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S U M M A RY

construction of a spiking network model of macaque

primary visual cortex : towards digital twins The cere-
bral cortex of the mammalian brain is composed of an unfathomable
amount of neurons that are organized in intricate circuits across several
spatial scales. If present, cortical activity reflects higher-level informa-
tion processing in mammals. One approach to study the relationship
between the cortex’ structure and its activity is to represent the studied
physical system by a “digital twin”, a computational model in which
anatomical and physiological findings can be incorporated. In such
digital twins, experiments can be performed and data obtained not
feasible using the “physical twin”.
This thesis focuses on building a large scale, biologically plausible
spiking network model of macaque primary visual cortex. As such,
it combines results from the experimental literature and contributes
to building ever more sophisticated digital twins of the visual cortex.
This quest is embedded into a larger neuroscientific research program
aiming at expanding the usage of computer models in Neurosciene.
In line with this approach, in this thesis first resting state neural ac-
tivity recorded from macaque primary visual cortex is analyzed. A
separation of neural activity into two clusters that can be related to
the monkey’s behavior is found that is co-modulated along with top-
down signals from V4. To explore whether this co-modulation might
be causative for the separation of states, in silico experiments of a
model of the local cortical circuit are conducted. However, this simple
model neglects much of the fine structure of visual cortex. Hence,
subsequently a large-scale, biologically plausible digital twin of this
area is devised. After unifying and integrating a large body of data
across multiple sources, simulations of the model reveal unrealistic
activity. This motivates a further investigation of cortical connectivity
in light of recent advances of reconstruction of microcircuits in the
brain. The findings offer potential resolutions for the encountered
problems and highlight stark differences between recent and previous
reconstructions of local cortical networks.
To employ digital twins as research platforms in Neuroscience, sim-
ulation technologies need to be readily available for the research
community. Such technologies have to be continuously developed and
updated to meet the requirements of the researchers. To contribute
to this endeavor, in this thesis the performance of the neural simula-
tion tool NEST is assessed and compared with alternative approaches.
Additionally, a benchmarking workflow with a view towards neural
network simulations is developed that aids the continuous develop-
ment of spiking neural network simulation technologies.
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Z U S A M M E N FA S S U N G

konstruktion eines puls-gekoppelten netzwerkmodells

der primären visuellen rinde im makaken : auf dem weg

zu digitalen zwillingen Der im Gehirn der Säugetiere vor-
zufindende Cortex cerebri besteht aus einer schier unfassbaren Zahl
von in komplexen Netzwerken organisierten Neuronen. Die in ihm zu
beobachtende Aktivität ist Anzeichen kognitiver Vorgänge. Ein Ansatz
zur Untersuchung der Beziehung zwischen kortikaler Architektur und
Aktivität besteht nun darin, das zu untersuchende System in einem
“digitalen Zwillingen”, d.h. einem Computermodell, abzubilden.
Diese Arbeit konzentriert sich vorrangig auf die Konstruktion eines
biologisch plausiblen, puls-gekoppelten Netzwerkmodells der pri-
mären visuellen Rinde im Makaken. Damit liefert sie einen Beitrag in
Richtung stetig realistisch werdender digitaler Zwillinge. Ein solcher
Ansatz muss allerdings auch immer schon in ein weiter gefasstes
neurowissenschaftliches Forschungsvorhaben eingebettet sein, dessen
Ziel die fortwährend bessere Nutzung von Computermodellen in der
Neurowissenschaft ist. In Übereinstimmung mit diesem Ansatz wird
in dieser Arbeit die neuronale Aktivität der visuellen Rinde im Ma-
kaken im Ruhezustand analysiert. Es wird gezeigt, dass sich besagter
Zustand aus zwei Unterzuständen zusammensetzt, die unter anderem
mit Signalen aus höheren kortikalen Arealen korreliert sind. Um zu
untersuchen, inwiefern diese Signale auch kausal für die Zustands-
änderung verantwortlich sein können, werden in silico Experimente
durchgeführt. Allerdings vernachlässigt das dafür genutzte Modell
wichtige Aspekte der komplexen Struktur der Netzwerke in der visuel-
len Rinde. Daher wird im Anschluss ein biologisch plausibler digitaler
Zwilling dieses Areals erstellt. Simulationen dieses Netzwerks zei-
gen jedoch physiologisch unrealistische Aktivität, was —gerade vor
dem Hintergrund neuer experimenteller Möglichkeiten —eine tiefer
gehende Analyse lokaler kortikaler Netzwerke motiviert. Die hierbei
gefundenen Resultate bieten Verbesserungen der Schätzungen kortika-
ler Konnektivität und weisen einen Weg, die im Modell der visuellen
Rinde gefunden Probleme zu beheben.
Um die zuvor beschriebenen digitalen Zwillinge auch tatsächlich in
neurowissenschaftlicher Forschung nutzen zu können, bedarf es pas-
sender Simulationstechnologien, die stetig weiterentwickelt und ver-
bessert werden müssen. In diesem Kontext wenden wir uns schließlich
Messungen der Leistungsfähigkeit des NEST Simulators zu. Im An-
schluss wird ein Benchmarking Framework mit besonderem Blick auf
Simulationstechnologien für puls-gekoppelte Netzwerke entwickelt,
das die kontinuierliche Weiterentwicklung ebenjener unterstützen soll.
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Part I

I N T R O D U C T I O N





1
B A C K G R O U N D

The cerebral cortex —or cortex for short —is the roughly 1 mm to 3 mm
thick outer shell of the human or more general mammalian forebrain
(Abeles, 1991). It consists of approximately 100 billion interconnected
cells which have an average indegree of about one to ten thousand
synapses, where the precise numbers vary across species and single
brains (ibid.).
Human neocortex is, among other structures, primarily associated
with and responsible for processing sensory information, planning
and executing motor commands. It can be subdivided into more than
52 different cortical areas on the basis of differences in cell types as
well as their densities (see e.g. Brodmann (1909) for a scheme that is
still widely used and refined to this day). Moreover, these anatomi-
cally defined areas have been recognised to serve functionally different
purposes. They can be thought of as specific “modules“ oftentimes
capable of controlling specific brain functions (Kandel et al., 2013).
The interactions of these modules which are mediated by their in-
terconnections, organised into multiple parallel pathways, underlie
brain function as a whole in humans and other mammals. Despite
tremendous effort and, indeed, progress over the last century, the pre-
cise relationship between the structure of the cortex and its function
viewed across all scales remains a paramount problem in modern-day
Neuroscience.

Since the days of the Spanish Neuroscientist Ramon y Cajal, the
classical approach of neuroscientific research is closely tied to his
famous paradigm, the neuron doctrine (Ramón y Cajal, 1888) (see Yuste
(2015) for a history of the neuron doctrine with a view towards neural
networks). It asserts that the nervous system is composed of an un-
fathomable number of discrete, individual, but highly interconnected
functional units, the neurons. Cajal’s paradigm broke the soil for vari-
ous approaches to Neuroscience: anatomical questions regarding the
cellular composition and organisation of the cortex could be addressed
by e.g. histological or other means (e.g. Braitenberg and Schüz (1991),
Brodmann (1909), and Markov et al. (2014a)). Hypotheses regarding
electrochemical properties and the inner workings of single neural cells
could be formulated. Investigations following this line of thought led
to, e.g., the discovery of the action potential (Bernstein, 1868; Hodgkin
and Huxley, 1952) —a large, stereotyped deviation in the membrane
potential of a single neuron relative to its resting potential, propagating
a signal in a self-sustained way from the cell body along its axon

3
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to its synapses. There, connections to other neurons are established.
The short temporal extent of the action potential in comparison to
the intrinsic time scale of the dynamics of the membrane potential
motivates to conceptually abstract from the biophysical mechanism
of its generation. Instead, one might focus on its timing as a binary
event. As such, it is referred to as a spike. The binary signal defined as
the collection of these events as a whole is called a spike train.
More involved, but still classical questions addressed within the neu-
ron doctrine include response properties of single neurons assessed by
the generated spike trains to a wide class of different stimuli, ranging
from artificial step currents injected directly into the cell to naturalistic
stimuli perceived by test animals. These investigations ultimately led
to the concept of the receptive field of a neuron, the domain in sensory
space that needs to be covered by a matching (with respect to the
domain) stimulus to elicit a response in a neuron. This notion was
initially conceived by Sherrington (1906) to describe the part of skin
that needs to be irritated to elicit a certain reflex, and afterwards used
by Hartline (1941) for studying non-cortical neurons involved in vision.
Later, receptive fields were also discovered in cortical neurons in the
visual system by Hubel and Wiesel (1959, 1962). Subsequently, recep-
tive fields have become a central concept of sensory Neuroscience.
Although highly successful and foundational for the entire field, this
ansatz suffered from the complication that the discharge pattern of a
single neuron varies from trial to trial, even when identical stimuli are
presented. This phenomenon is known as neuronal variability (Festa
et al., 2021). Groundbreaking conclusions about the statistical nature
of neural activity were drawn, for example regarding the encoding
of sensory information therein. Rate coding, based on the firing rate
of single neurons (the number of spikes in a given unit of time) over
prolonged periods of time needs to be mentioned here as a prominent
coding scheme. Again, it was first discovered in extra-cortical neurons
(Adrian, 1926).
On the other hand, temporal neural codes —the notion that some stimuli
are not only encoded in the strength of the response of neurons but
also in the temporal relationship between their spikes—emerged as
an alternative to the more classical view of rate coding: neurons can
produce different responses based on the temporal pattern of incom-
ing signals (see e.g. Segundo et al. (1963)). This suggested that not
necessarily all functions performed by the nervous system might be
simply reduced to a rate-based input-output relation of the constitut-
ing neurons. It became apparent that one should also take into account
the interactions of the neurons on a larger scale to gain a deeper under-
standing of brain functions. One needs to view the connections not as
mere cables (as for instance Cajal did) but as providing the structure
for and thus taking part in and shaping the cortical computation itself.
The concept of neural circuits, which can be traced back to de No
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(1933), offers an appealing view on this issue: neural functions are
emergent properties arising from complex interactions of neurons.
Viewing neurons as atoms of neural computations, function is here
not merely determined by the behavior of individual neurons; more
importantly, it is shaped by their interconnections, which underlie
their interaction.
In this spirit, Hebb (1949) introduced the notion of cell or neuronal as-
semblies. He suggested that cortical neurons organise dynamically into
functional units being capable of performing certain computations, e.g.
distributed encoding of information. In this theory, the same neuron
can be part of several assemblies. Membership of an assembly might
on the one hand be determined by a neuron’s anatomical connections,
which are formed and enforced by synaptic plasticity. This refers to
the ability of neural circuits to change over time in order to adapt
to new situations. For this, Hebb (1949) suggested a mechanism that
is mediated by the correlations of the neural activity and that can
be summarized in the statement “neurons wire together if they fire
together“ (Löwel and Singer, 1992). Additionally, membership could
also depend on the current dynamical state of the neural network, due
to a change in the networks effective connectivity (Aertsen and Preißl,
1990). For the first time, Hebb’s theory shed light on the immense com-
putational power inherent to neural circuits stemming from neurons
interacting in a complex network.
Technological progress in the following decades also improved neuro-
scientific equipment, leading to the micro-electrode arrays1 or laminar
probes2 of these days. They allow for the parallel recording of mul-
tiple cortical neurons in behaving animals. Additionally, advancing
anatomical techniques enabled the study of neural connections more
effectively and systematically (from axonal tracing with horseradish
peroxidase (Kristensson and Olsson, 1971) to the usage of electron
microscopy (Kubota et al., 2018)) revealing statistical patterns in the
connectivity of different cortical areas (e.g. Braitenberg and Schüz
(1991)). Insights stemming from the improved technologies supported
the idea of distributed computations carried out by neural circuits in
different brain areas. They, however, also highlighted the apparent
randomness of specific neuron-to-neuron connections.
To effectively deal with the increasing amount and complexity of data,
another ansatz allowing for a different, mathematicallly more rigorous,
and quantitative study of the nervous system was needed that could
support and extend the already existing ones. Computational Neuro-
science offers the desired ansatz and a complementary approach to
experimental Neuroscience. Due to its methods taken mainly from
Mathematics, Computer Science, and Physics, it allows for quantita-

1 For example the Utah Array by Blackrock Neurotech https://blackrockneurotech.

com/products/utah-array

2 For example Neuropixels by IMEC https://www.neuropixels.org

https://blackrockneurotech.com/products/utah-array
https://blackrockneurotech.com/products/utah-array
https://www.neuropixels.org
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tive as well as rigorous qualitative theoretical studies of the nervous
system.
Examples of the research conducted in this field include detailed math-
ematical models of single-neuron dynamics (starting from Hodgkin
and Huxley (1952)), advanced methods for analysing the growing
amount of neural data recorded in paralllel (e.g. for finding low-
dimensional structures in neural data (Yu et al., 2009), identifying
context-dependent, precise spike synchronization (Riehle et al., 1997)
or identifying spatio-temporal patterns in spiking activity (Quaglio
et al., 2017)), models of associative memory (e.g. Hopfield networks
first studied by Hopfield (1982) and their beautiful analysis using
techniques from Statistical Mechanics by Amit et al. (1985)) as well
as explanations of certain dynamical features of cortical activity (e.g.
the asynchronous irregular nature of the resting-state in inhibition-
dominated recurrent spiking neural networks Brunel (2000)).
Thus, Computational Neuroscience breaks the soil for the application
and extension of methods from a wide class of different scientific
fields ranging from Dynamical Systems Theory (Izhikevich, 2007) and
Statistical Field Theory (Helias and Dahmen, 2020) to Information
Theory (Rieke et al., 1997) and modern Statistics (Grün and Rotter,
2010).

On a parallel strand of Computational Neuroscience, computer sim-
ulations enabled a different approach to neuroscientific research: On
the one hand, simulations of models of neural populations collaps-
ing entire neural circuits to a small number of equations shed light
on e.g. macroscopic signal propagation in the visual cortex (Mejias
et al., 2016) or the mesoscopic relationship between structure and
function in the saccade generator in the reticular formation (Gancarz
and Grossberg, 1998). These models, however, neglect the possibly rich
and intricate dynamics on the single-neuron level. On the other hand,
growing computational power and advances in simulation technology
(e.g. Gewaltig and Diesmann (2007) and Goodman and Brette (2013))
allow for simulations of biologically realistic network with microscopic
dynamics of ever increasing size. Here, the granularity of the nervous
system can be taken into account at different levels of detail. For exam-
ple, Markram et al. (2015) payed attention to the detailed morphology
of single neurons. In Billeh et al. (2020), Izhikevich and Edelman (2008),
and Traub et al. (2005) the authors employed abstracted morphological
features of neurons instead. Additionally, hybrid approaches model-
ing some neuron types in great detail while reducing others to more
abstract representations have been used (Dura-Bernal et al., 2023).
Finally, some approaches refrain from trying to incorporate the spatial
extent of neurons altogether and use point neuron models, allowing to
shift the focus to larger networks (Antolík et al., 2018; Billeh et al.,
2020; Potjans and Diesmann, 2014; Schmidt et al., 2018a; Senk et al.,



background 7

2023).
This large-scale modelling approach to Neuroscience has, however,
been criticised (see e.g. Eliasmith and Trujillo (2014) and Frégnac
(2017)). The main points raised by its critics often concern the issue
that the right level of description of the nervous system is to this day
not known. Hence, the biologically realistic, bottom-up approach to
modelling the brain might miss essential features, and overemphasize
unimportant ones. Moreover, the statistical nature of the parameters
used to construct these models does not allow for meaningful corti-
cal computations to take place that are ultimately reflected in some
meaningful behavior. This behavior, however, determines the success
of an organism and thus evolution optimized brains to perform com-
putations leading to advantageous behavior. Therefore, Eliasmith and
Trujillo (2014) advocate for a top-down approach —that is, starting
from the functional (meaning here: important for behavior) results
of the cortical computation —, taking into account the vast body of
knowledge from Behavioral Neuroscience. A possible execution of
this is exemplified by Eliasmith et al. (2012). This work and the paths
leading to it (e.g Eliasmith and Anderson (2004)) are clearly interesting
and insightful. But their arguments do not refute the relevance of the
bottom-up approach.
In bottom-up modelling, the question of complex neural functions
and how they emerge is postponed, and the quantities of interest
rather concern the dynamics of neural circuits. Focusing on the cere-
bral cortex again, clearly, meaningful computation, whatever this
precisely means and how to identify it, is not expected to appear
out of thin air. Yet, eventually the dynamical activity of neural tissue
mediates the function of the brain. Since not only the function but
also even more fundamentally the cortical dynamics is far from being
understood, the bottom-up approach might reveal new insights: it
might help to shed light on the structure-function relationship via
the structure-dynamics relationship, eventually embedded into the
structure-dynamics-function triad.
The relevance of bottom-up modelling is further supported by the
possibility of incorporating parts of the immense amount of knowl-
edge accumulated by Neuroscientists over the last one and a half
centuries. Ever expanding insights regarding the anatomy and electro-
physiology of the cerebral cortex in combination with novel techniques
like predictive connectomics or electron microscopy may be used to
refine the connectomes used in the generation of large-scale models
(e.g. Binzegger et al. (2004), Schmidt et al. (2018b), and Shapson-Coe
et al. (2021)). Electrophysiological results may constrain parameters
of a chosen neuron model (as by Billeh et al. (2020)) and hypotheses
from molecular biology on the effects of certain neurotransmitters can
be systematically explored in network simulations. Additionally, the
realistic number of neurons and synapses used in these models are
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necessary to faithfully represent the correlation structure of neural
activity in network simulations (van Albada et al., 2015a).
Finally, experimental data can be used to not only gauge large-scale
models of the brain, but also validate them. This ultimately may lead
to new theories about cortical dynamics and function that can be
generated via these models and tested experimentally, closing the loop
between theory and experiment.



2
S C O P E A N D S T R U C T U R E O F T H I S T H E S I S

The topic of this thesis is the construction and simulation of a biologi-
cally plausible, spatially organized spiking neural network model of
the macaque primary visual cortex. As such, it extends previous ap-
proaches by e.g. Potjans and Diesmann (2014) and Senk et al. (2023). In
the former the spatial structure of cortical tissue was neglected and the
focus was put onto inter-laminar connections in local microcircuits. In
contrast to the generic cortical circuit studied there, the primary visual
cortex exhibits a rich spatial structure across different length-scales.
The second study generalized the model of Potjans and Diesmann
(2014) to a spatially structured network and investigated spatial propa-
gation of and extracellular potentials derived from the spiking activity.
Here, we extend the work of Senk et al. (2023) by deriving a more
detailed model for spatial decay of connection probabilities and ad-
ditionally endowing the network with spatially organized structural
features that are found in the intra-area connectivity of the macaque
primary visual cortex and are believed to underlie cortical computa-
tion in that area.
Thus, the presented work continues the path of designing ever more
realistic digital twins of cortical tissue. “Digital twin” here refers to an
in silico representation of a physical system (also referred to as physical
model or physical twin), aiming at incorporating the static and dynamic
structure of said system into a computational model. Such a model
allows for investigating properties of the original system in ways and
under conditions not possible in the physical one. The term digital
twin hence is used here in a general sense, in contrast to the more
stricter usage in for example Clinical Neuroscience where the term
usually refers to personalized representations1.
These models can be viewed as platforms for Neuroscience, in which
prior and ever expanding scientific knowledge regarding anatomy and
physiology is integrated into coherent frameworks unifying these re-
sults in a quantitative manner (Billeh et al., 2020; Markram et al., 2015;
Potjans and Diesmann, 2014; Schmidt et al., 2018b; Senk et al., 2023).
Digital twins can thus be regarded as a tool for modern day Neuro-
science: they force us to make assumptions regarding the structure
and working of the nervous system explicit as well as quantifiable, and
ultimately provide a possibility for studying the dynamics and func-
tion of neural system in complementary ways to classical approaches
in the field. These possibilities range from recording all observables to

1 see e.g. https://www.neurotwin.eu/ where personalized “Neurotwins” offer opti-
mization of brain stimulations in patients

9
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constructing counterfactual scenarios. Moreover, this line of thought
suggests a more holistic view on Neuroscience that should be embed-
ded into a broader neuroscientific research program. For such a research
program, we here suggest that the following three perspectives need
to be taken into account:
First, identifying hypotheses about brain dynamics or empirical neural
phenomena that lack explanations by an underlying mechanism. A by
now classical example is the question of how signals, encoded in the
simultaneous activity of a large number of neurons, propagate in the
brain. Griffith (1963) suggested a mechanism that can be roughly de-
scribed as a feed-forward network of excitatory neurons, later named
synfire chains (Abeles, 1982). Note that to this day, the evidence for syn-
fire chains is weak. This is due to the technical limitations in recording
the activity of single-neurons, leading to severe subsampling of the
cortical activity.
Secondly, appropriate models of neural tissue —in this thesis we will
focus on spiking neural networks —that allow for an investigation
of the identified effects need to be constructed. Here, it is of high
relevance to take into account the constraints set by the anatomy and
physiology of the nervous system. Turning again to the example of
synfire chains, numerical simulations showed that stable propagation
of synchronous activity in spiking neural networks is indeed possible
under plausible conditions and for a wide range of the relevant pa-
rameters (Diesmann et al., 1999). Thus, the simulation of appropriately
constructed, biologically plausible spiking neural networks provided
a testbed for the hypothesis, and indeed gave credibility to synfire
chains as a mechanism employed by the brain.
Finally, providing reliable simulation technology to instantiate and
simulate the neuronal network models (Einevoll et al., 2019). Clearly,
it is not sustainable if every researcher or research group develops
their own research software: not only is the process labor intensive
and prone to errors; it also requires expertise that is not part of the
standardized education of most researchers. This expertise includes
for example systematic testing of software and the assessment of per-
formance in ever changing hardware and software ecosystems. The
NEST simulator (Gewaltig and Diesmann, 2007) is an example for such
a simulation technology. Started in 1994 under the name of SYNOD, the
NEST simulator has been continuously developed ever since and is able
to efficiently use High-Performance Computing (HPC) facilities (Jordan
et al., 2018; Morrison et al., 2003). This allows for the simulation of
biologically plausible spiking neural network models in a reliable,
efficient and scalable way.
All of the three aforementioned perspectives are integrated into this
thesis. In the remainder of this chapter, we briefly outline the subse-
quent content and their relation to these perspectives.
In Part ii, we first turn to the analysis of extracellular multi-electrode
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recordings of macaque primary visual cortex (V1), see Chapter 4. We
focus on the resting-state, i.e. the non input-driven state of the cortical
activity. In experimental studies of the visual cortex, the resting-state is
often neglected and the attention is focused on stimulus driven or task
evoked neural activity, allowing for investigations of visual processing.
However, the resting-state in itself already can have a rich dynamical
structure, cf. Dąbrowska et al. (2021). We here report for the first time
two distinguishable “sub-states” in the V1 resting-state activity of
macaque that are closely correlated with eye-closure. Our analysis
moreover reveals a change in the top-down modulation from V4 —a
cortical area higher in the visual hierarchy —to V1 coinciding with
the change of the sub-states. This suggests the observed top-down
modulation to be a potential mechanism underlying the change in
sub-state.
Next, Part iii focuses on the construction and simulation of biolog-
ically plausible spiking neural network models. First, in Chapter 6,
the suggested mechanism inducing a change in the resting-state ac-
tivity of V1 is investigated in a minimal spiking model of cortical
networks. We find that our hypothesis is consistent with numerical
simulations. However, it needs to be noted that this minimal model
neglects prominent structural features of cortical anatomy. We hence
turn to the construction of a more detailed model —a digital twin in
our usage of the term —of macaque primary visual cortex in Chapter 7.
To this end, we derive a new network model taking into account the
layered as well as spatial structure of V1 in a data-driven way. Specific
structural features added to the network model include patchy as
well as push-pull connectivity. Numerical simulations reveal that the
obtained connectivity does not allow for suitable spiking activity in
the network. An analysis of the network connectivity suggests that
this can be traced back to one of the connectomic studies used in our
derivation. In the next step, we thus try to mitigate this problem by
constructing microcircuit models of cortical circuits based on more
recent anatomical data obtained with electron microscopy (EM), see
Chapter 8. Indeed, there are stark differences in the architecture of the
derived models of local cortical circuits. We find connectivity struc-
tures which suggest that the issues observed in the simulations of the
detailed model of macaque V1 in Chapter 7 might be overcome.
Finally, in Part iv, we turn to the simulation technology on which
the aforementioned in-silico experiments rely. To investigate neuronal
networks as well as phenomena of ever-growing complexity —may
it be networks comprising more neurons and synapses or networks
including complicated properties like synaptic plasticity —simulations
need to get faster. New technologies as Neuromorphic Computing
offer a speedup, but must be validated in their functionality and us-
ability against more classical approaches. In Chapter 10 we conduct
performance benchmarks of a model microcircuit for NEST and show
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that on state-of-the-art computer hardware, classical HPC can compete
with more specialized approaches. Moreover, we point to bottlenecks
in current systems that might pave the way for future improvements.
For keeping up with alternative technologies and satisfying the needs
of the research community, NEST needs to be continuously developed.
Performance benchmarks are an integral part of this process. In order
to reproducibly perform these benchmarks across machines, we pro-
pose a benchmarking workflow for HPC applications in Chapter 11.
Here, the objective is to first derive a conceptual workflow where the
necessary components are identified and specified. After this, a refer-
ence implementation with a view towards the simulation of spiking
neural network is provided and we demonstrate how to use such a
workflow in the development process of NEST.



Part II

A N A LY S I S O F R E S T I N G S TAT E A C T I V I T Y





3
P R E FA C E

In the last decades, the analysis of resting-state activity has become
a standard paradigm in Neuroscience, mainly conducted with brain-
wide data, e.g. from functional magnetic resonance imaging (fMRI)
(Snyder and Raichle, 2012). The resting-state is defined as a dynamical
state in which the activity of the brain is not driven by external stimuli
or task-related events (ibid.). It has been suggested that resting-state
activity thus may reflect the underlying structural architecture of the
brain (Deco et al., 2011).
Additionally, the resting-state has also been explored at the level of
single brain areas, e.g. in multi-electrode recordings (Dąbrowska et al.,
2021). Such analyses are of great importance for the research program
sketched in Chapter 2, since they allow for gauging and validating
digital twins of cortical circuits.
Here, we set out to characterize resting-state activity of the primary
visual cortex (area V1) in macaque. Our analysis presented in Chap-
ter 4 reveals a previously unknown change of the cortical activity in
the resting-state in extracellular recordings of V1. Further analyses re-
garding the interaction between the primary visual cortex and higher
visual areas suggest that top-down modulations might play a role
in this change. We thus describe a dynamical phenomenon that can
be subsequently investigated in silico with numerical simulations of
cortical networks.
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N E U R A L M A N I F O L D S I N V 1 C H A N G E W I T H
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Morales-Gregorio, A., Kurth, A. C., Ito, J., Kleinjohann, A.,
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Neural manifolds in V1 change with top-down signals from V4
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4.1 introduction

Massively parallel recordings allow interpreting neural activity as a
trajectory in a high-dimensional space. In this interpretation, each elec-
trode recording the extracellular potential or each identified spiking
neuron represents one dimension. The time-resolved brain activity
thus can be described as a high-dimensional dynamical system. In
this view, the representation and processing of lower-dimensional
variables can be investigated by studying the time evolution of the
population dynamics in the high-dimensional space.
The high-dimensional space in which the recorded activity unfolds is
called the state space. Usually, not all possible states in this space are
attained. Rather, the dynamics is confined to —often times geometri-
cally lower-dimensional —subsets, also referred to as neural manifolds
(Chaudhuri et al., 2019; Feulner and Clopath, 2021; Gallego et al., 2017,
2018; Gao et al., 2017). In recent years, these manifolds have gained
substantial attention across different brain areas and animals: Mante et
al. (2013) showed that they encode decision making in the pre-frontal
cortex in macaque, Churchland et al. (2012) and Gallego et al. (2017,
2018) related hand movement trajectory in the macaque motor cortex
to neural manifolds, Chaudhuri et al. (2019) found that they encode
head direction in the anterodorsal thalamic nucleus of mice, Gardner
et al. (2022) similarly showed that they encode spatial position in the
hippocampus of mice. Other studies investigated neural manifolds in
visual cortex in mice (Froudarakis et al., 2020; Stringer et al., 2019a)
and macaque (Singh et al., 2008).
A complementary, more global view on neural dynamics highlights
cortical states occurring at different times, also referred to as dynami-
cal states (Harris and Thiele, 2011). These are periods that be can be
characterized and distinguished by their fluctuations in the sponta-
neous population activity. This view on brain dynamics asserts that
different states not only reflect sensory input, but also endogenous
interactions within local circuits or brain areas, and can be related
to higher-level effects like selective attention (ibid.). The dynamical
state of the activity in the primary visual cortex is influenced by the
hierarchical organization of the visual system. Information travels
from lower to higher areas (bottom-up) and vice versa (top-down),
often within specific frequency bands (Bastos et al. (2015), Klink et al.
(2017), and van Kerkoerle et al. (2014), see also Section 7.1) Top-down
signals from V4 to V1 have been shown to direct visual attention
for figure-ground segregation and mediate contour integration in
macaque (Liang et al., 2017; Poort et al., 2012; Self et al., 2013; van
Kerkoerle et al., 2017).
Theoretical studies showed that top-down signals in principle can
modulate neural manifolds and their intrinsic properties (Dahmen
et al., 2020; Naumann et al., 2022). As effective connectivity is input-
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dependent (Aertsen and Preißl, 1990), a change in top-down input may
therefore also affect the dimensionality of neural activity (Avitan and
Stringer, 2022; Cunningham and Byron, 2014; Gao and Ganguli, 2015;
Gao et al., 2017; Mazzucato et al., 2016; Pang et al., 2016; Stringer et al.,
2019a; Williamson et al., 2016). However, whether top-down signals
modulate the neural manifold geometry and their dimensionality in
vivo has yet to be shown.
Here, we study the state space of the primary visual cortex of the
macaque (N=3) during the resting-state and its relation to the top-
down signals from higher visual areas (V4, DP). To this end, we first
employ tools from computational topology (c.f. Chaudhuri et al. (2019),
Ghrist (2008), and Singh et al. (2008)) and find that the population
activity of macaque V1 is organized into two distinct high-dimensional
neural manifolds. These are correlated with the behaviour (eye closure)
of the macaques, but not related to any external visual stimuli. Ad-
ditionally, we investigate the dimensionality of the neural activity. In
the observed manifolds, the dimensionality differs significantly, with
higher dimensionality found during the eyes-open periods. Moreover,
we estimate top-down interaction from V4 via spectral Granger causal-
ity. We find that these interactions are significantly stronger during
eyes-open periods. Thus, our data analysis suggests that top-down
signals could actively modulate the V1 population activity, leading to
two distinct neural manifolds in macaque visual cortical resting-state
activity.

