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Preface

Christine Peter
Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
christine.peter @uni-konstanz.de

Marcus Miiller
Institute for Theoretical Physics, Georg-August University, 37077 Gottingen, Germany
mmueller @theorie.physik.uni-goettingen.de

Alexander Trautmann
John von Neumann Institute for Computing, Jiilich Supercomputing Centre,
Forschungszentrum Jiilich, 52425 Jiilich, Germany
a.trautmann @fz-juelich.de

In a longstanding tradition, the John von Neumann Institute for Computing (NIC) holds
biennial symposia, accompanied by proceedings volumes — illustrating the broad range of
modern computational science and the advances in high performance and data-intensive
computing. Symposium and proceedings thus provide a glimpse into supercomputing-
based research at its best and make it accessible both to the general public and to
computational scientists across disciplinary boundaries. As such they foster exchange be-
tween different fields of natural science and engineering with respect to modern algorithms
and computational strategies. To this end, on March 6" and 7%, 2025, computational
scientists will again convene in Jiilich for the 12" NIC symposium. We are very pleased
that this time it is again possible to showcase the breadth of high-performance computing
research supported by the NIC with contributions from astrophysics, elementary particle
physics, and statistical physics of hard and soft condensed matter, computational chemistry
and materials science, as well as computer science, fluid mechanics, and earth system
modelling — covering both fundamental research and projects with a strong application
orientation. We are also delighted to extend a very warm welcome to our colleagues
from the Goethe University Frankfurt who have joined the NIC in 2024 as a new member
institution. Together, we will further strengthen research in the field of computational
science in Germany and Europe.

The NIC continuously provides the scientific community with essential high-performance
computing resources and training. Within the framework of the Gauss Centre for
Supercomputing (GCS), the Jiilich Supercomputing Centre (JSC) has been operating
the modular supercomputer JUWELS (Jiilich Wizard for European Leadership Science)
since 2020, which is composed of a CPU-based cluster and a GPU-based booster module.
Thanks to the excellent training and user support by the technical experts from the JSC,
the JUWELS architecture has been widely adopted across disciplines and communities.
In particular, porting codes to the booster module and adapting algorithms to the GPU



architecture has been fundamental in getting the disciplines ready for the next generation
of GPU-based exascale computing. After the decision by the European High Performance
Computing Joint Undertaking (EuroHPC JU) that the Forschungszentrum Jiilich is to
operate the first exascale supercomputer in Europe, the JSC and the GCS have been
preparing for JUPITER (Joint Undertaking Pioneer for Innovative and Transformative
Exascale Research). The new system will become available in 2025. To optimally prepare
applications and users for JUPITER and to facilitate the transition from current petascale
and pre-exascale supercomputers to actual exascale computing, the JSC has launched
JUREAP, the JUPITER Research and Early Access Program. In the first phase of 2024,
users have participated in the Scalability and Performance Evaluation Phase (SPEP), an
open call to test and demonstrate the performance and the scaling of the applications on
test architectures. In September 2024, the GCS Exascale Pioneer Call has been initiated
with two objectives: the successful projects are given early access to JUPITER during
build-up, approximately from January 2025 onwards, and the call distributes JUPITER
resources for the time period after the machine is officially operational until the end of
October 2025 — thus enabling groundbreaking computational research for the German
scientific community. A more detailed overview on JUPITER, the new opportunities that
exascale computing opens up to all scientific communities, and in particular the shifts
driven by the wave of developments in Al technologies and large foundation models are
provided in the introductory article of the proceedings by Thomas Lippert and coauthors
“Paradigm Change or Riding the Wave? Exascale-Computers to Train Foundation
Models”.

As one key element of its mission to promote innovative computing methodologies the
NIC also supports several research groups at its member institutions.2 The NIC research
groups cover a broad spectrum of disciplines ranging from high-energy physics to biology,
reflecting and reinforcing the research focus of its respective member institutions. Recent
results are highlighted in a dedicated section in the proceedings with contributions from
the Lattice QCD group (Owe Philipsen, GSI Darmstadt), the Elementary Particle Physics
group (Stefan Schaefer, DESY-Zeuthen), and the Computational Structural Biology group
(Alexander Schug, Forschungszentrum Jiilich).

The subsequent section of the proceedings volume is dedicated to one of the other hall-
marks of the NIC, the NIC excellence projects. Generally, NIC computing time is granted
by a stringent peer-review process that focuses on the scientific quality of the proposed re-
search. The international pool of expert reviewers and the NIC peer-review board, headed
by Dietrich Wolf, play a vital role in sustaining the very high quality of the projects and
in fairly and effectively allocating the valuable computational resources. At this point, we
want to sincerely thank these reviewers for their engagement and time that they invest in
fulfilling this essential task. One important element of this process is awarding the title
“NIC excellence project” b Itis always a great pleasure to highlight these outstanding
projects in a special section. The present proceedings volume features the following NIC
excellence projects:

AFurther information can be found at https://www.john-von-neumann-institut.de/en/research/research-groups
bhttps://Www.john-von-neumann-institut.de/en/research/nic-excellence-projects



e Michael Rohlfing, Universitit Miinster, Spectra of 2D layered materials

e Holger Gohlke, Universitit Diisseldorf, Structural dynamics of apo, agonist-, and
antagonist-bound full-length ETR1

e Gerhard Gompper, Forschungszentrum Jiilich, Collective Dynamics of Intelligent Mi-
croswimmers

e Johannes Knolle, Technische Universitidt Miinchen, Neural Wave Functions for Ma-
terials Physics

In order to further showcase the outstanding research enabled by the NIC that was made
possible by the excellent computing environment and user services provided by the JSC,
contributions to the symposium and the proceedings have been selected. These contribu-
tions provide an account of the projects and give a comprehensive review of the progress
that has been made both to the general public and to the funding bodies. The contributions
are arranged by scientific topics, thus nicely reflecting the vibrant activity across a broad
variety of disciplines. It is our pleasure to thank all the authors of the contributions as well
as the experts who wrote the section introductions. Neither the proceedings book nor the
symposium would have been possible without the indispensable support from many peo-
ple within the NIC and the JSC. We are very grateful to Martina Kamps who compiled all
the texts and produced this high quality book. Finally, we want to thank Florian Janetzko,
Johannes Simonis, and Janina Liebmann for their valuable help in organising the 12" NIC
Symposium in Jiilich.

Jiilich, March 2025

Christine Peter Marcus Miiller Alexander Trautmann
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Paradigm Change or Riding the Wave?
Exascale-Computers to Train Foundation Models

Thomas Lippert':2, Mathis Bode!, Thomas Eickermann',
Wolfgang Frings', Andreas Herten', Stefan Kesselheim',
Benedikt von St. Vieth!, and Kristel Michielsen':

! Jiilich Supercomputing Centre, Forschungszentrum Jiilich, 52425 Jiilich, Germany
E-mail: th.lippert@fz-juelich.de

2 Goethe University Frankfurt, Institut fiir Informatik, 60629 Frankfurt am Main, Germany

3 RWTH Aachen, Physikzentrum, 52074 Aachen, Germany

A paradigm shift is underway in the field of high-performance computing (HPC). In addition
to high-end simulation, the training of foundation models of artificial intelligence (AI) is be-
coming increasingly important. Al training and supercomputing have more or less become
synonymous. Their union will change the way science and industry research complex phenom-
ena and develop new technologies, and there is general consensus that it would be unwise to
dismiss this development as mere hype. It is of crucial importance for Germany and Europe to
take a leading role in this area and to secure their scientific and technological leadership and
sovereignty, especially when it comes to industry and SMEs. JUPITER will take research in
computer science and Al to a new level and, until German industry has built its own systems,
JUPITER can play the role of an auxiliary bridge for industrial users; plans in this direction are
in the works.

1 Foundation Models

The general public’s access to ChatGPT at the end of 2022 has made society and science
aware of the concept of so-called foundation models (aka base models), which are pre-
trained deep learning models built on super-massive datasets. Since then, there has been
an exponential increase in pertinent activities in this area, a selective overview of which
can be found in Refs. 1,2. The experts agree that the transformative potential of this digital
methodology is beyond measure.

Naturally, the focus of society and the public is on large language models (LLMs) and
large multimodal models (LMMs), which combine different categories such as text and
images or data from other modalities such as audio or other domain-specific data and text.
This development leads to what is sometimes, perhaps somewhat euphemistically, referred
to as the “democratisation of AI">.

It is reassuring that politics in democratic countries is observing the influence of these
developments on societal transformations and is fulfilling its duty to implement regulatory
measures?, however, at the same time, the greatest attention must be paid to the potential
transformative aspects of the new technology on the worldwide economy. This implies
not only the availability of unimpeded access to instruments and infrastructures that enable
secure data management of the highest data volumes and the creation of specific models
of industrial stakeholders, but above all the sovereignty of all democratic countries in the
provision and use of the most powerful computing systems, which cannot be compromised
by political or trade policy®.



Certainly, it is no mere coincidence that the new methodology, which is based on foun-
dational models, was quickly adopted in science. After all, the use of machine learning
methods of various origins has become part of the standard methodological repertoire in
science, research and technology over many years. The 2024 Nobel Prizes in Physics and
Chemistry, which are dedicated to the “invention” and application of the methodology, re-
spectively, provide compelling testimony to its significance®®. However, one should be
aware that the use of generative Al and basic models as a tool in information systems and
complexity research is still in its infancy.

On the one hand, researchers are convinced that basic models can be created in a wide
range of areas where sufficient and sufficiently curated domain-specific data is available.
These models can be used to carry out more realistic experiments, make certain types of
quantitative studies feasible for the first time and make simulations more accurate or safer.
For example, in the area of numerical weather prediction, we can assume that, based on
previous weather data, trained forecasting models will exceed or significantly improve the
length/accuracy of theoretically modelled forecasts, as has already been demonstrated in
pilot studies by Schultz et. al’ or elsewhere®.

On the other hand, it is an extremely fascinating prospect that basic models can learn
from a general, large and diverse database and develop the ability to deal with the widest
range of different tasks from different domains and under different conditions. In this
sense, LLMs might be enhanced with domain-specific scientific data and specific data
from industry, commerce, finance, or logistics, among other fields, to capitalise on their
transformative potential and one-shot learning capabilities in domains where data may
be insufficient or too narrow to construct their own base model. This approach might
even provide insights or a completely new understanding in areas where, due to limited
experimentation or observational possibilities, progress appears to be very slow or could
so far not be expected in academic time frames or even periods of lifetimes. A striking
example is the understanding of the capabilities of the human brain®.

All foundation models have an important aspect in common: the Al training of such
large models requires unprecedented amounts of compute power of largest supercomputers
aka exascale machines.

2 Al Meets Exascale

A central characteristic of foundation models is the existence of scaling laws: Increasing
the scales in training leads to predictable improvements in model skills'®. In the time
before 2022, this insight has led to ever larger models being trained, with the surprising
result that the limits of performance are apparently only given by the limited computing
power &. Eventually, the development went exponential and led to revolutionary times:
almost every day, the news report on new records set by a few leading US companies that
install more than hundreds of thousands of GPUs. These systems are meanwhile capable of
training LLMs with more than 400 billion parameters. In terms of AI, the machines used by
science and research in the USA tend to come in second, although the two exascale systems
Frontier at Oak Ridge National Laboratory and Aurora at Argonne National Laboratory are
ranked first and second on the TOP500 list from June 2024.

AHowever, this correlation is of course closely linked to the availability of suitably large, independent data sets.
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Figure 1. Supercomputer systems in Germany from academia and research capable to train large foundation
models as of October 2024. The ordinate counts exaFLOP/s at 16 bit precision.

If we compare this situation with that in Germany, it is striking that there is not a single
German company that can provide Al capacities on a similar scale as the US hyperscalers.
The situation is not better throughout Europe as to industrial provision. The only systems
worth mentioning for Al training in Germany — and in Europe — are provided in the field

of science and research, financed by federal and state ministries and the European Com-

mission b.

Fig. 1 gives an impression of the current (October 2024) machine inventory in Germany
with regard to systems from academia and research that can be used for Al training of
foundation models in the range of 1 to 10 billion parameters. The most capable system,
which has been in user operation since October 2020, is JUWELS at Forschungszentrum
Jillich. The machine comprises almost 4000 NVIDIA A100 GPUs. Its suitability for
training large Al systems was demonstrated with the 7-billion-parameter entry-level model
of OpenGPT-X'!. The next largest systems are suitable at best for development and test
calculations. The figure makes it very clear that for the training of state-of-the-art models
in the range of over 100 billion parameters, as is the case with the US giants, a performance
increase by two orders of magnitude compared to the capabilities of JUWELS is necessary,
and, more than that, several systems of such a size will be needed in Germany.

It is very gratifying to see how far the German scientific community has already
adopted the methodology of Al, from long-established machine learning methods to large
foundation models. JUWELS has played a major role in this process. The following Fig. 2
demonstrates this development.

For the spring call 2024 applications for resources on JUWELS Booster, more than
40 % of the projects were approved under the Al tag, and in autumn 2024 the figure is
already over 50 %. The large foundation models are allocated under “Computer Science”
(CS), i.e. more than 25 % of the resources are used for these activities.

In view of the encouraging acceptance of the now somewhat dated JUWELS system,
a similar interest in the upcoming JUPITER exascale computer is to be expected. Indeed,

bGermany is even more underexposed as to systems suitable for providing Al inference computations.
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Figure 2. Distribution of allocated compute time per domain on JUWELS Booster in spring 2024.

this is reflected in the Jiilich JUREAP initiative, see Sec. 4.3. JUPITER was designed
from the ground up to be a system that can handle both large-scale simulation tasks and
leading Al simulations, in anticipation of the current development. In fact, a specific bal-
ance between network performance and computing power was sought, see Sec. 4, which
allows the maximum I/O performance of a GH200 GPU to be utilised. With this setting,
JUPITER with its InfiniBand connectivity actually achieves more than 70 % of the point-
to-point communication performance of an NVLINK network at comparable latency, and
that across the entire machine, while NVLINK networks have so far been limited to 256
GH200 NVIDIA superchips €.

If the expected Al performance of JUPITER is compared with the total performance
available in Germany in October 2024, the system would increase it by a factor of about
20. This becomes frappantly obvious when the data from JUPITER is added to Fig. 1, cf.
Fig. 3.

The considerations show that there is currently a lack of sufficient computing power for
Al in such a highly industrialised country as Germany. The availability of sufficiently large
and numerous training systems in science and industry is sobering and an emergency sit-
uation is becoming increasingly apparent; German providers currently play no significant
role at all in society and business. JUPITER, primarily a system designated for science and
research, will be a step in the right direction. If JUPITER is also partially opened up to the
industry for commercial purposes, as being planned by the German Ministry for Education
and Research (BMBF), it may be possible to bridge the gap of around three years until
there are systems that can be set up and operated by industrial stakeholders in Germany.

CThe DGX-Helios supercomputer is equipped with four DGX-GH200 systems connected by an Nvidia-Quantum-
2 InfiniBand network (Mellanox).
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Figure 3. Supercomputer systems in Germany from academia and research capable to train large foundation
models expected for May 2025. The ordinate counts exaFLOP/s at 16 bit precision.

In the following, we attempt to provide a quantitative understanding of the system di-
mensions required for state-of-the-art Al training. To do this, we will first discuss the
definition of performance classes and the benchmarks explained in more detail in the fol-
lowing section. We will then take a closer look at the expected specifications of JUPITER
and explain how we want to enable users to use the system as quickly as possible with
maximum effectiveness.

3 How to Quantify the (AI) Performance of Supercomputers

In order to correctly classify the performance of the upcoming exascale supercomputers for
the Al area, it is important to define the performance specification in relation to the area of
application. In numerical and stochastic simulation processes, usually, the highest available
machine precision, 64 bit, is used. For AI applications, in most cases it is advantageous to
use lower precision such as 32 bit, 16 bit or 8 bit. This is explained in more detail in the
following.

3.1 What is the Meaning of Exascale?

In the field of supercomputing, the term “exascale supercomputer” is defined internation-
ally as a system that achieves a performance of at least 1 exaFLOP/s, or the capacity to
perform at least 1 trilliond, i.e. (10'®) IEEE 64 bit floating-point operations per second.
More precisely, an exascale supercomputer is one that exceeds the threshold of 1 trillion
FLOP/s with 64 bit precision when evaluated using a suitable benchmark, particularly the
Linpack benchmark for the TOP500 list. For a proper entry in the ranking, it is required

that the Linpack code runs with 64 bit precision®.

dHere we refer to the European numbering system. In the US numbering system, 108 is named 1 quintillion.
©The first machine worldwide passing the 1 exaFLOP/s threshold was Frontier at Oak Ridge National Laboratory
end of 2022.



Following this classification, the European High Performance Computing Joint Under-
taking (EuroHPC JU) distinguishes between exascale, pre-exascale and petascale systems.
There are currently, as of 2024, five petascale supercomputers and three pre-exascale su-
percomputers co-financed by EuroHPC JU. Two exascale supercomputers are planned by
2025 and 2026; the first is JUPITER with a performance of at least 1 exaFLOP/s.

The three pre-exascale supercomputers, co-financed and owned by EuroHPC-JU,
achieve a maximum peak performance of up to 0.4 exaFLOP/s:

LUMI CSC-Finland 379 petaFLOP/s  0.38 exaFLOP/s)
LEONARDO CINECA-Italy 241 petaFLOP/s  0.24 exaFLOP/s)
MareNostrum S BSC-Spain 175 petaFLOP/s  0.18 exaFLOP/s)

In this hierarchical scheme, the five petascale systems in EuroHPC are one order of
magnitude less powerful. The fastest petascale supercomputer co-funded by EuroHPC
achieves a maximum performance of 10.5 petaFLOP/s, i.e. just over 0.01 exaFLOP/s.

JUPITER, with its 1 exaFLOP/s Linpack performance, will instantaneously double the
available computing time and thus performance of all other EuroHPC systems combined.

3.2 What Does AI ExaFLOP/s Mean?

For most applications in computational science and scientific computing, 64 bit precision
as defined by the IEEE 754 standard is the gold standard, resulting in best results for
numerical simulations. Data is stored in 64 bit size and computations are performed at the
same precision or even higher internal precision.

The IEEE standard specifies in which form the 64 bits are used to represent a num-
ber: 52 bits are reserved for the significand, representing the fractional value independent
of the magnitude; 11 bit are taken for the exponent, to move the significand into proper
magnitude; and 1 bit represents the sign of the number (+ or -). Computational researchers
have aligned to 64 bit-based computations, and many benchmarks evaluate hardware in
this regard, for example the Linpack benchmark.

But not all computations require the full 64 bit precision for valid results. A prominent
example are Al-based methods, which interlink layers of neural networks of potentially
great depth to create results based on likelihood distributions. This enables the usage of
precision lower than 64 bit: 32 bit, 16 bit, or even 8 bit. With corresponding hardware
support each reduction of precision allows for more computations in the same time. Band-
width is no limiter in this regard, as lower precision data words are as efficiently stored and
transferred as higher-precision words — see Fig. 4.

Modern GPUs include hardware-acceleration for matrix-based computations. These
Tensor Cores (NVIDIA), Matrix Cores (AMD), or the Matrix Engine (Intel) can perform
FMA operations (fused multiply-add; a combined instruction for addition and multiplica-
tion, a x b+ c) with significant higher rate, compared to typical vector GPU operations. The
Hopper GPU of JUPITER, for example, can execute 64 FMA instructions on each of the
four Tensor Cores of each multiprocessor per clock cycle. In total, 66.9 TFLOP/s of FP64
performance can be reached per GPU by utilising Tensor Cores. Because of the nature of
these matrix-compute-optimised execution units, a reduction in precision will dispropor-
tionately improve the effective throughput significantly. For example, for FP8 precision,
the same Hopper GPU will perform with 1978.9 TFLOP/s — about 30 x more with an 8 x
reduction in precision.
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Figure 4. Comparison of precision formats. Each box indicates one bit.

Intermediate steps within the matrix multiplication operation can be performed with
higher precision as for example an FP32 accumulate for an FP8 matrices, allowing for
more fine-grained optimisation opportunities to retain stability.

Through the lower-precision Tensor Cores, GPUs are a great match for deep neural
networks, which are utilising almost exclusively matrix multiplications and are robust in
the employed precision (to a point). GPUs are core to the Al revolution, delivering high-
throughput compute at excellent energy efficiency. Reduced precision is so deeply linked
to Al, that parts of the community started calling the performance reached with lower
precision Al FLOP/s.

Dedicated benchmarks have been created to test the reduced precision and Al capa-
bilities of compute devices. HPL-Mfo, for example, extends the Linpack benchmark
with an iterative version utilising lower precisions (mixed precision, MxP) in intermediate
steps; MLPerf2 is a whole suite of tests for typical Al-patterns with different tasks. Both
benchmarks report the results in lists, like the Top500 list for the HPL.

JUPITER Booster features about 24 000 Hopper GPUs as part of the GH200 super-
chips (see Sec. 4). The following figure estimates the available theoretical performance in
dependency of the various precisions. Note: The reference data of NVIDIA is given for
a dedicated H100 GPU operated at 1000 W TDP. The TDP of JUPITER Booster Hopper
GPUs will be lower. As a first estimate, a reduction to 90 % is applied.

JUPITER Booster will deliver unprecedented performance; for classical numerical
simulations, but especially for lower precision and Al-based applications. No HPL-MxP or
ML Perf benchmarks have been run for JUPITER Booster, but it is expected that HPL-MxP
may reach up to 10 exaFLOP/s performance.

3.3 Guesstimating the Requirements of a 100 Billion Parameter Model

The computing time required to train a state-of-the-art LLM or LMM with say 100 billion
parameters (100B), a model that cannot yet be calculated in Germany, can be determined
using analogous models that have already been trained. The computing time of LLM
OpenGPT-X, which is known with great precision from JUWELS, serves as a reference
point for the training time.

In the OpenGPT-X project, the training of several LLMs of size 7B, i.e.7 billion param-
eters, has been carried out on 256 A100 GPUs of the JUWELS Booster. A total of 0.8 mil-

fhttps://hpl—mxp.org/
€https://mlcommons.org/benchmarks/
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lion GPU-h were used. Based on early experiences on the JEDI system, the JUPITER
GPUs are more than three times more powerful in practice. For a model with 100B pa-
rameters, trained under identical conditions, 3.9 million GPU-h are required on JUPITER.
Assuming an average utilisation of half of JUPITER, i.e. 12,000 GPUs, training the 100B
OpenGPT-X model takes less than 14 days. Training a 100B parameter model in less than
two weeks underscores the new possibilities that JUPITER is opening up in the field of
cutting-edge Al models.

3.4 Exascale beyond ExaFLOP/s — Interconnect, Storage, and External
Connectivity

The performance of an exascale system is dominated by its compute capabilities. Nonethe-
less, a surrounding hardware ecosystem has to ensure that the compute units can commu-
nicate over a network optimised for high bandwidth and low latency without the risk of
congestion, e.g. when applications scale beyond the GPU memory limits of a single node
or even reach tens or hundreds of terabytes of memory and therefore need direct inter-
node communication. In addition, the compute units have to be fed with the required data,
thus, loading of data for Al training or writing checkpoints at a massive scale becomes the
challenge.

Exascale is supposed to increase the requirements of both bandwidth as well as capacity
of storage systems. Given the multi-decade experience of large HPC centres with parallel
POSIX file systems and often thousands of nodes, scalability is not the main concern.
With the utilisation of flash media, accessible by the high performance NVMe protocol,
bandwidth aspects are covered by an increasing performance of the underlying storage
media. For growing capacity demands, HDD-based storage systems touching hundreds
of petabytes have to be provided, especially when it comes to storing multiple versions
of datasets, e.g. from Earth System Modeling (ESM) or Al communities, which require
hundreds of terabytes per domain.

In the past, HPC systems were installed as isolated units, with a focus on the cluster-
internal network and its performance on the one hand and a strict eye on software maturity



on the other. However, this sometimes led to a lack of sufficiently frequent implementation
of software and, in particular, security updates. Today, the trend is towards openness,
both in terms of open software systems and the heterogeneous embedding of systems in
a modular hardware environment. It is evident that this requires much stronger focus on
security and certification than in the past.

Furthermore, to ensure that cluster-external services, e.g. external web services or
databases can be used, communication patterns from internal compute nodes to the out-
side world are to be established more and more. With the raise of Al as the perfect use-
case for strong HPC hardware, demand for high-bandwidth access to the internet got even
higher. While downloading the hundreds of terabytes of training data can be bandwidth-
dominated, limitations on the Domain Name System (DNS) and firewalls as well as rate-
limiting on external web servers can also be dominant factors, depending on the local
environment.

Optimised retrieval of datasets as well as relaxing limitations of network flows from
and to the supercomputers is an active field of research to ensure that usability, but also
security aspects are reflected reasonably.

4 JUPITER

With the selection of JSC as the Hosting Entity for the first European exascale supercom-
puter, challenging decisions had to be made during the design and procurement phase of
the system. While the raw performance characteristics had to be defined in December
2021, one year before the generative Al wave got a significant peak with release of the
first ChatGPT model by OpenAl, the JUPITER system was tailored to classical and future
HPC activities but at the same time anticipating large-scale Al workloads and in particular
training of deep neural networks like LLMs. The procurement was geared towards a large
mix of applications, synthetic benchmarks, and a set of high-scaling applications that can
utilise the full final exascale system. The technologies selected for JUPITER, which are
briefly described in the following section, are the result of the best proposed solution for
executing the JUPITER Benchmark Suite!? as well as additional technical requirements,
including energy consumption.

4.1 Technical Description

The JUPITER system is provided by the ParTec/Eviden supercomputer consortium, using
the Eviden-Bull Sequana XH3000 hardware architecture for the compute intensive compo-
nents of the system. The XH3000 is a direct-liquid-cooled rack solution, allowing for high-
est density as well as energy efficiency. The final system will implement the dynamic Mod-
ular Supercomputing Architecture (AIMSA) and is powered by the highly-flexible JUPITER
Management Stack integrating ParaStation Modulo, Eviden SMC xScale and JSC’s xOPS
software environment.

At the core of the JUPITER hardware is the accelerator-based JUPITER Booster mod-
ule. It is utilising GPUs to achieve the best possible performance while keeping the energy
consumption at lowest possible level. As a result of the aforementioned benchmark suite,
the NVIDIA Grace Hopper (GH200) superchip was chosen as a combined CPU-GPU solu-
tion, integrated into the XH3000. With roughly 6000 compute nodes, the system is one of
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the largest supercomputers to date. Each node incorporates four GH200 chips, four Grace
CPUs paired with a Hopper-based GPU, as well as four high-speed NVIDIA InfiniBand
NDR?200 links as shown in Fig. 7, integrated into 125 XH3000 racks and interconnected by
a vast InfiniBand DragonFly+ topology. JUPITER Booster is one of the largest, coherent
Al training machines available in the world.

For JUPITER, an efficiency-optimised version of the GH200 chip with a CPU-GPU
power draw of not more than 680 W was chosen. Depending on the applied performance
optimisations, each chip can achieve more than 47 TeraFLOP/s HPL performance (FP64)
or 700 TeraFLOP/s FP16. With 48 nodes per XH3000 rack, this renders to a power
consumption of roughly 140 kW per rack and 17 MW of the final JUPITER Booster.

S

Figure 7. The JUPITER Booster Compute Node Design.

The JUPITER Cluster module is complementing the Booster by providing a general-
purpose CPU-based architecture. It focuses on a high Byte-per-FLOP ratio to ensure that
CPU-based applications can achieve the highest possible performance. The Cluster is util-
ising the Rheal processor, with roots in the European Processor Initiative and commer-
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cialised by SiPearl. Rheal, like Grace, implements the ARM instruction set architecture;
Rheal utilises HBM memory to achieve highest-possible memory bandwidth.

Cluster and Booster are supported by multiple storage systems. The 29 PB ExaFLASH
module, based on the latest generation IBM Storage Scale System (SSS) 6000 utilising
NVMe media for excellent performance characteristics, is used for semi-temporary storage
(SCRATCH). The 310 PB ExaSTORE module is provided for large datasets (DATA and
HOME), also based on IBM SSS6000 and utilising HDD media. The directly accessible
storage systems are supported by the 370 PB ExaTAPE tape infrastructure for archive and
backup purposes (ARCHIVE). The HDD and tape systems will be upgraded during the
JUPITER lifetime, depending on actual demand.

Thanks to its dMSA and large InfiniBand fabric, JUPITER is able to readily integrate
future technology modules such as quantum computing and neuromorphic modules. The
dMSA is supported by the novel Modular HPC Datacenter (MDC), which is the home of
the JUPITER system on the Forschungszentrum Jiilich campus.

4.2 A Remark on Records in and Demand for Energy Efficiency

In addition to the TOP500 list, which focuses on the pure computing performance in solv-
ing mathematical problems in modelling and simulation, since 2013 there has been a rank-
ing for systems which can achieve the highest amount of computations per energy con-
sumed. This list is using the Linpack benchmark and defines a power measuring method-
ology to generate a competitive GigaFLOP/s/W ranking. This list illustrates the energy
efficiency of supercomputers of the TOP500 list and generates an incentive for optimising
hardware as well as software for energy efficiency.

The JUPITER Exascale Development Instrument (JEDI), the first JUPITER compo-
nent, was deployed in spring 2024 to support software preparation for both users and oper-
ators of the final JUPITER system. To evaluate the decisions made during the procurement
for the final system, putting a focus on energy efficiency, the performance of JEDI was
measured and is in the current Green500 list (June 2024) at 1% rank, making this module
currently the most energy-efficient supercomputer in the world when running the Linpack
benchmark.

Given the ever-increasing demand for computing resources by the research community,
accelerated by public and private demand for Al computing/training time and thus access
to power-hungry computing resources, energy efficiency of the utilised hardware is key
to ensure that the impact on the environment, but also operational expenses, are kept at a
reasonable level. This not only applies to the energy used for computations, but also for the
surrounding infrastructure and in particular cooling of IT systems. JUPITER is designed to
dissipate the heat it generates into a warm-water cooling system which uses free cooling,
so no additional energy for decreasing cooling-loop temperatures over long periods of a
year is needed. At the same time, the generated heat can be extracted for heat re-use.

4.3 JUREAP

JUREAP, the JUPITER Research and Early Access Programme, combines many activities
that are designed to help JUPITER get off to an immediate and successful start: Key ap-
plications are optimised for exascale at an early stage, the JUPITER software environment
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Figure 8. The JUPITER Exascale Development Instrument — JEDI.

is thoroughly tested and continuously expanded, and the system’s structure is permanently
monitored using application-related benchmarks. All this is intended to comprehensively
prepare users and the system for production operation and ensure that the system can be
used effectively right from the outset. Due to its high complexity, JUREAP requires HPC
experts and domain scientists to work hand in hand.

The first phase of JUREAP, the Scalability and Performance Evaluation Phase (SPEP),
started in January 2024 with an open call. Suitable applications were then integrated into
a CI/CD environment exaCB and extensively tested with regard to their node performance
on JEDI as well as large-scale capabilities on JUWELS boosters. In total, there were more
than 100 interested applicants that were invited to integrate with exaCB.

More than 20 % of the SPEP applications are Al-related. On the one hand, there were
applications from the “core AI” area, such as foundation models, large language models,
and generative applications, which will substantially benefit from the high Al performance
of the GH200 superchips. JUPITER will allow significantly more data to be considered
for training in significantly less time, thus overcoming the physical limitations of current
petascale and pre-exascale supercomputers. First evaluations show almost linear scaling
and up to 3 to 4 times faster training speed compared to NVIDIA A100 GPUs.h

On the other hand, Al is also becoming an essential tool in more and more “classical”
simulation workflows. Exascale simulations have the potential to generate extremely large
amounts of data that are increasingly difficult to handle. Often, this is only possible using
Al-supported data-driven approaches. In this use case, Al thus acts as an enabler to exploit
the full potential of exascale simulations.

N1h the most favourable case, one can expect a performance increase of a factor of 25 to 30 compared to JUWELS.
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5 A Sea Change

The quest to use computers and data to understand the world’s most complex phenomena
is in turmoil. To use an astrophysics metaphor, large-scale Al methods are spreading at
an almost inflationary rate, driving the construction and use of ever larger supercomputers
that are suitable for them.

