: Anisotropic anomalous x-ray scattering for a hypothetical diatomic 2D compound.
Left: Reconstruction of the charge distribution from a laboratory x-ray source, sensitive mainly
to the spherical charge distribution and corresponding unit cell (white lines). Middle: Prin-
ciples of resonance x-ray scattering in an energy level diagram (see text). Right: Charge dis-
tribution deduced from such an anomalous x-ray scattering experiment. An orbital ordering
pattern is apparent, which could not be detected with non-resonant x-ray scattering. The evi-
dently larger unit cell gives rise to superstructure reflections (at resonance).

Just like charge order, orbital order is not directly accessible to neutron diffraction since orbital
order represents an anisotropic charge distribution and neutrons do not directly interact with the
charge of the electron. However, we have seen in the discussion of the Jahn-Teller effect (Figs.
13.8 and 13.9) that an orbital order is linked to a distortion of the local environment visible
in different bond lengths within the anion complex surrounding the cation. Thus, by a precise
determination of the structural parameters from diffraction, one can determine in favorable cases
the ordering patterns of all four degrees of freedom: lattice, spin, charge and orbitals.

Is there a more direct way to determine charge- and orbital order? The scattering cross section
of x-rays contains the atomic form factors, which are Fourier transforms of the charge den-
sity around an atom. Therefore, one might think that charge and orbital order can be easily
determined with x-ray scattering. However, as discussed in the last paragraph, usually only a
fraction of an elementary charge contributes to charge- or orbital ordering. Consider the Mn
atom: the atomic core has the Ar electron configuration, i.e. 18 electrons are in closed shells
with spherical charge distributions. For the Mn4+ ion, three further electrons are in t2g levels.
Since in scattering, we measure intensities, not amplitudes, these 21 electrons contribute 212r20
to the scattered intensity (the classical electron radius r0 is the natural unit of x-ray scattering).
If the difference in charge between neighboring Mn ions is 0.2 e, this will give an additional
contribution to the scattered intensity of 0.22r20. The relative effect of charge order in x-ray
scattering is therefore only a tiny fraction 0.22

212
∼ 10−4, even ignoring that scattering from all

other atoms makes the situation worse. There is, however, a way to enhance the scattering from
non-spherical charge distributions, the so-called anisotropic anomalous x-ray scattering, first
applied for orbital order in manganites by Murakami et al. [24]. The principle of this technique
is depicted in Fig. 13.12, showing scattering from a hypothetical diatomic 2D compound. Non
resonant x-ray scattering is sensitive mainly to the spherical charge distribution. A reconstruc-
tion of the charge distribution done from such an experiment might look schematically as shown
on the left. The corresponding crystal structure can be described with a primitive unit cell (white
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lines). To enhance the scattering from the non-spherical part of the charge distribution, an ex-
periment can be done at a synchrotron source, with the energy of the x-rays tuned to the energy
of an absorption edge (middle). Now, second order perturbation processes can occur, where
a photon induces virtual transitions of an electron from a core level to empty states above the
Fermi energy and back with re-emission of a photon of the same energy. As second-order per-
turbation processes have a resonant denominator, this scattering will be strongly enhanced near
an absorption edge. If the intermediate states in this resonant scattering process are somehow
connected to orbital ordering, scattering from orbital ordering will be enhanced. Thus in the
resonant scattering experiment, orbital order can become visible as indicated on the right. With
the shown arrangement of orbitals, the true primitive unit cell of this hypothetical compound is
obviously larger than the unit cell that was deduced from the non resonant scattering experiment
(left), which was not sensitive enough to determine the fine details of the structure. An increase
of the unit cell dimensions in real space is connected with a decrease of the distance of the
reciprocal lattice points, leading to additional superstructure reflections. The intensity of these
reflections has the strong energy dependence expected for a second-order perturbation process.
This type of experiment is called anisotropic anomalous x-ray scattering, because it is sensitive
to the anisotropic charge distribution around an atom.

So far we have discussed some powerful experimental techniques to determine the various
ordering phenomena in complex transition metal oxides. Scattering can give much more in-
formation than just on the time averaged structure. Quasi-elastic diffuse scattering gives us in-
formation on fluctuations and short range correlations persisting above the transitions, e.g. short
range correlations of polarons, magnetic correlations in the paramagnetic state (Fig. 13.11), lo-
cal dynamic Jahn-Teller distortions etc. Studying these correlations and fluctuations helps to
understand what drives the respective phase transitions into long-range order. The relevant
interactions, which give rise to these ordering phenomena, can be determined from inelastic
scattering experiments as learnt in the chapter “Inelastic neutron scattering”. For example, in a
new class of iron-based high-temperature superconductors, the involvement in Cooper pairing
of lattice vibrations or alternatively magnetic fluctuations is controversial, and both of these can
be probed in-depth by inelastic neutron scattering (see, e.g., [25]). Since there is a huge amount
of scattering experiments on highly correlated transition metal oxides and chalcogenides, a re-
view of these experiments definitely goes far beyond the scope of this introductory lecture.
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13.6 Summary

Fig. 13.13: Illustration of complexity in correlated electron systems. H, E: magnetic and elec-
tric field, respectively; µ: chemical potential (doping); T : temperature; P : pressure; σ: strain
(epitaxial growth); d: dimensionality (e.g. bulk versus thin film systems); CO: charge order;
OO: orbital order; SO: spin order; JT: Jahn-Teller transition.

This chapter gave a first introduction into the exciting physics of highly correlated electron
systems, exemplified by transition metal oxides and chalcogenides. The main message is sum-
marized in Fig. 13.13. The complexity in these correlated electron systems arises from the
competing degrees of freedom: charge, lattice, orbit and spin. The ground state is a result
of a detailed balance between these different degrees of freedom. This balance can be easily
disturbed by external fields or other thermodynamical parameters, giving rise to new ground
states or complex collective behavior. Examples are the various ordering phenomena discussed,
Cooper pairing in superconductors, so-called spin-Peierls transitions in 1D systems etc. This
high sensitivity to external parameters as well as the novel ground states of the systems gives
rise to novel functionalities, such as the colossal magnetoresistance effect, high temperature
superconductivity, multiferroicity, and many more. A theoretical description of these com-
plex systems starting from first principles, like Schrödinger equation in quantum mechanics or
the maximization of entropy in statistical physics, is bound to fail due to the large number of
strongly interacting particles. Entirely new approaches have to be found to describe the emer-
gent behavior of these complex systems. Therefore highly correlated electron systems are a
truly outstanding challenge in modern condensed matter physics. We have shown in this lecture
that neutron and x-ray scattering are indispensable tools to disentangle this complexity experi-
mentally. They are able to determine the various ordering phenomena as well as the fluctuations
and excitations corresponding to the relevant degrees of freedom. No other experimental probe
can give so much detailed information on a microscopic level as scattering experiments.
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Exercises

Note: ⋆ indicates an increased difficulty. Solve the easier problems first.

E13.1 Electronic structure and Mott transition

a) In modeling the electronic structure of crystalline solids, what is the typical starting assump-
tion to separate the electronic structure from the lattice dynamics, and why does it work?

b) In which of the three simplest models of electrons in a solid are the electronic correlations
taken into account at least approximately?

c) Neglecting electronic correlations, would you predict NaCl to be an insulator or a metal?
Why?

d) The competition of which two contributions to the total energy of the electrons is crucial
for the Mott-transition? Which further contributions to the total energy are neglected in the
simplest model?

e) Assume that a particular material is a Mott-insulator, but just barely so (i.e. the relevant
energy contributions are almost equal). What would you predict to happen when sufficiently
high pressure is applied, and why?

E13.2 Electronic ordering in correlated-electron materials

a) List and very briefly explain three “electronic degrees of freedom”, which can become or-
dered.

b) To order of which of the electronic degrees of freedom is neutron scattering directly sensitive,
and to which not?

c) For those electronic degrees of freedom, to which neutron is not directly sensitive, neutron
scattering can still be used to deduce an ordered arrangement: How and why? Is there a more
direct scattering method than neutron scattering?

d) ⋆ What, if any, connection is there between orbital order and orbital magnetic momentum?

e) ⋆ Discuss why electronic correlations favor ordering processes of electronic degrees of free-
dom.

E13.3 Crystal field

Fe has atomic number 26 and in oxides typically has valence states 2+ or 3+.

a) Determine the electronic configuration of free Fe2+ and Fe3+ ions (hint: as for Mn the outer-
most s-electrons are lost first upon ionization).

b) From Hund’s rules determine the values of the spin S, orbital angular momentum L, and total
angular momentum J of Fe2+ and Fe3+ ions.
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(Hund’s rules:

1. S max.

2. L max consistent with 1.

3. J = |L− S| for a less than half filled shell,
J = |L+ S| for a more than half filled shell).

c) ⋆ The effective moment µeff of a magnetic ion can be determined experimentally by the
Curie-Weiss law, and is given by µeff = gJ

√
J(J + 1)µB, where the Landé factor is

gJ =
3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
. (13.5)

Calculate the expected effective moment in units of µB of Fe2+ and Fe3+ ions, i) assuming S,
L, and J as determined in b) and ii) setting L = 0 (‘quenched orbital momentum’). Compare
with the experimental values of ∼ 5.88µB for Fe3+ and ∼ 5.25− 5.53µB for Fe2+.

d) ⋆ The negatively charged oxygen ions surrounding the Fe ions in an oxide solid influence
the energy of the different orbitals. Plot the expected energy level diagram for the case of an
octahedral environment of nearest-neighbor O2− (corresponding to the example in the lecture).
How does the total spin moment of Fe2+ change between weak and strong crystal field splittings
(relative to intra-atomic “Hund’s” exchange)?

e) (optional) ⋆⋆ In a tetrahedral environment the energy levels of the orbitals are reversed com-
pared to an octahedral environment. Determine the spin moment of Fe2+ in a tetrahedral en-
vironment with strong crystal field splitting. Is an orbital angular momentum possible in this
case?

E13.4 Orbital and Magnetic order in LaMnO3 (Optional!)

The orbital and magnetic order in LaMnO3 is sketched in Fig. 13.9 (page 11 of the chapter) on
the left. One crystallographic unit cell a× b× c is shown.

a) Why is there no charge order in LaMnO3?

b) What are the smallest unit cells (sketch in relation to the crystallographic cell) that can de-
scribe i) magnetic order, ii) ⋆ orbital order (Hint: consider also centered cells, where the cen-
tering symmetry is broken by the orbital order), iii) both magnetic and orbital order.

c) Make a plot of reciprocal space in the a∗-c∗-plane indicating the positions, where you expect
nuclear, orbital, and magnetic Bragg peaks to occur.

d) ⋆ As c), but for the a∗-b∗-plane.
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14.1 Introduction

A polymer is a chain of several polyatomic units called monomers covalent bonded together.
Since virtual all kinds of molecules can act as a monomeric unit, thereby only differing in
the ways in which they can be bound together, a wealth of synthetic and naturally occurring
biopolymers with enormous diversity in properties is nowadays known. They all belong to
the class of polymers. Synthetic polymers are materials without which modern technology
cannot be imagined. In many places they have supplanted traditional materials as metals.
One of the reasons for this is that polymers show unique mechanical properties which are
desirable for engineering, e.g. high impact resistance at low specific mass. The polymer com-
position (specific monomers) and architecture (linear, branched ring) influence the material
properties.

Biopolymers as proteins or DNA determine life. Biopolymers, in particular proteins, share
similarities with polymers which allow to use polymer models to describe their structure
and dynamics. Proteins are polymers with a specific sequence of 20 amino acids which are
charged, hydrophobic or hydrophilic. Intrinsically unfolded proteins (IDP) sample a large
conformational space similar to above polymers. The structure of globular proteins is mainly
stabilized by hydrophobic interactions but additionally via a hydrogen bond network and
crosslinking by disulfide bonds. The protein structure and related conformational changes are
often related to the function of the protein e.g. by arranging the active center after substrate
binding or allowing transport and release of products. As larger domains contribute to the
configurational changes the timescale of the involved motions is slowed down. More and
more the role of slow domain dynamics is recognized as essential to understand the function
of proteins.

14.2 Coarse graining

The complexity of polymers/biopolymers can nowadays covered by all-atom MD simulations
requiring a huge amount of resources and computation time. The essential structure and
dynamics can be examined since long time [24, 29, 32, 35] by coarse grained models that
successfully describe all essential features of polymers within analytical theories and allow
to understand all basic properties.

The basic assumption of simplest bead-and-spring models is that beads do not interact with
each other except over springs with next neighbors. For linear polymers the result is a Gaus-
sian chain as the simplest model for chain relaxation. The building blocks of such a chain are
N segments each consisting of sufficient monomers so that their end-to-end distance follows
a Gaussian distribution with the average segment length l. Coarse graining includes that the
segments may consist of several monomers that segments are longer than the Kuhn length
describing the local stiffness of chain structure. While the Rouse model assumes only fric-
tion with the surrounding like a melt the Zimm model includes additional friction between
beads mediated by hydrodynamic interactions between all beads. Assuming friction between
monomers leads to additional internal friction in the chain. More structured objects like pro-
teins or double stranded DNA can be described by networks of connected beads in a similar
way describing also the 3D structure. Neutron scattering allows to study the microscopic
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basic steps (number of segments),
√
N . Real polymer chains are not connected in this freely

jointed way. Instead, bond angles θij assume well-defined values and correlations between
bonds within the chain as well as from the environment will affect the size. Intuitively it can
be understood that these correlations will vanish with increasing separation distance. Also,
the flexibility of polymer chains is restricted by the fact that rotations with the so-called bond
rotation angle are enabled within a certain range only due to steric reasons.

An important polymer model to include interactions is the Flory theory [24] that includes in-
termolecular and solvent interactions. If the monomers like the solvent, they try to have more
contact and the polymer will swell (good solvent). This corresponds to repulsive interaction
between monomers and includes non-overlapping volumes. If the monomers doesn’t like the
solvent the polymer try to avoid solvent contact and collapse (bad solvent) corresponding to
attractive monomer interaction. Between both cases, when interactions are balanced the in-
teractions cancel and we find an ideal configuration without interaction (theta solvent) close
to the FJC. The end-to-end distance is here

⟨R2
ee⟩ = N νl2ν (14.4)

The Flory exponent ν is 0.5 for ideal solvents and 0.6 for good solvent (actually 0.588).
Often the range of ν is increased to span from collapsed chains ν = 1/3 to highly swollen
chains ν < 1 with repulsive interactions between monomers.

