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ABSTRACT

IZA DP No. 17875 APRIL 2025

Wage Profiles in STEM and Non-STEM 
Careers

We compare wage profiles for STEM-educated and non-STEM-educated individuals over 

their lifetimes. Using repeated cross-sectional data from Russia, we examine how the 

dynamics of these types of human capital are affected by technological developments, 

applying the Age-Period-Cohort decomposition to workers’ life cycle wage growth. 

Additionally, we account for heterogeneity in the impact of institutional quality on lifetime 

wage profiles. We show that STEM education is associated with flatter wage-experience 

profiles than non-STEM education, with the most pronounced differences observed among 

females. The cohort effect, apparently specific to the former Soviet-type economies, 

reveals itself in devaluing some types of older education, putting non-STEM cohorts 

educated during the Soviet period at a disadvantage relative to those with STEM education. 

Importantly, in the Russian case, the age/experience effects act in the direction opposite 

to the cohort effects, rendering the cross-sectional analysis somewhat misleading. Finally, 

wage-experience profiles for males with non-STEM education are steeper in regions with 

weak institutions than in regions with stronger institutions.
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Introduction 

There is a large literature estimating returns to education and experience, including studies that 

emphasize heterogeneity among returns to different fields of knowledge. Most of these studies 

conflate the effect of age/experience and year with the impact of the birth cohort of the individuals 

because separating these effects is challenging. The approaches proposed by Hall (1968) and 

Deaton (1997) are quite ad hoc and have not been widely used in the literature. The relatively 

recent study by Lagakos et al. (2018) proposes a methodology grounded in human capital theory 

to separate experience, time, and cohort effects and provides estimates for wage-experience 

profiles for various countries. However, Lagakos et al. (2018) do not apply their methodology for 

estimating the returns to experience and cohorts in different educational fields. Although the 

literature has recognized that returns to experience can depend significantly on the area of 

knowledge such as STEM vs. non-STEM (see below), the potential differences in cohort effects 

have received little attention. We argue, however, that in some circumstances cohorts can affect 

different types of education quite differently. Additionally, the existing literature concerned with 

heterogeneity of returns to different types of skills usually does not address the impact of 

institutional quality on these returns.1 In this paper, we apply the methodology developed by 

Lagakos et al. (2018) to compare wage profiles for STEM-educated and non-STEM educated 

individuals in Russia – a country that undergone deep structural changes in its economy and 

educational system – and show that both cohorts and institutional quality can have significant 

impact on wage profiles.  

What makes lifetime wage profiles of STEM-educated workers different from those of their non-

STEM counterparts? STEM human capital complements technology, which tends to advance 

rapidly. This rapid advancement exposes scientists and engineers to additional risks of 

obsolescence (Ryoo & Rosen, 2004; Deming & Noray, 2020). On one hand, STEM skills acquired 

by older cohorts during formal education and early adulthood tend to become outdated. On the 

other hand, as workers age, cognitive capacity and health tend to deteriorate, increasing the cost 

of retraining while the required “payback” period shortens. Thus, the two effects—biological aging 

and cohort—affect the stock of skills (Rosen, 1975; Neuman & Weiss, 1995; Lagakos et al., 2018). 

Although these challenges are relevant for any complex skills, STEM and non-STEM skills differ 

in their exposure to obsolescence and costs of upgrading. Skills in computer sciences and complex 

engineering change especially fast (Deming & Noray, 2020). The evolution of wages over the 

 
1 There is substantial literature that examines returns to wealth-creating vs. rent-seeking skills in different 

institutional environments (Murphy et al. 1991, Baumol 1990, North 1990, Natkhov and Polishchuk 2019, and 

Alexeev et al. 2023). However, this literature does not focus on wage-experience profiles or returns differentiated by 

cohorts. 
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working life reflects different trajectories of accumulation and depreciation of STEM and non-

STEM human capital, making the comparative study of these trajectories particularly salient. 

Additional factors specific to countries can affect the accumulation and depreciation of skills. For 

example, strong and prolong systemic shocks can impact existing human capital stock, affecting 

both types of obsolescence by devaluing old education and deteriorating health in older ages. 

Transitions from a planned economy to a market economy, followed by transformational 

recessions, are among such events. 

There is also another aspect of the differences between STEM and non-STEM human capital. As 

Murphy et al. (1991) and other papers mentioned in footnote 2 argue, STEM activities are more 

likely to be wealth-creating while at least some non-STEM ones are better suited to rent-seeking 

and redistribution, more generally. Wealth-creating activities typically provide for higher returns 

compared to rent-seeking ones in a better institutional environment. Therefore, we would expect 

a positive relationship between the relative returns to STEM education (as compared to non-STEM 

one) and institutional quality.  

In this paper, we examine workers in Russia, exploring how wages evolve in STEM and non-

STEM fields of education over a worker’s career. We use the duration of potential labor market 

experience as a key measure of career-related human capital accumulation. 

Russia is particularly interesting for our purposes because, among other factors, it highlights the 

importance of distinguishing between experience and cohort effects on wage profiles of STEM 

and non-STEM workers. This distinction becomes especially relevant due to the fundamental 

structural changes associated with the plan-to-market transition. Russia began its transition journey 

in 1992, after the collapse of the USSR, and remained in recession throughout the 1990s.2 The 

economic boom during the first decade of this century changed the economic structure of the 

country and partially reshaped the demand for skills. Much of the second decade was spent in 

economic stagnation (Gimpelson & Kapeliushnikov, 2023). These developments affected both 

STEM and non-STEM skills, though to different degrees. The sharp structural break due to the 

transition to a market-oriented economy also implied that both the accumulation and depreciation 

of skills could be cohort-specific. In particular, while pre-transition STEM knowledge remained 

relevant to the new economy, much of the non-STEM education acquired in the old system became 

obsolete. Moreover, Russia is a very large and diverse country, and although its overall 

institutional quality is rather poor, there is a large diversity of Russia’s regions in this respect. 

Therefore, the Russian data provide an opportunity to explore the impact of both changing 

 
2 Of course, the Soviet economy and society were in crisis for at least a few years before 1992. 
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economic structure and diverse institutional environment on wage profiles engendered by STEM 

vs. non-STEM education. Our testable hypotheses about this impact are developed in Section 4 of 

the paper. 

Besides the issues outlined above, there are a few other country-specific reasons why this can be 

of interest. First, Russia aims to be a technologically advanced country, at least in the military-

industrial part of its economy. Whether this claim is justified is outside the scope of our study. 

Examining the STEM group provides additional insight into Russia’s capacity to keep up with 

technological progress, produce new technologies, and absorb imported ones. Given the current 

geopolitical situation this question deserves additional attention. 

Second, after Russia’s annexation of Crimea in 2014, Western countries launched the first wave 

of technological and trade sanctions. Russia responded by adopting an import substitution policy 

aimed at achieving technological independence. The Russian invasion in Ukraine in 2022 led to a 

comprehensive, albeit poorly enforced, ban on any technological transfer from the West. These 

sanctions, along with Russian counter-sanctions, strengthened the domestic trend towards 

technological self-sufficiency and contributed to the accumulation of backwardness. Since modern 

warfare relies on technologically sophisticated weaponry, having highly skilled scientists and 

engineers is crucial for producing and supporting related technologies. In order to retain these 

skilled workers in STEM jobs and motivate them to maintain their human capital and exert effort, 

they should be paid competitively. Low relative wages induce workers to quit their STEM jobs, 

destroy motivation, foster opportunism, and lead to negative selection. The current labor market 

returns to specific majors and jobs, including STEM fields, also influence students’ choice of 

educational major. 

The main questions we address in this paper are how STEM and non-STEM wages evolve over 

labor market experience and how the transition to markets affected cohorts educated in the old 

system. In particular, do STEM majors provide a wage premium relative to non-STEM alternatives 

over a working life and whether these relative trends differ between the cohorts educated in the 

Soviet and post-Soviet times? In addition, we explore the issue of how the life cycle earnings 

profiles of STEM and non-STEM majors depend on regional institutional quality. 

To our knowledge, this is the first study of wage profiles of STEM and non-STEM majors in 

Russia where the effects of age/experience are separated from those of cohorts. Moreover, this is 

the first study where wage profiles for STEM and non-STEM workers are examined taking into 

account institutional quality of the jurisdiction of the worker. 
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To explore life cycle wage profiles, we separate age/experience and cohort effects using an age-

period-cohort (APC) decomposition. We first use the Mincerian-type earnings equation and cross-

sectional data to show that in general, STEM specialization (as a college major) provides no 

significant wage premium over non-STEM, either on average or with experience/age. However, 

we later demonstrate that the APC decomposition reveals some important differences in wage-

experience profiles that are offset by inter-cohort differences. Specifically, we show that STEM 

education results in flatter wage-experience profiles than non-STEM one, with the most 

pronounced differences for female workers. Also, we demonstrate that the cohorts educated in 

non-STEM fields during the Soviet period are at a considerable disadvantage relative to those who 

received STEM education at the same time. Additionally, we find that wage-experience profiles 

for males with non-STEM education are considerably steeper in regions with weak institutional 

quality than in regions with stronger institutions while institutional quality does not appear to affect 

males with STEM diplomas or females.3  

This paper is structured as follows: The next section reviews relevant theoretical and empirical 

literature. Section 3 documents the demand-supply situation of STEM and non-STEM graduates 

in the Russian economy. Section 4 discusses our hypotheses based on theories of STEM’s life 

cycle wage growth relative to non-STEM. Section 5 describes the data and main variables. Section 

6 focuses on the descriptive characteristics of STEM and non-STEM groups. In Section 7, we 

move from simple cross-sectional wage-experience profiles to decomposition of the wage profiles 

of STEM and non-STEM groups into age/experience, time, and cohort effects. The final section 

offers concluding remarks. Some methodological details and additional estimates are relegated to 

the appendices. 