Although the initial driving force in public perception seems to come almost exclu-
sively from the business world — the hyperscalers send their regards — , the Nobel Prize
2024 in Physics makes it very clear where it originates from: It is not science that is riding
a wave created by industry, but science has helped to make Al a useable and most likely
very profitable technology.

In fact, large-scale Al basic models are synonymous with HPC and have become the
best-known HPC applications, even more so than weather forecasting. Without HPC com-
puting, HPC storage and HPC networking, there would be no large-scale Al.

The extremely high and fast changing level of development of the fastest supercomput-
ers is no coincidence either. Rather, it is the result of most consistent development efforts
of the simulating and data processing sciences in association with leading manufacturers
of processors, communication technologies, storage systems, and the ingenuity of integra-
tors over the last 30 years. In this sense, the hyperscalers’ Al gold rush benefits greatly
from science without contributing much itself, and they are certainly not thinking of paying
royalties.

The challenges faced by computational research in science and industry are obvious:
The hyperscalers’ supply of Al training and inference capacity — viewed on a global scale —
is developing towards a monopoly, caused in particular through a GPU market being stirred
up by their rigorous acquisitions, which the publicly funded organisations can hardly fol-
low. As a consequence, users run the risk of losing their independence and countries their
sovereignty, only being able to purchase their needs from commercial cloud services, with
the result that they would have to endure a restrictive software service dictate and having
restricted control over their prompt management while being cut off from their so fruitful
interplay with machine development.

Given this situation, there is no doubt that we are on the threshold of a paradigm shift
as to the future of our HPC-based methodologies. For science and research, it is important
that this shift goes in a direction in which we do not lose control over our data, the prompt
management, and own Al training capabilities. In particular, we need to be able to create
LLMs, LMMs and other foundation models that are trained on open and publicly controlled
data sets. Through our involvement in LAION!, we were able to show how important the
aspect of public accessibility of data sources is, especially in the field of LLMs and LMMs.

JUPITER is Germany’s and Europe’s ticket into the exclusive club of sovereign Al
users. JUPITER will boost computational science and Al research to unprecedented
heights, and until Germany’s industry has built its own systems, JUPITER can provide
initial support for industrial users.

With systems like JUPITER science and research in Germany and Europe can take up
the challenges with confidence.

ihttps ://laion.ai/
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Quantum Chromodynamics is the fundamental theory to describe the physics of strongly inter-
acting particles, the hadrons. Its phase diagram plays an important role for the interpretation
of experimental results in nuclear physics, heavy-ion collisions and nuclear astrophysics. Due
to a severe fermionic sign problem, QCD at finite matter density cannot be simulated directly,
and little reliable information on the phase diagram is available. Here we report on a long-term
project to constrain the QCD phase diagram by simulating the theory away from its physical
parameter values, in order to understand how the physical situation as a special case is embed-
ded in the general parameter space of the theory. After producing data over many years, the
first phenomenologically relevant bounds on the location of a possible chiral phase transition at
finite baryon density are beginning to emerge.

1 Introduction

The fundamental theory describing the strong interactions in the framework of the Stan-
dard Model of Particle Physics is Quantum Chromodynamics (QCD). This quantum field
theory is formulated in terms of quark and gluon fields, which are the elementary con-
stituents of pions, kaons, nucleons etc., i.e., the strongly interacting particles (hadrons)
that are responsible for the nuclear physics in atoms as well as within massive stars. For
the purpose of such applications it is sufficient to restrict attention to the three light quark
flavours, the u-, d- and s-quarks. In the limit of massless u, d-quarks, m, 4 = 0, the
theory displays a so-called chiral symmetry: it looks the same when the u- and d-degrees
of freedom are exchanged or mixed. However, the vacuum state of this theory does not
show this symmetry, which is then said to be spontaneously broken. As a consequence the
Goldstone theorem predicts the existence of three massless bosons, the pions. In nature
the u, d-quarks are very light but not exactly massless, representing a small distortion from
the chiral (massless) limit. Correspondingly, the pions are not exactly massless, but carry a
mass (~ 135 MeV) much smaller than that of p-mesons (~ 770 MeV) or nucleons (~ 930
MeV), thus identifying them as “would-be” Goldstone bosons.

When hadronic matter is either heated, such as in the early universe or heavy-ion col-
lisions, or densely packed, such as in neutron stars, its properties are expected to change
as a function of temperature and density. When temperature and/or matter density become
large, the spontaneously broken chiral symmetry gets dynamically restored, and the prop-
erties of hadronic matter are believed to change fundamentally. In particular, the coupling
strength of the quark-gluon-interaction reduces and one expects the hadrons to eventually
melt into a quark gluon plasma with different properties, as sketched in the putative QCD
phase diagram Fig. 1 left. Several heavy-ion experiments as well as astronomical observa-
tions of neutron stars and their mergers are under way to explore different regions of the
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Figure 1. Left: Sketch of the expected phase diagram of QCD matter as a function of temperature and density.
Middle + Right: Connection of the putative QCD phase diagram for physical light quark masses to the chiral
limit with 7, 4 = 0, in the front plane.

phase diagram. In the chiral limit of massless u, d-quarks, the chirally symmetric and bro-
ken phases must be separated by a non-analytic phase transition. For cold and dense matter
several simplified models predict this transition to be of first order and proceed by bubble
nucleation, similar to liquid gas transitions. On the other hand, for a hot and dilute gas one
expects the transition to be of second order, i.e. to happen everywhere at the same time,
such as the spontaneous magnetisation in a ferromagnet. This is sketched qualitatively in
Fig. 1 middle, where the change from a first-order to a second-order phase transition is
marked by a tricritical point. When the light quark masses are non-zero, as they are in
nature, the chiral symmetry is broken explicitly. In this case there is never a fully chirally
symmetric regime, and the regions with more or less chiral symmetry must be analytically
connected. The second-order transition in this case is replaced by a smooth and analytic
crossover, while there still can be remnants of a first-order transition, which then termi-
nates in a critical endpoint. This is the scenario expected by a large part of the theoretical
community based on various model studies'~>.

However, the true phase diagram if QCD is still unknown today. The vacuum prop-
erties of QCD can be numerically simulated on a discretised space-time (lattice QCD)
to give accurate predictions for the hadron mass spectrum, hadronic decay constants and
many other properties observed in nature. Thermal lattice QCD can also be simulated,
and we know that indeed the chiral transition at physical quark masses corresponds to an
analytic crossover*. However, at finite density a fermionic sign problem prohibits Monte
Carlo simulations, and not much is known for the dense situation with baryon chemical
potential 5 # 0. This motivates the approach pursued in our NIC research group, namely
to study how the nature of the QCD chiral transition changes away from the physical point
as a function of the number of quark flavours, their masses and imaginary baryon chemi-
cal potential, which is unphysical but can be simulated straightforwardly. The parameter
dependence of the QCD transition constrains the nature of the transition at the physical
point, which one may hope to infer once sufficient information is available. In particular,
one is interested in the nature of the transition in the chiral limit, in order to check the
assumptions going into the scenarios in Fig. 1. As we shall see, all current lattice results
are so far also consistent with the scenario shown in Fig. 1 right, where the transition is
second order all the way in the chiral limit, and completely disappears into a crossover.
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2 The Columbia Plot at ug = 0

Even at zero baryon density, QCD with massless quarks cannot be simulated because of
diverging matrix inversions in that case. One can only approach this limit by simulations
with gradually decreasing quark masses, at the expense of drastically increasing computa-
tional effort. The nature of the QCD transition as a function of quark masses at zero density
is qualitatively shown in a so-called Columbia plot, Fig. 2. One possibility, which was first
predicted nearly 40 years ago by the epsilon expansion applied to linear sigma models with
symmetry breaking patterns as QCD?, is schematically shown in Fig. 2 left. The theories
with Ny = 1,2, 3 mass degenerate quark flavours correspond to the right and top boundary
lines, and the diagonal, respectively (quarks with infinite mass do not contribute to the dy-
namics and decouple from the theory). In the limits of m,, 4 = 0 (left boundary), there are
non-analytic phase transitions due to the spontaneous breaking of the chiral symmetry for
massless quarks. Simulations at finite quark masses on coarse lattices appeared to confirm
the predicted first-order region for Ny = 3%7. On the other hand, one observes an ana-
Iytic crossover at intermediate quark masses, with a second order boundary line separating
these regions, which has been shown to belong to the Z(2) universality class of the 3d Ising
model®®. Another possibility, which has also been seen in the staggered discretisation on
coarse lattices!?, is for the first-order chiral transition region to extend all the way to the
Ny = 2 theory in the upper left corner. Over the years the chiral critical boundary line was
found to strongly recede towards smaller quark masses with decreasing lattice spacing'!.
However, it has remained open whether the chiral phase transition for two quark flavours
is of first or second order in the continuum limit. Our original motivation for this long term
project was to distinguish between these two scenarios.

3 Computational Strategy and Numerical Results

Rather than trying to approach the continuum chiral limit for a fixed number of quark
flavours and masses, our strategy is to search for the tricritical point separating parameter
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regions with first-order and second-order chiral transitions. To this end it is advantageous to
change variables and consider strictly mass-degenerate quarks. The QCD partition function
Z is expressed as a path integral over the gluon fields U, including a determinant of the
Dirac operator for each species of quarks,

Z= /DU (det D[U; am])™7 exp {—S,[U]} , (1)

where Sy [U] is the discretised gauge action and D[U] the fermion Dirac operator, which
we employ in the standard unimproved staggered discretisation. The bare microscopic
parameters of the partition function are the lattice gauge coupling 3 = 6/g? and the bare
quark mass am, given in units of the lattice spacing a. The temperature 7" is specified by
the inverse temporal lattice extent

T = (a(B)N;)~". )

On a lattice with given IV, temperature is tuned by changing the lattice spacing a indirectly
via the coupling 3(a). A continuum limit at fixed temperature implies a — 0, N, — oo,
and larger values of N, imply smaller lattice spacings.

In this degenerate quark formulation one can continuously vary between Ny = 2,3 by
tuning Ny to non-integer values, rather than tuning co > m, > 0. The Columbia plot
from Fig. 1 left then gets replaced by the version on the right. A tricritical strange quark

mass mz,ric in the former version translates into a tricritical value 2 < N}ric < 3 in the

latter. The chiral critical line is known to enter the tricritical point as'?
ri 5/2
am,(N¢(N;), N;) = D(N,)(Ny — N¥e(N) 2+ 3)

The benefit of this changed formulation is its generality, i.e. the tricritical point can be
located at any value of Ny, in contrast to the model expectations on which the scenario in
Fig. 2 is based. The task then is to follow the chiral critical line, which is known on coarse
lattices, through parameter space as the lattice is made finer.

All numerical simulations have been performed using the publicly available OpenCL-
based code CIZQCD, which is optimised to run efficiently on AMD GPUs and contains
an implementation of the RHMC algorithm for unimproved rooted staggered fermions.
Version v1.0'% has been employed for simulations on smaller N, on the L-CSC super-
computer at GSI, while version v1 . 1'> has been run on the HLR supercomputer at Goethe
University to run the most costly simulations.

We locate and identify the nature of phase transitions by finite size scaling analyses of
standardised moments of the distribution of an appropriate order parameter,

Bn(ﬁ7m, No‘) _ <(O - <O>)n7>l/2 ) (4)
((0-(0)*)

For the chiral phase transition this is the chiral condensate, @ = n). We first locate
the phase boundary S. by the condition of vanishing skewness for the distribution of
the observable Bs(f.,am,N¢, N, Ns) = 0. The order of the transition can be deter-
mined by the kurtosis B4(3,m)'®. In the thermodynamic limit N, — oo, the kurto-
sis B4(B.,m, Ny) takes the values of 1 for a first order transition and 3 for an analytic
crossover, respectively, with a discontinuity when passing from a first order region to a
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(a) Left: examples of Bs for heavy quarks on a 6 x 363 (b) The kurtosis on the phase boundary, B4(3.),
lattice, obtained from different Markov chains, n, denotes evaluated for different quark masses, on N = 8
the maximal difference between them in standard devia- lattices. Lines represent a common fit of all dis-
tions. Merged raw and reweighted data for B3 (top) and played volumes to the scaling formula Eq. 5.

By (bottom) are also shown, with the determination of 3.

and B4 (f.) in red.

Figure 3. Our general procedure of identifying phase transitions by finite size scaling analysis.
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Figure 4. Left: The Z(2)-critical line separating first-order transitions (below) from crossover (above), for unim-
proved staggered fermions!?. Right: The same data plotted in a different parameter pairing!2. The continuum
limit is in the lower left corner.

crossover region via a second order point, where it takes the value'” 1.604 for the 3D Ising
universality class. On finite but sufficiently large volumes, it can be expanded about the
critical point,

Bi(Be,am, Ny, Ny, N,) = 1.604 + B (8., Ny, N;) (am —am )N + ..., (5)

through which it passes smoothly. As the volume is increased, the rate of the approach to
the thermodynamic limit is governed by a 3D Ising critical exponent, v = 0.6301. Dots
indicate additional terms that vanish in the infinite volume limit.

For each parameter combination, we generated statistics by simulating four indepen-
dent Monte Carlo chains until their Bs 4-values agreed to within less than three standard
deviations, upon which they were merged. The multi-histogram method was used to inter-
polate between simulated (3-values'®, in order to locate the pseudo-critical coupling pre-
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Figure 5. The same as in Fig. 4, but now for fixed imaginary quark chemical potential 1+ = ;. On the left, the
1 = 0 curves are also displayed for comparison.

cisely. This is shown in Fig. 3(a). An example of a fit of our data to Eq. 5 is shown
in Fig. 3(b). Altogether, the results presented in the following sections are based on ~ 200
million Monte Carlo trajectories spread over several hundred different parameter combi-
nations, obtained over a span of several years.

Results of our investigation for up = 0 are shown in Fig. 4. The left plot is the
numerical realisation of the chiral critical line, sketched schematically in Fig. 2 right, on
lattices with N, = 4,6, 8 respectively. One observes the tricritical point, corresponding
to the intercept of a fit to Eq. 3, to move to larger values as N, grows (i.e the lattice gets
finer). While no continuum limit for the value of N}“C is available yet, it is obvious that
Ntri¢ > 3, 5o that the chiral transition in the massless limit of the N + = 3 theory is of
second order. The same conclusion is reached by looking at the same critical line in a
different parameter pairing, Fig. 4 right. The small curvature of the critical lines shows
near-perfect tricritical scaling. All theories with Ny < 7 are consistent with a tricritical
point at a finite a7’ = N !, which means that the first-order transition region under the
critical line is not connected to the continuum limit, but a lattice artefact. Unless a new
first-order region is found at even smaller masses, one concludes that for Ny = 2 — 7 the
chiral phase transition in the continuum must be of second order. The Columbia plot in the
continuum then differs from the proposal in Fig. 2 and instead looks as in Fig. 6 left.

4 The Columbia Plot with Imaginary Chemical Potential

The next step in our program is to determine how the nature of the chiral transition de-
pends on chemical potential. Since a physical, real baryon chemical potential cannot be
simulated, we chose an imaginary chemical potential, for which there is no sign problem.
Earlier work on coarse lattices displays an analogous situation to g = 0, namely a first-
order chiral transition region which terminates in a Z(2)-critical line. We have then con-
sidered a fixed quark chemical potential ¢ = 0.8177"/3, for which there is an analogous
Columbia plot with first-order regions, which on coarse N = 4 lattices are significantly
wider than at zero density. However, upon increasing N, i.e. making the lattices finer,
this first-order region also shrinks and disappears at a tricritical point, as evinced by sim-
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Figure 6. Left: The Columbia plot for g = 0 in the continuum according to our results'?. Right: Extension to
finite quark chemical potential. The lower half-space with imaginary chemical potential is accessible by Monte
Carlo simulations, with the same result as at ug = 0.

ilar scaling behaviour as at iz = 0, which is shown in Fig. 5. Our results are consistent
with other approaches with two different versions of improved staggered fermion actions
at 4 = imT/3: starting at the physical point and approaching the chiral limit, no sign of
a first-order transition is found down to pion masses ~ 50 — 60 MeV!%2°, Unless a com-
pletely different first-order transition is found at yet smaller quark masses in the future, one
has to conclude that there is a second-order chiral transition in the limit of strictly massless
quarks, and an analytic crossover for any non-vanishing quark mass. The Columbia plot
including imaginary chemical potential then looks as in Fig. 6 right. Preliminary results
have been published in conference proceedings’! and a doctoral thesis??, a journal article
is in preparation.

5 Conclusions

Modern high performance computing allows to evaluate ever larger portions of the QCD
parameter space, and to approach the theoretically interesting chiral limit of vanishing
quark masses. With our ongoing long-term project reported here, we are presenting
increasingly tight evidence that the QCD chiral phase transition in the limit of mass-
less quarks at zero and imaginary baryon chemical potential is of second order for all
Ny = 2 — 7. While this does not rule out a change to a first-order transition at some real
chemical potential, our data are beginning to impose relevant bounds on the location of
a possible critical endpoint. Fig. 1 middle and right show the remaining possibilities for
the physical phase diagram and its connection to the chiral limit: while a first-order line
closing to the 7T'-axis is increasingly ruled out, a second-order line connecting the 7'- and
p-axes is still a possibility. In this case the transition for physical quark masses would cor-
respond to crossover everywhere. In the more expected scenario with a first-order chiral
phase transition at finite density, knowledge of 7 in the chiral limit and the curvature of
the crossoverline at the physical point allows to bound the location of a possible critical
endpoint in physical QCD to up > 485 MeV!!.
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Gluons are the carriers of the strong force. Together with the quarks they form the protons
and neutrons which make up the atomic nuclei. While gluons make up a significant fraction of
those, a particular kind of particles are the so-called glueballs, which are thought to be made
predominantly of gluons. Despite having been hypothesised half a century ago and significant
effort to find them in experiments, glueballs have not been detected beyond doubt. Numerical
computations using lattice quantum chromodynamics could shed light on the existence of these
particles, but new algorithms and strategies are needed for this task. We discuss two promising
strategies which could help achieve this goal: multi-level sampling and trivialising flows.

1 Introduction

The fundamental theory describing nuclear matter continues to pose a large array of chal-
lenges to theoretical physicists. Even fifty years after the formulation of quantum chro-
modynamics (QCD), it is still hard to calculate many quantities which physicists need to
make progress in the field. QCD describes the observable particles, like the proton or the
neutron, as being composed of quarks held together by gluons, the carriers of the strong
force. While many features of strong interaction physics can be immediately understood
from this theory, it is not easy at all to accurately predict elementary particle properties like
their mass, their interactions and their structure.

The origin of these difficulties is in the nature of the system itself: the quarks and gluons
are interacting strongly. This makes analytic methods, which are so successful in weakly
interacting theories, less useful. In the last four decades, a powerful method to solve the
theory numerically has been developed: lattice quantum chromodynamics. Today, lattice
QCD computations are the prime source for quantities like the QCD running coupling or
the quark masses.

Using lattice QCD, one can not only reproduce properties of known particles, but also
study hypothetical particles. One particular class of particles, which have been predicted
since the advent of QCD, are the so-called glueballs'. In a world without quarks, glueballs
would be the bound state of gluons and the only strongly interacting “visible” particles,
since single gluons cannot escape the confinement of the bound state. Glueballs as bound
states are a direct manifestation of the special properties of quantum chromodynamics.
Photons, the carriers of the electromagnetic force, do not exhibit a similar phenomenon. In
numerical lattice computations, it has long been demonstrated that such glueballs exist in
the theory without quarks®3 .

In QCD, quarks and gluons, however, always come together and cannot be separated.
Therefore, these purely gluonic states will be different in the world we live in. They might
still consist predominantly of gluons, with only a small contribution from the quarks, or
their nature might change completely such that they have no resemblance with what has
been established in the purely gluonic theory. For sure, they are no longer stable, to the
contrary, they decay quickly with many possible decay channels.
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In experiment, glueballs have been elusive. There have been experimental observations
of candidates* and recent findings by BESIII confirming pseudoscalar quantum numbers
for the X(2370) are reviving the interest in this field®. Reliable theoretical input from QCD
would certainly help the interpretation of these findings.

The method requires significant computer resources and sustainable progress can only
be made by exploring new numerical strategies and further developing proven algorithms.
Simply using larger amounts of computer time is not an option. In the following, we will
describe two such avenues to speed up lattice QCD computations.

2 Algorithms for Lattice Field Theory

As already indicated by the “lattice” in the name, space-time is discretised on a four-
dimensional lattice. Once the theory is formulated on this lattice, what remains is integrat-
ing over the degrees of freedom attached to each of these lattice sites: the task to compute
the expectation value of an observable (O) is to evaluate an integral with many millions to
billions of integration variables

©) =5 [lave-sopy. m
where Z = [[dU Jle=s (U1 and U denoting the aggregate of the gluon fields.

Such high-dimensional integrals are typically tackled by Monte-Carlo integration. It
means interpreting the Boltzmann weight P[U] o« e~° (U] as a probability density and
drawing all those millions of variables at once from this distribution.

Since it is virtually impossible to directly draw form this distribution, the field config-
urations are generated in the framework of a Markov Chain Monte Carlo: the field space is
explored by deforming in a randomised way gauge field configurations such that one stays
in the important region, where the importance is given by the probability P[U]. This gives
a series of field configurations, where a field configuration U; is a certain random value of
each of the many integration variables

Ui—-U; —-Us3—---—=Un. 2)

From these variables, the quantities of interest, called O[U] in the above formula, are then
constructed. This is the measurement in lattice field theory language and the results for all
the drawn realisations of the gauge fields are then averaged over

. 1 X
0= ;O[Ui] . 3)

The uncertainty of the estimate of O of the true value (O) decreases with 1/v/N, the
inverse square root of the number /V of samples drawn.

For certain types of observables, this procedure can lead to very satisfactory results. For
many quantities of interest, this strategy, however, does not render competitive answers and
we therefore have to work on new methods to go beyond the current state-of-the-art.

In this contribution, we discuss ideas to modify the above procedure in two ways. First
we will challenge the idea that it is a good strategy to generate all field variables at once.
Splitting up the update, one can devise improved estimators with a better scaling in the
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number of measurements. The second avenue is a different way of generating the gauge
fields. Instead of deforming probabilistically one global field into the next, we will present
an effort to learn a map from a trivial distribution to the target distribution. If successful
such an approach could avoid the problems arising from the correlation of subsequent field
configurations.

2.1 Multilevel Algorithms

Many quantities of interest are extracted from correlations between operators O and O’ at
different points in space-time

(O()0'(y)) , ©)

e.g., the particle mass from the exponential decay rate with the distance. For such operator
products, the statistical noise is frequently independent of the distance |x — y| between
the points, whereas the signal falls off exponentially with this distance. With growing
distance, the computational cost to compute the signal to a certain level of accuracy grows
exponentially with this separation. This problem has been known since the early days
of lattice quantum field theory® and many strategies have been devised to fight it, but
without finding a complete solution for general quantities. One successful strategy is the
choice of good operators O and O’ for the analysis. This will reduce the coefficient of
the exponent and therefore mitigate the problem. A good choice of an operator basis is an
essential ingredient in any modern computation and we will use a state-of-the-art setup in
the following.

So-called multi-level algorithms are a possibility to improve the scaling of the Monte
Carlo estimate of such products of operators. How is this done? The idea is to use the
locality of the underlying theory, the property that local fields and their probabilities depend
only on the other fields in their neighbourhood. We employ this in the concrete setup
by decomposing the lattice into the two regions around the two points of the correlation
function and a boundary where they meet, see Fig. 1. We can then independently use
the Monte Carlo method to compute estimates for these two factors. For this to work, the
fields in the boundary need to be kept fixed and we need to average over a certain number of

A boundary B

d il

Figure 1. Simple decomposition of the lattice for a multilevel algorithm. We use a number Ny of realisations for
the boundary field in the centre. For each of these boundary fields, the lattice in region A and region B can now
be sampled independently from the corresponding marginal distribution.
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boundary field realisations. The strategy now translates to the following nested averaging
scheme:

(O(@)0'(y)) = ((O(2))a (0" (¥))B)bndry - Q)

where the averages (O(z))a and (O’(y))p depend on the boundary field, but not on the
fields in the other region B and A, respectively.

The important result is that the uncertainty of the product potentially scales with the
inverse square root of the product of the number of these two sub-measurements. If we
make N7 sub-measurements in each of the regions, the uncertainty drops with 1/N; for
the multilevel estimator, instead of 1/ \/N; for the standard strategy. Note, however, that
this is the ideal scaling which will be limited by the effect of the fixed boundary. Such ideas
are not new and have been pursued over the years’. In a theory without fermions this has
also been successful for certain quantities. Also for fermions, a possible strategy has been
formulated'®!!. That such an algorithm is efficient is not a priori clear. In particular, it
might happen that the effect of the fixed region is so large that the signal has degraded
beyond repair before the benefits of the new algorithm kicks in.

Since we have set out to study glueballs on the lattice, we tested this algorithm in an
actual glueball computation, albeit without the presence of fermions'?. This reduces the
cost of the simulation significantly and we can therefore evaluate the idea in detail, also
trying many variations. In Fig. 2, the noise-to-signal ratio of the correlation functions in
different glueball channels is shown as a function of the distance between the operators.
By its nature, the algorithm will be efficient once the two points are sufficiently far away
from the respective side of the boundary. It is therefore no surprise that at shorter distances
we observe an exponential degradation of the signal. Here, we can only use the standard
estimator.

Depending on the channel, this changes at around 0.75r¢ to rg, with rg ~ 0.5 fm,
where the degradation can be almost stopped. The plot also shows that the behaviour is
physical in the sense that it does not depend on the lattice spacing, where the different
values of 5 = 5.8, 6.08, and 6.2 correspond to a lattice spacing of 0.136 fm, 0.08 fm, and
0.068 fm, respectively. The use of the multilevel algorithm gives an essential window of
opportunity for the measurements of the glueball’s masses at the larger distances. While
this is not necessary for the purely gluonic theory we used here, it will be essential for the
next step where we want to compute in the full theory with the effect of the quark fields
included.

2.2 Machine Learning

As already mentioned above, lattice gluon fields are typically drawn from the target distri-
bution by using a Hamiltonian Monte Carlo'?, i.e. a method which continuously deforms
the field while staying inside of the region of likely fields as defined by the probability
distribution. This algorithm is widely used, not only in lattice quantum chromodynamics.
It has the great advantage of being universally applicable as long as we have continuous
variables.

The disadvantage is that it suffers from so-called critical slowing down as the lattice is
made finer. There are significant correlations between subsequent configurations produced
in this update procedure. They have their source in the general strategy for the algorithm:
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Figure 2. The noise-to-signal ratio as a function of the distance between the two operators for various types
of glueball, A1++ (red), B+ (green), T2Jr + (orange), and A;+ (blue)!2. At short distances, we observe the
exponential deterioration of the signal compared to the uncertainty. From a certain distance on, the multilevel
algorithm becomes efficient and this deterioration is slowed down. Plot from Barca et. al.'?. The distance is
given in units of ro ~ 0.5 fm.

it continuously deforms the fields, so there always is some “memory” left of the previous
field configurations. These correlations now get worse on finer lattices. Detecting the
correlation is to a certain extent also an art of its own. We have billions of variables and
only certain will exhibit the worst of these correlations.

Particularly bad are observables linked to the topology of the underlying system. The
topological sectors form quickly as the lattices are made finer and the simulation gets
stuck in one of them. We therefore no longer draw from the full probability distribution
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but only from a subset given by a certain topology of the fields. In a sense, this is even
a good situation in which we have identified this particularly problematic observable and
can therefore monitor the problem and know where the limits of the current setup are.
There could very well be other quantities exhibiting much slower behaviour which we are
unaware of.

These considerations trigger the wish to change the simulation strategy altogether. One
such approach are so-called normalising flows. These are maps in fields space U — F(U)
such that in the integral Eq. 1 the Boltzmann weight exp(—S[U]) gets replaced by a prob-
ability distribution from which we can sample trivially, without having to use methods like
Hamiltonian Molecular Dynamics. For many applications this is the Gaussian distribution,
hence the name. In our case it is a uniform distribution and we refer to them as trivialising
flows.

If such a map can be found, the simulation setup changes drastically. Instead of pro-
ducing a chain of correlated fields, we can draw uncorrelated fields from the uniform dis-
tribution to which we then apply the map. These maps are typically given in terms of a
partial differential equation with parameters depending on the target distribution. These
parameters have to be determined, learned in the language of machine learning, by min-
imising the distance of the distribution generated by the map and the target distribution
given by the full theory P[U] ~ exp(—S[U]).

This optimisation will never be perfect, and also the model will only have a limited
number of parameters and terms. The question to answer is whether it is good enough to
be used in actual applications.

This approach is very successful in many machine learning applications, however, these
are frequently of very different type compared to the case of lattice quantum chromody-
namics. On the lattice, we face a huge number of degrees of freedom on the one side. On
the other side, we have a lot of symmetries in our system: translations for arbitrary shifts
in the lattice, rotational symmetries and many more, also internal symmetries.

In recent years, there has been significant interest in this approach to the sampling prob-
lem in QCD'#. With respect to earlier maps, we have proposed and implemented one with
many orders of magnitude fewer parameters, implementing a large amount of symmetry'.
It is based on an analytic approach proposed earlier by Liischer'®, who also showed that
in the given class of models such a map actually does exist, albeit with growing number
of parameters. The low number of parameters of our model is a significant advantage if
it comes to training. In this step, more parameters increase the cost and it will be more
difficult to find optimal parameters with a given amount of resources. In case of an unsat-
isfactory match, it is also difficult to determine whether the problem is a lack of training or
a lack of expressivity of the model.

In Fig. 3 we show the history of the training of the model in a two dimensional theory.
The effective sampling size (ESS) is shown as it increases due to the training. The ESS
gives an effective number of field configurations after taking into account the mismatch
between the distribution produced by the model and the target. In our study, we could
show that our reduced, physics driven approach significantly outperforms the previous
efforts!®. Using these methods is still in its infancy. In particular, there is so far one big
hurdle: they scale very badly with the volume of the system. Some of this scaling might be
overcome with a better model and better training, but this will only lead so far in the face
of the billions of degrees of freedom of modern day lattice simulations.
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Figure 3. Training history of the effective sampling size (ESS), the effective fraction of field configurations
generated after taking into account the mismatch between target distribution and the distribution generated by the
flow!.

3 Summary

Lattice quantum chromodynamics has come a long way since the first simulations at the
beginning of the 1980s. Part of it is due to the increased availability of computer resources.
A roughly even share is in the ability of the community to develop computational strategies
to exploit the changing computer architectures and to invent new algorithms to address
specific issues of the physical systems. In particular, it is time to develop algorithms with
the specifics of the target observables in mind.

Here we discussed two such approaches taking specific advantage of key properties
of the underlying theory. In the case of the multilevel sampling, we used the locality of
the underlying theory to formulate an algorithm which could improve the scaling of the
uncertainty of the result with the effort. For the trivialising flows, we used a model which
implemented many of the symmetries of the theory, like the invariance under translations
and rotations as well as internal symmetries directly. We demonstrated that this model is
outperforming previously discussed ones by many orders of magnitude. This approach is,
however, still far from being competitive with the Hamiltonian Monte Carlo.

These studies are not yet at the end, but an important step towards reach the goal of
studying glueballs in the full theory of quarks and gluons.
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Biomolecules like Proteins and RNAs play a critical role in life processes at the molecular level,
with their structures intricately linked to their function. However, experimentally determining
their structures remains challenging. In silico techniques, such as computational structure pre-
diction, offer a valuable complement to experimental approaches. Fifteen years ago, direct
coupling analysis (DCA) was developed to infer co-evolutionary patterns and predict spatial
relationships between residue pairs. Such spatial information could considerably improve 3D
structure prediction. This paved the way for deep learning methods, which initially improved
accuracy in predicting these relationships and eventually succeeded in generating full 3D struc-
tures. One of the most prominent achievements is AlphaFold, which has revolutionised the
field. Its groundbreaking success earned Demis Hassabis and John Jumper one half of the 2024
Nobel Prize in Chemistry, highlighting its transformative impact on structural biology. This
short review guides through the past 15 years of protein structure prediction for an interested
public.