The size of a polymer chain can be measured by various scattering experiments (light scat-
tering, SAXS, SANS). The single chain normalized formfactor P (Q) is:

P (Q) =
1

N2

N∑
k,j=1

⟨exp
(
i
−→
Q (−→rk −−→rj )

)
⟩ = 1

N2

N∑
k,j=1

exp

(
−1

6
Q2l2 |k − j|2ν

)
(14.5)

using ⟨rk − rj⟩ = l2|k − j|2ν [10]. For long chains (Q2l2/6 ≪ 1 and N ≫ 1) and ν = 1/2
P (Q) is described by the Debye function [12] with

gD(x) =
2

x2
(exp (−x)− 1 + x) (14.6)

and the argument x = (QRg)
2. A SANS experiment with fit to the Debye function is pre-

sented in Fig. 14.2 in a linear scale and in the form of a second moment Kratky represen-
tation achieved when gD(x) is multiplied by Q2. The Kratky representation emphasises the
high Q-regime. For Gaussian chains with an asymptotic Q−2 behaviour the high Q regime
then assumes a plateau. As shown the data are in perfect agreement with the Gaussian chain
results derived above.

14.4 Separation of global and internal dynamics

The intermediate scattering function (ISF) measured e.g. by NSE has contributions from
overall translational and rotational diffusion and from motions within the molecule that we
call internal dynamics. In the general case, all motions might be coupled. In a simplifying
assumption known as decoupling approximation we assume that the internal dynamics (int)
does not alter the overall diffusion and that translational (trans) and rotational (rot) diffusion
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Fig. 14.2: SANS scattering intensity obtained for a poly(alkylene oxide) polymer and described
by the Debye function (lines) [11]. On the left, the Debye curve fits ideally and the high Q-
dependence shows Q−2. On the right, the Kratky region (plateau) is highlighted.

are decoupled too. For the single particle pair correlation function or coherent scattering
function we assume

F (Q, t) = Ftrans (Q, t) ·F rot (Q, t) ·F int (Q, t) (14.7)

For spherical symmetric objects like spheres or Gaussian chains rotational contributions can-
not be observed as there is no contrast change during rotation. On the other side proteins
and DNA are asymmetric and have significant rotational contributions.

Diffusion of rigid objects

The diffusional term contributing to equation (14.7) for a rigid object has contributions from
translational and rotational diffusion characterized by the respective diffusion coefficients DT

and DR. These can be calculated from the atomic coordinates rα or coarse grained bead mod-
els by HYDROPRO on basis of a PDB conformation [22] or measured in dilute solutions.
We yield

Ftrans (Q, t) = exp
(
−Q2DTt

)
(14.8)

Frot (Q, t) =
∞∑
l=0

Sl (Q) exp(−l (l + 1)DRt) (14.9)

with Sl (Q) =
∑
m

∣∣∣∣∣
∑
α

bαjl(Qri)Yl,m(Ωα)

∣∣∣∣∣
2

(14.10)

where Sl(Q) are the coefficients of a multipole expansion of the asymmetric form factor with
scattering length bα of the atom α at position rα and orientation Ωα, j1(Qr) are the spherical
Bessel functions and Yl,m(Ωα) the spherical harmonics [4, 19].
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Concentration effects

At infinite dilution the measured signal I(Q, t) is independent of direct concentration ef-
fects as I(Q, t)/I(Q, 0) = F (Q, t)/F (Q, 0). For larger concentrations the interaction de-
pends on the type of polymer and the solvent. Polymer in theta-solvent or in melt have
virtually no interaction. Dependent on the solvent quality, as good or bad solvent, the in-
teractions can be attractive or repulsive. Additional charges and excluded volume for glob-
ular particles contribute to the overall interaction. This leads to a spatial distribution de-
scribing spatial correlations between objects subsumed in the structure factor S(Q). The
translational diffusion coefficient DT is influenced by these direct interactions and hydrody-
namic interactions (HI) described by the hydrodynamic function HT(Q). This is described
by DT(Q) = DT0HT(Q, c)/S(Q, c) were the index 0 indicates the dilute limit (single particle
limit). [19, 26].

The hydrodynamic function HT(Q) can be calculated within the δγ expansion of Beenakker
and Mazur [1, 2] for spherical objects which approximately holds also for polymers with
a HI screening radius RHI . [6] or proteins [4, 5, 15] and reduces the translational diffusion
coefficient with HT(Q = ∞) = η0/η < 1 [1, 2, 8, 20]. η0/η is measured as the ratio between
solvent viscosity η0 and protein solution viscosity at the measured concentration η. At low
Q H(Q) has similarities to S(Q) and as a rule of thumb is approximately H(Q)−H(∞) ≈
0.5(S(Q)− 1) for hard spheres. Hydrodynamic effects also influence the rotational diffusion
coefficient subsumed in the hydrodynamic factor HR for rotational diffusion with DR =
DR0HR. According to ref. 32 for spherical particles this effect can be estimated as 1−HR =
(1−HT(Q = ∞)) /3.

14.5 Linear polymers in melt

To describe the motion of a polymer, we start with the bead and spring model. Each bead
undergoes friction ζ = 6πηl with the surrounding which can be a polymer melt or solvent
of viscosity η. Hydrodynamic interactions are assumed screened and therefore neglected.
Harmonic springs between the beads of spring constant κ = (kBT )/l

2 are assumed. We
can write down a Langevin equation for the segmental motion using fn (t) for the thermal
random force acting on bead “n” within the Rouse model [29]:

ζ
drn
dt

= κ (rn+1 − 2rn + rn−1) + fn (t) (14.11)

ζ
dr

dt
= κkr + f (t) (14.12)

using vector notation r = (r1, · · · , rN) with the tri-diagonal connectivity matrix

k =




−1 1 0 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 · · ·
0 0 1 −2 · · ·
· · · · · · · · · · · · · · ·




(14.13)
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Microscopic dynamics on scales shorter than the segment or Kuhn length like dihedral rota-
tions of bonds can lead to internal friction ζi between beads which can be included in the
RIF model (Rouse with internal friction) as [7] :

ζ
dr

dt
= κkr + ζi

d

dt
kr + f (t) (14.14)

The coupled differential equations (14.12) and (14.14) can be solved using the eigenbasis of
the connectivity matrix (14.13), i.e. normal mode decomposition. With the proper boundary
conditions of force free ends ∂rn/∂n(n = 0, N) = 0 the eigenmodes turn out as

ϕp(n) =
1

N
cos

(pπ
N

n
)

(14.15)

with a wavelength λp = lN/p along the chain. The eigenmode p relaxes with the character-
istic time τp where

τp = τR/p
2 + τi, τR =

N2l2ζ

3π2kBT
=

N2ζ

3π2κ
= τ0N

2, τi = ζi/κ (14.16)

τR is the longest relaxation time also called the Rouse time without internal friction in the
Rouse model. τ0 = l2ζ

3π2kBT
= 1

Wπ2 is the segmental relaxation time where W is the Rouse
rate which is related to monomer (bead) friction ζ . τi is the additional relaxation time due to
internal friction ζi. At the time τp the chain subsection with N/p monomers moves over its
own distance. Thus the mean square displacement msd,

msd = ⟨(rn(τp)− rn(0))
2⟩ = l2

N

p
= l2

(
τp
τ0

) 1
2

(14.17)

Since (14.17) holds for all p, the chain segments at times shorter than τR move in a subdif-
fusive way with msd ∝ t1/2. This is a basic prediction of the Rouse model. Performing the
full calculation starting from (14.11)-(14.12) , the final result for the time dependent msd is:

msd = ⟨r2n(t)⟩ =

√
12l2kBT

πζ
t (14.18)

For the single chain dynamic structure factor, where we look on a labelled e.g. protonated
chain in a deuterated environment, we have to deal with the interference of scattered waves
originating from the different atoms or monomers of the chain. The detailed calculations
are given in reference [10]. The result may be expressed in terms of the Rouse modes Eq.
(14.15) and corresponding relaxation times τp = τR/p

2 and amplitude factors ap = 1/p2.

S(q, t) =
1

N
e−q2DRt

N∑
n,m

e−
1
6
q2B(n,m,t)

B(n,m, t, τp) = |n−m|2νl2 + 4R2
e

π2

N−1∑
p=1

apcos(πpn/N)cos(πpm/N)(1− e−t/tp)

(14.19)
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Fig. 14.3: (a) NSE data for the polydimethylsiloxane (PDMS) melt measured at different values
of the momentum transfer Q [18]. Dashed lines present fitting curves obtained by using (14.19);
(b) Dynamic structure factor for the segmental self motion in a PDMS melt at 100◦ C [27].
The data are scaled with the Rouse variable (14.21). The solid line shows the predicted t1/2

relaxation by the Rouse model.

for small Q (QRee < 1) B(n,m, t) becomes negligible and S(Q, t) describes the centre-of-
mass self diffusion of the chain with DR = kBT/Nζ .

Sself (Q, t) =
1

N
S(Q, t) = exp

(
Q2DRt

)
(14.20)

For QRee > 1 and t < τR the internal relaxation processes dominate. For t = 0 we have
S(Q, t) = S(Q); i.e. the structure factor corresponds to a snapshot of the chain structure
(14.2). By using a mixture of protonated (≈ 10%) and deuterated chains, neutron spin echo
(NSE) directly measures the coherent single chain dynamic structure factor S(Q, t) that is
the spatial Fourier transform of the monomer-monomer dynamic pair correlation function.
As an example, the NSE data for the bulk PDMS melt are shown in Fig. 14.3a.

Quasielastic incoherent neutron scattering directly measures the segment self correlation
function with n = m in (14.19). In Gaussian approximation we have for pure Rouse:

Sself (Q, t) = exp

(
−Q2

6
⟨r2(t)⟩

)
= exp

(
−DRQ

2t
)
exp

(
− 2√

π
(ΩR(Q)t)

1
2

)

ΩR(Q) =
kBT l

2

12ζ
Q4

(14.21)

The second part of this equation is obtained by inserting of Eq.(14.18). ΩR(Q) is the char-
acteristic relaxation rate, that increases with the momentum transfer as Q4.

Even though a clear cut prediction, experimentally the observation of the self correlation
function of a Rouse chain is an important challenge. The necessary resolution at the low
momentum transfers requires, neutron spin echo spectroscopy [21, 28]. Here, incoherent ex-
periments are difficult, since incoherent scattering depolarises the neutron beam to a large
extend (2/3 spin flip scattering). Therefore, using a trick the first successful experiments
were carried out. The chemists produced deuterated PDMS where randomly short protonated
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sections were copolymerised. These protonated sections in a generally deuterated environ-
ment gave rise to coherent scattering, however, since the scattering from different labels was
uncorrelated the self correlation function was measured.

Fig. 14.3b displays the obtained self correlation function for PDMS [27] in a presentation
where the logarithm of the scattering function is plotted versus (ΩR(Q)t)

1
2 , the scaling vari-

able of Eq.(14.21). In this way all the data collapse on one single master curve that according
to Eq.(14.21) should be a straight line. The experimental results beautifully verify the major
prediction of the Rouse model and show that the simple approximation of the bead - spring
model properly accounts for the segmental dynamics of the PDMS chain on the space time
frame investigated.

14.6 Linear polymers in solution

In typical solutions like water or organic solvents hydrodynamic interactions (HI) need to
be taken into account. In the the Zimm model [35] this is done by using a preaveraging
approximation using the equilibrium average

Hnm −→ ⟨Hnm⟩ =
I

2π2ζ|n−m|1/2
(14.22)

The above equation (14.14) changes to

dr

dt
= ⟨H⟩

(
κkr + ζi

d

dt
kr + f (t)

)
(14.23)

For N ≫ 1 ⟨H⟩ becomes diagonal in the eigenbasis of the connectivity matrix (14.13). The
eigenmode p relaxes with the characteristic time τp where

τp = τZ/p
3ν + τi, τZ =

ηR3
e

(3π)1/2kbT
=

N3νζ

6π(3π)1/2κ
, τi = ζi/κ (14.24)

τZ is the longest relaxation time also called the Zimm time without internal friction in the
Zimm model. τi is the additional relaxation time due to internal friction ζi in the correspond-
ing ZIF model (Zimm with internal friction).

The single chain dynamic structure factor S(Q, t) for the Zimm model is the same as (14.19)
with the amplitude factor ap = 1/p3ν+1 and the mode relaxation time τp of the Zimm respec-
tively the ZIF model. Here Re = N νl and DZ = 8

3(6π3)1/2
kbT
ηRe

= 0.196 kbT
ηRe

for ν = 0.5. For
ν = 0.6 the prefactor is 0.203.

Fig. 14.4 shows an example for the polyelectrolyte (PE) polystyrene sulfonic acid (PSS)
[6]. The SAXS data Fig. 14.4a decrease at low Q is due to the structure factor S(Q) with
increasing concentration. S(Q) effects are reduced with increasing charge screening due to
added salt. PE formfactor shows a more expanded chain with ν ⪆ 0.6 due to repulsion
between charges. The minima around Q = 3 − 4nm−1 are related to a disc like cross
section of the chain from counter ion condensation. NSE spectra were fitted with a ZIF
model complemented by H(Q)/S(Q) correction for DZ . Fig. 14.4b show effective diffusion
extracted by fitting exp(= Q2Deff t) to model and data to get an easier overview. At low Q
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Fig. 14.4: (a) SAXS data for PSS MW=39k (cNaCl shifted consecutively). A stronger S(Q) with
increasing cp results mainly in the decreased intensity at a low Q. Concentrations were 5, 10,
20, 30 mg/mL except for 21 mM with 8.3, 16.6, 33.2 and 50 mg/mL (colors red to green, along
arrow). Black lines correspond to fits using a generalised Gaussian worm as formfactor and a 2-
Yukawa potential with attractive and repulsive components. Broken lines indicate the extension
of a Q−2 power law to a high Q to demonstrate the deviation from a Gaussian chain. (b)
Effective diffusion coefficients Deff for PSS 39k cpMw = 30 mg/ml with respective parameters:
experimental (points); ZIF with full H(Q)/S(Q) correction (black line); ZIF only with self-part
correction Ds/D0 (green dashed); same but τint = 0 (Zimm) (dotted); ZIF without correction
(green line); DLS extrapolated concentration 0 mg/mL (red square), 30 mg/mL (circle); PFG-
NMR self-diffusion Ds (blue diamond). It should be noted that the self-part corrected ZIF
(green dashed line) fits well to Ds. The self-part Ds/D0 correction is noticeable as a difference
between solid and dashed green lines. Reprinted from ref [6] Licensed under CC-BY 4.0

the collective Deff increases due to H(Q)/S(Q) correction reflecting S(Q) and hydrodynamic
interactions. At larger Q above 0.5nm−1 we observe self diffusion (S(Q) ≈ 1) with an
approximate linear increase as predicted for Zimm dynamics Deff ∝ kT/η [10] of neutral
chains. Above 1nm−1 dynamics slows down due to internal friction. The charged chain
behaves on segment length scale independently of charge or screening salt like a neutral
chain expanded according to ν.