 

1. Literature Review 

Our study relates to three major strands of literature. The first two are more general, while the third 

is country-specific. 

Human Capital Evolution Over the Life Cycle 

The first strand explores how human capital evolves over the workers’ life cycle. This line of 

research begins with Mincer (1974) and Ben-Porath (1975). Rosen (1975) identifies two primary 

reasons for human capital depreciation. The first reason relates to biological aging, as human 

 
3 The lack of impact of institutions on STEM diploma holders might be due to the fact that rent-seeking activities are 

usually region specific (one needs to have established local networks, the knowledge of local institutional 

environment, etc.) while STEM skills can be easily applied in any region. 
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capabilities diminish with age, affecting speed of physical and cognitive reactions, memory, 

stamina, dexterity, and general health. The second reason is associated with the emergence and 

dissemination of new knowledge, which can be termed the vintage effect (Rosen, 1975; Neuman 

& Weiss, 1995). These two components of human capital depreciation differ in nature and evolve 

separately, but they are strongly intertwined in the data. 

Different cohorts can vary in their rates of human capital depreciation due to factors such as 

technological progress, advances in healthcare, or other events that affect the current value of 

skills. With cohort-specific rates of obsolescence, cohorts can exhibit different life-cycle wage 

profiles. We refer to the cohort-specific component of wage growth as the cohort effect. 

In developed market economies, there is little variation in life-cycle profiles by cohorts. However, 

in emerging economies, frequent shocks of different nature can cause wage profiles to vary 

considerably across cohorts. Recent studies show that these profiles differ in steepness and shape 

when the cohort effect is properly separated from that of experience (Fang & Qiu, 2023 on US and 

China; Gimpelson & Chernina, 2023 on Russia). Moreover, in countries that have undergone a 

large structural and political change, cohort effects could be different for different types of human 

capital. None of the studies provide a detailed examination of this possibility. 

Returns to Different Types of Human Capital 

The second strand of the literature deals with returns to different types of human capital — general 

versus specialized (industry- or occupation-specific). General education is often viewed as 

facilitating better adjustment to macro-shocks and structural changes, whereas specialized 

education does not (Krueger & Kumar, 2004; Kinsler & Pavan, 2015). 

STEM education tends to be more applied and specialized than non-STEM one. This eases the 

school-to-work transition and promises higher starting wages. However, with each technological 

advance, complementary STEM skills need updating (Deming, 2023). This puts STEM workers 

in a continuous race with technological change (Goldin & Katz, 2007). As workers age, skills 

upgrading becomes more costly due to cognitive and health constraints, while the required “pay-

back” period to training shortens. Employers also have weak incentives to retrain older workers as 

new cohorts of freshly educated graduates become available. 

Deming and Noray (2020) explore how technical progress in the US updates the composition of 

tasks and related skills. College STEM graduates start their careers with a higher wage premium 

compared to non-STEM graduates, but as workers age, skills obsolescence and competitive 

pressures from younger cohorts erode the premium. The most able STEM workers are more likely 

to move to managerial or non-STEM jobs when their STEM-related premium evaporates. This 
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outflow from STEM jobs inflates demand for STEM graduates, as firms expecting shortages at the 

ongoing wage rate post extra vacancies. Resulting STEM and non-STEM age-wage profiles likely 

mirror different regimes of human capital accumulation and utilization. 

An additional factor affecting selection into high-tech jobs relates to the preferences of high-tech 

startup founders, who are often young, entrepreneurial, and risk-loving (Ouimet & Zarutskie, 

2014). Young people prefer their generation as peers. By expanding and winning market niches 

with high profit margins, such companies pay higher wages, biasing the age profile of STEM 

workers towards younger groups. 

On the other hand, non-STEM skills are typically less technology-dependent, require a longer 

period to accumulate, but are more resilient to the passage of time.4 General education leads to a 

relatively bumpy labor market entry and is likely to be supplemented by additional training before 

workers achieve high productivity. 

STEM- and non-STEM-Related Human Capital in Russia 

The third, country-specific strand of the literature examines how STEM-related human capital has 

been accumulated and utilized in Russia.5 Academic scholars have primarily focused on the R&D 

segment of STEM (Ganguli, 2015; Balzer, 2019; Graham, 2013). However, this segment is 

quantitatively modest, comprising about 7% of total STEM employment (in the ISCO 2 group to 

which all highly skilled professionals belong) in 2020.6 Most STEM employment involves all sorts 

of engineers in industry, construction, transportation, and communications.7 

Despite large enrollments and a strong tradition in math and engineering, the average quality of 

engineering education in Russia remains questionable. It can be relatively high in a few elite 

universities, but major enrollments are in non-elite and low-selectivity institutions, where per 

capita funding, admission standards, and total R&D expenditures are low (Loyalka et al., 2014). 

Shmeleva and Frumin (2020) note that, on average, the quality of STEM education is 

unsatisfactory, and these majors are often chosen by academically weak students. This raises 

questions about the learning capacity of an average engineering student and whether they lag 

 
4 This is consistent with well-known tendencies in evolution of fluid and crystallized intelligence (see, e.g., Cattell, 

1971). 

5 There have not been comparable studies in economics of non-STEM human capital in Russia. 
6 Authors’ estimates based on 2020 LFS data. 

7 In 2019, the total ISCO-2 group comprised about 24% of all employed individuals in the Russian economy, with 

one in four professionals belonging to STEM-related occupations. Within this group, engineers of all 

specializations, except IT, constituted 70%, while the total IT segment, including IT engineers, accounted for an 

additional 23%. Specialists in Natural Sciences and Mathematics made up the remaining 7% (Rosstat, 2019). 

Therefore, we will sometimes refer to the entire group as “engineers” since they quantitatively dominate. 
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behind non-STEM students in observed and unobserved abilities. Even if they do not, it does not 

guarantee a high level of educational output given modern STEM job requirements.8 

STEM education supplies labor to various industries. Mining and IT are among the best-paying 

Russian industries. Defense-oriented manufacturing is a major employer of STEM labor but, at 

least before the full-scale invasion of Ukraine in 2022, was not paying high wages. Luzin (2020), 

a leading expert in the field, writes that low profitability, high debt levels, and growing costs are 

common for Russian defense manufacturers. Labor productivity within the industry is low, with 

employees in the Russian defense manufacturing holding company (Rostech) producing 

significantly less per person compared to Lockheed Martin employees. This explains at least in 

part the low pay for ordinary engineers and the negative implications for their skill accumulation. 

Academic studies focusing on STEM wages in Russia are scarce. Denisova and Kartseva (2008) 

appear to show that, for men, the market value of engineering education is not higher than that of 

law and economics, while for women it is significantly lower. However, Denisova and Kartseva 

(2008) do not provide confidence intervals for their results and although the difference for females 

seems to be substantial for 2000-2004, it disappears in 1998 and 2005. Gimpelson and Zinchenko 

(2021) compare wages of professionals with and without STEM education, employees in STEM 

jobs and alternative positions, and various combinations of education and jobs, controlling for 

major observable characteristics. They find no significant benefits from STEM specialization 

compared to non-STEM majors and jobs. The premium does not emerge over experience or age; 

moreover, older groups engaged in STEM-related work tend to experience a wage penalty. As we 

move from younger to older age cohorts, wage growth declines, meaning that wages for younger 

cohorts catch up and surpass those of older cohorts, even if initially lower. These results are 

consistent across all available datasets. However, these studies do not disentangle the effects of 

experience/age from cohort effects. As we demonstrate below, these effects might be quite 

different and offset each other. 

Finally, Alexeev et al. (2024) show that the choice of major by the higher ability individuals in 

Russia is strongly influenced by the regional institutional quality. The students with higher scores 

on the Russian standardized test matriculating in universities in the regions with weaker 

institutions tend to enroll in such non-STEM majors as law and public administration which are 

better suited to rent-seeking activities.  

 

 
8 Since at least mid-2000s, the test scores from the Unified State Exam for those applying for STEM majors have 

been significantly below those for many non-STEM applicants (Shmeleva & Frumin, 2020). 
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2. Examining STEM and non-STEM Through the Lens of Supply and Demand 

Relative wages in STEM and non-STEM fields, like any other wages, are market outcomes 

influenced by supply and demand. An undersupply relative to demand at a given wage drives 

wages up, and vice versa.9 In this section, we examine the demand-supply situation in Russia 

during the period of our wage data. As a measure of supply in STEM and non-STEM areas, we 

can use the number of workers with education in respective fields in the labor force. The actual 

number of STEM-related jobs (in the ISCO 2 group) indicates the demand for this type of labor at 

existing wages; similarly, for non-STEM-related jobs. Both measures are available from the 

Russian Labor Force Survey (LFS). 