1 Introduction

Proteins and RNAs are fundamental building blocks of life at the molecular level and carry
out key functions that sustain biological processes. Build from linear sequences of amino
acids, proteins act as, e.g., enzymes, catalysts that speed up biochemical reactions, and
serve as structural components of cells. Hemoglobin, for example, transports oxygen in
the blood, while insulin regulates blood sugar levels. RNA is likewise a versatile molecule,
being involved in protein synthesis and gene regulation, as seen with messenger RNA
(mRNA) and ribosomal RNA (rRNA) but has also been shown to be able to react to exter-
nal stimuli as riboswitches regulating genetic expression. Common to these biomolecules
is the strong dependence on their three-dimensional structures, which dictate their interac-
tions and functions with dysfunctions often related to disease'-2.

However, determining these structures experimentally is a major scientific challenge.
Techniques like X-ray crystallography, NMR and cryo-electron microscopy (cryo-EM) are
powerful, yet time-consuming and technically demanding. For many proteins and RNA
molecules, especially those that are large, flexible, or difficult to crystallise, obtaining high-
resolution structural data remains (at a minimum) time consuming and expensive or even
elusive.

Computational approaches, such as structure prediction techniques, have become valu-
able tools to complement experimental efforts. By using algorithms to predict 3D struc-
tures based on sequence data, these methods can provide insights where experiments may

35



be limited. The remarkable advancements in sequencing technologies have led to an ex-
ponential increase in the availability of biological sequence data®. These advances have
opened up new opportunities for understanding the molecular basis of life, particularly in
relation to proteins and ribonucleic acids (RNA). As sequencing techniques become more
efficient and affordable, the sheer volume of data generated allows scientists to explore the
diversity of proteins and RNA across different species, gaining insights into their evolu-
tion, structure, and function. In this mini-review, we will quickly summarise the basic of
organising sequence information in multiple sequence alignments and inferring spatial or
structural information from them by statistical physics and machine learning approaches.

2 Availability of Raw Data: Organising Sequence Data as Multiple
Sequence Alignments

One of the key tools for analysing this vast amount of sequence data are multiple sequence
alignments (MSA), which enable researchers to identify similarities and differences be-
tween sequences from different organisms. In short, MSAs are essential for inferring
structural and functional relationships within and between phylogenetic trees. By align-
ing sequences, scientists can identify conserved regions that are crucial for the function of
a protein or RNA, or regions that have (co-)evolved to confer new functions or maintain
structural properties. Improved statistical methods and sophisticated alignment software
have been instrumental in enhancing the accuracy of these analyses*'°.

Freely accessible databases, such as UniProt, Pfam (the protein family database), and
Rfam (the RNA family database), have emerged as invaluable resources for researchers
seeking to analyse protein and RNA sequences. These databases curate and organise se-
quence data, providing researchers with comprehensive information on the structure, func-
tion, and evolutionary relationships of proteins and RNA. UniProt, for example, is a widely
used protein database that contains detailed annotations on protein sequences, including
information about protein function, domains, and interactions'!. Similarly, Pfam offers
curated data on protein families, allowing researchers to investigate conserved regions that
are common to proteins with similar functions!2. Rfam, on the other hand, focuses on
RNA families, providing insights into the structure and function of non-coding RNAs,
which play critical roles in gene regulation and other cellular processes'>.

The availability of these vast and well-organised data sets is essential for the broader
scientific community and they serve as foundational resources for a wide range of applica-
tions by enabling development of sophisticated bioinformatics tools to expand our ability
to study the molecular underpinnings of life. Importantly, these databases are freely acces-
sible to researchers worldwide, fostering collaboration and accelerating discoveries.

3 2009 Structure Prediction by Tracing Co-Evolution: Direct
Coupling Analysis (DCA)

Fifteen years ago, direct coupling analysis (DCA) and related methods revolutionised our
ability to predict the spatial proximity of amino acid residues in proteins by detecting co-
evolutionary patterns in sequence data. These techniques identify “contacts” or residues
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that are likely to be close in three-dimensional space, by analysing patterns of linked mu-
tations across evolutionary time'* !>, Previous methods, such as those based on mutual in-
formation, struggled to distinguish between direct and indirect interactions, often misiden-
tifying residues as interacting when they were not directly adjacent. DCA addressed this
limitation by specifically inferring direct couplings between residues, which arise from
their direct spatial proximity within the protein structure.

I Stmulation > ’:ZTD@‘

J, Evolution Constraints
O
O _ Inference
3 e somemem vom * 1:
Qﬁ 5 p—— i

Contact Map

Figure 1. General structure prediction workflow The wild type sequence of biomolecules encodes a specific
biomolecular structure. While maintaining this overall shape, evolution generates correlated mutational pat-
terns in multiple sequence alignments, often due to spatial proximity of residues. These patterns can be used to
statistically infer contact maps, which provide valuable constraints for predicting biomolecular structures. By
incorporating these contact maps into prediction models, the accuracy of the predictions is significantly enhanced
compared to models that rely solely on direct structure prediction without such constraints. This approach lever-
ages evolutionary information to better capture the physical interactions between residues, ultimately improving
the overall quality of the predicted structures.

DCA achieves this by applying an inverse Potts model to sequence data, allowing re-
searchers to disentangle the complex web of evolutionary interactions. With P(.S) being
the probability that a given sequence S = ajas...ar of length L, in which each state a;
is either a residue or a gap, is sampled over the course of evolution. P(S) can be written
using the Boltzmann law as:

P(S) = exp(~5 ), 1)

where [ is the inverse of the temperature, Z the partition function of the model and ¢ the
Hamiltonian of the system, which in turn is expressed via a generalised Potts model as:
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The parameters h;(a;) measure the local field strength at site ¢ occupied by state a; and the
coupling parameters J;;(a;, a;) quantify the coupling strength between pairs of sites ¢ and
J occupied by states a; and a;, respectively. The local field and the coupling parameters
of the model are inferred from the MSA of homologous sequences to S using inverse
statistical algorithms. Initially, DCA employed a message-passing algorithm to solve this
inverse problem'>. Subsequent advancements aimed at increasing efficiency and accuracy,
including the development of the mean-field approach, which significantly sped up the
inference process'®!7, using pseudolikelihood maximisation further improving prediction
accuracy'® or Boltzmann learning!®. Furthermore, the principles behind DCA have been
successfully extended to RNA molecules, enabling the prediction of structural contacts in
RNA sequences as well?”,

In a similar idea to using experimental data as restraints in structural modelling
the contact information derived from DCA can serve as powerful structural constraints.
This approach has been applied to a range of biomolecular modelling challenges**23, such
as predicting the structure of protein complexes'#, globular proteins?®, mapping conforma-
tional transitions?’, serving as constraints in MD simulations?® and even studying large-
scale homodimer prediction?’. DCA has also proven useful in applications like protein
design, where it has been used to re-engineer protein signalling pathways3*-3? or predict
fitness landscapes’®34.

In addition to its success with proteins, DCA has been applied to RNA contact pre-
diction, yielding great success in RNA structure prediction?>3>-37. More recently, DCA
has been combined with machine learning techniques to further improve its predictive
power. Shallow learning approaches, which require fewer parameters, have been shown
to enhance DCA’s performance®. These advancements continue to expand the potential
applications of DCA in biomolecular research, making it a valuable tool for understanding
and modelling the complex structures of both proteins and RNA.

21-23

4 2017+ Shift to Deep Learning (DL) in Biomolecular Structure
Prediction

In recent years, numerous scientific disciplines have been profoundly impacted by ad-
vancements in machine learning, driven by both theoretical innovations and vast techno-
logical improvements @. These breakthroughs have been supported by the development
of specialised hardware such as novel graphical processing units (GPUs) optimised for
machine learning architectures. In addition the availability of large, high-quality datasets
(ideally fully annotated) supports deep-learning approaches. One of the fields most sig-
nificantly transformed by these advancements is biological physics and in particular the
focus of this mini-review: structure prediction. Here, the intersection of vast biological

A]nterestingly, these approaches are conceptually linked to earlier developments in statistical physics, such as the

Hopfield Network (e.g. the review>?).
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data, both on the sequential and structural level, combined with powerful machine learn-
ing models led astonishing progress in 3D structure prediction***#? including one of best
known successes in deep learning AlphaFold*'. These ML approaches, rely on deep neural
networks with an accordingly massive number of free parameters. Naturally, training these
deep networks require equally very large datasets of structurally known 3D structures and
accompanying MSAs.

Early neural networks for protein contact prediction were based on convolutional neu-
ral networks (CNNs), which treated the problem similarly to image processing. These
CNN-based models used output maps from direct coupling analysis (DCA) as input and
refined them to predict contact likelihoods for each possible pair of residues, producing en-
tire contact maps*>38, To better incorporate sequence-specific features, models introduced
concatenated or summed embeddings of sequence tokens and sequence profiles, which
contain alignment statistics for each sequence position*>. Over time, these models such
as AlphaFold advanced to predict distance maps, or distograms, instead of simple binary
contacts, providing more granular spatial information about residue pairs*!.

The development of transformers and large language models marked a shift towards
language processing approaches. The MSA Transformer** is one such protein language
model, capable of extracting co-evolutionary patterns from multiple sequence alignments
(MSAs) through self-supervised learning. It uses attention maps to predict residue con-
tacts. More recent models, such as single-sequence transformers, embed evolutionary con-
text directly into their model parameters, bypassing the need for MSAs in the input®>. A
third approach involves geometric or graph-based models, which analyse sampled or gen-
erated structures to improve structural predictions, although they do not directly generate
structural candidates themselves*.

In an ideal scenario, a model would directly predict the atomic coordinates of a protein
as a point cloud, eliminating the need for complex post-processing and additional compu-
tational modelling. One of the first models to approach this was the recurrent geometric
network (RGN)*’, which relied on long short-term memory (LSTM) networks*3. However,
more recent models like AlphaFold2*’ and RosettaFold™ use attention-based architectures.

These models employ different sub-modules, including a token-level attention network
and a geometric structure module. The latter incorporates inductive biases such as geo-
metric transformations (e.g., SE(3) symmetry, used in the SE(3)-Transformer®'), which
helps the model better predict protein structures. Additionally, the token-level sub-module
is trained using a self-supervised masked language task as an auxiliary loss, improving its
performance. Both AlphaFold2 and RosettaFold are trained on large protein datasets, re-
quiring hundreds of thousands of samples to achieve their high level of accuracy. Recently,
AlphaFold3°? employed a diffusion-based approach which further increased accuracy and
range of predictable systems (proteins, nucleic acids, small molecules, ions and modified
residues).

For RNA, there is a discrepancy in the availability of data. While there is massive se-
quence data (>30 Mio sequences), there exist only 8000 RNA structures in the PDB, many
of them from related RNA families. Our recent method BARNACLE? first learns an op-
timal internal representation on the sequence data (upstream training) before fine-tuning
to specific prediction tasks (downstream training) such as contact prediction, which relies
on the less abundant structural data. Similarly, the recent development of RNAformer>*
is a transformer model designed for predicting RNA secondary structures and highlights
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the growing application of machine learning techniques to RNA alongside proteins. Al-
phaFold3>? also expanded its capabilities towards RNA structure prediction (cf. Fig. 2).
Here, we observe a clear trend: structures with known structural similarity to the train-
ing data tend to be predicted more accurately, i.e. low in RMSD. However, the accuracy
of predicted structures for sequences dissimilar to the training dataset still present chal-
lenges. The scoring of the models, i.e. the estimate of the predicted structure’s quality, are
quite reliable for high scoring models. Low scores indicate varying prediction quality, with
some predictions being of high quality while others are structurally very dissimilar from
the target structure.

Score vs RMSD
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Figure 2. AlphaFold3 RNA structure prediction The figure shows blind RNA structure predictions made by
AlphaFold3 (AF3) for RNAs that were not part of its training dataset but were experimentally resolved after
its release. The score represents AF3’s own confidence in the prediction, where values below 0.6 indicate low
reliability. Sequences without similarity to known structures tend to be predicted less accurately, as reflected by
their high root mean square deviation (RMSD) from experimentally measured structures. RMSD values below
5A denote high-quality predictions, while higher values suggest poorer accuracy in the predicted structures.

5 Discussion and Summary

This article provided a comprehensive overview of advancements in protein and RNA
structure prediction, focusing on the evolution from statistical methods to, more recently,
deep learning approaches. It began with DCA, a statistical method that leverages co-
evolutionary patterns in multiple sequence alignments to infer spatial contacts between
residues. DCA marked a significant step forward, providing structural insights by reveal-
ing evolutionary constraints that indicate residue proximity. The field has transitioned to
deep learning models, which have vastly improved predictive accuracy by directly learn-
ing complex patterns within large datasets with no direct assumption about the underlying
evolutionary patternsb. In particular, the development of convolutional neural networks
(CNNs) introduced the ability to treat contact prediction as an image-like problem, en-
hancing accuracy through feature extraction.

The article then discussed AlphaFold2, a deep learning model that employs attention-
based architectures to predict full 3D structures with unprecedented accuracy. By integrat-
ing information from evolutionary data and protein sequence profiles, AlphaFold2 set a

bpea only considers local field and two-body terms.
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new standard in structure prediction, achieving results comparable to experimental tech-
niques and was awarded part of the Nobel Prize 2024 in Chemistry, highlighting the suc-
cesses in and impact of this field and the promises it holds for the future.

The covered advances have not only improved protein and RNA structure prediction
but also open new possibilities in molecular biology and applied fields like pharmacology
and biotechnology. One particularly promising direction is the reverse task of structure
prediction: biomolecular design. In this area, deep learning approaches, especially those
leveraging foundation models, could enable the design of biomolecules beyond the se-
quence space explored by evolution. This could lead to the creation of entirely new molec-
ular structures with tailored functions, such as novel folds capable of catalysing specific
reactions. Such innovations hold great potential for developing new therapies, materials,
and biotechnological tools.
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Two-dimensional or layered semiconducting systems are subject to various external stimuli.
Their optical spectra can be modified by structural modifications, fields applied from outside,
and more. In this paper we summarise our findings concerning (i) layered materials under
pressure, (ii) modifications due to point defects, and (iii) magnetic proximity effects between a
semiconducting monolayer and a two-dimensional ferromagnet. The computational framework
of all these investigations is given by ab initio many-body perturbation theory (GW theory and
the Bethe-Salpeter equation), based on conventional density-functional theory.

1 Introduction

Layered semiconducting materials are highly interesting physical systems in reduced di-
mension, and serve as platforms for potential applications in spintronics, optoelectronics,
and quantum information technology. They are proposed as potential single-photon emit-
ters, quantum qubits, and more, and they exhibit quantum-physical phenomena like topol-
ogy, (quantum) (spin) Hall effect, Mott-Hubbard transitions, and exciton Bose-Einstein
condensation, to name just a few. One important ingredient in all of this is the possibility
to modify the materials’ (optoelectronic) properties beyond the perfectly ordered materials,
and to apply external stimuli for tuning. Here we discuss three such possibilities.

For the numerical determination of all such properties we employ the standard ab ini-
tio procedure to address optoelectronic excitations'>2. It starts with conventional density-
functional theory (DFT). Total-energy optimisation within the DFT ground state yields the
mechanical equilibrium geometry of a given system (plus, if necessary, nuclear vibrations
and thermodynamic properties like phase transitions). Thereafter, for a given geometry
we employ the GW theory (as part of ab initio many-body perturbation theory, MBPT)
to determine electronic excitations. This includes single electrons and single holes, their
excitation energy (i.e., the energy levels or band structure) and their single-particle wave
functions. MBPT includes all relevant exchange and correlation issues in terms of the
electronic self-energy operator. Finally, on the basis of the GW band structure we solve
the Bethe-Salpeter equation (BSE) for correlated electron-hole pair states (i.e., excitons).
These determine the optical properties of a material, i.e. optical absorption, emission,
luminescence, reflectivity, etc.

(i) A simple external modification of transition metal dichalcogenides (TMDCs) is the
application of pressure’!!. The materials have high mechanical flexibility combined with
the ability to withstand high strain levels without breaking. Mechanical strain strongly
modifies the electronic band structure and the fundamental optical transitions, leading, for
example, to an energetic shift of the exciton resonances. This renders external strain —
besides electric fields — an important means of controlling the optical properties of 2D
semiconductors. In Sec. 3 we demonstrate that the optical spectra react sensitively to
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pressure applied in terms of a diamond anvil cell, and a careful comparison of theoretical
results with measured data obtained by close colleagues allows to address the question to
which extent the mechanical stress of the anvil cell is transferred to the TMDC sample
inside'?.

(ii)) Complementary to the properties of a perfectly ordered periodic system (may it
be a two-dimensional layer or a three-dimensional crystal), point defects embedded in it
provide additional functionalities. They combine physics known from single atoms or
molecules with the structural stability of a crystalline network, facilitating their investiga-
tion and usage. One prominent and timely example are point defects in hexagonal boron
nitride (hBN)'3-2°, which are being discussed especially as potential single-photon emit-
ters for quantum information technology. They seem to be ubiquitous in both natural and
artificially grown hBN and yield optical emission in the visible spectrum (whereas hBN
by itself is transparent in the visible and soft ultraviolet range). However, in spite of the
great significance, it is amazing that experimental data on their chemical and structural
nature is still sparse and partially contradictory. In Sec. 4 we discuss optoelectronic de-
tails of various point defects in hBN that have been suggested as being responsible for the
characteristic emission?!22.

(iii) In addition to monolayers, homobilayers, and naturally grown bulk materials, there
is another class of two-dimensional systems that is getting more and more attention: heter-
obilayers. In here, a monolayer of one 2D system is deposited on a monolayer of another
2D system, thus constituting a junction. Here we investigate the specific case of WSes in
contact with Crl3?*-3!, with particular focus on the excitons of the former. Crl; is a ferro-
magnetic semiconductor down to the monolayer, i.e. it exhibits magnetisation from spin
polarisation and electronic states which are different in the majority spin channel (which
constitutes the spin polarisation) and the minority spin channel. In contact to WSes, the
spin polarisation partially transfers to the WSes monolayer, which then also shows differ-
ent physics in the majority and minority spin channels, finally affecting the WSes excitons
(see Sec. 5)%2.

Before discussing the above-mentioned three cases, a short summary of the theoretical
formalism is presented in Sec. 2.

2 Theoretical Framework

The outline of ab initio many-body perturbation theory (MBPT) has been discussed in
numerous publications (see, e.g., Ref. 1 and references therein). It usually starts from
density-functional theory (DFT), which is typically carried out first anyway to provide the
geometric structure of the material in question from total-energy minimisation. Thereafter,
MBPT describes single-particle and two-particle excitations as effective individual parti-
cles on the background of the interacting many-electron system of the material, in terms
of Green functions and their equation of motion*>*. Single-particle excitations refer to
the addition of removal of a single electron, the energetics of which is reflected in the band
structure or energy-level diagram of a system (occupied valence states refer to the removal
of an electron, empty conduction states to the addition of an electron), and are described by
the single-particle Green function. The net effects of electronic interaction and of exchange
effects (from Pauli’s principle) are expressed in form of the electronic self-energy operator,
which is commonly evaluated on the level of the so-called GW approximation'33. Two-
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particle excitations occur in form of correlated electron-hole pair states, commonly known
as excitons, and are described by the two-particle Green function and its equation of mo-
tion (the Bethe-Salpeter equation, BSE)!-2. Here we only mention some aspects relevant
tor the application of the established theory to the case of two-dimensional semiconductor
systems36

It has been well established that excitons in a semiconducting material are described
by the Bethe-Salpeter equation (BSE), applied to a representation of the exciton in terms
of a linear combination of independent interband transitions. Within the so-called Tamm-
Dancoff approximation, an exciton can be expanded as

/d3kZA(S) - (6. k+Q)). 1)

In here, v/c denotes occupied and empty bands, Q is the total momentum of the exciton
(often close to zero) and the k-space integration covers the first Brillouin zone. For numer-
ical feasibility we have to replace the continuous integration by a finite summation oder k
points:

ZZ/@ ki) = (¢,ki + Q)). 2)

k;

Each k; represents a volume V; in reciprocal space (usually all V; are of equal size and
shape). The expansion coefﬁcient A(k;) is supposed to represent the average of the original
ones, A(k;) = 1/V; fv k)d3k. Finite sampling makes only sense if A(k) varies only
weakly Wlthln V;. This set of k—pomts defines all further requirements of the algorithm.

After defining the excitation in Eq. 1, its equation of motion is given by the BSE in the
following way (omitting band indices for brevity sake):

AE(k)A(k) — / Wk — K)AK)d*k' = QA(k) 3)

with AF (k) denoting band-energy differences, W (q) denoting the screened Coulomb in-
teraction and 2 the excitation energy. When using Eq. 2, the BSE turns into

AE(k)A(k;) — > W(k; — kj)A(k;) = QA(k;). 4)

In here,
W(k; — k) := 1/Vj/ W(k; — K)d’k’ )
V;

is the integral of W (q) over a (little) volume V; around (k;-k;). For small reciprocal-space
distance k;-k;, we employ an analytically known model for W (k; — k') and carry out the
integration of Eq. 5 numerically®®. For large reciprocal-space distance, W (k; — k;) ~
W (k; —k;). Note that the treatment of W in the electron-hole interaction for the BSE must
be equivalent to the treatment of W in the underlying GW (or LDA+GdW) band-structure
calculation, especially concerning anisotropic behaviour of W (q) at small momentum and
the finite set of k points used in Eq. 2. These two issues, i.e. details of the band-structure
calculation and of the BSE, must exactly correspond to each other to reach the numerical
stability we need for the discussion in the next sections>®.
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The underlying reason is the one-to-one correspondence (within MBPT) between the
GW self-energy operator X" and the direct part of the corresponding electron-hole in-
teraction kernel derived from LW:

%(1,2) = iG(1,2)W(1t,2)
— K%(13,24) = 9%(1,2)/0G(4,3) = iW (11,2)8(1,4)6(2, 3)

where we have made the usual approximation that OW (17, 2)/9G (4, 3) ~ 0. Apparently,
for consistency between GW and BSE, the GW part of the MBPT should employ the
identical screened Coulomb interaction as the BSE. This implies using exactly the same
q-point grid for the internal summation leading to the self energy, as well as, employing
exactly the same modified interaction W (q).

3 TMDC Materials under Pressure

When pressure is applied to a layered material, e.g. MoSs, the effects on the structure
are highly anisotropic. On the one hand, lateral compression will occur, as in any crys-
talline material, and with similar magnitude (up to 1 percent for 1 GPa of pressure). On
the other hand, the weak interaction between the layers will result in much stronger ver-
tical compression (several percent for 1 GPa of pressure) since the material is very soft
in this direction. For small enough pressure, the compression (or, more generally, strain)
is proportional to pressure (or, more generally, to the stress), as expressed by the elastic
constants of the material. We have derived the elastic constants from a vast number of
density-functional theory (DFT) calculation for various structural deformations, all car-
ried out with the gradient-corrected PBE (Perdew-Burke-Ernzerhof) exchange-correlation
functional®’ with semi-empirical van der Waals corrections as proposed by Grimme et al.38.
Our results are: C11 =218 GPa, C15 = 50 GPa, C;3 =5 GPa, and C33 = 21 GPa, in close
agreement with available experimental data'?.

Concerning the response of optoelectronic excitations, it turns out that lateral com-
pression shifts the excitons towards higher energy (blue-shift), while perpendicular com-
pression shifts the excitons towards lower energy (red-shift). The latter effect is weaker
than that of lateral compression, but would dominate if lateral compression were excluded.
This might happen if a TMDC monolayer is solidly glued to an (incompressible) substrate,
such that applied pressure leads exclusively to perpendicular compression. The spectra in
Fig. 1 show the corresponding shifts of excitons, i.e. blue-shift to higher energies for hy-
drostatic, isotropic pressure including lateral compression (middle panel c), and red-shift
to lower energies for anisotropic, exclusively perpendicular compression without change
of the lateral lattice constant (right panel d).

The data shown in Fig. 1 can easily be interpreted in terms of geometric modifications.
The vertical compression (see panels b and d) reduces only the layer-to-layer distance d
and the thickness of the vacuum layer at a rate of about —0.10 A/GPa at low pressure,
gradually reducing to —0.03 A/GPa at a higher pressure of 10 GPa. As a consequence of
this layer-to-layer compression, the direct gap of the band structure shrinks from 2.53 eV
at zero pressure to 2.43 eV at 10 GPa, i.e., by (on average) —10 meV/GPa. Consequently,
all optical transitions are red-shifted upon increasing pressure by about this amount (see
Fig. 1 d).
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Figure 1. Left panels: schematic application of (a) isotropic (i.e., hydrostatic) pressure and (b) vertical uniaxial
stress on a bilayer of MoS2. Middle panel (c): response of BSE absorption spectra to pressure. The data show
the optical absorption of a MoS2 bilayer, for pressure from 0 GPa (bottom) to 10 GPa (top) in steps of 1 GPa.
‘When hydrostatic/isotropic pressure is applied, the characteristic excitons (A, IL=interlayer, and B) excitons shift
up in energy. Right panel (d): When stress is only applied perpendicular (e.g., because the bilayer is solidly fixed
to a substrate and does not move/relay laterally, cf. schematic panel (b)), the characteristic excitons (A, IL, and
B) excitons shift down in energy. All spectral data are calculated within many-body perturbation theory in the
LDA+GdW approximation. For details, see Ref. 12.

In contrast, in the calculations for hydrostatic pressure, we let the lateral lattice constant
a relax as well, at a rate of —7 mA/GPa. The effect of lateral (in-plane) deformation on
the direct band gap is well-known. While biaxial tensile strain leads to a red-shift, in-
plane compressive strain blue-shifts all optical excitations, also for MoSo monolayers. In
our case, the band gap increases by about 30 meV/GPa, which overcompensates the gap
reduction (—10 meV/GPa) of the simultaneous interlayer compression, such that in total
the band gap grows from 2.53 to 2.75 eV under hydrostatic compression to 10 GPa, i.e.,
by +22 meV/GPa on average. This causes the strong blue-shift of all optical excitations
upon hydrostatic pressure (Fig. 1 ¢). Note that the changes in the lateral lattice constant
a are much weaker than those in the plane-to-plane distance d by a factor of éd/da = 3,
but the band structure is more sensitive to lateral in-plane compression than to out-of-plane
compression by a factor of 10. Lateral stress will thus dominate, if permitted.

Corresponding experiments have been carried out in a diamond anvil cell with pres-
sure of up to 10 GPa. The data show a red-shift slope of —3 meV/GPa for the A and IL
(=inter-layer) excitons, which is in between our theoretical extrema of —10 meV/Gpa for
uniaxial compression and +22 meV/GPa for the hydrostatic case. We conclude that the
experimental reality lies in between our two extrema. The most plausible explanation is
that the pressure of the diamond anvil cell is not transferred completely to the MoS, sam-
ple; instead, the lowest monolayer tends to remain stuck to the substrate, and in total the
situation is closer to the one in Fig. 1 b. If we assume that the full truth is a partial lat-
eral slipping, the interpolation between our two theoretical extrema would allow to assume
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that the lateral pressure transfer succeeds to about 20 percent, i.e. the true geometry under
pressure is a mixture of 20 % of the hydrostastic case and 80 % of the uniaxial case'?.

4 Hexagonal Boron Nitride and Point Defects therein

Hexagonal boron nitride (hBN) is a van der Waals material with an optical gap of about
6 eV!3. The attention to point defects in this material has increased in the past decade
due to their potential use as room-temperature stable two-dimensional (2D) single-photon
emitters for quantum computing'#'6. Recently, progress has been made in the fabrication
of hBN quantum emitters with reproducible and controllable properties and their integra-
tion into quantum circuits'’”2°. The tunability of properties of quantum emitters, e.g., by
electric fields or by strain, is a desirable feature for quantum technological applications.
Conversely, this tunability contributes to the understanding of the atomic structure of the
defect, which still poses an unsolved problem due to the variety of properties of hBN emit-
ters. The observation of Stark shift with an electric field perpendicular to the layers of
hBN means that some defects may break the planar symmetry of the 2D material. Phonon
side bands or the influence of the emitter’s distance to flake boundaries are specific to the
atomic structure.

In experimental reality, defects in boron nitride occur both in naturally grown crystals
and in artificially synthesised samples. So far, a unique identification of the elemental com-
position and chemical nature of the defects is difficult, since their existence is often only
proved indirectly by the occurrence of corresponding optoelectronic features (in particular,
visible-spectrum luminescence at energies deep within the boron nitride band gap of 6 eV,
which is in the far ultraviolet). This indirect evidence and unknown character of the defect
poses, of course, an unsatisfactory situation, and detailed theoretical understanding might
significantly improve the situation.

In this work we investigate two aspects of point defects in hexagonal boron nitride
On the one hand, we evaluate their optoelectronic excitation energies within ab initio
MBPT. On the other hand, we investigate the change of the defect’s local geometry when
it is optically excited, and evaluate geometrical deformation, the related reorganisation en-
ergy, and resulting Stokes shift. This may then be used to judge whether a hypothetically
assumed point defect is realistic, i.e. whether it can be made responsible for optoelectronic
properties of defects in experimental reality. In measurements, some defects (in particular,
the candidates for single-photon generation) show optical excitation near 2 eV excitation
energy, and exhibit weak reorganisation energy and Stokes shift.

Tab. 1 summarises our findings for a number of various defects that we have investi-
gated?’?2. Cp and Cy refer to a substitutional carbon atom, which replaces a boron or
nitrogen atom, respectively. Vy refers to a nitrogen vacancy, i.e. a nitrogen atom which
is simply missing. Vnp refers to a double vacancy, in which two neighbouring atoms are
missing (one nitrogen and one boron). CpCy refers to two substitutional carbon atoms at
neighbouring positions (one instead of boron, and the other one instead of nitrogen). In
case of CgOy the carbon atom substitutes boron, and the oxygen atom substitutes a neigh-
bouring nitrogen. CpVy refers to a substitutional carbon atom instead of boron, while
simultaneously a neighbouring nitrogen atom is missing, constituting a vacancy. Among
these, the first three defects exhibit luminescence near 2 eV, which might indicate that they
could be the candidates found (but not clearly identified) in experiment. Among the more

21,22
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Defect | Absorption | Reorganisation Stokes
Energy [eV] Energy [eV] | Shift [eV]
Cgp 2.0 ~0 ~0
Cn 2.0 ~0 ~0
VN 2.2 ~0 ~0
VB 4.9
CsCn 43 0.1 0.2
CpOn 1.9 0.4 0.8
CsVn 1.8 0.9 1.8

Table 1. Excited-state data for various point defects in hexagonal boron nitride. Column 1: Chemical compo-
sition. Column 2: Vertical excitation energy (in eV) of the lowest dipole-allowed transition, with the geometry
being given by the ground-state equilibrium. Column 3: Mechanical reorganisation energy (in eV) from ground-
state equilibrium into the excited-state equilibrium, from geometry optimisation while being in the excited state.
Column 4: Stokes shift (in eV), as the energy difference between the vertical transition in the ground-state geom-
etry and the vertical transition in the excited-state geometry. For details, see Refs. 21,22.

complex double defects (Vxp, CsCn, CpOx, and CpVy) the first two shows excitation
at much too high energy, while the other two show very strong geometry reorganisation
in the excited state and concomitantly large Stokes shift between absorption and emission,
much higher than observed in experiment, which excludes them as being responsible for
the observed properties.