4.2 methods

To explore the activity in the visual cortex, the intracortical electrical
potential from the visual cortex of three rhesus macaques (Macaca
mulatta) was recorded. The experimental setup and data processing
steps are illustrated in Figure 4.1. The experiments simultaneously
recorded the activity from V1 and V4 (macaques L & A, Chen et
al. (2022)) and from V1 and DP (macaque Y, de Haan et al. (2018),
see Figure 4.1b). The activity was recorded in the resting-state: the
macaques sat head-fixed in a dark room, no instruction to perform
a particular task was provided. In this condition the macaques often
showed signs of somnolence and kept their eyes closed for periods
of variable duration. The right eye—contralateral to the site of neu-
ral recording—was tracked using an infrared camera, allowing the
identification of periods of open or closed eyes.

4.2.1 Electrophysiological data from macaques

Table 4.1 provides an overview of sessions, duration and number of
electrodes per subject used in the different monkeys and experiments.
For monkeys L and A (Figure 4.1b left), we use publicly available
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Figure 4.1: Overview of the experiment and neural manifold. a Illustration
of the experimental setup. b Approximate locations of array im-
plants in both experiments. Exact placement of the arrays differs
slightly between subjects L and A. c Steps for obtaining the multi-
unit activity envelope (MUAe) (Supèr and Roelfsema, 2005) used
in this chapter. Band-pass filtering: between 500 Hz and 9 kHz.
Rectified signal is low-passed at 200 Hz resulting in the MUAe.
d Schematic representation of state space and a neural manifold.
Note that time is implicit within the neural manifold.

(Chen et al., 2022) neural activity recorded from the neocortex of rhe-
sus macaques (N=2) during rest and a visual task. The macaques were
implanted with 16 Utah arrays (Blackrock microsystems), two of them
in visual area V4 and the rest in the primary visual cortex (V1), with
a total of 1024 electrodes. The recording system recorded the electric
potential at each electrode with a sampling rate of 30 kHz. The elec-
trodes had a length of 1.5 mm. This implies that the electric potential
is recorded in the deeper layers, likely layer 5. A full description of the
experimental setup, the data collection and preprocessing has already
been published (Chen et al., 2022); here we only provide the details
relevant to this chapter.
Three resting-state (RS) sessions were recorded per macaque. Dur-
ing the recordings, the macaque’s head was held in position with
a custom-made headstage. Pupil position and diameter data were
collected to determine the direction of gaze and eye closure of the
macaques. A visual response task was performed on the same day
as the RS recording sessions. The recorded response data were used
to calculate the signal-to-noise ratio (SNR) of each electrode. All elec-
trodes with an SNR lower than 2 were excluded from further analysis.
Additionally, up to 100 electrodes that contributed to high-frequency
cross-talk in each session were removed. For more details we refer to
the original data publication.
The raw neural data were processed to obtain the multi-unit activ-
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ity envelope (MUAe) signal as well as local field potential (LFP). To
calculate the MUAe, the raw data were high-pass filtered at 500 kHz,
rectified, low-pass filtered at 200 kHz, and downsampled to 1 kHz.
Finally, the 50, 100, and 150 kHz components were removed with a
band-stop filter to remove the European electric grid noise and its
main harmonics. To obtain the LFP data, the raw data was low-pass
filtered at 250 Hz, downsampled to 500 Hz and a band-stop filter was
applied to remove the European electric grid noise 50, 100, and 150 Hz.
The raw data from one session (L_RS_250717) were spike-sorted using
a semi-automatic workflow with Spyking Circus1 (Yger et al., 2018).
Roughly, Spyking Circus first applied a band-pass filter to the raw sig-
nals between 250 Hz and 5 kHz. Next, the median signal across all 128

channels that shared the same reference (2 Utah arrays) was calculated
and subtracted, in order to reduce cross-talk and movement artefacts.
The spike threshold was set conservatively, at eight times the standard
deviation of each signal. After filtering and thresholding, the resulting
multi-unit spike trains were whitened—removing the covariance from
periods without spikes to reduce noise and spurious spatio-temporal
correlations. After whitening, a subsample of all spike waveforms is
selected, reduced to the first five principal components, and clustered
into different groups with the k-medians method. Finally, all spikes
in each electrode are assigned to one of the waveform clusters based
on a template fitting algorithm, which can also resolve overlapping
waveforms.
After the automatic sorting, the waveform clusters were manually
merged and labelled as single-unit activity, multi-unit activity, or
noise. Only single-unit activity (SUA) spike trains were included in
this chapter. The waveform signal-to-noise ratio (wfSNR) was calcu-
lated for all SUA, and those with a wfSNR < 2 or electrode SNR < 2

(from the visual response task) were excluded from the analysis.
In addition to the published data from macaques L & A, we also use
an unpublished data set from one additional rhesus macaque (N=1)
(Y, see Figure 4.1b right). Neural activity was recorded during rest and
during a visuomotor integration task. The experimental and recording
setup is described elsewhere (de Haan et al., 2018). The macaque was
implanted with five Utah arrays (Blackrock microsystems), two of
them in the primary visual cortex (V1), one in dorsal prelunate cortex
(area DP), one in area 7A and one in the motor cortex (M1/PMd).
In this chapter we only included the 6x6 electrode arrays from V1

(two arrays) and DP (one array), for a total of 108 electrodes. The
recording system recorded the electric potential at each electrode with
a sampling rate of 30 kHz. The electrodes had a length of 1 mm, thus
recording the extracellular potential from the central layers, likely
layer 4.
Two resting-state (RS) sessions were recorded. In these sessions (as

1 spyking-circus.readthedocs.io

spyking-circus.readthedocs.io
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in the ones described above), the macaque did not have to perform
any particular task and sat in a quiet dark room. Pupil position and
diameter data were collected using an infrared camera in order to
determine the gaze direction and eye closure of the macaque.
MUAe and LFP signals were computed using the same procedure as
for the other data sets.

Table 4.1: Summary of subjects and recordings included here.

Clean

Subject Session Duration (s) Areas Electrodes Electrodes

L L_RS_250717 1363 V1 896 765

V4 128 116

L L_RS_090817 1321 V1 896 761

V4 128 116

L L_RS_100817 1298 V1 896 774

V4 128 118

A A_RS_150819 2278 V1 896 402

V4 128 11

A A_RS_160819 2441 V1 896 369

V4 128 9

Y Y_RS_180122 906 V1 72 42

DP 36 25

Y Y_RS_180201 699 V1 72 44

DP 36 24

4.2.2 Neural manifolds, outlier removal and topological data analysis

For the data analysis, the MUAe data is downsampled to 1 Hz and
consists of between 50 and 900 recording electrodes per session.
For visualizing the data we use principal component analysis (PCA)
as a method for dimensionality reduction. The first three principal
components are retained, the remaining ones discarded. This reduces
the high-dimensional neural activity to a 3D representation. We use
a two-component Gaussian mixture model on the 3D projection to
assign each data point to one of two clusters observed in the projection
These clusters are in the following identified with the neural mani-
fold. From the clustering using the mixture model, the log odds are
calculated: log p0

p1
. Here, p0 is the predicted probability of a data point

in the projection to belong to the one, p1 the predicted probability to
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belong to the other cluster. The log odds are thus a measure for the
likelihood of a given neural data point to belong to one or the other
cluster, and capture the clustered structure of the manifold in a single
function of time.
In the performed analysis, the neural manifolds are a collection of time
points in the state space. In the recorded neural data, some time points
have a large euclidean distance from all other points. These points are
attributed to noise, and it is therefore desirable to remove them for
further analyses. To determine the outliers we use a procedure similar
to the one suggested by Chaudhuri et al. (2019). First, the distance
between all points is computed. Then the 1st percentile value from
the distance distribution, D1, is determined. Finally, the number of
neighbors that each point had within D1 distance is estimated and the
20 percent of points with the fewest neighbors are discarded.
On the thus obtained data, we employ persistent homology (Edelsbrun-
ner and Harer, 2022) to confirm that the lower-dimensional structures
found in the 3D projection are actual topological features of the neural
manifolds and not just an artifact of the dimensionality reduction.
Before computing the persistence barcodes, we project the data into
a 10D subspace using the isomap technique (Tenenbaum et al., 2000).
This method is designed to preserve the geodesic distance (i.e. shortest
path on the manifold) between the data points and is thus especially
suited for reducing the dimensionality of data when performing a
topological data analysis.
To calculate the persistence barcodes for the first three homology
groups H0, H1 and H2 we use the open-source implementation Ripser
2. Briefly, the methods first constructs the Vietoris-Rips complex by
successively inflating balls with radius r around each data point. If k
points have a pairwise distance smaller than r (that is, for all pairs of
points both points are contained in the ball with radius r of any other
point), they form a (k − 1) dimensional simplex. Thus, the neural
manifold gives rise to a simplicial complex (a collection of simplices of
potentially different dimension). Topological features of this simplicial
complex represent the topological structure of the neural manifold.
These features are extracted by computational means. As r is grows,
many short-lived features appear by chance. These do not capture ac-
tual topological properties of the manifold. True topological properties
appear and persist for a wide range of radii r. The long-lasting bars in
the n-th persistence barcode correspond to the number of independent
generators βn of the respective homology group Hn, also called Betti
numbers. For low dimensionalities, they can be interpreted intuitively:
β0 is the number of connected components, β1 the number of 1D
holes, β2 the number of enclosed 2D voids. Throughout all plots of
this chapter we display the top 1% longest-lasting barcodes for each
homology group.

2 https://pypi.org/project/ripser/

https://pypi.org/project/ripser/
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4.2.3 Dimensionality, coherence, and Granger causality analysis

Two different approaches to study the dimensionality of the neural
data are employed: first, we compute the time-varying participation
ratio (PR) from the covariance matrix defined as

PR =
(∑i λi)

2

∑i λ2
i

(4.1)

where λi are the eigenvalues of the covariance matrix (Mazzucato
et al., 2016). Dahmen et al. (2020) showed that this is equivalent to

PR =
N

1 + v2 + (N − 1)(m2 + s2)
. (4.2)

Here, N is the number of electrodes, and v, m, as well as s are the
ratios between the standard deviation of auto-covariances (δa), average
cross-covariances (c̄), and the standard deviation of cross-covariances
(δc) with respect to the average auto-covariances (ā), respectively:

v =
δa
ā

, m =
c̄
ā

, s =
δc
ā

(4.3)

We take a 30 s sliding window with a 1 s offset over the MUAe data
and compute the PR for each window separately (resulting in each
window having a 29 s overlap with the adjacent windows). Since
higher activity leads to a higher variance and thus a bias in the PR we
normalize the data within each window via z-scoring to minimize this
effect.
Secondly, we determine the distribution of the eigenvalues of the
neural data within each cluster. Again the data is normalized the data
after sampling each cluster. We use a linear regression in log-log space
to fit a power law the distribution. Here, the slope of the linear fit
corresponds to the exponent α of the power law.
To assess the communication between cortical areas we rely on the
coherence and Granger causality of the LFP. Coherence quantifies
linear correlations in the frequency domain:

Cxy( f ) =
|Sxy( f )|2

Sxx( f )Syy( f )
(4.4)

Here x and y denotes the signals, Sxy( f ) is the cross-spectral density,
and Sxx( f ) and Syy( f ) are the auto-spectral densities (power spectrum
densities).
In order to assess the directionality of frequency dependent inter-
actions between the areas, we perform a spectral Granger causality
analysis again on the LFP signal (Dhamala et al., 2008). For this, first
the cross-spectral matrix is computed,

S( f ) =

Sxx( f ) Sxy( f )

Syx( f ) Syy( f )

 , (4.5)
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using the multitaper method (Thomson, 1982). To this end, the signals
of pairs of electrodes are subdivided into 10 s long segments with an
overlap of 50%. Each segment is processed individually with 3 Slepian
tapers and subsequently averaged, yielding the cross-spectrum. Next,
the cross-spectrum is decomposed into the covariance matrix Σ and the
transfer function H( f ) with using Wilson spectral matrix factorization
algorithm (Wilson, 1972):

S( f ) = H( f )ΣH†( f ) (4.6)

As a covariance matrix, Σ is a symmetric positive-definite matrix, †

denotes the conjugate transposition, and H( f ) = ψ(ei f ) = ∑∞
k=0 Akeik f

is a matrix valued function with A0 = 1 (identity matrix), ψ is a
function initially defined for z ∈ C satisfying |z| = 1 that can be
extended to a holomorphic function on the disk {z|z ∈ C s.t. |z| <
1} (that is, the power series ∑∞

k=0 Akzk converges on that domain)
(Dhamala et al., 2008). With Σ and H one is able to obtain a version of
directional functional connectivity in the frequency domain between
the first and second signal with

GCx→y( f ) =
Sxx( f )

H̃xx( f )Σxx H̃†
xx( f )

(4.7)

where H̃xx( f ) = Hxx( f ) + Σxy/Σxx Hxy( f ) and mutatis mutandis for
the influence of the second onto the first signal (ibid.). The analysis is
performed for all pairs of channels between the areas that exhibited a
peak in the coherence in the β-band 12 Hz < f < 30 Hz (see below).
The β-band Granger causality strength is quantified as

B =
30 Hz

∑
f=12 Hz

GCx←y( f )−GCx→y( f ). (4.8)

Similarly, we also analyse the time-varying spectral Granger causality.
For this we use 10 s windows and moved them across the data with 1 s
steps, for a final time resolution of 1 Hz. The spectral Granger causality
is calculated for each window separately. The initial and final 5 s are
discarded to avoid disruptions at the boundaries. Thus, time-varying
causality spectrogram reads as

GCx→y(t, f ) =



GCx→y( f )

∣∣∣∣∣
[t0,t1]

if t ∈ [t0, t1],

...

GCx→y( f )

∣∣∣∣∣
[tn−1,tn]

if t ∈ [tn−1, tn]

(4.9)

and mutatis mutandis for the y→ x direction where each interval has
a length of 1 s.
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Finally, we define the time-varying Granger causality difference,
∆GC(t, f ) = GCx←y(t, f ) − GCx→y(t, f ), and again sum over the β-
band (c.f. Equation 4.8):

B(t) =
30 Hz

∑
f=12 Hz

∆GC(t, f ) (4.10)

Both the coherence and spectral Granger causality are implemented in
the Electrophysiology Analysis Toolkit (Elephant, Denker et al. (2022))
For the aforementioned peak detection in the coherence and the
Granger causality analysis (used to identify admissible channel pairs
for our analysis) we employ a standard peak detection algorithm
for time series using wavelet transforms. We compute the continuous
wavelet transform (cwt) for wavelets with widths from 10 Hz to 100 Hz
(at 0.1 Hz steps), using a Ricker wavelet. Next, we search for ridge
lines in the cwt —peaks across different wavelet lengths —following
standard criteria suggested in the literature (Du et al., 2006). Finally,
the ridge lines are filtered based on their total length, gaps, and signal-
to-noise ratio (snr). The resulting ridge lines (if any) are considered as
peaks in the coherence.
The detected peaks tend to be broad, since our parameter choice inten-
tionally rejected narrow peaks. This configuration was chosen in favor
of robustness and to minimize false positives. Nonetheless, peaks are
detected for a majority of electrode pairs.

Table 4.2: Peak detection algorithm parameters.

CWT peak detection parameters

widths 100 Hz to 500 Hz Width range for CWT matrix.

Widthstep 0.1 Hz Step between widths.

Wavelet Ricker Wavelet used for convolution.

Max_distances widths / 4 Criterion to consider ridge lines

connected.

Gap_thresh 10 Hz Ridge lines farther apart will not

be connected.

Min_length 225 Minimum length of ridge lines.

Min_snr 1 Minimum snr of ridge lines.

Noise_perc 10 Percentile of ridge considered

noise for snr calculation.
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4.3 results

4.3.1 Two distinct neural manifolds in V1 correlated with eye closure

To explore the activity of the visual cortex, we analyse the high-
dimensional population multi-unit activity envelope (MUAe) (between
40 and 800 electrodes) for each area and macaque (Supèr and Roelf-
sema, 2005), Figure 4.2a. We projected the population activity into a
3D space using PCA (see Section 4.2.2), Figure 4.2b-d.

In V1, at least two distinct clusters are apparent in the 3D projection
space (sample session in Figure 4.2b-d, see Figure S1-S6 for all other
sessions and subjects). In the following, we will refer to the clusters
also as neural manifolds. The manifolds are labeled according to the
sign of the log odds of a two-component Gaussian mixture model (see
Section 4.2.2).
To exclude that two manifolds visible in the lower-dimensional projec-
tion are an artifact of the dimensionality reduction, we computed the
Betti numbers of higher-dimensional population activity using persis-
tent homology (see Section 4.2.2). We find at least two independent
generators of the H0 homology groups higher-dimensional popula-
tion activity. This corresponds to at least two connected components
(Figure 4.3), i.e. two distinct neural manifolds.
Additionally, we tested whether the observed manifolds could be an

induced by the signal processing needed to obtain the MUAe signal.
One session (L_RS_250717) was spike sorted with a semi-automatic
spike sorter (see Section 4.2.1) and the population activity resulting
from the single-neuron firing rates analyzed (Figure 4.4). The spiking
activity also displays two manifolds, in agreement with the findings
from the MUAe signals.
While the activity of visual cortex is mainly driven by visual in-

put (Talluri et al., 2022), whether and to what extent it is separately
modulated by eye closure is unclear. Marking data points on the V1

manifolds with the eye closure signal (Figure 4.2b) reveals that one
manifold strongly relates to the eyes-open periods, whereas the other
manifold strongly relates to the eyes-closed periods.
To confirm the correlation between eye closure and manifolds, we
tested the differences between the eyes-open and eyes-closed periods
with a logistic regression between the eye closure signal and the log
odds, revealing a significantly higher than chance correlation in all
sessions (Figure 4.2e). Additionally, the distribution of the log odds
during the eyes-open and eyes-closed periods show a clear correspon-
dence between the eye closure and the sign of the log odds in most
cases (Figure 4.2e). This demonstrates that membership of a point in
state space in one of the two V1 manifolds is closely related to eye
closure. Given this, we will refer to the manifolds as the eyes-open
manifold or the eyes-closed manifold.
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Note that the existence of two separate manifolds could be trivially
explained if the MUAe activity levels were significantly higher in the
eyes-open periods when compared with the eyes-closed periods. If this
was true, the manifolds would simply reflect the population activity
level. To discard this possibility, we tested whether higher-activity
periods correspond uniquely to one of the manifolds. The data distri-
bution —based on the z-scored MUAe shown in Figure 4.2a —show
that there is no clear separation into two manifolds (Figure 4.2f). Ad-
ditionally, we determined the joint distributions of z-scored MUAe
and log odds (Figure S7, represented with a density heatmap). Both
the data distribution of the MUAe and the joint distribution of the
MUAe and the log odds suggest that the activity level (and thus their
difference between eyes-open and -close periods) alone does not fully
explain the presence of the two neural manifolds.
Finally, we also analyzed the population activity from V4 and DP
(Figure S8, Figure S9). In contrast to V1, the population activity in
areas V4 and DP does not appear to contain two distinct neural mani-
folds (Figure S10). Thus, we conclude that the observed manifolds are
restricted to V1 and are not present in V4 or DP.
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Figure 4.2: Overview of the behavioral as well as neural activity data in V1.
The two distinct neural manifolds are correlated with eye closure.
a Overview of the experimental data from session L_RS_250717.
From top to bottom: Time evolution of the eye signal; the z-
scored MUAe signal for each electrode (electrodes ordered by
their correlation with the eye signal); the mean z-scored MUAe at
each time point; and the log odds overlaid with the most likely
manifold (two clusters, Gaussian mixture model). b, c, d First
three principal components of the MUAe population activity.
Colours indicate the manifold identified via the log odds of a
Gaussian mixture (b), the eye closure (c) and the mean z-scored
MUAe (d). Each dot represents a different point in time. Outliers
were excluded from the neural manifolds shown in b–d, see
Section 4.2.2. e, f Violin plots of the distribution of the log odds
across epochs, respectively distinguished according to eye closure
(e, result of a logistic regression test shown) and z-scored MUAe
(f). Horizontal bars indicate medians of the distributions.
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Figure 4.3: Persistent homology of the high-dimensional neural activity show
the presence of at least two clusters. a - g Each panel shows data
for one session. (Top) Sample clouds with a green radius used
for persistent homology computation. (Main plots) Persistence
barcodes of the 10D neural manifolds, for all sessions. (Inset
plots) Distribution of barcode length with a fitted lognormal
distribution, long barcodes coloured red. h Number of clusters
found in each session.
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Figure 4.4: Overview of the spiking data from session L_RS_250717. Sin-
gle neurons were isolated using a semi-automatic spike sorting
method. The firing rate was calculated counting the number of
spikes in 1-second bins. a Sample spike raster plots for eyes-open
and eyes-closed periods. b Sample waveforms from four elec-
trodes, multiple single units isolated in some electrodes (colour-
coded). Median (solid line) and 20-80 percentiles (shading) shown
per unit. c Time course of multi-unit activity. d, e, f First three
principal components of the firing rate. Insets show the persistent
homology for the H0 homology group (e) and the violin plots of
the eye closure against the clustering log odds (f).
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4.3.2 Dependence of manifold dimensionality on eye closure

Next, we further explored the properties of the neural manifolds in
V1 by studying their dimensionality.
For this, the time-varying participation ration (PR) (see Section 4.2.3)
was computed from the z-scored MUAe signals for sliding windows of
30 s width. Higher MUAe activity is typically associated with higher
variance, potentially leading to higher dimensionalities. To avoid this
bias, we normalized the varying activity levels (via z-scoring) within
each window. We find a strong correlation between the log odds and
the time-varying PR (Figure 4.5b). Comparing the PR values between
the two manifolds using a Mann-Whitney U test reveals a consistent
and significant increase of dimensionality during the eyes-open peri-
ods for all data sets (Figure 4.5c).
To further support this finding, we also show the distribution of the
variance explained by each of the principal components (PC) of the
MUAe data, depicted on a log-log scale in Figure 4.5d. We fitted a
power law to the PC variances and report the exponent α (Figure 4.5e).
A higher α indicates faster decay of the curve, i.e., lower dimensional-
ity. The presence of power laws is consistent with Stringer et al. (2019a),
its exponents are in agreement with our sliding window approach:
We observe higher dimensionality during eyes-open than during eyes-
closed periods (Figure 4.5e).
In order to narrow down the cause of the dimensionality changes,
the various quantities the PR is a function of (v2, (N − 1)m2, and
(N − 1)s2) were computed (see Equation 4.2). We observe that the
changes in (N − 1)m2—the scaled average cross-covariances divided
by the average auto-covariance—dominate the PR differences between
the eyes-open and eyes-closed periods (Figure 4.5f). The main rea-
son for the observed dimensionality changes therefore stems from
decorrelation of the activity during eyes-open periods.
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Figure 4.5: Higher dimensionality during eyes-open periods. a Log odds
and participation ratio (PR) for session L_RS_250717. The PR
was calculated on a sliding window of 30 s width. b Pearson
correlation between log odds and PR. c Comparison of PR be-
tween neural manifolds (Mann-Whitney U test). d Distribution of
principal components and their explained variance on a log-log
scale for each manifold. Power law exponent α estimated over the
ranges where the curves approximate a power law. e Compari-
son of power law exponents for the two neural manifolds in all
sessions. The eyes-open manifold always had a smaller exponent,
indicating a higher dimensionality. f Differences of quantities
decomposing the PR (standard deviation of auto-covariances, v2,
average cross-covariances, (N − 1)m2, and standard deviation
of cross-covariances, (N − 1)s2). Results of Welch’s t-test across
sessions shown.
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4.3.3 Modulation from V4 to V1 in the β-band

In search of an internal, stimulus-independent mechanism that may
modulate the neural manifolds and their dimensionality, we turned
our attention to cortico-cortical interactions. Since signatures of top-
down activity have previously been reported in the β frequency band
(roughly 12 Hz to 30 Hz) (Bastos et al., 2015; Vezoli et al., 2021), we
perform a spectral Granger causality analysis to assess top-down mod-
ulations.
To determine whether top-down signals are present in our data, we
calculated the coherence and Granger causality between every pair of
V1-V4 and V1-DP electrodes (see Section 4.2.3) in the local field poten-
tial (LFP). Figure 4.6a,b show the coherence and Granger causalities
for a sample pair of electrodes. To quantify the cortico-cortical signals,
we searched for peaks in the coherence and Granger causality, using
an automatic method (see Section 4.2.3). We detected β frequency
Granger causality peaks in around 0.5% of all V1-V4 electrode pairs,
predominantly in the top-down direction (Figure 4.7). We only found
β-band bottom-up interactions in V1-DP electrode pairs.
For the electrodes with a β causality peak, we estimated the causality
strength B (Equation 4.8). The electrodes with their receptive field
(RF) closer to the fovea show substantially higher B (Figure 4.6c–e,
Figure S11), in agreement with a previous structural connectivity re-
port (Wang et al., 2022) (Figure 4.6f). To disregard potential spurious
Granger causality peaks, we restrict all further analysis of the top-
down signals to the strongest interactions, by setting a threshold of
B > 10 (Figure 4.6g). We observed no bottom-up V1-to-V4 signals
with high strength in the β frequency band.
Thus, we find top-down signals from V4 to V1, in agreement with
previous studies (Bastos et al., 2015; Vezoli et al., 2021); but we do not
observe strong signals from DP to V1 in our data. V4-to-V1 signals are
therefore strong candidates for the modulation of the neural manifolds
and their dimensionality.
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Figure 4.6: Inter-area coherence and spectral Granger causality. a Representa-
tive sample of coherence between V1 and V4 (electrodes 242 and
142, respectively). Low-frequency and β-band peaks indicated. b
Representative sample of spectral Granger causality. c Schematic
representation of the electrode locations overlaid with the mean
top-down signal strength B per electrode (see Section 4.2.3 for a
description of B). d Receptive field (RF) map overlaid with the
mean B per electrode. Stronger B is found around the foveal
region of V1. e Mean B displayed against the distance from the
fovea. f Log of fraction of labelled neurons (FLN) from V4 to V1

(data from tract-tracing experiments (Wang et al., 2022)). V1 sub-
divisions represent c: central (foveal region), LF: lower visual field,
pc: peri-central, and fp: far periphery. The strongest connectivity
exists from V4 to V1c, in agreement with our measurements. g
Number of electrode pairs with strong (B > 10) top-down signals
detected in each session.
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Figure 4.7: Quantification of coherence peaks and β-band spectral Granger
causality. a Quantification of coherence peaks across all sessions.
A substantial portion of all electrode pairs displayed a β peak.
Note that the percentages for a session can add up to more
than 100% since the same electrode pair can have both a low-
frequency and a β peak. b Quantification of β-band spectral
Granger causality for all sessions. Welch’s t-test was used to
determine whether top-down Granger causality was greater than,
less than, or roughly equal to bottom-up Granger causality, within
the β frequency band. The test was only applied to those electrode
pairs that showed a β coherence peak. A large portion of V1↔ V4

pairs show stronger causality in the top-down direction, while
V1↔ DP did not appear to have prominent top-down causality
compared to bottom-up causality.
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4.3.4 Stronger top-down signals from V4 to V1 during eyes-open periods

To investigate links between behavior and the V4-to-V1 top-down
modulation, we examined how the spectral power, coherence, and
Granger causality of the LFP change in relation to eye closure.
We extracted the LFP data for each behavioral condition and concate-
nated the data within the same condition. This approach potentially
introduces some artifacts, which we expect to be minor in view of
the very small number of transitions in comparison with the num-
ber of data samples (500 Hz resolution). Both in V4 and V1, we find
that the spectral power at low frequencies (< 12 Hz) is higher during
the eyes-closed periods, whereas the power in the β-band (12 Hz to
30 Hz) is slightly higher during eyes-open periods (Figure 4.8a, see
Figure S12 for other sessions). Spectrograms of the V1 LFP power con-
firm the reduction in low-frequency power during eyes-open periods
(Figure 4.9). The coherence in the β-band is higher during the eyes-
open periods, with the peak shifted to higher frequencies compared
to the eyes-closed condition. Notably, the top-down Granger causality
is substantially higher in the β-band during the eyes-open periods.
In order to confirm our observations, we also computed spectro-
grams of the Granger causality using a 10-second sliding window
(Figure 4.10a). Performing a Welch’s t-test of the difference between
bottom-up and top-down Granger causality, ∆GC, confirmed a shift
toward top-down interactions during the eyes-open periods compared
to the eyes-closed periods, for a vast majority of all electrode pairs
(Figure 4.10b,c). Thus, we found higher β-band Granger causality
during eyes-open periods using two different approaches.
Additionally, to confirm the interdependence of top-down signals
and the neural manifolds, we computed the correlation between the
time-varying β-band Granger causality B(t) (Equation 4.10) and the
log odds (Figure 4.8b,c). An overwhelming majority of V1-V4 elec-
trode pairs showed a highly significant correlation (p < 10−6, two-
sided t-test). Thus, the top-down signals and neural manifolds are
co-dependent at a fine temporal scale, as well as within eyes-closed
and eyes-open periods.
We further tested whether the top-down signals were correlated with
gaze direction and eye movements (Figure S13), to rule out the pres-
ence of any visual stimuli—despite the experiments being performed
in a dark room. No clear trend could be observed, thus indicating no
relation between gaze direction and top-down signals. This finding
suggests that the visual scene is not the source of the observed top-
down signals.
Summing up, the time-dependent spectral analysis reveals large varia-
tions of power and Granger causality. On the one hand, the spectral
power at low frequencies decreases during eyes-open periods, con-
sistent with the well-known α blocking phenomenon (Berger, 1929;
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Klimesch et al., 2007; Liley and Muthukumaraswamy, 2020). On the
other hand, the V4-to-V1 top-down signals are strongest during the
eyes-open periods. The time-varying top-down β causality strength
did not substantially correlate with gaze direction or eye movements,
suggesting no relation between the top-down signals and the visual
scene; as expected in a dark room. Taken together, these results suggest
that V4-to-V1 signals modulate V1 activity, contributing to a different
state-space manifold with increased dimensionality.