Supply and Demand 

On the supply side, we examine the stock of STEM graduates, graduates in all fields, and the 

annual inflow of recent STEM and total graduates.10 In 2018, the share of STEM graduates among 

all tertiary-educated individuals aged 25–64 was 29.7%, and among recent graduates in 2017, it 

was 22.6% (Rosstat, 2019). For comparison, the corresponding figures for the OECD were, on 

average, 16.2% and 14.2% (Education at a Glance, 2019, Fig. 1A). None of the OECD countries 

had STEM graduates shares as high as Russia.  

Figures 1.1 and 1.2 provide insights into the supply of university graduates to the Russian labor 

market. Figure 1.1 presents the output of the Russian higher education system from 2005 to 2020, 

including STEM majors. After peaking in 2010, the number of graduates decreased by about 40%, 

driven by a sharp demographic contraction in younger cohorts and a deliberate governmental effort 

to eliminate low-quality colleges. This effort primarily affected non-STEM fields such as 

economics, law, psychology, and management, while the annual number of STEM graduates 

remained relatively stable. Each year, around 300,000 young STEM graduates entered the Russian 

labor market, reflecting the low elasticity of supply of engineers which can result in large wage 

fluctuations if demand changes significantly. However, as we argue later, this is unlikely to affect 

the interpretation of our main results in Section 7.   

 
9 Although the supply-demand relationship clearly influences wages, we will argue that its effect on our main results 

is unlikely to be large. 

10 Obviously, the difference between total stock/flow and STEM stock/flow represents non-STEM stock/flow.  
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Fig. 1.1. Annual number of college graduates 

(annual inflow), 2005-2020, thousands.  

 

Fig. 1.2. Total number of college graduates 

in the population (total stock) 20-69 years 

old, 2010-2019, thousands. 

 

Source: Authors’ estimates using Rosstat data. 

Figure 1.2 shows the total (accumulated) stock of college graduates, including those with STEM 

majors whose number has fluctuated within the range of 8 to 9 million individuals aged 20-69.  

This supply inflow is large relative to the relevant stock of jobs. Figure 2 shows the total size of 

the ISCO 2 occupational group (which includes all professionals) and the size of its STEM-related 

sub-groups. In 2020, all STEM jobs (within the ISCO 2 group) employed about 4.4 million 

professionals. One sixth of them were 25 to 29 years of age. Over a five-year period, the STEM-

related output of Russian educational institutions was twice as large as the number of STEM 

professionals in this age group. As we move up the age scale, the number of STEM professionals 

tends to decrease due to outflow to jobs in other sectors (Gimpelson & Zinchenko, 2021). Over 

time, this outflow remains visible in all annual cross-sections. In 2020, the number of employed 

individuals in the 45+ age groups was even smaller than in 2005, although the younger groups 

were much better populated. Thus, more professionals enter STEM jobs at a younger age, but 

many withdraw from these jobs by mid-career. 
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Fig. 2. Total number of professionals (ISCO 2) and STEM professionals, 2004-2021, thousands.  

Source: Authors’ estimates using Rosstat data. 

A simple calculation using 2019 LFS data suggests that the aggregate supply of STEM 

professionals (in all STEM-related fields) is more than twice the aggregate demand for them. The 

total number of STEM-educated individuals (aged 25-72) was about 7.4 million, while the total 

number of relevant jobs in the economy was around 3.3 million. With such a difference, there 

should be no shortage of certified graduates. However, not all graduates are eager to pursue this 

career. Additionally, while having formal diplomas, many may lack the necessary skills, making 

them unemployable as engineers and pushing them out of the STEM sector. Some STEM graduates 

may also advance to managerial positions, using their acquired STEM skills only partially. 

As the above brief discussion shows, a rough quantitative comparison does not suggest any overall 

undersupply of STEM graduates.11 Of course, this group is not homogeneous, and there is no full 

substitutability within the field. Various factors, such as narrow STEM specializations, uneven 

quality of education and abilities, and heterogeneity in graduates’ preferences concerning their 

professional careers, can play a role in shaping actual supply in specific STEM fields. Potentially, 

this may result in significant differences between the accumulated number of graduates and the 

current stock of actual skills.  

 
11 We do not discuss composition of university graduates by fields and majors.  
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Theoretical Considerations on STEM and non-STEM Relative Wages 

Our further discussion is guided by human capital theory (Becker, 2009; Ben-Porath, 1967; 

Mincer, 1974; Deming, 2023). Below, we present some key considerations related to our work and 

hypotheses implied by them. 

A worker’s wage can be expressed as the product of the human capital stock, h, and its unit rental 

rate r, or w = h*r. If the rental rate is assumed to be constant (as is typical in human capital theory), 

wage dynamics largely result from changes in the human capital stock (Boulus & Robertson, 

2012). However, this stock is heterogeneous and changes over time. 

When individuals enter the labor market, they possess knowledge and skills acquired through 

formal education. In the labor market, they accumulate skills through work experience. This 

accumulation results from additional investments minus depreciation. Over a career, the balance 

between investment and depreciation tends to change. The closer a worker is to the end of the 

career, the smaller the investments in their human capital are and the bigger the depreciation is 

(Ben-Porath, 1975). This generates an inverted U-shaped wage profile with a flat spot for 

investments in the pre-retirement period as no new investments are made. 

According to the literature reviewed earlier, there are two main factors that generate the loss of 

human capital: 

Biological Aging: This is associated with a decline in cognitive capacity, loss of dexterity, stamina, 

health, etc. The nature of this type of depreciation is internal and relates to the workers themselves. 

Changing Technological Environment: The advancing knowledge frontier can render previously 

acquired skills obsolete, as they are no longer complementary to new technology. The longer the 

gap between years in college or other training and years of practical utilization, the higher the risk 

that skills acquired through formal education are no longer in demand. New technologies require 

new vintages of skills, rendering old ones obsolete. Rosen (1975) calls this “external devaluation” 

(see also Deming, 2023). Deep and prolonged systemic shocks can also devalue previously 

accumulated human capital (Chernina & Gimpelson, 2023). 

In our study, college graduates with STEM and non-STEM majors possess comparable amounts 

of human capital (as measured by level and duration of education) but of different types. However, 

their lifetime wage profiles are quite different in some cases. We suggest that the difference relates 

to how STEM and non-STEM skills accumulate and depreciate under the influence of various 

factors.  
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1. Complementarity to technology. Since skills are complementary to technology, they need 

to be upgraded simultaneously. Faster technological change requires faster updates, as the growing 

mismatch threatens employers, technology, and workers. Examples of such mismatches are 

numerous. For instance, computer-based design systems make hand-drawing skills obsolete. Skills 

required in a traditional assembly line are of zero value in a fully automated production process. 

Since technical progress usually affects STEM fields and jobs more strongly than non-STEM ones, 

the speed of external devaluation for the former is typically higher. Upgrading skills is costly for 

firms and workers, and these costs rise as the technological frontier is approached. The costs are 

not just monetary but also intellectual and psychological, and they tend to grow with workers’ age. 

Thus, external devaluation can exacerbate or be exacerbated by internal devaluation. Both types 

of devaluation reshape the human capital profiles for STEM and non-STEM workers differently 

(Deming & Noray, 2020; Deming 2023). Specifically, this implies that STEM-educated workers 

would tend to have flatter wage growth profiles than those in non-STEM fields. 

2. Specific vs. general skills. STEM skills are more specialized and applied, while non-STEM 

skills are typically more general. Holders of STEM skills have a shorter school-to-work transition 

and usually enjoy higher relative wages at the start of their professional careers, but they may fall 

behind in wage growth as technology changes. For holders of non-STEM skills, the labor market 

entry phase can be bumpier, as they may need additional training, but more general skills make 

adjustment to technological upgrades easier and less costly (Kinsler & Pavan, 2015).  

Both above considerations imply our first hypothesis (H1): STEM-educated workers tend to have 

higher initial wages compared to non-STEM workers, but the wage-experience profile of their 

earnings is relatively shallow (i.e., flatter) and is more likely to turn negative at the end of their 

careers.  

3. Occupational mobility. When intra-occupational advancement stalls, the most able and 

quick-learning individuals are incentivized to change occupations. As workers age, occupational 

mobility becomes more difficult, and STEM and non-STEM specialists can diverge in mobility 

patterns, with the former being more likely to switch fields of work (Deming & Noray, 2020; 

Deming 2023). This consideration might also explain the flatter experience earnings profile of 

STEM-educated workers in our sample. 

4.  The effect of a sharp structural change in the Russian economy. As argued earlier, STEM 

education in the former USSR was much closer to world standards than non-STEM education. 

Therefore, STEM skills of older workers would be much easier to adapt to the needs of STEM 

sectors in the post-Soviet market economy. This implies our second hypothesis (H2): Within the 

cohorts educated during the Soviet times, STEM workers would demonstrate higher earnings 
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growth profile than the respective non-STEM cohorts, at least relative to the relationship between 

STEM and non-STEM wage profiles for those educated after the collapse of the USSR. 

5.  As discussed earlier, returns to different occupations are affected by the institutional quality 

of the jurisdiction where the person works. Specifically, non-STEM workers are more likely to 

prosper relative to STEM ones in environments with weaker institutions such as property rights 

protections and contract enforcement. This consideration generates our third hypothesis (H3):   The 

wage experience profiles of non-STEM workers will typically be steeper (relative to those of STEM 

workers) in regions with weaker institutions than in regions with stronger institutions. 