5 The Two-Dimensional Heterostructure WSe,-Crl;

Heterostructures of two-dimensional transition-metal dichalcogenides and ferromagnetic
substrates are important candidates for the development of viable new spin- or valleytronic
devices. A particular example is the interface between the TMDC tungsten sulfied (WSe>)
and the two-dimensional ferromagnet chromium iodide (CrI3)*>. Our main interest is the
A exciton of the WSes monolayer, which is fully analogous to the A exciton of MoS; as
shown in Fig. 1 (at 2.05 eV at zero pressure; in case of a WSe, monolayer we find it at
1.6 eV). For simplicity we have assumed in the current study that the two materials can be
stacked on top of each other in a 1x 1 unit cell, neglecting lattice mismatch and rotational
misalignment. We have restricted the study to just one configuration in which the selenium
and iodine anions form a hollow-site registry, such that no two atoms are on top of each
other. For this specific situation we find a significant influence of the ferromagnetic spin
polarisation of Crl3 on the (opto-)electronic structure of WSe,. Crls has occupied majority
spin electrons (1) that are several eV below their minority-spin counterpart orbitals. In this
majority-spin channel this leads to the occurrence of weakly dispersing Crls empty states
(indicated as thick green bars in Fig. 2) slightly below the WSe, lowest conduction bands.
The interesting physics of WSey occurs at the K~ and K point of its Brillouin zone, at
which the relevant bands are completely spin polarised. At K—, where we observe in the
highest valence band the same spin in WSe; as the majority spin of the Crls ferromagnet,
the spins show exchange effects across the interface due to orbital overlap between the
anions (S and I) and corresponding hybridisation. At KT, on the other hand, the spin
of the highest valence band of WSes is the opposite of the Crl; majority spin, and does
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Figure 2. Schematic illustration of the dispersive valence and conduction bands of the WSe> monolayer and
the nearly flat majority-spin conduction states of the crl3 monolayer in direct contact of the two monolayers.
All majority-spin (minority-spin) states are illustrated as green (red). Near the two independent K points of the
Brioullin zone (K and K~) the WSe bands are fully spin polarised, with alternating sequence. The sequence
at K is the opposite of the sequence at K~. Due to magnetic proximity and the orbital overlap between S and I
atoms, the spin-majority states of WSes (green) are shifted in energy, while the spin-minority states (red) remain
unaffected. For details, see Ref. 32.

not interact, such that no exchange is observed. In short, all WSe,; majority-spin bands
(shown in green in Fig. 2) are shifted in energy due to the magnetic proximity of Crls,
while the WSe, minority-spin bands (shown in red in Fig. 2) remain unaffected. This leads
to energetic splitting between the WSe, valence bands of 1.6 meV between K~ and K.
This shift translates to an energetic splitting of 3.6 meV between the intravalley excitons
A~ and AT at K~ and K™. Since these two excitons can be measured by either positively
or negatively oriented circularly polarised light, such energy splitting is directly observable
in experiment.

Furthermore, we have found that the spin polarisation significantly changes the
quantum-mechanical composition of the excitons, as well, in addition to the shifts in en-
ergy. At the K* points, the TMDC exciton (A™) is in the spin channel corresponding to
the magnet’s minority spin ({, indicated as red in Fig. 2), preventing hybridisation. This
exciton remains an intralayer exciton as known from a freestanding monolayer. At the
K~ point, the TMDC exciton (A7) is in the spin channel corresponding to the magnet’s
majority spin (T, indicated as green in Fig. 2). In this spin channel the magnet provides
empty bands in the same energy range as the semiconductor conduction band. This pro-
vides charge-transfer configurations between semiconductor and magnet. They hybridise
with the semiconductor intralayer excitations, which therefore acquires partial interlayer
character. In the spectra this leads to significantly reduced dipole strength of one of the
Zeeman-split peaks, as a clear signature of quantum-mechanical hybridisation across the
van der Waals gap between the two systems. Such energetic splitting and difference in
intensity has been observed experimentally, supporting our concept that the behaviour of
the excitons at K™ is basically different from those at K™.

In addition, the different composition of the excitons at K~ and K™ (with and without
contribution of charge-transfer configurations across the interface) also leads to different
behaviour in a magnetic fields. In such a field, the excitons observe Zeeman shifts, i.e. a
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shift in excitation energy proportional to the field strength. The proportionality is expressed
in terms of a so-called g factor (gyromagnetic ratio). In our calculations we find that the
g factors of the two excitons (at K~ and K1) differ by about 10 %, which should also be
detectable in experiment.

6 Concluding Remarks

In this paper we have discussed excitonic states in two-dimensional semiconductors and
their change when the system in question is more complex than just a simple monolayer or
bulk material with perfectly ordered periodic crystal structure. Defects, mechanical defor-
mation, and magnetic proximity effects significantly modify the (opto)electronic response,
which can in turn be used to get detailed insight into the material’s microscopic internal
structure from optical experiment. In the three examples discussed here, (i) the energetic
shifts of excitons of MoSs under pressure depend on the question if MoSs keep sticking
to its substrate or not, (ii) the energy and line shape of defect states in hBN can be used
to identify or rule out microscopic models of the defect, and (iii) proximity effects of a
ferromagnet in direct contact splits the A™ and A~ exciton of a WSe, monolayer, which
are degenerate in the bare monolayer by itself. All these examples illustrate the crucial role
of the structure and geometry of low-dimensional semiconductors for their optoelectronic
properties.
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The structure, copper transport, and mechanism of action of the plant receptor ETR1 have long
remained elusive, hampering the understanding of how ethylene perception is transformed into
a downstream signal. We used ab initio modelling to generate the first structural model of
the transmembrane sensor domain of ETR1. Through protein-protein docking and all-atom
molecular dynamics simulations, we investigate the interaction between copper chaperones and
ETRI1. Additionally, all-atom molecular dynamics simulations were employed to explore the
multimerisation of ETR1 and the interactions with the downstream target CTR1. This research
project in combination with experimental validation of our data represents the most compre-
hensive analysis of ETRI1 to date, providing new insights into its functional mechanisms.

1 Introduction

The small molecule ethylene is a gaseous plant hormone that affects various developmental
processes in plants, such as seed germination, senescence, and fruit ripening. Ethylene is
perceived by ethylene receptors located at the endoplasmatic reticulum membrane. In Ara-
bidopsis thaliana, the model organism predominantly used to study ethylene-signalling,
five receptor isoforms have been identified and associated with ethylene response, with
ETR1 (Ethylene Response 1) being the best studied. ETRI1 has three transmembrane
a-helices at the N-terminus, forming the transmembrane sensor domain (TMD). The TMD
also contains an essential cofactor, a Cu(I) ion, ensuring high affinity and specificity for
binding of the chemically simple ethylene molecule. The cytoplasmic part of the receptor
contains a GAF domain (named after its occurrence in cGMP-specific phosphodiesterases,
adenylyl cyclases, and FhlA), followed by a dimerisation histidine-phosphotransfer do-
main (DHp), a catalytic ATP-binding domain (CD), and a receiver domain (RD). Func-
tional ethylene receptors are homodimers, and higher-order oligomers have been described.
Crystal structures of domains and structural homologs of the cytosolic domains of ETR1
are available, but there is no experimentally determined structural model of the TMD!.
The molecular components involved in the transport of Cu(I) from the cellular plasma
membrane to the ER membrane-bound ETR1 have been identified. They include the sol-
uble copper chaperones ATX1 and CCH and the copper transporter RAN1. Their metal-
binding domains share structural similarity?>. However, a comprehensive understanding of
the interactions between the copper chaperones and ETR1 at the atomistic level is lacking.
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Figure 1. Overview of the project etrl. The first model of the TMD was created using ab initio modelling and
experimentally validated (/). Further, the copper-binding site was characterised and possible binding sites of
ethylene or antagonists were identified (/7). Due to its special structural properties, the dimerisation behaviour
of the copper chaperone CCH was investigated (/). Investigations are currently carried out to determine the
atomic interactions of the chaperones and RAN1 with ETR1 (IV), as well as the multimerisation behaviour (V')
and the interactions with the downstream target CTR1( V' I). TMD: Transmembrane sensor domain, GAF: GAF
domain, DHp: Dimerisation and histidine phosphotransfer domain, CD: Catalytic domain, RD: Receiver domain.

We thus aimed to elucidate the interactions established between the different components
of the Cu(I) transport system and how Cu(I) is delivered to ETR1.

In the absence of ethylene, ETR1 functions as a negative regulator of the ethylene
response. Once the plant biosynthesises ethylene, it diffuses throughout the plant or to
neighbouring plants and coordinates with the Cu(I) cofactor. The Cu(l) ion is coordinated
in ETR1 by Cys65 and His69 located in helix 2 of the TMD. Receptors bound to ethylene
are thought to undergo conformational changes and, therefore, fail to activate downstream
targets such as the serine/threonine-protein kinase CTR13, which finally triggers the ethy-
lene response of the plant.

In our project, we generated the first structural model of the TMD of ETRI and an
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ETR1_TMD/Cu(I) dimer model by integrating ab initio structure prediction and coevolu-
tionary information (Fig. 1 I). The obtained model was refined and independently vali-
dated by tryptophan scanning mutagenesis* as well as EPR spectroscopy’. Based on this
model, we characterised the copper binding site in ETR1° and identified potential binding
sites of ethylene and antagonists (Fig. 1 I7). To shed light on how the Cu(I) cofactor is
delivered to ETR1, we are investigating the dimerisation behaviour of CCH (Fig. 1 I11),
as well as the mechanism of Cu(I) transport from the chaperones to ETR1 (Fig. 1 IV).
Finally, we are studying the multimerisation of ETR1 (Fig. 1 V) and its interaction with
the downstream target CTR1 (Fig. 1 V' I). This study is, to our knowledge, the most com-
prehensive analysis of ETR1, and it is expected to offer an in-depth understanding of its
cellular functions.

2 Results

2.1 Ab Initio Modelling and Experimental Validation of the First Structural Model
of the Transmembrane Sensor Domain in ETR1

The TMD of ETR1 from Arabidopsis thaliana was modelled ab initio before AlphaFold2
was available due to the lack of suitable homologous templates. Residues 1-117 were
selected based on transmembrane topology, and secondary structure predictions. Using
the RosettaMembrane membrane_abinitio2 protocol, 100,000 models were generated and
filtered based on contact predictions and z-scores, yielding 5,217 structures. After clus-
tering, the centroid structure of the largest cluster was selected and further refined, with
side-chain configurations optimised through solvent accessibility analysis. In parallel, the
TMD’s Cu(]) stoichiometry was determined in Prof. Groth’s laboratory at Heinrich Heine
University Diisseldorf. Using the generated ETR1_TMD model and the determined Cu(I)
stoichiometry, a dimeric model was generated using HADDOCK, coevolutionary signals,
knowledge about lipophilicity regions, and characteristics of the copper binding site. The
final dimer model was refined through molecular dynamics simulations and validated by
alanine and tryptophan mutagenesis experiments resulting in the first structural model of
ETR1_TMD* (Fig. 2A).

Soon after, AlphaFold2” predicted an alternative structural model of the ETR1 TMD,
proposing a different helix arrangement, and hence, a different dimer interface and copper-
binding site (UniProt: P49333) (Fig. 2B). To scrutinise which model better represents ex-
perimental findings, we combined site-directed spin labelling with electron paramagnetic
resonance spectroscopy performed in collaboration with Prof. Drescher’s laboratory at the
University of Konstanz and obtained distance restraints for liposome-reconstituted ETR1
TMD on the orientation and arrangement of the transmembrane helices’.

The experimental distance distributions were compared with distance distributions ob-
tained by MMM, a programme for visualisation, inspection, generation, and improvement
of models of proteins and protein assemblies based on restraints from multiple experimen-
tal techniques, using either TMD model. The experimental distance restraints are alto-
gether in better agreement with the ab initio structural model* than with the AlphaFold2’
prediction (Fig. 2C-E)’. However, since neither model is fully consistent with the EPR
distances, work has always been continued with both models.
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Figure 2. A: Representation of the ab initio structural model of the ETR1 TMD. B: Representation of the Al-
phaFold2 structural model of the ETR1 TMD. C, D: Experimental distance distributions obtained by DEER
measurements (blue) with validation (grey area). Simulated distance distributions based on the ab initio model
(2019, red) and the one from AlphaFold2 (2021, red dotted) are indicated. C: Intrahelical distances. D: Interheli-
cal distances between helix 1 and helix 3. E: Schematic representation of the ETR1 TMD and spin-labelled sites
used for DEER distance determinations. Panel A is taken from Ref. 4 and licensed under a Creative Commons
Attribution 4.0 International License. Panels C, D and E were taken from Ref. 5 with permission from the Royal
Society of Chemistry. Licensed under a Creative Commons Attribution 3.0 Unported Licence.

2.2 EXAFS and QM/MM Umbrella Sampling Simulation of the Copper Binding
Site in ETR1

Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, performed in collab-
oration with Dr. Cutsail III and Prof. DeBeer at the MPI Miilheim, and with Professor
Groth at Heinrich Heine University Diisseldorf, along with quantum mechanics/molecular
mechanics umbrella sampling (QM/MM US) simulations, were used to further characterise
the Cu(I) binding site in ETR1. The EXAFS results provided detailed insights into the lo-
cal coordination environment of the copper ion. QM/MM US simulations completed these
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findings by modelling the copper complex at the atomic level. The QM/MM US results
agree with the EXAFS fit distance changes upon ethylene binding, particularly in the in-
crease of the distance between His69 and Cu(I), and yield binding energetics comparable
with experimental dissociation constants. Ethylene binding also results in changes to the
C=C bond distance and dihedral angle of ethylene, consistent with hybridisation changes
predicted by the Dewar-Chatt-Duncanson model. The observed changes in the copper co-
ordination environment might be the triggering signal for the transmission of the ethylene

response’.

2.3 Structural Modelling of and Molecular Mechanics Generalised Born Surface
Area (MM-GBSA) Calculations on the Copper Chaperone CCH Dimer

The copper chaperone CCH is one of the three chaperones characterised to be involved
in Cu(I) transport to ETR1. While all share a common characteristic copper binding fold,
CCH additionally features a C-terminal end, whose structure remains unresolved. Both
TopProperty and DISOPRED suggest that this C-terminal region is intrinsically disordered.
This hypothesis is further supported by NMR data from collaborators®. However, this
C-terminal end may play a role in the dimerisation of CCH. To investigate the structure
and dimerisation properties, ColabFold 1.5.2 was used to predict both the monomeric and
dimeric structures of CCH. Based on the obtained CCH dimer, we conducted molecular
dynamics simulations, computed on the JUWELS booster.

To pinpoint the amino acids critical for the stability of CCH-dimers, we conducted
molecular mechanics/generalised Born surface area (MM-GBSA) calculations, including
a per-residue decomposition of the effective energy. Our results indicate that residues of
the dimer interface, as well as residues of the C-terminal end (T116, K117, and V121), sig-
nificantly contribute to the binding energy (Fig. 3). Additionally, the Groth lab performed
melting temperature measurements suggesting tighter monomer interactions in CCH com-
pared to CCH lacking the C-terminal end. These results suggest that the C-terminal ex-
tension indirectly influences dimerisation and may play a role in copper transport and pro-
tection, highlighting distinct functional roles for CCH compared to its homolog ATX18.
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Figure 3. Identification of amino acids in the CCH-dimer that are crucial for dimer stability. A: Per residue
decomposition of the binding effective energy of the Cu(I)-loaded CCH-dimer. B: Hot spot residues localised on
the CCH-dimer. This figure was taken, in parts, from Ref. 8 and licensed under a Creative Commons Attribution
4.0 International License.
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2.4 Mechanism of Cu(I) Transport from the Cell Membrane to ETR1,
Multimerisation of ETR1, and its Interaction with the Downstream Target
CTR1

To analyse how Cu(l) is transferred from the chaperones to the final target ETR1, we per-
formed coevolution-informed protein-protein docking of ATX1, CCH, or RAN1 to ETR1.
Possible interaction sites between ATX1, CCH, and RAN1 with ETR1 were predicted us-
ing GLINTER, a deep-learning method for predicting interaction sites in protein-protein
complexes. The predicted protein-protein interactions were further used as ambiguous re-
straints to guide protein-protein docking with HADDOCK?2.4. Currently, MD simulations
of these complexes are performed on the JUWELS booster module. The obtained trajec-
tories will be used to identify so-called ‘hot-spot’ residues, that significantly contribute to
complex stability (Fig. 1 IV). Subsequently, these hot spots will be verified experimentally
by mutagenesis studies to better understand the nature of complex formation and copper
transfer dynamics. This research has the potential to provide new insights into the targeted
regulation of ETR1 signalling.

Furthermore, the multimerisation behaviour of ETR1 (Fig. 1 V') and interaction with
the downstream target CTR1 (Fig. 1 V1) are investigated on an atomistic level. We are
currently performing unbiased MD simulations of the corresponding protein-protein com-
plexes predicted with ColabFold 1.5.2. Therefore, fifty independent MD simulation repli-
cas of 500 ns are performed on the JUWELS booster module. To identify ‘hot-spot’
residues, the obtained MD trajectories will be used to perform MM-GBSA calculations
in combination with a decomposition of the effective energy of dimerisation at the single-
residue level. Insights into the interaction of ETR1 with downstream targets and other
receptors will enhance our understanding of ETR1’s function in the broader cellular con-
text, potentially offering new starting points for targeted regulation of ETR1 signalling.

3 Conclusion

Our research presented the first structural model of the transmembrane sensor domain
(TMD) in ETRI, validated through mutagenesis studies. Comparison with AlphaFold2
predictions revealed that the ab initio model aligns more accurately with experimental data.
We also confirmed that ethylene binds to the copper cofactor within the TMD, a finding
further supported by spectroscopic approaches. Ongoing work is focused on investigating
copper delivery to ETR1 and its related molecular components, the receptor’s multimeri-
sation behaviour, and its interactions with downstream targets such as CTR1. This study
offers the most detailed structural analysis of ETR1 to date, advancing our understanding
of the signalling mechanism and providing experimentally testable hypotheses on the bio-
logical functions. In the long term, these insights should contribute to ensure food security,
as ETRI1 plays a key role in post-harvest spoilage.
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Sensing of the environment and information processing, combined with motility, are funda-
mental characteristics of life, from the largest animals to the smallest single-cell organisms.
Adaptive self-steering gives rise to fascinating phenomena, ranging from large-scale collective
behaviours denoted as swarming, as observed in mammalian herds, flocks of birds, schools
of fish, or even cell layers and tissues, to the formation of bacterial biofilms. We study the
collective behaviour of cognitive self-steering microswimmers using large-scale hydrodynam-
ics simulations, applying a particle-based mesoscale hydrodynamics approach in combination
with the squirmer model (prescribed surface flows on a spherical body) for microswimmers.
The self-steering is governed by a combination of local alignment of the propulsion directions,
and the joining of other swimmers due to (non-reciprocal) directional sensing. Our results show
several types of self-organisation, like active turbulence, the formation of swirls and jets, and
the emergence of elongated swarms, depending on the maneuverability of the microswimmer
and the propulsion type (puller or pusher).

1 Introduction

The capability of motile organisms to sense the environment, to process information, and
adapt their behaviour is a fundamental aspect of life. An important result of this ability is
the collective dynamics of many identical individuals'. Examples range from macroscopic
to microscopic length scales, from flocks of birds, schools of fish, mammalian herds, and
groups of people, to swarms of insects, bacterial biofilms, and cellular aggregates. The
purposes of these collective movements include the search for food, protection against
predators, and enhanced motility. The mechanisms of collective motion deduced from the
behaviour of natural systems can be employed in the design and construction of artificial
systems, such as microscopic robots (“microbots”)?.

Many biological motile organisms live in aqueous environments, which implies that the
hydrodynamics of the medium strongly affects or even dominates the collective dynamics?.
It is of course also fundamental for the self-propulsion and navigation by swimming, as
well as the hydrodynamic interactions between swimmers. The elucidation of the adaptive
behaviour of microorganisms and microbots requires a suitable model for hydrodynami-
cally self-steering cognitive microswimmers that can adjust their movement according to
gathered information.

From a simulation point of view, studies of wet systems are much more computing-time
intensive compared to dry systems*, as many more degrees of freedom have to be taken into
account, and also because hydrodynamic interactions are long range and decaying with a
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Figure 1. Left: Non-axisymmetric surface flows for pullers (upper panel) and pushers (lower panel), which allow
microswimmers to self-steer, i.e., turn to a new direction of motion as indicated by blue arrows. Right: Emergent
collective dynamics of self-steering microswimmers (pullers), from a simulation with 884,736 squirmers (with
zoom-in — lower right panel), reminiscent to a fish school (upper right panel).

power law as a function of distance. In recent decades, efficient hydrodynamic simulation
techniques have been developed for systems with characteristic mesoscopic length scales
(tens of nanometres to hundreds of micrometers), such as the Lattice Boltzmann method
(LBM), the Dissipative-Particle Dynamics (DPD), and the Multiparticle Collision Dynam-
ics (MPC) approach’. In our simulations, we employ a newly developed code for MPC®,
which can run on an arbitrary number of GPUs in parallel. This facilitates simulations of
very large wet systems of up to one million self-propelled particles.

By using the high-performance computing resources on JUWELS’, we investigate the
collective behaviour of intelligent active particles in a fluid environment. An illustration
of the essential features of this study is depicted in Fig. 1, which indicates hydrodynamic
self-steering for pullers and pushers, the self-organisation in large ensembles of pullers,
and — as a real-world example — the structure formation in schools of fish.

2 Model

2.1 Self-Propulsion and Self-Steering

Microswimmers are modelled by the squirmer model, where non-zero surface slip velocity
renders a squirmer self-propelled and self-steering. For a spherical body shape with the
radius Ry, and the azimuthal and polar angles ¢ and 6, we consider the surface flow field®

ug = gvo sin (1 + S cosf) — R%(C’H cos ¢ — C11 sin @), €))
sq
0 5
Uy = %(Cu cos ¢ + Cr1sin @), ()
sq
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where the coefficients of the axisymmetric components vy and S (with 5 < 0 for push-
ers, 5 > 0 for pullers) denote the swim speed and the active stress, respectively. The
coefficients of the non-axisymmetric components®,

Cll = COqu(e X eaim) *€gx, éll = C()qu(e X eaim) * €y, (3)

allow for self-steering® '%, where reorientation towards the aiming direction ey, is given
by

e =Cpe X (eum X €). 4)

Here, Cj sets the maximum angular frequency of self-steering, corresponding to a limited
maneuverability. The surface flow fields and the resultant self-steering are illustrated in

Fig. 1 (left panel). Two dimensionless parameters, the Péclet number Pe and the maneu-
verability €2, where

Vg Co

Pe=—"_ =—-2
©= R Dr’ D 5)

are introduced to characterise the system. Here, Dy is the (passive) rotational diffusion
coefficient of a spherical particle.

2.2 Alignment and Directional Sensing
Following our previous work on dry systems!!, we consider two types of sensing for self-
steering, see Fig. 2(a) for illustration of their respective sensing ranges. First, our intelli-

gent squirmers can autonomously align with the average self-propulsion direction of neigh-
bouring squirmers (Fig. 2(c)), in the spirit of the (dry) Vicsek model'> '3, where alignment

(a) o 000 ©

<
¢
-

Figure 2. (a) Sensing ranges of a microswimmer (petrol/black circle) with propulsion direction e for alignment
(green circular area with radius R, see Eq. 6) and visual perception (horizontally symmetric magenta cone with
radius R, and central angle 0, see Eq. 7). Illustration of conformations, where in (b) visual sensing and in
(c) alignment dominates the resultant cognitive signal given in Eq. 8. The corresponding aiming vectors €,im

and reorientation of the propulsion directions with maneuverability §2 are depicted by thick black and thin blue
arrows, respectively.
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between particles is modelled via the signal strength

s?:% Z e;. 6)

@ jePA

Here, P A indicates the polar-alignment sphere with radius R,, and IV, ; is the number of
neighbours in PA of the i-th microswimmer. In order to facilitate swarm cohesion, it is
also necessary for individuals to join larger groups. This is achieved by directional sensing
— such as visual perception'* —, inspired by the behavioural zonal model'>, mediated via a
cognitive signal

1 i,
sV = — Z e*Tij/Rori’ 7

Noi e "ij

where V' C'is a ‘vision cone’ with vision range R, = 4R and vision angle 6 around the

self-propulsion direction e;, and N, ; the number of microswimmers in the vision cone of

the 7-th microswimmer (Fig. 2(b)). It is important to note that both interactions are non-

additive, due to the normalisation by the number of particles in the interaction range'®.
Combining these two signals with the ratio { between alignment and directional ma-

neuverability, we employ an overall cognitive signal strength

€aim,i — S? + <S$7 (8)

which determines the surface slip velocity of self-steering squirmers. It is important to
note that visual perception for vision angle § < 7 is non-reciprocal, as one particle may
be within the vision cone of another, but not vice versa. Also, non-additivity contributes to
the non-reciprocality of the interactions.

2.3 Implementation and Parameters

The fluid dynamics is modelled by the multiparticle collision dynamics (MPC) approach'”,
where the interactions and momentum exchange between fluid particles occur locally in
collision cells, making the algorithm highly parallelisable’. Our plugin-based GPU/CPU

102 2565 = 64° -5 128% o 256°x128
F 512% o E
1024g 102 b M |
2 2048 N LR EY B i
& &
é é MH‘Q_QW}
S 10 E = 1017'""“"“"""'-*‘—0
l/ ™
Ll Ll Ll L TR | Ll Ll L
10° 10" 102 10° 10* 10° 10’ 102 10° 10*
GPU count GPU count

Figure 3. (a) Strong and (b) weak scaling of the MPC code for the indicated sizes (L/a)? of periodic cubic
systems. The number of fluid particles per collision cell is (N.) = 50. Adapted from Westphal et al..
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code, which has been tested for up to 1.5 trillion MPC fluid particles®, shows good strong
and weak scaling behaviour with speedup up to a factor of ten, as shown in Fig. 3.

In simulations, we use the MPC fluid density (particles per collision cell) (V) = 20,
the collision time h = 0.02a+/m/(kpT), with side length @ of collision cells, and the
rotation angle o = 130°, which yields the fluid viscosity n = 42.6y/mkgT /a®. For
squirmers, we consider the radius Ryq = 3a, the swimming speed vy = 0.047+/kgT/m
— resulting in the Péclet number Pe = 128 —, and the sensing ranges R, = 4Ry and
Ry = 2Ry,

3 Swarming of Aligning Microswimmers

We first provide a brief overview of the emergent dynamics of aligning squirmers, i.e.,
¢ = 0. We refer to Goh et al.'® for more details.

Pushers. Aligning pushers feature active turbulence for a maneuverability {2 > 512, best
characterised by the scaling behaviour in the kinetic energy spectrum, which displays a
power-law decay E (k) ~ k~ as a function of wave number k. The exponents « extracted
from our simulations show a non-universal behaviour in the range 2.8 < o < 4.0, and
increase as the maneuverability increases. The typical size of vortices as well as the peak
kinetic energy also increase with increasing maneuverability. A typical fluid profile with
pronounced vortical structures is presented in Fig. 4(a). Squirmers are homogeneously
distributed across the system, while their propulsion directions are predominantly aligned
with the local flow direction of the ambient fluid. Examination of the mean-square dis-
placement (Fig. 4(c)), together with the peak value of the kinetic energy spectrum, reveals
that the collective advection of microswimmers is much faster than their intrinsic swim
speed, which reflects strong hydrodynamic effects, and implies that the generated fluid
flows are faster than the self-propulsion speed.

Pullers. A suspension of aligning pullers exhibits an enhanced clustering tendency (right
panel in Fig. 1) due to hydrodynamic interactions, possibly with an additional peak in the
local density distribution at higher density, pjoc ~ 0.5. Still, the speed of such collec-
tive advection is significantly faster than the self-propulsion speed. Remarkably, strong
alignment occurs for 2 > 2048 and consequently polar ordering within a cluster generates
a fluid jet, as the pullers collectively pull the fluid in front, which in turn gives rise to a
vortex-ring structure in the fluid as shown in Fig. 4(b). We also note that the swimming
direction of pullers (v/|v|) does not necessarily coincide with that of the orientation (e),
as demonstrated by negative values of the inner product between them (Fig. 4(b)-1V). The
corresponding dynamics is again chaotic, exhibiting a power-law decay in the energy spec-
trum with a universal exponent of & = 11/3. However, the distribution of the squirmer
velocity deviates from a Gaussian, which is typically observed in active turbulence'®, with
fat tails at higher velocities, see Fig. 4(d). This indicates that the collective dynamics of
self-steering aligning pullers is a new type of self-organisation.

4 Directional Sensing

The formation of motile swarms, like bird flocks, fish schools, and animal herds, where the
whole ensemble displays some coherent motion (in contrast to some insects swarms, which
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Figure 4. (a) Fluid velocity field (white streamlines) and the magnitude of the vorticity (heat map) for active
turbulence of pushers. (b) Fluid streamlines (thick lines), fluid jet (yellow surface in III), and vortex-ring (torus)
emerging in a system of aligning pullers (bullets). (c) Mean-square displacement (A7) = ((r;(t + At) —
7;(t))2) of pushers for various 2. The black-dashed line represents the ballistic dynamics of (Ar)? = vZ(At)2.
(d) Distribution of the Cartesian squirmer velocity component 7, averaged over the three coordinate directions.
Black solid lines indicate Gaussian distributions. Adapted from Goh et al.'$.

can be quite stationary), requires the simultaneous presence of alignment, directional sens-
ing, and “joining-the-group” behaviour. Thus, we study the model described in Sec. 2.2,
with vision-alignment ratio ¢ > 0 in Eq. 8. Figs. 5 and 6 show snapshots of the dynam-
ics for two different volume fractions. For the lower volume fraction, Fig. 5 also presents
directional auto-correlation functions, which provide information about the persistence of
motion of a swarm. For the higher volume fraction, Fig. 6 displays local density distribu-
tions of squirmers extracted from a Voronoi construction and the kinetic energy spectra in
Fourier space for various vision-alignment ratios (.

Pushers. Directional sensing strongly affects conformations of microswimmers at low
squirmer volume fractions, as it gives rise to elongated, worm-like swarms, because mi-
croswimmers naturally follow other microswimmers in front. Formation of such elon-
gated clusters is well captured in the simulations at low squirmer density, as shown in
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Figure 5. Self-organisation of an ensemble of pushers at low squirmer volume fraction 0.0067, with wide vi-
sion angle § = . (a) Simulation snapshot for ¢ = 1.0. (b) Directional autocorrelation function C(At) =
(ei(t) - e;(t + At)) for various values of ¢ as indicated. The other simulation parameters are the Péclet number
Pe = 128, the maneuverability 2 = 8192, and the system size L/a = 512.

Fig. 5(a). The directional auto-correlation function C'(At), displayed in Fig. 5(b), decays
quite rapidly, with a typical time scale of only about 0.2/ Dg. This is partially due to the
low, but not ultra-low, volume fraction, where local swarms strongly interact and often
collide, see Fig. 5(a). Also, clusters are significantly bent and twisted due to hydrody-
namic interactions between pushers, in contrast to dry systems!!. This implies that C'(At)
decays faster at ( = 1 than for weaker directional sensing, where alignment dominates
the dynamics and the formation of worm-like swarms is not noticeable. We also note that
transient torus-like structures with rotational motion emerge, depending on the parameters.
Such circulating behaviour is often observed in fish schools, compare Fig. 1, but also dry
systems, such as reindeer herds and fire ant groups.

For higher squirmer volume fractions, pushers again feature active turbulence, as for
¢ = 0. However, as the strength of directional sensing increases, squirmers tend to form
aggregates (see snapshot in Fig. 6(a)), particularly for ¢ > 1.0, as demonstrated by the up-
ward shift in the local density distribution at high densities (Fig. 6(c)). In the corresponding
energy spectra, Fig. 6(¢), the peak values of the kinetic energy |E(k)| are reduced as ¢ in-
creases (1 < ¢ < 2), but the scaling exponents are not altered. This implies that the impact
of directional sensing on the dynamics is mainly a slow-down of advection. For the largest
investigated value ¢ = 4.0, even a new density peak appears at pjo. ~ 0.5, which indicates
a pronounced clustering tendency. In this case, the corresponding scaling exponent devi-
ates significantly from those for smaller (. Moreover, the maximum energy is substantially
reduced. Still, the scaling regime in the energy spectrum is broad, suggesting that the dy-
namics is chaotic. However, more careful simulations with higher MPC fluid density seem
necessary to rule out potential artifacts due to fluid compressibility?’, which may be the
origin of the third peak at pj,. = 0.58 in Fig. 6(c).

