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Abstract

Current developments in the field of artificial intelligence and the neural network
technology supersede our theoretical understanding of these networks. In the limit
of infinite width, networks at initialization are well described by the neural network
Gaussian process (NNGP): the distribution of outputs is a zero-mean Gaussian char-
acterized by its covariance or kernel across data samples. Going to the lazy learning
regime, where network parameters change only slightly from their initial values, the
neural tangent kernel characterizes networks trained with gradient descent. Despite
the success of these Gaussian limits for deep neural networks, they do not capture
important properties such as network trainability or feature learning.

In this work, we go beyond Gaussian limits of deep neural networks by obtaining
higher-order corrections from field-theoretic descriptions of neural networks. From
a statistical point of view, two complimentary averages have to be considered: the
distribution over data samples and the distribution over network parameters. We
investigate both cases, gaining insights into the working mechanisms of deep neural
networks.

In the former case, we study how data statistics are transformed across network
layers to solve classification tasks. We find that, while the hidden layers are well
described by a non-linear mapping of the Gaussian statistics, the input layer extracts
information from higher-order cumulants of the data. The developed theoretical
framework allows us to investigate the relevance of different cumulant orders for
classification: On MNIST, Gaussian statistics account for most of the classification
performance, and higher-order cumulants are required to fine-tune the networks for
the last few percentages. In contrast, more complex data sets such as CIFAR-10
require the inclusion of higher-order cumulants for reasonable performance values,
giving an explanation for why fully-connected networks perform subpar compared
to convolutional networks.

In the latter case, we investigate two different aspects: First, we derive the network
kernels for the Bayesian network posterior of fully-connected networks and observe a
non-linear adaptation of the kernels to the target, which is not present in the NNGP.
These feature corrections result from fluctuation corrections to the NNGP in finite-
size networks, which allow the networks to adapt to the data. While fluctuations
become larger near criticality, we uncover a trade-off between criticality and feature
learning scales in networks as a driving mechanism for feature learning. Second,
we study network trainability of residual networks by deriving the network prior
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at initialization. From this, we obtain the response function as a leading-order cor-
rection to the NNGP, which describes the signal propagation in networks. We find
that scaling the residual branch by a hyperparameter improves signal propagation
since it avoids saturation of the non-linearity and thus information loss. Finally, we
observe a strong dependence of the optimal scaling of the residual branch on the net-
work depth but only a weak dependence on other network hyperparameters, giving
an explanation for the universal success of depth-dependent scaling of the residual
branch.

Overall, we derive statistical field theories for deep neural networks that allow us
to obtain systematic corrections to the Gaussian limits. In this way, we take a step
towards a better mechanistic understanding of information processing and data rep-
resentations in neural networks.



Zusammenfassung

Die aktuellen Entwicklungen im Bereich der künstlichen Intelligenz und neuronaler
Netzwerke im Besonderen übersteigen unser theoretisches Verständnis dieser Netz-
werke. Im Limes unendlicher Netzwerkbreite werden untrainierte Netzwerke bei In-
itialisierung als ein Gauß-Prozess, kurz NNGP, beschrieben: die Wahrscheinlichkeits-
verteilung der Netzwerkausgaben ist eine Gaußverteilung mit Mittelwert Null, der
durch seine Kovarianz charakterisiert wird. Der “Neural Tangent Kernel” beschreibt
trainierte Netzwerke im sogenannten lazy learning Bereich, wo sich die Netzwerk-
parameter während des Trainings mit Gradientenabstieg nur geringfügig von ihren
Anfangswerten unterscheiden. Trotz des Erfolgs dieser Gaußschen Charakterisierun-
gen von tiefen neuronale Netze, erfassen diese wichtige Eigenschaften nicht, wie die
Trainierbarkeit von Netzwerken oder das Lernen von Merkmalen aus den Daten.

In dieser Arbeit gehen wir über die Gaußschen Grenzwerte von tiefen neuronalen
Netzwerken hinaus, indem wir Korrekturen höherer Ordnung mithilfe von feldtheo-
retischen Methoden bestimmen. Aus statistischer Sicht sind zwei komplementäre
Beschreibungen von Bedeutung: die Wahrscheinlichkeitsverteilung der Datenpunk-
te und die Wahrscheinlichkeitsverteilung der Netzwerkparameter. Wir untersuchen
beide Fälle und bekommen so unterschiedliche Einblicke in die Mechanismen tiefer
neuronaler Netzwerke.

Im ersteren Fall untersuchen wir, wie die Datenstatistik durch die Netzwerkschich-
ten transformiert wird um eine Klassifikationsaufgabe zu lösen. Wir stellen fest, dass
die mittleren Netzwerkschichten durch eine nichtlineare Abbildung der Gaußschen
Statistik gut beschrieben werden, während die erste Netzwerkschicht Informationen
aus Kumulanten höherer Ordnung extrahiert. Die entwickelte Theorie ermöglicht es
uns, die Bedeutung von Kumulanten verschiedener Ordnungen für die Klassifikati-
on zu untersuchen: Bei MNIST ist die Gaußsche Statistik für den größten Teil der
Klassifizierungsleistung verantwortlich und Kumulanten höherer Ordnung sind not-
wendig, um die Netzwerke für zusätzliche Prozente anzupassen. Im Gegensatz dazu
erfordern komplexere Datensätze wie CIFAR-10 die Einbeziehung von Kumulanten
höherer Ordnung. Dies könnte erklären, warum feedfoward Netzwerke im Vergleich
zu Faltungsnetzwerken unterdurchschnittliche Ergebnisse liefern.

Im letzteren Fall untersuchen wir zwei verschiedene Aspekte: Erstens bestimmen
wir die Kovarianzen für den Bayes’schen Netzwerk-Posterior von feedforward Netz-
werken und stellen eine nichtlineare Anpassung der Kernel an den Zielwert fest,
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was beim NNGP nicht passiert. Diese Korrekturen der Kovarianzen resultieren aus
Fluktuationskorrekturen des NNGP in Netzwerken endlicher Netzwerkbreite, was
es den Netzwerken erlaubt sich an die Daten anzupassen. Während Fluktuationen
in der Nähe der Kritikalität größer werden, entdecken wir einen Trade-off zwischen
Kritikalität und Skalen in Netzwerken als treibenden Mechanismus für das feature
learning. Zweitens untersuchen wir die Trainierbarkeit von residuellen Netzwerken,
indem wir den Netzwerkprior bei der Initialisierung bestimmen. Daraus erhalten wir
die Antwortfunktion als Korrektur führender Ordnung des NNGP, die die Signalpro-
pagation in Netzwerken beschreibt. Wir stellen fest, dass die Skalierung des residu-
ellen Netzwerkzweigs durch einen Hyperparameter die Signalpropagation im Netz-
werk verbessert, da sie eine Sättigung der Nichtlinearität und damit einhergenden
Informationsverlust vermeidet. Schließlich beobachten wir eine starke Abhängigkeit
der optimalen Skalierung des residuellen Netzwerkzweigs von der Netzwerktiefe,
aber nur eine schwache Abhängigkeit von anderen Netzwerkhyperparametern, was
den breiten Erfolg der tiefenabhängigen Skalierung des residuellen Netzwerkzweigs
erklärt.

Insgesamt bestimmen wir statistische Feldtheorien für tiefe neuronale Netzwerke,
mithilfe welcher wir systematische Korrekturen zu den Gaußschen Beschreibungen
neuronaler Netzwerke berechnen. Auf diese Weise machen wir einen Schritt hin zu
einem besseren mechanistischen Verständnis der Informationsverarbeitung und der
Datenrepräsentation in neuronalen Netzwerken.
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Chapter 1

Introduction

Recent years have shown a great success of deep neural networks; from image recog-
nition (Krizhevsky, Sutskever, and Hinton, 2012), playing Go (Silver et al., 2016) to
predicting protein structures (Abramson et al., 2024). Already today we interact with
such systems on a daily basis via voice command for smart phones and other smart
devices, refined internet search, or personalized algorithms shaping what we are ex-
posed to on social media platforms. One of the most-prominent examples are large
language models such as Chat-GPT (Vaswani et al., 2017; Radford et al., 2018), which
has become ubiquitous at a rapid pace.

Despite the success of these technologies, the development in this field supersedes
our theoretical understanding of such systems. Starting from the simple but already
non-trivial perceptron (Rosenblatt, 1958) to foundation models (Bommasani et al.,
2022), network architectures have become ever more complex. Due to their black-
box character combined with inferring information directly from the given data sets,
unwanted behaviors may occurr: In image recognition, neural networks use features
that work well on the given data set but do not generalize well as they do not learn
the desired features (Ribeiro, Singh, and Guestrin, 2016). Large language models
are prone to hallucinating information and in particular references (Ji et al., 2023),
but fail at simple reasoning tasks (Nezhurina et al., 2024). For safe employment of
these technologies in sensitive fields such as autonomous driving (Hofmarcher et al.,
2019) or automated medical diagnosis (Al Kuwaiti et al., 2023), we require a better
understanding of their inner mechanics as well as the learned features. Such insights
can then also be used to guide future development of network architectures in a
principled way, as opposed to current empirical approaches, thereby reducing both
compute and energy costs (Yang and Shami, 2020).

Shedding light onto the inner mechanics of the black box, also referred to as ex-
plainable AI (Gunning et al., 2019), is a field of research with various approaches
from different disciplines: Shapley values, which are originally utilized in game the-
ory, measure the contribution of different input features to the network output (Aas,
Jullum, and Løland, 2021). Deep Taylor decomposition determines the relevance of
neuron activations by decomposing the network output using Taylor expansions of
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2 Introduction

the non-linearity (Montavon et al., 2017). For convolutional networks, the learned
filters can be visualized and linked to detecting different image elements (Zeiler and
Fergus, 2014). In the context of generative models, invertible neural networks allow
sampling from the learned distribution and thus learned features (Ardizzone et al.,
2019).

From a physics point of view, neural networks can be viewed as complex systems
with a large number of degrees of freedom. In practice, the realization of individual
network parameters is less relevant, but one is interested in the collective behavior
of the constituents of the system, e.g. neurons, measured by scalar quantities such as
the generalization performance. Such emergent characteristics can be studied using
methods from statistical physics. In recent decades, much research has been done
at this intersection between statistical physics and machine learning: from applying
replica methods for studying learning curves (Mézard, Parisi, and Virasoro, 1987;
Loureiro et al., 2022), dynamic mean-field theory for studying scaling properties of
neural networks (Sompolinsky and Zippelius, 1982; Bordelon and Pehlevan, 2023;
Bordelon et al., 2024) to uncovering phase transitions in their learning dynamics
(Baldassi et al., 2022; Cui et al., 2024).

In the limit of infinite network width, neural networks can be characterized as a cen-
tered Gaussian process, which is referred to as the Neural Network Gaussian pro-
cess (NNGP), and the covariance over network samples, also called NNGP kernel,
emerges as the relevant order parameter. At initialization, the network parameters
are independent and identically distributed, so that the signal in linear network lay-
ers becomes Gaussian due to the central limit theorem. This characterization was
first found by Neal (1996) for networks with a single hidden layer; Lee et al. (2018)
extended this result to deep neural networks. However, Bayesian inference with the
NNGP kernel corresponds to training the output layer only and leaves a generaliza-
tion gap to finite-width networks trained with gradient based methods (Lee et al.,
2019; Yang, 2019).

Another Gaussian limit involves training all network layers: the Neural Tangent ker-
nel (NTK) is the outer product of gradients across data samples and describes the
evolution of the network during gradient descent (Jacot, Gabriel, and Hongler, 2018).
For the mean-squared error loss function, the trained network may again be charac-
terized as a Gaussian process with a different mean and covariance than the NNGP
(Lee et al., 2019). However, in the NTK limit, network parameters change only neg-
ligibly and thus the network is linearized with respect to the network parameters
(Lee et al., 2019), which corresponds to the lazy regime that was first introduced by
(Chizat, Oyallon, and Bach, 2019).

Despite the accomplishments of these Gaussian theories, they ultimately are free
theories that do not capture interactions within the network and are thus limited
in which phenomena of the system they describe. An analogy from physics is the
ideal gas, which yields the general gas equation, but requires the interaction between
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gas particles to approximately describe condensation phenomena with the van der
Waals equation (Boltzmann, 1964). The decoupling of different neurons in the net-
work, which leads to a Gaussian theory, results directly from the infinite-width limit;
interactions become relevant in finite-size neural networks and and thus require to
go beyond the Gaussian limit: image recognition using convolutional networks is
based on non-Gaussian statistics of the data (Ingrosso and Goldt, 2022; Refinetti,
Ingrosso, and Goldt, 2023); grokking refers to rapid changes of the generalization
performance after longer, constant phases of poor generalization (Power et al., 2022;
Rubin, Seroussi, and Ringel, 2024); in the feature learning regime network param-
eters adapt strongly to the data and thus violate the stochastic independence as-
sumption of the central limit theorem (Chizat, Oyallon, and Bach, 2019; Geiger et al.,
2020). In this thesis we will use statistical field theories to study neural networks
and in particular to systematically determine corrections to these Gaussian theories,
which shed light onto the inner mechanics of deep neural networks.

For studying the emergent phenomena in neural networks, there are two compo-
nents to their statistical nature: the distribution of data samples, which drives net-
work training, and the distribution of network parameters, which at initialization
influences learning dynamics and after training determines the learned features. We
will study each of these settings separately, asking how non-Gaussian corrections in
finite-size networks determine their inner mechanics.

One key question relating to the first setting is how neural networks on supervised
classification tasks fit their training data set and also generalize well, which is of-
ten explained by simplicity biases of the networks (Lin, Tegmark, and Rolnick, 2017;
Kalimeris et al., 2019; Bowman and Montufar, 2022). Valle-Perez, Camargo, and
Louis (2019) argue that neural networks are biased towards learning simple func-
tions that avoid overfitting the data. While linear networks first learn relevant target
directions (Krogh and Hertz, 1992; Saxe, Mcclelland, and Ganguli, 2014; Advani,
Saxe, and Sompolinsky, 2020), non-linear networks first learn linear functions before
finding more complex solutions (Saad and Solla, 1995; Mei, Montanari, and Nguyen,
2018). Further, Rahaman et al. (2019) find a spectral simplicity bias where networks
initially learn lower frequencies of the target function. While these works focus on the
implemented mapping, we are interested in how this mapping extracts and processes
information that is encoded in the data statistics. By shifting the perspective to the
transformation of data distributions, we are able to shed light on the functional prop-
erties of different network components. We find a simplicity bias in fully-connected
networks towards primarily learning Gaussian statistics, which receives corrections
in the input layer to fine-tune the networks for final generalization performance.

In the second setting, NNGP and NTK describe networks at initialization and in
the lazy learning regime, respectively, well. However, they do not capture feature
learning, where network parameters adapt strongly to the data; this regime typically
outperforms networks in the lazy regime (Novak et al., 2019; Lee et al., 2020; Geiger
et al., 2020; Petrini et al., 2022). One line of research proposes kernel rescaling as the
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adaptation mechanism, where the NNGP kernel receives a scalar factor so that the
predictor stays the same but its variance changes; previous works investigate linear
networks (Li and Sompolinsky, 2021; Hanin and Zlokapa, 2023) as well as differ-
ent non-linear network architectures (Pacelli et al., 2023; Aiudi et al., 2023; Baglioni
et al., 2024). Other works such as (Seroussi, Naveh, and Ringel, 2023) instead find
kernel adaptation beyond rescaling towards the relevant task directions, correspond-
ing to richer mechanics of the networks. We will investigate the question of kernel
adaptation, observing a non-linear adaptation towards the target that results from
fluctuation corrections to the NNGP limit.

Finding network hyperparameters that lead to successfull training and yield high
generalization performance has become even more relevant as the model size has
increased significantly in recent years, imbuing large compute demands for hyper-
parameter search (Yang and Shami, 2020). Methods include Bayesian optimization
(Snoek, Larochelle, and Adams, 2012), multi-fidelity methods (Falkner, Klein, and
Hutter, 2018) or genetic algorithms (Itano, Sousa, and Del-Moral-Hernandez, 2018).
Schoenholz et al. (2017) propose to initialize networks at the edge-of-chaos in hy-
perparameter space, where networks transition from an ordered to a chaotic phase
regarding their signal dynamics and as a result information propagation scales in
the network diverge, so that signals and gradients can propagate to great depths. By
investigating the scales of network training, Yang et al. (2021) propose µP-scaling for
initializing feed-forward networks, which allows zero-shot hyperparameter transfer
from smaller to larger network models. Following these lines of research, we study
signal propagation and trainability for residual networks and investigate the effect
of scaling the residual branch as an additional hyperparameter.

This thesis is organized as follows: In Chap. 2, we study the transformation of the
data distribution by fully-connected, feed-forward networks and how these networks
utilize information encoded in the data distribution to solve a given classification
task. We then turn towards the distribution over network parameters and first inves-
tigate feature learning in fully-connected, feed-forward networks by computing the
posterior network kernels in Chap. 3, analyzing in detail how non-Gaussian correc-
tions drive kernel adaptation. In Chap. 4 we consider residual networks and study
the residual scaling of these network and its relation to signal propagation. Finally,
we discuss our contributions towards understanding the inner mechanics of neu-
ral networks beyond Gaussian limits in Chap. 5 and provide an outlook on future
directions of research.



Chapter 2

Decomposing neural networks as
mappings of correlation functions

This chapter, App. A, and parts of the discussion are based on the following
publication:

Kirsten Fischer, Alexandre René, Christian Keup, Moritz Layer, David Dahmen,
and Moritz Helias. "Decomposing neural networks as mappings of correlation
functions." Physical Review Research, 4(4) (2022): 043143.

Author contributions
Under the supervision of David Dahmen and Moritz Helias, the author worked on
all parts of the above publication presented in this chapter. The author contributed
to the general formalism and performed the corresponding numerical experiments.
All authors contributed to writing the manuscript. The idea of tracing the transfor-
mation of cumulants in feed-forward networks is also present in the author’s master
thesis (Fischer, 2020); however, the inclusion of higher-order cumulants was explored
in a preliminary fashion. In this work, we properly include higher-order cumulants
in Sec. 2.5.4 as well as distinguish between Gaussian statistics and higher-order cu-
mulants for MNIST in Sec. 2.5.3. Further, we extended the theoretical results to the
practically more relevant ReLU non-linearity and provide numerical experiments.
Finally, we add experiments on CIFAR-10.
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2.1 Introduction

Neural networks are complex systems with a large number of degrees of freedom.
Their statistical properties depend on both the distribution of network parameters
and the joint distribution of input data and labels. While we consider the former
case in the next two chapters, we here focus on how neural networks transform the
distribution of input data for a fixed set of network parameters. To solve a task, the
network aims to match a certain target distribution on the output side. We study how
networks transform the input statistics to match the target and in particular which
statistical quantities are most relevant for doing so.

The main contributions of this chapter are:

• in fully-connected feed-forward networks, the principal part of the computation
performed by the network is captured by the mapping of Gaussian statistics in
each network layer;

• for low-dimensional data, higher-order cumulants of the input data are primar-
ily extracted and processed by the input layer;

• classifying image data relies heavily on higher-order cumulants, explaining
why fully-connected networks fail while convolutional networks that involve
sparse structured weight matrices and thus higher-order cumulants in each
layer succeed.

2.2 Setup

We study fully-connected feed-forward neural networks with L layers and Nl neu-
rons in layer l and a linear readout layer as shown in Fig. 2.1(a). In each layer
l = 1, . . . , L we have a linear mapping

z(l)i =
Nl−1

∑
j=1

W(l)
ij y(l−1)

j + b(l)i , (2.1)

parameterized by a weight matrix W(l) ∈ RNl×Nl−1 and bias vector b(l) ∈ RNl . Then we
apply a non-linear activation function ϕ in a pointwise manner

y(l)i = ϕ(z(l)i ) = ϕ
⎛

⎝

Nl−1

∑
j=1

W(l)
ij y(l−1)

j + b(l)i
⎞

⎠
. (2.2)

We write y(0) = x ∈ RDin for input data of dimension N0 = Din. The linear readout
layer yields the network output y ∈ RDout with NL+1 = Dout, so that yi = z(L+1)

i . The full
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network mapping y = g(x; θ) results from iterating over network layers; it depends
on parameters θ ∶= {W(l), b(l)}l=1,...,L+1.

All network parameters are initialized randomly by drawing from i.i.d. centered

Gaussians W(l)
ij

i.i.d.
∼ N (0, σ2

w/Nl−1) and b(l)i
i.i.d.
∼ N (0, σ2

b ). We scale the covariance of

W(l)
ij such that the covariance of z(l) is independent of the layer width Nl .

2.3 Theoretical Background

We first provide some background on empirical risk minimization that forms the
basis of this study. Then we introduce the concept of cumulants as a parametrization
of probability distributions that will form the central object of our analysis.

2.3.1 Empirical risk minimization

We here adapt the presentation of empirical risk minimization to classification prob-
lems that are studied in this chapter. The existence of a joint distribution p(x, t)
of data samples x and class labels t that is the same for training and evaluation
is the essential premise behind classification (Bishop, 2006). According to Bayes’
theorem, the distribution of the input data can be regarded as a mixture model
p(x) = ∑t p(t) p(x∣t). The network’s task is then to implement a mapping g ∶ x ↦ y
that minimizes the expectation value of a loss function ℓ(y, t) that depends on both
network outputs y = g(x; θ) and labels t.

Consequently, for each label t a mapping of probability distributions is induced by
the network mapping

p(x∣t)↦ p(y∣t; θ) = ∫ δ(y − g(x; θ)) p(x∣t) dx, (2.3)

where δ(○) refers to the Dirac Delta distribution. The output distribution over all
labels t is then given by the weighted sum p(y) = ∑t p(t) p(y∣t; θ). Ideally, the network
output y is exactly the true label t; the target distribution is thus p(y∣t) = δ(y − t).

Any training algorithm aims to minimize the expected loss or risk functional

L(θ) = ⟨ℓ(y, t)⟩y∣θ =∑
t

p(t) ⟨ℓ(y, t)⟩y∣t;θ , (2.4)

where the expectation value ⟨. . . ⟩y∣t;θ refers to the class-conditional output distri-
butions p(y∣t; θ) (Vapnik, 1992). However, in general the mixture components of
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the input distribution p(x∣t) and the induced class-conditional output distributions
p(y∣t; θ) are unknown. Therefore, one instead minimizes the empirical loss or risk

Lemp(θ) =
1
P

P
∑
α=1

ℓ(g(xα; θ), tα), (2.5)

that is being evaluated for a training set {(xα, tα)}α of size P with sample indices
α. The empirical risk minimization principle makes the following assumption: the
mapping g(○; θ∗) that minimizes the empirical risk θ∗ = argminθ Lemp(θ) yields an
expected risk L(θ∗) that is close to its minimum minθ R(θ) (Vapnik, 1992).

2.3.2 Parameterizing probability distributions by cumulants

One way to think of neural networks is as complex systems that generate interac-
tions between data components. Rather than focusing on the probability distribu-
tions themselves, generating functions of moments or cumulants are frequently used
in order to study such systems. Since cumulants are additive when it comes to the
addition of independent variables, they typically offer a useful parameterization of
probability distributions. This makes it easier to derive equations for the transfor-
mation of statistics between layers. These concepts are widely used in mathematical
statistics and statistical physics.

The network mapping g ∶ x ↦ y connects the cumulant-generating function of net-
work outputs y to the distribution of the inputs x:

Wy∣t;θ(j) = ln ⟨exp (jTy)⟩y∣t;θ (2.6)

= ln ⟨exp(jTg(x; θ))⟩
x∣t

. (2.7)

The distribution of inputs is expected to be different for different classes, therefore
the cumulant-generating function appears per class t. We are interested in the class-
conditional output cumulant of order n which is given by

G(n)y∣t;θ =
dnWy∣t;θ(j)

djn ∣
j=0

. (2.8)

In general, G(n)y∣t;θ can be related to the input cumulants G(n
′)

x∣t;θ by evaluating Eq. (2.7),
but the fact that the network mapping g(x; θ) is defined by the iterations in Eq. (2.2)
poses difficulties for doing so. Deep neural networks are effective as universal func-
tion approximators due to their iterative non-linear character, but this also compli-
cates the analysis of networks with respect to their data-processing properties. How-
ever, by examining each layer separately, we can study how cumulants change from
input to output.



§2.3 Theoretical Background 9

Meaning Algebraic term Graphical representation

External line jr δrs jr z(l)s

Cumulant vertex with
n internal lines

G(n)
z(l), (r1,..., rn)

. . .

z(l)r1

z(l)rn

ϕ-vertex with m internal lines
and one external line

jr 1
m! ϕ(m)∣z(l)=0
× δri1 . . . δrim

jr
z(l)im

z(l)i1
. . .

Table 2.1: Diagrammatic language for performing a perturbative expansion of the
cumulant-generating functionWy(l) (j) for post-activations y(l) = ϕ(z(l)).

Since pre-activations z(l) result from a linear transformation, the cumulant-generating
function of pre-activations z(l) in layer l is trivially connected to the cumulant-
generating function of post-activations y(l−1) of layer l − 1 as

Wz(l)(j) = ln ⟨exp (jTz(l))⟩
z(l)

= ln ⟨exp (jTW(l) y(l−1)
+ jTb(l))⟩

y(l−1)

=Wy(l−1)((W(l))
T j)+ jTb(l), (2.9)

which for the first-order cumulant gives

G(1)
z(l)
=W(l)G(1)

y(l−1) + b(l), (2.10)

and for second- and higher-order cumulants gives

G(n)
z(l), (r1,...,rn)

= ∑
s1,...,sn

W(l)
r1 s1 . . . W(l)

rn sn G(n)
y(l−1), (s1,...,sn)

. (2.11)

Thus, for each index rk of the resulting cumulant we contract one index si with
one factor W(l)

rksi . Consequently, cumulants of pre-activations z(l) are generated from
cumulants of post-activations y(l−1) of the same order by a linear tensor transforma-
tions.

The pre-activations z(l) in layer l result from the corresponding post-activations y(l)

by applying the non-linear activation function ϕ in a pointwise manner

Wy(l)(j) = ln ⟨exp (jTy(l))⟩
y(l)
= ln ⟨exp (jTϕ(z(l)))⟩

z(l)
. (2.12)
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In general, the cumulant-generating function of the post-activations y(l) does not
have an exact analytical solution. One can obtain approximate expression for the
appearing average by using a perturbative expansion that commonly appears in sta-
tistical physics (Helias and Dahmen, 2020). We here employ such an expansion in

the following way: by replacing ϕ(z(l)) with its Taylor expansion ∑m
ϕ(m)

∣
z(l)

=0
m! (z(l))m in

Eq. (2.12) and treating non-linear terms (m > 1) as perturbations, we obtain cumu-
lants G(n)

y(l)
as series of Feynman diagrams composed of the graphical elements shown

in Tab. 2.1. For instance, we get the following diagrams for the first layer’s mean:

G(1)
y(1), i

= + + . . .

=
ϕ(1)∣

x=0
1! G(1)x, i +

ϕ(2)∣
x=0

2! G(2)x, ii + . . .

(2.13)

These expressions appearing in the perturbation expansion involve two types of fac-
tors that are represented with two types of vertices: hatched circles with one external

line j that originate from Taylor coefficients
ϕ(m)
∣
z(l)

=0
m! of the non-linearity, and empty

circles with internal lines, representing cumulants G(n)
z(l)

of pre-activations z(l).

To obtain the cumulant G(n)
y(l)

of the post-activations y(l) of order n, we construct all
diagrams with n external lines. External lines appear on both hatched and cumulant
vertices. Moreover, external lines cannot be connected to one another; they must
always be connected to a cumulant vertex. Finally, from the linked cluster theorem
follows that only connected diagrams contribute to cumulants. Symmetries within
diagrams imply that they appear repeatedly in the perturbation expansion, which
is accounted for by so-called symmetry factors. To obtain these combinatorial pre-
factors of the generated diagrams, all permutations of indices (r1, . . . , rn) for both
internal and external lines are determined (for more details, see (Helias and Dahmen,
2020)).

There are two key benefits to using this perturbative approach for determining the
cumulants G(n)

y(l)
of the post-activations y(l): Firstly, it offers a principled way to in-

clude higher-order cumulants, thereby going beyond Gaussian statistics. Secondly,
the information transfer from cumulants G(n)

z(l)
of the pre-activations z(l) to cumulants

G(m)
y(l)

of the post-activations y(l) can be visually represented by the diagrammatic
language in Tab. 2.1.

The diagrammatic language requires that the activation function ϕ has a convergent
representation as a Taylor series. If this is not the case, e.g. for non-differentiable
functions such as ReLU, we can use a Gram-Charlier expansion of the probability
distribution p(z(l)) to approximate the expectation value in Eq. (2.12): the computa-
tion then simplifies to a weighted sum of Gaussian integrals, which can be calculated
either analytically (see App. A.1 for ReLU as an example) or numerically.
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Data samples

Data statistics

(a)

(b)

Figure 2.1: (a) Sample-based network analysis considers a single output yα for each
data sample xα as it flows through the network. A linear transformation (W(l), b(l))
precedes the componentwise application of a non-linearity ϕ in each layer. (b) Net-
work analysis grounded in data statistics takes into account the network’s transfor-
mation of the data distribution p(x). In each layer we parameterize the intermediate
distribution by its cumulants; the mean µ and the covariance Σ are the lowest-order
and most-relevant cumulants for wide networks. While µ and Σ are transformed
independently by the linear step, a non-trivial interaction between the two is caused
by the non-linearity ϕ.

2.4 Theory

In this section we derive how cumulants of the input data are iteratively transformed
by deep neural networks, as shown in Fig. 2.1(b), and how this shapes the expected
loss.

2.4.1 Cumulants drive network training

We here study the relation of the expected loss in Eq. (2.4) with cumulants of the
data. For general loss functions ℓ(y, t), the expected risk R(θ) depends on the class
labels t and the class-conditional cumulants G(n)y∣t;θ of arbitrary orders n:

L(θ) =∑
t
∫ dy ℓ(y, t) p(y∣t; θ)

=∶∑
t

σt({G
(n)
y∣t;θ}n)

=∶ σ({{G(n)y∣t;θ}n; t}t).

For the commonly used mean squared error ℓMSE(y, t) = ∥y − t∥2, the expected risk
L(θ) is a function of solely the mean µt

y and variance Σt
y of outputs of each class t
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and given by
LMSE({µ

t
y, Σt

y; t}t) =∑
t

p(t) (tr Σt
y + ∥µ

t
y − t∥2). (2.14)

From this follows directly that network training tries to match class means and labels
due to the term ∥µt

y − t∥2, while reducing the variance of each class’s output in tr Σt
y.

Although similar in structure, Eq. (2.14) differs from the bias-variance decomposition
(Kohavi and Wolpert, 1996): we take the expectation over the input distribution p(x)
directly instead of the expectation over finite data sets of fixed size.

As a direct consequence, it is only mean and covariance of the output layer that drive
network training, making these the important statistics. There are two main con-
sequences from this result: 1.) Only non-Gaussian statistics that occur in network
layers prior to the output layer can affect the first two cumulants in the output layer,
which in turn influences the learnt information processing. 2.) Non-Gaussian statis-
tics generated in the last layer may result from previous layers acting on higher-order
cumulants, but they do not have a specific functional purpose in network training.

Overall, we conclude that to understand the network mapping it is sufficient to un-
derstand how the Gaussian cumulants (µt

y, Σt
y) of the output arise from the input

data. Thus, network training and the resulting information processing by the trained
network are closely related to the ways in which cumulants of the input data are
transformed by the network across network layers.

2.4.2 Transformation of cumulants by the network

In the previous section, we showed that the only relevant cumulants of the network
output are mean and covariance. We now derive how these depend on the cumulants
of previous layers and in particular the input distribution. As we derived in Eq. (2.9)-
(2.11), the linear transformation in every layer l yields a one-to-one relation between
mean and covariance of pre-activations z(l) and post-activations y(l) (see Fig. 2.1(b))
that is given by

µz(l) =W(l) µy(l−1) + b(l) , Σz(l) =W(l) Σy(l−1)(W(l)
)
T. (2.15)

In general, the non-linear activation function ϕ ∶ z(l) ↦ y(l) yields a non-Gaussian
distribution of post-activations y(l) that thus involves cumulants of higher orders in
the pre-activations z(l) (see Sec. 2.3.2)

µy(l) =
dWy(l)(j)

dj
∣
j=0
= ⟨ϕ(z(l))⟩z(l) , (2.16)

Σy(l) =
d2Wy(l)(j)

dj djT

RRRRRRRRRRRj=0

= ⟨ϕ(z(l))ϕ(z(l))T⟩z(l) − µy(l)µ
T
y(l) . (2.17)
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To make these equations tractable again, we utilize that due to the central limit
theorem cumulants of order n > 2 are suppressed in the subsequent linear layer
y(l−1) ↦ z(l): by initializing the weights independently, higher-order cumulants scale
as G(n)

z(l), (i1,...,in)
= ⟨⟨z(l)i1

z(l)i2
. . . z(l)in

⟩⟩ ∼ O((Nl−1)
− n

2+1). Since we are also interested in the
case of trained networks, we derive in App. A.3 sufficient conditions under which
the Gaussian approximation continues to hold in the presence of weak correlations
among network weights. We find that it is sufficient if network weights scale as
W ∼ O(N−

1
2 ) and rows of network weights project to approximately orthogonal sub-

space of the covariance matrix from the upstream post-activations. These conditions
go beyond the lazy learning regime, where weights change only slightly compared
to their initialized values (Chizat, Oyallon, and Bach, 2019). Thus, for networks with
i.i.d. initialization or networks that are trained and fulfill these sufficient conditions,
expectations over pre-activations ⟨. . . ⟩z(l) can be taken with respect to Gaussian dis-
tributions z(l) ∼N (µz(l) , Σz(l)). It follows that mean and covariance of post-activations
then are non-linear functions of mean and covariance of pre-activations

µy(l) = fµ(µz(l) , Σz(l)) , Σy(l) = fΣ(µz(l) , Σz(l)), (2.18)

which due to their non-linear nature effectuate interactions between mean and co-
variance.

Taking the transformation of cumulants in linear and non-linear layers together and
iterating backwards across network layers l = L + 1, L, . . . , 2, we find that the infor-
mation processing in the hidden network layers can be understood as an iterated,
non-linear mapping of mean and covariance. For arbitrary activation functions ϕ,
we can always compute the interaction functions fµ and fΣ numerically; for certain
choices of activation functions, we can determine analytic expressions that allow for
an analysis of the interactions between mean and covariance in the network. In
Tab. 2.2, expressions for the interaction functins are given in the case of ϕ = ReLU
and ϕ(z) = z + ϵ z2.

