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Preface

Christine Peter
Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany

christine.peter@uni-konstanz.de

Marcus Müller
Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany

mmueller@theorie.physik.uni-goettingen.de

Alexander Trautmann
John von Neumann Institute for Computing, Jülich Supercomputing Centre,

Forschungszentrum Jülich, 52425 Jülich, Germany
a.trautmann@fz-juelich.de

In a longstanding tradition, the John von Neumann Institute for Computing (NIC) holds
biennial symposia, accompanied by proceedings volumes – illustrating the broad range of
modern computational science and the advances in high performance and data-intensive
computing. Symposium and proceedings thus provide a glimpse into supercomputing-
based research at its best and make it accessible both to the general public and to
computational scientists across disciplinary boundaries. As such they foster exchange be-
tween different fields of natural science and engineering with respect to modern algorithms
and computational strategies. To this end, on March 6th and 7th, 2025, computational
scientists will again convene in Jülich for the 12th NIC symposium. We are very pleased
that this time it is again possible to showcase the breadth of high-performance computing
research supported by the NIC with contributions from astrophysics, elementary particle
physics, and statistical physics of hard and soft condensed matter, computational chemistry
and materials science, as well as computer science, fluid mechanics, and earth system
modelling – covering both fundamental research and projects with a strong application
orientation. We are also delighted to extend a very warm welcome to our colleagues
from the Goethe University Frankfurt who have joined the NIC in 2024 as a new member
institution. Together, we will further strengthen research in the field of computational
science in Germany and Europe.

The NIC continuously provides the scientific community with essential high-performance
computing resources and training. Within the framework of the Gauss Centre for
Supercomputing (GCS), the Jülich Supercomputing Centre (JSC) has been operating
the modular supercomputer JUWELS (Jülich Wizard for European Leadership Science)
since 2020, which is composed of a CPU-based cluster and a GPU-based booster module.
Thanks to the excellent training and user support by the technical experts from the JSC,
the JUWELS architecture has been widely adopted across disciplines and communities.
In particular, porting codes to the booster module and adapting algorithms to the GPU



architecture has been fundamental in getting the disciplines ready for the next generation
of GPU-based exascale computing. After the decision by the European High Performance
Computing Joint Undertaking (EuroHPC JU) that the Forschungszentrum Jülich is to
operate the first exascale supercomputer in Europe, the JSC and the GCS have been
preparing for JUPITER (Joint Undertaking Pioneer for Innovative and Transformative
Exascale Research). The new system will become available in 2025. To optimally prepare
applications and users for JUPITER and to facilitate the transition from current petascale
and pre-exascale supercomputers to actual exascale computing, the JSC has launched
JUREAP, the JUPITER Research and Early Access Program. In the first phase of 2024,
users have participated in the Scalability and Performance Evaluation Phase (SPEP), an
open call to test and demonstrate the performance and the scaling of the applications on
test architectures. In September 2024, the GCS Exascale Pioneer Call has been initiated
with two objectives: the successful projects are given early access to JUPITER during
build-up, approximately from January 2025 onwards, and the call distributes JUPITER
resources for the time period after the machine is officially operational until the end of
October 2025 – thus enabling groundbreaking computational research for the German
scientific community. A more detailed overview on JUPITER, the new opportunities that
exascale computing opens up to all scientific communities, and in particular the shifts
driven by the wave of developments in AI technologies and large foundation models are
provided in the introductory article of the proceedings by Thomas Lippert and coauthors
“Paradigm Change or Riding the Wave? Exascale-Computers to Train Foundation
Models”.

As one key element of its mission to promote innovative computing methodologies the
NIC also supports several research groups at its member institutions.a The NIC research
groups cover a broad spectrum of disciplines ranging from high-energy physics to biology,
reflecting and reinforcing the research focus of its respective member institutions. Recent
results are highlighted in a dedicated section in the proceedings with contributions from
the Lattice QCD group (Owe Philipsen, GSI Darmstadt), the Elementary Particle Physics
group (Stefan Schaefer, DESY-Zeuthen), and the Computational Structural Biology group
(Alexander Schug, Forschungszentrum Jülich).

The subsequent section of the proceedings volume is dedicated to one of the other hall-
marks of the NIC, the NIC excellence projects. Generally, NIC computing time is granted
by a stringent peer-review process that focuses on the scientific quality of the proposed re-
search. The international pool of expert reviewers and the NIC peer-review board, headed
by Dietrich Wolf, play a vital role in sustaining the very high quality of the projects and
in fairly and effectively allocating the valuable computational resources. At this point, we
want to sincerely thank these reviewers for their engagement and time that they invest in
fulfilling this essential task. One important element of this process is awarding the title
“NIC excellence project” b. It is always a great pleasure to highlight these outstanding
projects in a special section. The present proceedings volume features the following NIC
excellence projects:

aFurther information can be found at https://www.john-von-neumann-institut.de/en/research/research-groups
bhttps://www.john-von-neumann-institut.de/en/research/nic-excellence-projects



• Michael Rohlfing, Universität Münster, Spectra of 2D layered materials

• Holger Gohlke, Universität Düsseldorf, Structural dynamics of apo, agonist-, and
antagonist-bound full-length ETR1

• Gerhard Gompper, Forschungszentrum Jülich, Collective Dynamics of Intelligent Mi-
croswimmers

• Johannes Knolle, Technische Universität München, Neural Wave Functions for Ma-
terials Physics

In order to further showcase the outstanding research enabled by the NIC that was made
possible by the excellent computing environment and user services provided by the JSC,
contributions to the symposium and the proceedings have been selected. These contribu-
tions provide an account of the projects and give a comprehensive review of the progress
that has been made both to the general public and to the funding bodies. The contributions
are arranged by scientific topics, thus nicely reflecting the vibrant activity across a broad
variety of disciplines. It is our pleasure to thank all the authors of the contributions as well
as the experts who wrote the section introductions. Neither the proceedings book nor the
symposium would have been possible without the indispensable support from many peo-
ple within the NIC and the JSC. We are very grateful to Martina Kamps who compiled all
the texts and produced this high quality book. Finally, we want to thank Florian Janetzko,
Johannes Simonis, and Janina Liebmann for their valuable help in organising the 12th NIC
Symposium in Jülich.

Jülich, March 2025

Christine Peter Marcus Müller Alexander Trautmann
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Paradigm Change or Riding the Wave?
Exascale-Computers to Train Foundation Models

Thomas Lippert1,2, Mathis Bode1, Thomas Eickermann1,
Wolfgang Frings1, Andreas Herten1, Stefan Kesselheim1,

Benedikt von St. Vieth1, and Kristel Michielsen1,3

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
E-mail: th.lippert@fz-juelich.de

2 Goethe University Frankfurt, Institut für Informatik, 60629 Frankfurt am Main, Germany
3 RWTH Aachen, Physikzentrum, 52074 Aachen, Germany

A paradigm shift is underway in the field of high-performance computing (HPC). In addition
to high-end simulation, the training of foundation models of artificial intelligence (AI) is be-
coming increasingly important. AI training and supercomputing have more or less become
synonymous. Their union will change the way science and industry research complex phenom-
ena and develop new technologies, and there is general consensus that it would be unwise to
dismiss this development as mere hype. It is of crucial importance for Germany and Europe to
take a leading role in this area and to secure their scientific and technological leadership and
sovereignty, especially when it comes to industry and SMEs. JUPITER will take research in
computer science and AI to a new level and, until German industry has built its own systems,
JUPITER can play the role of an auxiliary bridge for industrial users; plans in this direction are
in the works.

1 Foundation Models

The general public’s access to ChatGPT at the end of 2022 has made society and science
aware of the concept of so-called foundation models (aka base models), which are pre-
trained deep learning models built on super-massive datasets. Since then, there has been
an exponential increase in pertinent activities in this area, a selective overview of which
can be found in Refs. 1,2. The experts agree that the transformative potential of this digital
methodology is beyond measure.

Naturally, the focus of society and the public is on large language models (LLMs) and
large multimodal models (LMMs), which combine different categories such as text and
images or data from other modalities such as audio or other domain-specific data and text.
This development leads to what is sometimes, perhaps somewhat euphemistically, referred
to as the “democratisation of AI”3.

It is reassuring that politics in democratic countries is observing the influence of these
developments on societal transformations and is fulfilling its duty to implement regulatory
measures4, however, at the same time, the greatest attention must be paid to the potential
transformative aspects of the new technology on the worldwide economy. This implies
not only the availability of unimpeded access to instruments and infrastructures that enable
secure data management of the highest data volumes and the creation of specific models
of industrial stakeholders, but above all the sovereignty of all democratic countries in the
provision and use of the most powerful computing systems, which cannot be compromised
by political or trade policy4.

1



Certainly, it is no mere coincidence that the new methodology, which is based on foun-
dational models, was quickly adopted in science. After all, the use of machine learning
methods of various origins has become part of the standard methodological repertoire in
science, research and technology over many years. The 2024 Nobel Prizes in Physics and
Chemistry, which are dedicated to the “invention” and application of the methodology, re-
spectively, provide compelling testimony to its significance5, 6. However, one should be
aware that the use of generative AI and basic models as a tool in information systems and
complexity research is still in its infancy.

On the one hand, researchers are convinced that basic models can be created in a wide
range of areas where sufficient and sufficiently curated domain-specific data is available.
These models can be used to carry out more realistic experiments, make certain types of
quantitative studies feasible for the first time and make simulations more accurate or safer.
For example, in the area of numerical weather prediction, we can assume that, based on
previous weather data, trained forecasting models will exceed or significantly improve the
length/accuracy of theoretically modelled forecasts, as has already been demonstrated in
pilot studies by Schultz et. al7 or elsewhere8.

On the other hand, it is an extremely fascinating prospect that basic models can learn
from a general, large and diverse database and develop the ability to deal with the widest
range of different tasks from different domains and under different conditions. In this
sense, LLMs might be enhanced with domain-specific scientific data and specific data
from industry, commerce, finance, or logistics, among other fields, to capitalise on their
transformative potential and one-shot learning capabilities in domains where data may
be insufficient or too narrow to construct their own base model. This approach might
even provide insights or a completely new understanding in areas where, due to limited
experimentation or observational possibilities, progress appears to be very slow or could
so far not be expected in academic time frames or even periods of lifetimes. A striking
example is the understanding of the capabilities of the human brain9.

All foundation models have an important aspect in common: the AI training of such
large models requires unprecedented amounts of compute power of largest supercomputers
aka exascale machines.

2 AI Meets Exascale

A central characteristic of foundation models is the existence of scaling laws: Increasing
the scales in training leads to predictable improvements in model skills10. In the time
before 2022, this insight has led to ever larger models being trained, with the surprising
result that the limits of performance are apparently only given by the limited computing
power a. Eventually, the development went exponential and led to revolutionary times:
almost every day, the news report on new records set by a few leading US companies that
install more than hundreds of thousands of GPUs. These systems are meanwhile capable of
training LLMs with more than 400 billion parameters. In terms of AI, the machines used by
science and research in the USA tend to come in second, although the two exascale systems
Frontier at Oak Ridge National Laboratory and Aurora at Argonne National Laboratory are
ranked first and second on the TOP500 list from June 2024.

aHowever, this correlation is of course closely linked to the availability of suitably large, independent data sets.
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Figure 1. Supercomputer systems in Germany from academia and research capable to train large foundation
models as of October 2024. The ordinate counts exaFLOP/s at 16 bit precision.

If we compare this situation with that in Germany, it is striking that there is not a single
German company that can provide AI capacities on a similar scale as the US hyperscalers.
The situation is not better throughout Europe as to industrial provision. The only systems
worth mentioning for AI training in Germany – and in Europe – are provided in the field
of science and research, financed by federal and state ministries and the European Com-
mission b.

Fig. 1 gives an impression of the current (October 2024) machine inventory in Germany
with regard to systems from academia and research that can be used for AI training of
foundation models in the range of 1 to 10 billion parameters. The most capable system,
which has been in user operation since October 2020, is JUWELS at Forschungszentrum
Jülich. The machine comprises almost 4000 NVIDIA A100 GPUs. Its suitability for
training large AI systems was demonstrated with the 7-billion-parameter entry-level model
of OpenGPT-X11. The next largest systems are suitable at best for development and test
calculations. The figure makes it very clear that for the training of state-of-the-art models
in the range of over 100 billion parameters, as is the case with the US giants, a performance
increase by two orders of magnitude compared to the capabilities of JUWELS is necessary,
and, more than that, several systems of such a size will be needed in Germany.

It is very gratifying to see how far the German scientific community has already
adopted the methodology of AI, from long-established machine learning methods to large
foundation models. JUWELS has played a major role in this process. The following Fig. 2
demonstrates this development.

For the spring call 2024 applications for resources on JUWELS Booster, more than
40 % of the projects were approved under the AI tag, and in autumn 2024 the figure is
already over 50 %. The large foundation models are allocated under “Computer Science”
(CS), i.e. more than 25 % of the resources are used for these activities.

In view of the encouraging acceptance of the now somewhat dated JUWELS system,
a similar interest in the upcoming JUPITER exascale computer is to be expected. Indeed,

bGermany is even more underexposed as to systems suitable for providing AI inference computations.
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Figure 2. Distribution of allocated compute time per domain on JUWELS Booster in spring 2024.

this is reflected in the Jülich JUREAP initiative, see Sec. 4.3. JUPITER was designed
from the ground up to be a system that can handle both large-scale simulation tasks and
leading AI simulations, in anticipation of the current development. In fact, a specific bal-
ance between network performance and computing power was sought, see Sec. 4, which
allows the maximum I/O performance of a GH200 GPU to be utilised. With this setting,
JUPITER with its InfiniBand connectivity actually achieves more than 70 % of the point-
to-point communication performance of an NVLINK network at comparable latency, and
that across the entire machine, while NVLINK networks have so far been limited to 256
GH200 NVIDIA superchips c.

If the expected AI performance of JUPITER is compared with the total performance
available in Germany in October 2024, the system would increase it by a factor of about
20. This becomes frappantly obvious when the data from JUPITER is added to Fig. 1, cf.
Fig. 3.

The considerations show that there is currently a lack of sufficient computing power for
AI in such a highly industrialised country as Germany. The availability of sufficiently large
and numerous training systems in science and industry is sobering and an emergency sit-
uation is becoming increasingly apparent; German providers currently play no significant
role at all in society and business. JUPITER, primarily a system designated for science and
research, will be a step in the right direction. If JUPITER is also partially opened up to the
industry for commercial purposes, as being planned by the German Ministry for Education
and Research (BMBF), it may be possible to bridge the gap of around three years until
there are systems that can be set up and operated by industrial stakeholders in Germany.

cThe DGX-Helios supercomputer is equipped with four DGX-GH200 systems connected by an Nvidia-Quantum-
2 InfiniBand network (Mellanox).
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Figure 3. Supercomputer systems in Germany from academia and research capable to train large foundation
models expected for May 2025. The ordinate counts exaFLOP/s at 16 bit precision.

In the following, we attempt to provide a quantitative understanding of the system di-
mensions required for state-of-the-art AI training. To do this, we will first discuss the
definition of performance classes and the benchmarks explained in more detail in the fol-
lowing section. We will then take a closer look at the expected specifications of JUPITER
and explain how we want to enable users to use the system as quickly as possible with
maximum effectiveness.

3 How to Quantify the (AI) Performance of Supercomputers

In order to correctly classify the performance of the upcoming exascale supercomputers for
the AI area, it is important to define the performance specification in relation to the area of
application. In numerical and stochastic simulation processes, usually, the highest available
machine precision, 64 bit, is used. For AI applications, in most cases it is advantageous to
use lower precision such as 32 bit, 16 bit or 8 bit. This is explained in more detail in the
following.

3.1 What is the Meaning of Exascale?

In the field of supercomputing, the term “exascale supercomputer” is defined internation-
ally as a system that achieves a performance of at least 1 exaFLOP/s, or the capacity to
perform at least 1 trilliond, i.e. (1018) IEEE 64 bit floating-point operations per second.
More precisely, an exascale supercomputer is one that exceeds the threshold of 1 trillion
FLOP/s with 64 bit precision when evaluated using a suitable benchmark, particularly the
Linpack benchmark for the TOP500 list. For a proper entry in the ranking, it is required
that the Linpack code runs with 64 bit precisione.

dHere we refer to the European numbering system. In the US numbering system, 1018 is named 1 quintillion.
eThe first machine worldwide passing the 1 exaFLOP/s threshold was Frontier at Oak Ridge National Laboratory
end of 2022.
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Following this classification, the European High Performance Computing Joint Under-
taking (EuroHPC JU) distinguishes between exascale, pre-exascale and petascale systems.
There are currently, as of 2024, five petascale supercomputers and three pre-exascale su-
percomputers co-financed by EuroHPC JU. Two exascale supercomputers are planned by
2025 and 2026; the first is JUPITER with a performance of at least 1 exaFLOP/s.

The three pre-exascale supercomputers, co-financed and owned by EuroHPC-JU,
achieve a maximum peak performance of up to 0.4 exaFLOP/s:

LUMI CSC-Finland 379 petaFLOP/s 0.38 exaFLOP/s)
LEONARDO CINECA-Italy 241 petaFLOP/s 0.24 exaFLOP/s)
MareNostrum 5 BSC-Spain 175 petaFLOP/s 0.18 exaFLOP/s)

In this hierarchical scheme, the five petascale systems in EuroHPC are one order of
magnitude less powerful. The fastest petascale supercomputer co-funded by EuroHPC
achieves a maximum performance of 10.5 petaFLOP/s, i.e. just over 0.01 exaFLOP/s.

JUPITER, with its 1 exaFLOP/s Linpack performance, will instantaneously double the
available computing time and thus performance of all other EuroHPC systems combined.

3.2 What Does AI ExaFLOP/s Mean?

For most applications in computational science and scientific computing, 64 bit precision
as defined by the IEEE 754 standard is the gold standard, resulting in best results for
numerical simulations. Data is stored in 64 bit size and computations are performed at the
same precision or even higher internal precision.

The IEEE standard specifies in which form the 64 bits are used to represent a num-
ber: 52 bits are reserved for the significand, representing the fractional value independent
of the magnitude; 11 bit are taken for the exponent, to move the significand into proper
magnitude; and 1 bit represents the sign of the number (+ or -). Computational researchers
have aligned to 64 bit-based computations, and many benchmarks evaluate hardware in
this regard, for example the Linpack benchmark.

But not all computations require the full 64 bit precision for valid results. A prominent
example are AI-based methods, which interlink layers of neural networks of potentially
great depth to create results based on likelihood distributions. This enables the usage of
precision lower than 64 bit: 32 bit, 16 bit, or even 8 bit. With corresponding hardware
support each reduction of precision allows for more computations in the same time. Band-
width is no limiter in this regard, as lower precision data words are as efficiently stored and
transferred as higher-precision words – see Fig. 4.

Modern GPUs include hardware-acceleration for matrix-based computations. These
Tensor Cores (NVIDIA), Matrix Cores (AMD), or the Matrix Engine (Intel) can perform
FMA operations (fused multiply-add; a combined instruction for addition and multiplica-
tion, a×b+c) with significant higher rate, compared to typical vector GPU operations. The
Hopper GPU of JUPITER, for example, can execute 64 FMA instructions on each of the
four Tensor Cores of each multiprocessor per clock cycle. In total, 66.9 TFLOP/s of FP64
performance can be reached per GPU by utilising Tensor Cores. Because of the nature of
these matrix-compute-optimised execution units, a reduction in precision will dispropor-
tionately improve the effective throughput significantly. For example, for FP8 precision,
the same Hopper GPU will perform with 1978.9 TFLOP/s – about 30× more with an 8×
reduction in precision.
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Figure 4. Comparison of precision formats. Each box indicates one bit.

Intermediate steps within the matrix multiplication operation can be performed with
higher precision as for example an FP32 accumulate for an FP8 matrices, allowing for
more fine-grained optimisation opportunities to retain stability.

Through the lower-precision Tensor Cores, GPUs are a great match for deep neural
networks, which are utilising almost exclusively matrix multiplications and are robust in
the employed precision (to a point). GPUs are core to the AI revolution, delivering high-
throughput compute at excellent energy efficiency. Reduced precision is so deeply linked
to AI, that parts of the community started calling the performance reached with lower
precision AI FLOP/s.

Dedicated benchmarks have been created to test the reduced precision and AI capa-
bilities of compute devices. HPL-MxPf, for example, extends the Linpack benchmark
with an iterative version utilising lower precisions (mixed precision, MxP) in intermediate
steps; MLPerfg is a whole suite of tests for typical AI-patterns with different tasks. Both
benchmarks report the results in lists, like the Top500 list for the HPL.

JUPITER Booster features about 24 000 Hopper GPUs as part of the GH200 super-
chips (see Sec. 4). The following figure estimates the available theoretical performance in
dependency of the various precisions. Note: The reference data of NVIDIA is given for
a dedicated H100 GPU operated at 1000 W TDP. The TDP of JUPITER Booster Hopper
GPUs will be lower. As a first estimate, a reduction to 90 % is applied.

JUPITER Booster will deliver unprecedented performance; for classical numerical
simulations, but especially for lower precision and AI-based applications. No HPL-MxP or
MLPerf benchmarks have been run for JUPITER Booster, but it is expected that HPL-MxP
may reach up to 10 exaFLOP/s performance.

3.3 Guesstimating the Requirements of a 100 Billion Parameter Model

The computing time required to train a state-of-the-art LLM or LMM with say 100 billion
parameters (100B), a model that cannot yet be calculated in Germany, can be determined
using analogous models that have already been trained. The computing time of LLM
OpenGPT-X, which is known with great precision from JUWELS, serves as a reference
point for the training time.

In the OpenGPT-X project, the training of several LLMs of size 7B, i.e.7 billion param-
eters, has been carried out on 256 A100 GPUs of the JUWELS Booster. A total of 0.8 mil-

fhttps://hpl-mxp.org/
ghttps://mlcommons.org/benchmarks/
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Figure 5. JUPITER Booster GPUs: Theoretical performance depending on utilised precision. INT8s, the last bar,
refers to computation with sparsity, a feature to exploit sparsity in neural networks if they are well-structured.

lion GPU-h were used. Based on early experiences on the JEDI system, the JUPITER
GPUs are more than three times more powerful in practice. For a model with 100B pa-
rameters, trained under identical conditions, 3.9 million GPU-h are required on JUPITER.
Assuming an average utilisation of half of JUPITER, i.e.12,000 GPUs, training the 100B
OpenGPT-X model takes less than 14 days. Training a 100B parameter model in less than
two weeks underscores the new possibilities that JUPITER is opening up in the field of
cutting-edge AI models.

3.4 Exascale beyond ExaFLOP/s – Interconnect, Storage, and External
Connectivity

The performance of an exascale system is dominated by its compute capabilities. Nonethe-
less, a surrounding hardware ecosystem has to ensure that the compute units can commu-
nicate over a network optimised for high bandwidth and low latency without the risk of
congestion, e.g. when applications scale beyond the GPU memory limits of a single node
or even reach tens or hundreds of terabytes of memory and therefore need direct inter-
node communication. In addition, the compute units have to be fed with the required data,
thus, loading of data for AI training or writing checkpoints at a massive scale becomes the
challenge.

Exascale is supposed to increase the requirements of both bandwidth as well as capacity
of storage systems. Given the multi-decade experience of large HPC centres with parallel
POSIX file systems and often thousands of nodes, scalability is not the main concern.
With the utilisation of flash media, accessible by the high performance NVMe protocol,
bandwidth aspects are covered by an increasing performance of the underlying storage
media. For growing capacity demands, HDD-based storage systems touching hundreds
of petabytes have to be provided, especially when it comes to storing multiple versions
of datasets, e.g. from Earth System Modeling (ESM) or AI communities, which require
hundreds of terabytes per domain.

In the past, HPC systems were installed as isolated units, with a focus on the cluster-
internal network and its performance on the one hand and a strict eye on software maturity
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on the other. However, this sometimes led to a lack of sufficiently frequent implementation
of software and, in particular, security updates. Today, the trend is towards openness,
both in terms of open software systems and the heterogeneous embedding of systems in
a modular hardware environment. It is evident that this requires much stronger focus on
security and certification than in the past.

Furthermore, to ensure that cluster-external services, e.g. external web services or
databases can be used, communication patterns from internal compute nodes to the out-
side world are to be established more and more. With the raise of AI as the perfect use-
case for strong HPC hardware, demand for high-bandwidth access to the internet got even
higher. While downloading the hundreds of terabytes of training data can be bandwidth-
dominated, limitations on the Domain Name System (DNS) and firewalls as well as rate-
limiting on external web servers can also be dominant factors, depending on the local
environment.

Optimised retrieval of datasets as well as relaxing limitations of network flows from
and to the supercomputers is an active field of research to ensure that usability, but also
security aspects are reflected reasonably.

4 JUPITER

With the selection of JSC as the Hosting Entity for the first European exascale supercom-
puter, challenging decisions had to be made during the design and procurement phase of
the system. While the raw performance characteristics had to be defined in December
2021, one year before the generative AI wave got a significant peak with release of the
first ChatGPT model by OpenAI, the JUPITER system was tailored to classical and future
HPC activities but at the same time anticipating large-scale AI workloads and in particular
training of deep neural networks like LLMs. The procurement was geared towards a large
mix of applications, synthetic benchmarks, and a set of high-scaling applications that can
utilise the full final exascale system. The technologies selected for JUPITER, which are
briefly described in the following section, are the result of the best proposed solution for
executing the JUPITER Benchmark Suite12 as well as additional technical requirements,
including energy consumption.

4.1 Technical Description

The JUPITER system is provided by the ParTec/Eviden supercomputer consortium, using
the Eviden-Bull Sequana XH3000 hardware architecture for the compute intensive compo-
nents of the system. The XH3000 is a direct-liquid-cooled rack solution, allowing for high-
est density as well as energy efficiency. The final system will implement the dynamic Mod-
ular Supercomputing Architecture (dMSA) and is powered by the highly-flexible JUPITER
Management Stack integrating ParaStation Modulo, Eviden SMC xScale and JSC’s xOPS
software environment.

At the core of the JUPITER hardware is the accelerator-based JUPITER Booster mod-
ule. It is utilising GPUs to achieve the best possible performance while keeping the energy
consumption at lowest possible level. As a result of the aforementioned benchmark suite,
the NVIDIA Grace Hopper (GH200) superchip was chosen as a combined CPU-GPU solu-
tion, integrated into the XH3000. With roughly 6000 compute nodes, the system is one of
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Figure 6. The JUPITER Modules.

the largest supercomputers to date. Each node incorporates four GH200 chips, four Grace
CPUs paired with a Hopper-based GPU, as well as four high-speed NVIDIA InfiniBand
NDR200 links as shown in Fig. 7, integrated into 125 XH3000 racks and interconnected by
a vast InfiniBand DragonFly+ topology. JUPITER Booster is one of the largest, coherent
AI training machines available in the world.

For JUPITER, an efficiency-optimised version of the GH200 chip with a CPU-GPU
power draw of not more than 680 W was chosen. Depending on the applied performance
optimisations, each chip can achieve more than 47 TeraFLOP/s HPL performance (FP64)
or 700 TeraFLOP/s FP16. With 48 nodes per XH3000 rack, this renders to a power
consumption of roughly 140 kW per rack and 17 MW of the final JUPITER Booster.
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Figure 7. The JUPITER Booster Compute Node Design.

The JUPITER Cluster module is complementing the Booster by providing a general-
purpose CPU-based architecture. It focuses on a high Byte-per-FLOP ratio to ensure that
CPU-based applications can achieve the highest possible performance. The Cluster is util-
ising the Rhea1 processor, with roots in the European Processor Initiative and commer-
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cialised by SiPearl. Rhea1, like Grace, implements the ARM instruction set architecture;
Rhea1 utilises HBM memory to achieve highest-possible memory bandwidth.

Cluster and Booster are supported by multiple storage systems. The 29 PB ExaFLASH
module, based on the latest generation IBM Storage Scale System (SSS) 6000 utilising
NVMe media for excellent performance characteristics, is used for semi-temporary storage
(SCRATCH). The 310 PB ExaSTORE module is provided for large datasets (DATA and
HOME), also based on IBM SSS6000 and utilising HDD media. The directly accessible
storage systems are supported by the 370 PB ExaTAPE tape infrastructure for archive and
backup purposes (ARCHIVE). The HDD and tape systems will be upgraded during the
JUPITER lifetime, depending on actual demand.

Thanks to its dMSA and large InfiniBand fabric, JUPITER is able to readily integrate
future technology modules such as quantum computing and neuromorphic modules. The
dMSA is supported by the novel Modular HPC Datacenter (MDC), which is the home of
the JUPITER system on the Forschungszentrum Jülich campus.

4.2 A Remark on Records in and Demand for Energy Efficiency

In addition to the TOP500 list, which focuses on the pure computing performance in solv-
ing mathematical problems in modelling and simulation, since 2013 there has been a rank-
ing for systems which can achieve the highest amount of computations per energy con-
sumed. This list is using the Linpack benchmark and defines a power measuring method-
ology to generate a competitive GigaFLOP/s/W ranking. This list illustrates the energy
efficiency of supercomputers of the TOP500 list and generates an incentive for optimising
hardware as well as software for energy efficiency.

The JUPITER Exascale Development Instrument (JEDI), the first JUPITER compo-
nent, was deployed in spring 2024 to support software preparation for both users and oper-
ators of the final JUPITER system. To evaluate the decisions made during the procurement
for the final system, putting a focus on energy efficiency, the performance of JEDI was
measured and is in the current Green500 list (June 2024) at 1st rank, making this module
currently the most energy-efficient supercomputer in the world when running the Linpack
benchmark.

Given the ever-increasing demand for computing resources by the research community,
accelerated by public and private demand for AI computing/training time and thus access
to power-hungry computing resources, energy efficiency of the utilised hardware is key
to ensure that the impact on the environment, but also operational expenses, are kept at a
reasonable level. This not only applies to the energy used for computations, but also for the
surrounding infrastructure and in particular cooling of IT systems. JUPITER is designed to
dissipate the heat it generates into a warm-water cooling system which uses free cooling,
so no additional energy for decreasing cooling-loop temperatures over long periods of a
year is needed. At the same time, the generated heat can be extracted for heat re-use.

4.3 JUREAP

JUREAP, the JUPITER Research and Early Access Programme, combines many activities
that are designed to help JUPITER get off to an immediate and successful start: Key ap-
plications are optimised for exascale at an early stage, the JUPITER software environment
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Figure 8. The JUPITER Exascale Development Instrument – JEDI.

is thoroughly tested and continuously expanded, and the system’s structure is permanently
monitored using application-related benchmarks. All this is intended to comprehensively
prepare users and the system for production operation and ensure that the system can be
used effectively right from the outset. Due to its high complexity, JUREAP requires HPC
experts and domain scientists to work hand in hand.

The first phase of JUREAP, the Scalability and Performance Evaluation Phase (SPEP),
started in January 2024 with an open call. Suitable applications were then integrated into
a CI/CD environment exaCB and extensively tested with regard to their node performance
on JEDI as well as large-scale capabilities on JUWELS boosters. In total, there were more
than 100 interested applicants that were invited to integrate with exaCB.

More than 20 % of the SPEP applications are AI-related. On the one hand, there were
applications from the “core AI” area, such as foundation models, large language models,
and generative applications, which will substantially benefit from the high AI performance
of the GH200 superchips. JUPITER will allow significantly more data to be considered
for training in significantly less time, thus overcoming the physical limitations of current
petascale and pre-exascale supercomputers. First evaluations show almost linear scaling
and up to 3 to 4 times faster training speed compared to NVIDIA A100 GPUs.h

On the other hand, AI is also becoming an essential tool in more and more “classical”
simulation workflows. Exascale simulations have the potential to generate extremely large
amounts of data that are increasingly difficult to handle. Often, this is only possible using
AI-supported data-driven approaches. In this use case, AI thus acts as an enabler to exploit
the full potential of exascale simulations.

hIn the most favourable case, one can expect a performance increase of a factor of 25 to 30 compared to JUWELS.
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5 A Sea Change

The quest to use computers and data to understand the world’s most complex phenomena
is in turmoil. To use an astrophysics metaphor, large-scale AI methods are spreading at
an almost inflationary rate, driving the construction and use of ever larger supercomputers
that are suitable for them.

Although the initial driving force in public perception seems to come almost exclu-
sively from the business world – the hyperscalers send their regards – , the Nobel Prize
2024 in Physics makes it very clear where it originates from: It is not science that is riding
a wave created by industry, but science has helped to make AI a useable and most likely
very profitable technology.

In fact, large-scale AI basic models are synonymous with HPC and have become the
best-known HPC applications, even more so than weather forecasting. Without HPC com-
puting, HPC storage and HPC networking, there would be no large-scale AI.

The extremely high and fast changing level of development of the fastest supercomput-
ers is no coincidence either. Rather, it is the result of most consistent development efforts
of the simulating and data processing sciences in association with leading manufacturers
of processors, communication technologies, storage systems, and the ingenuity of integra-
tors over the last 30 years. In this sense, the hyperscalers’ AI gold rush benefits greatly
from science without contributing much itself, and they are certainly not thinking of paying
royalties.

The challenges faced by computational research in science and industry are obvious:
The hyperscalers’ supply of AI training and inference capacity – viewed on a global scale –
is developing towards a monopoly, caused in particular through a GPU market being stirred
up by their rigorous acquisitions, which the publicly funded organisations can hardly fol-
low. As a consequence, users run the risk of losing their independence and countries their
sovereignty, only being able to purchase their needs from commercial cloud services, with
the result that they would have to endure a restrictive software service dictate and having
restricted control over their prompt management while being cut off from their so fruitful
interplay with machine development.

Given this situation, there is no doubt that we are on the threshold of a paradigm shift
as to the future of our HPC-based methodologies. For science and research, it is important
that this shift goes in a direction in which we do not lose control over our data, the prompt
management, and own AI training capabilities. In particular, we need to be able to create
LLMs, LMMs and other foundation models that are trained on open and publicly controlled
data sets. Through our involvement in LAIONi, we were able to show how important the
aspect of public accessibility of data sources is, especially in the field of LLMs and LMMs.

JUPITER is Germany’s and Europe’s ticket into the exclusive club of sovereign AI
users. JUPITER will boost computational science and AI research to unprecedented
heights, and until Germany’s industry has built its own systems, JUPITER can provide
initial support for industrial users.

With systems like JUPITER science and research in Germany and Europe can take up
the challenges with confidence.

ihttps://laion.ai/
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Quantum Chromodynamics is the fundamental theory to describe the physics of strongly inter-
acting particles, the hadrons. Its phase diagram plays an important role for the interpretation
of experimental results in nuclear physics, heavy-ion collisions and nuclear astrophysics. Due
to a severe fermionic sign problem, QCD at finite matter density cannot be simulated directly,
and little reliable information on the phase diagram is available. Here we report on a long-term
project to constrain the QCD phase diagram by simulating the theory away from its physical
parameter values, in order to understand how the physical situation as a special case is embed-
ded in the general parameter space of the theory. After producing data over many years, the
first phenomenologically relevant bounds on the location of a possible chiral phase transition at
finite baryon density are beginning to emerge.

1 Introduction

The fundamental theory describing the strong interactions in the framework of the Stan-
dard Model of Particle Physics is Quantum Chromodynamics (QCD). This quantum field
theory is formulated in terms of quark and gluon fields, which are the elementary con-
stituents of pions, kaons, nucleons etc., i.e., the strongly interacting particles (hadrons)
that are responsible for the nuclear physics in atoms as well as within massive stars. For
the purpose of such applications it is sufficient to restrict attention to the three light quark
flavours, the u-, d- and s-quarks. In the limit of massless u, d-quarks, mu,d = 0, the
theory displays a so-called chiral symmetry: it looks the same when the u- and d-degrees
of freedom are exchanged or mixed. However, the vacuum state of this theory does not
show this symmetry, which is then said to be spontaneously broken. As a consequence the
Goldstone theorem predicts the existence of three massless bosons, the pions. In nature
the u, d-quarks are very light but not exactly massless, representing a small distortion from
the chiral (massless) limit. Correspondingly, the pions are not exactly massless, but carry a
mass (∼ 135 MeV) much smaller than that of ρ-mesons (∼ 770 MeV) or nucleons (∼ 930
MeV), thus identifying them as “would-be” Goldstone bosons.

When hadronic matter is either heated, such as in the early universe or heavy-ion col-
lisions, or densely packed, such as in neutron stars, its properties are expected to change
as a function of temperature and density. When temperature and/or matter density become
large, the spontaneously broken chiral symmetry gets dynamically restored, and the prop-
erties of hadronic matter are believed to change fundamentally. In particular, the coupling
strength of the quark-gluon-interaction reduces and one expects the hadrons to eventually
melt into a quark gluon plasma with different properties, as sketched in the putative QCD
phase diagram Fig. 1 left. Several heavy-ion experiments as well as astronomical observa-
tions of neutron stars and their mergers are under way to explore different regions of the
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Figure 1. Left: Sketch of the expected phase diagram of QCD matter as a function of temperature and density.
Middle + Right: Connection of the putative QCD phase diagram for physical light quark masses to the chiral
limit with mu,d = 0, in the front plane.

phase diagram. In the chiral limit of massless u, d-quarks, the chirally symmetric and bro-
ken phases must be separated by a non-analytic phase transition. For cold and dense matter
several simplified models predict this transition to be of first order and proceed by bubble
nucleation, similar to liquid gas transitions. On the other hand, for a hot and dilute gas one
expects the transition to be of second order, i.e. to happen everywhere at the same time,
such as the spontaneous magnetisation in a ferromagnet. This is sketched qualitatively in
Fig. 1 middle, where the change from a first-order to a second-order phase transition is
marked by a tricritical point. When the light quark masses are non-zero, as they are in
nature, the chiral symmetry is broken explicitly. In this case there is never a fully chirally
symmetric regime, and the regions with more or less chiral symmetry must be analytically
connected. The second-order transition in this case is replaced by a smooth and analytic
crossover, while there still can be remnants of a first-order transition, which then termi-
nates in a critical endpoint. This is the scenario expected by a large part of the theoretical
community based on various model studies1–3.

However, the true phase diagram if QCD is still unknown today. The vacuum prop-
erties of QCD can be numerically simulated on a discretised space-time (lattice QCD)
to give accurate predictions for the hadron mass spectrum, hadronic decay constants and
many other properties observed in nature. Thermal lattice QCD can also be simulated,
and we know that indeed the chiral transition at physical quark masses corresponds to an
analytic crossover4. However, at finite density a fermionic sign problem prohibits Monte
Carlo simulations, and not much is known for the dense situation with baryon chemical
potential µB 6= 0. This motivates the approach pursued in our NIC research group, namely
to study how the nature of the QCD chiral transition changes away from the physical point
as a function of the number of quark flavours, their masses and imaginary baryon chemi-
cal potential, which is unphysical but can be simulated straightforwardly. The parameter
dependence of the QCD transition constrains the nature of the transition at the physical
point, which one may hope to infer once sufficient information is available. In particular,
one is interested in the nature of the transition in the chiral limit, in order to check the
assumptions going into the scenarios in Fig. 1. As we shall see, all current lattice results
are so far also consistent with the scenario shown in Fig. 1 right, where the transition is
second order all the way in the chiral limit, and completely disappears into a crossover.

18



Figure 2. Left: The order of the QCD thermal transition as a function of the quark masses; possible scenario
proposed in model studies5 and observed on coarse lattices. Right: The analogous scenario for strictly degenerate
quarks, interpolated to non-integer Nf 12.

2 The Columbia Plot at µB = 0

Even at zero baryon density, QCD with massless quarks cannot be simulated because of
diverging matrix inversions in that case. One can only approach this limit by simulations
with gradually decreasing quark masses, at the expense of drastically increasing computa-
tional effort. The nature of the QCD transition as a function of quark masses at zero density
is qualitatively shown in a so-called Columbia plot, Fig. 2. One possibility, which was first
predicted nearly 40 years ago by the epsilon expansion applied to linear sigma models with
symmetry breaking patterns as QCD5, is schematically shown in Fig. 2 left. The theories
withNf = 1, 2, 3 mass degenerate quark flavours correspond to the right and top boundary
lines, and the diagonal, respectively (quarks with infinite mass do not contribute to the dy-
namics and decouple from the theory). In the limits of mu,d = 0 (left boundary), there are
non-analytic phase transitions due to the spontaneous breaking of the chiral symmetry for
massless quarks. Simulations at finite quark masses on coarse lattices appeared to confirm
the predicted first-order region for Nf = 36, 7. On the other hand, one observes an ana-
lytic crossover at intermediate quark masses, with a second order boundary line separating
these regions, which has been shown to belong to the Z(2) universality class of the 3d Ising
model8, 9. Another possibility, which has also been seen in the staggered discretisation on
coarse lattices10, is for the first-order chiral transition region to extend all the way to the
Nf = 2 theory in the upper left corner. Over the years the chiral critical boundary line was
found to strongly recede towards smaller quark masses with decreasing lattice spacing11.
However, it has remained open whether the chiral phase transition for two quark flavours
is of first or second order in the continuum limit. Our original motivation for this long term
project was to distinguish between these two scenarios.

3 Computational Strategy and Numerical Results

Rather than trying to approach the continuum chiral limit for a fixed number of quark
flavours and masses, our strategy is to search for the tricritical point separating parameter
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regions with first-order and second-order chiral transitions. To this end it is advantageous to
change variables and consider strictly mass-degenerate quarks. The QCD partition function
Z is expressed as a path integral over the gluon fields U , including a determinant of the
Dirac operator for each species of quarks,

Z =

∫
DU (detD[U ; am])Nf exp {−Sg[U ]} , (1)

where Sg[U ] is the discretised gauge action and D[U ] the fermion Dirac operator, which
we employ in the standard unimproved staggered discretisation. The bare microscopic
parameters of the partition function are the lattice gauge coupling β = 6/g2 and the bare
quark mass am, given in units of the lattice spacing a. The temperature T is specified by
the inverse temporal lattice extent

T = (a(β)Nτ )−1 . (2)

On a lattice with givenNτ , temperature is tuned by changing the lattice spacing a indirectly
via the coupling β(a). A continuum limit at fixed temperature implies a → 0, Nτ → ∞,
and larger values of Nτ imply smaller lattice spacings.

In this degenerate quark formulation one can continuously vary between Nf = 2, 3 by
tuning Nf to non-integer values, rather than tuning ∞ ≥ ms ≥ 0. The Columbia plot
from Fig. 1 left then gets replaced by the version on the right. A tricritical strange quark
mass mtric

s in the former version translates into a tricritical value 2 ≤ N tric
f ≤ 3 in the

latter. The chiral critical line is known to enter the tricritical point as13

amc

(
Nf (Nτ ), Nτ

)
= D(Nτ )

(
Nf −N tric

f (Nτ )
)5/2

+ . . . . (3)

The benefit of this changed formulation is its generality, i.e. the tricritical point can be
located at any value of Nf , in contrast to the model expectations on which the scenario in
Fig. 2 is based. The task then is to follow the chiral critical line, which is known on coarse
lattices, through parameter space as the lattice is made finer.

All numerical simulations have been performed using the publicly available OpenCL-
based code CL2QCD, which is optimised to run efficiently on AMD GPUs and contains
an implementation of the RHMC algorithm for unimproved rooted staggered fermions.
Version v1.014 has been employed for simulations on smaller Nτ on the L-CSC super-
computer at GSI, while version v1.115 has been run on the HLR supercomputer at Goethe
University to run the most costly simulations.

We locate and identify the nature of phase transitions by finite size scaling analyses of
standardised moments of the distribution of an appropriate order parameter,

Bn(β,m,Nσ) =
〈(O − 〈O〉)n〉

〈
(O − 〈O〉)2

〉n/2 . (4)

For the chiral phase transition this is the chiral condensate, O = ψψ. We first locate
the phase boundary βc by the condition of vanishing skewness for the distribution of
the observable B3(βc, am,Nf , Nτ , Ns) = 0. The order of the transition can be deter-
mined by the kurtosis B4(β,m)16. In the thermodynamic limit Nσ → ∞, the kurto-
sis B4(βc,m,Ns) takes the values of 1 for a first order transition and 3 for an analytic
crossover, respectively, with a discontinuity when passing from a first order region to a
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Figure 3. Our general procedure of identifying phase transitions by finite size scaling analysis.
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Figure 4. Left: The Z(2)-critical line separating first-order transitions (below) from crossover (above), for unim-
proved staggered fermions12. Right: The same data plotted in a different parameter pairing12. The continuum
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crossover region via a second order point, where it takes the value17 1.604 for the 3D Ising
universality class. On finite but sufficiently large volumes, it can be expanded about the
critical point,

B4(βc, am,Nf , Nτ , Ns) = 1.604 +B (βc, Nf , Nτ ) (am− amc)N
1/ν
s + . . . , (5)

through which it passes smoothly. As the volume is increased, the rate of the approach to
the thermodynamic limit is governed by a 3D Ising critical exponent, ν = 0.6301. Dots
indicate additional terms that vanish in the infinite volume limit.

For each parameter combination, we generated statistics by simulating four indepen-
dent Monte Carlo chains until their B3,4-values agreed to within less than three standard
deviations, upon which they were merged. The multi-histogram method was used to inter-
polate between simulated β-values18, in order to locate the pseudo-critical coupling pre-
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cisely. This is shown in Fig. 3(a). An example of a fit of our data to Eq. 5 is shown
in Fig. 3(b). Altogether, the results presented in the following sections are based on ∼ 200
million Monte Carlo trajectories spread over several hundred different parameter combi-
nations, obtained over a span of several years.

Results of our investigation for µB = 0 are shown in Fig. 4. The left plot is the
numerical realisation of the chiral critical line, sketched schematically in Fig. 2 right, on
lattices with Nτ = 4, 6, 8 respectively. One observes the tricritical point, corresponding
to the intercept of a fit to Eq. 3, to move to larger values as Nτ grows (i.e the lattice gets
finer). While no continuum limit for the value of N tric

f is available yet, it is obvious that
N tric
f > 3, so that the chiral transition in the massless limit of the Nf = 3 theory is of

second order. The same conclusion is reached by looking at the same critical line in a
different parameter pairing, Fig. 4 right. The small curvature of the critical lines shows
near-perfect tricritical scaling. All theories with Nf ≤ 7 are consistent with a tricritical
point at a finite aT = N−1

τ , which means that the first-order transition region under the
critical line is not connected to the continuum limit, but a lattice artefact. Unless a new
first-order region is found at even smaller masses, one concludes that for Nf = 2 − 7 the
chiral phase transition in the continuum must be of second order. The Columbia plot in the
continuum then differs from the proposal in Fig. 2 and instead looks as in Fig. 6 left.

4 The Columbia Plot with Imaginary Chemical Potential

The next step in our program is to determine how the nature of the chiral transition de-
pends on chemical potential. Since a physical, real baryon chemical potential cannot be
simulated, we chose an imaginary chemical potential, for which there is no sign problem.
Earlier work on coarse lattices displays an analogous situation to µB = 0, namely a first-
order chiral transition region which terminates in a Z(2)-critical line. We have then con-
sidered a fixed quark chemical potential µ = i0.81πT/3, for which there is an analogous
Columbia plot with first-order regions, which on coarse Nτ = 4 lattices are significantly
wider than at zero density. However, upon increasing Nτ , i.e. making the lattices finer,
this first-order region also shrinks and disappears at a tricritical point, as evinced by sim-
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Figure 6. Left: The Columbia plot for µB = 0 in the continuum according to our results12. Right: Extension to
finite quark chemical potential. The lower half-space with imaginary chemical potential is accessible by Monte
Carlo simulations, with the same result as at µB = 0.

ilar scaling behaviour as at µ = 0, which is shown in Fig. 5. Our results are consistent
with other approaches with two different versions of improved staggered fermion actions
at µ = iπT/3: starting at the physical point and approaching the chiral limit, no sign of
a first-order transition is found down to pion masses ∼ 50 − 60 MeV19, 20. Unless a com-
pletely different first-order transition is found at yet smaller quark masses in the future, one
has to conclude that there is a second-order chiral transition in the limit of strictly massless
quarks, and an analytic crossover for any non-vanishing quark mass. The Columbia plot
including imaginary chemical potential then looks as in Fig. 6 right. Preliminary results
have been published in conference proceedings21 and a doctoral thesis22, a journal article
is in preparation.

5 Conclusions

Modern high performance computing allows to evaluate ever larger portions of the QCD
parameter space, and to approach the theoretically interesting chiral limit of vanishing
quark masses. With our ongoing long-term project reported here, we are presenting
increasingly tight evidence that the QCD chiral phase transition in the limit of mass-
less quarks at zero and imaginary baryon chemical potential is of second order for all
Nf = 2 − 7. While this does not rule out a change to a first-order transition at some real
chemical potential, our data are beginning to impose relevant bounds on the location of
a possible critical endpoint. Fig. 1 middle and right show the remaining possibilities for
the physical phase diagram and its connection to the chiral limit: while a first-order line
closing to the T -axis is increasingly ruled out, a second-order line connecting the T - and
µ-axes is still a possibility. In this case the transition for physical quark masses would cor-
respond to crossover everywhere. In the more expected scenario with a first-order chiral
phase transition at finite density, knowledge of Tc in the chiral limit and the curvature of
the crossoverline at the physical point allows to bound the location of a possible critical
endpoint in physical QCD to µB > 485 MeV11.
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Gluons are the carriers of the strong force. Together with the quarks they form the protons
and neutrons which make up the atomic nuclei. While gluons make up a significant fraction of
those, a particular kind of particles are the so-called glueballs, which are thought to be made
predominantly of gluons. Despite having been hypothesised half a century ago and significant
effort to find them in experiments, glueballs have not been detected beyond doubt. Numerical
computations using lattice quantum chromodynamics could shed light on the existence of these
particles, but new algorithms and strategies are needed for this task. We discuss two promising
strategies which could help achieve this goal: multi-level sampling and trivialising flows.

1 Introduction

The fundamental theory describing nuclear matter continues to pose a large array of chal-
lenges to theoretical physicists. Even fifty years after the formulation of quantum chro-
modynamics (QCD), it is still hard to calculate many quantities which physicists need to
make progress in the field. QCD describes the observable particles, like the proton or the
neutron, as being composed of quarks held together by gluons, the carriers of the strong
force. While many features of strong interaction physics can be immediately understood
from this theory, it is not easy at all to accurately predict elementary particle properties like
their mass, their interactions and their structure.

The origin of these difficulties is in the nature of the system itself: the quarks and gluons
are interacting strongly. This makes analytic methods, which are so successful in weakly
interacting theories, less useful. In the last four decades, a powerful method to solve the
theory numerically has been developed: lattice quantum chromodynamics. Today, lattice
QCD computations are the prime source for quantities like the QCD running coupling or
the quark masses.

Using lattice QCD, one can not only reproduce properties of known particles, but also
study hypothetical particles. One particular class of particles, which have been predicted
since the advent of QCD, are the so-called glueballs1. In a world without quarks, glueballs
would be the bound state of gluons and the only strongly interacting “visible” particles,
since single gluons cannot escape the confinement of the bound state. Glueballs as bound
states are a direct manifestation of the special properties of quantum chromodynamics.
Photons, the carriers of the electromagnetic force, do not exhibit a similar phenomenon. In
numerical lattice computations, it has long been demonstrated that such glueballs exist in
the theory without quarks2, 3 .

In QCD, quarks and gluons, however, always come together and cannot be separated.
Therefore, these purely gluonic states will be different in the world we live in. They might
still consist predominantly of gluons, with only a small contribution from the quarks, or
their nature might change completely such that they have no resemblance with what has
been established in the purely gluonic theory. For sure, they are no longer stable, to the
contrary, they decay quickly with many possible decay channels.
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In experiment, glueballs have been elusive. There have been experimental observations
of candidates4 and recent findings by BESIII confirming pseudoscalar quantum numbers
for the X(2370) are reviving the interest in this field5. Reliable theoretical input from QCD
would certainly help the interpretation of these findings.

The method requires significant computer resources and sustainable progress can only
be made by exploring new numerical strategies and further developing proven algorithms.
Simply using larger amounts of computer time is not an option. In the following, we will
describe two such avenues to speed up lattice QCD computations.

2 Algorithms for Lattice Field Theory

As already indicated by the “lattice” in the name, space-time is discretised on a four-
dimensional lattice. Once the theory is formulated on this lattice, what remains is integrat-
ing over the degrees of freedom attached to each of these lattice sites: the task to compute
the expectation value of an observable 〈O〉 is to evaluate an integral with many millions to
billions of integration variables

〈O〉 =
1

Z

∫
[dU ]e−S[U ]O[U ] , (1)

where Z =
∫

[dU ]e−S[U ] and U denoting the aggregate of the gluon fields.
Such high-dimensional integrals are typically tackled by Monte-Carlo integration. It

means interpreting the Boltzmann weight P [U ] ∝ e−S[U ] as a probability density and
drawing all those millions of variables at once from this distribution.

Since it is virtually impossible to directly draw form this distribution, the field config-
urations are generated in the framework of a Markov Chain Monte Carlo: the field space is
explored by deforming in a randomised way gauge field configurations such that one stays
in the important region, where the importance is given by the probability P [U ]. This gives
a series of field configurations, where a field configuration Ui is a certain random value of
each of the many integration variables

U1 → U2 → U3 → · · · → UN . (2)

From these variables, the quantities of interest, called O[U ] in the above formula, are then
constructed. This is the measurement in lattice field theory language and the results for all
the drawn realisations of the gauge fields are then averaged over

Ō =
1

N

N∑

i=1

O[Ui] . (3)

The uncertainty of the estimate of Ō of the true value 〈O〉 decreases with 1/
√
N , the

inverse square root of the number N of samples drawn.
For certain types of observables, this procedure can lead to very satisfactory results. For

many quantities of interest, this strategy, however, does not render competitive answers and
we therefore have to work on new methods to go beyond the current state-of-the-art.

In this contribution, we discuss ideas to modify the above procedure in two ways. First
we will challenge the idea that it is a good strategy to generate all field variables at once.
Splitting up the update, one can devise improved estimators with a better scaling in the
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number of measurements. The second avenue is a different way of generating the gauge
fields. Instead of deforming probabilistically one global field into the next, we will present
an effort to learn a map from a trivial distribution to the target distribution. If successful
such an approach could avoid the problems arising from the correlation of subsequent field
configurations.

2.1 Multilevel Algorithms

Many quantities of interest are extracted from correlations between operators O and O′ at
different points in space-time

〈O(x)O′(y)〉 , (4)

e.g., the particle mass from the exponential decay rate with the distance. For such operator
products, the statistical noise is frequently independent of the distance |x − y| between
the points, whereas the signal falls off exponentially with this distance. With growing
distance, the computational cost to compute the signal to a certain level of accuracy grows
exponentially with this separation. This problem has been known since the early days
of lattice quantum field theory6 and many strategies have been devised to fight it, but
without finding a complete solution for general quantities. One successful strategy is the
choice of good operators O and O′ for the analysis. This will reduce the coefficient of
the exponent and therefore mitigate the problem. A good choice of an operator basis is an
essential ingredient in any modern computation and we will use a state-of-the-art setup in
the following.

So-called multi-level algorithms are a possibility to improve the scaling of the Monte
Carlo estimate of such products of operators. How is this done? The idea is to use the
locality of the underlying theory, the property that local fields and their probabilities depend
only on the other fields in their neighbourhood. We employ this in the concrete setup
by decomposing the lattice into the two regions around the two points of the correlation
function and a boundary where they meet, see Fig. 1. We can then independently use
the Monte Carlo method to compute estimates for these two factors. For this to work, the
fields in the boundary need to be kept fixed and we need to average over a certain number of

 
A          boundary          B          

x y

Figure 1. Simple decomposition of the lattice for a multilevel algorithm. We use a number N0 of realisations for
the boundary field in the centre. For each of these boundary fields, the lattice in region A and region B can now
be sampled independently from the corresponding marginal distribution.
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boundary field realisations. The strategy now translates to the following nested averaging
scheme:

〈O(x)O′(y)〉 → 〈〈O(x)〉A〈O′(y)〉B〉bndry . (5)

where the averages 〈O(x)〉A and 〈O′(y)〉B depend on the boundary field, but not on the
fields in the other region B and A, respectively.

The important result is that the uncertainty of the product potentially scales with the
inverse square root of the product of the number of these two sub-measurements. If we
make N1 sub-measurements in each of the regions, the uncertainty drops with 1/N1 for
the multilevel estimator, instead of 1/

√
N1 for the standard strategy. Note, however, that

this is the ideal scaling which will be limited by the effect of the fixed boundary. Such ideas
are not new and have been pursued over the years7–9. In a theory without fermions this has
also been successful for certain quantities. Also for fermions, a possible strategy has been
formulated10, 11. That such an algorithm is efficient is not a priori clear. In particular, it
might happen that the effect of the fixed region is so large that the signal has degraded
beyond repair before the benefits of the new algorithm kicks in.

Since we have set out to study glueballs on the lattice, we tested this algorithm in an
actual glueball computation, albeit without the presence of fermions12. This reduces the
cost of the simulation significantly and we can therefore evaluate the idea in detail, also
trying many variations. In Fig. 2, the noise-to-signal ratio of the correlation functions in
different glueball channels is shown as a function of the distance between the operators.
By its nature, the algorithm will be efficient once the two points are sufficiently far away
from the respective side of the boundary. It is therefore no surprise that at shorter distances
we observe an exponential degradation of the signal. Here, we can only use the standard
estimator.

Depending on the channel, this changes at around 0.75r0 to r0, with r0 ≈ 0.5 fm,
where the degradation can be almost stopped. The plot also shows that the behaviour is
physical in the sense that it does not depend on the lattice spacing, where the different
values of β = 5.8, 6.08, and 6.2 correspond to a lattice spacing of 0.136 fm, 0.08 fm, and
0.068 fm, respectively. The use of the multilevel algorithm gives an essential window of
opportunity for the measurements of the glueball’s masses at the larger distances. While
this is not necessary for the purely gluonic theory we used here, it will be essential for the
next step where we want to compute in the full theory with the effect of the quark fields
included.

2.2 Machine Learning

As already mentioned above, lattice gluon fields are typically drawn from the target distri-
bution by using a Hamiltonian Monte Carlo13, i.e. a method which continuously deforms
the field while staying inside of the region of likely fields as defined by the probability
distribution. This algorithm is widely used, not only in lattice quantum chromodynamics.
It has the great advantage of being universally applicable as long as we have continuous
variables.

The disadvantage is that it suffers from so-called critical slowing down as the lattice is
made finer. There are significant correlations between subsequent configurations produced
in this update procedure. They have their source in the general strategy for the algorithm:

30



10−2

10−1

100

101

102

σ
C̄

(∆
t)
/
C̄

(∆
t)
T
/a
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Figure 2. The noise-to-signal ratio as a function of the distance between the two operators for various types
of glueball, A++

1 (red), E++ (green), T++
2 (orange), and A−+

1 (blue)12. At short distances, we observe the
exponential deterioration of the signal compared to the uncertainty. From a certain distance on, the multilevel
algorithm becomes efficient and this deterioration is slowed down. Plot from Barca et. al.12. The distance is
given in units of r0 ≈ 0.5 fm.

it continuously deforms the fields, so there always is some “memory” left of the previous
field configurations. These correlations now get worse on finer lattices. Detecting the
correlation is to a certain extent also an art of its own. We have billions of variables and
only certain will exhibit the worst of these correlations.

Particularly bad are observables linked to the topology of the underlying system. The
topological sectors form quickly as the lattices are made finer and the simulation gets
stuck in one of them. We therefore no longer draw from the full probability distribution

31



but only from a subset given by a certain topology of the fields. In a sense, this is even
a good situation in which we have identified this particularly problematic observable and
can therefore monitor the problem and know where the limits of the current setup are.
There could very well be other quantities exhibiting much slower behaviour which we are
unaware of.

These considerations trigger the wish to change the simulation strategy altogether. One
such approach are so-called normalising flows. These are maps in fields space U → F(U)
such that in the integral Eq. 1 the Boltzmann weight exp(−S[U ]) gets replaced by a prob-
ability distribution from which we can sample trivially, without having to use methods like
Hamiltonian Molecular Dynamics. For many applications this is the Gaussian distribution,
hence the name. In our case it is a uniform distribution and we refer to them as trivialising
flows.

If such a map can be found, the simulation setup changes drastically. Instead of pro-
ducing a chain of correlated fields, we can draw uncorrelated fields from the uniform dis-
tribution to which we then apply the map. These maps are typically given in terms of a
partial differential equation with parameters depending on the target distribution. These
parameters have to be determined, learned in the language of machine learning, by min-
imising the distance of the distribution generated by the map and the target distribution
given by the full theory P [U ] ∼ exp(−S[U ]).

This optimisation will never be perfect, and also the model will only have a limited
number of parameters and terms. The question to answer is whether it is good enough to
be used in actual applications.

This approach is very successful in many machine learning applications, however, these
are frequently of very different type compared to the case of lattice quantum chromody-
namics. On the lattice, we face a huge number of degrees of freedom on the one side. On
the other side, we have a lot of symmetries in our system: translations for arbitrary shifts
in the lattice, rotational symmetries and many more, also internal symmetries.

In recent years, there has been significant interest in this approach to the sampling prob-
lem in QCD14. With respect to earlier maps, we have proposed and implemented one with
many orders of magnitude fewer parameters, implementing a large amount of symmetry15.
It is based on an analytic approach proposed earlier by Lüscher16, who also showed that
in the given class of models such a map actually does exist, albeit with growing number
of parameters. The low number of parameters of our model is a significant advantage if
it comes to training. In this step, more parameters increase the cost and it will be more
difficult to find optimal parameters with a given amount of resources. In case of an unsat-
isfactory match, it is also difficult to determine whether the problem is a lack of training or
a lack of expressivity of the model.

In Fig. 3 we show the history of the training of the model in a two dimensional theory.
The effective sampling size (ESS) is shown as it increases due to the training. The ESS
gives an effective number of field configurations after taking into account the mismatch
between the distribution produced by the model and the target. In our study, we could
show that our reduced, physics driven approach significantly outperforms the previous
efforts15. Using these methods is still in its infancy. In particular, there is so far one big
hurdle: they scale very badly with the volume of the system. Some of this scaling might be
overcome with a better model and better training, but this will only lead so far in the face
of the billions of degrees of freedom of modern day lattice simulations.
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Figure 3. Training history of the effective sampling size (ESS), the effective fraction of field configurations
generated after taking into account the mismatch between target distribution and the distribution generated by the
flow15.

3 Summary

Lattice quantum chromodynamics has come a long way since the first simulations at the
beginning of the 1980s. Part of it is due to the increased availability of computer resources.
A roughly even share is in the ability of the community to develop computational strategies
to exploit the changing computer architectures and to invent new algorithms to address
specific issues of the physical systems. In particular, it is time to develop algorithms with
the specifics of the target observables in mind.

Here we discussed two such approaches taking specific advantage of key properties
of the underlying theory. In the case of the multilevel sampling, we used the locality of
the underlying theory to formulate an algorithm which could improve the scaling of the
uncertainty of the result with the effort. For the trivialising flows, we used a model which
implemented many of the symmetries of the theory, like the invariance under translations
and rotations as well as internal symmetries directly. We demonstrated that this model is
outperforming previously discussed ones by many orders of magnitude. This approach is,
however, still far from being competitive with the Hamiltonian Monte Carlo.

These studies are not yet at the end, but an important step towards reach the goal of
studying glueballs in the full theory of quarks and gluons.
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Biomolecules like Proteins and RNAs play a critical role in life processes at the molecular level,
with their structures intricately linked to their function. However, experimentally determining
their structures remains challenging. In silico techniques, such as computational structure pre-
diction, offer a valuable complement to experimental approaches. Fifteen years ago, direct
coupling analysis (DCA) was developed to infer co-evolutionary patterns and predict spatial
relationships between residue pairs. Such spatial information could considerably improve 3D
structure prediction. This paved the way for deep learning methods, which initially improved
accuracy in predicting these relationships and eventually succeeded in generating full 3D struc-
tures. One of the most prominent achievements is AlphaFold, which has revolutionised the
field. Its groundbreaking success earned Demis Hassabis and John Jumper one half of the 2024
Nobel Prize in Chemistry, highlighting its transformative impact on structural biology. This
short review guides through the past 15 years of protein structure prediction for an interested
public.

1 Introduction

Proteins and RNAs are fundamental building blocks of life at the molecular level and carry
out key functions that sustain biological processes. Build from linear sequences of amino
acids, proteins act as, e.g., enzymes, catalysts that speed up biochemical reactions, and
serve as structural components of cells. Hemoglobin, for example, transports oxygen in
the blood, while insulin regulates blood sugar levels. RNA is likewise a versatile molecule,
being involved in protein synthesis and gene regulation, as seen with messenger RNA
(mRNA) and ribosomal RNA (rRNA) but has also been shown to be able to react to exter-
nal stimuli as riboswitches regulating genetic expression. Common to these biomolecules
is the strong dependence on their three-dimensional structures, which dictate their interac-
tions and functions with dysfunctions often related to disease1, 2.

However, determining these structures experimentally is a major scientific challenge.
Techniques like X-ray crystallography, NMR and cryo-electron microscopy (cryo-EM) are
powerful, yet time-consuming and technically demanding. For many proteins and RNA
molecules, especially those that are large, flexible, or difficult to crystallise, obtaining high-
resolution structural data remains (at a minimum) time consuming and expensive or even
elusive.

Computational approaches, such as structure prediction techniques, have become valu-
able tools to complement experimental efforts. By using algorithms to predict 3D struc-
tures based on sequence data, these methods can provide insights where experiments may
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be limited. The remarkable advancements in sequencing technologies have led to an ex-
ponential increase in the availability of biological sequence data3. These advances have
opened up new opportunities for understanding the molecular basis of life, particularly in
relation to proteins and ribonucleic acids (RNA). As sequencing techniques become more
efficient and affordable, the sheer volume of data generated allows scientists to explore the
diversity of proteins and RNA across different species, gaining insights into their evolu-
tion, structure, and function. In this mini-review, we will quickly summarise the basic of
organising sequence information in multiple sequence alignments and inferring spatial or
structural information from them by statistical physics and machine learning approaches.

2 Availability of Raw Data: Organising Sequence Data as Multiple
Sequence Alignments

One of the key tools for analysing this vast amount of sequence data are multiple sequence
alignments (MSA), which enable researchers to identify similarities and differences be-
tween sequences from different organisms. In short, MSAs are essential for inferring
structural and functional relationships within and between phylogenetic trees. By align-
ing sequences, scientists can identify conserved regions that are crucial for the function of
a protein or RNA, or regions that have (co-)evolved to confer new functions or maintain
structural properties. Improved statistical methods and sophisticated alignment software
have been instrumental in enhancing the accuracy of these analyses4–10.

Freely accessible databases, such as UniProt, Pfam (the protein family database), and
Rfam (the RNA family database), have emerged as invaluable resources for researchers
seeking to analyse protein and RNA sequences. These databases curate and organise se-
quence data, providing researchers with comprehensive information on the structure, func-
tion, and evolutionary relationships of proteins and RNA. UniProt, for example, is a widely
used protein database that contains detailed annotations on protein sequences, including
information about protein function, domains, and interactions11. Similarly, Pfam offers
curated data on protein families, allowing researchers to investigate conserved regions that
are common to proteins with similar functions12. Rfam, on the other hand, focuses on
RNA families, providing insights into the structure and function of non-coding RNAs,
which play critical roles in gene regulation and other cellular processes13.

The availability of these vast and well-organised data sets is essential for the broader
scientific community and they serve as foundational resources for a wide range of applica-
tions by enabling development of sophisticated bioinformatics tools to expand our ability
to study the molecular underpinnings of life. Importantly, these databases are freely acces-
sible to researchers worldwide, fostering collaboration and accelerating discoveries.

3 2009 Structure Prediction by Tracing Co-Evolution: Direct
Coupling Analysis (DCA)

Fifteen years ago, direct coupling analysis (DCA) and related methods revolutionised our
ability to predict the spatial proximity of amino acid residues in proteins by detecting co-
evolutionary patterns in sequence data. These techniques identify “contacts” or residues
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that are likely to be close in three-dimensional space, by analysing patterns of linked mu-
tations across evolutionary time14, 15. Previous methods, such as those based on mutual in-
formation, struggled to distinguish between direct and indirect interactions, often misiden-
tifying residues as interacting when they were not directly adjacent. DCA addressed this
limitation by specifically inferring direct couplings between residues, which arise from
their direct spatial proximity within the protein structure.

Evolution

Inference

Contact Map

Simulation

Constraints

Figure 1. General structure prediction workflow The wild type sequence of biomolecules encodes a specific
biomolecular structure. While maintaining this overall shape, evolution generates correlated mutational pat-
terns in multiple sequence alignments, often due to spatial proximity of residues. These patterns can be used to
statistically infer contact maps, which provide valuable constraints for predicting biomolecular structures. By
incorporating these contact maps into prediction models, the accuracy of the predictions is significantly enhanced
compared to models that rely solely on direct structure prediction without such constraints. This approach lever-
ages evolutionary information to better capture the physical interactions between residues, ultimately improving
the overall quality of the predicted structures.

DCA achieves this by applying an inverse Potts model to sequence data, allowing re-
searchers to disentangle the complex web of evolutionary interactions. With P (S) being
the probability that a given sequence S = a1a2...aL of length L, in which each state ai
is either a residue or a gap, is sampled over the course of evolution. P (S) can be written
using the Boltzmann law as:

P (S) =
1

Z
exp(−β φ), (1)

where β is the inverse of the temperature, Z the partition function of the model and φ the
Hamiltonian of the system, which in turn is expressed via a generalised Potts model as:
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φ = −
L∑

i<j

Jij(ai, aj)−
L∑

i=1

hi(ai). (2)

The parameters hi(ai) measure the local field strength at site i occupied by state ai and the
coupling parameters Jij(ai, aj) quantify the coupling strength between pairs of sites i and
j occupied by states ai and aj , respectively. The local field and the coupling parameters
of the model are inferred from the MSA of homologous sequences to S using inverse
statistical algorithms. Initially, DCA employed a message-passing algorithm to solve this
inverse problem15. Subsequent advancements aimed at increasing efficiency and accuracy,
including the development of the mean-field approach, which significantly sped up the
inference process16, 17, using pseudolikelihood maximisation further improving prediction
accuracy18 or Boltzmann learning19. Furthermore, the principles behind DCA have been
successfully extended to RNA molecules, enabling the prediction of structural contacts in
RNA sequences as well20.

In a similar idea to using experimental data as restraints in structural modelling21–23,
the contact information derived from DCA can serve as powerful structural constraints.
This approach has been applied to a range of biomolecular modelling challenges24, 25, such
as predicting the structure of protein complexes14, globular proteins26, mapping conforma-
tional transitions27, serving as constraints in MD simulations28 and even studying large-
scale homodimer prediction29. DCA has also proven useful in applications like protein
design, where it has been used to re-engineer protein signalling pathways30–32 or predict
fitness landscapes33, 34.

In addition to its success with proteins, DCA has been applied to RNA contact pre-
diction, yielding great success in RNA structure prediction20, 35–37. More recently, DCA
has been combined with machine learning techniques to further improve its predictive
power. Shallow learning approaches, which require fewer parameters, have been shown
to enhance DCA’s performance38. These advancements continue to expand the potential
applications of DCA in biomolecular research, making it a valuable tool for understanding
and modelling the complex structures of both proteins and RNA.

4 2017+ Shift to Deep Learning (DL) in Biomolecular Structure
Prediction

In recent years, numerous scientific disciplines have been profoundly impacted by ad-
vancements in machine learning, driven by both theoretical innovations and vast techno-
logical improvements a. These breakthroughs have been supported by the development
of specialised hardware such as novel graphical processing units (GPUs) optimised for
machine learning architectures. In addition the availability of large, high-quality datasets
(ideally fully annotated) supports deep-learning approaches. One of the fields most sig-
nificantly transformed by these advancements is biological physics and in particular the
focus of this mini-review: structure prediction. Here, the intersection of vast biological

aInterestingly, these approaches are conceptually linked to earlier developments in statistical physics, such as the
Hopfield Network (e.g. the review39).
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data, both on the sequential and structural level, combined with powerful machine learn-
ing models led astonishing progress in 3D structure prediction40–42 including one of best
known successes in deep learning AlphaFold41. These ML approaches, rely on deep neural
networks with an accordingly massive number of free parameters. Naturally, training these
deep networks require equally very large datasets of structurally known 3D structures and
accompanying MSAs.

Early neural networks for protein contact prediction were based on convolutional neu-
ral networks (CNNs), which treated the problem similarly to image processing. These
CNN-based models used output maps from direct coupling analysis (DCA) as input and
refined them to predict contact likelihoods for each possible pair of residues, producing en-
tire contact maps43, 38. To better incorporate sequence-specific features, models introduced
concatenated or summed embeddings of sequence tokens and sequence profiles, which
contain alignment statistics for each sequence position43. Over time, these models such
as AlphaFold advanced to predict distance maps, or distograms, instead of simple binary
contacts, providing more granular spatial information about residue pairs41.

The development of transformers and large language models marked a shift towards
language processing approaches. The MSA Transformer44 is one such protein language
model, capable of extracting co-evolutionary patterns from multiple sequence alignments
(MSAs) through self-supervised learning. It uses attention maps to predict residue con-
tacts. More recent models, such as single-sequence transformers, embed evolutionary con-
text directly into their model parameters, bypassing the need for MSAs in the input45. A
third approach involves geometric or graph-based models, which analyse sampled or gen-
erated structures to improve structural predictions, although they do not directly generate
structural candidates themselves46.

In an ideal scenario, a model would directly predict the atomic coordinates of a protein
as a point cloud, eliminating the need for complex post-processing and additional compu-
tational modelling. One of the first models to approach this was the recurrent geometric
network (RGN)47, which relied on long short-term memory (LSTM) networks48. However,
more recent models like AlphaFold249 and RosettaFold50 use attention-based architectures.

These models employ different sub-modules, including a token-level attention network
and a geometric structure module. The latter incorporates inductive biases such as geo-
metric transformations (e.g., SE(3) symmetry, used in the SE(3)-Transformer51), which
helps the model better predict protein structures. Additionally, the token-level sub-module
is trained using a self-supervised masked language task as an auxiliary loss, improving its
performance. Both AlphaFold2 and RosettaFold are trained on large protein datasets, re-
quiring hundreds of thousands of samples to achieve their high level of accuracy. Recently,
AlphaFold352 employed a diffusion-based approach which further increased accuracy and
range of predictable systems (proteins, nucleic acids, small molecules, ions and modified
residues).

For RNA, there is a discrepancy in the availability of data. While there is massive se-
quence data (>30 Mio sequences), there exist only 8000 RNA structures in the PDB, many
of them from related RNA families. Our recent method BARNACLE53 first learns an op-
timal internal representation on the sequence data (upstream training) before fine-tuning
to specific prediction tasks (downstream training) such as contact prediction, which relies
on the less abundant structural data. Similarly, the recent development of RNAformer54

is a transformer model designed for predicting RNA secondary structures and highlights
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the growing application of machine learning techniques to RNA alongside proteins. Al-
phaFold352 also expanded its capabilities towards RNA structure prediction (cf. Fig. 2).
Here, we observe a clear trend: structures with known structural similarity to the train-
ing data tend to be predicted more accurately, i.e. low in RMSD. However, the accuracy
of predicted structures for sequences dissimilar to the training dataset still present chal-
lenges. The scoring of the models, i.e. the estimate of the predicted structure’s quality, are
quite reliable for high scoring models. Low scores indicate varying prediction quality, with
some predictions being of high quality while others are structurally very dissimilar from
the target structure.

Figure 2. AlphaFold3 RNA structure prediction The figure shows blind RNA structure predictions made by
AlphaFold3 (AF3) for RNAs that were not part of its training dataset but were experimentally resolved after
its release. The score represents AF3’s own confidence in the prediction, where values below 0.6 indicate low
reliability. Sequences without similarity to known structures tend to be predicted less accurately, as reflected by
their high root mean square deviation (RMSD) from experimentally measured structures. RMSD values below
5Å denote high-quality predictions, while higher values suggest poorer accuracy in the predicted structures.

5 Discussion and Summary

This article provided a comprehensive overview of advancements in protein and RNA
structure prediction, focusing on the evolution from statistical methods to, more recently,
deep learning approaches. It began with DCA, a statistical method that leverages co-
evolutionary patterns in multiple sequence alignments to infer spatial contacts between
residues. DCA marked a significant step forward, providing structural insights by reveal-
ing evolutionary constraints that indicate residue proximity. The field has transitioned to
deep learning models, which have vastly improved predictive accuracy by directly learn-
ing complex patterns within large datasets with no direct assumption about the underlying
evolutionary patternsb. In particular, the development of convolutional neural networks
(CNNs) introduced the ability to treat contact prediction as an image-like problem, en-
hancing accuracy through feature extraction.

The article then discussed AlphaFold2, a deep learning model that employs attention-
based architectures to predict full 3D structures with unprecedented accuracy. By integrat-
ing information from evolutionary data and protein sequence profiles, AlphaFold2 set a

bDCA only considers local field and two-body terms.
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new standard in structure prediction, achieving results comparable to experimental tech-
niques and was awarded part of the Nobel Prize 2024 in Chemistry, highlighting the suc-
cesses in and impact of this field and the promises it holds for the future.

The covered advances have not only improved protein and RNA structure prediction
but also open new possibilities in molecular biology and applied fields like pharmacology
and biotechnology. One particularly promising direction is the reverse task of structure
prediction: biomolecular design. In this area, deep learning approaches, especially those
leveraging foundation models, could enable the design of biomolecules beyond the se-
quence space explored by evolution. This could lead to the creation of entirely new molec-
ular structures with tailored functions, such as novel folds capable of catalysing specific
reactions. Such innovations hold great potential for developing new therapies, materials,
and biotechnological tools.
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Two-dimensional or layered semiconducting systems are subject to various external stimuli.
Their optical spectra can be modified by structural modifications, fields applied from outside,
and more. In this paper we summarise our findings concerning (i) layered materials under
pressure, (ii) modifications due to point defects, and (iii) magnetic proximity effects between a
semiconducting monolayer and a two-dimensional ferromagnet. The computational framework
of all these investigations is given by ab initio many-body perturbation theory (GW theory and
the Bethe-Salpeter equation), based on conventional density-functional theory.

1 Introduction

Layered semiconducting materials are highly interesting physical systems in reduced di-
mension, and serve as platforms for potential applications in spintronics, optoelectronics,
and quantum information technology. They are proposed as potential single-photon emit-
ters, quantum qubits, and more, and they exhibit quantum-physical phenomena like topol-
ogy, (quantum) (spin) Hall effect, Mott-Hubbard transitions, and exciton Bose-Einstein
condensation, to name just a few. One important ingredient in all of this is the possibility
to modify the materials’ (optoelectronic) properties beyond the perfectly ordered materials,
and to apply external stimuli for tuning. Here we discuss three such possibilities.

For the numerical determination of all such properties we employ the standard ab ini-
tio procedure to address optoelectronic excitations1, 2. It starts with conventional density-
functional theory (DFT). Total-energy optimisation within the DFT ground state yields the
mechanical equilibrium geometry of a given system (plus, if necessary, nuclear vibrations
and thermodynamic properties like phase transitions). Thereafter, for a given geometry
we employ the GW theory (as part of ab initio many-body perturbation theory, MBPT)
to determine electronic excitations. This includes single electrons and single holes, their
excitation energy (i.e., the energy levels or band structure) and their single-particle wave
functions. MBPT includes all relevant exchange and correlation issues in terms of the
electronic self-energy operator. Finally, on the basis of the GW band structure we solve
the Bethe-Salpeter equation (BSE) for correlated electron-hole pair states (i.e., excitons).
These determine the optical properties of a material, i.e. optical absorption, emission,
luminescence, reflectivity, etc.

(i) A simple external modification of transition metal dichalcogenides (TMDCs) is the
application of pressure3–11. The materials have high mechanical flexibility combined with
the ability to withstand high strain levels without breaking. Mechanical strain strongly
modifies the electronic band structure and the fundamental optical transitions, leading, for
example, to an energetic shift of the exciton resonances. This renders external strain –
besides electric fields – an important means of controlling the optical properties of 2D
semiconductors. In Sec. 3 we demonstrate that the optical spectra react sensitively to
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pressure applied in terms of a diamond anvil cell, and a careful comparison of theoretical
results with measured data obtained by close colleagues allows to address the question to
which extent the mechanical stress of the anvil cell is transferred to the TMDC sample
inside12.

(ii) Complementary to the properties of a perfectly ordered periodic system (may it
be a two-dimensional layer or a three-dimensional crystal), point defects embedded in it
provide additional functionalities. They combine physics known from single atoms or
molecules with the structural stability of a crystalline network, facilitating their investiga-
tion and usage. One prominent and timely example are point defects in hexagonal boron
nitride (hBN)13–20, which are being discussed especially as potential single-photon emit-
ters for quantum information technology. They seem to be ubiquitous in both natural and
artificially grown hBN and yield optical emission in the visible spectrum (whereas hBN
by itself is transparent in the visible and soft ultraviolet range). However, in spite of the
great significance, it is amazing that experimental data on their chemical and structural
nature is still sparse and partially contradictory. In Sec. 4 we discuss optoelectronic de-
tails of various point defects in hBN that have been suggested as being responsible for the
characteristic emission21, 22.

(iii) In addition to monolayers, homobilayers, and naturally grown bulk materials, there
is another class of two-dimensional systems that is getting more and more attention: heter-
obilayers. In here, a monolayer of one 2D system is deposited on a monolayer of another
2D system, thus constituting a junction. Here we investigate the specific case of WSe2 in
contact with CrI323–31, with particular focus on the excitons of the former. CrI3 is a ferro-
magnetic semiconductor down to the monolayer, i.e. it exhibits magnetisation from spin
polarisation and electronic states which are different in the majority spin channel (which
constitutes the spin polarisation) and the minority spin channel. In contact to WSe2, the
spin polarisation partially transfers to the WSe2 monolayer, which then also shows differ-
ent physics in the majority and minority spin channels, finally affecting the WSe2 excitons
(see Sec. 5)32.

Before discussing the above-mentioned three cases, a short summary of the theoretical
formalism is presented in Sec. 2.

2 Theoretical Framework

The outline of ab initio many-body perturbation theory (MBPT) has been discussed in
numerous publications (see, e.g., Ref. 1 and references therein). It usually starts from
density-functional theory (DFT), which is typically carried out first anyway to provide the
geometric structure of the material in question from total-energy minimisation. Thereafter,
MBPT describes single-particle and two-particle excitations as effective individual parti-
cles on the background of the interacting many-electron system of the material, in terms
of Green functions and their equation of motion33–35. Single-particle excitations refer to
the addition of removal of a single electron, the energetics of which is reflected in the band
structure or energy-level diagram of a system (occupied valence states refer to the removal
of an electron, empty conduction states to the addition of an electron), and are described by
the single-particle Green function. The net effects of electronic interaction and of exchange
effects (from Pauli’s principle) are expressed in form of the electronic self-energy operator,
which is commonly evaluated on the level of the so-called GW approximation1, 33. Two-
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particle excitations occur in form of correlated electron-hole pair states, commonly known
as excitons, and are described by the two-particle Green function and its equation of mo-
tion (the Bethe-Salpeter equation, BSE)1, 2. Here we only mention some aspects relevant
tor the application of the established theory to the case of two-dimensional semiconductor
systems36.

It has been well established that excitons in a semiconducting material are described
by the Bethe-Salpeter equation (BSE), applied to a representation of the exciton in terms
of a linear combination of independent interband transitions. Within the so-called Tamm-
Dancoff approximation, an exciton can be expanded as

|S〉 =

∫
d3k

∑

v,c

A(S)
v,c (k) |(vk)→ (c,k + Q)〉. (1)

In here, v/c denotes occupied and empty bands, Q is the total momentum of the exciton
(often close to zero) and the k-space integration covers the first Brillouin zone. For numer-
ical feasibility we have to replace the continuous integration by a finite summation oder k
points:

|S〉 =
∑

ki

∑

v,c

A(S)
v,c (ki) |(vki)→ (c,ki + Q)〉. (2)

Each ki represents a volume Vi in reciprocal space (usually all Vi are of equal size and
shape). The expansion coefficientA(ki) is supposed to represent the average of the original
ones, A(ki) = 1/Vi

∫
Vi
A(k)d3k. Finite sampling makes only sense if A(k) varies only

weakly within Vi. This set of k-points defines all further requirements of the algorithm.
After defining the excitation in Eq. 1, its equation of motion is given by the BSE in the

following way (omitting band indices for brevity sake):

∆E(k)A(k)−
∫
W (k− k′)A(k′)d3k′ = ΩA(k) (3)

with ∆E(k) denoting band-energy differences, W (q) denoting the screened Coulomb in-
teraction and Ω the excitation energy. When using Eq. 2, the BSE turns into

∆E(ki)A(ki)−
∑

j

W̃ (ki − kj)A(kj) = ΩA(ki). (4)

In here,

W̃ (ki − kj) := 1/Vj

∫

Vj

W (ki − k′)d3k′ (5)

is the integral ofW (q) over a (little) volume Vj around (ki-kj). For small reciprocal-space
distance ki-kj , we employ an analytically known model for W (ki − k′) and carry out the
integration of Eq. 5 numerically36. For large reciprocal-space distance, W̃ (ki − kj) ≈
W (ki−kj). Note that the treatment ofW in the electron-hole interaction for the BSE must
be equivalent to the treatment ofW in the underlyingGW (or LDA+GdW ) band-structure
calculation, especially concerning anisotropic behaviour of W (q) at small momentum and
the finite set of k points used in Eq. 2. These two issues, i.e. details of the band-structure
calculation and of the BSE, must exactly correspond to each other to reach the numerical
stability we need for the discussion in the next sections36.
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The underlying reason is the one-to-one correspondence (within MBPT) between the
GW self-energy operator ΣGW and the direct part of the corresponding electron-hole in-
teraction kernel derived from ΣGW :

Σ(1, 2) = iG(1, 2)W (1+, 2)

=⇒ Kd(13, 24) = ∂Σ(1, 2)/∂G(4, 3) = iW (1+, 2)δ(1, 4)δ(2, 3)

where we have made the usual approximation that ∂W (1+, 2)/∂G(4, 3) ≈ 0. Apparently,
for consistency between GW and BSE, the GW part of the MBPT should employ the
identical screened Coulomb interaction as the BSE. This implies using exactly the same
q-point grid for the internal summation leading to the self energy, as well as, employing
exactly the same modified interaction W̃ (q).

3 TMDC Materials under Pressure

When pressure is applied to a layered material, e.g. MoS2, the effects on the structure
are highly anisotropic. On the one hand, lateral compression will occur, as in any crys-
talline material, and with similar magnitude (up to 1 percent for 1 GPa of pressure). On
the other hand, the weak interaction between the layers will result in much stronger ver-
tical compression (several percent for 1 GPa of pressure) since the material is very soft
in this direction. For small enough pressure, the compression (or, more generally, strain)
is proportional to pressure (or, more generally, to the stress), as expressed by the elastic
constants of the material. We have derived the elastic constants from a vast number of
density-functional theory (DFT) calculation for various structural deformations, all car-
ried out with the gradient-corrected PBE (Perdew-Burke-Ernzerhof) exchange-correlation
functional37 with semi-empirical van der Waals corrections as proposed by Grimme et al.38.
Our results are: C11 = 218 GPa, C12 = 50 GPa, C13 = 5 GPa, and C33 = 21 GPa, in close
agreement with available experimental data12.

Concerning the response of optoelectronic excitations, it turns out that lateral com-
pression shifts the excitons towards higher energy (blue-shift), while perpendicular com-
pression shifts the excitons towards lower energy (red-shift). The latter effect is weaker
than that of lateral compression, but would dominate if lateral compression were excluded.
This might happen if a TMDC monolayer is solidly glued to an (incompressible) substrate,
such that applied pressure leads exclusively to perpendicular compression. The spectra in
Fig. 1 show the corresponding shifts of excitons, i.e. blue-shift to higher energies for hy-
drostatic, isotropic pressure including lateral compression (middle panel c), and red-shift
to lower energies for anisotropic, exclusively perpendicular compression without change
of the lateral lattice constant (right panel d).

The data shown in Fig. 1 can easily be interpreted in terms of geometric modifications.
The vertical compression (see panels b and d) reduces only the layer-to-layer distance d
and the thickness of the vacuum layer at a rate of about –0.10 Å/GPa at low pressure,
gradually reducing to –0.03 Å/GPa at a higher pressure of 10 GPa. As a consequence of
this layer-to-layer compression, the direct gap of the band structure shrinks from 2.53 eV
at zero pressure to 2.43 eV at 10 GPa, i.e., by (on average) –10 meV/GPa. Consequently,
all optical transitions are red-shifted upon increasing pressure by about this amount (see
Fig. 1 d).
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Motivation and Goal

Project goal:

Comprehensive understanding of interlayer coupling in TMD heterostructures.

Critical parameter: interlayer coupling strength.

Change interlayer distance and

electronic coupling by applying

hydrostatic or uniaxial pressure.

Tasks:

• Develop a theoretical framework to describe 2D HS under pressure.

• Measure the optical properties of HS in a diamond anvil cell (DAC).

• Model system: interlayer (IL) excitons in MoS2 bilayers.

Experimental methods

Sample preparation

• Assemble exfoliated 2D homo- and

heterostructures on top of a diamond anvil.

• Fill the cell with a hydrostatic pressure

transmitting medium (argon)

• Ruby spheres as calibration sample to

measure the pressure in situ.

Spectroscopy

• Optical transmission spectroscopy setup.

• Measured pressure range (typically) up to

10GPa (max. 25GPa).

• Steady state as well as ultrafast transient

transmission spectroscopy.

• Photoluminescence spectroscopy.

Model System MoS2 bilayer

• Two samples of natural bilayers prepared and

measured in DAC.

• Interlayer exciton visible at room temperature.

Theoretical methods

Structural investigations:

Structural optimization

using PBE+D3[1] (0 GPa)

Lattice constant 𝑎(𝑝) and

interlayer distance 𝑑(𝑝)

Calculating the

energy density 𝑢
for several strains

𝜀𝑥, 𝜀𝑦 and 𝜀𝑧

Getting the elas-

ticity parameters

𝐶11(𝑝), 𝐶12(𝑝),
𝐶13(𝑝) and 𝐶33(𝑝)

Calculating the derivatives

d𝑎(𝑝)/d𝑝 and d𝑑(𝑝)/d𝑝

PBE+D3

fitting

Hooke’s law

C
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Electronic and optical properties:

• LDA+GdW approximation for calculating band structures[2]:

𝐻𝐺𝑊 = 𝐻LDA + i𝐺𝑊 − 𝑉 LDA
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=𝐻𝐺𝑑𝑊

• Solving the Bethe-Salpeter equation with electron-hole interaction to

obtain the optical spectra.
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• van der Waals interaction between the MoS2 bilayer and the diamond keeps

the crystal at its original lateral dimensions

→ reduction of the in-plane effect of the hydrostatic pressure.