14.7 Protein domain motions

To explore the internal dynamics of fragments or domains we use a Langevin equation similar
to (14.12). Different to the polymer models we have to take into account all neighbours
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in the direct vicinity of beads, representing e.g. amino acids, which have e.g hydrophobic
contacts. The connectivity matrix (14.13) contains more off-diagonal elements representing
interacting beads. Tirion has shown that a simplified elastic force field is enough to describe
the slowest large scale motions [32]. With this in mind we assume Brownian motion of the
protein atoms in a harmonic potential around the equilibrium positions, a problem described
by the Ornstein-Uhlenbeck process [33, 34]. The coherent intermediate scattering function is
(for details see appendix A14.2)

Fint(Q, t) =

〈∑
α,β

bαbβ exp(iQ ·Req
β ) exp(−iQ ·Req

α ) · fαβ (Q,∞) · f ′
αβ(Q, t)

〉
. (14.25)

Here fαβ(Q,∞) is a time independent factor determined by the internal forces. The time
dependent part is

f ′
αβ (Q, t) = exp

( ∑
j=1...3N

(vα ·Q)(vβ ·Q) exp(−λjt)

)
(14.26)

with displacements vjα =
√

kBT/(λjΓj) b̂jα in Brownian normal mode j with relaxation

time 1/λj and friction Γj . The contribution of internal dynamics to the NSE signal is
Fint(Q, t)/Fint(Q, 0). The dynamics of single independent particles or subunits can be de-
scribed by the much simpler function

Fint (Q, t) = exp(−Q2
〈
u2
〉
(1− exp (−λt)) (14.27)

with the mean square displacement ⟨u2⟩ in the harmonic potential [17]. Nevertheless, in this
simplification, the specific arrangement of the conformation is lost.

Looking at the time dependence we find again the pattern exp(· · · (1 − e−λt)) observed in
Rouse. Expanding the first exponential in equation (14.26) as exp(x) = 1 + x we get a
simplification for small displacements

f ′
αβ (Q, t) = 1 +

∑
j=1...3N

(vα ·Q)(vβ ·Q) exp(−λjt) (14.28)

showing that the amplitude is directly related to the displacements of the modes. Using
F (Q, t)/F (Q, 0) for the measured NSE signal we find with B =

∑
j=1...3N (vα ·Q)(vβ ·Q)

and A = B/(1 + B) assuming a single relaxation rate λ

F (Q, t)

F (Q, 0)
=

[
(1− A) + Ae−λt

] Ftrans (Q, t) ·F rot (Q, t)

Ftrans (Q, 0) ·F rot (Q, 0)
(14.29)

14.8 Between chain dynamics and domain motions: intrinsi-
cally disordered proteins

The biological role of the IPD is founded in their high conformational adaptivity, enabling
them to respond rapidly to environmental changes, in the flexibility of their associative prop-
erties allowing them to fold into different states depending on partner molecules. For these
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properties the dynamics is essential. Myelin basic protein (MBP) is a major component of
the Myelin sheets in the central nervous system [13]. Among the several isoforms the major
human and bovine isoform the 18.5 kDa form with 170 amino acids was investigated. In the
human body MBP is of significant importance as there are many neurological disorders such
as multiple sclerosis that are related to MBP malfunction. Lipid free MBP is not completely
unfolded but retains some elements of the alpha helix and beta sheet (about 60 % of the
protein is unfolded) [25].

Since the intrinsic disorder prevents crystallographic structure determination, only low-
resolution SANS and SAXS information about the average structure in the disordered state
exists. Figure 14.5A and B display X-ray and neutron form factors of MBP. Both data show
a power law decay at Q > 1.0 nm−1 with power law coefficients of ≈ −2, which is charac-
teristic for Gaussian chain polymers in theta solvents. Figure 14.6 displays NSE spectra from
54 mg/ml solutions. Inspecting Figure 14.6A already with a naked eye the two-component
structure of the NSE spectra at Q-values above 0.9 nm-1 is visible. Thus, we deal with long
time rigid body motion augmented by internal dynamics with relaxation times below 10 ns.

As the SAS data could be reasonably well described by a Debye form factor, Gaussian
chain statistics with ν = 0.5 and an end-to-end distance Re =

√
6Rg = 8.08 nm was

employed. With this approach the first Zimm mode corresponding to the rotational relax-
ation time equals to τ1 = 73.9 ns. Fig. 14.6B display the results of the ZIF description –
the translational diffusion coefficient was adapted to the experimental values from DLS. The
solid lines in Figure Fig. 14.6B show the improved result of ZIF compared to Zimm model.
A large value for the internal friction τ1 = 81.6 ± 4 ns is imposed, that is longer than the
first mode relaxation time. The internal friction dominates all higher relaxation times to such
an extent that the limiting value τ1 is quickly approached and the τp ∼ p−3/2 signature of
the Zimm model is lost. As a second approach a structural ensemble evaluated from a in-
verse Monte Carlo simulation (EOM [3]) was used to interpret the full NSE spectra. We
found elongated structures with a relatively compact core and flexible ends on both sites
similar to Figure 14.5C. The most probable structure was used for normal mode analysis as
rigid protein. On this basis the Q-dependent effective diffusion coefficient D0 was calcu-
lated. For the translational and rotational diffusion coefficients DT = 3.7 ± 0.2 Å

2
/ns and

DR = 2.35 ± 0.36 × 106 s−1 were found. The corresponding average rotational correlation
time τR = 1/(6DR0) = 70.9ns. The calculated translational diffusion coefficients agree well
with the DLS results at infinite dilution.

Using equation (14.29), a Q-dependent motional amplitude A(Q) and an internal mode re-
laxation time were evaluated. The fit results from the structural model to the NSE spectra are
displayed in Figure Fig. 14.6A up to 40 ns. The contribution of the internal protein motion
to the spectra becomes directly visible. The results for the Q-dependent amplitude are dis-
played in Figure 14.5D. For the characteristic internal relaxation time 1/λint = 8.4 ± 2.0 ns
is found for the whole structural ensemble.

Given the structural information as well as the spectral line shapes it is not surprising that
the polymer approach does not work. The motions of MBP are significantly slower than that
of a Gaussian polymer of the same size in solution. Thus, for MBP the structural ensemble
gives a significantly better realization of the dynamics as the polymer model. The lowest
soft collective excitations of the structural model, as they are revealed by the normal mode
analysis, are displayed in Figure 14.5C. Normal mode 7 and 8 correspond to bending and
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Fig. 14.5: Small angle scattering data from MBP (A) SAXS data at 4.5 mg/ml. (B) SANS results
extrapolated to infinite dilution. The solid lines in (A) are fits with the Debye equation for a
Gaussian chain with Rg = 3.38 nm. Power law scattering is indicated above Q>1 nm-1 by
dashed lines. (C) Kratky plot of the SAXS data. The line is a result of the scattering from
the most probable conformational ensembles. (C) Displacement pattern of the normal modes 7
(upper part) and 8 (lower part) from a structural model. The lengths of the vectors are increased
for better visibility. (C) Amplitude of the internal protein dynamics as obtained from the fit. The
solid and dashed lines are the calculated mode amplitude according to equation 4. Reprinted
with permission from ref. 30.

stretching motions of the structural model. With these modes the internal dynamics amplitude
A(Q) was calculated and is compared with the experimental values in Figure 14.5D. As may
be seen mode 7 is dominating and fully reproduces the observed A(Q). The displacement
patterns indicate that the center part of MBP remains rather rigid, while the termini are
flexible.

14.9 Domain dynamics of antibodies

Specificity and constancy cause the high potential of antibodies to be used in immunotherapy
or to develop new specific drugs targeting specific cells for inhibition/activation of cell pro-
cesses. IgG are the major antibody class, large molecules of 150 kDa composed of four pep-
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Fig. 14.6: NSE Data for MBP: All spectra start at unity but are shifted consecutively by a
factor of 0.8 for clarity. The residuals of the displayed fits are given for Q=0.9 and 1.1 nm-1

below the graphs. (A) Solid lines are fits to the NSE data with the structural model. The dashed
lines are exponential fits for t>20 ns to extrapolate the long time rigid body dynamics. A clear
separation between the internal and the global dynamics is obvious. (B) The dashed lines are
a result of the Zimm model. The solid lines represent a fit with a ZIF model. Reprinted with
permission from ref. 30.

tide chains: two identical heavy chains of 50 kDa and two identical light chains of 25 kDa,
in a Y-shaped structure (Figure 14.7). The conformational dynamics of IgG results from a
functional important hinge region as a loose section of the polypeptide chain that links the
Fc and Fab domains.

We used X-ray scattering to investigate the configurations of IgG in solution in a concen-
tration range between 3 and 26.4 mg/ml as shown in Figure 14.7 right [31]. As approved
by analytical ultracentrifugation the solution contains monomer and dimers, which is com-
mon for antibodies in solution as there is a tendency to build oligomers. Dimers with a
head-head configuration are proposed [9]. Modelling of mixtures between monomers and
dimers, including a flexible hinge region in the centre, allows to fit the SAXS form fac-
tor as shown in Figure 14.7, right. The dimers show still flexibility in the hinge. Fig-
ure 14.8 displays the intermediate scattering function I(Q, t)/I(Q, t = 0) as measured by
NSE. Already by simple inspection, a clear deviation from a simple diffusion process is
observed on short times. Fitting the data by the corresponding single exponential decay
I(Q, t)/I(Q, t = 0) = exp (−DeffQ

2t) one can see a proper fit for long times t with an
effective diffusion coefficient Deff . The effective diffusion is shown on the right. On a ten-
nanosecond scale, clear indications for a faster relaxation can be observed, which we attribute
to motions within the molecule.

The 6×6 diffusion tensor D was calculated by HYDROPRO on basis of a valid PDB confor-
mation [22]. As result we get additionally the scalar diffusion coefficients DT0 and DR0 for
the monomer and dimer. The rotational correlation times τr = 1/6DR0 for the monomer and
dimer are on a scale of 260 ns−1 respectively 500 ns−1 and are longer than the translational
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Fc

FabFab

V
C CV

Fig. 14.7: Left: Immunoglobulin G1 with Fc and two Fab fragments with the van der Waals
surface in grey. The Fc fragment is built from parts of the heavy chains (red and blue cartoon)
and the glycans (red and green spheres) between the two heavy chains. Fab fragments are
built from heavy and light chains (orange and green cartoon) with a hinge between the variable
region (V) and the constant region (C) of the Fab fragment. The heavy chains are connected in
the linker region by two disulfide bonds (yellow spheres). The structure displayed is based on
the human IgG1 structure IgG-ALL.pdb of Padlan [23]. Right: The SAXS form factor with the
fit result. The form factor fit includes 52 ± 4% monomer as monomer and 48 ± 4% monomer
in dimers and a background contribution (bgr). The dashed line shows the combined monomer-
dimer scattering, the red line shows the contribution of the dimer, while the blue line shows the
monomer, all without the residual background. Reprinted from ref. 31 Licensed under CC-BY
4.0

diffusion times. Therefore, we can extract the effective diffusion Deff(Q) comprising trans-
lational and rotational contributions of the overall protein by applying a single exponential
fit for times t > 15 ns. The result is shown in Figure 14.8 together with the DLS result
for the same concentration as used for NSE measurement. We use equation (14.30) and the
6× 6 diffusion tensor D together with the monomer and dimer structure to calculate D0(Q)
of the rigid structures (see inset in Figure 14.8). The increase from low Q to the higher Q
values results from the stronger visibility of the rotational diffusion if the observation length
scale 2π/Q reaches the size of the protein. At low Q we see only the translational diffusion
as measured by DLS. The expected diffusion Deff(Q) of the monomer/dimer mixture can be
calculated as the average of monomer and dimer diffusion weighted by the scattering contri-
bution to the form factor as shown in Figure 14.7. To include the hydrodynamic effects, the
translational contribution Deff(Q = 0) is corrected by Ht(Q = ∞) = 0.66 as calculated from
viscosity and correspondingly the rotational diffusion contribution Deff(Q) − Deff(Q = 0)
as described above by Hr. It needs to be emphasised that the excellent agreement is not a
fit but based on additional measurement and model calculations. The specific structure of
IgG with three nearly equal sized fragments connected by flexible linkers suggests a simple
model of three fragments within a harmonic potential. The flexible linkers may act as springs
fixing the relative equilibrium position of the fragments but allowing fluctuations around the
equilibrium position.
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Fig. 14.8: I(Q, t)/I(Q, 0) of IgG. Spectra were shifted for clarity. Solid lines represent the fit
by (14.7) with contributions from translational and rotational diffusion from (14.8) and internal
dynamics described in section (14.7) using 3 degrees of freedom for each domain. Dashed
lines correspond to the contribution of translational and rotational diffusion and are close to
a single exponential for t > 15 ns. Right: Effective diffusion coefficient Deff for long Fourier
times at a concentration of 29 mg/ml for NSE and DLS. The dashed blue line shows the result for
Deff(Q) as a mixture between monomer and dimer including H(Q). The black solid line includes
additionally the 1/S(Q) correction. The inset shows the diffusion coefficients for monomer and
dimer with the intensity averaged Deff(Q). Reprinted from ref. 31 Licensed under CC-BY 4.0

We use a reduced set of obvious displacements patterns and consider three perpendicular
vectors of unit length for each of the three fragments. One is aligned parallel to the linker
from the IgG centre of mass to a fragment centre of mass and two further aligned perpen-
dicular to this. Overall this represents nine degrees of freedom. Using equation (14.25)ff we
find an excellent description of the data as shown in Figure 14.8 left. The additional infor-
mation beyond the amplitude and the relaxation time are the force constant of the harmonic
potential and the relevant friction for the Ornstein-Uhlenbeck process. We find a force con-
stant of about 10 pN/nm and a friction of about 40000 g/ps/mol. The friction corresponds
to the friction exerted from the water on a single free fragment. The force constant is com-
parable to the force of an entropic spring of the same length as the linker from the centre
to the fragment (about 8 amino acids). Concluding, we observe that even short linkers act
as an entropic spring for the fragments allowing the highest degree of mobility with a large
configurational freedom.