Finally, we note that our hypotheses might apply differently to males and females. Specifically, it 

is likely that the wage experience profile for women with majors in male-dominated fields such as 

STEM would be flatter than in other fields (see Maume 1999). Also, Russia’s society is in general 

male-dominated relative to other European countries, which can affect career advancements for 

males and females (Atencio & Posadas, 2015). 

 

3. Data and Definitions 

We focus on the educational major of the individuals in our sample (as opposed to the nature of 

their job) using the STEM/non-STEM education breakdown.  

Our STEM/non-STEM breakdown is still quite aggregated. Being a STEM graduate does not 

guarantee a perfect job-education match even in a STEM job due to heterogeneity within each 

group. The same is true for non-STEM graduates. Throughout their careers, individuals can move 

vertically (along the skills ladder) as well as horizontally (across occupations). 

To select STEM-educated individuals, we use the Russian version of the International 

Classification of Education (ISCED)12. If a respondent has more than one college diploma, we 

prioritize the most recent one. If two diplomas are received in the same year, the STEM major is 

assigned priority.  

We use microdata from the Russia Longitudinal Monitoring Survey - Higher School of Economics 

(RLMS-HSE).13 This dataset is nationally representative and contains information on a wide range 

of socio-economic and demographic characteristics. We utilize data from rounds 2000–2019 to 

generate repeated cross-sectional data set. Given the significant shocks due to COVID-19 and the 

 
12 URL: http://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-isced-

2011-en.pdf  

13 For the RLMS-HSE, see https://rlms-hse.cpc.unc.edu, https://www.hse.ru/org/hse/rlms 

http://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-isced-2011-en.pdf
http://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-isced-2011-en.pdf
https://rlms-hse.cpc.unc.edu/
https://www.hse.ru/org/hse/rlms
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full-scale Ukraine war in recent years (2020-2024), which could affect both employment and 

wages, we decided not to include these rounds. 

Our wage measurement uses the RLMS question: “How much money did you receive in the last 

30 days from your primary job after taxes? If you received all or part of the money in foreign 

currency, please convert that into rubles and report the total.” To account for potential in-kind 

payments, we add estimates from the question: “How much does the received product cost 

regardless of what you did with it?” Therefore, the monthly earnings are the sum of monetary and 

non-monetary individual incomes. We then calculate the hourly wage value by dividing the 

monthly earnings by the number of hours worked, and the natural log of this value is our main 

variable of interest. We use the annual average wages divided by typical working hours as an 

alternative definition as a robustness check. Wage values are deflated using the annual regional 

CPI, taking 2019 as the base year. We also make an adjustment for regional price levels using the 

Rosstat’s cost of a fixed basket of consumer goods and services.  

Since the RLMS questionnaire does not contain a direct question on post-schooling labor 

experience, we calculate potential experience using the conventional formula: exp=age−6−N, 

where N is the number of years in full-time education. However, applying this formula to women 

requires caution. Female employment can include spells of non-employment or part-time 

employment due to childbirth, which can cause an overestimation of actual labor force duration 

and bias returns downward. This issue is more germane for non-STEM workers, where the fraction 

of females is higher.   

In our empirical analysis, we focus on workers with university-level diplomas. Our sample consists 

of respondents aged 21-59 who work full-time, have potential experience of up to 40 years, and 

are not currently full-time students or early retirement pension recipients. We exclude active 

military personnel, those working less than 20 hours per week, and observations with missing 

wage data. Given all the data constraints, our working sample covers 20 annual rounds of the 

survey and includes approximately 6,000 males and 9,700 females. 

We measure the institutional quality of a region using the investment risk index calculated by the 

rating agency Expert RA. This index was also used by Alexeev et al. (2024) and is arguably the 

most popular and comprehensive measure of regional institutional quality in Russia.14 Another 

advantage of this index is that it is available for all regions. The risk index (we call it RI) reflects 

the quality of regional legislation, financial situation of the region, crime rates, etc.15 We divide 

 
14 For a survey of institutional quality measure in Russia see Baranov et al. (2015). 

15 The details of the methodology for constructing the index are available at www.raex-a.ru (in Russian). 

https://raex-a.ru/update_files/3_13_method_region.pdf
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the regions in our sample into two groups, assigning the value of 1 to the regions in the bottom 

half of institutional quality and the value of 0 to the regions in the top half. Our results with respect 

to the impact of institutional quality should be treated with caution because the RLMS sample is 

not necessarily regionally representative. 

 

4. Descriptive Characteristics of STEM and Non-STEM Groups  

Table 1 provides an initial insight into the heterogeneity of Russian professionals, presenting the 

key individual characteristics of the respondents averaged over the period 2004–2019.16 Non-

STEM individuals tend to be younger than their STEM counterparts.  The fraction of workers aged 

50 and over was 1.5-2 times higher (depending on the age group) in STEM than in non-STEM. 

The majority of respondents were urban and married.  

As to the sectoral breakdown, individuals with STEM education were employed predominantly in 

industry and market services. These two sectors accounted for about 60-70% of all STEM 

graduates in the economy. Non-STEM individuals, on the other hand, were largely (about 70-80%) 

employed in market and non-market services. Men with STEM majors tended to be at higher pay 

levels compared to their non-STEM counterparts. Among women, holders of STEM majors earned 

significantly less than those with non-STEM majors. Also, there was a gender wage gap in both 

groups of majors. 

Table 1. Descriptive statistics  

Characteristics 

Women Men 

non-STEM-

educated 

STEM-

educated 

non-STEM- 

educated 

STEM 

educated 

Average age 36.23 39.26 35.32 38.47 

Married, % 63.62 60.12 73.08 81.54 

Urban population, % 79.31 85.26 81.65 81.95 

Industry groups, %     

Agriculture 1.32 3.65 1.67 4.18 

Industry (manufacturing + 

mining) 
11.5 27.97 16.72 37.38 

Construction 2.74 7.4 6.64 11.94 

Market services 31.46 32.15 35.33 29.72 

Non-market services 51.2 26.88 37.97 15.85 

Other 1.79 1.96 1.67 0.94 

Experience groups, %     

0-9 years 29.2 24.7 37.13 29.12 

10-19 years 35.62 25.95 37 29.19 

20-29 years 27.67 36.02 16.45 23.7 

30-39 years 7.51 13.33 9.41 17.99 

Av. hourly wage, Rbl (in 2019 

prices) 
176 167.9 207.4 237.7 

 
16 The data for the industry variable included in the model specification is available only starting from 2004. 
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N 6828 1838 2273 2991 

Source: Authors’ estimates using the RLMS-HSE data.  

 

5. Does Wage Premium Rise with Experience? 

In this section, we examine how earnings gains evolve over a worker’s career. As we explained in 

more detail earlier, the stylized story goes as follows. An individual begins professional life with 

a low starting wage but, over time, through the gradual accumulation of productive skills through 

learning-by-doing and on-the job-training, progresses along the upward sloping wage curve. 

However, at a certain point in their career, wages may stagnate or even decline due to both external 

obsolescence and internal degradation, resulting in an inverted U-shaped curve. Wage profiles for 

individuals in different educational fields and occupations can vary, as STEM and non-STEM 

fields are differentially exposed to obsolescence and internal devaluation. Our hypotheses about 

how these differences depend on the college majors are presented in Section 4 above. We test these 

hypotheses below, first without using the APC decomposition. 

a. Cross-Sectional Evidence 

As Gimpelson and Zinchenko (2019) demonstrate, the wage gaps between STEM and non-STEM 

fields are statistically insignificant across the entire age spectrum. In this analysis, we utilize the 

data covering a longer period and an extended sample to re-estimate the Mincerian-type earnings 

equation, with potential labor market experience as a key regressor. In addition, in the next step, 

we include the regional institutional quality dummy. The estimated coefficients allow us to 

simulate wage-experience profiles, assuming other observables are held constant (see Figure 3).  

𝑙𝑛(𝑊𝑖𝑡) = 𝛽0 + ∑ 𝛽1𝑒𝐷𝑖𝑡
𝑒𝑥𝑝=𝑒 + 𝛽2𝑆𝑇𝐸𝑀𝑖𝑡 +

𝐸

𝑒=1

∑ 𝛽3𝑒𝐷𝑖𝑡
𝑒𝑥𝑝=𝑒 ×

𝐸

𝑒=1

𝑆𝑇𝐸𝑀𝑖𝑡 + 

                    + 𝜉𝑋𝑖𝑡 + 𝜃𝑡 +  𝜀𝑖𝑡, 𝑖 = 1, … , 𝑁; 

(1) 

where 𝑊𝑖𝑡 is the deflated hourly wage of individual 𝑖, who is observed at time 𝑡; 𝐷𝑖𝑡
𝑒𝑥𝑝

 is a vector 

of experience dummy variables; 𝑆𝑇𝐸𝑀𝑖𝑡 is an indicator variable that is equal to one if respondent 

𝑖 either has a STEM education at time 𝑡; vector 𝑋 includes controls for marital status, urban/rural 

location, industry and region; 𝜃𝑡 represents year fixed effects and 𝜀𝑖𝑡 is an error term. The 𝛽3𝑒 

coefficients can be interpreted as the wage penalty or premium for STEM majors at any given 

work experience. We estimate equation (1) separately for men and women.  
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Fig. 3.  Simulated wage profiles for STEM/non-STEM-educated workers. Wage in the group 

with 0-4 years of experience is taken as 1. 