Figure 4.8: Stronger top-down signals from V4 to V1 during eyes-open pe-
riods. a Spectral power, coherence, and Granger causality of the
LFP for the electrodes with high causality strength (B > 10) in
session L_RS_250717, see Figure S12 for all other sessions. The
data for each behavioural condition (eyes-open/closed) were con-
catenated and their metrics reported separately (top row). The
difference between eyes-open and eyes-closed periods was calcu-
lated for each electrode or pair of electrodes (bottom row). In all
panels the thick line shows the median across electrodes (or pairs
of electrodes) and shading indicates the 25th to 75th percentile.
b Time evolution of log odds (top) and time-dependent β-band
Granger causality difference B(t) (bottom), for the electrode pairs
with top-down signals. c Histogram of the Pearson correlation
between the log odds and B(t). Colour indicates the significance
levels of the associated two-sided t-test.
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Figure 4.9: Analysis of the V1 LFP spectrogram. a Log odds identifying the
neural manifolds (as in Figure 4.2a), and time-varying spectrum
of a sample V1 electrode (session L_RS_250717, power normalised
for each frequency). b Spectrum of a sample V1 electrode (session
L_RS_250717). Colours indicate the different manifolds. c Result
of t-test in the low frequency band (less than 12 Hz) for all V1

electrodes. As expected, the overwhelming majority of electrodes
displays higher low frequency power when the eyes are closed.

Figure 4.10: Time-dependent spectral Granger causality reveals higher top-
down signals in the eyes-open periods. a Time evolution of the
log odds (top), and the spectral Granger causality difference
for a representative sample of V1-V4 electrodes (bottom). The
sample electrodes were the same as in Figure 4.8a. b Causality
difference median (line) and 25th to 75th percentiles (shade) in
each manifold for one sample V1-V4 electrode pair. β frequency
range highlighted. c Quantification of β-band causality differ-
ence B(t) over time (in each manifold) for all V1-V4 and V1-DP
electrodes in all sessions—using Welch’s t-test.
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4.4 discussion

In this chapter, three findings in the resting-state activity in the pri-
mary visual cortex of macaque are presented: two separate neural
manifolds in the state space linked to eye closure (Figure 4.2), higher
dimensionality due to lower mean cross-correlations in eyes-open
periods (Figure 4.5), and the presence of stronger top-down signals
from V4 to V1 during the eyes-open periods, primarily targeting the
foveal region of V1 (Figure 4.6, Figure 4.7, Figure 4.8). Beyond that
we observed lower power at frequencies below 12 Hz during the eyes-
open periods (Figure 4.8, Figure 4.9), consistent with the well-known
α blocking effect (Berger, 1929).
A separation of neural activity of macaque V1 during resting-state
into two neural manifolds in both the MUAe and spiking activity was
found (Figure 4.2, S1-S6, Figure 4.4). The manifolds in V1 are corre-
lated with eye closure and could not be found in the activity of V4 or
DP. A simple explanation for the separation could be movements of
the macaques: indeed, Stringer et al. (2019b) showed that visual cortex
in mice in the resting-state represents behaviors as facial movements
or running. Talluri et al. (2022), however, showed that this finding does
not generalize to the visual cortical activity in macaque. Hence it is
plausible to conclude that the modulation of the neural manifolds are
mainly driven by visual behavior.
Alternatively, the results presented here could be a simple consequence
of the visual activity being driven by strong visual stimuli. However,
the recording room was dark, and we furthermore conducted analy-
ses to control for activity levels (Figure 4.2 and Figure S7) and gaze
direction (Figure S13). Moreover for macaques L and A extensive eval-
uations of data quality were performed, which excluded all electrodes
that did not strongly respond to visual stimuli (Chen et al., 2022).
This implies that in the analysis of macaques L and A all remaining
electrodes would strongly respond if a strong visual stimulus was
present. Such responses were, however, not observed in the MUAe
activity analyzed here (see Figure 4.2).
Additionally, we explored the dimensionality of the neural activity
(Figure 4.5). We found that the dimensionality is manifold-dependent
and higher in the eyes-open periods across all macaques and all ses-
sions. Our findings are in agreement with previous studies on the
visual cortex (Gao and Ganguli, 2015; Stringer et al., 2019a). Note that
analogous to the results presented here, Dąbrowska et al. (2021) also
showed higher dimensionality in the primary motor cortex during
eyes-open periods in comparison with eyes-closed periods.
We hypothesized that top-down signals from higher cortical areas
could modulate the neural manifolds and dimensionality in the V1

activity, and thus be responsible for the observed changes. Strong top-
down signals from V4 to V1 (Figure 4.6) were indeed found, targeting
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particularly the foveal region of V1, in agreement with structural con-
nectivity (Wang et al., 2022). This top-down signals vary over time,
with increased presence during the eyes-open periods (Figure 4.8).
In agreement with our results, previous studies found that cortico-
cortical top-down signals between in visual areas are primarily located
in the β (12 Hz to 30 Hz) frequency band. Bottom-up signals are to be
found in the delta/theta (< 8 Hz) and γ (>30 Hz) bands (Bastos et al.,
2015; Vezoli et al., 2021).
We did not observe any γ-band causality (Figure 4.6). This is likely
due to the recordings being from the deep cortical layers (in macaque
L and A the electrodes were 1.5 mm long, putatively recording mostly
from layer 5) since γ oscillations are known to be weak in layer 5 of
the visual cortex (Mendoza-Halliday et al., 2022; van Kerkoerle et al.,
2014). Contrary to the results presented in this chapter, van Kerkoerle
et al. (2014) reported that top-down signals appear in the α (8 Hz to
12 Hz) frequency range. Whether the specific top-down and bottom-up
frequencies generalize to the whole neocortex remains elusive. Instead,
Vezoli et al. (2021) suggest overlapping modules associated with fre-
quency bands (α, low-β, high-β, and γ) that differ across cortex. Our
findings are additionally consistent with the work by Semedo et al.
(2022): they suggested that bottom-up signals dominate in a stimulus
driven regime while top-down signals dominate in the absence of
visual stimuli. It has to be noted, however, that in their work the eyes
were always open. We did not find top-down signals from DP to V1.
Potential reasons for this include the electrodes used in macaque Y
being 1 mm long, thus likely recording from granular layer (layer 4).
As a matter of fact, top-down connections do neither stem from nor
target this layer of cortex (Markov et al., 2014b).
The change in V1 population activity with eye closure insinuates a
functional benefit. We here propose the following line of reasoning:
if the eyes are closed, no visual stimuli can be processed and thus
the V1 activity can be reduced, potentially to save energy. If the eyes
are open, however, higher-dimensional activity might improve the
encoding of incoming visual stimuli. Thus, the separation of neural
manifolds accompanied by the observed change in dimensionality
could facilitate visual processing. Previous work showed that spectral
power in the α-band (8 Hz to 12 Hz) is inversely correlated with visual
recognition performance in human subjects (Hanslmayr et al., 2005;
Klimesch et al., 2007): lower α power was associated with better per-
formance in a visual discrimination task. Our findings suggest that a
direct correlation between separation of neural manifolds and dimen-
sionality with the decrease in α power (Figure 4.8, Figure 4.9). Future
work could investigate the functional implications of our findings in
light of the relation between the dimensionality, α power, and visual
performance.
Given the analyzed experimental data, it was not possible to test
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directly whether the V4-to-V1 signals are in fact responsible for the
modulation of V1 dynamics. In view of the research program sug-
gested in Chapter 2, simulations of biologically plausible spiking
neural networks offer a means to validate the hypothesis developed
above. In silico experiments following this line of thought are described
in [add autref for chaper here].
In conclusion, we provide in vivo evidence for the modulation of
neural manifolds by cortico-cortical communication, which we hy-
pothesise could enable more efficient responses to visual stimuli.
Our analysis and previous results suggest that the eyes-open mani-
fold—together with the corresponding dimensionality and spectral
power changes—constitutes a visual stand-by mode, which is mod-
ulated by top-down input from V4 and potentially other internal
mechanisms.
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P R E FA C E

In this part, we turn to the central topic of the neuroscientific research
program sketched in Chapter 2: construction of digital twins of corti-
cal tissue. We here focus on large-scale, biologically plausible spiking
neural network models.
Here, the author of this thesis wants to highlight the need for sim-
ulation studies in general, and the importance of taking biological
constraints seriously in particular.
The dynamical properties of networks consisting of spiking model
neurons have been analysed mathematically (see e.g. Brunel (2000) and
El Boustani and Destexhe (2009)). Research along these lines actively
continues to this day (e.g Ostojic (2014), Tartaglia and Brunel (2017),
and van Meegen and van Albada (2021)). These approaches rely on
approximations, most often based on mean-field theory. This implies
that their domain of applicability is limited to a regime where the
assumptions of the theory are satisfied. Most importantly, correlations
between the constituting neurons must be weak. While for the resting-
state spiking activity of cortical neurons it seems to be reasonable
to assume that correlations are small, this assumption is nonetheless
frequently violated, for example by an increase in firing rate due to an
incoming sensory input or an external modulation (Schulz et al., 2015).
Thus, simulations of spiking network are necessary to fully investigate
the dynamical behavior of spiking neural network models of cortical
tissue —beyond what is possible analytically —, for example when
driven by an external stimulus.
Moreover, van Albada et al. (2015a) showed that to faithfully represent
cortical dynamics, realistic scales of the models matter: the downscal-
ing of neuronal network models is fundamentally limited if first- and
second-order statistics of the dynamics are to be preserved. Both quan-
tities are relevant for the activity of cortical tissue ultimately related to
function (see e.g. Ito et al. (2011) and Romo et al. (1999)). Since cortical
circuits need to have a size of at least on the order of ten thousand
neurons to reconcile at the same time a local connection probability of
about 0.1, and a local indegree on the order of a thousand (Maksimov
et al., 2018), this constrains the smallest possible scale of realistic mod-
els.
Taken together, these points illustrate the necessity of simulations of
biologically plausible spiking neural network models.
Using such digital twins of cortical tissue as a means of neuroscientific
research has, however, not been hailed unanimously. Indeed, they
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often are regarded somewhat skeptically, as summarized by Traub
et al. (2005):

“Any model, even of a small bit of cortex, is subject to
difficulties and hazards: limited data, large number of
parameters, criticism that models with complexity compa-
rable to the modeled system cannot be scientifically useful,
the expense and slowness of the necessary computations,
serious uncertainties as to how a complex model can be
compared with experiment and shown to be predictive.
The above hazards are too real to be dismissed readily. In
our opinion, the only way to proceed is through a state of
denial that any of the difficulties need be fatal. The reader
must then judge whether the results, preliminary as they
must be, help our understanding.”

The author of this thesis shares the concerns —as well as the hope
—raised by Traub et al. Indeed, in light of the above considerations,
and taking the integrative power of biologically plausible neuroscien-
tific modeling into account (cf. Chapter 2), we here bring forward the
argument that this approach is a necessary step in bridging the gap
between experiment and theory in Neuroscience.
In the remainder of this part, we employ biologically plausible spiking
neural network models as a means for neuroscientific research.
In Chapter 6, simulations of a generic spiking network model of cor-
tical tissue are performed to explore to what extent the hypothesis
established in Chapter 4 (change of neural manifold induced by top-
down modulation) is consistent with numerical simulations. We find
that indeed a modulation provided as a weak, additional input target-
ing a random subset of the neurons causes such a change. Thereby,
we give credibility to the mechanism proposed in Chapter 4.
The model used in Chapter 6 is minimal in the sense that it consisted
of just enough neurons and synapses to satisfy the criteria for biologi-
cally plausible networks stated above. This motivates the construction
of a more detailed spiking neural network model of macaque V1 in
Chapter 7. In this chapter, we aim at taking the laminar as well as lat-
eral structure of cortex into account. The model includes biologically
constrained distance-dependent connection probabilities. Additionally,
higher-order connectivity structures such as patchy connectivity medi-
ated by orientation preference are embedded in the network.
Simulations of the model developed in Chapter 7 fail to exhibit rea-
sonable activity given biologically plausible parameters for single
cell dynamics. Indeed, an additional analysis reveals that the local
structure of cortical connectivity cannot be reconciled with realistic
activity without ad-hoc changes of the structure of the network. This
necessitates a more detailed investigation of the architecture of local
cortical circuits. Using recent reconstructions of the cortical tissue in
mouse visual and human temporal cortex, we construct connectivity
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maps in Chapter 8 to facilitate this investigation. We find stark differ-
ences between the cortical connectivity derived in Chapter 7 and in
Chapter 8: the connectivity maps derived in the latter chapter exhibit
architectural features that can help mitigate the problems in dynamical
simulations encountered when using the former one.





6
T O P - D O W N M O D U L AT I O N S I N S P I K I N G N E U R A L
N E T W O R K M O D E L S

The chapter is in part based on the following publication:

Morales-Gregorio, A., Kurth, A. C., Ito, J., Kleinjohann, A.,
Barthélemy , F. V., Brochier, T., Grün, S., & van Albada, S. J. (2023).
Neural manifolds in V1 change with top-down signals from V4

targeting the foveal region. bioRxiv, doi: 10.1101/2023.06.14.544966

Author contributions:
Under the supervision of SvA, SG and JI, the author and AMG
conceptualized and designed the in silico experiments. The author
wrote the simulation code. The author and AMG performed the
analysis of the simulated data which was refined through discussions
between the author, AMG, JI, SG, and SvA.

49



50 top-down modulations in spiking neural network models

6.1 introduction

Sparsely connected random networks of excitatory and inhibitory
neurons are simple models of neural circuits. If the recurrent excita-
tory and inhibitory inputs cancel each other on average (leading to a
mean zero input current with finite fluctuations), these networks are
called balanced. Provided that certain conditions regarding the size of
the network, the connection probability between the neurons and the
average indegree of as well as the evoked post-synaptic potentials in
single-cells are satisfied (cf. Chapter 5), these networks can be consid-
ered as one of the simplest instances of biologically plausible spiking
neural network models of local cortical circuits. As such, they are able
to capture some fundamental properties of neuronal activity in vivo
and in vitro (Maksimov et al., 2018).
Balanced networks and their variations have been occupying promi-
nent places in Computational Neuroscience (e.g. Brunel (2000), Rosen-
baum and Doiron (2014), Schaub et al. (2015), and van Vreeswijk
and Sompolinsky (1996) to list some). Among others things, they have
been studied analytically with binary (van Vreeswijk and Sompolinsky,
1996) and spiking (Brunel, 2000) model neurons. Van Vreeswijk and
Sompolinsky (1996) showed the chaotic nature of neuronal dynam-
ics in such networks of binary neurons. Moreover, they highlighted
that the response time to an external perturbation of a network in
the balanced state is shorter than the response time of single units.
Brunel (2000) explored the repertoire of neuronal activity. The author
described a stationary, asynchronous state with irregular single-cell
firing that resembles cortical activity, alongside asynchronous and syn-
chronous regular, as well as synchronous irregular states. Monteforte
and Wolf (2012) investigated the sensitivity of the activity in balanced
spiking networks to perturbations on the single spike level.
In this chapter, we set out to use simulations of a balanced spiking neu-
ral network model to reproduce the experimentally observed change
in dynamical state shown in Chapter 4. There, we related the states to
the eye closure of the monkeys. Moreover, top-down modulation from
V4 to the primary visual cortex was identified as a potential trigger for
the observed change in state. However, due to the experimental setup
and limitations in the available recordings, this hypothesis could not
be tested directly.
We here simulate a spiking network model of the local cortical circuit
in macaque primary visual cortex to investigate the effects of a simple,
external modulations on its dynamical state. The approach taken in
this chapter is minimal in the sense that it is neither the goal to ex-
haustively investigate plausible changes in model architecture, nor to
explore a wide range of potential effects on single neurons induced
by top-down modulation influencing the network dynamics. Rather,
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we focus on a variation of an established model in a simple setup to
ascertain the consistency of our hypothesis with in silico experiments.

6.2 methods

To investigate whether top-down signals in the β-band can induce a
change in the population dynamics, we conduct simulations of spik-
ing neural network models inspired by (Brunel, 2000). The network
consists of an excitatory population of 10.000 and an inhibitory pop-
ulation of 2.000 leaky integrate-and-fire (LIF) model neurons with
alpha-function shaped post-synaptic currents. Pairs of neurons are
randomly connected with a connection probability of p = 0.1, leading
to an average indegree of about 1000 excitatory and 200 inhibitory
connections. The spike transmission delay is randomly sampled for
each connection following a log-normal distribution.
The simulation experiments consist of two parts corresponding to the
eyes-open and eyes-closed states, modeled via different input regimes.
In the first input regime (background input), the input consists of
spike trains sampled from inhomogeneous Poisson processes with
a baseline rate of νbg Hz that is modulated with a 10 Hz sinusoidal
oscillation. In the second input regime, the network additionally re-
ceives input consisting of spike trains from inhomogeneous Poisson
processes with rates oscillating at 20 Hz representing the top-down
innervation. The first state is meant to represent the eyes-closed, the
second the eyes-open condition. Both input regimes provide inde-
pendent, identically distributed input to each neuron, based on the
corresponding rate profiles. During the simulation, the spiking activity
of 1, 000 excitatory and 200 inhibitory neurons is recorded.
We explore three different top-down innervation modes by provid-
ing input to different subsets of neurons in the network. In the first
innervation mode, projections target a subset consisting of 50% of
neurons in the network in both the excitatory and inhibitory popula-
tion. Secondly, we provide top-down modulations targeting the subset
described above as well as all neurons in the network in an alternating
way. Finally, neurons are assigned to five overlapping subsets, each
consisting of 50% of the neurons in the populations. In this mode, each
subset is innervated independently, leading to five different pathways.
The modulations are only applied along one pathway at a time.
See Table 6.1, Table 6.2, and Table 6.3 for a full description of the
network and the experiments in the style of Nordlie et al. (2009a).
To compare the simulated activity with the neural activity analyzed
in Chapter 4, we calculate the time resolved firing rate of the single-
neuron activities with a bin-size of 1 s (cf. Figure 4.2). Additionally,
we computed a detrended version of this firing rate, subtracting the
mean firing rate of that neuron during the different input regimes.
Again, akin to Chapter 4 we employed a dimensionality reduction
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based on principal component analysis (PCA) to visualize the activity
in the different states (see Section 4.2.2). When multiple modulations
are provided, we compute the PCA in a innervation mode specific
manner. Secondly, when the entire activity was used for the principal
component analysis, we call this full PCA.
For the simulations we used NEST (version 3.3, Spreizer et al. (2022)).

Table 6.1: General model description of balanced spiking neural network
model

Model Summary

Populations two populations, one excitatory, one inhibitory

Connectivity random connectivity

Neuron model leaky integrate-and-fire model

Synapse model alpha-function shaped postsynaptic current

Input independent spike trains from inhomogeneous

Poisson processes with given rate r(t)

Neuron and synapse model

Subthreshold dynamics dV
dt = − V

τm
+

Isyn(t)
Cm

,

Isyn(t) = J e
τsyn

(t− t∗ − d)e−(t−t∗−d)/τsyn×

H(t− t∗ − d)

Spiking If V(t−) < θ and V(t+) ≥ θ,

1. Set t∗ = t and V(t) = V0, and

2. Emit spike with time stamp t∗.

Connectivity

Type pairwise Bernoulli,

i.e., for each pair of neurons generate a

synapse with probability p

Weights fixed source- and target-population

specific weights

Delays log-normally distributed delays for

excitatory and inhibitory neurons

Input

Background r(t) = max(0, ν
bg
base + ν

bg
amp · sin(2π f bg · t))

Top-down modulation r(t) = max(0, νtd
base + νtd

amp · sin(2π f td · t))



6.2 methods 53

Table 6.2: Simulation parameters of balanced spiking neural network

Population Parameters

Nex 10,000 number of excitatory neurons

Nin 2,000 number of inhibitory neurons

Connectivity Parameters

p 0.1 connection probability

Neuron parameters

τm 20 ms membrane time constant

τr 2 ms absolute refractory period

τsyn 2 ms postsynaptic current time constant

Cm 250 pF membrane capacity

Vm 0 mV resting potential

EL 0 mV membrane capacity

Vreset 0 mV reset membrane potential

Vth 20 mV threshold

Synapse parameters

JEE 6.4 pA synaptic efficacy excitatory to excitatory

JIE 9.5 pA synaptic efficacy excitatory to inhibitory

g 4 relative inhibitory synaptic efficacy

JEI −g · JEE synaptic efficacy inhibitory to excitatory

JII −g · JEE synaptic efficacy inhibitory to inhibitory

Delay parameters

µex 1.5 ms mean of lognormal distribution

for excitatory connections

µin 0.75 ms mean of lognormal distribution

for inhibitory connections

σex,in 0.5 ms standard deviation of lognormal

distribution for all connections
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Table 6.3: Stimulation parameters of balanced spiking neural network

Stimulus parameters: Background

ν
bg
base 8682 spikes/s baseline rate

ν
bg
amp 2170 spikes/s amplitude

f 10 Hz sinusoidal oscillation frequency

Stimulus parameters: Top-down signal

νtd
base 0 spikes/s base line rate

νtd
amp 723 spikes/s amplitude

f 20 Hz sinusoidal oscillation frequency

ptd
0.5 fraction of neurons targeted by top-down

modulation in setup 1 and 3

ptd
1 fraction of neurons targeted by top-down

modulation in setup 2
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6.3 results

In the first innervation mode, where the additional external drive
targets a subset consisting of 50% of all neurons (Figure 6.1a), the
modulation leads to two distinct cluster in the PCA of the network
activity (Figure 6.1d). Note that over time, the population-averaged
firing rate varies only slightly with the modulation (Figure 6.1b). The
observed shift in the neural manifold is not due to an increase in
firing rate caused by additional external input (Figure 6.1e). Rather,
it appears to be caused by a change in firing rate in some neurons,
changing neurons with the highest activity (Figure 6.1f).
Simulation with the second innervation mode (two alternating inputs)
support the notion that the change in state is not just due to an increase
in the average firing rate of the network. The first input is the same as
in innervation mode one (targeted top-down modulation); the other
targets all neurons (untargeted top-down modulation, Figure 6.2a).
We first note that the population-averaged firing rate varies with both
additional input modes. In the untargeted case, the increase is smaller
than when the targeted modulation is applied (Figure 6.2b). Separating
both top-down modulation inputs, we observe that in the targeted case
again two clusters appear in the modulation-specific PCA projection
(Figure 6.2c). However, the untargeted modulation does not lead to
a separation of manifolds in the PCA projection (Figure 6.2d). When
applying the PCA to the entire simulation, the observations remain
identical (Figure 6.2e). Since in the untargeted case the mean firing
rate is not expected to change with respect to the background state,
this provides evidence that indeed the change in the dominant groups
of neurons causes the change of the neural manifold.
To further investigate the relationship between the highly active neu-
rons and the neural manifolds, we analyze the activity of a simulation
applying the third innervation mode. Here, five subsets each consist-
ing of 50% of the neurons of both population are targeted alternately.
In the full PCA projection, we observe six clusters, one belonging to
each targeted subset, and one for the background state (Figure 6.3c).
Again, the mean firing rate distribution remains similar across all
modulations and the background input regime (Figure 6.3d). The
change of the mean activity of single-neurons is, however, distinct for
each of the five pathways (Figure 6.3e). From this, we conclude that
different neural manifolds can be induced by an alteration of the most
active neurons in a network.
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Figure 6.1: Simulation of a balanced spiking neural network with top-down
modulation in the first innervation mode, in which the external
drive targets a subset consisting of 50% of neuron in both popula-
tions. Different colors indicate the different input regimes. a Dia-
gram of balanced random spiking neural network. Background
input is provided constantly, top-down signals are provided in-
termittently. b Sample raster plots show spiking activity in the
different input regimes when only the background input is pro-
vided. c Time evolution of input regimes, mean firing rate (FR)
and detrended firing rates ordered by magnitude of the rate. d
First two principal components of the firing rate (binsize = 1 s).
Colours indicate the different input regimes. e Distribution of
mean firing rate per neuron is almost identical between the two
regimes. f Mean firing rate of the 100 most active neurons. The
top-down modulation changes the mean firing rates of certain
neurons, in both the positive and negative directions.
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Figure 6.2: Simulation of a balanced spiking neural network with top-down
modulations in the second innervation mode, in which an al-
ternating external input to a subset as in the first innervation
mode and to all neurons in the network is provided. Different
colors indicate the different input regimes. a Diagram of balanced
random spiking neural network with background input and both
modulations. Sample raster plots show spiking activity in dif-
ferent input regimes. b Time evolution of input regimes, mean
firing rate, and detrended firing rates ordered by magnitude of
the rate in the when only the background input is provided. c
First two principal components of the modulation-specific PCA of
the firing rate of background state and the targeted modulation. d
First two principal components of the modulation-specific PCA of
the firing rate of background state and the untargeted modulation.
e First two principal components of the full PCA of the firing rate
of background state and both modulations states.
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Figure 6.3: Simulation of a balanced spiking neural network with top-down
modulations in the third innervation mode, in which alternating
external input target five different, overlapping subsets of the net-
work. Each subset consists of 50% randomly sampled neurons in
both populations. a Sample raster plots show spiking activity in
different input regimes. b Time evolution of input regimes, mean
firing rate (FR), and detrended firing rates ordered by magnitude
of the rate when only the background input is provided. c First
three principal components of the full PCA of the firing rate of
background state and the five targeted modulations. e Distribu-
tion of mean firing rate per neuron is almost identical between
different input regimes and projection patterns. f Mean firing rate
of the 100 most active neurons in different input regimes and
projection patterns. The top-down modulation changes the mean
firing rates of certain neurons, giving rise to a distinct activity
profile.
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6.4 discussion

We here show that a change in neural manifold can be induced by
a targeted top-down modulation in a spiking neural network model.
This finding is consistent with the hypothesis developed in Chapter 4.
Thereby, we give credibility the mechanism suggested there of top-
down modulations from V4 causing the observed shift in the neural
manifold of resting-state activity in V1. Furthermore, the different
manifolds in the in silico experiments are not due to an increase in
firing rate. Our results show that they are caused by different groups
of most active neurons in the network. This can be understood via
the detrended single-neuron firing rates (Figure 6.1c, Figure 6.2b, Fig-
ure 6.3c): we observe that the targeted top-down modulation alters the
activity of the neurons. Targeting different subsets leads to different
alterations in the activity pattern. The untargeted input additional to
the background stimulation leads to no discernible change. These al-
terations cause a shift in the high-dimensional neural activity, leading
to separate neural manifolds. Additionally, innervating the network
along the same pathway leads to the same high-dimensional activity
states. This finding in the in silico experiments supports the in vivo
observation that the V4-to-V1 signals induce the neural manifolds,
and suggest that the top-down signals from V4 target always a similar
subset of V1 neurons in the macaque brain.
The spiking neural network used here is inspired by the well-known
model studied by Brunel (2000). We limited the analysis of the spiking
activity to the presence of neural manifolds, because our model was ill-
suited to study the dimensionality, given that average cross-correlation
is known to cancel out in balanced spiking networks (Doiron et al.,
2016; Tetzlaff et al., 2012). Future work could use more complex mod-
els —such as clustered networks, see e.g. Doiron et al. (2016), Rostami
et al. (2022), and Schaub et al. (2015) —to study the effects of correlated
inputs with realistic power spectra on the dimensionality and eluci-
date whether the top-down signals can directly induce the observed
increase in the dimensionality during the eyes-open periods.
Manifolds in the primary visual cortex of macaque in vivo might be
additionally sustained by other means. Potential mechanisms include
N-methyl-D-aspartate (NMDA) receptors (central to the top-down
communication from V4 to V1, see e.g. Self et al. (2013) and Van Loon
et al. (2016)) or cell-type specific recurrent connectivity (Dahmen et al.,
2020). The former is believed to contribute to decorrelation during
eyes-open states (Herrero et al., 2013). Additionally, the slow time-
scales of NMDA receptors could support the network dynamics in
remaining in the corresponding manifold, especially in view of non-
constant top-down signals during eyes-open periods (cf. Figure 4.10).
The latter has been shown to control the dimensionality of neural
networks, and could play a role in controlling distinct effective connec-
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tivities in a rigid (at least at the time-scales relevant for the analysis
conducted in Chapter 4) anatomical network.
The exploration of these potential mechanism, their viability for sup-
porting neural manifolds in the V1 eyes-open state, are possible future
extensions of the work presented here.
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7.1 introduction

In the last chapter, we employed a spiking neural network model with
a realistic connection probability, plausible single-neuron indegrees
and biologically constrained evoked post-synaptic potentials to inves-
tigate the hypothesis whether a top-down modulation from V4 can
induce a change in the neural manifold in V1. The simple model used
there could indeed confirm this mechanism as a potential cause for
the separation of neural manifolds observed in Chapter 4 with in silico
experiments. While suitable for the addressed research question, the
model ignores features that are fundamental to the architecture of
cortical circuits. The most apparent neglected organizational principles
are the laminar and lateral (i.e. vertical and horizontal with respect to
the cortical surface) structure of connectivity within a cortical area.
The simple model thus has limited validity when investigating the re-
lationship between the structure of the cortex and its dynamics. In the
following, we explore the aforementioned organizational principles in
more detail.
The neocortex is classically subdivided into six layers or laminae based
on occurring cell-types and their densities (Abeles, 1991). The size of
these layers, the number of neurons and synapses they contain, as
well as the number of sub-layers vary with cortical area. The primary
visual cortex (V1) of macaque, for example, has a dominant layer 4
(also referred to as granular layer) which is strongly innervated by pro-
jections from the thalamic lateral geniculate nucleus (LGN) (Kandel
et al., 2013). Via this pathway, visual input is provided to V1. The
laminar organization is believed to underlie the cortical computation.
Cortical columns, comprising the neurons in all layers under a small
patch of brain surface, have been hypothesized to be the functional
building block of the cortex (Mountcastle, 1957).
Additionally to the laminar structure, cortex also exhibits a prominent
lateral organization. We here distinguish three types of horizontal
connections: short- (approximately < 200 mm), medium- (dominating
between 200 mm to 500 mm), and long-range (appearing at distances
>500 mm) connectivity. The former two comprise the connections
within the local cortical network that are established by the axon
collaterals close to the cell body (Voges et al., 2010). Short-range con-
nectivity often is cell-type specific and is organized via motifs in the
network topology, see e.g. Peng et al. (2021) and Perin et al. (2011). On
a medium-range, less is known about the specificity of neuronal con-
nectivity. The probability of establishing connections on this scale can
be assumed to decay with an exponential profile (Markov et al., 2011).
Long-range connections often terminate in quasi-periodic patches sep-
arated by a positive distance, henceforth named patchy connectivity
(Angelucci et al., 2002; Gilbert and Wiesel, 1989; Rockland and Lund,