The quadratic activation function is minimally non-linear in the parameter ϵ and thus
leads to especially interpretable interaction functions; the resulting interactions can
be visualized and calculated with diagrams as follows

µy(l), i = + +

= µz(l), i + ϵ (µz(l), i)
2

+ ϵ Σz(l), ii , (2.19a)

Σy(l), ij = + + +

= Σz(l), ij + 4 ϵ2 µz(l), i Σz(l), ij µz(l), j + 2 ϵ2
(Σz(l), ij)

2
+ 2 ϵ Σz(l), ij (µz(l), i + µz(l), j) .

(2.19b)

The most-right diagram that contributes to Σy(l), ij is transcribed into two terms that
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appear in brackets; these two terms correspond to the permutation of the indices
(i, j) (see Sec. 2.3.2).

While network training generates correlations between weights and thereby breaks
the independence of network weights that is required for the central limit theorem,
both the independence assumption as well as the conditions derived for weakly cor-
related weights in App. A.3 are only sufficient and not necessary conditions for the
Gaussian description of the network to hold. Instead, we empirically show in later
section that tracing solely mean and covariance through the hidden network layers
continues to be a useful approximation also for trained networks. Before going to
these experiments, we study the information processing by the input layer.

2.4.3 Input layer extracts higher-order cumulants from data

The main difference between the input layer and hidden network layers is that the
sum appearing in the definition of the pre-activations z(1)i = ∑

N0
j=1 W(1)ij xj + b(1)i is over

the input dimension N0 = Din instead of the network width N. Since the input
dimension is fixed by the given task, we often have Din ≪ N. As we have discussed
in the previous section, the higher-order cumulants of the pre-activations z(1) scale as

G(n>2)
z1 ∝ D

1− n
2

in . In consequence, we need to take higher-order cumulants into account
for the interaction functions in the input layer

µy(1) = hµ({G
(n)
z(1)
}n), Σy(1) = hΣ({G

(n)
z(1)
}n) . (2.20)

Mean and covariance of the post-activations y(1) are then passed on through the
subsequent layers of the network as discussed in the previous sections.

While we cannot calculate the interaction functions hµ and hΣ exactly for arbitrary ac-
tivation functions ϕ, we can approximate these systematically: for non-differentiable
functions (see App. A.1 for ReLU as an example) one can use a Gram-Charlier ex-
pansion or for differentiable functions one can use the diagrammatic techniques dis-
cussed in Sec. 2.3.2.

For polynomial activation functions, we are able to calculate the interaction func-
tions hµ and hΣ exactly. We illustrate this here for the quadratic activation function
ϕ(z) = z + ϵz2: the mean remains the same as in Eq. (2.19a) since it does not re-
ceive a correction from G(n>2)

z(1)
while the covariance in Eq. (2.19b) receives additional
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Non-linearity Interaction function

ϕ(z) = ReLU(z) fµ, i =

√
Σz, ii
√

2π
exp(−

µ2
z, i

2Σz, ii
)+

µz, i
2 (1+ erf( µz, i√

2Σz, ii
))

fΣ, ii =
Σz, ii

2
(1+ erf(

µz, i
√

2Σz, ii
))+

µ2
z, i

4

− (

√
Σz, ii
√

2π
exp(−

µ2
z, i

2Σz, ii
)+

µz, i

2
erf(

µz, i
√

2Σz, ii
))

2

fΣ, ij =

√
det(Σ̃z)

2π
exp(− 1

2 µ̃T
z Σ̃−1

z µ̃z)

+

√
det(Σ̃z)

2π
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√
π Σ̃−1

z, jj
√

2
exp (− 1

2 Σ̃−1
z, ii µ2

z, i)

× exp
⎛

⎝

(Σ̃−1
z, ji µz, i)

2

2Σ̃−1
z, jj

⎞

⎠

⎛
⎜
⎜
⎝

1+ erf
⎛
⎜
⎜
⎝

(Σ̃−1
z µ̃z)

j
√

2Σ̃−1
z, jj

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠
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√
det(Σ̃z)

2π
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√
π Σ̃−1
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√

2
exp(− 1
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⎛

⎝
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⎜
⎝
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⎛
⎜
⎝

(Σ̃−1
z µ̃z)i
√

2Σ̃−1
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⎟
⎠

⎞
⎟
⎠
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×

⎡
⎢
⎢
⎢
⎢
⎣
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erf
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√
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⎠
+

1
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erf
⎛

⎝

√
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√
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⎞

⎠
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(0, 0)
⎤
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎣
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√

2π
exp(−
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√
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⎥
⎥
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⎢
⎢
⎢
⎢
⎣
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exp(−
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√
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⎤
⎥
⎥
⎥
⎥
⎦

ϕ(z) = z + ϵ z2 fµ, i = µz, i + ϵ (µz, i)
2 + ϵ Σz, ii

fΣ, ij = Σz, ij + 2 ϵ Σz, ij (µz, i + µz, j)+ 2 ϵ2
(Σz, ij)

2
+ 4 ϵ2 µz, i Σz, ij µz, j

Table 2.2: Overview of interaction functions for different non-linear activation func-
tions ϕ. In the derivation for both examples, we use that the pre-activations are
approximately Gaussian distributed as z ∼ N (µz, Σz). We drop the layer index here
for better readability. For the off-diagonal elements of the covariance in the case of
ReLU, we use the marginalized distribution with respect to z̃ = (zi, zj)

T; writing the
marginalized mean and covariance as µ̃z and Σ̃z and the corresponding cumulative
distribution function as Fµ̃z ,Σ̃z

(x, y).
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contributions from third- and fourth-order input cumulants

Σy(l), ij ∣add. = +

+

= ϵ (G(3)
z(l), (i, j, j)

+G(3)
z(l), (j, i, i)

)+ 2ϵ2
(G(1)

z(l), (i)
G(3)

z(l), (i, j, j)
+G(1)

z(l), (j)
G(3)

z(l), (j, i, i)
)

+ ϵ2 G(4)
z(l), (i, i, j, j)

.

We here again have to account for permutations of the indices (i, j) in the diagrams
(see Sec. 2.3.2), yielding multiple summands for individual diagrams.

Since the pre-activations z(1) in the input layer result from a linear transformation of
the inputs x, their cumulants G(n)

z(1)
depend on the cumulants of the input data G(n)x

in a one-to-one mapping of orders n as G(n)x ↦ G(n)
z(1)

as derived in Eq. (2.11) and we
write the interaction functions as a function of the input cumulants

µy(1) = h̃µ({G
(n)
x }n;{W(1), b(1)}),

Σy(1) = h̃Σ({G
(n)
x }n;{W(1), b(1)}).

Overall, we find that higher-order cumulants of the data G(n>2)
x are predominantly

extracted by the input layer because the higher-order cumulants are not suppressed
as strongly for Din ≪ N.

2.4.4 Statistical representation of feed-forward networks

Building on the previous section, we introduce a statistical representation of the
network. It describes the information processing performed by the network on the
level of the cumulants of the data {G(n)x }n.

We obtain the mean and covariance of the network output y = g(x; θ) as functions
of the statistics of the input x by iterating Eq. (2.15), Eq. (2.20), and Eq. (2.18) across
layers

µy =W(L+1)
( fµ(. . . {h̃ν({G

(n)
x }n)}ν=µ,Σ . . . ))+ b(L+1)

=∶ gµ({G
(n)
x }n; θ, ϕ), (2.22)

Σy =W(L+1)
( fΣ(. . . {h̃ν({G

(n)
x }n)}ν=µ,Σ . . . ))(W(L+1)

)
T

=∶ gΣ({G
(n)
x }n; θ, ϕ). (2.23)

Since we expect the statistics of inputs x to differ between class labels t, these itera-
tion equations apply per class t, yielding the distribution of the network output as
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a Gaussian mixture p(y) = ∑t p(t)N (µt
y, Σt

y)(y). Mean and covariance of the net-
work output (µt

y, Σt
y) are determined using the transformation of the data cumulants

{G(n), t
x }n, t by the whole network from Eq. (2.22)-(2.23). It is important to here point

out again that these equations are not exact since we approximate the pre-activations
z(l) as Gaussian at each hidden layer l. In the remainder of this chapter, we call the
mapping

gstat ∶ ({G
(n), t
x }n, t, θ, ϕ)↦ p(y) (2.24)

the statistical model of the network. We note that one important property of the
statistical model is that it shares the set of parameters θ = {W(l), b(l)}l=1,...,L+1 with
the network; more specifically, there is a one-to-one correspondence between the
statistical model Eq. (2.24) and the network model g∶ (x; θ) ↦ y given a fixed set of
parameters θ.

The statistical model provides a framework to study information processing in the
network for different tasks as well as to investigate the contribution of cumulants of
the data {G(n), t

x }n, t for different tasks. In Sec. 2.4.1, we showed that the expected
mean squared error loss LMSE({µ

t
y, Σt

y}t) can be written as Eq. (2.14); this expression
is a function of mean and covariance of the output. Combining this formulation
of the error with the statistical model in Eq. (2.24), we can write the mean squared
error LMSE as a function of the cumulants of the data {G(n), t

x }n, t and the network
parameters θ:

LMSE({µ
t
y, Σt

y}t) ≈ LMSE({G
(n), t
x }n,t; θ). (2.25)

Thus, we can train the statistical model on a given task by minimizing this loss with
standard methods. Given the trained parameters θ∗ for the statistical model, we
use the one-to-one relationship between statistical model and network to transfer
these parameters to the network. This network g(x; θ∗) then only ’sees’ the set of
cumulants of the data {G(n), t

x }n, t used to minimize Eq. (2.25). In this way, we can test
different sets of cumulants of the data to investigate their contribution for solving a
particular task.

2.5 Experiments

We utilize the presented framework to investigate the information processing in feed-
forward networks on multiple tasks: the XOR problem, the MNIST data set, and
the CIFAR-10 data set. For the network architecture defined in Sec. 2.2, we set the
network width Nl = N to be fixed for l ≥ 1 and use either the ReLU activation function
or the quadratic activation function ϕ(z) = z + ϵ z2 with ϵ = 0.5.
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2.5.1 Training details

To initialize network parameters θ, we sample from Gaussians with σ2
w = σ2

b = 0.75.
Networks are trained by minimizing the empirical risk of the MSE loss over mini-
batches {(xα, tα)}α of size B:

Lemp, MSE(θ) =
1
B

B
∑
α=1

ℓMSE(g(xα; θ), tα) . (2.26)

We set the batch size B = 10 on XOR and B = 100 on MNIST. While the choice of opti-
mizer for training may change the correlation structure of parameters in trained net-
works, it does not affect the theoretical framework itself. We employ Adam (Kingma
and Ba, 2015; Loshchilov and Hutter, 2019) with learning rate 10−3 and otherwise
standard settings (momenta β1 = 0.9 and β2 = 0.999, ϵ = 10−8, and λ = 0).

2.5.2 Statistical information encoding for the XOR task

We begin by examining the XOR task as an example of a non-linearly separable task,
thus requiring information exchange between cumulants of different orders medi-
ated by the non-linear activation function. We use setting of this task as a Gaussian
mixture model, which has two conceptual advantages: First, by having an exact
representation of the input distribution in terms of Gaussians, we can isolate the
information processing by hidden layers of the network. Second, the formulation
of both class-conditional distributions as a Gaussian mixture allows us to study the
class-conditional behavior using two different statistical representations that isolate
different cumulants orders of the input (mean and covariance). Our findings indi-
cate that although the network can solve the task using either representation, the
networks converge to different local minima in the empirical loss landscape.

XOR task as a Gaussian mixture

For the XOR task, we define the input distribution as a Gaussian mixture with four
mixture components (see Fig. 2.2(a)); thus we have real-valued instead of binary
inputs. For the class label t = +1, the mean values of its two components ± are set to
µt=+1,±

x = ±(0.5, 0.5)⊺. For the class label t = −1, they are set to µt=−1,±
x = ±(−0.5, 0.5)⊺.

The covariances are identical for all components and are set to Σt,±
x = 0.05 I. All

components receive the same weight p(t) = p± = 1
2 . Thus, the input distribution is

given by
p(x, t) = p(t)∑

±

p±N (µt,±
x , Σt,±

x )(x). (2.27)

Each data sample xα gets assigned a target label tα ∈ {±1} depending on which
mixture component it has been drawn from. From the illustration in Fig. 2.2(a), one
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Figure 2.2: Information flow in ReLU networks on the XOR task. (a) We character-
ize the input distribution as a Gaussian mixture model. The class labels t = ±1 are
assigned to data samples xα (blue and green dots) based on the mixture component
they were drawn from. (b)-(c) Distribution of the network output for (b) a random
network and (c) a network trained to convergence. Each mixture component (dashed
curves) is propagated through the network as in Eq. (2.22)-(2.23), yielding the class-
conditional distributions (solid curves) as a superposition in Eq. (2.28). Mapping a set
of test data points by the network yields empirical estimates of the class-conditional
distributions (blue and green histograms). For binary classification, we set the clas-
sification threshold to be y = 0 (gray lines). The trained network in (c) achieves
P = 93.82% performance compared to Popt = 97.5%. Other parameters: ϕ = ReLU,
depth L = 1, width N = 10.

can directly read off the optimal decision boundaries that correspond to the axes in
data space; the optimal performance is then given by Popt = 97.5%. Training and test
data set sizes are set to Ptrain = 105 and Ptest = 104.

Information processing in internal network layers by cumulants

Since we know the exact input distribution of the XOR task in terms of Gaussian
distributions, we apply the statistical model in Eq. (2.22)-(2.23) to each mixture com-
ponent (t, ±) separately

ptheo.(y) =∑
t

p(t)∑
±

p±N (µt,±
y , Σt,±

y )(y), (2.28)

with µt,±
y = gµ(µ

t,±
x , Σt,±

x ; θ, ϕ) and Σt,±
y = gΣ(µ

t,±
x , Σt,±

x ; θ, ϕ) being functions of the
input statistics, and the network parameters; their particular shape further depends
on the choice of activation function. We compare this theoretical result with the
empirical estimate of the output distribution pemp.(y), given as a histogram over the
test data, for both an untrained network with random initialization (see Fig. 2.2(b))
and a network trained to convergence (see Fig. 2.2(c)).

In both cases, the output distribution results from the superposition of the Gaussian
distributions corresponding to each mixture component. For the random network,
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Figure 2.3: Comparison between theoretical and empirical output distribution for
(a) random networks and (b) networks trained to convergence. The normalized
Kullback-Leibler divergence D̂KL(pemp.∥ptheo.) is used as a deviation measure and
averaged over 50 network realizations. Networks are trained on the XOR task;
trained networks achieve average performance values of P = 97.00% ± 0.05% rela-
tive to Popt = 97.5%. Other parameters: ϕ = ReLU.

these yield a complex distribution, where each mixture component matches the the-
oretical predictions well (see Fig. 2.2(b)). Network training changes the output dis-
tribution such that the class-conditional distributions p(y∣t) concentrate around the
labels and separate from one another (see Fig. 2.2(c)); the remaining overlap between
class-conditional distributions corresponds to the classification error of the network.
We provide results for the quadratic activation function in App. A.4.

As a quantitative comparison measure between theoretically predicted output distri-
bution ptheo.(y) and empirically estimated output distribution pemp.(y), we use the
Kullback-Leibler divergence DKL between theoretical and empirical distributions and
normalize by the entropy H of the empirical distribution pemp.(y), yielding

D̂KL(pemp.∥ptheo.) = DKL(pemp.∥ptheo.)/H(pemp.). (2.29)

This quantity measures deviations between theory and simulation. Again, we com-
pare between untrained networks with randomly drawn parameters (see Fig. 2.3(a))
and networks trained to convergence (see Fig. 2.3(b)). Overall, theory and simula-
tion match well. We observe a slight increase in deviations with the network depth
L, which is expected since approximation errors accumulate across network layers.
For random networks, we would expect a decrease of deviations for wider networks;
however, this may require going to even wider networks while the approximations
already hold well for rather narrow networks as shown here. Due to the correlation
of network parameters in trained networks, deviations are overall larger but remain
modest, indicating that the theoretical predictions continue to be applicable in this
case. We provide results for the quadratic activation function in App. A.4.
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Figure 2.4: Different statistical information encodings of the XOR task lead to dif-
ferent local minima of the loss landscape. (a) Statistical encodings of the XOR task.
Left: Covariance coding; class membership (blue and green ellipses) is encoded in
the covariance. Right: Mean coding; the Gaussian components of each class (blue/
green circles) differ in their means but have identical covariances. (b)-(d) Evolution of
network loss L (Lemp, MSE Eq. (2.26) for training the network model, LMSE Eq. (2.14)
for the statistical model) and change of network parameters ∣∣∆θ∣∣22 across training
steps: For the first T1 = 2000 steps, we train the network based on one encoding,
starting from random initialization. The statistical encoding is changed at T1, start-
ing from parameters θ(T1) obtained in the preceding step. We measure the change of
network parameters every 10 training steps ∥∆θ(T)∥22 = ∥θ(T) − θ(T − 10)∥22. Shaded
areas indicate lower and upper quartiles across 102 network realizations. Solid curves
correspond to a single network realization. (b) First part: statistical model with co-
variance coding; second part: statistical model with mean coding. (c) First part:
statistical model with covariance coding; second part: network model on data sam-
ples. (d) First part: statistical model with mean coding; second part: network model
on data samples. Other parameters: Ptrain = 104, 2 epochs, ϕ(z) = z + ϵ z2, depth L = 1,
width N = 10.

Different information encodings and their relation

We have seen that the mapping implemented by the network can be cast into a map-
ping of cumulants by the statistical model in Eq. (2.24). From the perspective of
mapping cumulants, the network’s ability to solve a given task can be broken down
into two parts: (1) the ability of the network architecture to implement a desired map-
ping of cumulants from input to output and (2) the encoding of class membership in
the cumulants of the input data.

While the first part requires probing the space of possible mappings, which goes
beyond the scope of this chapter, we can study the second part by considering two
different information encodings for the XOR task: (a) the class membership is en-
coded in different means, while covariances and higher-order cumulants are all iden-
tical and (b) class membership is encoded in different covariances, while means and
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higher-order cumulants are all identical. We refer to these two encodings as (a) mean
coding and (b) covariance coding in the following. For the XOR task, we can use these
two encodings to restrict information on class membership to a single cumulant or-
der. In general, one expects that class membership is encoded in multiple cumulants
of different orders, allowing the network to recombine information as necessary to
maximize performance.

For comparing these statistical information encodings, we use the statistical model
in Eq. (2.24): For (a) mean coding, we keep both the class labels t and the specific
mixture component ± from which a sample was drawn, yielding four sets of statistics
{µm

x , Σm
x }m=(t,±) with different means but identical covariances. For (b) covariance

coding, we keep only the class label t, yielding two sets of statistics {µm
x , Σm

x }m=(t)
with different covariances Σt=±1

x = ( 0.3 ±0.25
±0.25 0.3 ) but identical means. In both cases, we

set all higher-order cumulants of the component distributions m = (t,±) and m = (t),
respectively, to zero. Note that mean coding p(x, t = ±1) = ∑± p±N (µt,±

x , Σt,±
x )(x)

in fact involves higher-order cumulants for the class-conditional distributions. We
visualize the different statistical encodings in Fig. 2.4(a).

We compare mean and covariance coding in the statistical model with training net-
works on batches of data samples, which we refer to as sample coding. In princi-
ple, network training may utilize cumulants of arbitrary orders from the data. We
now tackle three main questions: First, which statistical encoding corresponds most
closely to the information representation in networks trained on data samples? Sec-
ond, how are these statistical encodings different and can both be efficiently used
by the network to solve the given task? Third, do networks trained on data samples
recombine information of different cumulants to improve network performance?

We use the following methodology to probe these questions: In a first part, we op-
timize models with either information representation (mean coding, covariance cod-
ing, sample coding) until convergence. Then, we change the information represen-
tation and finetune the network parameters for the same number of steps as before,
thereby investigating the stability of the local minima. We measure the loss and the
change of network parameters across training steps.

For the first part, all trained models yield performance values of at least P = 91%,
thus have converged to network parameters suitable for solving the XOR task. For
covariance coding, we find that, when switching to mean coding, ∣∣∆θ∣∣22 is of the same
order of magnitude as in the initial training steps, indicating complete re-training of
the model (see Fig. 2.4(b)). This behavior suggests that mean and covariance coding
lead to different solutions. On the other hand, when switching to sample coding
(see Fig. 2.4(c)), ∣∣∆θ∣∣22 changes only slightly. When switching from mean coding to
sample coding, ∣∣∆θ∣∣22 changes only negligibly (see Fig. 2.4(d)). Thus, while mean
and covariance coding yield different solutions due to their different information
encodings, both form local minima in the loss landscape of the network.
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From a theoretical perspective, covariance coding is of particular interest: this encod-
ing is an example where the non-linear activation function is required to transfer in-
formation from higher-order cumulants to the class means since classification utilizes
different mean values in the network output. For the quadratic activation function
ϕ(z) = z + ϵ z2 used in Fig. 2.4, the transfer function is particularly easy to interpret

µy(l), i = µz(l), i + ϵ (µz(l), i)
2
+ ϵ Σz(l), ii. (2.30)

It is worth noting that the information transfer occurs on the diagonal elements of
the covariance, whereas for the XOR task the class-conditional input covariances
Σt=±1

x = ( 0.3 ±0.25
±0.25 0.3 ) differ on the off-diagonal. Transferring information from diagonal

to off-diagonal is mediated by the linear transformation. This case illustrates how our
theoretical framework can be used to trace the information flow across layers that is
required for successful classification.

With respect to our initial questions, we conclude that both mean and covariance
coding can efficiently be utilized by the network. Network training resembles more
closely mean coding, thus recombining information from higher-order cumulants of
the data.

2.5.3 Gaussian statistics are essential to the MNIST data set

We here study the MNIST data set (LeCun, Cortes, and Burges, 1998) that consists of
28× 28 pixel, grayscale images of handwritten digits from zero to nine (see Fig. 2.5(a)
for digit three). The task is to classify the images into ten classes according to the
shown digit. This data set was constructed to be highly structured: approximating
the class-conditional distributions as multivariate Gaussians, drawn samples from
these Gaussians already appear rather realistic (see Fig. 2.5(b)). Based on this obser-
vation, one expects that mean and covariance are the main drivers for classification
by the network. We test this hypothesis here by comparing different data sets and dif-
ferent sets of input cumulants. When optimizing the parameters θ∗ of the statistical
model, we can use different sets of cumulants {G(n)x }n=1,...,n̂, yielding different perfor-
mance values for the corresponding network on the test data set. By comparing these
values to that of a network trained on data samples, the difference in performance
serves as a measure for the importance of the cumulants kept in {G(n)x }n=1,...,n̂.

For the statistical model in Eq. (2.22)-(2.23), we use two different approximations:
we approximate the input data distribution px ≈ p̂x({G

(n)
x }n=1,...,n̂) up to a certain

cumulant order n̂ and we approximate the signal distributions pzl ≈ p̂zl(µzl , Σzl) as
Gaussians. The approximation of the input distribution limits what information from
the data itself is available to the network; the approximation of the signal distribu-
tions limits how this information is being processed by the network. To focus on the
truncation of higher-order cumulants in the input distribution, we sample from the
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approximation of the input distribution x ∼ p̂x({G
(n)
x }n=1,...,n̂) and train the network

on these samples, thereby not limiting the information processing by the network.

To obtain a Gaussian approximation of the class-conditional input distributions, we
flatten the 28×28 pixel images into 784-dimensional vectors and then estimate means
µ̂t

x and covariances Σ̂t
x for each class t empirically from the training data set. The es-

timated covariances Σ̂t
x are only positive semi-definite instead of positive definite

because the image edges exhibit no variance. We use a principal component anal-
ysis of the covariance matrix to take care of zero eigenvalues: For each class t, the
covariance matrix can be written as

Σ̂t
x = VDVT, (2.31)

where V = (v1∣ . . . ∣vN0) consists of unit-length eigenvectors vi andD = diag(λ1, . . . , λN0)

of the respective eigenvalues λi of Σ̂t
x. The eigenvalues are ordered according to size

λ1 ≥ ⋅ ⋅ ⋅ ≥ λN0 ≥ 0. By choosing a threshold ϑPCA > 0 that defines a subspace U
spanned by the eigenvectors {vi}i=1,...,NPCA for which λi > ϑPCA, we generate data
samples x̂α∣U in this subspace U and project these samples back to the input space
RDin :

x̂α∣U ∼N (0, diag(λ1, . . . , λNPCA)), (2.32)

x̂α = µ̂t
x +V (

x̂(d)∣U
0
) . (2.33)

We set ϑPCA = 10−2 in the following, keeping relevant eigenvalues and excluding
noise due to finite numerical precision. We generate a data set of P = 60,000 Gaus-
sian samples (same size as MNIST training data set). We use one-hot encoding for
training, so that the output dimensionality is Dout = 10.

We start by training networks on either the MNIST data set (see Fig. 2.5(a)) or the
corresponding Gaussian samples (see Fig. 2.5(b)) using the standard empirical loss
in Eq. (2.26). In both setting, processing of information in hidden network layers
is not restricted to any cumulant order. We observe that removing higher-order
cumulants from the input distribution leads to performance values that are ∆P ≃
2.4%±0.7% lower than when training on the original data set (see Fig. 2.5(c)). Further,
the achieved performance of P ≈ 91% is accountable to class-conditional means and
covariances of the data, demonstrating that the Gaussian input statistics are already
highly informative for the classification task.

To study the internal information processing by the network, we next optimize the
statistical model in Eq. (2.24) on the Gaussian approximation of MNIST. This gives
a modest drop of performance by about 0.9 ± 0.4% (see Fig. 2.5(c)), from which we
conclude that the information processing by the internal layers is well described
in terms of Gaussian statistics. Altogether, we find that on MNIST the Gaussian
statistics of the data account for the main part of classification performance, although
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Figure 2.5: Class-conditional means and covariances of MNIST give main contri-
bution to classification performance. (a) Three example data samples for the digit
three from the MNIST training data set. (b) Data samples for the digit three that are
drawn from the Gaussian approximation of the class-conditional input distribution.
(c) Classification performance on the MNIST test data set for different statistical en-
codings. Network training achieves performances of P ≈ 94% or more (yellow), while
the statistical model with Gaussian statistics yields performances that are 3.3%±0.6%
lower (green). Training networks on Gaussian input samples leads to performance
values comparable to Gaussian statistics (red). Performance is always evaluated on
the MNIST test data set. Error bars indivate mean and one standard deviation across
102 network realizations. Other parameters: ϕ(z) = z + ϵ z2, width N = 100.

higher-order cumulants of the data are required for the last few percents. In the next
section, we demonstrate how higher-order cumulants can effectively be included into
our theoretical framework.

2.5.4 Extracting higher-order cumulants in the input layer

Up to here, we focused on the class-conditional means µt
x and covariances Σt

x of the
input data; however, for complex tasks we expect higher-order cumulants to be just
as important. As an extreme case, there can be tasks where these two cumulants are
not even informative for discriminating between the classes: One can construct tasks
with two classes t = ±1, where both the class-conditional means and covariances
of the data are identical – µt=−1

x = µt=+1
x , Σt=−1

x = Σt=+1
x . Thus, it is impossible to

distinguish between classes solely based on Gaussian statistics; instead classification
must rely on discriminative information in higher-order cumulants.

We study a low-dimensional example of such a task in the following. The input
distribution for this task is defined as a Gaussian mixture with four mixture com-
ponents. The task consists of two classes, t = ±1, each comprised of two Gaussian
components + and −, with means

µt=+1,−
x = (−0.5, 0)⊺, µt=−1,−

x = (−1.5, 0)⊺, (2.34)

µt=+1,+
x = (1.5, 0)⊺, µt=−1,+

x = (0.5, 0)⊺. (2.35)
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Figure 2.6: Networks extract higher-order cumulants in the input layer. (a) The dis-
tribution of input data is given by a Gaussian mixture. Data samples xα (blue and
green dots) are assigned class labels t = ±1 based on the mixture component that they
were drawn from. Both classes have zero mean and identical covariances, but differ
in their higher-order cumulants. (b) Projection of data samples onto x1-axis (his-
tograms) corresponds to the marginalization of the data distribution over x2 (solid
lines), indicating the different relative weights of the mixture components. (c) Clas-
sification performance for models incorporating different sets of statistics. Training
networks on data samples achieves performance values of P ≈ 96% or more (yel-
low). While the statistical model gstat({G

(n)
x }n=1,2, θ) optimized on Gaussian statistics

(green) results in performance values at chance level P ≈ 50% (dotted line), incorpo-
rating higher-order cumulants into the statistical model g̃stat({G

(n)
x }n=1,2,3,4, θ) (red)

almost completely bridges the gap to training networks on data samples. Error bars
indicate the standard deviation over 102 different network initializations. Other pa-
rameters: quadratic non-linearity ϕ(z) = z + ϵ z2.

The covariances of all components are isotropic

Σt,±
x = 0.05 I. (2.36)

We weight the components (t = −1, −) and (t = +1, +) by pouter =
1
8 and the compo-

nents (t = −1, +) and (t = +1, −) by pinner =
3
8 , as shown in Fig. 2.6(a)-(b). We assign

a target label tα ∈ {±1} to each data sample xα based on the mixture component it is
drawn from. For this particular setup, the class-conditional means and covariances
of the input data are identical

µt=±1
x = (

0
0
) , Σt=±1

x =(
0.8 0
0 0.5

) . (2.37)

However, the third-order cumulants have different signs

G(3), t=±1
x, (i,j,k) = ±0.75 δijδjkδkiδi1. (2.38)

Training and test data sets are of size P = 104.

Since the third-order cumulants are different for the two classes (G(3), t=−1
x = −G(3), t=+1

x ),



§2.5 Experiments 27

we anticipate that incorporating them into the statistical model will enable it to solve
this task. In this section, we illustrate that our approach is capable of handling such
higher-order cumulants. Specifically, we confirm the assertion in Sec. 2.4.3 that con-
sidering higher-order cumulants is necessary only in the first layer.

As expected, training the network results in performance values close to the the-
oretical upper bound of performance of 97%, which is due to the overlaps of the
Gaussian mixture components. However, a statistical model gstat({G

(n)
x }n=1,2, θ) that

incorporates only class-conditional means µt
x and covariances Σt

x fails to perform
well and yields chance-level performance (Fig. 2.6(c)). We can almost completely
bridge this performance gap by including the third-order input cumulants G(3)x (via
Eq. (A.26)) in the first layer of the statistical model g̃stat({G

(n)
x }n=1,2,3,4, θ); we take into

account cumulants up for fourth order here to ensure that covariances are properly
positive-definite. For successful classification, we require different means G(1)y in the

network output; this transfer of information from the third-order cumulant G(3)x to
lower-order cumulants is mediated by the non-linear activation function ϕ. More
specifically, this information transfer depends entirely on the non-linear part of ϕ,
highlighting its importance for the computational power of the network.

2.5.5 High dimensionality of input data justifies Gaussian description of
fully-connected deep networks

As an example of a structurally more diverse task compared to MNIST, we here study
the CIFAR-10 data set (Krizhevsky and Hinton, 2009), which comprises of ten classes
of 32× 32 pixel images with three color channels. Compared to the previous section,
we anticipate two antagonistic effects: Firstly, due to the significant heterogeneity
across images within each class of CIFAR-10, we expect class-conditional distribu-
tions to be more complex than for MNIST, necessitating higher-order cumulants to
accurately represent their statistical structure. Secondly, the larger input dimension-
ality of Din = 3072 compared to Din = 784 for MNIST means higher-order cumulants
are more strongly suppressed in the input layer (see Sec. 2.4.2). To investigate the
trade-off between these two effects, we utilize the methods from previous sections to
determine the contribution of cumulants of different orders, similar to Sec. 2.5.3.

For CIFAR-10, we are primarily interested in the contributions from mean and co-
variance vs. higher-order cumulants. To this end, we train networks on the CIFAR-10
data set, i.e. involving cumulants of all orders, and compare them to the statistical
model trained on the Gaussian approximation of CIFAR-10 (see Fig. 2.7). We eval-
uate network performance in both cases on the CIFAR-10 test data set. Networks
trained on data samples achieve P = 34.8% ± 1.4%. In contrast, the statistical model
trained on the Gaussian statistics consistently achieves higher performance values of
P = 37.6%± 1.3%; we find the opposite relation between these two settings compared
to MNIST. We can understand this result in the context of the two aforementioned
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Figure 2.7: Fully-connected networks trained on CIFAR-10 operate only on Gaussian
statistics. Training the statistical model on Gaussian statistics (green) consistently
yields higher performance than training networks on data samples (yellow). Net-
work performance is evaluated on the test data set. Error bars indicate mean and
standard deviation across 10 network initializations. Other parameters: depth L = 2,
quadratic activation function ϕ(z) = z + ϵ z2.

antagonistic effects: The suppression of higher-order cumulants due to the larger
input dimensionality appears to dominate over the networks’ need to extract and
process them for correctly solving the task. Thus, networks predominantly pro-
cess only Gaussian statistics of CIFAR-10 and in consequence, the statistical model
is a good representation of the networks. A possible explanation for the slightly
higher performance of the statistical method is that the statistical model is based on
a more accurate estimate of the Gaussian statistics (averaged over the entire training
set of 50, 000 images) compared to training on data samples (averaged over mini-
batches of 102 images). Note that while the performance values are significantly
lower than what is reported for state-of-the-art network architectures such as con-
volutional ResNets (Zagoruyko and Komodakis, 2016), they match what is typically
reported for fully-connected feed-forward networks on CIFAR-10 (Lee et al., 2018).
Based on this observation, one possible explanation is that these different architec-
tures extract and utilize different sets of cumulants and thus statistical information
to learn CIFAR-10: our theoretical framework predicts that fully-connected feed-
forward networks are limited to Gaussian statistics in the case of high-dimensional
input data and are thus only able to capture part of the structure for more com-
plex data sets such as CIFAR-10, limiting performance on such tasks. In conclusion,
studying the information processing of neural networks on the level of cumulants
gives us a handle to link computational power of neural networks to the statistical
structure of the data.

2.6 Conclusion

In this chapter, we derived a theoretical framework to trace the transformation of the
data distribution in fully-connected networks across layers and link this transforma-
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tion to the information processing performed by the network. We parameterize the
data distribution in terms of cumulants and investigate the relevance of different cu-
mulant orders for the classification task. Including higher-order cumulants requires
a perturbative treatment of the non-linearity in the network layer.

For wide networks, we argue that it is sufficient to trace the class-conditional means
and covariances. We validate this Gaussian hypothesis for the XOR task, which we
model as a Gaussian mixture model and thus have an exact representation of the
input distribution in terms of Gaussian distributions. While network training intro-
duces correlations between network parameters, we show that under certain condi-
tions our theory continues to apply to trained networks and validate this empirically.