14.10 Summary

The macroscopic properties of polymers and the function of biopolymers can be explained on
the basis of their microscopic dynamics. To explore the latter, inelastic neutron scattering is
the most important experimental technique as it covers the necessary length- and time scales.
Especially, neutron spin echo spectroscopy is useful as its time range allows observing the
slow motions of polymer chains. A further advantage of neutron scattering is that it allows
the selective study of regions of the polymer chain by means of isotopic labelling.
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Appendices

A14.1 Diffusion of rigid globular macromolecules

The effective diffusion of rigid macromolecules like proteins can be calculated by

D0(Q) =
1

Q2F (Q)

∑
j,k

⟨bje−iQrj

(
Q

rj ×Q

)
D6x6

(
Q

rj ×Q

)
bke

−iQrk⟩ (14.30)

with F (Q) = ⟨
∑

j,k bjbke
−Q(rj−rk)⟩ as formfactor of a atomic configuration with atom posi-

tions ri and coherent scattering length bi. D6x6 =

(
DTTDTR

DTRDRR

)
is the 6× 6 diffusion matrix.

A14.2 Brownian motion of the fragments in a harmonic po-
tential

In the following, we consider Brownian motion in a harmonic potential around the equilib-
rium position, a problem described by the Ornstein-Uhlenbeck process [33, 34] and follow
refs. [16, 17] in the derivation of the corresponding correlation function for coherent neu-
tron scattering Fcoh(Q, t). Restricting the analysis to the internal coordinates of the protein,
the translational and rotational degrees of freedom are separated. The rotational and transla-
tional degrees of freedom are described by rotational and translational diffusion, which can
be treated within the decoupling approximation according to equation (2) and equation (3).
The coherent intermediate scattering function Fcoh(Q, t) of atoms or subunits α with coherent
scattering length bα at positions bα describing our internal dynamics can be written as

Fint(Q, t) =

〈∑
α,β

bαbβ exp(iQ ·Req
β ) exp(−iQ ·Req

α )

〉
(14.31)

For larger subunits or coarse graining, the scattering amplitude can be substituted by Q de-
pendent scattering amplitude. With displacements uα from the time independent equilibrium
position Req

α we can use Rα = Req
α + uα(t) and fαβ(Q, t) = ⟨exp (−iQ · (uα(0)− uβ(t)))⟩

resulting in

Fint(Q, t) =

〈∑
α,β

bαbβ exp(iQ ·Req
β ) exp(−iQ ·Req

α ) · fαβ (Q, t)

〉
. (14.32)

We describe the internal dynamics by a Langevin type equation ẍ + γẋ + κx = fs(t) as
with position vector x, friction matrix γ, force constant matrix κ and random acceleration
fs(t) in mass weighted coordinates and mass weighted friction and force constants [17].
In the case of vanishing friction (γ = 0), normal mode analysis with the eigenequation
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κêj = ω2
j êj of eigenvalues ω2

j and eigenvectors êj results in oscillating solutions describing
vibrational motion. Here, we restrict ourselves to the highly overdamped case of high friction
with a negligible acceleration term ẍ. The high friction solution of Smoluchowski dynamics
is solved by the eigenequation γ−1κb̂i = λib̂i of eigenvalues λj and eigenvectors b̂j with
characteristic exponentially decaying solutions. For details about the derivation of low and
high friction limits see Kneller et al. [16]. According to the nature of the modes, the êi are
called elastic or vibrational normal modes, while the b̂i are called brownian normal modes
indicating that the Brownian motion characterizes the modes and eigenvalues.

Using the normal modes we may decompose the last term fαβ(Q, t) in equation (14) in a
constant term and a term describing the time dependence

fαβ(Q, t) = fαβ(Q,∞) · f ′
αβ(Q, t) . (14.33)

The constant term is related to the vibrational modes and only dependent on the harmonic
potential as

fαβ(Q,∞) = exp

(
−

∑
j=1...3N

1

2

(
(djαQ)2 + (djβQ)2

))
(14.34)

fαβ(Q, 0) = exp

(
−

∑
j=1...3N

1

2

(
(djα − djβ)Q

2
))

(14.35)

with vibrational displacement djα =
√

kBT
mαΓj

êjα of subunit α in normal mode j. djα is the
displacement vector that corresponds to the width in a Gaussian distribution around equilib-
rium configuration Req

α in the harmonic potential with force constant kj = mω2
j along normal

mode j.

In the high friction limit the time dependent part within Smoluchowski dynamics is described
by

f ′
αβ(Q, t) = exp

( ∑
j=1...3N

(vαQ) (vβQ) exp (−λjt)

)
(14.36)

with displacements vjα =
√

kBT
λjΓj

b̂jα of subunit α in Brownian normal mode j and friction

Γj = b̂Tj γb̂j . vj is the displacement vector within relaxation time 1/λj . A force constant can
be estimated by kj = λjΓj . We assume the friction matrix γ to be diagonal and zero off
diagonal terms [14]. For equal valued diagonal friction matrix, the vibrational and Brownian
modes are equal and mode displacements can be used to calculate the displacement between
the fragments. Friction with the solvent may be attributed to surface subunits but can also
be equally distributed for rigid domains for simplicity. For independent relaxing modes the
mean square displacement is msd =

∑
j

1
N

∑
α ν

2
α.

The coherent intermediate scattering function describing the internal dynamics is finally

Fint(Q, t) =

〈∑
α,β

bαbβ exp(iQ ·Req
β ) exp(−iQ ·Req

α ) · fαβ (Q,∞) · f ′
αβ(Q, t)

〉
. (14.37)
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The contribution of internal dynamics to the NSE signal can be calculated accordingly by

Fint(Q, t)

Fint(Q, 0)
=

〈∑
α,β bαbβ exp(iQ ·Req

β ) exp(−iQ ·Req
α ) · fαβ (Q,∞) · f ′

αβ(Q, t)
〉

〈∑
α,β bαbβ exp(iQ ·Req

β ) exp(−iQ ·Req
α ) · fαβ (Q,∞) · f ′

αβ(Q, 0)
〉 . (14.38)

The close similarity of numerator and denominator let us perceive that the dominating term
describing the time evolution is of the form exp(. . . exp(− . . . t)). In fact, for the case of a
single independent particle in a harmonic trap, the dynamics can be described by the much
simpler function shown in equation 14.27.
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Exercises

Note: Exercises are labelled by stars (* through ***) indicating the level of difficulty. Try to
solve the easier ones first.

E14.1 Scaling arguments

(a **) You may have noticed that no firm definition of the average segment length l has been
given. Related to this, there is no fixed relation between the number of segments N and
well-defined quantities as the degree of polymerisation or the molecular weight. On the first
thought, this casts some doubts on results as (14.39).

η =
ζl2ρN

36
∝ N (14.39)

D =
kBT

ζN
∝ N−1 (14.40)

But on a closer look it turns out that the limiting results of the Rouse model are independent
of the choice of l. When l is replaced by l′ = αl, one can replace N , ζ , and ρ in such a
way that all macroscopic results remain unchanged. Show this for the end-to-end distance
Re

2 = Nl2 and equations (14.39), (14.40), and (14.18).

(b *) In the pre-CGI days of King Kong and Godzilla filmmakers sometimes used scaled-
down mechanised models of the monsters for the scenes where these deal out destruction,
e.g. by tearing down houses. These scenes were often taken in slow motion to make them
look more realistic. Why? What slow-motion factor would be (theoretically) appropriate if
the monster is scaled down 1 : 25.

E14.2 Internal friction

(c *) Assume we find in the ZIF model an internal friction time τi roughly equal to the Zimm
time τZ for MBP with 170 residues and ν ≈ 0.5. Calculate the ratio of internal and solvent
friction of a bead ζi/ζ for ν = 0.5.

Discuss the case when ζi/ζ = 1. Can the internal friction time be measured? If yes where
and why is this difficult?

E14.3 Rg/Rh

(d *) Dynamic light scattering measures the low Q diffusion coefficient which is often
interpreted as hydrodynamic radius Rh of a sphere with same diffusion coefficient D =
kBT/6πηRh. SAXS or SANS result in Rg. What is Rh/Rg for a Gaussian chain in solvent?
What is the ratio for a sphere with R2

g = 3/5R2. Are conclusions from Rh/Rg e.g from DLS
and SAXS unambiguous? How do you substantiate a statement?
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15.1 Introduction 
 

 

 

 
Fig. 15.1: Length- and time scales covered by research with neutrons giving 

 examples for applications and neutron techniques [1].  

 
Research with neutrons covers an extraordinary range of length- and time scales as de-
picted in figure 15.1. The very extremes of length scales - below 10-12 m - are the domain 
of nuclear and particle physics, where e. g. measurements of the charge or electric dipole 
moment of the neutron provide stringent tests of the standard model of particle physics 
without the need of huge and costly accelerators. On the other extreme, neutrons also 
provide information on length- and time scales relevant for astronomical dimensions, e. 
g. the decay series of radioactive isotopes produced by neutron bombardment give infor-
mation on the creation of elements in the early universe. In this course, however, we are 
only concerned with neutrons as a probe for condensed matter research and therefore 
restrict ourselves to a discussion of neutron scattering. Still, the various neutron scattering 
and imaging techniques cover an area in phase space from picometers pm up to meters 
and femtoseconds fs up to hours, a range, which probably no other probe can cover to 
such an extent.  
 
Different specialized neutron scattering techniques are required to obtain structural infor-
mation on different length scales:  
 

• With wide angle neutron diffractometry, magnetization densities can be deter-
mined within single atoms on a length scale of about 10 pm1. The position of 

 
1 In this sense, neutrons are not only nanometer nm probes, but even picometer pm probes! 
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atoms can be determined on a similar length scale, while distances between atoms 
lie in the 0.1 nm range2.  

• The sizes of large macromolecules, magnetic domains or biological cells lie in the 
range of nm to µm or even mm. For such studies of large scale structures, one 
applies reflectometry or small angle scattering techniques.  

• Most materials relevant for engineering or geo-science occur neither in form of 
single crystals, nor in form of fine powders. Instead they have a grainy structure, 
often with preferred orientation of the grains. This so-called texture determines 
the macroscopic strength of the material along different directions. Texture dif-
fractometry as a specialized technique allows one to determine this grainy struc-
ture on length scales of up to mm. 

• Finally, for even larger structures, one uses imaging techniques, such as neutron 
radiography or tomography, which give a two-dimensional projection and full 3-
dimensional view, repectively, into the interior of a sample due to the attenuation 
of the neutron beam, the phase shift or other contrast mechanisms. 

 
In a similar way, different specialized neutron scattering techniques are required to obtain 
information on the system’s dynamics on different time scales:  
 

• Neutron Compton scattering, where a high energy neutron in the eV energy range 
makes a deep inelastic collision with a nucleus in so-called impulse approxima-
tion, gives us the momentum distribution of the atoms within the solid. Interaction 
times are in the femtosecond fs time range.  

• In magnetic metals, there exist single particle magnetic excitations, so-called 
Stoner excitations, which can be observed with inelastic scattering of high energy 
neutrons using the so-called time-of-flight spectroscopy or the triple axis spectros-
copy technique. Typically, these processes range from fs to several hundred fs.  

• Lattice vibrations (phonons) or spin waves in magnetic systems (magnons) have 
frequencies corresponding to periods in the picosecond ps time range. Again, 
these excitations can be observed with time-of-flight or triple axis spectroscopy.  

• Slower processes in condensed matter are the tunneling of atoms, for example in 
molecular crystals or the slow dynamics of macromolecules. Characteristic time 
scales for these processes lie in the nanosecond ns time range. They can be ob-
served with specialized techniques such as backscattering spectroscopy or spin-
echo spectroscopy.  

• Even slower processes occur in condensed matter on an ever-increasing range of 
lengths scales. One example is the growth of domains in magnetic systems, where 
domain walls are pinned by impurities. These processes may occur with typical 
time constants of microseconds µs. Periodic processes on such time scales can be 
observed with stroboscopic neutron scattering techniques.  

• Finally, kinematic neutron scattering or imaging techniques, where data is taken 
in consecutive time slots, allow one to observe processes from the millisecond ms 
to the hour h range.  

 
In this chapter, we will overview the various techniques used in neutron scattering and 
provide some examples for their application. We will start by repeating the properties of 

 
2 In what follows, we use as “natural atomic unit” the Ångstrøm, with 1 Å=0.1 nm. 
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the different correlation functions, in order to be able to judge what kind of information 
we can obtain from a certain neutron scattering experiment. We will introduce neutron 
scattering techniques used to obtain information on “where the atoms are” (diffractome-
try) and “what the atoms do” (spectroscopy). We will finish by reviewing the range of 
applicability of various neutron scattering methods and compare them to other experi-
mental techniques. 
 

15.2 Scattering and correlation functions 
 
This somewhat advanced section can be skipped during first reading, but is given here for 
completeness. 
 