1 https://github.com/INM-6/mesocircuit-model

https://github.com/INM-6/mesocircuit-model
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1982; Tanigawa et al., 2005). Patchy connections are made by axons
that travel up to several millimeters parallel to the cortical surface and
branch out at certain sites (Voges et al., 2010). They are best investi-
gated in visual areas but occur also in other sensory cortices as well
as the motor cortex (Lund et al., 1993). It is noteworthy that they are
found in the primary visual cortex only in some species, including all
primates and carnivores but not in for example gray squirrels (Van
Hooser et al., 2006).
In this chapter, we set out to construct a biologically constrained
spiking neural network model of macaque primary visual cortex in-
tegrating both its layered and its spatial structure. V1 is the largest
cortical area in the macaque (Sincich and Horton, 2005). The primary
visual cortex not only receives strong visual input from the LGN. It
also sends feed-forward projections to and receives feedback projec-
tions from other visual areas, see e.g. Maunsell and Newsome (1987).
It is considered to be the first stage of cortical visual processing and
the lowest area in the visual hierarchy (Felleman and Van Essen, 1991).
In V1 (but also in e.g. V2, V4) the visual scene is mapped in a contin-
uous but non-linear way onto the cortex, leading to nearby neurons
having overlapping receptive fields (Tootell et al. (1982) and Vanni
et al. (2020), known as retionotopy).
Beyond this direct spatial representation, Hubel and Wiesel (1959)
showed (initially in cat) that neurons in V1 have more intricate re-
sponse properties. Those include stimulus selectivity, e.g. to orienta-
tions, spatial/temporal frequency and direction. Here, we focus on
the orientation selectivity, i.e. the dependence of the firing rate of
single-neurons on the angle of a grating moving across the visual
scene. Cells of given orientation preference —determined by their
strongest response in such experiments —cluster quasi-periodically
in so-called iso-orientation domains. This organization gives rise to
the orientation map, which also present in some higher visual areas
such as V2 or V4 (Blasdel and Salama, 1986). Experimental work sug-
gests that in V1 no orientation is overrepresented (Ju et al., 2021). In
the primary visual cortex of macaque, the orientation map mediates
the cortical organization: it has been shown that patchy connections
preferentially link neurons with similar orientation preference over
long distances (Stettler et al., 2002). Iso-orientation domains thus are
of great importance for long-range patchy connections.
Taken together, macaque V1 is a good candidate for building a digital
twin in the form of a biologically plausible, large-scale spiking neural
network: its anatomy and physiology have been investigated in a
long line of research that continues to this day, see e.g. Trepka et al.
(2022). Additionally, there is a close link between the structure of the
primary visual cortex (e.g. retionotopy, patchy connectivity, etc.) and
its (putative) function.
Multiple spiking neural network models of cortical sensory areas
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taking into account the layered and/or spatial structure of cortex
have been developed in the past years. Potjans and Diesmann (2014)
constructed a spiking neural network model of the cortical microcir-
cuit below 1 mm2 patch of brain surface. To obtain the underlying
connectivity map of the local cortical network, they integrated anatom-
ical data across multiple species. Simulations of the network exhibit
asynchronous and irregular spiking activity and realistic, cell-type
specific firing rates in the resting-state. Building on this, Senk et al.
(2023) derived an upscaled version of the cortical microcircuit model
using horizontally distance-dependent connection profiles specific
to excitatory and inhibitory connections. As a scaffold for the local
connectivity, they used a version of the model by Potjans and Dies-
mann (2014) adapted to neuron and synapse numbers in macaque
V1 (Schmidt et al., 2018b). The model by Senk et al. (2023) represents
the neural tissue below a 4 mm× 4 mm patch of cortex. The authors
computed LFP predictions of the cortical activity using the simulated
spiking activity with a hybrid scheme (Hagen et al., 2016). There,
LFP predictions are determined using multicompartmental neuron
models with a realistic distribution of synapses to faithfully model
the synaptic and ionic currents, while the network activity is based
on point neuron model simulations. The spiking activity in Senk et al.
(2023) exhibits heterogeneous firing rates as well as spiking variability
in agreement with experimentally recorded activity, and is excitable in
the sense that upon a focused stimulation a spatial spread of activity
with realistic propagation speed can be observed. Additionally, in a
state of spontaneous network activity, the computed LFP are spatially
correlated and coherent, their amplitudes agree with experimentally
observed ones.
A different approach was undertaken by Antolík et al. (2018). There,
the authors built a spatially organized spiking neural network model
of layer 2/3 and 4 of cat visual cortex, sparing the infragranular lay-
ers. The network is recurrently connected in a layer- and population-
specific way with distance dependent connection probabilities. Among
other things, endowing the circuit with a pre-computed orientation
map, they additionally include long-range patchy connectivity. Antolík
et al. (2018) suggest a list of validation experiments to be performed
with the model. The in silico spiking activity is used to check for consis-
tency with data from neural recordings. Their network satisfies these
tests. In contrast to the work of Potjans and Diesmann (2014) and Senk
et al. (2023), however, the model is not full-scale. The density of both
neurons and synapses are reduced in comparison with the tissue in
cat V1.
Billeh et al. (2020), on the other hand, constructed a full-scale model of
the mouse primary visual cortex, including both the layered and spa-
tial structure. The network model combines a large body of anatomical
and electrophysiological data, primarily obtained in the Allen Institute
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for Brain Science2. They simulate the network in two ways: using
single-neuron models taking into account the cells’ morphologies as
well as point neuron models. The simulated activity using either ap-
proach is consistent with experimental data recorded in mouse visual
cortex and lead to qualitatively similar conclusions.
The efforts presented here aim at incorporating the laminar struc-
ture of cortex, the spatial organization of intra-areal connectivity on
both local and long-range scales, and realistic numbers of neurons
and synapses into a comprehensive model macaque primary visual
cortex. We thus directly extend the work by Senk et al. (2023). In
comparison with Antolík et al. (2018), our model represents the full
neural tissue below the cortical surface with biologically plausible
numbers of neurons and synapses. In contrast to Billeh et al. (2020),
our network incorporates the orientation preference map as well as
long-range patchy connections mediated by the iso-orientation do-
mains. The latter are not present in mouse visual cortex which exhibits
a “salt-and-pepper“ organization (Ohki and Reid, 2007).
To constrain our model of macaque V1, we preferentially use experi-
mental results from that species. However, this is not always possible
due to lacking data. When necessary, insights gained from studies
conducted on other species are employed.

7.2 methods

We integrate a large body of anatomical and physiological data to
construct a biologically plausible model of macaque primary visual
cortex.
In the model, the cortical layers 2/3A, 3B, 4AB, 4C, 5, and 6 are distin-
guished. We thus use a finer laminar resolution than in the works by
Potjans and Diesmann (2014), Schmidt et al. (2018b), and Senk et al.
(2023). The separation into layers 2/3A and 3B is motivated by the
cortical counterstream hypothesis, suggesting that layers play different
roles in receiving and sending feed-forward and feed-back projections
(Markov et al., 2013). We moreover split layer 4 into 4AB and 4C: layer
4C is the primary target of thalamic projections in the granular layer
(Garcia-Marin et al., 2017) and has different lateral connectivity in
comparison with layer 4AB.
In each layer there is an excitatory and an inhibitory population, de-
noted by e.g. L2/3AE or L2/3AI for the respective populations. We
generally aim at representing the tissue below an at least 4 mm× 4 mm
patch of cortical surface, although the side length can be regarded as a
free parameter in the subsequent derivations. However, a sufficiently
large side length is necessary for incorporating spatial connections in
a reasonable way in the model. Hence, only some results regarding
the network architecture remain valid in smaller models.

2 https://alleninstitute.org/division/brain-science/

https://alleninstitute.org/division/brain-science/
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Synapses are classified as intra-areal, inter-areal (also referred to as
cortico-cortical) or thalamo-cortical.
Regarding the lateral structure of cortical connectivity, we differentiate
between long-range patchy, medium-range isotropic and short-range
push-pull connectivity (see Section 7.1).
In the following, neural populations in our model are denoted by
A, B, ... ∈ {L2/3AE, L2/3AI, ..., L6I}, layers by u, v, ... ∈ {L2/3A, ..., L6}
and the excitatory or inhibitory nature of synapses by X, Y ∈ {E, I}.
We write “synapse of type X” to indicate that a synapse stems from an
excitatory or inhibitory neuron (the appropriate term has to be chosen
depending on X).

7.2.1 Number of neurons and synapses

Given a cortical layer u in V1, the data provided in Vanni et al. (2020)
(cf. Table 2, combining multiple sources, Beaulieu et al. (1992), Fitz-
patrick et al. (1987), Giannaris and Rosene (2012), Hendry et al. (1987),
and O’Kusky and Colonnier (1982)) yields the number of neurons per
layer, Nu (as well as the number of excitatory and inhibitory neurons
Nu

E , Nu
I ), and the total number of synapses per layer Su. Each synapse

can be assigned to one of the aforementioned classes, leading to the
decomposition:

Su = Sia,u + Scc,u + Stha,u (7.1)

Here, Sia,u denotes the intra-areal, Scc,u the cortico-cortical, and Stha,u

the thalamo-cortical number of synapses in layer u.
In Vanni et al. (2020) layer 3A and 3B are not distinguished, only
information for layer 3 is provided. Assuming a uniform distribution
of cells and synapses in layer 3, we subdivide the number of neurons
and synapses according to the mean thicknesses of layers 3A and 3B,
combining data collected by Schmidt et al. (2018b).

7.2.2 Laminar structure of cortical connectivity

To derive a layer-resolved connectivity map for the intra-areal synapses,
we combine connection probabilities (data from Binzegger et al. (2004)
of cat V1, there is no equally complete list of connection probabilities
for macaque to be found in the literature) with the “anatomical con-
nection strength” (here referred to as projection strength) in macaque
primary visual cortex compiled by Vanni et al. (2020) (cf. their Figure
2).

7.2.2.1 Connection probabilities

Binzegger et al. (2004) reconstructed 39 neurons in cat primary visual
cortex using light microscopy. Each neuron was assigned to a neuron
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type determined by its layer of origin, the morphology of its axonal
and dendritic trees, and whether it was excitatory or inhibitory. In
this way, for example, pyramidal and spiny stellate cells in layer
4 are distinguished in their data. Thus, the neuron types used by
Binzegger et al. (2004) are more fine grained than the distinction in
neural populations used here: post-synaptic types can be assigned to
populations in cortical layers, pre-synaptic types additionally include
cortico-cortical and thalamic connections. The laminar resolution of
the data from Binzegger et al. (2004) comprises layers 1, 2/3, 4, 5, 6.
Employing a modified version of Peters’ rule —synapses between
neurons are established by chance depending only on the vicinity
of a presynaptic axon and postsynaptic dendrite (Braitenberg and
Schüz, 1991) —Binzegger et al. (2004) derived the average number
of synapses between pre- and postsynaptic neurons of given types i
and j. This approach rests on the assumption that synapses are evenly
distributed on the target processes. Taking into account numbers
of neurons and synapses in cat V1 (Beaulieu and Colonnier, 1985;
Beaulieu and Colonnier, 1983), they computed the average number of
synapses between neurons of type i and j in layer ν, denoted by s|νij .
From this, the following quantities can be obtained (cf. Izhikevich and
Edelman (2008)):

• the probability for an existing connection onto a neuron of type
i with synapse in layer u to stem from a neuron of type j, p|u|ij

• the total number of synapses onto neurons of type i that reside
in layer u, su

i

• relative occurrence of neurons of type i, ci

In the following, we employ these quantities in our derivations.
Regarding notation: Here and in the following the vertical bar | indi-
cates that a quantity under consideration is conditional on the variable
after the bar. In case that the quantity is a probability, e.g. p|v|ij, this

implies that ∑j p|v|ij = 1.

intra-areal connections We ultimately aim at calculating the
probability that an intra-areal synapse in layer u targets population A
and is excitatory or inhibitory, X, denoted by p̄|u,X

A . The dependence on
u is important here: while the cell body of a neuron from population
A resides in a certain layer, say v, it does not necessarily follow that
v = u. Indeed, intra-areal connections onto a, e.g., pyramidal neuron
are in part established on its apical dendrite outside its layer of origin.
To calculate p̄|u,X

A , we first consider probability for an intra-areal
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synapse of type X in layer u to establish a connection that targets
population A, which can be written as

p|u,|X
A =

# intra-areal X synapses in layer u targeting population A
# intra-areal X synapses in layer u

.

(7.2)

Here and in the following “#” is shorthand notation for “number of”.
Given the total number of neurons N and the above quantities we
have

N · ci = total number of neurons of type i

N · ci · su
i = total number of synapses in layer u with

a postsynaptic neuron of type i

N · ci · su
i · p

|u
|ij = total number of synapses in layer u with

a postsynaptic neuron of type i that have
a presynaptic neuron of type j

Thus

p|u,|X
A =

∑
i∈A

∑
j∈X∩ia

N ci su
i p|u|ij

∑
i

∑
j∈X∩ia

N ci su
i p|u|ij

=

∑
i∈A

∑
j∈X∩ia

ci su
i p|u|ij

∑
i

∑
j∈X∩ia

ci su
i p|u|ij

, (7.3)

where j ∈ X ∩ ia is a symbolic notation for all cortical neuron types j
(and thus establishing intra-areal connections) that have X synapses.
Using the expression for the total number of intra-areal X synapses in
layer u (the denominator of Equation 7.3)

Sia,u
X = ∑

i
∑

j∈X∩ia
N ci su

i p|u|ij (7.4)

we determine the fraction of intra-areal synapses in that layer:

f ia,u =

∑
i

∑
j∈ia

N ci su
i p|u|ij

∑
i

∑
j

N ci su
i p|u|ij

=

∑
i

∑
j∈ia

N ci su
i p|u|ij

∑
i

N ci su
i

. (7.5)

Here we used that ∑j p|u|ij = 1. Similarly, the fraction of cortico-cortical
synapses in layer u, f cc,u, as well as the fraction of thalamo-cortical
synapses in layer u, f tha,u are calculated. We additionally calculate the
fraction of intra-areal resp. cortico-cortical synapses in layer u relative
to the sum of intra-areal and cortico-cortical synapses in that layer as

f̄ ia,u =
f ia,u

f ia,u + f cc,u , f̄ cc,u =
f cc,u

f ia,u + f cc,u (7.6)



7.2 methods 69

With the absolute number of synapses the fraction of intra-areal exci-
tatory/inhibitory synapses in a given layer u can be determined by

/s |uE =
Sia,u

E

Sia,u
E + Sia,u

I

and /s |uI = 1− /s |uE . (7.7)

Noting that

Sia,u
E + Sia,u

I = Sia,u = ∑
i

∑
j∈ia

N ci su
i p|u|ij , (7.8)

we finally calculate

/s |uX · p
|u,|X
A (7.9)

=

∑
i

∑
j∈X∩ia

N ci su
i p|u|ij

∑
i

∑
j∈ia

N ci su
i p|u|ij

·
∑

i∈A
∑

j∈X∩ia
ci su

i p|u|ij

∑
i

∑
j∈X∩ia

ci su
i p|u|ij

=

∑
i∈A

∑
j∈X∩ia

ci su
i p|u|ij

∑
i

∑
j∈ia

ci su
i p|u|ij

= p̄|u,X
A ,

which we identify with the desired quantity, i.e. the probability that
an intra-areal synapse in layer u targets population A and is of type
X.
Since the laminar granularity of the used data is coarser than the
one of the model, we need to adapt p̄|u,X

A to account for the case of
sublayers and sub-populations of layers 2/3 and 4. Denoting by a ] b
the union of disjoint objects (here layers or populations) a and b, we
decompose the respective populations and layers as

A = A1 ] A2 (7.10)

u = u1 ] u2, (7.11)

where A is a population in layer u, A1 and A2 are the sub-populations
of A in the respective sublayers u1 and u2. Consider a synapse that
resides in a different layer v. We note that

p̄|v,X
A = p̄|v,X

A1
+ p̄|v,X

A2
(7.12)

and define

p̄|v,X
A1

=
N1

N1 + N2
p̄|v,X

A , p̄|v,X
A2

=
N2

N1 + N2
p̄|v,X

A (7.13)

with N1 and N2 being the number of neurons of the respective sub-
populations. This is based on the assumption that synapse of type X
that reside in layer v uniformly target neuron in the subpopulation of
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A. In the case that v itself consists of two sublayers, v = v1 ] v2, we
assume no dependence of the connection probability on the sub-layer
that the synapse lies in, i.e.

p̄|v1,X
A = p̄|v2,X

A = p̄|v,X
A (7.14)

Thus, Equation 7.12 becomes

p̄|v,X
A = p̄|v1,X

A1︸ ︷︷ ︸
N1

N1+N2
p̄|v,X

A

+ p̄|v1,X
A2︸ ︷︷ ︸

N2
N1+N2

p̄|v,X
A

= p̄|v2,X
A1

+ p̄|v2,X
A2

(7.15)

Finally, we consider the case where the synapse resides in the same
(sub-)layer as the postsynaptic neuron, denoted by u. While the above
described approach is sensible for connections targeting a population
not located in the same sublayer, it leads to unexpected results if the
target population is in that sublayer.
Indeed, if decomposed according to the number of neurons in ui
relative to the number of neurons in u, we have, denoting by Ai a
subpopulation in ui, either

p̄|u1,X
A1

> p̄|u2,X
A1

and p̄|u1,X
A2

> p̄|u2,X
A2

(7.16)

or

p̄|u1,X
A1

< p̄|u2,X
A1

and p̄|u1,X
A2

< p̄|u2,X
A2

(7.17)

since

p̄|ui ,X
Aj

=
Nj

N1 + N2
p̄|ui ,X

A =
Nj

N1 + N2
p̄|u,X

A (7.18)

is independent of i and thus

p̄|u1,X
A1

= p̄|u2,X
A1

, p̄|u1,X
A2

= p̄|u2,X
A2

. (7.19)

In Equation 7.16, for example, the second part is problematic since
one expects the connection probability to be largest to the population
within the layer, and vice versa for Equation 7.17.
To circumvent this problem, we introduce an ad-hoc splitting factor
α = 0.8 replacing the relative number of neurons in the sublayers. We
hence set

p̄|u1,X
A1

:= α · p̄|u,X
A , p̄|u1,X

A2
:= (1− α) · p̄|u,X

A (7.20)

and

p̄|u2,X
A1

:= (1− α) · p̄|u,X
A , p̄|u2,X

A2
:= α · p̄|u,X

A . (7.21)

This concludes the derivation of intra-areal connection probabilities.
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cortico-cortical connections Similarly, we calculate the
respective probability for cortico-cortical connections. We assume
all cortico-cortical connections to be excitatory. The probability for
a cortico-cortical synapse in layer u to establish a connection with
population A is

p|u,cc
A =

# cortico-cortical synapses in layer u targeting population A
# cortico-cortical synapses in layer u

(7.22)

and thus

p|u,cc
A =

∑i∈A N ci su
i p|u|i,cc

∑i N ci su
i p|u|i,cc

=
∑i∈A ci su

i p|u|i,cc

∑i ci su
i p|u|i,cc

, (7.23)

where p|u|i,cc is the probability for a synapse in layer u that targets
population i has a presynaptic neuron of cortico-cortical origin.
Again, the probabilities p|u,cc

A have to be split due to the different layer
resolution used Binzegger et al. (2004). We proceed as in Equation 7.12

and Equation 7.14 for the relevant layers.

thalamo-cortical connections Finally, the probability for a
thalamo-cortical synapse (i.e. a synapse terminating in the cortex with
presynaptic neuron residing in the thalamus) in layer u to establish a
connection with population A is determined by

p|u,tha
A =

# thalamo-cortical synapses in layer u targeting population A
# thalamo-cortical synapses in layer u

.

(7.24)

As for cortico-cortical connections, we assume all thalamo-cortical
connections to be excitatory. We again modify the laminar resolution
of the connection probabilities p|u,tha

A as above (Equation 7.12 and
Equation 7.14), except for layer 4. Assuming that synapses terminating
in one of the sub-layers of layer 4 establish only connections within
this sub-layer, we set

p|L4A/B,th
L4A/BE = p|L4,th

L4E , p|L4A/B,th
L4CE = 0 (7.25)

as well as

p|L4C,th
L4CX = p|L4,th

L4X , p|L4C,th
L4A/BX = 0. (7.26)

7.2.2.2 Anatomical projection strengths

Vanni et al. (2020) reviewed the anatomy and physiology of (among
other areas) macaque V1 and compiled a “connection strength” matrix
of the intra-area and thalamo-cortical connectivity. In the following
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we refer to this as projection strength. For each of the investigated con-
nections, they estimated the strength as either absent, sparse, medium,
or dominant by evaluating the number of stained presynaptic somata
or axon terminals in a large body of retro- and anterograde tracing
studies.
To get a quantitative estimate of this strength, we map these qualitative
categories to the numeric values 0, 1, 2, and 4. Thus, in the following
calculations absent connections are accounted for with a value of 0,
sparse with a value of 1, medium with value of 2 and dominant with
a value of 4. The specific values are to be interpreted as order of
magnitudes in the base 2. After this preprocessing we obtain:

• ηfine,X
u′v′ = the anatomical projection strength for connections of X

synapses from v′ → u′, where u′ denotes the target and v′ in the
resolution used by Vanni et al. (2020)

intra-areal connections The layer resolution for the reported
data is finer than the one of our model. Thus, the anatomical projection
strengths are aggregated to match the layers used here:

ηX
uv =

∑u′∈u,v′∈v ηfine,X
u′v′

#u#v
, (7.27)

i.e. summing the finer relative connections strengths over the sublayers
of layers u and v respectively, and normalising by the product of the
numbers of sublayers of u and v.
From ηX

uv we derive the probability for an X synapse terminating in u
to originate in v:

q|X|uv =
ηX

uv

∑
v

ηX
uv

(7.28)

Due to the relative anatomical projection strength being obtained
from tracing studies, pre-synaptic neurons within the uptake zone
of the stain are systematically underestimated. This mainly leads
to a reduced projection strength in intra-layer connections, which
we amend in the following. Writing lX

uv(r) for the density of labeled
neurons in layer u with X synapses after injection of a hypothetical
tracer into layer v, we assume an exponential decrease in density
(Markov et al., 2011) of labeled cells:

lX
uv(r) ∼ e

− r
λX

uv . (7.29)

Here r is the distance between neurons in the three-dimensional cor-
tical space. (Markov et al., 2011) show that the density of labeled
neurons in a two-dimensional projection parallel to the cortical sur-
face (i.e. “looking from above” onto the cortex) decays according to
Equation 7.29, where the distance here is determined as the distance
on the projection plane. Since we in the following will only focus on
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Figure 7.1: Schematics for amendment of projection strength a Model as-
sumption and meaning of rl and rblob. b Coordinate system used
for integration, shows the relation between r, θ and z.

the case where u = v, we argue that Equation 7.29 is a reasonable
approximation, even in the three-dimensional case.
Amending ηX

uu rests on the following assumptions (Figure 7.1a):

• the uptake zone of the dye can be approximated by a sphere
with radius rblob

• the layer u can be regarded as a cylinder with radius rl and
height Lu

• the uptake sphere is centered at the middle of layer u

To enhance readability, we write λ instead of λX
uv. Setting formally

rl = ∞, the number of X synapses in layer u that is measured by
tracing studies is given by

SX
u ∼ lim

rl→∞

∫
Z(rl)

e−
r
λ dV −

∫
S(rblob)

e−
r
λ dV︸ ︷︷ ︸

=: I(rblob)

. (7.30)

Here, Z(rl) denotes the cylinder with radius rl approximating layer u
and S(rblob) denotes the sphere with radius rblob approximating the
uptake zone of the dye in the center of the cylinder. Accounting for
the missing connections inside of the blob of dye, the total number of
connections with X synapses within layer u is calculated by

SX,corr
u = SX

u ·
I(0)

I(rblob)
. (7.31)

We thus replace the intra-layer relative anatomical projection strength
by a quantity scaled with the same factor to correct for the connections
not accounted for, and obtain

ηX,corr
uu = ηX

uu ·
I(0)

I(rblob)
. (7.32)
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To evaluate I(rblob) we use spherical coordinates. Since the domain
of integration is contained in a cylinder, the respective constraints for
the integration variables needs to be derived first (Figure 7.1b). The
exclusion of the dye sphere at the center of our coordinate system
simply imposes the constraint r > rblob. In the case that r < Lu/2
the layer boundaries do not restrict the integration. If r > Lu/2 the

height needs to be restricted: |z|
!
≤ Lu

2 . In the chosen coordinates, z is
expressed as z = r cos θ. Using this formulation we derive a constraint
on the azimuth angle θ:

r cos θ ≤ Lu

2
⇒ arccos

(
Lu

2r

)
≤ θ ≤ π/2 , (7.33)

where we used that 0 ≤ θ ≤ π/2 holds per definition of the azimuth
angle. For the integration we distinguish two cases: If the blob radius
is smaller than or equal to half the laminar thickness, rblob ≤ Lu

2 , the
entire blob is contained inside of the layer (spherical case). If the blob
radius exceeds half the laminar thickness, rblob > Lu

2 , only parts of
the spherical blob will be inside the layer. As the extent of the layer
defines our integral boundaries, we need to consider a spherical blob
where the top and bottom are cut off (frustum case).
First, consider the solution to two generic integrals, I1(r1) and I2(r1, r2):

I1(r1) :=
∫ ∞

r1

re−r/λ dr = −λre−r/λ
∣∣∣∞
r1
+ λ

∫ ∞

r1

e−r/λ dr

=
[
λr1 + λ2

]
e−r1/λ (7.34)

I2(r1, r2) :=
∫ r2

r1

r2e−r/λ dr = −λr2e−r/λ
∣∣∣r2

r1
+ 2λ

∫ r2

r1

re−r/λ dr

=
[
λr2 + 2λ2r

]
e−r/λ

∣∣∣r1

r2
+ 2λ2

∫ r2

r1

e−r/λ dr

=
[
λr2 + 2λ2r + 2λ3

]
e−r/λ

∣∣∣r1

r2
(7.35)

Spherical case The integral can be split into two regions.
For rblob ≤ r ≤ Lu

2 , we integrate over the whole sphere shell and θ is
unconstrained. For r > Lu

2 we need to enforce Equation 7.33. Adding
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the two parts, exploiting the symmetry of the system, and performing
some simplifications we obtain

Isphere(rblob) =
∫ Lu

2

rblob

∫ 2π

0

∫ π

0
e−

r
λ r2 sin(θ) dθdϕdr

+ 2
∫ ∞

Lu
2

∫ 2π

0

∫ π/2

arccos( Lu
2r )

e−
r
λ r2 sin(θ) dθdϕdr

=4π
∫ Lu

2

rblob

e−
r
λ r2dr

+ 2 · 2π
∫ ∞

Lu
2

e−
r
λ r2

− cos(π/2) + cos

(
arccos

(
Lu

2r

)) dr

=4π


∫ Lu

2

rblob

e−
r
λ r2dr︸ ︷︷ ︸

I2(rblob, Lu
2 )

+
Lu

2

∫ ∞

Lu
2

e−r/λr dr︸ ︷︷ ︸
I1(

Lu
2 )


=4π

{[
λr2 + 2λ2r + 2λ3

]
e−r/λ

∣∣∣ Lu
2

rblob
+

Lu

2

[
λ

Lu

2
+ λ2

]
e

Lu
2λ

}
.

(7.36)

Frustum case Since r ≥ rblob > Lu
2 holds in this case, the integrals

need not to be split here. Thus,

Ifrustum(rblob) = 2
∫ ∞

rblob

∫ 2π

0

∫ π/2

arccos( Lu
2r )

e−
r
λ r2 sin(θ) dθdϕdr

= 4π
Lu

2

∫ ∞

rblob

re−r/λ dr︸ ︷︷ ︸
I1(rblob)

= 4π
Lu

2

[
λrblob + λ2

]
erblob/λ . (7.37)

I(0) can be trivially obtained for both cases via

I(0) = lim
rblob→0

I(rblob) (7.38)

When calculating the correction for the number of synapses we choose
rblob = 0.16 mm. To complete the calculations and thus the amendment
of the anatomical projection strengths, the decay constants λ need to
be known. They are derived in Section 7.2.3.

thalamo-cortical connections Denoting by ηtha
ub the projec-

tion strength of the thalamic projection from the thalamic population b
(multiple reported by Vanni et al. (2020), corresponding to the magno-
and parvocellular layers) to the cortical layer u, we continue similarly
as above. Since the data from Vanni et al. (2020) (these are layers 2/3, 4

and layer 6) are coarser than what we use here, we define the fraction
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of thalmo-cortical projection strength targeting the layers L2/3A and
L3B as

gtha,L2/3A =
∑b ∑u∈L2/3A ηtha

ub

∑b ∑u∈L2/3 ηtha
ub

, gtha,L3B =
∑b ∑u∈L3B ηtha

ub

∑b ∑u∈L2/3 ηtha
ub

(7.39)

and similarly for gtha,L4A/B, gtha,L4C. Garcia-Marin et al. (2017) addi-
tionally provide the fraction of thalamo-cortical synapses in layer 4C
(relative to all synapses), βth. Setting

Stha,L4C = SL4βth, Stha,L4A/B = Stha,L4C gtha,L4A/B

gtha,L4C . (7.40)

We further calculate

Stha,L2/3A = gtha,L2/3A Stha,L2/3 (7.41)

(analogously for layer 3B), and set gth,L6 = 1. This allows us to write
the number of thalamo-cortical synapses terminating in all layers u
except 4A/B and 4C as

Stha,u = gtha,u f tha,uSu . (7.42)

7.2.2.3 Combing connection probabilities and strengths

Using the quantities obtained above, we derive the connectivity map
for the for the laminar cortical network of macaque V1.

intra-areal connections We calculate the number of synapses
between to populations, also referred to as connections, as

Sia
AB = ∑

u
f̄ ia,u

(
Su − Sth,u

)
/s |uX q|X|uv p|u,|X

A

= ∑
u

f̄ ia,u
(

Su − Sth,u
)

q|X|u,v p̄|u,X
A (7.43)

where v is the layer that the source population B resides in, and B has
synapses of type X.

cortico-cortical connections Similarly, the number of cortico-
cortical connections is determined as

Scc
A = ∑

u
f̄ cc,u

(
Su − Sth,u

)
p|u,cc

A . (7.44)

thalamo-cortical connections Finally, the number of thalamo-
cortical connections can be obtained by

Sth
A = ∑

u
Su

th p|u,th
A . (7.45)
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7.2.2.4 Rescaling the number of synpases

With the quantities derived thus far, we also can calculate the total
numbers of intra-areal, cortico-cortical and thalamo-cortical synapses:

Sia = ∑
u

Sia,u, Scc = ∑
u

Scc,u, Sth = ∑
u

Sth,u (7.46)

The relative value of these quantities with respect to the total number
of synapses were determined experimentally by Markov et al. (2011):

pia
Markov = 85%, pcc

Markov = 13%, pth
Markov = 2% (7.47)

To harmonize the respective the relative frequencies of the model with
the experimentally constrained ones, we scale the number of synapses
in those layers in which the percentage of intra-areal synapses is below
90%. Scaling those layers as well would result in greater than 100% rel-
ative frequencies of intra-areal synapses in some layers. The described
scaling procedure leads to the desired consistency and concludes the
derivations of the laminar organization of macaque V1. Note that
Markov et al. (2011) only studied one hemisphere of the macaque cor-
tex. Potentially, there could be interhemispheric connections between
the two parts of V1, altering the values in Equation 7.47. The results
of Dehay et al. (1988), however, indicate that such connections do not
exist in macaque.