Further, we show for the MNIST data set that class-conditional means and covari-
ances account for the largest part of the classification accuracy, while higher-order
cumulants are required to fine-tune for a few additional percentages. We show for a
low-dimensional toy task that higher-order cumulants are predominantly extracted
in the input layer while the internal information processing is primarily governed
by Gaussian statistics. Finally, for more complex image data like CIFAR-10, we find
that higher-order cumulants are required to match state-of-the-art performance on
this data set. Since higher-order cumulants are suppressed by the large input dimen-
sion, fully-connected networks do not have the capacity to solve this task; in contrast,
convolutional networks with their sparse structured weight matrices likely involve
higher-order cumulants also for their internal information processing. This observa-
tion indicates how the theoretical approach presented in this chapter may be applied
to probe the computational properties of different network architectures.

2.6.1 Limitations

While the theoretical framework in this chapter and its perturbative methods apply
naturally to polynomial activation functions, it can be extended to non-polynomial
and even non-differentiable activation functions using Gram-Charlier or Edgeworth
expansions. The main advantage of polynomial activation functions is that the infor-
mation exchange between cumulants of different orders is described by an intuitive
diagrammatic language and yields exact analytical expressions. However, since net-
works with polynomial activation functions do not yield universal function approxi-
mators (Cybenko, 1989; Leshno et al., 1993; Pinkus, 1999), commonly used activation
functions such as ReLU are non-polynomial. Therefore, we provide results with
ReLU for Gaussian statistics and show how to generalize to higher-order cumulants
in App. A.1.

For including higher-order cumulants, it is important to note that there are mathe-
matical constraints for truncating cumulants at a certain order. Such truncations need
to be done systematically to maintain positivity of the probability distribution as well
as conform to properties of the cumulants, e.g. the positive semi-definiteness of the
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covariance. This is especially relevant for extending the theoretical framework to
other network architectures such as convolutional networks that may require tracing
higher-order cumulants at hidden network layers.

The main limitation for the applicability of this framework lies in the dimensionality
Din of the data and the hidden representations Nl . The cumulant of order n is a ten-
sor with Nn

l elements. Determining higher-order cumulants from the data requires
significant amounts of both available data and compute, which increases exponen-
tially with the order n. Further, storing and tracing higher-order cumulants across
network layers leads to high memory demands. To ease these constraints, one can
use the inherent symmetries of the cumulants under index permutations, as done in
(Merger et al., 2023).

2.6.2 Relation to other works

Deco and Brauer (1994) are the first to describe the data and signal distribution in
terms of cumulants. They consider the special case of volume-preserving networks
and derive a learning rule for decorrelating the network outputs, but are limited to
two-layer networks.

Closest in spirit is a line of research that studies how networks learn distributions of
increasing complexity, where complexity is measured in terms of cumulants of the
data distribution. (Refinetti, Ingrosso, and Goldt, 2023; Belrose et al., 2024) measure
learning curves of networks on approximations of the input distributions involv-
ing cumulants of different orders. They show that both convolutional networks and
transformers first learn Gaussian statistics and then continuously learn more accu-
rate representations of the input distribution. While they study the effect of different
approximations of the input distribution on the learning dynamics, our approach
also captures the information processing within the network and allows us to link
the input cumulants to the networks’ computational properties. For invertible net-
works, a special class of networks that map the data distributions to a latent Gaussian
distribution in order to generate new samples, Merger et al. (2023) show that these
networks generate interactions of increasing orders across network layers. While
their approach captures the information processing within the network, it applies to
a different network architecture and traces interaction coefficients instead of cumu-
lants.

Multiple lines of research consider the reciprocal setting to ours where one considers
the distribution over network parameters for a fixed training data set. (Goldt et
al., 2020; Goldt et al., 2022; Loureiro et al., 2022) study teacher-student settings,
where the overlaps between teacher and student weights emerge as natural order
parameters that permit a Gaussian approximation for wide networks, mapping high-
dimensional integrals to low-dimensional Gaussian integrals to determine quantities
like the generalization error. In the limit of infinite width, (Neal, 1996; Williams,



§2.6 Conclusion 31

1998; Lee et al., 2018; Garriga-Alonso, Rasmussen, and Aitchison, 2019) find an exact
equivalence between neural networks at initialization and Gaussian processes, the
so-called neural network Gaussian process (NNGP), where the covariance function
becomes the central object. This approach studies how overlaps between samples
and thus merely their global relation to one another is transformed by the network,
while our approach goes further in that it captures how the internal structure of the
samples is processed by the network. To make this explicit, we consider classification
on image data as an example: the NNGP involves the scalar product ∑i xα

i xβ
i between

pixels xα
i , xβ

i of any pair of images α, β, while our approach considers the image
structure in the sense of correlations between pixel values xα

i and xα
j .
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Chapter 3

Critical feature learning in deep
neural networks
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3.1 Introduction

We here consider the reciprocal setting to the previous chapter: we study ensembles
of neural networks over the distribution of network parameters for a fixed training
data set and fully-connected, feed-forward networks as in the previous chapter. We
are interested in the Bayesian posterior of the network, which corresponds to select-
ing only those networks from the ensemble that implement the correct input-output
mapping on the training data set. Due to the vast number of parameters in neural
networks, it is impossible to keep track of all of them. Instead, when computing the
network prior at initialization from a field-theoretic perspective as in (Segadlo et al.,
2022), network kernels emerge as natural order parameters of the system. These net-
work kernels describe the covariance structure between different input samples of
the Gaussian signal distribution that results from a Gaussian prior on the network
parameters.

While the characterization of the signal distribution as Gaussian is rigorous in the
infinite-width limit at initialization, it continues to hold approximately when go-
ing away from initialization for finite-size networks; however, the network kernels
change as shown in (Seroussi, Naveh, and Ringel, 2023; Rubin, Seroussi, and Ringel,
2024). In this chapter, we tackle the question of the emergence and structure of
these feature-corrected kernels by determining leading-order feature corrections to
the kernels at initialization in a field-theoretic formulation of the network.

The main contributions of this chapter are:

• we derive analytic expressions for the posterior kernels in the Bayesian setting
for finite-size networks under small but non-zero training load;

• we find that the forward-backward propagation in the self-consistency equa-
tions for the feature-corrected kernels captures the input-label relationship,
correctly predicting non-linear kernel adaptation to the target kernel in trained
neural networks;

• we identify a connection between kernel fluctuations close to a critical point
in hyperparameter space and the networks’ ability for feature learning, reveal-
ing that the underlying mechanims for feature learning results from a tradeoff
between criticality and feature learning scales of the network output.

3.2 Setup

We study deep, fully-connected, feed-forward networks defined as

h(0)α =W(0)xα + b(0),

h(l)α =W(l)ϕ (h(l−1)
α )+ b(l) l = 1, . . . , L, (3.1)

fα = h(L)α .
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We consider P training samples xα ∈ RD with data indices α ∈ {1, . . . , P}. We
denote the hidden representations as h(l)α ∈ RNl and network output as fα ∈ R.
To ease notation, we assume identical width Nl = N for all network layers; for
the general case one needs to consider layer size ratios Nl/N as in Segadlo et al.
(2022). The here obtained theoretical framework holds for arbitrary activation func-
tions ϕ ∶ R ↦ R; numerical experiments in subsequent sections are performed for
ϕ = erf because this choice allows for exact analytical solutions of the appearing
Gaussian integrals. At initialization, we use Gaussian i.i.d. priors for all weights
W(0) ∈ RN×D, W(l) ∈ RN×N , W(L) ∈ R1×N and biases b(l) ∈ RN , b(L) ∈ R, so that
W(0)

ij
i.i.d.
∼ N (0, σ2

w,0/D), W(l)
ij

i.i.d.
∼ N (0, σ2

w/N) for i, j = 1, . . . , N and l = 1, . . . , L, and

b(l)i
i.i.d.
∼ N (0, σ2

b ) for i = 1, . . . , N and l = 0, . . . , L. To keep the notation concise, we use
the same weight variance σ2

w and bias variance σ2
b across all hidden layers; the theoret-

ical framework can straightforwardly incorporate layer-dependent weight variances
σ2

w,l and bias variances σ2
b,l by adding a layer index l. In this chapter, we derive the

Bayesian posterior distribution conditioned on a training data set consisting of inputs
X = (xα)α=1,...,P and corresponding labels Y = (yα)α=1,...,P as outlined in the following
Sec. 3.3.1. This view corresponds to training the network with stochastic Langevin
dynamics (see Appendix App. B.5).

3.3 Theoretical background

We first shortly present the concept of Bayesian supervised learning, which is a set-
ting commonly studied in machine learning theory. Next, we state the Neural Net-
work Gaussian Process (NNGP) kernel (Neal, 1996; Lee et al., 2018) for feed-forward
networks that describes these at initialization. We then reiterate the derivation of the
network prior in a field-theoretic framework following Segadlo et al. (2022), which
served as a starting point for our work. Then, we discuss next-to-leading-order cor-
rections to the NNGP kernel in this framework, introducing the response function
and fluctuation corrections, which we identify as the driving forces of feature learn-
ing in deep neural networks. Finally, we give a brief overview of large deviation
theory following Touchette (2009), which appears when approximating the network
posterior to determine the feature-corrected kernels.

3.3.1 Bayesian supervised learning

We here briefly review the Bayesian approach to supervised learning (MacKay, 2003).
Consider a model p(y∣x, θ) that maps from inputs x ∈ RD to outputs y ∈ R given an
arbitrary but fixed set of network parameters θ. Then common network training
methods find a set of network parameters θ̂ that maximizes the likelihood of the
data p(Y∣X, θ) given the training set D = {X, Y}. Any observable A = A(X, Y, θ)
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Figure 3.1: The Neural Network Gaussian Process (NNGP) for feed-forward net-
works exhibits a forward dependence, mapping from one layer to the next.

of the network is then given by A(X, Y, θ̂); in particular we get a prediction for an
unseen test point x∗ from p(y∗∣x∗, θ̂).

In the Bayesian setting, we instead assume a prior p(θ) on the network parameters
θ and compute the posterior after conditioning on the training data using Bayes’
theorem

p(θ∣X, Y) =
p(Y∣X, θ) p(θ)

∫ dθ p(Y∣X, θ) p(θ)
. (3.2)

Conditioning on the training data can be seen as selecting all those sets of network
parameters θ from the network prior p(θ) that implement the correct input-ouput
mapping X ↦ Y on the training data set. For any observable A = A(X, Y, θ), we get
the Bayesian posterior by marginalizing over the likelihood of the posterior distribu-
tion of the network parameters

p(A∣X, Y) = ∫ dθ p(A∣θ) p(θ∣X, Y), (3.3)

which can be rewritten as

p(A∣X, Y) =
p(Y,A∣X)

p(Y∣X)
.

The term p(Y∣X) = ∫ dθ p(Y∣X, θ) p(θ) denotes the model-dependent network prior
which describes all input-output mappings compatible with the network mapping
p(y∣x, θ) and the network prior p(θ). The observables that we will be interested in
are the network kernels

C(l)αβ (θ) =
σ2

w
N

ϕ(h(l−1)
(xα, θ))ϕ(h(l−1)

(xβ, θ))+ σ2
b (3.4)

under Gaussian priors W(l)
ij

i.i.d.
∼ N (0, σ2

w/N) and b(l)i
i.i.d.
∼ N (0, σ2

b ) that appear as
natural order parameters of the network as we will show in the following.
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3.3.2 Neural Network Gaussian Process

In the limit of infinite width N → ∞, feed-forward networks can be described as
a Gaussian process, which is referred to as the Neural Network Gaussian Process
(NNGP) (Neal, 1996; Lee et al., 2018). As the signal h(l)i,α = ∑

N
j=1 W(l)

ij ϕ(h(l−1)
j,α ) + b(l)i

in layer l contains a sum over N i.i.d. random variables, the central limit theorem
implies that for N → ∞ the signal h(l) ∼ N (0, C(l)αβ ) is Gaussian distributed with
covariance function

C(0)αβ =
σ2

w
D

xα ⋅ xβ + σ2
b ,

C(l)αβ = σ2
w⟨ϕ

(l−1)
α ϕ

(l−1)
β ⟩N (0,C(l−1)) + σ2

b l = 1, . . . , L,

which is also often referred to as the NNGP kernel. Here, the dot-product is over
the element indices xα ⋅ xβ = ∑

D
i=1 xi,αxi,β. The covariance in layer l depends solely

on the covariance in the previous layer and thus only on the inputs (xα)α as shown
in Fig. 3.1; it does not account for the input-output relation between samples and
labels. Bayesian inference on the training data with the NNGP kernel corresponds to
training only the output layer of the network (Lee et al., 2018; Yang, 2019).

3.3.3 Network prior in a field-theoretic formulation

We here retrace the derivation of the network prior for feed-forward networks in a
field-theoretic formulation as done by Segadlo et al. (2022). They derive the network
prios in a more general formulation that includes both feed-forward and recurrent
neural networks jointly while we here focus on feed-forward networks.

Marginalization over network parameters

Assuming sample-wise i.i.d. Gaussian regularization noise of variance κ, the network
prior is given by

p(Y∣X) = ∫ dθ
P
∏
α=1
N (yα∣ fα, κ) p( f ∣X; θ) (3.5)

where f = ( fα)α=1,...,P denotes the network outputs and we marginalize over the
network parameters θ = {W(l), b(l)}l . For fixed network parameters θ, the proba-
bility p( f ∣X, θ) is given by enforcing the network architecture Eq. (3.1) with Dirac
δ-distributions as

p( f ∣X, θ) =
P
∏
α=1
∫ dh(0)α ⋯∫ d fα δ ( fα −W(L)ϕ (h(L−1)

α )− b(L))

×
L−1

∏
l=1

δ(h(l)α −W(l) ϕ (h(l−1)
α )− b(l)) (3.6)

× δ (h(0)α −W(0)xα − b(0)) .
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We compute the marginalization over network parameters in Eq. (3.5) of the second
term as p( f ∣X) = ∫ dθ p( f ∣X; θ), giving

p( f ∣X) =
L−1

∏
l=0
∫ dh(l)∫ d f

P
∏
α=1
⟨δ ( fα −W(L)ϕ (h(L−1)

α )− b(L))⟩
W(L),b(L)

(3.7)

×
L−1

∏
l=1
⟨δ(h(l)α −W(l) ϕ (h(l−1)

α )− b(l))⟩
W(l),b(l)

(3.8)

× ⟨δ (h(0)α −W(0)xα − b(0))⟩
W(0),b(0)

. (3.9)

Here ⟨. . . ⟩{W,b} refers to the Gaussian average over weights W and biases b. To
marginalize over weights and biases, we rewrite the Dirac δ-distributions using their
Fourier transform δ(h) = ∫ Dh̃ exp(hh̃) with ∫ Dh̃ = 1

2πi ∫
i∞
−i∞ dh̃, yielding

δ
⎛

⎝
h(l)k,α −

N
∑
j=1

W(l)
kj ϕ (h(l−1)

j,α )− b(l)k
⎞

⎠
(3.10)

= ∫ dh̃k,α exp
⎛

⎝
h(l)k,αh̃(l)k,α − h̃(l)k,α

N
∑
j=1

W(l)
kj ϕ (h(l−1)

j,α )− h̃(l)k,αb(l)k
⎞

⎠
,

As a result of the Fourier transform, we introduce conjugate variables f̃ for the net-
work output f and h̃(l) for the layer pre-activations h(l). When we perform the
Gaussian expectation values over network parameters θ = {W(l), b(l)}l , the moment-
generating function (MGF) of these variables appears naturally; for a centered Gaus-
sian it computes to ⟨exp(k θij)⟩θij∼N (0,σ2) = exp (σ2/2 k2). For the input layer, this
yields

∏
α

⟨exp
⎛

⎝
∑
i,j

h̃(0)i,α W(0)
ij xj,α + h̃(0)i,α b(0)i

⎞

⎠
⟩

W(0),b(0)

(3.11)

= ⟨exp
⎛

⎝
∑
α,i,j

h̃(0)i,α W(0)
ij xj,α

⎞

⎠
⟩

W(0)

⟨exp
⎛

⎝
∑
α,i

h̃(0)i,α b(0)i
⎞

⎠
⟩

b(0)
(3.12)

MGF
= exp

⎛

⎝

σ2
w

2D
∑
αβ

(h̃(0)α )
T
[XXT]αβh̃(0)β

⎞

⎠
exp
⎛

⎝

σ2
b

2
∑
αβ

(h̃(0)α )
T

h̃(0)β

⎞

⎠
, (3.13)

where [XXT]αβ = xT
α xβ = xα ⋅ xβ denotes the input overlaps. All subsequent network

layers give

∏
α

⟨exp
⎛

⎝
∑
i,j

h̃(l)i,α W(l)
ij ϕ

(l−1)
j,α +∑

i
h̃(l)i,α b(l)i

⎞

⎠
⟩

W(l),b(l)

(3.14)

= ⟨exp
⎛

⎝
∑
α,i,j

h̃(l)i,α W(l)
ij ϕ

(l−1)
j,α
⎞

⎠
⟩

W(l)

⟨exp
⎛

⎝
∑
α,i

h̃(l)i,α b(l)i
⎞

⎠
⟩

b(l)
(3.15)
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MGF
= exp

⎛

⎝

σ2
w

2N
∑
αβ

(h̃(l)α )
T
[ϕ(l−1)ϕ(l−1)T

]
αβ

h̃(l)β

⎞

⎠
exp
⎛

⎝

σ2
b

2
∑
αβ

(h̃(l)α )
T

h̃(l)β

⎞

⎠
, (3.16)

where we introduce [ϕ(l−1)ϕ(l−1)T]
αβ
∶= ∑j ϕ

(l−1)
j,α ϕ

(l−1)
j,β with shorthand ϕ

(l−1)
j,α = ϕ (h(l−1)

j,α ).

Auxiliary variables

Quadratic terms in h and h̃ can be solved as Gaussian integrals. However, in the
above expressions terms we also have terms proportional to∝ [h̃l]

T
h̃l ϕ(hl−1)Tϕ(hl−1),

which are at least quartic in h and h̃. To treat these terms, we introduce auxiliary vari-
ables

C(0)αβ
∶=

σ2
w

D
[XXT]αβ + σ2

b , (3.17)

C(l)αβ
∶=

σ2
w

N
[ϕ(l−1)ϕ(l−1)T

]
αβ
+ σ2

b l = 1, . . . , L, (3.18)

so that the appearing terms simplify to

∫ Dh̃(l)i,α exp
⎛

⎝
−h̃(l)i,α h(l)i,α +

1
2
∑
αβ

h̃(l)i,α C(l)αβ h̃(l)i,β
⎞

⎠
=N (h(l)i ∣0, C(l)αβ ) 0 ≤ l < L. (3.19)

We enforce the definition of the auxiliary variables using Dirac δ-distributions

δ(−C(l)αβ +
σ2

w
N
[ϕ(l−1)ϕ(l−1)T]

αβ
+ σ2

b) (3.20)

= ∫ DC̃(l)αβ exp(−C̃(l)αβ C(l)αβ + C̃(l)αβ

σ2
w

N
[ϕ(l−1)ϕ(l−1)T]

αβ
+ C̃(l)αβ σ2

b) ,

where ∫ DC̃(l)αβ = ∫
i∞
−i∞

dC̃(l)
αβ

2πi and C̃αβ is the conjugate variable of Cαβ. Combining all
terms in Eq. (3.7) yields

p( f ∣X) = ∫ D{C̃, C}N ( f ∣0, C(L)αβ ) ⟨exp(S(C, C̃))⟩h , (3.21)

S(C, C̃) = −
L
∑
l=1

C̃(l)αβ C(l)αβ + C̃(l)αβ
(

σ2
w

N
[ϕ(l−1)ϕ(l−1)T]

αβ
+ σ2

b ),

where ∫ D{C̃, C} = ∏l∏α,β ∫ DC̃(l)αβ ∫ dC(l)αβ , the expectation value ⟨. . .⟩h goes over all

hidden layers h(l) ∼N (0, C(l)αβ ) and repeated indices α, β are summed over.
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Since these distributions are independent across neuron indices j, averages reduce to

⟨exp
⎛

⎝
C̃(l)αβ

σ2
w

N

N
∑
j=1

ϕ
(l−1)
j,α ϕ

(l−1)
j,β
⎞

⎠
⟩

{N(h(l−1)
j ∣0,C(l−1)

αβ
)}j

(3.22)

h(l−1)
j i.i.d. in j
= ⟨exp(

σ2
w

N
C̃(l)αβ ϕ

(l−1)
α ϕ

(l−1)
β )⟩

N

N(h(l−1)∣0,C(l−1)
αβ

)

. (3.23)

Thus, we obtain

p( f ∣X) = ∫ D{C̃, C}N ( f ∣0, C(L)αβ ) exp (−
L
∑
l=1

C̃(l)αβ C(l)αβ +W(C̃∣C)), (3.24)

W(C̃∣C) =
L
∑
l=1
∑
αβ

C̃(l)αβ σ2
b +N

L
∑
l=1

ln ⟨ exp(
σ2

w
N

C̃(l)αβ ϕ
(l−1)
α ϕ

(l−1)
β )⟩

N (0,C(l−1))
, (3.25)

C(0) =
σ2

w
D

XXT
+ σ2

b . (3.26)

Network prior as a superposition of Gaussians

Since we assume regularization noise on the labels, the network prior reads

p(Y∣X) = ∫ D{C̃, C}∏
α

d fαN (yα∣ fα, κ)N ( fα∣0, C(L)αβ ) exp(−tr C̃TC +W(C̃∣C)).

Here we use the shorthand tr C̃TC = ∑αβl C̃(l)αβ C(l)αβ . The integral over fα is a convo-

lution of the Gaussian distributions N (yα∣ fα, κ) and N ( fα∣0, C(L)αβ ); in consequence

their covariances add to C(L)αβ + κI.

We obtain the final expression for the network prior

p(Y∣X) = ∫ DCN (Y∣0, C(L) + κI) p(C), (3.27)

p(C) = ∫ DC̃ exp (−tr C̃TC +W(C̃∣C)) . (3.28)

From this expression one can read off that the network output is a superposition
of centered Gaussians N (0, C(L) + κI). The covariance is given by the label noise
κI and C(L) that itself is distributed as p(C(L)) = ∫ dC(1≤l<L) p(C). The joint distri-
bution p(C) = p(C(L)∣C(L−1))⋯p(C(1)∣C(0)) of all C(1≤l≤L) decomposes into a chain of
conditionals with

p (C(l)∣C(l−1)
) = ∫ DC̃(l) exp(−tr C̃(l)TC(l) +W (C̃(l)∣C(l−1)

)) , (3.29)

W (C̃(l)∣C(l−1)
) = C̃(l)σ2

b +N ln ⟨ exp(
σ2

w
N

ϕ(l−1)TC̃(l)ϕ(l−1)
)⟩
N (0,C(l−1))

1 ≤ l < L.

(3.30)
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The distribution p(C(L)) is written in terms of its cumulant-generating function

W(C̃∣C) = N
L−1

∑
l=0

ln ⟨ exp(
σ2

w
N

ϕ(l)TC̃(l+1)ϕ(l))⟩
N (0,C(l))

+ C̃σ2
w + C̃(0)TC(0), (3.31)

with ϕTC̃ϕ = ∑αβ ϕαC̃αβϕβ. The formulation of the network prior in Eq. (3.27) as a
superposition of Gaussians is exact.

Saddle point approximation recovers NNGP kernel

We can write Eq. (3.27) in the form

p(Y∣X) = ∫ DC ∫ DC̃N (Y∣0, C(L) + κI) exp (S(C, C̃)) , (3.32)

with an action S(C, C̃) = −tr C̃TC +W(C̃∣C). The action S scales with the network
width N. In the limit of infinite width N → ∞, we can thus perform a saddle point
approximation to evaluate integrals of the form

∫ DC∫ DC̃ f (C, C̃) exp (S(C, C̃)) N→∞
= f (C∗, C̃∗), (3.33)

where C∗ and C̃∗ are the saddle points of the action S . We compute these using the
conditions

∂S

∂C
!
= 0,

∂S

∂C̃
!
= 0, (3.34)

and recover the NNGP

C(0)∗ =
σ2

w
D

XXT
+ σ2

b , (3.35)

C(l)∗ = σ2
w⟨ϕ

(l−1)ϕ(l−1)
⟩N (0,C(l−1)) + σ2

b l = 1, . . . , L, (3.36)

C̃(l)∗ = 0. (3.37)

Thus, the network prior reduces to a single Gaussian with the NNGP kernel

p(Y∣X) =N (Y∣0, C(L)∗ + κI) . (3.38)

3.3.4 Next-to-leading-order corrections

For infinitely wide networks N →∞, the auxiliary variables in Eq. (3.18) concentrate
around the NNGP kernel. For finite-width networks, the auxiliary variables fluctuate
around their saddle points. The above field-theoretic framework allows computing
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next-to-leading-order corrections as in Segadlo et al. (2022). To lowest-order, the
auxiliary variables fluctuate in a Gaussian manner

p(Y∣X) ≃ ∫ DδC ∫ DδC̃ exp(
1
2
(δC, δC̃)TS(2) (δC, δC̃))

= ∫ DδC ∫ DδC̃ exp(−
1
2
(δC, δC̃)T [∆(2)]

−1
(δC, δC̃)),

where δC = C −C∗ and δC̃ = C̃ − C̃∗. We obtain these fluctuations by computing the
negative inverse of the Hessian of the action

(
⟨δC δC⟩ ⟨δC δC̃⟩
⟨δC̃ δC⟩ ⟨δC̃ δC̃⟩

) = [−S
(2)
]
−1
= ∆(2). (3.39)

The terms of the Hessian are given by

∂2

∂C(l)αβ ∂C(m)γδ

S ∣(C∗,0) = 0,

∂2

∂C(l)αβ ∂C̃(m)γδ

S ∣(C∗,0) = −δl,m δ(αβ),(γδ) + δm−1,l σ2
w

∂⟨ϕ
(m−1)
γ ϕ

(m−1)
δ ⟩

N (0,C(l)∗ )

∂C(l)αβ

,

∂2

∂C̃(l)αβ ∂C̃(m)γδ

S ∣(C∗,0) = δl,m
σ4

w
N
⟨ϕ
(l−1)
α ϕ

(l−1)
β , ϕ

(l−1)
γ ϕ

(l−1)
δ ⟩

c
N (0,C(l)∗ )

.

Here appears the connected correlation function

⟨ϕ
(l−1)
α ϕ

(l−1)
β , ϕ

(l−1)
γ ϕ

(l−1)
δ ⟩

c
N (0,C(l)∗ )

∶= ⟨ϕ
(l−1)
α ϕ

(l−1)
β ϕ

(l−1)
γ ϕ

(l−1)
δ ⟩

N (0,C(l)∗ )

− ⟨ϕ
(l−1)
α ϕ

(l−1)
β ⟩

N (0,C(l)∗ )
⟨ϕ
(l−1)
γ ϕ

(l−1)
δ ⟩

N (0,C(l)∗ )
.

Using the block structure of the Hessian S(2) = (
S11 S12

S21 S22
) and that S11 = 0, we

compute its negative inverse as

∆11 = ∆12 S22 ∆21, (3.40)

∆12 = −S
−1
21 , (3.41)

∆22 = 0. (3.42)

This yields for the off-diagonal terms

∆(lm,αβ)
12 = δlm + 1l>mσ2

w

l
∏

s=m+1
⟨ (ϕ

(s)
α )

′

(ϕ
(s)
β )

′

⟩
N (0,C(s)∗ )

,

which corresponds to ∆(lm,αβ)
12 = Cov (C(l), C̃(m)). Since the auxiliary fields C̃(l) repre-

sent changes in the fields C(l), it can be understood as the response of the network
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residual in layer l to a perturbation of the kernel in layer m. Due to the feed-forward
architecture any response can only propagate forward in the network, which is re-
flected by the indicator function 1k>l . While the statistics of all intermediate layers
are determined by (C, C̃) ∼ exp (S(C, C̃)), we can describe the effect of variability in
the input layer l = 0 by

C(l) = C(l)∗ +∆(l0)12 δC(0) +O(δ2
). (3.43)

This can also be understood in terms of linear response theory since the response
function can be written as ∆(l0)12 =

∂
∂C(0)C

(l)∣C∗ .

The diagonal terms of the covariance ∆ are given by

∆(lm,αβγδ)
22 =

l
∑
k=1

∆(lk,αβ)
12 σ4

w⟨ϕ
(k−1)
α ϕ

(k−1)
β , ϕ

(k−1)
γ ϕ

(k−1)
δ ⟩

c
N (0,C(l)∗ )

∆(km,γδ)
21 ,

where the fluctuations σ4
w⟨ϕ

(k−1)
α ϕ

(k−1)
β , ϕ

(k−1)
γ ϕ

(k−1)
δ ⟩c

N (0,C(l)∗ )
of the kernels C(l) are con-

volved with the response function and summed over all layers.

3.3.5 Criticality in neural networks

Here we discuss properties of the response function, which exhibits long-range be-
havior across layers at critical points of the network. In this section, we follow the
presentation in Schoenholz et al. (2017). They show that for infinite depth L → ∞,
the kernels converge to a fixed point for all inputs xα that can be determined self-
consistently

q∗αα = σ2
w⟨ϕ(h)ϕ(h)⟩h∼N (0,q∗αα)

+ σ2
b , (3.44)

q∗αβ = σ2
w⟨ϕ(h

(1)
)ϕ(h(2))⟩(h(1),h(2))∼N (0,Q) + σ2

b , (3.45)

where Q = (
q∗αα q∗αβ

q∗βα q∗ββ
) with q∗αα = q∗ββ and q∗αβ = q∗βα since the fixed point is independent

of the sample index. Depending on the hyperparameters σ2
w and σ2

b , the correlation

c(l)αβ = C(l)αβ /

√

C(l)αα C(l)ββ converges to a fixed point c∗ = q∗αβ/q
∗
αα that is either c∗ = 1 or

c∗ < 1. These two cases define two different phases in the network dynamics: For
c∗ = 1, all signals h(l)α for different inputs xα correlate, which corresponds to the
ordered phase. For c∗ < 1, all signals h(l)α for different inputs xα decorrelate, which
correponds to the chaotic phase. Points (σ2

w, σ2
b ) in hyperparameters space where the

network transitions from one phase to the other are so-called critical points, following
the notion of criticality in dynamical systems. To determine when the fixed point



44 Critical feature learning in deep neural networks

c∗ = 1 is stable, one calculates

χ1 =
∂c(l)αβ

∂c(l−1)
αβ

= σ2
w ⟨ϕ

′ϕ′⟩
N (0,q∗)

, (3.46)

For χ1 < 1, the fixed point c∗ = 1 is stable and the system is in the ordered phase. For
χ1 > 1, the system converges to the fixed point c∗ < 1 corresponding to the chaotic
phase. Thus, χ1 = 1 marks the order-chaos transition.

The decay to the fixed point can be described in terms of the response function as

C(l)αβ ≈ q∗ +∆(l0,αβ)
12 C(0)αβ . (3.47)

At large depth, the response function shows exponential behavior

∆(l0,αβ)
12 =

l
∏
s=1

σ2
w ⟨ (ϕ

(s)
α )

′

(ϕ
(s)
β )

′

⟩
N (0,C(s)∗ )

≈
l
∏
s=1

σ2
w ⟨ (ϕ

(s)
α )

′

(ϕ
(s)
β )

′

⟩
N (0,Q)

= [σ2
w ⟨ (ϕ

(s)
α )

′

(ϕ
(s)
β )

′

⟩
N (0,Q)

]
l

= exp (−l/ξc) ,

where ξ−1
c = − ln(σ2

w ⟨ (ϕ
(s)
α )

′

(ϕ
(s)
β )

′

⟩
N (0,Q)

) is the depth scale that controls how far

information about the inputs propagates within the network. In the ordered phase,
c∗ = 1 and the integral simplifies to ξ−1

c = ln χ1. At the transition to chaos χ1 = 1 and
the depth scale diverges, leading to information propagation to arbitrary depths in
the network. Thus, initializing infinitely wide networks at critical points might be
beneficial for network training, which is also called the edge-of-chaos initialization
(Schoenholz et al., 2017).

3.3.6 Large deviation theory

Large deviation theory studies the asymptotic tail behavior of probability distribu-
tions and is based on the idea that probability distributions p(x) can be expressed
in terms of entropy functions Γ(x) (Touchette, 2009). This idea takes form in the so-
called large deviation principle p(x) ≃ exp(−N Γ(x)) where N is a large parameter,
e.g. the system size, and Γ is called a rate function in the context of large deviation
theory. There are different theorems yielding a large deviation principle; we here
present the Gärtner-Ellis theorem which will appear in Sec. 3.4.
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For a real random variable XN that is parameterized by a positive integer N, we
define the scaled cumulant-generating function as

λ(k) = lim
N→∞

1
N

ln⟨exp(NkXN)⟩XN (3.48)

where k ∈ R. If λ(k) exists and is differentiable, then XN follows a large deviation
principle so that

p(XN) ≃ exp(−NΓ(XN)) (3.49)

with the rate function given by the Legendre transform of the scaled cumulant-
generating function

Γ(XN) = sup
k∈R

kXN − λ(k). (3.50)

Note that the Gärtner-Ellis theorem applies to a one-dimensional random variable.

To make the large deviation principle more tangible, we study the example of a sum

of Gaussian random i.i.d. variables SN =
1
N ∑

N
i=1 Yi where Yi

i.i.d
∼ N (µ, σ2). The scaled

cumulant-generating function is then

λ(k) = lim
N→∞

1
N

ln⟨exp(NkSN)⟩SN

= lim
N→∞

1
N

ln
N
∏
i=1
⟨exp(kYi)⟩Yi

= ln⟨exp(kY)⟩Y.

We get the cumulant-generating function of the individual Gaussians as ln⟨exp(kY)⟩Y =
µk+ 1

2 σ2k2, fulfilling the conditions of the Gärtner-Ellis theorem. For the rate function
we obtain

Γ(SN) =
(SN − µ)2

2σ2 , (3.51)

thus recovering Cramer’s theorem.

3.4 Theory

We here present a theoretic framework to describe the posterior of the network in a
Bayesian setting. This theory captures non-linear kernel adaptation in trained net-
works.

3.4.1 Large deviation approach for the posterior kernels

The cumulant-generating function in Eq. (3.31) scales as W(C̃) = N λ(C̃/N) with
the network width N, where the function λ itself does not depend on N. Thus λ
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follows a scaling form (Touchette, 2009) and in consequence, the auxiliary variables
C concentrate in the limit N →∞ around its mean while cumulants of order k > 1 are
suppressed with 1/Nk−1. For finite network width N, all auxiliary variables C(1≤l≤L)

fluctuate with a variance of order W ′′ ∼ O(N−1); except for the input kernel C(0),
which is deterministic. As the cumulant-generating function has a scaling form, we
can do a saddle point approximation for the integrals over the conjugate variables
C̃(l) as

− ln p(C(l+1)
∣C(l)) = ln∫ DC̃(l) exp(tr C̃(l+1)TC(l+1)

−W(C̃(l+1)
∣C(l))) (3.52)

≃ sup
C̃(l+1)

tr C̃(l+1)TC(l+1)
−W(C̃(l+1)

∣C(l)) (3.53)

= Γ(C(l+1)
∣C(l)).