• Absolute excitons energy depends critically on this substrate effect.
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• Both theoretical calculations and experimental data demonstrate that the

splitting between A and IL excitons decreases with increasing pressure.

• The calculations indicate that the relative shift between the excitons

remains largely unchanged between the hydrostatic and out-of-plane

pressure conditions.

• In the experiment, the A exciton and IL exciton cannot be distinguished at

pressures greater than 8 GPa.

Outlook

• Low temperature measurements and hBN encapsulated structures for

better separation of the excitons.

• Investigate heterobilayers under pressure in luminescence and

transient transmission spectroscopy.

• Model based description of the electronic structure using a tight

binding approach.

• Approximation of the screened Coulomb potential via a modified Rytova

Keldysh potential.
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Motivation and Goal

Project goal:

Comprehensive understanding of interlayer coupling in TMD heterostructures.

Critical parameter: interlayer coupling strength.

Change interlayer distance and

electronic coupling by applying

hydrostatic or uniaxial pressure.
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• Develop a theoretical framework to describe 2D HS under pressure.

• Measure the optical properties of HS in a diamond anvil cell (DAC).
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• Fill the cell with a hydrostatic pressure

transmitting medium (argon)
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measure the pressure in situ.
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10GPa (max. 25GPa).
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Model System MoS2 bilayer

• Two samples of natural bilayers prepared and
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microscope and placed on the surface of one diamond anvil in
a home-built microscopic stamping setup.27 Figure 1b displays
an optical micrograph of MoS2 crystals with different layer
numbers inside the diamond anvil cell, with distinctly different
colors for monolayer and bilayer areas. The corresponding
optical transmission spectra at ambient pressure and room

temperature can be seen in Figure 1c. For the monolayer, the
two main resonances, labeled A and B, are attributed to the
two direct intralayer excitons at the K point, which are split in
energy due to spin−orbit coupling (SOC).28 The bilayer also
exhibits A and B excitons with a slightly larger energy
separation and an additional resonance in between, represent-
ing the interlayer (IL) exciton.23 The energy separations
between these resonances are different for mono-, bi-, and
multilayer systems and can be used to confirm that the
investigated sample is indeed a bilayer.24 The spectra in Figure
1 (and subsequent figures) are obtained by subtracting the
measured wavelength-dependent transmittance of the sample
(in %) from 100%, which resembles the absorption of the
sample. Measured spectra of the MoS2 bilayer under different
pressures are shown in Figure 2b. As the pressure increases, the
three exciton resonances exhibit energy shifts, albeit with
different rates. The A (B) exciton shifts linearly to lower
(higher) energies with increasing pressure. This opposite trend
results in an increased A−B splitting, indicating an increase in
the valence band (VB) spin−orbit splitting (see the Supporting
Information for details). This effect is attributed to stronger
interactions between layers, as they come closer under
pressure, in agreement with previous studies.29,30 In Figure 2,
we present theoretically calculated absorption spectra (see the
Supporting Information for details) for pure out-of-plane
compression (Figure 2c) as well as hydrostatic pressure
(Figure 2d). When hydrostatic pressure is applied to the
bilayer, we observe a shift to higher energies, whereas out-of-
plane compression results in a shift to lower energies. This
contrasting behavior is caused by the response of the internal
lattice parameters to pressure. In the case of our out-of-plane
calculations, we keep the lateral lattice constant a fixed at its
zero-pressure equilibrium value of 3.18 Å. The vertical

Figure 1. (a) Crystal structure of monolayer and 2H-bilayer MoS2 in
the top and side view. The unit cell is marked by the red shaded
regions. a and d are the in-plane and out-of-plane lattice constants.
(b) Optical micrograph of MoS2 crystals inside the diamond anvil cell.
(c) Transmission spectra of monolayer and bilayer regions of MoS2
with the additional interlayer exciton resonance between the A and B
excitons in the bilayer. The data exhibit a high-frequency oscillation
caused by interference between the two diamond faces. A numerical
low-pass filter yields the smooth lines shown here.

Figure 2. (a) Schematic drawing of the experiment. By pushing the two diamond anvils together, the argon inside the cell compresses the MoS2
bilayer, which resides on the bottom anvil. (b) Measured spectra (1 − transmission) for different pressure values. The experimental data (gray) are
fitted (see the Supporting Information) with a model function (black) (c, d) Theoretical results for out-of-plane and hydrostatic compression.
Exciton shifts are indicated with colored arrows. The two calculated extreme cases show a blue- and red-shift, respectively. The shifts in the
experiment lie between these two cases but mostly resemble the calculations for out-of-plane compression. The relative absorption strength and
absolute energy positions of the different excitons are slightly different in experiment and theory.
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Figure 1. Left panels: schematic application of (a) isotropic (i.e., hydrostatic) pressure and (b) vertical uniaxial
stress on a bilayer of MoS2. Middle panel (c): response of BSE absorption spectra to pressure. The data show
the optical absorption of a MoS2 bilayer, for pressure from 0 GPa (bottom) to 10 GPa (top) in steps of 1 GPa.
When hydrostatic/isotropic pressure is applied, the characteristic excitons (A, IL=interlayer, and B) excitons shift
up in energy. Right panel (d): When stress is only applied perpendicular (e.g., because the bilayer is solidly fixed
to a substrate and does not move/relay laterally, cf. schematic panel (b)), the characteristic excitons (A, IL, and
B) excitons shift down in energy. All spectral data are calculated within many-body perturbation theory in the
LDA+GdW approximation. For details, see Ref.?.

In contrast, in the calculations for hydrostatic pressure, we let the lateral lattice constant
a relax as well, at a rate of –7 mÅ/GPa. The effect of lateral (in-plane) deformation on
the direct band gap is well-known. While biaxial tensile strain leads to a red-shift, in-
plane compressive strain blue-shifts all optical excitations, also for MoS2 monolayers. In
our case, the band gap increases by about 30 meV/GPa, which overcompensates the gap
reduction (–10 meV/GPa) of the simultaneous interlayer compression, such that in total
the band gap grows from 2.53 to 2.75 eV under hydrostatic compression to 10 GPa, i.e.,
by +22 meV/GPa on average. This causes the strong blue-shift of all optical excitations
upon hydrostatic pressure (Fig. ?? c). Note that the changes in the lateral lattice constant
a are much weaker than those in the plane-to-plane distance d by a factor of δd/δa ≈ 3,
but the band structure is more sensitive to lateral in-plane compression than to out-of-plane
compression by a factor of 10. Lateral stress will thus dominate, if permitted.

Corresponding experiments have been carried out in a diamond anvil cell with pres-
sure of up to 10 GPa. The data show a red-shift slope of –3 meV/GPa for the A and IL
(=inter-layer) excitons, which is in between our theoretical extrema of –10 meV/Gpa for
uniaxial compression and +22 meV/GPa for the hydrostatic case. We conclude that the
experimental reality lies in between our two extrema. The most plausible explanation is
that the pressure of the diamond anvil cell is not transferred completely to the MoS2 sam-
ple; instead, the lowest monolayer tends to remain stuck to the substrate, and in total the
situation is closer to the one in Fig. ?? b. If we assume that the full truth is a partial lat-
eral slipping, the interpolation between our two theoretical extrema would allow to assume
that the lateral pressure transfer succeeds to about 20 percent, i.e. the true geometry under
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to a substrate and does not move/relay laterally, cf. schematic panel (b)), the characteristic excitons (A, IL, and
B) excitons shift down in energy. All spectral data are calculated within many-body perturbation theory in the
LDA+GdW approximation. For details, see Ref. 12.

In contrast, in the calculations for hydrostatic pressure, we let the lateral lattice constant
a relax as well, at a rate of –7 mÅ/GPa. The effect of lateral (in-plane) deformation on
the direct band gap is well-known. While biaxial tensile strain leads to a red-shift, in-
plane compressive strain blue-shifts all optical excitations, also for MoS2 monolayers. In
our case, the band gap increases by about 30 meV/GPa, which overcompensates the gap
reduction (–10 meV/GPa) of the simultaneous interlayer compression, such that in total
the band gap grows from 2.53 to 2.75 eV under hydrostatic compression to 10 GPa, i.e.,
by +22 meV/GPa on average. This causes the strong blue-shift of all optical excitations
upon hydrostatic pressure (Fig. 1 c). Note that the changes in the lateral lattice constant
a are much weaker than those in the plane-to-plane distance d by a factor of δd/δa ≈ 3,
but the band structure is more sensitive to lateral in-plane compression than to out-of-plane
compression by a factor of 10. Lateral stress will thus dominate, if permitted.

Corresponding experiments have been carried out in a diamond anvil cell with pres-
sure of up to 10 GPa. The data show a red-shift slope of –3 meV/GPa for the A and IL
(=inter-layer) excitons, which is in between our theoretical extrema of –10 meV/Gpa for
uniaxial compression and +22 meV/GPa for the hydrostatic case. We conclude that the
experimental reality lies in between our two extrema. The most plausible explanation is
that the pressure of the diamond anvil cell is not transferred completely to the MoS2 sam-
ple; instead, the lowest monolayer tends to remain stuck to the substrate, and in total the
situation is closer to the one in Fig. 1 b. If we assume that the full truth is a partial lat-
eral slipping, the interpolation between our two theoretical extrema would allow to assume
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that the lateral pressure transfer succeeds to about 20 percent, i.e. the true geometry under
pressure is a mixture of 20 % of the hydrostastic case and 80 % of the uniaxial case12.

4 Hexagonal Boron Nitride and Point Defects therein

Hexagonal boron nitride (hBN) is a van der Waals material with an optical gap of about
6 eV13. The attention to point defects in this material has increased in the past decade
due to their potential use as room-temperature stable two-dimensional (2D) single-photon
emitters for quantum computing14–16. Recently, progress has been made in the fabrication
of hBN quantum emitters with reproducible and controllable properties and their integra-
tion into quantum circuits17–20. The tunability of properties of quantum emitters, e.g., by
electric fields or by strain, is a desirable feature for quantum technological applications.
Conversely, this tunability contributes to the understanding of the atomic structure of the
defect, which still poses an unsolved problem due to the variety of properties of hBN emit-
ters. The observation of Stark shift with an electric field perpendicular to the layers of
hBN means that some defects may break the planar symmetry of the 2D material. Phonon
side bands or the influence of the emitter’s distance to flake boundaries are specific to the
atomic structure.

In experimental reality, defects in boron nitride occur both in naturally grown crystals
and in artificially synthesised samples. So far, a unique identification of the elemental com-
position and chemical nature of the defects is difficult, since their existence is often only
proved indirectly by the occurrence of corresponding optoelectronic features (in particular,
visible-spectrum luminescence at energies deep within the boron nitride band gap of 6 eV,
which is in the far ultraviolet). This indirect evidence and unknown character of the defect
poses, of course, an unsatisfactory situation, and detailed theoretical understanding might
significantly improve the situation.

In this work we investigate two aspects of point defects in hexagonal boron nitride21, 22.
On the one hand, we evaluate their optoelectronic excitation energies within ab initio
MBPT. On the other hand, we investigate the change of the defect’s local geometry when
it is optically excited, and evaluate geometrical deformation, the related reorganisation en-
ergy, and resulting Stokes shift. This may then be used to judge whether a hypothetically
assumed point defect is realistic, i.e. whether it can be made responsible for optoelectronic
properties of defects in experimental reality. In measurements, some defects (in particular,
the candidates for single-photon generation) show optical excitation near 2 eV excitation
energy, and exhibit weak reorganisation energy and Stokes shift.

Tab. 1 summarises our findings for a number of various defects that we have investi-
gated21, 22. CB and CN refer to a substitutional carbon atom, which replaces a boron or
nitrogen atom, respectively. VN refers to a nitrogen vacancy, i.e. a nitrogen atom which
is simply missing. VNB refers to a double vacancy, in which two neighbouring atoms are
missing (one nitrogen and one boron). CBCN refers to two substitutional carbon atoms at
neighbouring positions (one instead of boron, and the other one instead of nitrogen). In
case of CBON the carbon atom substitutes boron, and the oxygen atom substitutes a neigh-
bouring nitrogen. CBVN refers to a substitutional carbon atom instead of boron, while
simultaneously a neighbouring nitrogen atom is missing, constituting a vacancy. Among
these, the first three defects exhibit luminescence near 2 eV, which might indicate that they
could be the candidates found (but not clearly identified) in experiment. Among the more
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Defect Absorption Reorganisation Stokes
Energy [eV] Energy [eV] Shift [eV]

CB 2.0 ∼ 0 ∼ 0
CN 2.0 ∼ 0 ∼ 0
VN 2.2 ∼ 0 ∼ 0
VNB 4.9
CBCN 4.3 0.1 0.2
CBON 1.9 0.4 0.8
CBVN 1.8 0.9 1.8

Table 1. Excited-state data for various point defects in hexagonal boron nitride. Column 1: Chemical compo-
sition. Column 2: Vertical excitation energy (in eV) of the lowest dipole-allowed transition, with the geometry
being given by the ground-state equilibrium. Column 3: Mechanical reorganisation energy (in eV) from ground-
state equilibrium into the excited-state equilibrium, from geometry optimisation while being in the excited state.
Column 4: Stokes shift (in eV), as the energy difference between the vertical transition in the ground-state geom-
etry and the vertical transition in the excited-state geometry. For details, see Refs. 21, 22.

complex double defects (VNB, CBCN, CBON, and CBVN) the first two shows excitation
at much too high energy, while the other two show very strong geometry reorganisation
in the excited state and concomitantly large Stokes shift between absorption and emission,
much higher than observed in experiment, which excludes them as being responsible for
the observed properties.

5 The Two-Dimensional Heterostructure WSe2-CrI3

Heterostructures of two-dimensional transition-metal dichalcogenides and ferromagnetic
substrates are important candidates for the development of viable new spin- or valleytronic
devices. A particular example is the interface between the TMDC tungsten sulfied (WSe2)
and the two-dimensional ferromagnet chromium iodide (CrI3)32. Our main interest is the
A exciton of the WSe2 monolayer, which is fully analogous to the A exciton of MoS2 as
shown in Fig. 1 (at 2.05 eV at zero pressure; in case of a WSe2 monolayer we find it at
1.6 eV). For simplicity we have assumed in the current study that the two materials can be
stacked on top of each other in a 1×1 unit cell, neglecting lattice mismatch and rotational
misalignment. We have restricted the study to just one configuration in which the selenium
and iodine anions form a hollow-site registry, such that no two atoms are on top of each
other. For this specific situation we find a significant influence of the ferromagnetic spin
polarisation of CrI3 on the (opto-)electronic structure of WSe2. CrI3 has occupied majority
spin electrons (↑) that are several eV below their minority-spin counterpart orbitals. In this
majority-spin channel this leads to the occurrence of weakly dispersing CrI3 empty states
(indicated as thick green bars in Fig. 2) slightly below the WSe2 lowest conduction bands.
The interesting physics of WSe2 occurs at the K− and K+ point of its Brillouin zone, at
which the relevant bands are completely spin polarised. At K−, where we observe in the
highest valence band the same spin in WSe2 as the majority spin of the CrI3 ferromagnet,
the spins show exchange effects across the interface due to orbital overlap between the
anions (S and I) and corresponding hybridisation. At K+, on the other hand, the spin
of the highest valence band of WSe2 is the opposite of the CrI3 majority spin, and does
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K+ K−

Figure 2. Schematic illustration of the dispersive valence and conduction bands of the WSe2 monolayer and
the nearly flat majority-spin conduction states of the crI3 monolayer in direct contact of the two monolayers.
All majority-spin (minority-spin) states are illustrated as green (red). Near the two independent K points of the
Brioullin zone (K+ and K−) the WSe2 bands are fully spin polarised, with alternating sequence. The sequence
at K+ is the opposite of the sequence at K−. Due to magnetic proximity and the orbital overlap between S and I
atoms, the spin-majority states of WSe2 (green) are shifted in energy, while the spin-minority states (red) remain
unaffected. For details, see Ref. 32.

not interact, such that no exchange is observed. In short, all WSe2 majority-spin bands
(shown in green in Fig. 2) are shifted in energy due to the magnetic proximity of CrI3,
while the WSe2 minority-spin bands (shown in red in Fig. 2) remain unaffected. This leads
to energetic splitting between the WSe2 valence bands of 1.6 meV between K− and K+.
This shift translates to an energetic splitting of 3.6 meV between the intravalley excitons
A− and A+ at K− and K+. Since these two excitons can be measured by either positively
or negatively oriented circularly polarised light, such energy splitting is directly observable
in experiment.

Furthermore, we have found that the spin polarisation significantly changes the
quantum-mechanical composition of the excitons, as well, in addition to the shifts in en-
ergy. At the K+ points, the TMDC exciton (A+) is in the spin channel corresponding to
the magnet’s minority spin (↓, indicated as red in Fig. 2), preventing hybridisation. This
exciton remains an intralayer exciton as known from a freestanding monolayer. At the
K− point, the TMDC exciton (A−) is in the spin channel corresponding to the magnet’s
majority spin (↑, indicated as green in Fig. 2). In this spin channel the magnet provides
empty bands in the same energy range as the semiconductor conduction band. This pro-
vides charge-transfer configurations between semiconductor and magnet. They hybridise
with the semiconductor intralayer excitations, which therefore acquires partial interlayer
character. In the spectra this leads to significantly reduced dipole strength of one of the
Zeeman-split peaks, as a clear signature of quantum-mechanical hybridisation across the
van der Waals gap between the two systems. Such energetic splitting and difference in
intensity has been observed experimentally, supporting our concept that the behaviour of
the excitons at K+ is basically different from those at K−.

In addition, the different composition of the excitons at K− and K+ (with and without
contribution of charge-transfer configurations across the interface) also leads to different
behaviour in a magnetic fields. In such a field, the excitons observe Zeeman shifts, i.e. a
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shift in excitation energy proportional to the field strength. The proportionality is expressed
in terms of a so-called g factor (gyromagnetic ratio). In our calculations we find that the
g factors of the two excitons (at K− and K+) differ by about 10 %, which should also be
detectable in experiment.

6 Concluding Remarks

In this paper we have discussed excitonic states in two-dimensional semiconductors and
their change when the system in question is more complex than just a simple monolayer or
bulk material with perfectly ordered periodic crystal structure. Defects, mechanical defor-
mation, and magnetic proximity effects significantly modify the (opto)electronic response,
which can in turn be used to get detailed insight into the material’s microscopic internal
structure from optical experiment. In the three examples discussed here, (i) the energetic
shifts of excitons of MoS2 under pressure depend on the question if MoS2 keep sticking
to its substrate or not, (ii) the energy and line shape of defect states in hBN can be used
to identify or rule out microscopic models of the defect, and (iii) proximity effects of a
ferromagnet in direct contact splits the A+ and A− exciton of a WSe2 monolayer, which
are degenerate in the bare monolayer by itself. All these examples illustrate the crucial role
of the structure and geometry of low-dimensional semiconductors for their optoelectronic
properties.
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The structure, copper transport, and mechanism of action of the plant receptor ETR1 have long
remained elusive, hampering the understanding of how ethylene perception is transformed into
a downstream signal. We used ab initio modelling to generate the first structural model of
the transmembrane sensor domain of ETR1. Through protein-protein docking and all-atom
molecular dynamics simulations, we investigate the interaction between copper chaperones and
ETR1. Additionally, all-atom molecular dynamics simulations were employed to explore the
multimerisation of ETR1 and the interactions with the downstream target CTR1. This research
project in combination with experimental validation of our data represents the most compre-
hensive analysis of ETR1 to date, providing new insights into its functional mechanisms.

1 Introduction

The small molecule ethylene is a gaseous plant hormone that affects various developmental
processes in plants, such as seed germination, senescence, and fruit ripening. Ethylene is
perceived by ethylene receptors located at the endoplasmatic reticulum membrane. In Ara-
bidopsis thaliana, the model organism predominantly used to study ethylene-signalling,
five receptor isoforms have been identified and associated with ethylene response, with
ETR1 (Ethylene Response 1) being the best studied. ETR1 has three transmembrane
α-helices at the N-terminus, forming the transmembrane sensor domain (TMD). The TMD
also contains an essential cofactor, a Cu(I) ion, ensuring high affinity and specificity for
binding of the chemically simple ethylene molecule. The cytoplasmic part of the receptor
contains a GAF domain (named after its occurrence in cGMP-specific phosphodiesterases,
adenylyl cyclases, and FhlA), followed by a dimerisation histidine-phosphotransfer do-
main (DHp), a catalytic ATP-binding domain (CD), and a receiver domain (RD). Func-
tional ethylene receptors are homodimers, and higher-order oligomers have been described.
Crystal structures of domains and structural homologs of the cytosolic domains of ETR1
are available, but there is no experimentally determined structural model of the TMD1.

The molecular components involved in the transport of Cu(I) from the cellular plasma
membrane to the ER membrane-bound ETR1 have been identified. They include the sol-
uble copper chaperones ATX1 and CCH and the copper transporter RAN1. Their metal-
binding domains share structural similarity2. However, a comprehensive understanding of
the interactions between the copper chaperones and ETR1 at the atomistic level is lacking.
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Figure 1. Overview of the project etr1. The first model of the TMD was created using ab initio modelling and
experimentally validated (I). Further, the copper-binding site was characterised and possible binding sites of
ethylene or antagonists were identified (II). Due to its special structural properties, the dimerisation behaviour
of the copper chaperone CCH was investigated (III). Investigations are currently carried out to determine the
atomic interactions of the chaperones and RAN1 with ETR1 (IV ), as well as the multimerisation behaviour (V )
and the interactions with the downstream target CTR1( V I). TMD: Transmembrane sensor domain, GAF: GAF
domain, DHp: Dimerisation and histidine phosphotransfer domain, CD: Catalytic domain, RD: Receiver domain.

We thus aimed to elucidate the interactions established between the different components
of the Cu(I) transport system and how Cu(I) is delivered to ETR1.

In the absence of ethylene, ETR1 functions as a negative regulator of the ethylene
response. Once the plant biosynthesises ethylene, it diffuses throughout the plant or to
neighbouring plants and coordinates with the Cu(I) cofactor. The Cu(I) ion is coordinated
in ETR1 by Cys65 and His69 located in helix 2 of the TMD. Receptors bound to ethylene
are thought to undergo conformational changes and, therefore, fail to activate downstream
targets such as the serine/threonine-protein kinase CTR13, which finally triggers the ethy-
lene response of the plant.

In our project, we generated the first structural model of the TMD of ETR1 and an
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ETR1_TMD/Cu(I) dimer model by integrating ab initio structure prediction and coevolu-
tionary information (Fig. 1 I). The obtained model was refined and independently vali-
dated by tryptophan scanning mutagenesis4 as well as EPR spectroscopy5. Based on this
model, we characterised the copper binding site in ETR16 and identified potential binding
sites of ethylene and antagonists (Fig. 1 II). To shed light on how the Cu(I) cofactor is
delivered to ETR1, we are investigating the dimerisation behaviour of CCH (Fig. 1 III),
as well as the mechanism of Cu(I) transport from the chaperones to ETR1 (Fig. 1 IV ).
Finally, we are studying the multimerisation of ETR1 (Fig. 1 V ) and its interaction with
the downstream target CTR1 (Fig. 1 V I). This study is, to our knowledge, the most com-
prehensive analysis of ETR1, and it is expected to offer an in-depth understanding of its
cellular functions.

2 Results

2.1 Ab Initio Modelling and Experimental Validation of the First Structural Model
of the Transmembrane Sensor Domain in ETR1

The TMD of ETR1 from Arabidopsis thaliana was modelled ab initio before AlphaFold2
was available due to the lack of suitable homologous templates. Residues 1-117 were
selected based on transmembrane topology, and secondary structure predictions. Using
the RosettaMembrane membrane_abinitio2 protocol, 100,000 models were generated and
filtered based on contact predictions and z-scores, yielding 5,217 structures. After clus-
tering, the centroid structure of the largest cluster was selected and further refined, with
side-chain configurations optimised through solvent accessibility analysis. In parallel, the
TMD’s Cu(I) stoichiometry was determined in Prof. Groth’s laboratory at Heinrich Heine
University Düsseldorf. Using the generated ETR1_TMD model and the determined Cu(I)
stoichiometry, a dimeric model was generated using HADDOCK, coevolutionary signals,
knowledge about lipophilicity regions, and characteristics of the copper binding site. The
final dimer model was refined through molecular dynamics simulations and validated by
alanine and tryptophan mutagenesis experiments resulting in the first structural model of
ETR1_TMD4 (Fig. 2A).

Soon after, AlphaFold27 predicted an alternative structural model of the ETR1 TMD,
proposing a different helix arrangement, and hence, a different dimer interface and copper-
binding site (UniProt: P49333) (Fig. 2B). To scrutinise which model better represents ex-
perimental findings, we combined site-directed spin labelling with electron paramagnetic
resonance spectroscopy performed in collaboration with Prof. Drescher’s laboratory at the
University of Konstanz and obtained distance restraints for liposome-reconstituted ETR1
TMD on the orientation and arrangement of the transmembrane helices5.

The experimental distance distributions were compared with distance distributions ob-
tained by MMM, a programme for visualisation, inspection, generation, and improvement
of models of proteins and protein assemblies based on restraints from multiple experimen-
tal techniques, using either TMD model. The experimental distance restraints are alto-
gether in better agreement with the ab initio structural model4 than with the AlphaFold27

prediction (Fig. 2C-E)5. However, since neither model is fully consistent with the EPR
distances, work has always been continued with both models.
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Figure 2. A: Representation of the ab initio structural model of the ETR1 TMD. B: Representation of the Al-
phaFold2 structural model of the ETR1 TMD. C, D: Experimental distance distributions obtained by DEER
measurements (blue) with validation (grey area). Simulated distance distributions based on the ab initio model
(2019, red) and the one from AlphaFold2 (2021, red dotted) are indicated. C: Intrahelical distances. D: Interheli-
cal distances between helix 1 and helix 3. E: Schematic representation of the ETR1 TMD and spin-labelled sites
used for DEER distance determinations. Panel A is taken from Ref. 4 and licensed under a Creative Commons
Attribution 4.0 International License. Panels C, D and E were taken from Ref. 5 with permission from the Royal
Society of Chemistry. Licensed under a Creative Commons Attribution 3.0 Unported Licence.

2.2 EXAFS and QM/MM Umbrella Sampling Simulation of the Copper Binding
Site in ETR1

Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, performed in collab-
oration with Dr. Cutsail III and Prof. DeBeer at the MPI Mülheim, and with Professor
Groth at Heinrich Heine University Düsseldorf, along with quantum mechanics/molecular
mechanics umbrella sampling (QM/MM US) simulations, were used to further characterise
the Cu(I) binding site in ETR1. The EXAFS results provided detailed insights into the lo-
cal coordination environment of the copper ion. QM/MM US simulations completed these
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findings by modelling the copper complex at the atomic level. The QM/MM US results
agree with the EXAFS fit distance changes upon ethylene binding, particularly in the in-
crease of the distance between His69 and Cu(I), and yield binding energetics comparable
with experimental dissociation constants. Ethylene binding also results in changes to the
C=C bond distance and dihedral angle of ethylene, consistent with hybridisation changes
predicted by the Dewar-Chatt-Duncanson model. The observed changes in the copper co-
ordination environment might be the triggering signal for the transmission of the ethylene
response6.

2.3 Structural Modelling of and Molecular Mechanics Generalised Born Surface
Area (MM-GBSA) Calculations on the Copper Chaperone CCH Dimer

The copper chaperone CCH is one of the three chaperones characterised to be involved
in Cu(I) transport to ETR1. While all share a common characteristic copper binding fold,
CCH additionally features a C-terminal end, whose structure remains unresolved. Both
TopProperty and DISOPRED suggest that this C-terminal region is intrinsically disordered.
This hypothesis is further supported by NMR data from collaborators8. However, this
C-terminal end may play a role in the dimerisation of CCH. To investigate the structure
and dimerisation properties, ColabFold 1.5.2 was used to predict both the monomeric and
dimeric structures of CCH. Based on the obtained CCH dimer, we conducted molecular
dynamics simulations, computed on the JUWELS booster.

To pinpoint the amino acids critical for the stability of CCH-dimers, we conducted
molecular mechanics/generalised Born surface area (MM-GBSA) calculations, including
a per-residue decomposition of the effective energy. Our results indicate that residues of
the dimer interface, as well as residues of the C-terminal end (T116, K117, and V121), sig-
nificantly contribute to the binding energy (Fig. 3). Additionally, the Groth lab performed
melting temperature measurements suggesting tighter monomer interactions in CCH com-
pared to CCH lacking the C-terminal end. These results suggest that the C-terminal ex-
tension indirectly influences dimerisation and may play a role in copper transport and pro-
tection, highlighting distinct functional roles for CCH compared to its homolog ATX18.

Figure 3. Identification of amino acids in the CCH-dimer that are crucial for dimer stability. A: Per residue
decomposition of the binding effective energy of the Cu(I)-loaded CCH-dimer. B: Hot spot residues localised on
the CCH-dimer. This figure was taken, in parts, from Ref. 8 and licensed under a Creative Commons Attribution
4.0 International License.
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2.4 Mechanism of Cu(I) Transport from the Cell Membrane to ETR1,
Multimerisation of ETR1, and its Interaction with the Downstream Target
CTR1

To analyse how Cu(I) is transferred from the chaperones to the final target ETR1, we per-
formed coevolution-informed protein-protein docking of ATX1, CCH, or RAN1 to ETR1.
Possible interaction sites between ATX1, CCH, and RAN1 with ETR1 were predicted us-
ing GLINTER, a deep-learning method for predicting interaction sites in protein-protein
complexes. The predicted protein-protein interactions were further used as ambiguous re-
straints to guide protein-protein docking with HADDOCK2.4. Currently, MD simulations
of these complexes are performed on the JUWELS booster module. The obtained trajec-
tories will be used to identify so-called ‘hot-spot’ residues, that significantly contribute to
complex stability (Fig. 1 IV ). Subsequently, these hot spots will be verified experimentally
by mutagenesis studies to better understand the nature of complex formation and copper
transfer dynamics. This research has the potential to provide new insights into the targeted
regulation of ETR1 signalling.

Furthermore, the multimerisation behaviour of ETR1 (Fig. 1 V ) and interaction with
the downstream target CTR1 (Fig. 1 V I) are investigated on an atomistic level. We are
currently performing unbiased MD simulations of the corresponding protein-protein com-
plexes predicted with ColabFold 1.5.2. Therefore, fifty independent MD simulation repli-
cas of 500 ns are performed on the JUWELS booster module. To identify ‘hot-spot’
residues, the obtained MD trajectories will be used to perform MM-GBSA calculations
in combination with a decomposition of the effective energy of dimerisation at the single-
residue level. Insights into the interaction of ETR1 with downstream targets and other
receptors will enhance our understanding of ETR1’s function in the broader cellular con-
text, potentially offering new starting points for targeted regulation of ETR1 signalling.

3 Conclusion

Our research presented the first structural model of the transmembrane sensor domain
(TMD) in ETR1, validated through mutagenesis studies. Comparison with AlphaFold2
predictions revealed that the ab initio model aligns more accurately with experimental data.
We also confirmed that ethylene binds to the copper cofactor within the TMD, a finding
further supported by spectroscopic approaches. Ongoing work is focused on investigating
copper delivery to ETR1 and its related molecular components, the receptor’s multimeri-
sation behaviour, and its interactions with downstream targets such as CTR1. This study
offers the most detailed structural analysis of ETR1 to date, advancing our understanding
of the signalling mechanism and providing experimentally testable hypotheses on the bio-
logical functions. In the long term, these insights should contribute to ensure food security,
as ETR1 plays a key role in post-harvest spoilage.
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Sensing of the environment and information processing, combined with motility, are funda-
mental characteristics of life, from the largest animals to the smallest single-cell organisms.
Adaptive self-steering gives rise to fascinating phenomena, ranging from large-scale collective
behaviours denoted as swarming, as observed in mammalian herds, flocks of birds, schools
of fish, or even cell layers and tissues, to the formation of bacterial biofilms. We study the
collective behaviour of cognitive self-steering microswimmers using large-scale hydrodynam-
ics simulations, applying a particle-based mesoscale hydrodynamics approach in combination
with the squirmer model (prescribed surface flows on a spherical body) for microswimmers.
The self-steering is governed by a combination of local alignment of the propulsion directions,
and the joining of other swimmers due to (non-reciprocal) directional sensing. Our results show
several types of self-organisation, like active turbulence, the formation of swirls and jets, and
the emergence of elongated swarms, depending on the maneuverability of the microswimmer
and the propulsion type (puller or pusher).

1 Introduction

The capability of motile organisms to sense the environment, to process information, and
adapt their behaviour is a fundamental aspect of life. An important result of this ability is
the collective dynamics of many identical individuals1. Examples range from macroscopic
to microscopic length scales, from flocks of birds, schools of fish, mammalian herds, and
groups of people, to swarms of insects, bacterial biofilms, and cellular aggregates. The
purposes of these collective movements include the search for food, protection against
predators, and enhanced motility. The mechanisms of collective motion deduced from the
behaviour of natural systems can be employed in the design and construction of artificial
systems, such as microscopic robots (“microbots”)2.

Many biological motile organisms live in aqueous environments, which implies that the
hydrodynamics of the medium strongly affects or even dominates the collective dynamics3.
It is of course also fundamental for the self-propulsion and navigation by swimming, as
well as the hydrodynamic interactions between swimmers. The elucidation of the adaptive
behaviour of microorganisms and microbots requires a suitable model for hydrodynami-
cally self-steering cognitive microswimmers that can adjust their movement according to
gathered information.

From a simulation point of view, studies of wet systems are much more computing-time
intensive compared to dry systems4, as many more degrees of freedom have to be taken into
account, and also because hydrodynamic interactions are long range and decaying with a
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Figure 1. Left: Non-axisymmetric surface flows for pullers (upper panel) and pushers (lower panel), which allow
microswimmers to self-steer, i.e., turn to a new direction of motion as indicated by blue arrows. Right: Emergent
collective dynamics of self-steering microswimmers (pullers), from a simulation with 884,736 squirmers (with
zoom-in – lower right panel), reminiscent to a fish school (upper right panel).

power law as a function of distance. In recent decades, efficient hydrodynamic simulation
techniques have been developed for systems with characteristic mesoscopic length scales
(tens of nanometres to hundreds of micrometers), such as the Lattice Boltzmann method
(LBM), the Dissipative-Particle Dynamics (DPD), and the Multiparticle Collision Dynam-
ics (MPC) approach5. In our simulations, we employ a newly developed code for MPC6,
which can run on an arbitrary number of GPUs in parallel. This facilitates simulations of
very large wet systems of up to one million self-propelled particles.

By using the high-performance computing resources on JUWELS7, we investigate the
collective behaviour of intelligent active particles in a fluid environment. An illustration
of the essential features of this study is depicted in Fig. 1, which indicates hydrodynamic
self-steering for pullers and pushers, the self-organisation in large ensembles of pullers,
and – as a real-world example – the structure formation in schools of fish.

2 Model

2.1 Self-Propulsion and Self-Steering

Microswimmers are modelled by the squirmer model, where non-zero surface slip velocity
renders a squirmer self-propelled and self-steering. For a spherical body shape with the
radius Rsq and the azimuthal and polar angles φ and θ, we consider the surface flow field8

uθ =
3

2
v0 sin θ(1 + β cos θ)− 1

R2
sq

(C̃11 cosφ− C11 sinφ), (1)

uφ =
cos θ

R2
sq

(C11 cosφ+ C̃11 sinφ), (2)
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where the coefficients of the axisymmetric components v0 and β (with β < 0 for push-
ers, β > 0 for pullers) denote the swim speed and the active stress, respectively. The
coefficients of the non-axisymmetric components9,

C11 = C0R
3
sq(e× eaim) · ex, C̃11 = C0R

3
sq(e× eaim) · ey, (3)

allow for self-steering2, 10, where reorientation towards the aiming direction eaim is given
by

ė = C0 e× (eaim × e). (4)

Here, C0 sets the maximum angular frequency of self-steering, corresponding to a limited
maneuverability. The surface flow fields and the resultant self-steering are illustrated in
Fig. 1 (left panel). Two dimensionless parameters, the Péclet number Pe and the maneu-
verability Ω, where

Pe =
v0

2RsqDR
, Ω =

C0

DR
, (5)

are introduced to characterise the system. Here, DR is the (passive) rotational diffusion
coefficient of a spherical particle.

2.2 Alignment and Directional Sensing

Following our previous work on dry systems11, we consider two types of sensing for self-
steering, see Fig. 2(a) for illustration of their respective sensing ranges. First, our intelli-
gent squirmers can autonomously align with the average self-propulsion direction of neigh-
bouring squirmers (Fig. 2(c)), in the spirit of the (dry) Vicsek model12, 13, where alignment

Figure 2. (a) Sensing ranges of a microswimmer (petrol/black circle) with propulsion direction e for alignment
(green circular area with radius Ra, see Eq. 6) and visual perception (horizontally symmetric magenta cone with
radius Rv and central angle θ, see Eq. 7). Illustration of conformations, where in (b) visual sensing and in
(c) alignment dominates the resultant cognitive signal given in Eq. 8. The corresponding aiming vectors eaim

and reorientation of the propulsion directions with maneuverability Ω are depicted by thick black and thin blue
arrows, respectively.
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between particles is modelled via the signal strength

sai =
1

Na,i

∑

j∈PA
ej . (6)

Here, PA indicates the polar-alignment sphere with radius Ra, and Na,i is the number of
neighbours in PA of the i-th microswimmer. In order to facilitate swarm cohesion, it is
also necessary for individuals to join larger groups. This is achieved by directional sensing
– such as visual perception14 –, inspired by the behavioural zonal model15, mediated via a
cognitive signal

svi =
1

Nv,i

∑

j∈V C
e−rij/R0

rij
rij

, (7)

where V C is a ‘vision cone’ with vision range Rv ≡ 4R0 and vision angle θ around the
self-propulsion direction ei, and Nv,i the number of microswimmers in the vision cone of
the i-th microswimmer (Fig. 2(b)). It is important to note that both interactions are non-
additive, due to the normalisation by the number of particles in the interaction range16.

Combining these two signals with the ratio ζ between alignment and directional ma-
neuverability, we employ an overall cognitive signal strength

eaim,i = sai + ζsvi , (8)

which determines the surface slip velocity of self-steering squirmers. It is important to
note that visual perception for vision angle θ < π is non-reciprocal, as one particle may
be within the vision cone of another, but not vice versa. Also, non-additivity contributes to
the non-reciprocality of the interactions.

2.3 Implementation and Parameters

The fluid dynamics is modelled by the multiparticle collision dynamics (MPC) approach17,
where the interactions and momentum exchange between fluid particles occur locally in
collision cells, making the algorithm highly parallelisable5. Our plugin-based GPU/CPU
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Figure 3. (a) Strong and (b) weak scaling of the MPC code for the indicated sizes (L/a)3 of periodic cubic
systems. The number of fluid particles per collision cell is 〈Nc〉 = 50. Adapted from Westphal et al.6.
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code, which has been tested for up to 1.5 trillion MPC fluid particles6, shows good strong
and weak scaling behaviour with speedup up to a factor of ten, as shown in Fig. 3.

In simulations, we use the MPC fluid density (particles per collision cell) 〈Nc〉 = 20,
the collision time h = 0.02a

√
m/(kBT ), with side length a of collision cells, and the

rotation angle α = 130◦, which yields the fluid viscosity η = 42.6
√
mkBT/a

2. For
squirmers, we consider the radius Rsq = 3a, the swimming speed v0 = 0.047

√
kBT/m

– resulting in the Péclet number Pe = 128 –, and the sensing ranges Ra = 4Rsq and
R0 = 2Rsq.

3 Swarming of Aligning Microswimmers

We first provide a brief overview of the emergent dynamics of aligning squirmers, i.e.,
ζ = 0. We refer to Goh et al.18 for more details.

Pushers. Aligning pushers feature active turbulence for a maneuverability Ω ≥ 512, best
characterised by the scaling behaviour in the kinetic energy spectrum, which displays a
power-law decay E(k) ∼ k−α as a function of wave number k. The exponents α extracted
from our simulations show a non-universal behaviour in the range 2.8 . α . 4.0, and
increase as the maneuverability increases. The typical size of vortices as well as the peak
kinetic energy also increase with increasing maneuverability. A typical fluid profile with
pronounced vortical structures is presented in Fig. 4(a). Squirmers are homogeneously
distributed across the system, while their propulsion directions are predominantly aligned
with the local flow direction of the ambient fluid. Examination of the mean-square dis-
placement (Fig. 4(c)), together with the peak value of the kinetic energy spectrum, reveals
that the collective advection of microswimmers is much faster than their intrinsic swim
speed, which reflects strong hydrodynamic effects, and implies that the generated fluid
flows are faster than the self-propulsion speed.

Pullers. A suspension of aligning pullers exhibits an enhanced clustering tendency (right
panel in Fig. 1) due to hydrodynamic interactions, possibly with an additional peak in the
local density distribution at higher density, ρloc ≈ 0.5. Still, the speed of such collec-
tive advection is significantly faster than the self-propulsion speed. Remarkably, strong
alignment occurs for Ω ≥ 2048 and consequently polar ordering within a cluster generates
a fluid jet, as the pullers collectively pull the fluid in front, which in turn gives rise to a
vortex-ring structure in the fluid as shown in Fig. 4(b). We also note that the swimming
direction of pullers (v/|v|) does not necessarily coincide with that of the orientation (e),
as demonstrated by negative values of the inner product between them (Fig. 4(b)-IV). The
corresponding dynamics is again chaotic, exhibiting a power-law decay in the energy spec-
trum with a universal exponent of α = 11/3. However, the distribution of the squirmer
velocity deviates from a Gaussian, which is typically observed in active turbulence19, with
fat tails at higher velocities, see Fig. 4(d). This indicates that the collective dynamics of
self-steering aligning pullers is a new type of self-organisation.

4 Directional Sensing

The formation of motile swarms, like bird flocks, fish schools, and animal herds, where the
whole ensemble displays some coherent motion (in contrast to some insects swarms, which
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Figure 4. (a) Fluid velocity field (white streamlines) and the magnitude of the vorticity (heat map) for active
turbulence of pushers. (b) Fluid streamlines (thick lines), fluid jet (yellow surface in III), and vortex-ring (torus)
emerging in a system of aligning pullers (bullets). (c) Mean-square displacement (∆r)2 ≡ 〈(ri(t + ∆t) −
ri(t))

2〉 of pushers for various Ω. The black-dashed line represents the ballistic dynamics of (∆r)2 = v2
0(∆t)2.

(d) Distribution of the Cartesian squirmer velocity component v̄a, averaged over the three coordinate directions.
Black solid lines indicate Gaussian distributions. Adapted from Goh et al.18.

can be quite stationary), requires the simultaneous presence of alignment, directional sens-
ing, and “joining-the-group” behaviour. Thus, we study the model described in Sec. 2.2,
with vision-alignment ratio ζ > 0 in Eq. 8. Figs. 5 and 6 show snapshots of the dynam-
ics for two different volume fractions. For the lower volume fraction, Fig. 5 also presents
directional auto-correlation functions, which provide information about the persistence of
motion of a swarm. For the higher volume fraction, Fig. 6 displays local density distribu-
tions of squirmers extracted from a Voronoi construction and the kinetic energy spectra in
Fourier space for various vision-alignment ratios ζ.

Pushers. Directional sensing strongly affects conformations of microswimmers at low
squirmer volume fractions, as it gives rise to elongated, worm-like swarms, because mi-
croswimmers naturally follow other microswimmers in front. Formation of such elon-
gated clusters is well captured in the simulations at low squirmer density, as shown in
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Figure 5. Self-organisation of an ensemble of pushers at low squirmer volume fraction 0.0067, with wide vi-
sion angle θ = π. (a) Simulation snapshot for ζ = 1.0. (b) Directional autocorrelation function C(∆t) ≡
〈ei(t) · ei(t+ ∆t)〉 for various values of ζ as indicated. The other simulation parameters are the Péclet number
Pe = 128, the maneuverability Ω = 8192, and the system size L/a = 512.

Fig. 5(a). The directional auto-correlation function C(∆t), displayed in Fig. 5(b), decays
quite rapidly, with a typical time scale of only about 0.2/DR. This is partially due to the
low, but not ultra-low, volume fraction, where local swarms strongly interact and often
collide, see Fig. 5(a). Also, clusters are significantly bent and twisted due to hydrody-
namic interactions between pushers, in contrast to dry systems11. This implies that C(∆t)
decays faster at ζ = 1 than for weaker directional sensing, where alignment dominates
the dynamics and the formation of worm-like swarms is not noticeable. We also note that
transient torus-like structures with rotational motion emerge, depending on the parameters.
Such circulating behaviour is often observed in fish schools, compare Fig. 1, but also dry
systems, such as reindeer herds and fire ant groups.

For higher squirmer volume fractions, pushers again feature active turbulence, as for
ζ = 0. However, as the strength of directional sensing increases, squirmers tend to form
aggregates (see snapshot in Fig. 6(a)), particularly for ζ ≥ 1.0, as demonstrated by the up-
ward shift in the local density distribution at high densities (Fig. 6(c)). In the corresponding
energy spectra, Fig. 6(e), the peak values of the kinetic energy |E(k)| are reduced as ζ in-
creases (1 < ζ . 2), but the scaling exponents are not altered. This implies that the impact
of directional sensing on the dynamics is mainly a slow-down of advection. For the largest
investigated value ζ = 4.0, even a new density peak appears at ρloc ≈ 0.5, which indicates
a pronounced clustering tendency. In this case, the corresponding scaling exponent devi-
ates significantly from those for smaller ζ. Moreover, the maximum energy is substantially
reduced. Still, the scaling regime in the energy spectrum is broad, suggesting that the dy-
namics is chaotic. However, more careful simulations with higher MPC fluid density seem
necessary to rule out potential artifacts due to fluid compressibility20, which may be the
origin of the third peak at ρloc = 0.58 in Fig. 6(c).

Pullers. Pullers exhibit a strong clustering tendency for Ω ≥ 128, regardless of ζ. Surpris-
ingly, however, the effect of additional directional sensing turns out to be non-monotonic.
For large ratios of ζ ≥ 2, the height of the second peak in the local density distribution
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Figure 6. Self-organised structures in systems of pushers (a,c,e) and pullers (b,d,f) with alignment and visual
perception for various vision-alignment ratios ζ. (a,b) Snapshots of squirmers for ζ = 2 and the squirmer volume
fraction 0.054, (c,d) local density distribution, and (e,f) fluid energy spectrum. The vision angle is θ = π/2 for
pushers and π/12 for pullers. In both cases, Pe = 128, Ω = 2048, and L/a = 512.

is higher than that at ζ = 0, as shown in Fig. 6(d), which agrees with the expectation
that directional sensing will result in a cohesive behaviour between microswimmers. In
contrast, the height of the second peak for ζ ≤ 1.0 is slightly lower than that for ζ = 0, in-
dicating that a rearrangement of pullers due to directional sensing weakens hydrodynamic
attraction, which may suppress aggregate formation, though weakly. In the regime ζ . 1,
the energy spectrum shows rather universal behaviour, as shown in Fig. 6(f). When a pro-
nounced second peak develops in the local density distribution for ζ ≥ 2, a pronounced
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shift in the peak as well as a significant shrinkage of the scaling regime in the energy spec-
trum are also observed. This indicates that the resultant dynamics may no longer be chaotic
for ζ = 4, but instead rather stable clusters are forming. Note that fluid-compressibility
effects are usually more pronounced for pullers than for pushers.

The weak dependence of the puller self-organisation on ζ at higher volume fractions
can be understood from the increased crowding in the vision cone. When a microswimmer
senses a nearly homogeneous density distribution in the vision cone, then visual informa-
tion no longer provides a clue for selecting the direction of self-propulsion.

5 Concluding Remarks

We have demonstrated that alignment and visual sensing may lead to fascinating collective
behaviours of intelligent active particles in a hydrodynamic environment, confirming the
rich interplay between cognitive sensing, self-propulsion, self-steering, and hydrodynamic
interactions. The observed self-organisation and dynamical behaviour includes the emer-
gence of clustering, formation of jets, swirls, and vortices, as well as generation of fast
fluid flows. The possibility of performing large-scale simulations with massively parallel,
GPU-based implementations on supercomputers like JUWELS are essential for unravel-
ling self-organisation across a multitude of length scales. It is important to realise that the
forms of sensing and cognitive self-steering are based on rather simple rules so far. This
is necessary to gain an understanding of basic mechanisms. However, biological systems
and potentially microrobotic systems can be much more complex. It will thus be very
interesting to study more complex cognitive systems in the future.
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Understanding exotic quantum phases of matter remains a major goal of condensed matter
physics. Here we address this challenge by simulating superfluids using the recently developed
Fermionic neural network (FermiNet) approach a and the variational Monte Carlo algorithm.
We study a paradigmatic strongly-correlated quantum system, the unitary Fermi gas, which
has been known to possess a superfluid ground state but is difficult to describe quantitatively.
We find limitations of the original FermiNet Ansatz in studying superfluidity and propose an
improved Ansatz based on the idea of an antisymmetric geminal power singlet (AGPs) wave
function. The results obtained using our new Ansatz are consistent with experiment and more
accurate than previous benchmarks obtained using state-of-the-art fixed-node diffusion Monte
Carlo simulations. We prove mathematically that the new Ansatz is a strict generalisation of
the original FermiNet architecture, despite the use of fewer parameters. Our approach shares
several advantages with the original FermiNet: the use of a neural network removes the need
for an underlying basis set; and the flexibility of the network yields extremely accurate results
within a variational quantum Monte Carlo framework that provides access to unbiased estimates
of arbitrary ground-state expectation values. We discuss how the method can be extended to
study other superfluids.

1 Introduction

Solving the many-body Schrödinger equation analytically is intractably difficult for sys-
tems of more than a few particles, although mean-field-like (Hartree-Fock and density
functional) approaches, which treat particles as independent entities by averaging over
the interactions between them, can often provide sufficient physical insights and qualita-
tive results. However, in strongly correlated quantum systems, where particle interactions
dominate, mean-field descriptions are often insufficient and more sophisticated numeri-
cal methods are needed to obtain qualitatively correct and quantitatively accurate results.
Quantum Monte Carlo (QMC) methods1, which use Monte Carlo integration to determine
the properties of quantum many-body systems, are among the leading tools for studying
strongly correlated quantum systems beyond the mean-field level. Despite the success of
QMC methods, the accuracy of the results is often limited by the quality of the trial wave
function, which is used to approximate the ground state wave function of the system.

aD. Pfau et al., doi:10.1103/PhysRevResearch.2.033429, Phys. Rev. Res. 2, 033429 (2020).
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Recent years have seen the introduction of a new class of variational wave functions,
known as neural wave functions or neural network quantum states, which utilise neural
networks to approximate the ground state and sometimes also low-lying excited states2.
This novel approach has been applied to a wide range of systems in condensed matter
physics, such as spin and lattice models2, 3, molecules4–7, and systems with quantum phase
transitions8, 9, often achieving state-of-the-art results and outperforming other methods.

In this proceeding, which is based on Lou et al.10, we apply the neural wave func-
tion approach to study superfluidity, one of the most famous macroscopic quantum phe-
nomena of many-body systems. Specifically, our work focuses on the unitary Fermi gas
(UFG), a paradigmatic example of a strongly correlated quantum system, which is known
to possess a superfluid ground state, and is difficult to describe quantitatively. We use the
FermiNet – a neural network architecture specifically designed to represent many-fermion
wave functions5 – to study the properties of the UFG. We demonstrate key limitations of
the FermiNet Ansatz in studying the UFG and propose an improved Ansatz based on the
idea of an antisymmetric geminal power singlet (AGPs) wave function11, 12.

2 The Unitary Fermi Gas

The unitary Fermi gas (UFG) is a strongly interacting system of two-component fermions
that exhibits superfluidity in the crossover region between a Bardeen-Cooper-Schrieffer
(BCS) superconductor and a Bose-Einstein condensate13. The effective range of the in-
teraction is zero and the s-wave scattering length diverges (the “unitarity limit”), so the
UFG has no intrinsic length scale. The only remaining length is the inverse of the Fermi
wavevector 1/kF , on which all thermodynamic quantities depend. For example, for a given
particle density, the ground-state energy per particle of an UFG can be written as

E = ξEFG = ξ
3

5

~2k2
F

2m
, (1)

where EFG is the energy per particle of a non-interacting Fermi gas of the same density.
The dimensionless constant ξ is known as the Bertsch parameter14.

Because of the universality of the UFG model, it can be used to describe many real
physical systems at different scales, such as the neutron matter in the inner crust of a
neutron star15 or the quantum criticality of an s-wave atomic superfluid16. The size of the
pairs in the UFG is comparable to the inter-particle spacing, which is also a feature of many
high-Tc superconductors17. As a result, the UFG has been studied extensively. Although
the UFG is an idealised model, it can be accurately realised in the laboratory using ultracold
atomic gases in which the interactions have been tuned by using an external magnetic field
to drive the system across a Feshbach resonance.

The UFG has been studied for decades, but it remains a challenge to calculate its
ground-state properties accurately. Mean-field treatments such as BCS theory give good
results for systems with weak interactions, but fail in the strongly interacting regime. As
a result, various quantum Monte Carlo (QMC) methods1, 18 have been used to simulate
the properties of the UFG to high accuracy at zero and finite temperature. Methods used
include variational Monte Carlo (VMC), fixed-node diffusion Monte Carlo (FN-DMC),
fixed-node Green’s function Monte Carlo, auxiliary field Monte Carlo, and diagrammatic
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Monte Carlo19–22. However, a full quantitative description remains an open and challeng-
ing problem. In our work, we combine the FermiNet Ansatz with the simplest QMC
scheme, the VMC method, to study the UFG.

3 Variational Monte Carlo

Despite being the conceptually simplest QMC method, VMC is a powerful tool for study-
ing quantum many-body systems. It is based on a well-known variational principle, which
states that the expectation value of the energy of a quantum system for a given trial wave
function ΨT (r1, α1, r2, α2, . . . , rN , αN ), where rn and αn ∈ {↑, ↓} are the position and
spin projection of particle n, is always greater than or equal to the ground-state energy E0:

〈
Ĥ
〉

=
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

≥ E0. (2)

This provides the theoretical foundation for VMC, in which the adjustable parameters
on which ΨT depends are chosen to minimise the energy expectation value. The high-
dimensional integral that defines the expectation value cannot be evaluated analytically but
can be estimated using Monte Carlo integration,

〈
Ĥ
〉

=

∫
dRΨ∗T (R)ĤΨT (R)∫

dR|ΨT (R)|2 =

∫
dR|ΨT (R)|2 ĤΨT (R)

ΨT (R)∫
dR|ΨT (R)|2

≈ 1

M

M∑

i=1

ĤΨT (Ri)

ΨT (Ri)
, (3)

where R is shorthand for (r1, α1, r2, α2, . . . , rN , αN ) and the points Ri are sampled from
the probability density |ΨT (R)|2/

∫
dR |ΨT (R)|2.

4 Neural Wave Functions

The VMC method is a powerful tool for studying quantum many-body systems, but the
accuracy of the results is limited by the quality of the trial wave function. In conven-
tional VMC, this is usually constructed using Slater determinants of Hartree-Fock orbitals,
multiplied by a Jastrow factor to account for the electron-electron correlation and cusp
conditions. Because of the limitations of the trial wave functions used, VMC alone is often
unable to provide results accurate enough to throw much light on interesting chemical and
materials physics problems.

Recently, a new class of trial wave functions, known as neural wave functions or neural
network quantum states, has been introduced, utilising neural networks to represent the
trial wave function2. The neural network takes the coordinates of the particles (ri, αi)
as input and outputs a set of latent space vectors hLαi ≡ hLα(rαi ; {rα/i}; {rᾱ}) ∈ RnL ,
with nL being the size of the final layer L of the network. Here i ∈ {1, 2, . . . , Nα},
α ∈ {↑, ↓}, and ᾱ the is spin projection opposite to α. The latent space vectors are then
used to compute many-particle orbitals

φαi (rαj ; {rα/j}; {rᾱ}) =
[
wα
i · hLαj

]
χαi (rαj ), (4)

where wα
i is the weight vector of the i-th orbital, and χαi (rαj ) is an envelope function to

enforce the boundary conditions of the system. Note that the vectors hLαj are invariant
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under permutations of all particle coordinates except for the j-th particle, which means
that the output orbitals have the same property. This is indicated by the use of (unordered)
set notation for {rα/j} and {rᾱ}.

The full wave function is expressed as a determinant of the many-particle orbitals

ΨSlater FermiNet(R) = det
[
φαi (rαj ; {rα/j}; {rᾱ})

]

= det
[
φ↑i (r

↑
j ; {r↑/j}; {r↓})

]
det
[
φ↓i (r

↓
j ; {r↑}; {r↓/j})

]
, (5)

where the second step followed because we assigned the spins and factorised the single
determinant into two determinants, one for each spin. The parameters of the neural wave
function (i.e., the weights and biases of the neural network) are optimised by gradient
descent to minimise the energy expectation value as in conventional VMC. Note that there
is no limit on the number of many-particle orbitals that can be generated. Thus, multiple
sets of orbitals are often used to construct a wave function with multiple determinants:

ΨD
Slater FermiNet(R) =

D∑

k

det
[
φk↑i (r↑j ; {r↑/j}; {r↓})

]
det
[
φk↓i (r↓j ; {r↑}; {r↓/j})

]
, (6)

which usually improves the accuracy of the results. The normalisations of the FermiNet
determinants are learned during the optimisation, so there is no need to include expansion
coefficients.

To study the UFG, we employ the FermiNet neural network architecture5, which im-
plements the totally antisymmetric multi-determinantal Ansatz described above. FermiNet
has achieved state-of-the-art results in various quantum many-body systems, including
atoms, molecules5, 6 and solids23, and has shown itself able to discover quantum phase
transitions in the homogeneous electron gas9. However, as we will show in the Results
section, it does not describe superfluids accurately. This leads us to introduce a modified
Ansatz based on the idea of the antisymmetric geminal power singlet (AGPs) wave func-
tion. We show that the new Ansatz is a strict generalisation of the FermiNet architecture,
despite the use of fewer parameters.

4.1 Antisymmetric Geminal Power Singlet Wave Function

A conventional antisymmetric geminal power singlet (AGPs) wave function is a fixed
particle-number analogue of the Bardeen-Cooper-Schrieffer (BCS) wave function. It re-
places the single-particle orbitals that appear in conventional Slater determinants with pair-
ing orbitals (geminals), which are functions of the coordinates of two particles instead of
one. This much improves the description of paired systems. To adapt the original Fer-
miNet – referred to as the Slater FermiNet in this context – for superfluid systems, we
propose a modification to its architecture, incorporating a generalisation of the AGPs form.

In the original Slater FermiNet, the many-particle orbitals are constructed by taking the
dot product between each latent space vector and a set of weights, as shown in Eq. 4. To
build an AGPs wave function with FermiNet, we first need to construct a set of geminals:

ϕk(rαi , r
ᾱ
j ; {rα/i}; {rᾱ/j}) =

[
wk ·

(
hLαi � hLᾱj

)]
χkα(rαi )χkᾱ(rᾱj ), (7)

where � denotes an element-wise product. The AGPs FermiNet wave function is obtained
by taking determinants of these many-particle geminals and summing the determinants in
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a manner analogous to Eq. 6:

ΨD
AGPs FermiNet(R) =

D∑

k

det
[
ϕk(rαi , r

ᾱ
j ; {rα/i}; {rᾱ/j})

]
. (8)

A schematic diagram of the difference between the Slater FermiNet and the AGPs Fer-
miNet can be found in Fig. 1.

In a recent paper10, we showed mathematically that the Slater FermiNet is a limiting
case of the AGPs FermiNet, and that the latter is a strict generalisation of the former.

FermiNet orbitals

FermiNet geminals

antisymmetrise

Intermediate
Layers

antisymmetrise

Slater FermiNet

AGPs FermiNet

Figure 1. Schematic diagram of the difference between the Slater FermiNet and the AGPs FermiNet. The Slater
FermiNet constructs many-particle orbitals by taking the dot product between each latent space vector and a set of
weights. The AGPs FermiNet constructs many-particle geminals by taking the dot product between the element-
wise product of two latent space vectors and a set of weights.

5 Results

We show the power of the AGPs FermiNet Ansatz by studying the UFG. The Hamiltonian
is given by

Ĥ = −1

2

N∑

i

∇2
i +

N↑N↓∑

ij

U(r↑i − r↓j ), where U(r) = − 2v0µ
2

cosh2(µr)
(9)

is the modified Pöschl-Teller potential, which is widely used in variational and diffusion
QMC simulations19–22 to model a delta function interaction. The s-wave scattering length
of the Pöschl-Teller potential diverges when v0 = 1. By changing the value of µ at fixed
v0 = 1, it is possible to vary the effective range of the interaction, re = 2/µ, whilst holding
the s-wave scattering length infinite.

A comparison of the ground-state energy expectation values given by the two Ansätze
is shown in Fig. 2(a). The Slater FermiNet, which consists of a linear combination of block-
diagonal determinants of FermiNet orbitals, performs well when the number of particlesN
is smaller than around 10, but the AGPs FermiNet is superior for larger systems. It is clear
that the Slater FermiNet Ansatz has difficulties learning the ground states of large paired
systems

Another comparison between the two Ansätze is shown in Fig. 2(b), which depicts
the ratio of the interacting and non-interacting energies per particle, known as the Bertsch
parameter14 and defined in Eq. 1, as a function ofN . All FermiNet energies are variational,
so the AGPs FermiNet, for which the Bertsch parameter is lower by up to around 30%, is
much the better of the two Ansätze.
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(a) The total energy of the UFG simulation cell, mea-
sured in units of the free Fermi gas energy EFG. The
Slater FermiNet Ansatz begins to fail when N ' 10.
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(b) The Bertsch parameter ξ (the ratio of the interact-
ing and non-interacting ground-state energies per par-
ticle) against the number of particles N .
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(c) Pairing gaps against the numbers of particles N .
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(d) The TBDM estimators with N = 38 particles,
plotted against the pair-separation.

Figure 2. Comparison between results obtained using the AGPs FermiNet and the Slater FermiNet for different
numbers of particles, N , with rs = 1 and µ = 12, except for Fig. 2(d), where the number of particles is fixed to
be N = 38. All simulations used 32 determinants, 300,000 optimisation steps, and the same hyperparameters.
Most of the error bars are so small that they are obscured by the symbols. All figures adapted from Lou et al.10

To verify the accuracy of our AGPs FermiNet results, we compared them10 with the
state-of-the-art FN-DMC simulations of Forbes et al.21 for the case kF = 1 and µ = 12.
The AGPs FermiNet achieved a lower energy per particle than FN-DMC for all except tiny
systems with N = 4 and N = 6 particles. The dependence of the Bertsch parameter on
system size was also smoother when calculated with the AGPs FermiNet.

The pairing gap may be found using the approximation formula18

∆ = (−1)N
[
E(N + 1)− 1

2
[E(N) + E(N + 2)]

]
, (10)

where N is the total number of particles in the box. The results from N = 4 to N = 36
are shown in Fig. 2(c). The striking collapse of the pairing gap with increasing system
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size shows that the Slater FermiNet Ansatz struggles to describe paired states in systems
of more than 10 particles. The AGPs FermiNet Ansatz behaves much better, although we
expect significant finite-size errors to remain even for the largest systems simulated. Also
shown is the thermodynamic (N → ∞) limit of the BCS pairing gap including Gorkov’s
polarisation correction: ∆Gorkov = 0.815EFG, where EFG = 3

5
~2k2F
2m is the average energy

per particle of an unpolarised non-interacting Fermi gas. The UFG is a strongly coupled
system, so the Gorkov estimate of the gap need not be accurate.

Another signature of fermionic superfluidity is the presence of off-diagonal
long-ranged order in the two-body density matrix (TBDM), ρ(2)

↑↓ (r1, r2; r′1, r
′
2) =

〈ψ̂†↑(r1)ψ̂†↓(r2)ψ̂↓(r
′
2)ψ̂↑(r

′
1)〉, the largest eigenvalue of which diverges as the number of

particles N tends to infinity. The superfluid condensate fraction c may be obtained by
evaluating24

c = lim
r→∞

c̃(r) = lim
r→∞

1

4πr2N↑

∫
ρ

(2)
↑↓ (r1, r2; r1 +r′, r2 +r′)δ(|r′|−r)dr1dr2dr

′, (11)

where N↑ is the number of spin-up particles. As shown in Fig. 2(d), the TBDM of the
38-particle system calculated using the Slater FermiNet approaches zero in the large pair-
separation limit, showing that the neural network wave function does not describe a su-
perfluid. The same quantity for the AGPs FermiNet approaches a finite value, yielding a
condensate fraction c ≈ 0.44(1). This is consistent with the value we obtained by sim-
ulating a larger 66-particle system, with experimental estimates, and with recent AFMC
results22. The data are summarised in Tab. 1.

Method Value

Our estimate for N = 38 at kF re = 0.32 0.44(1)
Our estimate for N = 66 at kF re = 0.32 0.42(1)
Our estimate for N = 66 at kF re = 0.17 0.52(1)
FN-DMC for N = 38 at kF re = 0.0325 0.61(2)
FN-DMC for N = 66 at kF re = 0.0325 0.57(2)
FN-DMC for N = 128 with VMC extrapolation at kF re = 0.3220 0.51
FN-DMC with kF re → 0 extrapolation for N = 6626 0.56(1)
AFMC with kF re → 0 extrapolation for N = 6622 0.43(2)
Experiment27 0.46(7)
Experiment28 0.47(7)

Table 1. Estimates of the superfluid condensate fraction at unitarity using various methods. The quantity kF re
is a dimensionless number, indicating the deviation of the simulated system from a perfect UFG with zero-range
interaction.

6 Discussion

We have used neural wave functions to study the superfluidity of the paradigmatic UFG. We
showed that the Slater FermiNet Ansatz has difficulties in describing paired systems with
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strong, short-ranged, attractive interactions between particles of opposite spin. This led us
to improve the variational Ansatz by using determinants of FermiNet geminals, a drastic
generalisation of a conventional AGPs or BCS wave function. We showed mathematically
that the Slater FermiNet is a limiting case of the AGPs FermiNet despite the use of fewer
parameters in the latter. It follows that any FermiNet wave function can in principle be
written as an AGPs FermiNet wave function.

The inability of the Slater FermiNet Ansatz to accurately describe the UFG ground
state came as something of a surprise because the original FermiNet paper5 showed that
any many-body fermionic wave function could be represented as a single determinant of
FermiNet orbitals. However, the mathematical argument relies on the construction of Fer-
miNet orbitals with unphysical discontinuities. Whether or not any wave function can be
represented as a single determinant of FermiNet orbitals of the type used in practice, which
are differentiable everywhere except at electron-electron and electron-nuclear coalescence
points, remains an open question.

Another limitation is that the architecture of the FermiNet neural network, which is
rather simple, may not be able to represent an arbitrary many-electron FermiNet orbital.
Even if a single-determinant Slater FermiNet wave function is general in principle, there
is no guarantee that it is equally easy to represent all wave functions. It may be that
producing an accurate representation of a paired wave function requires the width and
number of layers in the neural network to increase rapidly with system size. Equally, if a
network of fixed size is used, it may be necessary to increase the number of Slater FermiNet
determinants rapidly as the system size increases. The observation that the Slater FermiNet
works well when N / 10 but that the quality of the results degrades rapidly for larger
systems, along with the scaling study described by Lou et al.10, suggest that this is, in fact,
the case. Whilst most work on neural wave functions has focused on improving the neural
network part of the Ansatz, our work suggests that the method of antisymmetrisation is
also crucial for the accuracy of the results. Our AGPs-inspired approach is not limited to
the FermiNet neural network and can be readily adapted to use more recent architectures
such as the Psiformer29, GLOBE and MOON30, and DeepErwin7.

Finally, the AGPs FermiNet introduced here has a straightforward Pfaffian extension
and can thus be applied to non-s-wave and triplet pairing. We expect it to become a power-
ful tool for understanding strongly correlated non-s-wave superfluid and superconducting
systems such as Helium-3 or high-Tc and p-wave superconductors.
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Astronomy is a discovery-driven science, and our understanding of objects and processes in the
universe grows with the advent of new observational techniques and instruments. State-of-the-
art numerical simulations of the systems under study are required to understand the observa-
tional data, derive reliable implications, and decompose the overall results into their physical
meaning. Here, results on the evolution of high-mass star-forming regions and the observational
signatures of kilonovae are reported.

Introduction

In theoretical astrophysics, computational resources are typically required for numerical
models of N-body dynamics, hydrodynamics, and radiative transfer. Each of these fun-
damental computations often involves multi-physics aspects such as magnetic fields, tur-
bulence, phase transitions, chemical evolution, or nucleosynthesis. Post-processing of the
simulation data often involves computationally intensive steps to derive synthetic obser-
vational data cubes for direct comparison with state-of-the-art observational surveys and
individual studies.

In 2024, most of the computational time was devoted to the study of the formation and
feedback of high-mass stars and the physics of kilonovae from neutron star-neutron star
mergers to observed light curves. Both projects are based on multi-physics hydrodynamical
simulations and the production of synthetic observations.

High-Mass Star Formation

The field of high-mass star formation research is currently being revolutionised by sta-
tistically powerful observational surveys such as the ALMAGAL initiative, which is col-
lecting data on more than 1000 star-forming clumps (containing more than 6000 pre- to
proto-stellar cores) at different evolutionary stages. To make the most of this fascinating
data, numerical simulations of the evolution of high-mass star-forming regions are being
performed. Even a single one of these simulations is computationally demanding due to
the multi-physical and multi-spatial scales involved. Furthermore, the evolution of these
regions needs to be studied as a function of a variety of environmental parameters, such
as their mass distribution, turbulence level, overall dynamical state (angular momentum
and/or converging flows), magnetic field strength, and metallicity. Meaningful sampling of
this large parameter space seems challenging. For an example of such an attempt, please
see the contribution of Birka Zimmermann and Stefanie Walch.

Kilonovae

Kilonovae are intense bursts of light that occur when neutron stars collide. The collision
creates extremely neutron-rich conditions that trigger the rapid neutron capture (r-process).
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This process plays a key role in the formation of many of the heaviest elements in the
Universe. Kilonovae provide a valuable opportunity to explore the mechanisms behind
r-process nucleosynthesis and to study the properties of matter at extreme densities, such
as our still incomplete knowledge of the equation of state of neutron stars.

The new 2024 calculations by Christine E. Collins and her collaborators demonstrate
the need for three-dimensional models and show the sensitivity of the results to accu-
rate atomic data. Their modelling pipeline extends from hydrodynamical simulations of
neutron star-neutron star mergers to nucleosynthesis calculations to radiative transfer to
synthetic light curves. These light curves can then be directly compared with existing
observational data of kilonovae bursts.

Outlook

In the field of theoretical astrophysics, the demand for computational resources has in-
creased in the recent past. As a result, it is essential to develop software adapted to new
hardware – and in some cases to develop it from scratch. This will undoubtedly be one of
the most important challenges in the field for the next decade. If numerical methods can
make the most of the available high-performance computing resources, we will continue
to gain fascinating insights into the complex physics of the universe.
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The formation of stars, and especially high-mass stars, is a highly complex and dynamical
process involving a large number of physical mechanisms. High-mass stars determine the evo-
lution of galaxies due to their energetic feedback, such as (ionising) radiation, stellar winds,
and supernovae. In order to better interpret real-world star-forming regions, simulations of col-
lapsing clouds are used. We performed simulations of the gravitational collapse of isolated,
parsec-scale, turbulent clouds to study the formation and evolution of massive stars as well as
the impact of their highly energetic feedback. The initial conditions are physically motivated
by real observations. A parameter study with different initial conditions is performed to ob-
tain a statistical sample of simulations to compute synthetic telescope images which may be
compared to observations made with modern telescopes like ALMA.

1 Introduction

Star formation is a highly active and rapidly developing topic in modern astrophysics. It
is a fundamental process, shaping both the large and small astronomical scales and simul-
taneously influencing galactic dynamics2 and planet formation. This impact is due to the
star formation process being highly energetic, because of the intense feedback from newly
born massive stars by protostellar jets, stellar winds, radiation and supernovae. In addition
to the large dynamic ranges in spatial scale and density, these processes also make the star
formation process difficult to simulate numerically.

One of the largest unresolved problems in modern star formation is that of the forma-
tion of massive stars, i.e. stars with a mass larger than eight times the mass of the Sun
(>8 M�). Lower mass stars can primarily be explained due to the interplay of gravity,
turbulence and thermal pressure leading to quasi-Jeans mass fragmentation; however, ad-
ditional processes are necessary for the formation of higher mass stars in terms of magnetic
fields3 and radiative feedback4. High mass stars are also thought to evolve faster and start
nuclear burning before the mass accretion process is finished, thus feedback and accretion
happen at the same time.

Due to the difficulty of studying high-mass star formation in both observations and in
simulations, many open questions remain to date. In observations, young high-mass stars
are difficult to detect primarily due to their rarity, which leads to them lying at considerably
larger distances (on average) than lower mass stars, which makes it harder to fulfil the
need for high-resolution observations. Additionally, high-mass stars typically form in the
densest and most embedded environments, meaning that they are heavily obscured at most
wavelengths and highly sensitive observations are needed, and even those are limited if
the region is optically thick. Moreover, due to their high accretion rates, the formation
process of high-mass stars is greatly accelerated compared to that of lower mass stars,

89



Figure 1. A look into the heart of a massive star-forming cloud. Shown is a simulation of the cold gas distribution
of molecular hydrogen (white). Within the dense regions massive stars are formed which causes the ejection of
atomic hydrogen (blue) and an expanding bubble of ionised hydrogen (red). The plotted volume has a side length
of 2 pc1.

lessening the time over which the process may be observed. In simulations, high-mass
star formation is difficult to model due to the large number of coupled physical processes
which are involved. Apart from magneto-hydrodynamics they include, but are not limited
to, large magnetic field strengths, radiative heating and radiation pressure (RP), thermal
pressure, ionising radiation, and stellar winds. It is difficult to construct models which are
numerically stable when coupling these processes, and they are computationally expensive
to run.

We simulate the collapse of isolated cores with different initial conditions in order to
study massive star formation in a statistically relevant sample. We confront the numerical
simulations and synthetic observations which eventually may be compared directly to the
real-life observations.

This paper is structured as follows. First, we explain the numerical methods and ini-
tial conditions of the simulations in Sec. 2 and 3, respectively. In Sec. 4 we introduce a
fiducial run, and show the importance of ionising radiation and RP as well as the impact
of the numerical resolution on the cloud evolution. Moreover, we investigate the results
of the parameter study and outline the importance of comparing simulations and synthetic
observations. We conclude our results in Sec. 5.
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2 Methods

We perform simulations of the gravitational collapse of isolated, parsec-scale, turbulent
cores with the MPI-parallel, adaptive mesh refinement (AMR) code FLASH 4.75.

We include an entropy stable MHD solver6 and compute self-gravity with an OctTree
solver7, which can also calculate the local shielding of the gas. We also model the radiative
transfer of ionising radiation with our new radiative transfer scheme TreeRay8, which can
treat ionising and non-ionising (infrared) radiation and RP on dust9. We employ a local
non-equilibrium chemistry network, which tracks the evolution of 7 species (H, H2, H+,
C+, CO, O, and free electrons)10, 11, and which is combined with the radiative transfer
module12, 13. Dust and gas temperatures are calculated separately and heating and cooling
by dust is included. Stars are modelled with the use of sink particles, which are evolved
with a 4th order Hermite integrator14. We model the evolution of individual stars with a
protostellar model15.

We use the JUWELS cluster module with the Intel Xenon Platinum 8168 CPU. Each
simulation requires a computational time of around 1–2 Mio. core hours, and uses on
average 500 cores (and up to 1200 cores) simultaneously. We produce data files to analyse
and visualise the time evolution of the simulated core collapses. The simulations produce
around 800 files each, necessitating a disk space of 80 TB.

3 Simulation Details

The cores are set up such that they are guaranteed to form massive stars under the evolution
of self-gravity. The stars will further grow through the accretion of mass until they prevent
accretion onto themselves through their own stellar feedback and reach a final mass.

The initial conditions of the simulated cores are formed by the parameter space covered
by the ALMA large-scale program ALMAGAL. The core radius is kept at 1 pc while the
side length of the cubic box is 4 pc with a diode boundary condition. The initial core gas
temperature is 20 K. The initial dust temperature of 2.7 K is immediately adjusted to the
thermal equilibrium value in the first time step.

The free-fall time, tff , is the characteristic time a core with a uniform density ρ̄ would
take to collapse purely under its own gravity, and can be calculated by:

tff =

√
3π

32Gρ̄
. (1)

The free-fall time in our simulations is 526,000 yr. The parameters we vary are the density
profile, the virial parameter, and the metallicity. We are using a Plummer-like density
profile, which is given by:

ρ(r) =
ρ0

1 + ( rr0 )w
, (2)

where r is the core radius, w the density exponent, ρ0 the central density and r0 the scale
radius (∼ 0.15 pc). We use three different density exponents, w = 2, w = 1.5, and w = 0,
where w = 0 results in a constant density profile ρ = ρ0. The central density changes with
the different density exponents to keep the core mass at 1000 M� for each simulation. The
simulations are called FIDUCIAL, SHALLOW and FLAT, respectively.
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Figure 2. Time evolution of the fiducial run (from top to bottom). From left to right we show the projection in the
z-direction of the column density, Σ, and the mass-weighted temperatures of gas, Tgas, dust, Tdust, and radiation,
Trad. Small circles indicate sink particles, which represent stars. A green colour scheme represents lower-mass
stars, while a blue colour scheme shows more massive sinks (>8 M�). After ∼ 0.45 tff (where tff corresponds
to 0.526 Myr) massive sink particles are formed which drive an expanding bubble of ionised hydrogen.

In order to study the impact of turbulent fields we change the virial parameter, αvir,
which is determined by the ratio of kinetic and gravitational energy:
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αvir =
5rσ2

GM
, (3)

where σ is the velocity dispersion and M the total core mass. The FIDUCIAL run has
a virial parameter of 0.6. We change the virial parameter from sub-virial with a very
low velocity dispersion (Run αLOW with αvir = 0.2) to supervirial (Run αHIGH with
αvir = 1.2).

To change the metallicity, Z, we reduce or increase the abundances of metals to mimic
the conditions of massive star forming cores near the Galactic Centre and towards the
outer Milky Way disc. The FIDUCIAL run has a solar metallicity of 1 Z�. We change the
metallicity to 0.5 Z� (ZLOW) and 2 Z� (ZHIGH).

4 Results

4.1 Fiducial Run

We start from a spherical cloud that begins to collapse under its own gravity. Fig. 2 shows
the time evolution of the FIDUCIAL run. Substructures which look like filaments emerge
in the process due to turbulence in the cloud. The filaments converge centrally and feed
the central hub. Star formation first takes place within the central region of the simulated
box, but later on extends to the outer regions of the filaments as well.

At first, the dust temperature follows the morphology of the gas temperature. As soon
as sink particles are formed the dust is heated by the radiative feedback of the sinks. Af-
ter ∼ 0.45 tff (0.237 Myr), when massive sink particles are present, the dust temperature is
dominated by the radiation temperature. In the inner parts, radiation, dust, and gas tem-
peratures are mostly in equilibrium. In the outer parts, the gas temperature is still higher
due to shock heating. Later on, ionising feedback from massive sink particles heats the
gas, and as soon as the bubble full of ionised hydrogen expands, the gas temperature in-
creases significantly. The pressure transferred from stellar radiation helps the bubble to
grow. As a consequence, atomic hydrogen is expelled outwards radially and the core be-
comes dispersed. After the simulated time, only 50 % of the formed sink particles remain
in a gravitationally bound cluster.

4.2 Resolution Study

Starting from the FIDUCIAL run with an effective spatial resolution of ∆x = 400 AU at
refinement level 9, we increase the maximum refinement level in different simulations for
the same initial conditions. Refinement level 9 corresponds to a net maximum resolution
of (2048)3 cells. We increase the refinement level to 10, 11, and 12 which corresponds
to a resolution of ∆x = 200 AU, ∆x = 100 AU, ∆x = 50 AU, respectively. The mini-
mum refinement level is always set to 5, i.e. corresponding to a 1283 base grid and a base
resolution of ∼ 3,200 kAU.

The stars in our simulations are modelled with sink particles. These are checked against
several criteria before they are formed or allowed to further accrete gas. One condition
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Figure 3. Left: Number of sink particles, while the dotted line shows the number of high mass sinks with
≥ 8 M�. The higher the resolution the more sink particles are formed. Right: Evolution of the star formation
efficiency. The resolution has a minor influence on the general core evolution, but affects the time period where
sink particles can accrete mass.

for the formation of sink particles is that the gas density is greater than a certain density
threshold, ρthresh.

ρthresh =
πc2s
Gλ2

J

=
πc2s

G(4∆x)2
, (4)

where G is the gravitational constant and cs is the speed of sound.
It is related to the smallest resolvable Jeans length on the maximum refinement level

and is set to λJ = 4∆x. The density threshold increases with increasing density.
During the initial collapse phase, the core cools efficiently via dust thermal emission

and behaves isothermally. When the collapsing gas reaches densities ρ & 10−13g cm−3, it
becomes optically thick to infrared radiation, cannot cool efficiently anymore, and behaves
almost adiabatically. For ρ > 10−13g cm−3, the Jeans mass therefore increases again
with increasing density, and no further fragmentation should occur. Hence, a sink particle
would represent a single star only at such high densities. In our simulations we reach
densities starting from the lowest resolution ρ = 10−17g cm−3 to the highest resolution
ρ = 10−15g cm−3. Therefore, for any maximum refinement level used in this work, sinks
could harbour single stars, binaries, or higher order systems.

In the regime we resolve, it is expected that the number of sink particles increases
with higher spatial resolution, as is indeed the case (see Fig. 3, left panel). We conclude
that cloud fragmentation greatly depends on the resolution. For a detailed analysis of the
fragmentation process and the resulting sink mass distribution, it would be crucial to run
simulations at a higher refinement level.

On the other hand, we find that the amount of mass which is converted into stars, the
so called the star formation efficiency (SFE), is comparable during the collapse phase until
∼ 0.7 tff (see Fig. 3, right panel). However, while the mass growth of the FIDUCIAL run
decreases significantly after this time, RFL10 still accretes at a higher rate. In both cases,
the SFE stays constant toward the end of the simulations. However, RFL10 has a higher
final SFE of 0.56 (after ∼ 0.85 tff ) compared to the FIDUCIAL run, which stops at a SFE
of 0.42. At a higher resolution we resolve higher densities and the stars are more deeply
embedded thus the feedback is less efficient at dispersing the core and stopping further
mass accretion.
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Nevertheless, the general evolution of the collapse and core dispersal is similar for
different resolutions. In the following, lref = 9 is therefore used for a parameter study. At
this resolution, it is possible to carry out a statistically relevant sample of simulations.

4.3 Parameter Study

Figure 4. Left: Evolution of the star formation efficiency. The dotted lines represent the SFE of massive stars
only, which contain most of the mass. Right: Number of formed sink particles for the different runs. The dark
blue parts indicate the number of high mass stars. Runs with flatter density profiles collapse more slowly, but in
the end they produce more fragments resulting in a higher SFE. Low virial parameter and low metallicities lead
to fewer sink particles with reduced SFE. A high virial parameter and high velocity dispersion result in a slightly
higher SFE and more fragmentation.

The evolution of the collapsing core and the fragmentation process depend on the initial
conditions. Each simulation box contains a predefined amount of mass. How much of it is
converted to stars (the SFE) is also affected by the initial conditions.

In the FIDUCIAL run the SFE reaches 0.42, which means that 42 % of the available
mass is converted into sink particles (see Fig. 4, left panel). In total 19 sinks are formed,
10 of which grow into massive ones (see Fig. 4, right panel).

The flatter the initial density profile, the slower the core collapse. Due to the slower
evolution, turbulence has more time to interact before the cloud collapses under gravity and
more sub-structures are formed which leads to a higher number of formed sink particles
(see Fig. 4, right panel). The slower core collapse initially leads to a slower increase in the
mass accretion but also extends the time period over which sink particles can accrete mass
(see Fig. 4, left panel). Thus, the increase in the SFE is time delayed in the runs FLAT and
SHALLOW, but reaches even higher final numbers, 0.57 and 0.49, respectively, than in the
FIDUCIAL run.

The virial parameter relates the kinetic and gravitational energies of the initial core. A
low virial parameter indicates that the gravitational core collapse is less disturbed by kinetic
motion which leads to less substructure formation during the collapse phase and vice versa.
A low virial parameter leads to fewer (in total 9) but very massive sink particles; however,
the SFE decreases to 0.35. A higher virial parameter leads to more fragmentation and 22
sink particles are formed. The SFE reaches 0.45 and ends up slightly higher than in the
FIDUCIAL run (see Fig. 4).

The amount of metals in molecular clouds can impact the evolution of massive clouds.
Metals are expected to effectively cool gas which may result in a suppression of fragmen-

95



tation in low metallicity environments. Starting with a lower initial metallicity, Run αLOW
shows less fragmentation and only 12 sink particles are formed. The SFE decreases to 0.38.
However, the core with a higher initial metallicity (Run ZHIGH) forms 22 sink particles
and the SFE increases slightly to 0.45.

4.4 Comparing Simulations and Synthetic Observations

Figure 5. What would a simulation look like if we were to observe it in the sky with a real-world instrument like
ALMA? In the left and middle panel the density and the dust emission, respectively, along the line of sight of the
simulated image is shown. The right panel shows the same region but seen through from the perspective of the
ALMA telescope1.

From these simulations, synthetic observations are derived (see Fig. 5). The density
profile is used to produce the emission of the dust continuum at 1362µm with the radiative
transfer code RADMC-3D16 (see Fig. 5, middle panel). Furthermore, the software CASA
makes it possible to simulate the effects of the instrumental limitations of the ALMA tele-
scope (Atacama Large Millimeter/Submillimeter Array) in order to produce an image of
a synthetic observation (see Fig. 5, right panel). The imperfect resolution of the telescope
leads to a loss of the filamentary substructures so that only the brightest cores are still de-
tectable. Comparing simulations and observations helps to understand the limitations of
telescopes and how observational data can be interpreted.

5 Concluding Remarks

This work presents state-of-the-art numerical simulations in order to study massive star
formation. These simulations are only possible on the most powerful supercomputers, and
without we would miss crucial theoretical understanding of astrophysical processes. We
simulate isolated core-collapse scenarios of cores with 1000 M� within a radius of 1 pc. A
novel scheme to treat the radiative transfer of ionising and non-ionising radiation as well
as radiation pressure on dust and gas is included. We investigate the formation and early
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evolution of massive stars and their host cores up to the point where a bubble full of ionised
hydrogen is established.

Sink particles are treated as single stars; while the resolution allows them to represent
single stars but also groups of stars and their accretion disk or multiple-order systems. With
higher resolution the number of formed sink particles is increased. However, the general
trend of the initial core evolution is similar.

The impact of different initial conditions are investigated to produce a statistically rel-
evant sample. The flatter the density profile, the slower the collapse, and the number of
sink particles increases, as well as the SFE. With a low virial parameter, gravity is more
dominant than turbulence, which leads to a faster core collapse that produces fewer but
very massive sink particles. An initial high virial parameter delays the core collapse. Tur-
bulence is more dominant, thus more substructures are produced. A lower metallicity
reduces dust cooling, suppressing fragmentation. In this case fewer, but massive sink par-
ticles are formed. A higher metallicity leads to efficient dust cooling during the initial
collapse phase, resulting in more fragmentation and a higher SFE.

From these simulations we derive synthetic observations while simulating the telescope
effects of the ALMA telescope. With the limited resolution of the telescope the brightest
cores can be seen while most of substructures become invisible. The comparison between
simulations and synthetic observations supports the interpretation of real-world telescope
data. This may guide the analysis of existing observations as well as planning of future
observations of star-forming regions.
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Kilonovae are the explosive bursts of light resulting from neutron star collisions. The extreme,
neutron-rich conditions during the collision allow the rapid neutron-capture process (r-process)
to take place, which is responsible for producing many of the heaviest elements in the Uni-
verse. Kilonovae provide the opportunity to understand r-process nucleosynthesis, as well as to
constrain high-density matter physics. We have established a self-consistent modelling pipeline
that allows us to compare kilonova simulations directly to observations, enabling the interpre-
tation of these events. Our work has highlighted the importance of accurate atomic data for
modelling kilonovae, as well as the importance of 3D simulations.

1 Introduction

When neutron stars collide, a bright, fast-evolving kilonova transient is produced. In
2017 a kilonova was observed (AT2017gfo1, 2) following a gravitational-wave signal
(GW1708173), igniting the field of multi-messenger astronomy. Understanding these cat-
aclysmic events is the key to determining the origin of the heavy elements in our Universe,
including gold, platinum and uranium. Kilonovae provide promising opportunities to study
matter under extreme conditions offering a window into the dynamics of extremely dense
nuclear matter.

The astrophysical site where around half of all elements heavier than iron are synthe-
sised by the rapid neutron-capture process (r-process), has long been debated and obser-
vations of AT2017gfo have strongly supported the ejecta of binary neutron star mergers
as the primary sites for the r-process4. The observations of AT2017gfo have provided a
powerful set of constraints for testing theoretical models of binary neutron star mergers,
the incompletely known Equation of State (EoS) of dense nuclear matter, r-process nucle-
osynthesis, and radiative transfer for kilonovae. However, accurate theoretical models are
required to link these observations back to information about the underlying physical con-
ditions. To identify specific elements produced by binary neutron star mergers, we must
interpret kilonova observations, and for this we need radiative transfer simulations.

The strongest feature in the observed spectra of AT2017gfo has been suggested to be
Sr II5–7. However, most studies identifying this feature have used simplified radiative trans-
fer methods, such as a backwards modelling approach (starting with observations and se-
lecting a composition that produces matching spectra)5, or parameterised ejecta models6, 7

rather than a forwards modelling approach using advanced multidimensional simulated bi-
nary neutron star merger ejecta as a basis for radiative transfer calculations. Most kilonova
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radiative transfer simulations have been carried out in 1D or 2D8–11 with only a handful of
3D calculations12, 13, which includes our 3D forwards modelling simulations of Collins et
al. (2023a)14 and Shingles et al. (2023)15.

The aim of our project is to increase our understanding of kilonovae and their role
in the production of heavy elements by performing calculations with our advanced radia-
tive transfer method in three dimensions based on binary neutron star merger ejecta from
numerical models. This pipeline is vital for the detailed interpretation of the spectra of
AT2017gfo and of future kilonovae.