Pullers. Pullers exhibit a strong clustering tendency for €2 > 128, regardless of (. Surpris-

ingly, however, the effect of additional directional sensing turns out to be non-monotonic.
For large ratios of ( > 2, the height of the second peak in the local density distribution
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Figure 6. Self-organised structures in systems of pushers (a,c,e) and pullers (b,d,f) with alignment and visual
perception for various vision-alignment ratios ¢. (a,b) Snapshots of squirmers for { = 2 and the squirmer volume
fraction 0.054, (c,d) local density distribution, and (e,f) fluid energy spectrum. The vision angle is § = /2 for
pushers and 7 /12 for pullers. In both cases, Pe = 128, Q = 2048, and L/a = 512.

is higher than that at { = 0, as shown in Fig. 6(d), which agrees with the expectation
that directional sensing will result in a cohesive behaviour between microswimmers. In
contrast, the height of the second peak for ¢ < 1.0 is slightly lower than that for ¢ = 0, in-
dicating that a rearrangement of pullers due to directional sensing weakens hydrodynamic
attraction, which may suppress aggregate formation, though weakly. In the regime ¢ < 1,
the energy spectrum shows rather universal behaviour, as shown in Fig. 6(f). When a pro-
nounced second peak develops in the local density distribution for { > 2, a pronounced
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shift in the peak as well as a significant shrinkage of the scaling regime in the energy spec-
trum are also observed. This indicates that the resultant dynamics may no longer be chaotic
for ( = 4, but instead rather stable clusters are forming. Note that fluid-compressibility
effects are usually more pronounced for pullers than for pushers.

The weak dependence of the puller self-organisation on ¢ at higher volume fractions
can be understood from the increased crowding in the vision cone. When a microswimmer
senses a nearly homogeneous density distribution in the vision cone, then visual informa-
tion no longer provides a clue for selecting the direction of self-propulsion.

5 Concluding Remarks

We have demonstrated that alignment and visual sensing may lead to fascinating collective
behaviours of intelligent active particles in a hydrodynamic environment, confirming the
rich interplay between cognitive sensing, self-propulsion, self-steering, and hydrodynamic
interactions. The observed self-organisation and dynamical behaviour includes the emer-
gence of clustering, formation of jets, swirls, and vortices, as well as generation of fast
fluid flows. The possibility of performing large-scale simulations with massively parallel,
GPU-based implementations on supercomputers like JUWELS are essential for unravel-
ling self-organisation across a multitude of length scales. It is important to realise that the
forms of sensing and cognitive self-steering are based on rather simple rules so far. This
is necessary to gain an understanding of basic mechanisms. However, biological systems
and potentially microrobotic systems can be much more complex. It will thus be very
interesting to study more complex cognitive systems in the future.
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Understanding exotic quantum phases of matter remains a major goal of condensed matter
physics. Here we address this challenge by simulating superfluids using the recently developed
Fermionic neural network (FermiNet) approach ? and the variational Monte Carlo algorithm.
We study a paradigmatic strongly-correlated quantum system, the unitary Fermi gas, which
has been known to possess a superfluid ground state but is difficult to describe quantitatively.
We find limitations of the original FermiNet Ansatz in studying superfluidity and propose an
improved Ansatz based on the idea of an antisymmetric geminal power singlet (AGPs) wave
function. The results obtained using our new Ansatz are consistent with experiment and more
accurate than previous benchmarks obtained using state-of-the-art fixed-node diffusion Monte
Carlo simulations. We prove mathematically that the new Ansatz is a strict generalisation of
the original FermiNet architecture, despite the use of fewer parameters. Our approach shares
several advantages with the original FermiNet: the use of a neural network removes the need
for an underlying basis set; and the flexibility of the network yields extremely accurate results
within a variational quantum Monte Carlo framework that provides access to unbiased estimates
of arbitrary ground-state expectation values. We discuss how the method can be extended to
study other superfluids.

1 Introduction

Solving the many-body Schrodinger equation analytically is intractably difficult for sys-
tems of more than a few particles, although mean-field-like (Hartree-Fock and density
functional) approaches, which treat particles as independent entities by averaging over
the interactions between them, can often provide sufficient physical insights and qualita-
tive results. However, in strongly correlated quantum systems, where particle interactions
dominate, mean-field descriptions are often insufficient and more sophisticated numeri-
cal methods are needed to obtain qualitatively correct and quantitatively accurate results.
Quantum Monte Carlo (QMC) methods', which use Monte Carlo integration to determine
the properties of quantum many-body systems, are among the leading tools for studying
strongly correlated quantum systems beyond the mean-field level. Despite the success of
QMC methods, the accuracy of the results is often limited by the quality of the trial wave
function, which is used to approximate the ground state wave function of the system.

4D, Pfau et al., doi:10.1103/PhysRevResearch.2.033429, Phys. Rev. Res. 2, 033429 (2020).
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Recent years have seen the introduction of a new class of variational wave functions,
known as neural wave functions or neural network quantum states, which utilise neural
networks to approximate the ground state and sometimes also low-lying excited states?.
This novel approach has been applied to a wide range of systems in condensed matter
physics, such as spin and lattice models??, molecules*”, and systems with quantum phase
transitions®?, often achieving state-of-the-art results and outperforming other methods.

In this proceeding, which is based on Lou et al.'?, we apply the neural wave func-
tion approach to study superfluidity, one of the most famous macroscopic quantum phe-
nomena of many-body systems. Specifically, our work focuses on the unitary Fermi gas
(UFG), a paradigmatic example of a strongly correlated quantum system, which is known
to possess a superfluid ground state, and is difficult to describe quantitatively. We use the
FermiNet — a neural network architecture specifically designed to represent many-fermion
wave functions® — to study the properties of the UFG. We demonstrate key limitations of
the FermiNet Ansatz in studying the UFG and propose an improved Ansatz based on the
idea of an antisymmetric geminal power singlet (AGPs) wave function'!-!2.

2 The Unitary Fermi Gas

The unitary Fermi gas (UFG) is a strongly interacting system of two-component fermions
that exhibits superfluidity in the crossover region between a Bardeen-Cooper-Schrieffer
(BCS) superconductor and a Bose-Einstein condensate'. The effective range of the in-
teraction is zero and the s-wave scattering length diverges (the “unitarity limit”), so the
UFG has no intrinsic length scale. The only remaining length is the inverse of the Fermi
wavevector 1/kp, on which all thermodynamic quantities depend. For example, for a given
particle density, the ground-state energy per particle of an UFG can be written as

3 h2k2
E=¢(Fpg=¢6-—7L

T ey

where Erq is the energy per particle of a non-interacting Fermi gas of the same density.
The dimensionless constant £ is known as the Bertsch parameter'*.

Because of the universality of the UFG model, it can be used to describe many real
physical systems at different scales, such as the neutron matter in the inner crust of a
neutron star'> or the quantum criticality of an s-wave atomic superfluid'®. The size of the
pairs in the UFG is comparable to the inter-particle spacing, which is also a feature of many
high-T. superconductors'’. As a result, the UFG has been studied extensively. Although
the UFG is an idealised model, it can be accurately realised in the laboratory using ultracold
atomic gases in which the interactions have been tuned by using an external magnetic field
to drive the system across a Feshbach resonance.

The UFG has been studied for decades, but it remains a challenge to calculate its
ground-state properties accurately. Mean-field treatments such as BCS theory give good
results for systems with weak interactions, but fail in the strongly interacting regime. As
a result, various quantum Monte Carlo (QMC) methods' '® have been used to simulate
the properties of the UFG to high accuracy at zero and finite temperature. Methods used
include variational Monte Carlo (VMC), fixed-node diffusion Monte Carlo (FN-DMC),
fixed-node Green’s function Monte Carlo, auxiliary field Monte Carlo, and diagrammatic
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Monte Carlo!*2. However, a full quantitative description remains an open and challeng-
ing problem. In our work, we combine the FermiNet Ansatz with the simplest QMC
scheme, the VMC method, to study the UFG.

3 Variational Monte Carlo

Despite being the conceptually simplest QMC method, VMC is a powerful tool for study-
ing quantum many-body systems. It is based on a well-known variational principle, which
states that the expectation value of the energy of a quantum system for a given trial wave

function Ur(ry, 1, ra, @, ..., Iy, an), Where r,, and o, € {1, ]} are the position and
spin projection of particle n, is always greater than or equal to the ground-state energy Ej:
2 (U |H|Wr)
H > =—— > F. 2)
< (Ur|¥r) ’

This provides the theoretical foundation for VMC, in which the adjustable parameters
on which ¥ depends are chosen to minimise the energy expectation value. The high-
dimensional integral that defines the expectation value cannot be evaluated analytically but
can be estimated using Monte Carlo integration,

)|2 HUr(R)

< H> _ [drUz(R)HU,(R)  [dR[Yr(R I 1 Z Hg[,T -
J ARV (R)? [ dR| U1 (R)? M :
where R is shorthand for (r1, a1, ra, a9, ..., Ty, an) and the points R; are sampled from

the probability density |¥7(R)|?/ [ dR |¥7(R)|%.

4 Neural Wave Functions

The VMC method is a powerful tool for studying quantum many-body systems, but the
accuracy of the results is limited by the quality of the trial wave function. In conven-
tional VMC, this is usually constructed using Slater determinants of Hartree-Fock orbitals,
multiplied by a Jastrow factor to account for the electron-electron correlation and cusp
conditions. Because of the limitations of the trial wave functions used, VMC alone is often
unable to provide results accurate enough to throw much light on interesting chemical and
materials physics problems.

Recently, a new class of trial wave functions, known as neural wave functions or neural
network quantum states, has been introduced, utilising neural networks to represent the
trial wave function?. The neural network takes the coordinates of the particles (rsi, ;)
as input and outputs a set of latent space vectors hZ® = hl®(r&; {r%}; {r*}) € R"x,
with ny, being the size of the final layer L of the network. Here i € {1,2,... N},
a € {1,]}, and & the is spin projection opposite to . The latent space vectors are then
used to compute many-particle orbitals

o7 (xf i {xg; 1 {r®}) = [wi - hi? ] x? (), )
where w{' is the weight vector of the i-th orbital, and x{*(r§) is an envelope function to
enforce the boundary conditions of the system. Note that the vectors hJLO‘ are invariant
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under permutations of all particle coordinates except for the j-th particle, which means
that the output orbitals have the same property. This is indicated by the use of (unordered)
set notation for {r9;} and {r®}.

The full wave function is expressed as a determinant of the many-particle orbitals

\I]SIater FermiNel(R) = det |:¢7,a (I‘?; {r7j}; {r&})]

= det o] (] {x] i (r' )] det [0t @l Ty (ep, D] )

where the second step followed because we assigned the spins and factorised the single
determinant into two determinants, one for each spin. The parameters of the neural wave
function (i.e., the weights and biases of the neural network) are optimised by gradient
descent to minimise the energy expectation value as in conventional VMC. Note that there
is no limit on the number of many-particle orbitals that can be generated. Thus, multiple
sets of orbitals are often used to construct a wave function with multiple determinants:

U8 e remiven (R Zdet[ o (el el )| det [0 el T D] @

which usually improves the accuracy of the results. The normalisations of the FermiNet
determinants are learned during the optimisation, so there is no need to include expansion
coefficients.

To study the UFG, we employ the FermiNet neural network architecture®, which im-
plements the totally antisymmetric multi-determinantal Ansatz described above. FermiNet
has achieved state-of-the-art results in various quantum many-body systems, including
atoms, molecules™® and solids??, and has shown itself able to discover quantum phase
transitions in the homogeneous electron gas’. However, as we will show in the Results
section, it does not describe superfluids accurately. This leads us to introduce a modified
Ansatz based on the idea of the antisymmetric geminal power singlet (AGPs) wave func-
tion. We show that the new Ansatz is a strict generalisation of the FermiNet architecture,
despite the use of fewer parameters.

4.1 Antisymmetric Geminal Power Singlet Wave Function

A conventional antisymmetric geminal power singlet (AGPs) wave function is a fixed
particle-number analogue of the Bardeen-Cooper-Schrieffer (BCS) wave function. It re-
places the single-particle orbitals that appear in conventional Slater determinants with pair-
ing orbitals (geminals), which are functions of the coordinates of two particles instead of
one. This much improves the description of paired systems. To adapt the original Fer-
miNet — referred to as the Slater FermiNet in this context — for superfluid systems, we
propose a modification to its architecture, incorporating a generalisation of the AGPs form.
In the original Slater FermiNet, the many-particle orbitals are constructed by taking the
dot product between each latent space vector and a set of weights, as shown in Eq. 4. To
build an AGPs wave function with FermiNet, we first need to construct a set of geminals:

o (e, e e e ) = [wh - (Y O hY) | X ()X (), )
where ® denotes an element-wise product. The AGPs FermiNet wave function is obtained
by taking determinants of these many-particle geminals and summing the determinants in
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a manner analogous to Eq. 6:

D
U Ky Fermined(R) = Zdet [@k(r?vr% {r9 1 {9 b 3)
k

A schematic diagram of the difference between the Slater FermiNet and the AGPs Fer-
milNet can be found in Fig. 1.

In a recent paper'®, we showed mathematically that the Slater FermiNet is a limiting
case of the AGPs FermiNet, and that the latter is a strict generalisation of the former.

envelope antisymmetrise
— > | Slater FermiNet
" functions >
intermediate
Layers
envelope antisymmetrise
P e | AGPs FermiNet
* functions >

Figure 1. Schematic diagram of the difference between the Slater FermiNet and the AGPs FermiNet. The Slater
FermiNet constructs many-particle orbitals by taking the dot product between each latent space vector and a set of
weights. The AGPs FermiNet constructs many-particle geminals by taking the dot product between the element-
wise product of two latent space vectors and a set of weights.

5 Results

We show the power of the AGPs FermiNet Ansatz by studying the UFG. The Hamiltonian
is given by

NTNY

2
=—= Z \VEE Z U(r] —r}), where U(r) = —21)# )
J cosh”(ur)

ij
is the modified Poschl-Teller potential, which is widely used in variational and diffusion
QMC simulations'®~?? to model a delta function interaction. The s-wave scattering length
of the Poschl-Teller potential diverges when vg = 1. By changing the value of p at fixed
vg = 1, itis possible to vary the effective range of the interaction, r. = 2/, whilst holding
the s-wave scattering length infinite.

A comparison of the ground-state energy expectation values given by the two Ansétze
is shown in Fig. 2(a). The Slater FermiNet, which consists of a linear combination of block-
diagonal determinants of FermiNet orbitals, performs well when the number of particles NV
is smaller than around 10, but the AGPs FermiNet is superior for larger systems. It is clear
that the Slater FermiNet Ansatz has difficulties learning the ground states of large paired
systems

Another comparison between the two Ansitze is shown in Fig. 2(b), which depicts
the ratio of the interacting and non-interacting energies per particle, known as the Bertsch
parameter'* and defined in Eq. 1, as a function of N. All FermiNet energies are variational,
so the AGPs FermiNet, for which the Bertsch parameter is lower by up to around 30%, is
much the better of the two Ansitze.
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(c) Pairing gaps against the numbers of particles N. (d) The TBDM estimators with N = 38 particles,
plotted against the pair-separation.

Figure 2. Comparison between results obtained using the AGPs FermiNet and the Slater FermiNet for different
numbers of particles, IV, with 7s = 1 and p = 12, except for Fig. 2(d), where the number of particles is fixed to
be N = 38. All simulations used 32 determinants, 300,000 optimisation steps, and the same hyperparameters.
Most of the error bars are so small that they are obscured by the symbols. All figures adapted from Lou et al.'®

To verify the accuracy of our AGPs FermiNet results, we compared them'® with the
state-of-the-art FN-DMC simulations of Forbes et al.?' for the case kr = 1 and p = 12.
The AGPs FermiNet achieved a lower energy per particle than FN-DMC for all except tiny
systems with N = 4 and N = 6 particles. The dependence of the Bertsch parameter on
system size was also smoother when calculated with the AGPs FermiNet.

The pairing gap may be found using the approximation formula'8

A= (-1)N|E(N+1) —%[E(N)+E(N+2)} , (10)

where N is the total number of particles in the box. The results from N = 4to N = 36
are shown in Fig. 2(c). The striking collapse of the pairing gap with increasing system
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size shows that the Slater FermiNet Ansatz struggles to describe paired states in systems
of more than 10 particles. The AGPs FermiNet Ansatz behaves much better, although we
expect significant finite-size errors to remain even for the largest systems simulated. Also
shown is the thermodynamic (N — oo) limit of the BCS pairing gap including Gorkov’s
polarisation correction: Agokov = 0.815Fkg, where Epg = %h;’f” is the average energy
per particle of an unpolarised non-interacting Fermi gas. The UFG is a strongly coupled
system, so the Gorkov estimate of the gap need not be accurate.

Another signature of fermionic superfluidity is the presence of off-diagonal

long-ranged order in the two-body density matrix (TBDM), pﬁ) (ry,ro;ry,rh) =

(1[4(1‘1)1&1(1‘2)1/3 i(I"Q)LZAJT(I‘Q)), the largest eigenvalue of which diverges as the number of
particles N tends to infinity. The superfluid condensate fraction ¢ may be obtained by
evaluating?*

c= Tlggo é(r) = Tlggo ﬁ /pﬁ) (r1,ro;ry+1',ro+1")0(|r'| —7)dridrady’, (11)
where N; is the number of spin-up particles. As shown in Fig. 2(d), the TBDM of the
38-particle system calculated using the Slater FermiNet approaches zero in the large pair-
separation limit, showing that the neural network wave function does not describe a su-
perfluid. The same quantity for the AGPs FermiNet approaches a finite value, yielding a
condensate fraction ¢ & 0.44(1). This is consistent with the value we obtained by sim-
ulating a larger 66-particle system, with experimental estimates, and with recent AFMC
results??. The data are summarised in Tab. 1.

Method Value
Our estimate for N = 38 at kpr, = 0.32 0.44(1)
Our estimate for N = 66 at kgpr, = 0.32 0.42(1)
Our estimate for N = 66 at kpr, = 0.17 0.52(1)
FN-DMC for N = 38 at kzr. = 0.03% 0.61(2)
FN-DMC for N = 66 at kpr, = 0.03% 0.57(2)
FN-DMC for N = 128 with VMC extrapolation at kpr, = 0.3220  0.51

FN-DMC with kg7, — 0 extrapolation for N = 66° 0.56(1)
AFMC with kg7, — 0 extrapolation for N = 66 0.43(2)
Experiment?’ 0.46(7)
Experiment?® 0.47(7)

Table 1. Estimates of the superfluid condensate fraction at unitarity using various methods. The quantity kpre
is a dimensionless number, indicating the deviation of the simulated system from a perfect UFG with zero-range
interaction.

6 Discussion

We have used neural wave functions to study the superfluidity of the paradigmatic UFG. We
showed that the Slater FermiNet Ansatz has difficulties in describing paired systems with
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strong, short-ranged, attractive interactions between particles of opposite spin. This led us
to improve the variational Ansatz by using determinants of FermiNet geminals, a drastic
generalisation of a conventional AGPs or BCS wave function. We showed mathematically
that the Slater FermiNet is a limiting case of the AGPs FermiNet despite the use of fewer
parameters in the latter. It follows that any FermiNet wave function can in principle be
written as an AGPs FermiNet wave function.

The inability of the Slater FermiNet Ansatz to accurately describe the UFG ground
state came as something of a surprise because the original FermiNet paper® showed that
any many-body fermionic wave function could be represented as a single determinant of
FermiNet orbitals. However, the mathematical argument relies on the construction of Fer-
miNet orbitals with unphysical discontinuities. Whether or not any wave function can be
represented as a single determinant of FermiNet orbitals of the type used in practice, which
are differentiable everywhere except at electron-electron and electron-nuclear coalescence
points, remains an open question.

Another limitation is that the architecture of the FermiNet neural network, which is
rather simple, may not be able to represent an arbitrary many-electron FermiNet orbital.
Even if a single-determinant Slater FermiNet wave function is general in principle, there
is no guarantee that it is equally easy to represent all wave functions. It may be that
producing an accurate representation of a paired wave function requires the width and
number of layers in the neural network to increase rapidly with system size. Equally, if a
network of fixed size is used, it may be necessary to increase the number of Slater FermiNet
determinants rapidly as the system size increases. The observation that the Slater FermiNet
works well when N 5 10 but that the quality of the results degrades rapidly for larger
systems, along with the scaling study described by Lou et al.'?, suggest that this is, in fact,
the case. Whilst most work on neural wave functions has focused on improving the neural
network part of the Ansatz, our work suggests that the method of antisymmetrisation is
also crucial for the accuracy of the results. Our AGPs-inspired approach is not limited to
the FermiNet neural network and can be readily adapted to use more recent architectures
such as the Psiformer?®, GLOBE and MOON?’, and DeepErwin’.

Finally, the AGPs FermiNet introduced here has a straightforward Pfaffian extension
and can thus be applied to non-s-wave and triplet pairing. We expect it to become a power-
ful tool for understanding strongly correlated non-s-wave superfluid and superconducting
systems such as Helium-3 or high-7. and p-wave superconductors.
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Astronomy is a discovery-driven science, and our understanding of objects and processes in the
universe grows with the advent of new observational techniques and instruments. State-of-the-
art numerical simulations of the systems under study are required to understand the observa-
tional data, derive reliable implications, and decompose the overall results into their physical
meaning. Here, results on the evolution of high-mass star-forming regions and the observational
signatures of kilonovae are reported.

Introduction

In theoretical astrophysics, computational resources are typically required for numerical
models of N-body dynamics, hydrodynamics, and radiative transfer. Each of these fun-
damental computations often involves multi-physics aspects such as magnetic fields, tur-
bulence, phase transitions, chemical evolution, or nucleosynthesis. Post-processing of the
simulation data often involves computationally intensive steps to derive synthetic obser-
vational data cubes for direct comparison with state-of-the-art observational surveys and
individual studies.

In 2024, most of the computational time was devoted to the study of the formation and
feedback of high-mass stars and the physics of kilonovae from neutron star-neutron star
mergers to observed light curves. Both projects are based on multi-physics hydrodynamical
simulations and the production of synthetic observations.

High-Mass Star Formation

The field of high-mass star formation research is currently being revolutionised by sta-
tistically powerful observational surveys such as the ALMAGAL initiative, which is col-
lecting data on more than 1000 star-forming clumps (containing more than 6000 pre- to
proto-stellar cores) at different evolutionary stages. To make the most of this fascinating
data, numerical simulations of the evolution of high-mass star-forming regions are being
performed. Even a single one of these simulations is computationally demanding due to
the multi-physical and multi-spatial scales involved. Furthermore, the evolution of these
regions needs to be studied as a function of a variety of environmental parameters, such
as their mass distribution, turbulence level, overall dynamical state (angular momentum
and/or converging flows), magnetic field strength, and metallicity. Meaningful sampling of
this large parameter space seems challenging. For an example of such an attempt, please
see the contribution of Birka Zimmermann and Stefanie Walch.

Kilonovae

Kilonovae are intense bursts of light that occur when neutron stars collide. The collision
creates extremely neutron-rich conditions that trigger the rapid neutron capture (r-process).
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This process plays a key role in the formation of many of the heaviest elements in the
Universe. Kilonovae provide a valuable opportunity to explore the mechanisms behind
r-process nucleosynthesis and to study the properties of matter at extreme densities, such
as our still incomplete knowledge of the equation of state of neutron stars.

The new 2024 calculations by Christine E. Collins and her collaborators demonstrate
the need for three-dimensional models and show the sensitivity of the results to accu-
rate atomic data. Their modelling pipeline extends from hydrodynamical simulations of
neutron star-neutron star mergers to nucleosynthesis calculations to radiative transfer to
synthetic light curves. These light curves can then be directly compared with existing
observational data of kilonovae bursts.

Outlook

In the field of theoretical astrophysics, the demand for computational resources has in-
creased in the recent past. As a result, it is essential to develop software adapted to new
hardware — and in some cases to develop it from scratch. This will undoubtedly be one of
the most important challenges in the field for the next decade. If numerical methods can
make the most of the available high-performance computing resources, we will continue
to gain fascinating insights into the complex physics of the universe.
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The formation of stars, and especially high-mass stars, is a highly complex and dynamical
process involving a large number of physical mechanisms. High-mass stars determine the evo-
lution of galaxies due to their energetic feedback, such as (ionising) radiation, stellar winds,
and supernovae. In order to better interpret real-world star-forming regions, simulations of col-
lapsing clouds are used. We performed simulations of the gravitational collapse of isolated,
parsec-scale, turbulent clouds to study the formation and evolution of massive stars as well as
the impact of their highly energetic feedback. The initial conditions are physically motivated
by real observations. A parameter study with different initial conditions is performed to ob-
tain a statistical sample of simulations to compute synthetic telescope images which may be
compared to observations made with modern telescopes like ALMA.

1 Introduction

Star formation is a highly active and rapidly developing topic in modern astrophysics. It
is a fundamental process, shaping both the large and small astronomical scales and simul-
taneously influencing galactic dynamics® and planet formation. This impact is due to the
star formation process being highly energetic, because of the intense feedback from newly
born massive stars by protostellar jets, stellar winds, radiation and supernovae. In addition
to the large dynamic ranges in spatial scale and density, these processes also make the star
formation process difficult to simulate numerically.

One of the largest unresolved problems in modern star formation is that of the forma-
tion of massive stars, i.e. stars with a mass larger than eight times the mass of the Sun
(>8Mp). Lower mass stars can primarily be explained due to the interplay of gravity,
turbulence and thermal pressure leading to quasi-Jeans mass fragmentation; however, ad-
ditional processes are necessary for the formation of higher mass stars in terms of magnetic
fields® and radiative feedback®. High mass stars are also thought to evolve faster and start
nuclear burning before the mass accretion process is finished, thus feedback and accretion
happen at the same time.

Due to the difficulty of studying high-mass star formation in both observations and in
simulations, many open questions remain to date. In observations, young high-mass stars
are difficult to detect primarily due to their rarity, which leads to them lying at considerably
larger distances (on average) than lower mass stars, which makes it harder to fulfil the
need for high-resolution observations. Additionally, high-mass stars typically form in the
densest and most embedded environments, meaning that they are heavily obscured at most
wavelengths and highly sensitive observations are needed, and even those are limited if
the region is optically thick. Moreover, due to their high accretion rates, the formation
process of high-mass stars is greatly accelerated compared to that of lower mass stars,
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Figure 1. A look into the heart of a massive star-forming cloud. Shown is a simulation of the cold gas distribution
of molecular hydrogen (white). Within the dense regions massive stars are formed which causes the ejection of
atomic hydrogen (blue) and an expanding bubble of ionised hydrogen (red). The plotted volume has a side length
of 2 pc'.

lessening the time over which the process may be observed. In simulations, high-mass
star formation is difficult to model due to the large number of coupled physical processes
which are involved. Apart from magneto-hydrodynamics they include, but are not limited
to, large magnetic field strengths, radiative heating and radiation pressure (RP), thermal
pressure, ionising radiation, and stellar winds. It is difficult to construct models which are
numerically stable when coupling these processes, and they are computationally expensive
to run.

We simulate the collapse of isolated cores with different initial conditions in order to
study massive star formation in a statistically relevant sample. We confront the numerical
simulations and synthetic observations which eventually may be compared directly to the
real-life observations.

This paper is structured as follows. First, we explain the numerical methods and ini-
tial conditions of the simulations in Sec. 2 and 3, respectively. In Sec. 4 we introduce a
fiducial run, and show the importance of ionising radiation and RP as well as the impact
of the numerical resolution on the cloud evolution. Moreover, we investigate the results
of the parameter study and outline the importance of comparing simulations and synthetic
observations. We conclude our results in Sec. 5.
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2 Methods

We perform simulations of the gravitational collapse of isolated, parsec-scale, turbulent
cores with the MPI-parallel, adaptive mesh refinement (AMR) code FLASH 4.7°.

We include an entropy stable MHD solver® and compute self-gravity with an OctTree
solver’, which can also calculate the local shielding of the gas. We also model the radiative
transfer of ionising radiation with our new radiative transfer scheme TreeRay®, which can
treat ionising and non-ionising (infrared) radiation and RP on dust’. We employ a local
non-equilibrium chemistry network, which tracks the evolution of 7 species (H, Ha, HT,
CT, CO, O, and free electrons)!*!'!, and which is combined with the radiative transfer
module!>'3. Dust and gas temperatures are calculated separately and heating and cooling
by dust is included. Stars are modelled with the use of sink particles, which are evolved
with a 4" order Hermite integrator'*. We model the evolution of individual stars with a
protostellar model'>.

We use the JUWELS cluster module with the Intel Xenon Platinum 8168 CPU. Each
simulation requires a computational time of around 1-2 Mio. core hours, and uses on
average 500 cores (and up to 1200 cores) simultaneously. We produce data files to analyse
and visualise the time evolution of the simulated core collapses. The simulations produce
around 800 files each, necessitating a disk space of 80 TB.

3 Simulation Details

The cores are set up such that they are guaranteed to form massive stars under the evolution
of self-gravity. The stars will further grow through the accretion of mass until they prevent
accretion onto themselves through their own stellar feedback and reach a final mass.

The initial conditions of the simulated cores are formed by the parameter space covered
by the ALMA large-scale program ALMAGAL. The core radius is kept at 1 pc while the
side length of the cubic box is 4 pc with a diode boundary condition. The initial core gas
temperature is 20 K. The initial dust temperature of 2.7 K is immediately adjusted to the
thermal equilibrium value in the first time step.

The free-fall time, tg, is the characteristic time a core with a uniform density p would
take to collapse purely under its own gravity, and can be calculated by:

3
fr=1\5365" M

The free-fall time in our simulations is 526,000 yr. The parameters we vary are the density
profile, the virial parameter, and the metallicity. We are using a Plummer-like density
profile, which is given by:

P (T) = L )

()
where 7 is the core radius, w the density exponent, p, the central density and r( the scale
radius (~ 0.15 pc). We use three different density exponents, w = 2, w = 1.5, and w = 0,
where w = 0 results in a constant density profile p = po. The central density changes with
the different density exponents to keep the core mass at 1000 M, for each simulation. The
simulations are called FIDUCIAL, SHALLOW and FLAT, respectively.

2
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Figure 2. Time evolution of the fiducial run (from top to bottom). From left to right we show the projection in the
z-direction of the column density, 33, and the mass-weighted temperatures of gas, Tgas, dust, Ty, and radiation,
Trad- Small circles indicate sink particles, which represent stars. A green colour scheme represents lower-mass
stars, while a blue colour scheme shows more massive sinks (>8 M). After ~0.45tg (where tg corresponds
to 0.526 Myr) massive sink particles are formed which drive an expanding bubble of ionised hydrogen.

In order to study the impact of turbulent fields we change the virial parameter, oy,
which is determined by the ratio of kinetic and gravitational energy:
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Qyir = Wv

where o is the velocity dispersion and M the total core mass. The FIDUCIAL run has
a virial parameter of 0.6. We change the virial parameter from sub-virial with a very
low velocity dispersion (Run aLLow with oy, = 0.2) to supervirial (Run aHIGH with
Qyiy = 1.2).

To change the metallicity, Z, we reduce or increase the abundances of metals to mimic
the conditions of massive star forming cores near the Galactic Centre and towards the
outer Milky Way disc. The FIDUCIAL run has a solar metallicity of 1Z. We change the
metallicity to 0.5 Zg, (ZLOW) and 2 Z¢, (ZHIGH).

3

4 Results

4.1 Fiducial Run

We start from a spherical cloud that begins to collapse under its own gravity. Fig. 2 shows
the time evolution of the FIDUCIAL run. Substructures which look like filaments emerge
in the process due to turbulence in the cloud. The filaments converge centrally and feed
the central hub. Star formation first takes place within the central region of the simulated
box, but later on extends to the outer regions of the filaments as well.