Here, Γ can be understood as a rate function that one would get by using the Gärtner-
Ellis theorem on a one-dimensional variable to get a large deviation principle (l.d.p.)
(Touchette, 2009). However, one needs to be careful in which limits this saddle
point approximation is valid, whether correction terms become non-negligible or
even dominate the integral. For linear networks, the rate function takes an intuitive
form as the Kullback-Leibler divergence between the Gaussian distributions of the
pre-activations of two adjacent layers (see App. B.2), indicating that the network prior
keeps the distributions in adjacent layers similar. We get the joint probability p(C) in
Eq. (3.28) across all layers as

ln p(C) = ln p(C(L)∣C(L−1)
)⋯p(C(1)∣C(0))

≃ −
L
∑
l=1

Γ(C(l)∣C(l−1)
) =∶ −Γ(C).

We use the rate function to write the network prior p(Y∣X) as

p(Y∣X) ≃ ∫ DCN (Y∣0, C(L) + κI) exp (− Γ(C)). (3.54)

From the saddle point in Eq. (3.52) follows

C(l+1)
αβ ≡

∂W

∂C̃(l+1)
αβ

= σ2
w ⟨ϕ

(l)
α ϕ

(l)
β
⟩P(l) + σ2

b , (3.55)

⟨ . . . ⟩
P(l)
∝ ⟨. . . exp(

σ2
w

N
ϕ(l)TC̃(l+1)ϕ(l))⟩

N (0,C(l))
, (3.56)

where the expectation value is with respect to the non-Gaussian measure

⟨. . .⟩P(l) ≡ ⟨. . .⟩h(l)∼P(C̃(l+1),C(l)), (3.57)

with proper normalization given by ⟨ exp(σ2
w

N ϕ(l)TC̃(l+1)ϕ(l)) ⟩
N (0,C(l))

.
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We obtain the posterior distribution of the kernels C as

p(C∣Y)∝ p(Y, C) ≡N (Y∣0, C(L) + κI) p(C), (3.58)

where we conditioned on the training data {(xα, yα)}α. Then, the posterior estimates
for the auxiliary variables C are given by the stationary points of the action

S(C) ∶= ln p(C∣Y) ≃ SD(C(L))− Γ(C)+ ○, (3.59)

SD(C(L)) ∶= −
1
2

YT
(C(L) + κI)−1Y −

1
2

ln det(C(L) + κI).

Here, we approximate p(C) by its rate function in Eq. (3.52) and drop any terms ○
constant in C. The action S(C) consists of two terms: the rate function −Γ(C) ∼ O(N)
from the network prior and the log-likelihood of the training labels SD(C(L)) ∼ O(P)
from conditioning on the training data. As the log-likelihood depends only on the
auxiliary variable C(L) in the output, its stationary point ∂S(C)/∂C(L) !

= 0 results from
a trade-off between the network prior term in the form of Γ and the data term SD,
yielding

C̃(L) =
1
2
(C(L) + κI)−1YYT

(C(L) + κI)−1
−

1
2
(C(L) + κI)−1. (3.60)

We obtain the conjugate kernel C̃(L) of the network output as a function of the net-
work kernel C(L) and the training labels Y. Further, we show in App. B.1 that the
conjugate kernel C̃(L) corresponds to the second moment of the discrepancies be-
tween labels and network output; its trace yields the training loss. While the input
kernel C(0) is deterministic, we get for the kernels C(l) in the hidden network layers
1 ≤ l < L from the stationary condition ∂S(C)/∂C(l) !

= 0 that

C̃(l)αβ = −
∂Γ(C(l+1)∣C(l))

∂C(l)αβ

Legendre
≡

∂W(C̃(l+1)∣C(l))

∂C(l)αβ

Price
= σ2

w C̃(l+1)
αβ ⟨ (ϕ

(l)
α )

′

(ϕ
(l)
β )

′

⟩
P(l)
+ δαβ σ2

w C̃(l+1)
αα ⟨ (ϕ

(l)
α )

′′

ϕ
(l)
α ⟩
P(l)

+ 2
σ4

w
N
∑
γ,δ

C̃(l+1)
αγ C̃(l+1)

βδ ⟨(ϕ
(l)
α )

′

ϕ
(l)
γ (ϕ

(l)
β )

′

ϕ
(l)
δ ⟩
P(l)

(3.61)

= σ2
w C̃(l+1)

αβ ⟨ (ϕ
(l)
α )

′

(ϕ
(l)
β )

′

⟩
P(l)
+ δαβ σ2

w C̃(l+1)
αα ⟨ (ϕ

(l)
α )

′′

ϕ
(l)
α ⟩
P(l)
+O(N−1

),

(3.62)

where we used Price’s theorem (Price, 1958; Papoulis and Pillai, 2002) and the fun-
damental property of the Legendre transform in Eq. (3.52) as well as dropped sub-
leading terms ∝ O(N−1) in the last line. Thus, we get the conjugate kernel C̃(l) in
layer l as a function of the conjugate kernel C̃(l+1) in the subsequent layer and the
kernel C(l) in the same layer, propagating the conjugate kernel C̃(l) backwards across
layers to mediate information about the relation between inputs and outputs. We will
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investigate this backpropagation further in Sec. 3.5.2, drawing a link to criticality and
signal scales in the network.

3.4.2 Forward-backward kernel propagation equations

As a main result, we get the pair of equations (3.55) and (3.62)

C(l+1) (3.55)
= F(C(l), C̃(l+1)

), (3.63)

C̃(l)
(3.62)
= G(C(l), C̃(l+1)

) C̃(l+1), (3.64)

with initial and final conditions, respectively, given by the fixed input kernel C(0) in
Eq. (3.26) and the conjugate output kernel C̃(L) in (3.60) as

C̃(L) =
1
2
(C(L) + κI)−1

(YYT
−C(L) − κI)(C(L) + κI)−1. (3.65)

This set of equations describes the mode of the posterior distribution of network
kernels C in the proportional limit P = νN →∞. The ratio ν = P/N can be understood
as the training load on the network.

We can already obtain some insights and intuition from this set of equations, starting
with Eq. (3.63) for the feature-corrected kernels C(l). These are propagated forward
through the network as C(l) ↦ C(l+1). The forward-propagation takes a form similar
to the NNGP but with respect to a different non-Gaussian measure that depends on
the activation function ϕ, the kernels C(l), and the conjugate kernels C̃(l+1). Impor-
tantly, in contrast to the NNGP limit, i.e. P fixed at a finite value and thus ν = 0,
where the conjugate kernels C̃ ≡ 0 vanish (see Eq. (3.35)-(3.37) in Sec. 3.3.3), the ker-
nel C(l) receives a correction from the conjugate kernel C̃(l+1) in the subsequent layer.
The Gaussian limits of both the NNGP and the NTK are contained as special cases
in our theoretical framework; we derive the NTK in App. B.4 under the assumption
that the network output depends linearly on all network parameters.

While the NNGP does not describe feature learning as shown by Yang and Hu (2020),
our theoretical framework captures feature learning whenever the log-likelihood of
the data SD is significant relative to the rate function Γ encoding the network prior.
This applies to the proportional limit with N → ∞ with P = ν N and for large but
finite values of N, P. We treat the latter case in the following Sec. 3.4.4, where fea-
ture learning corrections result from leading-order fluctuation corrections in N−1.
The posterior kernels C(l) balance between the likelihood of the data SD and the
rate function −Γ from the network prior; the maximization yields the backward-
propagating equation Eq. (3.64) that maps C̃(l+1) → C̃(l) for the conjugate kernels.
Due to the data term SD, the output kernel C(L) receives a correction towards the
target kernel YYT in Eq. (3.60) as we will see in experiments and derive explicitly
for deep linear networks in App. B.3. Thereby, the network more closely reproduces
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the training labels. In contrast, both NNGP and NTK depend only on the training
data X and thus cannot represent the relation between pairs of inputs and outputs
{(xα, yα)}α. In the extreme case when the output kernel matches the target kernel
up to the regularization noise C(L) + κI = YYT, the conjugate kernel C̃(L) = 0 of the
output layer vanishes and subsequently from Eq. (3.64) all conjugate kernels C̃(l) = 0
vanish. In this case, there are no additional corrections driven by the conjugate ker-
nels C̃(l) since the kernel is already optimally aligned with the target kernel YYT up
to the regularization noise κI.

3.4.3 Perturbative, leading-order solution of the forward-backward kernel
equations

For general activation functions ϕ, the expectation values with regard to the measure
Eq. (3.56) in the forward-backward equations are non-Gaussian and thus hardly
tractable. The non-Gaussianity in the measure Eq. (3.56) results from the term
σ2

w
N ϕ
(l)
α C̃(l+1)

αβ ϕ
(l)
β in the exponent. For large network width N, this term is suppressed

by N−1 relative to the second term − 1
2 h(l)α [C(l)]αβh(l)α from the Gaussian part of the

measure. Thus, we perform an expansion in N−1, which corresponds to expanding to
linear order in C̃, and obtain the perturbative, leading-order solution of the forward
equation in Eq. (3.55) as

C(l+1)
αβ = σ2

w ⟨ϕ
(l)
α ϕ

(l)
β ⟩
N (0,C(l))

+ σ2
b +

σ4
w

N
∑
γ,δ

V(l)αβ,γδ C̃(l+1)
γδ +O (N−2) , (3.66)

V(l)αβ,γδ ∶= ⟨ϕ
(l)
α ϕ

(l)
β ϕ

(l)
γ ϕ

(l)
δ
⟩
N (0,C(l)) − ⟨ϕ

(l)
α ϕ

(l)
β
⟩
N (0,C(l))⟨ϕ

(l)
γ ϕ

(l)
δ
⟩
N (0,C(l)). (3.67)

As a result of the expansion, all appearing expectation values become Gaussian
⟨. . .⟩N (0,C(l)). For the backward equation, the same expansion yields the perturba-
tive, leading-order solution by replacing all non-Gaussian expectation values ⟨. . .⟩P(l)
by Gaussian expectation values ⟨. . .⟩N (0,C(l)) in Eq. (3.62). In this form, we can ex-

plicitly identify the correction of the kernels C(l+1)
αβ from the backpropagated error

signal C̃(l+1)
γδ , which results from the interaction with all other data samples via the

four-point interaction term ∑γ,δ V(l)αβ,γδ C̃(l+1)
γδ . We visualize the forward-backward de-

pendence of the posterior, feature-corrected kernels in Fig. 3.2.

For some non-linear activation functions such as ϕ = erf(x), we can derive closed-
form solutions for the two-point integrals in Eq. (3.62), Eq. (3.66) and Eq. (3.67);
however, the four-point integral in Eq. (3.67) is determined numerically (for details
see App. B.6).

3.4.4 Fluctuation corrections lead to feature learning

We here show that the perturbative, leading-order solution Eq. (3.66) of the kernel
equations can alternatively be derived in a field-theoretic framework, yielding a for-
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Figure 3.2: Visualization of the perturbative, leading-order solution to the forward-
backward equations across network layers. The feature-corrected kernel C(l) is being
forward propagated and thus depends on the kernel C(l−1) from the previous layer;
in addition it receives a correction from the conjugate kernel C̃(l+1). The conjugate
kernel C̃(l) is being backwards propagated and thus depends on the kernel C̃(l+1)

from the subsequent layer; the expectation values appearing in Eq. (3.62) are with
respect to the feature-corrected kernel C(l).

mulation as fluctuation corrections to the NNGP for large but finite network width
N and number of training samples P for small training load ν = P/N.

When deriving the network prior Eq. (3.27), we introduce auxiliary variables C(l)αβ =

σ2
w/N ϕ

(l−1)
α ⋅ϕ

(l−1)T
β +σ2

b . In the limit of infinite network width N →∞, these quantities
concentrate: the appearing sum over neuron indices in the scalar product becomes
an expectation value, yielding the NNGP kernel C(l)∗ = σ2

w ⟨ϕ
(l−1)ϕ(l−1)⟩

N (0,C(l−1)
∗ )

+ σ2
b .

For large but finite network width N < ∞, the realizations of the auxiliary variables
for individual network realizations with network parameters θ = {W(l), b(l)}l remain
close to the NNGP kernel but exhibit fluctuations around this value

C(l) = C(l)∗ + δC(l)αβ . (3.68)

To account for these fluctuations, we utilize the expression in Eq. (3.27) for the net-
work prior, writing it as an integral over the pair of fields (C, C̃)

p(Y∣X) = ∫ DC∫ DC̃N (Y∣0, C(L) + κI) exp (S(C, C̃)) , (3.69)

S(C, C̃) = −tr C̃TC +W(C̃∣C),

with cumulant-generating function W given by Eq. (3.31). Rewriting the Gaussian
term N (Y∣0, C(L) + κI) in Eq. (3.69) as exp(SD), we obtain the joint distribution for
the pair of variables (C, C̃) up to its normalization constant as

(C, C̃) ∼ exp (S(C, C̃)+SD(C(L)∣Y)),
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with the data term given by

SD(C(L)∣Y) ∶= lnN (Y∣0, C(L) + κI)

= −
1
2

YT
(C(L) + κI)−1 Y −

1
2

ln det(C(L) + κI).

We expand S(C, C̃) around its saddle point (C∗, C̃∗), which is given by the NNGP as
shown in Sec. 3.3.3. We use the next-to-leading-order in N−1 as computed in Sec. 3.3.4

S
(2)(l,m)
(αβ)(γδ)

∣
C∗,C̃≡0

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 −δ(lαβ),(mγδ) + δm−1,l σ2
w

∂⟨ϕ
(m−1)
γ ϕ

(m−1)
δ

⟩
N(0,C(l)∗ )

∂C(l)
αβ

−δ(lαβ),(mγδ) + δl−1,m σ2
w

∂⟨ϕ
(l−1)
α ϕ

(l−1)
β
⟩
N(0,C(l)∗ )

∂C(m)
γδ

δl,m σ4
w ⟨ϕ

(l−1)
α ϕ

(l−1)
β , ϕ

(l−1)
γ ϕ

(l−1)
δ ⟩c

N (0,C(l)∗ )

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The Laplace approximation of the network prior in Eq. (3.69) then takes the form

p(Y∣X) ≃ ∫ DδC ∫ DδC̃ exp(
1
2
(δC, δC̃)TS(2) (δC, δC̃)+SD(C

(L)
∗ + δC(L)∣Y)) (3.70)

since the constant Taylor term is S(C∗, C̃∗ = 0) ≡ 0 and the linear term vanishes at the
saddle point (C∗, C̃∗) by definition.

We now examine how the data term SD affects the saddle point of δC and δC̃. The
data term only has an effect on δC(L), functioning as a source term trJT δC(L) with

Jαβ ∶=
∂SD

∂C(L)αβ

. (3.71)

Thus, the saddle point equation for the shift (δC, δC̃) of the saddle points is given by

0 = [S(2) (
δC
δC̃
)]+ (

J δl,L
0
) . (3.72)

The first line of Eq. (3.72) is

0 = −δC̃(l)αβ + σ2
w ∑

γδ

∂⟨ϕ
(l)
γ ϕ

(l)
δ ⟩N (0,C(l))

∂C(l)αβ

δC̃(l+1)
γδ + δl,L Jαβ. (3.73)

Using Price’s theorem (Price, 1958; Papoulis and Pillai, 2002) to compute the derivate
with respect to C(l)αβ then yields

∑
γδ

∂⟨ϕ
(l)
γ ϕ

(l)
δ ⟩N (0,C(l))

∂C(l)αβ

δC̃(l+1)
γδ =

1
2
∑
γδ

⟨
∂

∂h(l)α

∂

∂h(l)β

ϕ
(l)
γ ϕ

(l)
δ
⟩
N (0,C(l)) δC̃(l+1)

γδ
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= ⟨(ϕ
(l)
α )
′
(ϕ
(l)
β
)
′
⟩
N (0,C(l)) δC̃(l+1)

αβ

+ δαβ ∑
γ

⟨(ϕ
(l)
α )
′′
(ϕ
(l)
γ )⟩N (0,C(l)) δC̃(l+1)

αγ ,

where we make use of the fact that C̃ and C are both symmetric in (α, β). By sub-
stituting this expression in Eq. (3.73), we arrive at the perturbative leading-order
solution for C̃ in Eq. (3.62).

The second line of Eq. (3.72) gives

0 = −δC(l)αβ + σ2
w ∑

γδ

∂⟨ϕ
(l−1)
α ϕ

(l−1)
β ⟩N (0,C(l−1))

∂C(l−1)
γδ

δC(l−1)
γδ

+ σ4
w ∑
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(l−1)
α ϕ

(l−1)
β , ϕ

(l−1)
γ ϕ

(l−1)
δ ⟩c,N (0,C(l−1)) δC̃(l)γδ ,

which can be rewritten as

δC(l)αβ = σ2
w ∑

γδ

∂⟨ϕ
(l−1)
α ϕ

(l−1)
β ⟩N (0,C(l−1))

∂C(l−1)
γδ

δC(l−1)
γδ + σ4

w ∑
γδ

V(l−1)
αβ,γδ δC̃(l)γδ , (3.74)

where we identify V(l−1)
αβ,γδ = ⟨ϕ

(l−1)
α ϕ

(l−1)
β , ϕ

(l−1)
γ ϕ

(l−1)
δ ⟩c

N (0,C(l−1))
from Eq. (3.66). The

first term in Eq. (3.74) arises from a linear correction of the NNGP result due to the
shift in δC

σ2
w ⟨ϕ

(l−1)
α ϕ

(l−1)
β ⟩

N (0,C(l−1)+δC(l−1))
+ σ2

b = C(l)
∗,αβ +∑

γδ

∂C(l)
∗,αβ

∂C(l−1)
γδ

δC(l−1)
γδ +O(δC)2.

The second term in Eq. (3.74) matches the corrections found in Eq. (3.66): We observe
that the expression σ4

wV(l−1)
αβ,γδ = ⟨σ

2
w ϕ
(l−1)
α ϕ

(l−1)
β , σ2

w ϕ
(l−1)
γ ϕ

(l−1)
δ ⟩c

N (0,C(l−1))
corresponds

to the covariance of the auxiliary variables C(l)αβ = σ2
w/N ϕ

(l−1)
α ⋅ ϕ

(l−1)T
β + σ2

b ; thus, the
feature learning corrections in the self-consistency equations are in fact fluctuation
corrections. In consequence, we can relate feature learning corrections to the no-
tion of criticality as presented in Sec. 3.3.4: Stronger feature learning results from
larger fluctuations and fluctuations become especially large close to critical points
(see Fig. 3.3).

3.5 Experiments

We test the presented theoretical predictions against networks trained with Langevin
gradient descent to ensure that the networks relax to the Bayesian posterior. Further,
we reexamine the self-consistency equations Eq. (3.62) for the network kernels, find-
ing a link to the response function of the network, criticality, and the scales within the
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Figure 3.3: Stronger feature learning results from larger kernel fluctuations. The
network prior is given by a superposition of Gaussians as f ∼ ∫ N (0, C) p(C) dC
(pink ellipses). The distribution of kernels is more (a) concentrated or (b) wider
depending on the network hyperparameters, which corresponds to smaller or larger
kernel fluctuations. The target kernel that the network aims to learn is given by
YYT (inset); the target value for the indicated example samples α, β (dashed lines in
inset) from different classes lies at (+1,−1) (pink cross). Gaussian components in the
Bayesian posterior are reweighed according to their evidence given the data. Stronger
adaptation to data is made possible by larger kernel fluctuations in (b), which results
in richer feature learning.

network. Thereby, we shed light on the driving mechanisms for kernel adaptation in
deep neural networks.

3.5.1 Comparative analysis with trained networks

To obtain the theoretical predictions for the posterior kernels, the self-consistency
equations for both kernels C(l) and conjugate kernels C̃(l) in Eq. (3.66) and Eq. (3.62)
are solved iteratively; details can be found in App. B.6. We compare the theoretical
predictions obtained for the feature-corrected output kernel C(L) to sampling the em-
pirical output kernel C(L)emp from the posterior distribution using Langevin stochastic
gradient descent (for details see App. B.5). The comparison utilizes kernel alignment
(Canatar and Pehlevan, 2022), defined for two kernels A, B ∈ RP×P as

Tr(A B)
√

Tr(A A)Tr(B B)
. (3.75)

For intuition, this measure can be understood as the cosine similarity between the
flattened kernels A and B; thus this measure is invariant to scaling either kernel
by a scalar A ↦ aA or B ↦ bB. One typically centers the kernels so that constant
components in the eigendecomposition of the kernels are removed (Cortes, Mohri,
and Rostamizadeh, 2012); this is called the centered kernel alignment (CKA). The
transformation of both kernels is done as A ↦ HAH and B ↦ HBH with a centering
matrix H = I − 1

P 11T, where 1 is the matrix with all elements equal to one.
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Figure 3.4: Theoretical predictions match kernels measured in trained networks for
the XOR task. We plot the difference ∆CKA = CKA(C(L), YYT)−CKA(C(L)∗ , YYT) to
the NNGP, measuring the increase in kernel adaptation due to feature corrections.
Kernel alignment ∆CKA of the feature-corrected kernels (blue: theory; red: empiri-
cal) increases (a) for smaller weight variance, (b) for narrower networks, and (c) for
more training data. Other parameters: XOR task with σ2

XOR = 0.4, D = 100, L = 3,
σ2

b = 0.05, (a) N = 500, P = 12, (b) P = 12, σ2
w = 1.2, (c) N = 500, σ2

w = 1.2. Error bars
indicate mean and one standard deviation over 10 training data sets.

We compute the CKA for both the theoretical predictions of the kernel C(L) and the
Langevin-sampled empirical kernels C(L)emp, comparing each with the target kernel
YY⊺. Our theoretical framework does not presuppose any assumptions on the data.
We study two different tasks: XOR and binary classification of MNIST digits. The
numerical results consistently align with our theoretical predictions for both tasks.

XOR

Refinetti et al. (2021) show that random feature models, which are known to corre-
spond to the NNGP (Mei and Montanari, 2022), are unable to solve the non-linearly
separable task XOR optimally. We study the XOR task in a setting where neural net-
works exhibit feature learning compared to random feature models (Refinetti et al.,
2021). The feature-corrected kernels that we obtain from our theory have a larger
CKA than the NNGP (see Fig. 3.4), indicating that finite-width effects lead to kernel
corrections in the direction of the target kernel. Note that the CKA is by construction
invariant to a global rescaling of the kernel and instead captures the kernel struc-
ture. Thus, the difference between NNGP and empirical kernels is further numerical
evidence that the kernels acquire structure beyond a global rescaling, in contrast to
deep linear networks (Li and Sompolinsky, 2021) and opposed to approximate results
employing Gaussian equivalence results (Pacelli et al., 2023; Baglioni et al., 2024). We
observe a stronger kernel alignment for smaller weight variance σ2

w (see Fig. 3.4(a)).
As expected, the feature-corrected kernels approach the NNGP limit for ν = P/N → 0
when keeping P fixed in Fig. 3.4(b). Deviations in Fig. 3.4(b) for small N and in
Fig. 3.4(c) for increasing P at fixed N result from the perturbative treatment of C̃ in
the numerical solution of the self-consistency equations, which is strictly valid only
for ν = P/N ≪ 1.
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Figure 3.5: Theoretical predictions match kernels measured in trained networks for
MNIST. In comparison to the NNGP (gray), theory (blue) and simulation (red) show
significant kernel adaptation towards the target kernel measured by CKA(C(l), YYT).
Kernel adaptation becomes maximal for small weight variance σ2

w that is coherent
for theory (blue) and simulation (red). Other parameters: MNIST task with L = 2,
N = 2000. Error bars indicate mean and one standard deviation over 10 training data
sets.

MNIST

For MNIST (LeCun, Cortes, and Burges, 1998), we consider binary classification be-
tween digits 0 and 3. The theoretical predictions for the kernels involving feature-
corrections match the kernels measured in trained networks (see Fig. 3.5). Further,
they exhibit stronger kernel alignment with the target kernel YYT than the NNGP
does, as expected.

3.5.2 Link between feature learning corrections and criticality

In the feature-corrected kernel equations in Eq. (3.66) appears a term that measures
the fluctuations of the auxiliary variables due to the finite-size of the network. Since
fluctuations typically become large close to critical points, we here investigate the
connection between the feature-corrected kernels and criticality in neural networks
(Schoenholz et al., 2017). The corrections of the network kernel C(l−1) are mediated
by the conjugate kernel C̃(l), so we examine the self-consistency equations for the
conjugate kernels. For the off-diagonal terms α ≠ β, we can identify two contributions

C̃(l)αβ = C̃(L)αβ χ
(l),←
αβ , (3.76)

χ
(l),←
αβ

∶=
L−1

∏
s=l

σ2
w ⟨ (ϕ

(s)
α )

′

(ϕ
(s)
β )

′

⟩
h(s)∼N (0,C(s))

, (3.77)

with C̃(L) as in Eq. (3.60). While the term C̃(L) acts as an error signal and relates
to the mismatch between the output kernel C(L) and the target kernel given by YYT



56 Critical feature learning in deep neural networks

0 4 8 12 16 20

Layer l

10-6

10-5

10-4

10-3

10-2

10-1
(a) Forward response

0 4 8 12 16 20

Layer l

10-6

10-5

10-4

10-3

10-2
(b) Gradient response

0 4 8 12 16 20

Layer l

10-3

10-1

101

103
(c) Gradient signal

0 gf gcrit 2

Weight variance ¾2w

0.0

0.2

0.4

0.6

0.8

1.0

(d) Kernel correction

0

1
(e) Empirical CKA

0

1

0.1 0.5 ¾2f 1.0 ¾2crit

Weight variance ¾2w

0

1

Figure 3.6: Finite-size effects close to criticality that drive feature corrections. (a)-(b)
Forward response χl,→ and gradient response χl,← describe relative signal propaga-
tion across network layers. The signal propagates to deeper network layers close to
criticality (σ2

w increases from dark to light). (c) Conjugate kernel C̃(l) backpropagated
across network layers for varying weight variance σ2

w (increasing from dark to light).
Both the response function and the kernel mismatch C̃(L) in the output depend on
the weight variance σ2

w. The curves of C̃(l) cross at different depths. Larger C̃(l) lead
to larger feature learning corrections in Eq. (3.66). (d) The kernel correction term C̃(0)

in the readin layer (solid line, slice for l = 1 in (c)) is composed of the gradient re-
sponse χ1,← (dotted line, slice for l = 1 in (b)) and the error signal C̃(L) (dashed line).
Largest feature learning corrections arise for a weight variance σ2

f shifted away from

the critical point σ2
crit (vertical line). (e) CKA for trained networks between C(l)emp and

YYT (l = 10, 15, 20 from top to bottom). Other parameters: XOR task with σ2
XOR = 0.4,

σ2
w ∈ {0.6, σ2

f ≈ 0.825, 1.1, σ2
crit ≈ 1.38, 2.2} , σ2

b = 0.05, L = 20, N = 500 , κ = 10−3, P = 12.

as discussed before, we identify χ(l),← as the gradient response function of the net-
work. The gradient response function is the equivalent to the forward response
function discussed in Sec. 3.3.5 and measures how variations in the network out-
put propagate backwards through the network. The response functions naturally
appear in the next-to-leading-order corrections to the NNGP kernel. Close to criti-
cality, both reponse function indicate long-range correlations across network layers
(see Fig. 3.6(a)-(b)) and the signal can propagate to large depths, leading to improved
network trainability in deep feed-forward networks (Schoenholz et al., 2017).

For the feature corrections in Eq. (3.66), we now observe two competing effects in hy-
perparameter space (σ2

w, σ2
b ): On the one hand, since the gradient response function

backpropagates the conjugate kernel C̃(L) of the output, feature corrections propa-
gate furthest in the network close to criticality (see Fig. 3.6(d)). On the other hand,
the error signal given by C̃(L) itself also depends non-linearly on both weight vari-
ance σ2

w and bias variance σ2
b . For fixed bias variance σ2

b , it is largest for small weight
variances σ2

w (see Fig. 3.6(d)), which is primarily a scaling effect between the output
kernel C(L) = Oσ2

w
(σ2

w) and the target kernel YYT = Oσ2
w
(1). Since criticality as in

(Schoenholz et al., 2017) applies to networks at initialization, we consider the trade-
off between these two competing effects at the NNGP and perform one iteration step
for solving the self-consistency equations. We observe that the conjugate kernels
C̃(l) then show a particular depth dependence for different weight variances σ2

w (see
Fig. 3.6(c)) due to the dependence on both the kernel mismatch C̃(L) and the gradient
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response χ(l),←. We find that the conjugate kernel C̃(1) in the first later is maximal at
a weight variance σ2

w ≃ σ2
f below the critical value σ2

crit (see Fig. 3.6(d)). Indeed, we
see a similar effect in trained networks where kernel adaptation is large above values
σ2

w ≃ σ2
f for the weight variance but drops sharply below. Thus, we identify criticality

and output scale as the main components in our theoretical framework that drive
feature learning corrections.

3.5.3 Downscaling network outputs boosts feature learning

Having observed how feature learning corrections arise from the interplay between
response function and kernel mismatch in the network output, we now explore a
strategy to boost feature learning in the network. The response function reflects
behavior across all network layers, while the kernel mismatch is only measured in the
output layer. While the output kernel C(L) depends directly on the weight variance
of the output layer σ2

w,L, the target kernel YYT does not. In consequence, we can
decrease the weight variance of the output layer σ2

w,L to reduce the scale of the output
kernel C(L) relative to the target kernel YYT, thereby directly increasing the kernel
mismatch and thus feature learning corrections in Eq. (3.62).

We study the setting where the output weight variance is scaled by a factor γ0, which
is not extensive in the number of hidden units N, modifying σ2

w in the output layer
L as σ2

w,L ↦ σ2
w,L/γ0. We investigate the impact of this factor on the feature-corrected

kernels given by the self-consistency equations Eq. (3.62): The feature-corrections are
mediated by the conjugate kernels C̃(l) = C̃(L)χ(l),←. Since the output kernel scales as

C(L)αβ ∝ σ2
w,L/γ0, we get C̃(L)αβ

(3.60) for κ=0
∝ γ2

0 +O(γ0). Using Eq. (3.77), we find that the

response function scales as χ(L),← ∝ σ2
w,L/γ0. Thus, the feature corrections mediated

by the conjugate kernel in the input layer C̃(0)αβ increase linearly with downscaling the
output variance

C̃(0)αβ = χ(L),←C̃(L)αβ ∝ γ0 +Oγ0(1). (3.78)

Thereby, the network shows stronger kernel adaptation to the given training data.
Due to the linear dependence of the feature corrections in Eq. (3.62) on the conju-
gate kernels C̃(l) and their linear scaling with the feature scale γ0, feature corrections
increase consistenly across all network layers in Fig. 3.7(a) when progressively in-
creasing the feature scale γ0. The underlying intuition for the feature scale is that
the reduced scale of the output kernel C(L) prompts the network kernels C(l) to ex-
pand towards the direction of the target kernel YYT. Introducing the feature scale γ0

does not change the interplay between criticality and weight variance σ2
w for l < L

discussed in the previous section, but increasing the feature scale γ0 overall boosts
feature learning as shown in Fig. 3.7(b).
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Figure 3.7: Increase of feature scale leads to stronger kernel adaption. (a) Feature-
corrected kernels C(l) across network layers l = 1, 2, 3 for different feature scales
γ0. Downscaling the output layer already increases feature corrections across all
network layers. Other parameters: XOR task with σ2

XOR = 0.4, P = 12, N = 200,
L = 3, σ2

w = 0.5. (b) Dependence of CKA between output kernel C(L) and target
kernel YYT on feature scaling (γ0 = 1, 2, 3 from dark to light) and weight variance
σ2

w. Increasing the feature scale linearly increases kernel adaptation across weight
variances σ2

w. Error bars indicate mean and one standard deviation over 10 training
data sets. Other parameters: XOR task with σ2

XOR = 0.4, P = 12, L = 3.

3.6 Conclusion

In this chapter, we derive the posterior kernels of fully-connected networks in the
Bayesian setting. We obtain a set of forward-backward propagation equations for the
kernels that mediate the input-output relation between training data and labels. On
both XOR and MNIST, we observe non-linear adaptation of the kernels towards the
target kernel given by the outer product of the labels.

In finite-size networks, the feature corrections result from fluctuation corrections of
the kernels as a direct consequence of their finite width. Since fluctuations typi-
cally become large close to critical points in hyperparameter space, we investigate
their relation to criticality: While being close to criticality allows the error signal to
backpropagate to deeper layers, the error signal itself exhibits a scaling effect and
is largest for small weight variances. We find that the trade-off between these two
effects leads to stronger feature corrections at values slightly lower than the critical
ones, shedding light onto the driving mechanisms of feature learning.

3.6.1 Limitations

We obtain the perturbative leading-order solution of the posterior kernels in Sec. 3.4
by expanding the forward-backward equations to linear order in the conjugate ker-
nels. For this approximation to be valid, we require corrections to the NNGP limit
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to be small, i.e. ν = P/N ≪ 1. This limitation applies to non-linear networks only; in
linear networks the forward-backward equations directly involve Gaussian averages
(see App. B.2). We can bypass this assumption to a certain degree by computing
feature-corrected kernels iteratively from wider to narrower networks (see App. B.6),
but are still limited if the training load ν = P/N becomes too large.

3.6.2 Relation to other works

Describing the Bayesian posterior of neural networks is a highly active field of re-
search. One line of research focuses on deep linear networks, where the non-linearity
is replaced by the identity mapping. Li and Sompolinsky (2021) find that in the pro-
portional limit, where N → ∞, P → ∞ with fixed training load P/N = ν, kernels
adapt to the data by changing only their overall scale compared to the NNGP result,
which they call kernel renormalization. Hanin and Zlokapa (2023) derive a rigor-
ous non-asymptotic solution in terms of Meijer-G functions and find that infinitely
deep linear networks with data-agnostic priors yield the same result as shallow net-
works with evidence-maximizing data-dependent priors. Zavatone-Veth, Tong, and
Pehlevan (2022) determine perturbation corrections and find that the generalization
error in deep linear networks receives corrections only at quadratic order or higher.
Yang et al. (2023) study deep kernel machines, for which they find a similar trade-
off between network prior and data terms as in this work; however, they consider a
different limit where the number of training samples P is fixed but the network is
trained on N copies of the training data. While we consider the special case of lin-
ear networks in App. B.2, recovering the result by Yang et al. (2023), our framework
encompasses both linear and non-linear networks.