Source: Authors’ estimates using the RLMS-HSE data. 

 

These profiles exhibit several distinctive features common to both genders. They are relatively 

flat, have a low peak (typical for middle-income countries), and an early decline.17 According to 

economic theory and multiple empirical studies, wages typically grow until late in one’s career 

(Rubinstein & Weiss 2006). In our case, the premiums generated by experience are modest. 

Moreover, while STEM-educated workers tend to reach peak earnings earlier than their non-

STEM counterparts, their wages also decline more sharply with experience. In contrast, non-

STEM wage profiles decline more gradually in the latter half of the career.  However, despite these 

visual differences between the wage profiles for STEM and non-STEM majors, these differences 

are not statistically significant for males but are significant at 1%-5% levels for females with 25-

34 years of experience.  These results remain robust across a range of specifications of equation 

(1), from the most conventional Mincer-type formulation to various combinations of controls used 

in our main model (available upon request). 

 
17 The wage profiles resemble those that have been repeatedly documented using different data sources for Russia (see 

Gimpelson & Zinchenko, 2019; Gimpelson, 2018; Aistov, 2018; Chernina & Gimpelson, 2023). One of the alternative 

sources is the Sample Survey of Population's Income and Participation in Social Programs conducted by Rosstat. In 

2015, it asked respondents about their college majors. For the wage-experience profiles calculated using these data, 

see Appendix B Figure A1.  
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Contrary to our first hypothesis (H1), STEM-educated workers show no clear wage advantage 

over non-STEM peers. However, as the next section shows, these preliminary findings are due 

mainly to conflation of age/experience and cohort effects.  

The impact of institutions. We now estimate the returns to experience using equation (2), which 

incorporates pairwise and triple interaction terms between experience, STEM/non-STEM major, 

and an institutional quality dummy, in addition to the main effects of these variables: 

𝑙𝑛(𝑊𝑖𝑡) = 𝛽0 + ∑ 𝛽1𝑒𝐷𝑖𝑡
𝑒𝑥𝑝=𝑒 + 𝛽2𝑆𝑇𝐸𝑀𝑖𝑡 +

𝐸

𝑒=1

∑ 𝛽3𝑒𝐷𝑖𝑡
𝑒𝑥𝑝=𝑒 ×

𝐸

𝑒=1

𝑆𝑇𝐸𝑀𝑖𝑡 + 𝛽4𝑅𝐼𝑖 + 

+ ∑ 𝛽5𝑒𝐷𝑖𝑡
𝑒𝑥𝑝=𝑒 × 𝑅𝐼𝑖 +

𝐸

𝑒=1

𝛽6𝑆𝑇𝐸𝑀𝑖𝑡 × 𝑅𝐼𝑖 + ∑ 𝛽7𝑒𝐷𝑖𝑡
𝑒𝑥𝑝=𝑒 × 𝑆𝑇𝐸𝑀𝑖𝑡 × 𝑅𝐼𝑖 +

𝐸

𝑒=1

 

                 + 𝜉𝑋𝑖𝑡 + 𝜃𝑡 + 𝜀𝑖𝑡, 𝑖 = 1, … , 𝑁; 

(2) 

where 𝑅𝐼 is an institutional quality index, which equals 1 if the Investment Risk Index exceeds the 

sample median (the region is classified as having weak institutions) and 0 if it falls below the 

median (the region is classified as having relatively strong institutions). The other variable names 

have the same meaning as in equation (1). Thus, this specification enables us to test Hypothesis 3. 

Estimation results are presented in Figure 4 and Table A1 (see Appendix). 

 

Fig. 4.  Simulated wage profiles for female and male STEM/non-STEM-educated workers from 

regions with varying institutional quality. Wage in the group with 0-4 years of experience is taken 

as 1. 

Source: Authors’ estimates using the RLMS-HSE data. 
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The institutional quality does not appear to affect significantly either males with STEM/non-

STEM diplomas or females. Consequently, our findings at this point do not provide empirical 

support for Hypothesis 3. Notice, however, that the baseline regression does not account separately 

for experience, period, and cohort effects because of perfect collinearity among these three 

variables. In other words, the cohort effect in this regression is combined with the effect of 

experience. This may contribute to the observed lack of statistical significance of the impact of 

institutional quality on the wage-experience profile. 

b. Separating APC Effects 

The collinearity of age/experience-period-cohort is referred to as the APC problem in the literature. 

Since our wage-experience profiles are derived from repeated cross-sectional data, they encompass 

both experience and cohort effects. Therefore, to accurately identify returns to experience in our 

study, we need to isolate cohort and time effects. The challenge of disentangling these three effects 

— age/experience, cohort, and time — is well-documented (for a survey see: Fosse & Winship, 

2019). Given that APC variables form a perfect identity (P = A + C), there is no purely technical 

method to separate them. Additional identifying assumptions are required to estimate distinct 

effects. 

Our objective here is to decompose the life cycle wage growth for STEM and non-STEM 

individuals into three distinct profiles for each group. It is important to note that these effects, 

being purely analytical constructs based on our assumptions, are not directly observable, regardless 

of the data available. Before explaining and applying the APC decomposition, we discuss the 

insights these effects can provide if properly separated. 

Age/Experience Effect. Human capital accumulated through learning-by-doing or various job-

related training programs is expected to boost productivity and, consequently, earnings. As 

individuals approach retirement, the potential gains from additional investment in human capital 

diminish, and skills may depreciate if not maintained. Under such conditions, labor productivity 

can stagnate or even decline, leading to a similar trajectory in wages. This incremental change in 

earnings due to additional experience, all else being equal, is referred to as the experience effect. 

Multiple studies have shown that the curve reflecting this effect rises monotonically but with 

diminishing returns to experience (Rubinstein & Weiss, 2006).18  

Cohort Effect. It reflects inter-cohort differences in wage growth. In our case, cohorts are defined 

by the year of birth and are influenced by the socialization regime experienced during early 

adulthood (the formative period). This regime can have many cohort-specific features, such as the 

 
18 However, the results of these studies should be interpreted with caution as they did not employ APC decomposition. 
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type and style of education, labor market entry conditions, technology native to the cohort, values, 

etc. (see Oreopoulos et al., 2012; Schwandt & Von Wachter, 2020; Altonji et al., 2013; Kahn, 

2010). Over time, shifts in demand can make cohort-specific human capital useless. Technological 

shocks can devalue previously acquired education and experience, but this impact can vary both 

across cohorts and within the STEM/non-STEM divide of the same cohort (Neuman & Weiss, 

1995; Deming & Noray, 2020). The size of the cohort at entry also matters, as a larger cohort 

relative to the current demand can suppress educational premiums, flattening the life-cycle profile. 

As a result, individuals of the same age group but belonging to different demographic cohorts (e.g., 

those in their 20s but born in the 1960s versus the 1990s) can differ significantly, even if other 

characteristics are similar. In developed countries, the cohort effect is usually small and of low 

statistical significance, while in countries experiencing prolonged systemic shocks, it can be more 

pronounced (Fang & Qiu, 2023; Chernina & Gimpelson, 2023).  

In the Russian context, older generations entered the workforce during Soviet times, other cohorts 

did it during the recession years of the 1990s, and still others - during the economic boom at the 

beginning of the century. Guriev and Zhuravskaya (2009, p. 164) note that “Much of the value of 

the human capital stock accumulated during the command economy could have been wiped out 

by transition because it was comprised of skills specific to the planned economy and irrelevant for 

the market economy,” although they did not test this theory explicitly. The cohort effect, when 

separated from other confounding factors, could serve as such a test. We conjecture that the 

devaluation of skill acquired in the Soviet time would be significantly greater for workers with 

non-STEM majors than those with STEM ones. 

The time effect captures changes over time that are not specific to cohort or experience. Long-term 

economic growth is an example, as growth in aggregate productivity raises earnings for all, albeit 

to varying degrees. Such changes apply to all groups in employment, including different cohorts 

and age/experience groups. 

Basic results.  

To separate APC effects, we employ the decomposition methodology proposed by Lagakos et al. 

(2018), which is briefly outlined in Appendix B. Due to data constraints, the sample size is 

insufficient for using 5-year experience bins and, therefore, we use 10-year bins. Additionally, we 

apply a 10-year pre-retirement flat spot and consider two options for the depreciation rate: 0% and 

1% per year. 
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Figures 5 and 6 present the decomposition results for STEM and non-STEM-educated males and 

females, respectively, assuming 0% depreciation rate.19 The results are broadly similar for both 

genders, though the difference between STEM and non-STEM educated workers is more 

significant for females, particularly with respect to the wage-experience profile. 

The left panel plots the wage-experience profiles assuming no human capital depreciation. The 

STEM wage profiles exhibit slower growth relative to non-STEM wages which grow 

monotonically until the pre-retirement plateau. Unlike simple cross-sectional framework, these 

profiles support our Hypothesis 1. Our point estimates indicate that while male and female non-

STEM graduates as well as male STEM graduates achieve their peak earnings in the first 20-29 

years of experience, the peak earnings for female non-STEM graduates occurs in the 10-19 years 

interval (see Table B1).  In contrast, STEM graduates experience limited wage growth over their 

entire working life, with a 27% increase for males and 11% for females, primarily during the first 

decade of their careers and then plateaus.  