At first, the dust temperature follows the morphology of the gas temperature. As soon
as sink particles are formed the dust is heated by the radiative feedback of the sinks. Af-
ter ~ 0.45 tg (0.237 Myr), when massive sink particles are present, the dust temperature is
dominated by the radiation temperature. In the inner parts, radiation, dust, and gas tem-
peratures are mostly in equilibrium. In the outer parts, the gas temperature is still higher
due to shock heating. Later on, ionising feedback from massive sink particles heats the
gas, and as soon as the bubble full of ionised hydrogen expands, the gas temperature in-
creases significantly. The pressure transferred from stellar radiation helps the bubble to
grow. As a consequence, atomic hydrogen is expelled outwards radially and the core be-
comes dispersed. After the simulated time, only 50 % of the formed sink particles remain
in a gravitationally bound cluster.

4.2 Resolution Study

Starting from the FIDUCIAL run with an effective spatial resolution of Az = 400 AU at
refinement level 9, we increase the maximum refinement level in different simulations for
the same initial conditions. Refinement level 9 corresponds to a net maximum resolution
of (2048)3 cells. We increase the refinement level to 10, 11, and 12 which corresponds
to a resolution of Az = 200 AU, Ax = 100 AU, Az = 50 AU, respectively. The mini-
mum refinement level is always set to 5, i.e. corresponding to a 1283 base grid and a base
resolution of ~ 3,200 kAU.

The stars in our simulations are modelled with sink particles. These are checked against
several criteria before they are formed or allowed to further accrete gas. One condition
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Figure 3. Left: Number of sink particles, while the dotted line shows the number of high mass sinks with
> 8Mg. The higher the resolution the more sink particles are formed. Right: Evolution of the star formation
efficiency. The resolution has a minor influence on the general core evolution, but affects the time period where
sink particles can accrete mass.

for the formation of sink particles is that the gas density is greater than a certain density
threshold, p¢hresh-

2 7T62

YX®
iresh — S > s 4
Priwesh = 032 T G(4A7)? @

where G is the gravitational constant and ¢; is the speed of sound.

It is related to the smallest resolvable Jeans length on the maximum refinement level
and is set to Ay = 4Ax. The density threshold increases with increasing density.

During the initial collapse phase, the core cools efficiently via dust thermal emission
and behaves isothermally. When the collapsing gas reaches densities p > 10~ 3g cm ™3, it
becomes optically thick to infrared radiation, cannot cool efficiently anymore, and behaves
almost adiabatically. For p > 107 '3gcm 2, the Jeans mass therefore increases again
with increasing density, and no further fragmentation should occur. Hence, a sink particle
would represent a single star only at such high densities. In our simulations we reach
densities starting from the lowest resolution p = 10~17gcm ™ to the highest resolution
p= 10-15 g cm 3. Therefore, for any maximum refinement level used in this work, sinks
could harbour single stars, binaries, or higher order systems.

In the regime we resolve, it is expected that the number of sink particles increases
with higher spatial resolution, as is indeed the case (see Fig. 3, left panel). We conclude
that cloud fragmentation greatly depends on the resolution. For a detailed analysis of the
fragmentation process and the resulting sink mass distribution, it would be crucial to run
simulations at a higher refinement level.

On the other hand, we find that the amount of mass which is converted into stars, the
so called the star formation efficiency (SFE), is comparable during the collapse phase until
~0.7tg (see Fig. 3, right panel). However, while the mass growth of the FIDUCIAL run
decreases significantly after this time, RFL10 still accretes at a higher rate. In both cases,
the SFE stays constant toward the end of the simulations. However, RFL10 has a higher
final SFE of 0.56 (after ~ 0.85 tg) compared to the FIDUCIAL run, which stops at a SFE
of 0.42. At a higher resolution we resolve higher densities and the stars are more deeply
embedded thus the feedback is less efficient at dispersing the core and stopping further
mass accretion.
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Nevertheless, the general evolution of the collapse and core dispersal is similar for
different resolutions. In the following, l,.s = 9 is therefore used for a parameter study. At
this resolution, it is possible to carry out a statistically relevant sample of simulations.

4.3 Parameter Study
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Figure 4. Left: Evolution of the star formation efficiency. The dotted lines represent the SFE of massive stars
only, which contain most of the mass. Right: Number of formed sink particles for the different runs. The dark
blue parts indicate the number of high mass stars. Runs with flatter density profiles collapse more slowly, but in
the end they produce more fragments resulting in a higher SFE. Low virial parameter and low metallicities lead
to fewer sink particles with reduced SFE. A high virial parameter and high velocity dispersion result in a slightly
higher SFE and more fragmentation.

The evolution of the collapsing core and the fragmentation process depend on the initial
conditions. Each simulation box contains a predefined amount of mass. How much of it is
converted to stars (the SFE) is also affected by the initial conditions.

In the FIDUCIAL run the SFE reaches 0.42, which means that 42 % of the available
mass is converted into sink particles (see Fig. 4, left panel). In total 19 sinks are formed,
10 of which grow into massive ones (see Fig. 4, right panel).

The flatter the initial density profile, the slower the core collapse. Due to the slower
evolution, turbulence has more time to interact before the cloud collapses under gravity and
more sub-structures are formed which leads to a higher number of formed sink particles
(see Fig. 4, right panel). The slower core collapse initially leads to a slower increase in the
mass accretion but also extends the time period over which sink particles can accrete mass
(see Fig. 4, left panel). Thus, the increase in the SFE is time delayed in the runs FLAT and
SHALLOW, but reaches even higher final numbers, 0.57 and 0.49, respectively, than in the
FIDUCIAL run.

The virial parameter relates the kinetic and gravitational energies of the initial core. A
low virial parameter indicates that the gravitational core collapse is less disturbed by kinetic
motion which leads to less substructure formation during the collapse phase and vice versa.
A low virial parameter leads to fewer (in total 9) but very massive sink particles; however,
the SFE decreases to 0.35. A higher virial parameter leads to more fragmentation and 22
sink particles are formed. The SFE reaches 0.45 and ends up slightly higher than in the
FIDUCIAL run (see Fig. 4).

The amount of metals in molecular clouds can impact the evolution of massive clouds.
Metals are expected to effectively cool gas which may result in a suppression of fragmen-
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tation in low metallicity environments. Starting with a lower initial metallicity, Run aL.ow
shows less fragmentation and only 12 sink particles are formed. The SFE decreases to 0.38.
However, the core with a higher initial metallicity (Run ZHIGH) forms 22 sink particles
and the SFE increases slightly to 0.45.

4.4 Comparing Simulations and Synthetic Observations

Simulation Synthetic Emission Synthetic Observation

:
.
RADMC-3D

7 CASA - ¢omBined
]
1 100
I [mJy/beam)] I [mJy/beam)]

Figure 5. What would a simulation look like if we were to observe it in the sky with a real-world instrument like
ALMA? In the left and middle panel the density and the dust emission, respectively, along the line of sight of the
simulated image is shown. The right panel shows the same region but seen through from the perspective of the
ALMA telescope'.

From these simulations, synthetic observations are derived (see Fig. 5). The density
profile is used to produce the emission of the dust continuum at 1362 pm with the radiative
transfer code RADMC-3D (see Fig. 5, middle panel). Furthermore, the software CASA
makes it possible to simulate the effects of the instrumental limitations of the ALMA tele-
scope (Atacama Large Millimeter/Submillimeter Array) in order to produce an image of
a synthetic observation (see Fig. 5, right panel). The imperfect resolution of the telescope
leads to a loss of the filamentary substructures so that only the brightest cores are still de-
tectable. Comparing simulations and observations helps to understand the limitations of
telescopes and how observational data can be interpreted.

5 Concluding Remarks

This work presents state-of-the-art numerical simulations in order to study massive star
formation. These simulations are only possible on the most powerful supercomputers, and
without we would miss crucial theoretical understanding of astrophysical processes. We
simulate isolated core-collapse scenarios of cores with 1000 M, within a radius of 1 pc. A
novel scheme to treat the radiative transfer of ionising and non-ionising radiation as well
as radiation pressure on dust and gas is included. We investigate the formation and early
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evolution of massive stars and their host cores up to the point where a bubble full of ionised
hydrogen is established.

Sink particles are treated as single stars; while the resolution allows them to represent
single stars but also groups of stars and their accretion disk or multiple-order systems. With
higher resolution the number of formed sink particles is increased. However, the general
trend of the initial core evolution is similar.

The impact of different initial conditions are investigated to produce a statistically rel-
evant sample. The flatter the density profile, the slower the collapse, and the number of
sink particles increases, as well as the SFE. With a low virial parameter, gravity is more
dominant than turbulence, which leads to a faster core collapse that produces fewer but
very massive sink particles. An initial high virial parameter delays the core collapse. Tur-
bulence is more dominant, thus more substructures are produced. A lower metallicity
reduces dust cooling, suppressing fragmentation. In this case fewer, but massive sink par-
ticles are formed. A higher metallicity leads to efficient dust cooling during the initial
collapse phase, resulting in more fragmentation and a higher SFE.

From these simulations we derive synthetic observations while simulating the telescope
effects of the ALMA telescope. With the limited resolution of the telescope the brightest
cores can be seen while most of substructures become invisible. The comparison between
simulations and synthetic observations supports the interpretation of real-world telescope
data. This may guide the analysis of existing observations as well as planning of future
observations of star-forming regions.
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Kilonovae are the explosive bursts of light resulting from neutron star collisions. The extreme,
neutron-rich conditions during the collision allow the rapid neutron-capture process (r-process)
to take place, which is responsible for producing many of the heaviest elements in the Uni-
verse. Kilonovae provide the opportunity to understand r-process nucleosynthesis, as well as to
constrain high-density matter physics. We have established a self-consistent modelling pipeline
that allows us to compare kilonova simulations directly to observations, enabling the interpre-
tation of these events. Our work has highlighted the importance of accurate atomic data for
modelling kilonovae, as well as the importance of 3D simulations.

1 Introduction

When neutron stars collide, a bright, fast-evolving kilonova transient is produced. In
2017 a kilonova was observed (AT2017gfo'?) following a gravitational-wave signal
(GW1708173), igniting the field of multi-messenger astronomy. Understanding these cat-
aclysmic events is the key to determining the origin of the heavy elements in our Universe,
including gold, platinum and uranium. Kilonovae provide promising opportunities to study
matter under extreme conditions offering a window into the dynamics of extremely dense
nuclear matter.

The astrophysical site where around half of all elements heavier than iron are synthe-
sised by the rapid neutron-capture process (r-process), has long been debated and obser-
vations of AT2017gfo have strongly supported the ejecta of binary neutron star mergers
as the primary sites for the r-process*. The observations of AT2017gfo have provided a
powerful set of constraints for testing theoretical models of binary neutron star mergers,
the incompletely known Equation of State (EoS) of dense nuclear matter, r-process nucle-
osynthesis, and radiative transfer for kilonovae. However, accurate theoretical models are
required to link these observations back to information about the underlying physical con-
ditions. To identify specific elements produced by binary neutron star mergers, we must
interpret kilonova observations, and for this we need radiative transfer simulations.

The strongest feature in the observed spectra of AT2017gfo has been suggested to be
Sr 1157, However, most studies identifying this feature have used simplified radiative trans-
fer methods, such as a backwards modelling approach (starting with observations and se-
lecting a composition that produces matching spectra)’, or parameterised ejecta models®’
rather than a forwards modelling approach using advanced multidimensional simulated bi-
nary neutron star merger ejecta as a basis for radiative transfer calculations. Most kilonova

929



radiative transfer simulations have been carried out in 1D or 2D¥!! with only a handful of
3D calculations'> '3, which includes our 3D forwards modelling simulations of Collins et
al. (2023a)'* and Shingles et al. (2023)"5.

The aim of our project is to increase our understanding of kilonovae and their role
in the production of heavy elements by performing calculations with our advanced radia-
tive transfer method in three dimensions based on binary neutron star merger ejecta from
numerical models. This pipeline is vital for the detailed interpretation of the spectra of
AT2017gfo and of future kilonovae.

2 Methods

1 AT2017gfo (Waxman 2018)

03,
107T 107 107
Time (days)

(a) NS-NS merger (b) Nuclear network calculation (c) Radiative transfer calculation (d) Compare to observations

simulation based on ejecta snapshot

Figure 1. Pipeline to self-consistently simulate kilonovae from binary neutron star merger ejecta. A hydrody-
namical neutron star merger simulation is carried out. Following this, r-process nuclear network calculations are
carried out based on the merger simulation to calculate the nucleosynthetic abundances (image credit: EMMI,
GSI/Different Arts). A snapshot of the merger simulation and the nucleosynthetic abundances are input to the
radiative transfer calculation (shown is the density structure of the ejecta snapshot). The radiative transfer sim-
ulation produces light curves and spectra that can be directly compared to kilonova observations. Shown are
simulated light curves compared to AT2017gfo (figure adapted from Ref. 14).

We use a multi-disciplinary pipeline to carry out our simulations, allowing us to self-
consistently model kilonovae starting with binary neutron star merger simulations through
to comparing synthetic observables directly to observations (see Fig. 1). State-of-the-art,
relativistic 3D simulations of the ejecta from binary neutron star mergers are input to our
radiative transfer simulations. The energy released during the merger (from $-decays, a-
decays and fission fragments) and the nuclear abundances are obtained from nuclear net-
work calculations (as in Mendoza et al.'®). Using the simulated merger ejecta and nuclear
network calculations as input, radiative transfer simulations are carried out for a snapshot
of the merger ejecta, using the radiative transfer code ARTIS to follow the subsequent ex-
pansion, radioactive decay, and radiative transfer to to produce synthetic light curves and
spectra. These can be directly compared to observations, linking the observations back to
the underlying merger ejecta.

ARTIS is a multi-dimensional, state-of-the-art radiative transfer code. Shingles et
al. (2023)"> have enabled ARTIS to carry out simulations of kilonovae with line-by-line
opacities for millions of bound-bound transitions of r-process elements for the first time
in 3D. Importantly, this allows us to directly associate spectral features with specific el-
ements. The main advancements include the use of a relativistic Doppler shift (for the
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rapidly expanding ejecta), numerical improvements for handling of dense line lists (mil-
lions of transitions), an extended input snapshot that specifies each cell’s nuclear abun-
dances and energy release from prior reactions, and handling of a- and [-decays with a
consistently evolving composition and time-dependent thermalisation of the emitted decay
products.

2.1 Numerical Methods

ARTIS uses Monte Carlo methods'’!"” to simulate the complete radiation transport prob-
lem from energy injection all the way to the eventual escape of radiation from the ejecta.
In kilonovae, energy is released from the radioactive decays of r-process material synthe-
sised during the merger. Shingles et al. (2023) have greatly expanded the range of decays
handled by ARTIS to include « and 3 decays, and added a new non-instantaneous ther-
malisation treatment. By leveraging a set of detailed network calculations performed on
the 3D hydrodynamic trajectories (for the first few minutes of r-process reactions) and
following each individual nuclear decay with its associated v-ray spectrum and particle
thermalisation conditions, we can self-consistently model the energy released.
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Figure 2. Flow chart outlining the mode of operation of the radiative transfer code ARTIS, and how physical
processes (absorption, emission and scattering) are modelled within the framework of ARTIS. Figure taken from
Kromer et al. (2009)%.

At the beginning of a simulation, energy “pellets” are placed (and their decay-times
set) within the ejecta according to the spatial and temporal distribution of radioactive de-
cay energy throughout the selected time range. The pellets are activated according to the
radioactive decays and become Monte Carlo “packets” of indivisible energy, which are
then propagated through the expanding ejecta in three-dimensions, with transitions be-
tween packet types (e.g., y-ray, kinetic energy, or optical energy, see Fig. 2) representing
absorption, emission and scattering processes according to detailed Monte Carlo statistics,
using the macro-atom formalisation!” '8, Our line-by-line treatment enables each transition
to be treated individually using the Sobolev approximation'-??>. By considering individ-
ual lines, we can track the species responsible for transitions, thereby directly associating
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spectral features with the underlying physical process. The outgoing packets of radiation
(photons) are binned according to their direction, time of escape, and wavelength, allow-
ing for synthetic light curves and spectra to be produced as a function of observer direction
and time. This allows us to compute synthetic observables from multidimensional binary
neutron star merger models in a self-consistent, time-dependent manner, giving significant
predictive power to the merger simulation and allowing its outcome to be properly tested
against observations.

Such sophisticated radiative transfer simulations are numerically expensive owing to
the large numbers of Monte Carlo quanta that must be propagated. Fortunately, since the
propagation of each quantum is independent of the others, the Monte Carlo scheme is
extremely well-suited to parallelisation across very large numbers of cores. The code is
fully parallelised with both MPI and OpenMP.

3 Scientific Results

We now discuss our first results produced for this project which have been published'* 1523,
For these studies we chose a merger simulation of equal-mass 1.35 Mg neutron stars as
input to our radiative transfer simulations. Our ongoing work is to consider a broader range
of neutron star merger simulation ejecta models in our radiative transfer calculations.

3.1 Neutron Star Merger Simulation

The merger simulation considered here (described by Collins et al.'*) uses the SFHo?*
equation of state. It was carried out with a 3D general relativistic smoothed-particle hydro-
dynamics (SPH) code?®>?’ and included an advanced neutrino leakage treatment, ILEAS
(Improved leakage-equilibration-absorption scheme)?®. The hydrodynamical simulation
followed the evolution until 20 ms after the merger, and therefore only includes “dynami-
cal” ejecta, i.e., the material becoming unbound during the early postmerger phase. The to-
tal mass of ejecta from this simulation is 0.005 M. It is expected that matter ejection will
continue after this simulation was stopped, however, long-term evolution simulations are
required to follow the hydrodynamics beyond this time (e.g., see Just et al.?? or Kawaguchi
et al.3%).

3.2 Comparison to AT2017gfo

The spectra predicted by our radiative transfer simulations for this neutron star merger
model show remarkable agreement with the observed evolution of the kilonova AT2017gfo,
considering that we in no way tuned our model to try to match the observations. A com-
parison between the simulated and observed spectra is shown in Fig. 3. The simulation
predicts a structure similar to the strong feature observed in AT2017gfo identified as Sr II.
In our simulation this feature is predominantly due to Sr 11, however, it also contains con-
tributions from Y 1I and Zr 1. With our line-by-line opacity treatment, we can identify
the species forming spectral features. An example of this is shown by the colour coding
in Fig. 3, which indicates the relative contributions of specific ions to the emitted spectra.
Specifically, each Monte Carlo packet of radiation escaping the simulation is tagged with
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Figure 3. Spectra in the polar direction for model 3D AD2 from Shingles et al. (2023), which show remarkable
similarities to the spectra of AT2017gfo, considering that we did not tune the model in any way to try to match
the data. The colour coding indicates the species contributing to the formation of the spectrum, thereby directly
associating spectral features with the ions responsible. Figure taken from Shingles et al. (2023)°.

the last interaction underwent by the packet. For each wavelength bin in the synthetic spec-
trum, the area under the spectrum is colour coded in proportion to the energy carried by
packets in that wavelength bin whose last interaction was with each of the ions considered.
This analysis shows that Sr 11 makes significant contributions in forming the simulated
spectra. Other significant contributions come from Y 11, Zr 11 and Ce 111, as can be seen in
Fig. 3. Therefore, our simulations strongly support the interpretation of Sr being present
in the ejecta of AT2017gfo and thus solidifies the conclusion that the r-process took place
in the outflow of GW170817.

Although the evolution of the spectra is similar to that observed in AT2017gfo, our
simulated spectra evolve too quickly compared to the observations. In Fig. 3, the simulated
spectra are plotted at 0.7 and 0.8 days after the merger, and resemble the observations at
2.4 and 3.4 days. It is likely that the fast evolution is due to the lower ejecta mass in the
merger model we selected for this study. The simulated ejecta mass is 0.005 Mg, which
is around ten times lower than the mass inferred for AT2017gfo'. This motivates our aim
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with this project to investigate the kilonovae predicted for a range of ejecta models with
varying masses, and particularly models with higher ejecta masses more similar to the
inferred mass of AT2017gfo.

3.3 Importance of Accurate Atomic Data
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Figure 4. Simulated spectra at 0.8 days after the merger using the AD1 or AD2 atomic dataset. The only differ-
ence between AD1 and AD2 is that in AD2 the atomic data for Sr, Y and Zr has been replaced with calibrated
atomic data instead of the theoretically calculated data in AD1. Using improved atomic data for only these el-
ements has a dramatic effect on the predicted spectra, both in the spectral features predicted and in the overall
spectral energy distribution. The colour coding indicates the relative contributions of specific ions to shaping the
spectra. Above the axis indicates the last ion responsible for emitting or scattering an escaping packet of radia-
tion. Beneath the axis indicates the absorption processes that last prevented a packet of radiation from escaping,
thus indicating the species responsible for absorption. Figure adapted from Shingles et al. (2023)3.

We have carried out a study into the importance of accurate atomic data. To do this, we
carried out radiative transfer simulations using the same ejecta model, but different atomic
datasets. The majority of our atomic data is sourced from the Japan-Lithuania Opacity
Database for kilonovae’!, which is theoretically calculated and not calibrated to experi-
mentally known values. We refer to this dataset as AD1. To test the importance of accurate
atomic data, we replace the atomic data for Sr, Y and Zr in AD1 with experimentally cali-
brated data sourced from the Kurucz?? extended line list. We refer to this dataset as AD2,
which is the dataset used to produce the spectra in Fig. 3.

The difference that results from changing only the atomic data for Sr, Y and Zr is shown
in Fig. 4. The spectral features predicted as well as the overall spectral energy distribution
changes significantly when the calibrated atomic data is included. This highlights the need
for accurate atomic data in radiative transfer simulations.

3.4 Importance of 3D Simulations

The importance of 3D radiative transfer simulations was also tested by comparing the
3D simulation to a 1D simulation based on the spherical average of the ejecta model.
The comparison of the light curves from these simulations is shown in Fig. 5. The 1D

104



Absolute Magnitude

Time [days]

Figure 5. Simulated bolometric and grz—band light curves from the 3D simulation and from a 1D simulation
using a spherical average of the ejecta model. The colour bar indicates the polar angle of each observer direction
in the 3D model while the black lines show the light curves of the 1D model.

simulation is unable to reproduce the light curves in any line of sight of the 3D simulation.
In particular, the g and r band light curves from the 1D simulation are fainter than all
directions of the 3D simulation. This shows that 1D simulations may lead to overestimating
the opacity at red wavelengths. Even the bolometric light curve is unable to match the
3D simulation, except at late times when the ejecta have become optically thin and the
light curve follows the energy deposition rate. This demonstrates that 3D simulations are
important for kilonovae modelling.

4 Concluding Remarks

We have established a kilonova modelling pipeline to self-consistently describe kilonovae,
to directly compare simulations to observations. Our initial study has demonstrated the
ability of these simulations to produce synthetic observables comparable to AT2017gfo.
This work has highlighted the importance of accurate atomic data in radiative transfer
simulations, not only for predicting specific spectral features, but also to predict the correct
overall spectral energy distribution. We have also highlighted the need for 3D kilonova
simulations. The 1D spherically averaged model does not reproduce any observer direction
in the 3D simulation. Our project will continue to exploit our self-consistent modelling
pipeline to investigate a range of neutron star merger models, allowing us to investigate the
potential variability of kilonovae, and to place constraints on the underlying physics.
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In the proceedings of the NIC Symposium 2025 both contributions in the chemistry sec-
tion are devoted to advancing methodologies towards the characterisation or the design of
materials.

In GPU Acceleration of Three-Center Coulomb Integral Evaluation with Numeric
Atom-Centered Orbitals Francisco Delesma, Moritz Leucke, Ramoén Panadés-Barrueta,
and Dorothea Golze present their recent work to accelerate quantum chemical calculations
by adapting the time consuming three-center Coulomb integral (3c-CI) evaluation to mod-
ern CPU/GPU high performance computing architectures. This work is carried out in the
context of the development of highly accurate GW-based methods that are, for example,
used for the prediction of X-ray spectroscopic data of materials systems. In general, 3c-
CI are crucial for approximating four-center two-electron Coulomb integrals (4c-Cls) in
many quantum chemical methods, including Hartree-Fock (HF), coupled cluster, and also
the GW approximations. Direct computation of 4c-Cls is computationally expensive, thus
the resolution-of-the-identity (RI) approach is a popular method to reduce this cost. The RI
technique is primarily used with localised basis sets, where numeric atom-centered orbitals
(NAOs), which are evaluated on numerical grids, have emerged as a promising and highly
flexible alternative to other basis set approaches. NAOs are used in the FHI-aims package,
the solid-state all-electron software package used by the authors. Previously, the Golze
group had successfully made efforts to accelerate and reduce the scaling of core-level GW
steps. This had resulted in the 3¢-CI evaluation emerging as a remaining major computa-
tional bottleneck even for comparatively large systems of more than 100 atoms. Here, the
authors present their impressive algorithmic advances and implementation of the accelera-
tion of the computation of 3c-CIs based on CUDA for CPU/GPU HPC platforms as well as
the benchmarking on JUWELS Booster. For medium-sized basis sets, a two-fold speedup,
for larger basis sets, speedups of up to six-fold are achieved. Moreover, an important step
forward has been made towards a full GPU implementation of these quantum chemical
calculations which will be instrumental for the later use on GPU-based exascale machines.

In Machine Learning for Accelerated Discovery and Design of Functional Energy
Materials Mohammad Eslamibidgoli, Max Dreger, Andre Colliard-Granero, Fabian Tipp,
Michael Eikerling, and Kourosh Malek present a project performed on the JUWELS ma-
chine where they produce a data set of imidazolium-based compounds and their alkaline
stability. This alkaline stability is one of the major factors in the development of improved
anion exchange membranes (AEMs) for hydrogen fuel cells or water electrolysis. First, the
authors computed degradation pathways with the help of density functional theory and cou-
pled cluster approaches for a few compounds for which experimental reference data were
available. From this data the free energy difference related to a hydroxide attack on the im-
idazolium ring was determined as a reliable descriptor of alkaline stability. This descriptor
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was then evaluated computationally on JUWELS for a library of about 5800 imidazolium-
based structures. The so-obtained data also serve as a basis for subsequent training of
machine learning models. In the article, the authors further outline, how this project is em-
bedded in a much wider framework of data-driven and machine learning methodologies to
aid the development of sustainable energy technologies as part of the European Materials
Modelling Ontology project.

These two articles give a very good impression of the breadth of methodological de-
velopments in theoretical materials chemistry: they span from the improvement of sophis-
ticated and highly efficient electronic structure theory calculations to the machine-learning
based design of new materials and the required generation of extensive electronic structure
datasets.
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GPU Acceleration of Three-Center Coulomb Integral
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Francisco A. Delesma*, Moritz Leucke*,
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Faculty of Chemistry and Food Chemistry, Technische Universitét Dresden,
01062 Dresden, Germany
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In electronic structure theory calculations, the choice of basis set for expanding the wave func-
tion or electronic density is crucial for achieving both accuracy and performance. Numeric
atom-centered orbitals have become popular due to their compact and localised nature, which
enables accurate and efficient calculations for large molecules and solid-state systems. How-
ever, the numerical evaluation of three-center Coulomb integrals (3c-Cls), which appear in
Hartree-Fock and correlated methods within the resolution-of-the-identity approach, can be-
come a bottleneck in practical calculations. In this work, we detail and benchmark our re-
implementation of the 3c-CI evaluation, leveraging graphical processing units (GPUs) to accel-
erate the calculations. For medium-sized basis sets, we achieve a 2x speedup, while for larger
basis sets, speedups of 4x to 6x can be obtained for the 3c-CI evaluation.

1 Introduction

The four-center two-electron Coulomb integrals (4c-CIs) are present in various methods
within electronic structure theory, including hybrid functionals', second-order Mgller-
Plesset (MP2) perturbation theory?, coupled cluster methods®#, the Random Phase Ap-
proximation (RPA)>°, and the GW approximation’. The computation of the 4c-ClIs scales
O(N*) with respect to system size N. The resolution-of-the-identity (RI) approach®? is a
popular method to reduce the computational cost for the evaluation of the 4c-Cls. The RI
method refactors the 4c-Cls in products of two-center and three-center integrals. Some of
the two-center integrals are Coulomb integrals, while the three-center integrals, as well as
additional two-center integrals, can involve different interaction potentials depending on
the specific RI flavour. In this work, the two- and three-center integrals are also Coulomb
integrals (2¢-CIs and 3¢-ClIs). When employing the RI approximation, the computation of
the 3c-Cls dominates the integral evaluation with a computational complexity of O(N?)
to O(N3).

In electronic structure theory, the wave function or electronic density is expanded in a
basis. Broadly, we distinguish plane wave basis sets and localised basis sets. The latter
are confined to certain regions in space, typically around an atom, while plane wave basis
sets spread out over the entire structure. As demonstrated in the Supporting Information
of Ref. 10, the RI reformulation of the 4c-Cls within a plane-wave framework reduces
to trivial expressions, unlike for localised basis sets. Therefore, RI techniques and their
various flavours are primarily used in the context of localised basis sets. While plane-
wave basis sets are more commonly used in the solid-state community, localised basis sets

*These authors contributed equally to this work.
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are prevalent in quantum chemistry codes due to their primary application to molecular
systems. However, localised basis sets are also employed in solid-state codes, such as
FHI-aims'!, the all-electron software package used in this project.

Localised basis sets may have an analytic form, such as Gaussian-type orbitals (GTOs)
or Slater-type orbitals (STOs). An alternative are numeric atom-centered orbitals (NAOs),
which are evaluated on numerical grids and which are used in FHI-aims. GTOs and STOs
can be considered as a special case of an NAO. The NAOs are defined as:

oute) =y 1) (M

where u,, are radial functions and Y1 (T) spherical harmonics. The radial component of
an NAO is entirely flexible and not constrained to any specific form. wu,, is the solution
to the radial Schrédinger equation calculated on a dense logarithmic grid, while Y},,, (r) is
evaluated on angular grids.

Compared to GTOs and STOs, NAOs are more flexible because they are not con-
strained to a predefined analytical shape. This is an advantage in solid-state systems,
where atomic environments can vary significantly'?. Additional to FHI-aims, packages
such as ABACUS'"?, OpenMX'4, SIESTA!>, and among others'®!7, have adopted the NAO
methodology. Furthermore, NAOs can be numerically adjusted to describe both core and
valence electron behaviour well. Compared to NAOs, GTO basis sets require many func-
tions to describe deep core electrons correctly due to the incorrect description of the cusp
behaviour at the nucleus. NAO basis sets are thus usually smaller than GTOs and can

achieve higher accuracy with less basis functions'8.

2 Motivation

While NAOs are typically more compact than, for example, GTOs, the evaluation of the
integrals is more challenging. Analytical techniques are available for GTOs!°!, while
NAO integrals are computed numerically on grids. The numerical integration has a larger
computational prefactor than an analytical evaluation and substantially contributes to the
overall computational cost. For example, we demonstrated that in core-level GW cal-
culations, the 3c-CI computation over NAOs is the computationally most expensive step
for system sizes up to 40-50 atoms®?, despite its scaling being only O(N?) to O(N3).
The higher scaling GW -specific steps, with O(N*) and O(N®) complexity, dominate the
computational cost only for larger systems. Our recent efforts?® to reduce the scaling of
the GW steps have resulted in the 3c-CI evaluation contributing to half of the total compu-
tational time, even for systems larger than 100 atoms. Therefore, our goal is to accelerate
the computation of 3c-Cls by utilising new hybrid architectures that combine CPUs and
graphical processing units (GPU). We present here our latest algorithmic advances based
on CUDA for CPU/GPU high performance computing (HPC) platforms, including prelim-
inary benchmark results.

3 Theory

The 4c-Cls, in Mulliken notation, are defined as
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where 9, (r) are the molecular orbital (MOs). The MOs are expanded in the local basis set

as
= cuidu(r) 3)
173

where c,,; are the MO coefficients and ¢,,(r) are the atomic orbitals (AOs), which are in
our case NAOs. Inserting Eq. (3) into Eq. (2) we obtain

(ij]kl) = Z CpiCujCokCri(pv|oT) (4)
nvoT

where the 4c-Cls are now computed in the AO representation as follows
/ /
(pvlot) = // Ou(r)dy (r (| r')¢-(r )drdr'. 5)
r—r

The calculation of these integrals shows a scaling to the fourth power O(N*) with the
number of basis functions V.