2 Methods

 Christine Collins      |    2

3D kilonova modelling pipeline

(a) NS-NS merger 
simulation

(b) Nuclear network calculation (d) Compare to observations(c) Radiative transfer calculation 
based on ejecta snapshot

Figure 1. Pipeline to self-consistently simulate kilonovae from binary neutron star merger ejecta. A hydrody-
namical neutron star merger simulation is carried out. Following this, r-process nuclear network calculations are
carried out based on the merger simulation to calculate the nucleosynthetic abundances (image credit: EMMI,
GSI/Different Arts). A snapshot of the merger simulation and the nucleosynthetic abundances are input to the
radiative transfer calculation (shown is the density structure of the ejecta snapshot). The radiative transfer sim-
ulation produces light curves and spectra that can be directly compared to kilonova observations. Shown are
simulated light curves compared to AT2017gfo (figure adapted from Ref. 14).

We use a multi-disciplinary pipeline to carry out our simulations, allowing us to self-
consistently model kilonovae starting with binary neutron star merger simulations through
to comparing synthetic observables directly to observations (see Fig. 1). State-of-the-art,
relativistic 3D simulations of the ejecta from binary neutron star mergers are input to our
radiative transfer simulations. The energy released during the merger (from β-decays, α-
decays and fission fragments) and the nuclear abundances are obtained from nuclear net-
work calculations (as in Mendoza et al.16). Using the simulated merger ejecta and nuclear
network calculations as input, radiative transfer simulations are carried out for a snapshot
of the merger ejecta, using the radiative transfer code ARTIS to follow the subsequent ex-
pansion, radioactive decay, and radiative transfer to to produce synthetic light curves and
spectra. These can be directly compared to observations, linking the observations back to
the underlying merger ejecta.

ARTIS is a multi-dimensional, state-of-the-art radiative transfer code. Shingles et
al. (2023)15 have enabled ARTIS to carry out simulations of kilonovae with line-by-line
opacities for millions of bound-bound transitions of r-process elements for the first time
in 3D. Importantly, this allows us to directly associate spectral features with specific el-
ements. The main advancements include the use of a relativistic Doppler shift (for the
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rapidly expanding ejecta), numerical improvements for handling of dense line lists (mil-
lions of transitions), an extended input snapshot that specifies each cell’s nuclear abun-
dances and energy release from prior reactions, and handling of α- and β-decays with a
consistently evolving composition and time-dependent thermalisation of the emitted decay
products.

2.1 Numerical Methods

ARTIS uses Monte Carlo methods17–19 to simulate the complete radiation transport prob-
lem from energy injection all the way to the eventual escape of radiation from the ejecta.
In kilonovae, energy is released from the radioactive decays of r-process material synthe-
sised during the merger. Shingles et al. (2023) have greatly expanded the range of decays
handled by ARTIS to include α and β decays, and added a new non-instantaneous ther-
malisation treatment. By leveraging a set of detailed network calculations performed on
the 3D hydrodynamic trajectories (for the first few minutes of r-process reactions) and
following each individual nuclear decay with its associated γ-ray spectrum and particle
thermalisation conditions, we can self-consistently model the energy released.

Figure 2. Flow chart outlining the mode of operation of the radiative transfer code ARTIS, and how physical
processes (absorption, emission and scattering) are modelled within the framework of ARTIS. Figure taken from
Kromer et al. (2009)20.

At the beginning of a simulation, energy “pellets” are placed (and their decay-times
set) within the ejecta according to the spatial and temporal distribution of radioactive de-
cay energy throughout the selected time range. The pellets are activated according to the
radioactive decays and become Monte Carlo “packets” of indivisible energy, which are
then propagated through the expanding ejecta in three-dimensions, with transitions be-
tween packet types (e.g., γ-ray, kinetic energy, or optical energy, see Fig. 2) representing
absorption, emission and scattering processes according to detailed Monte Carlo statistics,
using the macro-atom formalisation17, 18. Our line-by-line treatment enables each transition
to be treated individually using the Sobolev approximation21, 22. By considering individ-
ual lines, we can track the species responsible for transitions, thereby directly associating
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spectral features with the underlying physical process. The outgoing packets of radiation
(photons) are binned according to their direction, time of escape, and wavelength, allow-
ing for synthetic light curves and spectra to be produced as a function of observer direction
and time. This allows us to compute synthetic observables from multidimensional binary
neutron star merger models in a self-consistent, time-dependent manner, giving significant
predictive power to the merger simulation and allowing its outcome to be properly tested
against observations.

Such sophisticated radiative transfer simulations are numerically expensive owing to
the large numbers of Monte Carlo quanta that must be propagated. Fortunately, since the
propagation of each quantum is independent of the others, the Monte Carlo scheme is
extremely well-suited to parallelisation across very large numbers of cores. The code is
fully parallelised with both MPI and OpenMP.

3 Scientific Results

We now discuss our first results produced for this project which have been published14, 15, 23.
For these studies we chose a merger simulation of equal-mass 1.35 M� neutron stars as
input to our radiative transfer simulations. Our ongoing work is to consider a broader range
of neutron star merger simulation ejecta models in our radiative transfer calculations.

3.1 Neutron Star Merger Simulation

The merger simulation considered here (described by Collins et al.14) uses the SFHo24

equation of state. It was carried out with a 3D general relativistic smoothed-particle hydro-
dynamics (SPH) code25–27 and included an advanced neutrino leakage treatment, ILEAS
(Improved leakage-equilibration-absorption scheme)28. The hydrodynamical simulation
followed the evolution until 20 ms after the merger, and therefore only includes “dynami-
cal” ejecta, i.e., the material becoming unbound during the early postmerger phase. The to-
tal mass of ejecta from this simulation is 0.005 M�. It is expected that matter ejection will
continue after this simulation was stopped, however, long-term evolution simulations are
required to follow the hydrodynamics beyond this time (e.g., see Just et al.29 or Kawaguchi
et al.30).

3.2 Comparison to AT2017gfo

The spectra predicted by our radiative transfer simulations for this neutron star merger
model show remarkable agreement with the observed evolution of the kilonova AT2017gfo,
considering that we in no way tuned our model to try to match the observations. A com-
parison between the simulated and observed spectra is shown in Fig. 3. The simulation
predicts a structure similar to the strong feature observed in AT2017gfo identified as Sr II.
In our simulation this feature is predominantly due to Sr II, however, it also contains con-
tributions from Y II and Zr II. With our line-by-line opacity treatment, we can identify
the species forming spectral features. An example of this is shown by the colour coding
in Fig. 3, which indicates the relative contributions of specific ions to the emitted spectra.
Specifically, each Monte Carlo packet of radiation escaping the simulation is tagged with
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Figure 3. Spectra in the polar direction for model 3D AD2 from Shingles et al. (2023), which show remarkable
similarities to the spectra of AT2017gfo, considering that we did not tune the model in any way to try to match
the data. The colour coding indicates the species contributing to the formation of the spectrum, thereby directly
associating spectral features with the ions responsible. Figure taken from Shingles et al. (2023)15.

the last interaction underwent by the packet. For each wavelength bin in the synthetic spec-
trum, the area under the spectrum is colour coded in proportion to the energy carried by
packets in that wavelength bin whose last interaction was with each of the ions considered.
This analysis shows that Sr II makes significant contributions in forming the simulated
spectra. Other significant contributions come from Y II, Zr II and Ce III, as can be seen in
Fig. 3. Therefore, our simulations strongly support the interpretation of Sr being present
in the ejecta of AT2017gfo and thus solidifies the conclusion that the r-process took place
in the outflow of GW170817.

Although the evolution of the spectra is similar to that observed in AT2017gfo, our
simulated spectra evolve too quickly compared to the observations. In Fig. 3, the simulated
spectra are plotted at 0.7 and 0.8 days after the merger, and resemble the observations at
2.4 and 3.4 days. It is likely that the fast evolution is due to the lower ejecta mass in the
merger model we selected for this study. The simulated ejecta mass is 0.005 M�, which
is around ten times lower than the mass inferred for AT2017gfo1. This motivates our aim
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with this project to investigate the kilonovae predicted for a range of ejecta models with
varying masses, and particularly models with higher ejecta masses more similar to the
inferred mass of AT2017gfo.

3.3 Importance of Accurate Atomic Data
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Figure 4. Simulated spectra at 0.8 days after the merger using the AD1 or AD2 atomic dataset. The only differ-
ence between AD1 and AD2 is that in AD2 the atomic data for Sr, Y and Zr has been replaced with calibrated
atomic data instead of the theoretically calculated data in AD1. Using improved atomic data for only these el-
ements has a dramatic effect on the predicted spectra, both in the spectral features predicted and in the overall
spectral energy distribution. The colour coding indicates the relative contributions of specific ions to shaping the
spectra. Above the axis indicates the last ion responsible for emitting or scattering an escaping packet of radia-
tion. Beneath the axis indicates the absorption processes that last prevented a packet of radiation from escaping,
thus indicating the species responsible for absorption. Figure adapted from Shingles et al. (2023)15.

We have carried out a study into the importance of accurate atomic data. To do this, we
carried out radiative transfer simulations using the same ejecta model, but different atomic
datasets. The majority of our atomic data is sourced from the Japan-Lithuania Opacity
Database for kilonovae31, which is theoretically calculated and not calibrated to experi-
mentally known values. We refer to this dataset as AD1. To test the importance of accurate
atomic data, we replace the atomic data for Sr, Y and Zr in AD1 with experimentally cali-
brated data sourced from the Kurucz32 extended line list. We refer to this dataset as AD2,
which is the dataset used to produce the spectra in Fig. 3.

The difference that results from changing only the atomic data for Sr, Y and Zr is shown
in Fig. 4. The spectral features predicted as well as the overall spectral energy distribution
changes significantly when the calibrated atomic data is included. This highlights the need
for accurate atomic data in radiative transfer simulations.

3.4 Importance of 3D Simulations

The importance of 3D radiative transfer simulations was also tested by comparing the
3D simulation to a 1D simulation based on the spherical average of the ejecta model.
The comparison of the light curves from these simulations is shown in Fig. 5. The 1D
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Figure 5. Simulated bolometric and grz–band light curves from the 3D simulation and from a 1D simulation
using a spherical average of the ejecta model. The colour bar indicates the polar angle of each observer direction
in the 3D model while the black lines show the light curves of the 1D model.

simulation is unable to reproduce the light curves in any line of sight of the 3D simulation.
In particular, the g and r band light curves from the 1D simulation are fainter than all
directions of the 3D simulation. This shows that 1D simulations may lead to overestimating
the opacity at red wavelengths. Even the bolometric light curve is unable to match the
3D simulation, except at late times when the ejecta have become optically thin and the
light curve follows the energy deposition rate. This demonstrates that 3D simulations are
important for kilonovae modelling.

4 Concluding Remarks

We have established a kilonova modelling pipeline to self-consistently describe kilonovae,
to directly compare simulations to observations. Our initial study has demonstrated the
ability of these simulations to produce synthetic observables comparable to AT2017gfo.
This work has highlighted the importance of accurate atomic data in radiative transfer
simulations, not only for predicting specific spectral features, but also to predict the correct
overall spectral energy distribution. We have also highlighted the need for 3D kilonova
simulations. The 1D spherically averaged model does not reproduce any observer direction
in the 3D simulation. Our project will continue to exploit our self-consistent modelling
pipeline to investigate a range of neutron star merger models, allowing us to investigate the
potential variability of kilonovae, and to place constraints on the underlying physics.
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In the proceedings of the NIC Symposium 2025 both contributions in the chemistry sec-
tion are devoted to advancing methodologies towards the characterisation or the design of
materials.

In GPU Acceleration of Three-Center Coulomb Integral Evaluation with Numeric
Atom-Centered Orbitals Francisco Delesma, Moritz Leucke, Ramón Panadés-Barrueta,
and Dorothea Golze present their recent work to accelerate quantum chemical calculations
by adapting the time consuming three-center Coulomb integral (3c-CI) evaluation to mod-
ern CPU/GPU high performance computing architectures. This work is carried out in the
context of the development of highly accurate GW-based methods that are, for example,
used for the prediction of X-ray spectroscopic data of materials systems. In general, 3c-
CI are crucial for approximating four-center two-electron Coulomb integrals (4c-CIs) in
many quantum chemical methods, including Hartree-Fock (HF), coupled cluster, and also
the GW approximations. Direct computation of 4c-CIs is computationally expensive, thus
the resolution-of-the-identity (RI) approach is a popular method to reduce this cost. The RI
technique is primarily used with localised basis sets, where numeric atom-centered orbitals
(NAOs), which are evaluated on numerical grids, have emerged as a promising and highly
flexible alternative to other basis set approaches. NAOs are used in the FHI-aims package,
the solid-state all-electron software package used by the authors. Previously, the Golze
group had successfully made efforts to accelerate and reduce the scaling of core-level GW
steps. This had resulted in the 3c-CI evaluation emerging as a remaining major computa-
tional bottleneck even for comparatively large systems of more than 100 atoms. Here, the
authors present their impressive algorithmic advances and implementation of the accelera-
tion of the computation of 3c-CIs based on CUDA for CPU/GPU HPC platforms as well as
the benchmarking on JUWELS Booster. For medium-sized basis sets, a two-fold speedup,
for larger basis sets, speedups of up to six-fold are achieved. Moreover, an important step
forward has been made towards a full GPU implementation of these quantum chemical
calculations which will be instrumental for the later use on GPU-based exascale machines.

In Machine Learning for Accelerated Discovery and Design of Functional Energy
Materials Mohammad Eslamibidgoli, Max Dreger, Andre Colliard-Granero, Fabian Tipp,
Michael Eikerling, and Kourosh Malek present a project performed on the JUWELS ma-
chine where they produce a data set of imidazolium-based compounds and their alkaline
stability. This alkaline stability is one of the major factors in the development of improved
anion exchange membranes (AEMs) for hydrogen fuel cells or water electrolysis. First, the
authors computed degradation pathways with the help of density functional theory and cou-
pled cluster approaches for a few compounds for which experimental reference data were
available. From this data the free energy difference related to a hydroxide attack on the im-
idazolium ring was determined as a reliable descriptor of alkaline stability. This descriptor
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was then evaluated computationally on JUWELS for a library of about 5800 imidazolium-
based structures. The so-obtained data also serve as a basis for subsequent training of
machine learning models. In the article, the authors further outline, how this project is em-
bedded in a much wider framework of data-driven and machine learning methodologies to
aid the development of sustainable energy technologies as part of the European Materials
Modelling Ontology project.

These two articles give a very good impression of the breadth of methodological de-
velopments in theoretical materials chemistry: they span from the improvement of sophis-
ticated and highly efficient electronic structure theory calculations to the machine-learning
based design of new materials and the required generation of extensive electronic structure
datasets.
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GPU Acceleration of Three-Center Coulomb Integral
Evaluation with Numeric Atom-Centered Orbitals

Francisco A. Delesma∗, Moritz Leucke∗,
Ramón L. Panadés-Barrueta, and Dorothea Golze

Faculty of Chemistry and Food Chemistry, Technische Universität Dresden,
01062 Dresden, Germany

E-mail: {francisco_antonio.delesma_diaz, moritz.leucke, dorothea.golze}@tu-dresden.de

In electronic structure theory calculations, the choice of basis set for expanding the wave func-
tion or electronic density is crucial for achieving both accuracy and performance. Numeric
atom-centered orbitals have become popular due to their compact and localised nature, which
enables accurate and efficient calculations for large molecules and solid-state systems. How-
ever, the numerical evaluation of three-center Coulomb integrals (3c-CIs), which appear in
Hartree-Fock and correlated methods within the resolution-of-the-identity approach, can be-
come a bottleneck in practical calculations. In this work, we detail and benchmark our re-
implementation of the 3c-CI evaluation, leveraging graphical processing units (GPUs) to accel-
erate the calculations. For medium-sized basis sets, we achieve a 2x speedup, while for larger
basis sets, speedups of 4x to 6x can be obtained for the 3c-CI evaluation.

1 Introduction

The four-center two-electron Coulomb integrals (4c-CIs) are present in various methods
within electronic structure theory, including hybrid functionals1, second-order Møller-
Plesset (MP2) perturbation theory2, coupled cluster methods3, 4, the Random Phase Ap-
proximation (RPA)5, 6, and the GW approximation7. The computation of the 4c-CIs scales
O(N4) with respect to system size N . The resolution-of-the-identity (RI) approach8, 9 is a
popular method to reduce the computational cost for the evaluation of the 4c-CIs. The RI
method refactors the 4c-CIs in products of two-center and three-center integrals. Some of
the two-center integrals are Coulomb integrals, while the three-center integrals, as well as
additional two-center integrals, can involve different interaction potentials depending on
the specific RI flavour. In this work, the two- and three-center integrals are also Coulomb
integrals (2c-CIs and 3c-CIs). When employing the RI approximation, the computation of
the 3c-CIs dominates the integral evaluation with a computational complexity of O(N2)
to O(N3).

In electronic structure theory, the wave function or electronic density is expanded in a
basis. Broadly, we distinguish plane wave basis sets and localised basis sets. The latter
are confined to certain regions in space, typically around an atom, while plane wave basis
sets spread out over the entire structure. As demonstrated in the Supporting Information
of Ref. 10, the RI reformulation of the 4c-CIs within a plane-wave framework reduces
to trivial expressions, unlike for localised basis sets. Therefore, RI techniques and their
various flavours are primarily used in the context of localised basis sets. While plane-
wave basis sets are more commonly used in the solid-state community, localised basis sets

*These authors contributed equally to this work.
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are prevalent in quantum chemistry codes due to their primary application to molecular
systems. However, localised basis sets are also employed in solid-state codes, such as
FHI-aims11, the all-electron software package used in this project.

Localised basis sets may have an analytic form, such as Gaussian-type orbitals (GTOs)
or Slater-type orbitals (STOs). An alternative are numeric atom-centered orbitals (NAOs),
which are evaluated on numerical grids and which are used in FHI-aims. GTOs and STOs
can be considered as a special case of an NAO. The NAOs are defined as:

φµ(r) =
uµ(r)

r
Ylm(r̂) (1)

where uµ are radial functions and Ylm(r̂) spherical harmonics. The radial component of
an NAO is entirely flexible and not constrained to any specific form. uµ is the solution
to the radial Schrödinger equation calculated on a dense logarithmic grid, while Ylm(r̂) is
evaluated on angular grids.

Compared to GTOs and STOs, NAOs are more flexible because they are not con-
strained to a predefined analytical shape. This is an advantage in solid-state systems,
where atomic environments can vary significantly12. Additional to FHI-aims, packages
such as ABACUS13, OpenMX14, SIESTA15, and among others16, 17, have adopted the NAO
methodology. Furthermore, NAOs can be numerically adjusted to describe both core and
valence electron behaviour well. Compared to NAOs, GTO basis sets require many func-
tions to describe deep core electrons correctly due to the incorrect description of the cusp
behaviour at the nucleus. NAO basis sets are thus usually smaller than GTOs and can
achieve higher accuracy with less basis functions18.

2 Motivation

While NAOs are typically more compact than, for example, GTOs, the evaluation of the
integrals is more challenging. Analytical techniques are available for GTOs19–21, while
NAO integrals are computed numerically on grids. The numerical integration has a larger
computational prefactor than an analytical evaluation and substantially contributes to the
overall computational cost. For example, we demonstrated that in core-level GW cal-
culations, the 3c-CI computation over NAOs is the computationally most expensive step
for system sizes up to 40-50 atoms22, despite its scaling being only O(N2) to O(N3).
The higher scaling GW -specific steps, with O(N4) and O(N5) complexity, dominate the
computational cost only for larger systems. Our recent efforts23 to reduce the scaling of
the GW steps have resulted in the 3c-CI evaluation contributing to half of the total compu-
tational time, even for systems larger than 100 atoms. Therefore, our goal is to accelerate
the computation of 3c-CIs by utilising new hybrid architectures that combine CPUs and
graphical processing units (GPU). We present here our latest algorithmic advances based
on CUDA for CPU/GPU high performance computing (HPC) platforms, including prelim-
inary benchmark results.

3 Theory

The 4c-CIs, in Mulliken notation, are defined as
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(ij|kl) =

∫∫
ψi(r)ψj(r)ψk(r′)ψl(r′)

|r− r′| drdr′, (2)

where ψi(r) are the molecular orbital (MOs). The MOs are expanded in the local basis set
as

ψi(r) =
∑

µ

cµiφµ(r) (3)

where cµi are the MO coefficients and φµ(r) are the atomic orbitals (AOs), which are in
our case NAOs. Inserting Eq. (3) into Eq. (2) we obtain

(ij|kl) =
∑

µνστ

cµicνjcσkcτl(µν|στ) (4)

where the 4c-CIs are now computed in the AO representation as follows

(µν|στ) =

∫∫
φµ(r)φν(r)φσ(r′)φτ (r′)

|r− r′| drdr′. (5)

The calculation of these integrals shows a scaling to the fourth power O(N4) with the
number of basis functions N .

The RI approach expands the product of two AOs, φµφν , in terms of a set of auxiliary
basis functions (ABFs), {ϕP }, which are in our setup also NAOs

ρµν(r) = φµ(r)φν(r) ≈
∑

P

APµνϕP (r) = ρ̃µν(r). (6)

APµν denotes the RI expansion coefficients. Several methods to obtain APµν are available
in the literature. In this work we use the Coulomb metric, which implies minimising the
Coulomb repulsion of the density residual, (ρµν − ρ̃µν |ρµν − ρ̃µν), yielding8, 9, 24, 25

APµν =
∑

Q

(µν|Q)V −1
QP (7)

where the three-center Coulomb integrals in Eq. (7) are defined as

(µν|Q) =

∫∫
φµ(r)φν(r)ϕQ(r′)

|r− r′| drdr′ (8)

and the two-center Coulomb integrals (2c-CI) are given by

VPQ =

∫∫
ϕP (r)ϕQ(r′)
|r− r′| drdr′. (9)

Computing the expansion via Eq. (7) is known as the RI-V approach. Inserting Eq. (6) into
Eq. (3) yields the expression

(µν|στ)RI-V ≡
∑

PQ

APµνVPQA
Q
στ =

∑

PQ

(µν|P )V −1
PQ(στ |Q) (10)
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4 Methodology

4.1 Numerical Integration Techniques

For the 2c-CIs defined in Eq. (9), two strategies can be employed to compute the integrals
numerically. The first strategy involves using logarithmic spherical Bessel transforms26, 27

to evaluate the integral in Fourier space. This approach is efficient because, in Fourier
space, the integral simplifies to a one-dimensional integral over the radial part of the ABFs.
This is the default way of integrating the 2c RI integrals in FHI-aims28.

The other integration strategy employs atom-centered, spherical real-space grids. This
method involves a two-step procedure: first, the Coulomb field ΩP (r) of the auxiliary
function ϕP (r) is computed:

ΩP (r) =

∫
ϕP (r′)
|r− r′|dr

′. (11)

The second step is to evaluate VPQ as

VPQ =

∫
ϕP (r)ΩQ(r)dr (12)

=
∑

r

w(r)ϕP (r)ΩQ(r). (13)

Eq. (12) takes now the form of an overlap integral that can be discretised over the three-
dimensional spatial grids as shown in Eq. (13). w(r) is the weight of an integration grid
point r = r(a, s, t) that is uniquely determined by the atomic center a, the radial shell
number s, and the angular point t. Both of these techniques for evaluating two-center
integrals are computationally efficient, as the number of two-center integrals scales with
O(N2). The second strategy might be computationally slightly more expensive than the
first one, but is commonly used by NAO codes in other contexts, such as the evaluation of
the exchange correlation matrix in density functional theory (DFT)29, 30, 11, 31.

Turning now to the 3c-CIs, it is possible to solve the three-center integrals in Fourier
space as well but the additional integration center leads to large multipole sums32, 33. In
FHI-aims the three-center integration was implemented by Ren et al.28, building on the
real-space grid integration (second strategy) for the 2c-CIs. The 3c-CIs are discretised
over three-dimensional grids

(µν|P ) =

∫
φµ(r)φν(r)ΩP (r)dr (14)

=
∑

r

w(r)φµ(r)φν(r)ΩP (r) = MρP . (15)

To simplify the computation of the 3c-CIs we combine the indices µ and ν into a single
index ρ, resulting in the matrix MρP , where ρ is the index of a unique pair formed from
the primary AOs.

Unlike two-center integrals, the computation of three-center integrals is computation-
ally expensive. Accelerating their computation significantly reduces the prefactor in cal-
culations using the RI method. GPUs are a natural choice for this acceleration, as the large
sums over real-space points in Eq. (15) are independent and can benefit greatly from the
massive parallelism that GPUs provide.

116



1st shell 2nd shell 3rd shell

r = 0.17Å r = 0.79Å r = 1.57Å
50 points 110 points 194 points

Figure 1. Construction of the atomic grids, with the innermost shell (violet) at r = 0.17 Å containing 50 points.
The next shell (green) at r = 0.79 Å holds 110 points, and the third shell (yellow) at r = 1.57 Å contains 194
points.

4.2 Real Space Grid Generation

To perform the numerical integration of the 3c-CIs, we construct a discrete set of real-space
grid points for each atom, defining a series of radial points, or shells, at different distances
from the atoms’ center. To arrange these shells, FHI-aims uses a logarithmic spacing,
which places points more densely near the center and distributes them more widely as the
distance increases34. The location of the radial shells is given by34

r(i) = router
log{1− [i/(Nrad + 1)]2}

log{1− [Nrad/(Nrad + 1)]2} . (16)

router is the outermost radius, which is set to 7.0 Å in the tight default settings of FHI-
aims. Nrad is the number of radial shells. The value Nrad was empirically determined
by Baker et al. and is dependent on the atomic number34. After the locations of the
shells are determined, they are filled with angular points, starting from the innermost to
the outermost shell. For the angular integration we use Lebedev grids35. Lebedev grids
represent the quadrature on the surface of a unit sphere, featuring relatively simple point
distributions with octahedral symmetry. In FHI-aims the angular grids with 50, 110, 194,
302, 434, 590, 770, 974 and 1202 points are available.

Fig. 1 illustrates the construction of the atomic grids, combining the radial point dis-
tribution and the angular grids: the first shell is filled with 50 angular points. The next
shell employs an angular grid with 110 points, followed by another angular grid for the
subsequent shell that contains 194 points. This process is repeated for each radial shell,
systematically filling all shells with an increasingly larger number of angular points until
the outermost shell is reached. For NAOs, using 434 points in the outermost shell typically
offers a good balance between accuracy and computational time36. Generally, there are far
more than three shells. For example, with the tight default settings, there would be a total
of 69 shells for the carbon atom.
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1: Initialization
2: for each atom
3: for each radial shell s
4: for each angular point t
5: Get the point coordinate rt
6: Get the point weights w(rt)
7: if w(rt) > 0.0 then
8: Prune and list in m the computed AOs
9: Prune and list in n the computed ABFs

10: Compute ϕm(rt)
11: Compute Ωn(rt)
12: end if
13: end for
14: for each µ ∈ m
15: for each ν ∈ m
16: for each angular point t
17: Compute Dρ(rt) = w(rt)ϕµ(rt)ϕν(rt)
18: end for
19: end for
20: end for
21: Compute (MρP )s =

∑

t

Dρ(rt)ΩP (rt) (BLAS)

22: Add current (MρP )s to MρP

23: end for
24: end for
25: Finalization

GPU

GPU

GPU

1: Allocate working arrays on GPU
2: Allocate MρP on GPU
3: Initialize CUDA Streams

1: Synchronize default Stream
2: Asynchronous send ϕm(rt) to GPU
3: Asynchronous send Ωn(rt) to GPU
4: Asynchronous send w(rt) to GPU
5: Stream synchronize
6: Compute Dρ(rt) (CUDA Kernel)
7: Compute current (MρP )s (CuBLAS)
8: Add current (MρP )s toMρP (CUDA Kernel)

1: Send MρP to CPU
2: Deallocate GPU arrays
3: Destroy CUDA Streams

Figure 2. Pseudocode for the numerical integration of the 3c-CIs. The left panel (highlighted in yellow) shows
the CPU operations, while the right panel (in green) displays the corresponding GPU operations.

5 Implementation Details

The pseudocode for the numerical integration of the 3c-CIs (Eq. (15)) is shown in Fig. 2
and it describes the operations performed in one CPU core. The 3c-CIs are parallelised
via the message-passing-interface (MPI), distributing the set of ABFs {ϕP } over the CPU
cores. The numerical integration is performed sequentially for each atom a, and then for
each radial shell s of a, following the same logic used in constructing the numerical grid
shown in Fig. 1. For each angular point t, i.e., each point on the radial shell s, we retrieve
the spatial coordinate rt = (xt, yt, zt) and the corresponding weight w(rt), which is given
by

w(r) = p3(r, a)wrad(s)wang(t), (17)

where wrad(s) is the integration weight for the logarithmic radial grid and wang(t) is the
angular weight originating from the Lebedev grids. p3(r, a) is the three-center partition
function, which divides the full three-dimensional integrals into effective atom-by-atom
components, as the integration shells overlap with each other.

If w(rt) > 0, meaning that the current point rt contributes to the integral, a pruning
step is performed. This step reduces the number of primary AO basis functions φµ and
ABFs ϕP by checking, for each φµ and for each ϕP , whether their spatial extension in-
cludes rt. The indices of the contributing primary AO functions and ABFs are stored in
lists m and n, respectively. Generally, the number of primary AOs and ABFs stored in n
and m is smaller than the total number of primary and auxiliary functions available. For
rt, we then tabulate all primary functions in list m and compute all Coulomb fields Ωn for
the ABFs in list n.

118



Next, we compute the density-matrix-like quantity Dρ(rt) as the product of two pri-
mary AO functions, multiplied by w(rt). This is outlined in pseudocode steps 14–20,
where ρ denotes the basis pair index, as defined in Eq. (15). (MρP )s is computed by con-
tracting Dρ(rt) and ΩP (rt) over the number of angular points t in each shell s. For this
step, we employ the BLAS3 routines (dgemm) . Finally, each shell contribution to the
3c-CIs is added to the final quantity MρP as defined in Eq. (15). The described algorithm,
corresponding to the left panel of Fig. 2, was previously implemented by Ren et al.28 and
served as starting point for this project.

The steps 14–20 in the left panel of Fig. 2 are the computational bottleneck in the
evaluation of the 3c-CIs. To address this, we accelerated the computation of (MρP )s by
leveraging GPUs. In the right panel of Fig. 2, highlighted in green, we present the pseu-
docode for the GPU implementation. Since the computation of the 3c-CIs also requires a
substantial amount of memory, we base our implementation on CUDA to gain fine-grained
control over the GPU, including memory management. Additionally, access to libraries
such as cuBLAS and features like asynchronous execution provide greater flexibility for
optimising computational performance.

The process begins by allocating the arrays (MρP )s and the full arrayMρP on the GPU,
followed by the initialisation of the CUDA streams. These streams can be used for asyn-
chronous execution of memory copies and kernel computations. Next, the weights w(rt),
primary basis functions φm(rt) and the Coulomb potential of the ABFs Ωn(rt) are eval-
uated on the CPU and asynchronously transferred to the GPU. These asynchronous data
transfers help mitigate latency, as memory operations are typically slow. By overlapping
data transfers with computations - a technique known as latency hiding - we significantly
improve overall performance. Using a CUDA kernel, we compute the Dρ(rt) elements
and perform a matrix multiplication with ΩP (rt) using the cuBLAS library. The s-shell
contribution (MρP )s is then added to the full arrayMρP . After collecting the contributions
from each radial shell s, the GPU operations are finalised by transferring the array MρP

back to the CPU and deallocating all arrays.

6 Hardware Considerations

We performed the validation and benchmark calculations on JUWELS Booster. Each
JUWELS Booster node consists of 2 AMD EPYC Rome 7402 CPUs (48 cores in total)
and 4 NVIDIA A100 GPUs. Each node contains 160 GB of total GPU memory and 512
GB of CPU RAM. As mentioned before, FHI-aims uses MPI for parallelisation, assigning
one core to each task. Since a Booster node has more CPU cores than GPUs, multiple MPI
tasks share a GPU. To enable this, we use NVIDIA’s Multi-Process Service (MPS) for
efficient GPU resource sharing across MPI tasks. Further speedup was achieved by bind-
ing tasks to specific CPU cores and configuring each task’s CUDA_VISIBLE_DEVICES
variable to target the GPU physically closest to the assigned core, minimising data transfer
latency.

7 Benchmarks

To benchmark the computational performance of our implementation, we carried out hy-
brid DFT calculations using the PBE0 functional37, 38. The computations were performed
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Figure 3. Walltime [min] for the evaluation of the 3c-CIs using CPU only (in gray) and CPU+GPU (in green)
shown as a function of increasing basis size. The calculations were performed with the Tier 1, Tier 2, Tier 3, and
Tier 4 NAO basis sets, using the benzanthracene molecule (C18H12) as test system, which consists of 30 atoms
in total.

Time Three-center integrals Fock
CPU only CPU+GPU CPU only CPU+GPU exchange

Tier 1 0.98 1.14 0.64 0.83 0.03
Tier 2 8.30 6.07 5.93 3.18 2.05
Tier 3 28.73 15.71 17.40 4.14 9.75
Tier 4 68.43 37.60 37.18 6.15 26.73

Table 1. Total computational timings [min] for the PBE0 calculation of the benzanthracene molecule, including
three-center Coulomb integrals and Fock exchange. Timings were obtained using the Tier 1, Tier 2, Tier 3 and
Tier 4 basis set.

on one AMD EPYC Rome node, as detailed in Sec. 6. The benzanthracene molecule
(C18H12), containing 30 atoms, was selected as benchmark system. Tab. 1 reports the total
computational time (in minutes), along with the 3c-CI and Fock exchange timings as a
function of increasing basis set size. Both CPU-only and CPU+GPU timings are reported,
with GPU acceleration applied exclusively to the evaluation of the 3c-CIs. Considering
the largest Tier 4 NAO basis set, Tab. 1 shows that the 3c-CIs account for 54% of the total
time in the CPU-only implementation, while in the CPU+GPU implementation, they now
contribute approximately 16% of the total time. Our CPU+GPU implementation removes
the 3c-CIs as the computational bottleneck. The computationally most expensive step is
now the calculation of the Fock exchange matrix, accounting for 71% of the total run time.

As reported in Tab. 1 and illustrated in Fig. 3, the GPU acceleration of the 3c-CI eval-
uation exhibits a distinct behaviour. With the small Tier 1 basis set, no acceleration is
observed. However, as the basis set size increases, we achieve speedups of 1.8x, 3.5x, and
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6.0x for the Tier 2, Tier 3, and Tier 4 basis sets, respectively. We attribute this behaviour
to the fact that increasing the basis set size enlarges the arrays that the GPU is working
on, thereby improving GPU utilisation. Correlated methods are known to converge slowly
with respect to basis set size39 and typically require basis sets larger than Tier 2 to achieve
convergence36, 39. This aspect is highly advantageous for our CPU+GPU implementation,
significantly accelerating production-run calculations.

8 Concluding Remarks

In this article, we presented a GPU implementation for computing 3c-CIs over NAOs in
the FHI-aims program package, utilising low-level CUDA APIs. We demonstrated that our
implementation can accelerate the evaluation by up to a factor of six when comparing CPU-
only to CPU+GPU execution times. Additionally, we observed that the speed-up generally
increases with larger basis sets. This represents a significant reduction in the time required
for electronic structure calculations at the hybrid DFT and beyond-DFT levels, enabling
computations on larger systems. Additionally, the 3c-CIs are central to the low-scaling
RPA and GW algorithms currently under development in FHI-aims40. Our work paves the
way for a full GPU implementation of these algorithms.
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We employ data-driven methodologies and machine learning with materials science approaches
to accelerate the development of sustainable energy technologies. Our focus covers the entire
materials workflow, from modelling and simulations for discovery, correlative diagnostics and
property prediction, and inverse molecular design, to the extraction, management, and analytics
of materials science data, as well as automated image analysis. Challenges such as diverse
data types, limited training sets, and the complex, multi-scale nature of materials demand a
synergy between data representation and management, machine learning models and domain
expertise. We utilise atomistic simulations using density functional theory (DFT) calculations,
integrated with artificial intelligence (AI), to efficiently screen the parametric space governing
the life-cycle performance of anion exchange membrane materials. Our focus is on optimising
these materials for enhanced stability and transport properties. Additionally, we are developing
deep learning-based techniques to automate image analysis and characterisation across various
applications in functional energy materials. Furthermore, we introduce the development of
native graph databases by integrating standardised materials ontologies with knowledge graphs,
facilitating flexible representations of the materials-to-device workflow.

1 Introduction

Clean energy technologies, such as fuel cells, hydrogen storage devices and solar tech-
nologies, heavily depend on energy materials that exhibit high performance in terms of
activity and stability1. The accelerated development of such materials plays a pivotal role
in driving the sustainable technologies forward. Despite their critical importance, the pro-
cess of developing new materials from laboratory to the marketplace remains significantly
lengthy, often taking from 10 to 20 years2. This prolonged process is mainly related to
the multi-component nature of the devices and the complexity of the multi-step processes
required to ensure the materials meet the cost, performance and scalability needs.

Traditional materials development approach often involves a sequential and largely em-
pirical workflow which generally includes four primary steps: experiment planning based
on chemical intuition, synthesis and characterisation of materials, data analytics to assess
performance and lifetime, followed by an iterative process of repeating these steps to op-
timise materials properties3. As this approach is inherently slow and resource-intensive,
researchers are increasingly turning to data-driven approaches, particularly those involving
artificial intelligence (AI) and machine learning (ML), as means of accelerating discovery,
design and integration of functional energy materials4.
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Figure 1. Data workflow and various in-line and off-line data sources involved in self-driving and semi-automated
labs; autonomous optimisation workflow in self-driving labs.

In particular a shift has occurred toward the use of Materials Acceleration Platforms
(MAPs). These platforms leverage ML and AI and high-throughput experimentation tech-
niques to automate various steps of the traditional workflow5. MAPs utilise AI-driven
models to rapidly explore the large and complex chemical spaces of materials and gener-
ate predictions about material properties without the need for extensive experimental work.
For instance, autonomous robotic systems have been developed to assist in exploring chem-
ical spaces for materials such as hydrogen production photocatalysts6. Such platforms have
been also established to optimise thin films’ optical and electronic properties, which are
critical components in devices like solar cells and sensors7. Additionally, they can perform
high-throughput characterisation for advanced materials8.

Despite the significant potential of MAPs, several challenges remain. Current design
of the workflow orchestration software is hardware-centric and targeted at the actual in-
struments9. This causes bottlenecks between theory and experimentation and a completely
overlooked problem of automatic data analysis and data lineage tracking. An ideal data
workflow should be capable of ingesting data from both in-line and off-line experiments,
modelling, and simulations. Storage and retrieval of the integrated data from various
sources, as depicted in Fig. 1, enable an effective development of self-serve online an-
alytical tools for automated data analysis, improving the ability to connect to the analytical
tools and the responsiveness to semantic and integrated queries, and the data access per-
formance, all features that lie beyond the capabilities of current disjoint, heterogenous
and often transaction-oriented databases and data infrastructures in the energy materials
domain.

Another major challenge lies in the optimisation algorithms that guide materials design.
These algorithms need to be scalable and robust enough to manage the noise and variability
inherent in experimental conditions. Furthermore, materials design often requires multi-
objective optimisation, where several competing properties – such as stability, conductivity,
and cost – must be balanced. Developing algorithms capable of efficiently navigating this
complex, multi-dimensional design space remains a significant hurdle10.

This contribution addresses three key areas in the development of functional energy
materials. First, we focus on creating a flexible data extraction and management system,
leveraging ontology and graph databases to enable more efficient data handling and in-
tegration across the materials-to-device workflow. Second, we employ computer vision
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and deep learning techniques for automated characterisation and image analysis, aiming to
streamline and enhance the accuracy of material characterisation processes. Third, we inte-
grate high-throughput density functional theory (DFT) simulations with inverse molecular
design to accelerate the development of anion exchange membrane materials, optimising
their stability and transport properties for energy applications.

2 Synergising Ontologies and Graph Databases for Highly Flexible
Materials-to-Device Workflow Representations

In recent years, the increasing demand for sustainable energy solutions has led to a sig-
nificant focus on the development of advanced materials, particularly those used in energy
systems. The extraction and management of data related to these materials are crucial for
optimising their properties and performance11. However, the field faces challenges due to
the heterogeneity of data sources and the lack of standardised methods for data represen-
tation. To address these challenges, a flexible data extraction and management system is
necessary, one that can handle the complexities of energy materials and their associated
data.

2.1 Objective 1: Extension of the European Materials Modelling Ontology
(EMMO) for Standardised Data Representation

The European Materials Modelling Ontology (EMMO) provides a structured framework
for categorising and defining concepts within the materials science domain. However,
its current structure may not fully encompass the specific needs of energy materials re-
search12. Therefore, extending the EMMO to include these specialised concepts is es-
sential for achieving standardised data representations across various research projects13.
This extension will facilitate interoperability between different data sources and research
institutions, enabling more efficient data sharing and collaboration.

In a previous publication, we demonstrated the utility of ontologies in enhancing data
management in materials science, particularly through the integration of graph databases
(see Fig. 2). Our approach focused on transforming non-standardised tabular data into
knowledge graphs, which adhere to a defined ontology. This method not only improves
data accessibility but also ensures that the data is semantically enriched, allowing for more
sophisticated queries and analyses14.

Figure 2. Schematic overview of the graph datamodel (a) and the node labelling system14.
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2.2 Objective 2: Creation of a New Graph Data Model for Workflows,
Measurements, and Simulation Data

Energy materials research often involves complex workflows that integrate experimental
measurements with simulation data. To manage this complexity, we propose the creation
of a new graph data model that captures the relationships between different elements of the
research process, such as materials, measurements, and simulation results15. This model
will be designed to accommodate the diverse nature of energy materials research, ensuring
that it is flexible enough to handle various types of data and workflows.

Our work on knowledge graph extraction from tabular data has laid the groundwork
for this objective. By utilising large language models (LLMs) and rule-based feedback
loops, we developed a semi-automated pipeline that transforms R&D tables into connected
knowledge graphs. These graphs are highly adaptable, capable of representing the intricate
relationships between different data points in a research workflow. The use of LLMs en-
ables the system to infer context and meaning from data, ensuring that the resulting graphs
are both accurate and meaningful.

2.3 Objective 3: Use of Neo4j Database and Django Framework for Cloud-Based
Application Integration

To support the integration of the new graph data model into cloud-based applications,
we plan to utilise the Neo4j graph database in conjunction with the Django framework.
Neo4j’s capabilities in handling complex relationships and its compatibility with various
ontologies make it an ideal choice for this project. The Django framework will provide a
robust platform for developing user interfaces and managing interactions with the database.

In our previous work, we demonstrated the effectiveness of integrating graph databases
with semantic search capabilities within a Django application15. This integration allows
for intuitive data management, enabling researchers to store, retrieve, and analyse data
with ease. By building on this foundation, we aim to create a cloud-based system that
facilitates the management of energy materials data, supporting research efforts across
multiple institutions and projects.

In conclusion, the development of a flexible data extraction and management system
for energy materials is a critical step towards advancing research in this field. By extending
the EMMO, creating a new graph data model, and leveraging the capabilities of Neo4j and
Django, we can provide a standardised, interoperable, and scalable solution that meets
the unique needs of energy materials research. This system will not only enhance data
accessibility and usability but also pave the way for new discoveries in the development of
sustainable energy solutions.

3 Computer Vision and Deep Learning for Material Characterisation

The recent advances in computer vision and deep learning techniques have opened new
horizons in the field of material characterisation16. These techniques allow for the auto-
mated analysis of large, complex imaging datasets, facilitating the study of intricate mate-
rial structures and behaviours which otherwise would remain inaccessible17.
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Figure 3. Schematic workflow employed for the development of deep learning workflows in the field of image
analysis. The experimentalist collects the data, then the regions of interest are annotated. The dataset is employed
to train DL models for prediction on unseen data. Finally, using computer vision, the features of interest are
extracted and plotted properly for visualisation20, 22, 23.

3.1 High-Throughput Analysis of Particle Size Distribution from Transmission
Electron Microscopy (TEM) Images:

In the realm of nanomaterials, understanding particle size distribution is crucial for op-
timising the performance and durability of various materials. Especially, the analysis of
platinum nanoparticles on a carbon support for PEMFC applications is sensitive to those
parameters18, 19. Deep learning methods, particularly CNNs, have been employed to auto-
mate the analysis of TEM images for this purpose. A notable application is the use of the
StarDist model20, 21, which employs a U-Net architecture to perform instance segmentation
of nanoparticles. This model has been effectively used to analyse high-resolution TEM im-
ages, providing accurate particle size distribution data with minimal human intervention.
The ability of deep learning models to handle overlapping particles and varied shapes sig-
nificantly improves the reliability of the analysis. Furthermore, in this work, a workflow
for the automatic extraction of features of interest from the segmented images was devel-
oped. This allows for rapid characterisation of advanced metrics, such as morphological
analysis of individual particles and their distributions.

3.2 Screening of Catalyst Layers and Ink Structural Characterisation for Polymer
Electrolyte Fuel Cells:

The performance of PEMFCs is heavily influenced by the microstructure of catalyst layers,
which are often formed from catalyst inks. Deep learning techniques have been applied
to the high-throughput screening of these catalyst layers, using TEM images to identify
and characterise structural features. Convolutional neural networks have also shown ex-
ceptional capability in distinguishing between different structural components of catalyst
layers, classifying inks based on visual clues critical to the efficiency of fuel cells. By
automating the screening process, these deep learning models facilitate the rapid evalua-
tion and optimisation of catalyst materials, thereby accelerating the development of more
efficient and cost-effective fuel cells22, 23.
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Figure 4. Schematic depiction of a PEMFC and the three different tools developed in this project: bubble dynam-
ics analysis in videos (left), instance segmentation of nanoparticles in the catalyst layer (upper right), and catalyst
ink image classification (bottom right)24.

3.3 Automated Analysis of Bubble Dynamics in Proton Exchange Membrane
Water Electrolysers:

In proton exchange membrane water electrolysers (PEMWEs), the dynamics of gas bub-
bles play a crucial role in determining overall system efficiency. The formation, growth,
and detachment of bubbles can significantly impact the two-phase flow dynamics within
the electrolyser. Deep learning models have been employed to analyse bubble dynamics
using optical imaging data. These models are capable of segmenting and, with computer
vision algorithms, tracking bubbles over time, providing detailed insights into bubble size,
distribution, and behaviour under different operating conditions. Such automated analysis
not only enhances our understanding of bubble dynamics but also aids in the optimisation
of electrolyser design and operation, leading to improved performance24.

The application of deep learning techniques in material characterisation has led to sub-
stantial improvements in both the performance, velocity, and reliability of segmentation
models and the accuracy of characterisation outcomes. The ability to process large vol-
umes of imaging data quickly and accurately enables researchers to obtain insights that
were previously difficult to obtain from non-AI approaches. The implementation of deep
learning workflows has demonstrated significant reductions in analysis time while simulta-
neously increasing the precision of measurements, such as particle size and morphological
distributions, bubble dynamics, and ink classification. These advancements highlight the
transformative potential of deep learning in the field of material science, paving the way
for more efficient and insightful research methodologies.

These innovations provide a robust foundation for future developments, as the inte-
gration of artificial intelligence into material characterisation continues to evolve, offer-
ing new tools and techniques for understanding and optimising material properties at the
macro, micro, and nanoscale.
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4 Computational Exploration and Design of Electrochemical
Materials

In the transition towards a green hydrogen economy, anion exchange membranes (AEMs)
are emerging as a promising technology. Fuel cells and water electrolysers based around
AEMs operate in a strongly alkaline environment and may function without the need for
costly and rare platinum group metals (PGMs), which is crucial for the widespread adop-
tion needed for a green hydrogen-based economy25, 26 However, currently a mayor chal-
lenge in the utilisation of AEMs is the significant degradation of many AEM materials in
the harsh alkaline environments they are exposed to in application27.

An AEM is generally constructed from a polymer backbone to give structural support
and an organic cationic moiety to facilitate anion conductivity. A diverse set of structures
for the cationic moieties have been studied in the literature with those based on imida-
zolium being especially prominent. The imidazolium structure can be augmented easily
by adding various substituents to the five atoms making up the imidazolium heterocycle,
with the resulting chemical structure having a significant impact on the molecule’s resis-
tance towards alkaline degradation28.

In this project, the extensive computational capabilities of the JUWELS supercomputer
are aimed towards the discovery of imidazolium-based molecules that possess a high alka-
line stability. To achieve this goal, a multi-step approach is taken, which is summarised in
the following:

1. Identify a computational descriptor of a given molecule’s alkaline stability.

2. Automate the computation of the identified stability descriptor and apply it to a molec-
ular dataset of a few thousand compounds.

3. Identify promising compounds from the dataset and test them experimentally to verify
the found descriptor.

4. Train suitable machine learning models on the computed compounds to further accel-
erate the search for novel alkaline stable molecules.

To identify a reliable computational descriptor for the alkaline stability of imidazolium-
based compounds, several molecules were identified for which experimental alkaline sta-
bility measurements have been performed in literature. For these compounds, the main
degradation pathways were modelled at the Density Functional Theory (DFT) and Cou-
pled Cluster (CC) level. Through comparison of the computed degradation energetic and
experimental stability data, it could be identified that the free energy change of a hydroxide
attack on the imidazolium ring is a reliable descriptor of alkaline stability29.

In order to gain insights into the structure-stability relationship of imidazolium-based
compounds, the descriptor was computed for a library of about 5800 structures. To
achieve this, the computation of the stability descriptor was automated, and a diverse set
of imidazolium-based structures were systematically generated. The JUWELS supercom-
puter30 was then utilised to perform the stability prediction for all generated structures.
From the generated dataset, diverse insights could be gained into the factors contributing
to a high alkaline stability. Additionally, promising structures could be identified from the
dataset and a selection of five compounds were chosen to be synthesised in the lab and
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Figure 5. The predicted half life of imidazolium-based compounds for various substituents estimated through
automated DFT calculations vs. their synthesisability score29.

their alkaline stability was measured experimentally. The experimentally measured stabil-
ity was shown to be in good agreement with the stability predicted with the computational
descriptor and an especially stable compound was found.

The extensive molecular library that was generated is also sufficiently large to effec-
tively train machine learning models to generate the stability descriptor, with graph neural
networks being especially suitable for this task. Different machine learning models are
being trained at the moment, reaching accuracies of about 1 kcal/mol while being multiple
orders of magnitude faster than performing DFT calculations. Additionally, the dataset is
ideal to benchmark various active learning approaches.

5 Concluding Remarks

In conclusion, our work integrates cutting-edge methodologies in data management, deep
learning, and computational modelling to accelerate the discovery and optimisation of sus-
tainable energy materials. We have extended the European Materials Modelling Ontol-
ogy and developed a flexible graph data model for managing diverse materials workflows,
enabling more efficient data representation and analysis. Additionally, the application
of deep learning techniques has significantly advanced high-throughput image analysis,
with applications ranging from particle size distribution in nanomaterials to catalyst layer
characterisation and bubble dynamics in electrochemical systems. These innovations have
not only streamlined material characterisation but also enhanced precision and scalability.
Moreover, our computational pipeline for the design of alkaline-stable imidazolium-based
compounds has accelerated the search for novel anion exchange membranes by leverag-
ing density functional theory calculations and machine learning models. Together, these
contributions demonstrate the potential of integrating ontologies, deep learning, and com-
putational simulations to revolutionise materials discovery and accelerate the transition
towards more efficient, sustainable energy technologies.
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One of the most enduring yet imperfect theories in high-energy physics is the Standard
Model of particle physics. While it successfully describes electrodynamic, strong, and
weak forces without an underlying unifying concept, its further limitations become appar-
ent when considering dark matter or baryon asymmetry. Despite these flaws, the model
has consistently passed experimental tests, demonstrating its remarkable accuracy and pre-
dictive power.

One notable example of the Standard Model’s experimental validation is the ongoing
effort at Fermilab to precisely measure the magnetic moment of the muon. At first glance,
it may seem counterintuitive that a particle as light as 105 MeV could be used to search
for heavy, unseen new particles. However, the key ingredient here is the experiment’s
extraordinary precision. Today, scientists can measure this quantity with an astonishing
relative error of 10−10.

This feat is particularly impressive given that the magnetic moment receives radiative
corrections from fluctuating quantum fields, as demonstrated by Julian Schwinger in 1948.
Since then, the accuracy of his theory has been rigorously tested and confirmed to as many
as twelve digits in the case of the electron.

Schwinger’s theory provides a solid foundation for understanding radiative corrections
on the muon’s magnetic moment when considering electromagnetic and weak interactions.
However, strong interactions pose a challenge to standard quantum field theory methods.
To overcome this hurdle, scientists sought another process where the same contribution
could be isolated and measured in an unrelated experiment. The hadronic R ratio from e+e-
scattering experiments offered a solution, allowing for the extraction of the missing piece
with smaller error than any theoretical calculation before. This ’data-driven’ approach
led to a result that fell short of the direct measurements by over five standard deviations,
sufficient to claim the discovery of a new interaction. Unfortunately, discrepancies exist
among the individual R ratio experiments.

Numerical evaluation of the partition function of Quantum Chromodynamics (QCD),
which governs strong interactions, were also converging on a precise measurement of
the strong contribution of the muon’s magnetic moment. Notably, many of these first-
principles calculations from QCD exhibit agreement with several experimental and theo-
retical results of the Standard Model. In response to the challenge related to the muon’s
magnetic moment, leading theory groups dedicated themselves to refining their numerical
approaches with the goal of achieving the experiment’s level of precision.

One key step in this process was to break down the result into short-range, intermediate-
range, and long-range terms, allowing each term to be addressed individually. A contri-
bution by C. Lehner in this volume presents a thorough analysis of the agreement among
major theory groups’ numerical results. This also provides readers with insight into the
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intricacies of the simulations, including their limitations and the meticulous attention re-
quired to ensure reliability at such high levels of precision.

Another, somewhat unrelated significant challenge to the Standard Model is complex-
ity. Although we can reasonably control the behaviour of individual elementary particles,
many-body problems pose a formidable test for both the theory and our methods to solve
them. Nuclear physics, in particular, exemplifies this challenge.

A major milestone was reached over a decade ago with the successful computation of
the mass of the proton and neutron. This achievement required a precise accounting for the
gluon fields, which are the carriers of the strong force. In fact, much of the mass of these
nucleons is attributed to the energy of the interacting fields.

The dynamics of how these nucleons interact with each other presents a new chapter in
the physics of strong interactions. For instance, the binding energies of light atomic nuclei
are extremely small, on the order of per-mill relative to the mass of the nuclei, posing a
significant challenge to theoretical predictions. However, the probably greatest challenge
facing this field is understanding the largest nuclei in nature, the core of neutron stars.
These extreme environments pose unique difficulties for theoretical models, requiring in-
novative approaches and cutting-edge computational capabilities.

Today, readers have access to a wealth of recent discoveries in nuclear interactions.
This chapter begins with a concise review of cutting-edge nuclear simulations by U.-G.
Meißner. The simulation results include the spectrum and charge radii of light nuclei, as
well as the lifetime of the triton, among other examples. Unlike the other contributions in
this edition, Meißner’s approach avoids the use of gluons and quarks to model the strong
force. Instead, an effective field theory is employed, treating nucleons as point-like parti-
cles interacting with auxiliary fields.

Thanks to recent advances in algorithm development, sophisticated methods have
emerged for describing nucleons. To accurately simulate the densities found in neutron
stars, however, it is necessary to account for hyperons – essentially nucleons with a single
light quark replaced by a strange quark. Initial attempts to incorporate hyperons yielded a
pressure-density relation (equation of state) that was too soft, potentially leading to the col-
lapse of heavy observed neutron stars into black holes. Fortunately, repulsive three-body
forces can stiffen the equation of state, resolving what is known as the hyperon puzzle and
ensuring the stability of these massive celestial bodies.

An alternative approach to quantifying binding energies in light nuclei is to simulate
full Quantum Chromodynamics (QCD) without relying on effective field theories. The
second contribution in this chapter takes this route, computing the binding energy of the H
dibaryon – a conjectured bound state of two hyperons – using J. R. Green et al.’s methodol-
ogy. A crucial aspect of such simulations is the treatment of discretisation artefacts, which
can introduce significant errors. To mitigate these effects, a continuum extrapolation is
essential. This process is discussed in the context of renormalisation by C. Alexandrou in
a separate contribution. Renormalisation plays a key role in connecting observables in a
discretised theory to those in the real world, enabling physical predictions and allowing us
to test the Standard Model further. One of the ultimate goals is to compute form factors and
QCD matrix elements – essential components from the strong force that can be combined
with electromagnetic and weak physics. By achieving this and combining the results with
experimental findings, we can put the Standard Model under new scrutiny.
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I discuss recent developments in nuclear lattice effective field theory, which is a premier tool in
the theory of nuclear structure and reactions. Topics include the wavefunction matching method
as a new tool for quantum many-body theory, allowing for accurate calculations at N3LO in the
chiral expansion, as well as applications of the precise forces in few- and many nucleon systems.
I also discuss a first step for precision hypernuclear physics, describe the solution of a puzzle
related to the 4He monopole transition form factor, discuss the calculation of hyper-neutron
matter and give new insights how Big Bang nucleosynthesis constrains fundamental parameters
of the Standard Model.

1 Introduction

Understanding the formation of strongly interacting systems such a atomic nuclei from
first principles calculations is still one of the biggest challenges within contemporary the-
oretical physics. While the theory of the strong interactions, Quantum Chromodynamics
(QCD), is well tested in many processes, the matter that leads to life in our Universe is
based on nuclei, which are self-bound systems of nucleons (protons and neutrons). As the
nucleons themselves consist of quarks and gluons, and hence are not fundamental degrees
of freedom, the forces between nucleons are not completely given in terms of two-body
interactions, but include three-body and higher order interaction terms. Much progress in
the understanding of the structure and dynamics of nuclei has been made in the context of
Nuclear Lattice Effective Field Theory (NLEFT)1, which combines the so successful low-
energy chiral effective field theory of QCD with stochastic methods (Monte Carlo simula-
tions). While direct calculations of nuclei based on quarks and gluons in the framework of
lattice QCD are essentially impossible due to the severe sign problem, formulating the nu-
clear forces in terms of protons, neutrons and pions is not only more appropriate, but also
comes with the added value of the approximate Wigner SU(4) (spin-isospin) symmetry of
the underlying nuclear interactions. This symmetry in fact suppresses the sign oscillations
strongly, and in the limit of an exact Wigner SU(4) symmetry, spin-isospin saturated nuclei
like e.g. 4He are free of any sign oscillation. In NLEFT simulations, Euclidean space-time
is discretised on a torus of volume L3 × Lt, where L is the side length of the spatial di-
mension, and Lt denotes the extent of the Euclidean time dimension. The lattice spacing
in the spatial (temporal) dimensions is a (at). The maximal momentum on the lattice is
pmax ≡ π/a, which serves as the UV regulator of the theory. Nucleons are point-like
particles on the lattice sites, and the interactions between nucleons (pion exchanges and
contact terms) are treated as insertions on the nucleon world lines via auxiliary-field repre-
sentations. Properties of multi-nucleon systems are computed by means of the projection
Monte Carlo (MC) method. Each nucleon is treated as a single particle propagating in a
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Figure 1. Left panel: Pictoral representation of wavefunction matching. The simple HamiltonianHS is an easily
computable Hamiltonian while the high-fidelity Hamiltonian H is not. A unitary transformation on the two-
nucleon interaction with finite range R is used to produce a new Hamiltonian H′ that is close to HS . In each
two-body channel, the ground state wave function ofH′ matches the ground state wave function ofH for r > R
and is proportional to the ground state wave function of HS for r < R. Right panel: Results for nuclear binding
energies using wavefunction matching. Calculated ground state and excited state energies of some selected nuclei
with up to A = 58 at N3LO in chiral EFT and comparison with experimental data. The nuclei used in the fit of
the higher-order three-nucleon interactions are labelled with open squares, while the other nuclei are predictions
denoted with filled diamonds.

fluctuating background of pion and auxiliary fields. Both local and non-local smearings
are applied to the nucleon creation and annihilation operators. Euclidean time projection
is started from some initial state ΨA for Z protons and N neutrons (with A = Z + N ).
One calculates the ground state energy and other properties from the correlation function
Z(t) ≡ 〈ΨA| exp(−tH)|ΨA〉 = Tr{MLt}, in the limit of large Euclidean projection time
t, with M the normal-ordered transfer-matrix operator and Lt the number of Euclidean
time steps. Higher-order contributions are computed as perturbative corrections to the LO
results. A much more detailed description is given in the monograph1.

2 Wavefunction Matching

Quantum Monte Carlo (QMC) simulations are a powerful and efficient method that can
describe strong correlations in quantum many-body systems. No assumptions about the
nature of the system are necessary, and the computational effort grows only as a low power
of the number of particles. For many problems of interest, a simple Hamiltonian HS

can be found that describes the energies and other observables of the many-body system
in fair agreement with empirical data and is easily computable using MC methods. On
the other hand, realistic high-fidelity Hamiltonians usually suffer from severe sign prob-
lems with positive and negative contributions to the averages cancelling each other, so that
Monte Carlo calculations become impractical. In Ref. 2, this problem was solved introduc-
ing a new approach called wavefunction matching (WFM). While keeping the observable
physics unchanged, wavefunction matching creates a new high-fidelity Hamiltonian H ′

such that wave functions at short distances match that of a simple Hamiltonian HS which
is easily computed. This allows for a rapidly converging expansion in powers of the dif-
ference H ′ − HS . WFM can be used with any computational scheme. In the following
analysis, we focus on the case of QMC simulations, where the method presents a promis-
ing and practical strategy for evading the sign problem in realistic calculations of nuclear
quantum many-body systems. The basic idea of WFM is easily described. Starting from a
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Figure 2. Left panel: Predictions for charge radii of nuclei up to A = 58 at N3LO in chiral EFT in comparison
to the experimental data. Right panel: Predictions for pure neutron matter energy per neutron and symmetric
nuclear matter energy per nucleon as a function of density at N3LO in chiral EFT. For comparison we show the
results Refs. 5–8. The empirical saturation point is labelled with a black rectangular box.

realistic high-fidelity Hamiltonian H , WFM defines a new Hamiltonian

H ′ = U†HU , (1)

where U is a unitary transformation and U† its Hermitian conjugate. More precisely, we
consider the two-nucleon interaction here. In each two-body angular momentum channel,
the unitary transformation U is active only when the separation distance between two par-
ticles is less than some chosen distance R. Let us write ψ0(r), ψ′0(r), and ψS0 (r) for the
ground state wave functions of H , H ′, and the simple Hamiltonian HS , respectively. The
transformation U is defined such that ψ′0(r) is proportional to ψS0 (r) for r < R. The sim-
ple Hamiltonian is chosen so that the constant of proportionality is close to 1. For r > R,
however, U is not active and so ψ′0(r) remains equal ψ0(r). This is illustrated in the left
panel of Fig. 1. In the NLEFT application discussed here, the simple Hamiltonian con-
sists of SU(4) invariant two-body forces as well as one-pion exchange. All higher order
corrections are treated in first order perturbation theory. The short-distance parts of the
chiral three-nucleon (3N) interactions are then tuned to minimise errors in the binding en-
ergies of selected light and medium-mass nuclei. A total of six additional 3N parameters
are adjusted, and it is found that with just one parameter, the root-mean-square-deviation
(RMSD) for the energy per nucleon drops from 1.2 MeV down to 0.4 MeV. With the addi-
tion of a few additional parameters, the RMSD per nucleon drops further to about 0.1 MeV,
as shown in the right panel of Fig. 1. Having fixed all parameters, we can now make predic-
tions. In the left panel of Fig. 2, the results for the charge radii of nuclei with up to A = 58
nucleons are shown. No charge radii data were used to fit any interaction parameters. The
one-standard-deviation point estimate error bars represent computational uncertainties due
to MC errors, infinite volume extrapolation, and infinite time extrapolation. The agree-
ment with empirical results is quite good, with an RMSD of about 0.03 fm. Note that
the larger errors for the heaviest nuclei are statistical and can be decreased by utilising
greater computational resources. This solves the long-standing “radius puzzle” observed
in all continuum ab initio many-body calculations, namely that when getting the correct
binding energies, the nuclear radii come out too small, see e.g. Refs. 3,4. In the right panel
of Fig. 2, lattice results for the energy per nucleon versus density for pure neutron matter
and symmetric nuclear matter are shown. None of the neutron matter and symmetric nu-
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clear matter data were used to fit any interaction parameters. The density is expressed as
a fraction of the saturation density for nuclear matter, ρ0 = 0.17 fm−3. For the neutron
matter calculations, we consider 14 to 80 neutrons in periodic box lengths ranging from
6.58 fm to 13.2 fm. For the symmetric nuclear matter calculations, we use system sizes
from 12 to 160 nucleons in a periodic box of length 9.21 fm. We see that the neutron
matter calculations agree well with previous calculations. Within the uncertainties due to
finite system size corrections, the symmetric nuclear matter calculations show saturation at
an energy and density consistent with the empirical saturation point labelled with the black
rectangular box. The relative uncertainties due to finite system size are at the 10% level for
the energy.

3 Testing the High-Fidelity Interactions

Next, the so determined N3LO high-fidelity interactions are tested in a number of calcula-
tions, which we discuss briefly.

3.1 Structure Factors for Hot Neutron Matter

In Ref. 9 the first ab initio lattice calculation of spin and density correlations in hot neutron
matter using the high-fidelity interactions at N3LO in chiral EFT was done. These correla-
tions have a large impact on neutrino heating and shock revival in core-collapse supernovae
and are encapsulated in functions called structure factors. Unfortunately, calculations of
structure factors using high-fidelity chiral interactions were well out of reach using existing
computational methods. To solve the problem, a computational approach called the rank-
one operator (RO) method is introduced. The RO method is a general technique with broad
applications to simulations of fermionic many-body systems. It solves the problem of ex-
ponential scaling of computational effort when using perturbation theory for higher-body
operators and higher-order corrections. Using the RO method, we compute the vector and
axial static structure factors for hot neutron matter as a function of temperature and density
given by:

Sv(q) =
1

L3

∑

nn′

e−iq·n
[
〈ρ̂(n+ n′)ρ̂(n′)〉 − (ρ0)2

]
,

Sa(q) =
1

L3

∑

nn′

e−iq·n
[
〈ρ̂z(n+ n′)ρ̂z(n

′)〉 − (ρ0
z)

2
]
,

(2)

where ρ̂ and ρ̂z are the density and the spin-density operators, respectively, and n,n′

represent coordinates on the L3 cubic lattice. The ab initio lattice results are in good
agreement with virial expansion calculations at low densities but are more reliable at higher
densities, see the left panel of Fig. 3. Random phase approximation codes used to estimate
neutrino opacity in core-collapse supernovae simulations can now be calibrated with these
precise ab initio lattice calculations.

3.2 Nuclear Charge Radii of Silicon Isotopes

The next test of the N3LO forces was done in collaboration with experimentalists from
FRIB10. They determined the nuclear charge radius of 32Si using collinear laser spec-
troscopy, leading to Rch(32Si) = 3.153(12) fm. The experimental result was confronted
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Figure 3. Left panel: Calculated momentum dependent neutron matter structure factors Sv and Sa at
T = 10 MeV. WFM(N3LO) represents the NLEFT calculations with the WFM N3LO interaction. The insert
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Right panel: Experimental and theoretical differential mean square charge radii of Si. The NLEFT calculation
provided an uncertainty which is plotted as the gray band.

with ab initio NLEFT, valence-space in-medium similarity renormalisation group, and
mean field calculations, highlighting important achievements and challenges of modern
many-body methods. The lattice simulations for the charge radii are new calculations
based upon the N3LO chiral interactions described in Ref. 2 with two additional improve-
ments made. Rather than a global fit to all nuclei, we fit the three-nucleon coefficients c(l)E
and c(t)E to ensure good agreement with the binding energies of the silicon isotopic chain.
We also use the rank-one operator method introduced in Ref. 9 to compute the charge radii.
As shown in the right panel of Fig. 3, the NLEFT results are in good agreement with the
measured charge radii along the Si isotope chain from A = 28 to A = 32. The charge
radius of 32Si completes the radii of the mirror pair 32Ar - 32Si, whose difference is corre-
lated to the slope L of the symmetry energy in the nuclear equation of state. The NLEFT
result for L was determined from the calculations of pure neutron matter in Ref. 2, giving
L = 55(7) MeV, which agrees with complementary observables.

3.3 The Triton Lifetime

Nuclear β and double-β decays are fine probes of the weak interactions in their interplay
with the strong force. Arguably the best example is the extraction of the CKM matrix
element Vud from superallowed β decays11. Triton β-decay is the process where 3H decays
into 3He, an electron, and an electron antineutrino, 3H → 3He + e− + ν̄e. The matrix
elements of the weak transition are crucial to understanding this decay process. Thus,
this decay serves as a benchmark for calculating weak nuclear decays. In addition, it is
known that triton β-decay, that is the triton lifetime, together with the binding energies in
the A = 3 system can lead to a robust determination of the low-energy constants cD and
cE parameterising the leading three-nucleon forces in chiral EFT12. The triton lifetime is
given in terms of two matrix elements (MEs), referred to as the Fermi and the Gamow-
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Teller MEs,

〈F 〉 =

3∑

n=1

〈3He‖τn,+‖3H〉 , 〈GT 〉 =

3∑

n=1

〈3He||σnτn,+||3H〉 , (3)

in order. Here, τn,+ is the isospin-raising operator and the σn are the nucleon spin ma-
trices. Despite the success of the WFM method in improving theoretical precision, the
calculations in Ref. 2 were carried out using first-order perturbation theory. Since first-
order perturbation theory only provides corrections to the energy and not to the wave
functions, triton β-decay calculations at N3LO, requiring higher-order perturbative cor-
rections for realistic wave functions, cannot be directly performed using the methods from
Ref. 2. One potential solution to this challenge is to extend the calculations to second-
order perturbation theory. Recent advances in perturbative QMC methods, as detailed in
Ref. 13, provide an effective framework for incorporating higher-order perturbative correc-
tions, making it particularly well-suited for applications to heavier nuclei. Alternatively,
fully non-perturbative methods can be applied to light nuclear systems to generate real-
istic wave functions at N3LO, as required for triton β-decay calculation. This was done
in Ref. 14. Performing this non-perturbative calculation, the Fermi ME as well as the
Gamow-Teller ME are simultaneously obtained,

〈F 〉 = 0.99949(11) , 〈GT 〉 = 1.6743(58) , (4)

where the uncertainty stems from the large Lt extrapolation and the variation of the
strengths of the one-pion exchange and contact term topologies of the three-nucleon forces.
These results are consistent with earlier theoretical calculations, confirming the robustness
of our approach. The corresponding lifetime is given by (1 + δR) t1/2 fV = 1105.1(74) s,
consistent with the empirical determinations, (1 + δR) t1/2 fV = 1132.1(25) s. The re-
maining discrepancies are due to the fact that the corrections to the pion exchange currents
have not yet been included. This study marks a significant advancement in the system-
atic application of NLEFT to nuclear β-decay processes, paving the way for future high-
precision calculations in more complex nuclear systems, such as neutrinoless double-β
decay in 48Ca or 76Ge.

4 Towards Hypernuclei from NLEFT

Understanding the strong interactions in the light quark sector is crucial for a comprehen-
sive description of baryonic systems such as nuclei and hypernuclei. The study of hy-
pernuclei provides valuable insights into the baryon-baryon interactions, and an accurate
description of the properties of hypernuclei requires a systematic formulation of interac-
tions between hyperons and nucleons, as well as constraining their low-energy constants
(LECs). The great success of both phenomenological potential models and chiral EFT for
nucleons is based on rich and precise NN-scattering data and nuclear binding energies.
However, due to the scarcity of hyperon-nucleon and hyperon-hyperon scattering data,
the spectra of hypernuclei are pivotal in constraining the hyperon-nucleon and hyperon-
hyperon interactions, deepening our understanding of SU(3) flavour symmetry breaking
and charge symmetry breaking in strong interactions. In Ref. 15 we calculated the ground
state and excited state energies of hypernuclei up to A = 16. Our calculations employ the
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high-fidelity chiral interactions at N3LO for nucleons from Ref. 2 and the leading-order
S-wave hyperon-nucleon (YN) interactions are given by

VYN =
1

4
CSY N (1− σ1 · σ2) +

1

4
CTY N (3 + σ1 · σ2) . (5)

The LECs CS,TY N are determined by a fit to the unpolarised Λp→ Λp cross section and the
hypertriton binding energy. The hyperon-nucleon-nucleon (YNN) interactions are given
by

VYNN = C1(1− σ2 · σ3)(3 + τ2 · τ3) + C2 σ1 · (σ2 + σ3)(1− τ2 · τ3)

+ C3(3 + σ2 · σ3)(1− τ2 · τ3) , (6)

and the LECs C1,2,3 are determined by hypernuclear systems with A = 4 and 5. For
the YNN interactions, we consider all possible forms of short-distance smearing. In our
analysis, we calculate the RMSD over all calculated hypernuclear separation energies with
A ≥ 4, which are used to assess the accuracy of the YNN interactions in describing hyper-
nuclei. In the left panel of Fig. 4 we show results for hypernuclei from 3

ΛHe to 16
Λ O, where

the hypernuclei with A ≤ 5 shown here are included in the fit, while the other hypernu-
clei are predictions. We find that, within stochastic uncertainties of the MC simulations,
our Hamiltonian can accurately describe hypernuclear systems. Clearly, improvements in
the considered interactions here should be performed. We recommend including pion ex-
change forces in both the two-body and three-body sector. These forces not only allow

145



for an automatic inclusion of higher momentum contributions but also make excited states
available in typical multichannel calculations, Additionally, this approach enables the in-
clusion of higher orders in the chiral expansion, which are necessary for better phase shift
descriptions at higher orders that will also improve the description of the hypernuclei.

5 The Puzzling 4He Transition Form Factor

The 4He nucleus, the α-particle, is considered to be a benchmark nucleus for our un-
derstanding of the nuclear forces and the few-body methods to solve the nuclear A-body
problem17. The attractive nucleon-nucleon interaction makes this highly symmetric four-
nucleon system enormously stable. Furthermore, its first excited state has the same quan-
tum numbers as the ground state, JP = 0+ with J(P ) the spin (parity), but is located about
20 MeV above the ground state. This large energy of the first quantum excitation makes the
system difficult to perturb. This isoscalar monopole resonance of the 4He nucleus presents
a challenge to our understanding of nuclear few-body systems and the underlying nuclear
forces. The recent precision measurement of the corresponding transition form factor of
the first excited state to the ground state at the Mainz Microtron MAMI18 compared with ab
initio calculations based on the Lorentz-integral transformation method using phenomeno-
logical potentials as well as potentials based on chiral EFT revealed sizeable discrepancies
as shown in Fig. 3 of Ref. 18. We addressed this issue in Ref. 19 within the framework of
the minimal nuclear interaction that reproduces the ground state properties of light nuclei,
medium-mass nuclei, and neutron matter simultaneously with no more than a few percent
error in the energies and charge radii20, 21. The transition form factor F (q) of the monopole
transition is related to the transition density ρtr(r) by

F (q) =
4π

Z

∫ ∞

0

ρtr(r)j0(qr)r2dr =
1

Z

∞∑

λ=1

(−1)λ

(2λ+ 1)!
q2λ〈r2λ〉tr , (7)

with Z the charge of the nucleus under consideration. Here Z = 2, and ρtr(r) =
〈0+

1 |ρ̂(~r)|0+
2 〉 is the matrix element of the charge density operator ρ̂(~r) between the ground

state 0+
1 and the first excited 0+

2 state. We also display the expansion in moments in
Eq. 7. The first excited state of 4He is a resonance that sits just above the 3H+p thresh-
old. In order to study this continuum state, we perform calculations using three differ-
ent cubic periodic boxes with lengths L = 10, 11, 12 in lattice units, corresponding to
L = 13.2 fm, 14.5 fm, 15.7 fm. The corresponding ground and first excited state ener-
gies are E(0+

1 ) = −28.30(3) MeV and E(0+
2 ) = −7.96(9) MeV that compare well with

the experimental values of −28.30 MeV and −8.09 MeV, respectively. Next, we turn to
the analysis of the transition form factor, denoted as F (q). In the framework of NLEFT,
observables such as nucleon density distributions, charge radii and form factors can be
computed using the pinhole algorithm. First, we consider the SU(4)-symmetric interac-
tions without Coulomb. The resulting form factor is depicted by the blue dashed line in
the right panel of Fig. 4. It somewhat overshoots the data, although the error band asso-
ciated with stochastic errors and the large Lt extrapolation almost encompasses the data.
Including the Coulomb interaction leads to an overall reduction of the transition form fac-
tor as shown by the red solid line in the right panel of Fig. 4. Overall, we achieve a good
reproduction of the data and the uncertainty band is also somewhat reduced. This is due
to the fact that inclusion of the Coulomb interaction leads to smaller fluctuations in the
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Monte Carlo data when extrapolating to large Lt. Consequently, we find that the nuclear
interaction defined in Ref. 20, which has already been shown to reproduce the essential
elements of nuclear binding, also leads to a good description of the α-particle transition
0+

2 → 0+
1 form factor without adjusting any parameters. Thus, the nuclear forces relevant

to this system are under good control, and we do not find the puzzle mentioned in Ref. 18,
see also Refs. 22, 23.

6 Ab initio Calculation of Hyper-Neutron Matter

The equation of state (EoS) of neutron matter plays a decisive role to understand the neu-
tron star properties and the gravitational waves from neutron star mergers. At sufficient
densities, the appearance of hyperons generally softens the EoS, leading to a reduction
in the maximum mass of neutron stars well below the observed values of about 2 solar
masses. Even though repulsive three-body forces are known to solve this so-called “hy-
peron puzzle”, see e.g. Refs. 24, 25, so far performing ab initio MC calculations with
a substantial number of hyperons has remained elusive. We addressed this challenge by
employing NLEFT in Ref. 26. First, we had to develop an algorithm that allows to go to
densities beyond twice nuclear matter densities reached so far in QMC simulations which is
not sufficient for the description of neutron stars. To achieve that, we combine the smeared
nucleon operator with the operator representing the Λ hyperon, as detailed in Ref. 26. This
enables simulations of systems consisting of both arbitrary number of nucleons and arbi-
trary number of Λ hyperons with a single auxiliary field. Second, we work with smeared
contact interactions only, which allows to include all possible interactions, that is NN, NY,
YY, NNN, NNY and NYY, which was never done in a QMC simulations before. The NN
and NNN LECs are determined from a combined fit to the S-wave phase shifts and the
saturation properties of nuclear matter, with ρ0 = 0.17 fm−3 the nuclear matter density.
This calculation generates a very stiff neutron matter EoS as shown in the left panel of
Fig. 5, and it required up to 232 nucleons in the finite volume to achieve densities of 5ρ0

as in the interior of neutron stars. Next, we show three different EoS when hyperons are
included. The NNΛ and NΛΛ forces are constrained by the separation energies of single-
and double-Λ hypernuclei, spanning systems from 5

ΛHe to 6
ΛΛBe, denoted as HNM(I). It

is difficult to probe the behaviour of the EoS at high densities encountered in neutron
stars in terrestrial laboratories, and various phenomenological schemes and microscopi-
cal models suggest that hyperons emerge in the inner core of neutron stars at densities
around ρ ≈ (2 − 3)ρ0. Similar to using the saturation properties of symmetric nuclear
matter to pin down the three-nucleon forces, we determined the NNΛ and NΛΛ forces
by using the separation energies of hypernuclei and the Λ threshold densities ρth

Λ around
(2 − 3)ρ0 simultaneously in HNM(II) and HNM(III). We set ρth

Λ = 0.398(2)(5) fm−3 and
0.520(2)(6) fm−3 for HNM(II) and HNM(III), respectively. The corresponding EoSs are
also shown in the left panel of Fig. 5. To fulfil the equilibrium condition for the chemical
potentials, µn = µΛ, we needed 102, 92, and 32 Λs for HNM(I), HMN(II) and HNM(III),
in order. The EoS becomes stiffer at higher densities for these variants, indicating the in-
clusion of more repulsion in the three-body hyperon-nucleon interactions. As anticipated,
the inclusion of hyperons results in a softer EoS and HNM(III) is the stiffest EoS when hy-
perons are included. The squared speed of sound, c2s, is also shown in the inset in the left
panel of Fig. 5. It is observed that the causality limit (c2s < 1) is fulfilled for both PNM and
HNM. The EoS characterised by nucleonic degrees of freedom exclusively demonstrate a
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of the speed of sound for neutron star matter in view of the recent observational data27. Right panel: Neutron star
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The inner and outer contours indicate the allowed area of mass and radius of neutron stars by NICER’s analysis
of PSR J0030+045130 and PSR J0740+662031. The excluded causality region is also shown by the grey shaded
region32.

monotonic increase in c2s with increasing energy density. The appearances of Λ hyperons,
however, induces changes in this behaviour, leading to non-monotonic curves that signify
the incorporation of additional degrees of freedom. The onset of Λ hyperons precipitates
a sharp reduction in the speed of sound, marking a significant transition in the stiffness
of the EoS. For comparison, the constraints on c2s within the interiors of neutron stars in-
ferred by a Bayesian inference method are also shown27. The “holy grail” of neutron-star
structure, the mass-radius (MR) relation, is displayed in the right panel of Fig. 5. These
relations for PNM and HNM are obtained by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations28, 29 with the EoSs of Fig. 5 (left panel). The appearance of Λ hyper-
ons in neutron star matter remarkably reduces the predicted maximum mass compared to
the PNM scenario. The maximum mass for PNM, HNM(I), HNM(II), and HNM(III) is
2.19(1)(1) M�, 1.59(1)(1) M�, 1.94(1)(1) M�, and 2.17(1)(1) M�, respectively. Note
that three neutron stars have been measured to have gravitational masses close to 2M�
that significantly constrain the EoS of dense nuclear matter. Our results show that the in-
clusion of the NNΛ and NΛΛ interaction in HNM(III) leads to an EoS stiff enough such
that the resulting neutron star maximum mass is compatible with the three mentioned mea-
surements of neutron star masses. Therefore, the repulsion introduced by the hyperonic
three-body interactions plays a crucial role, since it substantially increases the value of the
Λ threshold density. Note that Ref. 26 also contains the first ab initio calculation of the
universal I-Love-Q relations, which connect the moment of inertia I , tidal deformability
Λ, and the quadrupole moment Q in a slow rotation approximation. In the next steps, one
should include the proton fraction, other hyperons of the baryon octet, and make use of
the recently developed high-fidelity chiral interactions at N3LO2, though this will pose a
formidable computational challenge.
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7 Big Bang Nucleosynthesis as a Probe of Fundamental Constants

Element generation in Big Bang nucleosynthesis (BBN) is a fine laboratory to study the
possible variations of the fundamental parameters of the Standard Model, such as the quark
masses or the electromagnetic fine-structure constant αEM, see e.g. Ref. 33. However, the
reaction network is also very sensitive to the nuclear physics input, which so far has not
been studied systematically. In Ref. 34 we investigated the dependence of primordial nu-
clear abundances on fundamental nuclear observables such as binding energies, scattering
lengths, neutron lifetime, etc. by varying these quantities. The numerical computations
were performed with four publicly available codes, thus facilitating an investigation of the
model-dependent (systematic) uncertainties on these dependences. Indeed deviations of
the order of a few percent are found. Moreover, accounting for the temperature dependence
of the sensitivity of the rates to some relevant parameters leads to a reduction of the sensi-
tivity of the final primordial abundances, which in some cases is appreciable. These effects
are considered to be relevant for studies of the dependence of the nuclear abundances on
fundamental parameters such as quark masses or couplings underlying the nuclear param-
eters studied here. Based on that work, we studied in Ref. 35 the dependence of the pri-
mordial nuclear abundances as a function of αEM, keeping all other fundamental constants
fixed. We updated the leading nuclear reaction rates, in particular the electromagnetic con-
tribution to the neutron-proton mass difference pertinent to β-decays, and went beyond
certain approximations made in the literature. In particular, we included the temperature-
dependence of the leading nuclear reactions rates and assessed the systematic uncertainties
by using four different publicly available codes for BBN. Disregarding the unsolved so-
called lithium-problem, we find that the current values for the observationally based 2H
and 4He abundances restrict the fractional change in αEM to less than 2% , which is a
tighter bound than found in earlier works on the subject. Further, in Ref. 37, we presented
an improved calculation of the light element abundances in the framework of BBN as a
function of the Higgs vacuum expectation value v. We improved and corrected the recent
calculation of Ref. 36 and earlier works on this topic by combining up-to-date lattice data
on the nucleon mass, the axial-vector coupling, etc, with chiral EFT methods. The PDG
result for the 4He abundance can be explained within 2σ by 0.004 ≤ δv/v ≤ 0.007.For
deuterium we find the constraint −0.0007 ≤ δv/v ≤ −0.0002.These bounds are more
stringent than what was found earlier, and, in particular, the tightest bound is now set by
deuterium, not 4He any more (as in all earlier works). This is a significant step in the quest
for finding the habitable universes as constrained by fundamental parameter variations in
nuclear structure and reactions.
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Baryon-baryon interactions play a central role for a broad variety of phenomena in Nature,
ranging from the formation of light nuclei to the physics of neutron stars. In our project we
employ lattice QCD calculations and the formalism of finite-volume quantisation to perform
a detailed study of baryon-baryon interactions. Specifically we focus on the H dibaryon, a
conjectured bound state of two Λ hyperons, and nucleon-nucleon interactions, initially in three-
flavour QCD. Our findings indicate that a detailed investigation of the continuum limit of lattice
QCD is indispensable to obtain reliable results for binding energies. We observe a weakly
bound H dibaryon with a binding energy of nearly 5 MeV. In the conceptually much more
complex case of nucleon-nucleon interactions, higher partial waves as well as partial wave
mixing must be included before firm conclusions can be drawn.

1 Introduction

Many open problems in nuclear physics are now being tackled through numerical sim-
ulations of the gauge theory that underlies the strong interaction, Quantum Chromody-
namics (QCD), discretised on a Euclidean space-time lattice. One particular example is
nucleon-nucleon interactions that provide key information on the formation of light nu-
clei. The small binding energy of the deuteron of 2.2 MeV has important consequences
for Big Bang nucleosynthesis and the abundances of light elements in the universe. The
question of how strongly the deuteron’s binding energy depends on the mass of the light
quarks is not merely an academic one but tells us how fine-tuned the universe actually is.
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Moreover, baryons containing strange quarks (i.e. hyperons) are essential for our under-
standing of the physics of neutron-rich matter and neutron stars. A long-standing problem
in this context is the question whether a bound state of two Λ hyperons – the so-called
H dibaryon – could exist, and if so, what binding energy it would have. Thirdly, a detailed
understanding of hadronic interactions is indispensable for investigating “exotic” hadronic
states that cannot be accommodated within the standard three-quark or quark-antiquark
framework of the quark model. Experimental evidence for penta- and tetra-quarks at the
LHC and B factories has spawned a vigorous research effort in this direction.

Hadronic interactions and resonances can be treated in lattice QCD via the finite-
volume quantisation formalism pioneered by Lüscher1, 2. In this contribution, we report
on our ongoing effort to study the H dibaryon and nucleon-nucleon interactions using this
elegant formalism. As we shall see, it is essential to remove the effects arising from the
discretisation of the QCD action in order to obtain reliable information on binding energies
and scattering lengths.

2 Finite-Volume Quantisation Formalism

Lattice QCD calculations are performed in a finite volume of Euclidean space-time with
spatial and temporal extent L and T , respectively. The standard method to extract hadron
masses proceeds by isolating the exponential fall-off in the correlation function of suitably
chosen interpolating operators at large Euclidean times. However, in the case of multi-
hadron systems, the fall-off alone does not contain any information on hadronic interac-
tions. This is the domain of finite-volume quantisation which we describe below.

For 2 → 2 scattering processes considered here, finite-volume quantisation is based
on an exact relation between the scattering amplitude and the energy levels of two-particle
states in a finite volume1, 2. The generic form of the two-particle quantisation condition is3

det
[
K̃−1(p2)−F(p2)

]
= 0, (1)

where the matrix K̃ contains the scattering amplitude. For a system of two particles with
individual momenta ~p1 and ~p2, the function F depends on the scattering momentum p2, as
well as on the volume, frame and irreducible representation (irrep) of the little group for
total momentum ~P = ~p1 + ~p2, which replaces the total angular momentum as a conserved
quantum number. Each irrep contains a tower of different angular momenta J . The rows
(or columns) of K̃ and F correspond to the different coupled channels and partial waves
that can scatter, as well as different values of J .

In order to determine the K-matrix from Eq. 1 we must determine the scattering
momentum p2 which is related to the energy spectrum of the state of interest, e.g. the
H dibaryon, which can be extracted from the correlation function. As our basis of interpo-
lating operators, {Oi}, we choose products of two single-baryon operators, projected onto
momenta ~p1 and ~p2, i.e.

Bα ≡ [rst]α = εijk
(
siCγ5t

j
)
rαk ,

(BB)Γ(~P , t) =
∑

~x

ei ~p1·xB1(~x, t)CΓP+

∑

~y

ei ~p2·yB1(~y, t) . (2)
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Figure 1. Finite-volume spectrum of theH dibaryon, plotted in terms of the centre-of-mass scattering momentum
p2 versus lattice extent L. Solid horizontal lines show the two- and three-particle thresholds, while dashed
horizontal lines represent the t-channel cut of −m2

π/4. The non-interacting spectrum is denoted by red dashed
curves, and solid blue curves show the interacting spectrum determined in the continuum. The inset serves as a
legend showing L and lattice spacings a2 for the ensembles used in our calculation.

Here, r, s, t denote generic flavour indices, and the Dirac matrix Γ serves to describe
different spin states. It is understood that a subsequent projection onto the desired repre-
sentation of the flavour group is performed.

To compute correlation functions of our basis {Oi} of interpolating operators, we use
the so-called “distillation” technique4 and Laplacian-Heaviside smearing5, which allows
us to compute “timeslice-to-all” propagators that are subsequently contracted to form her-
mitian correlator matrices Cij ≡ 〈Oi(t)O†j(0)〉 in all frames characterised by the total
momentum ~P . These numerical methods are key ingredients to alleviate the notorious
problem of exponentially increasing statistical noise at large Euclidean times t6, 7.

The finite-volume energy levels that enter the quantisation condition are determined in
each frame by solving a generalised eigenvalue problem8–10 i.e.

C(τD)vn = λn C(τ0)vn (3)

for fixed timeslices τ0 and τD. Subsequently, the eigenvectors vn are used to transform the
correlator matrix C(t) into an approximately diagonal correlator C̃(t) according to

C̃nm(t) ≡ v†nC(t)vm. (4)

Asymptotically, i.e. for t � 0, the diagonal elements of C̃(t) fall off exponentially with a
rate proportional to the finite-volume energy levels, E, for the given frame ~P . Combining
this information with the energy of two non-interacting baryons at rest, 2mB , yields the
(squared) scattering momentum p2 via

p2 = 1
4 (E2 − ~P · ~P )−m2

B . (5)

As a concrete example, we show in Fig. 1 the scattering momenta determined in different
frames for the H dibaryon for different volumes and lattice spacings11.