The neutron scattering cross section for nuclear scattering can be expressed in the follow-
ing form (for simplicity, we restrict ourselves to a mono-atomic system): 

 (15.1) 

The cross section is proportional to the number N of atoms. It contains a kinematical 
factor k’/k, i. e. the magnitude of the final wave vector versus the magnitude of the inci-
dent wave vector, which results from phase-space density consideration. The scattering 
cross section contains two summands: one is the incoherent scattering cross section, 
which depends on the variance of the scattering length , and the other one is 

the coherent scattering cross section, which depends on the magnitude square of the av-
erage scattering length density . The cross section (15.1) has a very convenient form: 
it separates the interaction strength between probe (here: the neutrons) and sample from 
the properties of the system studied. The latter is given by the so-called scattering func-
tions  and , which are completely independent of the probe and 
solely a property of the system under investigation [2]. The coherent scattering function 

 (also called dynamical structure factor or scattering law) is a Fourier trans-
form in space and time of the pair correlation function: 

 (15.2)  

Here the pair correlation function  depends on the time dependent positions of the 
atoms in the sample: 

 (15.3)  

 denotes the position of atom i at time 0, while  denotes the position of atom j 
at time t. The angle brackets denote the thermodynamic ensemble average, the integral 
extends over the entire sample volume and the sum runs over all atom pairs in the sample. 
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Instead of correlating the positions of two point-like scatterers at different times, one can 
rewrite the pair correlation function in terms of the particle density as given in the second 
line of (15.3). Coherent scattering arises from the superposition of the amplitudes of 
waves scattered from one particle at time 0 and a second particle at time t, averaged over 
the entire sample volume and the thermodynamic state of the sample. In contrast, inco-
herent scattering arises from the superposition of waves scattered from the same particle 
at different times. Therefore, the incoherent scattering function  is given in the 
following form: 

 (15.4)  

which is the Fourier transform in space and time of the self-correlation function 
: 

 (15.5)  

We next define the intermediate scattering function  as the purely spatial Fourier 
transform of the correlation function (here we have dropped the index “coh” and “inc”, 
respectively, as the intermediate scattering function can be defined for coherent as well 
as for incoherent scattering similarly): 

 (15.6)  

For reasons, which will become apparent below, we have separated in the second line the 
intermediate scattering function for infinite time 

 (15.7)  

from the time development at intermediate times. Given this form of the intermediate 
scattering function , we can now calculate the scattering function as the temporal 
Fourier transform of the intermediate scattering function: 

 (15.8)  

 
In this way, the scattering function has been separated into one term for frequency 0, i. e. 
vanishing energy transfer  and one term for non-vanishing energy transfer. 
The first term is the purely elastic scattering, which is given by the correlation function 
at infinite times. Correlation at infinite times is obtained for particles at rest. A prominent 
example is the Bragg scattering from a crystalline material, which is purely elastic, while 
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the scattering from liquids is purely quasi-elastic3 since the atoms in liquids are moving 
around freely and thus the correlation function vanishes in the limit of infinite time dif-
ferences.  
 
Often times the energy of the scattered neutron is not discriminated in the detector. In 
such experiments, where the detector is set at a given scattering angle, but does not re-
solve the energies of the scattered neutrons, we measure an integral cross section for a 
fixed direction : 

 (15.9)  

Momentum and energy conservation are expressed by the following kinematic equations 
of scattering: 

 ;   (15.10)  

Due to these kinematic conditions, the scattering vector Q will vary with the energy of 
the scattered neutrons E' or the energy transfer  as the integral in (15.9) is performed. 
The so-called quasi-static approximation neglects this variation and uses the scattering 
vector Q0 for elastic scattering  in (15.9). This approximation is valid only if the 
energy transfer is small compared to the initial energy. This means that the movements 
of the atoms are negligible during the propagation of the radiation wave front from one 
atom to the other. In this case, the above integral can be approximated as follows:  

 (15.11)  

which shows that the integral scattering in quasi-static approximation depends on the in-
stantaneous spatial correlation function only, i.e. it measures a snapshot of the arrange-
ment of atoms within the sample. This technique is e.g. very important for the determina-
tion of short-range order in liquids, where no elastic scattering occurs (see above).  
 
Our discussion on correlation functions can be summarized in a schematic diagrammatic 
form, see figure 15.2.  

 
3 Inelastic scattering usually denotes scattering from an excitation with well-defined energy transfer, while 
quasi-elastic scattering denotes scattering which is not elastic, but has a broad energy distribution, centered 
around an energy transfer of zero. 
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Fig. 15.2: Schematic diagrams depicting the various scattering processes: a) 

 coherent scattering is connected with the pair correlation function in 
 space-and time; b) incoherent scattering is connected with the self-
 correlation function; c) magnetic scattering is connected with the spin 
 pair correlation function; d) elastic and inelastic scattering from a 
 crystal measures average positions and movements of the atoms, 
 respectively, e) inelastic scattering in quasi-static approximation sees a 
 snapshot of the sample.  

 
Figure 15.2 shows that coherent scattering is related to the pair correlation between atoms 
at different times (15.2a), while (quasi-elastic) incoherent scattering relates to the one 
particle self-correlation function at (different) times (e.g. diffusion of atoms) (15.2b). In 
analogy to nuclear scattering, magnetic scattering depends on the correlation function 
between magnetic moments of the atoms. If the magnetic moment is due to spin only, it 
measures the spin pair correlation function. Since the magnetic moment is a vector quan-
tity, this correlation function strongly depends on the neutron polarization. For this rea-
son, in magnetic scattering we often perform a polarization analysis as discussed in the 
corresponding chapter. Figure 15.2d depicts elastic and inelastic scattering from atoms 
on a regular lattice. Elastic scattering depends on the infinite time correlation and thus 
gives us information on the time averaged structure. Excursions of the atoms from their 
time averaged positions due to the thermal movement will give rise to inelastic or quasi-
elastic scattering, which allows one e.g. to determine the spectrum of lattice vibrations, 
see chapter on “inelastic neutron scattering”. Finally, an experiment without energy anal-
ysis in quasi-static approximation will give us the instantaneous correlations between the 
atoms, see figure 15.2e. This schematic picture shows a snapshot of the atoms on a regular 
lattice. Their positions differ from the time averaged positions due to thermal movement. 
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15.3 The generic scattering experiment 
 

 

 

Fig. 15.3: Schematic diagram of a generic scattering experiment; the primary 
 spectrometer in front of the sample serves to select an incident wave 
 vector distribution by means of collimation and monochromatization; the 
 secondary spectrometer after the sample selects a final wave vector; the 
 number of neutrons for a given distribution of incident wave vector k and 
 final wave vector k’ is counted in the detector.  

 
A generic scattering experiment is depicted schematically in figure 15.3. The incident 
beam is prepared by collimators, which define the direction of the beam and monochrom-
ators, which define the energy of the incident neutrons. Together these optical elements 
select an incident wave vector k. In reality, since these neutron-optical elements are never 
perfect, a certain distribution of incident wave vectors around an average wave vector is 
selected in the primary spectrometer. In an analogous manner, a final wave vector k’ - or 
better a distribution of final wave vectors - is being selected from all scattered waves after 
the sample by the secondary spectrometer. Finally, the scattered neutrons are being 
counted in the detector. Since our neutron-optical elements are never perfect, the meas-
ured intensity in the detector is not simply proportional to the scattering function  
(or more precisely, the cross section), but it is proportional to the convolution of the scat-
tering function (or cross section) with the experimental resolution function R:  

 (15.12)  

Here, the resolution function R appears due to the limited ability of any experimental 
setup to define an incident or final wave vector k or k’, respectively. R therefore depends 
purely on the instrumental parameters and not on the scattering system under investiga-
tion. The art of any neutron scattering experiment is to adjust the instrument - and with it 
the resolution function - to the problem under investigation. If the resolution of the in-
strument is too tight, the intensity in the detector becomes too small and counting statistics 
will limit the precision of the measurement. If, however, the resolution is too relaxed, the 
intensity will be smeared out and will not allow one to determine the scattering function 
properly.  
The simplest way to collimate an incident beam is to put two slits with given openings in 
a certain distance in the beam path and thus define the angular spread of the incident 
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beam. For monochromatization of a neutron beam, usually one of two different methods 
is applied:  

• One can use the wave property of the neutron and diffract the neutron beam from 
a single crystal. According to Braggs' law , a certain wave length λ is 
being selected for a given lattice d-spacing under a scattering angle 2q.  

• One can use the particle property of the neutron and use the neutron time-of-flight 
to determine its velocity and thus its kinetic energy. How this is being done tech-
nically is discussed in the corresponding section of this course.  

Following our discussion of the correlation functions, we will now distinguish two prin-
cipally different types of neutron scattering instruments:  

• Diffractometers: these are scattering instruments, which either perform no energy 
analysis at all, or which measure only the truly elastic scattering. As discussed in 
chapter 15.2, the truly elastic scattering allows one to determine the time averaged 
structure. The prominent example is Bragg scattering from single crystals. If, 
however, no energy analysis is performed, one usually makes sure that one works 
in quasi-static approximation to facilitate the interpretation of the scattered inten-
sity distribution. Quasi-static approximation corresponds to a snapshot of the scat-
terers in the sample and is important for example to determine short-range order 
in a liquid. Be it elastic scattering or integral scattering in quasi-static approxima-
tion, a diffraction experiment allows one to determine the position of the scatterers 
only. The movement of the scatterers is not (directly) accessible with such a dif-
fraction experiment. Similarly, in a diffraction experiment for magnetic scatter-
ing, the arrangement of magnetic moments within the sample, i.e. its magnetic 
structure, can be determined, while the spin dynamics is not accessible in a dif-
fraction experiment4. 

• Spectrometers: a neutron spectrometer is dedicated to measure inelastic scatter-

ing, i.e. to determine the change of the neutrons’ kinetic energy  during 

the scattering process. Such an experiment requires the analysis of the energy of 
the scattered neutrons, in contrast to a conventional diffractometer. Now the in-
tensity measured in the detector depends on momentum- and energy- transfer and 
is proportional to the convolution of the double differential scattering cross sec-
tion (15.1) with the resolution function of the instrument (15.12). Therefore, a 
neutron spectrometer gives us information on the scattering functions (coherent 
or incoherent) and thus on the truly time dependent pair- or self-correlation func-
tions. This is why spectrometers are used to determine the dynamics of a system 
after its structure has been determined in a previous diffraction experiment5. 

 

15.4 Diffractometers 
 

 
4 In fact, there is a way to access also spin- or lattice- dynamics in a diffraction experiment: lattice vibrations 
will give rise to diffuse scattering around Bragg peaks, so-called thermal diffuse scattering, which can be 
modelled and thus the spectrum of excitations can be determined in an indirect, but not model-free direct 
way.  
5 Of course, spectrometers could also be used to determine the structure, but usually their resolution is not 
at all adapted to this purpose.  
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15.4.1  Wide angle diffraction versus small angle scattering 
 
According to (15.10) and de Broglie, the momentum transfer during a scattering experi-

ment is given by . Remembering that , the magnitude Q of the scat-

tering vector Q can be expressed in terms of wavelength λ and scattering angle 2θ as:  

 (15.13)  

As we have seen in chapter 15.2, the scattering cross section is related to the Fourier 
transform of the spatial correlation function and therefore a reciprocal relation exists be-
tween characteristic real space distances d and the magnitude of the scattering vector Q, 
for which intensity maxima appear: 

 (15.14)  

Bragg scattering from crystals provides an example for this equation (compare corre-
sponding introductory chapter): the distance between maxima of the Laue function is de-
termined by , where d is the corresponding real space periodicity. Reflectom-
etry provides another example (see below): the Q-distance between Kiessig fringes is 
given by the relation  (compare (15.19)), where d is the layer thickness.  
(15.14) is central for the choice of an instrument or experimental set-up, since it tells us 
which Q-range we have to cover in order to get information on a certain length range in 
real space. (15.13) tells us at which angles we will observe the corresponding intensity 
maxima for a given wavelength. This angle has to be large enough in order to separate 
the scattering event clearly from the primary beam. This is why we need different instru-
ments to study materials on different length scales. Table 15.1 gives two examples. 
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Tab. 15.1: Examples for scattering from structures on different characteristic real space 

length scales d. ΔQ is the corresponding characteristic scattering vector ac-
cording to (15.14), 2θ the scattering angle according to (15.13), calculated 
for two different wavelengths λ. 

 
1. The study of structures on atomic length scales is typically done with a wave-

length of around 1 Å (comparable to the distance between the atoms) and the scat-
tered intensity is observed at rather large angles between 5° and 175°. Therefore 
one speaks of wide angle diffraction, which is employed for the study of atomic 
structures.  

2. For the study of large-scale structures (precipitates, magnetic domains, macro-
molecules in solution or melt) on length scales of 10 up to 10,000 Å (1 up to 1000 
nm), the magnitude of the relevant scattering vectors as well as the corresponding 
scattering angles are small. Therefore one chooses a longer wavelength in order 
to expand the diffractogram. The suitable technique is small angle scattering, 
which is employed to study large scale structures.  

 
In what follows we will first focus on the study of large-scale structures. In the corre-
sponding conceptually very simple instruments, some typical considerations for the de-
sign of an instrument can be exemplified. We will distinguish between small angle neu-
tron scattering instruments and reflectometers, discuss the basic instrument concepts and 
list some possible applications. After having discussed how large-scale structures can be 
studied with neutron diffraction, we will then introduce instruments for wide angle scat-
tering and their possible applications.  
 

15.4.2  Small Angle Neutron Scattering (SANS) 
 
As mentioned in chapter 15.4.1, small angle scattering is employed whenever structures 
on length scales between typically 10 Å and 10,000 Å (1 nm and 1,000 nm) are of interest. 
This range of real space lengths corresponds to a scattering vector of magnitude between 
about 10-1 Å-1 and 10-4 Å-1 (1 nm-1 and 10-3 nm-1). In order to observe the scattering events 
under reasonable scattering angles, one chooses a rather long wavelength. However, due 
to the moderator spectrum (see chapter on neutron sources), there is very little neutron 
flux at wavelengths above 20 Å. Therefore typically neutrons of wavelength between 5 
and 15 Å are employed for small angle neutron scattering.  
 

Example 

Distance between 
atoms in crystals 

Precipitates in 
metals (e.g. Co in 
Cu) 

d 

2 Å 

400 Å 

ΔQ 

3.14 Å-1 

0.016Å-1 

2qq  
(ll=10 Å) 

"cut-off" 

1.46° 

Technique 

wide angle diffraction 

small angle scattering 

2qq  
(ll=1 
Å) 
29° 

0.14° 
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Two different principles of small angle neutron scattering will be distinguished in this 
chapter: the pinhole SANS and the focusing SANS depicted in figures 15.4 and 15.5, 
respectively. Other types of instruments, e.g. with multi-pinhole grid collimation, are var-
iants of these techniques and will not be discussed here. 
 

 

 

 
Fig. 15.4: Schematics of a pinhole SANS, where the incident wave vector is defined 

 through distant apertures (KWS-1 or KWS-2 of JCNS [3]).  
 

 

 

 
Fig. 15.5: Schematics of a focusing SANS, where an image of the entrance aperture 

 is produced on the detector by a focusing mirror (KWS-3 of JCNS [3]).  
 