The RI approach expands the product of two AOs, ¢, ¢,, in terms of a set of auxiliary
basis functions (ABFs), {¢p }, which are in our setup also NAOs

pHV(r)'_ j{:‘4uuwf) _'ﬁHV(r>‘ (6)

AP denotes the RI expansion coefficients. Several methods to obtain AP are available
in the literature. In this work we use the Coulomb metric, which 1mphes minimising the
Coulomb repulsion of the density residual, (0 — puv|ppy — Py ) yielding® 2423

AL, = (w|Q)Vy (7)
Q

where the three-center Coulomb integrals in Eq. (7) are defined as

Pu( r’
(uv|Q) = // a |r ~ r’| a( )drdr' (8)
and the two-center Coulomb integrals (2¢-CI) are given by
/
Vg = 7(,0;:(1’)(,0@(1‘ )drdr'. ©
v — /|

Computing the expansion via Eq. (7) is known as the RI-V approach. Inserting Eq. (6) into
Eq. (3) yields the expression

(wvlom)ry = Y AL Ve A, =Y (uw|P)Vipb(o7|Q) (10)
PQ PQ
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4 Methodology

4.1 Numerical Integration Techniques

For the 2¢-Cls defined in Eq. (9), two strategies can be employed to compute the integrals
numerically. The first strategy involves using logarithmic spherical Bessel transforms?%-2
to evaluate the integral in Fourier space. This approach is efficient because, in Fourier
space, the integral simplifies to a one-dimensional integral over the radial part of the ABFs.
This is the default way of integrating the 2c RI integrals in FHI-aims3.

The other integration strategy employs atom-centered, spherical real-space grids. This
method involves a two-step procedure: first, the Coulomb field Qp(r) of the auxiliary

function ¢ p(r) is computed:

Qp(r) = op(r') 4 (11

S e

The second step is to evaluate Vp as
Vg = [ er90(r)dr (12)
=D w(r)ep(r)q(r). (13)

Eq. (12) takes now the form of an overlap integral that can be discretised over the three-
dimensional spatial grids as shown in Eq. (13). w(r) is the weight of an integration grid
point r = r(a, s,t) that is uniquely determined by the atomic center a, the radial shell
number s, and the angular point ¢. Both of these techniques for evaluating two-center
integrals are computationally efficient, as the number of two-center integrals scales with
O(N?). The second strategy might be computationally slightly more expensive than the
first one, but is commonly used by NAO codes in other contexts, such as the evaluation of
the exchange correlation matrix in density functional theory (DFT)?%30-11.31

Turning now to the 3c-Cls, it is possible to solve the three-center integrals in Fourier
space as well but the additional integration center leads to large multipole sums3>33. In
FHI-aims the three-center integration was implemented by Ren et al.?8, building on the
real-space grid integration (second strategy) for the 2c-ClIs. The 3c-Cls are discretised
over three-dimensional grids

(| P) = / 6,u(r) by (0)2p (x) (14)
= " w(r)gu(r) by (r)2p(r) = M,p. (15)

To simplify the computation of the 3¢c-CIs we combine the indices p and v into a single
index p, resulting in the matrix M,p, where p is the index of a unique pair formed from
the primary AOs.

Unlike two-center integrals, the computation of three-center integrals is computation-
ally expensive. Accelerating their computation significantly reduces the prefactor in cal-
culations using the RI method. GPUs are a natural choice for this acceleration, as the large
sums over real-space points in Eq. (15) are independent and can benefit greatly from the
massive parallelism that GPUs provide.

116



1st shell 2nd shell

r=0.17A r=0.79A
50 points 110 points

Figure 1. Construction of the atomic grids, with the innermost shell (violet) at » = 0.17 A containing 50 points.
The next shell (green) at » = 0.79 A holds 110 points, and the third shell (yellow) at » = 1.57 A contains 194
points.

4.2 Real Space Grid Generation

To perform the numerical integration of the 3¢c-Cls, we construct a discrete set of real-space
grid points for each atom, defining a series of radial points, or shells, at different distances
from the atoms’ center. To arrange these shells, FHI-aims uses a logarithmic spacing,
which places points more densely near the center and distributes them more widely as the
distance increases®*. The location of the radial shells is given by*

log{l - [i/(Nrad + 1)]2}
log{l - [Nrad/(Nrad + 1)}2} .

(16)

T(Z) = Touter

Touter 1S the outermost radius, which is set to 7.0 A in the tight default settings of FHI-
aims. Npq is the number of radial shells. The value N;,g was empirically determined
by Baker et al. and is dependent on the atomic number®*. After the locations of the
shells are determined, they are filled with angular points, starting from the innermost to
the outermost shell. For the angular integration we use Lebedev grids®>. Lebedev grids
represent the quadrature on the surface of a unit sphere, featuring relatively simple point
distributions with octahedral symmetry. In FHI-aims the angular grids with 50, 110, 194,
302, 434, 590, 770, 974 and 1202 points are available.

Fig. 1 illustrates the construction of the atomic grids, combining the radial point dis-
tribution and the angular grids: the first shell is filled with 50 angular points. The next
shell employs an angular grid with 110 points, followed by another angular grid for the
subsequent shell that contains 194 points. This process is repeated for each radial shell,
systematically filling all shells with an increasingly larger number of angular points until
the outermost shell is reached. For NAOs, using 434 points in the outermost shell typically
offers a good balance between accuracy and computational time®. Generally, there are far
more than three shells. For example, with the tight default settings, there would be a total
of 69 shells for the carbon atom.
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1: [Initialization |

2: for each atom 1: Allocate working arrays on GPU
3 for each radial shell s GPU 2: Allocate M,p on GPU

4: for each angular point ¢ 3: Initialize CUDA Streams

5 Get the point coordinate r;

6 Get the point weights w(r)

7 if w(r;) > 0.0 then

8 Prune and list in m the computed AOs

9: Prune and list in n the computed ABFs -

10 Compute ¢y, (r;) 1: Synchronize default Stream

11: Compute Q (r;) 2: Asynchronous send ¢, (r;) to GPU
12: &gl {2 3: Asynchronous send Q,,(r;) to GPU
13: crdl Bive P 4: Asynchronous serld w(r) to GPU
14: for each p € m 5: Stream synchronize

15: TP cEh ¥ @ a 6: Compute D, (r;) (CUDA Kernel)
16: for each angular point ¢ 7: Compute current (M,p)s (CuBLAS)
17: Compute D,(r;) = w(r,)é (re)dy(r,) 8: Add current (M,p)s to M,p (CUDA Kernel)
18: end for H

19: end for

20: end for

21: Compute (M,p)s = Z D, (r;)Qp(r;) (BLAS)

t
22: Add current (M, to M, 1: Send M,p to CPU

23: end for (r)s = 2: Deallocate GPU arrays
24: end for 3: Destroy CUDA Streams
25: [Finalization

Figure 2. Pseudocode for the numerical integration of the 3c-Cls. The left panel (highlighted in yellow) shows
the CPU operations, while the right panel (in green) displays the corresponding GPU operations.

5 Implementation Details

The pseudocode for the numerical integration of the 3c-Cls (Eq. (15)) is shown in Fig. 2
and it describes the operations performed in one CPU core. The 3c-Cls are parallelised
via the message-passing-interface (MPI), distributing the set of ABFs {(p} over the CPU
cores. The numerical integration is performed sequentially for each atom a, and then for
each radial shell s of a, following the same logic used in constructing the numerical grid
shown in Fig. 1. For each angular point ¢, i.e., each point on the radial shell s, we retrieve
the spatial coordinate r; = (¢, ys, 2¢) and the corresponding weight w(r;), which is given
by

w(r) = p3(r, a)Wrad (8)Wang (1), an

where wr,q(s) is the integration weight for the logarithmic radial grid and wang(t) is the
angular weight originating from the Lebedev grids. ps(r,a) is the three-center partition
function, which divides the full three-dimensional integrals into effective atom-by-atom
components, as the integration shells overlap with each other.

If w(r;) > 0, meaning that the current point r, contributes to the integral, a pruning
step is performed. This step reduces the number of primary AO basis functions ¢, and
ABFs ¢p by checking, for each ¢,, and for each ¢p, whether their spatial extension in-
cludes r;. The indices of the contributing primary AO functions and ABFs are stored in
lists m and n, respectively. Generally, the number of primary AOs and ABFs stored in n
and m is smaller than the total number of primary and auxiliary functions available. For
ry, we then tabulate all primary functions in list m and compute all Coulomb fields €2,, for
the ABFs in list n.
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Next, we compute the density-matrix-like quantity D,(r;) as the product of two pri-
mary AO functions, multiplied by w(r;). This is outlined in pseudocode steps 14-20,
where p denotes the basis pair index, as defined in Eq. (15). (M,p)s is computed by con-
tracting D,(r;) and Qp(r;) over the number of angular points ¢ in each shell s. For this
step, we employ the BLAS3 routines (dgemm) . Finally, each shell contribution to the
3c-Cls is added to the final quantity M, p as defined in Eq. (15). The described algorithm,
corresponding to the left panel of Fig. 2, was previously implemented by Ren et al.?® and
served as starting point for this project.

The steps 14-20 in the left panel of Fig. 2 are the computational bottleneck in the
evaluation of the 3c-ClIs. To address this, we accelerated the computation of (M,p)s by
leveraging GPUs. In the right panel of Fig. 2, highlighted in green, we present the pseu-
docode for the GPU implementation. Since the computation of the 3c-Cls also requires a
substantial amount of memory, we base our implementation on CUDA to gain fine-grained
control over the GPU, including memory management. Additionally, access to libraries
such as cuBLAS and features like asynchronous execution provide greater flexibility for
optimising computational performance.

The process begins by allocating the arrays (M, p), and the full array M, p on the GPU,
followed by the initialisation of the CUDA streams. These streams can be used for asyn-
chronous execution of memory copies and kernel computations. Next, the weights w(r;),
primary basis functions ¢,,(r;) and the Coulomb potential of the ABFs 2,,(r;) are eval-
uated on the CPU and asynchronously transferred to the GPU. These asynchronous data
transfers help mitigate latency, as memory operations are typically slow. By overlapping
data transfers with computations - a technique known as latency hiding - we significantly
improve overall performance. Using a CUDA kernel, we compute the D,(r;) elements
and perform a matrix multiplication with Qp(r;) using the cuBLAS library. The s-shell
contribution (M, p), is then added to the full array M, p. After collecting the contributions
from each radial shell s, the GPU operations are finalised by transferring the array M,p
back to the CPU and deallocating all arrays.

6 Hardware Considerations

We performed the validation and benchmark calculations on JUWELS Booster. Each
JUWELS Booster node consists of 2 AMD EPYC Rome 7402 CPUs (48 cores in total)
and 4 NVIDIA A100 GPUs. Each node contains 160 GB of total GPU memory and 512
GB of CPU RAM. As mentioned before, FHI-aims uses MPI for parallelisation, assigning
one core to each task. Since a Booster node has more CPU cores than GPUs, multiple MPI
tasks share a GPU. To enable this, we use NVIDIA’s Multi-Process Service (MPS) for
efficient GPU resource sharing across MPI tasks. Further speedup was achieved by bind-
ing tasks to specific CPU cores and configuring each task’s CUDA_VISIBLE_DEVICES
variable to target the GPU physically closest to the assigned core, minimising data transfer
latency.

7 Benchmarks

To benchmark the computational performance of our implementation, we carried out hy-
brid DFT calculations using the PBEO functional®’-*®. The computations were performed
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Figure 3. Walltime [min] for the evaluation of the 3c-ClIs using CPU only (in gray) and CPU+GPU (in green)
shown as a function of increasing basis size. The calculations were performed with the Tier 1, Tier 2, Tier 3, and
Tier 4 NAO basis sets, using the benzanthracene molecule (C1gH12) as test system, which consists of 30 atoms
in total.

Time Three-center integrals Fock
CPUonly CPU+GPU CPUonly CPU+GPU exchange
Tier 1 0.98 1.14 0.64 0.83 0.03
Tier 2 8.30 6.07 5.93 3.18 2.05
Tier 3 28.73 15.71 17.40 4.14 9.75
Tier 4 68.43 37.60 37.18 6.15 26.73

Table 1. Total computational timings [min] for the PBEQ calculation of the benzanthracene molecule, including
three-center Coulomb integrals and Fock exchange. Timings were obtained using the Tier 1, Tier 2, Tier 3 and
Tier 4 basis set.

on one AMD EPYC Rome node, as detailed in Sec. 6. The benzanthracene molecule
(Cy18H12), containing 30 atoms, was selected as benchmark system. Tab. 1 reports the total
computational time (in minutes), along with the 3c-CI and Fock exchange timings as a
function of increasing basis set size. Both CPU-only and CPU+GPU timings are reported,
with GPU acceleration applied exclusively to the evaluation of the 3c-ClIs. Considering
the largest Tier 4 NAO basis set, Tab. 1 shows that the 3c-ClIs account for 54% of the total
time in the CPU-only implementation, while in the CPU+GPU implementation, they now
contribute approximately 16% of the total time. Our CPU+GPU implementation removes
the 3c-Cls as the computational bottleneck. The computationally most expensive step is
now the calculation of the Fock exchange matrix, accounting for 71% of the total run time.

As reported in Tab. 1 and illustrated in Fig. 3, the GPU acceleration of the 3c-CI eval-
uation exhibits a distinct behaviour. With the small Tier 1 basis set, no acceleration is
observed. However, as the basis set size increases, we achieve speedups of 1.8x, 3.5x, and
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6.0x for the Tier 2, Tier 3, and Tier 4 basis sets, respectively. We attribute this behaviour
to the fact that increasing the basis set size enlarges the arrays that the GPU is working
on, thereby improving GPU utilisation. Correlated methods are known to converge slowly
with respect to basis set size* and typically require basis sets larger than Tier 2 to achieve
convergence®®3°, This aspect is highly advantageous for our CPU+GPU implementation,
significantly accelerating production-run calculations.

8 Concluding Remarks

In this article, we presented a GPU implementation for computing 3c-Cls over NAOs in
the FHI-aims program package, utilising low-level CUDA APIs. We demonstrated that our
implementation can accelerate the evaluation by up to a factor of six when comparing CPU-
only to CPU+GPU execution times. Additionally, we observed that the speed-up generally
increases with larger basis sets. This represents a significant reduction in the time required
for electronic structure calculations at the hybrid DFT and beyond-DFT levels, enabling
computations on larger systems. Additionally, the 3c-CIs are central to the low-scaling
RPA and GW algorithms currently under development in FHI-aims*’. Our work paves the
way for a full GPU implementation of these algorithms.
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We employ data-driven methodologies and machine learning with materials science approaches
to accelerate the development of sustainable energy technologies. Our focus covers the entire
materials workflow, from modelling and simulations for discovery, correlative diagnostics and
property prediction, and inverse molecular design, to the extraction, management, and analytics
of materials science data, as well as automated image analysis. Challenges such as diverse
data types, limited training sets, and the complex, multi-scale nature of materials demand a
synergy between data representation and management, machine learning models and domain
expertise. We utilise atomistic simulations using density functional theory (DFT) calculations,
integrated with artificial intelligence (Al), to efficiently screen the parametric space governing
the life-cycle performance of anion exchange membrane materials. Our focus is on optimising
these materials for enhanced stability and transport properties. Additionally, we are developing
deep learning-based techniques to automate image analysis and characterisation across various
applications in functional energy materials. Furthermore, we introduce the development of
native graph databases by integrating standardised materials ontologies with knowledge graphs,
facilitating flexible representations of the materials-to-device workflow.

1 Introduction

Clean energy technologies, such as fuel cells, hydrogen storage devices and solar tech-
nologies, heavily depend on energy materials that exhibit high performance in terms of
activity and stability!. The accelerated development of such materials plays a pivotal role
in driving the sustainable technologies forward. Despite their critical importance, the pro-
cess of developing new materials from laboratory to the marketplace remains significantly
lengthy, often taking from 10 to 20 years>. This prolonged process is mainly related to
the multi-component nature of the devices and the complexity of the multi-step processes
required to ensure the materials meet the cost, performance and scalability needs.

Traditional materials development approach often involves a sequential and largely em-
pirical workflow which generally includes four primary steps: experiment planning based
on chemical intuition, synthesis and characterisation of materials, data analytics to assess
performance and lifetime, followed by an iterative process of repeating these steps to op-
timise materials properties®. As this approach is inherently slow and resource-intensive,
researchers are increasingly turning to data-driven approaches, particularly those involving
artificial intelligence (AI) and machine learning (ML), as means of accelerating discovery,
design and integration of functional energy materials®.
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Figure 1. Data workflow and various in-line and off-line data sources involved in self-driving and semi-automated
labs; autonomous optimisation workflow in self-driving labs.

In particular a shift has occurred toward the use of Materials Acceleration Platforms
(MAPs). These platforms leverage ML and Al and high-throughput experimentation tech-
niques to automate various steps of the traditional workflow>. MAPs utilise Al-driven
models to rapidly explore the large and complex chemical spaces of materials and gener-
ate predictions about material properties without the need for extensive experimental work.
For instance, autonomous robotic systems have been developed to assist in exploring chem-
ical spaces for materials such as hydrogen production photocatalysts®. Such platforms have
been also established to optimise thin films’ optical and electronic properties, which are
critical components in devices like solar cells and sensors’. Additionally, they can perform
high-throughput characterisation for advanced materials®.

Despite the significant potential of MAPs, several challenges remain. Current design
of the workflow orchestration software is hardware-centric and targeted at the actual in-
struments’. This causes bottlenecks between theory and experimentation and a completely
overlooked problem of automatic data analysis and data lineage tracking. An ideal data
workflow should be capable of ingesting data from both in-line and off-line experiments,
modelling, and simulations. Storage and retrieval of the integrated data from various
sources, as depicted in Fig. 1, enable an effective development of self-serve online an-
alytical tools for automated data analysis, improving the ability to connect to the analytical
tools and the responsiveness to semantic and integrated queries, and the data access per-
formance, all features that lie beyond the capabilities of current disjoint, heterogenous
and often transaction-oriented databases and data infrastructures in the energy materials
domain.

Another major challenge lies in the optimisation algorithms that guide materials design.
These algorithms need to be scalable and robust enough to manage the noise and variability
inherent in experimental conditions. Furthermore, materials design often requires multi-
objective optimisation, where several competing properties — such as stability, conductivity,
and cost — must be balanced. Developing algorithms capable of efficiently navigating this
complex, multi-dimensional design space remains a significant hurdle'”.

This contribution addresses three key areas in the development of functional energy
materials. First, we focus on creating a flexible data extraction and management system,
leveraging ontology and graph databases to enable more efficient data handling and in-
tegration across the materials-to-device workflow. Second, we employ computer vision
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and deep learning techniques for automated characterisation and image analysis, aiming to
streamline and enhance the accuracy of material characterisation processes. Third, we inte-
grate high-throughput density functional theory (DFT) simulations with inverse molecular
design to accelerate the development of anion exchange membrane materials, optimising
their stability and transport properties for energy applications.

2 Synergising Ontologies and Graph Databases for Highly Flexible
Materials-to-Device Workflow Representations

In recent years, the increasing demand for sustainable energy solutions has led to a sig-
nificant focus on the development of advanced materials, particularly those used in energy
systems. The extraction and management of data related to these materials are crucial for
optimising their properties and performance!'. However, the field faces challenges due to
the heterogeneity of data sources and the lack of standardised methods for data represen-
tation. To address these challenges, a flexible data extraction and management system is
necessary, one that can handle the complexities of energy materials and their associated
data.

2.1 Objective 1: Extension of the European Materials Modelling Ontology
(EMMO) for Standardised Data Representation

The European Materials Modelling Ontology (EMMO) provides a structured framework
for categorising and defining concepts within the materials science domain. However,
its current structure may not fully encompass the specific needs of energy materials re-
search!'?. Therefore, extending the EMMO to include these specialised concepts is es-
sential for achieving standardised data representations across various research projects'?.
This extension will facilitate interoperability between different data sources and research
institutions, enabling more efficient data sharing and collaboration.

In a previous publication, we demonstrated the utility of ontologies in enhancing data
management in materials science, particularly through the integration of graph databases
(see Fig. 2). Our approach focused on transforming non-standardised tabular data into
knowledge graphs, which adhere to a defined ontology. This method not only improves
data accessibility but also ensures that the data is semantically enriched, allowing for more

sophisticated queries and analyses'#.

| "Ontology Real-world
a) Property b) | Demain Domain
MEASURED_BY PROCESSED_BY

Measurement

Matter Manufacturing

FABRICATES
FAS_PARAVTER W Parameter

Meta Data

Figure 2. Schematic overview of the graph datamodel (a) and the node labelling system'4.
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2.2 Objective 2: Creation of a New Graph Data Model for Workflows,
Measurements, and Simulation Data

Energy materials research often involves complex workflows that integrate experimental
measurements with simulation data. To manage this complexity, we propose the creation
of a new graph data model that captures the relationships between different elements of the
research process, such as materials, measurements, and simulation results!>. This model
will be designed to accommodate the diverse nature of energy materials research, ensuring
that it is flexible enough to handle various types of data and workflows.

Our work on knowledge graph extraction from tabular data has laid the groundwork
for this objective. By utilising large language models (LLMs) and rule-based feedback
loops, we developed a semi-automated pipeline that transforms R&D tables into connected
knowledge graphs. These graphs are highly adaptable, capable of representing the intricate
relationships between different data points in a research workflow. The use of LLMs en-
ables the system to infer context and meaning from data, ensuring that the resulting graphs
are both accurate and meaningful.

2.3 Objective 3: Use of Neodj Database and Django Framework for Cloud-Based
Application Integration

To support the integration of the new graph data model into cloud-based applications,
we plan to utilise the Neo4j graph database in conjunction with the Django framework.
Neo4j’s capabilities in handling complex relationships and its compatibility with various
ontologies make it an ideal choice for this project. The Django framework will provide a
robust platform for developing user interfaces and managing interactions with the database.

In our previous work, we demonstrated the effectiveness of integrating graph databases
with semantic search capabilities within a Django application'®. This integration allows
for intuitive data management, enabling researchers to store, retrieve, and analyse data
with ease. By building on this foundation, we aim to create a cloud-based system that
facilitates the management of energy materials data, supporting research efforts across
multiple institutions and projects.

In conclusion, the development of a flexible data extraction and management system
for energy materials is a critical step towards advancing research in this field. By extending
the EMMO, creating a new graph data model, and leveraging the capabilities of Neo4j and
Django, we can provide a standardised, interoperable, and scalable solution that meets
the unique needs of energy materials research. This system will not only enhance data
accessibility and usability but also pave the way for new discoveries in the development of
sustainable energy solutions.

3 Computer Vision and Deep Learning for Material Characterisation

The recent advances in computer vision and deep learning techniques have opened new
horizons in the field of material characterisation'®. These techniques allow for the auto-
mated analysis of large, complex imaging datasets, facilitating the study of intricate mate-
rial structures and behaviours which otherwise would remain inaccessible!”.
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Figure 3. Schematic workflow employed for the development of deep learning workflows in the field of image
analysis. The experimentalist collects the data, then the regions of interest are annotated. The dataset is employed
to train DL models for prediction on unseen data. Finally, using computer vision, the features of interest are
extracted and plotted properly for visualisation®-22:23,

3.1 High-Throughput Analysis of Particle Size Distribution from Transmission
Electron Microscopy (TEM) Images:

In the realm of nanomaterials, understanding particle size distribution is crucial for op-
timising the performance and durability of various materials. Especially, the analysis of
platinum nanoparticles on a carbon support for PEMFC applications is sensitive to those
parameters'®!°. Deep learning methods, particularly CNNs, have been employed to auto-
mate the analysis of TEM images for this purpose. A notable application is the use of the
StarDist model?*2!, which employs a U-Net architecture to perform instance segmentation
of nanoparticles. This model has been effectively used to analyse high-resolution TEM im-
ages, providing accurate particle size distribution data with minimal human intervention.
The ability of deep learning models to handle overlapping particles and varied shapes sig-
nificantly improves the reliability of the analysis. Furthermore, in this work, a workflow
for the automatic extraction of features of interest from the segmented images was devel-
oped. This allows for rapid characterisation of advanced metrics, such as morphological
analysis of individual particles and their distributions.

3.2 Screening of Catalyst Layers and Ink Structural Characterisation for Polymer
Electrolyte Fuel Cells:

The performance of PEMFCs is heavily influenced by the microstructure of catalyst layers,
which are often formed from catalyst inks. Deep learning techniques have been applied
to the high-throughput screening of these catalyst layers, using TEM images to identify
and characterise structural features. Convolutional neural networks have also shown ex-
ceptional capability in distinguishing between different structural components of catalyst
layers, classifying inks based on visual clues critical to the efficiency of fuel cells. By
automating the screening process, these deep learning models facilitate the rapid evalua-
tion and optimisation of catalyst materials, thereby accelerating the development of more
efficient and cost-effective fuel cells?>23.
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Figure 4. Schematic depiction of a PEMFC and the three different tools developed in this project: bubble dynam-
ics analysis in videos (left), instance segmentation of nanoparticles in the catalyst layer (upper right), and catalyst
ink image classification (bottom right)*.

3.3 Automated Analysis of Bubble Dynamics in Proton Exchange Membrane
Water Electrolysers:

In proton exchange membrane water electrolysers (PEMWEs), the dynamics of gas bub-
bles play a crucial role in determining overall system efficiency. The formation, growth,
and detachment of bubbles can significantly impact the two-phase flow dynamics within
the electrolyser. Deep learning models have been employed to analyse bubble dynamics
using optical imaging data. These models are capable of segmenting and, with computer
vision algorithms, tracking bubbles over time, providing detailed insights into bubble size,
distribution, and behaviour under different operating conditions. Such automated analysis
not only enhances our understanding of bubble dynamics but also aids in the optimisation
of electrolyser design and operation, leading to improved performance®*.

The application of deep learning techniques in material characterisation has led to sub-
stantial improvements in both the performance, velocity, and reliability of segmentation
models and the accuracy of characterisation outcomes. The ability to process large vol-
umes of imaging data quickly and accurately enables researchers to obtain insights that
were previously difficult to obtain from non-Al approaches. The implementation of deep
learning workflows has demonstrated significant reductions in analysis time while simulta-
neously increasing the precision of measurements, such as particle size and morphological
distributions, bubble dynamics, and ink classification. These advancements highlight the
transformative potential of deep learning in the field of material science, paving the way
for more efficient and insightful research methodologies.

These innovations provide a robust foundation for future developments, as the inte-
gration of artificial intelligence into material characterisation continues to evolve, offer-
ing new tools and techniques for understanding and optimising material properties at the
macro, micro, and nanoscale.
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4 Computational Exploration and Design of Electrochemical
Materials

In the transition towards a green hydrogen economy, anion exchange membranes (AEMs)
are emerging as a promising technology. Fuel cells and water electrolysers based around
AEMs operate in a strongly alkaline environment and may function without the need for
costly and rare platinum group metals (PGMs), which is crucial for the widespread adop-
tion needed for a green hydrogen-based economy?> 2% However, currently a mayor chal-
lenge in the utilisation of AEMs is the significant degradation of many AEM materials in
the harsh alkaline environments they are exposed to in application®’.

An AEM is generally constructed from a polymer backbone to give structural support
and an organic cationic moiety to facilitate anion conductivity. A diverse set of structures
for the cationic moieties have been studied in the literature with those based on imida-
zolium being especially prominent. The imidazolium structure can be augmented easily
by adding various substituents to the five atoms making up the imidazolium heterocycle,
with the resulting chemical structure having a significant impact on the molecule’s resis-
tance towards alkaline degradation®®.

In this project, the extensive computational capabilities of the JUWELS supercomputer
are aimed towards the discovery of imidazolium-based molecules that possess a high alka-
line stability. To achieve this goal, a multi-step approach is taken, which is summarised in
the following:

1. Identify a computational descriptor of a given molecule’s alkaline stability.

2. Automate the computation of the identified stability descriptor and apply it to a molec-
ular dataset of a few thousand compounds.

3. Identify promising compounds from the dataset and test them experimentally to verify
the found descriptor.

4. Train suitable machine learning models on the computed compounds to further accel-
erate the search for novel alkaline stable molecules.

To identify a reliable computational descriptor for the alkaline stability of imidazolium-
based compounds, several molecules were identified for which experimental alkaline sta-
bility measurements have been performed in literature. For these compounds, the main
degradation pathways were modelled at the Density Functional Theory (DFT) and Cou-
pled Cluster (CC) level. Through comparison of the computed degradation energetic and
experimental stability data, it could be identified that the free energy change of a hydroxide
attack on the imidazolium ring is a reliable descriptor of alkaline stability®®.

In order to gain insights into the structure-stability relationship of imidazolium-based
compounds, the descriptor was computed for a library of about 5800 structures. To
achieve this, the computation of the stability descriptor was automated, and a diverse set
of imidazolium-based structures were systematically generated. The JUWELS supercom-
puter® was then utilised to perform the stability prediction for all generated structures.
From the generated dataset, diverse insights could be gained into the factors contributing
to a high alkaline stability. Additionally, promising structures could be identified from the
dataset and a selection of five compounds were chosen to be synthesised in the lab and
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Figure 5. The predicted half life of imidazolium-based compounds for various substituents estimated through

automated DFT calculations vs. their synthesisability score® .

their alkaline stability was measured experimentally. The experimentally measured stabil-
ity was shown to be in good agreement with the stability predicted with the computational
descriptor and an especially stable compound was found.

The extensive molecular library that was generated is also sufficiently large to effec-
tively train machine learning models to generate the stability descriptor, with graph neural
networks being especially suitable for this task. Different machine learning models are
being trained at the moment, reaching accuracies of about 1 kcal/mol while being multiple
orders of magnitude faster than performing DFT calculations. Additionally, the dataset is
ideal to benchmark various active learning approaches.

5 Concluding Remarks

In conclusion, our work integrates cutting-edge methodologies in data management, deep
learning, and computational modelling to accelerate the discovery and optimisation of sus-
tainable energy materials. We have extended the European Materials Modelling Ontol-
ogy and developed a flexible graph data model for managing diverse materials workflows,
enabling more efficient data representation and analysis. Additionally, the application
of deep learning techniques has significantly advanced high-throughput image analysis,
with applications ranging from particle size distribution in nanomaterials to catalyst layer
characterisation and bubble dynamics in electrochemical systems. These innovations have
not only streamlined material characterisation but also enhanced precision and scalability.
Moreover, our computational pipeline for the design of alkaline-stable imidazolium-based
compounds has accelerated the search for novel anion exchange membranes by leverag-
ing density functional theory calculations and machine learning models. Together, these
contributions demonstrate the potential of integrating ontologies, deep learning, and com-
putational simulations to revolutionise materials discovery and accelerate the transition
towards more efficient, sustainable energy technologies.
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One of the most enduring yet imperfect theories in high-energy physics is the Standard
Model of particle physics. While it successfully describes electrodynamic, strong, and
weak forces without an underlying unifying concept, its further limitations become appar-
ent when considering dark matter or baryon asymmetry. Despite these flaws, the model
has consistently passed experimental tests, demonstrating its remarkable accuracy and pre-
dictive power.

One notable example of the Standard Model’s experimental validation is the ongoing
effort at Fermilab to precisely measure the magnetic moment of the muon. At first glance,
it may seem counterintuitive that a particle as light as 105 MeV could be used to search
for heavy, unseen new particles. However, the key ingredient here is the experiment’s
extraordinary precision. Today, scientists can measure this quantity with an astonishing
relative error of 10710,

This feat is particularly impressive given that the magnetic moment receives radiative
corrections from fluctuating quantum fields, as demonstrated by Julian Schwinger in 1948.
Since then, the accuracy of his theory has been rigorously tested and confirmed to as many
as twelve digits in the case of the electron.

Schwinger’s theory provides a solid foundation for understanding radiative corrections
on the muon’s magnetic moment when considering electromagnetic and weak interactions.
However, strong interactions pose a challenge to standard quantum field theory methods.
To overcome this hurdle, scientists sought another process where the same contribution
could be isolated and measured in an unrelated experiment. The hadronic R ratio from e+e-
scattering experiments offered a solution, allowing for the extraction of the missing piece
with smaller error than any theoretical calculation before. This ’data-driven’ approach
led to a result that fell short of the direct measurements by over five standard deviations,
sufficient to claim the discovery of a new interaction. Unfortunately, discrepancies exist
among the individual R ratio experiments.