7.2.3 Spatial structure of intra-areal connectivity

Up to this point, the main quantity with which we described the net-
work connectivity of our model was the number of synapses between
populations. In the following sections, we use the obtained quantity to
derive a probabilistic description based on connection probabilities. Here,
the term connection probability refers to pairwise-Bernoulli connectivity
(Senk et al., 2022). This means that a connection from a neuron of a
source populations is established with a neuron of a target population
with a given probability. Especially, multiple synapses between the
pre- and post-synaptic neurons are excluded. This description of the
connectivity is important for instantiating the derived network as a
spiking neuron network model.

7.2.3.1 Medium range isotropic connectivity - Preliminary remarks

As an underlying model for the medium-range connectivity, we as-
sume an exponential decay of connection probability with distance in
a plane on which the neurons are located (Markov et al., 2011):

PAB(r) = P0
AB e−

r
λAB (7.48)

Here, A, B are the post- and presynaptic populations, P0
AB is the peak

probability at zero distance, and λAB is the characteristic length of the
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spatial decay.
Note that the quantities derived in the above section and given the
characteristic length enables the calculation of P0

AB with the following
ansatz:

Sia
AB = ρANB

∫ 2π

0

∫ ∞

0
P0

AB re−
r

λAB drdϕ

= 2πρANBλAB
2P0

AB (7.49)

Solving for P0
AB yields the peak connection probability.

Here, ρA is the density of postsynaptic neurons and NB is the number
of presynaptic neurons. This leaves us with the task to determine the
numeric values for λAB.
Due to

ρANB = ρAρB ·A = NAρB, (7.50)

where ρB is the density of the post-synaptic neurons and A is the area
under consideration, the interpretation of the connection probability is
independent from whether the pre- or postsynaptic neurons are taken
as reference points.
The characteristic lengths are, in principle, specific to all pairs of
populations A, B. Since, however, data fully determining the matrix
(λAB)A,B is lacking, we introduce some simplifying assumptions.
We estimate the characteristic length primarily from retro- and antero-
grade tracing studies. With retrograde tracing, the pre-, but not the
post-synaptic population can be resolved. The target layer of a connec-
tion can nevertheless be obtained. For anterograde tracing, we take the
density of stained axonal processes as a proxy for connection between
neurons —assuming here a uniform distribution of the dendrites of
potential target neurons as well as Peters’ rule (Braitenberg and Schüz,
1991). Thus, we base our derivations on the potential connectivity
between neurons (cf. Stepanyants et al. (2007)). Again, only the target
layer can be resolved by this approach. Thus, with our approach we
can only derive characteristic lengths λuB where u denotes the target
layer and B the presynaptic population.

7.2.3.2 Medium-range isotropic connectivity - Estimating the characteristic
lengths

inhibitory presynaptic populations Precise data about the
extent of lateral connections of inhibitory neurons is sparse. Packer and
Yuste (2011) measured the dependence of the connection probability
between paravalbumin-positive neurons (largest class of GABAergic
inhibitory interneurons in the cortex) and pyramidal cells in mouse
cortex (layer 2/3) on the distance of the cells. Fitting Equation 7.48 to
this data reveales a good agreement of connection probabilities with
our modeling assumption as well the numeric value for the character-
istic length (Figure S1a).
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Data of this quality are lacking for macaque V1. Kritzer et al. (1992)
studied the termination patterns of inter- and intra-laminar connec-
tions established by GABAergic neurons in macaque V1 by retro-
gradely tracing neurons of this class relative to injections into supra-
granular, granular and infragranular layers. The authors observed a
circular spread of labeled neurons relative to the injection site and
irrespective of layer where most heavily labeled neurons cluster in a
small disc centered at the injection site. For injection sites in supra-
granular layers the spatial spread is largest in the supragranular layers
and decreases with laminar distance, injections in infragranular layers
mirror this pattern, and for injection sites in the granular layers the
spatial spread is equal across all layers. Moreover, they found far
reaching lateral projection in the supragranular layers. We discard the
latter in the subsequent considerations.
We estimate the extent of the lateral spread of connectivity for in-
hibitory neurons from Kritzer et al. (1992), summarized in Table S1.
Denoting the number of intra-areal synapses within a radius R by
Sia,R

AB we calculated the fraction of connections within this radius, pR
AB

as

pR
AB =

Sia,R
AB

Sia
AB

= 1− (
R

λuB
+ 1)· exp(− R

λuB
) (7.51)

where u is the layer in which A resides. In the derivation we used

Sia,R
AB = ρANB

∫ 2π

0

∫ R

0
P0

AB re−
r

λvB drdϕ (7.52)

= 2πρANB

(
λvB

2 − λvB(λvB + R)e−
R

λvB

)
(7.53)

combined with Equation 7.49. Taking the characteristic length de-
termined estimated from Packer and Yuste (2011) as the value for
inhibitory connections originating in L2/3 and terminating in the
same layer, λL2/3,L2/3I = 123.9µm, and plugging in the corresponding
spatial spread from Table S1, R = 600µm, we arrive at:

p600µm
L2/3I,L2/3 ≈ 0.95 (7.54)

This means that 95% of labeled neurons reside in the cortical tissue
below the estimated radius. Assuming now that the same relation
also holds true for the other measurements, the lacking characteristic
lengths can be determined by solving

1− (
RvB

λvB
+ 1) exp(−RvB

λvB
) = 0.95 (7.55)

for λuB where RvB is obtained from Table S1.

excitatory pre-synaptic populations For quantitative esti-
mates of the characteristic lengths of excitatory projections, we primar-
ily rely on the anterograde tracing study by Sincich and Blasdel (2001)
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(Figure 7.3a). Assuming the density of stained axons as proportional
to the connection probability, we fit

f (c, x0, y0, λ, d) = c · e−
√

(x−x0)
2+(y−y0)

2

λ + d (7.56)

to 1− relative luminance of the stains. Parameters optimized along-
side λ are the pre-factor c and the offset d. The latter is needed since
in the numeric representation, the luminance value far away from the
injection site does not decay to zero. The estimated values, gathered
in Table S2, are only valid for excitatory projections originating in
layer 3. To extend the derivation, we analyse additional retro- and
anterograde tracing studies investigating projections originating out-
side (Blasdel et al., 1985) and inside (Fitzpatrick et al., 1985) layer 4C.
Since the data is not presented in a form that is immediately amenable
to a quantitative analysis as conducted above, we need to assess the
range of intra-areal connectivity qualitatively. Each projection from
a pre-synaptic population to a target layer is assigned to be short,
medium or long, depending on whether the stained axonal processes
were confined within a radius of 300 µm, or 600 µm from the injection
site, or extended beyond 600 µm (Table S3.)
To compile a table of characteristic lengths for excitatory connections
- combining the quantitative estimates based on anterograde tracing
(Sincich and Blasdel, 2001) with the qualitative insights from (Blas-
del et al., 1985; Fitzpatrick et al., 1985) - we define the spatial decay
constant of long horizontal connections as 0.261 mm, medium hori-
zontal connections as 0.215 mm, and for short horizontal connections
as 0.141 mm (numeric values derived from Table S2).

7.2.3.3 Long-range patchy connectivity

fundamental constraints on patchy connections In
contrast to the medium-range connectivity (see Section 7.2.3.1), long-
range patchy connectivity in macaque V1 is anisotropic in space and
preferentially links neurons with similar orientation preference or-
ganized in orientation maps (Stettler et al., 2002). The appearances
of patches is confined to an ellipse that is aligned to the preferred
orientation of the neuron that establishes these long-range connections
(Bosking et al., 1997). The length of the semi-major and semi-minor
axes of the ellipse vary across layers (Angelucci et al., 2002). In this
study, the authors obtained the length of these axes resolved to infra-
granular, granular, and supragranular after injecting a bi-directional
tracer in macaque primary visual cortex. We use the determined values
as numeric constraints in our model (see Table 7.10). Angelucci et al.
(2002) additionally show that patchy connectivity between neurons
exhibits a reciprocal structure.
Patches, determined by dense tufts of axonal collaterals far away from
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the soma, appear to preserve their location across their termination
layers (Gilbert and Wiesel (1983), also see Figure 7.3a).

generating an orientation map To endow our model with
long-range patchy connections, we generate an orientation map for
mediating patchy connections. We follow the approach suggested by
Sadeh and Rotter (2013). The authors showed that plausible orientation
maps can originate from randomly jittered thalamic projections to the
neocortex if both the thalamus and V1 are modeled as superimposed
sheets.
We first place N cortical dummy neurons on a regular grid in an
square with side length L. The threshold of these spiking neurons is
set to infinity. Thus, these neurons do not emit spikes; their membrane
potential reflects the input each neuron receives in the cortical sheet.
Next, we create a layer of NTh regularly spaced effective thalamic
neurons on a square with side length L′. We set L′ > L to avoid
boundary effects in the generation of the orientation map. The cortical
and the thalamic sheet share the central point. Jittering both, horizontal
and vertical components of the positions of the thalamic neurons with
displacements uniformly drawn from [−a, a] yields the base target
location of these neurons in the cortical layer.
The preferred orientation of a cortical dummy neuron is determined
from its strongest response to stimulations from the effective thalamic
neurons. The latter provide an input to the former with temporal
and spatial characteristics of moving gratings for orientations θ ∈
{0◦, 30◦, 60◦, 90◦, 120◦, 150◦}.
The effective thalamic neurons are connected to the dummy cortical
neurons with distance-dependent weights:

w ∼ w0 · e−
d2

2σ2 (7.57)

Here w0 denotes the peak weight, d denotes the horizontal distance
of cortical neurons to the base target location of the thalamic neuron,
and σ the spatial width of connections. Only those neurons with a
distance smaller than 2σ from the base target location are connected
(Figure S2a). The effective thalamic neurons inject a sinusoidal current
into the cortical dummy neurons,

I(t) = w · Î sin(2π · ft + φo) . (7.58)

Here, w is the weight as determined by Equation 7.57, Î scales the peak
amplitude, ft the temporal frequency and φo the phase. Changes in
the latter for all effective thalamic neurons result in activity emulating
a moving bar experiment of varying orientations. It is calculated
depending on the location of the thalamic neuron in the thalamic layer
(not the base target location), (x, y) and the orientation θ:

φ(θ) =
360
2π
· fs · 〈

cos(θ)

sin(θ)

 ,

x

y

〉, (7.59)
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Here fs denotes the spatial frequency. Simulating for all θ and record-
ing the response in the cortical dummy neurons yields the raw ori-
entation map (Figure S2b). To generate the orientation map for the
model of macaque V1, we first randomly place neurons belonging
to each population in the modeled cortical sheet. Then the closest
cortical dummy neuron for each neuron in the modeled populations
is determined. The preferred orientation is then identical with the one
of the closest cortical dummy neuron. See Table 7.1 and Table 7.2 for
the parameters used in the orientation map generation.

Simulation parameters

L 4 mm Side length of cortical sheet

L′ 4.8 mm Side length of thalamic sheet

N 3600 Number of cortical dummy neurons

NTh 196 Number of effective thalamic neurons

a [−0.1 mm, 0.1 mm] Interval from which random jitter

is drawn

w0 10 Peak weight of thalamic stimulation

σ 0.25 mm Standard deviation of Gaussian kernel

describing weight decay

Table 7.1: Summary of network parameters for generation of orientation map.

Simulation parameters

Î 30 pA Scaling factor for amplitude of injected current

ft 1 Hz Temporal frequency of injected current

fs 4 mm−1 Spatial frequency of injected current

Table 7.2: Summary of stimulation parameters for generation of orientation
map.

patchy connections Patchy connections are established be-
tween neurons of the same preferred orientation. Since all layers share
one orientation map, the organization of patchy connectivity is pre-
served across layers. This is in agreement with the findings of e.g.
Gilbert and Wiesel (1983). Additionally, each pre-synaptic neurons
establishing a patchy connections is the center of an ellipse aligned
along its preferred orientation (Stettler et al., 2002). The ellipse covers
multiple iso-orientation domains and constrains the area in which
potential post-synaptic neurons reside. In our model neurons from
pre-synaptic population B to neurons of a post-synaptic population A
satisfying the above constraints are connected randomly with proba-
bility Ppatchy

AB .
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The patchiness parameter ψ ∈ [0, 1] controls the relative number of
synapses stemming from a patchy connection between B and A. De-
noting the synapses established with this connectivity scheme by
Sia,patchy

AB , we have

Sia
AB = ψSia

AB︸ ︷︷ ︸
=Sia,patchy

AB , synapses of patchy conn.

+ (1− ψ)Sia
AB︸ ︷︷ ︸

=Sia,iso
AB , synapses of isotropic conn.

.

(7.60)

Here, Sia
AB denotes the total number of intra-areal synapses from B to

A. With this, the respective connection probabilities Piso,0
AB and Ppatchy

AB
can be calculated:

Sia,patchy
AB =

1
NO

∫
ellipse

ρANBPpatchy
AB dx !

= ψSia
AB

⇒ abπ

NO
ρANBPpatchy

AB = ψSia
AB

⇒ Ppatchy
AB =

ψSia
ABNO

abπρANB
(7.61)

and

Sia,iso
AB =

∫ 2π

0

∫ ∞

0
ρANBP0,iso

AB re−r/λvX drdϕ
!
= (1− ψ)Sia

AB

⇒
P0,iso

AB
P0

AB

∫ 2π

0

∫ ∞

0
ρANBP0

ABre−r/λvX drdϕ︸ ︷︷ ︸
=Sia

AB

= (1− ψ)Sia
AB

⇒ P0,iso
AB = (1− ψ)P0

AB (7.62)

Here ρA denotes the neuron density of population A, NB is the number
of neurons in population B, a and b are the semi-major and semi-minor
axes of the confining ellipse, respectively, and NO is the number of
orientations used in the model. In our model NO = 6.
Patchy connections are established only when the pre-synaptic pop-
ulation is excitatory. In our model, they connect the supragranular
layers 2/3A, 3B, 4AB as well as layer 5 with itself and layer 5 to layer
6, there are no patchy connection from layer 6 to layer 5.

7.2.3.4 Short-range push-pull connectivity

The model of macaque V1 presented here is additionally endowed
with push-pull connections. Push-pull connections are a suggested
mechanism underlying contrast invariant responses of neurons in
the primary visual cortex. This means that the shape of orientation
tuning curves, i.e. the response of a neuron in a moving grating
experiment as a function of the angle of the grating, is invariant under
the contrast of the presented grating —in contrast to the magnitude
of the response (Sclar and Freeman, 1982; Skottun et al., 1987). Here
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we follow the approached by Troyer et al. (1998). There, the authors
suggested a generative model for push-pull connections based on
thalamic projections from the LGN to the primary visual cortex.
In adding these connections to our model, we not only a include local,
functional connectivity scheme in layer 4C, but also build a simple
model for the thalamic projections. This in principle allows us to
provide our network with plausible visual input activity.

lgn projections The LGN is represented by two independent
sheets of neurons being randomly distributed on an L′ × L′ square
(cf. Table 7.1). One sheet contains thalamic neurons with ON, the
other sheet with OFF receptive subfields. ON-cells respond to a bright
spot surrounded by dark sports, OFF-cells to a dark spot surrounded
by bright spots. Each thalamic neuron has the same circular center-
surround receptive field size. Jointly, they cover the visual scene com-
pletely. Connections from the thalamic sheets to the cortical neurons
are established in a target-specific way: Given a cortical neuron in layer
4C with preferred orientation θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} we ran-
domly draw a phase ψ ∈ {0◦, 180◦} for that neuron and assign it to
have an either ON or OFF receptive subfield with 50% probability. We
then connect ON/OFF thalamic neurons to the cortical neurons in
L4C with a probability following a Gabor filter

p(x, y; λ, ψ, γ, σ) =
[

cos
(

2π · y′

λ
+ψ

)]+/−
exp(−γ2x′2 + y′2

2σ2 ) (7.63)

where
[
·
]+/−

denotes the positive/negative part of a function satis-
fying for a function f with real values

f (x) =
[

f
]+

(x)−
[

f
]−

(x) (7.64)

(especially implying that
[

f
]−
≥ 0) and

x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ) . (7.65)

The vector (x, y) is the difference between the location of the source
and target neuron. Here, we chose γ = 0.60 and for the wavelength
λ = 0.66 mm (derived from Jones and Palmer (1987)).
For cortical ON-cells, ON thalamic neurons are connected with the
positive, OFF cells with the negative part of the cos function. The roles
are reverse for layer 4C neurons with OFF receptive subfields.

push-pull connections Using a similar scheme as for the con-
nections from LGN to the neocortex, Troyer et al. (1998) derived a
push-pull connectivity rule for cortical connections based on a corre-
lation measure derived from thalamic projections targeting cortical
neurons: The correlation is positive if single cells’ ON and ON or OFF
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and OFF thalamic projections patterns overlap. It is negative when
single cells’ ON and OFF or OFF and ON thalamic projections overlap,
and zero otherwise. Moreover, the correlation is multiplied by −1 if
the pre-synaptic neuron is inhibitory. After rectifying, it was used as
a proxy for connection probability between the neurons. Similarly,
Antolík et al. (2018) proposed a correlation-based connectivity scheme
where the connection probability is given by

1√
2σ2

e−
(c−µ)2

2σ2 . (7.66)

Here, c is the correlation (which is determined as above) and µ = 1 if
the pre-synaptic neuron is excitatory, and −1 if inhibitory.
Due to the high number of neurons in our model, calculating the cor-
relation coefficient between all neurons in layer 4C is computationally
not feasible. We thus make the following approximations based on the
projection from the LGN to the cortex described above:
push-pull connections are only established between neurons with the
same preferred orientation. Indeed, assuming that neurons have differ-
ent preferred orientations, the correlation coefficient is expected to be
small even if the overlap of thalamic projections is large —the projec-
tions of ON and OFF cells are rotated, thus overlap in a checkerboard
pattern and hence cancel each other. For the case of two neurons with
the same preferred orientation, we note that the convolution of two
Gabor filters with the same standard deviation σ and phase can be
approximated by a Gabor filter (up to a normalization) with a stan-
dard deviation of

√
2σ and twice the phase. With this, we can derive

the dependence of the connection probabilities for all combinations
of push-pull connections (see Equation 14.1). The spatially depen-
dent connection probabilities are thus determined up to a pre-factor.
Note that the number of established synapses scales linearly with this
pre-factor. In contrast to patchy connections, there is no direct way
to approximate the number of synapses arising from the push-pull
scheme. We define the fraction of push-pull connections relative to
all synapses between the relevant populations as ξ. Instantiating a
network of layer 4C with connection probabilities as described in Equa-
tion 14.1 allows us to obtain the number of isotropic and push-pull
connections. With this, given ξ the pre-factor is calculated.

7.2.4 Target specificity and EI-Ratio

Additionally to the connection probabilities P0,iso
AB and Ppatchy

AB used in
defining the network (as well as instantiating and simulating it in
the subsequent sections), we calculate differently defined connection
probabilities between the modeled populations in the tissue below
a 1 mm× 1 mm patch of cortex, denoted by P1×1

AB . At this scale, an
approximation neglecting the spatial decay of connection probabilities
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is reasonable (Potjans and Diesmann, 2014). These are employed to
define the target specificity and the EI-fraction. The latter quantities are
exclusively used for a comparison of the layer resolved connectivity
derived here with another model of macaque V1 established by differ-
ent means (Schmidt et al., 2018b) at the 1 mm× 1 mm scale.
The population specific connection probabilities are given by:

P1×1
AB = 1−

(
1− 1

N1×1
A N1×1

B

)Sia,1×1
AB

(7.67)

Here, Sia,1×1
AB denotes the number of synapses from population B

to A under the surface considered here, and mutatis mutandis for
N1×1

A , N1×1
B . Thus, P1×1

AB is the probability of at least one connection
from a source neuron in population B to a target neuron in population
A. With this, we define the target specificity (Potjans and Diesmann,
2014) as

TSvB =
P1×1

vEB − P1×1
vIB

P1×1
vEB + P1×1

vIB
(7.68)

where v is a target layer and vE denotes the excitatory population in
that layer (similarly for vI). The target specificity thus is the normalized
difference in connection probabilities and reveals which populations is
preferentially targeted in a given layer. Note that this measure depends
on the source population but only on the target layer.
The EI-fraction of a population A consists of two numbers

∑v Sia
AvE

∑B Sia
AB

,
∑v Sia

AvI

∑B Sia
AB

, (7.69)

i.e. the fraction of excitatory and inhibitory intra-areal synapses tar-
geting a population A relative to all intra-areal synapses that establish
a connection with A. By definition, adding the two numbers yields 1.

7.2.5 Implementational considerations

For instantiating and simulating the spiking neural network speci-
fied by our biologically plausible model of macaque V1 we use NEST

(Gewaltig and Diesmann, 2007). Since the Gabor-filter determining the
connections probabilities for the push-pull connectivity is not included
in the standard NEST package, we add this function to the simulation
engine3.
When instantiating the model at a scale of 4 mm× 4 mm, it becomes
impractical to use a strict model interpretation for intra-area connec-
tions. Given a presynaptic population B as well as a postsynaptic

3 See https://github.com/ackurth/nest-simulator/tree/V1V2V4_nest for the corre-
sponding code

https://github.com/ackurth/nest-simulator/tree/V1V2V4_nest
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population A, the connection routine connects pairs of neurons in the
pre- and post-synaptic populations with probability PAB(r), where
r is the distance between the source and the target neurons. Thus,
the number of neuron pairs for which PAB(r) has to be evaluated
scales quadratically with the number of neurons in the simulation,
leading to long network construction phases. Since by assumption the
connection probability decays exponentially, we can restrict potential
target neurons given a source neuron to a disc with radius R. This
clearly leads to a reduced number of synapses between populations
A and B. To correct for this, the peak connection probability needs to
be increased. The number of intral-areal synapses between two popu-
lations stemming from medium-range isotropic connections within a
radius R obeys

Sia,iso,R
AB = ρANB

∫ 2π

0

∫ R

0
P0

AB(1− ψ) re−
r

λvX drdϕ (7.70)

= 2πρANBP0
AB(1− ψ)

(
λvX

2 − λvX(λvX + R)e−
R

λvX

)
.

(7.71)

The total number of synapses between A and B, Sia
AB, can be obtained

by letting R→ ∞. The required scaling factor α(R) is now given by

α(R) =
Sia

AB

Sia,R
AB

=
λvX

2

λvX
2 − λvX(λvX + R)e−

R
λvX

(7.72)

=
1

1−
(

1 + R
λvX

)
e−

R
λvX

. (7.73)

If R is chosen proportional to the λvXs, α is independent of the popu-
lations. See Table S4 for different values of α under this assumption.
We choose R = 4λvX balancing small adaptations of the peak zero-
distance probability and computational efficiency.

7.2.6 Simulation parameters

Instantiating the network derived here requires the specification of
parameters regarding the network itself, but also of the constituting
neurons and their interactions. We gather the parameters used here
in tables Table 7.3, Table 7.4, Table 7.5, and Table 7.6 in the style of
Nordlie et al. (2009b).
Each neuron is represented by a leaky integrate-and-fire model neuron
with exponential postsynaptic currents. The numeric values chosen
for the parameters of the single-neurons and their interactions are
taken from Potjans and Diesmann (2014), for the delays from Senk
et al. (2023).
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Table 7.3: General description of model of macaque primary visual cortex

Neuron and synapse model

Subthreshold dynamics dV
dt = −V−EL

τm
+

Isyn(t)
Cm

,

Isyn(t) = Je−(t−t∗−d)/τsyn H(t− t∗ − d),

here H denotes the Heaviside function.

Spiking If V(t−) < Vth and V(t+) ≥ Vth,

1. Set t∗ = t and V(t) = Vreset in (t∗, t∗ + τr]

2. Emit spike with time stamp t∗.

Delays

Delay Synaptic delay is d0 + r · vc +N (0, σd)

where r is the Euclidean distance between

pre- and post-synaptic neurons.

Stimulation

External input Independent Poisson spike trains

with fixed rate ν = ν0 + δν and

population-specific indegrees.

Connectivity

Isotropic connections Establish connection with probability

P0,iso
AB e−

r
λvX where B is the pre-,

A the post-synaptic population,

v of A resides, B has X synapses,

and r the Euclidean distance between

neurons that are to be connected.

Patchy connections Connect neurons with identical orientation

preference with pair-wise Bernoulli

connectivity with connection probability

Ppatchy
AB where B denotes the

and A the post-synaptic population.

Push-pull connections Connect neurons with identical orientation

preference with spatially dependent

connection probability according to

Equation 14.1.
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Table 7.4: Network size under a 4 mm× 4 mm patch of cortex and external
indegrees

Network size

Layer Number of excitatory neurons Number of inhibitory neurons

2/3A 323 466 80 866

3B 394 614 98 654

4A/B 546 816 141 184

4C 635 712 121 088

5 317 440 79 360

6 409 360 72 240

Inter-areal single-neuron indegrees

Layer Indegree of excitatory neurons Indegree of inhibitory neurons

2/3A 169 117

3B 169 108

4A/B 253 136

4C 197 139

5 184 44

6 699 577

Thalamic single-neuron indegrees

Layer Indegree of excitatory neurons Indegree of inhibitory neurons

2/3A 0 0

3B 0 0

4A/B 51 30

4C 238 187

5 11 0

6 139 54

Table 7.5: Parameters for the network connectivity

Connectivity

P0
AB Table 7.9 Peak connection probabilities

ψ 0.2 Patchiness parameter

ξ 0.5 Relative frequency of push-

pull connections

λvX Table 7.7, Table 7.8 Characteristic lengths of iso-

otropic connectivity

a, b Table 7.10 Size of ellipses parametrized

by lenght of semi-major

and semi-minor axis
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Table 7.6: Neuron, synapse and delay parameters for network simulation

Neuron parameters

τm 10 ms Membrane time constant

τr 2 ms Absolute refractory period

τsyn 0.5 ms Postsynaptic current time constant

Cm 250 pF Membrane capacity

EL −65 mV Reversal potential

Vreset −65 mV Reset membrane potential

Vth −50 mV Threshold

Synapse parameters

JXE 87.8 pA Synaptic weight excitatory neurons

g 4 Relative inhibitory synaptic efficacy

JXI −g · JXE Synaptic weight inhibitory neurons

Delay parameters

d0 0.5 ms Delay offset

vc 0.3 mm/ms Conduction speed

σd 0.05 ms Temporal jitter of delay distribution

Stimulation

ν0 9 spikes
s Baseline rate
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7.3 results

Under a 1 mm× 1 mm patch of cortical surface, our model of the
primary visual cortex of macaque comprises 164 thousand excitatory
and 37 thousand inhibitory neurons. They are recurrently connected by
in total 393 million intra-cortical synapses and externally innervated by
52 million cortico-cortical and 17 million thalamo-cortical connections.

7.3.1 Laminar connectivity

To analyse the laminar connectivity, we investigate the number of con-
nections between different populations (Figure 7.2). We compare our
results with the connectivity data from the adaptation of the model of
Potjans and Diesmann (2014) to macaque V1 by Schmidt et al. (2018b),
in the following named MAM V1. This model represents the cortical
tissue below 1 mm× 1 mm of cortical surface as well. It consists of 158
thousand excitatory and 39 thousand inhibitory neurons, connected
by 381 million synapses. Thus, representing the same cortical tissue,
the respective quantities in our model of the primary visual cortex
and MAM V1 are consistent (deviations are due to different data used
in the derivations). Note, however, that the ratio between excitatory
and inhibitory neurons in the model derived here is 4.43, while it is
4.05 for MAM V1.
The model of macaque V1 presented here exhibits population-specific
connectivity (Figure 7.2a). In direct comparison with the MAM V1

model (Figure 7.2b), the number of connections between two popula-
tions is reduced. This is generally to be expected, since we here display
the total number of synapses between the different populations. As
our model has a finer laminar granularity, there are fewer neurons in
certain populations and hence a smaller number of synapses between
them.
The connectivity between excitatory populations suggests a flow of
information after a stimulation of layer 4C (e.g. by visual input trans-
mitted to V1 via LGN projections): activity entering there is transferred
to upper layer 4 and layer 3AB, as well as layer 6. Subsequently, also
layer 2/3A and 5 are innervated. This putative flow of activity de-
rived from the excitatory projections is consistent with the respective
anatomical data in MAM V1 (Figure 7.2b), simulations (see Potjans and
Diesmann (2014), Figure 11), and indeed in experimentally recorded
neural activity, e.g. Wang et al. (2020).
The average excitatory and inhibitory indegrees to neurons in the pop-
ulations are similar in magnitude between the model presented here
and MAM V1 (Figure 7.2c,d). In our model, excitatory populations
have an higher excitatory indegree as compared with inhibitory popu-
lations. For populations in MAM V1, this is reversed, except for layer 5.
Note also the relatively low excitatory indegree for subpopulations of
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Figure 7.2: Connectivity of our model of macaque V1 and the adaptation of
the cortical microcircuit model by Potjans and Diesmann (2014)
to macaque primary visual cortex by Schmidt et al. (2018b). a, b
Number of connections between the populations in our model
and between the populations in MAM V1 under a 1 mm× 1 mm
patch of cortical surface. Excitatory connections are represented
in red, inhibitory connections in blue. c, d Average excitatory and
inhibitory indegrees to neurons in the different population in our
model and MAM V1.

layer 4, both in comparison with other populations of the same model
and MAM V1. The inhibitory indegree for especially the inhibitory
population in layer 6 is high for the model derived here.