Kernel renormalization in non-linear networks has been studied in multiple works:
Pacelli et al. (2023) use the Breuer-Major theorem to derive an effective action for non-
linear single-hidden-layer networks, which exhibit kernel renormalization. In (Aiudi
et al., 2023), they extend their results to convolutional networks and in (Baglioni et
al., 2024), they empirially investigate the validity of their theory across different hy-
perparameter sets. Ingrosso et al. (2024) apply their approach to study the efficiency
of fine-tuning in transfer learning. Tiberi et al. (2024) apply a similar approach as Li
and Sompolinsky (2021) to a transformer-like architecture, uncovering different at-
tention paths that recombine kernels to enhance generalization performance. Meegen
and Sompolinsky (2024) investigate coding schemes in neural networks, uncovering
a direct dependence on the used activation function. In contrast to those works,
we uncover non-linear feature corrections to the NNGP kernel that agree well with
kernels empirically measured in trained networks.

Closest in spirit to our work is (Seroussi, Naveh, and Ringel, 2023): They derive a
similar forward-backward relation between kernels, but use a variational Gaussian
approximation of the posterior hidden representations to obtain the posterior ker-
nels. While their approach involves not only Gaussian fluctuations of the auxiliary
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variables but also higher-order ones, we find empirically that the Gaussian fluctua-
tions seem to be dominating. Further, our results allow us to investigate the driving
mechanisms of feature learning: we find a link to criticality, uncovering a trade-off
between kernel fluctuations and network scales.

Another line of research considers perturbative approaches. Halverson, Maiti, and
Stoner (2021) perform a perturbation expansion where the non-linear terms of the
activation constitute the expansion parameter. Other works build on the Edgeworth
expansion using non-Gaussian cumulants as the expansion parameters: (Dyer and
Gur-Ari, 2020; Huang and Yau, 2020; Aitken and Gur-Ari, 2020; Roberts, Yaida,
and Hanin, 2022; Bordelon and Pehlevan, 2023) consider gradient-based training
while (Yaida, 2020; Antognini, 2019; Naveh et al., 2021; Cohen, Malka, and Ringel,
2021; Roberts, Yaida, and Hanin, 2022) study Bayesian inference. In contrast to these
works, the forward-backward propagation equations do not require a perturbation
expansion but result directly from a saddle point approximation in both auxiliary
and conjugate variables.



Chapter 4

Field theory for optimal signal
propagation in residual networks

This chapter, App. C, and parts of the discussion are based on the following preprint:

Kirsten Fischer, David Dahmen, and Moritz Helias. "Optimal signal propagation in
residual networks through residual scaling." arXiv preprint. arXiv 2305:07715.
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4.1 Introduction

In the previous chapter, we determined feature corrections to network kernels in
trained networks, pointing out that the structure of these feature corrections reflects
the network architecture being fully-connected. Naturally, one may ask how these
feature corrections change for other commonly used network architectures such as
convolutional networks, residual networks, or transformers. The theoretical frame-
work in the previous chapter can be applied to other architectures given knowledge
of the network prior in a field-theoretical framework.

In this chapter, we derive the network prior of residual networks and study finite-size
characteristics of networks at initialization that are linked to the networks’ trainabil-
ity. More specifically, we are interested in the effect of scaling the residual branch of
the network by a hyperparameter that empirically leads to higher performance val-
ues, as shown in (Szegedy et al., 2017), and can be connected to signal propagation
in the networks.

The main contributions of this chapter are:

• we derive the Bayesian network prior for residual networks in a field-theoretic
formulation, yielding a framework for determining finite-size properties of
residual networks;

• at infinite network width, we recover the Neural Network Gaussian Process
kernel as the saddle point of the action and for finite width, we compute next-
to-leading-order corrections to the saddle point, yielding kernel fluctuations
and the response function that measures the networks’ sensitivity to varying
inputs;

• we find that the response function as a function of the residual scaling has a
unique maximum that links to optimal signal propagation and imroved train-
ability of the network;

• we find a 1/
√

depth dependence of the optimal residual scaling and merely a
weak dependence on other hyperparameters, explaining the universal succes
of this scaling across different residual architectures.

In the following, we will repeatedly draw comparisons between feed-forward net-
works and residual networks. Therefore we introduce the abbreviations FFNets for
feed-forward networks and ResNets for residual networks.
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4.2 Setup

In this chapter, we consider the residual network architecture defined as

h(0) =Winx + bin,

h(l) = h(l−1)
+ ρ [W(l)ϕ(h(l−1)

)+ b(l)] l = 1, . . . , L, (4.1)

y =Woutϕ(h(L))+ bout.

The network implements a mapping from inputs xα ∈ RDin to outputs yα ∈ RDout for
different samples α given by xα ↦ f (xα; θ) = yα. Here, we denote the joint set of
trainable network parameters by θ = {Win, bin, W(l), b(l), Wout, bout}. The network
includes a linear readin and a fully-connected readout layer, similar to state-of-the-
art models like ResNet-50 (He et al., 2016). These two architecture components allow
us to choose different dimensionalities: inputs xα ∈ RDin are of dimension Din, sig-
nals h(l)(xα) ∈ RN in layer l of dimension N, and outputs yα ∈ RDout of dimension
Dout. The residual branch is denoted as F(h(l−1)) = ρ [W(l)ϕ(h(l−1))+ b(l)]. Each net-
work layer l consists of the skip connection h(l−1) and the residual branch F(h(l−1))

in Eq. (4.1), illustrated in Fig. 4.1(a). The network depth L corresponds to the total
number of layers with skip connections. In the theoretical derivations, we assume the
non-linear activation function ϕ to be saturating and twice differentiable almost ev-
erywhere. One common choice fulfilling both conditions is the error function ϕ = erf,
which we will use throughout this chapter. We scale the residual branch by a resid-
ual scaling parameter ρ, which we take to be a hyperparameter of the network.

We consider networks with Gaussian initialization so that Win
ij

i.i.d.
∼ N (0, σ2

w, in/Din),

bin
i

i.i.d.
∼ N (0, σ2

b, in), W(l)
ij

i.i.d.
∼ N (0, σ2

w/N), b(l)i
i.i.d.
∼ N (0, σ2

b ), Wout
ij

i.i.d.
∼ N (0, σ2

w, out/N), and

bout
i

i.i.d.
∼ N (0, σ2

b, out).

4.3 Theoretical background

As reference we here state the Neural Network Gaussian Process result for residual
networks.

4.3.1 NNGP for ResNets

The Neural Network Gaussian Process for residual networks was derived for differ-
ent residual network architectures by (Huang et al., 2020; Tirer, Bruna, and Giryes,
2022; Barzilai et al., 2023). Adapted to the residual architecture in Eq. (4.1), the
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Figure 4.1: (a) The skip connection bypasses the residual branch, mapping to F(h)+ h
in each layer. (b) Signal distribution h(l) in layer l (solid curves) before passing
through the activation function ϕ = erf (dashed curve). The dynamic range V of the
activation function is indicated by the orange area. The signal h(l) ∼ N (0, K(l)) fol-
lows a Gaussian distribution with variance K(l) = K(l)(ρ); this variance is a function
of the residual scaling parameter ρ. If ρ > ρ∗ is too large, the signal is chopped off
due to the saturation of the activation function ϕ (dark blue). If ρ < ρ∗ is too small,
the signal is passed through the part of the activation function that is primarly linear
(light blue). In the intermediate regime ρ = ρ∗, the signal fills the dynamic range V
of the activation function ϕ (middle blue). (c) Assuming a perturbation δK(0) of the
input kernel ⟨K(0)⟩, the response function χ(l) measures the resulting change of the
kernel K(l) in layer l to linear order. Due to the skip connections, the kernel K(l) re-
ceives additions from the residual branches across all layers and thus increases. Since
the residual branches are scaled by ρ, the residual scaling parameter ρ determines
the rate of increase. If the signal goes into saturation (ρ > ρ∗) or stays close to zero
(ρ < ρ∗), the network output is rather insensitive to changes in the input, which im-
pediments network training. (d) The output response has a unique maximum ρ∗(L)
that links to good signal propagation in the network.

corresponding NNGP is given by

K(l)αβ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

σ2
w, in
Din

xT
α xβ + σ2

b, in l = 0,

K(l−1)
αβ + ρ2σ2

w ⟨ϕ(h
(l−1)
α )ϕ(h(l−1)

β )⟩h(l−1)∼N (0,K(l−1)) + ρ2σ2
b 1 ≤ l ≤ L,

σ2
w, out ⟨ϕ(h

(L)
α )ϕ(h(L)β )⟩h(L)∼N (0,K(L)) + σ2

b, out l = L + 1.

(4.2)

In contrast to FFNets, the skip connections lead to a recursive structure of the expres-
sions.

4.4 Theory

We first derive the prior of the network in a field-theoretic formulation. From the
network prior we recover the NNGP result as the saddle point of the action as well
as the response function and fluctuation corrections as the next-to-leading-order cor-
rections to the saddle point. Finally, we link the response function to linear response
theory.
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4.4.1 Network prior in a field-theoretic framework

We study the network prior of the residual architecture in Eq. (4.1). The network
prior p(Y∣X) represents the joint distribution of all inputs X = (xα)α=1,...,P and cor-
responding network outputs Y = (yα)α=1,...,P; its derivation is similar to the replica
calculation in physics (Zinn-Justin, 1996; Hertz, Krogh, and Palmer, 1991) with one
replicon per input xα with a fixed, shared set of network parameters θ across all
replica. We employ the same field-theoretic approach as in Segadlo et al. (2022), who
obtain a joint description for both deep feed-forward and recurrent neural networks.
The network prior is defined as

p(Y∣X) = ∫ dθ ∏
α

p(yα∣xα, θ) p(θ). (4.3)

Given a particular realization of network parameters θ, we get the probability p(Y∣X, θ)

by enforcing the network mapping with Dirac δ-distributions as

p(Y∣X, θ) =∏
α
∫ dh(0)α ⋯∫ dh(L)α δ(h(0)α −Winxα − bin

)

×
L
∏
l=1

δ(h(l)α − h(l−1)
α − ρW(l)ϕ(h(l−1)

α )− ρb(l)) (4.4)

× δ(yα −Woutϕ(h(L)α )− bout
). (4.5)

Marginalization over network parameters

We now take the expectation value with respect to the network parameters

p(Y∣X) =∏
α
∫ dh(0)α ⋯∫ dh(L)α ⟨δ(h(0)α −Winxα − bin

)⟩{Win, bin}

×
L
∏
l=1
⟨δ(h(l)α − h(l−1)

α − ρW(l)ϕ(h(l−1)
α )− ρb(l))⟩{W(l), b(l)} (4.6)

× ⟨δ(yα −Woutϕ(h(L)α )− bout
)⟩{Wout, bout},

where we denote by ⟨. . . ⟩{W,b} the Gaussian expectation over weights W and biases
b. We substitute the Dirac δ-distributions by its Fourier representation

δ(h) = ∫ dh̃ exp (h̃Th), (4.7)

with h̃Th = ∑N
i=1 h̃ihi, where ∫ dh̃ = ∏k ∫iR

dh̃k
2πi denotes the integration measure and h̃

is the conjugate variable to h.
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We obtain

p(Y∣X) =∏
α

{∫ Dỹα ∫ Dh̃α ∫ Dhα} ⟨exp(∑
α,i

h̃(0)i,α (h
(0)
i,α −∑

j
Win

ij xj,α − bin
i ))⟩

{Win, bin}

×
L
∏
l=1
⟨exp(∑

α,i
h̃(l)i,α (h

(l)
i,α − h(l−1)

i,α − ρ∑
j

W(l)
ij ϕ

(l−1)
j,α − ρb(l)i ))⟩

{W(l), b(l)}

(4.8)

× ⟨exp(∑
α,i

ỹi,α(yi,α −∑
j

Wout
ij ϕ

(L)
j,α − bout

i ))⟩

{Wout, bout}

,

where ∫ Dhα = ∏
L
l=0 ∫ dh(l)α and ∫ Dh̃α = ∏

L
l=0 ∫ dh̃(l)α and we employ the shorthand

ϕ
(l−1)
j,α = ϕ(h(l−1)

j,α ) for brevity. Since the network parameters θ are distributed indepen-
dently, the probability distribution factorizes across all parameters and one can cal-
culate the expectation value for each parameter individually as ∫ dθk p(θk) exp (zθk).
This integral corresponds to the moment-generating function of the distribution
p(θk). For parameters θk ∼ N (0, σ2) that are Gaussian distributed, the moment-
generating function gives

∫ dθk p(θk) exp (zθk) = exp (
1
2

σ2z2). (4.9)

Computing all terms in Eq. (4.8) separately, we have

⟨exp(−∑
i,j

Win
ij ∑

α

h̃(0)i,α xj,α)⟩

Win

= exp(
1
2

σ2
w, in

Din
∑
i,j
(∑

α

h̃(0)i,α xj,α)
2
)

= exp(
1
2

σ2
w, in

Din
∑
α,β
∑
i,j

h̃(0)i,α xj,α h̃(0)i,β xj,β),

⟨exp(−∑
i

bin
i ∑

α

h̃(0)i,α ))⟩

bin

= exp(
1
2

σ2
b, in∑

i
(∑

α

h̃(0)i,α )
2
)

= exp(
1
2

σ2
b, in∑

α,β
∑

i
h̃(0)i,α h̃(0)i,β ),

⟨exp(−∑
i,j

W(l)
ij ρ∑

α

h̃(l)i,α ϕ
(l−1)
j,α )⟩

W(l)

= exp(
1
2

σ2
w

N
∑
i,j
(ρ∑

α

h̃(l)i,α ϕ
(l−1)
j,α )

2
)

= exp(
1
2

ρ2 σ2
w

N
∑
α,β
∑
i,j

h̃(l)i,α ϕ
(l−1)
j,α h̃(l)i,β ϕ

(l−1)
j,β ),

⟨exp(−∑
i

b(l)i ρ∑
α

h̃(l)i,α )⟩

b(l)
= exp(

1
2

σ2
b∑

i
(ρ∑

α

h̃(l)i,α )
2
)

= exp(
1
2

ρ2σ2
b∑

α,β
∑

i
h̃(l)i,α h̃(l)i,β ),
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⟨exp(−∑
i,j

Wout
ij ∑

α

ỹi,αϕ
(L)
j,α )⟩

Wout

= exp(
1
2

σ2
w, out

N
∑
i,j
(∑

α

ỹi,αϕ
(L)
j,α )

2
)

= exp(
1
2

σ2
w, out

N
∑
α,β
∑
i,j

ỹi,αϕ
(L)
j,α ỹi,βϕ

(L)
j,β ),

⟨exp(−∑
i

bout
i ∑

α

ỹi,α)⟩

bout

= exp(
1
2

σ2
b, out∑

i
(∑

α

ỹi,α)
2
)

= exp(
1
2

σ2
b, out∑

α,β
∑

i
ỹi,αỹi,β).

In the following, we adopt an implicit summation convention for repeated lower
indices in the exponent, for example, ∑α∑i h̃(l)i,α h̃(l)i,α = h̃(l)i,α h̃(l)i,α . Additionally, we jointly
denote ∫ Dh̃ =∏α ∫ Dh̃α. By rewriting the sums over neuron indices in terms of scalar
products, we obtain the following expression for the network prior

p(Y∣X) = ∫ Dỹ∫ Dh̃∫ Dh exp
⎛

⎝
ỹTα yα +

1
2

σ2
w, out

N
ỹTα ỹβ [ϕ

(L)
α ]

T
ϕ
(L)
β +

1
2

σ2
b, out∑

α,β
ỹTα ỹβ

⎞

⎠

× exp(
L
∑
l=1
[h̃(l)α ]

T
[h(l)α − h(l−1)

α ])

× exp
⎛

⎝

L
∑
l=1

⎛

⎝

1
2

ρ2 σ2
w

N
[h̃(l)α ]

T
h̃(l)β [ϕ

(l−1)
α ]

T
ϕ
(l−1)
β +

1
2

ρ2σ2
b ∑

α,β
[h̃(l)α ]

T
h̃(l)β

⎞

⎠

⎞

⎠

× exp
⎛

⎝
[h̃(0)α ]

T
h(0)α +

1
2

σ2
w, in

Din
[h̃(0)α ]

T
h̃(0)β xα

Txβ +
1
2

σ2
b, in ∑

α,β
[h̃(0)α ]

T
h̃(0)β

⎞

⎠

=∶ ∫ Dỹ∫ Dh̃∫ Dh exp (S(Y, Ỹ, H, H̃∣X)) .

The action S of the network prior is given by

S(Y, Ỹ, H, H̃∣X) = Sin(H(0), H̃(0)∣X)+Snet(H, H̃)+Sout(Y, Ỹ∣H(L)), (4.10)

where we distinguish between the readin layer containing the dependence on the
inputs X as

Sin(H(0), H̃(0)∣X) ∶= [h̃(0)α ]
T

h(0)α +
1
2

σ2
w, in

Din
[h̃(0)α ]

T
h̃(0)β (XXT

)αβ +
1
2

σ2
b, in ∑

α,β
[h̃(0)α ]

T
h̃(0)β ,

(4.11)
the hidden layers of the network involving skip connections as

Snet(H, H̃) ∶=
L
∑
l=1
[h̃(l)α ]

T
[h(l)α − h(l−1)

α ]+
1
2

ρ2 σ2
w

N
[h̃(l)α ]

T
h̃(l)β [ϕ

(l−1)
α ]

T
ϕ
(l−1)
β

+
1
2

ρ2σ2
b ∑

α,β
[h̃(l)α ]

T
h̃(l)β , (4.12)
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and the readout layer containing the dependence on the network outputs Y as

Sout(Y, Ỹ∣H(L)) ∶= ỹTα yα +
1
2

σ2
w, out

N
ỹTα ỹβ [ϕ

(L)
α ]

T
ϕ
(L)
β +

1
2

σ2
b, out ỹTα ỹβ. (4.13)

In contrast to feed-forward networks, the conjugate variables h̃(l) of layer l do not
only couple to the signal h(l) of layer l, but also to the signal h(l−1) of the previous
layer l − 1. This coupling across layers arises due to the skip connections in residual
networks. The interdependence between layers induced by the coupling prohibits
the marginalization over the intermediate signals h(l) in a direct manner as for feed-
forward networks.

Auxiliary variables

Quartic terms ∝ [h̃(l)]
T

h̃(l) ϕ(l−1)Tϕ(l−1) cannot be solved analytically for general ac-
tivation functions ϕ. Instead, we introduce auxiliary variables

C(l)αβ
∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

σ2
w, in
Din
(XXT)αβ + σ2

b, in l = 0,

ρ2 σ2
w

N ϕ
(l−1)
α ⋅ ϕ

(l−1)
β + ρ2σ2

b 1 ≤ l ≤ L,
σ2

w, out
N ϕ

(L)
α ⋅ ϕ

(L)
β + σ2

b, out l = L + 1,

which decouple these into quadratic terms again. While we need to decouple these
terms for analytical feasability, we are interested precisely in effects that result from
this coupling. Therefore, we keep track of the original interaction between h̃ and
ϕ(l−1) by enforcing the definition of the auxiliary variables. We again use Dirac δ-
distributions and get

p(Y∣X) = ∫ Dỹ∫ Dh̃∫ Dh∏
α,β
∫ DCαβ exp(ỹTα yα +

1
2

C(L+1)
αβ ỹTα ỹβ)

× δ(C(L+1)
αβ −

σ2
w, out

N
[ϕ
(L)
α ]

T
ϕ
(L)
β − σ2

b, out)

× exp(
L
∑
l=1
[[h̃(l)α ]

T
[h(l)α − h(l−1)

α ]+
1
2

C(l)αβ [h̃
(l)
α ]

T
h̃(l)β ])

× δ(C(l)αβ − ρ2 σ2
w

N
[ϕ
(l−1)
α ]

T
ϕ
(l−1)
β − ρ2σ2

b)

× exp([h̃(0)α ]
T

h(0)α +
1
2

C(0)αβ [h̃
(0)
α ]

T
h̃(0)β ) δ(C(0)αβ −

σ2
w, in

Din
xα ⋅ xβ − σ2

b, in),

where ∫ DCαβ = ∏
L+1
l=0 ∫ DC(l)αβ . As before, we rewrite the Dirac δ-distributions us-

ing their Fourier representation δ(C(l)αβ ) = ∫iR
dC̃(l)

αβ

2πi exp (C̃(l)αβ C(l)αβ
), which leads us to
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introducing conjugate variables C̃(l)αβ to the auxiliary variables C(l)αβ :

δ(DinC(0)αβ − σ2
w, in xα ⋅ xβ −Dinσ2

b, in)

= ∫
iR

dC̃(0)αβ

2πi
exp(DinC̃(0)αβ C(0)αβ − σ2

w, in C̃(0)αβ xα ⋅ xβ −Dinσ2
b, in C̃(0)αβ ),

δ(NC(l)αβ − ρ2σ2
w [ϕ

(l−1)
α ]

T
ϕ
(l−1)
β −Nρ2σ2

b)

= ∫
iR

dC̃(l)αβ

2πi
exp(NC̃(l)αβ C(l)αβ − ρ2σ2

w C̃(l)αβ [ϕ
(l−1)
α ]

T
ϕ
(l−1)
β −Nρ2σ2

b C̃(l)αβ ),

δ(NC(L+1)
αβ − σ2

w, out [ϕ
(L)
α ]

T
ϕ
(L)
β −Nσ2

b, out)

= ∫
iR

dC̃(L+1)
αβ

2πi
exp(NC̃(L+1)

αβ C(L+1)
αβ − σ2

w, out C̃(L+1)
αβ [ϕ

(L)
α ]

T
ϕ
(L)
β −Nσ2

b, out C̃(L+1)
αβ ).

Then, the network prior can be written as

p(Y∣X) = ∫ Dỹ∫ Dh̃∫ Dh∫ DC∫ DC̃ exp(ỹTα yα +
1
2

C(L+1)
αβ ỹTα ỹβ)

× exp(
L
∑
l=1
[[h̃(l)α ]

T
[h(l)α − h(l−1)

α ]+
1
2

C(l)αβ [h̃
(l)
α ]

T
h̃(l)β ])

× exp([h̃(0)α ]
T

h(0)α +
1
2

C(0)αβ [h̃
(0)
α ]

T
h̃(0)β )

× exp
⎛

⎝
−N

L+1

∑
l=0

νl C(l)αβ C̃(l)αβ + ρ2σ2
w

L
∑
l=1

C̃(l)αβ [ϕ
(l−1)
α ]

T
ϕ
(l−1)
β +Nρ2σ2

b

L
∑
l=1
∑
α,β

C̃(l)αβ

⎞

⎠

× exp
⎛

⎝
σ2

w, out C̃(L+1)
αβ [ϕ

(L)
α ]

T
ϕ
(L)
β +Nσ2

b, out ∑
α,β

C̃(L+1)
αβ

⎞

⎠

× exp
⎛

⎝
σ2

w, in C̃(0)αβ (XXT
)αβ +Din σ2

b, in∑
α,β

C̃(0)αβ

⎞

⎠
,

where we use the shorthands ∫ DC = ∏α,β {∫ DCαβ}, ∫ DC̃ = ∏α,β∏
L+1
l=0 ∫iR

dC̃(l)
αβ

2πi , and

νl = 1 + δ0l (din/N − 1). Since the variables C(l)αβ and C̃(l)αβ only couple to sums of h̃(l)

and ϕ(l) over all neuron indices and are scalar quantities themselves, we find that all
components of h(l) and h̃(l) follow the same distribution. Thus, we replace all scalar
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products by products of scalar variables h(l) and h̃(l) and pull out a factor N, yielding

p(Y∣X) = ∫ Dỹ∫ Dh̃∫ Dh∫ DC∫ DC̃ exp(ỹTα yα +
1
2

C(L+1)
αβ ỹTα ỹβ)

× exp(N
L
∑
l=1
[h̃(l)α [h

(l)
α − h(l−1)

α ]+
1
2

h̃(l)α C(l)αβ h̃(l)β ])

× exp
⎛

⎝
N∑

α

h̃(0)α h(0)α +N
1
2
∑
α,β

h̃(0)α C(0)αβ h̃(0)β

⎞

⎠

× exp
⎛

⎝
−N

L+1

∑
l=0

νl C(l)αβ C̃(l)αβ +Nρ2σ2
w

L
∑
l=1

ϕ
(l−1)
α C̃(l)αβ ϕ

(l−1)
β +Nρ2σ2

b

L
∑
l=1
∑
α,β

C̃(l)αβ

⎞

⎠

× exp
⎛

⎝
Nσ2

w, out ϕ
(L)
α C̃(L+1)

αβ ϕ
(L)
β +Nσ2

b, out ∑
α,β

C̃(L+1)
αβ

⎞

⎠

× exp
⎛

⎝
σ2

w, in C̃(0)αβ (XXT
)αβ +Din σ2

b, in∑
α,β

C̃(0)αβ

⎞

⎠
.

The auxiliary variables C(l)αβ will be the order parameters of the system, so we aim for

an expression solely in these variables. To this end, we move the integrals over h(l)

and h̃(l) into the exponent and obtain

p(Y∣X) = ∫ Dỹ∫ DC∫ DC̃ exp(ỹTα yα +
1
2

C(L+1)
αβ ỹTα ỹβ −N

L+1

∑
l=0

νl C(l)αβ C̃(l)αβ )

× exp
⎡
⎢
⎢
⎢
⎢
⎣

N ln
L
∏
l=1
∫ Dh̃(l)∫ Dh(l) exp(h̃(l)α [h

(l)
α − h(l−1)

α ]+
1
2

h̃(l)α C(l)αβ h̃(l)β )

× exp
⎛

⎝
ρ2σ2

w

L
∑
l=1

ϕ
(l−1)
α C̃(l)αβ ϕ

(l−1)
β + ρ2σ2

b

L
∑
l=1
∑
α,β

C̃(l)αβ

⎞

⎠

× exp
⎛

⎝
σ2

w, out ϕ
(L)
α C̃(L+1)

αβ ϕ
(L)
β + σ2

b, out ∑
α,β

C̃(L+1)
αβ

⎞

⎠

×∫ Dh̃(0)∫ Dh(0) exp(h̃(0)α h(0)α +
1
2

h̃(0)α C(0)αβ h̃(0)β )

× exp
⎛

⎝
σ2

w, in C̃(0)αβ (XXT
)αβ +Dinσ2

b, in∑
α,β

C̃(0)αβ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= ∫ Dỹ ⟨exp(ỹTα yα +
1
2

ỹTα C(L+1)
αβ ỹβ)⟩

C,C̃
.

The expectation value in the last line is taken with respect to the auxiliary variables
and their conjugate variables, both of which follow a distribution determined by the



§4.4 Theory 71

auxiliary action (C, C̃) ∼ exp(S(C, C̃)) that is defined as

S(C, C̃) ∶= −N
L+1

∑
l=0

νl C(l)αβ C̃(l)αβ +NW(C̃∣C),

W(C̃∣C) ∶= ln
L
∏
l=1
∫ Dh̃(l)∫ Dh(l) exp(h̃(l)α [h

(l)
α − h(l−1)

α ]+
1
2

h̃(l)α C(l)αβ h̃(l)β )

× exp
⎛

⎝
ρ2σ2

w

L
∑
l=1

ϕ
(l−1)
α C̃(l)αβ ϕ

(l−1)
β + ρ2σ2

b

L
∑
l=1
∑
α,β

C̃(l)αβ

⎞

⎠

× exp
⎛

⎝
σ2

w, out ϕ
(L)
α C̃(L+1)

αβ ϕ
(L)
β + σ2

b, out ∑
α,β

C̃(L+1)
αβ

⎞

⎠

×∫ Dh̃(0)∫ Dh(0) exp
⎛

⎝
Nh̃(0)α h(0)α +N

1
2

h̃(0)α C(0)αβ h̃(0)β

+ σ2
w, in C̃(0)αβ (XXT

)αβ +Dinσ2
b, in∑

α,β
C̃(0)αβ

⎞

⎠
.

Saddle point approximation yields NNGP result

The action S is proportional to the network width N. So in the limit of infinite width
N →∞, we can evaluate averages by performing a saddle point approximation

∫ DC∫ DC̃ f (C, C̃) exp (S(C, C̃)) N→∞
= f (C∗, C̃∗), (4.14)

where C∗ and C̃∗ are the saddle points of the action S . These fulfill the conditions

∂S

∂C(l)αβ

∣(C∗,C̃∗)
!
= 0,

∂S

∂C̃(l)αβ

∣(C∗,C̃∗)
!
= 0. (4.15)

Solving for C∗, C̃∗ we get

C(l)αβ,∗ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

σ2
w, in
Din
(XXT)αβ + σ2

b, in l = 0,

ρ2σ2
w ⟨ϕ

(l−1)
α ϕ

(l−1)
β ⟩p + ρ2σ2

b 1 ≤ l ≤ L,

σ2
w, out ⟨ϕ

(L)
α ϕ

(L)
β ⟩p + σ2

b, out l = L + 1,

C̃(l)∗ = 0 l = 0, . . . , L + 1,

where

⟨. . . ⟩p =
L
∏
l=1
∫ Dh̃(l)∫ Dh(l) . . . exp(h̃(l)α [h

(l)
α − h(l−1)

α ]+
1
2

h̃(l)α C(l)αβ,∗h̃
(l)
β )

×∫ Dh̃(0)∫ Dh(0) exp(h̃(0)α h(0)α +
1
2

h̃(0)α C(0)αβ,∗h̃
(0)
β ) .
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The input kernel C0 = C0
∗ is fixed by the inputs; the saddle points C(l)∗ for all other

layers l need to be determined self-consistently. We rewrite the expectation value
⟨. . . ⟩p appearing in the self-consistency equations in terms of the residual f (l) = h(l) −
h(l−1) for 1 ≤ l ≤ L:

⟨. . . ⟩p = ∫ Dh(0)∫ Dh̃(0) exp(h̃(0)α h(0)α +
1
2

h̃(0)α C(0)αβ,∗h̃
(0)
β )

×
L
∏
l=1
∫ D f (l)∫ Dh̃(l) . . . exp(h̃(l)α f (l)α +

1
2

h̃(l)α C(l)αβ,∗h̃
(l)
β ) (4.16)

= ∫ Dh(0)N (h(0)∣0, C(0)αβ,∗)
L
∏
l=1
∫ D f (l) . . . N ( f (l)∣0, C(l)αβ,∗), (4.17)

with N ( f (l)∣0, C(l)αβ,∗) being a multi-dimensional Gaussian with zero mean and co-

variance C(l)αβ,∗. We see that the input signal H(0) = (h(0)α )α=1,...,P is a centered Gaussian

with covariance C(0)αβ,∗ and the residuals F(l) = ( f (l)α )α=1,...,P are centerd Gaussians with

covariance C(l)αβ,∗. We are ultimately interested in the signal h(l) in layer l, which re-

lates to the residuals by h(l) = h(0) +∑l
k=1 f (k). Since the residuals f (l) are independent

Gaussian variables, their means and covariances sum up accordingly. As a result, the
signal h(l) follows a Gaussian distribution with covariance K(l) = ∑l

k=0 C(k)∗ . The sum-
mation can be written as a recursion relation K(l) = K(l−1) + C(l−1)

∗ , from which we
recover the NNGP result (Huang et al., 2020; Tirer, Bruna, and Giryes, 2022; Barzilai
et al., 2023) for residual networks

C(l)αβ,∗ = ρ2σ2
w ⟨ϕ

(l−1)
α ϕ

(l−1)
β ⟩N (0,K(l−1)) + ρ2σ2

b 1 ≤ l ≤ L, (4.18)

K(l)αβ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

σ2
w, in
Din
(XXT)αβ + σ2

b, in l = 0,

K(l−1)
αβ +C(l−1)

αβ,∗ 1 ≤ l ≤ L,

σ2
w, out ⟨ϕ

(L)
α ϕ

(L)
β ⟩N (0,K(L)) + σ2

b, out l = L + 1.

(4.19)

4.4.2 Next-to-leading-order correction

The field-theoretic formulation of residual networks allows us to go beyond the sad-
dle point, which is the NNGP result, determining next-to-leading-order corrections
to these saddle points. For large but finite width N, the auxiliary variables C(l)

fluctuate around the saddle point value C(l)∗ . In a first-order approximation, these
fluctuations are Gaussian themselves. We determine these fluctuation corrections by
evaluating the Hessian of the action S at the saddle point

p(Y∣X) ≃ ∫ DδC ∫ DδC̃ exp(
1
2
(δC, δC̃)TS(2) (δC, δC̃))

= ∫ DδC ∫ DδC̃ exp(−
1
2
(δC, δC̃)T∆(2) (δC, δC̃)).
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We denote the fluctuations as δC = C − C∗, δC̃ = C̃ − C̃∗; the negative inverse of the
Hessian corresponds to their covariance

∆ = −(S(2))−1
=∶ (
⟨δC δC⟩ ⟨δC δC̃⟩
⟨δC̃ δC⟩ ⟨δC̃ δC̃⟩

) . (4.20)

Since we evaluate the Hessian at the saddle point, there is no linear term and all
expectation values in the following are with respect to the Gaussian measure ⟨. . . ⟩p
in Eq. (4.16).

We calculate the diagonal entries of the Hessian as

∂2

∂C(l)αβ ∂C(k)γβ

S ∣(C∗,C̃∗) = 0 , (4.21)

∂2

∂C̃(l)αβ ∂C̃(k)γδ

S ∣(C∗,C̃∗) =
∂

∂C̃(l)αβ

(N[δk,L+1 + (1− δk,L+1)ρ
2
]σ2

w⟨ϕ
(k−1)
γ ϕ

(k−1)
δ ⟩p + const.(C̃))

= δL0N [σ2
w, in (XXT

)αβ +Din] [δk,L+1 + (1− δk,L+1)ρ
2
]σ2

w⟨ϕ
(k−1)
γ ϕ

(k−1)
δ ⟩p

+Nσ4
w 1l>01k>0 ⟨ϕ

(l−1)
α ϕ

(l−1)
β , ϕ

(k−1)
γ ϕ

(k−1)
δ ⟩

c
p

×

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ρ4 k, l ≠ L + 1,

ρ2 k ≠ l = L + 1∨ l ≠ k = L + 1,

1 else,

(4.22)

with 1l>0 being the indicator function. Here ⟨. . . ⟩c denotes connected correlations
that are given by

⟨ϕ
(l−1)
α ϕ

(l−1)
β , ϕ

(k−1)
γ ϕ

(k−1)
δ ⟩

c
p = ⟨ϕ

(l−1)
α ϕ

(l−1)
β ϕ

(k−1)
γ ϕ

(k−1)
δ ⟩p − ⟨ϕ

(l−1)
α ϕ

(l−1)
β ⟩p ⟨ϕ

(k−1)
γ ϕ

(k−1)
δ ⟩p.