153



3 TheH Dibaryon in Three-Flavour QCD

The H dibaryon is a spinless flavour-singlet state, originally proposed by Jaffe12 in 1977
as a deeply bound system of six quarks with flavour content uuddss (“hexaquark”). It has
been speculated that a deeply bound scalar uuddss hexaquark might qualify as a dark mat-
ter candidate, provided that its binding energy is of the order of a few hundred MeV13–20.
An alternative interpretation of a possible H dibaryon is that of a weakly bound state of
two Λ hyperons, in which case one expects the binding energy to be of order 10 MeV.
There is a long history of calculations studying whether the H dibaryon is a prediction of
QCD. Results for the binding energyBH from the more recent calculations with dynamical
quarks21–27, 11 vary considerably, with estimates ranging from a few MeV up to 75 MeV,
depending on the methodology and/or the value of the pion mass. Recently, employing
near-physical pion and kaon masses, the HAL QCD Collaboration reported that the Λ-Λ
interaction is only weakly attractive and does not sustain a bound or resonant dihyperon27.

We have performed an extensive investigation of the H dibaryon, focusing initially on
the question whether a bound state exists at the SU(3)-symmetric situation with degenerate
up, down and strange quarks, corresponding to mπ = mK ' 415 MeV11. To this end
we have computed the energy levels in the H dibaryon channel on eight different gauge
ensembles of O(a)-improved Wilson fermions generated by the CLS effort28. Results for
the scattering momenta in different frames are shown in Fig. 1. In order to determine the
scattering amplitude, we truncate the finite-volume quantisation condition to its simplest
form, with a single channel and keeping only S-wave, neglecting D-wave and higher par-
tial waves. Eq. 1 then becomes

p cot δ0(p2) =
2√
πLγ

Z
~PL/(2π)
00

(
1,

(
pL

2π

)2
)
, (6)

with δ0(p2) the scattering phase shift, and Z ~D
00 a generalised zeta function. When per-

forming global fits to the spectra from all of the ensembles with different lattice spacings
and different volumes, we have used a fit ansatz which assumes that p cot δ0(p2) can be
described by a polynomial in p2 with coefficients that are affine functions of the squared
lattice spacing a2:

p cot δ0(p2) =

N−1∑

i=0

cip
2i, ci = ci0 + ci1a

2. (7)

This fit provides a good description of our finite-volume energy levels, with the exception
of the excited states in frames (0, 1, 1) and (1, 1, 1), which are strongly affected by the
neglected D wave. Sending a → 0, we obtain the continuum finite-volume energy levels
shown as the blue curves in Fig. 1. The binding energy is determined from the poles of
the scattering amplitude below threshold, which can be found as solutions to p cot δ(p) =

−
√
−p2.

In our 2021 publication11 we reported the existence of a bound H dibaryon and, at
the same time, a strong dependence of its binding energy BH on the lattice spacing, with
estimates varying between 35 MeV at the coarsest lattice spacing and a few MeV in the
continuum limit. Our final result of BH = 4.56±1.13±0.63 MeV is significantly smaller
than what most other lattice calculations observed21–25. These findings rule out a deeply
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Figure 2. Continuum extrapolations of the H dibaryon’s binding energy computed for different combinations of
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bound H dibaryon as envisaged in Jaffe’s paper, provided that the pion mass dependence
and effects from SU(3) breaking are small.

The unexpectedly strong dependence of BH on the lattice spacing prompted us to per-
form a detailed scaling study, by repeating the calculation for different discretisations of
the QCD action. To this end we have used gauge ensembles that were generated by the
OpenLat effort29 with an exponentiated Clover term30 added to the Wilson-Dirac operator.
In addition, we explored several mixed action setups that combine different discretisations
in the sea and valence sectors. For this purpose, we mainly used Möbius domain wall
valence quarks together with gauge ensembles based on rooted staggered (HISQ) or, alter-
natively, the original CLS ensembles with varying degrees of Wilson flow applied to the
gauge links. In order to study the effect that smeared gauge links may have on the scaling
behaviour, we also used O(a)-improved Wilson valence quarks on flowed CLS ensem-
bles. The resulting extrapolations to the continuum limit for each combination is shown in
Fig. 2. While our original choice of lattice action shows the largest discretisation effects,
the binding energies determined from the mixed action setups extrapolate to a consistent
set of results in the continuum limit. This corroborates the finding in our original paper11.

4 Nucleon-Nucleon Interactions

In Nature, there is one nucleon-nucleon bound state: the deuteron, bound by just 2.2 MeV.
Understanding this and nucleon-nucleon scattering from ab initio QCD are essential steps
in deriving nuclear physics from the Standard Model of particle physics. As a precursor
to this challenging problem, we have been studying two-nucleon systems at the SU(3)-
symmetric point, where the signal-to-noise problem is less severe and the heavier pion
mass permits the use of smaller volumes.

Nucleon-nucleon systems at heavier-than-physical pion masses have been studied on
the lattice for over a decade; however, it is now understood that the earlier calculations
that found deeply bound states used unreliable methods to determine the finite-volume
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spectrum31, 32. Our use of a matrix of correlation functions together with the generalised
eigenvalue problem allows us to avoid this problem by simultaneously extracting all of the
low-lying elastic nucleon-nucleon states. As we also control discretisation effects, our data
set allows us to obtain reliable results for QCD at our unphysical point.

2.0 2.5 3.0
L (fm)

0.0

0.1

0.2

0.3

0.4

0.5

p2 cm
(G

eV
2 )

(0,0,0) T1u

2.0 2.5 3.0
L (fm)

(0,0,0) T2u

2.0 2.5 3.0
L (fm)

(0,0,1) A1

2.0 2.5 3.0
L (fm)

(0,0,1) E

2.0 2.5 3.0
L (fm)

(0,0,1) B1

2.0 2.5 3.0
L (fm)

(0,1,1) A1

2.0 2.5 3.0
L (fm)

(0,1,1) B2

2.0 2.5 3.0
L (fm)

(1,1,1) A1

2.0 2.5 3.0
L (fm)

(1,1,1) E

NN

NNπ

t-cut

a (fm)
0.099
0.086
0.076
0.064
0.050
0.039

antidecuplet

Figure 3. Finite-volume spectrum of two nucleons with I = 0: energy levels in little-group irreps relevant for
the spin-zero odd partial waves 1P1 and 1F3. See the caption of Fig. 1. The gray points and noninteracting-
level curves indicate levels with the same finite-volume quantum numbers that primarily couple to spin-one
interpolating operators.

2.0 2.5 3.0
L (fm)

0.0

0.1

0.2

0.3

0.4

0.5

p2 cm
(G

eV
2 )

(0,0,0) T1g

2.0 2.5 3.0
L (fm)

(0,0,0) A2g

2.0 2.5 3.0
L (fm)

(0,0,0) Eg

2.0 2.5 3.0
L (fm)

(0,0,0) T2g

2.0 2.5 3.0
L (fm)

(0,0,1) A2

2.0 2.5 3.0
L (fm)

(0,0,1) E

2.0 2.5 3.0
L (fm)

(0,0,1) A1

2.0 2.5 3.0
L (fm)

(0,0,1) B1

2.0 2.5 3.0
L (fm)

(0,0,1) B2

NN

NNπ

t-cut

a (fm)
0.099
0.086
0.076
0.064
0.050
0.039

antidecuplet

2.0 2.5 3.0
L (fm)

0.0

0.1

0.2

0.3

0.4

0.5

p2 cm
(G

eV
2 )

(0,1,1) A2

2.0 2.5 3.0
L (fm)

(0,1,1) B1

2.0 2.5 3.0
L (fm)

(0,1,1) B2

2.0 2.5 3.0
L (fm)

(1,1,1) A2

2.0 2.5 3.0
L (fm)

(1,1,1) E

2.0 2.5 3.0
L (fm)

(1,1,1) A1

2.0 2.5 3.0
L (fm)

(0,0,2) A2

2.0 2.5 3.0
L (fm)

(0,0,2) E

NN

NNπ

t-cut

a (fm)
0.099
0.086
0.076
0.064
0.050
0.039

antidecuplet

Figure 4. Finite-volume spectrum of two nucleons with I = 0: energy levels in little-group irreps relevant for
the spin-one even partial waves 3S1, 3D1, 3D2, and 3D3. See the caption of Fig. 1. The thickness of the red
curves indicating noninteracting levels is proportional to the degeneracy of that level.
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and pale points indicate small-volume ensembles. The blue curve with error band is the continuum limit of the
fit. An intersection with the upper branch of the red dashed curve corresponds to a virtual state pole.

Partial-wave scattering states of two nucleons are characterised by the total spin S,
orbital angular momentum `, and total angular momentum J , which are denoted using the
spectroscopic notation 2S+1`J . As isospin I is a good symmetry in our calculation, the
overall antisymmetry implies S + ` + I must be an odd number, and partial waves with
spin zero do not couple to those with spin one. Although the finite-volume symmetries in
moving frames allow mixing between states with different parities, the fact that both the
scattering amplitude and the finite-volume matrix F are diagonal in spin implies that the
determinant in Eq. 1 factorises and (once the spins of the energy levels have been identified)
spin zero can be analysed separately from spin one. Thus, four sets of energy levels can be
analysed independently: those with (I, S) = (0, 0), (0, 1), (1, 0), and (1, 1).

The simplest analysis is in the spin-zero sector (which has fewer partial waves and
no partial wave coupling) and odd partial waves (which are weaker and less affected by
discretisation effects than the S-wave). These energy levels are shown in Fig. 3. The
positive energy shifts indicate both the 1P1 and 1F3 partial waves are repulsive. Modelling
these two phase shifts with two parameters each and applying finite-volume quantisation,
we are able to obtain a good fit quality (blue curves) assuming no discretisation effects.

The spin-one, even partial wave sector that potentially contains a bound deuteron is
more complex, containing three different D waves, and mixing between the 3S1 and 3D1

partial waves. Fig. 4 shows the relevant energy levels, which number more than three
hundred. In many of the lowest-lying levels, a pattern of discretisation effects similar to
the case of the H dibaryon is visible.

A preliminary simplified analysis of the 3S1 partial wave, based on the helicity aver-
age of ground-state levels33 and neglecting all higher partial waves, is shown in Fig. 5.
This simple fit describes the broad features of our data, although the fit quality could be
improved. The interaction is attractive but insufficient to produce a bound state: instead,
we find a virtual state pole that is near threshold on our coarsest lattice spacing but moves
further below the threshold as the continuum limit is approached. A more sophisticated
analysis including partial-wave mixing and higher partial waves is ongoing.
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5 Conclusions

Finite-volume quantisation is a powerful formalism that allows for the ab initio study of
baryon-baryon interactions. In this contribution we have reported on our ongoing project
focusing on Λ-Λ and nucleon-nucleon interactions. Even though our results have been
obtained in three-flavour QCD and at unphysically heavy pion mass of about 415 MeV,
our calculations have consistently shown that the scenario of a deeply bound H dibaryon
is highly unlikely. The spin-one even partial wave sector in nucleon-nucleon interactions
(which contains the deuteron) is considerably more complex, and our preliminary analysis
that ignores higher partial waves and partial wave mixing does not yet allow us to draw
firm conclusions. These issues will be addressed in future work which is also focused on
lowering the pion mass towards its physical value. In addition, we have applied finite-
volume quantisation also to the case of charmed tetra-quarks that have generated a lot of
interest recently.
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Computations on state-of-the-art supercomputers, such as the cluster JUWELS at the Jülich
Supercomputing Centre enables us to study fundamental building blocks of our universe. The
allocation was used for computation needed for our effort on non-perturbative renormalisation,
an integral part of our precision study of hadronic structure using lattice QCD. State-of-the-
art lattices with two degenerate light, a strange, and a charm quark (Nf=2+1+1) with masses
tuned to their physical values (physical point), are being used to study hadron structure at un-
precedented accuracy. The project is enabling their non-perturbative renormalisation, a crucial
component for relating lattice results to continuum quantities. To this end, we have carried
out dedicated simulations with four degenerate quarks (Nf=4), used to compute renormalisa-
tion coefficients with lattice spacing a =0.093, 0.087, 0.08, 0.068, 0.057, and 0.049 fm, at
multiple values of the quark mass allowing us to take the chiral limit of the renormalisation
factors. The renormalisation factors are in turn being used to obtain the continuum limit of a
series of quantities important in hadron structure, including: i) nucleon charges and moments of
nucleon Parton Distribution Functions (PDFs), ii) the gluon momentum fraction renormalised
non-perturbatively, and iii) nucleon form factors.

1 Motivation

One of the fundamental goals of research in the field of Hadron Physics is the quantita-
tive description of the rich internal structure of hadrons, which are the building blocks of
the visible Universe. State-of-the-art numerical simulations of Quantum Chromodynamics
(QCD) formulated on a Euclidean 4-dimensional lattice (lattice QCD) provide a rigorous
approach for an ab initio nonperturbative study of hadron structure, which captures the
full dynamics and interactions of the constituent particles. Hadron form factors and distri-
bution functions are key observables that can be determined directly from the evaluation
of matrix elements in lattice QCD. The accurate computation of these key quantities not
only provides input to phenomenological models and ongoing experiments but also gives
predictions on observables that are not easily accessible experimentally, such as nucleon
σ-terms, strange electromagnetic and axial form factors, polarised parton distributions1,
and properties of unstable particles, e.g., pion and kaon2.
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Significant progress has been accomplished in lattice QCD during the last decade due
to algorithmic improvements in combination with access to more powerful computers.
A major milestone is the access to simulations at quark masses tuned to their physical
values. This enables the extraction of physical quantities free of uncontrolled systematic
errors from chiral extrapolations. However, there are still many challenges that need to
be addressed, such as the study of lattice systematic errors related to finite lattice spacing
and volume, excited states, operator mixing and renormalisation, reaching higher statistical
accuracy and the computation of more challenging observables, including transition form
factors and properties of resonances. The computational project on JUWELS allows us to
address operator mixing and the renormalisation of several quantum composite operators,
which are relevant to the hadron structure investigations.

We focus on first-principle investigation of a family of quark and gluon distribution
functions (DFs), which encode the momentum and spin decomposition of hadrons: par-
ton distribution functions (PDFs), generalised parton distribution functions (GPDs) and
transverse-momentum dependent parton distribution functions (TMDs). All three types of
DFs are necessary in order to unravel the three-dimensional hadron picture. The studies
of DFs are at the forefront of international activity both theoretically and experimentally.
Novel methods for extracting full DFs on the lattice have been employed in recent years
by calculating matrix elements of nonlocal operators3. Accurate determinations of these
quantities from lattice QCD can significantly complement the experimental investigations
by providing input into the analysis and interpretation of the experimental data.

Furthermore, Mellin moments of distribution functions are fundamental point of con-
tact between experiment and theory, and lattice QCD is an ideal framework of determining
these quantities nonperturbatively4. The study of such moments on the lattice entails the
calculation of matrix elements for a large variety of higher-derivative gluon and quark local
operators.

We target to extract nonperturbative renormalisation functions and mixing coefficients
for a variety of quark and gluon local and nonlocal operators entering the investigations
of DFs and their moments. Renormalisation is an essential ingredient for obtaining re-
liable theoretical predictions from lattice simulations matched to the physical values of
hadron observables. A particular goal is the renormalisation of “disconnected” contri-
butions, which are typically more noisy and thus, large statistics are needed. For this
purpose, we conducted long Markov chain Monte Carlo simulations of relatively small
lattice sizes at various lattice spacings. Our simulation setup combined with the features
of the JUWELS Cluster module are ideal for generating such ensembles, as it is evident
from previous allocations of our group on JUWELS. Resources from this allocation also
covered the calculation of nonperturbative renormalisation functions for gluon and quark
momentum fractions, nucleon charges, and quark PDFs.

2 Scientific Results

State-of-the-art simulations of lattice Quantum Chromodynamics (QCD), are being car-
ried out at physical values of the up and down, strange, and charm quarks5–7, and are being
used to obtain hadronic matrix elements at ever increasing statistical precision. Using the
twisted mass fermion formulation of lattice QCD, we are currently producing state-of-
the-art results for hadronic matrix elements, such as the nucleon axial, scalar, and tensor
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charges8–10, moments of parton distribution functions (PDFs)11, quark and gluon contribu-
tions to hadronic momentum and spin12, 13, and the x-dependence of the nucleon14, 15 and
∆-baryon16 PDFs. For obtaining such high-accuracy results, a crucial component is the
non-perturbative renormalisation of the lattice matrix elements, needed to relate them with
physical, continuum quantities.

Within the multi-year computational project renormglue on JUWELS we are com-
puting renormalisation factors non-perturbatively to a high precision. The full renormal-
isation program involves calculating the factors for multiple quark masses enabling us to
take the chiral limit. With the renormalisation factors available at multiple lattice spacings,
this allows for the continuum limit to be taken for all hadronic quantities available to us.
Due to the computation provided by JUWELS we made significant progress in obtaining
the renormalisation factors non-perturbatively at multiple lattice spacing.

2.1 Dedicated Nf=4 Simulations

Our renormalisation program uses the RI′MOM scheme17 as explained in Ref. 18. Dedicated
Nf=4 ensembles were generated using JUWELS at the same values of the coupling β as
used for the ensembles with which the matrix elements to be renormalised were obtained
on. Multiple values of the quark masses are used to extrapolate the renormalisation factors
to the chiral limit. The complete set of ensembles available with Nf=4 are shown in Fig. 1.
During allocation, resources from renormglue were used to generate the ensembles at
several lattice spacing, a '0.086 0.069 0.058 0.05 fm, labelled as “A′”, “C”, “D” and
“E”.

Our renormalisation program improves on the non-perturbative estimates of the renor-
malisation factors by subtracting finite lattice effects19–21. The latter are computed to one-
loop in perturbation theory and to all orders in the lattice spacing, O(g2 a∞). These ar-
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Figure 1. Parameters of the Nf=4 ensembles used to compute the renormalisation factors non-perturbatively. The
size of the circles indicates the physical spatial extent L between 2.3 fm and 3.8 fm. We indicate at the top of
the figure the labels used to refer to each lattice spacing. The “E” ensembles, shown in green, were generated
on Juwels Cluster within this project during the past allocation period. The “A′” ensembles, show in red, were
generated in the last allocation.
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tifacts are present in the non-perturbative vertex functions of the fermion propagator and
fermion operators under study. Furthermore, we note that we compute both non-singlet
and singlet renormalisation functions, the latter of which require the calculation of discon-
nected contributions in addition to the connected, and are therefore more computationally
demanding.

Within the allocation renormalisation factors have been extracted for the non-singlet
quark bilinear operators, namely scalar (ZS), pseudoscalar (ZP ), vector (ZV ), axial-vector
(ZA) and tensor (ZT ), as well as of the quark field (Zq), on the generated Nf=4 ensembles.
Here, we show factors extracted from the Nf=4 ensembles at the E lattice with twisted
quark mass aµq = 0.0035 and 0.0056. In Fig. 2, we indicatively plot the renormalisa-
tion factors of the vector and axial currents, as a function of the initial renormalisation
momentum scale p2. Here, we apply our program to reduce systematic errors related to
discretisation effects by subtracting artifacts calculated in one-loop lattice perturbation the-
ory. Chiral extrapolations are then performed with at least three µ values, followed by a
conversion to the reference scheme of MS and evolution to the reference scale of 2 GeV.

A dedicated analysis of the renormalisation factors for all non-singlet quark bilinear
operators is ongoing using all generated ensembles from the current and past allocations.
This includes data from simulations of all six lattice spacings. The current status of the
calculation is: The simulations of the NF = 4 “A”, “B”,“C”, “D”, and “E” ensembles
have been completed; for the “A′”, three out of four ensembles of different quark masses
have been finished. The production of the remaining ensemble is ongoing. Given the
plethora of data coming from several ensembles, a more sophisticated analysis has been
initiated with the goal of further improving the accuracy of the extracted values. First
results from this analysis have been applied in Ref. 10. The full analysis will be provided in
a forthcoming publication. Further ongoing analyses by our group applying the generated
Nf = 4 ensembles include the renormalisation of the singlet quark bilinear operators and
of higher derivative operators.
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Figure 2. Renormalisation factors of the vector operator (ZV , left) and axial-vector operator (ZA, right) vs p2

with (sub.) or without (unsub.) subtracting one-loop lattice artifacts for the twisted mass parameter aµq as
indicated in the legend.
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Figure 3. On the left panel we show the bare ratios of the light-quark momentum fraction in the kaon dependence
on the sink-source time separation tsink for the ensemble at intermediate lattice spacings. In the upper left panel,
we show the ratio for the connected contribution and in the lower panel, the ratio for the disconnected contribution.
We show results for several values of tsink , from tsink/a = 30 to tsink/a = 80. The red bands show the result
after model averaging of fits to a constant when varying the ranges of tsink used. Continuum limit extrapolation
are showing on the right panel for the pion (left part) and the kaon (right part). We present our results for the total
quark and gluon contributions, as well as the momentum sum rule. The blue filled circles are results for ensemble
B13, the orange upwards triangles for ensemble C and the green downwards triangles for ensemble D. The open
symbol is the result after model averaging between constant and linear fit. Further details can be found in the
Supplemental Material.

2.2 Quark and Gluon Momentum Fraction in the Pion and Kaon

The dedicated program to calculate renormalisation factors, using the ensemble generated
on JUWELS, enabled us to calculate the first complete momentum decomposition for both
the pion and the kaon. This was done in terms of their quark and gluon constituents,
performed within lattice QCD at the physical point22.

Here, we used three ensembles with Nf = 2 + 1 + 1 quark flavours with their masses
tuned to reproduce the physical light, strange and charm quark masses.

We use a model average for the continuum extrapolation performed using both a con-
stant and a linear fit in the squared lattice spacing, a2, see Fig. 3. Our results for 〈x〉π,Kg
indicate a similar momentum fraction carried by gluons in the kaon and the pion. We find
that the total momentum fraction carried by quarks is 0.532(56) and 0.618(32) and by glu-
ons 0.388(49) and 0.408(61) in the pion and in the kaon, respectively, in the MS scheme
and at the renormalisation scale of 2 GeV.

The gluon momentum fraction have larger errors than the corresponding quark mo-
mentum fraction 〈x〉π,Kq , which tends to be smaller in the pion. This indicates a possible
larger momentum fraction carried by gluons in the pion as compared to the kaon.

The work presents a remarkable achievement as we were able to conduct a fully con-
sistent theoretical calculation that allows us to directly compare the pion and the kaon at
the level of their quark and gluon structure. In particular, the momentum sum rule can be
tested by computing all components from first principles. Namely, we found that the mo-
mentum sum is 0.926(68) for the pion and 1.046(90) for the kaon, verifying the momentum
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Figure 4. The left panel shows comparison of the results of this work, with other available data, both from phe-
nomenology and from lattice QCD. All results are given in the MS scheme at the scale of µ = 2 GeV. The
upper panels show the results for the pion gluon (left) and quark (right) momentum fractions, 〈x〉πg,R and 〈x〉πq,R,
respectively. The lower panels show the corresponding results for the kaon. The red filled squares show the
results of this work with the red band the associated error band. Recent results from phenomenological analyses
of PDFs data are given by open symbols: left green triangle (Novikov et al.23) and right orange triangle (JAM
Collaboration24). The result while the result based on the LFWF is represented by the down blue triangle (Cui et
al.25), while using the DSE26 by the black cross, where no error is provided. Recent lattice QCD results extrap-
olated to the continuum limit are given by the brown filled circle (RQCD27) and the gray pentagon (MSULat28).
The right panel shows the quark and gluon momentum fractions for the pion (upper panel) and kaon (lower panel)
obtained in the continuum. Inner bars represent only the connected contributions, while the outer bars show the
total, including disconnected contributions.

sum rule. We stress that prior to the current work, there was no such decomposition into
quark and gluon parts available of 〈x〉K using a first-principles calculation.

Moreover we demonstrated that the momentum fraction carried by gluons and sea
quarks (the disconnected contributions) are important components of the two lightest
pseudo-Goldstone bosons, and added together with the valence contributions verify the
momentum sum rule for both cases.

2.3 Nucleon Charges and Form Factors

Results for other key quantities, such as the electromagnetic and axial form factors of
the nucleon29–32, 10 have been extracted using the renormalisation factors computed within
this project. The allocation allowed us to extend previous calculations by including three
physical point ensembles with lattice spacings 0.080 fm, 0.068 fm and 0.057 fm, and spatial
sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding mπL > 3.6. This enables us to
take the continuum limit of the axial (GA), induced pseudoscalar (GP ), and pseudoscalar
(G5) form factors, as shown in Fig. 5. Errors include statistical and systematics after a
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Figure 5. Axial (top left), induced pseudoscalar
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factors obtained on the “B” (blue), “C” (or-
ange), and “D” (green) ensembles. The contin-
uum limit is indicated with the red curve. For
the axial and induced pseudoscalar form factors
we indicate gA and g∗P with a red cross.

detailed analysis of excited state effects and fit models to the Q2-dependence of the form
factors which includes dipole and z-expansion.

We find for the nucleon axial charge gA = 1.245(28)(14), for the axial radius
〈r2
A〉 = 0.339(48)(06) fm2, for the pion-nucleon coupling constant gπNN ≡ limQ2→−m2

π

GπNN (Q2) = 13.25(67)(69) and for GP (0.88m2
µ) ≡ g∗P = 8.99(39)(49). The results

on GA(Q2) are in good agreement with other recent lattice QCD studies. Note, that by
taking the continuum limit using ensembles at the physical-point mass, we avoid a chiral
extrapolation that in the nucleon sector can lead to an uncontrolled systematic error. This
allows to directly access cut-off effects. Namely for GA(Q2), we found that the effects for
the range of lattice spacings used are mild, ranging from not detectable within our errors
at low Q2 to slightly positive at high Q2. On the other hand, the induced pseudoscalar
and the pseudoscalar form factors exhibit similar large cut-off effects that can be traced
back to the known O(a2) artifacts on the pion mass pole, which can be parameterised and
addressed in our continuum extrapolation fits. An important outcome of this study is that
in the continuum limit, all cut-off effects are safely eliminated as expected.

3 Conclusion

A comprehensive computation of nonperturbative renormalisation functions for a diverse
array of quantum-field composite operators entering hadron observables, have been per-
formed using resources from allocations on JUWELS. Our calculations contributed to the
elimination of a major source of systematic uncertainty in lattice QCD simulations coming
from the process of renormalising hadron matrix elements, which are essential for mak-
ing contact to physical measurable observables. By leveraging our generated Nf = 4
ensembles across multiple lattice spacings and quark masses, we have conducted chiral
and continuum extrapolations that are crucial for minimising systematic errors inherent in
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lattice calculations. Looking ahead, we aim to extend our efforts to extract the renormal-
isation of higher moments of parton distribution functions, specifically the 2nd and 3rd
moments, which present additional challenges due to operator mixing and the complex-
ity introduced by numerous covariant derivatives. With the computational capacity of the
next generation of supercomputers, such as JUPITER will deliver, this can be addressed
by enhancing statistical outcomes and further deepening our understanding of the building
blocks of our universe, the structure of hadrons.
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One of the fundamental properties of quantum mechanics is the uncertainty principle, which
limits the degree to which canonically conjugate variables such as position and momentum can
simultaneously be known. An intriguing consequence of this principle is the contribution of
virtual particles to physical processes. Concretely, heavy particles for which we do not have
sufficient energy to produce them at our largest experiments can still contribute in this manner
to processes that we can measure at lower energies. To successfully identify such a contribution,
high-precision measurements and theory calculations are needed since these virtual effects tend
to be suppressed. Interestingly, the coupling of muons, the heavier cousins of electrons, to
a magnetic field provides such an opportunity since it is sensitive to the presence of heavier
states, it can be experimentally measured at a relative precision of 10−10, and a similarly
precise theory calculation is possible. In order to achieve such a theory calculation, more precise
results for contributions from known hadronic matter are needed. In this project, we work on
matching the experimental precision of the new Fermilab E989 experiment by a high-precision
calculation of the hadronic contributions using lattice QCD with chiral fermions.

1 Introduction

The anomalous magnetic moment of the muon aµ = (gµ−2)/2 is a particularly important
quantity. Since the early experiments by Stern and Gerlach in the 1920s for the electron
case, it has played a pivotal role in establishing the foundations of our quantum-field-
theoretical understanding of nature at ever higher precision. Major experimental efforts
are underway at Fermilab and planned at J-PARC (in Japan) to reduce the experimental
uncertainties.

The Fermilab experiment has in fact released first results in 2021, improving the pre-
viously best experimental uncertainty of 0.54 ppm1 to 0.46 ppm2. Recently, Fermilab has
further reduced the experimental uncertainty by a factor of 2.2. Over the next year, the
Fermilab experiment aims to reduce the uncertainty further to approximately 0.14 ppm.

The current precision of a standard model theory prediction needs to be improved
significantly in order to match the experimental precision and fully utilise its substantial
progress. There is a community-wide effort underway by the Muon g-2 Theory Initiative3

to establish such a high-precision result. Over the recent years, it has been demonstrated
using the Euclidean windows introduced by our collaboration4 that the methodology used
so far for the hadronic vacuum polarisation (HVP) contribution from hadronic e+e− de-
cays (R-ratio) needs further scrutiny and is currently not allowing for the needed precision
of approximately 2/1000, see Fig. 1. First-principles calculations from lattice QCD, how-
ever, have made rapid progress and are a promising way towards matching the experimental
precision.

We build on a multi-year effort to calculate the hadronic vacuum polarisation (HVP)
contributions to aµ to high precision. In addition, the data generated in this effort is benefi-
cial for a wide range of additional physics projects that are limited by the so-far mostly
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Standard model theory is work in progress

I Tensions for the intermediate window between lattice and e+e� data (minus
CMD3) clearly established. Tensions within e+e� data so far unresolved.
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Figure 36: The �+��(�) contribution to ahad,LO
µ from

energy range 0.6 <
�

s < 0.88 GeV obtained from this
and other experiments.

Experiment a⇡
+⇡�,LO

µ , 10�10

before CMD2 368.8 ± 10.3
CMD2 366.5 ± 3.4
SND 364.7 ± 4.9
KLOE 360.6 ± 2.1
BABAR 370.1 ± 2.7
BES 361.8 ± 3.6
CLEO 370.0 ± 6.2
SND2k 366.7 ± 3.2
CMD3 379.3 ± 3.0

Table 4: The �+��(�) contribution to ahad,LO
µ

from energy range 0.6 <
�

s < 0.88 GeV ob-
tained from this and other experiments.

in Table. 4, where the first line in the table corresponds to the combined result of all
measurements before CMD-2 experiment.

The pion formfactor mesuarements from the di�erent RHO2013 and RHO2018 seasons
of the CMD-3 give the statistically consistent result in the ahad,LO

µ integral as:

a⇡⇡,LO
µ (RHO2013) = (380.06 ± 0.61 ± 3.64) ⇥ 10�10

a⇡⇡,LO
µ (RHO2018) = (379.30 ± 0.33 ± 2.62) ⇥ 10�10

a⇡⇡,LO
µ (average) = (379.35 ± 0.30 ± 2.95) ⇥ 10�10 (18)

Two CMD-3 values are in very good agreement in spite of a very di�erent data taking
conditions (as was discussed earlier). The combined CMD-3 result was obtained in very
conservative assumption of 100% correlation between systematic errors of two data sets. The
CMD-3 result is significantly higher compared to other e+e� data, both energy scan and ISR.
Although this evaluation was done in the limited energy range only and the full evaluation
of ahad,LO

µ is yet to be done, it is clear that our measurement will reduce tension between
the experimental value of the anomalous magnetic moment of muon and its Standard Model
prediction.

9. Conclusions

The measurement of e+e� � �+�� cross section was performed by the CMD-3 exper-
iment at the VEPP-2000 collider in the energy range

�
s = 0.32 ÷ 1.2 GeV in 209 energy

points. The analysis was based on the biggest ever used collected statistics at � resonance
region with 34 ⇥ 106 �+�� events at

�
s < 1 GeV. The large statistics allows to study the

possible systematic e�ects in details. The development of the analysis strategy, cross-checks
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I There is a clear desire to have full first-principles lattice QCD result with
competitive precision (final goal is below 2/1000 relative error).

I Alternative idea suggested in RBC/UKQCD18: if data and lattice agrees, can
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BMW24 paper for tail beyond 2.8 fm (5/100 of total).
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Figure 1. Using the intermediate window quantity defined in Ref. 4, the community has now established a clear
tension between first-principles lattice QCD+QED results and data-driven R-ratio determination (minus the recent
CMD3 result). This is shown in the left figure. In the right figure we show tensions in the R-ratio data sets that
are so-far unresolved. There is a clear desire to have full first-principles lattice QCD result with competitive
precision.

small volumes mπL ≈ 4 available for the chiral domain-wall ensembles used by the
RBC/UKQCD collaborations. Since these ensembles also are widely used in the com-
munity, we expect this project to be of broad benefit outside of RBC/UKQCD as well. The
HVP project has so far produced results at the ≈ 2% accuracy4 for the total contribution
but has reached the needed target precision for the short-distance and intermediate-distance
sub-quantities in the isospin symmetric limit5 in 2023. At the Lattice 2024 Symposium in
Liverpool we have presented a new result for the isospin-symmetric long-distance window
contribution matching a 7/1000 precision.

In establishing the standard model theory result again at ever higher precision using
first-principles lattice QCD+QED it is of utmost importance to have several independent
lattice-QCD calculations of commensurate precision. We need detailed comparisons be-
tween precise lattice QCD calculations using different methods and with different system-
atic effects to test all aspects of the results thoroughly. Hence, independent and distinct
theoretical calculations are both necessary and complementary. In the following, we ex-
plain our progress that was crucially enabled in part by the compute infrastructure provided
in Jülich.

2 Gauge Ensemble Generation

In order to control the extrapolation to zero lattice spacing and infinite physical lattice
volume better, we generated additional ensembles in the last two years. To address the
finite lattice spacing uncertainty, we have generated new ensembles for mπ = 280 MeV
with lattice cutoff of 2.7 GeV, 3.5 GeV, and first few configurations at 4.6 GeV. These
ensembles are generated using the HMC algorithm made exact by a Metropolis accept-
reject step.

In Fig. 2, we show the thermalisation of the three ensembles for the Wilson-flow scale√
t0. The thermalisation for the finest ensemble was first performed on smaller volumes
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Figure 2. Thermalisation and ensemble generation as performed in last-years allocation for the 2.7 GeV, 3.5 GeV,
and 4.6 GeV ensembles from left to right. The coarsest two ensembles were completely generated on Booster,
the 4.6 GeV ensemble was thermalised for a few hundred trajectories on Juwels Booster.

and only at around molecular-dynamics (MD) unit 1500 we switched to the final large
volume. Around MD unit 2000, we switched to four parallel streams.

In order to also improve the control over slight mistunings of the quark masses and over
the large-volume limit, additional ensembles were created in recent years. In this context it
was crucial to also generate lattice ensembles for which the pion Compton wavelength fits
8 times in the physical volume. At such large volumes the finite-volume corrections that
usually need to be performed with limited systematic precision, are small compared to the
statistical uncertainty. The corresponding large set of ensembles that are currently in use
for the calculation of the muon anomalous magnetic moment is summarised in Fig. 3.

Data for new analysis (10 ensembles)
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Figure 3. The most important ensemble properties are summarised in this figure. The uncertainties are shown
but are typically in the per-mille range.
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3 Consolidating Short and Intermediate Distances

Our project first focused on consolidating the short and intermediate distance Euclidean
window contributions. To this end, we have generated new Dirac low-modes in a locally-
coherent representation and have measured the vector-vector correlator and standard en-
semble parameters with great precision. We have made codes for both sub-projects pub-
licly available at https://github.com/lehner/gpt.

We have published an update for the short-distance and intermediate-distance win-
dows5 in which the crucial improvement over previous work4 was the improved control
over the zero-lattice spacing extrapolation. We added a finer lattice spacing at physical
pion mass and studied two variations of discretising the muon-photon system combined
with two variations of discretising the coupling of the photon to the quarks. We show the
continuum limit including all of these variations for the intermediate window in Fig. 4. The
extrapolations of different discretisations agree well in the continuum limit. The remaining
spread was used as an uncertainty estimate for the residual continuum limit errors. With
the current setup this uncertainty is smaller than the statistical uncertainty.
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FIG. 10. Continuum extrapolation of aW,iso,conn,ud
µ ⇥ 1010. On the left, we show the 8 fits of our preferred prescription. On

the right, we show the fit through the two data points already available in Ref. [31] with lower statistical precision.

Colangelo et al. 2022
BMW 2020/KNT

Aubin et al. 2019/CL/KNT
RBC/UKQCD 2018/FJ

RBC/UKQCD 2023
ETMC 2022
Mainz 2022
BMW 2020

ETMC 2021
RBC/UKQCD 2018

 224  226  228  230  232  234  236  238  240
aµ

W(0.4 fm, 1.0 fm, 0.15 fm) × 1010

FIG. 11. Comparison of the total intermediate window contribution. For historical completeness, we also show results that
are superseded by newer results of the same collaboration at the top in gray. Dispersive resuls are shown in purple, lattice
results are shown in green. The inner error bars show the statistical uncertainty, the outer error bars show the statistical and
systematic uncertainties added in quadrature. RBC/UKQCD 2018 [31], ETMC 2021 [73], BMW 2020 [30], Mainz 2022 [75],
ETMC 2022 [76], RBC/UKQCD 2018/FJ [77], Aubin et al. 2019/CL/KNT [78], BMW 2020/KNT [79], Colangelo et al. 2022
[1].

prediction for the total intermediate window contribution

aW
µ = 235.56(65)(50) ⇥ 10�10 (44)

with statistical (left) and systematic (right) errors given separately. This can be compared with other lattice results
as well as results based on the R-ratio, see Fig. 11. Our result is in 3.8� tension with the recently published dispersive
result of aW

µ = 229.4(1.4) ⇥ 10�10 [1] and in agreement with recent lattice results [30, 75, 76].

B. Short-distance window aSD
µ

For the short-distance window aSD
µ in the isospin-symmetric limit with t0 = 0.4 fm and � = 0.15 fm, we find the

up and down quark-connected contribution to be

aSD,iso,conn,ud
µ = 48.7(0.5)(1.6) ⇥ 10�10 (45)

in the BMW20 world and

aSD,iso,conn,ud
µ = 49.0(0.6)(1.4) ⇥ 10�10 (46)

Figure 4. Continuum extrapolation of the window quantity with three lattice spacings, local-local (ll) and local-
conserved (lc), as well as continuum (p) and lattice (phat) photon momenta.

Due to the importance of the result in resolving the emerging tension, we conducted
our analysis in a blinded manner and had five analysis groups independently analysing
the data. In Fig. 5, we compare our results against results of other groups. We note that
both the short and intermediate distance window contribution are now consolidated at the
precision needed to match the final Fermilab E989 experimental precision.
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Establishing lattice QCD at per-mille level precision

↭ Follow RBC/UKQCD18 strategy to split into Euclidean windows and compute
short-distance (aSD

µ up to 0.4 fm), intermediate distance (aW
µ ), and

long-distance (aLD
µ beyond 1.0 fm) separately.

↭ For isospin-symmetric light-quark connected (lqc) contributions, agreement for
aSD

µ and aW
µ has been established
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Figure 5. Comparison of short-distance and intermediate-distance window results.

4 Improving the Long-Distance Precision

The next step in our program was a significant improvement in precision of the long-
distance contribution of the light quark connected contribution compared to earlier work4.
This required the introduction of new methodology. We employed the improved bounding
method developed by our team6, 7, which uses the information of the discrete finite-volume
intermediate states to reconstruct the long-distance contribution. To this end one needs
to consider a large operator basis of N operators transforming in the proper irreducible
representation of the finite-volume and isospin symmetry group and the corresponding
possible N2 two-point correlation functions. This then allows for a high-precision spectral
reconstruction.Cross checks and comparisons before relative unblinding
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Figure 6. We show the spectrum on our 96I ensemble as obtained by four of our analysis groups on the left as
well as the ratio of the reconstructed two-point correlator C(t) divided by the fully inclusive one on the right for
our 64I ensemble.

In Fig. 6, we show the numerical tests performed between our analysis groups. The
saturation of the finite-volume reconstruction can clearly be seen in the right panel. This
gives confidence that all necessary states have been captured.
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Results group A with and without finite-volume corrections

400

500

600

700

800

900

96I
64I

48I
C 4 D 1 3 9 L

Finite Volume
Infinite Volume

Infinite Volume + Unitary

a µ
LD

x
BL
IN
D

FV correction for largest ensemble is within statistical noise, FV corrections consistent
with data.

10 / 16Figure 7. Results for the isospin symmetric long-distance window for all ensembles that entered the recently
unblinded result at Lattice 2024. The data for ensembles 4, D, 1, 3, 9, and L was generated using last year’s
allocation and played a crucial role in the success of the project.

In Fig. 7, we show the results of this methodology applied to a large set of ensem-
bles for which the parameters were shown in Fig. 3 both with and without finite-volume
corrections applied. For the largest physical volume the finite-volume corrections were
small compared to the statistical uncertainty. These individual lattice results are then com-
bined to perform a continuum and infinite-volume extrapolation. The result of which is
shown in Fig. 8. In this figure we show the results that were unblinded for the Lattice
2024 Symposium and compare it to other results in the literature. We notice that the ten-
sion between lattice QCD and the e+e− experimental average is even more pronounced
in the long-distance contribution compared to the intermediate distance contribution. The
computational resources provided by Jülich were a crucial component of this result. A
publication containing these results is currently in preparation.
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Figure 8. Using the improved bounding method developed by some of the investigators6, 7, we have recently
unblinded a new result for the long-distance window and the complete isospin symmetric contribution. Our result
is in strong tension with the R-ratio result and it is also clear that some consolidation of lattice QCD results at
this higher precision level is needed.
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5 Next Steps and Concluding Remarks

In order to achieve our final precision goal further steps are needed. First, we continue
to increase statistics for the finest ensemble (96I) and have started generating a physical
pion mass ensemble with mπL ≈ 5 and a−1 ≈ 3.5 GeV to achieve the targeted final
precision for the long-distance contribution in the next years. Another crucial improvement
over our previous complete result4 is an improved calculation of the quark disconnected
contribution. To this end, we have re-used the distillation data sets generated for the long-
distance project that can be applied to this case with small numerical effort. Finally, we
need to compute the QED and strong-isospin-breaking corrections at improved precision.
In order to achieve this, we have adopted the strategy that we have previously successfully
used to compute the hadronic light-by-light scattering contributions to the muon anomalous
magnetic moment and are currently in the process of performing the next analysis.

In recent years lattice QCD methodology has evolved and now allows for complete
first-principles calculations at a high precision that is currently limited by the so-far ac-
quired statistics of the Markov chains. The short and intermediate distance contributions
are now computed at the needed precision for the Fermilab E989 experiment. The long-
distance contribution requires additional effort but with continued computing support, we
can match the precision and therefore fully utilise the new Fermilab E989 results not too
long after their final result is published in 2025.
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In our daily life, we are surrounded by materials designed for specific tasks, for example,
the constituents of batteries and microelectronic circuits, magnets or lubricants. Often it is
not a single physical process that leads to the performance of a material, it is the balance
between many possible paths a system can take that matters. The art of computational
materials science lies in cleverly sampling these possibilities, often guided by dedicated
experiments. Modern supercomputing resources allow for studies that give us an increas-
ingly complete picture of the real world. The following three articles are state-of-the-art
examples of what can be achieved with the help of large computational resources, as pro-
vided by the John von Neumann Institute for Computing.

The first article gives a very educational example of complexity in an applied topic,
the use of graphite as a solid lubricant. While traditionally the lubrifying properties of
graphite are attributed to the easy gliding of parallel graphene layers, like cards of a card
stack that are easily moved, this picture cannot account for the experimental observation
that a certain humidity is necessary to sustain the desired properties. Klemenz and Moseler
use a Density-Functional Tight-Binding (DFTB) method to simulate graphite under given
pressures and sliding conditions. Different amounts of water molecules are intercalated in
the gaps between the lamellae that can be parallel or perpendicular to the applied stress.
Although there is no simple picture evolving, statistically it can be seen that a certain H2O
concentration is needed to avoid “cold welding” of graphene lamellae that happen to be
oriented perpendicular to the sliding direction. A passivating water film, however, ensures
an easy motion of the layers. High-resolution transmission electron microscopy images
confirm experimentally the situation observed in the DFTB simulations. These insights
might help to design graphite-based lubricants that can be used under dry conditions, e.g.
for applications in vacuum.

A second example, of how reality can be more complex than traditional textbook
knowledge, is given by Dabrowski et al., who study the catalytic growth process of
graphene and its insulating analog, hexagonal boron nitride (hBN), on germanium sur-
faces. While in usual catalytic reactions of molecules, the catalyst should not undergo
structural changes in the process, here, where large two-dimensional layers are formed,
also the underlying Ge surface gets modified: Density functional theory (DFT) calcula-
tions reveal that the Ge(110) surface tends to flatten during the graphene growth process
as hydrogen from the molecular precursors removes Ge in the form of its hydride from
steps and small islands. In contrast, on the Ge(001) surface a faceting process can be ob-
served. The growth process of hBN on Ge surfaces is again very different, a fact that can
at least partially be attributed to the different properties of the hydrogen-passivated edges.
While graphene growth stops after a single layer, hBN easily forms multi-layer stacks.
High-quality graphene and hBN layers are not only promising materials for future micro-
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electronics but also explored for their catalytic properties. Studies in these directions on
defect structures in bilayer graphene are ongoing.

While the first two contributions report on atomistic studies on different lengths and
time scales, the third article goes into even smaller details of the electronic structure of a
certain class of compounds, looking at the fine interplay of transition-metal (TM) and lig-
and orbitals in nickelates. Here, Lechermann is interested in superconducting layered com-
pounds that bear some resemblance to the celebrated cuprates showing high-temperature
superconductivity. Also in nickelates, hole-doping is essential to get the desired proper-
ties but the question, of where the holes localise is still debated. It is generally agreed
that correlation effects in these oxides make a treatment beyond DFT necessary. Here
the dynamical mean-field theory (DMFT) is applied to the d-orbitals of Ni. But in this
study, special attention is paid to the oxygen p-states, which are usually just considered
as ligand states to the TM atom. A more refined treatment, consisting of a combination
of self-interaction corrected DFT with DMFT, is applied to two classes of nickelates that
give detailed insights into the hole distribution in these materials. Although the connection
to the superconducting properties is still an area to explore, the proposed method might
provide a way to cope with materials that are on the border between charge-transfer and
Mott-Hubbard insulators.

These three examples nicely illustrate how enhanced computational resources can lead
to deeper insights in the field of materials physics and chemistry – not only due to larger
length- and time-scales that can be simulated but also the increased sophistication of the
the applied methods. On the one hand, computational materials science thus can help to
optimise or improve industrially relevant processes, on the other hand, it also can uncover
qualitatively new physics.
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Graphite is a widely used solid lubricant. However, its lubricating properties are highly depen-
dent on ambient humidity. In very dry environments, graphite lubrication fails, severely limiting
its applicability. Traditional models to explain the lubrication properties of graphite do not fully
explain this phenomenon. The objective of this research project was to investigate the mech-
anisms behind graphite lubrication under varying humidity and high mechanical load on the
nanoscale. Through experiments and molecular dynamics simulations, the study demonstrated
that two key mechanisms govern friction in graphite-lubricated contacts: at low humidity, cold
welding occurs at the nanoscale, leading to high friction, while at humidities typical for labora-
tory air, water films form, allowing smooth sliding and reduced friction. In addition, we found
the formation of turbostratic carbon at the sliding interfaces, a phenomenon not included in any
current model of graphite lubrication. Our results provide a deeper understanding of the atomic
scale mechanisms of graphite lubrication and are summarised in a simple, instructive model.

1 Introduction

Liquid lubricants or greases are typically used to reduce friction and wear in technical
systems. However, in some applications, this is not possible. At particularly high tem-
peratures, for example in metalworking, liquid lubricants would evaporate or chemically
decompose. Solid lubricants are therefore often used in such applications. Graphite is one
of the oldest and most effective representatives of this category1.

X-ray diffraction experiments in the 1920s revealed that graphite consists of parallel
graphene lamellae bound by weak van der Waals interactions2. Based on this discovery,
the lubricating effect of graphite is usually explained using the so-called deck-of-cards
model3–5 (Fig. 1a). This assumes that the graphene layers can easily slide against each
other due to the weak interaction, analogous to playing cards in a deck. This model pro-
vides a simple and intuitive explanation for the low friction in graphite-lubricated sliding
contacts and is still widely presented in most textbooks today6. However, the first doubts
about this approach were raised as early as the 1930s7. At this time, the first aeroplanes
capable of reaching high altitudes were constructed. It was observed that the graphite con-
tacts in the electrical onboard generators underwent rapid wear under those conditions8.
This was later confirmed in controlled experiments, which showed that these observations
were due to the low humidity at high altitudes9.

The deck-of-cards model offers no explanation for this effect. Therefore, it was ini-
tially speculated that water molecules could intercalate between the graphene layers. It
was assumed that the water would increase the distance between the layers, reducing the
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Figure 1. (a) Deck-of-cards model for graphite lubrication with (right) and without water intercalation (left). (b)
Adsorption model. (c,d) Adsorption model extended by the shear-induced formation of turbostratic carbon for
high loads (c) and low loads (d). (Figure adapted from Morstein, Klemenz et al.18 CC BY 4.0)

interaction between neighbouring layers10 (Fig. 1a). However, this was disproved experi-
mentally11, 12. Since then, the scientific literature has been dominated by various versions
of the so-called adsorption model9 (Fig. 1b). It is assumed that water molecules attach
to dangling bonds on defects and edges of graphite crystals and passivate them13–16. This
prevents the formation of covalent bonds between the graphene layers, reducing friction
when the crystals slide against each other. The adsorption model has been tested in the
past for applications with low mechanical stress, such as electric contacts, with successful
results9. It has not been established whether this model can also be used to describe highly
loaded systems such as roller bearings.

The objective of this research project was therefore to investigate the mechanisms of
graphite lubrication in highly loaded contacts in detail. A particular focus was placed on
the influence of humidity on friction. The work was carried out in close collaboration with
an experimental group at the Karlsruhe Institute of Technology (KIT), which conducted
accompanying experiments.

2 Influence of Humidity on Graphite Lubrication

In the experiments, iron platelets were coated with graphite. A linear reversing tribometer
was used to measure the friction in an atmosphere with controlled humidity. The nanoscale
structure of the coatings was examined using high resolution transmission electron mi-
croscopy (HRTEM)17, 18.

Varying the humidity resulted in the expected behaviour. Measurements showed that
high friction and high wear occurred at very low humidities. As humidity increased, these
values decreased considerably. At 10-30 % rH, which corresponds to typical ambient air,
friction coefficients of 0.1-0.15 were measured. The HRTEM investigations also revealed
a surprising change in the structure of the sliding interfaces. While the typical graphite
structure with extended, parallel graphene layers could be observed in the initial state
(Fig. 2a), so-called turbostratic carbon formed as a result of the tribological load (Fig. 2b).
Like graphite, this is a material consisting of graphene lamellae. However, in contrast to
graphite, these are twisted and shifted against each other, and no ordered structure can
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Figure 2. HRTEM images of a graphite layer prior to tribological load (a) and after a tribometer experiment
under a load of 1 GPa at 24 % RH (b). Examples of setups for atomistic simulations with graphene lamellae
with parallel (c) and perpendicular orientation to the sliding direction with water between the surfaces (d,e) and
in dry contact (f). For perpendicular orientation, mixed H/OH passivated (d,f) and unpassivated (e) graphene
edges were considered. The orange atoms are coupled to the barostat for pressure control. Please note that
unterminated graphene layers tend to form hairpin-shaped structures that connect neighbouring graphene layers
(e). This phenomenon can also be observed when graphite powder is heated in vacuum24. (Figure adapted from
Morstein, Klemenz et al.18 CC BY 4.0)

be observed on larger length scales. In friction experiments with low normal loads, tur-
bostratic carbon formed only near the surface of the coatings. In contrast, a thick layer
formed under high loads. These structures were not anticipated and are not predicted by
the current models for the lubrication properties of graphite. In none of the experiments
conducted, graphene lamellae were aligned parallel to the direction of sliding, contrary to
the predictions of the deck-of-cards model.

Molecular dynamics simulations19, 20 were carried out to investigate the formation of
the turbostratic carbon at the sliding interface observed in the experiments. The Density-
Functional Tight-Binding (DFTB) method21, 22 was used to model the interatomic interac-
tions and guarantee an adequate reproduction of chemical reactions. This method is fast
enough to simulate systems consisting of a few hundred atoms over periods of a few hun-
dred picoseconds. The HRTEM investigations of the experimental graphite contacts prior
to tribological loading revealed areas in which the graphene lamellae were oriented par-
allel to the sliding direction as well as areas with perpendicular orientation to the sliding
interface (Fig. 2a). Therefore, systems with parallel and perpendicular orientation were
also considered in the simulations (Fig. 2c-f). The pressure was applied using a barostat23

and a constant temperature of 300 K was set by coupling the systems to a Langevin ther-
mostat19. A sliding velocity of 100 ms−1 was applied for a period of 300 ps. The number
of water molecules in the contacts was varied between 0 and 32, and normal pressures
between 500 MPa and 5 GPa were considered.

No chemical reactions could be observed in any combination of normal pressure and
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Figure 3. Structural evolution of a graphite slab during sliding in atomistic simulations. During sliding of two
graphite blocks in contact with one water molecule (a) at a normal pressure of 1 GPa, the surfaces cold weld
initially (b). After a few ps of sliding, an aromatic structure forms (c) and the shear stresses τ decrease (e).
However, the upper and the lower graphite blocks remain in contact by a few bonds which frequently form and
break during sliding (d). In a system with 5 water molecules (f), the surfaces also cold weld initially (g,h). After
0.17 ns of sliding, passivated surfaces without free water form and the upper and lower graphite blocks separate
(i). The separation leads to a significant reduction of the shear stress τ (j). (Figure adapted from Morstein,
Klemenz et al.18 CC BY 4.0)

number of water molecules in contact with graphene lamellae orientated parallel to the
sliding direction. However, if the lamellae were orientated perpendicular to the sliding
direction, various reactions and structural changes could be observed in the systems. For
the formation of turbostratic carbon at the friction interfaces, the systems with graphene
layers perpendicular to the sliding direction are therefore of particular importance and the
majority of the simulations therefore applied these setups (Fig. 2e).

The introduction of a large amount of water into the contact resulted in the formation of
continuous water films in the systems, effectively separating the upper and lower graphite
crystals from each other (Fig. 2e). Only small forces were required to shear these systems.
In contrast, the simulation of dry contacts and those containing only a small number of
water molecules showed cold welding of the surfaces in most cases (Fig. 3). The reduction
in water required to observe cold welding was dependent on the normal pressure in the
system. A smaller number of water molecules is sufficient for the formation of a water
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Figure 4. Average shear stresses in the different regimes for normal pressures of 1 and 5 GPa. The colours of
the markers distinguish the different regimes, the size of the marker indicates the probability of a regime. (Figure
adapted from Morstein, Klemenz et al.18 CC BY 4.0)

film at low loads than at high loads. When cold welding occurred, a layer of amorphous
material formed (Fig. 3c). Consequently, shearing the graphite crystals against each other
required higher forces (Fig. 3e). Occasionally, after some shearing of the systems, aro-
matic structures formed and the upper and lower parts of the system separated from each
other (Fig. 2d). In some cases, the separation was complete. In others, the upper and
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lower parts of the system remained connected by a few bonds. This effect was associated
with a significant reduction in friction forces (Fig. 3e). It turned out that this was not a
deterministic effect. If spontaneous passivation was observed in a certain combination of
water quantity and normal pressure, it was possible that it did not occur in a repetition with
slightly varied initial conditions. Overall, it was not possible to predict under which condi-
tions the separation would occur or how long shearing would have to be carried out before
it occurred. However, it was possible to calculate the probability of the systems occurring
in each configuration. It could be shown that cold welding at low water densities and the
formation of water films at high water densities on the surfaces are the dominant effects in
tribologically loaded graphite contacts.

To be able to make statements about the behaviour of macroscopic graphite layers
in tribological contacts, it can be estimated that a monolayer of water corresponds to a
density of approximately 12-13 nm−2 water molecules. A coating with a single monolayer
should easily form under normal laboratory conditions due to condensation from ambient
humidity. It can therefore be assumed that graphite contacts are typically in the water
film regime in ambient conditions, which provides an explanation for the good lubricating
properties of graphite. However, the water density only needs to decrease slightly to reach
the cold welding regime, especially at high pressures. It can therefore be assumed that
localised cold welding of the surfaces frequently occurs due to localised dry running of
the contacts. This provides an explanation for the experimentally observed formation of
turbostratic graphite at the sliding interface. The findings described are not included in any
currently existing model to explain the lubrication properties of graphite. However, the
known adsorption model can easily be extended to include the formation of turbostratic
carbon at the shear interface18 (Fig. 1c,d).

3 Concluding Remarks

These new findings provide an important contribution to a deeper understanding of the
lubricating effect of graphite. They also offer promising starting points for further in-
vestigations. One possible application of these findings could be the development of
novel, graphite-based solid lubricants for use in vacuum environments, such as those found
in aero-space applications or in highly specialised industrial processes. The knowledge
gained in this project therefore has the potential to provide important inspiration for future
research and drive forward new technological developments.
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Jarek Dąbrowski, Fatima Akhtar, Max Franck, and Mindaugas Lukosius

IHP – Leibniz-Institut für innovative Mikroelektronik,
Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

E-mail: dabrowski@ihp-microelectronics.com

An ab initio DFT study of nucleation and growth of graphene and hBN for high-performance
environmentally friendly microelectronics and of N and O co-doping of activated carbon for
metal-free catalysis is reported. As fringe benefit, a new Ge(110) surface structure was revealed.

1 Introduction

The need for environmentally friendly technologies in response to global climate change
necessitates innovation in materials. Simulations support these innovations by providing
insights into complex physical processes and guiding experimental efforts. When the ap-
proximations used are well-founded in physics, simulations reduce intuitive bias while
fostering reliable physical intuition comparable to insights gained from experiments. Ab
initio density functional theory (DFT) falls into this category, as it operates at the quantum-
mechanical level of atomic interactions. Although computationally intensive (which limits
its use), it is indispensable for modern technology development, especially in the design
and optimisation of materials at the atomic scale. By integrating theoretical and experimen-
tal insights, DFT simulations contribute to breakthroughs in material design, paving the
way for greener solutions. This includes microelectronics, where innovative ideas applied
on the atomistic level can help mitigate environmental impacts associated with cost-driven
performance improvements and miniaturisation, while also reducing energy consumption.

For instance, Cu ion contamination is a concern in water pollution caused by the semi-
conductor industry1, 2. The costs of removing Cu from wastewater are an important factor3.
With the growing adoption of graphene (sheets of sp2-bonded C atoms), which is typically
synthesised on Cu, this issue is expected to intensify, as copper released during etching and
transfer4–6 increases filtration costs and environmental risks. Cu from graphene production
may also contaminate devices and fabrication lines7, 8, compounding the financial and en-
vironmental pressures for innovative solutions. To address these challenges, the IHP is
exploring the option of growing graphene on semiconductor substrates where feasible9–14.

This work continues our previous studies15–19 done at the IHP with the support of the
John von Neumann Institute for Computing. We present selected results of our recent ab
initio DFT calculations run on the JUWELS cluster. The discussion focuses on the nucle-
ation and growth mechanisms of two-dimensional (2D) films for modern microelectronics:
graphene9–13 (Sec. 2) and hexagonal boron nitride (hBN)20–24 (Sec. 3). In addition, the role
of N and O co-doping in adsorption processes contributing to catalytic activity of activated
carbon25 (Sec. 4.1) is addressed and a concept of low-energy Ge(110) surface reconstruc-
tion reconciling two opposing models26, 27 (Sec. 4.2) is introduced.
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Figure 1. (a) The factors contributing to the response of Ge(110) and Ge(001) surfaces to graphene growth12.
(b-e) Graphene bonded to straight steps on: (b) Ge(110) and (c-d) on Ge(001), and e) to a flat Ge(001) with some
Ge dimer vacancy clusters attracted to the bonding front. The red and blue circles in the Ge(001) panels indicate
the atoms of the two Ge dimerisation domains: the dimers in domain A are perpendicular to those in domain B.
The elevation difference between the domains corresponds to a monatomic step height and equals to the depth of
a dimer vacancy. The panel (e) illustrates the initial stage of roughening by (107) facet formation.

2 Graphene on Germanium Surfaces

Graphene is a sheet of sp2-bonded carbon atoms. Among other applications, it is consid-
ered to be the fundamental material to enable technological breakthrough in microelec-
tronics through synergistic combination of multiple 2D films and silicon technology28.
The IHP evaluates its potential for usage in high-frequency transistors, in optical intercon-
nects, and in sensors. The Materials Research department of IHP investigates the growth
of graphene on Ge wafers and on Si wafers covered by Ge layers (Ge/Si), in the lab as
well as under conditions relevant to mass production12–14. For this study, graphene layers
were grown by chemical vapour deposition (CVD) on Ge from CH4 and H2 mixture at
about 850°C. This is by roughly 150°C less than when grown on Cu, which may reduce
the energy consumption6, making this technology more friendly to the environment than
the usual approach.

Ge(110) and Ge(001) surfaces respond differently to the same growth conditions:
Ge(110) flattens and Ge(001) roughens. Fig. 1a collects the key factors causing this dif-
ference, as revealed by our work. It builds on the combination of extensive experimental
work and the results of numerous DFT calculations for the total energies of atomic struc-
tures, for the energy barriers between the most important structures, the kinetic paths to
their formation, and the experimental conditions. The analysis required knowledge on the
surface energy differences, which are difficult to obtain from experiment (Sec. 4.2). Fur-
thermore, the information gathered by us for these systems previously9, 29, 10 was accounted
for. This includes the energetics and kinetics of CH4 adsorption and decomposition and
the hypotheses on the formation mechanism of the (107) facets on Ge(001). The following
discussion illustrates some of the aspects involved.

A clean Ge is surface is reactive against CH4, causing the impinging molecules to dis-
sociate step by step down to single C and H atoms. When exposed to CH4, the surface
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becomes initially covered by a mixture of CH4 fragments and their polymers. The com-
position and concentration of this mixture depends on the substrate temperature, on the
partial pressures of CH4 and H2, and – locally – on the size of the graphene nucleus that by
chance has been formed within about a micrometer from the site of interest, i. e. , within
the distance covered by an average C atom before it eventually dissolves in the bulk.

The smallest of these nuclei contain few C atoms and are mobile. They combine into
larger, already immobile flakes. Van der Waals forces orient them parallel to the surface.
Such a flake prefers to be attached to a surface step (Fig. 1b-d) rather than to the flat surface
(Fig. 1e) because the in latter case it must be bent along the edge, which costs energy.

Being immobile, however, the larger flakes appear at random sites, not necessarily
at steps. Yet the bonded Ge(001)-graphene boundary attracts mobile native defects (Ge
adatoms, ad-dimers, surface vacancies). This creates new surface steps along the flakes.
Furthermore, the flakes on Ge(001) can minimise their lateral strain as well. They achieve
this by a slight rotation with respect to Ge dimer rows (Fig. 1e), which happens to orient
the bonded boundary along the line of crossing between the Ge(001) and Ge(107) planes.
The surface energy of Ge(107) is relatively low, so a (107) facet can extend away from the
boundary. We verified that the flake can expand itself onto the facet simply by enlarging its
“fingers” visible in Fig. 1e and then filling the regions between them with graphene. Even-
tually, the Ge(001) surface develops a system of (107) nano-facets (Fig. 1a), so that more
CH4 can convert into low-strained graphene than it would be possible on a flat Ge(001).

This is in opposition to what happens on Ge(110). While the reconstruction of Ge(001)
is simple (just dimerisation of the surface atoms), Ge(110) has an intricate structure with
sizeable building blocks (Sec. 4.2), which hinders the formation of graphene-induced
facets. The alternative, preferred scenario is then that instead of accumulating in front
of the bonded flake to form a new terrace (which would lead to surface roughening) the Ge
vacancies produced by GeH4 desorptiona consume Ge(110) step edges, gradually remov-
ing the existing islands and making the surface smoother and smoother (Fig. 1a).

3 Hexagonal BN

Monolayer hBN is a 2D wide band-gap insulator with hexagonal lattice and atomic struc-
ture that resembles that of graphene (which is a 2D metal). Both materials have the form
of a 2D honeycomb built of hexagonal atomic rings (C6 in graphene, B3N3 in hBN). The
lattice constant of hBN is by 1.7% larger than that of graphene.

Apart from optimising the graphene/Ge/Si growth recipe, we attempted the growth of
heterostructures on Ge/Si and on Si, consisting of monolayer graphene and multilayer hBN
films. Here we discuss the growth of the first hBN layer on Ge(001) and then the growth
of subsequent hBN layers, that is, the growth of hBN on hBN.

The purpose of the calculations was to reveal the reactions of BxNyHz species with
the substrate, the nucleation and expansion of seeds, and the kinetics of generation and
annihilation of defects20–24. To address the posed questions one must treat a huge number
of structures and structural transitions (our associated database contains by now more than
30k items), of size varying from isolated atoms and molecules, through isolated or peri-
odic clusters of 100-200 atoms, up to periodic clusters consisting of more than a thousand
atoms. The access to the JUWELS cluster was therefore crucial for this project.

aHydrogen comes from CH4 and from H2
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Figure 2. (a) Dissociative adsorption of B3N3H6 on Ge(001): the path by direct BN ring splitting. The molecule
in the leftmost insets is physisorbed, the rightmost insets show B3N3H6 split into BN2H3 and B2NH3. B is brown,
N is green, H is blue, Ge is sepia. (b) Ge(001) coverage with B and N atoms in equilibrium (900°C) with BnNn.

3.1 Nucleation and Growth of hBN from B3N3H6 on Ge(001)

B3N3H6 physisorbs on Ge(001) with no barrier, gaining 0.3 eV (Fig. 2a, leftmost insets).
At the processing conditions, the barriers for subsequent chemisorpion are surmounted
readily. For instance, when a H atom jumps from B3N3H6 onto Ge, a pair of chemisorbed
H and B3N3H5 appears. The barrier depends on whether the dehydrogenated atom is B
(0.4 eV, GeB bond formed) or N (0.7 eV, GeN bond formed). Alternatively, the physisorbed
molecule splits into BN2H3 and B2NH3 (the barrier is 0.7 eV, Fig. 2a) and these fragments
separate with a barrier of 1.8 eV (i. e. , within the range typical for objects mobile on Ge).

The adsorbed fragments are mobile and unstable: they collect H and desorb, or lose
H and become more strongly bonded, or polymerise. B3N3H5 can split by an H-assisted
reaction similar to that shown in Fig. 2a. It is unclear if further opening of BN bonds
is viable (although a BN dimer splits into B and N atoms), but what is crucial for the
monolayer grow is that precursors with split BN rings are available. Namely, closed rings
can produce only stoichiometric hBN with armchair edges, while with half-ring precursors
any shape and any chemically realistic deviation from stoichiometry can be achieved.

The flake edges are strongly bonded to the substrate. For example, nearly all B and
N atoms of a flake with its armchair edge perpendicular to dimer rows on flat Ge(001)
make bonds with Ge atoms. At 900°C and H2 partial pressures around 10−3 mbar (the
processing conditions), H occupies about 0.1% of all edge atoms. Solely at H2 pressures
in the atmospheric regime (e. g. , at 100 mbar) this occupation may reach a few per cent.

The hBN flakes grow in a manner similar to that of graphene (Sec. 2): a cluster nu-
cleated by chance collects material from its surrounding. Fig. 2b illustrates this on the
example of the growth from atomic B and N. As the flake grows, the concentration of B
and N in the surrounding decreases, reflecting the increasing stability of the flake. BnNn

clusters with n equal to or barely exceeding 6 do not form sixfold rings (Fig. 2, insets).
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Figure 3. (a) Spontaneous H2 emission from the hBN armchair edge, with and without Zero Point Energy (ZPE)
correction. In the inset, N is green, B is brown, and H is blue. (b) Step flow velocity during growth of multilayer
hBN. The hydrogenated sites are passive, only the H-free sites can adsorb B3N3H6 from the gas phase. The
attempt rate for spontaneous H2 emission from armchair hBN edges was estimated from the transition state
theory. The steric factor for B3N3H6 attachment to an H-free site on the step edge is assumed to be 1.

This is an edge effect: such short or open rings occur on edges of even large flakes.

3.2 Growth of Multilayer hBN Films

Instead of stopping when the catalyst is fully covered by a single layer of the passive film,
the hBN growth continues indefinitely. But no multilayer graphene would grow at com-
parable conditions from C6H6 (equivalent of B3N3H6), and not even from more reactive
CH4, unless the precursors have been activated. Activation is thus expected also during
hBN growth. We found that it must occur on hBN edges (Fig. 3a). In contrast to what
happens on graphene, H2 emission can keep the hBN growth front free of hydrogen even
below 850°C (Fig. 3b). The sticking coefficient of B3N3H6 to a hydrogen-free BN dimer
is close to 1 because the energy barrier for this attachment is zero within the accuracy
of the calculations and the molecule is pre-oriented by preliminary physisorption on the
hBN surface. The armchair edge is free of hydrogen when the partial pressure of H2 is
10−6 mbar; even when it is increased to 10−2 mbar, only a few per cent of the edge sites
are passivated. At the B3N3H6 partial pressure of 10−6 mbar the time to reach this equilib-
rium is only marginally longer than the average time that elapses between two subsequent
collisions of B3N3H6 with the edge. The attempt rate for H2 escape from the dimer was
estimated as 3·1014 Hz. The growth rate obtained from the computed step flow velocity
(Fig. 3b) and from the step-step distance estimated from TEM images agrees within the
numerical and experimental uncertainties with the observed growth rates.

We have also tested the hypothesis that another process is responsible for the activation.
We considered the possibility of H out-diffusion along screw dislocations in hBN from the
growth front onto Ge, of catalytic activation of B3N3H6 to B3N3H4 or of H2 to atomic H on
hot elements in the chamber, and of catalytic activation of B3N3H6 on orientational grain
boundaries in hBN. The mechanism on the second place in the plausibility ranking is the
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Figure 4. (a) Correlation between dipole moment, oxygen penetration depth, and desorption energy (circle diam-
eter) for a hole in the top layer of bilayer graphene (inset, top view). The hole edge is saturated by pyridine N.
(b) Overview of desorption energies computed for toluene, isopropanol, and water adsorbed on various few-atom
holes with various N and O functional groups. The insets illustrate the strongest adsorption cases (side view).

activation on hot elements, but it appears to be incompatible with the possibility to grow
hBN at temperatures and pressures well below the limits estimated from the calculations.
Therefore, spontaneous H2 emission (Fig. 3) comes out as the only known realistic answer.

4 Examples of Work in Progress

4.1 Catalytic Activity of 2D Films

Activated carbons have enormous application potential as catalysts30, e. g. in the oxidative
dehydrogenation of hydrocarbons31 or in the oxidation of SO2 to SO3

32. Defects and an-
chors of functional groups influence the surface interactions with the molecules from the
liquid or gas phase and their activation towards catalytic transformations33.

Catalytic activity of a surface begins with adsorption of the participating species. We
currently investigate the influence of N and O functional groups on adsorption of test
molecules on openings in bilayer graphene (Fig. 4). The model substrate is periodic
to assure that its density of states is metallic, as in our experiments25, in which struc-
turally comparable samples of porous activated carbon are prepared by pyrolysis of su-
crose (C12O11H22), pure or with urea (CO(NH2)2) admixtures. The calculations show that
the desorption energy of isopropanol (C3H7OH, a polar test molecule that is able to form
hydrogen bonds through its OH group) correlates positively with the reduction of the dipole
moment in the adsorbate-substrate system; this corresponds to the molecule being partially
drawn into the opening (Fig. 4a). Nitrogen doping of an O-containing substrate has the
tendency to increase the desorption energies of isopropanol and water even when the open-
ings are only of the size of a few C atoms, but the effect on toluene (C6H5CH3, non-polar
test molecule that forms no hydrogen bonds) is practically non-existent (Fig. 4b).

Experimental verification of the computed desorption energies by temperature pro-
grammed desorption (TPD) measurements turned out to be difficult. The activation en-
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Figure 5. Ge(110) reconstructions. (a-c) Representative 8 × 10 reconstruction models. Pentamers are red, or-
dinary (110) zig-zag atoms are green. (a) The densified UBB7 model (+9Ge, 18% at 400°C), the additional
pentamers are black. (b) The original UBB4 model27 (0Ge, abundance 0.01%). (c) The UBB4+4V model (-4Ge,
65%) is on the bottom, the vacancy neighbours are black. (d) Approximate abundance of structures with various
net balance of Ge atoms. (e-f) STM images of occupied states. (e) simulated for UBB4+4V, (f) measured.

ergies extracted from the heating rate dependence of the TPD spectra were unphysically
low, which indicates that the spectra were dominated by desorption from long nano-pores,
where re-adsorption and bottlenecks in the gas flow play the dominant role. Experiments
on samples prepared by a modified procedure are in progress.

4.2 Ge(110) Surface Reconstruction

Knowing the atomic structure of a surface is prerequisite for reliable simulation and in-
depth explanation of chemical and atomic-scale surface processes (Sec. 2). Clean Ge(110)
is covered by objects visible in STM images as pentamers of atomic-sized spots. Af-
ter long anneals these pentamers tend to arrange in rows separated from one another by
strips of apparently flat surface (Fig. 5f). The atomic origin of the pentamers has been
the subject of a long debate. We reconciled two structural models recently proposed for
these pentamers: the adatom-based Universal Building Block model (UBB)27 (Fig. 5b,
0Ge or UBB4) and the vacancy-based Tetramer Heptagonal- and Tetragonal Ring model
(THTR)26. The search for a new model was motivated by our discovery that in contrast
to the expectations from experiments, the UBB4 Ge(110) 8× 10 surface has a tendency
to acquire additional UBB pentamers (Fig. 5a, +9Ge or UBB7). This behaviour is sup-
pressed and the surface energy is reduced when the UBB4 structure is augmented by two
vacancy pairs (Fig. 5c, -4Ge or UBB4+4V), each rebonded as in THTR. The STM images
simulated for this model are compatible with experiment (Fig. 5e-f).

5 Approach

Pseudopotential plane-wave DFT calculations were done with Quantum Espresso34 using
the PBE functional35 and in special cases by the hybrid B3LYP functional36, 37. Van der
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Waals forces were treated as non-local DFT (rVV10)38. Reaction paths were determined
with the nudged elastic band - climbing image (NEB-CI) algorithm39. The accuracy of
pseudopotential calculations for isolated molecules was verified by all-electron calcula-
tions with NWChem40, using the double-hybrid B2PLYP41 functional. Vibrational spectra
were computed within the density functional perturbation theory (DFPT)42.

6 Concluding Remarks

Insight into problems pertinent to materials development for environmentally friendly tech-
nologies was obtained from DFT simulations coupled to experiment. The difference in the
surface evolution of Ge(001) and Ge(110) in response to graphene growth by CVD was
explained (Sec. 2) and, as a fringe benefit, a structural model reconciling two dissimilar
concepts of Ge(110) reconstructions was formulated (Sec. 4.2). The growth mechanism of
seeding (on Ge) and growth of multilayer hBN films was proposed and positively verified
against the measured growth rates (Sec. 3). The role of N/O co-doping of activated carbon
in adsorption of polar and non-polar molecules was addressed (Sec. 4.1).
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While key attention in transition-metal oxides is usually devoted to the d states of the transition-
metal ion, the O(2p) states usually also carry important physics. We here examine these p states
in representatives of the novel superconducting nickelates, as described in realistic dynamical
mean-field theory. Since the materials are located on the boundary between Mott-Hubbard and
charge-transfer systems, the role of oxygen is expectedly subtle. Strong reduction of doped
holes on oxygen and first asymmetry effects are featured in infinite-layer nickelates. A pro-
nounced nature of bridging pz orbitals is identified in the La3Ni2O7 system.

1 Introduction

In late summer 2019, the long-sought discovery of superconductivity in nickel oxides fi-
nally opened up a new research field in condensed matter physics. Strontium doping of thin
films of so-called infinite-layer NdNiO2 on SrTiO3 substrates leads to a superconducting
phase below Tc ∼ 15 K1. Early follow-up works revealed further similar superconducting
scenarios in Sr-doped (La,Pr)NiO2, as well as in the stochiometric multilayer compound
Nd6Ni5O12

2. All these low-valence nickelate materials with Ni(3d9−δ) filling share the
fact that the apical oxygens of the basic NiO6 octahedra are missing.

In early spring 2024, a second class of superconducting nickelates emerged. The bi-
layer La3Ni2O7 was reported superconducting under high pressure p > 14 GPa with a
much higher Tc ∼ 80 K3. Soon after, the trilayer compound La4Ni3O10 was proven to also
show superconductivity in a similar pressure regime, but with an again lower Tc ∼ 20 K4.
Those nickelates with Ni(3d8−δ) filling have intact NiO6 octahedra.

From the start, the superconducting nickelates were compared to high Tc cuprates,
because of their proximity in the periodic table and the akin building block of square-
lattice transition-metal (TM) oxide planes. However the degree of similarity in terms of
physical properties and superconducting nature is still under heavy debate. For detailed
representations of the known and discussed features from experiment and theory, we here
refer to available early review articles, e.g. Refs. 5–8. One key issue concerns the number
of relevant Ni(3d) frontier orbitals. While there is strong consensus that only the dx2−y2
TM orbital is of crucial importance in high-Tc cuprates, in general electronic properties
of nickelates the complete eg subshell {dz2 , dx2−y2} has to be taken into account. At
least for the d8−δ bilayer and trilayer superconducting compounds, a pure single-orbital
cuprate(-like) physics seems very unrealistic both from theory and experiment.

Yet the present work does not focus on the detailed characteristics of the Ni(3d) degrees
of freedom. Instead, it takes a deeper look into the behaviour of the O(2p) states in the nor-
mal state of superconducting nickelates. While the impact of those p states is more subtle,
some interesting aspects may still be revealed and learned from first-principles many body
theory. We show that the ligand-hole concept, i.e. deviation from the simplistic purely-
ionic O2− picture, is a steady companion in these nickel oxides. It asks to be properly
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considered, weighed and addressed, both in the low- and high-energy regime. Noteworthy
differences in the energetics and the occupation between pz and px,y orbitals are observed.

2 Theoretical Background and Approach

The physics of strong electron correlation in materials such as the superconducting nicke-
lates asks for a proper treatment of both, the realistic band theoretical aspect as provided
by the chemical bond in the solid, as well as the explicit many-body aspect of interacting
electrons. The state-of-the-art approach to realise such a faithful description is given by
the hybrid scheme of combining density functional theory (DFT) with dynamical-mean
field theory (DMFT), i.e. the so-called DFT+DMFT method (see, e.g. Ref. 9 for the ba-
sics). There, usually the transition-metal (TM) sites are the centre of attention, serving
as DMFT impurities, while the description of the ligand states remains on the DFT level
(albeit surely coupled to the strongly correlated TM sites). However, in nickelates, we are
most often dealing with possible low-energy states of strongly hybridised TM(3d)-O(2p)
character. This is different compared to early TM oxides, e.g. titanates or vanadates, were
the O(2p) states only weakly hybridise into the low-energy physics and the systems reside
more robustly in the so-called Mott-Hubbard regime of correlated materials10. There, the
effective Hubbard Ueff is smaller than the charge-transfer energy ∆ = εd − εp, with εd,p
describing the average onsite energy of the TM(3d) and O(2p) states.

From a basic quantum-scattering perspective, TM(3d) states are difficult to handle by
sole band theory. Because the 3d orbitals are not orthogonalised on lower lying d orbitals,
their electrons approach the ion core region quite easily. This leads to the observed strong
competition between the electrons’ itinerant vs. localised character in the solid state, giv-
ing rise to the plethora of correlation effects emerging from TM(3d) compounds. Notably,
also O(2p) is not orthogonalised on lower lying p states and therefore the electrons are also
more localised than 3p or even higher p electrons. While due to the high electronegativ-
ity, smaller orbital Hilbert space and strong bonding tendencies, the quantum-fluctuating
character of O(2p) is much less pronounced than TM(3d), correlation effects beyond DFT
can still matter also from that perspective. This may especially be true when O(2p) plays
a more prominent role in the low-energy regime of late TM oxides. Therefore, on the
methodological level, the differentiation in the correlation treatment of TM(3d) and O(2p)
states may be too severe in standard DFT+DMFT for certain classes of materials. And
understandably, issues such as the pd splitting, p-induced renormalisation effects or in-
triguing ligand-mediated exchange might not be well described. There are several ideas in
going beyond this strong-differentiation treatment, for instance by combining DMFT with
the GW method11–13 or with screened-exchange formalisms14. Our choice builds up on
introducing the self-interaction correction (SIC) scheme for oxygen orbitals on the pseu-
dopotential level15, to be utilised in a complete charge-selfconsistent DFT+DMFT frame-
work16. This so-called DFT+sicDMFT scheme17 improves the pd-splitting description and
handles p-induced correlation effects (e.g. explicit oxygen-mediated band narrowing). The
SIC naturally enables correlation effects free from the need of symmetry breakings, but is
numerically much less demanding as, e.g. GW+DMFT.

In the present context of superconducting nickelates, the Ni sites act as DMFT quantum
impurities and Coulomb interactions on oxygen enter by the SIC-modified pseudopoten-
tials. The DFT part consists of a mixed-basis pseudopotential code18–20 and SIC is applied
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to the O(2s, 2p) orbitals via weight factors wp. While the 2s orbital is fully corrected with
wp = 1.0, the choice15, 17, 21 wp = 0.8 is used for 2p orbitals. Continuous-time quantum
Monte Carlo in hybridisation-expansion scheme22 as implemented in the TRIQS code23, 24

solves the DMFT problem. A five-orbital Slater-Hamiltonian, parameterised by Hubbard
U = 10 eV and Hund exchange JH = 1 eV21, governs the correlated subspace defined by
Ni(3d) projected-local orbitals25. Crystallographic data are taken from experiment.

3 General Remarks on Oxygen p States in Nickelates

Nickelates are special in their correlation physics. While cuprates are usually located in
the strong charge-transfer regime, i.e. the effective Hubbard Ueff is way larger than the
charge-transfer energy ∆, the nickelates are closer to a competing regime of Mott-Hubbard
versus charge-transfer dominance. Note that the calculational U > Ueff in DFT+sicDMFT,
since further screening processes occur in the charge-selfconsistent many-body approach.
The levelling of Ueff and ∆ leads to a subtle role of O(2p) regarding the interplay of its
low- and high-energy electronic character. In a Mott-Hubbard system, the oxygen p states
reside in their localised high-energy being, whereas their itinerant nature is most vital in
a charge-transfer system. The subtlety is also reflected in the ligand-hole physics of in
fact many nickelates. Fig. 1 displays the evolution of the charge-transfer energy ∆ and
the amount of holes in the oxygen 2p shell (per single O ion) hp from high to low valence
of Ni in given Ruddlesden-Popper(-like) nickelates. The data for ∆ is computed from
DFT+sic, i.e. a conventional Kohn-Sham calculation but using the SIC-modified oxygen
pseudopotential. As the result of the fully-interacting problem, the data for hp is obtained
from DFT+sicDMFT.

From formal Ni3+ to formal Ni+, the value of ∆ rises more or less monotonically, as
expected from the ionic physics of these elements. This means, O(2p) and Ni(3d) split
energetically stronger when the Ni valence becomes smaller. The filling of the O(2p) shell
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Figure 1. Charge-transfer energy ∆ and O(2p) hole content hp for selected standard (nd ≤ 8) and reduced
(nd > 8) Ruddlesden-Popper nickelates with formal Ni(3d) count nd. Note the plateau-like region in ∆ for
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is set by ∆, hoppings as well as by the Coulomb interactions in the system, most notably
the on-site Coulomb Upp and the inter-site Coulomb Upd. In other words, the standard
identification of O2− in oxides is not necessarily always true. For instance, this ionic
configuration amounts to a large Coulomb penalty within O(2p), which should be properly
considered within the full group of mechanisms on the given lattice that eventually fix hp.
Intuitively, we expect for small ∆ a larger hp since electrons can more easily be transferred
between sites, i.e. the degree of covalency is increased. Indeed, for formal Ni3+ the hole
content on oxygen is substantial, amounting to roughly one charge unit within the unit cell.
This ligand-hole 3d8L state is well-known for nickelates with nominal higher valence than
the ideal 2+ oxidation in the solid26. However, as shown in Fig. 1 this hole content does
not fall to zero for less than nominal Ni2+. The situation is more intriguing due to the
various electronic mechanisms at play, leading to quite some finite covalency also for the
lower-valence nickelate. Again, the O2− fully-ionic picture is usually fine as a first guess,
but by no means always the full truth in a complex realistic many-body compound. This
limit is here only reasonably-well reached for the Mott-charge-transfer insulator La2NiO4.

While the existing basic Mott vs. charge-transfer schemes provide good principle guid-
ance, the actual charge distribution in a concrete material is quite sophisticated, building up
on the interplay of a multitude of physical processes (in a Hilbert space enclosing usually
more than only 3d and 2p states). Boiling down the full physics to Ueff and ∆ only, often
appears too narrow. In this regard, also a more detailed high- vs- low-energy differentiation
appears of vital importance.

4 Infinite-Layer NdNiO2 System

We focus on the superconducting nickelates and first analyse the O(2p) states in low-
valence NdNiO2 at stoichiometry and with finite hole doping. To set the stage, Fig. 2
summarises the established k-resolved picture within DFT+sicDMFT21, 27. At stoichom-
etry, Ni-dx2−y2 is (nearly) Mott-insulating and finite conductivity is (mainly) carried by
weakly-filled self-doping bands (cf. Fig. 2a). The latter have mixed character of Nd(5d)
as well as Ni-dz2 (around Γ) and Ni-dxz,yz (around A) (see Fig. 2b,e). With hole doping,
the flat-band part of Ni-dz2 for kz = 1/2 is shifted towards the Fermi level (cf. Figs. 2d),
presumably playing a crucial role in the emergence of superconductivity. This prominent
role of the Ni-dz2 flat-band part is similarly revealed in GW+DMFT28. Note that stan-
dard DFT+DMFT studies without correlations on oxygen result in weaker correlations for
Ni-dx2−y2 , enabling a more cuprate(-like) picture for superconductivity (e.g. Refs. 29,30).

Fig. 1 reveals that even with a quite large ∆ = 5.0 eV, the hole content hp amounts
to 0.24. The resulting k-resolved character of the O(2p) states is depicted in Fig. 2c,f.
In the stoichiometric case, O(2p) dominated dispersions are easily visible in the energy
window ∼ [−10,−5] eV. With hole doping, the oxygen p states mix-in more strongly near
the Fermi level and into the shifted self-doping bands above. For instance, around the R
point, the flat band at εF is a strong mixture of Ni-dx2−y2 , Ni-dz2 and O(2p). Interestingly,
the weak Ni-dx2−y2 low-energy weight in the kz = 0 plane with Γ, X, M is not sizeably
hybridised with the p states. This underlines the high-∆ character with seemingly weak
Zhang-Rice nature31 of it’s low-energy physics upon hole doping.

Weak Zhang-Rice character is also observable in the low-energy part of the k-
integrated spectra, which is displayed in a larger energy range in Figs. 3(a-c). While the
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Figure 2. k-resolved spectral function for stoichiometric NdNiO2 (a-c) and with 15% hole doping (d-f). (a,d)
full A(k, ω). (b,e) Fatspec representation resolving Ni-dx2−y2 (yellow), Ni-dz2 (pink) and Ni-t2g (cyan). (c,f)
Same as (b,e) but Ni-t2g replaced by O(2p).

small p weight is comparable to the small d weight at stoichiometry δ = 0 close to the
Fermi level, the low-energy d weight strongly dominates over p for finite hole doping δ.
Notably, as drawn from the integrated pz and (px + py) spectral weight in Figs. 3(d-f),
the overall oxygen hole content only increases marginally with substantial hole doping
from replacing La by Sr. In other words, most doped holes do not localise on oxygen as
in cuprates, but elsewhere, in agreement with electron energy-loss spectroscopy32. In the
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Figure 3. k-integrated spectral function for stoichiometric NdNiO2 (a,d), with 12.5% (b,e) and 25% (c,f) hole
doping. (a-c) Projected O(2p) and Ni(3d) spectrum. (d-f) Projected O-pz and O-(px + py) spectrum, with
numbers providing the respective filling.
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DFT+sicDMFT calculations, doped holes are mostly hosted in the Ni-dz2 orbital21. Be-
sides the total O(2p) occupation, a possible asymmetry between pz and (px + py) filling
may have impact33. But the data shown in Figs. 3(d-f) show only rather weak asymmetry
for the total p filling. Yet there is some asymmetry in the low-energy weight, especially
with hole doping. For δ = 0.125, the pz weight close to εF is quite small, while for
δ = 0.25 it reaches nearly the same value as the one for (px + py). This may be under-
standable from the special role of pz , not meeting a Ni atom in nearest-neighbour distance.
For larger δ, low-energy pz weight becomes more easily coherent with sizeable Ni-dz2
content in the same energy range.

5 La3Ni2O7 System

The present challenges of the La3Ni2O7 system, representing here the Ni(3d8−δ)
superconducting-nickelate class, are not linked to missing apical oxygens or additional
doping features. Here, the sophistication lies in complexities of structural kind and the
subtle modifications realised in the high-pressure regime. Canonically, the La3Ni2O7

compound is identified as the bilayer, so-called ’2222’, representant of the m-layered
Ruddlesden-Popper series Lam+1NimO3m+1. Recently, an alternation of mono- and tri-
layers, so-called ’1313’, has been found as a competing structural motif34–36. The distinct
impact of high pressure on the electronic structure is heavily debated. At presence, it seems
that the (non-)appearance of a Ni-dz2 -based flat band depends on pressure8.

Here, we again want to focus on the O(2p) degrees of freedom and their main char-
acteristics in the correlated electronic structure. Nominally, a Ni7.5 filling results from an
ionic-limit picture assuming O2− and La3+. However, the charge-transfer energy ∆ = 3.0
is comparatively low, and correspondingly, the ligand-hole content hp = 0.40 rather high
(see Fig. 1). In general, nickelates with formal oxidation states higher than Ni2+(d8) form
ligand holes on oxygen to keep an effective Ni2+ configuration. From DFT+sicDMFT,
this is also true for La3Ni2O7 with near d8 filling and one electron/hole in the dz2 and the
dx2−y2 orbital, respectively. Recent experiments37 confirm the theoretical predictions of
existing ligand holes. Figs. 4(a-c) show that also the low-energy p-weight is somewhat
enhanced compared to the infinite-layer case, though a very strong Zhang-Rice picture
as in cuprates does still not emerge. Furthermore, applied pressure appears effective to
shift both, main Ni(3d) and main O(2p) peak to slightly deeper energies in the occupied
spectrum.