Numerical evaluation of the partition function of Quantum Chromodynamics (QCD),
which governs strong interactions, were also converging on a precise measurement of
the strong contribution of the muon’s magnetic moment. Notably, many of these first-
principles calculations from QCD exhibit agreement with several experimental and theo-
retical results of the Standard Model. In response to the challenge related to the muon’s
magnetic moment, leading theory groups dedicated themselves to refining their numerical
approaches with the goal of achieving the experiment’s level of precision.

One key step in this process was to break down the result into short-range, intermediate-
range, and long-range terms, allowing each term to be addressed individually. A contri-
bution by C. Lehner in this volume presents a thorough analysis of the agreement among
major theory groups’ numerical results. This also provides readers with insight into the
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intricacies of the simulations, including their limitations and the meticulous attention re-
quired to ensure reliability at such high levels of precision.

Another, somewhat unrelated significant challenge to the Standard Model is complex-
ity. Although we can reasonably control the behaviour of individual elementary particles,
many-body problems pose a formidable test for both the theory and our methods to solve
them. Nuclear physics, in particular, exemplifies this challenge.

A major milestone was reached over a decade ago with the successful computation of
the mass of the proton and neutron. This achievement required a precise accounting for the
gluon fields, which are the carriers of the strong force. In fact, much of the mass of these
nucleons is attributed to the energy of the interacting fields.

The dynamics of how these nucleons interact with each other presents a new chapter in
the physics of strong interactions. For instance, the binding energies of light atomic nuclei
are extremely small, on the order of per-mill relative to the mass of the nuclei, posing a
significant challenge to theoretical predictions. However, the probably greatest challenge
facing this field is understanding the largest nuclei in nature, the core of neutron stars.
These extreme environments pose unique difficulties for theoretical models, requiring in-
novative approaches and cutting-edge computational capabilities.

Today, readers have access to a wealth of recent discoveries in nuclear interactions.
This chapter begins with a concise review of cutting-edge nuclear simulations by U.-G.
MeiBiner. The simulation results include the spectrum and charge radii of light nuclei, as
well as the lifetime of the triton, among other examples. Unlike the other contributions in
this edition, Meiflner’s approach avoids the use of gluons and quarks to model the strong
force. Instead, an effective field theory is employed, treating nucleons as point-like parti-
cles interacting with auxiliary fields.

Thanks to recent advances in algorithm development, sophisticated methods have
emerged for describing nucleons. To accurately simulate the densities found in neutron
stars, however, it is necessary to account for hyperons — essentially nucleons with a single
light quark replaced by a strange quark. Initial attempts to incorporate hyperons yielded a
pressure-density relation (equation of state) that was too soft, potentially leading to the col-
lapse of heavy observed neutron stars into black holes. Fortunately, repulsive three-body
forces can stiffen the equation of state, resolving what is known as the hyperon puzzle and
ensuring the stability of these massive celestial bodies.

An alternative approach to quantifying binding energies in light nuclei is to simulate
full Quantum Chromodynamics (QCD) without relying on effective field theories. The
second contribution in this chapter takes this route, computing the binding energy of the H
dibaryon — a conjectured bound state of two hyperons — using J. R. Green et al.’s methodol-
ogy. A crucial aspect of such simulations is the treatment of discretisation artefacts, which
can introduce significant errors. To mitigate these effects, a continuum extrapolation is
essential. This process is discussed in the context of renormalisation by C. Alexandrou in
a separate contribution. Renormalisation plays a key role in connecting observables in a
discretised theory to those in the real world, enabling physical predictions and allowing us
to test the Standard Model further. One of the ultimate goals is to compute form factors and
QCD matrix elements — essential components from the strong force that can be combined
with electromagnetic and weak physics. By achieving this and combining the results with
experimental findings, we can put the Standard Model under new scrutiny.
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I discuss recent developments in nuclear lattice effective field theory, which is a premier tool in
the theory of nuclear structure and reactions. Topics include the wavefunction matching method
as a new tool for quantum many-body theory, allowing for accurate calculations at N3LO in the
chiral expansion, as well as applications of the precise forces in few- and many nucleon systems.
I also discuss a first step for precision hypernuclear physics, describe the solution of a puzzle
related to the *He monopole transition form factor, discuss the calculation of hyper-neutron
matter and give new insights how Big Bang nucleosynthesis constrains fundamental parameters
of the Standard Model.

1 Introduction

Understanding the formation of strongly interacting systems such a atomic nuclei from
first principles calculations is still one of the biggest challenges within contemporary the-
oretical physics. While the theory of the strong interactions, Quantum Chromodynamics
(QCD), is well tested in many processes, the matter that leads to life in our Universe is
based on nuclei, which are self-bound systems of nucleons (protons and neutrons). As the
nucleons themselves consist of quarks and gluons, and hence are not fundamental degrees
of freedom, the forces between nucleons are not completely given in terms of two-body
interactions, but include three-body and higher order interaction terms. Much progress in
the understanding of the structure and dynamics of nuclei has been made in the context of
Nuclear Lattice Effective Field Theory (NLEFT)!, which combines the so successful low-
energy chiral effective field theory of QCD with stochastic methods (Monte Carlo simula-
tions). While direct calculations of nuclei based on quarks and gluons in the framework of
lattice QCD are essentially impossible due to the severe sign problem, formulating the nu-
clear forces in terms of protons, neutrons and pions is not only more appropriate, but also
comes with the added value of the approximate Wigner SU(4) (spin-isospin) symmetry of
the underlying nuclear interactions. This symmetry in fact suppresses the sign oscillations
strongly, and in the limit of an exact Wigner SU(4) symmetry, spin-isospin saturated nuclei
like e.g. *He are free of any sign oscillation. In NLEFT simulations, Euclidean space-time
is discretised on a torus of volume L® x L, where L is the side length of the spatial di-
mension, and L; denotes the extent of the Euclidean time dimension. The lattice spacing
in the spatial (temporal) dimensions is a (a;). The maximal momentum on the lattice is
Pmax = 7/a, which serves as the UV regulator of the theory. Nucleons are point-like
particles on the lattice sites, and the interactions between nucleons (pion exchanges and
contact terms) are treated as insertions on the nucleon world lines via auxiliary-field repre-
sentations. Properties of multi-nucleon systems are computed by means of the projection
Monte Carlo (MC) method. Each nucleon is treated as a single particle propagating in a
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Figure 1. Left panel: Pictoral representation of wavefunction matching. The simple Hamiltonian H* is an easily
computable Hamiltonian while the high-fidelity Hamiltonian H is not. A unitary transformation on the two-
nucleon interaction with finite range R is used to produce a new Hamiltonian H” that is close to HS. In each
two-body channel, the ground state wave function of H’ matches the ground state wave function of H forr > R
and is proportional to the ground state wave function of H for 7 < R. Right panel: Results for nuclear binding
energies using wavefunction matching. Calculated ground state and excited state energies of some selected nuclei
with up to A = 58 at N3LO in chiral EFT and comparison with experimental data. The nuclei used in the fit of
the higher-order three-nucleon interactions are labelled with open squares, while the other nuclei are predictions
denoted with filled diamonds.

fluctuating background of pion and auxiliary fields. Both local and non-local smearings
are applied to the nucleon creation and annihilation operators. Euclidean time projection
is started from some initial state W4 for Z protons and N neutrons (with A = Z + N).
One calculates the ground state energy and other properties from the correlation function
Z(t) = (V4| exp(—tH)|V 4) = Tr{MZ%t}, in the limit of large Euclidean projection time
t, with M the normal-ordered transfer-matrix operator and L; the number of Euclidean
time steps. Higher-order contributions are computed as perturbative corrections to the LO
results. A much more detailed description is given in the monograph'.

2 Wavefunction Matching

Quantum Monte Carlo (QMC) simulations are a powerful and efficient method that can
describe strong correlations in quantum many-body systems. No assumptions about the
nature of the system are necessary, and the computational effort grows only as a low power
of the number of particles. For many problems of interest, a simple Hamiltonian H*
can be found that describes the energies and other observables of the many-body system
in fair agreement with empirical data and is easily computable using MC methods. On
the other hand, realistic high-fidelity Hamiltonians usually suffer from severe sign prob-
lems with positive and negative contributions to the averages cancelling each other, so that
Monte Carlo calculations become impractical. In Ref. 2, this problem was solved introduc-
ing a new approach called wavefunction matching (WFM). While keeping the observable
physics unchanged, wavefunction matching creates a new high-fidelity Hamiltonian H’
such that wave functions at short distances match that of a simple Hamiltonian H° which
is easily computed. This allows for a rapidly converging expansion in powers of the dif-
ference H' — H°. WFM can be used with any computational scheme. In the following
analysis, we focus on the case of QMC simulations, where the method presents a promis-
ing and practical strategy for evading the sign problem in realistic calculations of nuclear
quantum many-body systems. The basic idea of WFM is easily described. Starting from a
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Figure 2. Left panel: Predictions for charge radii of nuclei up to A = 58 at N3LO in chiral EFT in comparison
to the experimental data. Right panel: Predictions for pure neutron matter energy per neutron and symmetric
nuclear matter energy per nucleon as a function of density at N3LO in chiral EFT. For comparison we show the
results Refs. 5-8. The empirical saturation point is labelled with a black rectangular box.

realistic high-fidelity Hamiltonian H, WFM defines a new Hamiltonian
H =U'HU, (1)

where U is a unitary transformation and UT its Hermitian conjugate. More precisely, we
consider the two-nucleon interaction here. In each two-body angular momentum channel,
the unitary transformation U is active only when the separation distance between two par-
ticles is less than some chosen distance R. Let us write 1(r), 14 (r), and 1§ (r) for the
ground state wave functions of H, H’, and the simple Hamiltonian H s, respectively. The
transformation U is defined such that ) (r) is proportional to 1§ (r) for r < R. The sim-
ple Hamiltonian is chosen so that the constant of proportionality is close to 1. For » > R,
however, U is not active and so ¢{(r) remains equal ¢o(r). This is illustrated in the left
panel of Fig. 1. In the NLEFT application discussed here, the simple Hamiltonian con-
sists of SU(4) invariant two-body forces as well as one-pion exchange. All higher order
corrections are treated in first order perturbation theory. The short-distance parts of the
chiral three-nucleon (3N) interactions are then tuned to minimise errors in the binding en-
ergies of selected light and medium-mass nuclei. A total of six additional 3N parameters
are adjusted, and it is found that with just one parameter, the root-mean-square-deviation
(RMSD) for the energy per nucleon drops from 1.2 MeV down to 0.4 MeV. With the addi-
tion of a few additional parameters, the RMSD per nucleon drops further to about 0.1 MeV,
as shown in the right panel of Fig. 1. Having fixed all parameters, we can now make predic-
tions. In the left panel of Fig. 2, the results for the charge radii of nuclei with up to A = 58
nucleons are shown. No charge radii data were used to fit any interaction parameters. The
one-standard-deviation point estimate error bars represent computational uncertainties due
to MC errors, infinite volume extrapolation, and infinite time extrapolation. The agree-
ment with empirical results is quite good, with an RMSD of about 0.03 fm. Note that
the larger errors for the heaviest nuclei are statistical and can be decreased by utilising
greater computational resources. This solves the long-standing “radius puzzle” observed
in all continuum ab initio many-body calculations, namely that when getting the correct
binding energies, the nuclear radii come out too small, see e.g. Refs. 3,4. In the right panel
of Fig. 2, lattice results for the energy per nucleon versus density for pure neutron matter
and symmetric nuclear matter are shown. None of the neutron matter and symmetric nu-
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clear matter data were used to fit any interaction parameters. The density is expressed as
a fraction of the saturation density for nuclear matter, py = 0.17 fm~3. For the neutron
matter calculations, we consider 14 to 80 neutrons in periodic box lengths ranging from
6.58 fm to 13.2 fm. For the symmetric nuclear matter calculations, we use system sizes
from 12 to 160 nucleons in a periodic box of length 9.21 fm. We see that the neutron
matter calculations agree well with previous calculations. Within the uncertainties due to
finite system size corrections, the symmetric nuclear matter calculations show saturation at
an energy and density consistent with the empirical saturation point labelled with the black
rectangular box. The relative uncertainties due to finite system size are at the 10% level for
the energy.

3 Testing the High-Fidelity Interactions

Next, the so determined N3LO high-fidelity interactions are tested in a number of calcula-
tions, which we discuss briefly.

3.1 Structure Factors for Hot Neutron Matter

In Ref. 9 the first ab initio lattice calculation of spin and density correlations in hot neutron
matter using the high-fidelity interactions at N3LO in chiral EFT was done. These correla-
tions have a large impact on neutrino heating and shock revival in core-collapse supernovae
and are encapsulated in functions called structure factors. Unfortunately, calculations of
structure factors using high-fidelity chiral interactions were well out of reach using existing
computational methods. To solve the problem, a computational approach called the rank-
one operator (RO) method is introduced. The RO method is a general technique with broad
applications to simulations of fermionic many-body systems. It solves the problem of ex-
ponential scaling of computational effort when using perturbation theory for higher-body
operators and higher-order corrections. Using the RO method, we compute the vector and
axial static structure factors for hot neutron matter as a function of temperature and density
given by:

Su(@) = 73 S [(pn + m)p()) — (1°)7]

nn’

Su(a@) = 73 3¢ ™ [{p-(n + n)pu(')) — (02)?]

nn’

(@)

where p and p, are the density and the spin-density operators, respectively, and n,n’
represent coordinates on the L3 cubic lattice. The ab initio lattice results are in good
agreement with virial expansion calculations at low densities but are more reliable at higher
densities, see the left panel of Fig. 3. Random phase approximation codes used to estimate
neutrino opacity in core-collapse supernovae simulations can now be calibrated with these
precise ab initio lattice calculations.

3.2 Nuclear Charge Radii of Silicon Isotopes

The next test of the N3LO forces was done in collaboration with experimentalists from
FRIB'?. They determined the nuclear charge radius of 32Si using collinear laser spec-
troscopy, leading to Ry (32Si) = 3.153(12) fm. The experimental result was confronted
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Figure 3. Left panel: Calculated momentum dependent neutron matter structure factors S, and S, at
T = 10 MeV. WEM(N3LO) represents the NLEFT calculations with the WFM N3LO interaction. The insert
figure shows calculated chemical potentials of canonical ensemble systems which are used for the construction of
grand canonial ensemble at the chemical potential ;i = —2.54 MeV and the density pg = 0.01758(4) fm—3.
Right panel: Experimental and theoretical differential mean square charge radii of Si. The NLEFT calculation
provided an uncertainty which is plotted as the gray band.

with ab initio NLEFT, valence-space in-medium similarity renormalisation group, and
mean field calculations, highlighting important achievements and challenges of modern
many-body methods. The lattice simulations for the charge radii are new calculations
based upon the N3LO chiral interactions described in Ref. 2 with two additional improve-

ments made. Rather than a global fit to all nuclei, we fit the three-nucleon coefficients c%)

and C(Et) to ensure good agreement with the binding energies of the silicon isotopic chain.
We also use the rank-one operator method introduced in Ref. 9 to compute the charge radii.
As shown in the right panel of Fig. 3, the NLEFT results are in good agreement with the
measured charge radii along the Si isotope chain from A = 28 to A = 32. The charge
radius of 32Si completes the radii of the mirror pair 32Ar - 32Si, whose difference is corre-
lated to the slope L of the symmetry energy in the nuclear equation of state. The NLEFT
result for L was determined from the calculations of pure neutron matter in Ref. 2, giving
L = 55(7) MeV, which agrees with complementary observables.

3.3 The Triton Lifetime

Nuclear $ and double-S decays are fine probes of the weak interactions in their interplay
with the strong force. Arguably the best example is the extraction of the CKM matrix
element V4 from superallowed 3 decays'!. Triton 3-decay is the process where *H decays
into 2He, an electron, and an electron antineutrino, 3H — 3He + e~ + .. The matrix
elements of the weak transition are crucial to understanding this decay process. Thus,
this decay serves as a benchmark for calculating weak nuclear decays. In addition, it is
known that triton 3-decay, that is the triton lifetime, together with the binding energies in
the A = 3 system can lead to a robust determination of the low-energy constants c¢p and
cp parameterising the leading three-nucleon forces in chiral EFT'2. The triton lifetime is
given in terms of two matrix elements (MEs), referred to as the Fermi and the Gamow-
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Teller MEs,

3 3
(F) =Y (Helra s |I’H) . (GT) =) (*Hellowm, +[[*H) , )

n=1 n=1

in order. Here, 7, 1 is the isospin-raising operator and the o,, are the nucleon spin ma-
trices. Despite the success of the WFM method in improving theoretical precision, the
calculations in Ref. 2 were carried out using first-order perturbation theory. Since first-
order perturbation theory only provides corrections to the energy and not to the wave
functions, triton S-decay calculations at N3LO, requiring higher-order perturbative cor-
rections for realistic wave functions, cannot be directly performed using the methods from
Ref. 2. One potential solution to this challenge is to extend the calculations to second-
order perturbation theory. Recent advances in perturbative QMC methods, as detailed in
Ref. 13, provide an effective framework for incorporating higher-order perturbative correc-
tions, making it particularly well-suited for applications to heavier nuclei. Alternatively,
fully non-perturbative methods can be applied to light nuclear systems to generate real-
istic wave functions at N3LO, as required for triton /3-decay calculation. This was done
in Ref. 14. Performing this non-perturbative calculation, the Fermi ME as well as the
Gamow-Teller ME are simultaneously obtained,

(F) =0.99949(11) , (GT) = 1.6743(58) , (4)

where the uncertainty stems from the large L; extrapolation and the variation of the
strengths of the one-pion exchange and contact term topologies of the three-nucleon forces.
These results are consistent with earlier theoretical calculations, confirming the robustness
of our approach. The corresponding lifetime is given by (1 +dr) 12 fv = 1105.1(74) s,
consistent with the empirical determinations, (1 + dr)t1/2 fy = 1132.1(25)s. The re-
maining discrepancies are due to the fact that the corrections to the pion exchange currents
have not yet been included. This study marks a significant advancement in the system-
atic application of NLEFT to nuclear 3-decay processes, paving the way for future high-
precision calculations in more complex nuclear systems, such as neutrinoless double-3
decay in *Ca or "5Ge.

4 Towards Hypernuclei from NLEFT

Understanding the strong interactions in the light quark sector is crucial for a comprehen-
sive description of baryonic systems such as nuclei and hypernuclei. The study of hy-
pernuclei provides valuable insights into the baryon-baryon interactions, and an accurate
description of the properties of hypernuclei requires a systematic formulation of interac-
tions between hyperons and nucleons, as well as constraining their low-energy constants
(LECs). The great success of both phenomenological potential models and chiral EFT for
nucleons is based on rich and precise NN-scattering data and nuclear binding energies.
However, due to the scarcity of hyperon-nucleon and hyperon-hyperon scattering data,
the spectra of hypernuclei are pivotal in constraining the hyperon-nucleon and hyperon-
hyperon interactions, deepening our understanding of SU(3) flavour symmetry breaking
and charge symmetry breaking in strong interactions. In Ref. 15 we calculated the ground
state and excited state energies of hypernuclei up to A = 16. Our calculations employ the
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Figure 4. Left panel: A separation energies for different YNN forces (decuplet saturation: C; = C3 and Co = 0,
decuplet plus spin: C'y = C3 and C2 # 0, final result: C; # C2 # C3 # 0). The large improvement resulting
from the introduction of the spin-dependent three-body force ~ Cj is clearly visible. The experimental values
are taken from Ref. 16, where we averaged the four-body systems. Ground states are depicted in blue, excited
states in red. The uncertainties are indicated by the shaded areas. Right panel: Calculated monopole form factor

of the O; — 01" transition in He compared to the recent data from Mainz!® (green squares) and the older data
(grey symbols). Blue dashed line: SU(4) symmetric strong interaction with all parameters determined in Ref. 20.
Red solid line: adding the Coulomb interaction perturbatively. The uncertainty bands in the lattice results include
stochastic errors and uncertainties in the Euclidean time extrapolation.

high-fidelity chiral interactions at N3LO for nucleons from Ref. 2 and the leading-order
S-wave hyperon-nucleon (YN) interactions are given by

1 1
VyN:ZC)S;N(H*Ul'0'2)+ZC}TfN(3+‘71"72)' ©)

The LECs C’ig are determined by a fit to the unpolarised Ap — Ap cross section and the
hypertriton binding energy. The hyperon-nucleon-nucleon (YNN) interactions are given
by

VYNN = Cl(]]. — 02 '03)(3+T2 -Tg) +020'1 . (0’2 +0’3)(]]. — T2 ~7’3)
+ C3(3+02-03)(1 —12-73), (6)

and the LECs C' 2 3 are determined by hypernuclear systems with A = 4 and 5. For
the YNN interactions, we consider all possible forms of short-distance smearing. In our
analysis, we calculate the RMSD over all calculated hypernuclear separation energies with
A > 4, which are used to assess the accuracy of the YNN interactions in describing hyper-
nuclei. In the left panel of Fig. 4 we show results for hypernuclei from 3 He to 150, where
the hypernuclei with A < 5 shown here are included in the fit, while the other hypernu-
clei are predictions. We find that, within stochastic uncertainties of the MC simulations,
our Hamiltonian can accurately describe hypernuclear systems. Clearly, improvements in
the considered interactions here should be performed. We recommend including pion ex-
change forces in both the two-body and three-body sector. These forces not only allow
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for an automatic inclusion of higher momentum contributions but also make excited states
available in typical multichannel calculations, Additionally, this approach enables the in-
clusion of higher orders in the chiral expansion, which are necessary for better phase shift
descriptions at higher orders that will also improve the description of the hypernuclei.

5 The Puzzling “He Transition Form Factor

The *He nucleus, the a-particle, is considered to be a benchmark nucleus for our un-
derstanding of the nuclear forces and the few-body methods to solve the nuclear A-body
problem!”. The attractive nucleon-nucleon interaction makes this highly symmetric four-
nucleon system enormously stable. Furthermore, its first excited state has the same quan-
tum numbers as the ground state, J = 0% with J(P) the spin (parity), but is located about
20 MeV above the ground state. This large energy of the first quantum excitation makes the
system difficult to perturb. This isoscalar monopole resonance of the “He nucleus presents
a challenge to our understanding of nuclear few-body systems and the underlying nuclear
forces. The recent precision measurement of the corresponding transition form factor of
the first excited state to the ground state at the Mainz Microtron MAMI'® compared with ab
initio calculations based on the Lorentz-integral transformation method using phenomeno-
logical potentials as well as potentials based on chiral EFT revealed sizeable discrepancies
as shown in Fig. 3 of Ref. 18. We addressed this issue in Ref. 19 within the framework of
the minimal nuclear interaction that reproduces the ground state properties of light nuclei,
medium-mass nuclei, and neutron matter simultaneously with no more than a few percent
error in the energies and charge radii?*2!. The transition form factor F'(q) of the monopole
transition is related to the transition density pt, (1) by

Flo) =5 [ eiotar)iir = D ey )
Z Jo Z = 2Xx+1)!
with Z the charge of the nucleus under consideration. Here Z = 2, and pi(r) =

(07 |p(7)|0F ) is the matrix element of the charge density operator (i) between the ground
state 07 and the first excited 0] state. We also display the expansion in moments in
Eq. 7. The first excited state of *He is a resonance that sits just above the *H-p thresh-
old. In order to study this continuum state, we perform calculations using three differ-
ent cubic periodic boxes with lengths L = 10,11, 12 in lattice units, corresponding to
L = 13.2 fm, 14.5 fm, 15.7 fm. The corresponding ground and first excited state ener-
gies are £(0]) = —28.30(3) MeV and E(05) = —7.96(9) MeV that compare well with
the experimental values of —28.30 MeV and —8.09 MeV, respectively. Next, we turn to
the analysis of the transition form factor, denoted as F'(g). In the framework of NLEFT,
observables such as nucleon density distributions, charge radii and form factors can be
computed using the pinhole algorithm. First, we consider the SU(4)-symmetric interac-
tions without Coulomb. The resulting form factor is depicted by the blue dashed line in
the right panel of Fig. 4. It somewhat overshoots the data, although the error band asso-
ciated with stochastic errors and the large L; extrapolation almost encompasses the data.
Including the Coulomb interaction leads to an overall reduction of the transition form fac-
tor as shown by the red solid line in the right panel of Fig. 4. Overall, we achieve a good
reproduction of the data and the uncertainty band is also somewhat reduced. This is due
to the fact that inclusion of the Coulomb interaction leads to smaller fluctuations in the
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Monte Carlo data when extrapolating to large L,. Consequently, we find that the nuclear
interaction defined in Ref. 20, which has already been shown to reproduce the essential
elements of nuclear binding, also leads to a good description of the a-particle transition
03' — OT form factor without adjusting any parameters. Thus, the nuclear forces relevant
to this system are under good control, and we do not find the puzzle mentioned in Ref. 18,
see also Refs. 22,23.

6 Ab initio Calculation of Hyper-Neutron Matter

The equation of state (EoS) of neutron matter plays a decisive role to understand the neu-
tron star properties and the gravitational waves from neutron star mergers. At sufficient
densities, the appearance of hyperons generally softens the EoS, leading to a reduction
in the maximum mass of neutron stars well below the observed values of about 2 solar
masses. Even though repulsive three-body forces are known to solve this so-called “hy-
peron puzzle”, see e.g. Refs. 24,25, so far performing ab initio MC calculations with
a substantial number of hyperons has remained elusive. We addressed this challenge by
employing NLEFT in Ref. 26. First, we had to develop an algorithm that allows to go to
densities beyond twice nuclear matter densities reached so far in QMC simulations which is
not sufficient for the description of neutron stars. To achieve that, we combine the smeared
nucleon operator with the operator representing the A hyperon, as detailed in Ref. 26. This
enables simulations of systems consisting of both arbitrary number of nucleons and arbi-
trary number of A hyperons with a single auxiliary field. Second, we work with smeared
contact interactions only, which allows to include all possible interactions, that is NN, NY,
YY, NNN, NNY and NYY, which was never done in a QMC simulations before. The NN
and NNN LECs are determined from a combined fit to the S-wave phase shifts and the
saturation properties of nuclear matter, with pg = 0.17fm~3 the nuclear matter density.
This calculation generates a very stiff neutron matter EoS as shown in the left panel of
Fig. 5, and it required up to 232 nucleons in the finite volume to achieve densities of 5pg
as in the interior of neutron stars. Next, we show three different EoS when hyperons are
included. The NNA and NAA forces are constrained by the separation energies of single-
and double-A hypernuclei, spanning systems from 3 He to ,4Be, denoted as HNM(I). It
is difficult to probe the behaviour of the EoS at high densities encountered in neutron
stars in terrestrial laboratories, and various phenomenological schemes and microscopi-
cal models suggest that hyperons emerge in the inner core of neutron stars at densities
around p =~ (2 — 3)pp. Similar to using the saturation properties of symmetric nuclear
matter to pin down the three-nucleon forces, we determined the NNA and NAA forces
by using the separation energies of hypernuclei and the A threshold densities pﬁ\h around
(2 — 3)po simultaneously in HNM(IT) and HNM(III). We set pﬁ\h =0.398(2)(5) fm—2 and
0.520(2)(6) fm—2 for HNM(II) and HNM(III), respectively. The corresponding EoSs are
also shown in the left panel of Fig. 5. To fulfil the equilibrium condition for the chemical
potentials, p,, = ua, we needed 102, 92, and 32 As for HNM(I), HMN(I) and HNM(III),
in order. The EoS becomes stiffer at higher densities for these variants, indicating the in-
clusion of more repulsion in the three-body hyperon-nucleon interactions. As anticipated,
the inclusion of hyperons results in a softer EoS and HNM(III) is the stiffest EoS when hy-
perons are included. The squared speed of sound, ¢, is also shown in the inset in the left
panel of Fig. 5. It is observed that the causality limit (c2 < 1) is fulfilled for both PNM and
HNM. The EoS characterised by nucleonic degrees of freedom exclusively demonstrate a
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Figure 5. Left panel: EoS for PNM and HNM. The orange solid curve denotes pure neutron matter, obtained from
the NN and NNN interactions. The red dashed line represents the EoS of HNM with hyperons interacting via
the two-body interactions (NA and AA) and the third set of three-body hyperon-nucleon interaction (NNA and
NAA). The blue dotted curve and the green dot-dashed curve are calculated with the first and second sets of three-
body hyperon-nucleon interactions. The A threshold densities pﬁ\h are marked by open circles. In the inset, the
speed of sound corresponding to the PNM and HNM EOSs is shown. The gray shaded regions are the inference
of the speed of sound for neutron star matter in view of the recent observational data®’. Right panel: Neutron star
mass-radius relation. The legend is the same as in the left panel. The gray horizontal dotted line represents 2M ).
The inner and outer contours indicate the allowed area of mass and radius of neutron stars by NICER’s analysis
of PSR J0030+04513° and PSR J0740+66203!. The excluded causality region is also shown by the grey shaded
region®2.

monotonic increase in ¢ with increasing energy density. The appearances of A hyperons,
however, induces changes in this behaviour, leading to non-monotonic curves that signify
the incorporation of additional degrees of freedom. The onset of A hyperons precipitates
a sharp reduction in the speed of sound, marking a significant transition in the stiffness
of the EoS. For comparison, the constraints on ¢ within the interiors of neutron stars in-
ferred by a Bayesian inference method are also shown?’. The “holy grail” of neutron-star
structure, the mass-radius (MR) relation, is displayed in the right panel of Fig. 5. These
relations for PNM and HNM are obtained by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations?®?° with the EoSs of Fig. 5 (left panel). The appearance of A hyper-
ons in neutron star matter remarkably reduces the predicted maximum mass compared to
the PNM scenario. The maximum mass for PNM, HNM((), HNM(II), and HNM(II) is
2.19(1)(1) Mg, 1.59(1)(1) Mg, 1.94(1)(1) Mg, and 2.17(1)(1) Mg, respectively. Note
that three neutron stars have been measured to have gravitational masses close to 2M,
that significantly constrain the EoS of dense nuclear matter. Our results show that the in-
clusion of the NNA and NAA interaction in HNM(III) leads to an EoS stiff enough such
that the resulting neutron star maximum mass is compatible with the three mentioned mea-
surements of neutron star masses. Therefore, the repulsion introduced by the hyperonic
three-body interactions plays a crucial role, since it substantially increases the value of the
A threshold density. Note that Ref. 26 also contains the first ab initio calculation of the
universal I-Love-@ relations, which connect the moment of inertia I, tidal deformability
A, and the quadrupole moment () in a slow rotation approximation. In the next steps, one
should include the proton fraction, other hyperons of the baryon octet, and make use of
the recently developed high-fidelity chiral interactions at N3LO?, though this will pose a
formidable computational challenge.
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7 Big Bang Nucleosynthesis as a Probe of Fundamental Constants

Element generation in Big Bang nucleosynthesis (BBN) is a fine laboratory to study the
possible variations of the fundamental parameters of the Standard Model, such as the quark
masses or the electromagnetic fine-structure constant agyy, see e.g. Ref. 33. However, the
reaction network is also very sensitive to the nuclear physics input, which so far has not
been studied systematically. In Ref. 34 we investigated the dependence of primordial nu-
clear abundances on fundamental nuclear observables such as binding energies, scattering
lengths, neutron lifetime, etc. by varying these quantities. The numerical computations
were performed with four publicly available codes, thus facilitating an investigation of the
model-dependent (systematic) uncertainties on these dependences. Indeed deviations of
the order of a few percent are found. Moreover, accounting for the temperature dependence
of the sensitivity of the rates to some relevant parameters leads to a reduction of the sensi-
tivity of the final primordial abundances, which in some cases is appreciable. These effects
are considered to be relevant for studies of the dependence of the nuclear abundances on
fundamental parameters such as quark masses or couplings underlying the nuclear param-
eters studied here. Based on that work, we studied in Ref. 35 the dependence of the pri-
mordial nuclear abundances as a function of agy, keeping all other fundamental constants
fixed. We updated the leading nuclear reaction ra