We calculate the off-diagonal entries of the Hessian as

∂2

∂C(l)αβ ∂C̃(k)γδ

S ∣(C∗,C̃∗)

= −Nνlδkl +N 1k>0 σ2
w

∂

∂C(l)αβ

⟨ϕ
(k−1)
γ ϕ

(k−1)
δ ⟩p ×

⎧⎪⎪
⎨
⎪⎪⎩

ρ2 k ≤ L
1 k = L + 1

= −Nνlδkl +N 1k>0 σ2
w

∂

∂K(k−1)
αβ

⟨ϕ
(k−1)
γ ϕ

(k−1)
δ ⟩N (0,K(k−1))

∂

∂C(l)αβ

K(k−1)
αβ ×

⎧⎪⎪
⎨
⎪⎪⎩

ρ2 k ≤ L

1 k = L + 1

= −Nνlδkl +N δ(αβ),(γδ) 1k>01k>l σ2
w⟨[ϕ

(k−1)
α ]

′

[ϕ
(k−1)
β ]

′

+ δαβ [ϕ
(k−1)
α ]

′′

[ϕ
(k−1)
β ]⟩N (0,K(k−1))

×

⎧⎪⎪
⎨
⎪⎪⎩

ρ2 k ≤ L
1 k = L + 1

, (4.23)

using Price’s theorem (Price, 1958; Papoulis and Pillai, 2002) from the third to the
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fourth line. The indicator function 1k>l enforces a causality condition k > l across
network layers: network kernels K(k−1) only depend on upstream residual kernels
C(l) where l < k.

We are ultimately interested in the negative inverse of the Hessian. To this end, we
write

S
(2)
=
⎛

⎝

∂2

∂C2S
∂2

∂C ∂C̃S
∂2

∂C̃ ∂CS
∂2

∂C̃2S

⎞

⎠
=∶ (
S11 S12

S21 S22
) . (4.24)

Then we use that S11 = 0, yielding the following relation for the sub-blocks of the
inverse

∆11 = ∆12 S22 ∆21, (4.25)

∆12 = −S
−1
21 , (4.26)

∆22 = 0. (4.27)

Response function

The causality condition l < k for the kernels K(l) makes the off-diagonal block matrix
S21 a lower triangular matrix. Thus, its inverse can be determined using forward
propagation

∆(lm),(αβ),(γδ)
12

= N−1ν−1
l δlm + 1l>0 δ(αβ),(γδ) σ2

w⟨[ϕ
(k−1)
α ]

′

[ϕ
(k−1)
β ]

′

+ δαβ [ϕ
(k−1)
α ]

′′

[ϕ
(k−1)
β ]⟩N (0,K(l−1))

×
l−1

∑
k=0

∆(km),(αβ),(γδ)
12 ×

⎧⎪⎪
⎨
⎪⎪⎩

ρ2 k ≤ L

1 k = L + 1
.

We identify ∆lm,(αβ),(γδ)
12 = Cov(C(l)

(αβ)
, C̃(m)
(γδ)
) as the forward response function in layer

l to a perturbation of the residual in layer m.

We will study the response function with respect to network inputs, as it is related
to network trainability. First, the residual response for all hidden layers 1 ≤ l ≤ L is
given by

η
(l)
αβ
∶= δ(αβ),(γδ) ρ2σ2

w⟨[ϕ
(l−1)
α ]

′

[ϕ
(l−1)
β ]

′

+ δαβ [ϕ
(l−1)
α ]

′′

[ϕ
(l−1)
β ]⟩N (0,K(l−1))

l−1

∑
k=0

η
(k)
αβ (4.28)

with initial condition η
(0)
αβ = D−1

in . Then, the response function of the kernels K(l)

can be determined from their additive relation to the residual kernels C(l), yielding
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χ
(l)
αβ
∶= ∑

l
k=0 η

(k)
αβ . Finally, we obtain for the output response to perturbations in the

input

χout
αβ = σ2

w, out ⟨[ϕ
(L)
α ]

′

[ϕ
(L)
β ]

′

+ δαβ [ϕ
(L)
α ]

′′

[ϕ
(L)
β ]⟩N (0,K(L))

L
∑
k=0

η
(k)
αβ . (4.29)

Kernel fluctuations

The diagonal term of the negative inverse Hessian in Eq. (4.25) corresponds to the
covariance of the Gaussian fluctuations of the residual kernels C(l) around the NNGP
value C(l) = C(l)∗ + δC(l) in networks with large but finite network width N. It is given
by

∆(lm)11 =∑
k,n

∆(lk)12 S
(kn)
22 ∆(nm)

21 , (4.30)

so that δC(l) ∼ N (0, ∆(ll)11 ). This quantity appears when determining finite-width
corrections to quantities such as the posterior kernels, generalization error, etc. We
obtain Gaussian fluctuations of the network kernels K(l) from their additive relation
to the residual kernels C(l) as K(l) = ∑k C(k) = ∑k C(k)∗ +∑k δC(k).

4.5 Experiments

We now use the field-theoretic framework to study signal propagation in residual
networks. The response function measures the networks’ sensitivity to changes in
the input and thus describes the signal propagation in networks. Signal propagation
can be linked to network trainability and thus generalization performance of trained
networks (Schoenholz et al., 2017; Yang and Schoenholz, 2017). We investigate how
the residual scaling affects signal propagation in residual networks and its depen-
dence on the network hyperparameters. We first focus on the diagonal elements of
the covariance as it allows us to relate signal propagation to saturation effects from
the non-linearity and then extend these results to off-diagonal elements.

4.5.1 Kernels and response function in networks at initialization

Residual kernels C(l)∗ and the residual response function η(l) for both FFNets and
ResNets agree well between theory and empirics in Fig. 4.2. In FFNets, the residual
kernels decay to a fixed point so that the residual response function decays expo-
nentially to zero. In contrast, the residual kernels in ResNets converge more slowly
and consequently, the residual response function decays more slowly, converging to
zero only asympotically (see App. C.2.1 for more details). These results agree with
Schoenholz et al. (2017) for FFNets and Yang and Schoenholz (2017) for ResNets, who
study the convergence rate of the kernels to their fixed points, whereas we explicitly
obtain the response function.
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Figure 4.2: Behavior of (a) residual kernels C(l)∗ and (b) residual response function
η(l) in ResNets (blue) compared to FFNets (green). (a) Solid curves show theory
values for C(l)∗ in Eq. (4.18). Error bars show empirical mean and one standard de-
viation over 103 network realizations. (b) Solid curves show theory values for η(l) in
Eq. (4.28). Dots show empirical means over 102 input samples and 103 network initial-
ization; errors are not shown as they are of order 10−5. FFNets converge exponentially
to fixed point of kernels across network layers, whereas ResNets converge asymptot-
ically slow. Other parameters: σ2

w, in = σ2
w = σ2

w, out = 1.2, σ2
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b, out = 0.2,

Din = Dout = 100, N = 500, ρ = 1.

4.5.2 Optimal scaling in residual networks

To obtain a better intuition for how the residual scaling ρ affects the response function
χ(l), we show the behavior of both kernels K(l) and response function χ(l) across
network layers l for different values of the residual scaling ρ in Fig. 4.3. The residual
kernels C(l)∗ in Eq. (4.18) scale with ρ2 and consequently also the kernels K(l), so that
ρ governs the rate of increase of K(l) across layers (see Fig. 4.3(a)). The response
function χ(l) inherits the scaling with ρ2; thus ρ also governs its rate of increase (see
Fig. 4.3(b)).

We are ultimately interested in the output response χout since it measures how sen-
sitive the network output is to changes in the network input, which is linked with
network trainability. We find that the output response as a function of the residual
scaling ρ has a unique maximum ρ∗(L) as shown in Fig. 4.4(a)-(b), which depends
on the network depth L (see Fig. 4.4(c)). In agreement with empirical observations
by Szegedy et al. (2017), the optimal values ρ∗ are in the value range of [0.1, 0.3] for
deep networks.

The recursive structure of Eq. (4.28)-(4.29) does not allow for an analytic solution
of the optimal scaling value ρ∗. Instead, we can give an intuition for the diagonal
elements of the covariance K(l) based on saturation effects of the non-linearity: The
network kernels K(l) in Eq. (4.19) continuously increase across network layers. In
consequence, the signal h(l) more likely lies outside the dynamic range V of the
activation function ϕ (see Fig. 4.1(b)) and this part of the signal h(L) gets cut off by
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Figure 4.3: The residual scaling parameter ρ determines the rate of increase of both
(a) network kernels K(l) and (b) response function χ(l). We use ρ ∈ [1.0, 0.3, 0.1] from
dark to light. Other parameters: σ2
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b, out = 0.2,

Din = Dout = 100, N = 500.

the readout layer, which in turn decreases the output response χout. Since the rate
of increase for the kernels K(l) scales with ρ2, one can avoid information loss in the
readout layer by decreasing the residual scaling ρ (see Fig. 4.1(c)). However, if ρ

becomes too small, it can suppress the residual branch to such a degree that the
hidden layers are dominated by the skip connection and the network reduces to a
single layer perceptron.

Building on this intuition, we now derive an approximate expression for the optimal
scaling ρ∗. Assuming that the signal stays in the linear part of the activation function
ϕ(h(l)) ≈ ϕ′(0) h(l), the residual kernels can be explicitly written as

C(l)∗ = ρ2σ2
w ϕ′(0)2

l−1

∑
k=0

C(k)∗ + ρ2σ2
b . (4.31)

Here, we used that ϕ(0) = 0 and ϕ′(0) is the slope of the activation function at zero.
We get a recursion relation for the residual kernels C(l)∗ = C(l−1)

∗ + ρ2σ2
w ϕ′(0)2 C(l−1)

∗

that can be solved as C(l)∗ = (1 + ρ2σ2
w ϕ′(0)2)l−1 (ρ2σ2

w ϕ′(0)2 K(0) + ρ2σ2
b ). For the net-

work kernels K(l), we then use the geometric series to obtain

K(L)
= (1+ ρ2σ2

w ϕ′(0)2)LK(0) +
σ2

b

ϕ′(0)2σ2
w
((1+ ρ2σ2

w ϕ′(0)2)L − 1) . (4.32)

We require the signal to utilize the full dynamic range V of the activation function ϕ,
yielding the condition V/2 !

=
√

K(L). Solving for the optimal residual scaling, we get

ρ∗ ≈
1

σw ϕ′(0)

¿
Á
Á
Á
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⎛

⎝

σ2
w ϕ′(0)2 (V/2)2 + σ2

b

σ2
w ϕ′(0)2 K(0) + σ2

b

⎞

⎠

1
L

− 1. (4.33)
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Figure 4.4: The response function indicates optimal scaling of the residual branch.
Output response χout for (a) diagonal and (b) off-diagonal elements of the network
kernels K(l)αβ . Light to dark curves represent different depths L ∈ [10, 50, 100, 200].
The unique maximum of the output response indicates optimal scaling ρ∗. (c) Opti-
mal residual scaling ρ∗ = argmax(χout) for diagonal (blue) and off-diagonal (green)
elements of the network kernel K(l)αβ . Optimal scalings depend on the network depth

as 1/
√

L (gray). Other parameters: input kernel K(0) = ( 0.05 0.03
0.03 0.05 ), σ2

w = 1.25, σ2
b = 0.05,

Din = Dout = 100, N = 500.

We can alternatively obtain the condition V/2 !
=
√

K(L) from a maximum entropy
argument for the signal distribution (see App. C.1), where we use the arguments
by Bukva et al. (2023) who study trainability of feed-forward networks. Due to the
assumptions in Eq. (4.32), the expression in Eq. (4.33) does not capture the effect of
the non-linearity fully but allows for an analytically tractable solution. Note that
this is exclusively a limitation of Eq. (4.33); the response function accounts for all
non-linear effects in the network.

4.5.3 Optimal scaling depends strongly on depth hyperparameter

For deep networks L ≫ 1, we can expand the L-th root in Eq. (4.33) in 1/L, yielding
to leading order

ρ∗ ≈

√
1
L

¿
Á
Á
ÁÀ

1
σ2

w ϕ′(0)2
log
⎛

⎝

σ2
w ϕ′(0)2 (V/2)2 + σ2

b

σ2
w ϕ′(0)2 K(0) + σ2

b

⎞

⎠
. (4.34)

Thus, we obtain the ∝ 1/
√

L scaling in Fig. 4.4(c) from the theoretical expression;
(Hayou et al., 2021b; Hayou et al., 2021a; Zhang et al., 2022) suggested this scaling
using different theoretical approaches. Our result goes beyond these earlier works
in that we additonally obtain the dependence on other hyperparameters but the net-
work depth. Due to the appearing logarithm, we find a strong dependence on the
network depth relative to a weak dependence on other hyperparameters as shown in
Fig. 4.5, explaining the universal success of the 1/

√
L scaling across different archi-

tectures (Bordelon et al., 2024).
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Figure 4.5: Optimal scalings depend weakly on all hyperparameters but the network
depth. We show the dependence of both (a) variances and (b) covariances on weight
variance σ2

w and bias variance σ2
b relative to the dependence on network depth L. We

use CIFAR-10 with samples being either dogs or airplanes. The scaling with maximal
output response is averaged over all diagonal or all off-diagonal elements of the
covariance, respectively, ρ̄∗αα =

1
N ∑α argmax(χout

αα ) or ρ̄∗αβ =
1

N(N−1) ∑α≠β argmax(χout
αβ ).

Other parameters: data set size P = 20, input scale K(0) = 0.05, σ2
w = 1.25, σ2

b = 0.05,
Din = Dout = 100, N = 500.

4.5.4 Optimal scaling across data sets

So far, we have considered the statistics of individual samples in the form of the
diagonal elements of the network kernels. However, network trainability generally
requires efficient signal propagation on the whole data set. To this end, we first
study the dependence of the optimal scaling with maximal output response ρ∗(Kαβ) =

argmax(χout
αβ ) on different alignment between data samples: we generate samples of

unit length with different angles in the intervall [0, π] by steps of π/P, where P is
the number of data samples. As shown in Fig. 4.6(a), the optimal scaling ρ∗ varies
strongly as a function of the angle. Nevertheless, when we study common tasks such
as MNIST and CIFAR-10 in Fig. 4.6(b)-(c), we find that optimal scalings ρ∗(Kαβ) for
the off-diagonal elements are very homogeneous across the whole data set, despite
samples belonging to two different classes. Therefore, we expect average scalings
ρ̄∗αβ =

1
N(N−1) ∑α≠β argmax(χout

αβ ) on the off-diagonal elements to be representative for
the whole data set.

The optimal scalings for the covariance also exhibit a 1/
√

L scaling as shown in
Fig. 4.4(c). While optimal scalings ρ̄∗αβ depend strongly on the network depth, there
is only a weak dependence on other hyperparameters as shown in Fig. 4.5(b). As this
behavior is consistent across data sets, it could be an explanation for the universal
success of the 1/

√
L scaling across different residual networks (Bordelon et al., 2024).
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Figure 4.6: Dependence of optimal scaling ρ∗ on variation across data sets. (a) An-
gular dependence of the optimal scaling: Close to parallel samples allow for larger
scaling values, while orthogonal samples require smaller scaling values. For data
sets such as (b) MNIST and (c) CIFAR-10, optimal scalings ρ∗ for off-diagonal ele-
ments of the kernels (samples sorted by classes) are similar. For MNIST, samples
are either digit 0 or digit 3, and for CIFAR-10, samples are either dogs or airplanes.
Other parameters: data set size P = 20, input scale K(0) = 0.05, σ2

w = 1.25, σ2
b = 0.05,

Din = Dout = 100, N = 500.

4.6 Conclusion

In this chapter, we derive a field theory for residual networks, which proves to be
a versatile method for studying neural networks: In the limit of infinite network
width, we recover the NNGP result (Huang et al., 2020; Tirer, Bruna, and Giryes,
2022; Barzilai et al., 2023). More importantly, this approach allows us to determine
finite-size properties in a systematic manner.

In this work, we study the response function, which measures signal propagation in
the network and thus links to trainability. We focus on the influence of the residual
scaling on the response function, discovering that there is a unique maximal response
for a particular residual scaling. We link the maximization of the response function
to improved signal propagation in the network, which avoids saturation effects due
to the non-linear activation function. We obtain the 1/

√
depth dependence of the

optimal scaling as suggest by (Arpit, Campos, and Bengio, 2019; Hayou et al., 2021b;
Hayou et al., 2021a; Zhang et al., 2022; Bordelon et al., 2024) and uncover a weak
dependence on other hyperparameters of the network. In that sense, the theoretical
framework presented in this chapter not only unites multiple existing observations
in a joint theory but goes beyond previous works, allowing us to systematically in-
vestigate finite-size effects such as feature learning in the future.

4.6.1 Limitations

In this chapter, we consider the network prior, which corresponds to networks at ini-
tialization. Nevertheless, (Schoenholz et al., 2017; Yang and Schoenholz, 2017) show
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that the behavior at initialization can be indicative for generalization performance.
More importantly, the network prior is a prerequesite for determining the network
posterior and properties of trained networks such as the posterior kernels, as shown
in the previous chapter.

The expression for the optimal scaling in Sec. 4.4 is based on the assumption that
the signal passes through the linear part of the non-linear activation function for
all layers up to the output layer and solely applies to the diagonal elements of the
kernels. Despite these simplifications, it correctly predicts the 1/

√
depth scaling for

deep residual networks. Note that the response function itself accounts for non-linear
effects due to the activation function and correctly captures the 1/

√
depth scaling for

off-diagonal elements of the network kernels.

4.6.2 Relation to other works

From a practitioner’s perspective, the idea of residual scaling was first introduced by
Szegedy et al. (2017) to resolve training instabilities in residual networks with a large
number of convolutional filters. The common approach of batch normalization (Ioffe
and Szegedy, 2015) turned out to be insufficent, but downscaling the residual branch
by a factor between 0.1 and 0.3 proved to work well. In a similar vein, Zhang et al.
(2019) find a value of 0.1 to result in the best generalization performance by doing a
systematic grid search for this hyperparameter.

An adjacent field of research studies scaling the skip connections instead of the resid-
ual branch. Zhang et al. (2024) show improved semantic feature learning in autoen-
coders when scaling the skip connections; they find a dominant dependence on the
total downscaling across layers rather than on the particular scaling scheme per layer.
Doshi, He, and Gromov (2023) find critical points in residual networks using empiri-
cally computed partial Jacobians that show only a weak dependence on hyperparam-
eters. While we here focus on the scaling of the residual branch, it is straightforward
to integrate the scaling of the skip connections into our field-theoretic framework
and study the trade-off between these two scalings.

There are multiple lines of theoretical research studying the mechanics of residual
scaling. Closest in spirit are (Yang and Schoenholz, 2017; Hanin and Rolnick, 2018)
who study signal propagation in residual networks in terms of the decay rate of
sample correlation to a fixed point, at which all discriminatory information between
samples is lost; they show that signal propagation links to trainability of networks.
While feed-forward networks exhibit an exponential decay for all points in hyper-
parameter space except for a low-dimensional critical manifold (Poole et al., 2016;
Schoenholz et al., 2017; Hanin, 2018), residual networks exhibit a sub-exponential
decay so that they remain close to criticality for all sets of hyperparameters. Our
framework is more versatile than their approach in that we recover these results as
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well as obtain additional finite-size properties of the network such as kernel fluctua-
tions in a systematic way.

Another line of research considers the limit of infinite network depth, for which
residual networks can be described by a set of differential equations, so-called Neu-
ralODEs (Chen et al., 2018). According to Marion et al. (2024), residual scaling is
linked to the regularity of the network weights, which then affects generalization
performance. For different non-linearities and architectures, Cohen et al. (2021) dis-
cover different scaling regimes of the network. In contrast to these works, we focus
specifically on finite-size effects in residual networks.

Empirical works such as Bachlechner et al. (2021) suggest a strong dependence of
proper residual scaling on the network depth, which is also a subject of theoretical
considerations. From a neural tangent kernel perspective, Tirer, Bruna, and Giryes
(2022) find that smaller residual scalings result in smoother kernels and thus interpo-
lation between data samples. While Huang et al. (2020) argue for a 1/depth scaling,
they consider the double limit of infinite width and depth that does not generally
apply to finite-size networks. Based on different approaches, (Arpit, Campos, and
Bengio, 2019; Hayou et al., 2021b; Hayou et al., 2021a; Zhang et al., 2022; Bordelon
et al., 2024) suggest a 1/

√
depth scaling: Using a mean-field analysis of residual net-

works, Arpit, Campos, and Bengio (2019) show that this scaling avoids exploding
and vanishing information in the network. Similarly, Zhang et al. (2022) observe that
this scaling stabilizes the forward and backward propagation of signals. (Hayou et
al., 2021b; Hayou et al., 2021a) study the NTK for this case and argue that it becomes
universal in the sense that it is capable of expressing any function. Finally, Bordelon
et al. (2024) use dynamic mean field theory to argue that the 1/

√
depth scaling al-

lows hyperparameter transfer across different network widths for residual networks,
which was initially done for fully-connected networks in the µP-scaling framework
(Yang et al., 2021; Bordelon and Pehlevan, 2023). In contrast to these works, we addi-
tionally uncover a weak dependence on all hyperparameters but the network depth,
providing a possible expanation for the universal success of the 1/

√
depth scaling.



Chapter 5

Discussion

The previous three chapters constitute the heart of this thesis and present the key
studies of this work. In this final chapter, we briefly review each chapter before
putting each one into the context of the overarching topic - mechanistic theories of
neural networks beyond the Gaussian limit - as well as providing an outlook per
chapter. We conclude by merging the contributions of all chapters to address the
relevance of this topic and end on an outlook regarding future avenues of research.

Decomposing neural networks as mappings of correlation functions

In this chapter, we derived a statistical representation of fully-connected networks
as a mapping of data correlations across layers. We observed that for the informa-
tion processing performed by the hidden layers it is sufficient to trace how Gaussian
statistics are transformed by the network layers, whereas the input layer additionally
extracts information from higher-order cumulants. We showed how this statistical
representation can be used to probe which correlations in the data set are essential:
For MNIST, class membership is largely encoded in class-conditional means and co-
variances, while higher-order cumulants are required to fine-tune for few additional
performance percentages. For CIFAR-10, we found that more complex data sets re-
quire higher-order cumulants to solve the task, providing a possible explanation for
the shortcomings of fully-connected networks on such tasks.

While we found that for the hidden network layers it is sufficient to trace only Gaus-
sian statistics, we require corrections from higher-order cumulants in the input layer
due to the finite data dimensionality. Further, we expect that for narrow networks,
such corrections are also necessary for hidden network layers. For CIFAR-10, we ob-
served that tracing only the behavior of Gaussian statistics, albeit consistent with the
behavior of fully-connected networks, is insufficient to solve this task. State-of-the-art
architectures on CIFAR-10 typically use convolutional layers that can be understood
as sparse, highly-structured, fully-connected layers. Both their structure and sparse-
ness leads to convolutional layers requiring the inclusion of higher-order cumulants
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in an accurate description of the information processing performed by convolutional
networks.

Extending the theoretical framework in this chapter to network architectures such as
convolutional or residual networks is an interesting point for future research, allow-
ing us to contrast their computational capabilities with respect to different cumulant
orders. Furthermore, we may study expressivity of neural networks with this work:
Reversely tracing cumulants through the network allows us to investigate which
input distributions can be mapped to particular output distributions, thereby con-
structing statistical receptive fields of network layers and the network as a whole.
Measuring how the complexity of data distributions is reduced by deep neural net-
works is an important step to a better mechanistic understanding of neural networks.

Critical feature learning in deep neural networks

In this chapter, we derived a set of forward-backward propagation equations that
describe the Bayesian posterior kernels in fully-connected networks. We found that
they capture non-linear kernel adaptation in trained networks. Further, feature cor-
rections result from fluctuation corrections in a field-theoretic description, indicating
a link to criticality. Analyzing the obtained set of equations unveiled a trade-off
between criticality and network scales, which drives feature learning in the network.

We here explicitly went beyond the Gaussian limits of the NNGP and NTK for in-
finitely wide network by calculating fluctuation corrections to the Gaussian kernels
for finite-size networks with non-zero training load. While the posterior kernels con-
tained a term that structurally resembles the NNGP result, we explicitly derived the
fluctuation corrections to this result. On a conceptual level, the fluctuation correc-
tions directly result from the finite network width: in the infinite width limit, the
auxiliary variables concentrate on the NNGP but fluctuate around this value at finite
width, allowing for adaption to the training data. Furthermore, another leading-
order correction to the NNGP appeared naturally: when disassembling the forward-
backward propagation equations, we found that the response function of the network
mediates the backward propagation of the kernel mismatch via the conjugate kernels.
Thereby, we link the driving mechanisms of feature learning to finite-size corrections
beyond the Gaussian limit.

A next step will be to determine the network predictor for the network posterior. To
this end, we need to compute corrections to the kernel predictor, in a similar vein
as Lindner et al. (2023). Knowledge of the network predictor then will allow us to
study the generalization performance of the network posterior.



85

Field theory for optimal signal propagation in residual networks

In this chapter, we derived a field-theoretic description of residual networks and ob-
tained the response function as the leading-order correction to the NNGP result. The
response function is linked to signal propagation in the network and thus network
trainability. We investigated how scaling the residual branch affects signal propaga-
tion and found that optimal scaling avoids information loss due to signal saturation
in the non-linearity. Further, we found a strong dependence of the optimal scaling
on the network depth, favoring a 1/

√
depth scaling, while other hyperparameters

only show a weak dependence, explaining the empirically observed universality of
the 1/

√
depth scaling across different networks.

We here studied networks at initialization, which, in the infinite width limit, are gov-
erned by a Gaussian limit, the NNGP. In the field-theoretic formulation, the response
function appears naturally as the first-order correction to this Gaussian limit at finite
width. The definition of the response function directly entails its finite-size nature: it
measures the susceptibility of network kernels to changes in the input kernel. In the
previous chapter, we have further seen how the response function is linked to feature
learning corrections of the NNGP kernel in finite-size networks after training.

With the network prior of residual networks derived in this chapter, we may study
the network posterior in a similar vein as Chap. 3 of this thesis. In particular, invest-
igating how skip connections affect the learned features in deep neural networks will
be an interesting question for the future.

Statistical field theories of neural networks

In this thesis, we derived statistical field theories of neural networks to study various
finite-size properties of these networks. While known theoretical concepts like the
NNGP or the NTK correspond to Gaussian descriptions of neural networks, the the-
oretical frameworks presented in this work allow us to systematically study effects
beyond the Gaussian limit, which is the unique benefit of this approach.

Studying finite-size effects in neural networks has emerged as a highly relevant field
of research for a theoretical understanding of the mechanics of neural networks.
Finite-size effects include phenomena such as grokking (Rubin, Seroussi and Ringel,
2024; Cohen, Levi and Oz, 2024), feature learning (Geiger et al., 2020; Naveh et al.,
2021), and non-convex loss landscapes (Geiger et al., 2019; Sarao Mannelli, Vanden-
Eijnden and Zdeborová, 2020; Mignacco, Urbani and Zdeborová, 2021). Our con-
tributions in this work are concerned with signal propagation in different network
architectures and feature learning in terms of kernel adaptation to data in trained
networks.
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Outlook

For neural networks, there are two main sources of stochasticity: the data distribution
and the distribution of network parameters. In this thesis, we have studied each case
separately, considering the data distribution in the first chapter and the distribution
of network parameters in the latter two chapters. Understanding interaction effects
between these two will be an important next step for future research with highly
relevant applications such as transfer learning (Zhuang et al., 2021; Wan et al., 2021;
Kora et al., 2022), where networks are trained on a source task with typically large
amounts of data available and then are fine-tuned on a target task with limited data
availability. Ingrosso et al. (2024) make a first step into this direction and find a link
between the source-target correlation and the effectiveness of fine-tuning; however,
they consider only kernel-rescaling in their work and do not consider kenel adapta-
tion. Further, Lindner et al. (2023) build a field-theoretic framework for studying how
data variability affects kernel regression with the NNGP. Their framework can nat-
urally be integrated with the field-theoretic approaches presented in this work, with
the goal of investigating the effect of data variability on the network posterior. In
conclusion, this forms a promising avenue for investigating the interplay of learned
features with different data sets for, among others, transfer learning.
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Appendix A

Decomposing neural networks as
mappings of correlation functions

A.1 Interaction functions for different activation functions

We define in Sec. 2.4.2 the interaction functions between mean and covariance that
result from the application of the non-linearity ϕ; they are given by

fµ(µz(l) , Σz(l)) = ⟨ϕ(z
(l)
)⟩z(l) ,

fΣ(µz(l) , Σz(l)) = ⟨ϕ(z
(l)
)ϕ(z(l))T⟩z(l) − µy(l)µ

T
y(l) .

In Tab. 2.2 in Sec. 2.4.2 we present expressions for ReLU and quadratic non-linearities.
In this appendix we derive these expressions step by step.

A.1.1 ReLU

The ReLU activation function is defined as ReLU(z) = max(0, z). We start from the
distribution of pre-activations z(l), which we assume to be Gaussian with mean µz(l)

and covariance Σz(l) . Then we compute the mean post-activations as

µy(l), i =⟨max(0, z(l)i )⟩z(l)∼N (µz(l) , Σ
z(l))

(A.1)

=
1

√
2π Σz(l), ii

∫

∞

0
dz(l)i z(l)i exp

⎛

⎝
−
(z(l)i − µz(l), i)

2

2Σz(l), ii

⎞

⎠
(A.2)

=−

√
Σz(l), ii
√

2π
∫

∞

−µ
z(l) , i

dz(l)i
−z(l)i
Σz(l), ii

exp
⎛

⎝
−
(z(l)i )

2

2 Σz(l), ii

⎞

⎠
(A.3)

+ µz(l), i
1

√
2π Σz(l), ii

∫

∞

−µ
z(l) , i

dz(l)i exp
⎛

⎝
−
(z(l)i )

2

2 Σz(l), ii

⎞

⎠
(A.4)

=

√
Σz(l), ii
√

2π
exp
⎛

⎝
−

µ2
z(l), i

2 Σz(l), ii

⎞

⎠
+

µz(l), i

2
(1+ erf(

µz(l), i
√

2 Σz(l), ii
)) . (A.5)
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For the covariance of post-activations, we first calculate the second moment. We here
distinguish between diagonal elements with i = j and off-diagonal elements with i /= j.
The diagonal elements can be calculated as

⟨ϕ(z(l)i )ϕ(z(l)i )⟩z(l)∼N (µz(l) , Σ
z(l))

(A.6)

=
1

√
2π Σz(l), ii

∫

∞

0
dz(l)i (z

(l)
i )

2 exp(−
1

2Σz(l), ii
(z(l)i − µz(l), i)

2
) (A.7)

=−

√
Σz(l), ii
√

2π
µz(l), i exp(−

µ2
z(l), i

2Σz(l), ii
)+

Σz(l), ii

2
(1+ erf(

µz(l), i
√

2 Σz(l), ii
))

+

√
2
π

µz(l), i

√
Σz(l), ii exp(−

µ2
z(l), i

2Σz(l), ii
)+

µ2
z(l), i

2
(1+ erf(

µz(l), i
√

2 Σz(l), ii
)) (A.8)

=

√
Σz(l), ii µz(l), i
√

2π
exp(−

µ2
z(l), i

2Σz(l), ii
)+

Σz(l), ii + µ2
z(l), i

2
(1+ erf(

µz(l), i
√

2 Σz(l), ii
)) . (A.9)

Using the relation between second moment, mean, and covariance, we get the diag-
onal elements of the covariance

Σy(l), ii =⟨ϕ(z
(l)
i )ϕ(z(l)i )⟩z(l)∼N (µz(l) , Σ

z(l))
− (µy(l), i)

2
(A.10)

=
Σz(l), ii

2
(1+ erf(

µz(l), i
√

2Σz(l), ii
))+

µ2
z(l), i

4

− (

√
Σz(l), ii
√

2π
exp(−

1
2Σz(l), ii

µ2
z(l), i)+

µz(l), i

2
erf(

µz(l), i
√

2Σz(l), ii
))

2

. (A.11)

For the off-diagonal elements i /= j, we marginalize over all other indices and just
consider the joint distribution of (z(l)i , z(l)j ). We write the marginalized mean and

covariance as µ̃z(l) = (µz(l), i, µz(l), j)
T and Σ̃

z(l)=

⎛

⎜
⎜
⎜
⎜

⎝

Σz(l), ii Σz(l), ij
Σz(l), ji Σz(l), jj

⎞

⎟
⎟
⎟
⎟

⎠

. We get for the second

moment

⟨ϕ(z(l)i )ϕ(z(l)j )⟩z(l)∼N (µz(l) , Σ
z(l))

=
1

√

(2π)2 det(Σ̃z(l))
∫

∞

0
dz(l)i ∫

∞

0
dz(l)j z(l)i z(l)j exp(−

1
2
(z̃(l) − µ̃z(l))

TΣ̃−1
z(l)(z̃

(l)
− µ̃z(l)))

(A.12)
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⎛
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⎞

⎠

+

√
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2π
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π

√

2Σ̃−1
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exp
⎛
⎜
⎝
−

Σ̃−1
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z(l), i

2

⎞
⎟
⎠
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× exp
⎛

⎝

(Σ̃−1
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⎥
⎥
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.

(A.13)

We write the appearing cumulative distribution function as Fµ̃
z(l) , Σ̃

z(l)
(x, y); evaluat-

ing at the origin Fµ̃
z(l) , Σ̃

z(l)
(0, 0) yields the so-called quadrant probability. To obtain

the off-diagonal elements of the covariance, we subtract µy(l), i µy(l), j from the second
moment, yielding the expression in Tab. 2.2 in Sec. 2.4.2.

Corrections from higher-order cumulants using a Gram-Charlier expansion

For determining correction terms from higher-order cumulants, we use the Gram-
Charlier expansion (Blinnikov and Moessner, 1998) of the probability density func-
tion p

z(l)i
(z(l)i ). This expansion assumes the probability density function to be close

to a Gaussian, performing a Taylor expansion in higher-order cumulants. Up to third
order, the Gram-Charlier expansion is given by

pz(l)
i
(z(l)i ) ≈

⎛

⎜
⎜

⎝

1+
G(3)

z(l), (i,i,i)

3!
√

Σ3
z(l), ii

⎡
⎢
⎢
⎢
⎢
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⎠
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⎥
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⎟

⎠

1
√

2π Σz(l), ii
exp(−

(z(l)i − µz(l), i)
2

2Σz(l), ii
).

Based on this, we now calculate corrections to the mean of the post-activations y(l)

up to linear order in G(3)
z(l)

for ReLU activations.