Although the differences between the wage-experience profiles of STEM and non-STEM workers 

are not statistically significant at conventional levels for males, they are highly statistically 

significant for females. There are at least two reasons why the difference in experience profiles for 

STEM and non-STEM are so much more pronounced for females. Maume (1999) argued that 

females in male dominated fields tend not to move up the career ladder but are more likely to be 

pushed out. Also, STEM skills are largely developed early in careers and require continuous and 

costly updating, whereas non-STEM skills accumulate more gradually and depreciate more slowly 

(Deming, Noray 2020). We argue that women in Russia may often lack opportunities for updating 

their skills. As Russia is a relatively more male-dominated society, women are expected to have 

large amounts of housework in addition to their job responsibilities. Since non-STEM jobs 

typically require less intensive skill updating than STEM ones, women with non-STEM education 

experience less obsolescence of their skills. Also, because in many public sector jobs (such as 

education), on-the-job training is mandatory in Russia, women employed there are more likely to 

update their skills than those employed in STEM-related occupations.  

In sum, these results broadly support our Hypothesis 1. 

The right panels of Figures 5 and 6 illustrate the evolution of inter-cohort wage differences, which 

are a crucial aspect of our analysis. The cohort effects for males and females are quite similar. For 

non-STEM-educated workers, there are statistically significant wage disparities between the two 

 
19 We use APC decomposition for males and females based on separate samples for each gender because using the 

combined sample with a dummy variable for sex complicates the procedure significantly. Using the combined 

sample to estimate equations (1) and (2) generates qualitatively the same results. 
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oldest and four youngest cohorts for males and the three oldest and three youngest cohorts for 

females. The older cohorts are penalized compared to younger ones, with the difference between 

the point estimates for the youngest cohort (born after 1990) and the oldest cohort (born in 1940-

1949) being approximately 60% for males and 50% for females. For STEM-educated workers, the 

cohort effect is smaller, non-linear, and mostly statistically insignificant. The most “successful” 

cohorts are those born in 1970-1979 for males and 1980-1989 for females, with the difference 

between the point estimates for these cohorts and the most penalized oldest cohort being 43% for 

males and 30% for females. For females, the wage profiles of STEM and non-STEM-educated 

workers are statistically significantly different, whereas for males, the differences are statistically 

significant only for the two oldest cohorts and for those born in 1970-1979. Notably, the shapes of 

the cohort effects are extremely robust and persist across alternative wage definitions.20  

These cohort effects differ from the typical ones in advanced countries where cohort-specific 

human capital obsolescence is largely driven by technological change. Workers in occupations 

closer to the technological frontier have skills more exposed to external obsolescence, as can be 

captured by the cohort effect (Neuman & Weiss, 1995; Deming & Noray, 2020). Therefore, we 

might expect a stronger cohort effect for STEM than for non-STEM workers.  

This contrasts with what we observe in the Russian data where the origin of cohort-specific 

obsolescence is different and more complex. The transition from a Soviet-type economy to markets 

radically altered the entire economic environment, causing mass destruction of old jobs, creation 

of new ones, large-scale labor reallocation from industry to services, and increased demand for 

business-related occupations. This deep structural transformation, that started in the early 1990s, 

brought about both organizational and technological changes. Previously accumulated human 

capital did not align with the demand of the market. Both STEM and non-STEM professionals 

who graduated before the transition faced significant adjustment costs, although the devaluation 

of skills was typically much more significant for those with non-STEM education. 

For many non-STEM majors, especially those in social sciences and humanities, the transition 

resulted in an almost complete destruction of previously acquired skills because in these areas 

Soviet-type education was often highly distorted by ideological influences. Meanwhile, transition-

induced organizational changes increased demand for specialists in management, logistics, 

finance, marketing, and commercial law. Soviet-era education did not provide these skills, which 

had to be developed from scratch. Consequently, the earnings of the older non-STEM cohorts have 

significantly lagged behind the earnings of the younger ones. 

 
20 As noted earlier, for the alternative definition, annual average wages are divided by typical working hours.  
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At the same time, natural science and engineering majors were more resilient to the transitional 

changes as their education was not tied to ideology. Mathematics, natural science, and engineering 

schools were relatively strong during the Soviet era and continued to educate competitive students 

during the transition. Unsurprisingly, the wage-cohort profile of STEM majors has been relatively 

flat implying that the older STEM-educated cohorts did not experience much greater devaluation 

of their skills than STEM graduates would experience due to technical progress in a relatively 

stable economy.21 In short, the wage-cohort profile supports our Hypothesis 2. 

The APC decomposition helps explain the somewhat counterintuitive results based on the simple 

cross-sectional analysis, which did not show any significant differences between STEM and non-

STEM majors. The decomposition highlights two simultaneous processes that offset each other.  

The wage-experience profiles for STEM and non-STEM-educated workers rise monotonically 

although at different rates with the former lagging the latter. The trends for STEM and non-STEM 

cohorts, however, are the opposite, with the older non-STEM-educated workers in Russia being 

particularly disadvantaged because the two types of workers are differently exposed to external 

obsolescence. The non-STEM graduates from older cohorts face substantial losses because their 

human capital acquired in Soviet times has largely depreciated, while STEM skills have remained 

mostly relevant. As a result, the wage advantages gained by non-STEM majors through human 

capital accumulation over their careers (left panel) are largely offset by the losses experienced by 

cohorts that received their education during the Soviet era (right panel).  

The middle panels of Figures 5 and 6 depict the time effect, reflecting recent macroeconomic 

developments. This effect is common across all cohorts and experience groups and is partially 

captured by GDP growth. Consequently, it is almost identical for STEM and non-STEM-educated 

workers. Since the start of the transition in 1992, the Russian GDP has followed a highly volatile 

trajectory, with a transformational recession in the 1990s followed by a boom in the 2000s. 

However, this period of rapid growth was succeeded by recessions and later stagnation. The GDP 

increased by 65% during 2000-2008 but only by 7% over the subsequent 12 years, according to 

Rosstat.  

 
21 Of course, transformational recession affected all cohorts as can be seen from the low level of wages in 2000 and 

a steep slope afterwards in the Year panel in the middle of Figures 5 and 6. 
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Fig. 5. Wage growth of STEM and non-STEM-educated workers due to experience, cohort, and 

year effects, males. The depreciation rate of human capital is 0%. 

Source: authors’ calculations using the RLMS-HSE data. 

 

Fig. 6. Wage growth of STEM and non-STEM-educated workers due to experience, cohort, and 

year effects, females. The depreciation rate of human capital is 0%. 

Source: authors’ calculations using the RLMS-HSE data. 
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The impact of institutions. As we argued in the introduction, non-STEM-educated workers are 

more likely than STEM-educated ones to engage in rent-seeking activities as opposed to wealth 

creation. Therefore, according to our Hypothesis 3, we should observe steeper wage-experience 

profiles for non-STEM workers in the group of regions with weaker institutions. This is indeed 

what we find albeit only for males with less than 30 years of experience (see Figures 7 and 8). The 

absence of the difference in wage-experience profiles for older males is probably due to the fact 

that while most of them were educated in the USSR, the non-STEM education relevant to rent-

seeking such as jurisprudence and public administration became much more popular only in post-

Soviet times.  

The results in Figure 7 also suggest that for younger Russian males, our Hypothesis 1 should be 

replaced with Hypothesis 3, because the entire difference in wage-experience profiles between 

STEM and non-STEM diploma holders for younger males are apparently driven by regions with 

relatively weak institutions while in institutionally stronger regions, there is virtually no difference 

between wage profiles for STEM and non-STEM-educated workers. One possible interpretation 

of this outcome is that the non-STEM diploma holders in the institutionally poor regions are more 

likely to work in occupations better suited to rent-seeking such as legal services and public 

administration or, more generally, occupations mostly involved in redistribution rather than value-

creation. In contrast, the non-STEM diploma holders in the regions with relatively strong 

institutions are more likely to be involved in occupations in the “new” service economy such as 

management, market research, graphic design, and financial analysis. Similarly to STEM fields, 

these occupations experience relatively fast external and internal obsolescence.  

The lack of the same pattern for females can be explained, as before, by the fact that in Russia, 

professions best suited for rent-seeking (such as the legal profession) are male-dominated.22 

Instead, females who hold non-STEM diplomas tend to work in the fields such as primary and 

secondary education, relatively low-level medical professions (nurses, general practitioners), 

librarians, and accountants. These fields do not present significant opportunities for rent-seeking 

while also not experiencing fast skill obsolescence. Therefore, we have the outcome consistent 

with Hypothesis 1 as pictured in Figure 8.  

 
22 In addition, rent-seeking opportunities in a male-dominated society are likely to be more 

accessible to men than to women, regardless of their field of education. 
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Fig. 7. Wage growth of STEM and non-STEM-educated workers due to experience in region with 

different institutional quality; males (RI=0 indicates relatively good institutions; RI=1 corresponds 

to relatively weak institutions). The depreciation rate of human capital is 0%. 

Source: authors’ calculations using the RLMS-HSE data. 