7.3.2 Spatial connectivity

Spatial connections are classified as either long-range patchy, medium-
range isotropic and short-range push-pull connections. The three
classes are introduced in detail in Section 7.2.3.
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7.3.2.1 Medium-range isotropic connectivity

The central quantity for assessing the medium-range isotropic connec-
tivity is the characteristic length λ, describing the decay of connection
probability with distance d:

P(r) ∼ e−
d
λ

The estimation of λ is exemplified in Figure 7.3b. Combining these
quantitative estimates with qualitative data (as described in Sec-
tion 7.2.3.2) we obtain characteristic lengths specific to the pre-synaptic
populations and the target layer. Numeric values are gathered in Ta-
ble 7.7 for excitatory and Table 7.8 for inhibitory projections.
We find that excitatory neurons generally project farther than in-
hibitory ones. This is in agreement with experimental findings show-
ing that excitatory neurons (especially pyramidal cells) develop axon
collaterals that reach over longer distances than inhibitory neurons
enabling connections between neurons separated by greater distances,
see e.g. Binzegger et al. (2004) and Stepanyants et al. (2007). Numeric
values of the characteristic lengths for both excitatory and inhibitory
source neurons are moreover consistent with independent measure-
ments for macaque V1 (Budd and Kisvárday, 2001; Markov et al.,
2011). Generally, the characteristic lengths is maximal for connections
within a layer. The spatial spread of connections from and to the layer
4C excitatory population is small compared with other populations,
resulting in localized projections. This is consistent with the layer’s
role as primary input layer of thalamo-cortical projections, putatively
performing few computations on its own and rather spreading the
activity to supra- and infra-granular layers.
Using the estimated characteristic lengths, we are able to derive the
peak connection probabilities P0

AB according to Equation 7.49 where
we use the correction as described by equation Equation 7.73. See
Table 7.9 for the numeric values.
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Figure 7.3: a Axonal projection from Sincich and Blasdel (2001), Figure 3,
upon injection of a bi-directional tracer in layer 3. Copyright 2001

Society of Neuroscience, b Exponential fit for layer 5, as described
in Equation 7.56, see also Korcsak-Gorzo et al. (2022).

λvB [mm]

Target Layer Source Layer

L2/3A L3B L4AB L4C L5 L6

L2/3A 0.261 0.215 0.178 0.141 0.212 0.141

L3B 0.215 0.261 0.249 0.141 0.215 0.215

L4AB 0.141 0.261 0.261 0.215 0.171 0.261

L4C 0.121 0.121 0.121 0.141 0.171 0.215

L5 0.261 0.215 0.249 0.141 0.261 0.121

L6 0.215 0.141 0.212 0.141 0.249 0.261

Table 7.7: Estimated characteristic lengths for projections from excitatory
neurons to the different cortical layers. Numeric values are derived
from experiments by Sincich and Blasdel (2001) and - for lack of
data - refined by qualitative inspections of the tracing studies by
Blasdel et al. (1985) and Fitzpatrick et al. (1985).
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λvB [mm]

Target Layer Source Layer

L2/3A L3B L4AB L4C L5 L6

L2/3A 0.123 0.123 0.103 0.051 0.062 0.062

L3B 0.123 0.123 0.103 0.051 0.062 0.062

L4AB 0.062 0.062 0.062 0.062 0.062 0.062

L4C 0.062 0.062 0.062 0.062 0.062 0.062

L5 0.092 0.092 0.103 0.123 0.144 0.144

L6 0.092 0.092 0.103 0.123 0.144 0.144

Table 7.8: Estimated characteristic lengths for projections from inhibitory
neurons to the different cortical layers. Numeric values are derived
from estimates based on Kritzer et al. (1992) combined with data
from Packer and Yuste (2011).
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7.3.2.2 Long-range patchy connectivity

Long range patchy connectivity is confined to an ellipse centered at the
source neuron with an orientation aligned to the preferred orientation
of that neuron (see Section 7.2.3.3). The semi-major and minor axes of
these ellipses can be constrained from experimental data (Table 7.10).
This connectivity scheme exclusively connects neurons with the same
orientation preference, clustered in iso-orientation domains. The frac-
tion of synapses that belong to a patchy connection is unknown. We
quantify this in the patchiness parameter ψ that can attain values in the
unit interval [0, 1]. Figure 7.4 shows intra-areal connections for a high
patchiness parameter where the confining ellipse can be identified
visually.

Semi-minor and major axes [mm]

Source Layer Semi-minor axis Semi-major axis

L2/3A or L3B 1.9 3.0

L4AB 2.2 3.3

L5 or L6 2.3 4

Table 7.10: Semi-minor and major axes describing an ellipse centered at a
source neuron confining the region in which patchy connections
to neurons with the same preferred orientation can be established.
Data from Angelucci et al. (2002).
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Figure 7.4: Processed orientation map for the orientation preference of neu-
rons under a 2 mm× 2 mm patch of cortical tissue. White dots are
selected pre-synaptic neurons with an orientation preference of
60◦. Black dots are post-synaptic neurons highlighting long-range
patchy connections confined to an ellipse.

7.3.2.3 Short-range push-pull connectivity

In our model of macaque V1, neurons in layer 4C are moreover en-
dowed with push-pull connectivity (Section 7.2.3.4). In this scheme,
neurons are subdivided into cells with center ON- and OFF receptive
subfields, additionally to their orientation preference. This distinc-
tion is related the specific thalamic input pattern (Martinez et al.,
2005; Troyer et al., 1998), see Figure 7.5a. Based on this, push-pull
connections between neurons of the same orientation preference are
established (Figure 7.5b).
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Figure 7.5: a Thalamic projections to neurons in the excitatory population
in layer 4C having ON and OFF receptive subfields of various
preferred orientations. b Sketch of push-pull connectivity. Left:
ON and OFF receptive subfields. Right: Excitatory neurons with
either ON or OFF receptive subfield innervate corresponding
inhibitory neurons that suppress firing in the neurons of the
opposite receptive subfield.

7.3.3 Simulations of the network

We instantiate and simulate our spiking neural network model of
the macaque primary visual cortex on the JURECA-DC super com-
puter (Thörnig and von St. Vieth, 2021). The spatial extent of the
network used for the simulations is 4 mm× 4 mm. Choosing standard
parameters for the single-neuron dynamics and their interactions (cf.
Potjans and Diesmann (2014) and Senk et al. (2023), Section 7.2.6),
we perturb the baseline rate (leading to an external input firing rate
of ν = ν0 + δν) and vary the excitation-inhibition factor g. First, the
external cortico-cortical indegrees from our derivations are used to
stimulate the network (cf. Table 7.3). Simulations reveal that the net-
work does not exhibit biologically plausible firing rates on the order of
∼ 10 spikes

s (Figure 7.6a). Rather, the population averaged firing rates
transitions rapidly from a quiescent state to a regime with implausi-
bly high spiking activity. Such behavior is typical for non-balanced
networks where a net-positive feedback loop causes a divergence in
the activity. In order to control the network, we increase the excitation-
inhibition factor g. Doing so strengthens the inhibition and should
—thinking naively —counteract the positive feedback of excitatory
neurons. For a reasonable numeric values of g no balanced state can
be achieved, the rapid transition still occurs.
The non-balanced state of the network can be also induced by an
asymmetry in external input (van Vreeswijk and Sompolinsky, 1998):
if, for example, the excitatory populations of an otherwise balanced
(meaning in the presence of identical input to excitatory and inhibitory
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Figure 7.6: Population averaged firing rates of the model of the primary
visual cortex of macaque monkey. Two parameters are varied
between simulations: δν, the absolute increase in the firing rate
of the Poisson generators externally driving, and the excitation-
inhibition balance factor g a External indegrees derived for our
model of macaque V1 as described in Table 7.4. b Uniform ex-
ternal indegrees of 600 incoming synapses. Each neuron in each
population receives the same external indegree.

populations) is driven more strongly by external input, diverging fir-
ing rates may occur. To test for this in our case, we simulate the
network with uniform external indegrees to both excitatory and in-
hibitory populations (Figure 7.6b). While in this case the onset of the
transition shifts with increasing excitation-inhibition factor, the picture
remains qualitatively similar. The derived network does not allows
for bio-physiologically reasonable firing rates (for moderate g), the
activity rapidly changes from a quiescent to a diverging state.
This motivates a closer examination of the recurrent connectivity of
our model of macaque V1.

7.3.3.1 Connectivity analysis revisited

To understand why our model of macaque V1 does not admit physio-
logically plausible activity —in contrast to the network of Potjans and
Diesmann (2014), Schmidt et al. (2018b), and Senk et al. (2023) —we
consider the target specificity (Section 7.2.4) of the intra-areal connec-
tivity. The target specificity attains values from −1 to 1 and assesses
whether neurons of a given pre-synaptic population preferentially
connected to the excitatory or inhibitory population in a target layer.
−1 means that only inhibitory neurons, 1 that only excitatory neurons
are targeted. A target specificity of 0 implies equal probabilities. Our
model of the macaque primary visual cortex exhibits exclusively posi-
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tive target specificities (Figure 7.7a). If the pre-synaptic population is
inhibitory, the values are generally smaller. In contrast, the connectiv-
ity of MAM V1 also shows negative target specificities, especially for
excitatory source populations (Figure 7.7b). Additionally, inhibitory
pre-synaptic populations innervate excitatory target populations with
high probability for a larger number of projections.
Studying the EI-fractions of our model of V1 and MAM V1 reveals
that —consistent with the observations reported in Section 7.3.1 —in
our model the excitatory populations generally have a higher relative
frequency of incoming excitatory synapses than their inhibitory coun-
terparts (in the same layer). The situation is reversed for MAM V1.
This suggests an explanation for why our model (in contrast to MAM
V1, choosing the same single-neuron parameters) does not show physi-
ologically realistic firing rates across layers and rather transitions from
an almost quiescent to a diverging network state: excitatory neurons
are preferentially targeted by excitatory populations (and strongly
so), leading to a higher level of excitation than in their inhibitory
counterparts. While also inhibitory neurons preferentially connect
to excitatory populations, the preference is less strong. This might
induce a positive feedback loop that cannot be caught by the inhibitory
activity, leading to divergence in the network activity —the attained
network state exhibits implausibly high firing rates.
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Figure 7.7: Target specificity and EI-fractions for models of primary visual
cortex of macaque a, b Target specificity of our model of macaque
V1 and MAM V1. c, d EI-fractions of our model of macaque V1

and MAM V1.

7.4 discussion

In this chapter, we constructed a biologically plausible spiking neural
network model of the primary visual cortex in macaque. To this end,
a large number of anatomical studies were analysed and brought
together in a comprehensive description of laminar and lateral cortical
connectivity.
In particular, we developed a modular workflow in which we com-
bined connection probabilities (Section 7.2.2.1) from cat V1 with
anatomical projection strength from macaque primary visual cortex
(Section 7.2.2.2). The former is used due to a lack of similar data for
macaque V1. The latter is intended to introduce connection structures
specific for macaque. The obtained connectivity exhibits population
specific projection patterns (suggesting a certain flow of activity after
a suitable stimulation) and realistic neuronal indegrees (Section 7.3.1).
Moreover, we estimate the characteristic lengths for intra-areal connec-
tions and endow the model with functional long-range patchy and
short-range push-pull connections. Thereby, we extend the work by
Senk et al. (2023) in multiple ways: first, by providing more detailed
estimates for the characteristic lengths. While Senk et al. (2023) em-
ploy characteristic lengths that depend only on whether the pre- and
postsynaptic neurons are excitatory or inhibitory (and thus are not
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layer-specific), we derive values that are specific to the source popula-
tion and the target layer. The values reported here are consistent with
independently derived estimates for macaque (Markov et al., 2011)
and qualitatively agree with respective measurements for rat cortex
(Schnepel et al., 2015). Additionally, the connectivity is extended by
functional long-range patchy (Section 7.3.2.2) and local push-pull con-
nectivity (Section 7.3.2.3). For this, we endow neurons of our model
with preferred orientations and preferentially link neurons with the
same orientation preference in certain conditions. Furthermore, we
build an input model that takes into account ON and OFF receptive
subfields of thalamic neurons that is the basis for push-pull connectiv-
ity.
Our model thus takes into account certain features of the organiza-
tion of macaque V1 that are believed to underlie cortical information
processing in this area. Thus, the work presented here paves the way
for in silico experiments exploring the dynamical implications of the
embedded organizational principles.
Simulating our model of macaque primary visual cortex, however,
shows that the network in its current form does not allow for pop-
ulation specific, physiologically realistic firing rates using standard
parameters for the single-neuron dynamics and their interactions.
Such firing rates are attained in the comparable model of Potjans and
Diesmann (2014), its adaptation to macaque primary visual cortex by
Schmidt et al. (2018b) and its spatial extension by Senk et al. (2023).
Studying the target specificity of our model reveals a lack of excita-
tion on inhibitory and of inhibition on excitatory neurons, putatively
leading to the diverging network activity.
This property of the network is inherited from the connection proba-
bilities (Binzegger et al., 2004) and the anatomical projection strengths
(Vanni et al., 2020) used in the derivations. Especially the connection
probabilities potentially exhibit certain inaccuracies due to the small
number of reconstructed neurons on which the estimates of Binzegger
et al. (2004) are based. Large-scale network reconstructions using elec-
tron microscopy promise to mitigate this shortcoming and promise
a more detailed view on the cortical connectivity (MICrONS Consor-
tium et al., 2021; Shapson-Coe et al., 2021). The modular workflow
we developed here allows for constructing new networks once new
estimates for the local connection probabilities are provided. These
new estimates might remove the imbalance in excitatory connectivity
and thus the divergence in network activity observed here.
However, it has to be noted that potentially the network connectivity is
not terminally flawed and that the problem lies in neglecting balance
on the single-neuron level, homeostatic or plastic mechanisms (see e.g.
Vogels et al. (2011), Xue et al. (2014), and Znamenskiy et al. (2018)).
Given that a reasonable resting-state activity is achieved, future work
will investigate the activity upon stimulation with visual inputs and
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architectural extensions. First, properties relying on architectural fea-
tures built into the network need to be retrieved from in silico experi-
ments. This includes the correct (i.e. embedded) orientation preference
and the contrast invariance of the orientation tuning. Since such ex-
periments drive the network beyond the resting-state, conductance-
instead of current-based neuron models might be needed for more
realistic simulated activity. After validating the built-in features, the
influence of patchy connectivity on network dynamics can be in-
vestigated. The patchiness parameter ψ is experimentally not well
constrained. It controls to what extent sub-networks are clustered (see
Rostami et al. (2020) for a different approach to clustered networks).
This potentially has a strong influence on the network dynamics which
underlie cortical computations.
Future work also might include extending the developed workflow to
other areas of macaque visual cortex. V2 and V4 in the macaque visual
system are reasonable choices for this endeavor. Not only do they
belong to cortical areas for which anatomical and physiological data
is readily available; they also can be embedded into a larger model
comprising V1, V2 and V4. These areas form the first three stages of
visual processing along the ventral stream, which is associated with
the recognition of objects and their representation in an abstracted
form in the neural activity (Kandel et al., 2013). The cortico-cortical
connections between V1, V2, and V4 respect retionotopy and are con-
vergent for feedforward and divergent for feedback connections (Zeki
and Shipp, 1988). Adding this requires the correct relative sizes for
the modeled areas. Moreover, the employed split of layer 2/3 into
2/3A and 3B introduced in this model might play an important role
(Markov and Kennedy, 2013). Such a network would in a natural way
extend the model of macaque primary visual cortex presented here
and would fit right between biologically plausible large-scale spiking
neural networks of Senk et al. (2023) (one area, taking cortex’ spatial
structure into account) and Schmidt et al. (2018b) (modeling all vision
related areas in the macaque while ignoring the spatial structure of
single areas).
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8.1 introduction

The previous chapter was concerned with the construction of a bio-
logically plausible model of macaque V1. The intra and inter-laminar
connectivity derived there (cf. Section 7.3.1) was based on two data
sets: estimates of the layer-resolved connection probabilities in cat
(Binzegger et al., 2004) and layer-specific projection strengths of vari-
ous neural populations in macaque (Vanni et al., 2020) primary visual
cortex. Instantiating and simulating the network with the derived
connectivity did not allow for a stable ground state activity with re-
alistic firing rates (Figure 7.6). A subsequent analysis of the derived
circuit (Figure 7.7) revealed that connectivity appears to be prone to
introducing positive feedback loops leading to diverging activity. Thus,
under the given choice for establishing connections, of parameters
for single neurons and their interactions, the derived structure of the
network cannot be reconciled with biologically plausible dynamics.
This hints at a fundamental bias in the employed anatomical data (or
its interpretation) that cannot be easily mitigated without introducing
additional anatomical assumptions.
Changes along these lines were introduced by Potjans and Diesmann
(2014), which is the basis of the MAM V1 discussed in Chapter 7

alongside our model of macaque primary visual cortex. The authors
first derived a raw connectivity map solely based on the data by
Binzegger et al. (2004). Then, they reviewed a large body of electro-
physiological connectivity studies across multiple species, derived a
physiological connectivity map and unified this map with the raw
connectivity map under a Gaussian assumption for the distance de-
pendence of connection probabilities. This led to what they refer to
as integrated connectivity map. Finally, specific connections of this
map were modified to meet a target specificity obtained again from
electrophysiological connectivity studies.
Such modifications—while in the case of Potjans and Diesmann (2014)
leading to a model of the cortical microcircuit exhibiting plausible, cell
type specific activity—are potentially problematic: assumptions regard-
ing the unification of multiple studies with differences in methodology
have to be made, and architectural features foreign to the cortical cir-
cuit under investigation can be easily introduced. This bears the risk
of rendering the connectivity of the local network inconsistent. Thus,
new insights are needed in order to consistently construct biologically
plausible network models of such circuits.
The aim of this chapter is to take a closer look at the most consistent
estimates of microcircuit connectivity we are able to obtain. To this
end, we analyze three data sets providing descriptions of local cortical
networks. We employ the data provided by Binzegger et al. (2004)
(already used in Chapter 7) as well as the new reconstructions of
cortical tissue using electron microscopy (EM) by Shapson-Coe et al.
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(2021) and MICrONS Consortium et al. (2021).
In recent years, EM has become a powerful tool for the large-scale,
three-dimensional reconstruction of cortical circuits (Kubota et al.,
2018). The data used here offer unprecedented levels of detail regard-
ing the reconstructions of the local circuitry of the mammalian brain.
This was enabled by recent advances in the analysis of large-scale EM
data of cortical tissue based on methods from machine learning (MI-
CrONS Consortium et al., 2021; Shapson-Coe et al., 2021). Even though
the new data allow for the most accurate reconstructions to this day,
the complete network graph still cannot be recovered. Thus, proba-
bilistic descriptions in the form of connectivity maps as in Chapter 7

are still needed. Here, we derive such connectivity maps of the local
circuitry based on the three data sets. We compare the maps based
on the newer data with the connectivity map derived from Binzegger
et al. (2004). The goal is to elucidate potential shortcomings in the
latter and obtain biologically plausible models of the local cortical
circuitry. This eventually might pave the way towards a reconciliation
between consistent models of cortical structure and realistic neuronal
dynamics.

8.2 methods

We here construct and compare connectivity maps consisting of the
connection probability from the different anatomical data sources. In
contrast to the previous chapter, the laminar resolution used here
distinguishes between layers 2/3, 4, 5, 6. The neurons in each layer
are assigned to either an excitatory or inhibitory population. This
resolution used in the data sets provided by Binzegger et al. (2004)
(referred to as Binzegger) and MICrONS Consortium et al., 2021

(in the following referred to as MICrONS) is identical with the one
employed here. Shapson-Coe et al. (2021) treat layers 2 and 3 separately.
This data set will be referred to as H01.
The choice of the laminar resolution is motivated by minimizing the
additional assumptions when estimating the connectivity maps. For
the H01 data, layer 2 and 3 are combined in the following derivations.
First, we again determine the layer-resolved number of connections
Su

AB between the pre- and post-synaptic cortical populations B and A
under a patch of cortical tissue below 1 mm× 1 mm.

binzegger A brief description of the data is given in Section 7.2.2.1.
Using the notation introduced there, for Binzegger we calculate the
desired quantity as

Su,Binzegger
AB = ∑

i∈A
∑
j∈B

Ncisu
i p|u|ij (8.1)
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Here, Nci is the total number of neurons of type i, su
i the number of

synapses targeting a neuron of type i in layer u, and p|u|ij the probability
for a connection to exist from a neuron of type j onto a neuron of type
i with synapse in layer u.

em reconstructions In the reconstructions based on EM, the
brain tissue is cut into thin (on the order of 30 nm) sections that are
subsequently analyzed with a resolution of 8 nm× 8 nm. The obtained
cuboids are referred to as segments. The main technical difficulty
in reconstructing cells is their agglomeration (that is association of
segments) across sections as well as the identification of synapses. This
is a challenging task, especially in light of the size of the obtained data
(on the order of petabytes). Hence, advanced computational methods
have to be employed. Still, merge errors across sections cannot be
excluded. For dendritic processes, however, automatic merging leads
to satisfying results with low error rates (Shapson-Coe et al., 2021).
More problematic is the agglomeration of axons. This is due to their
small diameter in comparison with dendrites. To overcome this, cer-
tain neurons are manually proofread, i.e. their axons and dendrites
are traced manually across sections, leading to a significantly better
reconstruction.
We employ only proofread cells as pre-synaptic neurons in our deriva-
tion in order to avoid systematic errors induced axon break over-
estimating very local connections. On the target side, all identified
neurons are potential candidates for post-synaptic cells. This is justi-
fied by the well agglomerated dendritic processes. Additionally, we
exclude self-connections in our analysis.
In the H01 dataset, the authors reconstructed an approximately 1 mm3

volume of human temporal lobe from a resection of an epileptic pa-
tient. They identified 16 087 neurons as well as 134 synapses in the
tissue. The resected volume covers a depth of up to 3 mm (from pia
to white matter), a breadth of up to 2 mm and a width of 0.175 mm.
The authors distinguished the cortical layers 1, 2, 3, 4, 5, as well as 6

and classified neural cells into three excitatory neuron types as well
as inhibitory neuron types. In total, around 27% of the synapses were
judged to be inhibitory, the rest excitatory. 104 randomly selected
neurons close to one boundary of the long vertical side of the re-
section were proofread by the authors. Neurons of all layers and all
populations except layer 6 inhibitory neurons were proofread. For
more detailed information, we refer the reader to the original study
(Shapson-Coe et al., 2021).
The MICrONS data provide a reconstruction of around 1 mm3 volume
of mouse visual cortex (VISp, VISrl, VISal and VISlm). The researchers
identified around 17 700 neurons and 500 million synapses. The re-
constructed volume consists of two subvolumes that were processed
independently and aligned later on. Multiple different inhibitory neu-
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ron types were distinguished. In our analysis, we only differentiate
between excitatory and inhibitory neurons. In this dataset, 349 indi-
vidual neuronal cells from the larger subvolume were proofread. See
MICrONS Consortium et al. (2021) for a more detailed description.
To determine Su,{MICrONS,H01}

AB , we count the number of connections
established by proofread cells of a source population B onto recon-
structed neurons of a target population A. Since the cell types of the
proofread neurons are not sampled uniformly, we correct for this by
first calculating the number of connections established by one cell of
the respective type. This number is then scaled up by the total number
of cells of this type in the reconstructed volume. Finally, we scale
up the counted number of connections so that ∑A,B Su,{MICrONS,H01}

AB
equals the total number of synapses located in layer u in the MICrONS

and H01 data set respectively. This ignores that a certain fraction of
synapses in each layer may stem from thalamo-cortical or cortico-
cortical projections. Since the total number of these synapses is small
in comparison with all synapses in the reconstructed volume, and since
precise figures estimating the respective fractions are not available,
we choose the described strategy. Additionally, for the subsequent
analyses the thus introduced error seems to be of little importance
since the fractions of synapses where the pre-synaptic neuron resides
in the same layer can be assumed to roughly range from 75% to 80%
(Markov et al., 2011). In the case of the H01 data, we sum over layers
2 and 3 and combine the values to obtain the respective numbers for
layer 2/3.
Using the number of neurons from Beaulieu and Colonnier (1985) and
Beaulieu and Colonnier (1983) when further processing Su,Binzegger

AB , and
the respective reported values from the reconstructions of MICrONS and
H01, we determine the population-resolved connection probability as
in Equation 7.67. This leads to three different models of the local cor-
tical circuit denoted by M[Binzegger], M[MICrONS] and M[H01].
Additionally, the target specificity Equation 7.68 and the EI-fractions
Equation 7.69 of the three different models are calculated.

8.3 results

We first turn to an analysis of the connectivity (Figure 8.1a). All three
models exhibit source- and target-specific connection probabilities.
Generally, in most populations within-layer connection probabilities
are comparatively strong. M[MICrONS] has the smallest pairwise
connection probabilities, while M[H01] shows the largest ones. In
M[Binzegger] andM[MICrONS], we observe a similar motive in the
connectivity from excitatory to excitatory populations: There appears
to be a strongly connected subnetwork linking L2/3E and L5E with
themselves and among each other. While also present inM[Binzegger]
between excitatory and inhibitory populations, this is not the case
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in M[MICrONS]. In all models, inhibitory neurons show a slight
preference towards targeting excitatory neurons within or above the
layer of the pre-synaptic neurons. This is consistent with the greater
abundance of specific inhibitory cell-types projecting from deeper to
upper layers (e.g. Martinotti cells) compared to neurons projecting
from upper to deeper layers (as e.g. bipolar cells) (Jiang et al., 2015).
In case of inhibitory post-synaptic populations, this structure of the
connectivity is less salient (forM[Binzegger], M[MICrONS]), or van-
ishes completely (forM[H01]).
The layer-resolved number of neurons as well as the ratio between
excitatory and inhibitory neurons vary across the different models
(Figure 8.1b). We calculate the average indegree of the neurons in a
given population (Figure 8.1c). In M[MICrONS] and M[H01], neu-
rons belonging to the inhibitory population in a given layer receive
more incoming connections than their excitatory counterparts. This is
consistent with the significantly higher number of synapses per soma
and per µm dendrite on inhibitory neurons as compared with excita-
tory neurons in mouse V1 (Wildenberg et al., 2021). Note, however,
that this relation is reversed inM[Binzegger].
Additionally, we assess connectivity patterns between excitatory and
inhibitory neurons with the target specificity (Figure 8.2a). As already
indicated in Chapter 7, inM[Binzegger] only excitatory populations
are preferentially targeted, irrespective whether the pre-synaptic pop-
ulation is itself excitatory or inhibitory. This is in stark contrast with
the target specificity of M[MICrONS] and M[H01]: in the former,
all excitatory populations preferentially target inhibitory neurons.
In the latter, there is a diverse specificity to be observed for excita-
tory pre-synaptic populations where some establish connections onto
inhibitory, some onto excitatory neurons with a higher probability.
Similarly, inhibitory populations exhibit both preferential targeting of
excitatory an inhibitory populations. Within one layer, the target speci-
ficity is always positive in M[MICrONS] and M[H01]. Comparing
the target specificity of the models based on the EM reconstruction
with the connectivity derived by Potjans and Diesmann (2014), we
note a similar diversification of target specificity that cannot be found
inM[Binzegger].
Examining the EI-fractions (Figure 8.2b) reveals that in all models
except M[Binzegger] inhibitory neurons have a higher relative fre-
quency of excitatory pre-synaptic partners than excitatory neurons.
Thus, by preferentially targeting inhibitory neurons, inM[MICrONS]
and M[H01] and the microcircuit model of Potjans and Diesmann
(2014), increasing activity of excitatory neurons should increase the
firing rate of some of the inhibitory populations, potentially lead-
ing to dynamical balance of excitation and inhibition. This is further
supported by the high relative excitatory indegrees on inhibitory neu-
rons. In contrast, inM[Binzegger] it appears unlikely that a similar
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Figure 8.1: Connectivity of reconstructions based on three anatomical data
sets. a Connection probabilities based on number of synapses be-
tween neurons of the respective populations. For better visibility,
connection probabilities are capped at 0.4. b Number of neurons
in different populations obtained from different datasets. c Inde-
gree of neurons in different populations based on connectivity
maps.

effect could catch run-away excitatory activity in models similarly
constructed to the one in the previous chapter.
It is noteworthy that the EI-fractions reported by Shapson-Coe et al.
(2021) differ from the ones we obtain for our modelM[H01]. In their
work, they count the synapses onto excitatory and inhibitory neurons
and do not construct a model integrating the anatomical information
of their data. The counting procedure relying on the synapse being
identified correctly as excitatory or inhibitory (instead of the neu-
ron, as used in the derivation of our model) or the self-connections
neglected in our analysis may explain the difference.
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Figure 8.2: Target specificity and EI-fractions of models of local cortical cir-
cuits and model of Potjans and Diesmann (2014) (denoted by PD
Microcircuit) a Target specificity of different models. b EI-fractions
across layers of different models. Here, only the fraction for ex-
citatory connections are presented. For M[H01] no inhibitory
neurons in layer 6 were proofread resulting in no data for this
population.
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8.4 discussion