It proves informative to plot the pz- and (px + py)-resolved spectral weight for the dif-
ferent symmetry-inequivalent oxygen sites in the given primitive cells, as done in Figs. 4(d-
f). For instance, it may be observed that for all three discussed cases here, i.e. ambient-
pressure 2222, high-pressure 2222 and high-pressure 1313, the px,y orbitals in the LaO
fluorite block separating the NiO2 multilayers are responsible for the high-energy ligand-
hole peak in the unoccupied spectrum (dashed dark curves from the dark-oxygen-ion sym-
metry class). One also realises that the apical oxygens connecting NiO2 (red-coloured
ions), here termed bridging (BR) oxygens, show generally the largest energy splitting be-
tween pz and px,y orbitals. The most interesting behaviour is attributed to the low-energy
region around the Fermi level, where the pz orbital of the BR oxygens has apparently a
prominent role. Especially for ambient-pressure 2222, the corresponding BR pz orbital
has the strongest and peaked spectral weight at εF, and furthermore a dominant low-
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Figure 4. k-integrated spectral function for La3Ni2O7, with La: grey, Ni: darkblue. (a,d,g) 2222 structural
motif at ambient pressure and (b,e,f) at high pressure, as well as (c,f,i) 1313 structural motif at high pressure.
(a-c) Projected O(2p) and Ni(3d) spectrum. (d-f) Projected O-pz and O-(px + py) spectrum for symmetry-
inequivalent oxygen sites, respectively. (g-i) As (d-f), but summed over all oxygen sites and with numbers
providing the respective filling. Note that possible small asymmetries between px,y are averaged in the plots.

energy ligand-hole weight up to ∼ 0.3 eV above the Fermi level (see Fig. 4d). Second
in low-energy weight are the in-plane px,y orbitals (green- and lightblue-coloured ions) of
the NiO2 planes, in line with experiment37. Hence there is a quite substantial low-energy
asymmetry in favour of pz within the available O(2p) states. This finding may by linked
to the spin-density-wave transition in ambient-pressure La3Ni2O7, which from experiment
seems majorly connected to Ni-dz2 involvement38. The p-asymmetry qualitatively still
holds at high pressure right at the Fermi level, but is shifted to the higher unoccupied re-
gion above εF (see Figs. 4e,f). For the 1313 structural motif at high pressure, the pz orbital
of the BR oxygen ion connecting inner at outer layer of the trilayer segment is more low-
energy dominant than the one connecting the trilayer with the monolayer segment. When
integrating over all symmetry-inequivalent O(2p) degrees of freedom in Figs. 4(g-i), the
discussed asymmetries are mostly evened out, albeit an enhanced pz low-energy weight is
still easily observable for ambient-pressure 2222. A minor slight increasement of the total
hole content on O(2p) with pressure may be additionally read off from the data.
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6 Concluding Remarks

A detailed inspection of O(2p) degrees of freedom proves useful and necessary for super-
conducting nickelates, because of their intriguing placement between strong Mott-Hubbard
and strong charge-transfer character. Mild orbital asymmetry and lack of significant fur-
ther oxygen holes upon additional doping are revealed for the infinite-layer systems. On
the other hand, a pronounced low-energy p-orbital asymmetry towards the briding pz or-
bital is encountered in the La3Ni2O7 system. While some of these observations sound
rather subtle, they still may have relevant impact on the low-energy superconductivity phe-
nomenon in these materials. Further work in weighing the relevance of the various site-
and orbital sectors in these challenging materials is required.
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Although the fundamental equation for describing the dynamics of many-body solid state
systems are known since the advent of quantum mechanics, an accurate numerical solution
of the equation is impossible due to macroscopically large number of elementary degrees
of freedom. Therefore, successful approaches are based on the identification of the relevant
effective degrees of freedom and their interactions to understand the physical properties of
a system. These effective low-energy theories, such as a Heisenberg or a Hubbard model,
might appear simple in its structure, but the quantum mechanical entanglement can cause
a rich variety of different competing macroscopic phases. Statistical mechanics is required
in combination with adequate approximations to include thermal or quantum fluctuations
of the problem for determining the correct state of matter.

The effective degrees of freedom are typically either localised spins in insulating mate-
rials or quasiparticles with bosonic or fermionic nature describing elementary excitations
above the ground state. Collective phenomena such as superconductivity, superfluidity, or
different types of magnetic order can emerge from the interactions between these effective
degrees of freedom. It has been shown that such a low energy effective description can
also be engineered in ultra-cold atomic gases: Optical lattices allow to realise model sys-
tem and very precisely tailor their interactions such that collective phases in 1D and 2D
lattice models can be studied by tuning its parameters. In designing artificial matter, one
can also imagine shaping local superconducting islands that are connected by a Josephson
tunnelling leading to an Josephson junction array.

Magnetic order comes in a rich variety of different phases such as ferro- and ferri-
magnetisms, antiferromagnetism, altermagneticm, commensurable and incommensurable
spin-density wave phases as typical example of itinerant magnetism. Much debated are
frustrated lattices where competing interactions can suppress the magnetic order and lead
to a so-called disordered spin liquid phase. Burkard et al. start from localised spins as ele-
mentary degrees of freedom. Spins have a simple algebra but they fulfil neither fermionic
or boson commutation relations. To make spin models accessible to a very successful
field theoretical approach developed for fermions, the authors use a pseudo-majorana rep-
resentation of each spin and apply the functional renormalisation group approach to the
problem. Solving the spin dynamics by numerically integrating coupled differential flow
equations for different system sizes allows access to temperature dependent phase diagram
for antiferromagneticaly coupled spins on different lattice geometries. Since the approach
is able handle even long-range dipolar XY models, the authors report on their simulation
for a realisation of such a model by a 2D ultra-cold gas experiment with Rubidium atoms
in highly excited Rydberg states localised in an optical lattice. The agreement between the
experimental data and calculated values for the spin-spin correlation functions is impres-
sive.
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Tausendpfund et al. apply a variational ansatz to quantum many-body systems. Ten-
sor network methods are highly successful for determining the ground state properties of
complicated pseudo-1D systems. White’s density matrix renormalisation group approach
can be embedded in this type of approach where the quantum state of a many-body system
is approximated by a decomposition in connected smaller tensors. Their tensor elements
are typically optimise by minimising an energy function. These connections represent the
appropriate entanglement structure in a given quantum many-body state. Such approaches
are very versatile and successful in problems with local entanglement. Their limitations
are the dimension of interconnecting bonds which can be viewed as a measure for entan-
glement. The big advantage of such a decomposition is the numerically rather effective
evaluation of expectation values and the optimisation of the many-body state by local
matrix multiplications and matrix decomposition for which highly efficient numerically
library algorithms have been developed in the last 50 year and tuned by the hardware man-
ufactures. Tausendpfund et al. present results of the order parameter for a realisation of
a tri-critical Ising model in a Josephson junction array as well as addressing bosonic frac-
tional Hall states in Bose-Hubbard model subject to a gauge field. Although tensor network
approaches are originally developed in the context of quantum many-body physics, it has
growing into different areas such as quantum chemistry, plasma physics and is currently
also branching out into the machine learning.

While two of the presented papers are concerned with such fundamental questions
of many-body systems, the contribution by Willsch et al. focuses on the simulation of
Shor’s factoring algorithm for quantum computers on a classical supercomputer using a
spin representation for each qubit. Present implementations of digital quantum computer
suffer from dephasing by environmental noise. Therefore, the term noisy intermediate-
scale quantum (NISQ) era was coined for the present era where the fidelity of implemented
quantum algorithms on digital quantum computers suffers from the environmental noise.
The authors report on the influence of such noise induced errors on the quality of Shor’s
algorithm for 20 and 30 qubits. While in a digital quantum computer qubits are individ-
ually controllable, in analog quantum computers such as quantum annealers the coupled
quantum system undergoes a time-dependent evolution. Such systems are designed for
efficiently solving optimisation problems. In the second part of their paper, Willsch et al.
employed a D-Wave Advantage QPU for their three different factorisation methods and
present a comparison.

Progress in condensed matter theory has been achieved in these three rather different
fields by combining development of novel and very efficient algorithms in combination
with the performance of top class supercomputers as provided by the Gauss Centre for Su-
percomputing (GCS)/John von Neumann Institute for Computing (NIC). One of the papers
even employed an analog quantum computer from D-Wave at the JSC to complement their
study of Shor’s factoring algorithm on a simulated digital quantum computer implemented
on the JUWELS Booster.
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Frustrated quantum spin systems are well known for their rich phenomenology including exotic
magnetic orders or quantum spin liquid behaviour. On the other hand, theoretical approaches
to these systems in terms of numerical simulations are notoriously difficult even if modern
large-scale computational resources are applied. The combination of many interacting spins on
high-dimensional frustrated lattices renders many standard techniques, like exact diagonalisa-
tion, tensor-networks or quantum Monte-Carlo inapplicable. The recently developed pseudo-
Majorana functional renormalisation group (PMFRG) represents a finite-temperature extension
of the established pseudofermion (PF)FRG method, sharing its strengths through its unbiased
field theoretical formulation. Motivated by promising benchmark calculations in an initial pub-
lication, we show here different applications of PMFRG to systems that are of current interest
to the scientific community. To extend our method’s applicability down to lower temperatures
we further investigate the effects of two-loop corrections.

1 Introduction

Developing numerical methods to approximately solve the quantum mechanical many-
body problem is of central importance in modern condensed matter theory. Spin systems
such as Heisenberg models realised in strongly correlated quantum materials play a par-
ticularly prominent role in these endeavours as they harbour some of the most fascinating
phases currently known. An outstanding example is the quantum spin liquid1 which is
characterised by the absence of broken symmetries or long-range magnetic order but fea-
tures long-range entanglement, fractional quasiparticle excitations and topological order.
Besides being of interest in fundamental research, exotic states of quantum matter also
promise technological applications through a better understanding of high-temperature su-
perconductivity, or through the exploitation of topological protection in future quantum
information applications2.

Unravelling the ground state or low-temperature properties of a generic quantum spin
model using numerical techniques, however, is notoriously challenging. A variety of
complementary approaches exists, such as exact diagonalisation, tensor network methods,
quantum Monte Carlo and coupled cluster methods. However, each of them comes along
with particular difficulties and limitations in system size, dimensionality, entanglement or
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types of interactions and one may still conclude that the field suffers from a significant
lack of techniques. Therefore, it is of paramount importance to develop and apply new and
promising methods.

More than a decade ago, the pseudofermion functional renormalisation group (PFFRG)
method has been introduced as a novel technique to calculate ground-state properties of
quantum spin systems3. It takes a very different starting point than the aforementioned
techniques as it maps spin operators onto auxiliary fermions. This strongly interacting
fermionic problem is then treated within the framework of functional renormalisation4.
Compared to other methods, its flexibility is a clear advantage since it allows the treat-
ment of arbitrary models with two-body spin interactions and unfolds its full strength in
higher dimensions (particularly for three dimensional systems) where other techniques are
severely challenged. On the other hand, the PFFRG is plagued with some conceptual lim-
itations, for example, the mapping onto auxiliary fermions introduces unphysical states
which represent a potential source of errors.

Recently, a new path to functional renormalisation for spin systems has been intro-
duced5, 6: Instead of (complex) fermionic auxiliary particles, a spin representation in terms
of Majorana (real) fermions is employed7. This modification resolves the problem of un-
physical Hilbert space sectors. The resulting method – dubbed pseudo-Majorana functional
renormalisation group (PMFRG) in one-5 and two-loop implementation6 - has shown large
potential for future applications: It combines the strengths of PFFRG, i.e. flexibility, appli-
cability to complex frustrated, three dimensional, and long-range coupled systems, and at
the same time leverages these features to finite temperatures. Moreover, finite temperature
also offers rigorous control of the truncations necessarily involved in the numerical solu-
tion of the FRG flow equations. In summary, the PMFRG allows for the computation of
experimentally relevant temperature-dependent observables such as susceptibilities or the
specific heat that were previously inaccessible with the PFFRG.

In a first publication5, we have already demonstrated a proof of concept for the ap-
plicability of the PMFRG to simple spin systems. In a second work6, a study of more
complex and three-dimensional frustrated and unfrustrated spin systems indicates a sur-
prisingly good quantitative agreement with other numerical methods like quantum Monte
Carlo, for example in the context of resolving critical temperatures and scaling behaviour.
In this work, we will give an overview of several different examples in which the PMFRG
method can be applied to obtain valuable information from different spin systems.

2 Method

The PMFRG method developed in Ref. 5 rests on the SO(3) pseudo-Majorana representa-
tion of spin-1/2 operators7,

Sxi = −iηyi ηzi , Syi = −iηzi ηxi , Szi = −iηxi ηyi . (1)

Per spin Si, three Majorana fermions ηαi with α = x, y, z are used, which increases the
local Hilbert space dimension by a factor

√
2 as compared to the physical spin-1/2 case.

In contrast to the complex fermion representation employed by the PFFRG, this Majo-
rana representation avoids the appearance of unphysical energies in the spectrum of the
fermionic model. The enlargement of the Hilbert space merely causes a degeneracy of
spin eigenstates.
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This enlargement can be trivially accounted for in the calculation of the physical spin
partition function, for correlators it has no effect at all. Since in the Majorana representa-
tion unphysical states are absent in the entire spectrum, finite temperatures can be treated.
Using the representation in Eq. 1, a Heisenberg Hamiltonian,

H =
∑

(i,j)

Ji,j
∑

α=x,y,z

Sαi S
α
j , (2)

is converted to an interacting Hamiltonian of (pseudo-)Majoranas. As a necessary prepa-
ration for the subsequent treatment using functional renormalisation, one-loop flow equa-
tions for generic interacting Majorana Hamiltonians have been derived5. The symmetries
for the specific pseudo-Majorana representation of a Heisenberg model restrict the irre-
ducible four-point vertices to only a few distinct types and the local Z2 gauge symmetry
of the representation in Eq. 1 ensures a bilocal structure in real space. We solve the flow
equations for finite temperature using a Matsubara frequency cutoff in the bare propagator.
At the end of the flow, physical observables like the static spin structure factor and - via its
own flow equation - the free energy are obtained. The first quantity allows us to compare
with neutron scattering experiments but susceptibility or the correlation length can further
be used to determine finite-temperature phase boundaries below which magnetic order sets
in. On the other hand, access to the free energy allows for a computation of several other
experimentally relevant thermodynamic quantities like heat capacity.

However, this improvement from the PFFRG to the PMFRG came at a considerable
numerical cost: The zero-temperature PFFRG approach typically requires only a single
run. To detect magnetic order within that method, one commonly analyses features in the
flow of the magnetic susceptibility as a function of the infrared cutoff Λ. On the other
hand, to make use of the unbiased nature of finite size scaling in PMFRG, it is necessary
to run many independent simulations at a dense grid of temperatures around the expected
critical temperature Tc, each for several system sizes L.

To combine the advantages of the zero-temperature and the finite-temperature ap-
proaches, a key observation is that the infrared cutoff Λ, an artificial parameter that sup-

Figure 1. Schematic picture of the difference between PMFRG in Λ-flow (left) and T -flow (right) scheme. Green
arrows indicate FRG runs which need to cross through the phase boundary to resolve magnetic order. Reproduced
from Ref. 8.
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presses fermionic propagation at (Matsubara) frequencies, has an effect that is similar to
a finite temperature. In Ref. 8, we built on this insight and proposed the temperature flow
scheme for PMFRG, previously used for the fermionic Hubbard model in Ref. 9. The key
differences between the two flow schemes are summarised in Fig. 1: Both the physical
temperature T and Λ serve to suppress magnetic ordering. The main advantage of the tem-
perature flow is that one is typically only interested in the results at Λ = 0, so that only one
FRG run needs to be calculated. Moreover, the T -flow does not require to flow through a
critical region near a phase boundary to detect magnetic order. This allows us to better re-
solve magnetic order, in particular, at much lower critical temperatures than possible with
the Λ-flow.

3 Applications

3.1 Finite-Temperature Phase Transition and Finite-Size Scaling in the Cubic
Lattice Antiferromagnet

As anticipated, the PMFRG method can be used to detect magnetic long-range order. This
can be illustrated in a simple and well-known system, such as the antiferromagnetic near-
est neighbour Heisenberg model on the simple cubic lattice. Despite the simplicity of the
lattice, not many methods are capable of finding an accurate value for the critical tempera-
ture that separates the paramagnetic and Néel ordered regimes. However, since the lattice
is unfrustrated, the quantum Monte Carlo method can be applied, giving us a solid testing
ground for the PMFRG method.

More specifically, to determine the critical temperature Tc the finite-size scaling be-
haviour of the correlation length ξ is investigated. Here, ξ is determined from the suscep-
tibility χ(kN ) at the ordering wave vector kN via the so-called correlation ratio

ξ/L =
1

2π

√
χ(kN )

χ(kN + 2π
L ex)

− 1. (3)

As shown in Fig. 2(a) when plotting ξ/L over the temperature T , the curves for different
system sizes L cross at a temperature Tc = 0.92J . This determines the critical temperature

Figure 2. (a) PMFRG results for the correlation ratio ξ/L as a function of temperature for different system sizes
L of the antiferromagnetic nearest neighbour Heisenberg model on the simple cubic lattice. The dashed black
line highlights the crossing point which is the PMFRG estimate of the critical temperature while the grey dashed
line corresponds to the quantum Monte Carlo result10. Figure reproduced from Ref. 11. (b) Phase diagram of the
J1-J2 Heisenberg cubic antiferromagnet. Reproduced from Ref. 8.

222



to magnetic Néel order which is in very good agreement with the quantum Monte Carlo
result Tc = 0.946(1)10.

Adding the next-nearest neighbour coupling J2 frustrates the Néel order, leading to a
suppression of the critical temperature. In this case, the quantum Monte Carlo method is
no longer applicable due to the sign problem. However, PMFRG can still perform without
any extra computational effort. In Fig. 2(b), we show the J2-T phase diagram of the
antiferromagnetic Heisenberg model on the simple cubic lattice with first (J1) and second
(J2) neighbour interactions. As stated before, our result for the critical temperature at
J2 = 0 is in excellent agreement with the value obtained by quantum Monte Carlo. But
now we can extend these calculations to finite values of J2 which suppress the critical
temperature and might even give room to a small region with a non-magnetic ground state.

3.2 Quantum Paramagnetism in the Decorated Square-Kagome Antiferromagnet
Na6Cu7BiO4(PO4)4Cl3

As the search for candidate materials for quantum spin liquids continues, numerical in-
vestigations of experimentally available compounds are of paramount importance. The
recent synthesis of Na6Cu7BiO4(PO4)4Cl3 and its experimentally observed absence of or-
der down to the lowest temperatures12 constitutes an ideal scenario to apply the PMFRG
method. The compound realises a highly frustrated square kagome lattice, on which we can
perform PMFRG13. The microscopic couplings were obtained via DFT energy mapping14

(see Fig. 3 a). The so-obtained couplings form a set of decoupled 2D square kagome layers
(also referred to as shuriken lattice) with added sites Cu(3) at the centre of each shuriken
(see Fig. 3 b). This gives place to a very complicated Heisenberg Hamiltonian with five
different types of exchange couplings.

Our results are shown on panel (c) of Fig. 3, where we plot a comparison of different
numerical approaches for the scaling of the dominant peak in the spin structure factor.
While the methods differ in the implementation of lattices (unlike other methods, PMFRG
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indicates the coupling strength through equivalence with the experimental Curie-Weiss temperature ΘCW. (b)
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effective realisation of a square kagome lattice. (c): Finite-size scaling of the structure factor at the dominant
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223



and PFFRG do not implement finite-size clusters but rather fully translationally invariant
lattices with restricted range of correlations), all approaches agree on an extrapolation of
vanishing S(Q)/Ns → 0. This indicates the absence of magnetic order in agreement with
the experimental observation.

While the system lacks magnetic order, or results identify valence-bond order, in
which neighbouring sites form singlets that break the translational symmetries of the lat-
tice but maintain the global spin rotation symmetry. To aid comparison with future neu-
tron scattering experiments, predictions for the spin structure factor as well as its powder
average based on the real, three-dimensional crystallographic structure of the compound
Na6Cu7BiO4(PO4)4Cl3 were made using PMFRG14.

3.3 Analog Quantum Simulation: Magnetism in the 2d Dipolar XY Model

The basic idea in the field of analog quantum simulation is to use synthetic and well con-
trolled quantum systems as models to simulate the essential behaviour of other quantum
systems which are out of reach for direct numerical computation on classical (super-) com-
puters. Often, the synthetic quantum system is realised with cold atoms as elementary
building blocks which offer an exquisite level of control and measurement opportunities.

Certainly, frustrated quantum spin Hamiltonians are one of the main targets for quan-
tum simulations. In a recent experiment, the quantum spins are represented by a pair of
highly excited (“Rydberg”) states of Rubidium atoms15. With optical tweezers, these atoms
were arranged on a 10 × 10 square-lattice array and the interactions between atoms give
rise to an effective long-range dipolar XY model (Jij ∝ ±1/|ri − rj |3) where both ferro-
magnetic (FM) and antiferromagnetic (AFM) exchange was experimentally realised. The
experimental observables are site-resolved equal-time spin-spin correlation functions as
shown by the dots in Fig. 4. While the FM case was simulated with quantum Monte Carlo
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Figure 4. Experimental spin correlation function of an AFM-dipolar XY model realised in a Rydberg atom array
shown schematically in the inset. The data was measured after t = 2µs (blue dots), t = 4µs (orange dots) and
t = 8µs (green dots) and is taken from Ref. 15. The measured data was multiplied with a factor of 1.208 to
take into account measurement errors and temperature is given in units of the nearest-neighbour coupling. The
data for small distances are well reproduced by thermal PMFRG simulations (dashed line, infinite system) at
temperatures shown in the labels. Figure reproduced from Ref. 16.
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techniques, the PMFRG can be used to study the correlation functions expected from the
AFM Hamiltonian.

To numerically study the Rydberg atom array, it was necessary to generalise the PM-
FRG method beyond SU(2) Heisenberg models to the XXZ case with a U(1) symme-
try. Another generalisation within this project was the simulation of frustrated long-range
(power-law) interactions which are rarely relevant in solid-state quantum magnets but ubiq-
uitous in atomic physics. Our results in Ref. 16 were used to provide thermometry for the
experiment, i.e. to find a temperature that reproduces the measured correlation profile.
Importantly, this assumes that the system had time to equilibrate to a thermal state, an
assumption far from trivial in quantum optical setups. As shown in Fig. 4 by the dashed
lines, this was indeed successful and provided a much better agreement to the data than
zero-temperature density-matrix renormalisation group results offered in the original ex-
perimental article15. Even the progressive self-heating of the Rydberg array under sponta-
neous atomic decay events can be clearly followed from the extracted temperatures.

4 Concluding Remarks

We have shown that the PMFRG method is a powerful tool for studying a wide variety
of different spin systems even in the case of very complex microscopic settings of spin
interactions. The approach allows the calculation of critical temperatures, phase transitions
and spin correlation functions in models where other methods fail, providing access to
novel phase diagrams with paramagnetic regions that could be candidates for quantum spin
liquids or other exotic phases. The method also allows direct comparison with experiments
on complex compounds or analog quantum simulations in optical lattices, opening up a
wide range of applications.

In this article, we have presented three different applications that illustrate the benefits
of PMFRG. Specifically, we discussed applications to frustrated and unfrustrated three-
dimensional lattices of Heisenberg spins, complex two-dimensional lattices with many
symmetry inequivalent spins and interactions as realised in the recently synthesised quan-
tum magnet Na6Cu7BiO4(PO4)4Cl3, and dipolar systems relevant to Rydberg atom arrays
in which the interactions are long-ranged.

We expect that new developments and improvements will continue to expand the hori-
zons of the PMFRG method in the future. For example, our currently most advanced PM-
FRG code can treat anisotropic spin interactions with U(1) symmetry and magnetic fields
pointing along the symmetry axis. However, the case of general anisotropic two-body spin
interactions without continuous spin rotation symmetry has not yet been implemented. The
latter generalisation, which is expected within the next few years, will further increase the
applicability and flexibility of the PMFRG.
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We briefly revise quantum-information inspired tensor network numerical methods for infinite-
size quantum systems in spatial dimension one and two. We discuss two concrete applications to
quantum simulator platforms, namely quasi-1D ladders of Josephson Junction Arrays and cold
bosonic atoms in 2D optical lattices with synthetic magnetic flux. We describe our findings
about a tri-critical Ising conformal field theory in the first, and about fractional quantum Hall
bosonic states in the latter. We conclude with an outlook on future developments, both technical
and topical, since tensor networks are rapidly extending their field of use outside of quantum
many-body physics.

1 Introduction

In the last three decades, Tensor Networks (TN) have emerged as powerful theoretical and
numerical versatile tools to simulate complex quantum systems on a classical computer1, 2.
From a numerical point of view, indeed, the simulation of quantum matter constitutes a
formidable challenge: the quantum wave-function is an element of a Hilbert space whose
dimension grows exponentially with the number of system constituents. In a nutshell, TN
prune down the description of many-body systems to polynomially many coefficients by
making profit of quantum information insights on the entanglement structure of the typical
wavefunctions of interest. As such, they are natural candidates to guide and benchmark the
development of quantum technologies (QT) and to assess quantum supremacy3, 4, if any
attainable. More recently, the applications of TN numerical tools have also spread over
interdisciplinary areas, ranging from applied mathematics as solvers of complex optimi-
sation problems, partial differential equations, high-energy theoretical physics, to AI as a
valid alternative machine learning tool5–7a.

Here, in Sec. 2, we offer a brief overview of a couple of TN Ansätze, in spatial dimen-
sion one and two, which work directly in the thermodynamic limit and are thus best suited
to elucidate phase diagrams of many-body quantum systems and to validate implementa-
tion schemes of quantum simulators.

Quantum simulators are ground-breaking experimental platforms that owe their name
to the possibility to experimentally program specific models of matter in- and out-of-
equilibrium – similar to numerical simulations. Such platforms leverage on the ability to
control and observe the individual quantum degrees of freedom (e.g., in neutral atoms, ions,
superconducting circuits, lattice defects, etc.) and their interactions with the highest preci-
sion, and on the possibility of resolving their inherent time-scales. Their purpose follows
Feynman’s original vision to circumvent the infamous many-body curse of dimensionality

aCompared to deep neural networks, TN - as a completely different method – offer more transparency in complex
AI applications due to their though high-dimensional but linear processing capabilities of big data.
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by implementing the simulation itself in a quantum mechanical system. Ultimately, the
goal is to develop quantum simulators that allow us to investigate increasingly complex
models of quantum matter, to address pivotal problems in quantum many-body physics
and quantum chemistry, e.g., high-temperature superconductivity or chemical reaction dy-
namics. The availability of early-stage quantum simulators, together with sophisticated
numerical techniques that keep pushing the classical computational capabilities, puts us
today in the exciting situation that both rely on each other for mutual certification while
entering otherwise uncharted terrain.

Here, we review some recent results of ours concerning in Sec. 3.1 a scheme for quan-
tum simulation of peculiar field theories (more precisely, tricritical Ising conformal field
theory) in platforms of tunable Josephson junction arrays (JJAs), and in Sec. 3.2 a long-
sought description of fractional quantum Hall (FQH) states via genuinely 2D tensor net-
works, that could also have practical implications for quantum simulation schemes with
cold atoms in optical lattices.

2 Tensor Networks for Translation Invariant Systems

Tensor Networks (TN) consist of a convenient decomposition of the system wave-function
into smaller tensors, whose interconnection bonds carry the entanglement structure at the
heart of quantum effects. Such a rewriting brings along an increased efficiency (from ex-
ponential to polynomial, typically) in dealing with ground-state searches and extraction
of many relevant quantities (e.g., local observables, long-range and edge-to-edge correla-
tions, entanglement spectra, etc.). Noticeably, TN methods also give direct access to the
entanglement spectrum8, 9, a quantity whose importance in theoretical condensed matter
has exploded in the last decade, and which has recently become experimentally measur-
able, at least in some cases10.

Another property of tensor networks is that they are particularly suitable to treat phys-
ical systems directly in the thermodynamic limit, which is advantageous in many respects.
Typically, indeed, phases of a model are strictly defined only in the thermodynamic limit
and finite-size effects can lead to shadowing of the true ground state, especially if quali-
tatively different states are closely competing. A numerical method directly operating in
such limit overcomes these problems by neglecting (at first) the boundary conditions, and
assuming the ground state to be translational invariant. In the case of tensor networks, this
allows one to approximate the ground-state of such a translational invariant Hamiltonian
by a small unit-cell of tensors (1D or 2D) periodically repeated in any spacial direction
of the system. Applying this idea to one dimensional systems, a particularly powerful
declination of these ansatz states is offered by Variational Uniform Matrix Product States
(VUMPS)11b, while the two-dimensional corresponding network is dubbed Infinite Pro-
jected Entangled-Pair States (iPEPS)14. Against the naive intuition, the infinite ansatz al-
lows to simplify calculations, as one can make use of power methods to obtain effective
tensors approximating semi-infinite parts of the translation-invariant networks. The calcu-
lation of expectation values of observables and correlation functions is then reduced to the
contraction of relatively small networks. Tensor network ansatz states are mainly limited
in their expressive power by the dimension of the interconnecting bonds, called the bond
dimension. Having a finite bond dimension introduces finite entanglement effects, such

bOther closely related versions are those of infinite DMRG12 and infinite MPS13.
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as effective finite correlation lengths in critical one dimensional models. Therefore it is
crucial to extrapolate observables to infinite bond dimension.

2.1 VUMPS and iPEPS: Tensor Network Structures

Variational Uniform Matrix Product States (VUMPS)11 represents a class of one dimen-
sional ansatz states describing one dimensional chain systems in the thermodynamic limit.
To ensure the correct thermodynamic properties, the VUMPS is constructed in a way to
enforce translation invariance of the state. This is achieved by periodically repeating the
same unit-cell formed by the set of matrices {Aσ1

1 , Aσ2
2 , . . . } along a one dimensional line,

see Fig. 1. Here, σj enumerates the physical states at position j. Analogously to the struc-

|ψ〉 = . . .
A1 A2 A1 A2

σj σj+1 σj+2 σj+3

. . . |. . . σjσj+1σj+2σj+3 . . .〉

Figure 1. Tensor network representation of a VUMPS with a two-site unit-cell.

ture above we can periodically repeat the same higher rank tensors in a two-dimensional
structure, in what are commonly referred to as infinite projected entangled-pair states
(iPEPS)14. This can be done with different arrangements of the tensors in a periodically
repeating unit cell, as illustrated in Fig. 2. Note that every tensor-network ansatz has a

x

y

A

B

B

A

x

y

A

B

C

D

Figure 2. Example of different unit cell configurations for iPEPS. Taken from Ref. 15.

natural gauge degree of freedom: One can always insert a unity 1 = GG−1 on the virtual
links, where G is an element of the general linear group. Absorbing G and G−1 into the
neighbouring tensors does change the matrix elements and thus the representation of the
physical state, but not the physical state itself, see Fig. 3 for a sketch. For a one dimensional
model, one can actually profit from this gauge degree of freedom to define a representation
rendering most of the calculations trivial1, also known as the canonical gauge. For the
iPEPS, such simplifications are not possible due to the presence of loops in the network.

The translation invariance of the infinite ansatz state allows for an efficient calculation
of local observables. In both cases, VUMPS or iPEPS, this amounts to calculate so-called
effective environments, representing the semi-infinite contracted tensor network. We will
demonstrate this in the conceptually simpler case of a VUMPS with a unit cell consist-
ing of a single tensor. For this, consider the expectation value of single site operatorc,

cStrictly speaking one has to calculate 〈Ô〉 = 〈ψ|Ô|ψ〉/〈ψ|ψ〉 for a general VUMPS state. However, here we
assume 〈ψ|ψ〉 = 1, which is always possible to achieve by a simple rescale of the tensors in the unit cell, see
caption of Fig. 4.
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|ψ〉 =
A A

σj σj+1

G1 G
−1
1

. . .. . . = . . .
B B

σj σj+1

. . .

Figure 3. Example of using the gauge degree of freedom to transform one VUMPS representation {Aσ} into
new one {Bσ} withBσ = GAσG−1 for each σ. Both,Aσ andBσ , are describing the same physical state |ψ〉.

〈Ô〉 = 〈ψ|Ô|ψ〉. The diagrammatic representation for this contraction is shown in Fig. 4a).
Left and right of the insertion of the local operator Ô, there appear an infinite product of
transfer-matrices formed by contracting the VUMPS tensor Aσ with its conjugate Āσ over
the physical index σ. Because of this infinite product, one can simply replace the semi-
infinite chains of transfer-matrices left and right of the local operator Ô by the dominant
left and right eigenvector of this transfer-matrix, L and R. It follows that the expectation
value collapses to a relatively small diagram one has to compute.

⟨Ô⟩ = . . .

A

Ā

A

Ā

A

Ā

O . . . =

A

O

Ā

L R

a)

A

Ā

L = λ L

b)

A

Ā

R = λ R

c)

Figure 4. a) Diagram for the expectation value of a local observable with a normalised VUMPS 〈ψ|ψ〉 = 1.
The left and right environments are determined as the dominant left and right eigenvectors of the transfer-matrix,
see b) and c). The normalisation condition is equivalent to λ = 1, which can always be achieved by a simple
renormalisation of the VUMPS tensor Ãσ = 1/

√
λAσ .

In the case of iPEPS, the transfer-matrix in any direction would contain already an
infinite amount of tensors along the transverse direction. One thus further approximates
the transfer-matrix itself. The procedure to obtain the effective environments is however
similar to the VUMPS case, as one iteratively absorbs transfer-matrices in all directions
into the boundary vectors. However, due to the additional approximation in the transfer-
matrix itself, an additional renormalisation step is necessary. In Fig. 5 we sketch one
possible way of obtaining effective environments, namely the so-called corner-transfer-
matrix renormalisation group (CTMRG)16d. Equipped with well-converged environments,
one can now easily calculate local observables. Moreover, one can also reuse these en-
vironments to calculate any n-body operator expectation value (such as the Hamiltonian)
and also correlation functions at a distance. The latter can be extracted by investigating the
sub-dominant eigenpairs of the transfer-matrix. Scalar products (fidelities), or better said
their intensive log-version, can be also extracted from mixed transfer matrices in a similar
fashion.

dAnother possibility is the usage of VUMPS themselves to approximate the boundaries strip-wise by a one
dimensional tensor network17.
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Figure 5. Illustration of the basic strategy of the CTMRG algorithm. Absorbtion of local tensors into the environ-
ment, increasing the environment-bond dimension. The bond dimension is then normalised to a fixed value. This
procedure is iterated in all different direction until the environment tensors are converged. Taken from Ref. 15.

2.2 Variational Optimisation of Translation-Invariant Tensor Networks

Given a particular translationally invariant ansatz for our wavefunction, as described in the
above section, it is crucial to find the lowest energy state within this ansatz class. The
ground state search within the manifold of states defined by the translation-invariant tensor
network ansatzes is fundamentally build on the variational principle:

Egs ≤ minA
〈ψ(A)| Ĥ |ψ(A)〉
〈ψ(A)|ψ(A)〉 , (1)

where A represents the variational parameters (i.e., the tensor entries) of the ansatz in ques-
tion. In the state-of-the-art algorithms (VUMPS (1d), gradient-based optimisation (2d)) we
update all variational parameters of the ansatz simultaneously and are staying within the
variational manifold during the optimisation procedure. This is part of the reason that
these optimisation schemes have proven to be advantageous if compared to alternative
approaches, like those based on imaginary-time evolution18. In particular, for frustrated
systems, it has been shown that having the full gradient at disposal helps to avoid getting
stuck in false extremal points. Note that the gradient that is used in the gradient-based
optimisation in the iPEPS case can be obtained using automatic differentiation and fixed
point methods - a set of tools already enjoying widespread in the machine learning commu-
nity15, 19. Although it is also possible to use AD-techniques together with a gradient based
minimisation for the VUMPS ansatz, one can also exploit the gauge degree of freedom to
reduce the problem to find the lowest state of an effective Hamiltonian20.

3 Applications

3.1 Guiding the Realisation of the Tri-Critical Ising Model in Josephson-Junction
Arrays Using VUMPS

As an illustration of the VUMPS technique, we revise here a recent work of ours21, where
we used this to corroborate the use of tunable Josepshon Junction arrays (JJAs) as quan-
tum simulator platforms to realise the tri-critical Ising (TFI) conformal field theory (CFT).
The TFI CFT is of special interest, as a certain class of the excitations share similar fusion
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properties as the Fibonacci anyon, a possible platform to realise topological quantum com-
puting22. Modern JJAs provide a perfect platform for realising interacting bosonic quantum
field theories23, as recent hybrid semi-/super-conducting devices allow engineering arrays
with high tunability of their internal parameters24.

The building blocks of our envisioned device are made up of two E-shaped su-
perconducting island connected by three parallel junctions with tunable transparencies
(T1, T2, T1) and pierced by a magnetic flux Φ. Cooper pairs encircling the latter will pick
up an additional geometric phase. The resulting potential for the phase difference between
the two superconductors ϕ can be expanded in (leading) harmonics as

VJ (ϕ) = µ1 cos(ϕ) + µ2 cos(ϕ) + µ3 cos(ϕ) , (2)

where the three coupling constants µj(X) are functions of the three free parameters, sum-
marised via the coordinate X = (T1 cos (Φ), T1 sin (Φ), T2). From a preliminary semi-
classical analysis, the model has three potential phases, labelled as I, II and III. Both
phases I and III are unordered phases with no local order parameter present: the unique
minimum sits at ϕ = 0 or ϕ = π, respectively. When a transition between them takes
place, it must be of first-order character. Phase II is instead an ordered phase characterised
by a finite local single particle current J (2e)

⊥ = sin
(√

2ϕ
)
6= 0. Phase II and III are

separated only by a second-order transition of the Ising universality class. On the other
hand, the second-order (Ising) transition line separating phase II and I terminates into a
first-order line. At exactly this termination point, we expect the TCI universality class to
appear: it turns out that for all choices of the transparency T2 there exists such a TCI point,
(T1,Φ)c.

By arranging many copies of the above building block in a 1D ladder geometry, we pro-
mote the phase difference ϕ of a single triple Josephson junction to a position dependent
quantum field, ϕ̂(x). Including also intra- and inter-leg charging effects (due to capaci-
tance), we arrive to the Hamiltonian

Ĥ =

L−1∑

j=0

[ ∑

α=a,b

(
ECN̂

2
α,j − EJ cos (ϕ̂α,j+1 − ϕ̂α,j)

)

+V⊥ N̂a,jN̂b,j + VJ (ϕ̂a,j − ϕ̂b,j)

]
,

(3)

where ϕ̂α,j now represents the phase operator of the j-th island on the leg α ∈ {a, b}.
The charging effects are incorporated by the charge operator N̂α,j , canonically conjugated
to the SC phases, [N̂α,j , e

iϕ̂α,j ] = −eiϕ̂α,j . It can be shown, by means of bosonization,
that the low energy sector of the model 3 flows to the correct multi-frequency sine-Gordon
model hosting a TCI CFT point21. However, this bosonization study also shows that the
model of Eq. 3 possesses a second decoupled mode in the low energy spectrum which is
always gapless. This gapless mode describes collective charge excitations, very similar to
the charge-spin separation in interacting spinful fermionic chains in one dimensions25.

For numerical simulations, we expressed the model in Eq. 3 in the charge basis. In
this basis, the operator N̂α,j assumes a diagonal form, i.e. N̂α,j |nα,j〉 = nα,j |nα,j〉. The
entries of N̂α,j counts how much the number of Cooper pairs differs from the average
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Figure 6. Numerical results obtained with fixed T2 = 0.6. (a): Expectation value of the order parameter Ĵ(2e)
⊥ .

Although, the order parameter is zero crossing the location of the green stars, we observe a first-order phase
transition indicated by a discontinuity of the fidelity density. Thus we identify the left and right part of the
phase diagram as the phases I and III, consistent with the semi-classical picture. (b): First-order phase transition
discontinuity of the fidelity density exp{(−F)} and the order parameter 〈Ĵ(2e)

⊥ 〉 between phases II and I at
X2 = 0.52 [cut b) in panel (a)]. (c): Identifying the second-order phase transition along the cut c) in panel a)
at X2 = 0 by the singular behaviour of the fidelity susceptibility χF and order parameter. (d): Data collapse of
the correlation length ξs at X2 = 0 for five values of the bond dimension D by employing a finite-entanglement
scaling26. (e): Critical exponent β obtained by fitting 〈Ĵ(2e)

⊥ 〉 as a function of X1 for 0.42 < X2 < 0.49
and bond dimension D = 600 (blue dots). Two plateau appear close to the Ising (βIS = 1/8) and TCI
(βTCI = 1/24) predictions. The central charge (empty symbols) where obtained using finite size DMRG
simulations and increases from c ' 1 + 1/2 to c ' 1 + 7/10 before dropping to c ' 1. Reprinted with
permission from Ref. 21.

occupation (nα,j = 0) on the island (α, j):

N̂α,j = diag (. . . ,−2,−1, 0, 1, 2, . . . ) .

It is easy to show that the operator eiϕ̂α,j must to be of the form

(eiϕ̂α,j )j,j+1 = δj,j+1

for the canonical commutator [N̂α,j , e
iϕ̂α,j ] = −eiϕ̂α,j to hold. Furthermore, in order

to fit the model into a computer, it is crucial to truncate the possible number of charge
excitations, |n| < Nmax. This leads to an truncated local Hilbert-space of dimension
2Nmax + 1 per each SC island. We explicitly checked convergence with respect to the
included charge excitations Nmax and observed that Nmax = 6− 9 was sufficient.

In our numerical simulations, we constructed a VUMPS ansatz with a two-site unit
cell, where the first position inside the unit cell represents the upper leg and the second
position represents the lower leg of the ladder. By minimising the Hamiltonian in Eq. 3 for
various choices of the parameters, we where able to map out the phase diagram as shown
in Fig. 6. We identified the different phases of the model by using the local order parameter
Ĵ

(2e)
⊥ (x) = sin

(√
2ϕ̂(x)

)
to distinguish the ordered phase II from the disordered ones (I
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and III), see Fig. 6a). To characterise the phase transitions, we used the correlation length
and its scaling properties with an increasing bond dimension. Indeed, since a finite bond
dimension induces a spurious length-scale, it is possible to use similar machinery to the
usual finite-size scaling and to perform a data collapse to extract critical exponents. At
sufficiently low values of the tuning flux Φ, this confirms the Ising nature of the transition
between II and I, see Fig. 6d). We continued to classify the phase-transitions by using
either fidelity measures, Fig. 6b) and c), or identifying the excitation gap in the model.
We successfully showed that the second-order phase transition between phase II and I
terminates into a first-order phase transition between the same two phases. By measuring
the critical exponent of the local order parameter Ĵ (2e)

⊥ (x), together with measurements
of the central charge from finite-size DMRGe, we where able to demonstrate that at the
point where the first-order transition merges into the second-order transition, a TCI point
emerges as expected, see Fig. 6e).

3.2 Describing Bosonic Fractional Hall States with iPEPS

One of the most actively pursued goals in the cold atom community in recent years is
the preparation and manipulation of fractional Hall states with bosons. Several recent
experimental breakthroughs in this direction have been achieved with small number of
particles27, 28. An intriguing question in this line of research is which of the fractional Hall
states in these experiments, which are typically prepared as ground state of interacting
Harper-Hofstadter Hamiltonians, would survive in large-scale setups and which instead
are stabilised only by the finite size effect of the small scale experiment. The Hamiltonian
in question is

Ĥ = −t
∑

〈ij〉
(eiAij â†i âj + h.c.)− µ

∑

i

n̂i +
U

2

∑

i

n̂i(n̂i − 1). (4)

which is a hopping Hamiltonian in two dimensions, with a chemical potential µ and on-site
repulsive interaction U . The hopping parameter t is modified (via Peierls substitution) with
a local phase such that a particle moving around a plaquette of the lattice would acquire a
phase corresponding to the desired magnetic flux, φ =

∑
�Aij .

In this work29, which we summarise in this section, we approached this two-
dimensional model with the state-of-the-art iPEPS machinery15, 19 in order to get access to
the ground state in the thermodynamic limit. In this way we can determine which phases
should be in fact stable in very large scale experiments. It should be noted that – as we dis-
cuss in our paper – this kind of chiral gapped states was for long time elusive to numerical
investigations with traditionally (i.e., non-variationally) optimised iPEPS: therefore, a first
crucial task was to prove at all that our algorithms were suitable for the scope. To this end,
we first consider the hardcore-limit, U −→ ∞, in which the maximum number of bosons
per site is at most one. For this case, we varied the chemical potential µ to increase the
local density 〈n〉 in the ground state. As shown in the left panel of Fig. 7 we observe an

eOne could try to extrapolate the central charge from a bond-dimension scaling of the VUMPS data, too. How-
ever, the presence of a background gapless (charge) mode makes such an extrapolation extremely difficult in
practise. Using the data collapse, we estimated the necessary bond dimension to be of order 105, far out of reach
for any numerical simulation. Hence we resorted to more standard extrapolations from finite system bipartitions
in this case. See Ref. 21 for more details.
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Figure 7. (left): Local bosonic occupation 〈n〉 as a function of the chemical potential. The yellow line indicates
the filling factor for the Laughlin state while the blue line indicates its hole analog. (centre): The low lying part
of the spectrum on the edge of state on the incompressible plateaus are shown. We find chiral spectra for both
states on the plateaus. We notice that the chirality is reversed for the two plateaus. (right): Degeneracy counting
of the lowest branch of the edge spectrum of the fractional Hall state. Taken from Ref. 29.

incompressible plateau (d〈n〉dµ = 0) at the values of the filling factor ν = 2π〈n̂〉
φ that corre-

spond to those expected in a Laughlin-state of bosons as well as the Laughlin-state of holes.
The Laughlin state is the paradigmatic states for the fractional quantum Hall phenomenon.
It should be noted that we also investigated the case of finite interaction U in our study
and found other stable plateaus, see Ref. 29 for more details. In order to confirm that the
states of the incompressible plateaus at the filling 〈n〉 indeed correspond to the Laughlin-
states of bosons we investigate the physics of the edge-spectrum of this state. This edge
spectrum is of chiral nature and has properties that can act as a smoking gun for fractional
Hall state in question. Even though we have chosen a translationally invariant wave func-
tion with our iPEPS we can still access the physics of the edge by what is known as a
bulk-boundary correspondence for the iPEPS30, 31. This technique utilises the direct acces-
sibility of entanglement quantitites, like the entanglement spectrum, to get information on
the edge spectrum of our system via the well know conjecture relating edge- and entangle-
ment spectra8. Using this technique, we can access the low lying part of the spectrum on
the edge of a semi-infinite plane. As shown in the left panel of Fig. 7, we can clearly find
a very chiral spectrum for both the Laughlin states, and its hole analog. Their respective
chirality is reversed as expected. Additionally, we can also look into the spectrum of the
edge of a semi-infinite cylinder of finite circumference. Due to this finite circumference of
the cylinder the momentum along this direction is discrete. This allows us to investigate
the degeneracy of the lowest momentum modes, which are determined by the Conformal
Field Theory (CFT) associated with the edge of a fractional Hall state. In the case of a
Laughlin state we have a chiral bosonic theory on the edge, which manifests in a counting
following the partition of integers. We observe precisely this counting as shown in the
right panel of Fig. 7. With these findings, we were able to show convincingly the presence
of fractional Hall states as thermodynamic phases in the bosonic Harper-Hofstadter model
and by extension large-scale cold atom experiments of the future. On the technical side,
we were able to put to rest doubts of the tensor-network community about the applicabil-
ity of the iPEPS ansatz for chiral topological states, like the Laughlin-state. We showed
that upon variational optimisation of the iPEPS one can successfully determine the ground
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state of a model of strong experimental relevance, hosting these chiral topological states as
ground states.

4 Conclusions & Outlook

In this brief contribution, we have offered a quick overview of a couple of tensor-network
algorithms directly tackling the thermodynamic limit of quantum many-body systems and
reviewed a couple of recent studies of ours, both for quantum simulation and for genuinely
theoretical purposes. We refer the interested readers to the full publications21, 29, 15 and to
references therein for more details. We did not discuss quantum dynamics, though this
is attainable via tensor network algorithms both in closed and open quantum systems, as
long as entanglement spreading allows for a faithful representation of the underlying state.
Again, we refer the reader to general reviews for further details.

Before concluding, we want also to stress that TN techniques are quickly growing out
of their original field (quantum many-body physics, indeed) to reach a very diverse range
of fields from the solution of complex integro-differential equations (such as the Dyson or
Parquet equation of quantum field theory)32 to quantum chemistry33, from classical hydro-
dynamics5 to plasma physics34, and stretching out to financial option pricing7 and machine
learning6. These techniques leverage the existence of an underlying mathematical struc-
ture to provide spectacular speed-ups (up to exponential) for some applications. In the
last two-three years, it became increasingly more obvious that many common problems
in applied mathematics and physics actually possess this underlying structure and could
therefore benefit from accelerated simulations. We are still in the early days of these de-
velopments and most researchers still limit themselves to proof-of-concepts: we can be
confident to see developments in near- to mid-term future.

Noticeably – despite the existence of several community codes for tensor manipula-
tion35–37 – no standard, fully scalable HPC software, accessible to the fast-growing commu-
nity of potential users exists to this date. By this we mean that the ubiquitous multi-linear
algebra tasks are still handled via the somewhat naive workflow of flattening and reshap-
ing them into standard linear algebra operations typically designed for matrix and vector
manipulations and codified into BLAS and LAPACK libraries. Designing and develop-
ing smarter, hardware-aware, low-level primitives for typical tensor contractions remains a
formidable challenge with an high prize at stake, especially in terms of unleashing the up-
coming Exascale computing facilities, which we hope to witness in future NIC Symposia.
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We report on the current state of factoring integers on both digital and analog quantum comput-
ers. For digital quantum computers, we study the effect of errors for which one can formally
prove that Shor’s factoring algorithm fails. For analog quantum computers, we experimentally
test three factorisation methods and provide evidence for a scaling performance that is abso-
lutely and asymptotically better than random guessing but still exponential. We conclude with
an overview of future perspectives on factoring large integers on quantum computers.

1 Introduction

The integer factorisation problem (IFP) is one of the oldest and most fascinating prob-
lems in mathematics1, 2. It is defined as the problem of finding a non-trivial divisor of a
composite integer N . Besides its historical significance, the IFP is of central importance
to everyday data and communication security, in the sense that the security of common
encryption systems and protocols in use is based on the difficulty of solving the IFP for
large integers. The latest record is the factorisation of the 829-bit number RSA-250 from
the RSA factoring challenge3, involving a 32M-hour allocation on the JUWELS super-
computer. The best-known algorithms3–5 to solve the IFP on conventional computers scale
(sub)exponentially in the number of bits of the integer N . For this reason, cryptosystems
like RSA6 – currently using integers N with 1024, 2048, or 4096 bits – are still secure.

Quantum computers (QCs) are an emerging technology that promise a breakthrough
in the solution of the IFP. We distinguish between digital and analog QCs. On an
ideal digital QC, Shor’s algorithm7–9 can solve the IFP with time and space complex-
ity that is polynomial – not exponential – in the number of bits of N . However, so far
only very small integers N ≤ 35 have been successfully factored10–13 with Shor’s algo-
rithm on a digital QCa. By executing Shor’s algorithm on a QC simulator using 2048
GPUs of JUWELS Booster, the largest integer that could be factored is the 39-bit number
N = 549 755 813 701 = 712 321× 771 78115 (see Tab. 3 in Ref. 16 for an overview).

aNote that there exist many claims of factoring larger integers on digital QCs, but the underlying experiments
often rely on a certain kind of oversimplification14 that makes them equivalent to coin flipping. Even for
N = 15, 21, 35, one can argue that the explicitly compiled quantum circuits might not have been found without
previous knowledge about the answer to the IFP.
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For analog QCs, several alternative approaches to solving the IFP exist17–25. Analog
QCs hold the current record of the largest non-trivial integer factorisation by QC hardware,
namely the 23-bit integer N = 8 219 999 = 251 × 32 749 factorised by a D-Wave quan-
tum annealer25. Although a polynomial scaling of factorisation by analog QCs has been
suggested numerically17, an exponential scaling is considered more likely. In this article,
we show experimental evidence for the latter.

This article is structured as follows. Sec. 2 focuses on solving the IFP with digital QCs.
We review the main ideas of Shor’s algorithm, its large-scale simulation on JUWELS, and
future perspectives of factoring on digital QCs. Sec. 3 discusses three methods of factoring
on analog QCs. In this section, we also present results of implementing these methods on
quantum annealers. Sec. 4 contains our conclusions.

2 Digital Quantum Computers

A digital QC – also known as a gate-based or universal QC26 – is a machine consisting
of individually controllable quantum bits (qubits). A qubit is defined as a superposition of
the classical-bit states “0” and “1” and is commonly written as α|0〉+ β|1〉 with α, β ∈ C.
Crucially, when a qubit is measured at the end of a computation, one always obtains one of
the two classical-bit states, namely either “0” with probability |α|2 or “1” with probability
|β|2. Hence, every QC is a probabilistic machine. In a digital QC, each individual qubit
(and certain combinations of multiple qubits) are individually operable, and these oper-
ations are called quantum gates. A digital QC is called universal, because in principle,
each program for conventional computers can be mapped to a combination of quantum
gates with only polynomial overhead (note that this does not imply that everything will run
faster on a QC – currently, only a few algorithms with a proven speedup are known).

The current three most promising technologies for digital quantum processing units
(QPUs) are superconducting circuits, neutral atoms, and trapped ions. With superconduct-
ing circuits, IBM has manufactured a 1121-qubit QPU27, and Google has demonstrated
quantum error correction below the surface code threshold on a 105-qubit QPU28. With
neutral atoms, QuEra has built a logical QPU with 280 physical qubits29. Finally, trapped
ion QPUs produced by Quantinuum have achieved the best gate performance and an all-
to-all connectivity30, 31. Pioneering European companies producing digital QPUs are IQM
focusing on superconducting circuits32 and eleQtron focusing on trapped ions33, both of
which are being installed for provision at JSC. However, it is important to realise that all
existing digital QPUs are still noisy prototypes, meaning that they can usually not compete
with conventional (super)computers for most application problems.

2.1 Shor’s Factoring Algorithm

Peter Shor proposed an algorithm to solve the IFP with an exponential speedup on an ideal
digital QC in 19947, 9, a result which arguably sparked most of the community’s interest
to build a digital QC until the present moment. To explain Shor’s factoring algorithm, we
consider the factorisation of a semiprime N = p× q, i.e., a composite integer N with two
unknown, non-trivial prime factors p, q > 2. The algorithm consists of four steps that are
schematically shown in Fig. 1:
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Figure 1. Schematic of performing Shor’s factoring algorithm. First, one selects an L-bit semiprime N to factor
and a random a (blue). Then, one executes the quantum gates of Shor’s algorithm (red), using either a working
digital QC or a large-scale simulation on multiple GPUs with shorgpu34, which yields a bitstring j0j1 · · · jt−1

(green). Note that the iterative quantum circuit needsL+1 qubits to simulate anL-bit factoring scenario. Finally,
the integer j corresponding to the bitstring is post-processed, which yields with high probability a factor of the
semiprime N (yellow). Further details are given in Ref. 15.

1. Parameter Selection (blue): Choose a random integer awith 2 ≤ a < N and greatest
common divisor gcd(a,N) = 1.b

2. Quantum Algorithm (red + green): Execute the quantum gates of Shor’s algorithm
on a digital QC. The result of the QC are t bits j0j1 · · · jt−1, which make up the binary
representation of an integer j. The number of bits t is usually twice as large as the
number of bits in N . Note that, in principle, the green “simulation” part in Fig. 1 can
be completely replaced by a real digital QC once available and working.

3. Classical Post-Processing (yellow): Find the largest denominator r < N such that
j/2t ≈ k/r using a continued fraction expansionc.

4. Factor Extraction (yellow): Compute gcd(abr/2c ± 1, N)d which will – with suffi-
ciently high probability – yield one of the factors p or q.

The proof why the algorithm works is beyond the scope of this article. However, it is
important to understand that there is a certain probability that Shor’s algorithm fails (even

bNote that if the greatest common divisor is not 1, it would have to be either p or q, and the problem would have
been solved by accident – which is very unlikely for large N . The greatest common divisor can be computed
efficiently with the Euclidean algorithm.
cThe continued fraction expansion is a systematic method that yields successive approximations
k0/r0, k1/r1, . . . with increasing denominators r0 < r1 < · · · to an arbitrary real number (cf. e.g. Ref. 8).
dWe note that this expression can be computed efficiently classically, because gcd(y,N) = gcd(ymodN,N)
for all y and the modular exponentiation ax modN can be computed with the square-and-multiply algorithm.
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on ideal digital QCs, in part also due to the probabilistic nature of the QC model itself, as
is the case for many other standard quantum algorithms26; see Appendix A.2 of Ref. 15 for
more information). This motivates us to perform large-scale simulations of Shor’s factoring
algorithm on JUWELS Booster, to obtain a practical estimate of the success probability –
i.e., what sufficiently high probability in point 4 above means (see also Refs. 35–40 for
related endeavours).

2.2 Large-Scale Simulations

Theoretical estimates of the success probability for Shor’s factoring algorithm (as de-
scribed in Sec. 2.1) are usually very pessimistic and amount to only a few percent15. We
have designed a digital QC simulation34 of Shor’s algorithm (see Fig. 1, green part) to
evaluate the practical performance for over 60 000 factoring problems, with a surprising
result: There are many so-called lucky cases in which the factorisation is successful, even
though Shor’s algorithm is, according to theory, not expected to work. Furthermore, we
have posed the challenge of factoring, on a real QPU, a non-trivial semiprime larger than
the numberN = 549 755 813 701 = 712 321×771 781 that we have factored by executing
Shor’s algorithm on a simulated QC.

We remark that the wall-clock time that this simulation takes actually grows only lin-
early with the number of qubits, due to the high degree of parallelism. However, the space
complexity is exponential, as simulating the L+ 1-qubit quantum computer requires at
least 16 × 2L+1 bytes of memory44, 45. Specifically, shorgpu34, as well as universal QC
simulators like JUQCS–G46, require doubling the number of GPUs with every additional
qubit.

A nice benefit of a large-scale QC simulation is that it allows the study of classical
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Figure 2. Success probability of factoring on digital QCs as a function of the error magnitude δ for a, 20 qubits
factoring 19-bit semiprimes, and b, 30 qubits factoring 29-bit semiprimes. Markers denote the mean success
probability over a 500 and b 1000 simulated factoring problems for each δ in four different cases: (i) Shor
(green pentagons) corresponds to Shor’s original factoring procedure7, 9, (ii) Shor+Lucky (yellow squares)
includes the unexpected lucky cases, in which the factorisation works in practise even though the theoretical
requirements15 are not met, (iii) Ekerå (red stars) denotes the success probability when using the best-known
classically efficient post-processing procedures41, 42 on the measured bitstrings, (iv) Peak (blue circles) indicates
only the probability to observe a peak in Shor’s bitstring-output distribution15 that is the actual theoretical quantity
studied in Cai’s proof43. At δ = 0, the success probabilities are between 25–100 %, in agreement with Ref. 15
for the no-error scenarios. Note the change from linear to logarithmic scale at 0.01 % on the vertical axes. Shaded
areas and error bars indicate the unbiased standard error of the mean. Lines are guides to the eye.
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and quantum errors, which affect any QPU device with various orders of magnitude. Of
particular interest is an error model proposed by Cai in Ref. 43, for which one can formally
prove that Shor’s factoring algorithm fails. This error model is expressed in terms of an
error magnitude parameter δe. Cai’s proof can be seen as formal support for the common
viewpoint that for large-scale factoring on a digital QC to work, quantum error correction26

would be required.
Fig. 2 shows results for the success probability as a function of the error magnitude

δ. We see that from 20 to 30 qubits (panels a and b, respectively), the success probability
for Shor’s algorithm (green diamonds) indeed drops towards zero for errors with δ ≥ 0.8.
Interestingly, however, when including the lucky cases (yellow squares), the success prob-
ability converges to a non-negligible, finite value. Even though this finite value might
decrease exponentially when increasing the number of qubits – in agreement with Cai’s
proof – it is thus conceivable that the challenge of limited quantum speedup47 posed in
Ref. 15 may be met without the above-mentioned requirement for quantum error correc-
tion.

2.3 Future Perspectives

The quantum circuit in Fig. 1 needs L + 1 qubits to factor an L-bit semiprime. However,
on a digital QPU, the individual quantum gates usually need to be compiled into realisable
one- and two-qubit gates. This is expected to yield quantum circuits with 2L to 2L + 3
qubits48–52 (or 1.5L qubits with a trick53). As these qubits need to perform almost perfectly,
a quantum error correction overhead can raise the required number of physical qubits dra-
matically. For instance, for the factorisation of 2048-bit RSA integers, several millions of
physical qubits are currently anticipated54.

Hence, over the past decades, there have been many algorithmic developments and
alternative ideas to solve the IFP on digital QCs, often preserving the theoretical concept of
an exponential speedup over current algorithms. In particular, the Ekerå-Håstad scheme55

makes use of another algorithm invented by Shor, namely the discrete logarithm quantum
algorithm7, 9. The advantage of this scheme is that it yields a roughly 75 % shorter quantum
circuitf. These optimisations, however, do not directly reduce the number of qubits.

Fascinatingly, Chevignard, Fouque, and Schrottenloher managed59 to combine the
Ekerå-Håstad scheme with a hash function technique60 to obtain quantum circuits using be-
tween 0.5L and less than L qubits to factorise L-bit RSA integers (see Table 3 in Ref. 59).
It is exciting to see what further research along these lines can bring.

eThe error parameter δ used here and in Ref. 34 corresponds to the global magnitude parameter ε in Ref. 43,
which expresses Gaussian noise on each rotation gate R in the quantum circuit of Shor’s algorithm (see Refs. 15,
34, 43 for more information). Specifically, the faulty rotation gate is defined as R̃k = diag(1, e2πi(1+δr)/2k )
where r is a normally distributed random number.
fThis means that t ≈ 1.5L in Fig. 1 would suffice instead of t ≈ 2L. In this context, it is also worth mentioning
Regev’s multidimensional variants of Shor’s algorithm56–58, which also yield an asymptotically shorter quantum
circuit.
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3 Analog Quantum Computers

Like a digital QC, an analog QC is a machine consisting of individual qubits. However,
in contrast to digital QCs, the qubits in an analog QC are not individually and arbitrarily
controllable. Instead, after programming an analog QC, the qubits typically undergo a
natural evolution for a certain time, and at the end each qubit is measured, yielding a
classical-bit state. Note that this does not mean that analog QCs cannot be universal – in
fact, one can prove a polynomial equivalence61–63 to universal digital QCsg.

Analog QCs are easier to manufacture than digital QCs, mostly due to the more relaxed
requirements on individual qubit control. Therefore, much larger analog QPU systems
have been built to date. D-Wave has manufactured superconducting quantum annealers
with over 5600 qubits, one of which is located in Europe – the JUPSI system hosted at
JSC – and a QPU with over 7000 qubits is in development64. The companies Pasqal and
QuEra build analog QCs based on neutral atoms, with qubit numbers ranging from 19665 to
25666 up to 82867, and the California Institute of Technology reports 6100 coherent atomic
qubits68.

3.1 Factorisation on Quantum Annealers

Quantum annealers are designed to solve optimisation problems. In particular, the D-Wave
Advantage QPU addresses the Quadratic Unconstrained Binary Optimisation (QUBO)
problem, defined as the minimisation min

xi=0,1
E(x0, x1, . . . , xn−1) of the cost function

E(x0, x1, . . . , xn−1) =

n−1∑

i=0

aixi +

n−1∑

i<j

bijxixj . (1)

Here, n is the number of qubits, xi = 0, 1 are the binary problem variables that are repre-
sented by qubits on the QPU, and ai and bij are the real-valued programmable biases and
couplers of the qubits, respectively.

To solve the IFP on quantum annealers, we therefore have to represent the solution
to the IFP as the minimum of Eq. 1. The most common approach is to use the qubits
x0, x1, . . . ∈ {0, 1} to represent the unknown bits of the factors p and q. We express p (q)
using lp (lq) bitsh. Since N is odd – otherwise finding a factor would be trivial – we know
that the least significant bits of p and q are 1. Furthermore, since lp and lq are fixed, we
can set the most significant bits to one. The binary encoding of p and q thus reads

p = 1pl∗ppl∗p−1 · · · p2p11 , (2)
q = 1ql∗qpl∗q−1 · · · q2q11 , (3)

gHowever, this polynomial equivalence cannot be implemented on most currently existing analog QCs due to
technical limitations. For instance, the analog QC would need to support 3-local terms or 6-dimensional quantum
digits61, other so-called non-stoquastic properties (cf. Ref. 62 for a comprehensive review), or successive back-
and-forth annealing63.
hSince lp and lq have to be fixed, one would usually start with lp ≈ lq ≈ L/2 (where L is the bit length of the
semiprime N to factor) and then start decreasing lp and increasing lq until a factor is found. Note that this only
incurs a polynomial overhead.
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Figure 3. Visualisation of two factorisation methods on a D-Wave quantum annealer. a, 3× 3-bit multiplication
table for the MC method. The bits of p and q are connected with Boolean AND, HA, and FA logic gates. Arrows
indicate immediate ancilla qubits representing and (blue), sum (red), and carry (green) bits. b, Embedding of
a 15 × 8-bit multiplier onto the D-Wave Advantage 4.1 QPU. Nodes (edges) represent the 5627 physical qubits
(40277 couplers) on the QPU. Red lines indicate qubits and couplers that exist in the full underlying Pegasus
graph but not on the QPU (by construction or due to fabrication defects). When this multiplier is used for the
factorisation of e.g. N = 3 548 021; the bits of the factor 1010101000001112 (101000112) correspond to the
vertically (diagonally) connected unit cells.

where l∗p = lp−2 and l∗q = lq−2 count the number of unknown bits l = l∗p+ l∗q . Given this
encoding, we consider three methods to obtain a QUBO cost functionE(x0, x1, . . . , xn−1)
with n qubits (x0, x1, . . . , xn−1) = (p1, . . . , pl∗p , q1, . . . , ql∗q , . . .):

1. Direct Method17, 18, 21: An obvious cost function to minimise is f(p, q) = (N−pq)2,
as its minimum f(p, q) = 0 is attained if and only if N = p × q. However, when
inserting the binary representations in Eqs. 2 and 3 into this cost function, one obtains
higher-than-quadratic terms between the qubits. To solve this problem, one uses a
reduction technique that yields nreduction additional so-called ancilla qubits to obtain
a cost function of the form of Eq. 1i. We thus need n = l + nreduction qubits.

2. Multiplication Circuit Method19 (MC Method): A complimentary approach is to
write out the binary product 1pl∗ppl∗p−1 · · · p2p11× 1ql∗qpl∗q−1 · · · q2q11 in a long mul-
tiplication table. Between all unknown bits, one can then identify Boolean AND,
half-adder (HA), and full-adder (FA) gates (see Fig. 3a). For each such gate, one can
find a QUBO cost function that attains its minimum if and only if the Boolean logic
gate is satisfied. The sum of all these cost functions then yields the final cost function
Eq. 1. We remark that also this method incurs additional ancilla qubits representing
intermediate “and”, “sum” and “carry” bits such that n = l + nand + nsum + ncarry.

3. Controlled Full-Adder Method25 (CFA Method): Both direct and MC methods need
many couplers bij between the qubits in Eq. 1. However, on the D-Wave Advantage

iIn Ref. 69, the direct method is equal to the Modified Multiplication Table (MMT) method21 in the limit of
maximum block size, where there are no carry variables. For smaller block sizes, the ancilla qubits would consist
of both nreduction qubits from the quadratic reductions and ncarry qubits for carry bits in the multiplication
table. In this article, we only consider the direct method as its performance was found to be superior to MMT
with smaller block sizes69.
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QPU, one qubit is only coupled to 15 other qubits on average. When more connec-
tions between qubits are required than physically exist on the QPU, one has to perform
a heuristic embedding70 step, by which multiple physical qubits are connected to rep-
resent a single logical problem variable. Such an embedding step is often found to
hamper the performance of analog QCs71. The CFA method is a clever extension of
the MC method, in which each Boolean logic gate can be directly embedded onto the
qubits of the QPU (see Fig. 3b). Finding such custom embeddings is very often the
key to successfully solve larger problems on analog QCs.

Further details about each method are given in Ref. 69 and supporting data and open-source
code can be found in Ref. 72.

3.2 Results

We have evaluated each of the three factorisation methods for 337 randomly generated
factoring problems with up to l = 22 unknown bits. The largest factored semiprimes N
and the corresponding success frequencies f for the three methods were:

1. Direct Method: N = 1 042 441 with f = 3.72 % ,

2. MC Method: N = 1 042 441 with f = 0.01 % ,

3. CFA Method: N = 3 844 417 with f = 0.01 % .

The results are shown in Fig. 4a. All methods show larger average success frequencies
than random guessing, but the results still suggest an exponential scaling as a function of l.
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Figure 4. Performance of three factoring methods on analog QCs. a, Observed success frequencies as a function
of the problem size, given by the number of unknown bits l = l∗p+l∗q in the two factors p and q. Markers represent
the median success frequencies and error bars denote the 25 % and 75 % percentile for the three methods (see
legend). The corresponding lines represent exponential fits∼ 2bl to the data, with the resulting scaling exponents
b given in the legend. The red line represents the probability 2−l of randomly guessing the unknown bits. b,
Frequency of the global minimum of the QUBO cost function, i.e., the sample in which not only the qubits
representing p and q but also all additional ancilla qubits are correct (note that by construction of the QUBO, the
solution bits representing p and q can be correct even though immediate carry bits are wrong). All results have
been obtained on the D-Wave Advantage QPUs 5.4 (direct method, MC method) and 4.1 (CFA method) with
∼ 10000 samples for each N and about 10 randomly selected semiprimes N for each l.
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Interestingly, the MC method with a fitted scaling exponent of −1.1 seems to perform
asymptotically worse than random guessingj. We conjecture that this result is due to the
requirement for additional physical qubits e.g. from the embedding procedure.

In contrast, the custom-embedded CFA method shows a performance that seems
asymptotically better than random guessingk. Also, the global minimum of the cost func-
tion was found for much larger problems (see Fig. 4b). Although the scaling still seems
exponential, a sufficiently small exponent might actually allow analog QCs to first succeed
in the near-term factoring challenge posed in Ref. 15. It is certainly interesting to see how
the future Advantage2 QPU that is expected to have over 7000 qubits with most qubits
coupled to 20 others64 – which is larger than 15 on the current JUPSI QPU – will cope
with the difficult problem of factoring integers.

4 Conclusions and Outlook

In this article, we have studied the problem of factoring integers – one of the key problems
that has fuelled the interest in quantum computing – on both digital and analog QCs. For
digital QCs, we have analysed an error model for which Shor’s factoring algorithm7, 9

can be proven to fail43, and we have found that unexpected “lucky” factorisations15 and
sophisticated post-processing procedures42, 41 can mitigate this effect.

For analog QCs, we have performed experiments on a quantum annealer. Among
three studied factorisation methods, we found evidence that the custom-embedded CFA
method25 performs absolutely and asymptotically better than random guessing, although
the data still suggests an exponential scaling as a function of problem size.

Although our results suggest that either error correction on digital QCs or a new method
on analog QCs would be necessary, we believe that the factorisation challenge posed in
Ref. 15 might be solvable in the near term, and it will be very interesting to see whether
it can first be met on a digital or an analog QC. It is conceivable – should the IFP ever
be practically solvable with polynomial resources for large integers – that maybe also a
triple-hybrid use73 along with conventional supercomputers may be successful.
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There are three contributions from Soft Matter Science in this year’s NIC Symposium vol-
ume, which in a very nice way cover the huge thematic width of the field. The topics range
from structure-process relations in membranes through evolutionary molecular dynamics
(MD) for biomolecular mechanisms to deformation and failure in glasses. These topics
also reveal another important aspect, namely the major switch of research focus from equi-
librium to non-equilibrium properties. Exactly this is the area, where Soft Matter can play
a prototypical role in statistical physics, because the dynamics of processes is adjustable
through molecular parameters and thus direct experimental observation is more easily in
reach than for many other materials.

Nano- and microporous membranes play an important role in may fields of modern
technology ranging from gas separation and water purification to biomedical applications.
Despite of this general relevance processes needed to produce well controlled systems are
quite involved and usually not fully understood. The Göttingen group in the first contri-
bution by Blagojevic et al. analyses in a comprehensive simulation approach an important
block copolymer based method, which can lead to the desired membranes. By combining
AB blockcopolymers, where the different blocks eventually phase segregate, with evapo-
rating and nonevaporating (partially poor) solvents, the process of AB phase segregation
and collapse of one component can lead to well defined, stable nanoporous structures. This
combination is called self-assembly and non-solvent induced phase separation (SNIPS)
combined with evaporation-induced self-assembly (EISA). The trick is to combine and
optimise the different physical phenomena such as solvent evaporation, self-assembly, mi-
crophase separation, and vitrification in SNPIS with and through the EISA process. This
defines a path through a high dimensional parameter space and thus is experimentally
extremely challenging. Here simulations of model systems can provide truly valuable gen-
eral insight. The authors combine in a top down approach continuum and particle based
simulations, which allow them to relate process properties to a ternary (polymer, volatile
and non-volatile solvent) phase diagram. This top down combination of methods and the
use of highly optimised analysis and simulation codes on e.g. JUWELS allowed them to
investigate the SNIPS process of integral-asymmetric, isoporous block copolymer mem-
branes at micrometer length and minute time scales, providing important new guidelines
for experiment.

The second contribution by Methorst et al. explores completely different kind of
molecular processes, namely biomolecular processes. Often, biological function is related
to calculating free energies of e.g. binding of molecules. Such simulations explore specific
reaction paths and are thought to identify most likely pathways between known (relative)
free energy minima. Of course, such a selection of pathways is based on a specific scientific
hypothesis. Alternatively, one might try to sample many possible molecular arrangements
and reconstruct possible mechanisms out of this data set, i.e. similar to a physics based
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inverse design. Such an approach is followed here for the selective binding and recogni-
tion of lipid membrane specificity. There the specific interaction of the lipid membrane
with proteins is governed by unique attributes like curvature, lipid composition, and the
organisation of lipids into ordered or disordered regions. Here the focus is on using evo-
lutionary algorithms and Martini force field coarse-grained MD, here called Evo-MD, to
design “engineered” short peptide sequences, which in their interaction are especially sen-
sitive to membrane curvature. Starting from short random sequences the peptide sequences
are allowed to evolve in their respective environment. To accelerate the simulations, i.e.
making them possible at all, the authors assume that neighbouring sequences are also close
in their interaction with the membrane and thus only short intermediate runs are needed
to decide about acceptance of the newly proposed amino acid sequence. By using such an
approach in an optimised way they were able to propose specific short sequences, which
might be part of larger peptides, that facilitate taylored interactions with membrane cur-
vature. In a next step this has been combined with machine learning where the authors
developed a surrogate model trained on a broad spectrum of relative membrane surface
binding free energies for amphiphilic peptides. This demonstrated the use of Evo-MD data
to train neural networks.

The third contribution is not so much from the field of soft matter itself. However,
the problems to tackle and the mechanisms to investigate often hold for soft matter as well.
This contribution deals with deformation and failure of glasses, in this specific case of bulk
metallic glasses (BMGs). They, for instance, bear many close similarities with colloidal
glasses. Metallic glasses display excellent mechanical properties and might be good can-
didates for auxetic materials, i.e. materials with a negative Poisson ratio. For instance,
they have the highest known damage tolerance, which is the product of fracture toughness
and yield strength. At the down side BMGs exhibit strain softening, rendering undesired
surface structures potentially leading to cracks. In addition, as for almost all glasses, these
properties also depend on the cooling rates applied. To approach the properties of such
materials Atila et al. performed large scale MD simulations focusing of three problems, (i)
the connections of brittleness with the fragile (i.e. non Arrhenius) to non-fragile (“strong”)
transition close to the glass transition, (ii) the origin of high friction and (iii) the deforma-
tion behaviour of auxetic materials. In the first part huge 23 Mio atom systems were, for
simulation time scales, slowly cooled and then subjected to nanoindentation simulations.
Induced strain curves displayed qualitatively different shear band patterns in the strong and
fragile regime. Despite these differences, some similarities are observed, which led the au-
thors to the hypothesis of some “hidden order” in the melt. This hypothesis still is under
evaluation. In a second set of simulations the focus was on the low internal friction which
can be seen as in contrast to the very large sliding friction. For that internal deformation
was induced by a numerical scratching experiment. The atomistic simulations reveal a
special feature, namely that an increased softness on the local atomistic scale can results in
harder and more elastic systems on large scales. Altogether BMGs seem to outperform the
mechanical properties of the respective crystalline systems. Though details of the interac-
tions on atomistic scale determine the results quantitatively, the general qualitative results
most probably could apply to other glasses, such as colloidal systems, as well.

These three contributions demonstrate the power of advanced modelling for, here, soft
matter science. Improved algorithms and models together with advances in hardware de-
sign, allow us to go on from equilibrium properties to molecular processes and from more
idealised model systems to specific materials.
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SNIPS, a combination of evaporation-induced self-assembly (EISA) and nonsolvent-induced
phase separation (NIPS) of copolymer solutions, offers a bottom-up approach for fabricating
integral-asymmetric, isoporous block copolymer membranes. During EISA, a self-assembled
top layer of perpendicular cylindrical domains forms, imparting selectivity for ultrafiltration
and water purification. Upon immersion in a nonsolvent bath, NIPS creates a spongy, macro-
porous support structure from the same material that provides mechanical stability.
Designing membranes with desired characteristics (e.g., copolymer chemistry, isoporous layer
thickness, thermal and mechanical stability) for specific applications remains a challenge due
to the nonequilibrium nature of the SNIPS process. This process is driven by complex phys-
ical phenomena, including solvent evaporation, self-assembly, solvent-nonsolvent exchange,
macrophase separation, and glassy arrest.
To optimise permeability and selectivity and guide rational design, we employ GPU-accelerated
particle-based and continuum simulations to model the entire SNIPS process. These simulations
identify a process window for successful membrane fabrication and elucidate the interplay be-
tween structural, thermodynamic, kinetic, and process variables. We find that (i) minor incom-
patibility between the copolymer’s matrix-forming block and the nonsolvent, (ii) glassy arrest
at lower polymer concentrations, or (iii) greater dynamic contrast between polymer and solvent
lead to a spongy, tortuous substructure. This simulation approach offers a platform for rational
membrane design and guides experimental efforts to optimise permeability and selectivity.

1 Introduction

Membrane technology plays a crucial role in addressing some of the most pressing global
challenges. As the world population grows, ensuring access to clean water, reducing car-
bon footprints, and treating waste streams become increasingly critical. Membranes offer
an energy-efficient solution for separating a wide variety of gaseous or liquid mixtures, of-
ten outperforming traditional methods like distillation in terms of energy consumption1, 2.
Additionally, membrane processes can operate under mild conditions, making them par-
ticularly suitable for sensitive applications, such as blood hemodialysis3 or protein separa-
tion4, 5.

The self-assembly and non-solvent induced phase separation (SNIPS) process for block
copolymers and solvents enables the fabrication of integral-asymmetric, isoporous mem-
branes6. An isoporous top layer, formed by Evaporation-Induced Self-Assembly (EISA),
imparts selectivity for ultrafiltration of functional macromolecules or for water purifica-
tion. This selective layer is supported by a macroporous bottom structure, created through
Nonsolvent-Induced Phase Separation (NIPS), which provides mechanical stability. This
combination optimises the permeability/selectivity tradeoff.

The SNIPS fabrication process involves various physical phenomena – such as sol-
vent evaporation, self-assembly, macrophase separation, and vitrification – controlled by
structural, thermodynamic, kinetic, and process parameters. As illustrated in Fig. 1, the
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Figure 1. Snapshots of particle-based SNIPS simulations, depicting the majority-block concentration,
φB , for different parameter variations with respect to the reference system. The reference system em-
ploys χBNNP = 150, χANNP = 10, φ∗P = 0.72, φ0

P = 0.33 and f = 0.3125. Top image: 3D
image of the concentration of the matrix-forming component, B, of the diblock copolymer. Bot-
tom image: view from the bottom of the membrane at z = 40Re pointing toward the film surface,
z = 0Re. From Ref. 7.

variation in membrane morphology is influenced by factors such as the incompatibility,
χBNNP , between the matrix-forming block and the nonsolvent, the density, φ∗P , at which
the polymer vitrifies, the initial polymer density, φ0

P , in the casting solution, the dynamical
asymmetry between the polymer and solvents, and the duration, tEISA, of the EISA process.

Optimising membrane properties and designing fabrication processes rationally is chal-
lenging due to the high-dimensional parameter space. However, particle-based and contin-
uum simulations offer valuable insights by investigating how structural, thermodynamic,
kinetic, and process parameters influence the final membrane morphology. These “digital
twins” of the experimental fabrication process allow independent variation of parameters
that may be difficult to achieve experimentally. For example, altering the incompatibil-
ity between the majority component, B, of the diblock copolymer and the nonsolvent
by changing the chemical structure of the B-block also impacts other factors, such as

256



the copolymer block incompatibility, χABNP , and the glass-transition dependence of the
matrix-forming block on solvent concentration. Furthermore, simulations provide compre-
hensive data not only on the final membrane morphology but also on concentration profiles
and fluxes throughout the entire SNIPS process.

To effectively contribute to the rational design of the fabrication process, simulations
must capture the large length and time scales – on the order of micrometers and minutes –
characteristic of the experimental SNIPS process. This demands both, a careful selection of
models and simulation techniques, and High Performance Computing (HPC) capabilities.

2 Coarse-Grained Top-Down Model: Particle-Based vs Continuum
Simulations

The SNIPS process involves an AB diblock copolymer, a volatile solvent, S, a nonvolatile
solvent,C, and a nonsolvent,N . Instead of modelling a compressible five-component mix-
ture, we simplify the system by treating it as incompressible while explicitly introducing
gas particles, G, that are incompatible with the other components, separating the polymer
film from the gas (vapour) phase8.

The large time and length scales necessitate a highly coarse-grained model that cap-
tures only the relevant interactions, essential for the SNIPS process. These include (i) the
molecular connectivity along the backbone, which determines the copolymer’s molecular
size, Re, and dictates the length scale of microphase separation, and (ii) the binary in-
teractions, parameterised by the Flory-Huggins parameters, χαβNP , where Greek indices
denote different particle species, and NP represents the number of coarse-grained seg-
ments of a copolymer. In this highly coarse-grained top-down model, the structure and
thermodynamics are governed by just a small number of key parameters – such as Re and
χαβNP – which are directly linked to experimental characteristics.

The final membrane morphology represents a nonequilibrium structure. If the system
was allowed to fully equilibrate, the result would be a thin, dense, self-assembled copoly-
mer film. However, as the plasticising solvents, S and C, leave the polymer-rich domains,
the polymer arrests in a glassy state. This vitrification halts the macrophase separation be-
tween the polymer and nonsolvent, ultimately determining the scale of the macroporous
substructure. To capture the plasticising effect of the solvents, we use concentration-
dependent mobilities9.

In a particle-based model, the coordinates of the individual coarse-grained particles
are the dynamic degrees of freedom. In our simulation, we use forced-biased Monte-
Carlo (MC) moves to propagate the system configuration, closely mimicking overdamped
Rouse dynamics of unentangled polymers without hydrodynamics. The concentration-
dependent mobilities are incorporated by modifying the MC acceptance probability, en-
suring detailed balance is maintained. The simulations utilise the Single-Chain-in-Mean-
Field (SCMF) algorithm10, which temporarily replaces weak nonbonded interactions with
quasi-instantaneous external fields on a collocation grid, mimicking the interactions be-
tween a particle and its surroundings. This approach enables efficient parallelisation, im-
plemented in the GPU-accelerated program SOft coarse grained Monte-carlo Accelera-
tion (SOMA)11.

The particle-based model enables the description of various molecular architectures.
For example, triblock copolymers have been employed to reduce the brittleness of the
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final membrane material. Moreover, this particle-based approach directly links molecular
dynamics to the kinetics of concentration fields, providing an accurate representation of
the structure formation and transformation.

Instead of tracking the coordinates of individual particles, a continuum model repre-
sents the system using concentration fields for the different species as the dynamic degrees
of freedom. The free energy of a given concentration-field configuration is determined
by the Uneyama-Doi free energy functional (UDM)12, characterised by parameters simi-
lar to those in the particle-based model, such as Re and χαβNP . However, the connec-
tion between these parameters and the underlying molecular characteristics is less direct.
Since concentrations are locally conserved, the concentration fields evolve according to
model-B13 or Cahn-Hilliard dynamics, including thermal noise. Gradients in the chemi-
cal potential drive concentration fluxes, proportional to an Onsager coefficient, Λ, though
accurately determining Λ remains an active area of research. The continuum model rep-
resents a higher level of coarse-graining, as concentration fields can be constructed from
explicit particle configurations, but multiple particle arrangements can correspond to the
same set of concentration fields.

The higher degree of coarse-graining speeds up the computation, and our implementa-
tion of the continuum model is about an order of magnitude faster than the particle-based
simulations with SOMA. Additionally, the continuum description potentially allows to
capture hydrodynamic flow via model-H dynamics13 and generalisations to viscoelastic
phase separation14 can be envisioned.

3 Thermodynamic Considerations

The casting solution of the reference system is composed of equal parts polymer, P = AB,
volatile solvent, S, and nonvolatile solvent, C, positioned at the centre of the Gibbs
triangle, as shown in Fig. 2. During the process of evaporation-induced self-assembly
(EISA), the volatile solvent, S, evaporates, causing a decrease in the volume fraction of
solvent, φS , at the film surface. As a result, the system approximately follows the isopleth
φP = φC = 1−φS

2 , indicated by the arrow in the figure. When the surface concentration
crosses the critical micelle concentration (CMC), nucleation of isolated A-core micelles
can occur. A slight further reduction in φS triggers an instability leading to microphase
separation, represented by the black dashed line. This process ultimately results in the
formation of hexagonally ordered cylinders at the film surface.

A basic requirement for SNIPS is the stability of the initial homogeneous casting solu-
tion. Additionally, premature nucleation of micelles, well before reaching the spinodal for
microphase separation during EISA, could reduce the degree of order in the self-assembled
top layer.

The non-black lines in Fig. 2 mark the stability limits of the homogeneous solution
in the presence of nonsolvent. Already, a minuscule amount of nonsolvent, φN ≈ 0.2%,
suffices to induce spontaneous macrophase separation in the system, shown by the blue
solid lines. Further increasing φN rapidly broadens the concentration range in the Gibbs
triangle where macrophase instability occurs, as indicated by the significant expansion of
the solid lines.
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Figure 2. Thermodynamic stability of the homogeneous casting solution is depicted on the φP -φS -φC Gibbs
triangle. Dashed and solid lines represent the spinodals for microphase and macrophase separations, respec-
tively, while open-circle lines approximate the critical micelle concentration (CMC) for A-core micelle forma-
tion. Curves with different nonsolvent concentrations, φN , are distinguished by colour, with the black curves
representing the initial casting solution, φN = 0. The arrow marked “EISA” indicates the evaporation of the
volatile solvent S. Adapted from Ref. 7.

4 The EISA Process in Particle-Based and Continuum Simulations

During EISA, the film surface retracts, causing the slower-moving copolymers to accumu-
late at the descending surface, where they self-assemble into a perpendicular cylindrical
morphology. In Fig. 3, we compare the surface retraction and the downward growth of A-
cylinders between the particle-based simulation and the continuum model (Uneyama-Doi
Model (UDM)), using identical structural and thermodynamic parameters,Re and χαβNP .

We simulate the EISA process using the particle-based model9, 7 and extract the
concentration fields, φα(r, t0), at various times, t0/τR = 1.6, 3.2, and 4.8. These
concentration fields are then used to initialise the UDM, allowing for a quantitative
comparison of the subsequent time evolution between the two models. To determine
the timescale factor, τRλ0, we examine the mean concentration deviation, ∆φ(t) ≡
1

5V

∫
dr
∑
α |φSOMA

α (r, t) − φUDM
α (r, t)|. Fig. 3a shows this deviation for different ini-

tialisation times as a function of τRλ0. The best match is achieved at τRλ0 = 0.76, which
is used in subsequent analysis.

Fig. 3b shows the time evolution of the mean concentration deviation for this value.
Following initialisation, the deviation rapidly increases to ∆φ ≈ 7 · 10−2, where it sta-
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Figure 3. Time-scale matching and concentration comparisons between the two models for the EISA
process. a) Concentration deviation, ∆φ, between the particle-based and continuum models for dif-
ferent initialisation times, t0, (as indicated in the legend of panel b) after fixed run time of t = 3.2τR.
The minimal deviation occurs at τRλ0 = 0.76, marked by the dashed vertical line. b) Depen-
dence of concentration deviation, ∆φ, on the run length, t, using the optimal time-scale matching
τRλ0 = 0.76. c) Time evolution of B-concentration, φB , shown for a 2D slice near the film surface,
for an initialisation time of t0 = 3.2τR. Panels show particle-based simulation (left) and continuum
simulation (centre), along with the deviation, ∆φB = φSOMA

B − φUDM
B (right). Simulation time

increases from top to bottom.

bilises, suggesting that the plateau is primarily influenced by thermal fluctuations because
the segregation within the self-assembled cylinders is less pronounced in the particle-based
simulation compared to the continuum model.

Panel c provides a spatially resolved comparison between the particle-based and con-
tinuum simulations of the EISA process. As anticipated, the qualitative time evolution is
consistent between the two models, including the surface retraction speed and the growth
of cylinder length.

5 Particle-Based Simulation of the Entire SNIPS Process

In Fig. 4, we present 3D images showing the concentration of the matrix-forming block,
B, during SNIPS at various times. By tEISA = 16τR, a well-ordered layer of perpendicular
cylinders with a thickness of approximately 4Re has formed. At this point, the gas is ex-
changed with the nonsolvent,N , initiating the NIPS process. The nonsolvent is incompati-
ble with the polymer but miscible with the two solvents, S andC. As the remaining solvent
leaves the polymer skin, the polymer concentration exceeds the vitrification threshold, φ∗P ,
arresting the self-assembled structure in a solid, glassy state. Because the nonvolatile sol-
vent, C, is enriched in the A cylinders, and the nonsolvent, N , is more incompatible with
the matrix-forming block, B, the nonsolvent migrates toward the disordered polymer solu-
tion beneath the glassy, self-assembled top layer through theA cylinders. Due to the strong
incompatibility, χBNNP , with the B block, polymer and nonsolvent undergo macrophase
separation. The nonsolvent-filled macrovoids are larger than the domains generated by the
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Figure 4. 3D images showing the B-concentration during SNIPS. The transition from EISA to NIPS
occurs at tEISA = 16τR. The system’s geometry is 27.6 × 32 × 100R3

e . From Ref. 7.

diblock copolymer self-assembly. As the macrovoids grow, they further deplete the sur-
rounding polymer-rich regions of solvents, leading these regions to vitrify and halt further
macrophase coarsening.