 

  

Fig. 8. Wage growth of STEM and non-STEM-educated workers due to experience in regions with 

different institutional quality; females (RI=0 indicates relatively good institutions; RI=1 

corresponds to relatively weak institutions). The depreciation rate of human capital is 0%. 

Source: authors’ calculations using the RLMS-HSE data. 
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c. Robustness 

Incorporating human capital depreciation during the final stage of working life reshapes wage 

profiles somewhat. Accounting for depreciation reallocates a portion of the wage change from the 

experience effect to the cohort effect, resulting in a flatter experience profile. However, this 

adjustment does not significantly alter the main differences between STEM and non-STEM 

profiles although some changes do occur. By introducing a 1% depreciation rate, we obtain the 

results depicted in Figures 9 and 10. 

  

Fig. 9. Wage growth of STEM and non-STEM-educated workers due to experience, cohort, and 

year effects, males. The depreciation rate of human capital is 1%. 

Source: authors’ calculations using the RLMS-HSE data. 

  

Fig. 10. Wage growth of STEM and non-STEM-educated workers due to experience, cohort, and 

year effects, females. The depreciation rate of human capital is 1%. 

Source: authors’ calculations using the RLMS-HSE data.  
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At the same time, the curve representing the experience effect is now significantly flatter compared 

to the one for the zero-depreciation scenario. While non-STEM graduates continue to accumulate 

human capital throughout their careers, the peak value has notably decreased. The trajectory for 

STEM graduates is less favorable, with minimal growth initially and a substantial decline towards 

the end of their careers.  

As in the zero depreciation case, the inter-cohort differences are substantial and tend to offset the 

experience effect. The curve for the STEM cohort effect is significantly above that for non-STEM 

graduates, with particularly large differences for the older cohorts, indicating that STEM skills are 

considerably more resilient to Soviet times ideology than non-STEM skills. 

With respect to the impact of institutional quality on wage-experience profiles, the trends remain 

qualitatively the same as in the case of zero depreciation rate (see Figures 11 and 12). 

  

Fig. 11. Wage growth of STEM and non-STEM-educated workers due to experience in region 

with different institutional quality; males (RI=0 indicates relatively good institutions; RI=1 

corresponds to relatively weak institutions). The depreciation rate of human capital is 1%. 

Source: authors’ calculations using the RLMS-HSE data. 
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Fig. 11. Wage growth of STEM and non-STEM-educated workers due to experience in region 

with different institutional quality; females (RI=0 indicates relatively good institutions; RI=1 

corresponds to relatively weak institutions). The depreciation rate of human capital is 1%. 

Source: authors’ calculations using the RLMS-HSE data. 
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and they do not always move in the same direction. Although these challenges are relevant for any 

complex skills, STEM and non-STEM skills typically face different costs of obsolescence and 

upgrading. The evolution of wages over a working life reflects different trajectories of 

accumulation and depreciation of STEM and non-STEM human capital. Also, prolonged systemic 

shocks, such as transitions from a planned economy to a market economy and transformational 

recessions impact the existing human capital stock. The APC effects decomposition is complicated 

because these three effects are perfectly collinear. In order to disentangle them, we employ the 

procedure developed by Lagakos et al. (2018).  

STEM and non-STEM human capital also differ in their productive utilization in different 

institutional environments. More able young people may select themselves into those fields and 

occupations which are expected to generate higher returns.  In general, STEM activities are more 

likely to be wealth-creating, while some non-STEM activities are better suited to rent-seeking and, 

more generally, largely redistributive activities. In a better institutional environment, wealth-

creating activities yield higher returns relative to rent-seeking ones, but under weaker institutions, 

the relationship is typically the opposite.  

We develop hypotheses of how the above considerations are likely to affect lifetime wage profiles 

of holders of STEM and non-STEM degrees and test these hypotheses using a multiyear survey of 

workers in Russia. There are three important reasons for this choice. First, Russia aims to be a 

technologically developed country with a large STEM-related labor force. Second, the transition 

from a Soviet-type system to a market economy could have had a strong and negative impact on 

non-STEM human capital while having a relatively weaker effect on STEM skills, since 

mathematical and engineering education was free from ideology. This allows us to examine the 

differential cohort effect on holders of STEM and non-STEM diplomas which is typically 

negligible in economies that do not undergo deep ideological changes. Third, Russia’s size and 

regional diversity provide an opportunity to explore the impact of the institutional environment on 

wage profiles of STEM vs. non-STEM graduates.   

Our results illustrate how professional human capital ages in the Russian labor market. The cross-

sectional wage-experience profiles for STEM and non-STEM professionals appear similar, but the 

underlying processes of skill accumulation differ. STEM specialists build up  human capital slowly 

over their careers, while non-STEM professionals in older cohorts are penalized relative to their 

younger peers. 

Applying the APC decomposition, we show interactions between the impacts of cohorts and 

experience that move wage profiles in opposite directions, offsetting each other. Wages tend to 

grow with experience, but STEM education is associated with flatter wage-experience profiles 
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than non-STEM education, with the most pronounced differences observed among female 

workers. The cohort effect, apparently specific to the former Soviet-type economies, reveals itself 

in devaluing some types of older education, putting non-STEM cohorts educated during the Soviet 

period at a considerable disadvantage relative to those with STEM education acquired at the same 

time. 

Importantly, in the Russian case, the age/experience effects act in the direction opposite to the 

cohort effects, rendering the cross-sectional analysis highly incomplete, if not simply misleading. 

Cross-sectional approach also hides the differential wage profiles between males and females. All 

these differences appear only under the APC decomposition, illustrating the need to apply this 

technique for the analysis of lifetime wage profiles, particularly in the economies undergoing deep 

structural changes. The APC decomposition is also necessary to understand properly the 

differences between wage profiles for STEM and non-STEM-educated individuals as well as the 

impact of institutional quality.  

We also find that the quality of the institutional environment affects wage profiles of the holders 

of STEM and non-STEM diplomas. Wage-experience profiles for males with non-STEM 

education are considerably steeper in regions with weak institutions than in regions with stronger 

institutions, while institutional quality does not appear to impact STEM-educated males or 

females. The strength of these results is limited by the relatively small sample size and the lack of 

regional representativeness, but this line of inquiry deserves further and thorough examination. In 

addition, future research may involve more countries with better measured institutional 

heterogeneity across space and over time.  
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Appendix A. Additional graphs and tables  

The figures below present cross-sectional estimates of wage-experience profiles obtained from 

different data sets. 

 

Fig. A1. Simulated wage profiles for STEM and non-STEM-educated workers.  

Source: Authors’ estimates using the RLMS-HSE data. 

Note: The figure plots simulated wage profiles and 95% confidence intervals based on estimate of 

the eq (1).  

 

 

Fig. A2. Simulated wage profiles for STEM and non-STEM-educated workers. Wage in the group 

with 0-4 years of experience is taken as 1. 

Source: Authors’ estimates using the Sample Survey of Population's Income and Participation in 

Social Programs, 2015 year. 
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Note: The figure plots simulated wage profiles and 95% confidence intervals based on estimate of 

the eq (1).  

 

Fig. A3. Simulated wage profiles (in Rubles) for STEM and non-STEM-educated workers.  

Source: Authors’ estimates using the Sample Survey of Population's Income and Participation 

in Social Programs, 2015 year. 

Note: The figure plots simulated wage profiles and 95% confidence intervals based on estimate 

of the eq (1).  

 

Table A1. OLS Determinants of the Log of Hourly Wage, by Gender 

Variables  Women Men 
 b S.E. b S.E. 

Year (base = 2019)     

2004 -0.556*** 0.051 -0.587*** 0.066 

2005 -0.415*** 0.045 -0.414*** 0.058 

2006 -0.281*** 0.049 -0.301*** 0.063 

2007 -0.179*** 0.044 -0.251*** 0.054 

2008 -0.029 0.057 0.004 0.055 

2009 -0.078 0.048 -0.114** 0.047 

2010 -0.105** 0.049 -0.056 0.042 

2011 -0.053 0.047 -0.061 0.041 

2012 -0.011 0.037 0.025 0.036 

2013 0.063** 0.032 0.057* 0.030 

2014 0.021 0.038 -0.023 0.036 

2015 -0.091*** 0.030 -0.080** 0.032 

2016 -0.074** 0.029 -0.079*** 0.026 

2017 -0.075*** 0.022 -0.012 0.031 

2018 -0.017 0.022 -0.005 0.024 

Experience group (base = 0-4)     

5-9 0.091** 0.036 0.082* 0.047 

10-14 0.180*** 0.039 0.063 0.060 
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15-19 0.219*** 0.033 0.148** 0.068 