For both instrument concepts, the wavelength band is usually defined by a so-called ve-
locity selector. Figure 15.6 shows a photo of a velocity selector drum build in Jülich for 
the instrument KWS-3. 
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Fig. 15.6: Photo of the velocity selector drum of the JCNS instrument KWS-3 show-
ing the screw-like twisted channels separated by absorbing walls, which only 
neutrons of a certain wavelength band can pass when the drum is turning. 

 
In the pinhole SANS, the direction of the incident wave vector k is defined by two distant 
apertures of comparable size. The longer the distance between the diaphragms, the higher 
is the collimation for a given cross section of the beam. The sample is placed right next 
to the second aperture and the scattered neutrons are being recorded in a detector, which 
is at a large distance from the sample; typically, the sample-detector distance is compa-
rable to the collimation distance. The overall length of such an instrument can amount to 
40 m, up to 80 m.  
In contrast to the pinhole SANS, the focusing SANS uses a divergent incident beam and 
a focusing optical element produces an image of the entrance aperture on the detector. 
The sample is positioned directly behind the focusing element. Small angle scattering 
from the sample appears on the position-sensitive area detector around the primary beam 
spot. Such a set-up with a focusing element would be the natural solution in light optics, 
where focusing lenses are readily available. Due to the weak interaction of neutrons with 
matter, the index of refraction for neutrons is very close to one, and it is difficult to pro-
duce efficient focusing elements. In case of the focusing SANS realized by For-
schungszentrum Jülich [4], a toroidal6 mirror is employed as focusing element. Locally, 
the toroidal shape is a good approximation to an ellipsoid with its well-known focusing 
properties. The challenge in realizing such a device lies in the fact that small angle scat-
tering from the focusing element has to be avoided i.e. the mirror has to be flat on an 
atomic scale (root-mean square roughness of about 3 Å!), which became possible due to 
the developments of optical industry for x-ray satellites.7 

 
6 A torus is a surface of revolution generated by revolving a circle about an axis coplanar with the circle, 
which does not touch the circle (examples: doughnuts, inner tubes). 
7 It should be mentioned that nowadays focusing lenses for neutron scattering have also been realised. These 
have a very long focal distance, but can be employed to improve intensity or resolution in pinhole SANS.  
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As an example of the considerations leading to the design of a neutron scattering instru-
ment, we will now discuss the resolution of a pinhole SANS machine. In general terms, 
the resolution of an instrument denotes the smearing of the signal due to the instruments’ 
finite performance (15.12). As neutron scattering is a flux limited technique, there is need 
for optimization: the better the resolution of the instrument, i.e. the better the angular 
collimation Δq and the smaller the wavelength spread Δλ, the smaller is the intensity rec-
orded on the detector. Therefore, resolution has to be relaxed to such an extent that the 
features of interest are still measurable and not smeared out entirely by the resolution of 
the instrument, while at the same time the intensity is maximized. In order to determine 

the resolution of a SANS instrument, we start from (15.13): . The influence 

of angular- and wavelength spread can be determined by differentiation of this equation, 
where the different contributions have to be added quadratically according to Gauss:  

 (15.15)  

ΔQ2 is the variance of the scattering vector due to the finite collimation and monochro-
matization. dE and dS are the diameters of the entrance and sample aperture, respectively. 
dD denotes the detector pixel size. LC and LD are collimation length and sample-detector 
distance, respectively. An optimization can be achieved, if all terms in (15.15) contribute 
the same amount, which leads to the condition  

 (15.16)  

(15.16) shows that a pinhole SANS has to be designed such that sample-to-detector dis-
tance LD is equal to the collimation length LC. Typical values are LD = LC = 10 m with 
openings of dE = 3 cm for the entrance- and dS = 1.5 cm for the sample aperture. Note that 
one can chose the opening of the entrance aperture to be twice as large as the opening of 
the sample aperture - or sample size - without sacrificing markedly in resolution, while 
gaining in neutron count rate! The detector needs a minimum pixel resolution dD ≈ dE ; a 
detector with a radius of about RD ≈ 30 cm is necessary to cover the required Q-range up 
to 0.05 Å-1 at LD = 10 m and for λ = 8 Å. Having defined the incident collimation, we can 
now determine the appropriate wavelength spread with the same argument as above: the 
last term in the sum in (15.15), corresponding to the wavelength spread, should contribute 
the same amount to the variance of the scattering vector as the corresponding terms for 
the collimation, i. e.:  

 (15.17)  

(15.17) demonstrates that in general for small angle scattering we don't need a very high 
degree of monochromatization. A 10 % wavelength band is acceptable, since for small 
angles the smearing due to the wavelength spread is quite comparable to the smearing 
due to the incident divergence. This is the reason why usually a velocity selector is em-
ployed as monochromatizing element for small angle scattering, as it lets a wavelength 
band of typically 10 % pass.  
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Let us give a short introduction into the analysis of small angle scattering experiments. 
As in any scattering experiment, the detected intensity is proportional to the scattering 
cross section, which in the SANS case is usually normalized to the sample volume and 
therefore has the unit [cm-1]:  

 (15.18)  

Here we discuss the so-called “two phase model” only, where homogeneous particles are 
dispersed in a matrix (e. g. precipitates in metals or nanoparticles in solution etc.). The 
cross section will then be proportional to the contrast between particles and solution  

 (15.19)  

where j labels atom species j of scattering length bj with number density rj,P in the particle 
and rj,M in the matrix, respectively. The differential cross section per particle is given by 
the interference term (note: we use a continuum description for the small Q limit):  

 (15.20)  

Here f(Q) denotes the particle form factor for a homogeneous particle of volume V:  

 (15.21)  

(15.20) is the differential cross section for a single particle. For very dilute solutions of 
identical particles, the cross section will be given by (15.20) times the number N of par-
ticles (“single particle approximation”). However, in more concentrated solutions, there 
will be additional interference effects between the particles, which are described by the 
so-called structure factor S and we obtain the modified cross section for dense solutions: 

 (15.22)  

where S(Q) is related to the Fourier transform of the pair correlation function g(R) be-
tween the single particles at distance R:  

 (15.23)  

(Note: for vanishing pair correlations g(R)º0, i.e. random distributed particles, the struc-
ture factor has to be unity: S(Q)º1).  
 
The isotropic form factor of a homogeneous sphere of radius R can be calculated by Fou-
rier transform and is introduced elsewhere in this course:  
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 (15.24)  

For forward scattering f(Q=0)=1 per definition. For small values of the scattering vector, 
this expression can be approximated by:  
 
“Guinier Law” for QR£2:  

 (15.25)  

Here the quantity RG is the so-called radius of gyration of the particle. For a spherical 

particle , but RG can defined in a more general way also for non-spherical par-

ticles.  
 
For QR=3 the form factor squared has dropped to about 10 %. In the larger Q region - 
neglecting the sharp minima of the form factor (15.24), which are often not visible due to 
particle size distribution and instrumental resolution - the form factor follows the behav-
ior:  
 
“Porod Law” for QR³4.5: 

 (15.26)  

where A=4pR2 is the surface, and the volume of the sphere of radius R. In 

small angle scattering, often times one does not deal with simple geometrically smooth 
particles in a second phase. In stochastical growth processes or soft matter system, irreg-
ular fractal structures can appear, which show self-similarity on multiple length scales. 
For such structures, power laws with other exponents are observed:  
 

 (15.27)  

where D denotes the so-called fractal dimension for porous objects. D is in general 
smaller than 3 and non-integer. If the particles have a dense core, but a rough self-similar 
surface, they are called surface fractals with a surface area of A ~ RDs. From the above 
discussion we see that characteristic regions can be distinguished in a small angle scat-
tering experiment:  
 

1. Close to forward direction in the very small Q limit and for dilute solutions, we 
observe constant scattering proportional to the number of particles N, the square 
of the particle volume V2 and contrast (15.19). For known contrast, we can deduce 
the product N×V2, if the scattering is measured in absolute units by comparing to a 

3

sin cos( ) 3
( )

QR QR QRf Q
QR
-

=

2( ) 2 2
2 3( ) 1

3

GQR
GQ Rf Q e

-
» » -

2 23
5GR R=

2 4
2( ) 2 Af Q Q

V
p -»

34
3

V Rp=

1 3

6 3 4

( ) ~ ...

( ) ~ ...s

D

D

d mass fractal Q Q Q
d
d surface fractal Q Q Q
d

s

s

- - -

- - -

=
W

=
W



Applications neutron scattering  15.17 

known scatterer e. g. water. For dense solutions, the structure factor from correla-
tions between particles becomes apparent. 

2. In the region up to QR£2, the Guinier Law (15.25) holds for compact particles. 

From a Guinier-Plot  versus Q2 one can determine the radius of gyration  

 (15.28)  

3. In the Porod-region QR³4.5 

 (15.29)  

 we can, independent of particle shape, determine the total surface area N×A of all 

particles with sharp surfaces from a Porod Plot  versus Q. 

4. Finally, if Q approaches the value 1/a where a corresponds to typical atomic dis-
tances, we approach the region of Bragg scattering from atomic structures (wide 
angle scattering).  

 
Let us now turn to applications of small angle scattering. One example is given in figure 
15.7, which is concerned with the self-organization of crystalline amorphous diblock-
copolymers [4]. Combining three different instruments, small angle scattering has been 
observed over ten orders of magnitude in cross section and nearly four orders of magni-
tude in momentum transfer. In different regions, different power laws apply, correspond-
ing to different structures: the Q-2 power law corresponds to 2d structures on the shortest 
length scale, the Q-1 power law corresponds to the organization of rods in bundles, while 
the Q-3 power law corresponds to a network of bundles with a mass fractal aspect and 
finally, correlations become visible in the very low Q-range.  
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Fig. 15.7: SANS investigation of the self-organization of a crystalline-amorphous 

 diblock-copolymer measured with three different instruments of different 
 resolution: double crystal diffractometer, focussing SANS and pinhole 
 SANS for the low, medium and larger Q range, respectively. Plotted is 
 the cross section in absolute units versus the magnitude of the scattering 
 vector. For details see [4].  

 
We will end this short introduction into the principles of small angle scattering by listing 
some examples for applications of small angle scattering in different fields of science:  

• soft matter: polymers and colloids, e. g. micelles, dendrimers, liquid crystals, gels, 
reaction kinetics of mixed systems, … 

• materials science: phase separation in alloys and glasses, morphologies of super-
alloys, micro-porosity in ceramics, interfaces and surfaces of catalysts 

• biological macromolecules: size and shape of proteins, nucleic acids and of mac-
romolecular complexes, bio-membranes, drug vectors 

• magnetism: ferromagnetic correlations and domains, flux line lattices in super-
conductors, … 

 

15.4.3  Large scale structures: Reflectometry 
 
As elaborated in chapter 15.4.2, neutron small angle scattering is applied to determine 
large-scale structures, e. g. scattering length density fluctuations on length scales of some 
100 Å in bulk material. There is another type of instrument, which is dedicated to the 
study of large-scale structures in thin film systems, on surfaces and in multilayers. Such 
an instrument is called a neutron reflectometer. This conceptually simple instrument is 
depicted schematically in figure 15.8. 
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Fig. 15.8: Schematics of a neutron reflectometer. Monochromatization can be done 

 in many different ways: by a velocity selector, by a crystal 
 monochromator, or by a chopper in a time-of-flight instrument. 
 Collimation slits define the direction of the incident beam. The monitor is 
 a low efficient detector of high transmission, which measures the incident 
 flux on the sample. The reflected neutrons are either detected in a  
 position sensitive detector, or a secondary collimation in front of a 
 point detector selects the direction of the reflected beam. For magnetic 
 samples, a polarizer, a polarization analyzer and guide fields can be 
 inserted for polarization analysis experiments.  

 
Similar to a pinhole SANS instrument, the incident beam is collimated through a set of 
two well separated slits. However, since in reflectometry, one is mainly interested in the 
momentum transfer perpendicular to the planar sample surface, the collimation of a re-
flectometer is tight only in this direction. Along the sample surface the beam can be wide 
and have a larger divergence in order to gain intensity. This collimated beam impinges 
on the sample under a grazing angle (typically fractions of a degree up to a few degrees) 
and is reflected into a single point detector or a position sensitive detector. To define the 
angle of exit for a point detector, a secondary collimation is needed between sample and 
detector. The incident beam is monochromatized using different techniques, depending 
on the resolution requirements: velocity selector, time-of-flight chopper or crystal mono-
chromator.  
 
With such an instrument, the layer structure of a sample can be determined, such as layer 
composition, layer thickness and surface- or interfacial roughness. This information is 
obtained in so-called specular reflection, for which the incident angle is equal to the final 
angle like in a reflection from a perfect optical mirror. In this case, the momentum transfer 
of the neutrons is perpendicular to the surface of the sample and thus only laterally aver-
aged information can be obtained. In order to determine lateral correlations within the 
layers, for example magnetic domain sizes, a momentum transfer within the layer has to 
occur, which implies that angle of incidence and final angle have to be different. Short 
range correlation within the layers will then give rise to so-called off specular diffuse 
scattering as well known in optics from a bad optical mirror. 
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The scattering geometry is shown in figure 15.9.  
 

 

 

Fig. 15.9: Scattering geometry for grazing incidence neutron scattering. Specular 
 reflections are obtained, if the angle of incidence equals the final angle 
 ai = af. Off-specular scattering is observed at ai ¹ af.  

 
In fact, the theoretical description of neutron reflectometry follows exactly along the lines 
of conventional optics, except that for neutrons in most cases the index of refraction is 
smaller than one and thus external total reflection occurs for neutrons coming from vac-
uum towards matter8. The index of refraction n of neutrons of wavelength l from a layer 
composed of elements with scattering length bi and number density ri and linear absorp-
tion coefficient µn is given by:  

 (15.30)  

Refraction and total reflection are described by the well-known Snell's Law of optics: 
 

Snell’s law:  (15.31)  

angle of total reflection:  (15.32)  

 
8 This is exactly what happens in neutron guides, evacuated tubes of usually rectangular cross section, 
where neutrons are totally reflected from the smooth glass side walls, often coated, e.g. with 58Ni, to en-
hance the angle of total reflection. Since for total reflection conditions, reflectivity is close to 100%, neu-
trons are transported over large distances (some 10 to above 100 m) nearly without loss from the source to 
the instruments by bouncing back- and forth from the guide side walls. 
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The intensities of reflected and transmitted beam can be determined from the optical Fres-
nel equation (A0, A1, B0: amplitudes of incident, transmitted and reflected waves, respec-
tively; kz, ktz: component of wavevector k and kz, respectively, perpendicular to average 
surface):  
Fresnel equation: 

Reflectivity  (15.33)  

Transmissivity  (15.34)  

 
Figure 15.10 shows as an example the reflectivity and transmissivity of a Ni layer.  
 