In this chapter, we derived connectivity maps of the local cortical cir-
cuits based on three data sets obtained with different methodologies.
First, we employed the connection probabilities obtained via the single
cell reconstructions in cat V1 of Binzegger et al. (2004) combined with
neuron and synapse counts by Beaulieu and Colonnier (1985) and
Beaulieu and Colonnier (1983). The data was already used in the pre-
vious chapter for our model of the primary visual cortex of macaque.
Additionally, two recent, large-scale reconstructions obtained with
EM of mouse visual cortex and human temporal lobe were analyzed
(MICrONS Consortium et al., 2021; Shapson-Coe et al., 2021). This
technology enables a detailed reconstruction of the objects in the
cortical tissue. Even though advancements in classifications and ag-
glomeration of these objects across sections of cortical tissue allows
for unprecedented insight into local cortical networks, the data is far
from being a complete or correct representation. Nonetheless, it is
reasonable to assume that these data offer the least biased view on
cortical microcircuitry to this day.
The analysis presented here is motivated by the diverging dynamical
activity in our model of macaque V1 (Figure 7.6). In the previous
chapter, we traced this phenomenon back to excitatory populations
preferentially target excitatory neurons in all layers. Here, we could
indeed confirm that this property directly stems from the data by
Binzegger et al. (2004) (Figure 8.2a). In the models based on the more
recent and complete EM data, a more nuanced view on local cortical
architectures emerges. While there are consistencies in the connec-
tion probabilities of M[Binzegger] and M[MICrONS], or the target
specificity ofM[Binzegger] andM[H01], there are also apparent dif-
ferences. Especially the target specificity ofM[H01] exhibits diverse
patterns where both excitatory and inhibitory populations preferen-
tially target excitatory or inhibitory neurons, depending on the layer.
Additionally, for the connectivity maps based on the EM data, in a
given layer the neurons of the inhibitory population have a higher
EI-fraction than the excitatory ones. This is in contrast to the respective
quantities inM[Binzegger].
The structural changes observed in the connectivity maps constructed
here are similar to the amendments introduced by Potjans and Dies-
mann (2014). There, the authors identified candidates for the amend-
ment based on the target specificity and altered an integrated connec-
tivity map derived from anatomical and electrophysiological connec-
tivity data. Since simulations of this model exhibit plausible, cell type
specific firing rates (as is the case for the MAM V1, cf. Chapter 7),
this suggests that these changes are critical for non-diverging network
dynamics. Indeed, the differences in target specificity and EI-fractions
for inhibitory neurons —in comparison withM[Binzegger] —indicate
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that a stronger control of the network activity by inhibitory neurons is
needed and can be achieved via a increased innervation of certain in-
hibitory subpopulations. This increased innervation on the structural
level relative to the model based on the Binzegger data is suggested
by the EM data.
We thus offer a consistent (with respect to the constructed model)
view on why models based on the data by Binzegger et al. (2004)
might be prone to diverging activity, and what might be different in
biological cortical circuits. Additionally, new connectivity maps —es-
pecially fromM[MICrONS] —that can be used as an alternative basis
for the derivation of our model of macaque primary visual cortex are
presented. Indeed,M[MICrONS] offers itself as the most promising
candidate: the data used in the construction is the most complete and
represents the cortical circuitry of V1 (albeit in mice), and the target
specificity (Figure 8.2) suggests that a spiking network model based
on this connectivity would have the smallest likelihood of exhibiting
positive feedback loops and thus diverging activity in dynamical simu-
lations (cf. Chapter 7). This raises the hope that the problems apparent
in the spiking activity of our model of macaque V1 can be overcome
by incorporating the anatomical insights gained in this chapter.
The obtained maps are, however, interesting unto themselves and
can be investigated in their own right: since they provide models
for different cortical areas in different species, their structure and
thus spiking activity might reflect a functional specialization. In fu-
ture work, quantities like the excitability (Maksimov et al., 2018) or
the intrinsic timescales (Gao et al., 2020; Siegle et al., 2021) could be
analyzed to investigate the structure-dynamics relationship in these
models.
Additionally, in EM reconstructions the precise locations of pre- and
post-synaptic neurons are known. Thus, better estimates for spatial
decay constants might be obtained. These can be additionally used
to investigate the relationship between the potential connectivity (e.g.
(Stepanyants et al., 2008) or Section 7.2.3.2) and the actual connectivity.
However, comparing the spatial decay constants directly, for example
between the EM reconstructions and Section 7.2.3.2, is not straightfor-
ward due to differences in e.g. the size of neurons across species or
structural differences in the medium-range connectivity across brain
areas (Tanigawa et al., 2005).
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In order to conduct a research program as the one sketched in Part i
where digital twins of cortical circuits are used to explore the rela-
tionship between the structure of the brain and its activity as well as
function, simulation technologies are of great importance. In the last
decades, the Computational Neuroscience community achieved a sep-
aration between the underlying mathematical models of a neuronal
network and the employed technology for its simulation (Einevoll
et al., 2019). With this, it became possible to execute the same neuro-
scientific model with different simulation technologies, ranging from
various classical CPU approaches (Brette et al., 2007) to for exam-
ple neuromorphic systems (Brüderle et al., 2009; Golosio et al., 2021;
Knight et al., 2021; Rhodes et al., 2018).
The aforementioned separation highlighted the role of simulators as
research infrastructure —akin to for example hardware in a laboratory
—, that deserve attention and tendance in their own right. This view
justifies, and indeed suggests giving that attention in a formalized way:
simulation technologies need to be reliable, efficient, and continuously
developed. In order to understand how this can be achieved, we briefly
expand on each of these points:
Reliability ensures the correctness of the results making reproducible
spiking neural network simulations possible —an only seemingly
simple task with pitfalls (Pauli et al., 2018) and inherent difficulties
(Gutzen et al., 2018).
Efficiency highlights the performance of the simulation technology
—usually quantified by simulation speed and consumed energy or
required memory during the execution of a simulation. To assess these
quantities, strong and weak scaling experiments need to be conducted:
in the former, the problem size remains fixed while the computational
resources are increased allowing for investigating speed-ups gained
from parallelization. In the latter, the problem size scales linearly with
the resources employed. This allows to assess potential penalties in-
duced just by solving larger problems. For a detailed discussion of
weak and strong scaling see e.g. Hager and Wellein (2010).
Finally, continuous development focuses on the need to advance the
simulation technology by satisfying new, ever changing requirements
from the hard- and software side, competing with alternative ap-
proaches —in our case neuromorphic computing —and meeting the
demands of the research community. This aspect is of paramount im-
portance: Ultimately, the continuous development determines whether
or not a simulation technology stands the test of time and can be used
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long term as a reliable, efficient tool for conducting research.
The need for appropriately addressing these issues is reflected in
the emergence and professionalization of the field of research software
engineering in the last decade or so (Baxter et al., 2012). Nonetheless,
challenges remain: Research software engineers on their own often
lack domain knowledge and require frequent exchange with domain
scientists to guide the assessment and development of simulation
technology. On the other hand, also researchers need to be involved
more actively and professionally in the development process. Only
with joint forces, addressing the aforementioned items enables incre-
mental improvements in software infrastructure, ultimately facilitating
neuroscientific research as the one conducted in Part iii.
In this thesis, in the context of High-performance computing (HPC)
benchmarking, two aspects of the aforementioned points are ad-
dressed: In Chapter 10 we turn to performance benchmarks of a
standardized benchmarking model of the general purpose simula-
tion engine for large heterogeneous networks of point neurons NEST

(Gewaltig and Diesmann, 2007) simulator on a recent conventional
compute node. Here, we focus especially on the time-to-solution as
well as the energy-to-solution. Using these metrics, we identify per-
formance bottlenecks of the used version of the NEST simulator and
compare its performance with alternative simulation technologies.
Motivated by the difficulties inherent to HPC benchmarking —also
experienced by the author of this thesis in the work expounded in
Chapter 10 —, in Chapter 11 we analyze the situation and propose a
benchmarking workflow mitigating these problems. The theoretical
workflow is supplemented with a reference implementation. Finally,
we demonstrate how to use the devised workflow (in form of our
reference implementation) to aid continuous simulator development:
assessing whether certain features to be added to a new version of
the NEST simulator indeed improve the chosen metrics, and retain
performance and correctness.
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10.1 introduction

Simulations of spiking neural networks require efficient simulators to
meet the demands of the research community.
Indeed, in order to investigate large-scale neuroscientific models (see
e.g. van Albada et al. (2021)) or neuronal phenomena like learning,
the temporal dynamics of which may unfold over hours, days and
even years, simulations need to become faster. Similar, but even more
pressing arguments hold true in the more application orientated fields
of artificial intelligence and machine learning. Here, reducing the
consumed energy —for example during training —is of paramount
importance (Strubell et al., 2019).
Both, an increase in simulation speed as well as energy efficiency is a
promise of neuromorphic computing (Furber, 2016) for both neurosci-
entific research and consumer orientated applications.
The progress in this field must, however, be compared with and
validated against continuously advancing conventional approaches,
which offer higher flexibility at potentially lower costs. Moreover, these
conventional approaches are usually easier to use and require less
dedicated training for the researchers, implying a broader group of
potential users.
Comparisons between conventional and more dedicated approaches
require standardized benchmark models to ensure meaningful as-
sessments of the performance of the different technologies (see also
Chapter 11 for a more detailed discussion of this topic). For spik-
ing neural network models with biologically plausible neuron- and
synapse-densities, the local cortical microcircuit model of Potjans and
Diesmann (2014) (see Figure 10.4 a) has become such a standard bench-
mark model.
The model represents the neural tissue below a 1 mm2 patch of cortical
surface and incorporates four cortical layers. Each layer consists of
an excitatory and inhibitory population of integrate-and-fire model
neurons with exponential postsynaptic currents. Cell-type specific
connection probabilities replace the more involved distance depen-
dent cortical connectivity. The microcircuit model can be routinely
simulated using different simulation technologies with only moderate
hardware requirements (Knight and Nowotny, 2018; Rhodes et al.,
2019; van Albada et al., 2018). The realistic number of about 10, 000
synapses per neuron and, at the same time, a connection probability
of about 0.1 renders questions of downscaling irrelevant and maxi-
mizes the connection density in biological plausible models of cortical
networks (van Albada et al., 2015a). Thus, larger biologically plausible
network models are necessarily less densely connected and hence are,
relative to the problem size, easier to simulate.
In this chapter, we set out to investigate the performance —assessed
with simulation speed and consumed energy —of the general purpose
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simulation engine NEST (Gewaltig and Diesmann, 2007) on a recent
conventional computing system.

Figure 10.1: Sketch of the microcircuit model with about 80, 000 neurons and
300 million synapses organized into four layers of excitatory
(blue) and inhibitory (red) populations of neurons.

10.2 methods

We simulate the microcircuit model on 128 core dual socket AMD
EPYC Rome 7702 compute nodes. Each processor is composed of 8
chiplets, each chiplet holds 8 cores, resulting in 64 cores per socket
(see Figure 10.2) Each core has its own L1 and L2 cache, 4 cores share
an L3 cache (see Figure 10.3). Two nodes are coupled by a point-

Figure 10.2: Sketch of hardware architecture of the dual socket AMD EPYC
Rome 7702 system used in this chapter. Solid blue squares in-
dicate compute cores. 8 compute cores are combined into one
chiplet.

to-point Mellanox ConnectX-6 HDR100 interconnect. The software is
NEST 2.14.1 (Peyser et al., 2021) (compiled with GCC 6.3.0 and using
jemalloc 3.6.0-9.1, Evans (2006)), providing, in contrast to some neuro-
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Figure 10.3: Sketch of one chiplet of the AMD EPYC Rome 7702. 4 cores are
grouped into one core complex sharing an L3 cache.

morphic systems, double precision numerics and weight resolution.
NEST utilizes the Message Passage Interface (MPI, here OpenMPI
4.0.3rc4, Gabriel et al. (2004)) and employs hybrid parallelization with
multithreading (OpenMP, OpenMP Architecture Review Board (2008))
for shared memory parallelization where a core never runs more than
one thread. Timers monitor the different phases of the simulation:
update of neuronal states, communication of the spikes between MPI
processes, and delivery of the received spikes to the thread-local targets.
By definition, communication is zero if no hybrid parallelization is
employed. The employed alternative memory allocator jemalloc has
no influence on the time required to propagate the dynamical state
of the neuronal network but reduces the time needed to construct the
network. This is due to the non-blocking distribution of memory to
threads (Ippen et al., 2017).
We perform strong scaling experiments (see Chapter 9). This means,
we keep the task size fixed while systematically increasing the com-
putational resources (Figure 10.4b). The task is a simulation of 10 s of
model time (TModel), referring to the span of biological time described
by the model, if not stated otherwise. Measurements start after model
instantiation with optimized initial conditions (Rhodes et al., 2019)
and an initial interval of 0.1 s of model time to ensure that potential
transients of the network dynamics are discarded. To assess simulation
speed we use the realtime factor:

RTF =
TWall

TModel

Here, TWall denotes the wall-clock time; the time passed in the machine
hall until the simulation completes. A realtime factor smaller than 1
implies sub-realtime performance.
To obtain an optimal performance, the threads need to be bound to the
compute cores. This means that each thread is local to one compute
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core and cannot change the core it runs on. To bind threads to cores
on our system we, export OpenMP variables as follows:

export OMP_NUM_THREAD = $ CPUSPERTASK

export OMP_PROC_BIN = TRUE

export OMP_PLACES = {0},{8},{15}

Here $CPUSPERTASK is the number of cores used in a given setup (in
this example 3) and {0},{8},{15} indicate the first core on the first,
second and third chiplet.
We employ two different thread binding (also called placing) schemes
on one node to assess the performance given a fixed number of threads
(or equivalently, compute cores):
In the sequential placing scheme, threads are bound onto physically
consecutive cores. Thus, first a chiplet and subsequently a socket is
filled when increasing the number of threads used before starting with
the next.
In the distant placing scheme, threads are bound such that L3 cache
sharing given a number of threads is minimized. To be precise, we
number the chiplets 0, ..., 15 where 0, ..., 7 identify consecutive chiplets
on one socket and 8, ..., 15 on the other (see Figure 10.2). The number-
ing is induced by the standard output of lstopo, which is included in
several Linux distributions. The command returns a numbered list of
the cores on the compute node hierarchically structured by the NUMA
nodes (in our case equivalent to the sockets), the L3 cache and the
L1/L2 cache. Cores 0 to 63 and L3 caches 0 to 15 are located on NUMA
node 0, cores 64 to 127 and L3 caches 16 to 31 on NUMA node 1. Since
on one chiplet two L3 caches are located, one obtains the number of a
chiplet by an integer division of the number of the respective L3 cache
by 2. We denote the k−th core, k ∈ {0, ..., 7} (sketched in Figure 10.3),
on the n−th chiplet by n : k. In the distant placing scheme the filling
of a compute node from 1 to 128 threads on one node is split into 8
rounds each addressing a particular core k of the chiplets and suc-
cessively adding this core of chiplet n (16 in total) to the simulation.
This results in 8× 16 = 128 threads being bound to cores. The filling
procedure starts with core 0 of each chiplet on the first socket before
populating the second socket, i.e. the first 16 simulations use the cores
{0 : 0}, {0 : 0, 1 : 0}, ..., {0 : 0, ..., 15 : 0}. Here, we employ the n : k
notation with the first index (chiplet) changing before the second (core)
does, and denote by a set {. . .} of cores their simultaneous use in a
benchmarking simulation. The next round uses cores still not sharing
an L3 cache with cores already in use. We chose the 4−th, resulting
in consecutively adding the cores 0 : 4, 1 : 4, ..., 15 : 4 to the set of
simultaneously used cores. The following rounds continue with the
2−nd, 6−th, 1−st, 5−th, 3−rd and 7−th core respectively, minimizing
shared use of L3 cache.
Simulations on one node are launched by

python3 run_microcircuit.py
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When using two nodes, simulations are launched by

mpirun --n 2 --npernode 1 --mca pml ucx -x UCX_NET_DEVICES=mlx

5_1:1 --bind-to board python3 run_microcircuit.py

in this example with 1 MPI process per node.
We moreover determine the number of cache misses in some simula-
tions. For this we employ the perf performance analysis tool of the
Linux operating system. We use the command options

perf stat -ae task-clock,cycles,instructions,cache-references,

cache-misses

and increase the simulation time to 100 s. Thereby we ensure that
approximately 80% of the run time of the program is spent in the
simulation phase guaranteeing a reliable assessment of the percentage
of cache misses during that phase.

A common measure for comparing the energy consumption of
neuromorphic systems is energy per synaptic event defined as total
consumed energy divided by the total number of transmitted spikes.
Here, power was measured with a Raritan Dominion PX and a Raritan
PX3-5190 power distribution unit (PDU). The units have an accuracy of
±5% and data collection frequency of 1 Hz. The power measurement
has a delay of 1 s, so that the power readings need to be shifted by 1 s
to be aligned to wall-clock time. Since the nodes are connected point-to-
point, we do not need to take additional passive energy consumption
by an interconnect into account.
For conducting the benchmarks we employ the JUBE (Lührs et al.,
2016) benchmarking environment.

10.3 results

We assess the strong scaling performance of microcircuit model simu-
lations by using 1 MPI process per node and increasing the number of
threads on up to two compute nodes with the two different placing
schemes introduced above. Simulations on two full nodes employ 256
threads and in total 2 MPI processes.
For sequential placing, we observe linear scaling for a thread count
between 1 and 32 as well as super-linear scaling between 32 and 64
(Figure 10.4(a)). A full compute node achieves sub-realtime perfor-
mance with an RTF of 0.72. Two nodes reduce the realtime factor to
0.63; the simulation runs 1.6 times faster than realtime. The distant
placing scheme exhibits super-linear scaling already for a small num-
ber of threads. At 33 threads, we note a sudden rise of the realtime
factor. At this point, the L3 cache is shared for the first time. Nev-
ertheless, sub-realtime performance is already achieved when using
only 64 threads. Comparing the two placings at 128 and 256 threads
respectively, we observe identical performance. The reason is that due
to the round-robin distribution of neurons across threads (Morrison
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et al., 2005a), the sequential and the distant placing schemes become
indistinguishable up to the mapping of thread identifiers to core iden-
tifiers if all cores of the compute nodes are in use. Control simulations
show that the compute nodes reach even lower real-time factors if
the threads are split into 2 MPI processes per node; binding one MPI
process to each socket leads to an RTF of 0.7 on one node and of
0.53 on two nodes. The relative time spent in the update phase on a
single node is decreased in the distant placing when compared with
the sequential one and communication between the two nodes is not
a limiting factor. This suggests that simulation time can be further
reduced by increasing the number of nodes and alternatively using
faster nodes.
We also assess the energy consumption of the simulation phase to
investigate how the increased power uptake due to using more com-
putational resources is counterbalanced by decreased simulation time
(Figure 10.4(b)). For this we compare a configuration using all 128
cores of a node with two configurations using only half of the cores.
The former sequentially fills the cores of one socket, the latter employs
the distant placing scheme. During simulations of 100 s of model time
we record the power consumption and obtain the energy consumed in
the simulation phase by integrating over the power readings.
We observe that power consumption during the simulation phase is

largest for the distant placing of 64 threads, amounting to 0.39 kW sub-
tracting the baseline power of 0.2 kW. This is almost twice the power
as in the sequential configuration (0.21 kW). Nevertheless the increase
cannot be attributed to the use of the second socket. The 128 thread
configuration consumes 0.33 kW which is close to the same power
required per thread of the sequential case. The counterintuitively low
power consumption in the 128 threads case may be explained by the
potentially longer latencies resulting in the cores not working at full
capacity. Measuring the number of cache misses confirms a relative
frequency of 25% in distant as compared with 43% in sequential plac-
ing. Ultimately, the 128 thread configuration does not only exhibit
the shortest time to solution but also requires the smallest amount of
energy.
The energy per synaptic event for the two fastest configurations (128
and 256 threads with 2 MPI processes per node) are 0.33 µJ and 0.48 µJ,
respectively.
Neuroscientific projects routinely require multiple runs of a model
with different initial conditions to collect statistics of its dynamics
or with different settings to map out a parameter space. The super-
linear scaling of a compute node in the simulation of the microcircuit
model raises the question whether it is more efficient to run simu-
lations in sequence on the full machine instead of dividing up the
computational resources between multiple independent instances of
the model. Table 10.1 compares as an example the wall-clock time for
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Figure 10.4: Strong scaling of a cortical microcircuit model on a conven-
tional compute node. (a) Strong scaling for two placing schemes.
Top graph shows realtime factor over total number of threads;
dashed horizontal line indicates realtime; black solid line in-
dicates linear scaling. The sequential scheme (blue) minimizes
distance of threads on hardware, the distant scheme (brown)
maximizes it both using 1 MPI process per node; pale colored
line segments connect data points, dashed vertical lines indicate
number of cores per processor (64) and node (128). On node
hybrid parallelization by 2 MPI processes (1 per socket) for full
nodes for comparison (green). Bottom graphs show fractions of
wall-clock time consumed by different stages of the simulation
cycle; update: integrates state of neurons, deliver: distributes
spike events to target neurons, communicate: transfers spikes
between MPI processes (for shared and distributed memory se-
tups), other: not accounted for by timers. (b) Top three graphs:
Power measurements of a compute node during 100 s of model
time in three configurations. The measurements are aligned to
the start of the simulation phase starting at t = 0 (legend: colors
distinguish phases and baseline). Bottom graph: Cumulative
energy consumption of the simulations.

the simultaneous simulation of 4 microcircuit models by independent
instances of the simulation code with the total time required for 4

subsequent simulations of the model each using the full node. Indeed
the super-linear reduction of simulation time by a higher degree of
parallelization helps to earlier complete the task of carrying out a
total of 4 simulations. The control of running a model on a quarter
of the machine in isolation is already slower than the 4 subsequent
simulations on the full node due to the super-linear scaling. The stress
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TWall [s] Configuration of compute node

72.64± 0.14 4 simultaneous simulations, one quarter of node each

49.43± 0.11 1 simulation, quarter node (control)

30.60± 0.16 4 subsequent simulations, full node each

Table 10.1: Wall-clock time TWall of alternative node configurations for mul-
tiple independent simulations of TModel = 10 s of biological time.
All configurations run a single process with sequential place-
ment of threads (quarter: 32, full: 128). The standard error of the
mean is estimated over 15 repetitions. The simultaneous configu-
ration shows the mean over the largest of the 4 individual TWall
measurements. The single and the subsequent case are the same
configurations as in Figure 10.4 where for the subsequent simula-
tions 4 times the mean and its standard error of a single run is
displayed. Same network model and hardware as in Figure 10.4.

the 4 simultaneous jobs exert on the system slow the simulations by a
further 50% relative to the control. As in the remainder of this chapter,
TWall excludes the times required for starting and ending a simula-
tion and for network instantiation constituting offsets independent
of TModel. Nevertheless, these contributions to the total run time of a
simulation may be relevant, depending on the neuroscientific project
at hand.

10.4 discussion

In this chapter we showed that a single compute node achieves sub-
realtime performance in the simulation of a natural density local
cortical microcircuit model. To our best knowledge, for conventional
system or the increasingly available GPUs1, we report the lowest real-
time factor so far —at a competitive energy consumption (Table 10.2).
There are, however, studies (Heittmann et al., 2022; Kauth et al., 2023)
reporting even smaller realtime factors for simulators using dedicated
FPGA supercomputers. The simulation technologies presented there
suffer from the decreased flexibility imposed by the hardware architec-
ture. Heittmann et al. (2022), generate the connectivity procedurally,
making simulations with synaptic plasticity impossible. For Kauth
et al. (2023), the scalability of the system is limited by the topology
of the wiring of the FPGA nodes in the compute cluster. While tech-
nologically impressive, the limited availability of the used hardware
and the decreased flexibility make it unlikely that FPGAs will play a
significant role in the simulations of spiking neural networks in the
upcoming years.
A comparison with previous studies (Table 10.2) yields that conven-

1 as enabled by modern super-computing facilities, see e.g. https://www.fz-juelich.
de/de/ias/jsc/jupiter

https://www.fz-juelich.de/de/ias/jsc/jupiter
https://www.fz-juelich.de/de/ias/jsc/jupiter
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RTF Esyn−event
[
µJ
]

Reference

6.29 4.39 2018, NEST(van Albada et al., 2018)

2.47 9.35 2018, NEST(van Albada et al., 2018)

26.08 0.30 2018, GeNN(Knight and Nowotny, 2018)

1.84 0.47†
2018, GeNN(Knight and Nowotny, 2018)

1.00 0.60 2019, SpiNNaker(Rhodes et al., 2019)

1.06 − 2021, NeuronGPU(Golosio et al., 2021)

0.70 − 2021, GeNN(Knight et al., 2021)

0.67 0.33 2022, NEST, AMD EPYC Rome,

1 node, 2 MPI

0.53 0.48 2022, NEST, AMD EPYC Rome,

2 nodes, 4 MPI

0.25 0.78††
2022, CsNN(Heittmann et al., 2022)

0.05 0.05 2023, neuroAIx, (Kauth et al., 2023)

Table 10.2: Realtime factor (RTF) and energy per synaptic event (Esyn−event)
reported in the literature for simulations of the cortical microcir-
cuit model (Potjans and Diesmann, 2014) using conventional hard-
ware for NEST simulations, GPUs for GeNN and NeuronGPU,
the dedicated neuromorphic hardware SpiNNaker and dedicated
FPGA systems for CsNN and neuroAIx in historical sequence
(top to bottom). The two values reported for NEST and GeNN in
2018 (corresponding to the most energy efficient and the fastest
configuration) are obtained with a different number of employed
cores and different GPUs, respectively. The values for CsNN and
neuroAIx are obtained with different FPGAs. †Value estimated
by Knight and Nowotny (2018) ††Value estimated by Kauth et al.
(2023).
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tional architectures keep pace regarding both: Realtime factor and
energy efficiency.
The here employed generic simulation engine for spiking neuronal
networks explicitly stores the connections between neurons with dou-
ble floating point precision. Thus, although not exploited, plasticity
and learning are possible in this representation.
We neither attempt to optimize the simulation code for the particular
network model at hand, nor to find the optimal division of threads
into MPI processes for the particular hardware. In comparison to prior
work by van Albada et al. (2018), where an earlier version (2.8.0) of the
code and older hardware is used, we observe a ten-fold improvement
in performance. The older system suffers from the communication
between nodes as a bottleneck. The newer hardware pushes the limits
by integrating a larger number of computational cores into the nodes.
The analysis shows that on a single node faster completion of the task
comes with a lower energy consumption due to the substantial base-
line power. The simulation time reduces if cores have a larger amount
of cache available, and if all cores are in use, power consumption
is lower than for half of the cores with optimal cache access. These
observations indicate that threads suffer from cache misses and the
resulting latencies in memory access. This does not only give practical
guidance for the design of conventional hardware but also raises hope
that methods of prefetching and latency hiding can further improve
simulation code without restricting generality (Pronold et al., 2021).
Achieving realtime performance is a criterion for robotics. But for
basic research and medical applications, also faster simulations are of
use, because biological processes extending over long periods of time
can be observed on a reduced time scale. Our results also give helpful
advice for the practicing researcher: We find that on a given hardware
sequential execution can be faster than simultaneous execution of the
same number of independent simulations. While traditionally paral-
lelization is employed to aggregate the total memory required for a
simulation or to reduce the required wall-clock time of an individual
simulation to a level enabling routine research, here the purpose is the
efficient execution of algorithms with unpredictable memory access.
Moreover, our results show that —possibly cache sensitive —binding
of threads may increases performance. Armed with this knowledge,
they can optimize the simulation time for multiple executions required
for their research.
Our findings moreover confirms the view of Pronold et al. (2021) that
for spiking neuronal networks parallelization overcomes the von Neu-
mann bottleneck.
The constructive competition between neuromorphic hardware and
conventional computer architectures led to two orders of magnitude
improvement within just five years (Table 10.2).
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11.1 introduction

HPC benchmarking suffers from inherent difficulties. These difficulties
need to be mitigated to systematically use benchmarks for assessing
the reliability as well as efficiency of simulation technologies, and
ultimately for facilitating their continuous development.
And indeed: Already in the comparatively simple setup used by the
author of this thesis in Chapter 10, keeping track of different metadata
relevant to the execution of the simulation code posed non-trivial
problems. Among those were for example the used compute nodes
as well as the software dependencies needed for the installation of
the simulator. Especially the complex interplay between system and
user-installed software is prone to introduce performance penalties on
HPC systems and needs to be kept track of accurately. Additionally,
a transparent, coherent way of displaying the results, highlighting
—and not accidentally obscuring —the differences in performance was
not straightforward to achieve.
Besides that, the ubiquity of benchmarks for different simulation
technologies (see e.g. the LINPACK benchmarks Dongarra et al. (2003)
initially released in 1979) clearly demonstrate their usefulness and rel-
evance. This motivates a fundamental analysis of HPC benchmarking
from an abstract point of view.
The aim of this chapter is to conduct this analysis and device a bench-
marking workflow and subsequently framework for the reliable and
reproducible use of benchmarks in the development of simulation
technology. As a use case, the devised framework is then applied in
the development of the NEST simulator.
Figure 11.1 illustrates the complexity of benchmarking experiments
in simulation science and identifies five main dimensions: Hardware
configuration, Software configuration, Simulators, Models and parameters,
and Researcher communication.
We first set out to explore these dimensions with a view towards

neuronal network simulations.
Hardware and software configurations —as already mentioned above
—have a complex interplay. Moreover, both underlie updates and fre-
quent releases. They can have difficult to predict influences on perfor-
mance results. In addition, different laboratories may not have access
to the same machines. Therefore, HPC benchmarks are performed on
different contemporary compute clusters or supercomputers. For ex-
ample, NEST benchmarks have been conducted on the systems located
at Research Center Jülich in Germany but also on those at the RIKEN
Advanced Institute for Computational Science in Japan e.g., Helias
et al., 2012; Jordan et al., 2018. The wider availability of other tech-
nologies as GPUs only complicate the picture further. Meaningfully
comparing results across different hardware and software configura-
tions requires export knowledge of the compared technology.
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Figure 11.1: Dimensions of HPC benchmarking experiments with exam-
ples from neuronal network simulations. Hardware configura-
tion: computing architectures and machine specifications. Soft-
ware configuration: general software environments and instruc-
tions for using the hardware. Simulators: specific simulation
technologies. Models and parameters: different models and their
configurations. Researcher communication: knowledge exchange
on running benchmarks.