In the top panel of Fig. 5, we quantify the structure using four characteristic lateral xy
cross-sections at t = 62.4τR. A gradual qualitative change in morphology is observed in
the cross-sections as depth increases.

The bottom panel of Fig. 5 shows the structure factor of the polymer concentration,
which characterises the macrophase separation between the polymer and nonsolvent:

SP (q‖, z) ∝
〈∣∣∣∣
∫

dxdy [φA(x, y, z) + φB(x, y, z)] ei(qxx+qyy)

∣∣∣∣
2
〉

(1)

with q2
‖ = q2

x + q2
y . The position of the structure-factor peak, qmax, determines the lateral

domain size, d = 2π/qmax, which increases with depth. However, SP (q‖, z) does not
capture the qualitative differences in domain topology between the xy cross-sections at
z = 20Re and 52Re.

We complement the layer-resolved structure factor, SP (q‖, z), with the Euler character-
istic combined with morphological erosion to characterise the topology of lateral structures
and quantify their characteristic sizes. To achieve this, we convert the polymer concentra-
tion in a lateral xy cross-section into a binary black-and-white map using the threshold
φP = 0.26, where white regions represent polymer-rich areas and black regions represent
nonsolvent-rich areas. By counting the number of distinct, unconnected polymer domains,
nSP , and nonsolvent domains, nSN , we calculate the Euler characteristic as the difference
between the two: χE = nSP − nSN 15, 16 A negative Euler characteristic indicates a topol-
ogy with multiple nonsolvent-rich domains dispersed within a polymer-rich matrix, as seen
in the lateral cross-section of the hexagonally self-assembled polymer skin at z = 5Re in
the leftmost top panel of Fig. 5.

Calculating the Euler characteristic after applying “morphological erosion” to the
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Figure 5. Top row: Lateral xy-cross-sections at depths z/Re = 5, 9, 20, and 52. The yellow contours in the
cross-section at z/Re = 52 trace the polymer and nonsolvent interface after erosion of the nonsolvent domains
by parallely shifting the interfaces by δ = 0.8Re. Bottom row: Structure factor, SP (q‖, z), of polymer concen-
tration (left). Euler characteristic, χE(δ), as a function of the erosion distance, δ, of the domains (right). Colours
indicate the different lateral xy-cross-sections. From Ref. 7.

black-and-white map provides additional insights into the lateral length scales. This pro-
cess involves shifting each point along the interfaces between the black and white domains
in a direction perpendicular to the interface contour by a distance δ. A positive δ expands
the polymer-rich domains, effectively eroding the nonsolvent-rich regions, whereas a neg-
ative δ erodes the polymer-rich domains. The contours resulting from a parallel shift of
δ = 0.8Re are shown in the rightmost top panel of Fig. 5 for the xy cross-section at
z/Re = 52.

At z = 9Re, just below the polymer skin, the 2D cross-section reveals isolated
polymer-rich domains dispersed within the nonsolvent, yielding a positive Euler charac-
teristic, χE(0) ≈ 74 > 0. The broad size distribution of these polymer domains results
in a structure factor with a wide peak, corresponding to a characteristic length scale of
d ≈ 3.7Re. The positive Euler characteristic, χE(0) ≈ 74, suggests a similar average dis-
tance between polymer-rich domains, estimated as d =

√
LxLy/χE(0) ≈ 3.5Re. As the

polymer domains expand and merge, χE reaches a minimum at δ ≈ 0.7Re, indicating that
the typical width of a nonsolvent-rich domain is approximately 1.4Re. Conversely, when
the polymer-rich domains undergo erosion, they fragment into smaller pieces, signalled by
a maximum in χE at δ ≈ −0.3Re, corresponding to a typical diameter of approximately
0.6Re for the polymer-rich domains.

In the later stages of NIPS, three qualitatively different layers emerge, as shown in the
snapshots at t = 36.8τR and 62.4τR in Fig. 6:

(i) Arrested phase separation: The first layer, extending from the hexagonally self-
assembled polymer skin at the film surface to the upper part of the macroporous mem-
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Figure 6. Density profiles at t/τR = 36.8 (left) and 62.4 (right). The background presents a 2D slice of
φA−φB . The vitrification and the structure formation front are indicated in the left panel. Adapted from Ref. 7.

brane substructure, is characterised by minimal temporal changes in polymer concentra-
tion. Within this layer, the low solvent concentration in the polymer-rich domains leads to
the vitrification of the polymer morphology, particularly of the matrix-forming blockB, as
the polymer concentration surpasses the glass-transition threshold, φP & φ∗P during NIPS.
In Fig. 6 at t = 36.8τR, this vitrification front is marked by a dashed yellow line. The
dynamics are primarily governed by the exchange of nonsolvent, N , with the solvents, S
and C, which can be described as transport through a porous medium with a complex but
static geometry.

(ii) NIPS-formation: Proper structure formation occurs in the subsequent layer, which
extends from the end of the vitrified layer to the structure-formation front. In this re-
gion, the nonsolvent concentration is sufficiently high, φN > 0.002 c.f. Fig. 2, to induce
macrophase separation between the polymer and nonsolvent, and/or the solvent concentra-
tion within the polymer is low enough to trigger self-assembly. For the chosen SNIPS pa-
rameters, these macro- and microphase separation fronts coincide. The structure-formation
front is indicated by a vertical orange dashed line in Fig. 6 at t = 36.8τR.

(iii) Homogeneous solution: Deeper within the film, the solution becomes laterally
homogeneous, with neither macro- nor microphase separation occurring and only shallow
concentration gradients present. In this region, the dynamics can be described as one-
dimensional (1D) transport through an unstructured, homogeneous medium, involving the
exchange between nonsolvent,N , and solvents, S andC. Despite its simplicity, this region
is important to consider to avoid finite-size artifacts due to the bottom boundary.
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6 Outlook

The use of highly coarse-grained top-down models, advanced analysis techniques, and
GPU-based supercomputers – such as JUWELS at Jülich Supercomputing Centre (JSC) –
allows us to investigate the SNIPS process of integral-asymmetric, isoporous block copoly-
mer membranes at micrometer and minute scales. These simulations offer extensive in-
sights into the spatiotemporal evolution of the structure. However, particle-based simula-
tions involving approx. 109 highly coarse-grained segments are computationally intensive.
To systematically explore the high-dimensional space of structural, thermodynamic, ki-
netic, and process parameters and rationally optimise the fabrication process, it is crucial to
minimise computational costs. This can be achieved by integrating particle-based models
with less detailed but computationally faster continuum models. The three-layer structure
illustrated in Fig. 6 suggests that detailed particle-based simulations are most necessary
near the structure-formation front, whereas the dynamics in the zones of arrested phase
separation and homogeneous solutions can be adequately described using continuum mod-
els.

Acknowledgements

Financial support has been provided by the Bundesministerium für Bildung und
Forschung (BMBF) within the project 16ME0658K MExMeMo and European Union –
NextGenerationEU. The authors gratefully acknowledge the Gauss Centre for Super-
computing e.V. (www.gauss-centre.eu) for providing computing time through the
John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS
at Jülich Supercomputing Centre (JSC).

References

1. E. Drioli, A. Brunetti, G. Di Profio, and G. Barbieri, Process intensification strategies
and membrane engineering, Green Chem., 14, 1561-1572, 2012.

2. D. S. Sholl and R. P. Lively, Seven chemical separations to change the world, Nature,
532, 435-437, 2016.

3. C. Ronco and W. R. Clark, Haemodialysis membranes, Nat. Rev. Nephrol., 14,
394-410, 2018.

4. A. Saxena, B. P. Tripathi, M. Kumar, and V. K. Shahi, Membrane-based techniques
for the separation and purification of proteins: An overview, Adv. Colloid Interface
Sci., 145, 1-22, 2009.

5. R. van Reis and A. Zydney, Membrane separations in biotechnology, Curr. Opin.
Biotechnol., 12, 208-211, 2001.

6. V. Abetz, Isoporous Block Copolymer Membranes, Macromolecular Rapid Commu-
nications, 36, 10-22, 2015.

7. N. Blagojevic, S. Das, J. Xie, O. Dreyer, M. Radjabian, M. Held, V. Abetz, and
M. Müller, Toward Predicting the Formation of Integral-Asymmetric, Isoporous Di-
block Copolymer Membranes, Adv. Mater., 36, 2404560, 2024.

264



8. O. Dreyer, G. Ibbeken, L. Schneider, N. Blagojevic, M. Radjabian, V. Abetz, and
M. Müller, Simulation of Solvent Evaporation from a Diblock Copolymer Film: Ori-
entation of the Cylindrical Mesophase, Macromolecules, 55, 7564-7582, 2022.

9. N. Blagojevic and M. Müller, Simulation of Membrane Fabrication via Solvent Evap-
oration and Nonsolvent-Induced Phase Separation, ACS Appl. Mater. Interfaces, 15,
57913-57927, 2023.

10. K. C. Daoulas and M. Müller, Single Chain in Mean Field simulations: Quasi-
instantaneous field approximation and quantitative comparison with Monte Carlo
simulations, J. Chem. Phys., 125, 184904, 2006.

11. L. Schneider and M. Müller, Multi-Architecture Monte-Carlo (MC) Simulation of Soft
Coarse-Grained Polymeric Materials: SOft coarse grained Monte-carlo Acceleration
(SOMA), Comp. Phys. Comm., 235, 463, 2019.

12. T. Uneyama and M. Doi, Density Functional Theory for Block Copolymer Melts and
Blends, Macromolecules, 38, 196-205, 2005.

13. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev.
Mod. Phys., 49, 435-479, 1977.

14. H. Tanaka, Viscoelastic phase separation, J. Phys.: Condens. Mat., 12, R207, 2000.
15. K. Michielsen and H. De Raedt, Morphological image analysis, Comput. Phys. Com-

mun., 132, 94-103, 2000.
16. J. Wang and M. Müller, Microphase Separation of Diblock Copolymer Brushes in

Selective Solvents: Single-Chain-in-Mean-Field Simulations and Integral Geometry
Analysis, Macromolecules, 42, 2251-2264, 2009.

265





Exploring the Potential of Evolutionary Molecular
Dynamics (Evo-MD) in Uncovering and Controlling

Biomolecular Mechanisms

Jeroen Methorst1,2, Niek van Hilten3, Kai Steffen Stroh4, Sebastian Lütge1,
Max Krebs1, Maria Kelidou1, and Herre Jelger Risselada1

1 Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
E-mail: jelger.risselada@tu-dortmund.de

2 Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
3 Department of Pharmaceutical Chemistry, University of California, San Francisco, USA

4 Laboratory of biology and modelling of cells, ENS de Lyon, France

1 Introduction

Traditional biomolecular research mainly explores how peptides and proteins perform spe-
cific functions, often linked to various health issues. Much of this research concentrates
on understanding molecular mechanisms because it’s traditionally believed that grasping
these mechanisms is crucial for controlling function, which remains the ultimate goal.

Biomolecular simulations tackle the molecular mechanisms in biological systems by
calculating free energies. This helps to assess the plausibility of hypothesised reactions
and how natural proteins overcome related free energy barriers (e.g, Ref. 1). These simu-
lations explore the phase-space along the proposed reaction coordinates, which outline the
mechanism, or identify the most likely reaction pathways connecting known intermediates
(free energy minima).

An additional, novel approach for understanding biomolecular mechanisms emerges
from physics-based inverse design. Unlike traditional approaches that aim to validate ex-
isting hypotheses about biomolecular processes, this innovative strategy concentrates on
autonomously replicating the biomolecule’s functions – such as selective binding – via
the automated generation and optimisation of artificial molecular constructs. It achieves
this by simulating artificial evolution within biomolecular simulations2. By adopting such
strategy, we can discover innovative solutions that may not exist in nature but offer vital
insights into the individual molecular components and thermodynamic driving forces that
mediate specific biological functions. This approach helps to develop a deep understanding
of how things work by directly teaching us how functionality is controlled2.

In this short perspective, we delve into one of the most fundamental yet intricate pro-
cesses in living organisms: the selective binding and recognition of lipid membrane speci-
ficity3, 4. Lipid membranes, characterised by a thin layer of fats (a fluid-fluid interface),
serve as barriers that separate cells from their surroundings and differentiate various inter-
nal components, including organelles. Proteins interacting with various cell membranes
utilise specific mechanisms to distinguish between them based on unique attributes like
curvature, lipid composition, and the organisation of lipids into ordered or disordered
phases3, 5, 4.
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We investigate the application of physics-based inverse design techniques2, incorpo-
rating evolutionary algorithms and coarse-grained molecular simulations, to facilitate the
reverse engineering of short peptide sequences capable of recognising these distinctive
properties of biological lipid membranes, especially curvature. These reverse-engineered
sequences could uncover previously unknown functional domains within larger periph-
eral membrane proteins. Crucially, this advancement also lays the groundwork for the
direct development of peptide drugs that specifically target the unique lipid membranes of
viruses, bacteria, and cancer cells. To achieve this goal, we propose a novel method, Evo-
lutionary Molecular Dynamics (Evo-MD) simulations, which has been implemented in
our in-house software suite coined EVO-MD, which merges evolutionary algorithms with
coarse-grained molecular dynamics simulations. We specifically employ building-block
coarse-grained models like the Martini force field6, 7, which condenses multiple atoms into
a single interaction site, thereby enhancing computational efficiency by up to 100 times or
more. The significant computational boost is essential due to the iterative nature of evo-
lutionary algorithms, which evolve through numerous generations of large genetic popula-
tions – comprising hundreds of individuals (simulation systems) – all processed in parallel.
Furthermore, the versatility of building block force-fields, which allows for the integration
of all interaction types specified within the force-field, is crucial in the evolutionary devel-
opment of new molecules. This integration ensures that these newly generated molecules
are accurately depicted, leveraging a fundamental concept known as force-field transfer-
ability8. This principle underpins the reliable forecasting of molecular behaviour across
varied conditions and system compositions.

The Evo-MD approach guides the evolutionary process from random amino acid se-
quences towards peptides capable of selectively interacting with complex fluid phases,
including biological lipid membranes9, 2, 10, 11. We underscore that this method holds
great promise for developing peptide-based sensors and therapeutics since it can be cus-
tomised to identify or selectively target specific characteristics such as membrane curva-
ture, lipid composition, membrane phase (e.g., liquid ordered phases), and protein-fluid
phases. While the optimised solutions may not always match biological standards pre-
cisely, physics-based inverse design excels at isolating physicochemical principles and
thermodynamic drivers behind selective protein-membrane interactions thereby success-
fully uncovering the signatures (‘the design rules’) of evolutionary optimisation in nature.
Furthermore, we highlight the distinctive capability of the Evo-MD methodology to gener-
ate pivotal training datasets for predictive neural network models, strategically covering the
relevant physicochemical spectrum within peptide space. This development has now led to
the introduction of a publicly available Protein Membrane Interaction prediction (PMIpred)
server11. This server offers quantitative assessments of membrane binding tendencies and
the membrane binding strength of individual amino acid within native proteins, signifi-
cantly enhancing our understanding and prediction capabilities in the fields of peripheral
membrane proteins.

2 Methods and Implementation

We introduce EVO-MD9 as an example implementation of the physics-based inverse de-
sign concept, which we have applied in the development of membrane-interacting pep-
tides2. EVO-MD integrates molecular simulations based on building-block coarse-grained
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Figure 1. Flowchart of the EVO-MD software build on top of the GROMACS engine for molecular dynamics
simulations12. Core/ describes the flow of the genetic algorithm. User/ implements the simulation software into
various modules that are executed sequentially as part of the fitness function. Figure adopted from Ref. 9.

force-fields, such as the Martini model, into a custom genetic algorithm wrapper program
build upon the highly parallel Gromacs engine12, allowing for the automated setup, pro-
duction, and subsequent analysis of MD simulations based on candidate sequences selected
by the genetic algorithm (see Fig. 1).

The concept of EVO-MD is inspired by the work on virtual creatures performed by
Karl Sims in the 1990s13, 14. Virtual creatures, as simulated by Karl Sims, involve the
evolution of virtual block creatures in a simulated dynamic environment. These creatures
are created within a computer and undergo a process of variation and selection to improve
their ability to perform specific tasks, such as swimming or walking, or even competition
for food. The goal is to create creatures with successful behaviours through the evolution
of their virtual genes. At its heart, EVO-MD uses the idea of virtual creatures to guide
the evolution of biomolecules within a molecular dynamics environment. It harnesses the
laws of physics and thermodynamic forces to shape biomolecules starting from completely
random sequences9, 10.

The heavy computational and time requirements associated with physics-based inverse
design, particularly when considering both large search spaces (e.g. exceeding 2024 combi-
nations) and random initialisation, are mitigated using strategies that maximise information
extraction from the available simulation data. The largest gain in efficiency follows from
the use of relatively short coarse-grained molecular dynamics (MD) simulations for the
fitness evaluations. While the simulations are not yet converged within these time frames
and the measured observable(s) are therefore far from accurate, genetic algorithms do not
require the absolute value of an observable. All that is required for evolution to proceed is
an estimation of the relative ranking of the solutions within a population as this is the sole
criterion on which selection is based. As long as a ’better’ solution relatively outperforms
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most other solutions, evolution proceeds in the proper direction. However, the closer we
approach the (global) optimum in evolution, the smaller the spread in fitness within the
population pool and thus the more relevant robust sampling becomes.

Undersampling of simulation observables does pose a problem for the selection step,
as outliers – being excessively overestimated observables with respect to their actual value
due to undersampling – would almost fully constitute a selection pool after evaluation.
We devised several approaches to combat this: (i) We assume that the outliers are due to
undersampling and that the distributions of the mean values are (mostly) sequence inde-
pendent. From this follows that outliers of better solutions (i.e. with high ’true’ values for
their observable(s)) are more likely to exceed the outliers of worse results, and therefore
allows us save time in our simulations by intentionally undersampling (within reason). (ii)
We optimise the time that we allocate for sampling through the use of simulation replicas.
This can provide a more efficient and accurate estimation of the observable(s) compared
to a single, longer simulation – in particular when the largest relaxation time in the sys-
tem of interest is in the order of the time-scale of the simulation15, 16. (iii) We eliminate
outliers by verifying the best results of each iteration, and maintaining high-performing
solutions between iterations. The usage of elitism – where the best performing solutions
in a population are directly copied over to the new population – leads to solution occur-
ring which have already been evaluated. To verify the best performers, the corresponding
observable(s) are again estimated using independent simulations. The new value is then
computed from the weighted average of previous estimations and the new simulation result.
This process effectively adds additional replicas into a solution’s evaluation, increasing ac-
curacy and thereby removing outliers from the selection pool. Sequences that maintain
their high-performing status are retained through a second elitism procedure, to ensure that
high-performing solutions are not lost.

Notably, we have recently shifted from a synchronous to an asynchronous genetic al-
gorithm17. This change is pivotal because it enhances computational performance and
efficiency. Unlike the synchronous version, where CPUs might remain idle up to the ex-
change of fitness values, the new asynchronous GA ensures continuous utilisation of CPU
resources. With the asynchronous approach, once a CPU completes its computation, it
immediately communicates with the main process to receive the next task. This imme-
diate feedback loop prevents downtime and maximises resource usage, leading to faster
and more efficient processing. Furthermore, adopting an asynchronous method signifi-
cantly enhanced the computational stability and reliability during large-scale parallel sim-
ulations. This improvement was particularly notable in reducing the likelihood of system
crashes due to individual replica simulations failing, especially under conditions involving
numerous processes.

Finally, since EVO-MD hinges on the efficacy and precision of coarse-grained force
fields8 in accurately depicting lipids, amino acids, and their interactions, the availabil-
ity of accurate, representative coarse-grained models of these molecules is critical in its
success. Notably, optimising force fields resembles a physics-based inverse design chal-
lenge. Adjusting interaction parameters translates into a sophisticated optimisation task,
assessed through molecular simulations with experimental trial force fields. The goal is to
mirror established structural features (such as Radial Distribution Functions, RDFs) and
thermodynamic attributes (including phase-transition temperatures) of target molecules.
Recognising the Evo-MD method’s reliance on precise coarse-grained molecule models,
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we have simultaneously explored another avenue of research within the context of search
space optimisation. This research employs a swarm intelligence based method coined
GCCompiler18 to automate the parameterisation/construction of coarse-grained molecular
models within building block force fields, like the Martini model. Readers interested in
more details about this work are directed to Ref. 18.

2.1 Results

2.1.1 Optimisation of Amino Acid Sequences Selectively Interacting with Specific
Lipids and Lipid Membranes

Initially, we employed EVO-MD to address the challenge of identifying transmembrane
domain sequences that exhibit maximum cholesterol attraction9. Subsequently, we ex-
tended its application to the inverse design of membrane binding peptides (see Fig. 2 ),
focusing on those that demonstrate enhanced binding affinity for positively curved mem-
brane surfaces compared to tension-less, non-curved ones19, 10, 11. These studies illustrated
the convergence of evolutionary processes towards a global thermodynamic optimum, even
within a vast search space required to cover biological relevant peptide motif lengths, char-
acterised by a dimensionality of (2024) sequences, as evidenced by repetitive recovery of
the same solution space when starting from different random peptide sequences (different
initial genetic pools). This emphasises the EVO-MD methodology’s capacity to provide
a unique viewpoint on the thermodynamic forces and concomitant chemical features that
drive selective interactions between proteins and lipids, as well as proteins and membranes.

Additionally, unlike data-driven approaches that frequently demand simplification via
latent spaces for molecular optimisation, physics-based inverse design avoids the need to
reduce system complexity to predefined descriptors20. It also eliminates the requirement

Figure 2. Example of the basic concept of evolutionary molecular dynamics (Evo-MD) in the optimisation of
peptide sequences. (A) The Evo-MD scheme for optimising a peptide’s affinity toward lipid packing defects
associated with positive membrane curvature. Figure adapted from Ref. 9. Positive curvature is modelled using
a membrane under tension. Generated peptides (starting from a population of random sequences) are iteratively
ranked on their “fitness” (the relative binding free energy, ∆∆F ), as determined by an end-state free energy
calculation method described in Ref. 19. Best sequences are picked and recombined to produce the next gener-
ation, leading to gradual evolution toward the optimal lipid packing sensing peptides. (B) Within 25 iterations
of EVO-MD, we observe convergence with a fitness that far exceeds the values of that of known lipid packing
defect sensors (e.g., HCV AH, ALPS, and M2 MH). Figure adopted from Ref. 19.
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for concurrent variational autoencoders/decoders20. Consequently, the full complexity of
the system is preserved throughout the optimisation process. Furthermore, the insights de-
rived from physics-based design – specifically, the molecular design rules – are naturally
comprehensible to humans since they emerge from the observable physical or chemical
characteristics of molecules as they progress towards an optimal state. Focusing on these
tangible, evolving attributes simplifies the understanding of the thermodynamic forces in
action, providing a clear and thorough insight into the mechanisms which facilitate func-
tionality2.

Moreover, by determining the theoretical optimum from randomly initiated sequences,
the EVO-MD methodology facilitates the thorough exploration of the entire search
space2, 10. This approach allows for the strategic generation of data across the full spectrum
of achievable fitness values10, 11. In contrast, existing biological data on functionality is of-
ten concentrated due to the common origin of various peptide sequences from the same or
related protein families. This strategic data generation capability is particularly advanta-
geous for using EVO-MD data to train neural network models for rapid and cost-efficient
fitness predictions often being referred to as ‘surrogate models’. Surrogate models serve as
valuable tools, for example, within the domain of synthetic polymer design, utilising data
produced through rigorous molecular simulations21. Essentially, surrogate models serve as
substitutes for molecular simulations in predicting fitness. Training surrogate models with
EVO-MD data has the potential to reveal alternative viable solutions that might go unno-
ticed when relying solely on data derived from known biological inputs. This principle is
equivalent to fitting an unknown function to data points that are well spaced over the whole
range of the applicability domain versus data points that are only clustered within a narrow
window10, 2. Particularly, precise knowledge of the maxima (and minima) of a function –
which a physics-based optimisation is able to resolve – will benefit the quality of a fit or
model, also within the biologically relevant domain of the search space if the model pos-
sesses adequate generalisation capabilities11. Following the training of a surrogate model
for fitness prediction, it can act as a replacement for coarse-grained MD simulations in
the molecular optimisation procedure directed by genetic algorithms. This approach can
accommodate retrospective integration of additional practical constraints, such as overall
peptide hydrophobicity, into the optimisation process, effectively negating the necessity
for recurring, resource-demanding EVO-MD simulations2.

2.1.2 The Powerful Synergy between EVO-MD and Machine Learning

A compelling illustration of the powerful synergy between the Evo-MD method and ma-
chine learning is demonstrated in a recent study, where we developed a surrogate model
trained on a broad spectrum of relative membrane surface binding free energies for am-
phiphilic peptides. This model aimed to forecast curvature sensing behaviour, a charac-
teristic identified in peptide sequences that selectively adhere to vesicles measuring less
than approximately 100 nm in diameter or remain soluble22. Currently, only around ten se-
quences, originating from two distinct protein families (α-synuclein and ADP-ribosylation
factor GTPase-activating protein22), are recognised for possessing this trait. Consequently,
there remains a significant gap in the availability of data for predicting curvature sensing
sequences.

To address the challenge of data insufficiency, we developed a statistical mechanical
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Figure 3. Synergy Between Evo-MD and Machine Learning in Curvature Sensing Sequence Prediction (A)
Membrane-Binding Probability and Free Energy: Statistical mechanical model on the likelihood of membrane
binding as a function of the absolute membrane-binding free energy. It highlights a critical regime marked by
a sudden shift in likelihood. The free energy values associated with sequences that specifically adhere to small
liposomes – acting as curvature sensors – are found within or close to this pivotal range. (B) Transformer Model’s
Predictive Power: Demonstration of the predictive capability of the Transformer-based neural network in fore-
casting (relative) binding free energies. This model was trained on EVO-MD generated sequences, covering the
full spectrum of thermodynamic possibilities. (C) Predicting Membrane Binding in Peripheral Proteins: Shows
how machine learning can predict interactions between molecules and membranes in larger, naturally occurring
peripheral membrane proteins. This is achieved by analysing the sequence and incorporating knowledge about
the structural accessibility of individual amino acids regarding their exposure to solvents (membranes). Figure
adopted from Ref. 10.

model to predict the precise range of relative binding free energy associated with curvature
sensing (see Fig. 3A). Leveraging EVO-MD as a physics-based generative model, we gen-
erated a substantial volume of data strategically encompassing the hypothesised curvature
sensing regime. This enriched dataset served as the foundation for training a convolu-
tional neural network (CNN) model, designed to predict the relative binding free energies
of authentic peptide sequences (Fig. 3B).
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By integrating this physics-enriched CNN model with our theoretical model on the
location of the curvature sensing regime illustrated in Fig. 3A, we achieved successful in-
dependent classification of the binding behaviours of known peptides, categorising them as
soluble, curvature sensing, or exhibiting aspecific membrane binding, with good precision
on established datasets. This accomplishment was achieved even without the need for prior
data on the limited number of curvature sensors already discovered.

Moreover, the observed accuracy and wide applicability of neural networks trained
by Evo-MD data has motivated us to launch the Protein-Membrane Interaction predic-
tion (PMIpred) server (pmipred.fkt.physik.tu-dortmund.de)11, which utilises
a transformer model trained by physics-based generation (EVO-MD) of over 54,000
curvature-sensing peptide sequences to quantitatively predict the membrane affinity of
peptide sequences. PMIpred is designed to analyse the interaction of large peripheral
membrane proteins, leveraging its predictive capabilities for shorter peptide sequences
(Fig. 3C). It employs a sliding window approach on protein sequences to compute an aver-
age free-energy contribution for each amino acid residue. This analysis is then linked with
the solvent-accessible surface area (SASA) of each residue, allowing the module to accu-
rately map and visualise the anticipated membrane-interaction activities within the protein
structure. We have tested PMIpred using a broad and varied dataset of known Peripheral
Membrane Proteins (PMPs). Our findings indicate that PMIpred performs comparably to
leading-edge tools such as DREAMM, PPM3, and MODA11. However, what sets PMIpred
apart is its much wider applicability and ability to offer quantitative predictions regarding
membrane affinities, which are straightforward to interpret in biological terms. Addition-
ally, PMIpred uniquely empowers users to differentiate between curvature-sensing and
membrane-binding motifs, providing a more nuanced understanding of protein-membrane
interactions than hitherto possible.

3 Concluding Remarks

We have outlined how evolutionary molecular dynamics (Evo-MD) in conjunction with the
in-house developed software suite called EVO-MD can open a promising new avenue for
the understanding of selective interactions of protein with lipids, lipid membranes, or other
relevant fluid-fluid interfaces such as protein fluid phases. The Evo-MD methodology
offers an intuitive and comprehensive way to explore and optimise molecular systems,
enhancing our ability to understand, predict and control their behaviour without the need
of simplification into a latent space. This methodology could introduce a quantum leap
in the development of bio-molecular sensors and peptide drugs that either recognise or
selectively target membrane curvature, membrane lipid composition or membrane phase
(e.g. lipid rafts), and even protein condensates. In addition, we have outlined how it
can excel at creating strategic training data for predictive neural network models under
circumstances where genuine data is limited.
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Bulk metallic glasses (BMGs) are known for their excellent mechanical properties, including
high tensile and yield strengths. However, they experience strain softening, which limits their
technological applications, as it leads to undesirable shear banding during mechanical load-
ing. Using molecular dynamics simulations, we explored the following questions: How does
the atomic structure at which the liquid falls out of equilibrium during cooling influence shear
banding and, thereby, plastic deformation under loading? Does strain softening prevent BMGs
from being viable candidates for use as auxetic materials and low-friction coatings? We ob-
serve a quasi-discontinuity in the plastic response of BMGs, depending on whether the material
fell out of thermodynamic equilibrium above or below the so-called fragile-to-strong transition
temperature T ∗. Specifically, when the melt is quenched from T > T ∗, i.e., from the fragile
liquid phase, the material is significantly less prone to strain localisation and shear banding
compared to quenching from an equilibrium strong melt (T < T ∗). Additionally, we found a
relatively large friction coefficient for our BMG, even when the indentation had not yet caused
shear band formation. This increase is attributed to repeated small-scale plastic deformations
occurring as the material is scratched along the same wear track. Finally, we clarified that the
negative Poisson’s ratio observed in auxetic structures is a large-displacement effect, showing
similar strain-dependent behaviour of the Poisson’s ratio in BMGs and (poly-)crystalline met-
als. Since the BMGs yield at substantially larger strains than (nano-) crystalline metals they are
promising candidates for the design of auxetic structures.

1 Introduction

Bulk metallic glasses (BMGs) exhibit several excellent mechanical properties compared to
crystalline and polycrystalline metals. These include an order-of-magnitude higher elastic
strain limit, as well as similarly enhanced tensile1 and yield strengths, while also being
tough2. In fact, BMGs have the highest known damage tolerance3–5, 1, defined as the prod-
uct of fracture toughness and yield strength. On the downside, BMGs exhibit strain soft-
ening, which makes them prone to localised deformations in the form of shear bands3–5, 1,
leading to undesirable surface markings that can ultimately evolve into cracks. This be-
haviour limits the moldability of BMGs and their broader technological applicability.

Unravelling the interplay of atomic structure, shear bands, and thermal history – i.e.,
how a BMG was prepared by quenching from a given melt – has a 70-year-long history
and remains a subject of ongoing research6–11. It is well-established both experimentally
and through simulations that (bulk metallic) glasses produced with slower cooling rates are
stronger but also more prone to shear banding than those quenched more quickly6–11. These
effects are usually studied with continuously varying cooling rates, which smooth out any
potential discontinuities that might arise depending on whether the glass’s microstructure
resembles that of a fragile or a strong glass-forming liquid. This complicates efforts to
clearly understand how atomic structure, nanostructure, and thermal history influence the
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deformation behaviour and shear band formation in BMGs. Moreover, it remains unclear
how the plastic properties of BMGs influence their failure behaviour under different types
of mechanical loading, such as nano-indentation, scratching, or tensile strain – particularly
in the case of auxetic materials, whose meta-structure results in a negative Poisson’s ratio
under finite stress. A negative Poisson’s ratio means that a material expands in the direction
perpendicular to an applied tensile strain, and when compressed, it shrinks laterally instead
of expanding.

Here, we report the results of large-scale molecular dynamics (MD) simulations that
were conducted to investigate three issues related to the large-strain deformation behaviour
of BMGs: (I) the hypothesis that the degree of brittleness in BMGs is closely tied to the
fragile-to-strong (FTS) transition during melt quenching. Glass-forming liquids tend to
undergo a rather sharp transition from so-called fragile liquids at high temperatures (where
the specific heat clearly exceeds that of harmonic solids, and transport properties exhibit
non-Arrhenius temperature dependence) to so-called strong liquids (where the specific heat
is close to that of harmonic solids, and transport properties reveal Arrhenius-like depen-
dencies) at lower temperatures12. (II) The reason for the high friction exhibited by many
BMGs, which is counterintuitive given their potentially high coefficients of restitution, is
also investigated. (III) The deformation behaviour and mechanisms of a nanostructured
auxetic material13 made of a strong BMG at atomic scales.

2 Atomic-Scale Deformation Mechanisms of Fragile and Strong
BMG

The first part of the study aimed to provide an understanding of the differences in the
atomic-scale deformation mechanisms of fragile and strong BMGs during nanoindentation
and stress release. In addition to the studies mentioned above, we also performed simula-
tions to understand the propagation and interaction of the shear bands in BMGs. In each
of these simulations, we investigated Zr0.6Cu0.3Al0.1 as a model for a generic but also
commercially used BMG14. To this end, a potential designed for Zr-Cu-Al ternaries was
employed15.

The first part of the project was achieved by performing MD simulations of our model
BMG subjected to nanoindentation simulations using glasses prepared with the slowest ef-
fective cooling rate (107 K/s) using natural dynamics16 and the largest system size (23 mil-
lion atoms) in the literature. A rigid cylindrical indenter with radius R = 100 nm was
used to perform the nanoindentation at room temperature. The simulation setup is shown
in Fig. 1(a).

Fig. 1(b) depicts the force-displacement curves F (d) of strong and fragile BMGs. Dif-
ferences in the elastic regime (d . 3 nm) occur but are too small to be visible to the naked
eye. In the incipient plastic regime, 3 nm . d . 12 nm, differences become clearly
noticeable between the “strong” and the two “fragile” glasses. While the transition to the
stress-softening regime occurs at similar indentation depths near d = 12 nm in all samples,
the maximum indentation force of the strong glass is much in excess of that of the fragile
glasses. Moreover, the stress softening regime is noticeably shortened for the strong glass
compared to the fragile ones. Finally, the forces in the saturation regime are almost identi-
cal for the fragile systems and clearly enhanced in the strong glass. Increasing T1 to above
1,000 K does not lead to significant changes in F (d) curves compared to those labelled as
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Figure 1. (a) Setup used for the nanoindentation simulations. (b) Force-displacement curves during loading for
a glass produced from a strong liquid (quenched from equilibrium at T1 = 812 K) and from two fragile melts
(fragile 1, T1 = 850 K and fragile 2, T1 = 887 K), which had all been quenched to T = 300 K. (c - e)
Local shear strain maps for the strong and fragile glasses loaded to an indentation depth of (c) d = 10.2 nm, (d)
d = 12.2 nm, and (e) d = 15.2 nm.

fragile 2. Therefore, a change of ∆T1 = 25 K near T ∗ affects the plasticity of our BMG
more than a 200 K change above T ∗17.

Not only do the F (d) relations reveal differences, but the plastically deformed struc-
tures themselves also disclose clear distinctions between strong and fragile glasses. To
reveal these dissimilarities, Fig. 1(c - e) shows the shear strain deduced from atomistic
configurations that correspond to three different regimes in the load-displacement curves,
that is, just before the maximum in F (d) in Fig. 1(c), at the maximum in Fig. 1(d), and
after the force drop in Fig. 1(e). The strong glass simulated here shows visible radially
shaped shear bands with an average width of approximately 8 nm. We note that the in-
trinsic thickness of the mature shear bands in metallic glasses, where the plastic strains are
accommodated, has been widely accepted as≈ 10 nm18, comparable with our observations
for the strong glass. These shear bands are asymmetric in the strong glass case and essen-
tially symmetric for the fragile ones. Comparing the strong glass with the fragile glasses,
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there are apparent differences in the shear bands formed in these samples. The deforma-
tion is much more localised in the strong glass, less localised, and more symmetric for the
fragile glasses. The homogeneity of the shear strain distribution increases when further
increasing T1 above T ∗17.

Some of the detailed features observed during compression in the fragile 1 sample
seem to appear also in the strong glass, although the strong melt had been equilibrated
several hundred times the energy- and density-autocorrelation times after the fragile melt
had been quenched to 300 K. The most plausible explanation of this phenomenon is that
the shear-band features are deterministic (if stresses are non-isotropic) despite their erratic
appearance. However, when rotating the sample from the slow cooling run by 90◦ (and/or
when shifting it by half the cell dimension) before duplicating it numerous times so that it
fills the volume needed for nanoindentation, shear bands look clearly different from case
to case. This led us to pursue the hypothesis that there might be some long-lasting “hidden
order” in the melt. Thus, to better understand to what degree the shear-band topology is de-
terministic or affected by random disorder, numerous simulations like the ones depicted in
Fig. 1 were repeated (including decompression from varying penetration depth in selected
cases). The pertinent data is still being analysed. Recently, we moved from more tradi-
tional analysis correlating “traditional measures” in time (density of certain local bonding
features in particular octahedral and icosahedral clusters, but also partial densities of in-
dividual atom types) to image-based analyses, specifically Contrastive Language–Image
Pre-training (CLIP)19. It allows the degree of similarity to be evaluated without human
bias and without having to construct traditional order parameters that quantify the similar-
ity of shear bands, which seemed to be an infeasible task.

Figure 2. (a) Stress-strain curves σ(ε) for bulk analogues of those studied in Fig. 1. Panel (b) displays the
simulation setup for studying shear band interaction and also shows the local shear strain at 30% tensile strain,
while panel (c) depicts the local atomic displacements in the rectangular region highlighted in panel (b).

Similar studies, in addition to the just-reported nanoindentation simulations, were con-
ducted to explore the effect of the fragility of the parent metallic liquid on the plasticity
in bulk glass samples. The tensile stress-strain curves of strong and fragile glasses are
shown in Fig. 2(a) and reveal similar behaviour as seen during the nanoindentation, albeit
with a more extended stress-softening regime. The goal of these simulations was to study
the interaction of shear bands. To this end, two opposed notches were introduced into a
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BMG slab. They will be sources of stress localisation and thus will serve as shear-band
initiation sites. Since the shear band will form an angle of approximately 45◦ with respect
to the loading axis, the shear band initiated from the two notches will eventually interact
as shown in Fig. 2(b). Fig. 2(c) is a zoom-in of the region highlighted by the black box
in Fig. 2(b), which shows the displacement of atoms in a vortex shape. This corroborates
the view that the shear band in metallic glasses is made of an alignment of Eshelby-like
quadrupoles20.

3 Atomic-Scale Mechanisms of Friction and Wear of BMGs

In this section, we address the question why BMGs appear to have extremely small internal
friction but unfavourable tribological properties like large wear and large sliding friction21.
The small internal friction makes small BMG spheres bounce off surfaces like rubber balls.
Specifically, their coefficient of restitution has been reported to be up to 0.99, making
BMG-made golf clubs “the Ferrari of golf clubs world”, thus surpassing the 0.86 allowance
of the United States Golf Association. This performance is commonly attributed to the lack
of dislocations, whose impact-induced motion dissipates much energy. But then, why is
their sliding friction high? To address this question, we scratched a BMG surface with an
indenter consisting of a perfectly smooth, repulsive indenter, also known as a mathematical
wall. Using such a smooth indenter suppresses all explicit (static) friction at the surface,
since the indenter is translationally invariant. Coulomb friction can then only arise when
sliding induces instabilities inside the solid. The friction-simulation set-up is shown in
Fig. 3(a). It is equivalent to a pin-on-disk tribometer due to the use of periodic-boundary
conditions.

Fig. 3(a) shows that our BMG “runs in” as regular metal surfaces do, that is, with each
pass of the surface, the friction coefficient µ decreases with the first few strides but later
levels off, in our case near µ = 0.1. While µ = 0.1 is a relatively small friction coeffi-
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Figure 3. (a) Geometry of the set-up of a “mathematical” tip (purple) scratching over a surface. Bright colours in
the BMG substrate indicate large plastic shear strain. (b) Side-view of the sliding process during the second pass
at a normal load of L = 300 nN, which translates to a mean contact pressure of p33 ≈ 300 MPa, assuming the
contact area to be 1, 000 nm2. (c) Friction coefficient as a function of sliding distance at a normal load of 300 nN
(three traces) and 600 nN (one trace).
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cient, it must be kept in mind that µ would instantly double if the counter face were also
composed of a BMG and supposedly more than triple if the scratching tip were atomi-
cally rather than perfectly smooth. Adding realistic (random) roughness to the indenter
and/or adhesive interactions would supposedly lead to a further increase in friction making
µ clearly exceed that of metals with nanocrystalline coatings. Increasing the load from
300 nN to 600 nN makes the friction more than triple, i.e., µ increases by 65%, while met-
als with nanocrystalline coatings obey Amontons’ law stating linearity between friction
and load even at small scales reasonably well22.

The results on BMG friction can be rationalised to a significant degree by the results
on plasticity presented earlier. First, BMG work soften. This is already problematic before
effects like unstable friction, increased material transfer or wear set in: Massive, energy-
consuming plasticity occurs each time even when the tip scratches over an existing “wear
track”, in contrast to what would happen on a work-hardening surface. Second, due to
plasticity happening in localised zones, the scale dependence of plasticity in BMGs is rel-
atively minor. While metals become stronger at smaller scales (the size of crystallites in
a metal increases with distance from the rubbed surface), BMGs appear to have at best a
weak scaling of hardness with scale. This makes them softer than crystals at very small
scales and thus have relatively large friction, but harder and more elastic on large scales,
i.e., on the scales that matter when impinging on an object with radii of curvature in the
cm range (as golf balls), while local roughness with local nanometre-scale curvatures de-
termines frictional processes.

4 Atomic-Scale Deformation and Failure Mechanisms of
Metallic-Based Auxetic Structure

An interesting type of metamaterials is auxetic metamaterials, which have a specific struc-
ture that leads to a negative Poisson’s ratio. We devote this section of our work to clarifying
the differences in the deformation and failure mechanisms between different auxetics as a
function of materials and scale.

Auxetic materials achieve their negative Poisson’s ratio ν through the structuring of
rigid and soft entities into a network, rather than by the design of a homogeneous mate-
rial. Their fundamental principle can be rationalised using simple bead-spring models, as
evidenced in Fig. 4(a).

This figure superimposes an optical image of a regular alloy provided by the group of
Prof. Dr. Ing. Stefan Diebels at Saarland University with a model we produced: Atoms
are placed on a triangular lattice, with harmonic springs connecting two adjacent atoms
such that the springs are relaxed at the ideal nearest-neighbour distance. All atoms are then
deleted, resulting in a void where the real object would be.

By design, this bead-spring model falls into the small-strain, large-displacement cate-
gory. Since the unit cell of the undeformed solid has sharp corners, stress singularities arise
at these corners, reducing the convergence radius of the linear elasticity of the unit cell to
zero. This condition leads to (a) the need to account for large displacements even under
small forces, and (b) ν depending on the loading condition, even at low external forces.

One benefit of auxetic materials is their ability to withstand large strain without failing.
That limit cannot be probed using an elastic system, which, nonetheless yields a similar
ν(εxx) dependency as “real materials” do, see Fig. 4(h). To contrast the performance
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Figure 4. (a) Superimposition of the auxetic structure obtained experimentally (courtesy of Prof. Stefan Diebels,
Saarland University) with that of a bead-spring model. (b) Absolute displacement in y-direction |uy | of the
elastic reference and (c) von Mises shear-strain εs in the small-scale BMG auxetic material. Unit cells of a BMG
(d,e) and the 12-grain aluminum poly crystal (f,g) at zero strain (d,f) as well as at 30% (e) and at 20% (g) strain,
the latter being just before failure. (h) Poisson’s ratio ν and (i) longitudinal stress σxx both as a function of the
strain εxx.

of BMGs to crystalline materials, the same relaxed configuration as that used in section
2-1 was recycled again. Specifically, the strong-glass sample produced in Ref. 16 was
duplicated numerous times. After applying the mask and relaxing the structure again,
it was strained in x direction, while having open boundary conditions along y and being
periodic parallel to z. In addition, we simulated (hypothetical) single-crystalline aluminum
with two different surfaces parallel to the (x-) direction of tensile loading, i.e., [111] and
[21̄1̄] as well as poly-crystalline aluminum with either 8 or 12 crystallites per unit cell. An
embedded atom potential23, which is frequently used for the simulation of mono-atomic
systems, was employed to that end.

The overall trend for the ν(εxx) matches that of experiments and bead-spring model in
all cases, i.e., with a Poisson ratio of ν & −0.6 at 5% strain. However, all-atom simulations
produce a slightly positive Poisson’s ratio at small strain, in contrast to the elastic model,
as revealed in Fig. 4(h). This is supposedly because the stress singularities at sharp edges
induce plasticity in the in silico samples, which in turn suppresses large-displacement ef-
fects causing the studied auxetic material to have a negative ν. We will redo the very initial
parts of these curves (probably with cheaper minimisation rather than molecular dynamics)
to further explore the origin of the positive ν at small εxx.

Although initially the softest of all analysed materials, see Fig. 4(i), the BMG clearly
outperforms the tensile loading abilities of all other crystalline structures, because it is
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the only sample that has not yet yielded at 20% strain. The microscopic configuration
at that strain is shown in Fig. 4(e), while that of the most readily failing sample, i.e.,
polycrystalline aluminum, is depicted near 20% strain in panel (g), which is just before its
sudden drop in stress.

5 Concluding Remarks

In conclusion, we discovered that the plasticity of bulk metallic glasses (BMGs) is sig-
nificantly influenced by the extent to which the melt was out of equilibrium when pass-
ing through the fragile-to-strong transition temperature, T ∗. Specifically, when a liquid
was quenched from a temperature Tq just a few Kelvin above T ∗, the sample did not ex-
hibit mature shear bands during nano-indentation. In fact, nano-indentation curves for all
Tq > T ∗ displayed similar characteristics, including those not explicitly shown in this
article. However, pronounced shear bands formed once Tq fell a few Kelvin below T ∗.
While this observation aligns with experimental findings regarding lower cooling rates, we
revealed that yield strength and brittleness increase quasi-discontinuously when T1 is be-
low T ∗, whereas changes with T1 are small and smooth for T1 > T ∗. We speculate that
other glass formers may exhibit similar behaviour; however, BMGs appear to be the only
broader class of glass formers that allow for the liquid-to-strong transition to be analysed
both experimentally and through simulations, while also offering the possibility to design
compositions that can be frozen into either a fragile or a strong melt. More details can be
found in Ref. 24.

Furthermore, we revealed that a bulk metallic glass (BMG) sample in contact with a
smooth, sliding counterbody undergoes repeated plastic deformation when scratched mul-
tiple times. We attribute this behaviour to strain-softening. Interestingly, when the load
is doubled, the friction coefficient also increased by a factor of ≈ 1.7, indicating that the
friction itself triples. This behaviour presents a clear violation of Amontons’s law, which
states that friction is proportional to load. However, this phenomenon at the microscopic
scale does not necessarily lead to the breakdown of Amontons’s law at the macroscopic
scale, even if this friction mechanism is the dominant one. Thus, while (strain-softening)
BMGs may not be suitable for low-friction coatings, we found them to be highly appropri-
ate for use in auxetic materials. Their strain-stress curves were closer to those of ideally
elastic references than any (poly-) crystalline solids studied, and they also yielded at sig-
nificantly larger strains than any other simulated materials molded into the same auxetic
shape. Details on these two threads of work are still in the process of being written up in
greater detail.

Acknowledgements

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time
through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer
JUWELS at Jülich Supercomputing Centre (JSC).

284



References

1. A. Inoue, B. Shen, H. Koshiba, H. Kato, and A. R. Yavari, Cobalt-based bulk glassy
alloy with ultrahigh strength and soft magnetic properties, Nature Materials, 2, no. 10,
661-663, Sep. 2003.

2. R. O. Ritchie, The conflicts between strength and toughness, Nature Materials, 10,
no. 11, 817-822, Oct. 2011.

3. J. J. Kruzic, Bulk Metallic Glasses as Structural Materials: A Review, Advanced
Engineering Materials, 18, no. 8, 1308-1331, May 2016.

4. H. A. Bruck, T. Christman, A. J. Rosakis, and W. L. Johnson, Quasi-static constitutive
behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys, Scripta Metallurgica
et Materialia, 30, no. 4, 429-434, Feb. 1994.

5. X. J. Gu, A. G. McDermott, S. J. Poon, and G. J. Shiflet, Critical Poisson’s ratio
for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel, Applied Physics Letters, 88,
no. 21, 211905, May 2006.

6. Y. Wu, D. Cao, Y. Yao, G. Zhang, J. Wang, L. Liu, F. Li, H. Fan, X. Liu, H. Wang,
X. Wang, H. Zhu, S. Jiang, P. Kontis, D. Raabe, B. Gault, and Z. Lu, Substantially en-
hanced plasticity of bulk metallic glasses by densifying local atomic packing, Nature
Communications, 12, no. 1, 6582, Nov 2021.

7. X. Mu, M. R. Chellali, E. Boltynjuk, D. Gunderov, R. Z. Valiev, H. Hahn, C. Kübel,
Y. Ivanisenko, and L. Velasco, Unveiling the Local Atomic Arrangements in the Shear
Band Regions of Metallic Glass, Advanced Materials, 33, no. 12, 2007267, Feb. 2021.

8. Z. Y. Liu, Y. Yang, and C. T. Liu, Yielding and shear banding of metallic glasses, Acta
Materialia, 61, no. 16, 5928-5936, Sept. 2013.

9. Y. Yokoyama and A. Inoue, Compositional Dependence of Thermal and Mechanical
Properties of Quaternary Zr-Cu-Ni-Al Bulk Glassy Alloys, Materials Transactions,
48, no. 6, 1282-1287, 2007.

10. C. L. Qin, W. Zhang, Q. S. Zhang, K. Asami, and A. Inoue, Chemical characteristics
of the passive surface films formed on newly developed Cu–Zr–Ag–Al bulk metallic
glasses, Journal of Materials Research, 23, no. 8, 2091-2098, Aug. 2008.

11. K. F. Kelton, A perspective on metallic liquids and glasses, Journal of Applied
Physics, 134, no. 1, July 2023.

12. P. Lucas, Fragile-to-strong transitions in glass forming liquids, Journal of Non-
Crystalline Solids: X, 4, 100034, Dec. 2019.

13. X. Ren, R. Das, P. Tran, T. D. Ngo, and Y. M. Xie, Auxetic metamaterials and struc-
tures: a review, Smart Materials and Structures, 27, no. 2, 023001, Jan. 2018.

14. M. Stolpe, I. Jonas, S. Wei, Z. Evenson, W. Hembree, F. Yang, A. Meyer, and
R. Busch, Structural changes during a liquid-liquid transition in the deeply un-
dercooled Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass forming melt, Phys.
Rev. B, 93, 014201, Jan. 2016.

15. Y. Q. Cheng, E. Ma, and H. W. Sheng, Atomic level structure in multicomponent bulk
metallic glass, Phys. Rev. Lett., 102, no. 24, 245501, June 2009.

16. S. V. Sukhomlinov and M. H. Müser, Quasidiscontinuous change of the density corre-
lation length at the fragile-to-strong transition in a bulk-metallic-glass forming melt,
Phys. Rev. Mater., 2, 115604, Nov. 2018.

285



17. A. Atila, S. V. Sukhomlinov, M. J. Honecker, and M. H. Müser, Brittleness of metallic
glasses dictated by their state at the fragile-to-strong transition temperature, 2024,
arXiv:2408.00536.

18. Y. Zhang and A. L. Greer, Thickness of shear bands in metallic glasses, Applied
Physics Letters, 89, no. 7, 071907, 08 2006.

19. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, Learning Transferable
Visual Models From Natural Language Supervision, 2021, arXiv:2103.00020.
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Ever since Jule Charney, Ragnar Fjørtoft, and John von Neumann performed the first
weather forecast on an electronic computer almost three quarters of a century ago (in 1950),
numerical weather prediction was, and still is, at the forefront of scientific disciplines util-
ising the largest and powerful electronic computers. Over time, numerical simulations be-
came the important third pillar, besides experiment / observation and theory, in almost all
disciplines of Earth system sciences. The transition from classical central processing units
(CPUs) to hybrid systems utilising accelerators, such as graphics processing units (GPUs),
is still ongoing and has now reached the exascale era. For this, many (large) source codes
have to be re-factored and even redesigned with new algorithms as a prerequisite to allow
for the full exploitation of the increasing computational power. Today, the availability of
large high-performance computing (HPC) systems, as those operated and made available
for public research by NIC, is an essential prerequisite for scientific progress in all Earth
system sciences, in particular given that society is facing large challenges caused by the
rapid change of climate and environment. A common challenge in all Earth system sci-
ences, when it comes to numerical simulation of real systems, is the need to represent a
wide range of spatial and temporal scales, because processes on the different scales are
non-linearly coupled, and thus interact with each other. Even on exascale systems, this
challenge cannot be entirely overcome - for a multitude of reasons. In many cases, grid
resolution, i.e. the ability to simulate finer scales directly, has to be sacrificed for longer
simulated time spans, for larger ensemble sizes, or for additionally added, computationally
expensive processes. In consequence, additional methods are required, with which small
scale processes in coarser resolved model simulations can be taken into account.

Bastian Waldowski and colleagues examine, how the reliability of water availability
forecasts with numerical models, e.g. for water resources management, can be improved.
In their case, the model grid resolution needs to be reduced for the sake of a sufficiently
large ensemble size of perturbed simulations. The calculation of the forecasts, however,
relies on the assimilation of observed data. This data assimilation is used for an objective
state estimation by optimally combining the model state with observations. Applied on
a coarser grid, it introduces biases, in this case because the topographical information is
smoothed on a coarsened grid. Methods exist to mitigate or compensate such biases, and
one of these methods is assessed by the authors.

In numerical weather prediction and for regional climate projections, from both of
which local information is desired, the classical method of statistical downscaling has been
established. This method utilises the statistical relationships (e.g., based on historical data)
between the large scale situation (weather pattern) and the local weather phenomena (e.g.
local precipitation). Ankit Patnala and colleagues examine a new, machine learning based
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method, for its applicability for such statistical downscaling. Such methods are based on
the assumption that the trained neural network contains the knowledge about the relation-
ships between small scale and large scale information contents. The authors further assess
the applicability of the same method for data compression, with which fine scale weather
information is reconstructed by the neural network from artificially reduced or coarsened
data.

Last, but not least, Bernd Schalge and colleagues address advanced concepts for the
generation of reanalysis data, focussing on the hydrological cycle between land-surface
and atmosphere on the continental scale. Reanalysis is a method to objectively combine
observational data by means of data assimilation (i.e., statistical methods) into a numerical
model, with the aim to provide an internally consistent (long-term) historical time-series
of domain-covering (regional or global) gridded data about the state of the considered
system. As such, reanalysis data provide the most complete picture currently possible of
the past states in the Earth system. The authors examine a new data assimilation technique
and a combined approach for atmosphere and land-surface, which also takes into account
anthropogenic water use through irrigation.

All three examples show how the utilisation of modern HPC systems can boost our
scientific understanding of the Earth system. But at the same time, they also show that
further challenges need to be tackled and that the exascale era has just begun – with a
multitude of new possibilities for numerical Earth system sciences.
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Accurate forecasts of water availability, both in the upper soil layers as well as stored in aquifers,
are needed for water resources management and other purposes. Soil moisture and groundwater
tables can be predicted by a fully coupled numerical model that represents land surface and
subsurface processes in a physically based manner. The forecasts of these models are tied to
many uncertainties (such as e.g. uncertain soil properties). Data assimilation (DA) is a tool
to reduce such uncertainties by utilising information from measurements, such as groundwater
heads. This requires multiple model runs of an expensive forward model, so the numerical grid
(i.e. the resolution) of the model often needs to be chosen coarser than required by model quality
criteria. This coarsening introduces a bias. Such biases lead to a violation of core assumptions
of the most common DA approaches. There are several methods to mitigate such biases. In
this work, we highlight two DA experiments. One where we compensated the coarsening bias
preemptively and one where we did not. We find that compensating the coarsening bias allows
DA to improve the root zone soil moisture forecast. In the experiment without compensation,
we see that the predictions using DA deteriorate more extensively and severely the predictions at
locations where no information from measurements was utilised. We thus find that preemptively
compensating for the coarsening bias increases the spatial extent in which DA improves the
forecast and mitigates deteriorations by DA.

1 Introduction

To evaluate water availability and to assess risks, like flooding or drought, a reliable fore-
cast of the hydrologic state of the terrestrial system is needed. Such forecasts predict water
availability in soils, aquifers, and rivers, for example. To a certain extent, water availability
can be measured. However, measurement capabilities are generally limited, and physically
based numerical models of water flow and storage are often used to generate additional
information. Such models make forecasts based on equations derived from physical rela-
tionships. Making such forecasts is complicated by the interconnected nature of the hydro-
logic cycle. Different compartments such as groundwater, the vadose zone (the subsurface
above the groundwater), and rivers generally influence each other in a two-directional way.
For instance, a higher water level in a river can cause the groundwater table to rise, which
then increases flow from the groundwater into the river at a later time, which then again
influences the groundwater, and so on and so forth. Such two-way feedback is often not
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Figure 1. Illustration of the decisive processes represented by a fully coupled numerical model, such as the one
used in this project (TSMP with ParFlow-CLM).

represented well if the compartments are considered separate. Fully coupled numerical
models are designed to account for such two-way feedback and simulate the hydrologic
system in an integrated manner, which covers the processes shown in Fig. 1. They can thus
generate a lot of information about hydrological states in addition to measurements and
give important insights into the interrelations between the different compartments.

However, this comes at a cost of a rather high computational demand. Fully coupled
models also require a lot of information that is difficult to acquire accurately. For example,
detailed information about highly conductive flow paths within a soil is usually not avail-
able. The inputs of fully coupled models (such as soil properties or precipitation rates and
patterns) are highly uncertain, which can compromise the quality of the forecast of these
models notably. Data assimilation (DA) uses measurements of hydrologic states (such as
soil moisture or the depth to groundwater table) to reduce this uncertainty. Often, a stochas-
tic framework is applied. However, this means that the uncertainty of the numerical model
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needs to be represented. Often this is done using Monte Carlo methods, where sampling is
done with an ensemble of model simulations (multiple simulations with different inputs),
which needs to be large enough to be a representative sample. This means that many eval-
uations of a very computationally expensive model are needed, which can even exceed the
computing capacity of a supercomputer. Fully coupled numerical models approximate the
fluxes and states of the hydrologic cycle on a numerical grid, with solutions only at discrete
locations. The finer the grid, the more computationally expensive the model. Such models
are thus generally run on grid resolutions that are lower than required for adequate process
representation. This leads to a smoothing of parameters and topography, which usually in-
troduces a bias into the model predictions. Biases are generally problematic in the context
of data assimilation, as data assimilation approaches usually assume unbiased errors.

Within this work we look at a test example to i.) assess the role of the coarsening
bias for data assimilation and ii.) test preemptively compensating this bias by adjusting
parameters to mitigate coarsening effects. To directly tackle this issue, using measurements
from a real catchment would be not suitable. Using real measurements, many more biases
would be present (e.g. due to simplifying assumptions of the numerical model), which
would make clear conclusions on the effects of the grid coarsening biases very difficult.
We will thus take measurements from a virtual reality (VR) reference model that has a
higher resolution of the numerical grid than the ensemble used for DA. The test case that
is used within this project is artificial but realistic.

2 Test Case

For modelling water fluxes in the system, we use TSMP-PDAF1–4, coupling5, 6 the fully
integrated subsurface/surface flow model ParFlow7–9 with the land surface model CLM10

and the Parallel Data Assimilation Framework (PDAF). Parallelisation of all forward codes

Figure 2. Domain of our test case. The z-axis is scaled by a factor of 10 in this plot. The colour scheme illustrates
the hydraulic conductivity of the soil from red (high permeability) to blue (low permeability).
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for TSMP-PDAF is implemented in pure MPI. PDAF is especially well suited for HPC en-
vironments, as it does not write or read files during the assimilation process. Furthermore,
it has been tested and run extensively on JUWELS in the past. The model domain covers
a rectangular area of 1 km x 5 km, with a uniform depth of 50m. It is characterised by
a flood plain with an adjacent hillslope, enclosed by three rivers (see Fig. 2). The hill is
tilted in the x-direction, meaning that the river along the “right” side (referring to Fig. 2) is
at a higher elevation than the river along the “left” side. This causes an offset between the
water divide and the crest of the hill. The water divide is moved more towards the “right”
boundary, which can cause lateral fluxes against the direction of the topography. While
such processes occur in natural landscapes, they are usually neglected, as water divides are
generally directly derived from the topography.

The grid has a horizontal resolution of 10m (very high resolution in the context of
fully coupled modelling) and vertical layers of variable thickness between 2m and 2 cm.
The subsurface material is divided into topsoil, gravel, bedrock, and riverbed units. Each
of these units is characterised by unique spatially heterogeneous parameter fields. At the
land surface, different types of vegetation are considered in different parts of the domain.
Atmospheric forcings are taken from a previous simulation of the Neckar catchment11.

2.1 Specifications for Data Assimilation

We use the Localised Ensemble Kalman Filter12, 13 with 93 ensemble members. Each en-
semble member has a horizontal resolution of ∆x, y = 40m, which reduces the number
of cells by a factor of 16 compared to the virtual reality (reducing the order of magnitude
from 106 to 105). Each ensemble member runs on 40 cores, 36 of them used by ParFlow
and 4 by CLM. This means that each ensemble simulation uses 3720 cores. The highly
resolved VR used 228 cores and was notably slower than the coarse models. In the coarse
models used for DA, the highly resolved properties of the VR are smoothed. From the

I
II

Figure 3. Setup for DA experiments. Observation locations are marked in red for soil moisture and green for
groundwater table depth. Locations I and II will be referred to in Fig. 4. In the bottom right, measurement depths
for soil moisture are shown.
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hillslope to the continental scale, topographical smoothing is often found to result in re-
duced drainage out of the system9, 14–18. In our test case, this topographical smoothing bias
leads to a notably higher groundwater table at the hill compared to that of the VR. As a
compensation strategy, we increase the lateral hydraulic conductivity in the cells of the
hill, which allows for more efficient drainage. This is similar to other approaches17–19 that
have been used in the past. However, the impact of such compensation on data assimilation
has not been studied before. We conduct DA experiments with two different ensembles.
One where we compensate topographical smoothing preemptively and one where we do
not. Fig. 3 shows the locations where observations were taken for DA. Soil moisture mea-
surements are taken from three different depths and nine horizontal locations (marked in
red) and groundwater table measurements are used at five different locations (green in the
figure). Locations I and II are labelled for later analysis. Both are located on the hill, as
this is where the topographical smoothing bias appears and where compensation has an
effect. At location I, both soil moisture and groundwater table measurements are used for
DA, so the direct impacts of DA can be seen. Location II is used for validation, which
is particularly challenging at that location, as the majority of observation locations on the
hill are on the other side of the water divide. In addition to the states (soil moisture and
groundwater tables), we also change the soil hydraulic parameters by assimilation, as they
have a strong influence on the prediction uncertainty. The states are updated daily and the
parameters weekly with a damping factor20 of 0.1. Localisation, which limits updates of
DA to a certain area to counteract “wrong” updates due to spurious correlations, is applied
for each observation within the radius indicated in Fig. 3.

3 Results

We define an error of our coarsened simulations with and without DA by comparing results
of root zone soil moisture θrz (relevant for evapotranspiration) and groundwater table depth
hdepth with the VR. Comparing errors made in a simulation without DA to those made in
a simulation with DA allows a conclusion on how much DA improved (or deteriorated) the

Figure 4. Root zone soil moisture and groundwater table depth over time at locations I and II for both DA
experiments. The VR is shown in red, the ensemble without DA in blue, and the DA experiments are in black,
with values for each ensemble member shown in grey.
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respective prediction. In this work, this is quantified with δ, which expresses the difference
between the prediction error of a simulation without DA and a simulation with DA. Positive
values of δ directly indicate an improvement by DA. For the compensated experiments,
both the simulation without DA and with DA are compensated, such that δ only captures
improvement by DA itself.

Fig. 4 shows model predictions of the root zone soil moisture and groundwater table
depth at locations I and II, which were shown in Fig. 3, for both DA experiments. The
DA experiments are plotted in black, red is the VR, and blue is the reference simulation
without DA. At location I, the prediction of hdepth can be notably improved by DA, both
in the compensated experiment, as well as in the experiment without compensation. For
the root zone soil moisture, the DA experiment without compensation does not make a
good forecast. The deviations between predictions and observations are similar to those
of the simulation without DA and the temporal evolution is poorly met. If compensation
is applied, the root zone soil moisture at location I is much closer to the truth (VR). At
the other side of the hill at location II, trends for root zone soil moisture look similar to
location I, with the compensated simulations being better able to reproduce the temporal
evolution of the truth. For the groundwater table depth at location II, the forecast of the
DA experiment without compensation is not well matched and worsens over time. For
the compensated DA experiment, the forecast is also worse than that of the simulation
without DA, but in general much better than for the DA experiment without compensation.
It should also be noted that the simulation of the compensated ensemble without DA (blue
line) is very close to the truth already at that location, which makes it hard to improve.

To get further insights into the impacts of DA all over the domain, spatial distributions
of the time-averaged δ for the root zone soil moisture and the groundwater table depth are
shown for both the DA experiment without compensation (see Fig. 5) and with compensa-
tion (see Fig. 6). Fig. 5 shows that DA without compensation deteriorates forecasts at the
hill, especially for non-observed locations. Comparing these results to Fig. 6, it can be seen
that the compensation can avoid and mitigate much of the deterioration that is present in
the DA experiment without compensation. DA works better with the compensated model.

Figure 5. Temporal average of the improvement of root zone soil moisture and groundwater table depth charac-
terisation for the DA experiment without compensation.
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Figure 6. Temporal average of the improvement of root zone soil moisture and groundwater table depth charac-
terisation for the DA experiment with compensation.

4 Concluding Remarks

Within this work, we have investigated the effects of biases due to topographical smoothing
on DA forecasts with fully coupled numerical models. We did that with a highly resolved
topographically challenging synthetic test case. In general, DA was able to improve fore-
casts at locations where measurements were available, but spatial validation was poor if
the model was biased. We have found that preemptive compensation of the bias due to
topographical smoothing yields great potential for improving forecasts at locations where
no measurements are available. As DA experiments with fully coupled numerical models,
such as TSMP used in this work, are generally conducted on too-coarse grids without any
compensation for the topographical smoothing, this is an important insight. Still, we are
aware that this is only one step, as there are many other sources of biases between the nu-
merical simulations and real measurements that can also cause problems when conducting
DA experiments with such models.
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Machine learning has recently seen a rapid wide-spread adoption across various fields of science
including atmospheric and weather research. The emergence of foundation models has marked
a transformation in the science of machine learning. These foundation models are general-
purpose models trained on huge amounts of data using self-supervised methods, eliminating the
need for labelled data. Once trained, the parameters of these models can be utilised as a starting
point for a range of domain-specific tasks. This approach is advantageous in terms of both cost
and performance, as it minimises the reliance on annotated data compared to models trained
from scratch. Motivated by this, our study explores the foundational capabilities of AtmoRep,
a stochastic atmospheric foundation model, for two distinct weather-related applications, data
compression and statistical downscaling. The training of the 3.5 billion parameter AtmoRep
model consumed about a few weeks of compute time on 32 JUWELS Booster nodes.

1 Introduction

Local weather is characterised by atmospheric variables such as temperature, specific hu-
midity, and wind speed at a given location, time, and altitude. In meteorological stud-
ies, weather typically refers to time scales ranging from hours to several days1. Accurate
weather predictions are crucial for mitigating severe weather impacts like high winds and
flooding2 and they are relevant for many planning purposes. Understanding weather pat-
terns requires studying complex interactions among atmospheric variables. The physical
laws describing these interactions are primarily derived from fluid dynamics and radiative
transfer. They are governed by conservation laws of mass, momentum, and energy3, 4. Nu-
merical Weather Prediction (NWP) models forecast intricate weather patterns5, 6, utilising
preprocessed observational data to estimate the initial conditions7. The NWP models em-
ploy discretisation in space and time with current operational models typically achieving
resolutions of around 10 km in longitude and latitude for global forecasts. The output
from NWP models is often post-processed with statistical tools, for example, to achieve
bias correction and to further increase the spatial resolution with statistical downscaling8.
Despite continuous improvements over decades and generally good predictive skills, NWP
models suffer from inherent biases, limited spatial resolution, and structural errors9, along
with high computational costs.

Recently, advanced machine learning (ML) models have transformed weather forecast-
ing. These AI-driven approaches have emerged as strong competitors to traditional NWP
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models, offering better predictions at a fraction of the computational cost10, 11. Although
purely data-driven and lacking explicit physics information, these models effectively cap-
ture complex interactions among atmospheric state variables and their spatio-temporal pat-
terns12. ML models also offer enhanced flexibility and can be trained to directly predict
the atmospheric state several hours into the future, unlike NWP models, which are con-
strained by the Courant-Friedrichs-Lewy (CFL) condition14. Additionally, advanced ML
models can exploit the added value from multiple datasets with varying resolutions and
they are able to provide efficient ensemble predictions, thus offering confidence intervals
for understanding forecasting uncertainty16, 17.

The emergence of foundation models has enabled a new revolution in machine learn-
ing. These models are trained on vast datasets using unsupervised and self-supervised
techniques, allowing adaptation for various tasks with minimal additional training. Foun-
dation models are also making their way into the field of weather forecasting; one such
model is AtmoRep17. The training on a large subset of data from the 5th European reanal-
ysis (ERA523) enables AtmoRep to learn comprehensive representations of atmospheric
dynamics. The pretrained AtmoRep exhibits skilful capabilities for various tasks such as
forecasting, temporal interpolation and counterfactuals. Through fine-tuning, the perfor-
mance of AtmoRep can be further improved achieving state-of-the-art results (e.g. fore-
casting) or applied to other downstream tasks (e.g. statistical downscaling). In this paper,
we explore the capabilities of AtmoRep for two downstream tasks: data compression and
downscaling for 2 m temperature.

In the following, we first provide an overview of the core AtmoRep model, focusing on
the processing pipeline of the atmospheric variables and the employed training methodol-
ogy. We then describe the two downstream tasks utilising AtmoRep and discuss the results
from initial sets of experiments. At the end, we conclude with a summary of our findings
and future research directions.

2 The AtmoRep Model

AtmoRep17 is a stochastic, generative neural network model for atmospheric dynam-
ics, utilising large-scale representation learning to identify patterns within the high-
dimensional state space of atmospheric data. The inherently stochastic nature of the model
is crucial to capture the inherent statistical nature of atmospheric dynamics. The model
has been trained with ERA5 reanalysis data from 1980 to 2017 and evaluated on data of
the year 2018, similar to other ML studies on weather forecasting. The architecture of
AtmoRep is inspired by established transformer models18 and Vision Transformer (ViT)20,
which have demonstrated remarkable success in natural language processing and computer
vision, respectively. AtmoRep’s training strategy has been adopted from BERT (Bidirec-
tional Encoder Representations from Transformers,19). The model can be flexibly config-
ured with respect to the variables and vertical levels.

The flexibility with respect to the variables is achieved through a two-step training
process: In a first step, independent transformer models, termed singleformers, are trained
separately for each atmospheric variable. In a second step, these per-variable transformers
are combined with cross-attention heads added to the encoder to enable interaction between
variables in the resulting multi-variable transformer model (termed multiformer). This
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approach proves efficient, since it significantly reduces the training time needed for a high-
performing AtmoRep model compared to training a multi-variable model from scratch.

Various pre-trained configurations singleformers and multiformers are publicly
available from
https://datapub.fz-juelich.de/atmorep/trained-models.html.
All the available models were trained on 5 model levels (96, 105, 114, 123, 137), ranging
from the Earth’s surface to about 5 km altitude. The downstream applications discussed
in this work employ the singleformer-t configuration for temperature and the
multi3-uv configuration trained on temperature and wind vector components.

Figure 1. Schematic of AtmoRep’s model architecture and training scheme17.

Fig. 1 illustrates the AtmoRep model architecture. Transformer models implement
three main concepts: tokenization, embedding, and attention mapping. In AtmoRep, the
tokenization process consists of dividing the randomly selected subset of gridded ERA5
data (36×54×108 in time×lat×lon dimensions, respectively) into several 3-dimensional
cubes known as patches or tokens. The standard configuration of these tokens are variable-
dependent. In general, variables with higher modes of variability (e.g., vorticity and diver-
gence) are cut into smaller tokens than variables with less high-frequency variations (e.g.,
temperature). For temperature, the standard token size is 3× 27× 27.

Subsequently, the tokens are embedded into high-dimensional vectors. Because the
attention mechanism is position-independent, relative positional encoding is added to the
tokens. Furthermore, latitude, longitude, model level, year, day-of-year, and time-of-day
are added as auxiliary information to encode external forcings such as the seasonal cycle
that is determined by the planetary motion of the Earth. The combined embeddings of
positional encoding and tokens are subsequently processed by the attention blocks of the
encoder network in the AtmoRep model. Self-attention is used to identify relations be-
tween patches of one variable, while cross-attention emphasises correlations across vari-
ables. The output from the encoder encompasses an abstract, feature-rich representation
of atmospheric dynamics. The purpose of the decoder is then to reconstruct physical fields
based on this abstract representation. The final network layer consists of a tail network
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with multiple prediction heads that draw individual samples from the learned probability
distribution of the atmospheric state.

To train the AtmoRep model, the principles of the BERT19 protocol are adopted. In
this framework, some tokens are randomly masked or modified during training. The model
then learns to reconstruct the masked tokens based on contextual information provided by
unmasked tokens. AtmoRep’s training protocol is formulated as pθ(y|x, α) where x refers
to the masked weather data, α refers to the auxiliary information, and y refers to the recon-
structed tokens. The loss function employed to optimise the model’s parameters combines
Mean Squared Error (MSE) loss with a novel statistical loss that takes into account the
first two statistical moments of the predicted ensemble. We refer to the original AtmoRep
paper17 for more details about the model architecture and the training process.

When the pre-trained model is applied to weather-related tasks without further fine-
tuning, this is called zero-shot inference. In AtmoRep17 zero-shot performance is evaluated
for forecasting, bias correction, data interpolation, and counterfactual experiments. Here,
we add results from the data (de)compression task and provide an update on 2 m tempera-
ture downscaling. For the latter, the AtmoRep core model is extended with a downscaling
tail network to account for the increased output dimension. In contrast to zero-shot applica-
tions, this extension requires fine-tuning of the task-specific AtmoRep model application.

3 Downstream Tasks

3.1 Data Compression and Reconstruction

The output of climate model simulations has been growing substantially due to increased
model resolution and the increased demand for detailed and high-frequency output of a
comprehensive set of variables24, 25. The storage of climate model data is therefore be-
coming a fundamental bottleneck limiting the possible applications of climate simulations.
Data compression is one way to potentially alleviate this issue. Here, we explore how
we can use the rich representation of atmospheric dynamics learned by AtmoRep to re-
construct climate data from subsets of the original fields. In principle, AtmoRep should
allow for the faithful reconstruction of variables even when large portions of the data are
missing, since the model was trained with randomly masked data. In this section, we inves-
tigate how well AtmoRep can reconstruct data when certain systematic masking patterns
are applied.

Fig. 2 illustrates different masking patterns we employed to assess the reconstruction
capabilities of AtmoRep. Our tests were constructed to assess the reconstruction quality
along individual dimensions, whereas longitude and latitude were combined into a “geo-
graphic” masking pattern. The compression ratios varied from 1.42 to 4 (see Tab. 1), which
means that up to 75% of the data is being omitted (i.e. masked). It should be emphasised
that we tested the data reconstruction in a zero-shot setting, i.e. using the pre-trained
singleformer-t AtmoRep configuration without any fine-tuning.

The space-time tokenization was set to 3 × 27 × 27, and the neighbourhood was se-
lected for each batch as 12 × 2 × 4. The masking patterns applied are summarised in
Tab. 1. For every configuration, we randomly sampled 100 days from the test year 2021
(starting from December 2020). In the first configuration (A), a “checkerboard pattern”
was applied at each model level and for all time steps: every second token in longitude
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Figure 2. Illustration of masking patterns applied in the data reconstruction/decompression task.

and latitude dimension was masked resulting in a compression ratio of 2. The result-
ing reconstructions look physically plausible. The mean root mean square error (RMSE)
ranges from 0.45 to 0.85 K across the vertical levels, with smaller errors near the surface
(see Tab. 1). Configuration B explored temporal masking. In configuration B1, every sec-
ond time step was masked, while configuration B2 explored a higher compression ratio
of 3. Ablation studies on temporal masking indicated that the reconstruction results are
best if data points at the beginning and end and at the centre of the 36-hour time win-
dow are retained. This is the motivation for applying the pattern depicted at the bottom of
Fig. 2. Compared to geographic masking the reconstruction accuracy of temporal mask-
ing is slightly better. It is interesting to observe that a larger compression ratio has little
influence on the reconstruction error near the surface and actually leads to smaller errors
at higher model levels. The reasons for this behaviour are not fully understood. In config-

run compression ratio level-wise RMSE

A 2 0.4451 0.4878 0.6748 0.7374 0.8465
B1 2 0.3765 0.4117 0.5514 0.6568 1.2300
B2 4 0.4568 0.4726 0.6119 0.6551 0.9225
AB 4 0.4009 0.4318 0.5939 0.6379 0.7287
C1 2.5 NA 1.6845 NA 1.4229 NA
C2 1.42 NA 0.3996 NA 0.4506 NA

Table 1. Configuration and accuracy (RMSE) of the data reconstruction experiments. For explanations of the
masking patterns, see Fig. 2 and text. The compression ratio is defined as the ratio of available input tokens to the
full number of tokens of the reconstructed field. Further information on the masking patterns is given in the text.
RMSE values are given per model level with level indices (from left to right) 137, 123, 114, 105, and 96.

305



uration AB we combine geographic and temporal masking, thus achieving a compression
ratio of 4. The results show a slight improvement in RMSE values.

The third set of configurations explores vertical masking, i.e. leaving out data from spe-
cific vertical levels and asking the model to interpolate vertically. We found that masking
entire levels of temperature data resulted in poor reconstruction accuracy (configuration C1
in Tab. 1). Therefore, we tested a second variant where we applied the temporal masking
pattern on the intermediate levels, while leaving the other levels complete (configuration
C2). As expected, the results with C2 are significantly better than with C1. However, the
added value compared to the geographical and temporal masking patterns (configurations
A to AB) is small, especially in light of the much smaller deployed compression ratio
(more input information available).

As shown above, the data reconstruction is in principle possible, but further work is
needed to achieve the desired level of accuracy (e.g., RMSE < 0.1 K) and computational
performance (e.g., reconstruction time < 1s). In any case, the experiments revealed in-
teresting aspects of the model behaviour. Provided that it is possible to solve the issues
described above, this novel data compression approach offers a lot of potential, because
it would enable very high compression ratios (up to 100 or more) with relatively little
dependence of the reconstruction quality on the masking ratio (since most of the informa-
tion is stored in the model weights). We anticipate that proper fine-tuning and the use of
multivariate information will further improve the results.

3.2 Statistical Downscaling

Localised and regional meteorological data is highly relevant for society, agriculture, and
several industrial sectors, such as renewable energies. This particularly holds for re-
gions with complex terrain which introduces significant spatial variability in key mete-
orological variables such as precipitation, wind speed, or the near surface temperature.
The ERA5 reanalysis, which has been utilised to train AtmoRep, operates at a resolu-
tion of ∆xERA5 ' 30 km, which is clearly insufficient to reproduce orographic features.
While ERA5 provides a comprehensive estimate of the atmospheric state23, it has well-
documented limitations in mountainous regions, such as the Alpine region in Central Eu-
rope. Even though there are ongoing efforts to generate meteorological data on the scale
of 1 − 2 km with numerical models, these constitute a major computational challenge.
Therefore, several weather centres developed statistical models to create higher-resolution
information from coarser-resolution model output. ML models can be applied to this task
with great efficiency and equal to better quality.

To demonstrate AtmoRep’s adaptability for downstream applications, we applied it
to perform statistical downscaling of T2m data to a resolution of approximately 6 km.
For this purpose, we selected the COSMO REA6 reanalysis26 as target dataset. COSMO
REA6 provides much more accurate information than ERA5, especially over the Alpine
region22. While the downscaling application has already been introduced in AtmoRep17,
we extend this analysis to further demonstrate the model’s effectiveness for this task. This
includes a more detailed analysis of spatial error patterns and of the spatial variability in
the downscaled T2m field. To substantiate our findings, we compare AtmoRep’s perfor-
mance with an Wasserstein Generative Adversarial Network (WGAN27), offering a more
advanced benchmark than previously used in AtmoRep17.
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The downscaling application utilises the multi3-uv configuration of AtmoRep
which has been pre-trained on temperature and the horizontal wind components. Note that
AtmoRep does not require input of high-resolution topography as many other downscaling
models; it can extract the high-resolution features from the dynamic variables alone. For
the downscaling task, we extended the core model with a tail network of 6 transformer
blocks that is connected to the last transformer block of AtmoRep’s decoder. Each block
comprises a self-attention layer with 16 attention heads and a multilayer perceptron with
two layers. To achieve the desired resolution of the data, the output token size of the
downscaling network is enhanced by a factor of 4. The increased token size necessitates
an increased embedding dimension for the temperature data achieved with a linear layer
at the beginning of the downscaling network. Accordingly, the local position encoding
is updated. Again, an ensemble tail is deployed to provide a probablistic downscaling
output. However, a small ensemble member size of 4 was chosen due to computational
constraints. During fine-tuning, the network parameters of both the core model and the tail
network were optimised, resulting in about 1.85B trainable parameters. For optimal hard-
ware utilisation, we employed both data and model parallelism. The downscaling network
has been trained for three days on 8 nodes on JUWELS Booster.

Fig. 3 showcases a sample from the test year 2018, demonstrating that the downscaling
not only generates super resolution output, but also achieves a bias correction of the input
data.

Figure 3. Downscaling sample from 2018 with an air mass boundary (AMB) in the north-eastern part of the
domain. The AMB in ERA5 (left) is located further north-east compared to COSMO REA6 (right). The AtmoRep
downscaling result (centre) demonstrates that the location of the AMB is corrected towards the ground truth data.

To assess the potential benefit of using AtmoRep for downscaling, we compare our
results with those from a WGAN. The WGAN utilises a U-Net generator with 3.5 million
trainable parameters that has been adopted from the 2 m temperature downscaling study
of28 and a convolutional critic network with 1.5 M trainable parameters. In analogy to
AtmoRep, the generator is informed with temperature and wind information from several
model levels. Additionally, it also inputs coarse- and high-resolved surface topography
data to support the resolution mapping. The generator and critic components are trained
adversarially for 40 epochs on a single A100 GPU requiring about 20 hours. No noise
injection is performed in the generator, resulting in a determinstic WGAN downscaling
model. To reduce the memory requirements during training, a smaller target region is
chosen for the WGAN.

Fig. 4a shows the diurnal cycle of the space-time averaged RMSE over the complete
test year 2018 for both models. With an ensemble-averaged RMSE of 0.989 K, the At-
moRep downscaling model clearly outperforms the WGAN (RMSE = 1.163 K). The
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margin is largest for the afternoon and evening hours and can mainly be attributed to lower
errors over the Alpine region. As depicted in Fig. 4b, the spatial RMSE distribution is
rather uniform with AtmoRep, whereas the WGAN exhibits RMSE values up to 3 K over
the Alpine region. This clearly documents the superiority of AtmoRep for the downscaling
task and its ability to fill in realistic orographic features in complex terrain even without
explicit topographic information.

In contrast to the conclusion above, the WGAN model is slightly better in reproducing
the spatial variability of the downscaled T2m field compared to AtmoRep (not shown).
Power spectrum analysis, along with comparisons of the domain-averaged horizontal T2m
gradient against the COSMO REA6 ground truth, indicates that AtmoRep underestimates
small-scale spatial variability by approximately 10 % (not shown). This is not entirely
surprising since we are evaluating the ensemble mean state of AtmoRep, which will de-
crease variability. When we look at individual ensemble members, the underestimation
of variability is slightly reduced, but differences to COSMO REA6 remain. A possible
reason for this could be the very small ensemble size of 4 members. An increased en-
semble size would require a more efficient model configuration. Strategies for this include
freezing portions of AtmoRep’s encoder-decoder weights during fine-tuning or implement-
ing a more light-weight tail network, for instance with Swin Transformers29 or Perceiver
IO-modules30.

Figure 4. (a) Diurnal cycle of the domain-averaged RMSE for AtmoRep and the baseline WGAN downscaling
model over the test data from 2018. The shaded area shows the standard deviation. (b) Spatial distribution of the
RMSE with the AtmoRep downscaling model averaged over the test data at 15 UTC. The evaluation region is
rendered in black. Additionally, the corresponding results of the WGAN model are displayed in the lower-right
corner.

4 Summary and Outlook

AtmoRep is one of the first foundation models for weather and climate applications that
fully exploits modern concepts of generative machine learning. In the 3 years since its
conception, the model has demonstrated very good skills at a variety of meteorological
tasks which had not been part of the original (pre-)training schedule. AtmoRep’s capa-
bilities for high-quality short-term forecasting, model correction, statistical downscaling,
and counterfactual experiments have been demonstrated in Ref. 17. Here, we extended
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the evaluation of AtmoRep by exploring its use as a data compression engine in a zero-
shot setting and by further analysing the downscaling application including a comparison
against a competitive Wasserstein GAN model.

The data (de)compression application explored a scenario where humongous amounts
of climate data could be reduced by storing only every n-th grid box, k-th time step, or
m-th model level. While this task has a lot of similarities with the pre-training task of
random masking, our results nevertheless show that the systematic masking of specific
patterns along the horizontal, vertical, or time dimension can introduce systematic biases
in the reconstructed fields. RMSE values of reconstructed temperature fields range from
about 0.4 K on the lowest model level to slightly higher values at the top level of 5 km
altitude using compression ratios between 1.42 and 4. Although this is worse than the
reconstruction quality of standard compression algorithms (e.g., JPEG), the advantage of
AtmoRep is that it does allow for much larger compression ratios (combination of patterns)
with relatively little degradation in performance. Furthermore, due to its probabilistic na-
ture, AtmoRep can generate entire ensembles based on the compressed input of a single
field. It can be expected that the reconstruction quality further improves when the model
is fine-tuned and when we exploit cross-variable correlations.

Concerning the downscaling application, AtmoRep has demonstrated its superiority
over a leading competitor model based on a WGAN. Although it failed to fully cap-
ture the enhanced variability of high-resolution temperature fields in complex terrain, it
achieved very good scores in terms of absolute error and RMSE and generated credible
high-resolution patterns following the complex orography over the Alps, even though no
topographic information was provided to the model. Initial results suggest that the down-
scaling concept also works for other variables, in particular precipitation, which is most
challenging but also highly relevant. In the current configuration, the ensemble size is very
limited so that a robust assessment of the uncertainty of the downscaled field is not possi-
ble. Various approaches to overcome these limitations have been discussed above and are
currently being explored. Already now, AtmoRep establishes a new state-of-the-art with
respect to temperature downscaling and we are confident that this will also apply to other
variables and regions.

The research on AtmoRep presented in this paper has been carried out with very little
specific funding. Only recently, several projects that aim to further develop AtmoRep into
a versatile model for weather and climate applications have been granted and the AtmoRep
consortium continues to grow. While foundation models for weather and climate are still
in their infancy, AtmoRep already allows some glimpses into what may become possible
with such tools. It can be expected that foundation models for weather and climate will
at some point replace classical numerical models in many different application areas as
they are substantially faster and often better. However, there are still several fundamental
questions to be solved and various technical challenges to be overcome. The evolution
of supercomputing centres to provide more dedicated support for AI applications is one
important cornerstone for building a bright future for weather and climate AI.
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In this work advanced concepts for reanalyses are presented. This includes the detailed consid-
eration of the land-surface and subsurface as well as an investigation of the impact of human
water use on the system. Three distinct setups are presented, each focusing on a specific part of
the Earth-System. The basis is a convection-permitting continental scale traditional reanalysis
with focus on the atmosphere. From there, a detailed land-surface version is created as well
as a version with explicit consideration of anthropogenic water use, here as irrigation. Some
preliminary results from all three versions are presented and advantages compared to traditional
and existing products are discussed.