20-24 0.182*** 0.040 0.202** 0.088 

25-29 0.204*** 0.043 0.016 0.070 

30-34 0.207*** 0.054 -0.035 0.094 

35-39   -0.111 0.140 

STEM diploma (= 1) 0.062 0.057 0.121 0.079 

Interaction term: Experience group # STEM diploma     

5-9 (= 1) # STEM diploma (= 1) -0.005 0.089 -0.048 0.073 

10-14 (= 1) # STEM diploma (= 1) -0.122 0.075 0.004 0.094 

15-19 (= 1) # STEM diploma (= 1) -0.132 0.082 0.004 0.099 

20-24 (= 1) # STEM diploma (= 1) -0.123 0.082 -0.084 0.100 

25-29 (= 1) # STEM diploma (= 1) -0.227*** 0.047 0.026 0.074 

30-34 (= 1) # STEM diploma (= 1) -0.230** 0.095 0.106 0.109 

35-39 (= 1) # STEM diploma (= 1)   -0.050 0.184 

Investment risk index: RI (= 1) -0.165** 0.075 -0.157 0.107 

Interaction term: Experience group # RI     

5-9 (= 1) # RI (= 1) 0.045 0.050 0.096 0.086 

10-14 (= 1) # RI (= 1) 0.079 0.070 0.145 0.096 

15-19 (= 1) # RI (= 1) 0.067 0.057 0.163 0.110 

20-24 (= 1) # RI (= 1) 0.187*** 0.072 0.116 0.139 

25-29 (= 1) # RI (= 1) 0.114 0.071 0.126 0.171 

30-34 (= 1) # RI (= 1) 0.039 0.084 0.226 0.164 

35-39 (= 1) # RI (= 1)   -0.027 0.233 

Interaction term: STEM diploma # RI     

STEM diploma (= 1) # RI (= 1) -0.061 0.124 -0.114 0.105 

Interaction term: Experience group # STEM diploma # RI      

5-9 (= 1) # STEM diploma (= 1) # RI (= 1) -0.019 0.148 0.061 0.098 

10-14 (= 1) # STEM diploma (= 1) # RI (= 1) 0.183 0.163 0.093 0.115 

15-19 (= 1) # STEM diploma (= 1) # RI (= 1) 0.166 0.148 -0.002 0.145 

20-24 (= 1) # STEM diploma (= 1) # RI (= 1) -0.130 0.145 0.032 0.149 

25-29 (= 1) # STEM diploma (= 1) # RI (= 1) 0.093 0.134 0.045 0.173 

30-34 (= 1) # STEM diploma (=1) # RI (=1) 0.068 0.185 -0.120 0.177 

35-39 (= 1) # STEM diploma (=1) # RI (=1)   0.080 0.276 

Married (=1) -0.007 0.020 0.140*** 0.026 

City (= 1) 0.150** 0.073 0.221*** 0.070 

Federal district (base = Central)     

Northwestern 0.196 0.128 0.181 0.121 

Southern -0.232** 0.106 -0.221*** 0.082 

Volga -0.131 0.097 -0.118 0.072 

Ural -0.083 0.129 0.031 0.085 

Siberian -0.137 0.098 -0.175** 0.081 

Far Eastern -0.080 0.138 -0.013 0.111 

Industry group (base = Agriculture)     

Industry (manufacturing + mining) 0.265* 0.152 0.281** 0.122 

Construction 0.390** 0.165 0.267** 0.120 

Market services 0.238 0.150 0.261** 0.126 

Non-market services 0.106 0.149 0.114 0.121 

Other 0.358** 0.151 0.189 0.161 

const 4.747*** 0.206 4.782*** 0.178 

N 8616 5203 
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Source: Authors’ estimates using the RLMS-HSE data. 

Note: Estimates are based on pooled data for 2004-2019 years. Each row in the table represents 

the coefficient and its standard error from regression (2). Standard errors are clustered by regions. 

∗ 𝑝<0.10, ∗∗ 𝑝<0.05, ∗∗∗ 𝑝<0.01. 

 

 

Appendix B. APC decomposition23 

The association between wages and APC effects can be modeled using a modified Mincer-type 

equation (B1): 

𝑙𝑛(𝑊𝑖𝑐𝑡) = 𝛼 + ∑ 𝜃𝑒𝐷𝑖𝑐𝑡
𝑒𝑥𝑝=𝑒𝐸

𝑒=1 + ∑ 𝛿𝑙𝑒𝑑𝑢𝑐𝑖𝑐𝑡
𝑙𝐿

𝑙=1 + 𝛾𝑡 + 𝜆с + 𝜀𝑖𝑐𝑡,       𝑖 = 1, … , 𝑁;     (B1) 

where  𝑊𝑖𝑐𝑡 represents the hourly wage of individual i from cohort 𝑐 in period 𝑡; 𝐷𝑖𝑐𝑡
𝑒𝑥𝑝

 denotes   

10-year experience bins, 𝑒 = 1, … , 𝐸; 𝑒𝑑𝑢𝑐𝑖𝑐𝑡
𝑙   indicates  education level, 𝑙 = 1, … , 𝐿; 𝛾𝑡  ̶  period 

dummies; 𝜆с – cohort dummies; 𝜀𝑖𝑐𝑡 is the random error.  

To address APC collinearity in equation (B1), additional constraining assumptions are required. 

Our study relies on Human Capital Theory (HCT) and its implications concerning investments in 

human capital over the life cycle (Ben-Porath, 1967). We apply the approach first suggested by 

Heckman et al. (1998) and later empirically realized by Lagakos et al. (2018). This approach uses 

the intuition that new human capital investments during the final pre-retirement period are 

practically absent, rendering the experience effect almost negligible. This period, often referred to 

as the “flat spot,” typically lasts 5 or 10 years. By following the same pre-retirement group over 

the flat spot period, the age/experience effect is assumed to be zero, while the cohort effect is 

absent by design. This leaves the total observed wage growth to be explained by the time effect 

and depreciation, ( d ). The size of d, following Lagakos et al. (2018), is assumed to be 0% or 1%. 

It is important to note, that no investments and zero depreciation can be also understood as non-

zero investments equal in absolute value to non-zero depreciation. Depreciation equal to 1% 

represents the situation when the lack of new investments halts human capital accumulation, and 

the stock of human capital shrinks due to depreciation. Consequently, the residual wage growth, 

purged of the time effect, is divided between age/experience and cohort effects. 

More formally, the time trend of wage growth, ( 𝑔𝑀 ), is equal to the sum of two components. The 

first component is the time effect, ( 𝑔𝛾 ), which represents wage growth due to productivity growth 

and capital accumulation common to all cohorts. The second component is 𝑔𝜆, which represents 

productivity growth due to changes in labor force cohort composition. Each cohort has its own 

productivity, thus general productivity changes when older cohorts leave the labor force and new 

 
23 This Section is based on (Chernina & Gimpelson, 2023). 
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cohorts enter. As discussed earlier, we can infer 𝑔𝛾 from 𝑔𝑦, the wage growth in the last y years 

of a career, and the depreciation rate d. Thus, equation (B2) must hold:  

𝑔𝑀 = 𝑑 + 𝑔𝑦 + 𝑔𝜆                                                          (B2) 

The estimation procedure, borrowed from Lagakos et al. (2018), proceeds as follows. First, we 

estimate the time trend of wage growth, 𝑔𝑀. Initially, the entire value of the time trend is attributed 

to the time effect, 𝑔𝛾. Wages are deflated using the time trend, and then equation (B3) is estimated: 

𝑙𝑛(𝑊𝑖𝑐𝑡
𝑑 ) = 𝛼 + ∑ 𝜃𝑒𝐷𝑖𝑐𝑡

𝑒𝑥𝑝=𝑒𝐸
𝑒=1 + ∑ 𝛿𝑙𝑒𝑑𝑢𝑐𝑖𝑐𝑡

𝑙𝐿
𝑙=1 + 𝛾𝑡

∗ + 𝜆с + 𝜀𝑖𝑐𝑡,       𝑖 = 1, … , 𝑁;  (B3) 

where 𝑊𝑖𝑐𝑡
𝑑  is the deflated wage of individual i from cohort 𝑐 in period 𝑡;  𝐷𝑖𝑐𝑡

𝑒𝑥𝑝
− 10-year 

experience bins, 𝑒 = 1, … , 𝐸; 𝑒𝑑𝑢𝑐𝑖𝑐𝑡
𝑙   ̶  education level, 𝑙 = 1, … , 𝐿; 𝛾𝑡

∗  ̶  modified period 

dummies, such that 
1

𝑇
∑ 𝛾𝑡

∗𝑇
𝑡=0 = 0, these time period dummies would show deviations from the 

time trend; 𝜆с – cohort dummies; 𝜀𝑖𝑐𝑡 is the random error term. 

Equality (B2) is checked with the estimated values of 𝑔𝑀, 𝑔𝑦 and 𝑔𝜆, given the assumed value of 

d. The procedure continues with updated value of 𝑔𝑀 until equality (B2) is satisfied. 

 

Table B1. Estimated Parameters of Experience Wage Profile 

Depreciation, Characteristics Peak Experience, Years Peak Height  95% CI 

d=0%, STEM, males 20-29 1.27 (1.17; 1.39) 

d=0%, non-STEM, males 20-29 1.44 (1.31; 1.58) 

d=0%, STEM, females 10-19 1.11 (1.02; 1.20) 

d=0%, non-STEM, females 20-29 1.51 (1.44; 1.58) 

d=1%, STEM, males 10-19 1.08 (1.02; 1.15) 

d=1%, non-STEM, males 20-29 1.18 (1.07; 1.29) 

d=1%, STEM, females 0-9 1.00 (1.00; 1.00) 

d=1%, non-STEM, females 20-29 1.19 (1.14; 1.25) 

Source: Authors’ estimates using the RLMS-HSE data. 

Note: The table contains coefficients and 95% confidence intervals from estimates of the equation 

(B3). 