Using the Gram-Charlier expansion, we write the mean µy(l), i of the post-activations
y(l) as

µy(l), i =⟨ϕ(z
(l)
i )⟩z(l)∼N (µz(l) , Σ

z(l))
(A.14)

=∫

∞

0
dz(l)i z(l)i p
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(z(l)i ) (A.15)
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(A.16)
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×
exp(−(z(l)i − µz(l), i)

2
/2Σz(l), ii)

√
2π Σz(l), ii

(A.17)

=

√
Σz(l), ii µz(l), i
√

2π
exp(−

µ2
z(l), i

2 Σz(l), ii
)+

µz(l), i

2
⎛

⎝
1+ erf

⎛

⎝

µz(l), i
√

2 Σz(l), ii

⎞

⎠

⎞

⎠

−
G(3)

z(l), (i,i,i)

2 Σ2
z(l), ii

(Σ2
z(l), ii − 1)

1
2
⎛

⎝
1+ erf

⎛

⎝

µz(l), i
√

2 Σz(l), ii

⎞

⎠

⎞

⎠

+
G(3)

z(l), (i,i,i)

3! Σ3
z(l), ii

(3 µz(l), iΣ
2
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×

√
Σz(l), ii µz(l), i
√

2π
exp(−

µ2
z(l), i

2Σz(l), ii
). (A.19)

Corrections by other cumulant orders can be determined in a similar way.

A.1.2 Quadratic activation function

We here study the case of a quadratic activation function ϕ(z) = z + ϵ z2. The mean
post-activations are given by

µy(l), i = ⟨z
(l)
i + ϵ (z(l)i )

2
⟩z(l) (A.20)

= µz(l), i + ϵ (µz(l), i)
2
+ ϵ Σz(l), ii. (A.21)

This holds for any distribution of pre-activations z(l), not only a Gaussian.

The second moment is given by

⟨ϕ(z(l)i )ϕ(z(l)j )⟩z(l) = ⟨[z
(l)
i + ϵ (z(l)i )

2
] [z(l)j + ϵ (z(l)j )

2
]⟩

zl
(A.22)

= Σz(l), ij + µz(l), i µz(l), j + ϵ M(3)
z(l), (i,j,j)

+ ϵ M(3)
z(l), (j,i,i)

+ ϵ2 M(4)
z(l), (i,i,j,j)

,

(A.23)

where M(n)
z(l)

stands for the n-th moment of pre-activations z(l). Using the relation
between second moment, mean, and covariance, we get for the covariance

Σy(l), ij =⟨ϕ(z
(l)
i )ϕ(z(l)j )⟩z(l) − ⟨ϕ(z

(l)
i )⟩z(l) ⟨ϕ(z

(l)
j )⟩z(l) (A.24)

=Σz(l), ij + 2 ϵ Σz(l), ij (µz(l), i + µz(l), j)+ 2 ϵ2
(Σz(l), ij)

2

+ 4 ϵ2 µz(l), i Σz(l), ij µz(l), j +Σy(l), ij∣n>2. (A.25)

We collect all contributions from higher-order cumulants in Σyl , ij∣n>2, which is given
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by

Σy(l), ij∣n>2 = ϵ (1+ 2ϵ µz(l), i)G(3)
z(l), (i,j,j)

+ ϵ (1+ 2α µz(l), j)G(3)
z(l), (j,i,i)

+ ϵ2 G(4)
z(l), (i,i,j,j)

. (A.26)

For Gaussian distributed pre-activations z(l) ∼N (µz(l) , Σz(l)), higher-order cumulants
vanish G(n>2)

z(l)
= 0, so that Σy(l), ij∣n>2 = 0 and we obtain the expression in Tab. 2.2 in

Sec. 2.4.2.

A.2 Higher-order cumulants of post-activations from weak
correlations

In this section, we study the influence of weak correlations between pre-activations
on higher-order cumulants of the post-activations. The activation function ϕ is as-
sumed to be piece-wise differentiable. In the following, all functions applied to pre-
activations are the activation function ϕ, but we denote them differently to keep track
of different indices, so f = fk = g = ϕ. We start by considering only two pre-activations
x, y that are Gaussian distributed with zero mean and weakly correlated with covari-
ance C = ( a c

c a ). To keep the notation concise, we use ⟨. . . ⟩ ∶= ⟨. . . ⟩(x,y)∼N (0,C). We look
at the second moment ⟨ f (x)g(y)⟩ of the post-activations and expand for small c as

⟨ f (x)g(y)⟩ = ⟨ f (x)g(y)⟩c=0 + ⟨ f ′(x)g′(y)⟩c=0 c +O(c2
)

= ⟨ f (x)⟩⟨g(y)⟩+ ⟨ f ′(x)⟩⟨g′(y)⟩ c +O(c2
), (A.27)

where we used Price’s theorem (Price, 1958; Papoulis and Pillai, 2002; Schuecker et
al., 2016, Appendix A) to determine the first Taylor coefficient

∂

∂c
⟨ f (x)g(y)⟩ = ⟨ f ′(x)g′(y)⟩.

The expansion Eq. (A.27) corresponds to Eq. (A4) in (Goldt et al., 2020), but is
there derived with a different method than Price’s theorem. One needs to substitue
⟨u f (u)⟩ = ⟨ f ′(u)⟩ in Eq. (A4) in (Goldt et al., 2020), which is possible since ⟨u2⟩ = 1 is
assumed.

In order to generalize to higher-order cumulants, we use centered post-activations

f̃ (x) ∶= f (x)− ⟨ f (x)⟩,

g̃(x) ∶= g(x)− ⟨g(x)⟩,

yielding an expansion of the second moment and its dependence on the weak corre-
lation c between pre-activations as

⟨ f̃ (x)g̃(y)⟩ = ⟨ f ′(x)⟩⟨g′(y)⟩ c +O(c2
).



94 Decomposing neural networks as mappings of correlation functions

We now study how expectation values of arbitrary orders depend on the weak cor-
relation c between pre-activations; we denote these expectations as

Fn(x) ∶= ⟨
n
∏
k=1

f̃k(xk)⟩. (A.28)

To evaluate the appearing expectation values, we use the marginalization property of
Gaussian distributions: We assume that x = (xi)i is Gaussian distributed with covari-
ance C. Then the joint distribution of any subset of xi is also Gaussian distributed;
the covariance matrix is the corresponding submatrix Cij = ⟨⟨xixj⟩⟩. Building on the
result for two variables, we define for any index pair (i, j)

Fn(x/{xi, xj}) = ⟨
n
∏
k=1

f̃k(xk)⟩
(xi ,xj)

= ⟨ f̃i(xi) f̃ j(xj)⟩(xi ,xj) ∏
k/{i,j}

f̃k(xk).

We can apply the previous result Eq. (A.27) to the first term and get

Fn(x/{xi, xj}) = [cij ⟨ f ′i (xi) f ′j (xj)⟩(xi ,xj),cij=0 +O(c
2
ij)] ∏

k/{i,j}
f̃k(xk). (A.29)

Then we determine the expectation across the remaining variables x/{xi, xj} with
probability distribution p(x/{xi, xj}). We rewrite the probability distribution over
all variables in terms of conditionals p(x1, . . . , xN) = p(xi, xj∣x/{xi, xj}) p(x/{xi, xj})

and use Eq. (A.29) for the conditional expectation value over xi, xj with regard to
p(xi, xj∣x/{xi, xj}), yielding

⟨Fn(x/{xi, xj})⟩x/{xi ,xj}
= ⟨[cij f ′i (xi) f ′j (xj)+O(c2

ij)] ∏
k/{i,j}

f̃k(xk)⟩
x,cij=0

.

For the expectation over all variables, we look at arbitrary pairings of all indices as
any such pair yields a non-zero contribution. Expanding all pairs in a similar manner
as before, we obtain

⟨Fn(x)⟩x = ∑
σ∈Π

cσ(1)σ(2) ⟨ f
′
σ(1)(xσ(1))⟩⟨ f

′
σ(2)(xσ(2))⟩

⋯cσ(n−1)σ(n) ⟨ f
′
σ(n−1)(xσ(n−1))⟩⟨ f

′
σ(n)(xσ(n))⟩

+O(c
n
2+1
○○ ), (A.30)

where ∑σ∈Π sums over all disjoint pairings of indices. This expression matches
Eq. (A16) in (Goldt et al., 2020) apart from minor typos; the factors bi seem to be
missing, p needs to be m, and we interpret the upper case of their Eq. (A16) as
b1⋯bm ∑σπΠ mσ1σ2⋯mσm−1σm .

The expansion Eq. (A.30) applies to arbitrary cumulant orders n and is correct up to
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terms of order O(c
n
2 ). In consequence, all cumulants beyond Gaussian order n > 2

vanish.

We illustrate the latter for the fourth-order cumulant, where we drop the argument
x for brevity:

⟨⟨ f̃1 f̃2 f̃3 f̃4⟩⟩ = ⟨ f̃1 f̃2 f̃3 f̃4⟩− ⟨ f̃1 f̃2⟩ ⟨ f̃3 f̃4⟩− ⟨ f̃1 f̃3⟩ ⟨ f̃2 f̃4⟩− ⟨ f̃1 f̃4⟩ ⟨ f̃2 f̃3⟩. (A.31)

Using Eq. (A.30), the first term is given by

⟨ f̃1 f̃2 f̃3 f̃4⟩ = c12 ⟨ f ′1⟩ ⟨ f
′
2⟩ c34 ⟨ f ′3⟩ ⟨ f

′
4⟩+ c13 ⟨ f ′1⟩ ⟨ f

′
3⟩ c24 ⟨ f ′2⟩ ⟨ f

′
4⟩

+ c14 ⟨ f ′1⟩ ⟨ f
′
4⟩ c23 ⟨ f ′2⟩ ⟨ f

′
3⟩+O(c

3
).

Further, we expand all negative terms of Eq. (A.31) using Eq. (A.30), yielding e.g. for
the first term

−⟨ f̃1 f̃2⟩ ⟨ f̃3 f̃4⟩ =− c12 ⟨ f ′1⟩ ⟨ f
′
2⟩ c34 ⟨ f ′3⟩ ⟨ f

′
4⟩+O(c

3
),

precisely cancelling all terms in Eq. (A.31) up to order O(c3).

For arbitrary cumulant orders n, odd orders vanish for centered variables and even
orders exhibit similar cancellation effects so that

⟨⟨
n
∏
k=1

f̃k(xk)⟩⟩ = O(c
n
2+1). (A.32)

Up to here, we only considered the case that all indices differ from one another.
In general, we also need to look at the case that indices in Eq. (A.31) are repeated,
e.g. ⟨⟨ f̃1 f̃1 f̃2 f̃2⟩⟩. To formalize this case, we assume that for a cumulant of order n
there are r different indices j1, . . . , jr with n > r. Within a set of repeated variables
correlations are of order O(1) instead of O(c). In the expansion Eq. (A.30) variables
with repeated indices must be treated as a single variable.

As an example for r even, we look at ⟨⟨ f̃1 f̃1 f̃2 f̃2⟩⟩. We define gi ∶= f̃ 2
i , i = 1, 2 and

centered variables g̃i ∶= f̃ 2
i − ⟨ f̃

2
i ⟩. Using Eq. (A.30), we then get

⟨g̃1 g̃2⟩ = c12 ⟨g′1⟩ ⟨g
′
2⟩+O(c

2
), (A.33)

which is the same as the second cumulant since g̃ is centered. We now expand the
fourth cumulant analogous to Eq. (A.31), yielding

⟨⟨ f̃1 f̃1 f̃2 f̃2⟩⟩ = ⟨ f̃1 f̃1 f̃2 f̃2⟩− ⟨ f̃1 f̃1⟩ ⟨ f̃2 f̃2⟩− ⟨ f̃1 f̃2⟩ ⟨ f̃1 f̃2⟩− ⟨ f̃1 f̃2⟩ ⟨ f̃1 f̃2⟩. (A.34)
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Using the definitions of g and g̃, and Eq. (A.33), we expand the fourth moment as

⟨ f̃1 f̃1 f̃2 f̃2⟩ = ⟨g1 g2⟩

= ⟨g̃1 g̃2⟩+ ⟨g1⟩⟨g2⟩

(A.33)
= c12 ⟨g′1⟩ ⟨g

′
2⟩+ ⟨g1⟩⟨g2⟩+O(c2

).

Dropping all terms of order O(c2) such as ⟨ f̃1 f̃2⟩ ⟨ f̃1 f̃2⟩ = O(c2
12) in Eq. (A.34) and

using ⟨ f̃1 f̃1⟩ ⟨ f̃2 f̃2⟩ = ⟨g1⟩⟨g2⟩, we get

⟨⟨ f̃1 f̃1 f̃2 f̃2⟩⟩ = c12 ⟨g′1⟩ ⟨g
′
2⟩+O(c

2
).

For r odd, we look at the example of

⟨⟨ f̃1 f̃2 f̃2 f̃3⟩⟩ = ⟨ f̃1 f̃2 f̃2 f̃3⟩− ⟨ f̃1 f̃2⟩ ⟨ f̃2 f̃3⟩− ⟨ f̃1 f̃2⟩ ⟨ f̃2 f̃3⟩− ⟨ f̃1 f̃3⟩ ⟨ f̃2 f̃2⟩. (A.35)

Then the fourth moment is given by

⟨ f̃1 f̃2 f̃2 f̃3⟩ = ⟨ f̃1 g2 f̃3⟩

= ⟨ f̃1 g̃2 f̃3⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(c2)

+⟨g2⟩ ⟨ f̃1 f̃3⟩

(A.33)
= ⟨g2⟩ ⟨ f ′1⟩⟨ f

′
3⟩ c13 +O(c2

).

Inserting into Eq. (A.35), we get

⟨⟨ f̃1 f̃2 f̃2 f̃3⟩⟩ = ⟨g2⟩ ⟨ f ′1⟩⟨ f
′
3⟩ c13 − ⟨ f̃1 f̃3⟩ ⟨ f̃2 f̃2⟩+O(c2

) = O(c2
),

where all terms ∝ c cancel precisely.

For the case of repeated indices, these two examples illustrate the structure of the
expansion in weak correlations: For r different indices j1, . . . , jr, the n-th cumulant
with n > r will be of the order in c that equals the number of pairs to join all different
indices. Altogether, we get for arbitrary r that the n-th cumulant of post-activations
scales with weak correlations of the pre-activations as

⟨⟨
n
∏
k=1

f̃ jk(xjk)⟩⟩ = O(c
⌈ r

2 ⌉). (A.36)

A.3 Suppression of higher-order cumulants in wide networks

Even when the pre-activations z(l) are Gaussian distributed, the non-linear activation
function ϕ leads to post-activations y(l) that are non-Gaussian distributed as the
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non-linearity generates higher-order cumulants G(n)
y(l)

of the post-activations y(l), as

discussed in Sec. 2.4.2. We here show how higher-order cumulants G(n)
y(l)

of the post-
activations scale with the network width N in the subsequent linear layer. More
specifically, they become negligible for wide networks N ≫ 1.

We build on the arguments of the previous App. A.2 on weakly correlated Gaussian
variables. In layer l we have pre-activations

z(l)i =
N
∑
a=1

W(l)
ia y(l−1)

a + b(l)i , (A.37)

yielding post-activations

y(l)i = ϕ(z(l)i ). (A.38)

We study the case that pre-activations z(l)i are Gaussian distributed and weakly cor-
related to order c

⟨⟨z(l)i z(l)j ⟩⟩
i≠j
= O(c). (A.39)

We now derive conditions for which also pre-activations z(l+1)
i in the next layer have

this property. It then follows by induction that this holds true for all network layers,
justifying our approximation of the pre-activation distribution as Gaussian in all
hidden layers. We start by defining centered variables

z̃ ∶= z − ⟨z⟩

and

y = f (z̃) ∶= ϕ(⟨z⟩+ z̃)

ỹ = f̃ (z̃) ∶= f (z̃)− ⟨ f (z̃)⟩.

To ensure that the pre-activations z(l) do not explode in magnitude and stay in the
dynamic range of the activation function that we assume to be O(1), we require the
variance of pre-activations to be of order one

⟨(z̃(l)a )
2
⟩ = O(1).

Thus, the post-activations also remain of order one

⟨( f̃ (l)a )⟩ = O(1).

Such regularity assumptions are also often enforced by normalization methods such
as batch-normalization. In the case that the post-activations y(l)a are uncorrelated, we
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get for the variance of pre-activations in the next layer

O(1) !
= ⟨(z̃(l+1)

i )
2
⟩ =∑

a
[W(l+1)

ia ]
2
⟨( f̃ (l)a )

2
⟩

!
=∑

a
[W(l+1)

ia ]
2
O(1).

For both conditions to hold, we require

W(l+1)
ia = O(N−

1
2 ), (A.40)

i.e. rows and columns of the matrix W(l+1) are vectors of unit length.

Next we look at the case that the post-activations y(l)a are weakly correlated to order
c so that

⟨ỹ(l)a ỹ(l)b ⟩ = ⟨ f̃
(l)
a f̃ (l)b ⟩ =∶ Cab = O(c) (A.41)

between the outputs of layer l across different neuron indices a ≠ b. Then the variance
of pre-activations in the subsequent layer is given by

⟨(z̃(l+1)
i )

2
⟩ =∑

a,b
W(l+1)

ia W(l+1)
ib Cab. (A.42)

We want the correlations between neurons to stay controlled, so we require

O(c) !
= ⟨z̃(l+1)

i z̃(l+1)
j ⟩ =∑

a,b
W(l+1)

ia W(l+1)
jb Cab ∀i ≠ j, (A.43)

which can be understood as requiring that different rows W(l+1)
i○ and W(l+1)

j○ project
out mutually nearly orthogonal sub-spaces of the space of principal components of
C. Alternatively, this can be seed as different neurons i and j each specializing on
sub-spaces with little mutual overlap.

Finally, we consider higher-order cumulants. For n ≥ 3, we get from Eq. (A.32) and
from the condition of weak pairwise correlations Eq. (A.39) that

⟨⟨
n
∏
i=1

y(l)i ⟩⟩ = ⟨⟨
n
∏
i=1

f̃i(z̃
(l)
i )⟩⟩ = O(c

n
2+1). (A.44)

We get the cumulants of the pre-activations z(l+1)
i from the post-activations y(l)i as

⟨⟨z(l+1)
i1

. . . z(l+1)
in
⟩⟩ =

N
∑

j1,...,jn=1
W(l+1)

i1 j1
. . . W(l+1)

in jn ⟨⟨
n
∏
k=1

f̃ jk(z̃
(l)
jk
)⟩⟩. (A.45)

To determine the scaling of higher-order cumulants with the network width N and
the weak correlations c, we look at three different cases:

1.) Diagonal contributions: This refers to the special case that all indices j1 = ⋅ ⋅ ⋅ = jn
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are identical. For order n ≥ 3, we then get contributions to Eq. (A.45) of order

N
∑
j=1

W(l+1)
i1 j . . . W(l+1)

in j ⟨⟨( f̃ j)
n
⟩⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
O(1)

= O(N1− n
2 )

n≥3
< O(N−

1
2 ), (A.46)

which are suppressed by large network width N ≫ 1.

2.) Off-diagonal contributions with all indices being different: Next we look at the
case that all neuron indices differ from one another j1 ≠ j2 ≠ . . . ≠ jn, allowing us
to apply Eq. (A.44). For cumulants of odd order n, any contributions vanish since
Eq. (A.44) vanishes. For cumulants of even order n, we have

N
∑

(j1≠j2,...,≠jn)=1
W l+1

i1 j1⋯W l+1
in jn ⟨⟨

n
∏
k=1

f̃ jk(z̃
l
jk)⟩⟩ = O(

N!
(N − n)!

N−
n
2 c

n
2+1) (A.47)

N≫n
= O(N

n
2 c

n
2+1) (A.48)

To ensure that these contributions are suppressed by the network width N for n ≥ 3,
we must require that the order of pairwise correlations c is at most

c = O(N−1
),

so that the contribution in Eq. (A.47) becomes

O(N−1) (A.49)

and is hence suppressed by the network width N also for cumulants of very high
order n.

3.) Off-diagonal contributions with two or more indices being identical: In this case
a subset of ja, jb, jc, . . . has the same value. We denote the number of different indices
j1 ≠ j2 ≠ . . . ≠ jr by r < n. On the one hand, each pair of identical indices leads to the
appearance of one Kronecker δja jb , which eliminates one summation ∑N

j=1 and hence
one factor N. On the other hand, identical indices yield higher-order moments of the
correlation among weights by Eq. (A.34), so that ⟨∏n

k=1 f̃ jk(z̃
l
jk
)⟩ = O(c⌈

r
2 ⌉). Combining

both effects, we get that contributions are of order

O(
N!

(N − r)!
N−

n
2 c⌈

r
2 ⌉)

N≫1, ϵ=O(N−1)
= O(Nr N−

n
2 N−⌈

r
2 ⌉)

= O(N⌊
r
2 ⌋−

n
2 ) < O(N−

1
2 ), (A.50)

where we used r < n in the last step and wrote the worst case upper bound where
n = r + 1 for n odd. In consequence, also contributions from partial diagonal terms
are suppressed by the network width N.

To summarize, we find that in the presence of weak pairwise correlations of order
c < O(N−1) among network weights, a Gaussian approximation of the pre-activation
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distribution continues to hold under two conditions: a.) if the network weights
scale as Eq. (A.40) and b.) if the rows of the weight matrix W(l) in every layer l
additionally obey the approximate orthonormality condition Eq. (A.43). The second
condition ensures that all N neurons per layer are used efficiently to represent the
entire variability of the distribution from the previous layer. Thereby, redundancy
in the representations learned by the neurons is avoided, which makes sense from a
functional perspective.

Finally, we point out that Eq. (A.43) always holds for untrained networks that are
initialized in a Gaussian manner: the network parameters θ = {W(l), b(l)}l=1,...,L+1 are

drawn i.i.d. from centered Gaussians W(l)
rs

i.i.d.
∼ N (0, σ2

w/Nl−1), b(l)r
i.i.d.
∼ N (0, σ2

b ). This
initialization precisely ensures that the magnitude of the covariance of pre-activations
z(l) stays the same across layers

⟨z̃(l+1)
i z̃(l+1)

j ⟩ = ∑
a,b

W(l+1)
ia W(l+1)

jb C(l)ab

N≫1
≈ ⟨∑

a,b
W(l+1)

ia W(l+1)
jb C(l)ab ⟩W

= δij
σ2

w
N
∑

a
C(l)aa = O(c).

As the covariance in the next layer is then approximately diagonal, the above deriva-
tions simplify significantly. We highlight that the above considerations apply to the
case of trained networks under certain conditions where correlations between net-
work weights lead to correlations between pairs of pre-activations (z(l)i , z(l)j ).

A.4 Networks with quadratic activation function

In Sec. 2.5.2, we show in Fig. 2.2 the transformation of the data distribution in net-
works with ReLU activations. Here, we supplement the corresponding figures for
networks with a quadratic activation function in Fig. A.1 and Fig. A.2.

A.5 Depth scales of signal propagation in neural networks

Here we examine the connection between our work and that of Poole et al. (2016).
To this end, we denote the pre-activation of neuron k in layer l for a specific data
sample xα in a network with parameters θ as z(l)

θk,α. Poole et al. (2016) investigate
ensembles of networks over random realizations of network parameters θ. On the
level of pre-activations, they investigate the following family of distributions

p̃(l)
{α}
({zk}) = ⟨∏

k,α
δ(zk,α − z(l)kθ,α)⟩θ . (A.51)
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Figure A.1: Information flow in networks with quadratic activation function on the
XOR task. (a) We characterize the input distribution as a Gaussian mixture model.
The class labels t = ±1 are assigned to data samples xα (blue and green dots) based
on the mixture component they were drawn from. (b)-(c) Distribution of the network
output for (b) a random network and (c) a network trained to convergence. Each mix-
ture component (dashed curves) is propagated through the network as in Eq. (2.22)-
(2.23), yielding the class-conditional distributions (solid curves) as a superposition
in Eq. (2.28). Mapping a set of test data points by the network yields empirical esti-
mates of the class-conditional distributions (blue and green histograms). For binary
classification, we set the classification threshold to be y = 0 (gray lines). The trained
network in (c) achieves P = 90.46% performance. Other parameters: ϕ(z) = z + ϵ z2,
network depth L = 1, width N = 10.
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Figure A.2: Comparison between theoretical and empirical output distribution for
(a) random networks and (b) networks trained to convergence. The normalized
Kullback-Leibler divergence D̂KL(pemp.∥ptheo.) is used as a deviation measure and
averaged over 100 network realizations. Networks are trained on the XOR task;
trained networks achieve average performance values of P = 96.52%± 0.15% relative
to Popt = 97.5%. Other parameters: ϕ(z) = z + ϵ z2.

This is a joint distribution for all pre-activations {zk,α}α=1,...,P; k=1,...,N for a set of P data
samples xα and for each layer l. For infinitely-wide networks, p̃(l) factorizes across
different neuron indices, making z(l)i,α and z(l)k,β independent for i ≠ k. In addition, these
variables are zero-mean Gaussian distributed, meaning a single covariance matrix
suffices for their description. Therefore, it is enough to consider the joint statistics of



102 Decomposing neural networks as mappings of correlation functions

all networks on all pairs of inputs α, β

p̃(l)αβ (z, z′) = ⟨δ(z − z(l)θ,α) δ(z′ − z(l)θ,β)⟩θ . (A.52)

Thus, correlation functions in Poole et al.’s work describe fluctuations across different
realizations of network parameters. Their mean-field theory for deep feed-forward
networks is analogous to the classical mean-field theory of random recurrent net-
works (Molgedey, Schuchhardt, and Schuster, 1992); the reason being that in recur-
rent networks with discrete-time updates the equal-time statistics are equal to the
same-layer statistics of a deep feed-forward network (Segadlo et al., 2022).

In contrast, our work focuses on individual networks characterized by a fixed set
of parameters θ over the distribution p(x) of data samples xα. Consequently, corre-
lations in our work measure the variability of the network state over different data
points. To make this explicit, we examine the following family of distributions

p(l)θ ({zk}) = ⟨∏
k

δ(zk − z(l)θ,α)⟩α. (A.53)

This is a joint distribution of all neurons k for each layer l and network parameters θ,
but for the ensemble of data points α.

A key difference lies in the expectation across network parameters θ in Eq. (A.51)
versus the expectation over data points α in Eq. (A.53). In the limit of large network
width, however, networks exhibit self-averaging behavior: The ensemble of network
parameters θ in Poole et al. (2016) tends to concentrate on a typical behavior that is
representative of any (likely) individual realization. For the theoretical expressions,
this means that the empirical distribution of (zk, z′k) across neurons k for any random
choice of parameters θ converges to the same form as p̃. Thus, for large N, Eq. (A.52)
approaches the empirical average over neuron activations

p̃(l)αβ (z, z′)
self-averaging
≃ N−1

∑
k

δ(z − z(l)
θk,α) δ(z′ − z(l)

θk,β), ∀θ.

This self-averaging property can be demonstrated using a saddle point approxima-
tion of the moment-generating function after averaging over the disorder given by
the network parameters θ (e.g, Schuecker et al., 2016; Crisanti and Sompolinsky, 2018;
Helias and Dahmen, 2020; Segadlo et al., 2022; Bordelon and Pehlevan, 2023).

To obtain the results by Poole et al. (2016) using our formalism, we begin from the
definition of pre-activations z(l+1)

i = ∑k W(l+1)
ik y(l)k + b(l+1)

i . Given that W(l+1)
ik and b(l+1)

i
are Gaussian distributed, pre-activations for a single fixed data sample xα also be-
come Gaussian. We will suppress the superscript α in the following for brevity. The
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mean and covariance of the pre-activations are given by

Mz(l+1), i ∶= ⟨∑
k

W(l+1)
ik y(l)k + b(l+1)

i ⟩W,b

=∑
k
⟨W(l+1)

ik ⟩
W(l+1)

⟨y(l)k ⟩W,b
+ ⟨b(l+1)

i ⟩
b(l+1)

= 0, (A.54)

Sz(l+1),ij ∶= ⟨∑
k,m

W(l+1)
ik W(l+1)

jm y(l)k y(l)m + b(l+1)
i b(l+1)

j ⟩W,b

=∑
k,m
⟨W(l+1)

ik W(l+1)
jm ⟩

W(l+1)
⟨y(l)k y(l)m ⟩W,b

+ ⟨b(l+1)
i b(l+1)

j ⟩
b(l+1)

= δij (σ
2
w ⟨y

(l)y(l)⟩
W,b
+ σ2

b)

=∶ δij Sz(l+1) , (A.55)

where
Sz(l+1) = σ2

w ⟨ϕ(z
(l)
)ϕ(z(l))⟩z(l)∼N (0,S

z(l))
+ σ2

b . (A.56)

Here, we employed the transformation by the activation function Eq. (2.16). For the
moments ⟨y(l)k ⟩W,b and ⟨y(l)k y(l)k ⟩W,b in layer l, we take the average over weights and
biases in all previous layers l′ ≤ l at once; they are the same for all neurons k so we
denote ⟨y(l)k ⟩W,b = ⟨y(l)⟩W,b and ⟨y(l)k y(l)k ⟩W,b = ⟨y(l)y(l)⟩W,b. According to Eq. (A.54)
and Eq. (A.55), there are no correlations between different neurons when taking the
average over networks.

Analogously, we get for the covariance between pre-activations of a pair of networks
for two different inputs xα and xβ:

S
z(l+1)

α z(l+1)
β

= σ2
w ⟨ϕ(z

(l)
α )ϕ(z

(l)
β )⟩(z(l)α ,z(l)

β
)∼N(0,{S

z(l)α z(l)
β

})
+ σ2

b . (A.57)

Here N (0,{S
z(l)α z(l)

β

}) refers to the centered Gaussian distribution for (z(l)α , z(l)β ) with

covariance
⎛

⎜

⎝

Sz(l)
α

Sz(l)
α z(l)

β

Sz(l)
β

z(l)
α

Sz(l)
β

⎞

⎟

⎠

.

We can link to our results by looking at a pair of inputs xα and xβ. These inputs are

fed into the network as y(0)α and y(0)β . According to Poole et al. (2016), the overlap O(l)αβ

of network states after l layers is determined by solving the joint iterative equations
above. For the network width going to infinity N → ∞, this overlap becomes self-
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averaging and concentrates around its mean value over y:

O(l)αβ ∶= N−1
∑

k
y(l)k,αy(l)k,β (A.58)

≃ ⟨y(l)α y(l)β ⟩W,b

= ⟨ϕ(z(l)α )ϕ(z
(l)
β )⟩(z(l)α ,z(l)

β
)∼N(0,{S

z(l)α z(l)
β

})

= σ−2
w (Sz(l+1)

α z(l+1)
β

− σ2
b ).

We consider the same case as in Poole et al. (2016), which is a deep network at
initialization. Since the statistics of z(l) and y(l) converge to a fixed point, we can
assume the covariance to be constant for deep enough layers l:

S
z(l)α
= A0, ∀α, (A.59)

S
z(l)α z(l)

β

= C0, ∀α ≠ β,

These constants are given as stationary solutions to self-consistency equations: For
A0, we have Eq. (A.56)

A0 = σ2
w ⟨ϕ(z)ϕ(z)⟩z∼N (0,A0) + σ2

b , (A.60)

and C0 is determined by Eq. (A.57)

C0 = σ2
w ⟨ϕ(z1)ϕ(z2)⟩

(z1,z2)∼N(0,[ A0 C0
C0 A0

])
+ σ2

b .

Consider pairs of inputs (y(0)α , y(0)β ) where the pre-activation statistics are nearly at
the fixed-point values. Suppose each data point has variance Sz(l) = A0, and for any
pair (α, β) the covariance of pre-activations in the first layer can be written as

S
z(1)α z(1)

β

= C0 + δC(1)αβ , (A.61)

with δC(1)αβ ≪ C0. Given these conditions, we can then determine decay constants as
a function of the layer index l.

We determine the transformation of δC(l)αβ across layers by linearizing Eq. (A.57):

δC(l+1)
αβ = σ2

w ⟨ϕ
′
(z(l)α )ϕ

′
(z(l)β )⟩ δC(l)αβ +O[(δC(l)αβ

)
2
].

For the derivative by the covariance, we used Price’s theorem (Price, 1958; Papoulis
and Pillai, 2002, Appendix A), which gives ∂⟨ϕ(z)ϕ(z′)⟩/∂Σzz′ = ⟨ϕ

′(z)ϕ′(z′)⟩ with
ϕ′ = dϕ/dz and Σzz′ is the covariance of z and z′. Under the homogeneity assumption
across data samples Eq. (A.59) and for stationary statistics across layers Eq. (A.60),
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we obtain

⟨ϕ′(zα)ϕ
′
(zβ)⟩ = ⟨ϕ

′
(z1)ϕ

′
(z2)⟩

(z1,z2)∼N(0,[ A0 C0
C0 A0

])

=∶ ⟨ϕ′ϕ′⟩.

Overall, we get an exponential decay across network layers l as

δC(l+1)
αβ = (σ2

w ⟨ϕ
′ϕ′⟩)

l
δC(1)αβ (A.62)

= e−
l
ξ δC(1)αβ ,

governed by depth scale

ξ = −1/ ln [σ2
w ⟨ϕ

′ϕ′⟩], (A.63)

which is precisely the depth scale found in Poole et al. (2016) for network ensembles.
Its inverse ξ−1 corresponds to the Lyapunov exponent in Molgedey, Schuchhardt,
and Schuster (1992). The depth scale diverges at the transition to chaos, which is at
σ2

w ⟨ϕ
′ϕ′⟩ = 1. The overlaps of activations Eq. (A.58) decay with the same depth scale,

because its change δO(l−1)
αβ relates linearly to δC(l)αβ as δC(l)αβ = σ2

w δO(l−1)
αβ and thus

δO(l)αβ = (σ
2
w ⟨ϕ

′ϕ′⟩)
l
δO(0)αβ . (A.64)

In consequence, both the covariance of pre-activations S
z(1)α z(1)

β

and the overlaps of

activations O(l)αβ converge to fixed points, which are related by O0 = σ−2
w (C0 − σ2

b ).

To link these results to our work for individual network realizations, we write the
overlap O(l)αβ in terms of the probability distribution over different data samples,
yielding with Eq. (A.58):

1
P (P − 1)

P
∑

(α≠β)=1
O(l)αβ ≃ N−1

N
∑
k=1
[

1
P

P
∑
α=1

y(l)k,α]

⎡
⎢
⎢
⎢
⎢
⎣

1
P

P
∑
β=1

y(l)k,β

⎤
⎥
⎥
⎥
⎥
⎦

+O(P−1
) (A.65)

P≫1
≃ N−1

N
∑
k=1
⟨y(l)k,α⟩

2
α (A.66)

≃ N−1
N
∑
k=1
(µy(l),{k})

2
. (A.67)

In the last line, the mean post-activation µy(l),{k} of neuron k in layer l appears, where
the average was taken with respect to the ensemble of all data points α. This quantity
results from iterating Eqs. (2.15) and (2.18).