1 Introduction

Atmospheric reanalysis combines information from different observing networks into a
gridded climatological data set using a numerical (weather prediction) model and a cor-
responding data assimilation (DA) scheme. They are used to provide consistent spatial
information on the past spatio-temporal state of the atmosphere10. Ongoing efforts in the
community point toward increasing the spatio-temporal resolution as well as including
more Earth System components, i.e. moving from atmosphere-centric products to coupled
ones20. Only a few approaches exclusively for global reanalysis have been made, often
focusing on the coupling of complex atmospheric and ocean models20. The land surface
model in reanalyses is mostly rudimentary, especially with respect to the representation of
the subsurface. Further, due to the coarse resolution, the resolved scales do not reflect the
spatial heterogeneity of land- and subsurface and the associated processes5, 8, 9, thus also
affecting the feedback effects between the compartments, of which the water cycle is a
crucial part. While the introduction of high-resolution (atmospheric) regional reanalysis
has been found to considerably improve the terrestrial water cycle estimates from global
reanalyses16, it can still only be seen as the first step to a more comprehensive reanalysis
approach. Therefore, the implementation of an Earth system reanalysis is an important
goal to enhance the consistency in representing water and energy budgets. As an increas-
ing number of remote sensing observations and in situ measurements become available,
it is important to develop algorithms that can make optimal use of the different types of
observations in order to improve the accuracy of land surface models and generate a highly
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accurate reanalysis product. We propose the application of iterative Ensemble Smoothers
with multiple data assimilation (ES-MDA)23 for the updating of a comprehensive set of
parameters related to hydrological cycles and ecosystems within the land surface model
on a continental scale. This algorithm excels in efficiently incorporating information from
various data sources simultaneously. A further advantage of this algorithm is that a long
time period can be assimilated at once, instead of having short sequential assimilation win-
dows. Each model parameter can be informed by a comprehensive set of observations that
includes temporal and spatial dynamics. By updating the model parameters rather than the
model state vector, systematic deviations can also be minimised for longer-term simula-
tions, without introducing imbalances in the water budget systems or numerical instabili-
ties22. The objective is to develop and evaluate the potential of the ES-MDA to constrain
land surface model parameters, and to assess its applicability in generating long term re-
analysis products. While such a comprehensive modelling and DA framework is expected
to lead to a considerable enhancement in representing the terrestrial water cycle, at least
one major source of uncertainty would remain. Human activities can have a significant
impact on the water budget, depending on time and location. Irrigation in particular plays
an important role in the anthropogenic redistribution of water in the terrestrial system as it
accounts for 80-90% of the global freshwater withdrawal20. Yet, only recently, modelling
studies have focused on the explicit representation of irrigation in case study experiments.
Possible reasons for this are (a) the lack of comprehensive and extensive knowledge and
measurements as a basis for parameterisations and (b) the complexity of representing such
processes in a numerical model. In this respect, we are not aware of any reanalysis that,
to date, includes an explicit representation for irrigation despite being identified as an im-
portant process for soil moisture and near-surface representation20. While one could argue
that the lack of irrigation in reanalyses can be corrected with the DA step, there are two
main caveats to this approach. The first is the lack of high-resolution horizontal soil mois-
ture or surface water observations to capture the effect of irrigation. Second, the vertical
redistribution of water from the surface or soil into the atmosphere or onto the canopy is
difficult to reproduce realistically in a DA scheme. Therefore, neglecting irrigation leads to
significant biases in reanalysis data sets17, and an explicit representation of irrigation can
circumvent these shortcomings. In this respect, irrigation can also have a significant impact
on feedback between the different compartments, such as potential evapotranspiration, at-
mospheric local and synoptic circulation and precipitation19. Further, irrigation leads to
an increase of soil moisture and a decrease of the average diurnal surface temperature (ex-
cept under special circumstances20), with a strong asymmetric seasonal and inter-annual
variability15. Further, irrigation can play an important role in shaping hydrometeorolog-
ical extremes13, which in turn have feedback on the terrestrial water cycle. Given these
potential effects, the analysis of an explicit representation of irrigation in a fully coupled
reanalysis framework has to be thoroughly assessed, including the inherent uncertainties.

2 Motivation

As previously discussed, reanalyses are reference datasets for the past climate state, as the
most up-to-date models and DA systems are used. This is why reanalyses will regularly be
re-done after enough progress either on the DA or model side (or both) happened, such that
higher quality can be expected. More recently, reanalyses gained further relevance as train-
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ing dataset for AI-models for weather forecast, highlighting the need of high-resolution and
high quality data. As for this reanalysis project, we mostly aim to get the water cycle rep-
resented as best as possible. As such, we have three separate reanalysis projects that focus
on different aspects:

• The atmospheric reanalysis focuses on delivering the best possible atmospheric ref-
erence, with precipitation being a very important factor for the water cycle, followed
by other near-surface variables that dictate evapotranspiration.

• The land-surface-subsurface reanalysis focuses on representing the surface/subsur-
face part of the water cycle as accurately as possible. This includes representation of
plants, the soil an deeper subsurface, as well as overland flow in rivers.

• The atmospheric-land-surface reanalysis with additional focus on anthropogenic wa-
ter use (mostly irrigation) is designed to find differences that arise from said anthro-
pogenic water use. This reanalysis can be compared to our first one to assess sensi-
tivity with respect to human water usage.

• The final reanalysis product would be a combined, coupled version of all previous
ones.

Creating a reanalysis is a complex challenge, not only because of immediate issues and
choices to make, but also with the prerequisites that have to be fulfilled before an attempt
can even be made. These prerequisites include:

• A robust numerical model that has shown to perform very well when compared to
competing models, especially important for local area models that needs tuning to
work for certain regions of the globe. Fortunately, we have access to the models
ICON, eCLM and ParFlow, all of which will be presented in more detail below.

• A state-of-the-art DA system is required. This DA system must be able to assimilate
all the various observation types chosen for the reanalysis as well as use modern
techniques to create the analysis to ensure best fits between observations and models.

• A database of quality-controlled observations with proper meta-data is key. If ob-
servations are of poor quality or are faulty, this will likely cause issues with the DA
system. Further, we must ensure that all observations have proper metadata.

• A computing facility able to run the models, store the input and output data (hundreds
of terabytes) and handle data transfer requests for analysis or visualisation purposes.

3 Methodology

In order to realise the Reanalysis we use the Terrestrial Systems Modelling Platform
(TSMP) with their component models as well as the DA suites that accompany them. For
the atmosphere this is the ICON model21 with the KENDA DA system. ICON is a very
versatile model, able to run global simulation as well as highly resolved local area versions.
Even large eddy setups are possible, but still experimental at this moment. ICON has been
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used operationally for several years now at the German Weather Service (Deutscher Wetter-
dienst, DWD) for both the global system as well as for a high-resolution (2km) local area
mode for central Europe (ICON-D2). They have shown to be among the leading NWP
models making them suitable for reanalysis purposes. For DA ICON uses the KENDA
system, which is also in use operationally at DWD to create the analysis, a requirement for
any forecast run. For limited area assimilation, the LETKF (Local Ensemble Transform
Kalman Filter) is the default option for DA with ICON.

For the land surface the Community Land Model (CLM) in version 5.0 is used11. CLM
has seen many iterations over the years and has come to be known a very efficient and
detailed land model. Able to run in various different modes, it is used to tackle a wide
variety of problems regarding the land surface. When coupled to ICON it replaces the
default land surface scheme that is included with ICON. CLM is more detailed and uses
more types of vegetation and has a much finer spectrum for soil types. The hydrological
part of the simulation is covered by ParFlow12. While CLM is able to simulate soil moisture
and overland routing of rivers, ParFlow has the advantage of being able to close the water
balance, as all fluxes across any domain border can be exactly calculated since it is uses
the full 3D Richards equations for subsurface flow (shallow water equations for water flow
in the land surface). In addition, ParFlow uses Van-Genuchten parameters to specify soil
properties. A very detailed knowledge of soil and subsurface properties is needed for best
results. All these models are coupled using the external OASIS coupler. For CLM and
Parflow DA is covered by PDAF14, which features a wide variety of options for the DA
options also including the LETKF.

The specific setup of these models depend a lot on the goal of the simulation, which can
vary quite a bit. We now describe in more detail the setup of our experiments, starting from
the ICON stand-alone reanalyses, following with the land surface reanalysis, and finishing
with the inclusion of the irrigation parameterisation in the ICON model.

The first is an ICON standalone reanalysis. We will show results from an exploratory
simulation with the year 2022. The final reanalysis will follow the same procedure an ad-
ditional observation type (atmospheric motion vectors or AMVs) will be added. For the
basic setup we start with the operational ICON-D2 setup. It has been shown that this setup
is optimal for central Europe at 2km resolution. However, we are using a 3km resolution
and the EURO-CORDEX domain is much larger than the ICON-D2 domain. For optimal
tuning, a lengthy process of sensitivity experiments would be needed. But even then we
will likely end up with a system that still performs worse than any properly tuned system
on any subset of our domain. So given that the ICON-D2 domain is right at the centre of
the EURO-CORDEX domain and the difference in resolution is still small, we remained
with the ICON-D2 tuning, knowing that it will not be optimal in other parts of the world,
such as the eastern Mediterranean. We did increase the vertical extent from default 60 to
75 layers up to 33km, to allow for deeper tropospheres, as can be found in the southern
regions in summer. The boundary conditions for our experiment are provided by ERA-5,
which especially for the ensemble are at coarse (∼80km) so near the boundary of the do-
main larger deviations are expected. As these regions are mostly ocean (western/norther
boundary), desert (southern boundary) or sparsely populated areas with few observing sta-
tions (eastern boundary, with some exceptions), this should overall have negligible impact
on the results. For the DA system we also use ICON-D2 as a basis, with some key differ-
ences. First, we can only afford to run 10 ensemble members, due to the computational
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cost and the storage requirements. Another change is the removal of observation types that
require huge amounts of disk storage and memory. This includes most satellite data as
well as radar observations. We still use all conventional observations, which includes clas-
sic weather stations and radiosondes, but also wind profilers and aircraft data. The latter is
only available in a greatly reduced quantity though. The results obtained from this reanal-
ysis will be compared to other reanalysis projects, notably ICON-DREAM, another ICON
reanalysis run globally at 13km resolution with a 6,5km nest over Europe with almost the
same extent as the EURO-CORDEX domain. ERA-5 is the other reanalysis we compare
to, as it is the most widely used and also the source of our boundary data, meaning any
improvements would be due to our system rather than a better quality forcing.

For the land surface reanalysis, we started with the eCLM and implemented with the
ES-MDA algorithm. Compared to the traditional EnKF, the ES-MDA assimilates a longer
time period instead of short sequential windows that can better capture slow processes and
associated parameters. The simulations were performed on an extended EURO-CORDEX
domain with a spatial resolution of 0.11◦ driven by ERA5 reanalysis dataset. A number
of studies25, 24 have investigated the sensitivity of parameters (hard-coded) in CLM 5.0.
Based on this, we chose a set of input variables and parameters that affect the hydrological
and biophysical processes.

Considering the uncertainty in the soil texture, we introduced depth-invariant spatial
perturbation fields to the percentage sand, percentage clay and percentage soil carbon con-
tent. As CLM 5.0 calculates the porosity, saturated hydraulic conductivity and soil matric
potential based on pedo-transfer functions for both mineral26and organic soil, the slope
and intercept parameters in the empirical regressions were perturbed. The runoff genera-
tion process has a strong influence on soil moisture27, consequently, we also perturbed the
decay factor that links soil moisture and the fractional saturated area in the model. On the
other hand, the evapotranspiration process is sensitive to the stomatal conductance and pho-
tosynthesis parameters24. To account for this, we perturbed the parameters in the stomatal
conductance model, the Medlyn model28 for each Plant Functional Type (PFT) and param-
eters in the photosynthesis model. At last, considering the transpiration is largely regulated
by the plant hydraulic conductivity, we further perturbed the maximum conductance and
maximum canopy water storage. For the observations, we used the SMAP enhanced Level
3 soil moisture product operating at 9 kilometre resolution29. The observation error was
set to 0.04 mm3 mm−3, which is consistent with the target accuracy under favourable con-
ditions29. Additionally, we used the evapotranspiration measured by eddy covariance (EC)
from the Integrated Carbon Observation Systems (ICOS) over 70 sites. In order to evaluate
the impact of assimilation type, tapering and inflation factors and the number of iterations,
a series of sensitivity tests were conducted. The tapering factor was set to 0.4 to achieve a
balance between model mismatch for SMAP and ICOS observations. Meanwhile, the in-
flation factor was adjusted to 1.05 to maintain ensemble spread and better represent model
uncertainty. The results demonstrated that the optimal performance is achieved through the
assimilation of both SMAP and ICOS data with 5 iterations with 64 ensemble members.
Finally, we used the aforementioned settings and assimilated data for the year 2019 and
validated the results for 2020.

The third experiment, the atmospheric-land-surface reanalysis including the represen-
tation of irrigation started with implementing the irrigation parameterisation in ICON. This
parameterisation is an adaptation of the CHANNEL parameterisation developed originally
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for the Weather Research and Forecast model (WAF)18. We introduce this adaptation in the
interface between the land surface scheme and the atmosphere. Therefore, this parame-
terisation adds irrigation water into the grid-scale precipitation before this variable goes to
TERRA, which is the default Land Surface Model coupled with ICON-nwp. Even though
the precipitation amount changes with the irrigation water, canopy interception is not pos-
sible as it does not exist a canopy layer in this land surface scheme. At the moment, the
irrigation water (W1) is calculated with the same equation (Eq. 118), and it depends on the
daily irrigation amount (V1 in mm d-1), the number of irrigation hours in seconds (h1), and
the irrigation interval (T1 in absolute number of days). We decided to consider a fixed irri-
gation water amount for the free simulations, and we choose three of the national-reported
values of water abstractions from Eurostat7 and we apply them to the whole domain, i.e.
daily values of 2.6 mm (France MFR hereafter), 6.7 mm (Spain MSP hereafter), 11.1 mm
(Italy MIT hereafter). Besides the irrigation amounts from the Eurostat, we included two
other experiments, fixed soil moisture at field capacity and saturation for the top six layers
where TERRA calculates the water balance. Other studies also considered including or
limiting irrigation water directly to the soil moisture2.

Regarding the other irrigation settings, we concentrate on the summer season as the
effects of irrigation on the atmospheric component are more evident when atmospheric
conditions are warm and dry20. Concerning the irrigation frequency and length, we opted
for irrigating the whole day (24 h) with a daily frequency. For the free simulations we used
ICON global operational initial and boundary conditions, but similar settings as the ICON
standalone reanalysis, and we run our experiments from March 01, 2022 until the end of
August.

4 Results

The first part of the results are from the ICON standalone reanalysis without any changes
to irrigation. Here, the focus is on the comparison to other existing reanalysis products.
As discussed in the previous section where the setup is presented, the main strength of
this reanalysis is the high resolution, which helps specifically with precipitation and for
stations in complex terrain, which are often be filtered out in more coarse models. This
results in a counter-intuitive effect that this reanalysis features some stations with more

Figure 1. Comparison of 2m temperature, humidity and wind components BIAS and RMSE between different
reanalysis products for 2022. The distribution shows all actively assimilated stations for each product. Light
yellow is the first guess for our reanalysis, bright yellow the actual reanalysis, green is ICON-DREAM and blue
ERA-5.
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Figure 2. Comparison of temperature and humidity profiles of BIAS and RMSE. The green line is the first guess,
the red line the analysis.

extreme values with regards to biases and RMSE, as can bee seen in Fig. 1. However, there
are only very few such stations, so for mean values these do not play any significant role.
Overall we see that we are competitive in quality with other reanalysis products despite the
many compromises we had to make. We see similar performance as ICON-DREAM and
better performance than ERA-5 (except for Wind).

Unfortunately, we do not yet have a comparison of vertical profiles for all reanalysis
products, instead we use the vertical profiles of Fig. 2 to highlight the performance of the
DA system itself. First of, the shown biases and RMSE values are consistent with opera-
tional ICON-D2 results, albeit with slightly larger magnitude, due to all the compromises
discussed in the previous section. But what is very obvious and important is that the as-
similation leads to a better fit to observation in all elevations of the analysis compared to
the first guess, despite the rather sparse coverage at higher altitudes.

The results of the data assimilation with the land surface model eCLM and the ESMDA
approach are illustrated in Fig. 3. The eCLM open loop runs, i.e. the run without the Data

Figure 3. Spatial distribution of mismatch between the SMAP soil moisture product and CLM 5.0 modelled soil
moisture for open loop simulations and data assimilated runs. The left column shows open loop results and the
right column DA results.
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Figure 4. RMSE between the evapotranspiration (ET) modelled by CLM 5.0 and measured form ICON sites (in
mm d−1), same as Fig. 3.

Assimilation, exhibit an overestimation of soil moisture across the majority of Central and
Eastern Europe, as well as Northern Russia, and an underestimation in the Nordic regions
when compared to the SMAP retrievals. The results indicate that these discrepancies be-
tween modelled soil moisture and SMAP soil moisture retrievals become less pronounced
for both the assimilation period (2019) and the validation period (2020, not shown), sug-
gesting that structural improvements are made with respect to the overall modelled soil
moisture.

We also present the RMSE between the modelled and observed evapotranspiration es-
timates in Fig. 4, most of them lie below 1 mm d−1 for the open loop simulations. It is
noteworthy that the modelled ET shows promising results in Nordic needle leaf forests,
exhibiting an RMSE of 0.5 mm d−1. The right panel shows the reduction or increase in
RMSE after the data assimilation. A limited number of stations demonstrate a notable
reduction in RMSE, predominantly from cropland and grassland sites in Germany and
France. Conversely, a number of stations exhibit little changes, particularly those dom-
inated by deciduous broadleaf forests. This may indicate that the use of a single plant
functional type to represent deciduous broadleaf forests across Europe may be inadequate.

The sensitivity tests using the irrigation parameterisation including different irrigation
amounts show that soil moisture increased in different magnitudes over all experiments.
After subtracting the CTRL from the irrigation runs, the mean values for the top soil
layer (0 - 9 cm) over all tests for May and JJA in irrigated areas are 3.4 and 3.7 kgm-2

respectively. Fig. 5 shows the soil moisture differences for two irrigation experiments:
soil moisture fix to field capacity (FC) and the experiment with a mean irrigation amount
from France (MFR). Soil moisture increased on average 2.9 kgm-2 and 3.6 kgm-2 for FC
and MFR respectively. The changes in soil moisture influenced the partitioning of energy
fluxes, as shown already by other studies15, by increasing the Latent Heat Flux (LHF) and
decreasing the Sensible Heat Flux (SHF). The average LHF increase over all experiments
in irrigated areas is 64.7 Wm-2, and the average SHF decrease over all experiments is 52
Wm-2. This Figure also demonstrates the close proximity between the results from differ-
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Figure 5. Differences between irrigation experiments and control for soil moisture (0-9 cm), JJA. Left: FC ex-
periment. Right: MSP experiment.

ent experiments, as there is an overlap of averaged values. This suggests a lower sensitivity
between applying different irrigation amounts, at least with values between 2.6 and 11.1
mmd-1 in the irrigated fraction of GlobCover 2009. Even though SAT and FC overlap, their
influence in surface variables is lower than the influence of the other experiments (MFR,
MSP and MIT), as their values were directly forced in the first six soil layers of TERRA.

The changes in the energy flux partitioning indicate that less energy is used to heat the
surface. As a result, we expected a decrease in temperature values. Our sensitivity simula-
tions depict this scenario in relation to 2 m temperature (T2m). In this case, all simulations
obtained negative values in the irrigated areas after subtracting the CTRL run. The average
temperature in irrigated areas decreased by 1.0 K and 1.4 K in May and JJA respectively,
with a stronger cooling effect during day-time (decrease of 2.3 K) than during night-time
(decrease of 0.5 K). We compared these temperature values with observations retrieved by
the first experiment (reanalysis). The location with more observations available close or
in irrigated areas for the month of June was Spain. The average bias from FC and MSP
experiments is lower compared with the control. The control run reaches a bias of 0.66,
while FC and MSP have a bias of -0.08 and -0.29 respectively (Fig. 6).

(a) CTRL (b) FC

Figure 6. Bias from irrigation experiments in comparison with observations for Spain, June 2022.
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5 Concluding Remarks

We have shown preliminary results from various setups that will eventually lead to a fully-
coupled and unified reanalysis framework, since each setup is designed to test specific
aspects.

For the atmospheric baseline setup we were able to show good performance compared
to other reanalysis despite using a very small ensemble size and a limited set of observa-
tions. The reanalyses period is currently being extended and evaluated against the other
reanalyses.

The ES-MDA, used for land surface data assimilation, is proved to be an efficient algo-
rithm for the assimilation of spatial and temporal data from different sources. The tuning of
the different pedotransfer function parameters have been estimated at a continental scale.
The ecosystem parameters are estimated using measurements from ICOS. The wet biases
in soil moisture have been further reduced through assimilation while the estimation of
ET has seen only a slight improvement. Therefore, the next stage of the process involves
running the eCLM model in biogeochemical mode and assimilating the Leaf Area Index
(LAI) data retrieved from MODIS (the Moderate Resolution Imaging Spectroradiometer).

The irrigation sensitivity experiments demonstrated that simulations with ICON-NWP
exhibit minimal sensitivity to different irrigation amounts. However, the results differ when
the irrigation water is included as grid precipitation or directly forced in the soil. Also, al-
though we found a bias reduction in T2m for the irrigation experiments, there is still room
for improvement by adjusting certain irrigation settings. Nevertheless, when comparing
results with observations, we should represent irrigation more realistically. Therefore, fur-
ther testing and tuning is planned.
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With the rapid rise of artificial intelligence within the computational sciences, so has their
share in terms of computing time made available on supercomputing centres. The latter is
particularly true for the area of computer science and numerical mathematics, where beside
state-of-the-art simulations an ever increasing part of nowadays allocation is dedicated to
the development of basic techniques, assessment and training of foundation models.

A particular good example in this regard is the contribution of Georg Rehm and
coworkers on the OpenGPT-X large language model (LLM), which is a collaborative
initiative between academic and industrial partners to develop a local, open and freely
available multilingual LLM to widespread used commercial services such as ChatGPT.
Specifically, they have demonstrated a multitude of techniques to optimise the training of
large-scale LLMs on JUWELS Booster with an emphasis on the pre-training of neural
networks based on the transformer architecture. Extending the existing Megatron-LM, a
highly distributed and optimised PyTorch codebase to train large-scale transformer models,
they demonstrated an outstanding scalability within the training of small- and large-scale
LLM ranging from 80M to 13B parameters on up to 1024 Nvidia A100 GPUs. A very
important side aspect of their effort is that they provide a vast amount of data such as the
selection process of the employed model architecture and corresponding hyperparameters
including the required computational costs – details that otherwise often remain in the fog
due to the proprietary nature of commercial alternatives.

Along similar lines, though from the area of video and image segmentation, is at the
core of the contribution of Alexander Hermans et al. from RWTH Aachen’s Visual Com-
puting Institute. Therein, they studied how to best exploit the GPU-accelerated JUWELS
Booster within the segmentation of inputs at the pixel-level by assigning them to specific
class or objects instances to understand visual scenes from image and video data. Con-
trary conventional deep learning task such as classification and detection, segmentation
requires pixel-level annotations that are rather time-consuming to obtain, thereby render-
ing the availability of high-quality, large-scale datasets as a major bottleneck in advancing
the field. This is even more stringent for videos, where dense, frame-by-frame annotations
are required. To ameliorate the latter, the focus of the group of Bastian Leibe was on the
development of TarViS, a unified approach for target-based video segmentation, an holistic
approach to perform multiple video segmentation tasks using a single trained model only.
As before, using the PyTorch library, which provides a DistributedDataParallel
API for seamlessly parallelising network training across multiple nodes, a parallel effi-
ciency of approximately 70 % had been achieved using all GPUs of multiple JUWELS
Booster nodes.
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At variance, the final contribution of Andreas Frommer et al. deals with novel adap-
tive algebraic multigrid solvers in state-of-the-art lattice quantum chromodynamics (QCD)
simulations. One of the major tasks of lattice QCD is the solution of linear systems such as
Dx = b, whereD is the discretised Dirac operator that, to make matters worse, is typically
ill-conditioned. In their work, so called domain decomposition aggregation-based alge-
braic multigrids (DD-αAMG) are employed, which beside accelerating the performance
to linear solvers allows to conduct partial eigendecompositions of D and to approximate
traces of the form Tr(D−1). Offloading some of the critical sections of the DD-αAMG
method via CUDA and HIP to GPUs, permits the effective usage of heterogenous comput-
ing architectures. In the numerical experiments conducted on JUWELS Booster, a speed-
up of a factor 8 had been observed when using their GPU implementation of DD-αAMG
with respect to the CPU-only variant.
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Adaptive algebraic multigrid methods have meanwhile established themselves as standard
solvers in lattice QCD computations on current supercomputers. In this paper we review re-
cent additions and recent new use cases for the solvers, in particular our DD-αAMG method
and report performance results obtained on JUWELS at JSC.

1 Introduction

In lattice Quantum Chromodynamics (QCD), a discretisation of the physical theory de-
scribing the strong force between the quarks as constituents of matter on the lattice, simu-
lations take place on state of the art grids of sizes 1284 and larger1. At such large scales,
the memory and arithmetic demands of the computations force the use of supercomputers.
Moreover, as simulations on the lattice approach the physical continuum, advanced algo-
rithmic techniques are necessary. In particular, when solving linear systems, the matrix
of coefficients, known as the (discretised) Dirac operator D, is very ill-conditioned, and
multigrid (MG) methods2, 3 have become the state of the art in lattice QCD.

Using an algebraic multigrid (AMG) method rather than a geometric one is a necessity
for solving Dx = b. The current status is the result of twenty years of continuous numer-
ical developments, leading to AMG constructions for most of the discretisations in lattice
QCD3–6. One realisation of an AMG solver for the Wilson-Dirac discretisation of the Dirac
equation is the aggregation-based adaptive domain decomposition multigrid method3 (DD-
αAMG), with an extension for twisted mass fermions available7, 8.

The multigrid hierarchy built by DD-αAMG allows one not only to boost the per-
formance of linear solves but also of methods for other problems arising in lattice QCD
simulations, e.g., partial eigendecompositions of D and the approximation of traces such
as tr(D−1). To develop and test those methods, the resources and support provided by the
Jülich Supercomputing Centre have been crucial.

This paper is structured as follows. We review the basics of the DD-αAMG framework
in Sec. 2 along with some recent improvements of the corresponding library, followed by
a discussion in Sec. 3 on how trace estimation for tr(D−1) can make use of a multigrid
hierarchy for variance reduction. Sec. 4 then presents the overlap discretisation and out-
lines methods that can be used for speeding up linear solves in that context. We close with
a collection of some numerical results in Sec. 5.
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2 Aggregation-Based Domain Decomposition MG for Lattice QCD

We start this section by giving a brief introduction to AMG, from which we then are able to
give a general overview of the DD-αAMG framework. Then, more recent improvements
of the library, namely coarsest-level improvements and GPU portations, are discussed.

2.1 Algebraic Multigrid

Multigrid solvers rely on the interplay of a smoother and a coarse grid correction.
Smoothers are methods such as Gauss-Seidel or GMRES9. Those are generally very good
at suppressing the part of the error that is connected to the eigenvalues of D with largest
magnitude but they start plateauing in their error reduction after a few iterations. The rea-
son for this stagnation is that components of the error in the direction of the eigenvectors
whose eigenvalues are the smallest in magnitude are largely unaffected. The task of the
coarse grid correction is thus to reduce the low modes of the error. Multigrid methods
construct a hierarchy of coarse grid operators D` at different levels `, prolongation and
restriction operators P` and R` between the levels. The coarse grid correction then ap-
proximates the error at level ` as a prolongation of the equation for the restricted residual
at level `+ 1. Typically, one uses a Galerkin construction, i.e. D`+1 = R`+1D`P`+1, and
the range of P` should well approximate small eigenmodes of D`.

2.2 DD-αAMG

Domain decomposition aggregation-based algebraic multigrid (DD-αAMG)3 is both an al-
gorithmic framework and a code10 for solving linear systems in lattice QCD. It targets the
Wilson-Dirac discretisation with a clover improvement and implements an aggregation-
based AMG11, 12. The aggregation-based construction relies on the concept of local coher-
ence13, which states that many low modes of D can be approximately obtained from just
a few low modes by looking at the local behaviour of those few modes. This construction
allows us to have many approximate low modes of D = D1 as columns of the prolongator
P1, with a sparse structure in P1 leading to a coarse-grid Dirac operatorD2 resemblingD1

in its nearest-neighbour structure, and this is repeated on the further levels.
The DD-αAMG solver has setup and solve phases. During the setup phase, it builds the

multigrid hierarchy, i.e. the operators D`, P` and R` = PH` . The solve phase then makes
use of this hierarchy to solve one or more linear systems, i.e., for one or more right-hand
sides in a sequence.

During the solve phase, the cycling strategy is K-cycles14, i.e. we use flexible GM-
RES (FGMRES)15 to wrap every level of the multigrid solver. In the overall method, this
K-cycle multigrid is then used as a preconditioner of an outer iteration which is, again,
FGMRES. The outer preconditioned FGMRES is solved up to the desired relative residual
tolerance, e.g., 10−12. On the coarser levels of the K-cycle, the linear systems for the error
representation at that level are solved to a relative residual tolerance of 10−1.

The smoother in DD-αAMG could originally be one of either GMRES or SAP, but
more recently this has been extended to include GCR and modified Richardson16. If the
parameters of the multigrid solver are chosen appropriately, the number of iterations for
the finest-level FGMRES to reach the desired tolerance will remain essentially constant
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as the conditioning κ(D) of D becomes larger. When κ(D) increases, the condition on
the coarser levels will also increase, which impacts in particular the coarsest level. If the
coarsest level is solved with a standard iterative method, this requires many iterations for
each coarse level solve and results in increased execution times.

DD-αAMG multigrid hierarchy is also useful for other tasks than linear systems. For
example, an eigensolver was devised based on Generalized Davidson where the correction
equation is solved with DD-αAMG19. We discuss in Sec. 3 more recent work where we
use a multilevel decomposition in the stochastic estimation of the trace of the inverse of D.

2.3 Coarsest Level Improvements

When a multigrid method for a certain problem is built, the standard recipe is to do the
coarse-grid correction via a recursive call of the same two-level method but onDcxc = Rr,
and to continue this recursion until the coarse-grid operator is small enough so that a direct
method, e.g., an LU factorisation can be used. The K-cycles used in lattice QCD multigrid
solvers render having too many levels counter-efficient, with some reasons for this being
thrashing, i.e., a lack of cash reusage, having idle processes when using many nodes, and
the dominance of communications at some point when going for strong scaling. Hence,
having two or three levels has become the standard in this field.

When three levels are used and as κ(D) grows, the coarsest level can become very ill-
conditioned; this can be particularly extreme for twisted mass fermions8. In recent work17

the coarsest-level solver in the twisted mass version of DD-αAMG has been extended
from restarted GMRES to preconditioned GCRO-DR. The latter method uses a polynomial
preconditioner inside GCRO-DR18, which in turn consists of an inner-outer method where
deflation is used and the deflation subspace is updated via a recycling strategy, implying
that sequences of linear systems can be solved, i.e., one can transfer deflation data from one
linear system to the next. In Sec. 5 we show some of the most important results stemming
from those coarsest-level improvements.

2.4 DD-αAMG on GPUs

Recent work16, 20 has extended DD-αAMG, via CUDA21, to offload some of its critical
sections to GPUs. This allows running the solver on heterogeneous machines with either
Nvidia or AMD accelerators, with the latter being possible due to HIP22. More extensions
also include a broader set of smoothers16, where in particular Richardson iteration is shown
to be competitive against the best smoother (that is, SAP) and with its additional benefits of
low-memory requirements and simplicity of implementation. We discuss the current status
of the CPU+GPU version of DD-αAMG in Sec. 5.

3 Multilevel Methods for Trace Estimation

The problem of estimating the trace tr(f(D)) of a matrix function stochastically, such
as f(D) = D−1 with D ∈ Cn×n, arises in various fields including machine learn-
ing, network analysis, and particularly in lattice QCD where D is the Dirac operator or
a composition of the Dirac operator with additional discrete operators. Directly com-
puting the trace by solving n linear systems is infeasible for large matrices due to the
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excessive computational cost. A common alternative is Hutchinson’s method, where
Rademacher (Z2) or more generally Zk random vectors xi are used to approximate the
trace as tr(D−1) ≈ 1

N

∑D
i=1 x

∗
iD
−1xi. The variance of this stochastic estimator decreases

only as O (1/N), making it computationally expensive for achieving high precision. We
now discuss techniques for variance reduction and in particular we explain how the multi-
grid hierarchy built in DD-αAMG can be used for such purpose.

3.1 Variance Reduction Techniques

Variance reduction techniques makes use of the connection between the variance of the
stochastic estimator and the Frobenius norm, which for Rademacher vectors is given by

V[x∗D−1x] ∝ ‖offdiag(D−1)‖2F ,
where the ‖·‖F is the Frobenius norm. Since ‖offdiag(D−1)‖2F =

∑n
i=1 σ

−2
i −∑n

i=1 |(D−1)ii|2, the small singular values ofD dominate the variance of the stochastic es-
timator. By deflating those, the variance can be significantly reduced. The deflation scheme
achieves this by constructing a projector Π with range approximating the small singular
modes of D23, 24 and using the decomposition tr(D−1) = tr(D−1(I −Π)) + tr(ΠD−1).

3.2 Multigrid Multilevel Monte Carlo

A different approach for variance reduction in the stochastic estimation of a variable f is
the Multilevel Monte Carlo (MLMC) method25. It reduces variance by splitting the random
variable f into contributions across multiple levels: the random variable is decomposed as
f =

∑L
`=1 g`, where each g` represents the contribution at level `. The expected value

E[f ] is approximated by summing these contributions across all levels, with the number
of samples N` at each level being chosen to balance the variance V(g`) and the cost C`.
This leads to an efficient overall estimator that reduces the computational cost compared
to standard Monte Carlo methods. MLMC methods based on polynomial sequences and
frequency splitting have been recently used on the problem of trace estimation for the
inverse Dirac operator26, 27.

In 202228, we suggested the multigrid multilevel Monte Carlo (MGMLMC) method,
a multilevel technique that makes use of the multigrid hierarchy for linear solvers as de-
scribed in Sec. 2. A multilevel decomposition for tr(D−1) is obtained as

tr(D−1) =

L∑

`=1

tr
(
D−1
` − P`+1D

−1
`+1R`+1

)
+ tr(D−1

L ),

where we made use of the fact that the prolongations and restrictions are unitary in the
QCD context, since they are obtained via aggregation.

Each term in the above sum is now estimated stochastically, using random vectors
of increasingly smaller size as ` increases. Taking into account that by the algebraic
multigrid construction the range of P`+1 contains or approximates many of the low
modes of D` we effectively produce an (almost) cancellation of those modes in the term
D−1
` − (P`+1D

−1
`+1R`+1) and thus reduce the variance of the stochastic estimator for this

term.
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3.3 Multigrid Multilevel Monte Carlo for a Lattice with a Displacement

In 2023 we built upon the MGMLMC method and incorporated a displacement matrix P̃
into the estimation of the trace29. These traces emerge, e.g., in lattice QCD when comput-
ing helicity parton distribution functions of the proton30. The problem involves addressing
the off-diagonal elements that emerge due to the displacement along one of the spacetime
dimensions of the lattice. This leads to the estimation of the trace of the displaced opera-
tor, expressed as tr(D−1P̃H), where P̃ represents a permutation matrix. When applying
two-level MGMLMC to this problem, we obtain

tr(D−1P̃H) = tr
((
D−1

1 − P1D
−1
2 PH1

)
P̃H
)

+ tr(D−1
2 PH1 P̃HP1).

The application of this two-level method is natural, as P̃ is unitary and therefore
D−1P̃ and D−1 share the same singular values. But the effectiveness of a three-level
method is not immediately evident. We have found29 that, not only Hutchinson on
tr((D−1

2 − P2D
−1
3 PH2 )PH1 P̃HP1) experiences a significant variance reduction compared

to tr(D−1
2 PH1 P̃HP1), but also PH1 P̃HP1 serves as a deflation factor in the two-level de-

composition above, i.e., Hutchinson on tr(D−1
2 PH1 P̃HP1) has a lower variance compared

to tr(D−1
2 ). Hence, a multilevel MGMLMC is well suited for this problem, at least from

the variance reduction point of view. The construction of a cost model to assess whether
this multilevel computation leads to a total cost reduction is not yet finished and part of
current work.

4 Sign Function in the Overlap Discretisation

The overlap Dirac operator31, 32 at nonzero chemical potential µ,Dov(µ), preserves a form
of chiral symmetry on the lattice, an important physical property, while other discretisa-
tions as, e.g., the Wilson-Dirac operator do not. The overlap Dirac operator takes the form

Dov(µ) = ρI + Γ5sign(Γ5D(mw, µ))︸ ︷︷ ︸
=:Q(mw,µ)

.

Here, Γ5 is a simple diagonal matrix which acts as the identity on spinor components
belonging to spins 1 and 2 and as the negative identity on those belonging to spins 3 and 4,
and ρ ∈ (0, 1) is a mass parameter, typically close to 1.

In the argument of the sign function, D(mw, µ) is the massless Dirac-Wilson operator
with a shift mw ∈ (−2, 0) chosen to improve its locality, and a chemical potential µ. It is
the presence of µ 6= 0 that makes Q(mw, µ) non-Hermitian; see Ref. 33. For notational
simplicity, we abbreviate Q(mw, µ) as Qµ and D(mw, µ) as Dµ from now on.

The sign function sign(Qµ) of Qµ is defined in the usual matrix function sense. Al-
though Qµ is sparse, sign(Qµ) is a full matrix and therefore cannot be computed directly.
Rather, in an iterative solver for the overlap operator, one has to compute the action of
the sign function on a new vector in each iterative step. One can express sign(Q) as
Q(Q2)−1/2, so that the computational burden in sign(Q)b resides in (Q2)−1/2b, and using
this has become standard in overlap computations. The action of the inverse square root
(of Q2

µ) has now to be computed in an further, inner iterative procedure, typically based
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on the Arnoldi process. To keep computational cost of overlap simulations at a bearable
level, it is therefore of primordial interest to compute these actions of the sign function as
efficiently as possible.

We recently introduced polynomial preconditioning34 as a novel technique to accelerate
sign function computations. The idea is to first cheaply build a polynomial q(Q2

µ) which
approximates (Q2

µ)−1/2 and then preconditioning the sign function application by using
sign(Qµ)b = Qµq(Q

2
µ)(q2(Q2

µ)Q2
µ)−1/2b. Polynomial preconditioning allows to avoid

cumbersome restart techniques within the Arnoldi process, it limits the work spent in full
orthogonalisations required within the Arnoldi process and, in a parallel environment, the
number of global reductions due to dot products is kept low.

5 Numerical Experiments

The results in this section were obtained on JUWELS at JSC. Different lattice QCD con-
figurations were used for the different numerical experiments, which is indicated in more
detail within each of the following subsections.

5.1 Effect of Coarsest-Level Improvements on Solver Performance

We upgraded the coarsest-level solver in DD-αAMG from a restarted GMRES to precondi-
tioned GCRO-DR with a polynomial preconditioner, improving with this the convergence
of the coarsest-level solver and reducing the impact of global communication on it17. Fig. 1
illustrates the effect of these improvements on the Wilson-Dirac operator on a 128 × 643

lattice, generated by the CLS collaboration36. We compare the total execution times of the
original and improved DD-αAMG solvers as m0 approaches its critical value. The solver
with coarsest-level preconditioning and deflation maintains a stable performance across the
entire range of m0 values. This indicates that the new techniques mitigate critical slowing
down, resulting in a nearly constant execution time even in highly ill-conditioned regimes,
a highly sought after feature in a multigrid solver.

Figure 1. Total execution time of the solve phase in DDαAMG as the system becomes more ill-conditioned as a
function of m0. Comparison between restarted GMRES on coarsest level (Old) and GCRO-DR with polynomial
preconditioning and deflation (New)17.
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Figure 2. Strong scaling for twisted mass fermions. Old: δ = 8.0, with restarted GMRES as the coarsest-level
solver. New: δ = 1.0, polynomial preconditioner and deflation with GCRO-DR on coarsest-level. 32 MPI
processes per node and 1 thread per process17.

Fig. 2 extends this to the twisted mass discretisation and shows how strong scaling can
improve in the twisted mass DD-αAMG solver when using the coarsest-level improve-
ments. The figure highlights that, while the old solver exhibits limited scalability due to
poor convergence at the coarsest level, our new solver achieves a speedup of up to 2.6 in
total execution time when increasing the node count up to 128. This improvement is partic-
ularly noteworthy because it enabled us to use the original twisted mass parameter µ at the
coarsest level instead of the value µc = δ ·µ that was artificially introduced in the old solver
to cope with the severe ill-conditioning in this discretisation. Restoring µ simplifies the
setup and leads to a more accurate representation of the twisted mass discretisation across
all levels. By employing a polynomial preconditioner and deflation through GCRO-DR,
we reduced the sensitivity of the coarsest-level solver to ill-conditioning, enabling better
strong scaling behaviour and overall efficiency in solving twisted mass systems.

5.2 DD-αAMG on GPUs

The original code of DD-αAMG10 has been extended20 to include GPU developments. The
SAP smoother has been fully ported via CUDA C to run on GPUs38. Time comparisons
are shown in Tab. 1, which come from solving linear systems in DD-αAMG with the E250
configuration from the CLS collaboration36. The local (per node) lattice is different for
CPU and GPU in Tab. 1, which reflects the typical use of strong scaling in CPU executions

lattice per node time (seconds)

GPU 16× 64× 962 0.048
CPU 8× 32× 962 0.098

Table 1. Average execution time of a single application of finest-level SAP. The CPU run was done on JUWELS
Cluster and the GPU one on JUWELS Booster. The speedup of CPU to GPU is 8.17.
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ndefl Hutch. (×103) MGMLMC (×103)
0 145.5 110.7

32 131.8 109.8
128 120.5 105.5

Table 2. Variance of ΠDD
−1
1 P̃H (middle column) and ΠMM1P̃H = ΠM (D−1

1 − P1D
−1
2 PH1 )P̃H (right-

most column), with ΠD deflating approximate left singular vectors of D−1
1 and ΠM approximate left singular

vectors of M1 = D−1
1 − P1D

−1
2 PH1 . The displacement on the lattice is of five sites along the z dimension.

Taken from Ref. 29.

versus the use of considerably lesser nodes when using GPUs, as the latter do not scale well
when local lattices become smaller. The GPU code is around 8x faster in this comparison,
with one application of SAP on four times the local volume running in roughly half the
time.

Building on the SAP CUDA code, DD-αAMG has been further extended16, 37. In par-
ticular, we have found that odd-even Richardson as a smoother leads to a multigrid solver
which is only 10% slower compared to using SAP, with the former smoother being signif-
icantly simpler in terms of implementation and with minimal memory requirements.

5.3 Comparison of Multigrid MLMC and Deflation Methods for the Trace

Our first application of MGMLMC in lattice QCD was done in the presence of a dis-
placement on the lattice29 (see Sec. 3.3). For that case, using a configuration of size
164, Tab. 2 shows a comparison in variance reduction of the Hutchinson estimator for
the first level-difference in MGMLMC and of deflated Hutchinson. In there, ndefl is the
number of (inexactly) deflated vectors for both methods, as deflation has also been ap-
plied on top of MGMLMC. The MGMLMC method achieves consistently lower variance
compared to the standard deflated Hutchinson approach for the same ndefl. Even without

(a) (b)

Figure 3. Variances for the operator differences M` = D−1
` − P`D−1

`+1P
H
` at the various levels ` and coarsest

level operator D−1
L , compared against the variance observed with inexact deflation.
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deflation, MGMLMC provides a notable variance reduction, and deflated Hutchinson with
ndefl = 128 does not reach the variance reduction that MGMLMC with ndefl = 0 does.

We also applied MGMLMC for the estimation of tr(D−1) on larger and more ill-
conditioned CLS36 configurations, namely J501 (128 × 643) and E250 (128 × 963). To
manage this, we work on the JUWELS Cluster, using up to 27 nodes, each with the 2× 24
available cores. Improvements at the coarsest level of MGMLMC play an important role,
as they accelerate the many solves required at every level, especially in the case of the E250
lattice. Fig. 3 shows results for the variance on those lattices using a 4-level multigrid hi-
erarchy. We see that the variance at the finest difference is smaller than that observed with
inexact deflation, providing a clear advantage as MGMLMC bypasses the need for com-
puting approximate singular vectors. For the J501 configuration (left panel), the variance
progressively decreases at coarser levels, significantly improving the overall efficiency of
the multilevel approach. Each solve on coarser grids is approximately eight times faster
than on the preceding finer level, resulting in a substantial reduction in computational costs
of samples as the levels progress. In the case of the more ill-conditioned E250 configu-
ration (right panel), the majority of the variance shifts to the coarsest levels, where the
computational cost is minimal.

5.4 Sign Function in the Overlap Discretisation

We present results for a 64 × 323 lattice on JUWELS coming from a physically relevant
ensemble that was provided by the lattice QCD group at the University of Regensburg.

The left part of Fig. 4 displays the relative error as a function of the iteration counts,
and Tab. 3 gives operations counts and timings, both for approximating (Q2

µ)−1/2b using
various polynomial preconditioning degrees up to a relative error of 4.0·10−5. The results
illustrate the significant reduction in iteration count achieved by using polynomial precon-
ditioning compared to the unpreconditioned Arnoldi method (first row). Increasing the
polynomial degree d results in a higher number of matrix-vector multiplications (mvms)
per iteration in exchange for a reduction of the number of inner products, leading to a sub-

Figure 4. Results for approximating (Q2
µ)−1/2b using Arnoldi-preconditioning polynomials of various degrees

d − 1. Left: Relative error as a function of the Arnoldi basis size. Right: close up for degrees 16 to 64. Solid
lines: Relative error ‖fm− f∗‖/‖f∗‖. Dashed lines: Error measure ‖fm− fm+k‖/‖fm+k‖ with k = 64/d.
Taken from Ref. 34.

337



d Iterations MVMS Inner Prods Time (64 nodes) [s] Time (256 nodes) [s]
1 1600 3200 1,279,200 127.8 105.8
8 296 8910 42,510 25.7 9.8

16 140 8742 9,991 12.3 7.8
32 72 9198 3,125 11.6 7.4
64 33 8636 2,578 10.6 5.5

Table 3. Timings and operation counts for approximating ((Qµ)2)−1/2b with Arnoldi-preconditioning polyno-
mials q of various degrees d− 1. Taken from Ref. 34.

stantial reduction of the overall execution time due to much less orthogonalisation times.
The table also shows that for d = 64, the preconditioned method achieves the fastest exe-
cution time, being approximately 12 times faster than the unpreconditioned method on 64
nodes, and 19 times faster on 256 nodes.

The right panel in Fig. 4 lowers the relative error down to 3.0·1010. The unprecondi-
tioned method takes 6,000 iterations, hence a comparison of the preconditioned methods
against the d = 0 case is skipped in right side of Fig. 4. The results emphasise the efficiency
of polynomial preconditioning in reducing the computational cost of orthogonalisation, the
dominant factor when a large number of iterations is required.
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In high performance computing, the training of large language models (LLMs) has become a
prevalent workload, accompanied by an increasing public interest since the release of services
such as ChatGPT. The OpenGPT-X project, a collaborative initiative between academic and in-
dustrial partners, represents one of the first German efforts to develop an open, freely available
and multilingual LLM solution. This paper presents technical details describing the efficient use
of Gauss Centre for Supercomputing infrastructure, in particular the supercomputer JUWELS
Booster, for the task of pre-training a neural network based on the transformer architecture.
We analyse the training’s scaling behaviour in terms of throughput, and examine the impact of
hyperparameters related to model parallelisation across different dimensions. Key training de-
cisions, including the selection of model activation function, optimiser, positional embedding,
and normalisation layers, are evaluated through ablation studies in the compute-equivalent set-
ting and recommendations provided.

1 Introduction

Large language models (LLMs) are transforming the way humans manage and process
information. This trend has been apparent at least since the US-based company OpenAI
published GPT-3, a closed-source language model, in May 20201. While this was still
a long way from the end-user friendly chat systems provided today, the surprising capa-
bilities in generating natural language struck scientists. However, the developments at
OpenAI and other competitors remained behind closed curtains. In response to both the
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successes and concerns about transparency, the OpenGPT-X project was initiated, funded
by the German Federal Ministry for Economic Affairs and Climate Action (BMWK). Since
early 2022, OpenGPT-X has accepted the challenge to compete with big industrial players.
The project aims to train and publish LLMs with a focus on European languages, providing
full transparency of the training process. Alongside expertise and curated datasets, large-
scale computational resources are a crucial ingredient for the success of the endeavour. As
a member of the consortium, the Jülich Supercomputing Centre (JSC) provides access to
its computational infrastructure, supports its efficient use, and implements optimisations
to enhance performance. The JUWELS (Jülich Wizard for European Leadership Science)
supercomputer, Jülich’s flagship system, was employed, particularly the Booster module as
it contains numerous powerful A100 Nvidia GPUs, that are well-suited for model training.

During the project, critical decisions were required to define the training process, in-
cluding model architecture, tokenisation, training paradigm and dataset composition, each
having a potential impact on training efficiency and model performance. Given the sub-
stantial computational resources required for training an LLM, it was essential to make
informed choices to avoid wasting resources. To support these decisions, we conducted
several studies to assess the impact of each choice. In line with our commitment to trans-
parency, the findings from these studies have been published in independent research pa-
pers. We have shown that the tokenisation procedure, the first step in the processing chain,
needs to be adjusted to the language composition of the considered dataset2. To gain this
insight, a series of smaller models was trained. Furthermore, we investigated the inter-
play between instruction tuning and multilinguality3. A major outcome of the OpenGPT-X
project is the Teuken model family. In a detailed analysis, we compare its performance to
other open sources models4.

The design space to define the training of large machine learning (ML) models con-
tains parameters that mainly affect the training performance, in terms of throughput and
GPU utilisation, as well as parameters, that have a large influence on the quality of the
final model. Due to the size of the computational endeavour, certain decisions need to be
made on a heuristic basis, relying on experience and community best practices. General
architectural decisions, e.g., for a GPT-style decoder-only model (see below), could be
readily made based on the planned application of the models. Relatively small changes in
model architecture or hyperparameters, such as the choice of positional embeddings, can
have a substantial influence on the overall model performance5. This paper highlights a
series of experiments and provides quantitative results as a sound basis to guide rational
decision-making when presented with these influential architecture choices. Parameters
relevant for the training performance are studied by throughput-related benchmarks. Pa-
rameters affecting the final model quality were analysed systematically by training smaller
models and evaluating their performance on select, well-established downstream tasks.
These experiments, dubbed ablations in our project, have guided our architectural and hy-
perparameter choices and are worth being put forward for future reference. In this paper,
we provide background information on LLMs (Sec. 2.1) and describe the computational
environment (Sec. 2.2). An analysis of influential factors on the training performance is
provided based on throughput measurements (Sec. 5), followed by an analysis of factors
relevant for model quality in the compute-equivalent setting (Sec. 3). Furthermore, we
summarise key findings regarding the trained models (Sec. 4). We conclude with a sum-
mary and outlook (Sec. 5).
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2 Background

2.1 Transformer-Based LLMs

Transformers6 are deep neural networks designed for sequence processing. By combining
best practices such as an architecture designed for large-scale parallel distributed train-
ing,various methods for stabilising training, and information-rich embeddings, they have
achieved popularity and managed to achieve state-of-the-art results in various domains
such as text, image, or audio processing7, 1, 8, 9. Their Self-Attention mechanism compares
each sequence element to each other sequence element to generate an importance weight.
This allows these networks to build information-rich graphs over long sequences, which
are used to transmit information between arbitrarily distant sequence elements. While the
Attention operation has a O(n2) runtime complexity in the sequence length n, it is key to
the Transformers’ ability to efficiently solve various classes of problems. By learning and
weighting multiple different representations in the latent Attention space (called multi-head
Attention), Transformers expand their sequence interaction space and allow for different
“perspectives” on a sequence to be combined. Recent research in the field of mechanistic
interpretability has shown that Transformers are able to learn highly efficient algorithms,
e.g., a dynamic programming algorithm for parsing context-free grammars10.

With the advent of ChatGPT, Transformers have received another increase in popular-
ity, this time for practical, user-facing language processing applications. The architecture
used by ChatGPT and most other modern user-facing language models is a decoder-only
Transformer. By not allowing the model to attend to subsequent sequence elements when
predicting a sequence element (during training, all elements of a given sequence are pre-
dicted at once), i.e., by using only “causal” attention, the architecture becomes especially
useful for efficient autoregressive generation tasks. This is because of the ability to cache
parts of resource-intensive Attention calculations for earlier sequence elements. In this
work, we concern ourselves with decoder-only Transformer models, but also use tech-
niques originally applied on encoder-decoder Transformer models (i.e., the original archi-
tecture).

2.2 Computational Infrastructure

The goal of training a neural network is to find weights that encode an input-output map-
ping in the training data. During the forward pass, these weights are applied to the input
data through a series of matrix multiplications. The weights are updated using a variant
of stochastic gradient descent (the optimiser), with gradients computed via backpropaga-
tion11. Matrix multiplications are inherently parallel operations, making them particularly
well-suited for massively parallel architectures such as GPUs. Consequently, GPUs are
generally preferred over CPUs for both neural network training and inference. Although
Nvidia currently holds a dominant position in the market, competitive GPUs from other
manufacturers are also available. Moreover, accelerators based on the dataflow paradigm
are emerging as alternatives, promising to be even better optimised for AI workloads12.

Training an LLM necessitates vast amounts of text data, which is processed by the
model during training, leading to substantial computational demands. These demands can
only be met by highly distributed computing systems, such as supercomputers or extensive
cloud resources. Efficient scaling to leverage these systems requires exploiting higher
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levels of parallelism. Given the growing importance of this workload, newly procured
exascale HPC systems are now being designed to optimally meet its requirements13.

The model training and relevant experiments were conducted on JUWELS Booster.
This cluster was installed in 2020, ranking 7th on the Top500 list at the time, making it
the fastest supercomputer in Europe. With 936 GPU nodes and a high bandwidth network,
it is ideally suited for training large-scale neural networks14. Each GPU node contains
4 NVIDIA A100 GPUs with 40GB memory and 4 NVIDIA Mellanox InfiniBand HDR200
adapters, with one adapter available per GPU. Within the DragonFly+ topology of the high-
speed interconnect, 48 nodes make up a cell.

3 Training Ablation Experiments

In this section, we present an extended version of the training ablation results published
in Ali et al. (2024)4. We performed medium-scale (Chinchilla-optimal15 training of a
2.6B parameter model) ablation runs for various variables during training, such as the
model’s position embedding, the optimiser, or the learning rate. Our goal with these abla-
tions was not to optimise the model in a vacuum. Instead, our goal was finding improve-
ments in the compute-equivalent setting while confirming whether proposed modifications
transfer to our codebase, which is not necessarily the case16. A summary of the results can
be found in Tab. 1 .

Change ARC Easy HellaSwag LAMBADA Interpre-
tation

- 0.535 0.355 0.503 0
SwiGLU 0.527 0.361 0.507 +
Untied in/out embedding 0.524 0.355 0.498 -
No Linear biases (33k st.) - - - +
No GPT-like weight init (39k st.) - - - -
Head scaling 0.527 0.356 0.493 -
No dropout (21k st.) 0.492 0.334 0.414 +?
RMSNorm 0.530 0.358 0.502 0
NoPE 0.516 0.351 0.486 -
ALiBi 0.527 0.349 0.486 -
GQA (2 groups) 0.513 0.346 0.459 ?
Adan (4× base LR) 0.544 0.374 0.522 +?
2× learning rate 0.540 0.369 0.514 +
4× learning rate (48k st.) 0.545 0.371 0.517 +

Table 1. Selected evaluation results. Bold is best, underlined is better than baseline. Italic means the run was
evaluated before finishing. Ablations without values were not evaluated (see the listed ablations below). The
rightmost column contains a subjective interpretation/recommendation, where “+”, “-”, “0” indicate a positive,
negative, and neutral interpretation, respectively. “?” indicates it is difficult to make a conclusive statement.

Our baseline for the ablation experiments was the best-performing 2.6B parameter
model from Ali et al. (2023)2. To make experiments comparable, the training ablations
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used the same training setup. For evaluation, we focused on 3 tasks: (1) ARC Easy17,
(2) HellaSwag, and (3) LAMBADA. The models often achieved better-than-random per-
formance in these evaluation tasks, and because the tasks additionally test different abilities
of the model, they were deemed a good-enough proxy measure of general downstream im-
provements. Many of the ablations required implementation contributions. For example,
we implemented tensor-model-parallel SwiGLU layers, per-head scaling, or fused RM-
SNorm into the codebase, to name a few. Some of these have since become de-facto stan-
dard parts of many Transformer libraries, including upstream Megatron-LM. Factors that
influenced the results of the ablations include that (1) job allocations on JUWELS Booster
vary in determined layout, and (2) the parallel file system means I/O throughput varies.
Average throughput may vary around up to a percent depending on system load and/or job
layout. Since throughput was crucial to asserting compute-equivalence, it is important that
this variance is minimal.

Due to hardware failures and resource constraints, we were unable to finish all runs and
do fair evaluation comparisons. Since we believe our findings to be meaningful nonethe-
less, unfinished ablations are also included in our results.

To compare compute-equivalently, we used throughput-normalised times with regard
to the average iterations per second of the baseline model’s training to compare loss at
given times. Specifically, we assume that every training iteration takes the average amount
of time and thus apply the same proportional normalisation to every step. For the abla-
tions conducted, this assumption is fine because there is no theoretical throughput variance
between steps. We normalise across time using the following formula:

ti(s) = s
1

T̄i
, s′i = time-normalizei(s) = s

ti(s)

tbaseline(s)
,

where t is a time (e.g., in seconds), i is one of the ablation experiments (including the
baseline), s is the iteration (step) to normalise time until, T̄ are averaged throughput
values (e.g., iterations per second), and s′i is a time-normalised step for experiment i. This
normalisation allows us to compare the training and validation loss at each point in time
and express that a method with lower loss at the same point in time as the baseline is more
compute-efficient up to that point in time with regard to that loss.

The following lists all ablated changes and additional information where appropriate:

1. SwiGLU: replace the first layer of the MLP part of the Transformer with a T5-style
(i.e., without biases)18, 19 Swish-activated20 gated linear unit layer21, 22.

2. Untied in/out embedding: learn separate weights for the input embedding and output
“unembedding” layers19.

3. No Linear biases: remove all bias terms in Linear layers19. The ablation ran until
33 000 steps and was not evaluated due to being deemed too far from completion.

4. No GPT-like weight init: whether to scale weight initialisation in layers that a resid-
ual path leads into as a function of depth23. The ablation ran until 39 000 steps and
was not evaluated due to being deemed too far from completion.

5. Head scaling: multiply each Attention head’s output by a learned scalar factor24.

6. No dropout: disable dropout25 in all layers19. This ablation only ran until
24 000 steps, the latest checkpoint used for evaluation being at 21 000 steps. While

345



it showed a strongly monotonic improvement over the baseline, it is especially hard
to interpret improvement in training loss in the dropout vs. no dropout setting. We
evaluated this change even though it was far from finishing training because its im-
provements were so drastic.

7. RMSNorm: replace LayerNorm normalisation layers26 with root mean square layer
normalisation layers27.

8. NoPE: no position embedding5; completely remove position embeddings.

9. ALiBi: replace the Rotary position embedding28 with the Attention with linear bi-
ases position embedding29. Note that we were not able to use our ALiBi kernelwe
developed for this ablation due to the baseline model using Attention dropout, which
we had not implemented support for in the ALiBi kernel. Since we would rather use
the kernel than Attention dropout during an actual training (especially considering the
“No dropout” ablation results), throughput-normalisation was not considered for this
ablation out of fairness.

10. GQA (2 groups): replace multi-head Attention with grouped-query Attention30 with
2 groups (i.e., 2 key/value heads).

11. Adan (4× base LR): replace the AdamW optimiser with the Adan optimiser31, using
the baseline’s learning rate multiplied by 4. The increased learning rate was chosen
based on previous small-scale experiments.

12. 2×/4× base LR: use the baseline’s learning rate multiplied by 2 or 4. The abla-
tion with a factor 4 increase did not run until completion but was discontinued af-
ter 51 000 steps. The checkpoint used for evaluation was saved at 48,000 steps,
5 100 steps before the end of training, and was deemed “close enough” to comple-
tion to provide a fair evaluation comparison, especially due to its noticeable training
loss improvements.

We decided to implement most of the “free lunch” improvements and some neutral
results based around current research results at that point in time while disregarding some
findings that were deemed too experimental and/or risky. Notably, we decided to use nei-
ther Adan nor 4× the learning rate despite these changes yielding the best results. Adan
was not chosen due to its learning rate requiring further ablations and it carrying risks for a
large-scale training. This is because there is not a lot of empirical evidence for Adan’s per-
formance at a large scale. Similarly, the higher learning rate was not used, and instead the
value for the 7B training was taken from Llama-232. Due to the difficulty in finding an opti-
mal learning rate for both an increased parameter amount and training horizon, it is hard to
judge whether using a scale-adjusted larger learning rate would have been more optimal33.
Due to our inexperience at training at this scale, we were also worried about possible con-
vergence problems if done incorrectly. Grouped-query attention underperformed in terms
of the compute-equivalent setting, but we decided to use it for the large-scale training be-
cause of its significant benefits for model inference. That is, by including this change, we
optimised for the post-training setting.

In summary, the chosen changes are: SwiGLU, no biases, no dropout during pre-
training, RMSNorm, GQA (with 2 groups).
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4 The Teuken Model

The previous ablations defined the path towards Teuken-7B-Base4, a 7B parameter LLM
that was trained on 4T tokens, covering all official 24 European languages. We additionally
trained a multilingual instruction-tuned version Teuken-7B-Instruct4 that allows users to
easily interact with our model.

Our models are addressing the limitations of English-centric models by incorporating
more than 60% non-English documents. The training data comprises curated and web-
crawled datasets, with a strong emphasis on non-English European languages34. Teuken-
7B-Base was built with a custom tokeniser similar to Ali et al. (2023)2 to reduce the frag-
mentation of text and improve efficiency across all 24 languages. In order to evaluate
the multilingual capabilities of Teuken-7B-Base and Teuken-7B-Instruct we translate four
well-known datasets, ARC35, HellaSwag36, MMLU37, TruthfulQA38 from English into
20 additional European languages and created a new European benchmark dataset39.

Our LLMs demonstrate competitive performance on our European multilingual bench-
marks, offering a significant step toward creating European-centric LLMs. Evaluations can
be found in the European LLM Leaderboarda. Our research highlights the limitations of
existing open-source models, such as their focus on high-resource languages and lack of
transparency in model and data development. The Teuken-7B models aim to democratise
this technology by providing insights into the machinery, e.g., the data preprocessing, the
model design, the challenging training process, as well as the evaluations and instruction
tuning. By covering the complete pipeline, we support further model developments and
fine-tunings across European languages.

5 Conclusion

We demonstrated various techniques used for optimising a large-scale LLM training, with
our focus being on best use of the available resources. While various papers publish their
selected hyperparameters and model architecture, the process by which they are selected
is often omitted. Similarly, vast amounts of papers publish only benchmark results of their
technique, but do not properly observe the compute that the technique costs. We hope that
publishing our results of medium-scale, compute-equivalent ablations enables more trust
in these hyperparameters and a renewed perspective on how to conduct machine learning
research for practical applicability. With regard to our codebase (an extremely popular one
for large-scale training) and setup, both our positive and negative results confirm whether
individual changes bring practical benefits – or do not.
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Appendix

A Performance Analysis

For training our models, we created a fork of Megatron-LMc, a highly distributed (using
4-dimensional data, tensor model41, pipeline model42, and context43 parallelism, as well as
optimiser sharding44) and optimised PyTorch45 codebase for large-scale training of various
Transformer models.
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Figure 1. Scaling behaviour of an (a) 80M and (b) 13B parameter language model; 4 GPUs per node.
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Figure 2. Scaling efficiency of an (a) 80M and (b) 13B parameter language model; 4 GPUs per node.

To ensure the selected codebase was a good fit for large-scale training of both small
and large language models, we measured the scaling behaviour of our codebase on two

cOur fork can be found at https://github.com/OpenGPTX/Megatron-LM, the original codebase at
https://github.com/NVIDIA/Megatron-LM.
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model sizes, containing 80M and 13B parameters, respectively, on up to 1024 GPUs. We
were interested in efficiency of small models to enable a quick feedback loop during ex-
perimental phases. The results are visualised in Figs. 1 and 2. These scaling runs were
performed on the BigScience fork of the Megatron-DeepSpeed codebase (see Sec. 5), our
initially chosen codebase.

Even minor throughput improvements greatly accumulate across a long-time large-
scale training. In order to maximise the training throughput of our model, we conducted
several benchmarks on optimal parameters for the model’s parallelisation. The results
are displayed in Tab. 2. The model configuration used selective activation checkpointing
and sequence parallelism in normalisation layers46. The chosen parallelisation setting was
tensor parallelism of degree 2, pipeline parallelism of degree 1, batch size of 1, and not
constraining our jobs to a single InfiniBand cell (since this would result in longer queue
times but did not make a significant difference in throughput).

GPUs TP PP batch size constrained avg secs/iter avg samples/sec
64 2 1 1 y 19.9562 51.3131
64 2 2 2 n 20.5169 49.9102
64 2 2 2 y 20.4896 49.9767

128 2 1 1 n 10.1913 100.4780
128 2 1 1 y 12.2897 95.3088
128 2 1 2 - - -
128 2 2 2 n 10.6927 95.7662
128 2 2 2 y 10.6420 96.2223
128 2 2 4 - - -
128 2 4 2 n 20.9229 69.3918
128 2 4 2 y 12.1837 86.9394
128 2 4 4 - - -
128 2 8 4 - - -

Table 2. Results of the parallelism layout benchmarks. One run per row/benchmark run, TP is degree of tensor
model parallelism, PP is degree of pipeline model parallelism. Warmup of 3 steps and took the average of the
rest of the values, with each run being given 15 minutes of wall-clock run time (including job initialisation).
Constrained means the run executed on a single InfiniBand cell; otherwise, it was arbitrarily spread apart across
at least 2 InfiniBand cells. Bold values mark the best-performing setting for that number of GPUs. The first row
with bold values only contained 4 samples after warmup (a node failure killed the job early). For the second
row with bold values, the values seemed similar to those in the row above it, but the average was skewed due to
outliers. Due to the uncertainty in the first bold row’s values, both bold results are hard to interpret. Rows without
numbers resulted in out-of-memory errors.
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In this report, we provide an overview of how high-performance computing resources were
utilised to advance image and video segmentation through the development of three innovative
architectures: TarViS, DynaMITe, and PointVOS. TarViS reformulates several video segmen-
tation tasks, unifying four distinct tasks into a single, more generic architecture, trained jointly
across all tasks. With DynaMITe, we address interactive image segmentation for fast anno-
tation, demonstrating advantages in handling multiple objects simultaneously, unlike previous
methods that focused on segmenting one object at a time. Finally, Point-VOS offers an efficient
solution through sparse, point-based supervision, significantly reducing the need for large, fully
labelled datasets in video object segmentation. We show how extensive experiments performed
on HPC systems, particularly the GPU-accelerated JUWELS Booster, allowed us to improve
training speeds and gain notable new insights in the area of video and image segmentation.

1 Introduction

Understanding visual scenes from images and videos is a fundamental challenge in the
field of computer vision, with use-cases such as autonomous vehicles and robots interacting
with their environments. An important sub-task of this understanding is the segmentation
of inputs at a pixel level, assigning them to a specific class or object instance.

Traditional methods4, 5 for these tasks paved the way for modern advancements, but
they were often limited in accuracy, flexibility, and scalability. The deep learning revolu-
tion transformed the segmentation landscape, significantly boosting performance6–10.

However, these advances have come with new challenges. A key issue is the require-
ment for large amounts of (labelled) data for training high-performing models. Unlike
tasks such as classification or detection, segmentation requires pixel-level annotations that
are more time-consuming and expensive to obtain. This demand for high-quality, large-
scale datasets presents a bottleneck in advancing the field, which is especially the case for
video data, where dense, frame-by-frame annotations are even more costly to obtain.

Additionally, the domain of segmentation is highly fragmented, with various sub-tasks
having their own distinct objectives, benchmarks, and metrics. Several segmentation tasks
have emerged, including semantic segmentation, which classifies every pixel into cate-
gories; instance segmentation, which differentiates between individual objects; and panop-
tic segmentation, which seeks to unify the two by segmenting all objects and background
classes in a scene. Recently, a stronger focus has also been placed on class-agnostic seg-
mentation, with models such as SAM11, that segment images into separable entities, with-

Figures and some text passages have been re-used from previous papers1–3 and reports.
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out assigning objects to a predefined set of classes. These segmentation tasks are also
performed on videos, however here the fragmentation is even larger, with additional tasks
such as Video Object Segmentation12 (VOS), where the user provides an initial mask for an
arbitrary object that should be segmented across the video. While significant progress has
been made for all of these tasks, current methods are often tailored narrowly to the require-
ments of a single problem. As a result, they lack the flexibility to generalise across tasks,
resulting in redundant developments. This also means that datasets require task-specific
annotations, resulting in many smaller datasets for each of the tasks, that can often not be
re-used or merged into a larger training dataset.

The motivation behind three of our recent contributions is to tackle different challenges
in the segmentation community. Firstly, we introduce an approach that unifies several video
segmentation datasets into a single model13. This allows us to jointly train on multiple
tasks-specific datasets, revealing interesting synergies. Secondly, we discuss our model for
interactive segmentation of images2. This method aids a user in the dense annotation of im-
ages with a small set of clicks on objects, greatly increasing the annotation speed. Finally,
we investigate whether video object segmentation requires dense annotations in space and
time and show that also with sparse annotations, VOS approaches can be trained3.

The deep learning models used for segmentation, especially those operating on large-
scale video datasets, require significant computational resources for training. In today’s
fast-evolving field of computer vision, where entirely new research directions can emerge
within months, being able to conduct experiments quickly is crucial. By leveraging the
GPU resources of the JUWELS supercomputer at the Jülich Supercomputing Centre (JSC),
we significantly accelerated our research, allowing us to publish three papers at top-tier
computer vision conferences (two at CVPR and one at ICCV). The compute resources were
essential for performing experiments at the required depth and breadth within a reasonable
time-frame. Performing multi-GPU and multi-node training significantly improved exper-
imental speed, but running multiple parallel experiments also proved invaluable.

The remainder of this report provides a more in-depth look at our three papers (see Sec-
tions 2, 3, and 4), each addressing a specific problem in the image and video segmentation
domain. Furthermore, in Section 5, we briefly discuss how we utilised the GPU compute
resources at the JSC.

2 TarViS: A Unified Approach for Target-Based Video Segmentation

Our first focus is on the fragmented nature of video segmentation tasks. Several pub-
lic benchmarks and tasks involve object tracking and segmentation in videos; this in-
cludes Multi-object Tracking and Segmentation (MOTS)14, Video Instance Segmentation
(VIS)15, 16, Video Object Segmentation17, etc. These benchmarks were created by different
research groups, at different points in time for different motivations, and over time each
of them have spawned their own research sub-communities. As a result, most existing
approaches are task-specific, even though the tasks themselves are highly overlapping and
share common characteristics, e. g. , all of these tasks involve learning temporally con-
sistent features for the video frames. With TarViS1 (Target-based Video Segmentation)
we introduce a novel, unified architecture to perform multiple of these tasks with a single
trained model. To develop a unified architecture for these tasks, we first unified the task
definitions on a conceptual level. To explain this, we will briefly describe the key video
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Figure 1. Conceptual overview of TarViS. Instead of heaving several task-specific models for segmentation
tasks, we unify tasks into a single model where we specify task-specific targets to be tracked and segmented.

segmentation tasks:

• Video Instance Segmentation (VIS): This task requires all objects belonging to a set
of predefined object classes to be segmented and tracked.

• Video Panoptic Segmentation (VPS): This can be seen as a super-set of the VIS task
above. In addition to segmenting and tracking objects, we also have to assign a class
label for points belonging non-instantiable stuff classes e. g. wall, vegetation, road,
etc.

• Video Object Segmentation (VOS): Here the ground-truth masks for a certain set of
objects in the first frame in which they appear is provided. The task is to then segment
and track these objects in the remaining video.

• Point Exemplar-guided Tracking (PET): This can be seen as a more difficult variant
of VOS where, instead of being given the full first-frame mask, we are only given the
(x, y) coordinates of a single point on the object in the first frame in which it occurs.

Based on these definitions, it is clear that all of these tasks involve segmenting and
tracking a set of targets in a video, with the difference being how these targets are defined.
They are either objects belonging to a set of predefined categories (as in VIS and VPS) or
a specific set of objects for which we are given some form of explicit guidance (VOS and
PET). Based on this understanding, we designed TarViS as a generalised method capable
of segmenting and tracking any set of targets. We achieve this by separating the task
definition from the network architecture, as shown in Fig. 1.

Specifically, we model the task-specific segmentation targets as a set of concise queries
which are fed into the network together with the video sequence. The network comprises
a (1) backbone network which learns multi-scale feature maps for the video, and (2) a
transformer-based decoder that accepts these feature maps as well as the target queries as
input, and outputs a set of refined queries. The transformer decoder employs several layers
of multi-head attention18 to refine the feature representation of the queries. Specifically, the
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Figure 2. Detailed network architecture for TarViS. Segmentation targets are encoded as queries Q, and to-
gether with features F extracted from the backbone fed into a transformer decoder. Segmentation masks are then
extracted based on dot products between the refined queries and the video features.
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1. VIS 3 3 46.3 31.5 - - - - -
2. VPS 3 3 3 - - 0.70 49.7 32.4 - -
3. VOS + PET 3 3 - - - - - 81.1 34.7

Final 3 3 3 3 3 3 3 48.3 31.1 0.70 53.3 33.5 82.0 30.9

Table 1. TarViS trained on different dataset and task combinations using a ResNet-5019 backbone. It can clearly
be seen that in most cases the unified model outperforms the model trained for the specific task or performs
competitively. C-VPS: CityscapesVPS, YTVIS: YouTube-VIS, KITTI: KITTI-STEP.

queries attend to each other (self-attention) and to the video feature maps (cross-attention).
To obtain the final segmentation masks, we simply compute the dot-product between the
refined queries output by the decoder, and the video features, followed by thresholding
at 50% confidence. A detailed illustration of the architecture is given in Fig. 2. This
approach enables us to train our model on a collection of datasets spanning multiple tasks.
During inference, we can tackle any of these tasks by simply hot-swapping the query inputs
without requiring any task-specific re-training.

To evaluate the efficacy of our approach, we applied it to seven different benchmarks
spanning all four tasks listed above, each evaluated with their respective metrics. Tab. 1
shows that we can train this architecture on the separate tasks, but we can also jointly
train TarViS on all seven considered datasets15–17, 20–23, showing that in many cases we
can outperform the baseline or obtain similar performances. Compared to other existing
methods, TarVis achieved state-of-the-art results for five out of seven benchmarks and
performed competitively on the remaining two.

TarViS showcases how a unified model can effectively address diverse video segmen-
tation tasks with minimal adaptation, underscoring the potential for flexible, task-agnostic
approaches. This opens the door to further investigating shared principles across seemingly
distinct challenges in video analysis. Further details can be found in the TarViS paper1.
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3 DynaMITe

While with TarViS we can merge several video segmentation tasks into a single model,
we require annotated training datasets. These datasets can be annotated manually or with
the help of interactive segmentation tools, where a user interactively clicks on an object
in an image or segmentation mistake, guiding the model to segment a certain object. This
allows a prediction of a model to be iteratively refined by additional user clicks, correcting
mistakes of the model. Previous interactive segmentation methods24–28 only predict binary
segmentation masks, though, and can thus only be used to annotate one object at a time.
As such, for every foreground object, the remaining objects are considered as background,
forcing the user to perform many redundant clicks in order to annotate scenes containing
multiple objects. Additionally, existing models process user inputs in such a way that
requires the complete model to be executed for each click, thereby limiting their network
sizes to achieve a good runtime performance, which is critical in interactive settings.

We developed an interactive image segmentation network called DynaMITe2 (Dynamic
Query Bootstrapping for Multi-object Interactive Segmentation Transformer) which ad-
dresses these two shortcomings. DynaMITe models multiple objects at the same time,
while only extracting features from the image with a strong backbone once. To this end
we formulate the user clicks as a spatio-temporal sequence of data and translate them into
queries that are processed by our Interactive Transformer module. Inside the Interactive
Transformer module, these queries can interact between each other which enables a com-
mon background modelling, thereby reducing redundancy in background clicks.

Fig. 3 shows the overall architecture of DynaMITe which takes an input image and the
corresponding set of user clicks as inputs. The user clicks can either be a positive click
representing a foreground object or a negative click representing the common background.
Based on the current prediction, a user can then add the next click. Unlike previous works,
DynaMITe can handle multiple instances at once and hence the positive clicks can belong
to different foreground objects, which are grouped based on the object ID assigned during
the click. The backbone processes the image and extracts low-level features, which are

Figure 3. DynaMITe architecture overview. DynaMITe consists of a backbone, a feature decoder, and an
interactive Transformer. Point features at click locations at time t are translated into queries which are processed
by a Transformer encoder-decoder structure to generate a set of output masksMt for all the relevant objects.
Based onMt, the user provides a new input click which is in turn used by the interactive Transformer to generate
a new set of updated masksMt+1. This process is iterated until the masks reach the desired quality.
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COCO SBD DAVIS17

Method Backbone NCI↓ NFO↓ NFI↓ IoU↑ NCI↓ NFO↓NFI↓ IoU↑ NCI↓ NFO↓NFI↓ IoU↑
FocalClick27 Segformer-B033 7.31 19422 3004 73.7 4.26 1115 599 87.3 4.6 802 562 84.6
DynaMITe Segformer-B033 6.04 12986 2431 84.9 2.76 528 313 90.6 3.27 549 356 87.9
DynaMITe Swin-T34 6.00 12710 2401 85.1 2.69 510 303 90.7 3.16 514 338 88.0

Table 2. Results on our Multi-Instance Segmentation Task. Segmentation quality is iterated until the mask Inter-
section over Union (IoU) reaches 85%. NCI: normalised clicks per image, NFO: number of failed objects, NFI:
number of failed images.

then fed to the Interactive Transformer along with the associated user interactions. The In-
teractive Transformer has an encoder-decoder structure, where the encoder closely follows
the transformer decoder architecture from Mask2Former9. The main task is to update the
queries that represent the different user clicks based on the image features. The decoder
does the opposite, using the updated click queries in order to update the image features via
cross-attention, before finally a prediction is extracted based on a dot product between the
queries and the image features, very similar as also done in TarViS.

We evaluate DynaMITe on a range of datasets across two interactive segmentation task
settings: (i) the well established single-instance setting using small-scale datasets mostly
containing one object instance per image such as GrabCut4, Berkeley29, COCO MVal (a
small subset of COCO30), and DAVIS31 and (ii) our novel multi-instance segmentation task
(MIST) on larger multi-instance datasets like COCO30, DAVIS1717, and SBD32. For the
single instance setting, DynaMITe performs competitively compared with previous state-
of-the art methods, outperforming them on many datasets when using the same backbone
network (see Table 1 of the main paper2). More relevant to us is our novel Multi-instance
Interactive Segmentation Task. While for the automatic evaluation in the single-instance
case it is fairly easy to simulate where a user might click next given a prediction, such a
clicking strategy is more ambiguous when it comes to multiple objects. For example, a user
might complete one object before moving to the next, focus on the largest errors across
all objects, or use some other strategy. For automatic evaluation: (i) we place an initial
positive click in the centre of each object and generate an initial prediction, (ii) choose
a random object from this prediction set that has not achieved the required segmentation
quality, and (iii) place a click on the largest error region for the chosen object. The sampling
process is repeated until either the entire image is segmented, or until we exhaust an image-
level click budget (10 times to number of objects in the image). We use a new metric
called Normalised Clicks per Image (NCI), which is obtained by normalising the total
number of clicks used for an input image by the number of foreground objects in that
image. Additionally, we also mark the average number of failed objects (NFO), number
of failed images (NFI) which could not obtain a desired segmentation quality within the
click budget, and the average IoU of the final segmentation. As a baseline, we adapt the
state-of-the-art single-instance FocalClick27 to our MIST setting by processing each object
in parallel and choosing the object with the largest error to be refined by the next click.

Tab. 3 compares the performance of DynaMITe against the adapted FocalClick. Our
method outperforms the baseline on all metrics for this task and achieves a significantly
better final segmentation quality as shown by the IoU values, highlighting the benefit of
jointly predicting multiple instances for interactive segmentation.
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4 Point-VOS: Pointing Up Video Object Segmentation

Finally, we investigate whether video object segmentation can be made more efficient by
reducing the annotation burden. Rather than requiring dense annotations for every frame,
we explore the potential of sparse annotation schemes where only key points across se-
lected frames are annotated, turning it into a form of weak supervision. Such an approach
can drastically cut down on the time and cost of annotation while still allowing models to
achieve results comparable to those trained on fully annotated datasets.

The conventional (VOS) task utilises dense segmentation masks for each frame during
training and initialises the first-frame reference with dense masks during inference. In
contrast, we propose to change this paradigm with our new Point-VOS task, where we
use only spatially sparse point annotations on a sparse subset of frames during training,
and only a few points for the first-frame reference initialisation, as seen in Fig. 4. With
this we address the annotation cost problem in the conventional VOS task by proposing an
entirely point-based framework. Point-VOS moves away from using full mask supervision
and instead relies on spatio-temporal sparse point annotations as weak supervision signals.

To study the effect of training and initialising with spatio-temporal sparse points, we
performed a series of experiments with STCN10, a state-of-the-art VOS approach, modified
such that it can be trained on sparse points. First, we analysed the number of points required
for training supervision and test-time initialisation (see Fig. 5 left). It can clearly be seen
that there is a diminishing return with additional training points. A similar effect can be
seen with the number of points used to mark the reference object. We also analysed the
number of frames required for training on sampled points per frame per object (see Fig. 5
right). Overall, we find 10 points per object on 10 frames to be a good trade-off between
additional performance gain and additional annotation costs for our Point-VOS task.

Based on these findings, an in order to facilitate our proposed Point-VOS task, we
annotate two large-scale video datasets, Point-VOS Oops35 (PV-Oops) and Point-VOS Ki-
netics36 (PV-Kinetics), with altogether 19M points for 133K objects in 32K videos. These
datasets contain significantly more videos and objects than the previously largest existing

Training
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Point-VOS

VOS

BEFORE

NOW

(a):

(b):

Training

First Frame  

Reference

Figure 4. Comparison of the conventional VOS task (a) with our new Point-VOS task (b). Green and blue
dots represent foreground points and red dots background points. In both cases we train a network to predict
dense masks based on an initial reference segmentation.
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Figure 5. (Left) Training vs. test-time point supervision results. (Right) Results for varying temporal sparsity,
when trained on 10 randomly sampled points per frame per object. � andF represent our chosen setting, i. e. 10
points for training supervision across 10 frames per video and 10 points for test-time reference frames. We train
an STCN10 model five times for each configuration and report the mean score on the DAVIS17 validation set.
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Figure 6. Semi-automatic annotation pipeline. We extract pseudo masks from initial mouse trace annotations,
these masks are propagated across the video, and finally, after sampling points from the masks, an annotator
manually verifies their correctness. Green circles represent foreground points and red circles background points.

VOS datasets VISOR37 (7.8K videos) and BURST23 (2.9K videos and 16K objects). The
PV-Oops and PV-Kinetics datasets are multi-modal, i. e. , they include language annota-
tions, which opens up additional interesting use-cases.

To create these two datasets, we developed a semi-automatic annotation scheme, as
shown in Fig. 6. In our annotation pipeline, we first extract a mouse trace segment for
each noun in the VidLN38 captions and convert it into a pseudo mask using a slightly
modified version of DynaMITe. We then propagate the pseudo-mask across the video
using STCN10. We use the output probability maps to sample sparse point annotations and
let annotators verify them manually. We measured the speed of annotating sparse spatial-
temporal points to show the efficiency of our Point-VOS task. Annotation on average takes
0.95 seconds per point which is 40 times faster than the dense mask annotation scheme.
While the resulting annotations are sparse, the Point-VOS concept enables the annotation
of significantly larger datasets, boosting the variety of objects in training sets.

Based on these datasets we define a new Point-VOS benchmark. We propose two vari-
ants, training and testing purely on points, or based on pseudo masks obtained by using
the points to prompt an interactive image segmentation method like DynaMITe. The two
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versions of our benchmark are evaluated on Point-VOS versions of DAVIS17, YouTube-
VOS39, and our Point-VOS Oops dataset. Detailed results of initial baselines on this bench-
mark, as well as further interesting experiments can be found in our Point-VOS paper3.

5 Hardware and Software Configuration

For all three projects, we follow a similar approach for code parallelisation across mul-
tiple GPUs and across different nodes. Specifically, we use the PyTorch library40 which
provides a DistributedDataParallel (DDP) API for seamlessly parallelising network
training across multiple nodes. Fig. 7 shows the speedup we can gain using this strategy
for our TarViS code base, where the other two projects result in similar curves. Further
details can be found in the respective GitHub repositoriesa.
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Figure 7. Parallelisation speedup for TarViS when trained on multiple GPUs and nodes.

While the speedup is sublinear, experiments run significantly fasterb. Additionally, a
multi-GPU setup allows us to use significantly larger batch sizes during training, which
is often crucial for good performance of deep learning models. Orthogonal to the paral-
lelisation of our code, the cluster allows us to run several jobs in parallel, which results
in an additional linear speedup. Using these two approaches we were able to significantly
increase the speed of our experiments, resulting in deeper insights.

6 Concluding Remarks

Using the compute resources provided at the Jülich Supercomputing Centre, we explored
three important aspects of segmentation. With TarViS we unified several video segmenta-
tion tasks into a single network architecture by unifying the task descriptions. This allowed
us to utilise many datasets at once, showing synergies between the tasks and resulting in
an overall very strong performance across the different considered tasks. Based on our
DynaMITe approach, we showed that an interactive multi-instance segmentation approach
can reduce the number of click interactions a user needs to perform in order to annotate

aTarViS: https://github.com/Ali2500/TarViS
DynaMITe: https://github.com/amitrana001/DynaMITe
Point-VOS: https://github.com/idilesenzulfikar/PointVOS
bIn more recent projects we also utilised DeepSpeed41, resulting in even larger speedups.
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images with multiple objects. At the same time the resulting annotations reach a higher
accuracy, which is crucial when such an interactive approach is used to annotate training
data. Finally, we introduced the new Point-VOS task, a sparse version of the video object
segmentation task and showed that with spatially and temporally sparse point annotations,
we are able to train video object segmentation networks that produce dense masks, further
reducing the annotation burden.

The GPU compute resources were critical in the development of these novel ap-
proaches. In the future we plan to investigate further aspects of video segmentation. We
will extend our interactive segmentation to videos, both for 2D videos, but also for tem-
poral sequences of 3D point clouds. We will also investigate the use of large foundation
modals such as DINOv242 or SAM11, merging them with strong large language models to
enable video segmentation. All of these endeavours require significant amounts of GPU
compute and here supercomputing Centres will hopefully remain a strong cornerstone,
enabling important AI research within academia.
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The three contributions to this year’s NIC Symposium deal with combustion simulations
including hydrogen combustion and machine-learning applications. The ongoing change
from a carbon-based to a hydrogen-based economy in terms of energy supply mandates in-
tensive research into hydrogen combustion mechanism. They pose huge challenges for the
modelling and simulation engineers mainly because reaction time scales are much shorter
compared to carbon-based combustion. Flame-holding or flame extinction are just two
challenging features. Increasing computer power including massive GPU-usage poses a
challenge in the effective use of the available resources but opens up the potential for high-
fidelity simulations and research to supply high-resolution data for lower-order modelling
efforts in the context of engineering design methodologies. As combustion and turbulence
pose a specific challenge for simulations, it is to no surprise that this year’s contributions
circle around theses hot topics and ideas using machine-learning techniques to reduce the
effort for future designs and development for everyday engineers.

The first paper lays out the computational challenges for the use of the new massive-
GPU based exascale JUPITER system at the JSC. The RWTH Aachen research group
at ITV simulated lean premixed turbulent hydrogen/air flames with the PeleLMeX code.
Adaptive mesh refinement is a must in combustion simulations as the flame is very thin rel-
ative to the entire computational domain requiring a considerable hierarchy of local mesh
refinements also influencing the applicable time-step limit. The parallel-computation ap-
proach uses hybrid MPI+X methodologies enabling the use of CUDA-based load distri-
bution to the massive GPUS available on JUPITER. The detailed simulations show the
development of thermodiffusive instabilities with increasing pressures necessary for clean
combustion processes.

The second paper in the fluid dynamics section is from the same discipline underlining
the importance of computational high-resolution simulations providing accurate data for
low-order modelling. With the help of the nekCRF code, data is generated which supports
the formulation of LES subgrid-scale models using the potential advantages of machine-
learning algorithms. The methodology to develop highly accurate LES models with the
help of machine-learning methods is presented. With the support of a large number of
GPUs, these models can be used to efficiently investigate accurate hydrogen combustion
cases for the application to design processes and evaluations of efficient usage of hydrogen
fuels.

The third contribution focuses on the small-scale nature of turbulence and the enhanced
insights to its development accessible through high-performance computing results. The
highly resolved flow structures are exploited, feeding deep-learning algorithms with the
velocity gradient tensor. The resulting model is tested over a range of Reynolds numbers
of two orders of magnitude.
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Recent advances in computational power, particularly the transition to GPU-based HPC sys-
tems, have allowed for larger and more complex combustion system simulations. It is now
possible to run simulations at higher, and more technically relevant, Reynolds numbers, pres-
sures and temperatures. This enables the direct numerical simulation of experiments at relevant
laboratory conditions. Here, the capability of the reacting flow solver PeleLMeX, developed un-
der the US Department of Energy’s Exascale Computing Project (ECP), is demonstrated on the
early access module (JEDI) of the exascale machine JUPITER and the pre-exascale JUWELS
Booster and Cluster machines. A series of simulations is also presented to demonstrate some
of the physics that can be explored using PeleLMeX.

1 Introduction

Global carbon emissions are driving governments and research institutions to develop poli-
cies and technology to allow for the ongoing transition away from fossil-fuelled devices.
One option in this transition is the utilisation of hydrogen-based fuels. This can involve
burning hydrogen or ammonia in air directly or using ammonia as a hydrogen carrier that
can be (partially-)cracked into hydrogen. From a combustion standpoint, hydrogen and
ammonia present unique challenges1. Hydrogen burns efficiently but also has the potential
for both thermodiffusive and thermoacoustic combustion instabilities. Ammonia, on the
other hand, burns very slowly but is far easier to produce and transport. Understanding
how these fuels burn independently and as a blend is key to both the adaptation of existing,
and the development of new combustion technology.

Direct numerical simulations (DNS) of reacting flows resolve the flow and chemistry
to the degree that the physics does not rely on the use of subgrid models. While simula-
tions of this nature allow for a direct inspection of the physics, such high resolutions can
make simulations extremely computationally expensive. This is particularly true in react-
ing flows, where the use of detailed chemistry creates challenges in terms of the number
of equations to solve and the range of timescales introduced. Databases generated using
DNS can be used to explore physics at a scale not possible in the laboratory or to develop
closures for models to be used in low-fidelity models that can be used to rapidly design and
prototype new technology. In either case, performing simulations at larger ranges of scales
than ever is crucial. The Pele suite of solvers offers the opportunity to utilise emerging
exascale computing systems to perform these simulations and develop carbon-free com-
bustion technology.
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2 Software and Algorithms

PeleLMeX PeleC
AMReX-

Hydro
PelePhysics

AMReX SUNDIALS

Figure 1. Modular structure of AMReX-Combustion codes.

The Pele suite of codes is an open-source group of solvers2 written in C++ for the sim-
ulation of reacting flow, with two main solvers (PeleC3 and PeleLMeX4) and a support li-
brary (PelePhysics) that provides common models and code between the two. PeleC solves
the equations using a compressible formulation, suitable for high-speed flows where the ef-
fects of propagating pressure waves in the domain are non-negligible. PeleLMeX solves
the governing equations in the low Mach number limit, where pressure waves are instead
assumed to propagate at infinite speed. Both codes are built on a modular hierarchical
structure (shown in Fig. 1) and use the same models concerning transport, thermodynam-
ics and chemical mechanisms, which are contained within PelePhysics. Additionally, they
also both use the AMReX5 library that supports block-structured adaptive mesh refinement
as well as tools to support a variety of parallel programming strategies. In this section, more
details are provided about AMReX and PeleLMeX, as used in the work that follows.