 

 

 
Fig. 15.10: Reflectivity and transmissivity of neutrons from a Ni surface.  

 
Here we just want to demonstrate with very simple arguments how interference effects 
from layered structures arise and how the intensity modulation in Q-space are related to 
real space length scales. Figure 15.11 shows how interference can occur from a beam 
being reflected at the surface and at the internal interface of a double layer stack.  
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Fig. 15.11: Schematics of the reflection of a neutron beam from a single layer on a 

 substrate. There exists an optical path length difference Δ between the 
 rays drawn with a solid line and those drawn with a dotted line.  

 
For simplicity we consider only the case of a specular reflection, i.e. the incident angle αi 
is equal to the angle of exit αf: . Interference occurs between beams reflected 
from the surface (dotted line in figure 15.11) and those first transmitted into the layer, 
reflected from the interface between layer 1 and substrate and then leaving the layer into 
vacuum (solid line). To a good approximation, refraction at the top surface can be ne-
glected for incident angles larger than about twice the critical angle of total reflection. In 
this case  holds. Since the index of refraction for neutrons is very close 
to one, this approximation is valid even for rather small angles of incidence. Then the 
optical path length difference for the two beams is: 

 (15.35)  
Here d is the thickness of layer 1. We can now determine the distance between interfer-
ence maxima from the condition that the path length difference has to differ by one wave-

length: . With  we finally obtain: 

 (15.36)  

Again, we can see that the interference phenomena in Q-space are connected with real 
space length scales in a reciprocal way. (15.36) tells us that there will be a number of 

interference maxima at distances in Q of . These interference phenomena are called 

“Kiessig fringes” and are well known to us in conventional optics for example as the 
beautiful colors observed in soap bubbles. Figure 15.12 shows as an example the reflec-
tivity of neutrons from a thin nickel layer on a glass substrate, which is nothing else but 
a section of a neutron guide employed to transport the neutrons from the source to the 
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instrument over long distances by multiple total reflections. The Kiessig fringes are nicely 
visible in this example and the thickness of the nickel layer can be determined from the 
distance between adjacent intensity maxima. 
 

 

 

 
Fig. 15.12: Reflectivity of neutrons from a nickel layer on glass substrate on a 

 logarithmic scale. Data points were measured on the HADAS 
 reflectometer of the late FRJ-2 reactor. The solid line shows a fit, where 
 the layer thickness was determined to be 837.5 Å with a root mean 
 square roughness of 14.5 Å and where the resolution of the instrument of 
  has been taken into account; the dotted line shows a 
 simulation for the same structural parameters, but for an ideal 
 instrument without resolution broadening; the short dashed line shows 
 the simulation for the same layer thickness but without roughness; the 
 long dashed line shows the simulation for the glass substrate only.  

 
Neutron reflectometry has many applications in different fields of science of which we 
can only list a few:  

• soft matter science: thin films e. g. polymer films; self-organization of diblock 
copolymers; surfactants; liquid-liquid-interfaces, … 

• life science: structure of bio-membranes 
• materials science: surface of catalysts; kinetic studies of interface evolution; 

structure of buried interfaces 
• magnetism: thin film magnetism e. g. exchange bias, laterally structured systems 

for magnetic data storage, multilayers of highly correlated electron systems, … 
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15.4.4  Atomic structures: Single crystal and powder neutron 
  diffraction 

 
As explained in chapter 15.4.1, wide angle scattering with neutrons of wavelength typi-
cally 1 Å is applied for the determination of atomic structures. Due to the periodicity of 
the lattice, Bragg peaks appear under diffraction angles given by the Bragg equation 
(compare reflectometry: (15.35) and (15.36)!): 

 (15.37)  

The intensity of the Bragg peaks is governed by the arrangement of the atoms within the 
unit cell (structure factor) and the scattering from the single atom (form factor). By col-
lecting a large set of scattered intensities for many Bragg peaks, modeling the atomic 
structure and refining the parameters in order to get an optimum agreement between cal-
culated and observed intensities, the arrangement of atoms within the unit cell as well as 
the arrangements of spins for magnetic samples can be determined. Figure 15.13 shows 
the schematics of a single crystal diffractometer.  
 

 

 

 
Fig. 15.13: Schematics of a single crystal diffractometer. The drawing shows the 

 layout of the diffractometer D9 at the Institute Laue-Langevin and has 
 been taken from http://www.ill.eu/.  

 
In contrast to small angle scattering, where a broad wavelength band is employed to en-

hance the scattered intensity, a better monochromatization of typically  has to 

be achieved for wide angle scattering to avoid the broadening of the Bragg reflections 
due to the wavelength spread according to (15.37). This monochromatization is typically 
done by Bragg diffraction from a single crystal. The direction of the incident beam is 
determined by a set of slits. As Bragg reflections only occur when the corresponding 
lattice planes have a definite orientation with respect to the incident beam, the single 
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crystal sample is usually mounted on a so-called Eulerian cradle, which allows one to 
orient the sample using the three Eulerian angles ω, χ and f. Finally, the scattered beam 
is detected in a point- or small area detector. Care must be taken to collect the entire 
integrated intensity for a scan through the Bragg reflection. 
 
A conceptually simpler experiment for the determination of atomic structures is the neu-
tron powder diffractometer. In this case, since the powder grains in the sample usually 
have random orientations with respect to the incident beam, there is no need for orienting 
the sample with respect to the beam. Scattering will always occur for some of the grains, 
which fulfill the Bragg condition by chance. As scattering occurs for all allowed Bragg 
reflections simultaneously, it would be very inefficient to detect scattered intensities by a 
single point detector, which would have to be positioned recursively for the correct 2q 
values. Therefore, in powder diffraction one usually uses a large linear - or even better 
area - position sensitive detector, which is arranged on a circular arch around the sample 
position.  
 
While neutron powder diffraction is conceptually simple, it poses the problem that Bragg 
reflections will overlap for larger unit cells, e.g. due to finite peak width. Among other 
factors, the peak width is determined by the resolution of the instrument. One can show 
that the resolution function for a neutron powder diffractometer on a beam being mono-
chromized by a Bragg reflection from a monochromator crystal9 is given by:  

 (15.38)  

For overlapping reflections, one cannot determine the intensities of the various Bragg 
reflections separately. The solution to the problem is the so-called Rietveldt- or profile 
refinement, where structural parameters (unit cell metric a,b,c,α,β,γ, atom positions and 
site occupations, the Debye-Waller-factors, etc.) are refined together with the instrumen-
tal parameters (zero point of the scattering angle 2q0, parameters of the resolution func-
tion U, V, W, etc). Assuming a certain peak shape function, this allows one to model the 
entire powder diffractogram and determine the corresponding parameters from a refine-
ment, which aims at minimizing the weighted sum of the quadratic deviations of calcu-
lated and observed intensities for all data points. Figure 15.14 shows an example of such 
a Rietveldt analysis for data taken from a colossal magnetoresistance manganite.  
 

 
9 Alternatively, one can chop the incoming white beam, so that the different wavelengths arrive at different 
times at the sample; from the arrival time of elastically scattered neutrons at the detector, one can deduce 
the wavelengths of the scattered neutrons.  Using large area detectors, which cover most of the solid angle 
4p, this time-of-flight technique, typically applied at pulsed sources, can be very efficient.  
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Fig. 15.14: Powder neutron diffraction from a colossal magnetoresistance  

 manganite. Points represent the measured intensities, the solid line the 
 calculated profile function. The green bars below the diffractogram 
 indicate the positions of the Bragg reflections and the line beneath 
 shows the difference between observed and calculated intensities [5].  

 
As one can see, there is a very strong overlap of Bragg reflections, especially at larger 
scattering angles. Still, by using the above-mentioned profile refinement technique, the 
atomic structure of the compound could be determined to a high precision.  
 
Applications of wide angle diffractions are manifold: 

• life-sciences: structure of biological macromolecules, e. g. Hydrogen (crystal wa-
ter!) in protein structures 

• chemistry: structure determination of new compounds, position of light atoms; 
time resolved reaction kinetics 

• materials science: stress-strain determination; texture of materials 
• geo-science: phase and texture analysis 
• solid state physics: structure - function relations e. g. in high TC superconductors; 

magnetic structures and spin densities, e. g. in molecular magnets 
  

CMR
Manganite
CMR
Manganite
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15.5 Spectroscopy 
 
So far, we have only explored the purely elastic - or the quasi-static correlation functions, 
which give us structural information on various length scales only. We will now turn to 
the general case of correlation functions in space and time, which allow us to determine 
in addition the microscopic dynamics of the sample under investigation. Again, different 
instrument types exist for different applications. First of all, if we consider the neutron as 
a particle, we can determine the time-of-flight it needs to travel from the sample to the 
detector and thus its velocity or energy after the scattering process. With the knowledge 
of the incident energy, the energy transfer during the scattering process can be deter-
mined. This kind of neutron spectrometer is called a time-of-flight or TOF spectrometer. 
A special case of the TOF spectrometer is the so-called neutron spin-echo spectrometer, 
where the time-of-flight of the neutrons is being determined through the Larmor preces-
sion of the nuclear spin of neutrons in an external magnetic field. Neutron spin-echo spec-
troscopy has the highest energy resolution and measures the intermediate scattering func-
tion directly. Therefore, it is well suited to study slow relaxation processes. An alternative 
approach to spectroscopy is to determine the energy of scattered neutrons by means of 
Bragg reflection from an analyzer crystal. Such an instrument is called a crystal spec-
trometer and if the selection of the incident wavelength is done by a crystal monochrom-
ator, it is called a triple axis spectrometer. A variant of a crystal spectrometer is the high-
resolution backscattering spectrometer. Of course, there are various combinations of 
these techniques, which exist in particular at spallation sources. A discussion of all of the 
various instrument concepts goes well beyond the scope of this introductory course.  
 

15.5.1  Time-of-Flight or TOF spectroscopy 
 
Figure 15.15 depicts schematically a generic time-of-flight spectrometer. Neutrons are 
being monochromatized either by reflection from a monochromator crystal or by time-
of-flight techniques (X-TOF or TOF-TOF instruments, respectively). Monochromatic 
neutron pulses are produced by a chopper, which can be a fast rotating (up to e.g. 600 Hz) 
disc or drum made from neutron absorbing material, which has a slit that lets neutron pass 
only during a short time interval of typically some microseconds. This pulsed neutron 
beam impinges on the sample and is scattered under all possible scattering angles. Neu-
trons are recorded on a two dimensional position sensitive detector (nowadays, this is 
often an array of linear position sensitive 3He detector tubes) surrounding the sample typ-
ically on the surface of a cylinder. From the arrival time of the neutrons in the detector 
with respect to the starting time given by the opening of the chopper, an intensity spec-
trum can be recorded for each scattering angle separately as a function of the arrival time 
of the neutrons in the detector. Using simple kinematic equations for the neutron as a 
particle and a calibration obtained by measuring a reference sample, this time-of-flight 
spectrum can be converted into the scattering function S(Q,ω). Figure 15.16 illustrates 
the scattering process in a flight-path-versus-time diagram.  
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Fig. 15.15: Generic TOF spectrometer. The neutron beam is monochromatized, 

 either by a crystal monochromator (X-TOF) or by time-of-flight (TOF-
 TOF) with choppers and / or the pulse from a spallation source. A 
 chopper creates monochromatic neutron beam pulses incident on the 
 sample. The scattered neutrons are collected in an array of detectors 
 surrounding the sample. For each detector pixel, the neutrons are 
 counted into a histogram as a function of their arrival time. These 
 intensity – time histograms can be converted into the scattering function 
 S(Q,ω) by using a reference sample for absolute calibration and simple 
 kinematic relations between scattering angle and flight time on one hand 
 and scattering vector and energy on the other hand.  

 

 
 

 
 

 
 

 
 

 
 

 

 
Fig. 15.16: Flight-path-versus-time-diagram for a generic time-of-flight instrument 

 (see text). (Courtesy of Dr. M. Monkenbusch).  
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In such a diagram, a monochromatic neutron beam has a certain slope, which can be de-

rived from the de Broglie equation  

 (15.39)  

Typical velocities for thermal neutrons lie in the range of meter per millisecond. In figure 
15.16 the neutrons coming from a monochromator enter the chopper with a certain slope 
in the path-vs.-time diagram corresponding to the velocity of the monochromatic neu-
trons. With a repetition rate of  given by the chopper frequency, pulses of monochro-

matic neutrons leave the chopper. A second chopper can be applied to suppress higher 
order reflections. The neutron scattered from the sample can either gain energy, resulting 
in a steeper slope in the path-vs.-time diagram or lose energy resulting in a shallower 
slope. The number of neutrons entering the detector in a certain time interval is counted 
into a histogram with the elastic line usually being strongest and inelastic events being 
visible in neutron energy gain or -loss.  
 
A nice example for a powder neutron time-of-flight spectrum is given by the excitation 
spectrum of a molecular magnet, namely Mn12 acetat, see figure 15.17 [6]. Here the time-
of-flight axis has been converted into an energy scale. Clearly visible are nicely separated 
excitations, which result in the energy level diagram depicted on the middle of figure 
15.17. Transitions between these levels correspond to transitions between different values 
of the magnetic quantum number of the total spin of the molecule. Modeling this energy 
level spectrum allows one to determine the magnetic interaction parameters, here mainly 
the magnetic anisotropy.  
 

 

 

 
Fig. 15.17: Left: Time-of-flight spectrum of the molecular magnet Mn12 acetat con-

verted into an energy scale; middle: the corresponding energy level dia-
gram; right: the magnetic molecule consisting of an outer ring of 8 Mn 
atoms (orange) with parallel coupled spins and an inner ring of 4 Mn at-
oms (blue) with opposite spin orientation. Taken from [6].  