In Fig. A.3, we demonstrate that our predictions from Eq. (A.67) match the depth
scales obtained from Poole et al.’s theory Eq. (A.63). Our theory even goes beyond
this, since it applies to individual networks and Eq. (A.67) allows us to account for
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Figure A.3: Depth scale of cumulant propagation at initialization with randomly
drawn weights. We plot the evolution of overlaps O(l) in Eq. (A.58) and (A.67) across
layers l. Solid lines indicate the predicted decay with e−l/ξ and depth scale ξ as
in Eq. (A.63) from Poole et al. (2016) for network ensembles. Dashed lines mark
the fixed point values O0 to which the overlaps O(l) converge. Dots correspond to
empirical estimates of the overlaps O(l)αβ in Eq. (A.65). Triangles correspond to the
overlaps based on the cumulant propagation for individual network realizations in
Eq. (A.67). Empirical estimates and the cumulant predictions agree well; the symbols
are overlapping. We draw input data (xα)α from a Gaussian N (0, A0), where A0 is
specified in Eq. (A.60). Other parameters: σw = σb ∈ [0.76, 0.81, 0.85] (from light to
dark colors), quadratic activation function ϕ(z) = z + ϵ z2, ϵ = 0.1.
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variability due to individual network realizations. Notably, while the depth scale
ξ for network ensembles reflects the evolution of the second moments, we observe
from Eq. (A.67) that the depth scale ξ characterizes the evolution of the squared
means across data samples in individual network realizations.
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Appendix B

Critical feature learning in deep
neural networks

B.1 Conjugate kernels yield training error

We here aim to give physical meaning to the conjugate kernel C̃(L) in the output
layer. To this end, we replace the regularizer κI in the expression of the network
prior in Eq. (3.27) by a generic covariance matrix Kαβ

p(Y∣X, K) ∶=∫ DC ∫ D f N (Y∣ f , K)N ( f ∣0, C(L)) p(C). (B.1)

We observe that the statistics of Y result from a convolution of two centered Gaussian
distributions with covariances C(L) and K, respectively. We obtain the action as

S(C∣K) = −
1
2

yα[C(L) +K]−1
αβ

yβ −
1
2

ln det(C +K)− Γ(C). (B.2)

By expressing Eq. (B.1) explicitly

p(Y∣X, K) =
1

(2π)
M
2 (det K)

1
2
∫ DC ∫ D f exp (−

1
2
(yα − fα) [K−1]

αβ
(yβ − fβ))

×N ( f ∣0, C(L)) p(C),

we see that K−1 acts as a bi-linear source term to the second moment of the discrep-
ancies

−
1
2
⟨(yα − fα) (yβ − fβ)⟩ =

∂

∂[K−1]αβ
( ln p(Y∣X, K)−

1
2

det K−1
)∣

K=κI
(B.3)

≃
∂

∂[K−1]αβ
S(C∣K)+

∂S
∂C
°
=0

∂C
∂(K−1)αβ

−
1
2

K ∣
K=κI

= [−
1
2

K [C(L) +K]
−1

YYT [C(L) +K]
−1

K +
1
2

K (C(L) +K)−1 K]
αβ
−

1
2

κI
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= [−
1
2

κ2 [C(L) + κI]
−1
(YYT

) [C(L) + κI]
−1
+

1
2

κ2
(C∗ + κI)−1

−
1
2

κI]
αβ

(3.60)
= −κ2C̃∗αβ −

1
2

κδαβ,

where we approximate the log-probability by the action from the first to second
line. In this derivation, we used that ∂[K−1]γδ/∂Kαβ = −K−1

γα K−1
βδ and by symmetry

∂Kγδ/∂[K−1]αβ = −Kγα Kβδ. Overall, we can write

⟨∆α ∆β⟩ = 2κ2C̃(L)αβ + κδαβ, (B.4)

∆α = yα − fα,

and get the expected training error as

⟨L⟩ ∶=
1
2

tr ⟨∆ ∆⟩ (B.5)

=κ2 trC̃(L) +
1
2

κP.

From these two expressions Eq. (B.4) and (B.5), we see that the conjugate kernel C̃(L)

in the output layer corresponds to the expected squared errors ∆ between target and
network output plus a fixed offset.

B.2 Deep linear networks

To draw a link to (Li and Sompolinsky, 2021; Zavatone-Veth, Tong, and Pehlevan,
2022; Yang et al., 2023), we here consider the special case of deep linear networks.
We obtain closed-form expressions for the forward-backward propagation equations
of the posterior kernels in Eq. (3.55) and (3.62) without requiring the additional step
of the perturbative treatment.

For deep linear networks, we recover the action in Yang et al. (2023), Eq. (1), for deep
kernel machines. This result has three main implications:

1. In the proportional limit P = ν N, deep linear networks converge to deep kernel
machines.

2. The iterative forward-backward equations for the posterior kernels in this sec-
tion apply to both deep linear neural networks and deep kernel machines.

3. We may use the alternative view of kernel adaptation generated by kernel fluc-
tuations, as outlined in Sec. 3.5, also to deep linear networks and deep kernel
machines; thus corrections apply to linear networks of finite size.
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We here follow the same derivation steps as for the non-linear case in Sec. 3.4.1,
indicating relevant differences. For deep linear networks, we choose ϕ = id, so that
the hidden layers now take the form

h(l)α =W(l) h(l−1)
α + b(l) l = 1, . . . , L.

Given the same Gaussian priors on the network parameters, the network prior in
Eq. (3.25) is given by

p( f ∣X) = ∫ D{C̃, C}N ( f ∣0, C(L)αβ ) exp (−
L
∑
l=1

C̃(l)αβ C(l)αβ +W(C̃∣C)), (B.6)

W(C̃∣C) =
L
∑
l=1
∑
α,β

C̃(l)αβ σ2
b +N

L
∑
l=1

ln ⟨ exp (
σ2

w
N

C̃(l)αβ h(l−1)
α h(l−1)

β
)⟩
N (0,C(l−1))

, (B.7)

C(0)αβ =
σ2

w
D
(XXT)

αβ
+ σ2

b . (B.8)

A key difference to the non-linear case is that the expectation values in the definition
ofW(C̃∣C) are with respect to Gaussians, allowing for a closed-form solution

W(C̃∣C) =
L
∑
l=1
W(C̃(l)∣C(l−1)

) (B.9)

W(C̃(l)∣C(l−1)
) ∶=∑

α,β
C̃(l)αβ σ2

b +N ln ⟨ exp (
σ2

w
N

C̃(l)αβ h(l−1)
α h(l−1)

β
)⟩
N (0,C(l−1))

=∑
α,β

C̃(l)αβ σ2
b −

N
2

ln det ([C(l−1)
]
−1
− 2

σ2
w

N
C̃(l))−

N
2

ln det(C(l−1)
).

This cumulant-generating function also follows the scaling form so that the limit
λ(k) ∶= limN→∞W(Nk)/N exists. Thus, we perform a saddle point approximation of
the conditional probabilities p(C(l)∣C(l−1)) (cf. Eq. (3.29)), yielding a rate function Γ

− ln p (C(l)∣C(l−1)
) ∶= −∫ DC̃(l) exp(−tr C̃(l)TC(l) +W (C̃(l)∣C(l−1)

)) (B.10)

≃ Γ(C(l)∣C(l−1)
) (B.11)

=
N

2σ2
w

tr([C(l−1)
]
−1
(C(l) − σ2

b ))−
N
2

ln det (C(l) − σ2
b )

+
N
2

ln det(C(l−1)
)+ const. ,

Here, we neglected all terms constant in the kernels C(l) and inserted the stationarity
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condition, which gives

0 !
=

∂

∂C̃(l)αβ

(trC̃(l)⊺C̃(l) −W (C̃(l)∣C(l−1)
) ) (B.12)

= C(l)αβ − σ2
b − σ2

w ([C
(l−1)
]
−1
− 2

σ2
w

N
C̃(l))−1

αβ
.

From the stationarity condition, we obtain the propagation equation for the kernels
C(l) as in Eq. (3.55) for the non-linear case. In the infinite width limit N → ∞, this
recovers the known NNGP result where C̃ = 0.

We can now draw a link to the work by Yang et al. (2023) studying deep kernel
machines. We can write the action as in Eq. (3.59) for the non-linear case using
Eq. (B.7) and (B.11) as

S(C) ∶= ln p(C∣Y) ≃ SD(C(L))− Γ(C)+ ○ , (B.13)

Γ(C) =
L
∑
l=1

Γ(C(l)∣C(l−1)
).

For linear networks, the rate function Γ(C(l)∣C(l−1)) in Eq. (B.11) now takes the form
of a Kullback-Leibler divergence between two pairs of centered Gaussian covariates
with ⟨z(l−1)

αi z(l−1)
βj ⟩ = δijσ

2
wC(l−1) and ⟨z(l)αi z(l)βj ⟩ = δij(C(l) − σ2

b ), respectively:

DKL(N (0, C(l) − σ2
b )∣∣N (0, σ2

wC(l−1)
)) (B.14)

= −⟨ lnN (z(l)∣0, σ2
wC(l−1))⟩z(l)∼N (0,C(l)−σ2

b )
+ ⟨ lnN (z(l)∣0, C(l) − σ2

b )⟩z(a)∼N (0,C(a)−σ2
b )

=
N

2σ2
w

tr [C(l−1)
]
T
(C(l) − σ2

b )+
N
2

ln det (C(l−1))−
N
2

ln det (C(l) − σ2
b )+ const. ,

We here get additional factors N by using that zαi are i.i.d. in i = 1, . . . , N. Up to
constant terms, this is the same result as Eq. (B.11). We recover with Eq. (B.13) the
main result by Yang et al. (2023), their Eq. (1), for σ2

b = 0, Nl/N = 1 and using K = id
for deep kernel machines. For linear networks, our theoretical framework thus agrees
with Yang et al. (2023); however, our theoretical framework is more general and also
applies to deep non-linear networks.

Next, we obtain the forward-backward equation of the posterior kernels for linear
networks. We write the forward iteration in Eq. (B.12) as

C(l) = σ2
b + σ2

w C(l−1) (I − 2
σ2

w
N

C̃(l)C(l−1))
−1

. (B.15)

For the backward equation, we calculate the saddle point for the kernels C from
Eq. (B.13) as ∂S(C)/∂C(l)αβ

!
= 0, yielding Eq. (3.60) for the output layer l = L and
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otherwise

0 !
=

∂

∂C(l)αβ

(Γ(C(l)∣C(l−1)
)+ Γ(C(l+1)

∣C(l)))

= C̃(l)αβ −
∂

C(l)αβ

W(C̃(l+1)
∣C(l)).

Using the explicit form of the cumulant-generating functionW(C̃(l+1)∣C(l)) in Eq. (B.11)
for the linear case, we get

C̃(l) = σ2
w C̃(l+1) (I − 2

σ2
w

N
C̃(l+1)C(l))−1

. (B.16)

Interestingly, forward and backward equation Eq. (B.15)-(B.16) adhere to the follow-
ing symmetry relation

[σ2
wC̃(l)]−1C̃(l−1)

= [σ2
wC(l−1)

]
−1
(C(l) − σ2

b ) = (I − 2
σ2

w
N

C̃(l)C(l−1))
−1

. (B.17)

We test our theoretical results for linear networks on a linearly separable Ising task:
The data samples xα ∈ {±1}D belong to two classes. For class +1, the elements xαi
realize the value xαi = +1 with a probability of p1 = 0.5 − ∆p and the value xαi = −1
with a probability of p2 = 0.5 + ∆p. Each element xαi is drawn independently. For
class −1, the probabilities for the value realizations are inverted. For larger ∆p, the
task becomes more separable.

We are interested in the behavior in N for fixed training load ν = P/N. In Fig. B.1 we
show results for a single-hidden-layer network. We plot the mean-squared error be-
tween the empirically measured kernels and the feature-corrected kernels derived in
this section, the NNGP kernels and the linear approximation in C̃ of the feature cor-
rections as in the main text. For large network width N, the feature-corrected kernels
from the full theory converge to the empirically measured kernels, while their linear
approximations in C̃ exhibit only slightly larger deviations, thus warranting the ap-
proximation in the main text. Finally, the empirically measured kernels consistently
deviate from the NNGP result, which indicates the need for feature corrections.

B.3 Target-kernel-adaptation in linear networks

We revisit the topic of adaptation of the feature-corrected kernels C(l) towards the
target kernel YYT in the setting of a linear network; we explicitly derive a correction
term towards the target kernel.
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Figure B.1: Feature corrections in a single-hidden-layer network for fixed training
load ν = P/N. The mean squared error MSE(C, Cemp) = 1/D2

∑
D
α,β=1(Cαβ − Cemp

αβ )
2

describes convergence to the empirically measured kernels. The feature-corrected
kernels (red: linear approximation; black: full theory) are consistently closer to the
empirically measured kernels than the NNGP kernel (blue). Error bars indicate mean
and one standard deviation over 10 training data sets. Other parameters: Ising task
∆p = 0.2, D = 1000, κ = 0.001, σ2

b = 0.05.

We start from the second-order expansion of the cumulant-generating functionW in
Eq. (B.9) as

W(C̃(l)∣C(l−1)
) (B.18)

=∑
αβ

C̃(l)αβ σ2
b + σ2

w C̃(l)αβ C(l−1)
αβ +∑

γδ

σ4
w

2N
C̃(l)αβ
(C(l−1)

αγ C(l−1)
βδ +C(l−1)

αδ C(l−1)
βγ
) C̃(l)γδ +O(C̃

3
).

Here, we rewrote the connected correlation function in terms of the covariance: us-
ing its definition ⟨hαhβ, hγhδ⟩

c = ⟨hαhβhγhδ⟩ − ⟨hαhβ⟩ ⟨hγhδ⟩, we write the fourth mo-
ment in terms of cumulants by Wick’s theorem and are then left with the pairings
⟨hαhγ⟩ ⟨hβhδ⟩ + ⟨hαhδ⟩ ⟨hβhγ⟩ = Cαγ Cβδ +Cαδ Cβγ. Applying the stationarity condition
Eq. (B.12) to Eq. (B.18), we get

C(l+1)
αβ = σ2

b + σ2
w C(l)αβ + 2

σ4
w

N
C(l)αγ C̃(l+1)

γδ C(l)δβ .

For simplicity, we consider σ2
b = 0 and κ = 0 in the following. Then, we can approx-

imate σ2
wC(l) ≃ C(l+1) +O(N−1) since the correction term scales with N−1. In the last
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layer l = L, we obtain in this approximation

C(L)αβ ≃ σ2
w C(L−1)

αβ +
2
N

C(L)αγ C̃(L)γδ C(L)δβ +O(N
−1
).

By inserting C̃(L) = 1
2(C

(L))−1YYT(C(L))−1 − 1
2(C

(L))−1 from Eq. (3.60), the correction
term is

2
N

C(L)αγ C̃(L)γδ C(L)δβ =
2
N

C(L)αγ [
1
2
(C(L))−1YYT

(C(L))−1
−

1
2
(C(L))−1]

γδ
C(L)δβ

=
1
N
(YYT

−C(L)).

Finally, we get

C(L)αβ ≃ σ2
w C(L−1)

αβ +
1
N
(YYT

−C(L))
αβ

. (B.19)

Thus, we see that to increase the log-likelihood of the data, the kernel receives a
correction into the rank-one direction of the target kernel YYT.

B.4 Relation to the Neural Tangent Kernel

In this section, we draw a link to the Neural Tangent Kernel (NTK) (Jacot, Gabriel,
and Hongler, 2018; Lee et al., 2018) and show under which assumption it emerges in
our theoretical framework. To keep the notation concise, we here set biases to zero
so that the network is defined as

h(0)α =W(0)xα,

h(l)α =W(l)ϕ (h(l−1)
α ) l = 1, . . . , L, (B.20)

fα = h(L)α ∈ R.

We use the squared error loss

L( f ; Y) =
1
2

P
∑
α=1
∥ fα − yα∥

2. (B.21)

Further, we assume identical width N for all network layers as in the main text,
including the input layer so that we require for the input data xα ∈ RN .

In the NTK setting, network weights at intialization scale as W(l) = w(l)/
√

N with
O(1) ∼ w(l) ∼ N (0, σ2

w) with w(l) being the trainable parameters. As a result, gra-
dients also scale with 1/

√
N and decrease for wider networks. In consequence, the

weights w(l) stay close to their initial values. Furthermore, the scaling of the gradi-
ents can be translated to training on a rescaled loss L̄ = L/

√
N with training dynamics
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being

∂tW = −∇W L̄. (B.22)

For infinitely-wide networks N → ∞, the NTK is constant during training (Jacot,
Gabriel, and Hongler, 2018), so we here focus on the NTK at initialization. Lee et
al. (2018) show that the NTK at initialization corresponds to linearizing the network
outputs fα with respect to the initial weights θ0, matching the assumption that the
trained weights change only slightly from their initial values. We show that our
theoretical framework reduces to the NTK under the linearization assumption. We
substitute the network mapping as defined in Sec. 3.2 by

f (X∣θ) ≃ f (X∣θ0)+∇ f (X∣θ0)ω (B.23)

=∶ f0 +∇ f ω,

ω = θ − θ0.

Here, we denote all network weights as θ = {w(0)ij ....w(L)ij } and ω measures the de-

viations of weights from their initial values. The inputs X ∈ R(P+1)×N consist of
1 ≤ α ≤ P training points and a single test point α = ∗. In the linearization, we have
∇ f (X∣θ0)ω ∶= ∑l,ij

∂ f (X∣θ)
∂w(l)ij

∣
θ0

ω
(l)
ij ∈ RP+1, where ∇ f ∈ R(P+1)×L N2+N denotes the Jacobi

matrix with respect to the L N2 +N network weights.

The training dynamics in our framework (see App. B.5) differs from Eq. (B.22); it is
given by

∂tθ(t) = −γθ(t)−∇L( f (X, θ(t)); Y)+
√

2Tζ(t), (B.24)

⟨ζi(t)ζ j(s)⟩ = δijδ(t − s).

By adding a factor
√

N to the time scale τ as well as setting both temperature T and
weight decay γ to zero later, we can recover NTK training dynamics in Eq. (B.22) as

τ ∂tθ(t) = −γθ(t)−∇L( f (X, θ(t)); Y)+
√

2Tτ ζ(t), (B.25)

⟨ζi(t)ζ j(s)⟩ = δijδ(t − s).

The equilibrium distribution is invariant to a change of the time scale; thus Eq. (B.24)
yields the same equilibrium distribution as Eq. (B.25). We set γ = 0 directly, but keep
T finite for the derivation and look at the limit T → 0 only at the end. We recast
Eq. (B.25) in terms of the linearized weights ω(t) and divide by τ, yielding

∂tω(t) = −∇ω(t) L̄( f0 +∇ f ω(t) ; Y)+
√

2T/τ ζ(t).

The equilibrium distribution of ω(t) is then given by

p0(ω∣W0)∝ exp (−
τ

T
L̄( f0 +∇ f ω; Y)),
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which for the squared loss function Eq. (B.21) is a Gaussian. Due to the linear depen-
dence of the network outputs fα on the linearized weights ω in Eq. (B.23), the joint
distribution of all network outputs f and labels Y is also Gaussian, yielding for the
network prior

p(Y, f ∣X, θ0)∝∫ dω exp (−
τ

T
L̄( f ; Y)) δ( f − f0 −∇ f ω))

=∫ dω exp (−
1
T
L( f ; Y)) δ( f − f0 −∇ f ω)).

For conditioning the network prior on the training labels Y, we use the cumulant-
generating function of the conditional p( f ∣Y, X, θ0) ∶= p(Y, f ∣X, θ0)/ ∫ d f p(Y, f ∣X, θ0)

with jT f = ∑P+1
α=1 jα fα, yielding

W(j∣Y, X, θ0) (B.26)

= ln ∫
d f p(Y, f ∣X, θ0) ejT f

∫ d f p(Y, f ∣X, θ0)

= ln ⟨ejT f ⟩ f∼p(Y, f ∣X,θ0)
+ const.

= ln ∫ d f ∫ dω exp (jT f −
1

2T
∥Y − f ∥2P) δ( f − f0 −∇ f ω)+ const.

= ln ∫ dω exp (jT( f0 +∇ f ω)−
1

2T
∥Y − f0 −∇ f ω∥2P)+ const.

= ln ∫ dω exp (jT( f0 +∇ f ω)−
1

2T
ωT
∇ fT∇ f ω +

1
T
(Y − f0)

T
∇ f ω)+ const.

= ln ∫ dω exp (jT f0 + (jT∇ f +
1
T
(Y − f0)

T
∇ f )ω −

1
2T

ωT
∇ fT∇ f ω)+ const.

= jT f0 +
T
2
(jT∇ f +

1
T
(Y − f0)

T
∇ f ) [∇ fT∇ f ]−1

(jT∇ f +
1
T
(Y − f0)∇ f )T + const.,

where we drop all constant terms. Since the squared loss is computed only on the
P training points, the norm ∥Y − f ∥2P is with regard to these P training points and
consequently all scalar products resulting from it; the test point appears only in
jT∇ f and jT f0. Since the cumulant-generating function is a polynomial of degree
two, the posterior is Gaussian and we compute the mean for the test point α = ∗ as

µ∗ =
∂

∂j∗
W ∣j=0 = f0,∗ +∇ f∗ [∇ fT∇ f ]−1

∇ fT(Y − f0). (B.27)

This result does not depend on T and thus the limit T → 0 exists. We get the vari-
ance from the second derivative; it scales linearly with the temperature T and thus
vanishes in the limit T → 0. We rewrite Eq. (B.27) to obtain the NTK result by using
the associativity of matrices X as

(XT X)XT
= XT

(X XT
);
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multiplying with (XTX)−1 from the left and (XXT)−1 from the right, we get

XT
(X XT

)
−1
= (XT X)−1 XT.

Thus, we can write the mean of the predictor as

µ∗ =
∂

∂j∗
W ∣j=0 = f0,∗ +∇ f∗∇ fT [∇ f∇ fT]−1

(Y − f0), (B.28)

where we recover the NTK kernel as

Θαβ = [∇ f∇ fT]αβ ≡∑
l,ij

∂ fα

∂θ
(l)
ij

∂ fβ

∂θ
(l)
ij

. (B.29)

Here, the matrix [∇ f∇ fT]1≤α,β≤P goes over all P training points since it results from

the norm ∥ . . . ∥2P, whereas [∇ f∗∇ fT]1≤β≤P is a vector of dimension P. In (B.28) we
recover the stationary point of the NTK predictor for linearized networks (cf. Eqs.
(10)-(11) in Lee et al. (2018)).

In conclusion, we find that our framework yields the NTK under the assumption
that the dependence of the network output on the network parameters is linear. This
assumption holds if the network weights remain close to their initial values, as is
the case for the NTK architecture in the limit of infinitely wide networks N → ∞.
Our approach is more general and does not require this assumption. While we here
considered zero weight decay, we may extend these results to non-zero weight decay.
Further, this derivation shows that for non-zero temperature T, we get the same mean
predictor Eq. (B.28) but with a non-zero variance from Eq. (B.26).

Similar to the NNGP, a key difference to the NTK kernel Θ in Eq. (B.29) is that it
depends solely on the network architecture and the data points X but not on the
labels Y and thus does not capture the input-label dependence. In contrast, the
feature-corrected kernels C(l) in our theoretical framework result from the interplay
between the network prior and the likelihood of the labels in the data term SD in
Eq. (3.59) and thus depend on the joint statistics of X and Y. In consequence, the
CKA between C(L) and YYT increases, as shown explicitly in the expressions for
linear networks in Eq. (B.19).

B.5 Langevin stochastic gradient descent

In order to compare our theoretical predicitions of the kernels to the network pos-
terior that has been conditioned on the training data X = (xα)α=1,...,P, Y = (yα)α=1,...,P,
we use Langevin stochastic gradient descent (LSGD) to train networks. Building on
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Naveh et al. (2021), we let network parameters θ evolve as

∂tθ(t) = −γθ(t)−∇ΘL(θ(t); Y)+
√

2Tζ(t), (B.30)

⟨ζi(t)ζ j(s)⟩ = δijδ(t − s),

where L(θ; Y) = ∑P
α=1( fα(θ) − yα)

2 denotes the squared error loss and fα(θ) the net-
work output for sample α. This ensures that we sample from the equilibrium distri-
bution for θ for large times t given by

lim
t→∞

p (θ(t)) ∼ exp(−
γ

2T
∥θ∥2 −

1
T
L(θ; Y)) , (B.31)

which can be derived from the Fokker-Planck equation (Risken, 1996). By marginal-
izing over the posterior distribution of network parameters θ, we obtain the network
posterior as

p(Y∣X)∝ ∫ dθ exp (−
γ

2T
∥θ∥2 −

1
T
∥ f −Y∥2) (B.32)

∝ ⟨ exp (−
1
T
∥ f −Y∥2)⟩

Θk
i.i.d.
∼ N (0,T/γ)

∝N (Y∣ f , T/2) ⟨δ[ f − f (θ)]⟩
Θk

i.i.d.
∼ N (0,T/γ)

.

By inserting p( f ∣X) ≡ ⟨δ[ f − f (θ)]⟩
θk

i.i.d.
∼ N (0,T/γ)

and identifying κ = T/2 with the regu-

larization noise and T/γ = σ2
w/N with the variance of the parameter θk, it follows that

the posterior is the same as Eq. (3.27). To account for different initialization variances
for different parameters θk, we use a different weight decay γk for each parameter θk.

For network training, we use the time discrete version of Eq. (B.30)as

θt = θt−1 − η (γθt−1 +∇θL(θt−1; Y))+
√

2Tη ζt, (B.33)

⟨ζtζs⟩ = δts,

where ζt is standard normally distributed. The time step η can be interpreted as
a learning rate and needs to be sufficiently small in order to match the differential
equation in Eq. (B.30). The regularizer κ calibrates the trade-off between the network
prior and the data term in the loss term: In network training, larger κ leads to large
T = 2κ, which corresponds to more noise in LSGD, and thus favors the parameter
priors. Meanwhile, smaller κ emphasizes the loss term in the exponent.

Overall, Langevin stochastic gradient descent performs full-batch gradient descent
with additional i.i.d. standard normal noise on the gradients and weight decay reg-
ularization (Krogh and Hertz, 1991). To ensure that we sample from the Bayesian
network posterior when training with LSGD, we require that the system has fully re-
laxed and that drawn samples are uncorrelated: we use an initial warmup of 50, 000
training steps and measure sample every 1, 000 time steps.
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B.6 Additional details on numerical evaluation of theory

B.6.1 Weight variance of the input layer

We choose the weight variance of the input layer σ2
w,0 such that the diagonal elements

of the network kernels C(l)αα are at their fixed point value for large depth according to
Schoenholz et al. (2017). Then the response functions of the networks relax only on
one depth scale determined by the off-diagonal kernel elements.

B.6.2 Gaussian integrals

The self-consistency equations in Eq. (3.62) involve several two-point and four-point
Gaussian integrals. For ϕ = erf, we derive analytical expressions for these two-point
integrals as

⟨ϕ(hα)ϕ(hβ)⟩h∼N (0,C) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

4
π arctan (

√
1+ 4Cαα)− 1 α = β,

2
π arcsin(

2Cαβ
√

1+2Cαα
√

1+2Cββ
) else,

⟨ϕ′(hα)ϕ
′
(hβ)⟩h∼N (0,C) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

4
π

1√
4Cαα+1

α = β,
4
π (2 (Cαα +Cββ)+ 1+ 4(CααCββ −C2

αβ))
−0.5

else,

⟨ϕ(hα)ϕ
′′
(hβ)⟩h∼N (0,C) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

− 8
π

Cαα

(2Cαα+1)
√

4Cαα+1
α = β,

− 8
π

Cβα

(2Cαα+1)
√

2(Cαα+Cββ)+1+4(CααCββ−C2
αβ
)

else.

To our knowledge, there exists no analytical solution for the four-point integral
⟨ϕ(hα)ϕ(hβ)ϕ(hγ)ϕ(hδ)⟩

h∼N (0,C)
; instead we calculate this integral numerically using

Monte-Carlo sampling with nMC = 105 samples.

B.6.3 Annealing in network width

We solve the self-consistency equations for the posterior kernels in Eq. (3.62) iter-
atively: (i) Set C(0) by Eq. (3.26) and C̃ = 0 initially. (ii) Propagate Eq. (3.66) for-
ward until C(L); in the first iteration this yields the NNGP. (iii) Calculate C̃(L) from
Eq. (3.60). (iv) Propagate C̃ backward with Eq. (3.62) (using the Gaussian measure
⟨. . .⟩N (0,C(l))). (v) Iterate from step (ii) with C̃ ≠ 0 until convergence. For stability of
this iteration scheme, we damp the solution from each new iteration i by a factor
γ = 0.5 as

C(l),i ↦ (1− γ)C(l),i+1
+ γC(l),i,

C̃(l),i ↦ (1− γ)C̃(l),i+1
+ γC̃(l),i.
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Algorithm 1 Width annealing of kernels

Input: data X, labels Y, network widths {Ni}i

Compute NNGP kernel C(l)NNGP from data X.
Set start values to NNGP kernel C(l)init = C(l)NNGP and C̃(l)init = 0.
for N in {Ni}i do

Compute corrected kernels C(l)corr = f (C(l)init, C̃(l)init, Y, N) and conjugate kernels
C̃(l)corr = g(C(l)init, C̃(l)init, Y, N).
Reset start values C(l)init = C(l)corr and C̃(l)init = C̃(l)corr.

end for

To solve these equations iteratively, we begin with the NNGP kernel as the initial
value. For wide networks and in the limit of negligible training load ν = P/N → 0,
the corrections to the NNGP kernel remain small, allowing the posterior kernels
to be accurately described by including corrections to linear order in the conjugate
kernels. For smaller network widths, we take advantage of the fact that corrections
are small when solving for the posterior kernels based on the posterior kernels of a
slightly wider network: Specifically, we start from wide networks and compute the
corrections to the NNGP kernel. Using these corrected kernels as the new starting
point, we then compute corrections for slightly narrower networks. This process is
repeated iteratively, progressively narrowing the network width until we reach the
desired width (see pseudocode in Alg. 1).

In Fig. B.2, we illustrate width annealing by measuring the CKA between the out-
put kernel C(L) and target kernel YYT relative to the NNGP kernel for decreasing
network width N. Feature corrections continuously increase for narrower networks.
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Figure B.2: Solving the self-consistency equations in Eq. (3.62) by annealing solutions
in the network width. (a) Network kernel C(l) across layers l = 1, 2, 3 for different
network widths N and σ2

w = 0.5. Narrower networks exhibit stronger adaptation
to the target kernel YYT. (b) CKA between network kernels C(L) and target kernel
YYT annealed in the network width N. The CKA (blue markers) is close to that of
the NNGP (solid line) for wide networks, increasing continuously towards the target
kernel for narrower networks. Feature corrections depend on network hyperparame-
ters such as the weight variance σ2

w (increasing from dark to light). Other parameters:
XOR task with σ2

XOR = 0.4, σ2
w ∈ {0.5, 0.7, 1.0, 1.5}, σ2

b = 0.05, L = 3, κ = 10−3, P = 12.



Appendix C

Field theory for optimal signal
propagation in residual networks

C.1 Maximum entropy condition for optimal scaling

We present an alternative approach to determining the condition for optimal sig-
nal propagation in Sec. 4.5: In their work on trainability in feed-forward networks,
Bukva et al. (2023) conjecture that networks are more expressive if hidden signal
distributions are approximately uniform, making them maximally entropic.

For networks of large but finite width, the signal distribution of each neuron is iden-
tical and can approximately be described as a Gaussian

p(h; σ2
) =

1
√

2πσ2
exp(−

1
2σ2 h2

) . (C.1)

Then, the distribution of the post-activation z = ϕ(h) can be written as

p(z; σ2
) =

1
√

2πσ2ϕ′(ϕ−1(x))
exp(−

1
2σ2 ϕ−1

(z)2) . (C.2)

For ϕ = erf, the dynamic range is roughly given by [−1, 1]. For this intervall, we deter-
mine the Kullback-Leibler divergence between the distribution of the post-activation
and a uniform distribution

DKL(puni∣pϕ) = ∫

1

−1
dz puni(z) [ln puni(z)− ln pϕ(z)]

= ∫

1

−1
dz

1
2

ln(
1
2
)+

1
2

1
2σ2 ϕ−1

(z)2 +
1
2

ln(
√

2πσϕ′(ϕ−1
(z)))

= ln(
1
2
)+ ln(

√
8σ)+

1
2 ∫

1

−1
dz (

1
2σ2 − 1)ϕ−1

(z)2

= ln(
√

2)+
1
2

ln(σ2
)+

1
2
(

1
2σ2 − 1)∫

∞

−∞
dh h2 2

√
π

exp(−h2
)

= ln(
√

2)+
1
2

ln(σ2
)+

1
2
(

1
2σ2 − 1) .
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Figure C.1: (a) Log-plot and (b) log-log-plot of the response function η(l) for a resid-
ual network of depth L = 20. Theory (curve) and simulation (dots) agree well. Sim-
ulation values are averaged over 102 input samples and 103 network initializations.
The response function decays sub-exponentially (a), showing power law behavior in
later layers (b). Other parameters: σ2

w, in = σ2
w = σ2

w, out = 1.2, σ2
b, in = σ2

b = σ2
b, out = 0.2,

Din = Dout = 100, N = 500, ρ = 1.

Determining the maximum of the Kullback-Leibler divergence yields the following
condition for the first derivative:

0 !
=

∂

∂σ2 DKL(puni∣pϕ) =
1
σ2 −

1
4

1
σ4 .

Solving for the signal variance before the readout layer yields σ2 !
= 1/4, matching the

condition in Sec. 4.5.

C.2 Supplementary figures

C.2.1 Sub-exponential decay of response function

The response function in residual networks exhibits a sub-exponential decay (see
Fig. C.1), as noted in Yang and Schoenholz (2017) using a different approach.

C.2.2 Normalized input kernels

We investigate signal propagation and scaling behavior in residual networks across
various tasks in Sec. 4.5. For reference, we display in Fig. C.2 the normalized overlap
kernels 1

maxαβ xα ⋅xβ
XTX for P data samples related to these tasks. For the MNIST

data set, we focus on binary classification between 0 and 3, with an equal number
of samples from both classes (P0 = P3 =

1
2 P). For the CIFAR-10 data set, we focus
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on binary classification between airplanes and dogs, also with an equal number of
samples from both classes (Pairplane = Pdog =

1
2 P).
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Figure C.2: Input kernels of different tasks for P = 20 samples, normalized over all
kernel elements. We look at binary classification tasks on the common data sets (a)
MNIST and (b) CIFAR-10 with equal number of samples for both classes.
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