2.1 AMReX: Block-Structured Adaptive Mesh Refinement Framework

AMReX is a software framework that allows for the development of partial differential
equation solvers in multi-dimensional domains that benefit from the use of adaptive mesh
refinement (AMR). PeleLMeX is only one of the many suites of software developed using
the AMReX library, with many other solvers created for applications in astrophysics6,
particle-laden flows7, atmospheric boundary layers8 and geophysical fluid dynamics9.

A typical simulation using AMReX employs one or more levels of AMR, which are
situated directly on top of each other (Fig. 2(a)). The “base grid” (level 0 in Fig. 2(a)) is
fixed and covers the whole computational domain, with the additional levels added dynam-
ically. In a reacting flow simulation, individual cells at a coarse level can be identified for
additional refinement based on concentrations of intermediate species, for example. These
cells are grouped into contiguous boxes, refined by a factor of two or four, and compose
the next finer AMR level. During the simulation, the size of each level will vary depend-
ing on the criteria given, and the simulation will be analysed for potential regridding at an
interval determined by the user. Timestepping these levels of data can either be done with
or without temporal subcycling, typically to enforce that each cell/level is advanced with a
uniform CFL number (see Fig. 2(b)). PeleLMeX is the non-subcycling version of its pre-
decessor PeleLM. In PeleLM, the coarsest level (level 0) is advanced by using a timestep
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(a) Hierarchy of AMR levels. (b) Subcycling across levels of AMR.

Figure 2. AMReX features.

determined by stability, and subsequent levels of refinement are advanced with sequen-
tially halved timesteps. Whether or not subcycling is advantageous depends strongly on
the configuration. When adjacent levels in the AMR hierarchy reach the same simulation
time, a synchronisation procedure is used to enforce desirable properties of the algorithm,
such as conservation and elliptic regularity. The algorithmically simpler non-subcycling
algorithm used in PeleLMeX is constructed to also satisfy local conservation and elliptic
regularity but does so by advancing the entire AMR hierarchy at the time step dictated by
stability constraints of the finest level. The non-subcycling variant additionally supports
combustion in closed chambers, where heat release and transport can lead to pressurisation
of the system during evolution.

Data may be held in cell-centred, face-centred, edge-centred or nodal forms, depend-
ing on the needs of the numerical scheme. In addition to structured mesh data, AMReX
also supports the usage of particle data, which in the context of Pele allows for the mod-
elling of soot particles and spray droplets in combustion applications using a Lagrangian
formulation that couples to the Eulerian field quantities through inter-phase transfer terms.
Complex geometry can also be represented through a multilevel embedded boundary (EB)
representation (i.e. cut-cell). As well as the underlying data structures, AMReX also pro-
vides linear solvers for cell-centred and nodal data and a native file format that is widely
readable by many visualisation software packages (e.g. ParaView, VisIt, yt).

AMReX adopts an MPI+X approach to the parallelisation, where X can be OpenMP
in the case of multithreading CPUs, and combined with any of CUDA/HIP/SYCL for
NVIDIA, AMD or Intel GPUs, respectively. The complexities of each parallelisation strat-
egy are exposed to developers through C++ lambda expressions. An example of a typical
ParallelFor loop is given in Listing 1. Each for loop works on the collection of boxes
(i.e. subdomains) of data that have been allocated to a particular MPI process.

Listing 1. Example of a ParallelFor loop in an AMReX-based application.

auto c o n s t& a = mfa . a r r a y s ( ) ;
auto c o n s t& b = mfb . c o n s t _ a r r a y s ( ) ;
P a r a l l e l F o r ( mfa ,

[ = ] AMREX_GPU_DEVICE ( i n t box , i n t i , i n t j , i n t k ) {
a [ box ] ( i , j , k ) = 2*b [ box ] ( i , j , k ) ;

} ) ;
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2.2 PeleLMeX: Low-Mach Number Reacting Flow Solver

In this section, the governing equations, numerical methods and algorithm used in
PeleLMeX are outlined.

PeleLMeX solves the reacting Navier-Stokes equations in the low-Mach limit, given
by

∂ρu
∂t

+∇ · (ρuu) = −∇π +∇ · τ (1)

∂ρYk
∂t

+∇ · (ρYku + Fk) = ω̇k, k = 1, . . . , N (2)

∂ρh

∂t
+∇ · (ρhu + Q) = 0 (3)

where u is the velocity field, ρ is the density, π is the dynamic pressure, τ is the viscous ten-
sor, Yk, Fk and ω̇k are the mass fraction, diffusive flux and chemical source term for species
k, h is the specific enthalpy and Q is the heat flux. This equation set is supplemented by an
equation of state that expresses the thermodynamic pressure, p0, as a function of the other
state variables. Note that in the low Mach limit, p0 is assumed to be spatially uniform, and
π/p0 ∼ O(Ma2), where Ma is the local Mach number. For example, the ideal gas law

p0 = ρRT
∑

k

Yk
Wk

, (4)

whereR is the universal gas constant, T is the temperature andWk is the molecular weight
of species k. In this model, the thermodynamic pressure p0 is decoupled from the dynamic
pressure π. Pressure waves are assumed to propagate infinitely fast, and a divergence
constraint can be derived for the velocity field by substituting Eqs. 1-3 into Eq. 4 and
setting Dp0/Dt = 0, given by10

∇ · u =
1

T

DT

Dt
+W

∑

k

1

Wk

DYk
Dt

= S. (5)

Note that S is non-zero in regions close to the flame; a simple generalisation of this pro-
cedure can accommodate time-varying p0

11. By formulating the problem in the low Mach
limit, rather than compressible, much larger timesteps can be taken and the stability condi-
tion for timestepping is now given by

∆tLM =
CFL∆x

||u||∞
� ∆tC =

CFL∆x

|||u|+ c||∞
, (6)

where c is the local speed of sound. Hence, ∆tLM/∆tC ∼ Ma−1 and for many combus-
tion applications Ma < 0.1, providing at least 10 times larger timesteps.

For the diffusive fluxes, the following model is used

Fk = −ρDk,mix
W

Wk
∇Yk − ρDk,mix

Yk
Wk
∇W − ρDk,mixχk

∇T
T
, (7)

where Dk,mix,Wk, and χk are the mixture-averaged diffusion coefficient, molecular
weight and thermal diffusion ratio, respectively, of species k and W is the mean molecular
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weight. For the chemical source terms in Eq. 2, each is represented by a sum of fundamen-
tal Arrhenius reactions, given by

ω̇k =

R∑

i=1

(ν
(f)
k,i − ν

(b)
k,i )Ωi (8)

Ωi = k
(f)
i

N∏

l=1

(
ρYl
Wl

)ν(f)
k,i

− k(b)
i

N∏

l=1

(
ρYl
Wl

)ν(b)
k,i

(9)

k
(f)
i = AiT

βi exp

{(
− Ei
RT

)}
(10)

where R is the number of reactions, ν(f/b)
k,i are the forward/backward stoichiometric coef-

ficients of the kth species in the ith reaction, Ai, βi and Ei are the pre-exponential factor,
pre-exponential temperature exponent and activation energy of the ith reaction. The back-
wards rate k(b)

i is determined through an equilibrium assumption. In many combustion
reaction systems, these simple expressions are modified to include third-body accelera-
tions and pressure dependencies.

PeleLMeX discretises each of the equations above using a second-order Godunov
(finite-volume) approach on a Cartesian grid with constant grid spacing on each level of
mesh refinement. The terms relating to advection are treated explicitly, with several advec-
tion schemes available. In particular, the bound-preserving BDS scheme12 prevents scalar
overshoots or undershoots that would otherwise represent unphysical states. The diffusion
and reaction terms are both treated implicitly. The linear system arising from the implicit
diffusion is solved using the in-built linear solvers provided by AMReX. For the chem-
ical source term, a sub-cycled solve is performed in each cell by solving a local system
of ordinary differential equations which are offloaded to a suite of integrators, available
via SUNDIALS13. To evolve the velocity field, constrained by condition 4, a projection
method is used14, again using the linear solvers provided by AMReX.

The most complex part of the algorithm is the coupling between processes of advec-
tion, diffusion and reactions, which typically exhibit widely varying timescale. PeleLMeX
uses an iterative spectral deferred correction (SDC) approach11, rather than a more typical
Strang splitting15 where large operator splitting errors can occur when either the diffusion
or reactions exhibit timescales much shorter than those of advection. Unlike Strang split-
ting, where each term is integrated sequentially in a somewhat decoupled fashion, each
SDC iteration provides a lagged coupling of all terms in each process.

To evaluate the physical properties required for the diffusion and chemistry, Pele-
Physics provides a recasting software called CEPTR (Chemistry Evaluation for Pele
Through Recasting) that converts standard YAML format used for Cantera16 into C++
code that can be readily compiled.

3 Code Performance

In this section, the performance of the code with respect to both scaling and GPU acceler-
ation of the code is presented.
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3.1 Scaling

PeleLMeX has been used extensively on the JUWELS Booster module and is also being
tested through the JUREAP program to demonstrate suitability on the early access module
(JEDI) of Europe’s first exascale machine, JUPITER. Prior to tests in Europe, PeleLMeX
has also been extensively tested on HPC systems in the US, including the exascale com-
puting system Frontier. For both weak and strong scaling a slot jet configuration is used,
similar to the simulations presented in Sec. 4. An ammonia/hydrogen/air mixture with an
equivalence ratio of 0.6, temperature of 575K and hydrogen blend fraction of 40% is used
at the inlet, and the thermodynamic pressure is set to 10 atm. A thermodynamic, transport
and chemistry model containing 30 species and 243 reactions17 is employed. Such mod-
els involving ammonia chemistry are typically numerically stiff (that is, exhibit a broad
range of time scales, many much shorter than those of advection) due to some reactions
containing negative activation energies. However, the CVODE integrator provided through
SUNDIALS, was found to handle these cases efficiently, particularly when using the mod-
ified Newton solver strategy, where the underlying linear solves are performed using the
MAGMA linear algebra package18.

# of nodes Base grid Effective grid # of cells
1 512× 16× 512 4096× 128× 4096 2.24× 107

2 512× 32× 512 4096× 256× 4096 4.48× 107

4 512× 64× 512 4096× 512× 4096 8.96× 107

8 512× 128× 512 4096× 1024× 4096 1.79× 108

16 512× 256× 512 4096× 2048× 4096 3.58× 108

32 512× 512× 512 4096× 4096× 4096 7.17× 108

Table 1. Weak scaling cases on JEDI.

# of nodes Advection (s) Diffusion (s) Chemistry (s) Pressure (s) Total (s)
1 0.208 1.48 5.11 1.48 8.85
2 0.144 1.64 5.76 1.14 9.38
4 0.198 1.79 5.83 1.04 9.61
8 0.155 1.93 6.07 1.03 9.99

16 0.211 1.98 6.07 0.995 10.0
32 0.196 2.37 6.26 1.08 11.0

Table 2. Timing of the weak scaling cases on JEDI.

The different cases for weak scaling for JEDI are shown in Tab. 1. The solver is run for
100 timesteps and the average timings for each section at each timestep of the code at the
specified number of nodes is given in Tab. 2; the parallel efficiency is plotted in Fig. 3.Very
good weak scaling is seen up to a simulation size of 717 million cells with less than a 20%
loss in efficiency when scaling up from 20 million cells on 1 node. Without the AMR, this
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simulation would have an effective resolution of over 68 billion cells to obtain the same
resolution at the flame.

For the strong scaling, a single case was devised to fit on 1 node of JEDI. The strong
scaling timing results on JEDI are shown in Tab. 3. A more comprehensive scaling was
also performed on JUWELS Booster as part of the JUREAP program, and the weak and
strong scaling from this is shown in Fig. 3. As can be seen, the portions of the solver that
are highly-local, i.e. the explicit advection and subcycled chemistry solve, exhibit good
strong scaling. However, portions of the solver that require significant communication due
to the implicit or elliptic solve, i.e. the diffusion and pressure portions, do not scale as well
in the strong sense. Such behaviour has been noted in other CFD solvers on heterogeneous
architectures19 regardless of computational scheme and is associated with communication
costs among GPUs.

# of nodes Advection (s) Diffusion (s) Chemistry (s) Pressure (s) Total (s)
1 0.198 1.51 6.51 0.754 9.49
2 0.0785 1.18 3.56 0.615 5.86
4 0.0436 0.933 2.12 0.540 3.90
8 0.0285 0.744 1.33 0.451 2.74

16 0.0193 0.705 0.830 0.460 2.16
32 0.0151 0.680 0.791 0.465 2.09

Table 3. Timing of the strong scaling case on JEDI.
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Figure 3. Combined weak and strong scaling plot for the JUWELS Booster, extending up to the full machine
(896 nodes).
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3.2 CPU vs. GPU

In addition to scaling on the GPUs, a single node comparison between a CPU run and GPU
run has been made on the JUWELS Cluster and JUWELS Booster. Tab. 4 profiles each
part of the solver running on either CPUs or GPUs. On a per-compute-node basis, where
each Cluster compute node has 48 CPUs, and each Booster compute node has 4 GPUs,
usage of GPU resources results in a time-to-solution speedup of 13.8 times. On a per-MPI-
process basis, this results in an approximate speedup of 166 times. It should be noted that
these results are sensitive to both the problem configuration and machine infrastructure.
Nevertheless, this demonstrates the tremendous potential for much larger simulations at
reduced cost.

Advection (s/-) Diffusion (s/-) Chemistry (s/-) Pressure (s/-) Total (s/-)
CPU 4.01 19.1 57.2 5.79 109
GPU 0.0979 1.52 4.96 0.738 7.90
Ratio 41.0 12.6 11.5 7.85 13.8

Table 4. Comparison between single node CPU/GPU run on JUWELS Cluster/Booster

4 Simulations

To showcase the application of PeleLMeX and the physics that can be explored, a series
of DNS of lean premixed turbulent hydrogen/air flames are presented in Fig. 4. In the
slot burner configuration, a homogeneous cold (Tu = 298 K) mixture of hydrogen and air
with equivalence ratio φ = 0.4 is entering the domain in the centre at a bulk velocity of

298 578 859 1140 1420 1700 1981

T(K)

(a) Temperature

0 max

HRR

(b) Heat release rate

Figure 4. Lean premixed H2/air jet flame at a Re = 11000 and p0 = 1, 5, 10atm.
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u = 21m/s with a prescribed turbulent velocity field obtained from an auxiliary periodic
channel DNS. This central jet is surrounded by a slower laminar co-flow, which consists
of hot (Tcoflow = 1423 K) combustion products. The temperature of the co-flow resem-
ble the adiabatic flame temperature and the composition of the final combustion state of
the combustible mixture in a 1D case. For the simulations shown, the spatially uniform
thermodynamic pressure is varied from 1 to 10atm. These simulations are used to investi-
gate thermodiffusive instabilities (TDI), which arise from the high diffusivity of hydrogen
relative to the thermal diffusion, leading to an enthalpy accumulation in the flame areas
convexly curved to the unburned. As a result, local temperatures rise above the adiabatic
flame temperature and local burning rates increase strongly. Since TDI can easily increase
the global fuel consumption speed by a factor of 4 or more and can dramatically increase
post-flame gas temperatures where NOx emissions are produced, understanding them is
highly relevant for model development and real-world applications. In the simulations pre-
sented in Fig. 4(a), TDI can be recognised by the local temperature overshoots compared
to the co-flow. TDI ten to act on the smallest scales, forming structures which then grow
onto larger scales. As a result, the resolution requirements are high since both the smallest
scales of the flow field and the flame structure need to be resolved simultaneously.

Investigating high-pressure configurations is important and challenging at the same
time. On the one hand, most real-world combustion applications are operating at elevated
pressure. On the other hand, these simulations are especially challenging from a com-
putational perspective, since the flame thickness decreases significantly with pressure, as
visualised by the local heat release rate in Fig. 4(b). Since resolving the flame in the simu-
lation is a key aspect of DNS, this leads to a higher resolution criterion and hence increases
computational costs with increasing pressure. Here, PeleLMeX with its adaptive mesh re-
finement comes in handy, as the higher resolution needs only be applied to the relatively
small flame area, while large portions of the domain, such as the co-flow, are adequately
resolved with larger grid spacing. Investigating these cases in Fig. 4(a) reveals that insta-
bilities become stronger, featuring higher temperature overshoots and an overall shorter
flame.

5 Concluding Remarks

PeleLMeX is a reacting flow solver capable of running on heterogeneous HPC architec-
tures by leveraging the AMReX library. Here, the models and numerical methods em-
ployed by the solver have been reviewed, and the performance of the code on JEDI and
JUWELS has been demonstrated, with excellent weak scaling and satisfactory strong scal-
ing performance shown. A direct comparison of a single node CPU run on the JUWELS
Cluster module versus a single node GPU run on the JUWELS Booster module has also
been shown, and it was found that, on a per node basis, there was an approximately 14 times
speedup. Finally, three cases of pressurised turbulent hydrogen jet flames were presented
to demonstrate the physics that can be explored. The results shown here demonstrate the
potential for PeleLMeX to be used on exascale computing systems for the simulation and
development of carbon-free combustion technology.
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The climate crisis is arguably the most pressing challenge of our time. To create effective
solutions, such as gas turbines fuelled by green hydrogen, it is crucial to fully understand com-
plex physical phenomena. This understanding is key to developing models that can accurately
predict flame dynamics and pollutant formation in these innovative systems. In addition to
costly and time-consuming experimental investigations, the urgent demand for carbon-free fu-
els requires highly accurate direct numerical simulations to improve physical understanding and
support model development.

Over the last three years, we have developed a highly scalable simulation code called nekCRF at
the Center of Excellence in Combustion (CoEC), which is based on nekRS, and created relevant
direct numerical simulation (DNS) setups for simulating turbulent hydrogen jet flames. The re-
sults of these large-scale simulations presented here enable the analysis of the complex physics
of hydrogen combustion and the development of the next generation of combustion models.
As we transition to upcoming exascale systems, these simulations will push the boundaries of
hydrogen mixture predictions and high-pressure simulations well beyond current limits, paving
the way for new industrial technologies.

In addition, an innovative machine learning framework has been developed to quickly develop
highly accurate simulation models from the generated data. This framework uses highly paral-
lelised processes to develop accurate models for large-eddy simulations (LESs), which can be
used for the final optimisation of relevant industrial processes.

Overall, our work is an example of how the interplay of highly accurate simulations and large-
scale machine learning can help solve societal problems such as the green energy transition
using the latest supercomputers. The efficient parallelisation of the entire workflow makes it
possible to benefit optimally from the ever more powerful supercomputers and to significantly
reduce time-to-innovation.

1 Introduction

Addressing climate change requires transitioning away from fossil fuels in our energy sys-
tem. Gas turbines, central to power generation and aviation, have traditionally relied on
hydrocarbon fuels. However, new turbine technologies can be developed to efficiently use
zero-carbon fuels, supporting a sustainable energy future. In low-carbon energy systems,
with intermittent renewables like solar and wind, hydrogen (H2) has emerged as a carbon-
free option for large-scale energy storage. Its chemical simplicity and lack of carbon enable
combustion for power and heat generation with zero CO2 emissions and minimal pollutants
like NOx.
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The direct use of hydrogen presents significant challenges: lean hydrogen flames tend
to become unstable, with turbulent burning rates far exceeding those of conventional hy-
drocarbon fuels. Hydrodynamic Darrieus-Landau (DL) instabilities and intense thermo-
diffusive (TD) instabilities, driven by differential diffusion, have a pronounced effect on
H2 and H2-enriched flames. These instabilities, depicted in Fig. 1 (left), arise from the
large differences in diffusion rates between hydrogen, heat, and other species. They can
destabilise flames, increasing the risk of flashback and raising NOx emissions due to super-
adiabatic temperatures or hot spots. These effects are amplified under the high pressures
typical of practical systems. Currently, our understanding of burning rates, stability limits,
and emission formation in high-pressure lean H2 flames is based largely on empirical data,
which poses a significant challenge for industrial applications. Closing this knowledge gap
is essential for developing clean, efficient, and reliable hydrogen-fired gas turbines.

Figure 1. DNS of a laminar hydrogen flame exhibiting flame finger formation due to thermo-diffusive instabili-
ties1 (left) and sketch of the innovation process (right).

An established method for developing new energy devices is the combination of high-
resolution direct numerical simulations (DNSs) and the reduced order models (ROMs)
derived from them. DNSs can be assumed to be the ground-truth of individual physical
and chemical sub-processes and thus contribute to the understanding of these processes
under well-defined boundary conditions. However, they are limited in two ways: On the
one hand, it is sometimes very challenging to consider all important physical and chem-
ical sub-processes simultaneously based on first principles. On the other hand, DNSs of
industrially relevant conditions quickly become very computationally intensive and can
therefore only be carried out in individual cases. It is usually not possible to carry out
DNSs iteratively more often within a development cycle. Therefore, computationally less
expensive ROMs must usually be used here, and deriving predictive ROMs from DNS data
effectively becomes another key challenge (in addition to the DNS data generation itself).
This innovation process is sketch in Fig. 1 (right).

In the realm of turbulent combustion modelling, large-eddy simulation (LES) has
emerged as the primary research tool2. LES is favoured because it captures the larger tur-
bulent scales, which includes the majority of turbulent kinetic energy and exhibit a strong
dependence on the device geometry. Advancements in turbulence-chemistry interaction
(TCI) models have been relatively modest during this period. However, due to the unique
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characteristics of H2 as a fuel, LES faces new challenges3, 1, 4. Firstly, H2’s high reactiv-
ity results in thinner reaction fronts, counteracting the benefits of increased computational
power for spatial resolution. Secondly, issues like DL and TD instabilities occur at subgrid
scales and cannot be predicted by existing TCI models.

The process of deriving predictive models for LES from DNS data can be very time
consuming. Conventionally, one tries to derive analytical relations by which unknown or
generally subgrid quantities can be determined. More recently, this manual process has
been attempted to be replaced by data-driven methods, such as machine learning (ML),
deep learning, and artificial intelligence. In this paper, we describe how such a DNS of
a relevant flame can be calculated using nekCRF, and how highly accurate LES models
can be derived from the data using the data-driven framework JuLES. We demonstrate that
the whole process can be efficiently parallelised on thousands of GPUs, thus significantly
reducing the time to innovation.

2 DNS Methods and Setup

2.1 Setup

The configuration of the DNS is based on a turbulent jet burner that has also been exper-
imentally investigated. This type of burner is known as a McKenna burner. A schematic
setup is shown in Fig. 2. The burner has three separate gas outlets: an outer ring made
of sintered bronze through which shielding gas flows, an inner ring made of sintered steel
for the pilot fuel-air mixture, and a central tube from which the fuel mixture for the main
flame is emitted.

The outer ring made of sintered bronze, referred to as the co-flow, is supplied with
inert nitrogen gas during operation. This creates a gas stream that forms a protective layer
around the inner flames, preventing ambient air pressure fluctuations from reaching the
flames and ensuring uniform conditions. The inner sintered steel matrix, referred to as
the pilot, is operated with a mixture of ammonia, hydrogen, nitrogen, and air. Igniting

Figure 2. Schematic depiction of the McKenna burner configuration. Zoom shows the non-reactive DNS of the
jet-flow field.
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this mixture generates a flat, laminar flame just above the matrix, preventing cold ambient
air from entering the main flame. Additionally, the pilot flame and the hot exhaust gases
provide thermal energy to the reaction zone of the main flame, ensuring a stable flame
within the pilot’s influence zone over a wide range of operating conditions. The central
burner tube, known as the jet, is also supplied with a mixture of hydrogen and air. When
ignited, this mixture forms the main flame of the burner, whose properties are examined in
this work by varying different mixture parameters. Depending on the operating conditions,
the flame ranges from laminar to highly turbulent. The fuel gases for both the pilot and the
jet are premixed by combining the gas supply lines, ensuring that the mixture is already
homogeneous before entering the burner.

For the numerical setup, a domain similar to the experimental configuration is used.
However, in this study, only the jet stream and the flue gases from the pilot stream are
considered. The domain has a length of 100 mm. The mesh is constructed using multiple
O-grids, allowing for varying refinement levels to ensure proper resolution of the inlet pipe.
High resolution near the inlet and flame zone is crucial for accurately capturing turbulence
and combustion properties, while the mesh becomes coarser towards the outlet and the
edges of the domain. The final mesh consists of 800 million unique grid points.

2.2 Numerical Methods

As simulation framework, nekRS5 is used in combination with the chemistry plugin
nekCRF6 developed as part of Center of Excellence in Combustion (CoEC). It employs
high-order spectral elements in which the solution, data, and test functions are represented
as locally structured N th-order tensor product polynomials on a set of E globally un-
structured conforming hexahedral brick elements. Time integration in nekRS employs a
semi-implicit splitting scheme, utilising kth-order (k up to three) backward differences
(BDFk) to approximate the time derivative, resulting in an implicit treatment of the vis-
cous and pressure terms, and kth-order extrapolation (EXTk) for the advection and forcing
terms.The discretisation leads to a sequence of symmetric positive definite linear systems
for pressure, velocity and temperature.

NekRS is written in C++ and the kernels are implemented using the portable Open
Concurrent Compute Abstraction (OCCA) library7 in order to abstract between different
parallel languages. OCCA enables the implementation of the parallel kernel code in the
slightly decorated C++ language OKL7.

In this way, the MPI+X hybrid parallelism can support seamlessly CUDA, HIP,
OpenCL as well as CPUs. The domain is partitioned on MPI ranks and the discretised
equations are advanced in time using iterative solvers to solve the elliptic subproblems for
the velocity, temperature, and pressure.

The chemistry plugin nekCRF is fully integrated into the programming approach of
nekRS. The thermochemistry (energy and species equations) is treated with this highly op-
timised chemistry plugin that generates optimised kernels for the source term, thermody-
namic and transport properties evaluation for GPUs. It also provides consistent advection
and diffusion transport operators acting efficiently on multiple scalars. The resulting large
system is integrated without further splitting of the convection, diffusion and reaction term
using CVODE8. In addition, important features for high-performance GPU computing of
reactive flow simulations, such as an approximate Jacobian-vector product, a compressed
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basis GMRES solver using a lower precision (FP32) Krylov basis, and overlap MPI com-
munication for halo exchange with local computation are available.

2.3 Simulation Results

Fig. 3 shows the instantaneous temperature field. Characteristic for a lean premixed hy-
drogen/air mixture, the flame locally exhibits super-adiabatic temperature indicating the
persisting influence of Lewis number effects under turbulent conditions.

Figure 3. Contour of the instantaneous temperature field.

The influence of molecular transport effects are further highlighted in Fig. 4. Here,
the local equivalence ratio exhibits strong variations across the turbulent flame front. Ad-
ditionally, high sensitivity of the equivalence ratio on the flame curvature is observed.
Correspondingly, the OH mass fraction indicates the increased reactivity in the fuel-rich
regions leading to super-adiabatic temperatures.
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Figure 4. Zoomed view of the contours of the instantaneous local equivalence ratio (left) and OH mass fraction
(right).

3 Machine Learning and Application

3.1 Application

ML has the potential to significantly accelerate the process of LES-subgrid development.
The combination of high-resolution simulations and cutting-edge ML also has the potential
to derive much more general and predictive subgrid models. The idea is to filter highly
accurate DNS data and to train an ML network using the data pairs generated in this way
(or a data collection if several different filter widths are applied), which is able to add
the subgrid contributions to the filtered data. This can be done in a post-processing step
or directly in parallel with data generation. The parallel approach has the advantage of
minimising “expensive” writing of data to storage and also avoids further data transfer
during processing. A disadvantage can be that if not all intermediate steps are stored, the
training is not completely reproducible.

On the user side, the combination of simulation and ML adds another layer of com-
plexity. To make the approach easier for users to handle, we have developed the JuLES
framework. JuLES enables both training in a post-processing step and parallel training
using an n : m data bridge. The framework is integrated into the compute infrastructure
of the Jülich Supercomputing Centre (JSC); this includes both the supercomputers and the
interactive JupyterLab interface, as well as experimental access to the quantum computer.
Features for simulation monitoring and control, such as JuMonC9, are supported as well.
JuLES is shown in Fig. 5.

3.2 Methods

The so-called physics-informed enhanced super-resolution GAN (PIESRGAN)10 is used
as the ML network in JuLES, which extends and modifies ESRGAN for flow LES subgrid
modelling and follows a hybrid approach. The subgrid modelling is done by PIESRGAN,
but the simulation as a whole is advanced classically with the filtered equations, i. e., the
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Figure 5. Overview of the framework JuLES.

time integration is not incorporated into the neural network as, e. g., done in Ref. 11. An
important advantage of keeping time integration and subgrid modelling separate is the
universality with respect to, e. g., different geometries and setups. In addition, the equa-
tions for time integration are well known and much experience is available. In PIESR-
GAN, physically motivated conditions are enforced as part of the loss function, i.e., the
objective function that is minimised during training of the network. PIESRGAN has been
widely applied to various physical flow simulations and results are available in the litera-
ture12, 10, 13–20.

The physically motivated loss term is very important for the application of PIESRGAN
to flow problems. If the conservation laws are not very well fulfilled, the simulations tend
to explode rapidly, which is an important difference to super-resolution in the context of
images. Errors that may be acceptable there can easily be too large for use as a subgrid
model10.

3.3 Prediction Results

The prediction accuracy of a subgrid model that was trained in parallel by JuLES was eval-
uated on the basis of LES of hydrogen flames with different filter widths. The maximum
relative error of all thermo-chemical variables was analysed, as shown in Tab. 1. Regard-
less of the filter width and even with a flexible filter width, the maximum relative error is
always below 1.37 %.

4 Conclusions

Both nekCRF and JuLES are powerful tools for generating highly accurate DNS data from
flames and automatically developing predictive LES models from this data. Both are es-
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Filterwidth 2dx 4dx 8dx 2dx < {·} < 8dx
Error [%] 0.91 1.37 0.85 1.14

Table 1. Prediction quality of ML-trained subgrid models.

sential to advancing the green energy transition as quickly as possible and to becoming
climate neutral.

The degree of acceleration depends on the ability of the tools to be accelerated in
parallel. Both nekCRF and JuLES use GPUs for simulation and training, respectively. This
is already a significant acceleration compared to CPU-based solutions. Furthermore, Fig. 6
demonstrates that nekCRF, but also the coupled workflow, scale effectively on thousands
of GPUs. The time to solution and time to innovation can thus be further reduced by
adding more and more computing power. We have successfully deployed both tools on up
to 4000 GPUs in parallel on JUWELS Booster for computing green hydrogen flames and
are optimistic that we will be able to further increase the number of applications as well as
the degree of acceleration with JUPITER.

Figure 6. Scaling of nekCRF (left) and scaling/performance of coupled nekCRF/JuLES workflow (right). All
numbers were evaluated on JUWELS Booster featuring four NVIDIA A100 per node.

Acknowledgements

This work was supported by the European Union’s Horizon 2020 research and innovation
program under grant agreements No. 952181 (Center of Excellence in Combustion) and
has received funding from the European High-Performance Computing Joint Undertak-
ing (JU) under grant agreement No. 101118139 (Inno4Scale). The JU receives support
from the European Union’s Horizon Europe Program. The authors gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercomputer JUWELS at Jülich Super-
computing Centre (JSC) and by providing computing time through the John von Neumann
Institute for Computing (NIC).

388



References

1. V. Schuh, C. Hasse, and H. Nicolai, An extension of the artificially thickened flame
approach for premixed hydrogen flames with intrinsic instabilities, Proceedings of the
Combustion Institute, 40, no. 1-4, 105673, 2024.

2. B. Fiorina, T. P. Luu, S. Dillon, R. Mercier, P. Wang, L. Angelilli, P. P. Ciottoli,
F. E. Hernández-Pérez, M. Valorani, H. G. Im et al., A joint numerical study of multi-
regime turbulent combustion, Applications in Energy and Combustion Science, 16,
100221, 2023.

3. H. Pitsch, The transition to sustainable combustion: Hydrogen-and carbon-based
future fuels and methods for dealing with their challenges, Proceedings of the Com-
bustion Institute, 40, no. 1-4, 105638, 2024.

4. H. Böttler, D. Kaddar, T. J. P. Karpowski, F. Ferraro, A. Scholtissek, H. Nicolai, and
C. Hasse, Can flamelet manifolds capture the interactions of thermo-diffusive insta-
bilities and turbulence in lean hydrogen flames? – An a-priori analysis, International
Journal of Hydrogen Energy, 56, 1397-1407, 2024.

5. P. Fischer, S. Kerkemeier, M. Min, Y.-H. Lan, M. Phillips, T. Rathnayake, E. Merzari,
A. Tomboulides, A. Karakus, N. Chalmers et al., NekRS, a GPU-accelerated spectral
element Navier-Stokes solver, Parallel Computing, 114, 102982, 2022.

6. S. Kerkemeier, C. E. Frouzakis, A. G. Tomboulides, P. Fischer, and M. Bode, nekCRF:
A next generation high-order reactive low Mach flow solver for direct numerical sim-
ulations, 2024, arXiv:2409.06404.

7. D. S. Medina, A. St-Cyr, and T. Warburton, OCCA: A unified approach to multi-
threading languages, 2014, arXiv:1403.0968.

8. S. D. Cohen, A. C. Hindmarsh, P. F. Dubois et al., CVODE, a stiff/nonstiff ODE solver
in C, Computers in physics, 10, no. 2, 138-143, 1996.

9. C. Witzler, F. Souza Mendes Guimarães, D. Mira, H. Anzt, J. H. Göbbert, W. Frings,
and M. Bode, JuMonC: A RESTful Tool for Enabling Monitoring and Control of Sim-
ulations at Scale, Future Generation Computer System, 164, 107541, 2025.

10. M. Bode, M. Gauding, Z. Lian, D. Denker, M. Davidovic, K. Kleinheinz et al., Using
physics-informed enhanced super-resolution generative adversarial networks for sub-
filter modeling in turbulent reactive flows, Proceedings of the Combustion Institute,
38, 2617-2625, 2021.

11. K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, and K. Taira, Global field
reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning,
Nature Machine Intelligence, 3, 945-951, 2021.

12. M. Bode, M. Gauding, K. Kleinheinz, and H. Pitsch, Deep learning at scale for sub-
grid modeling in turbulent flows: regression and reconstruction, Lecture Notes in
Computer Science, 11887, 541-560, 2019.

13. M. Bode, Applying physics-informed enhanced super-resolution generative adversar-
ial networks to large-eddy simulations of ECN Spray C, SAE International Journal of
Advances and Current Practices in Mobility, 4, 2211-2219, 2022.

14. M. Bode, Applying physics-informed enhanced super-resolution generative adversar-
ial networks to finite-rate-chemistry flows and predicting lean premixed gas turbine
combustors, 2022, arXiv:2210.16219.

389



15. M. Bode, M. Gauding, D. Goeb, T. Falkenstein, and H. Pitsch, Applying physics-
informed enhanced super-resolution generative adversarial networks to turbulent pre-
mixed combustion and engine-like flame kernel direct numerical simulation data, Pro-
ceedings of the Combustion Institute, 39, 5289-5298, 2023.

16. M. Bode, Applying physics-informed enhanced super-resolution generative adver-
sarial networks to turbulent non-premixed combustion on non-uniform meshes and
demonstration of an accelerated simulation workflow, 2022, arXiv:2210.16248.

17. M. Bode, AI super-resolution: Application to turbulence and combustion, in: Ma-
chine learning and its application to reacting flows, Lecture Notes in Energy 44,
N. Swaminathan and A. Parente, (Eds.), Springer, 2023.

18. M. Bode, AI super-resolution-based subfilter modeling for finite-rate-chemistry flows:
A jet flow case study, SAE Technical Paper 2023-01-0200, 2023.

19. M. Bode, AI super-resolution subfilter modeling for multi-physics flows, in: Platform
for Advanced Scientific Computing Conference (PASC ’23), ACM, 2023.

20. M. Bode and J. H. Göbbert, Acceleration of complex high-performance computing
ensemble simulations with super-resolution-based subfilter models, Computers and
Fluids, 271, 106150, 2024.

390



Deep Learning for Small Scale Dynamics of Turbulence

Dhawal Buaria

1 Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
E-mail: dhawal.buaria@ds.mpg.de

2 Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA

Turbulent flows are characterised by a wide range of scales, with the scale range growing as
some power of the non-dimensional flow parameter Reynolds number. Consequently, a faith-
ful simulation of turbulence at high Reynolds numbers, as routinely encountered in nature and
engineering, remains prohibitively expensive. A substantial computational burden comes from
resolving the small-scale motions; thus, major emphasis is placed on understanding their uni-
versal aspects and thereafter exploiting it for modelling. Here, by leveraging physics-informed
deep learning, we present a novel framework to capture and predict the small scale dynamics of
turbulence, via the velocity gradient tensor. We consider the evolution equation of velocity gra-
dients and obtain a functional closure of unclosed terms using deep neural networks. A massive
simulation database, spanning two orders of magnitude in Reynolds number, is then utilised
for training and validation. The model learns from low to moderate Reynolds numbers and
successfully predicts statistics at both seen and higher unseen Reynolds number, demonstrating
the viability of our approach over traditional modelling in capturing and predicting small-scale
dynamics of turbulence.

1 Introduction

Turbulent flows, ubiquitous in both natural and technological applications, are charac-
terised by strong and chaotic fluctuations spanning a wide range of interacting scales in
space and time. These multiscale interactions are highly nonlinear, rendering the gov-
erning equations mathematically intractable. Consequently, turbulence has defied an ade-
quate framework despite a sustained effort in physics, mathematics and engineering, and
our present understanding remains incomplete, often relying on phenomenological ap-
proaches1. An essential notion in this regard is that of small scale universality2, which
forms the backbone of turbulence theories and models. It stipulates that, while the large
scales are non-universal because of their dependence on flow geometry and energy injec-
tion mechanisms, such dependencies become progressively weaker as energy cascades to
smaller scales, ultimately endowing them with some form of universality that depends only
on a few parameters of the flow.

It follows that universality requires sufficiently large separation between the scales at
which the energy is injected and those at which it is dissipated into molecular motion.
This scale separation is determined by the non-dimensional parameter Reynolds number,
Re; thus, investigating universality requires data at high Re. While such high Reynolds
numbers are attainable in some laboratory flows and all geophysical flows, most quantities
pertaining to small scales are still very difficult to measure3. Alternatively, direct numerical
simulations (DNS) of the governing equations, where the entire range of scales is resolved
on a computational mesh4, provide information on every quantity desired. But, DNS is
extremely expensive, with recent studies showing that its cost scales even faster than the
traditional estimate of Re3 (see e.g. Refs. 5–7). Thus, despite the rapid advances in high
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performance computing, high-Re DNS, representative of natural and engineering flows,
remains unattainable for decades to come.

Motivated by these considerations, we devise here an alternative approach based on
machine learning techniques to characterise the small scales of turbulence. In recent years,
the use of machine learning, especially deep learning, has ushered in a new paradigm in
various disciplines8. The field of turbulence is no different and there has been a flurry
of machine learning methods to improve turbulence modelling9. A vast majority of them
utilise the framework of supervised learning10, where neural networks are trained on input
data against labelled output data, although other paradigms have also be used11. The learn-
ing is also often “physics informed”, i.e., neural networks are designed to satisfy some
physical constraints, enabling efficient learning including significantly improved accuracy
and stability. The approach utilised here follows a broadly similar paradigm, but in a newly
developed framework, specifically suited for small scales of turbulence. In particular, we
capture the small scale dynamics of turbulence by training deep neural networks on exist-
ing DNS data at low and moderate Re, and demonstrate the capability for predicting their
dynamics at both seen and higher unseen Re, with important consequences for turbulence
simulations.

2 Governing Equations and Modelling Framework

2.1 Governing Equations

To characterise the small scales of turbulence, we will focus on the velocity gradient tensor
A = ∇u, where u is the turbulent velocity field. The tensor A encodes various structural
and statistical properties of turbulence, which are known to be universal; for instance, the
non-Gaussianity of its fluctuations and associated extreme events12, 13, 6, the negative skew-
ness of the longitudinal (or diagonal) components associated with the energy cascade14,
the preferential alignment of vorticity with the intermediate strain eigenvector15, 16. The
evolution equation for A, obtained by taking the gradient of Navier-Stokes equations, is
given as:

DA

Dt
= −A2 −H + ν∇2A, (1)

where D/Dt is the material (or Lagrangian) derivative, H = ∇∇P is the Hessian tensor
of the kinematic pressure P and ν the kinematic viscosity. The above equation dictates
that the velocity gradient tensor changes along a fluid element according to quadratic non-
linearity, the pressure effects and viscous diffusion. Since incompressibility give trace
Tr(A) = 0, it follows that

∇2P = Tr(H) = −Tr(A2) , (2)

i.e., the pressure field is related to A through a Poisson equation, implying that the pressure
Hessian is non-local, essentially coupling all scales of the flow.

In direct numerical simulations (DNS), the Navier-Stokes equations are directly solved
on a large computational mesh by resolving all dynamically relevant scales4. Whereas
other simulation paradigms resolve only a range of scales. For instance, in large-eddy
simulation (LES), the large-scales are resolved on a mesh and the effects of small scales
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are directly modelled. In contrast, our approach here is to directly develop a reduced-order
closure model for A. This can be accomplished by modelling the pressure Hessian and the
viscous Laplacian terms explicitly in terms of A, leading to a fully local description17, i.e.,
the dynamics of A can be modelled by an ordinary differential equation (ODE), whereby
statistical quantities of interest can be obtained, for example, by running Monte Carlo
simulations of the ODE with arbitrary initial conditions, providing massive cost savings
with respect to DNS.

2.2 Tensor Bases for Modelling
To obtain a functional closure, the pressure Hessian and viscous Laplacian terms in Eq. 1
have to be specified as tensor functions of A. This can be most generally achieved us-
ing tensor representation theory18, which allows us to express any desired (second order)
tensor as a function of A. This is achieved by expressing the desired tensor as a linear
combination of tensors in an appropriate tensor basis constructed from A, with the coeffi-
cients that are functions of the scalar basis of A. To obtain the tensor and scalar bases the
first step is to decompose A into its symmetric and skew-symmetric parts, which are the
strain-rate and rotation rate tensors, respectively:

S =
1

2
(A + AT) , R =

1

2
(A−AT) . (3)

Using S and R, a general bases for tensors and scalars can be constructed:

T(1) = S , T(2) = SR−RS , T(3) = S2 − 1

3
Tr(S2)I ,

T(4) = R2 − 1

3
Tr(R2)I , T(5) = RS2 − S2R ,

T(6) = SR2 + R2S− 2

3
Tr(SR2)I ,

T(7) = RSR2 −R2SR , T(8) = SRS2 − S2RS ,

T(9) = R2S2 + S2R2 − 2

3
Tr(S2R2)I , T(10) = RS2R2 −R2S2R

(4)

B(1) = R , B(2) = SR + RS , B(3) = S2R + RS2 ,

B(4) = R2S− SR2 , B(5) = R2S2 − S2R2 , B(6) = SR2S2 − S2R2S
(5)

λ1 = Tr(S2) , λ2 = Tr(R2) , λ3 = Tr(S3) , λ4 = Tr(R2S) , λ5 = Tr(S2R2) (6)

The ten T(i) in Eq. 4 form the basis for symmetric tensors, and the six B(i) in Eq. 5 for
skew-symmetric tensors; λi in Eq. 6 is the basis of scalar invariants required to determine
the necessary coefficients. Since incompressibility gives Tr(S) = 0, it is easy to show
Tr(T(i)) = 0.

2.3 Non-Dimensionalisation and Reynolds Number Dependence
Before using the tensor framework with neural networks, it is important to non-
dimensionalise all quantities, since it would facilitate efficient learning10. Additionally,
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non-dimensionalisation will also allow us to appropriately introduce Re as a parameter,
whereby the model system can be run at any chosenRe to obtain desired (non-dimensional)
statistics of velocity gradients19.

Since velocity gradients characterise small scales, a natural choice for non-
dimensionalisation is to utilise the Kolmogorov time and length scales given as

τK = (ν/〈ε〉)1/2 , ηK = (ν3/〈ε〉)1/4. (7)

Here, ε = 2νSijSij is the energy dissipation rate and 〈·〉 denotes averaging over space and
time. In homogeneous turbulence, we have 〈SijSij〉 = 〈RijRij〉 = 〈AijAij〉/2. Thus,
〈ε〉 = ν〈AijAij〉, giving 〈AijAij〉τ2

K = 1, implying that 1/τK quantifies the root-mean-
square amplitude of A, which also allows us to impose constraints on running the model
system.

We use the following non-dimensionalisation: t∗ = t/τK , x∗ = x/ηK (i.e., ∇∗ =
ηK∇), A∗ = AτK , H∗ = Hτ2

K (and H∗d = Hdτ
2
K), and then obtain the following

equation for A∗:

DA∗

Dt∗
= −(A∗2 − 1

3
Tr(A∗2)I)−H∗d +∇∗2A∗ . (8)

where we have isolated the deviatoric part of the pressure Hessian: Hd ≡ H− 1
3 Tr(H)I

which is trace-free (thus facilitating the use of symmetric trace-free basis in Eq 4).
The terms H∗d and∇∗2A∗ can now be modelled in terms of A∗ using the tensor bases,

appropriately replaced by their non-dimensional counterparts, i.e., T∗(i) and B∗(i), and
the coefficients c(i)1 , c(i)2 , c(i)3 are dimensionless. It can be seen immediately that the above
system does not have any Reynolds number dependence. This is not surprising since we
utilised Kolmogorov scales for non-dimensionalisation, temporarily choosing to ignore
intermittency. Thus, the Reynolds number dependence has to be reintroduced by hand
(and validated a posteriori). Previous modelling attempts do not recognise this aspect and
have consequently not captured the Reynolds number dependence; see e.g., Refs. 17,20,21.

We devise the following pragmatic way to introduce the Reynolds number dependence
and intermittency effects. We maintain the non-dimensionalisation by Kolmogorov vari-
ables and rescale the tensor bases as

H∗d =

10∑

i=1

c
(i)
1 R

−β(i)
1

λ T∗(i) , (9)

∇∗2A∗ =

10∑

i=1

c
(i)
2 R

−β(i)
3

λ T∗(i) +

6∑

i=1

c
(i)
3 R

−β(i)
3

λ B∗(i) . (10)

Here, Rλ is the Reynolds number based on Taylor length scale (note that Rλ ∼ Re1/2)
and the exponents β(i)

1 , β(i)
2 and β(i)

3 are additional model parameters which will be deter-
mined. This choice is motivated by two main reasons. Firstly, the well-known multifractal
description of turbulence suggests that velocity gradient statistics scale as power laws (or
combinations of power laws) in Reynolds1. Secondly, the tensors in the bases span vari-
ous orders of A, all of which feel the intermittency effects differently. Thus, the Reynolds
number factors can rescale them to the same order, allowing for more efficient learning, es-
sentially acting as additional physics-informed constraints to accommodate intermittency.
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3 ReS-TBNN: Reynolds-Number-Scaled Tensor-Based Neural
Network

We now consider the neural network architecture utilised to model the unclosed terms.
The tensor-based neural network (TBNN), utilising only the symmetric basis from Eq. 4,
was first proposed by Ling et al.22 for turbulence modelling of the Reynolds stress tensor.
More recently, it was extended to modelling the pressure Hessian in21, but without taking
Reynolds number into consideration. Unlike traditional neural networks, TBNN utilises
two input layers. The architecture to model the pressure Hessian is shown in Fig. 1. The
first input layer uses the scalar basis λi, which are then fed forward to multiple hidden
layers to obtain the scalar coefficients c(i)1 in the first output layer. The essence of this step
is to model the scalar coefficients as strongly nonlinear functions of the scalar basis – an
exercise traditionally performed via “human learning”17. This is precisely the step where
deep neural networks are advantageous. The second input layer uses the rescaled tensor

basis as input, for instance R−β
(i)
1

λ T(i), for the pressure Hessian. This second input layer
is contracted with the first output layer to obtain the predicted pressure Hessian tensor in
the final output layer, in accordance with Eq. 9. We reiterate that only the deviatoric part
of the pressure Hessian needs to be modelled. The architecture for the viscous Laplacian
is essentially identical to that shown in Fig. 1, with the difference that the first output
layer and the second input layer have both 16 nodes, corresponding to the coefficients c(i)2

Figure 1. Reynolds number scaled tensor based neural network (ReS-TBNN) architecture utilised for modelling
the deviatoric pressure Hessian, based on Eq. 9. The first output layer and the second input layer both have 10
nodes. Note that the exponents β(i)s are not fixed inputs, but obtained from network training using standard
backpropagation. A similar network is utilised for the viscous Laplacian, utilising both the symmetric and skew-
symmetric tensor bases, as mentioned in Eq. 10. The first output layer and second input layer have both 16 nodes
in this case.
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and c(i)3 and the tensors T(i) and B(i), with appropriate pre factors corresponding to the
Reynolds number scaling.

3.1 DNS Data (Ground Truth)

To train the ReS-TBNN model, the “ground truth” data are obtained from a massive DNS
database corresponding to forced stationary isotropic turbulence in a periodic domain6.
The simulations were performed using Fourier pseudo-spectral methods, allowing us to
obtain the data with the highest accuracy practicable. A key aspect of our data is that
we have simultaneously achieved a wide range of Reynolds numbers and the necessary
small-scale resolution to accurately resolve extreme events6, 7. Both of these conditions are
indispensable for successful model development. The Taylor-scale based Reynolds number
Rλ of our database ranges from 140− 1300. The data have been utilised and validated in
several recent studies6, 16, 23, 24, where one can also find more detailed account of the DNS
methods and database. In order to train our network, only the data for Rλ = 140 − 650
are utilised; subsequently, we will demonstrate that the trained network can successfully
predict statistics at higher (unseen) Rλ = 1300. Though this Rλ is only twice as large as
the largest one used in the training, its usefulness should be assessed in the context of the
computational expense of DNS, which would be easily 100 times more. This is because
the cost of DNS increases at least as strongly as R6

λ, going up to R8
λ in the limit of large

Rλ, to accurately resolve the smallest scales5, 7.

3.2 Training of the ReS-TBNN Model

The training of the ReS-TBNN model is implemented in FORTRAN using a massively
parallel in-house deep-learning library. To update the parameters of the neural network,
the quadratic loss function is minimised using the standard backpropagation algorithm10.
For example, for the pressure Hessian tensor, the loss function is given by

L =
1

2Ndata

Ndata∑

m=1

||Ĥ(m)
d −H

(m)
d ||2F . (11)

where Ĥd is the model output and || · ||F denotes the Frobenius norm. A similar loss
function can also be written for the viscous Laplacian term. The network weights and bi-
ases, as well as the exponents β(i) in Eqs. 9-10, are simply updated using gradient descent:
x = x− α(∂L/∂x), where x is the variable being updated and α is the learning rate. For
precise details pertaining to training parameters and behaviour of loss function, we refer
the reader to the recent work19.

4 Comparison of the ReS-TBNN Model with DNS

The effectiveness of the trained ReS-TBNN model will now be evaluated by comparing
its outcome with DNS results. We first focus on the Reynolds number trend of velocity
gradient statistics (this being a key contribution of the model). We particularly consider
the probability density functions (PDFs) that display increasingly non-Gaussian tails with
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Figure 2. Comparisons of probability density functions (PDFs) of the energy dissipation rate, non-
dimensionalised by the mean value, as obtained from network model and DNS. Panels a-c show the comparison
at Rλ = 140, 650 and 1300, respectively, on log-log scales. We reiterate that Rλ = 1300 is never seen by the
model. For a more comprehensive comparison, see Ref. 19.

increasing Reynolds number, because of intermittency. All components of A exhibit inter-
mittency, but it is convenient to consider scalar quantities of direct physical significance,
such as the energy dissipation rate, whose mean value is the net energy flux from large to
small scales. As is well known, the instantaneous energy transfers are highly intermittent,
leading to extreme dissipation events.

Fig. 2 shows comparisons of the PDFs of the energy dissipation rate, normalised by
its mean value, from DNS and the model. Panels a-c illustrate the comparison on log-log
scales at Rλ = 140, 650 and 1300, respectively, showing excellent agreement between the
two results. The ReS-TBNN model has been trained only up toRλ = 650 and has not seen
any data forRλ = 1300. For a closer inspection, panels d-e show the same comparisons on
linear-log scales for allRλ available. The model captures the intermittent tails qualitatively
well, though the extreme events are overpredicted (see below). We believe that this over-
prediction occurs because of the Reynolds number scaling of the tensor bases; essentially,
the rescaling serves to normalise the tensor and the extreme events have slightly stronger
influence on the weights and biases. Note that, similar to the dissipation rate, one can
also consider other scalar measures derived from A, such as enstrophy Ω = ωiωi, where
ωi = εijkAjk is the vorticity vector (with εijk being the Levi-Civita symbol). Although
not shown here, the agreement observed for enstrophy is similar.

The over prediction by the model occurs principally for events with probability less
than about 10−9. Such events are obviously very important for high order moments, but
the reliability of such very large moments is not quite assured for the DNS data itself.
For example, suppose we compute the sixth moment of the energy dissipation rate. This
is equivalent to obtaining the 12-th order moment of velocity gradients, which would be
stretching one’s credulity even for the large size of the present database. To better under-
stand how well the model and the DNS agree, it is more useful to directly compare some
moments from the PDFs. For this comparison and accompanying discussion, we refer the
reader to recently published work19.

In addition to the PDFs and moments, it is also important to capture the structure of
the velocity gradient tensor. We examine a well known universal results to this end, the
alignment of the vorticity vector with the eigenvectors of strain tensor, shown in Fig. 3.
Panel a shows the PDFs of the cosines of the alignment from DNS. Consistent with the
well known result from the literature15, the vorticity preferentially aligns with the second
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Figure 3. Comparison of the PDFs of the cosine of the angles between the vorticity unit vector ω̂ and the eigen-
vectors of the strain tensor ei, corresponding to eigenvalues λi, where λ1 ≥ λ2 ≥ λ3. Panel a shows the result
from DNS corresponding to Rλ = 1300 in solid lines and Rλ = 140 in dashed lines. Panel b shows the result
from the network model corresponding to sameRλ values in solid and dashed lines. The alignment PDFs exhibit
no Rλ dependence in DNS; the model shows similarly negligible dependence.

eigenvector of strain, and is weakly orthogonal to third eigenvector; whereas there is no
preferential alignment with the first eigenvector. There is virtually no Rλ-dependence of
these PDFs (as noted in Ref. 16). In Fig. 3b the corresponding result is shown from the
ReS-TBNN model. The model captures the trends very well, with slight enhancement of
the respective alignments. This trend is consistent with the result in Fig. 2 where the model
slightly overpredicts extreme events (note that the alignments are enhanced when consid-
ering extreme events16). We also note that the model shows only very weak Reynolds
number dependence of the alignment properties, which is inconsequential for all practical
purposes.

5 Concluding Remarks

In fluid dynamics and turbulence, the DNS of Navier-Stokes equations on massive super-
computers is now an established area for gaining a fuller understanding of flow physics,
leading to more reliable predictions. However, both theoretical and practical needs demand
ever-increasing size of computations, so that fluid turbulence will always remain, for the
foreseeable future, as one of the frontier computational problems, no matter how large the
supercomputers become.

In this regard, the major bottleneck is the need to simulate small scales of turbulence
with high fidelity. To make progress on real problems, one needs to model small scales
well, for instance in large-eddy simulations (LES) where large scales are resolved, but
small scales are modelled assuming a degree of universality. This modelling approach has
been largely guided by “human learning”, often resulting in ad hoc considerations depend-
ing on the flow. As modern methods of deep machine learning have expanded, it appears
possible for them to aid in modelling by directly learning from vast amount of high-fidelity
data that is already available over some range of Reynolds numbers. In this scenario, deep
neural networks are allowed to do the fitting at a deeper level of instantaneous data, in the
process satisfying a substantially larger set of constraints than possible by “human learn-
ing”.
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In this paper, we have made an attempt towards our stated goal. We have demonstrated
that the small scale dynamics of turbulence, as captured by velocity gradients, can be mod-
elled reasonably well using deep neural networks. The deep neural networks are set up
to functionally model the nonlocal pressure and viscous contributions to velocity gradient
dynamics. The networks are then trained on a range of Reynolds numbers available from
DNS, and the training is leveraged to predict results at higher Reynolds numbers, whose
properties the network does not know in advance. The effort is very encouraging not only
in predicting the intermittency of velocity gradients with increasing Reynolds number, but
also various signature topological properties of the velocity gradient tensor, such as align-
ment of the vorticity with strain rate eigenvectors, and the joint PDFs of invariants display-
ing a tear-drop shape. Overall, the modelling effort developed here provides a substantial
improvement upon the prior work, especially with respect to the robustness of the local
functional modelling of pressure and viscous terms across a range of Reynolds numbers.

There are certain shortcomings of the trained model when considering truly extreme
events; fortunately, they contribute significantly only to very high order moments. Nev-
ertheless, it should be possible to further improve this aspect by incorporating the current
deep learning approach in alternative frameworks for velocity gradient dynamics, which in-
corporate Reynolds number dependencies more naturally. Finally, it would also be worth
expanding the current effort in a more concerted way to other modelling paradigms such
as LES25 – allowing one to tackle more complex turbulent flows at Reynolds numbers of
practical interest in nature and engineering. Such an extension can be accomplished, for
instance, by considering filtered velocity gradient tensors, which would be amenable to the
same tensor framework as utilised here22, 21. Likewise, the framework developed here can
also be extended to study the dynamics of scalars in turbulent mixing problems especially
in the high Schmidt number regime26.
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Numerical simulations of plasmas are crucial to the design and development of techniques and
facilities aimed at furthering our understanding of the Universe and of the interaction between
lasers and plasmas. To do so effectively, the large scale separation that characterises plasmas
has to be overcome, both using new computational techniques and HPC resources. Here, we
will see two examples of such cutting-edge simulations.

Numerical simulations constitute an irreplaceable support to the design and development
of techniques and facilities aimed at furthering our understanding of the Universe and of
the interaction between lasers and plasmas. These two contributions highlight how inno-
vative numerical techniques and HPC resources such as the ones provided at the Jülich
Supercomputing Centre have to be leveraged together to simulate new facilities and sce-
narios.

Plasma accelerators
Acceleration of particles to the extreme energies (TeV) required to drive discoveries in
particle physics can be achieved with extreme large (∼ hundreds of kilometres) linear col-
liders. Plasma accelerators are considered a promising technology to deliver extreme high
energy particles using more compact facilities delivering higher acceleration gradients with
respect to linear colliders. Designing an effective plasma accelerator requires to be able to
accurately model the interaction of a driver beam (either a charged-particle or a laser beam)
with the electrons and ions in a plasma, overcoming the large scale separation between sys-
tem scales (kilometres) and the transverse size of the colliding beam (10s of nanometres).
Thévenet et al. describe how to do so using different descriptions for beam and plasma
macro-particles, adaptive mesh refinement and a code optimised for GPU clusters.

Free Electron Lasers
Coherent light amplification and laser technology have transformed fields such as material
science, medicine and industry, which all rely on the production of stable, coherent and
controlled light sources. Free Electron Lasers (FELs) use beams of electrons travelling
at relativistic speeds through magnetic structures called undulators to generate coherent
light; seeding techniques can be used for improving the coherence and quality of the beams.
Niknejadi and Schaper highlight the importance of end-to-end simulations of FEL facilities
such as the FLASH facility at DESY, which is being upgraded and will soon feature two
independently tuneable FEL lines. They show how their simulations are instrumental to
the improvement of coherence and stability of seeded FELs, and how the incorporating of
synthetic datasets has lowered computational demands and facilitated parameter scans.
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Improvements in coherence, stability, and control of Free Electron Lasers (FELs) have advanced
research and development in both FEL and computational approaches. To improve coherence,
methods such as external seeding of FELs are explored where external laser pulses are lever-
aged to initiate seeded pre-bunching for coherent emission and amplification. Externally seeded
approaches, combined with finely tuned control mechanisms, enable FELs to achieve high co-
herence, precision, and stability, meeting the advanced demands of the photon user community.
To support these initiatives, we first performed comprehensive start-to-end (S2E) simulations
of the linac-based FEL FLASH1, which is on track to upgrade to a seeded FEL. Next, we gen-
erated synthetic datasets requiring fewer computational resources, which allowed us to explore
a broader parameter space efficiently. This approach enabled us to perform multidimensional
optimisation of seeded FEL, identifying stable operational points in the presence of machine
jitter, which was made possible by the high-performance computing resources of JUWELS. We
expect the extension of this work to enhance FEL performance and coherence at the upgraded
facility.

1 Introduction

In just over sixty years, the development of coherent light amplification and laser technol-
ogy has transformed fields like material science, medicine, and industry. The world’s first
laser was constructed using a spiral flashlamp surrounding a ruby rod, approximately 1 cm
in diameter, built by Theodore Maiman in 19601. This design was based on earlier ground-
breaking work by Townes and Schawlow2. In this laser, the spiral flashlamp provides an
intense burst of light to excite the atoms in the ruby rod, which is the laser medium. When
these atoms absorb energy, they enter an “excited” state and later emit photons in a process
known as stimulated emission. The laser requires a mechanism to amplify and direct the
energy for the emitted photons to form a coherent beam. This amplification was achieved
through the use of a laser cavity. The flashlamp can only provide short bursts of light,
limiting the laser’s operational efficiency. In addition, factors like the gain medium’s in-
ability to support population inversion at high photon energies and limitations of optical
cavities – composed of mirrors that reflect and amplify light – prevent these lasers from
operating at the shorter-wavelength end of the spectrum, such as in the vacuum ultraviolet
(VUV) and X-ray regions.

A few years later, it was shown that lasers could generate ultrashort pulses by locking
the phases of different light modes in the cavity, yielding a single intense pulse3. This
advancement facilitated applications requiring short, high-energy light pulses, like preci-
sion spectroscopy. Another critical development was Chirped Pulse Amplification (CPA),
which amplifies ultrashort pulses to high intensities without damaging the laser medium by
stretching the pulse before amplification and then compressing it back4. This technique has
led to significant increase in laser intensities, supporting applications such as laser-plasma
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accelerators. Additionally, High Harmonic Generation (HHG) enabled the conversion of
laser light into high-frequency harmonics, advancing laser applications into the extreme ul-
traviolet and soft X-ray regions, crucial for attosecond science to observe rapid processes
like electron dynamics in atoms5.

Another paradigm shift was the successful demonstration of Free Electron Lasers
(FELs) in 19776, which operated without a traditional lasing medium. FELs use beams
of electrons travelling at relativistic speeds through magnetic structures called undulators
to generate coherent light. Therefore, various problems induced by conventional gain me-
dia (e.g. thermal and damage issues or accessible wavelength) can be overcome in an FEL,
resulting in a drastically expanded wavelength range and producing high-energy, tunable
pulses in the X-ray range. Also, some FEL lasing methods/schemes do not require a cavity.
One method of generating these pulses is Self-Amplified Spontaneous Emission (SASE)7,
where the spontaneous emission of the electron beam is amplified as it passes through the
undulator, producing a highly intense, coherent beam. However, SASE lasers suffer from
limitations such as relatively poor temporal coherence due to the random nature of the
initial emission, which limits their output applications.

Seeding techniques8, 9 are a significant research and development topic for improving
the coherence and quality of FEL beams. Generally speaking, in a seeded FEL, as shown
in Fig. 1, external coherent laser pulses are used as “seed” and injected into the FEL, which
synchronises the electron beam’s emission, producing a more coherent and stable output.
In principle, this approach allows finer control over the final FEL output properties, making
it ideal for high-precision materials science, chemistry, biology, and many more applica-
tions. In practice, optimising the performance of a Free Electron Laser and tailoring the
FEL output involves a deep understanding of the physical principles governing its many
components – such as the injector, linac, and undulators. Each element is modelled by
specialised simulation tools used to predict how they interact and influence other beamline
components, especially when considering coupled effects, like how the variation of energy
along the longitudinal profile of the beam affects optimisation and photon output. Nonlin-

Figure 1. Schematic of Seeded FLASH1: Unlike a SASE FEL (i.e. FLASH2) setup, where the electron beam, af-
ter acceleration, passes directly through the radiators, a seeded FEL setup involves several additional components.
These include modulators, dispersive sections, and synchronised seed lasers, which initiate seeded pre-bunching
for coherent light amplification. S2e simulations for seeded FELs are complex and need careful interfacing be-
tween multiple simulation tools to model the beam dynamics and interactions throughout the system.
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ear effects also need to be considered; however, thresholds must be established to balance
precision and computational complexity. Implementing robust control systems requires
advanced algorithms and computational tools to fine-tune FEL performance for various
applications.

The following sections address key computational challenges in modelling FEL sys-
tems. We introduce the FLASH facility to illustrate the complexity of simulating inter-
actions across various beamline components and emphasise the need for efficient data
exchange among simulation tools. Next, we discuss how utilising the JUWELS10 su-
percomputer has helped us overcome specific challenges in S2E simulations, leading to
more accurate and faster computations. We also compare the computational demands of
synthetic datasets with those of S2E simulations and showcase an example of our multi-
dimensional optimisation results. Finally, we provide a brief outlook on future research
directions to enhance the performance and capabilities of FEL systems further.

2 Computational Modelling

Accelerator-based light sources have been modelled through specialised simulation tools
that address beam dynamics from the photoinjector stage to the undulator, as outlined in
Ref. 11 for SASE FELs. These simulations capture detailed interactions at each beamline
stage. Tools like PARMELA12 or OPAL13 simulate the photoinjector, while IMPACT-Z14

and elegant15 handle linear accelerator (linac) dynamics and compression, respectively,
and GENESIS16 models the FEL section, each focusing on specific aspects of beam dy-
namics such as wakefields, coherent synchrotron radiation, and phase space evolution. The
setup is inherently more complex for seeded FEL systems. As shown in Fig. 1, a seeded
FEL beamline includes additional components such as synchronised seed lasers, modula-
tors, and dispersive sections, which are critical for initiating the seeded pre-bunching for
coherent emission. Each element – from lasers to modulators, dispersive sections, and ra-
diators – requires precise tuning to achieve optimal performance. This level of detail and
interdependence makes S2E simulations for seeded FELs far more intricate than SASE
systems.

Simulation tools for accelerator-based light sources often produce outputs in unique
formats, making compatibility between different stages challenging. To bridge these gaps,
we developed in-house libraries17 that standardise data transfer, converting formats be-
tween tools to ensure seamless integration. Fig. 2a-c show the different stages of seeded
FEL simulation. Fig. 2d shows the colour-matched codes for each element of the S2E sim-
ulation workflow. Furthermore, many of these codes were originally developed in differ-
ent computing eras, often transitioning from 32-bit to 64-bit architectures. Benchmarking
these tools for efficiency is crucial to minimising computational resources while maintain-
ing accuracy. We prioritise using tools that yield the same insights with reduced resource
consumption. Given the resource-intensive nature of these simulations, creating reusable
datasets that remain informative for future research has been central to our approach. This
strategy enables us to share comprehensive, high-quality data across teams, supporting
ongoing advancements while optimising resource use responsibly.
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Figure 2. Layout for simulation and optimisation. In the first modulator-chicane stage, an electron beam (eBeam)
interacts with Seed1 laser in (Mod1) and then experiences strong dispersion (a). In the second modulator-chicane,
the fine bunching of eBeam is optimised (b). The radiation from the seeded pre-bunched beam is amplified in
the radiator section (c). The start-to-end (S2E) simulation workflow is shown in (d), where the tool used for each
element is shown in a matching colour. Horizontal arrows correspond to eBeam handover, and vertical arrows
correspond to field handover.

2.1 FLASH: A High Repetition Rate Seeded FEL

The FLASH Facility at DESY is being upgraded and will soon feature two independently
tunable FEL lines – FLASH1 operating in seeded mode and FLASH2 in SASE mode18.
This would allow the utilisation of various schemes such as High-Gain Harmonic Gen-
eration (HGHG) as detailed in Ref. 8 and Echo-Enabled Harmonic Generation (EEHG)
as detailed in Ref. 9, covering ultrashort single cycle, long pulse mode, and a spectral
range from 60 nm to 4 nm, including the oxygen K-edge. Specifically, FLASH1 will offer
high-quality pulses with precise polarisation and coherence control. As a Superconducting
Radio Frequency machine, FLASH will be able to deliver long bursts of up to 5000 highly
coherent FEL pulses per second at bunch repetition rates of 1 MHz.

2.2 Objectives of Simulation Studies in Seeded FELs

Coherent amplification is the cornerstone of FEL technology, enabling it to generate light
that, like conventional lasers, is highly monochromatic (narrow bandwidth centred on a
single wavelength), highly directional, and comprised of photons oscillating in unison –
making FELs ideal probes with exceptional spectral and temporal resolution. Furthermore,
the high repetition rate of FLASH means that probing light pulses with precise spectral and
temporal resolution are available in large numbers, enabling high-statistics data collection
comparable to that of synchrotron facilities. Thus, the primary goal of our simulations,
analyses, and optimisations is to develop a stable, coherent source.

As discussed, the seeded FEL setup leverages external lasers as seeds. For FLASH1,
we use seed lasers that employ a variation of CPA involving an optical parametric amplifier
(OPA) for laser pulse amplification, providing both broad tunability and high peak pow-
ers19. The OPA relies on nonlinear optical processes, where a high-power “pump” laser
transfers energy to a weaker “signal” laser, simultaneously generating an “idler” beam.
This setup results in an Optical Parametric Chirped-Pulse Amplified beam with high-power
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pulses in the ultraviolet (UV) spectrum (290-317 nm specifically), delivering Fourier lim-
ited pulses of approximately 50 femtoseconds. The seeded FEL then produces even shorter
pulses by a factor of n−1/3 (where n is the harmonic number)20, 21, achieving higher en-
ergies and shorter wavelengths, with λFEL ∝ λseed/n. The system’s stability depends on
both the seed laser and electron beam parameters. Fig. 2 illustrates the two seeding and
final amplification segments in the seeded S2E simulation setup that can be independently
tuned and optimised. Specifically, for SASE FELs, only section “c” (the undulators/radia-
tors) requires modelling; for HGHG, both sections “b” (dispersive section and modulator)
and “c” are involved; and for EEHG, sections “a”, “b”, and “c” are essential. These ad-
ditional segments add complexity to data transfer or “handshaking”; each stage must pass
precise beam properties (i.e. beam at the beamline’s “I”, “II”, and “III” positions) to the
next simulation step.

2.3 Challenges Addressed by JUWELS Resources

Compared to older HPC architectures, such as JURECA with Intel Xeon CPUs, JUWELS’
AMD EPYC CPUs provide higher core density, greater memory bandwidth, and better
energy efficiency, making them ideal for large-scale, CPU-based sequential simulations.
For instance, mem192 cores are suitable for efficiently handling memory-intensive tasks
such as beam conditioning and interfacing between different software, ensuring good in-
put/output performance. Fig. 3 shows such a processed beam at the location “I” of the
beamline. The uniform CPU architecture has also helped minimise simulation artefacts

Figure 3. Slice parameters of the beam from the S2E simulation at the “I” location. This beam, generated by
IMPACT-Z after multiple optimisation runs in the acceleration and compression sections, is processed as input
for GENESIS, which models the interaction within the modulator.
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and support high data fidelity. Additionally, the large number of available core hours on
JUWELS enables the generation of a comprehensive dataset for benchmarking and ensur-
ing cross-code consistency, which is essential during and after the upgrade of FLASH (i.e.
when the experimental campaigns become possible on the machine).

Moreover, the JUWELS Booster GPU module, added in 2020, led to faster optimisa-
tion algorithms, making it possible to develop new and faster studies leveraging existing
datasets. This approach reuses existing data and accelerates computational workflows to
facilitate the creation of better synthetic datasets for future simulations and studies.

3 Simulation and Optimisation Workflow and Stability Assessments

Initially, parameters for seeding sections “a” and “b” (highlighted in Fig. 2) are optimised
using a simplified model focused on achieving the best bunching at the target harmonic.
However, simplified models are insufficient for precise optimisation and stability checks.
For instance, using a beam with Gaussian current and energy spread distribution, a flat
energy profile, and uniform beam size and offset for all slices would only reveals the effects
of current variation during relative electron and seed laser delay scans, which has minimal
implications for the seeding sections. This highlights the need for S2E simulation. In
such simulation, electron beam acceleration and compression are modelled in IMPACT-Z,
building on previous work including longitudinal space charge and other collective effects,
analogous to those discussed in Ref. 11 and 22. Seed lasers are simulated in Chi3D23 and
converted into a format compatible with GENESIS. Both the electron beam and seed laser
are then used to simulate the modulator interaction in GENESIS, with the output further
converted for compatibility with elegant to account for coherent synchrotron radiation
effects in dispersive segments (chicanes). Expanding on previous work, we compared the
effects of boundary conditions on the bandwidth of seeded pre-bunched beams. This study
is submitted for publication24.

Figure 4. 2D heatmap of bunching and bunching band-
width, with square size indicating the normalised
bunching bandwidth at beamline position “III”.

Figure 5. 2D heatmap of FEL pulse energy and length
after six radiators for the 4 nm working point. Square
size indicates the normalised pulse length.
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An effective optimisation strategy requires a multi-objective approach targeting key
parameters that drive system performance. The heat maps in Fig. 4 and Fig. 5 are typical
visualisation tools to illustrate the outcomes of such studies.

In sections “a” and “b”, the amplitude of energy modulation and the dispersion
strength, represented by the electron delay or path difference, are critical for controlling
optimal electron bunching at the desired harmonic. Analytical methods from Ref. 25 are
then used to predict the seeded pre-bunched beam’s performance in the radiator. However,
this serves as an approximation to reduce the scan parameter space, as discussed by the
authors in Ref. 26. Finally, iterative tapering is employed to enhance energy extraction in
FELs with tapered sections, maximising radiation power.

We learnt that maximising power can affect the spectral purity of the final FEL beam.
For extended studies, we turned to synthetic simulations that replicate some or all charac-
teristics of S2E generated beams while offering smoother profiles and reduced noise. S2E
simulations typically require close to 2000 CPU cores to track all particles in the beam.
With handshaking and checks at each interface step, a full S2E simulation takes at least
5-6 hours and uses 10,000-30,000 core hours. In contrast, synthetic simulations can be run
in less than an hour and require fewer cores (needing less than 1,000 core hours per run)
due to smoothed-out beam tails and heads. This reduction enabled us to perform multiple
multi-objective optimisations, as described in Ref. 22, exploring trade-offs between opti-
mising for short pulse length, high power, or narrow bandwidth while keeping the total
carbon footprint of our project low27.

In Figs. 4 and 5, for example, we observe that bunching and bunching bandwidth is
optimised for the 43-micron delay and seed laser power of 62.4 MW. Still, a working
point in the amplification stage that yields a shorter FEL pulse is possible with a shorter
delay and less laser power. We chose this as a more stable point since the seed laser has
less power fluctuation at lower power. Finally, Fig. 6 shows a timing scan that captures
essential features of the electron beam from S2E simulation, such as energy variation and
position offset along the bunch. For this scan, we start with the seed laser waist overlapping
with the electron beam, where the offset is minimal. We then vary the delay between these

Figure 6. The effect of timing jitter on an optimised working point for an electron beam modelled based on S2E
beams. In (a), 100 random samples from 15 timing points in parts (b-d) mimics data taken from the spectrum
during commissioning or setup. (b) Impact on quality of the beam: as the quality factor increases, the FEL beam
can diverge more rapidly downstream. (c) and (d) illustrate the effect on power and bandwidth.
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two beams and observe changes in FEL power, bandwidth, and quality factor. This study is
representative of impact of timing jitter in machine. A comprehensive set of similar studies
is being prepared for publication.

4 Concluding Remarks

Utilising the high-performance computing resources available at JUWELS, we have en-
hanced our S2E simulations by incorporating synthetic datasets. This approach has sig-
nificantly lowered computational demands and has facilitated thorough parameter scans.
Our established simulation and optimisation workflow aims to improve the coherence and
stability of seeded FELs, focusing on upgrading FLASH1. Our approach allows multi-
objective optimisation and investigates trade-offs between tuning for short pulse length,
high power, or best spectral purity. This work aims to support operation of FELs and meet-
ing the needs of the photon user community. Future studies will extend the current analyses
to enhance the FLASH facility’s control software and online optimisation.
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Particle colliders, essential for advancing our understanding of the universe, are among the
largest research facilities, often spanning many kilometres. Plasma acceleration – a cutting-
edge technique that harnesses the immense electric and magnetic fields within plasma – offers
a promising solution to reduce both the cost and size of these large-scale facilities. Recent
advancements in the open-source, GPU-capable code HiPACE++ have enabled the exploration
of this highly demanding plasma acceleration regime on the JUWELS Booster supercomputer.
Notably, it was found that accelerating flat beams, commonly used in particle colliders, presents
new and unique challenges.

1 Introduction

Particle accelerators have long been essential to scientific progress, driving discoveries in
particle physics that lay the foundation of our understanding of matter. Despite many open
questions in the Standard Model of particle physics, such as the nature of dark matter,
dark energy, and the asymmetry between matter and antimatter, no major breakthrough
has been achieved since the discovery of the Higgs Boson in 20121, 2. Two complemen-
tary approaches are actively discussed in the particle physics community to explore the
unsolved mysteries of our universe: a discovery collider with a centre-of-mass per par-
ton energy of 10 Tera-electronVolt (TeV)3; or the precise measurement of the properties
of the Higgs Boson with a so-called Higgs factory, which has been considered highest
priority by the European Strategy for Particle Physics4. The construction and operation
costs associated with a linear collider in this regime using common radio-frequency-based
accelerator technology is enormous, even for a world-wide collaboration effort. This is
because the accelerating gradient with these technologies is limited to ~100 MeV/m,
such that TeV-scale energies requires acceleration over a distance on the order of, or
surpassing, 100 km.

Plasma accelerators5 are a promising technology to make these facilities orders
of magnitude more compact and more affordable due to their ultra-high accelerating
gradients of 1-100 GeV/m. Plasma is the fourth state of matter, in which the light electrons
are separated from their heavy ions. In the so-called bubble regime of a plasma accelerator,
a drive beam (either a charged-particle or laser beam) excites a strong plasma wake, by
pushing away the light electrons. The remaining ions pull back the electrons, such that
the electrons return to the propagation axis at some distance behind the driver, giving the
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Figure 1. Illustration of a plasma accelerator. A drive beam (here: a particle driver, cloud of blue dots, on the
right) propagates near the speed of light to the right through a plasma and excites a bubble-shaped plasma wake.
In the plasma wake, strong electromagnetic fields decelerate the drive beam (blue) and accelerate the witness
beam (fields in red, witness beam as cloud of blue dots) at the back of the plasma bubble. The arrow shows the
propagation direction, assumed to be z by convention.

wake a bubble-like shape. In this plasma wake, extreme electromagnetic fields decelerate
the drive beam and accelerate the witness beam, as illustrated in Fig. 1. The bubble size
is typically smaller than a millimetre in all directions, and the beams can be even much
thinner than this in the transverse (x and y) directions, as is the case on Fig. 1.

Recent designs propose plasma-based colliders both for Higgs factories6, 7 and for the
10-TeV-range discovery machines with length below 10 km8. To overcome many techno-
logical challenges, a mature design of such a collider requires realistic simulations. How-
ever, already modelling a plasma-based collider at this energy is extremely challenging
due to the immense disparity of length scales: while the full accelerator has a length on
the order of kilometres, the transverse beam size of the colliding beams is only on the order
of 10s of nanometres, an astounding difference of 11 orders of magnitude!

In this article, we show that by separating the time and length scales, and adding a
novel mesh refinement algorithm, we can drastically advance the state-of-the-art of full
3D simulations of plasma-accelerators for collider applications, using the computing
resources of the JUWELS Booster provided by the Forschungszentrum Jülich. These
improvements enabled us to perform realistic and fully converged simulations of most
challenging scenarios and unveil new effects for the acceleration of flat beams.

2 Numerical Methods

Depending on temperature and size, a plasma can exhibit very different behaviours. In
the Sun, for example, the plasma can be described as a fluid. This is not the case for
plasma acceleration, where the driver triggers a violent plasma response where, in princi-
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Figure 2. Illustration of one HiPACE++ time step. At the beginning, only the driver (dark purple colourmap on
the right of the 3D domain, in this case a laser driver) and the accelerated beam (cloud of dots on the left of
the 3D domain) at time step n are known. The beams and the simulation window propagate towards the right
near the speed of light. A 2D slab of plasma containing both electromagnetic field and plasma macro-particles is
initialised on the rightmost longitudinal cell (in the ζ direction), or slice, of the domain, and advanced slice by
slice to the left to compute the plasma response (grey-scale colourmap) from the head to the tail of the domain.
The current slice being computed is shown in pink, beam quantities at time step n are shown in yellow, those
already pushed to time step n+1 are shown in dark purple. The beam quantities in the current slice are advanced
from n to n + 1 during the swipe. Mesh refinement of the slice being computed can be used to resolve fine
structures around the beam: this is illustrated in the zoom on the right (ghost cells of level 1 are shown in red).

ple, the position and momentum of each particle must be resolved to capture the dynamics.
Particle-in-cell (PIC) is a common and affordable method for this kinetic dynamics,
where a grid of a 3D domain is used to describe the electric and magnetic fields – the
3 components of each field, and other quantities appearing in Maxwell’s equations,
are stored in every grid cell – and a collection of macro-particles – each representing
a set of physical particles, moving freely in the simulation domain, to describe the
plasma dynamics. A time iteration of a standard PIC loop contains four steps to advance
self-consistently the fields on the grid and the plasma macro-particles: (i) the electric and
magnetic fields on the grid are advanced by one time step; (ii) macro-particles gather the
fields from their neighbouring cells; (iii) macro-particles are advanced by 1 time step; (iv)
they deposit their charge and current densities on the neighbouring cells.

In a plasma accelerator in particular, the beams can most of the time be assumed to
evolve on a much slower time scale than the plasma response. This assumption, called
the quasi-static approximation, allows for a treatment of separate time scales for beams
and plasma and is used in HiPACE++9, 10. By enabling a different handling of beam
and plasma macro-particles, the quasi-static approximation enables much larger time
steps for the beam propagation, speeding up the simulations by a factor depending on
the beam energy, typically 50 to 200 for beams with an energy of 1 to 10 GeV. Fig. 2
describes one time step of a HiPACE++ simulation, see caption for algorithmic details. In
the head-to-tail swipe over the longitudinal co-moving variable ζ = z − ct, the algorithm
to advance the plasma slab from slice i (ζ = i∆ζ) to slice i− 1 (ζ = (i− 1)∆ζ) is shown
below. In HiPACE++, each of these operations is computed on a single GPU, keeping
the data on the GPU memory, to avoid time- and energy-consuming communications and
benefit from optimisations11:
• Deposit beam and plasma density on the grid of level 0;
• Solve for fields on the grid of level 0;
• Interpolate fields to ghost cells of level 1;
• Solve for fields on the grid of level 1;
• Advance plasma particles by 1 slice (-=∆ζ);
• Advance beam particles in current slice by 1 time step (+=∆t);
• Advance laser cells in current slice by 1 time step (+=∆t);
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Figure 3. HiPACE++ parallelisation pipeline. On the current rank r, the communication buffer (stored in GPU
or host memory) contains the beam (particle and laser) data and handles fully asynchronous exchanges with the
neighbouring ranks. The data of the current slice is loaded to the compute arrays (in GPU memory), where the
slice is computed and the resulting beam data is sent back to the buffer. An asynchronous MPI send is triggered,
and an adjustable number of allocated slots allows for hiding load imbalance between ranks. Particles travelling
significantly slower than the speed of light may slip backwards (to the left), and are then stored in the appropriate
buffer slot.

The mesh refinement can be used to resolve small regions of interest that require high
resolution, e.g., a tiny patch around the transversely small witness beam. In our setups, the
refinement ratio from the refined level 1 to the base level 0 is typically on the order of 10 to
100 per transverse direction, leading to a speedup of 102 to 104 in comparison to a full sim-
ulation at high resolution. The computational steps specific to mesh refinement are shown
in red and blue in the bullet points above, where the colours refer to the right schematic in
Fig. 2. Furthermore, it should be noted that a full simulation at high resolution is often not
possible due to memory constraints. Finally, as illustrated on Fig. 2, the computation of one
time step for the full 3D domain in HiPACE++ is serial as it consists of a loop over longitu-
dinal slices from the head of the box (on the right) to the tail. This makes standard domain
decomposition inapplicable, at least in the longitudinal direction. Nevertheless, the part
of the domain already computed (purple on Fig. 2) has already been advanced to the next
time step and can be sent to the next rank for computation. This feature is fully capitalised
on in HiPACE++ through an advanced pipeline algorithm illustrated on Fig. 3, where the
beam (laser or particle) data of each slice is sent to the next rank as soon as the slice is
computed. Thus, the combination of mesh refinement and the novel pipeline provides
drastic speedup to modelling plasma accelerators with quasi-static PIC codes.

3 Steps Towards a Plasma-Based Particle Collider

To understand the problem we are about to discuss, we need to review some basic prin-
ciples of a linear electron-positron collider. In a linear collider, two high-energy particle
bunches are brought to head-on collision at the interaction point. To interpret the studied
physics processes correctly, the kinetic energy of the colliding particles needs to be pre-
cisely known. Therefore, the energy spread in the particle bunch is an important parameter
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of an accelerator for a collider. The performance of a collider is measured by the event
rate of the desired physics process, which scales with another important parameter,
the luminosity. The luminosity can be calculated from geometric considerations (for the
interested reader, a good overview is given in Ref. 12). For beams with a Gaussian particle
distribution, the luminosity scales inversely with the product of the root-mean-square (rms)
beam size in the transverse planes 1/(σxσy) at the interaction point. The tighter the beams
are focused at the collision point, the higher the event rate.

Rather than the beam transverse size at the interaction point, domain scientist define
a new quantity to describe the beam’s quality: the emittance. While strongly related
to the beam size, it has the advantage of being at best preserved during acceleration, and
growing in non-ideal conditions, such that tracking its evolution in a beamline helps scien-
tist to quickly identify and address causes of emittance degradation (growth) in the beam-
line. The achievable beam size in each plane at the interaction point is proportional to the
beam emittance ε[x,y]. Hence, the event rate scales inversely with 1/

√
εxεy , which high-

lights why preserving the emittance as low as possible during acceleration is paramount. In
particular, in order to preserve the emittance of a Gaussian particle beam, linear focusing
fields are required. Nonlinear fields can lead to a finite emittance growth, that depends on
the shape and strength of the nonlinearity.

The desired effects at the interaction point come from individual interactions, colli-
sions involving a single pair of particles (one of each colliding beam). Unfortunately, the
beams are also affected by collective interactions, in particular beamstrahlung where the
space-charge force of each beam focuses the other beam, leading to significant deflection
of trajectories and the emission of synchrotron radiation and loss of energy for the par-
ticles. Interestingly, beamstrahlung scales inversely with the sum of the rms beam sizes
1/(σx + σy)13 and hence 1/(εx + εy). To maximise luminosity ∝ 1/

√
εxεy while min-

imising beamstrahlung∝ 1/
√
εx + εy , the community operates with flat beams, much

bigger in the x direction than in y, namely εx � εy . Such beams break the axial sym-
metry typically assumed for plasma accelerators and motivate the use of a 3D code like
HiPACE++, which was prohibitively expensive up to now.

We were able to simulate the HALHF collider6, a plasma-based Higgs factory proposal
that received considerable attention in plasma and radio-frequency accelerator communi-
ties, including all relevant physics and fully resolving the small, flat witness beam with
mesh refinement. A previously unknown effect was uncovered: the emittance mixing of
flat beams in plasma accelerators due to transversely coupled wakefields14. Just like two
mechanical oscillators can affect each other if there is a coupling term, as largely studied
with pendulums15–17, the x and y dynamics of each beam particle can be coupled in
the plasma accelerator in the presence of non-linearity in the focusing force causing a
resonance. In the worst case, the coupling causes the flat beam to become round (its large
emittance in x is transferred to y), reducing the luminosity by orders of magnitude.

This is shown in Fig. 4, where the solid blue line shows the emittance in x and the
dashed blue line the emittance in y. While the emittance in x decreases, the emittance
in y increases drastically, leading to a significant increase of their geometric average. A
resonance condition was identified as responsible for the worst-case scenario. This led to a
possible solution: the resonance can be broken by using a flat drive beam (orange lines),
leading to a suppression of the emittance exchange, as shown by the constant emittance in
x and the resulting much smaller increase of the emittance in y. Note that the remaining
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Figure 4. Emittance mixing in the first plasma stage of the HALHF collider. (a) For a round drive beam (blue
lines) the emittance of the witness beam in x (solid lines) decreases by 2 %, while the emittance in y (dashed line)
increases by 613 %. For a flat drive beam (orange lines) the emittance in x remains the same, while the emittance
in y increases by 9 % due to nonlinear mismatch (b) The corresponding geometric average of the emittance for
both cases. The emittance mixing with the round beam leads to a severe increase in √εxεy , while the nonlinear
mismatch increases it only slightly.

emittance growth is caused by the still-present nonlinearity and is expected, but could in
principle be prevented by advanced preparation of the witness bunch18.

As it was shown, modelling plasma accelerators for colliders with ultra-high resolution
can uncover effects that have major impact. The emittance mixing described here has
severe implications for any plasma-based collider using flat beams and significantly
affects their design. Besides uncovering emittance mixing in plasma accelerators, the
new mesh refinement capabilities were also used to simulate positron acceleration in a
warm plasma at unprecedented resolution, revealing that a finite temperature can improve
the beam quality during acceleration19, 20. In the future, HiPACE++ can be used to study
other relevant phenomena for plasma-based colliders, such as staging, or the impact of
radiation reactions of the beam particles.

4 Perspectives

The implementation of mesh refinement and our pipeline algorithm reduced considerably
the simulation cost, not only allowing for previously unattainable simulation setups, but
also making it possible to run large ensembles of simulations. This enables the use of
advanced optimisation methods, like multi-task Bayesian optimisation21 with our li-
brary Optimas22 shown in Fig. 5, to propose optimised solutions for the future challenges
of plasma acceleration for a collider application.
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Figure 5. Multi-task Bayesian optimisation uses many low-fidelity simulations (low resolution and/or reduced
model) to find an optimum with fewer production, and therefore more expensive, simulations. In this case, the
production simulations are done with FBPIC23, the reduced model uses Wake-T24, and the time-to-convergence
is considerably reduced provided the two models are sufficiently correlated. Reprinted figure with permission
from [A. Ferran Pousa et al., Phys. Rev. Accel. Beams 26, 084601 (2023)] Copyright 2023 by the American
Physical Society.
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