 
Typical applications of time-of-flight spectroscopy can be found in various fields of sci-
ence:  

:h sp m v m
tl

= = × = ×

mt s
h

l= × ×

1
t



15.30  Th. Brückel 

• soft matter and biology: dynamics of gels, proteins and biological membranes; 
diffusion of liquids, polymers; dynamics in confinement 

• chemistry: vibrational states in solids and adsorbed molecules on surfaces; rota-
tional tunneling in molecular crystals 

• materials science: molecular excitations in materials of technological interest (e. 
g. zeolithes) and especially in diluted systems (matrix isolation); local and long 
range diffusion in superionic glasses, hydrogen-metal systems, ionic conductors 

• solid state physics: quantum liquids; crystal field splitting in magnetic systems; 
spin dynamics in high TC superconductors; phase transitions and quantum critical 
phenomena; phonon density of states.  

 
15.5.2  Triple axis spectroscopy 
 
An alternative approach for the study of dynamics of condensed matter systems is the so-
called triple axis spectroscopy. The schematic of a triple axis spectrometer is depicted in 
figure 15.18.  
 

 

 

Fig. 15.18: right: schematics of a triple axis spectrometer showing the three axes; 
 left: scattering diagram in reciprocal space. (Courtesy  
 Dr. H. Conrad).  

In this case the energies of the incident and scattered neutrons are selected by means of a 
single crystal monochromator and - analyzer, respectively. Also, the sample is usually in 
single crystalline form. These crystals (monochromator, sample, analyser) are on rotation 
tables, which form axis 1, axis 2 and axis 3 of the triple axis spectrometer. If we compare 
this instrument with the time-of-flight spectrometer shown in figure 15.15, one difference 
becomes immediately clear: while the time-of-flight spectrometer with its large detector 

  ' hkl= - = +Q k k G q

k' 
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bank allows one to obtain an overview over the excitation spectrum in reciprocal space, 
the triple axis spectrometer is the instrument of choice, if a certain narrow region in Q 
and ω is of interest. This is the case, if sharp excitations like lattice vibrations (phonons) 
or spin waves (magnons) are being investigated. A propagation vector of such an excita-
tion together with a certain energy transfer can be selected by setting monochromator, 
sample and analyzer to the corresponding values as depicted in the scattering diagram of 

figure 15.18, left. Here the energy transfer is given by , while the mo-

mentum transfer is given as    .  
 
As an example, Figure 15.19 shows spin wave dispersion relations determined for the 
garnet Fe2Ca3Ge3O12 by triple axis spectroscopy.  
 

 

 

 
Fig. 15.19: Spin wave dispersion relations for the garnet Fe2Ca3Ge3O12 along main 

 symmetry directions in reciprocal space. The data points are obtained 
 from scans keeping the momentum transfer constant. The figure on 
 the right shows examples of such “constant Q scans”. The solid lines are 
 model calculations, from which the interaction (exchange) parameters 
 between the spins in the unit cells can be determined; figure taken from 
 [7].  

Typical examples of triple axis spectroscopy lie mainly in solid state physics: 
• phonon dispersions in crystalline material, from which the interatomic forces can 

be determined 
• spin wave dispersions, which allow one to determine exchange and anisotropy 

parameters 
• dynamics of biological model membranes 
• lattice and spin excitations in quantum magnets, superconductors, … 
• phase transitions: critical behavior.  
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15.5.3  High resolution spectroscopy 
 
Both, time-of-flight and triple axis spectroscopy, have typical energy resolutions of a few 
percent of the incident neutron energy. While such energy resolutions are sufficient in 
many cases, there is need for higher energy resolutions, for example to investigate the 
rather slow movements of large macromolecules, the slow spin dynamics of frustrated 
spin systems, diffusion of atoms or tunneling processes in molecular crystals. In order to 
improve the energy resolution, one could just narrow the energy band width of the neu-
trons incident on the sample. However, such an improvement of resolution goes hand-in-
hand with the decrease of the signal in the detector and is therefore not practicable beyond 
certain limits. There are, however, alternative approaches to increase the energy resolu-
tion: neutron spin echo spectroscopy and backscattering spectroscopy.  
 
Neutron spin echo spectroscopy can be understood as a further development of the time-
of-flight spectroscopy, where the flight times of individual neutrons are encoded and thus 
a broad wavelength band of incident neutron energies can be used. Encoding of the flight-
time is done by the Larmor precession of the nuclear spin of the neutrons in an external 
magnetic field. Loosely speaking "each neutron carries its own clock" to measure its in-
dividual time-of-flight. Figure 15.20 demonstrates the principle of neutron spin echo 
spectroscopy: the incident neutron beam with a broad wavelength band of typically 10 % 

is being polarized with the polarization along the neutron flight direction. A so-called 

-flipper turns the neutron polarization into the vertical direction, just before the neutrons 
enter a strong magnetic field, which is designed in such a way that the field integral 

 is identical for all neutron flight paths (an absolute non-trivial requirement!!). 

In the external filed, the nuclear magnetic moment of the neutron starts to precess in this 
field with a Larmor precession frequency determined by: 

 (15.40)  

Due to the different neutron velocities and thus different flight times in the magnetic field 
area, the neutron beam reaching the sample is entirely depolarized. Typical field integrals 
are in the range of 0.5 T·m giving rise to some 10,000 precessions of the neutron spin. At 
the sample, the polarization of each neutron is inverted by a so-called π-flipper. In the 
second arm of the neutron spin echo spectrometer, the scattered neutrons travel through 
an identical solenoid as on the incident side. If the neutrons are scattered elastically and 
the field integrals in the two coils are precisely identical, then the full polarization of the 
neutron beam will be restored and a full intensity will be recorded in the detector after a 

further  flip and a polarization analyzer. This maximum intensity is called the spin 

echo. This spin echo is due to the fact that in the second coil, each neutron performs as 
many revolutions as in the first coil and thus has to end up with the initial spin direction. 
If an inelastic scattering event happens at the sample, the spin echo will be destroyed, i.e. 
the intensity in the detector will be lowered. The echo signal can be measured by scanning 
the field of the second coil with respect to the field of the first coil. Since the echo signal 
depends directly on the time-of-flight which neutrons need to travel through the magnetic 
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field region, the spin echo technique directly measures the intermediate scattering func-
tion I(Q,t) instead of S(Q,ω). This type of spectroscopy is therefore well suited to measure 
slow relaxation processes like the magnetization dynamics in spin glasses or the dynamics 
of large macromolecules.  
 

 
Fig. 15.20: Schematics of the neutron spin echo spectrometer of JCNS at the Heinz 

Maier-Leibnitz Zentrum MLZ in Munich [3]. The incident neutron beam has a 
wavelength – or energy band of .  

 
Another instrument for high resolution spectroscopy, based on a crystal analyzer and thus 
related to the triple axis spectrometer, is the so-called neutron backscattering instrument. 
Starting from the Bragg equation  one can derive the wavelength spread of a 
Bragg reflection from a monochromator or analyzer crystal by simple derivation:  

 (15.41)  

(15.41) shows that the wavelength spread results from two factors: an uncertainty in the 
lattice d-spacing, which can be minimized for perfect crystals such as silicon or germa-
nium and a term resulting from the divergence of the beam. For backscattering, i.e. 

 or  this latter contribution vanishes due to the cot(q) dependence. Thus, 
in backscattering one can work with a very divergent beam and still achieve a very good 
wavelength- or energy- resolution – of course at the prize of a poor angular resolution. 
This principle is applied for backscattering instruments. An example of such a spectrom-
eter from a neutron spallation source is shown in figure 15.21.  
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Fig. 15.21: Schematics of the neutron backscattering spectrometer BASIS at the 

 Spallation Neutron Source SNS in Oak Ridge, USA, taken from [8].  

 
Neutron pulses are produced in the supercritical hydrogen moderator. These pulses have 
a width of about 45 µs for  wavelength neutrons (this wavelength corresponds 
with silicon (111) backscattering analyzers). Bandwidth choppers are used to select a cer-
tain wavelength band from the pulsed white neutron beam. A long incident flight path of 
84 m between moderator and sample allows one to define with great precision the wave-
length of the incident neutrons arriving at the sample at a certain time after the initial 
neutron pulse. Neutrons are scattered from the sample onto Si (111) analyzers, reflected 
from these analyzers into detectors in a close-to-backscattering geometry. In this way the 
final neutron wavelength is fixed to 6.267 Å, while the incident neutron wavelength varies 
with time after the pulse and thus the energy transfer can be determined like in a time-of-
flight instrument10. An energy resolution of about 2.2 µeV can be achieved with the dy-
namic range of ± 250 µeV. Typical applications of such a backscattering spectrometer lie 
in the investigation of tunneling in molecular crystals, spin diffusion or slow spin relaxa-
tion in frustrated spin systems, or atomic diffusion processes.  
 

15.6 Summary and conclusions 
 
In this chapter we have given a rough overview over the different neutron scattering tech-
niques and their applications. Many details will be discussed in the practical part of this 
course. In addition to the instrument concepts presented, there are many variants, which 
could not be discussed within the scope of this introduction. Besides neutron scattering 
there are of course many other techniques, which cover similar lengths- and time- scales 
for research in condensed matter. All these techniques are complementary since all of 

 
10 The BASIS spectrometer is an example of a so-called inverse TOF spectrometer, where the final velocity 
of neutrons is fixed and the incident velocity varies. This is in contrast to a direct TOF spectrometer, where 
the incident velocity is fixed and the final velocity varies. 

6.267Ål =
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them can only access a certain phase space region and since the contrast mechanisms are 
quite different for the different techniques. Figures 15.22 and 15.23 depict the relevant 
lengths- and time- scales accessible with various neutron- and non-neutron techniques.  
 

 

 

 
Fig. 15.22: Experimental techniques with spatial resolution: neutron diffraction 

 compared to other experimental techniques; taken from [9].  

 

 

 

 
Fig. 15.23: Experimental techniques with time and energy resolution, respectively: 

 neutron spectroscopy compared to other experimental techniques; taken 
 from [9].  
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As these figures clearly demonstrate, neutron techniques cover a very large range of 
lengths- and time- scales relevant for research on condensed matter systems. Together 
with the typical assets of neutrons - sensitivity to magnetism, gentle non-destructive 
probe, sensitivity to light elements, contrast for neighboring elements etc. - it is clear why 
neutrons are such an important probe in many research fields. Figure 15.24 shows how 
research with neutrons is relevant in many areas of fundamental research and how this in 
turn is highly relevant for many developments of modern technologies, which are the 
basis to solve current challenges of mankind.  
 

 

 

 
Fig. 15.24: Significance of research with neutrons in fundamental research and 

 modern technologies, which finally shape our environment and help 
 solve pressing problems of modern societies, like energy supply,  
 transport or communication; taken from [9].  
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Exercises 
 

Multiple choice 
 

1. Thermal neutrons have typical energies of 
       0.2 meV 
        20 meV 
    2000 meV 
  20000 meV 

 
2. In 1 sec, thermal neutrons cover a distance of 

          10 m 
        100 m 
      1000 m 
  100000 m 

 
3. Neutron choppers rotate with frequencies up to  

          5 Hz 
      600 Hz 
  60000 Hz 

 
4. Phonon- and Magnon-dispersions are usually measured at 

small angle scattering instruments 
triple axis spectrometers 
backscattering spectrometers 
neutron spin echo spectrometers 

 
5. Interface structure in thin film systems is usually studied at 

powder diffractometers 
time-of-flight spectrometers 

  reflectometers 
 

6. Polymer reptation has been extensively studied at 
thermal time-of-flight spectrometers 
triple axis spectrometers 

  spin-echo spectrometers 
 

7. Incoherent scattering (e.g. of hydrogen) is very useful to 
reduce the background 
study magnetic properties 

  study diffusive motions 
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8. The scattering vector Q is directly related to 
  the momentum transfer of neutrons to the sample 
  the coherence of the neutron beam 
  the phase shift during scattering 
 

9. The resolution function of an instrument is directly related to 
the Fourier transform of the pair correlation function of the atoms in the sample 
the coherence volume of the neutron beam 

  the collimation and monochromatization of the beam 
 

E15.1  Collimation 
Assume you have to define the direction of a neutron beam by collimation. The incident beam 
has a flat angular distribution over an angular range much wider than needed. Employ the fol-
lowing three methods, plot the intensity distribution after your collimating device, comparing 
shape, width and transmission:  
 

1. two slits with opening S in distance L 
 
 
 
 
 

2. a “Soller Collimator” consisting of N neutron absorbing plane-parallel plates of thick-
ness t, channel width d and length l:  

 
 
 
 
 

3. a neutron guide of length L>> width w coated with 58Ni (b =14.4 fm; fcc-structure; 
a0 = 3.520 Å) 

 
 
 
 
 
What is the principle difference between method 3 and methods 1 and 2? 

 

E15.2  Monochromatization 
You have now the task to monochromatize your ideally collimated neutron beam (neglect any 
angular divergence). Again, three methods are offered:  
 

l 
d 

t 

L 

w 
58Ni 

L 
S S 
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a) A velocity selector, see figure 15.6. Take as parameters the thickness of the drums of 
10 cm, an inner radius of the lamella of 6 cm, a distance between the lamella of 1 cm 
and an inclination angle of 10°. How fast does this selector have to turn to monochro-
matize neutrons of wavelength 10 Å? Estimate the wavelength spread in percent.  

 
b) A crystal monochromator made from pyrolytic graphite PG(002) reflection with a lat-

tice d-spacing of 3.343 Å. PG is not an ideal crystal, but a mosaic crystal consisting of 
many small crystalline blocks slightly canted against each other within an angular 
width of say 40’. Calculate the Bragg angle for a wavelength of 2.4 Å and 10 Å, re-
spectively, and estimate the wavelength spread in percent.  

 
c) A sequence of two disk choppers with radius R and opening d in a distance L. Take 

L = 3 m, R = 20 cm, d = 1 cm. Which wavelength is selected, if the choppers rotate at 
200 Hz with a phase shift of 100°? 

 

E15.3  TOF-Spectroscopy (optional!) 
In a time-of-flight spectrometer, the energy change of the neutrons during scattering is being 
determined by the neutron time-of-flight:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Calculate the time-of-flight between chopper and detector for a flight path length 
s+s’=3m for neutrons of wavelength 1 Å for an elastic scattering process.  

 
b) Determine the relation between the delayed arrival time of neutrons at the detector and 

the energy loss during inelastic scattering at the sample.  
 
c) Determine the relation between energy transfer  and the magnitude of the 

momentum transfer  for a detector with fixed scattering angle 2q.  
Which factors determine the energy resolution of a TOF spectrometer? How does this affect 
the design of such an instrument? 

'E Ew = -

'= - Q k k
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