A variety of simulators have been developed in the last decades that
allow for large-scale simulations in Neuroscience (Brette et al., 2007).
Examples are NEST (Gewaltig and Diesmann, 2007), Brian (Goodman
and Brette, 2013), and Neuron (Carnevale, 2007) on CPUs and CARLsim

(Beyeler et al., 2015), GeNN (Yavuz et al., 2016) and NEST GPU (Tiddia
et al., 2022) on GPUs as well as the SpiNNaker neuromorphic system
(Furber et al., 2014). Each simulator has a different scientific and tech-
nological focus. Yet, they also overlap in functionality. This motivates
performance comparison between them.
Network models fall into two categories: Functional models come with
an objective —for example finding an optimal solution to a task —that
needs to be satisfied. Most commonly, these network models meet the
objective by changing connection parameters via synaptic plasticity
or learning mechanisms. On the other hand, non-functional models are
devised to exhibit certain structural and dynamical features, which are
meant to resemble corresponding properties in biological networks
or physiological data. Also in this case the network structure might
change during the simulation, again via e.g. synaptic plasticity or
structural plasticity (Diaz-Pier et al., 2016). The interest in these net-
works is, however, primarily driven by studying the network model,
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or rather its activity, as a dynamical system.
While functional models, executed for example with different simula-
tors, offer by their very construction a validation metric, non-functional
models can usually only be compared on a statistical level. Spiking
activity, for example, is typically evaluated based on distributions of
quantities such as the average firing rate, rather than on precise spike
times (Senk et al., 2017; van Albada et al., 2018). Reasons for that are
inevitable differences between simulators such as different algorithms,
number resolutions, or random number generators, combined with
the fact that neuronal network dynamics is often chaotic, rapidly am-
plifying minimal deviations (Monteforte and Wolf, 2010; Sompolinsky
et al., 1988; van Vreeswijk and Sompolinsky, 1998).
Testing and comparing new technologies only with a single network
model is not sufficient for general-purpose simulators. Doing so might
easily result in optimizations only improving certain aspects of the
technology that are dominant in the used benchmarking model, and
potentially penalizing others. Thus, in the subsequent sections, we
employ three non-functional network models for benchmarking: The
HPC-benchmark model (Jordan et al., 2018), the microcircuit model (Pot-
jans and Diesmann, 2014) and the multi-area model (Schmidt et al.,
2018b). The HPC-benchmark model employs leaky integrate-and-fire
(LIF) neurons, alpha-shaped post-synaptic currents, and spike-timing-
dependent plasticity (STDP) between excitatory neurons. The microcir-
cuit model has already been described in Chapter 10. The multi-area
model comprises of all 32 vision related areas in macaque monkey,
where each area is modeled at the resolution of and akin to the mi-
crocircuit model. We note that the HPC benchmarking model can be
easily scaled without changing the statistics of the activity, and thus
allows for weak scaling experiments (c.f. Chapter 9).
Finally, problems in reproducing simulations do not arise from tech-
nical difficulties alone. Researcher communication is prone to errors
due to a lack of documentation as well as implicit assumptions and
localized knowledge on the side of the conducting researchers. Evi-
dently, manual solutions for tracking hardware and software parame-
ters, specifics of the simulator and the used models become unfeasible
when the number of involved researchers increases. This issue is only
amplified if multiple laboratories are involved.
Standardizing benchmarks can help to control the complexity but
represents a challenge for the fast-moving and interdisciplinary field
of Computational Neuroscience. While the field had some early suc-
cess in the area of compartmental modeling (Bhalla et al., 1992) and
Brette et al., 2007 made initial steps for spiking neuronal networks,
neither a widely accepted set of benchmark models nor guidelines
for performing benchmark simulations exist (but see the performance
results for the microcircuit model across multiple simulation tech-
nologies presented in Chapter 10, Table 10.2). For the closely related
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field of deep learning, Dai and Berleant, 2019 summarize seven key
properties that benchmarking metrics should fulfill: Relevance, repre-
sentativeness, equity, repeatability, cost-effectiveness, scalability, and
transparency. There exist standard benchmarks for machine learning
and deep learning applications such as computer vision and natural
language processing with standard data sets and a global performance
ranking. The most prominent example is MLPerf1 (Mattson et al.,
2019). Ostrau et al., 2020 propose a benchmarking framework for deep
spiking neural networks and they compare results obtained with the
simulators Spikey (Pfeil et al., 2013), BrainScales (Schemmel et al.,
2010), SpiNNaker, NEST, and GeNN.
For measuring and comparing the scaling performance of large-scale
neuronal network model simulations, there exists, to our knowledge,
no unifying approach yet. Here, our experience and the above analysis
hint at the need of a shared benchmarking framework. The five di-
mensions outlined above suggest themselves to a modular framework
integrating distinct components which can be updated, extended, or
replaced independently. The framework needs to cover all steps of the
benchmarking process from configuration, to execution, to handling
of results. For enabling comparability and reproducibility, all relevant
metadata and data need to be tracked.
In this chapter, we present a conceptual benchmarking workflow that
meets these requirements. For a reference implementation of this work-
flow named beNNch, we employ the JUBE Benchmarking Environment
(Lührs et al., 2016) (also used for the work presented in Chapter 10)
and the simulator NEST in different versions (Gewaltig and Diesmann,
2007), on the contemporary supercomputer JURECA-DC (Thörnig
and von St. Vieth, 2021). We additionally exemplify how to use the
developed framework together with the reference implementation in
simulator development. To this end, we execute the aforementioned
three benchmarking models for different suggested improvements of
the NEST simulator and compare them against ground truth versions.
This ultimately justifies adding these improvements to NEST.
In the next section (Section 11.2) we briefly introduce NEST devel-
opment as well as the suggested improvements mentioned above.
Then we formalize the general concepts of the benchmarking work-
flow, implement these concept for the NEST simulator and apply the
framework to generate benchmarking data for simulator development
(Section 11.3). We end with a discussion in Section 11.4.

1 https://mlcommons.org

https://mlcommons.org
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11.2 methods

11.2.1 NEST developments

Our aim is to use the workflow proposed in Section 11.3 for assess-
ing putative improvements for the NEST simulator. Here, we briefly
introduce NEST and suggest changes to the code base the performance
impact of which needs to be critically assessed with the developed
benchmarking framework.

11.2.1.1 Brief history of NEST

The series of NEST 2.X releases includes enhancements, bug fixes, and
contributions to maintenance with only marginal effects on the PyNEST

user interface (Eppler et al., 2009). Performance-related updates to the
simulation kernel are accomplished under the hood. The 3g kernel
(Helias et al., 2012; Kunkel et al., 2012) is in use from NEST 2.2.0 (van
Albada et al., 2015b). NEST 2.12.0 (Kunkel et al., 2017) introduces the
4g kernel (Kunkel et al., 2014) which implements novel data structures
allowing for an efficient and flexible representation of sparse network
connectivity on highly distributed computing systems such as super-
computers. The 5g kernel (Jordan et al., 2018) in NEST 2.16.0 (Linssen
et al., 2018) continues this direction of development toward an optimal
usage of HPC systems for large-scale simulations by disentangling
the memory usage per compute node from the total network size. The
transition from NEST 2 to NEST 3 corresponds to a refurbishment of
the simulator code which also breaks the backwards compatibility of
the user interface. While improved high-level functionality and param-
eter handling are the primary goals of this transition, the 5g kernel is
supposed to remain. In the past, performance changes due to kernel
updates have been predominantly assessed using the HPC-benchmark
model. The performance of the NEST 3.0 release candidate (“3.0rc”),
however, is in addition evaluated with the microcircuit and multi-area
model which exhibit a more complex connectivity structure and a
different distribution of synaptic delays. In this way, so far undetected
performance bottlenecks are discovered and subsequently resolved,
leading to the official release NEST 3.0 (Hahne et al., 2021).

11.2.1.2 Shrinking MPI buffers

Motivated by reducing the memory footprint of the postsynaptic
infrastructure—necessary to deliver spikes to their process-local tar-
gets—the 5g kernel of NEST 3.0rc prepares a separate part of the MPI
send buffer for each target process and only includes the relevant
spikes. Thus, each process is responsible for sending the spikes of its
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neurons to all target processes for each communication time step. NEST
3.0rc implements a homogeneous buffer size across processes to avoid
overhead introduced by variable buffer sizes; in the latter case, each
process would need to complete two rounds of communication, one
for transmitting the size, and one for the actual spiking information.
Similarly, transmitting a certain amount of information via sending
MPI buffers is more efficient when fewer buffers—each carrying more
information—are sent. NEST 3.0rc consequently aims to reduce the
number of needed MPI buffers to only 1 by dynamically increasing
the global buffer size whenever a process cannot fit all spikes into the
buffer. Specifically, every time more than a single buffer needs to be
sent by a process, NEST increases the buffer size of the following com-
munication step by a factor of 1.5. In this scheme, a reduction of buffer
sizes is not implemented, meaning that buffer sizes can only increase
or stay constant. The kernel of NEST 3.0rc+ShrinkBuff addresses this
by introducing the following algorithm for shrinking the global buffer
size. In each communication round in which only a single send buffer
is required, the buffer for the following round decreases by a factor
of 1.1. Even though this implementation leads to an oscillation of
buffer size for constant spiking activity, tests show that this simple
mechanism only introduces negligible cost while being robust.

11.2.1.3 Spike compression

NEST’s 5g kernel (Jordan et al., 2018) introduces a two-tier connection
infrastructure for routing spikes. The connection infrastructure con-
sists of data structures on the presynaptic side (the MPI process of
the sending neuron) and the postsynaptic side (the MPI process of
the receiving neuron), cf. Section 11.3.2.3. Communication of spikes
is organized as follows: when a neuron becomes active, its targets
are retrieved from the local presynaptic data structure. These targets
represent indices of synapses in the “thread-local” postsynaptic data
structure through which spikes are routed to the target neurons. The
presynaptic side then creates MPI buffers containing collections of
such indices which are subsequently communicated to the postsy-
naptic side via the MPI Alltoall function. To deliver spikes on the
postsynaptic side, each thread uses the received spikes to index its
local postsynaptic data structure and register a spike in the correspond-
ing synapse (Figure 11.2, “original spike delivery”). If a presynaptic
neuron has targets on multiple threads of a process, it hence has to
send multiple spikes, i.e., indices in different thread-local data struc-
tures, to the target process.
Here, we adapt this infrastructure as follows. We introduce an addi-
tional data structure on the postsynaptic side which is shared across
threads (“process local”). This data structure contains, arranged by
source neuron, the indices of all process-local synapses. While the
presynaptic part of communicating spikes remains essentially identi-
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Figure 11.2: Spike compression adds an additional indirection to postsy-
naptic spike routing. Green arrow denotes original spike de-
livery introduced with the 5g kernel (Jordan et al., 2018, same
display as their Figure 4A). Blue arrow illustrates additional indi-
rection with compressed spike delivery. Dashed arrows indicate
spikes from the same source neuron with target on a different
thread.

cal, the postsynaptic part incurs an additional indirection: Each entry
in the MPI receive buffer now represents an index in the new process-
local postsynaptic data structure. Using this index, each thread can
retrieve the indices of thread-local targets, to which it can then deliver
spikes as previously (Figure 11.2, “compressed spike delivery”; note
that the origin of the dashed arrow changes). In contrast to the previ-
ous implementation, each presynaptic neuron thus sends at most one
spike to each process.
In NEST 3.0, spike compression is turned on by default, but the previ-
ous 5g behavior can be recovered by setting:

nest.SetKernelStatus({"use_compressed_spikes": False})

11.2.1.4 Neuronal input buffers with multiple channels

Simulation technology for spiking neuronal networks requires tech-
niques to handle synaptic transmission delays. The reference simula-
tion code (Section 11.3.2.2) follows a globally time-driven approach:
spikes are constrained to a time grid and regularly exchanged between
MPI processes using collective communication. The time grid defines
the simulation time step for neuronal updates, whereas the minimum
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Figure 11.3: Neuronal input buffers accounting for synaptic delays in sim-
ulations of spiking neuronal networks. A Structure of neuronal
input buffers assuming a minimum synaptic delay dmin of three
simulation time steps and a maximum delay dmax = 2dmin. To
buffer upcoming inputs during simulation a total buffer size of
dmin + dmax time slots is required, which corresponds to three
communication intervals of three simulation time steps each.
After every spike communication and subsequent spike delivery
to local targets, simulation time is advanced, meaning that the
relative time origin S of the neuronal input buffers advances
by dmin time slots with a wrap-around at the buffer end. A
pre-calculated and continuously updated look-up table maps
the index relative to S to the actual buffer index. Example: The
relative time origin S is located at the fourth time slot. Synaptic
delays of the inputs of the middle buffer segment elapse with
the upcoming three simulation time steps; the neuron integrates
these inputs updating its state. Spikes are then communicated
and new inputs delivered to the neuron are added to the time
slots in the last or first buffer segment depending on the delay,
which is at least dmin and at most dmax. Relative time origin S
then advances to the seventh buffer slot (not shown). B Original
neuronal spike buffers for two input channels (e.g., excitatory
and inhibitory synaptic inputs). For each channel a separate
resizable array buffers the inputs for the upcoming time slots.
C Multi-channel input buffer for two input channels. A single
resizable array stores the inputs for the upcoming time slots,
where for each time slot a fixed size array holds the inputs sorted
by channel.

synaptic delay dmin in the network model defines the communica-
tion interval (Morrison et al., 2005b), which comprises at least one
simulation time step. In the microcircuit model and the multi-area
model used in this study the minimum delay is 0.1 ms (i.e., dmin = 1
simulation time step) and in the HPC-benchmark model it is 1.5 ms
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(i.e., dmin = 15 simulation time steps). While communication and
subsequent process-local delivery of spikes define interaction points
between neurons, within a communication interval each neuron in-
dependently updates its state for all time steps without interruption.
Hence, a simulation cycle of neuronal update, spike-communication,
and spike-delivery phase propagates the network state by one com-
munication interval, but within each update phase neurons propagate
their state in potentially shorter simulation time steps. All spikes
emitted by the process-local neurons during such an update are imme-
diately transmitted during the subsequent communication and on the
receiver side delivered to their target neurons. Hence, to account for
synaptic delays, neurons cannot immediately integrate the incoming
spikes into their dynamics, but they need to buffer the inputs until
the corresponding delays elapse. To this end, neurons maintain input
buffers of dmin + dmax time slots, where dmax denotes the maximum
synaptic delay in the network (Figure 11.3A). The relative time origin
S defining the time slots from which to retrieve inputs during update
and the time slots for adding inputs during spike delivery advances
by dmin time slots at the end of every simulation cycle. In this way, the
time slots that were read and reset during the update of the current cy-
cle become available for adding new inputs during the spike delivery
in the next cycle. For cases where the communication interval com-
prises multiple simulation time steps (e.g., HPC-benchmark model),
input retrieval is most costly for the first step as the corresponding
buffer entry needs to be loaded into cache, but then benefits from the
already cached subsequent buffer entries in the subsequent steps of
the communication interval. If, however, the communication interval
consists of only one simulation step due to a very short minimal synap-
tic delay (e.g., microcircuit and multi-area model), input retrieval is
costly for every simulation step as each step is handled in a separate
simulation cycle, and hence caching of relevant input buffer entries
is rendered ineffective during the spike communication and delivery
that follows each neuronal update phase.
Most neuron models need to distinguish between input channels to
treat the corresponding inputs dynamically differently, as for example,
excitatory and inhibitory synaptic inputs causing different postsynap-
tic responses. The original input-buffer design required a separate
resizable array per channel storing the channel’s input values per
time slot (Figure 11.3B). This entailed retrieval of the input values
for a particular time step from separate locations in memory, which
amplifies the cache inefficiency during update for network models
with short minimum delays described above. To alleviate this issue,
the newly introduced input buffer allows storing the input values for
multiple channels per time slot contiguously in fixed size arrays in
a single resizable array (Figure 11.3C). Thus, neurons now retrieve
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all input values for a particular time step by accessing subsequent
locations in memory in one pass.

11.3 results

11.3.1 Workflow Concepts

Taking the analysis presented in Section 11.1 as a starting point, we
develop a generic workflow for performance benchmarking, aiming at
its applicability to simulations running on conventional HPC architec-
tures. Figure 11.4 depicts a conceptual workflow that consists of four
ordered segments each of which depends on the previous one. The
segments are subdivided into different modules. These modules are
related to specific realizations in our reference implementation of the
workflow (see Section 11.3.2). Here, “workflow” refers to the concepts
generally applicable to benchmarking while “framework” is used for
the provided software implementation. Additionally, internal and exter-
nal modules are distinguished. The former are essential component of
the workflow while external the latter allow for a more rapid exchange.
The following introduces each of the workflow’s conceptual segments
and expands on how the proposed solution addresses the identified
problems (cf. Figure 11.1).

Figure 11.4: Conceptual overview of the proposed benchmarking work-
flow. Light gray boxes divide the workflow into four distinct
segments, each consisting of multiple modules. Internal modules
are shown in mint and external ones in cyan. Pink boxes indicate
their respective realization in our reference implementation.



142 benchmarking neuronal network simulations

11.3.1.1 Configuration and preparation

The first four workflow segments comprise five distinct modules.
Together, they provide the prerequisites for the simulations. First,
“software deployment” takes care of the installation of the simula-
tion software and its dependencies, while “machine configuration”
provides parameters controlling the conditions of the simulation (e.g.
the number of compute nodes that need to be reserved). Together,
these two modules target the problem dimensions “hardware config-
uration”, “software configuration”, and “simulators”. By providing
the network implementation, the module “model” addresses “model
and parameters”. However, parameters of the used models remain
unspecified. This is taken care of by “model configuration”, including
for example the biological model time to be simulated. As a conse-
quence, the model is separated from its parameters. Finally, the “user
configuration” module allows for the specification of user-specific data
in a single location. Such data might include paths to store generated
files or compute budgets.

11.3.1.2 Benchmarking

The second segment contains all modules relevant for running the
benchmark simulation. On compute clusters workload is usually man-
aged via queuing systems allowing for the definition of resource usage
and specifying instructions needed for the simulation. In the workflow
segment, this is handled by the module “job script generation”. At this
stage modules are linked for the first time: the workflow combines
model, user and machine configuration to generate a job script for
the simulation. Afterwards, this job script is submitted to the queuing
system via the module “job submission”. Since the deployment of
the simulation software and the handling of the dependencies is al-
ready taken care of, “job execution” executes the simulation given the
relevant parameters. While a simulation for neuroscientific research
purposes would at this point focus on the output of the simulation (e.g.
neuronal spike times or membrane potential traces), benchmarking
is concerned with the performance results. These are recorded in the
final benchmarking module called “data generation”.

11.3.1.3 Data- and metadata handling

As already noted above, a major difficulty when conducting perfor-
mance benchmarks is the handling the produced data and metadata.
Here, data refers to the results of the performance measurements.
Metadata, on the other hand, is used as an umbrella term for the
description of the used settings according to the dimensions of bench-
marking (Figure 11.1). Since executing multiple simulations using
different configurations, software, hardware, and models is an integral
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part of benchmarking, data naturally accumulates. Thus, it is impor-
tant to associate the metadata with the data. Standardized formats
for both types of data make the results comparable for researchers
working with the same underlying simulation technology. The work-
flow segment “Data- and metadata handling” proposes the following
solution. First, the raw performance data, typically stemming from
different units of the HPC system, are gathered and unified into a
standardized format, while the corresponding metadata is automat-
ically recorded. Next, the metadata is associated to the unified data
files. This removes the need to manually keep track of parameters,
experiment choices and software environment conditions. While there
are different possible solution for this, attaching the relevant metadata
directly to the performance-data files simplifies filtering and sorting
of results. Finally, “initial validation” allows for a quick first assess-
ment of the results. In this way, corrupted benchmarks can be swiftly
identified.

11.3.1.4 Data presentation

The final workflow segment addresses the accessibility and compara-
bility of benchmarking results. These are prerequisites for meaningful
comparisons and consequently conclusions, also touching the com-
plexity of “Researcher communication”. In a first step, “metadata
based filtering and sorting” allows dynamic choice of the results to
be included in the comparison by the user. Here, dynamic means that
arbitrary selection of axes in the high-dimensional metadata space
can achieved so that the chosen results only differ in metadata fields
of interest. Second, the data is presented in a format that allows for
intuitive switching between benchmarks. This implies that key meta-
data is given alongside the results, and that the data representation
is standardized. The presentation of data should be comprehensive,
consistent, and comparative such that the benchmarking results are
usable in the long term. Thereby, the risk of wasting resources through
re-generation of results is reduced, which in turn allows for a more
sustainable software development.

11.3.2 beNNch: A reference implementation

Building on the fundamental workflow concepts developed in Sec-
tion 11.3.1, we introduce a reference implementation for modern com-
putational neuroscience: beNNch2—a benchmarking framework for
neuronal network simulations. Beyond being a mere proof-of-concept,
the framework additionally provides a software tool useful for neuro-
scientists and simulator developers. In principle, beNNch is designed
such that plug-ins for any neuronal network simulator can be added.

2 https://github.com/INM-6/beNNch

https://github.com/INM-6/beNNch
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Our implementation, however, is geared towards the NEST simulator
(Gewaltig and Diesmann, 2007) designed for simulating large-scale
spiking neuronal network models. In the following subsections, we
detail software tools, templates, technologies, and user specifications
needed to apply beNNch for benchmarking NEST simulations. Each
of the conceptual modules of Figure 11.4 is here associated with a
concrete reference.

11.3.2.1 Builder

Repeatability and comparability of benchmark simulations necessi-
tates reproducible software deployment. On the other hand, usability
of the framework dictates the abstraction from irrelevant information
regarding the hardware architecture or software tool chain. The tool
set is required to install software in a platform independent way and
should not depend on a particular flavor of the operating system,
the machine architecture or overly specific software dependencies.
Additionally, it needs to be able to make use of system-provided tools
and libraries, for example, to leverage machine specific MPI imple-
mentations. beNNch uses the tool Builder3 for this purpose. Given
a fixed software stack and hardware architecture, Builder provides
identical executables by deriving the install instructions from so-called
“plan files”. By using the same environment module4 system Builder

achieves integration with other package management systems such as
easy_build (Geimer et al., 2014) or Spack (Gamblin et al., 2015). This
reduces the required user interaction, only configuration of installation
parameters must be set. Given a specified variation of the software
to be benchmarked, beNNch calls Builder to deploy the requested
software. In doing so, Builder checks whether the software is already
available and otherwise installs it according to the specifications in
the plan file. The depth to which required dependencies need to be
installed and which mechanisms are used depend on the conventions
and prerequisites available at each execution site. For any installation,
the used software stack—including library versions, compiler versions,
compile flags, etc.—are recorded as metadata.

11.3.2.2 NEST

beNNch implements compatibility with the NEST simulator (Gewaltig
and Diesmann, 2007), enabling the performance benchmarking of
neuronal network simulations at the resolution of single-neurons. The
NEST software is complex, and the consequences of code modifications
for performance are often difficult to predict. NEST has an efficient
C++ kernel, but network models and simulation experiments are
defined via the user-friendly Python interface PyNEST (Eppler et al.,

3 https://github.com/INM-6/Builder

4 https://modules.readthedocs.io and http://lmod.readthedocs.io

https://github.com/INM-6/Builder
https://modules.readthedocs.io
http://lmod.readthedocs.io
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2009; Zaytsev and Morrison, 2014). To parallelize simulations, NEST
provides two methods: for distributed computing, NEST employs the
Message Passing Interface (MPI, Message Passing Interface Forum,
2009), and for thread-parallel simulation, NEST uses OpenMP (OpenMP
Architecture Review Board, 2008).

11.3.2.3 Instrumentation

The performance measurement mainly considered here is the time-
to-solution. Acquiring accurate data on time consumption is of great
importance for profiling and benchmarking. For this, two types of
timers are employed to gather this data: Timers of the first type are
built-in to NEST on the C++ level, or they are included on the Python
level as part of the PyNEST network-model description. Timers of the
second type are realized with explicit calls to the function time.time()

of the Python Standard Library’s time. Consistency throughout the
framework is achieved by using standardized variables names for the
various simulation phases. Typically, a NEST simulation consists of two
stages, network construction and state propagation. In the former, neurons
and auxiliary devices for stimulation and recording are created and
subsequently connected according to the network-model description.
In the latter, the network state is propagated in a globally time-driven
manner. Additionally to the NEST timers already introduced in Chap-
ter 10 (i.e. update, deliver, communicate), we here measure the time for
the collocation of spike in MPI-communication buffers. NEST’s built-in
timers provide a detailed look into the contribution of all four phases
of state propagation, while timers on the Python level measure net-
work construction and state propagation.
In NEST, the postsynaptic connection infrastructure is established dur-
ing the so called connection phase which is part of the network con-
struction. However, the presynaptic counterpart is typically only set
up at the beginning of the state propagation phase (see Jordan et al.
(2018) for details). In this work, we trigger this step deliberately and
include it in our measurement of network-construction time rather
than state-propagation time. Moreover, a short pre-simulation before
the actual start of the simulation allows the network to attain a dynam-
ical state more reflective of the recurrent dynamics and less dependent
on potential transients in the network activity due to initial condi-
tions—such have decayed after this startup period. Thus, the state
propagation phase is only recorded after the pre-simulation (Rhodes
et al., 2019). The model time for pre-simulation can be configured via
a parameter in beNNch.
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11.3.2.4 beNNch-models

We instantiate the “model” module with the repository beNNch-models5

which contains a collection of PyNEST neuronal network models, i.e.,
models that can be simulated using the Python interface of NEST

(Eppler et al., 2009). In principle, any such model can be used in con-
junction with beNNch; only a few adaptations are required concerning
the interfacing. On the input side, the framework needs to be able to
set relevant model parameters. For recording the performance data,
the required Python timers (Section 11.3.2.3) must be incorporated.
On the output side, the model description is required to include in-
structions to store the recorded performance data and metadata in
a standardized format. Finally, if a network model is benchmarked
with different NEST versions that require different syntax, as is the case
for switching between NEST 2.X and NEST 3.X, the model description
also needs to be adjusted accordingly. Which model version is used in
a simulation can thereby be deduced from knowing which simulator
version was tested. For fine-grained version tracking, we additionally
record the commit hash of beNNch-models and attach it as metadata to
the results. Instructions on how to adapt existing models are provided
in the documentation of beNNch-models.
The current version of beNNch provides benchmark versions of three
widely studied spiking neuronal network models: The two-population
HPC-benchmark model6, the microcircuit model7 by Potjans and Dies-
mann, 2014 representing 1 mm2 of cortical surface with realistic neuron
and synapse densities, and the multi-area model8 by Schmidt et al.,
2018a,b consisting of 32 microcircuit-like interconnected networks rep-
resenting different areas of visual cortex of macaque monkey. The
model versions used for this study employ the required modifications
described in Section 11.1.

11.3.2.5 config files

Executing benchmarks requires defining the characteristic parameters.
This mainly defines the user interaction with beNNch. The definition
of the parameters is separated from the executable code by providing
yaml-based templates for “config files” that need to be customized
by the user. Thereby, the information that defines a benchmark ex-
periment is kept short and well arranged: the number of files a user
has to touch is limited, the risk of user errors on the input side re-
duced. Additionally, this guarantees a concise definition of a given
benchmark experiment and limits the number of files users needs to

5 https://github.com/INM-6/beNNch-models

6 original repository: https://github.com/nest/nest-simulator/blob/master/

pynest/examples/hpc_benchmark.py

7 original repository: https://github.com/nest/nest-simulator/tree/master/

examples/nest/Potjans_2014

8 original repository: https://github.com/INM-6/multi-area-model

https://github.com/INM-6/beNNch-models
https://github.com/nest/nest-simulator/blob/master/pynest/examples/hpc_benchmark.py
https://github.com/nest/nest-simulator/blob/master/pynest/examples/hpc_benchmark.py
https://github.com/nest/nest-simulator/tree/master/examples/nest/Potjans_2014
https://github.com/nest/nest-simulator/tree/master/examples/nest/Potjans_2014
https://github.com/INM-6/multi-area-model
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interact with. Thus, the risk of user errors on the input side is reduced.
Listing 1 presents an excerpt from such a config file which has distinct
sections to specify model, machine, and software parameters. While
some parameters are model specific, standardized variable names are
defined for parameters that are shared between models.
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Algorithm 1 Excerpt of a config file in yaml-format for setting model,
machine, and software parameters for benchmarking the multi-
area model. When giving a list (e.g., for num_nodes), a job for each
entry of the list is created. Model parameters: network_state de-
scribes particular model choices that induce different dynamical fixed
points; model_time_sim defines the total model simulation time in ms;
scaling_type sets up the simulation for either a weak- or a strong-
scaling experiment. The former scales the number of neurons linearly
with the used resources which might be ill-defined for anatomically
constrained models. Machine parameters: num_nodes defines the num-
ber of nodes over which the scaling experiment shall be performed;
tasks_per_node and threads_per_task specify the number of MPI
tasks per node and threads per MPI task respectively. Software pa-
rameters: simulator and version describe which version of which
simulator to use (and to install if not yet available on the machine).

parameterset:

- name: model_parameters

parameter:

# can be either "metastable" or "ground"
- {name: network_state, type: string, _: "metastable"}
# biological model time to be simulated in ms

- {name: model_time_sim, type: float, _: "10000. "}
# "weak" or "strong" scaling

- {name: scaling_type, _: "strong"}

- name: machine_parameters

parameter:

# number of compute nodes

- {name: num_nodes, type: int, _: " 4 ,8 ,12 ,16 ,24 ,32 "}
# number of MPI tasks per node

- {name: tasks_per_node, type: int, _: "8"}
# number of OpenMP threads per task

- {name: threads_per_task, type: int, _: "16"}

- name: software_parameters

parameter:

# simulator used for executing benchmarks

- {name: simulator, _: "nest−simulator"}
# simulator version

- {name: version, _: " 3.0 "}
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11.3.2.6 JUBE

At this point, the first segment of the benchmarking workflow (Fig-
ure 11.4) is complete and hence all necessary requirements are set
up: the software deployment provides the underlying simulator (here:
NEST with built-in instrumentation), the models define the simulation,
and the configuration specifies the benchmark parameters. This in-
formation is now processed by the core element of the framework:
generating and submitting simulation jobs and gathering and uni-
fying the obtained performance data. We construct this component
of beNNch around the xml-based JUBE software tool using its yaml in-
terface. Built around the idea of benchmarking, JUBE can fulfill the
role of creating job scripts from the experiment, user and machine
configuration, their subsequent submission, as well as gathering and
unifying of the raw data output. Here, we focus on the prevalent
scheduling software SLURM (Yoo et al., 2003), but extensions to allow
for other workload managers would be straightforward to implement.
Our approach aims at high code re-usability. Model specific code is
kept to a minimum, and where necessary, written in a similar way
across models. Adhering to a common interface between JUBE scripts
and models facilitates the integration of new models, starting from
existing ones as a reference. Since JUBE can execute arbitrary code, we
use it to also record metadata in conjunction with each simulation.
This includes specifications of the hardware architecture as well as
parameters detailing the run and model configuration.

11.3.2.7 git-annex

Communication of benchmarking results poses a serious problems
and thus requires a matured way of sharing data. Means of communi-
cation commonly employed in practice include attachments of emails,
cloud-based storage options, or git repositories. It is not uncommon
that all these means are used within one project be different, collabo-
rating researchers. This complicates arriving at shared interpretation
of the data, even more so when researchers from different labs are
involved. Ideally, results would be stored in a decentralized fashion
that allows for tracking the history of files while allowing on-demand
access for collaborators. To this end, we use git-annex9 as a versatile
base technology; it synchronizes file information in a standard git

repository while keeping the content of large files in a separate object
store, thereby keeping the repository size at a minimum. git-annex
is supported by the GIN platform10 which we employ for organizing
our benchmark results. In addition, it allows for metadata annotation:
instead of relying on separate files that store the metadata, git-annex
can directly attach them to the data files, thereby implementing the

9 https://git-annex.branchable.com

10 https://gin.g-node.org

https://git-annex.branchable.com
https://gin.g-node.org


150 benchmarking neuronal network simulations

“metadata annotation” module. Previously, as done for example in
the work presented in Chapter 10, this needed to be cataloged by
hand, whereas now the framework allows for an automatic annotation,
reducing the workload on researchers and thus probability of hu-
man mistakes. A downside of following this approach is a limitation
to command line-based interaction. Furthermore, git-annex is not
supported by some of the more widely used git repository hosting
services such as GitHub or GitLab in favor of Git LFS.
A difficult task when scaling up the usage of the framework and, by
extension, handling large amounts of results, is providing an efficient
way of dealing with user queries for specific benchmark results. This of
course also applies to the framework developed here when scaling up
the usage. Attaching the metadata directly to the performance data not
only reduces the visible complexity of the repository, but also provides
an efficient solution: git-annex implements a native way of selecting
values for metadata keys via git-annex “views”, automatically and
flexibly reordering the results in folders and sub-folders accordingly.
For example, consider the case of a user specifying the NEST version to
be 3.0, the tasks_per_node to be either 4 or 8, and the network_state

to be either metastable or ground. First, git-annex filters out meta-
data keys for which only a single value is given; in our example, only
benchmarks conducted with NEST version 3.0 remain. Second, a hierar-
chy of directories is constructed with a level for each metadata key for
which multiple options are given. Here, the top level contains the fold-
ers “4” and “8”, each containing sub-folders metastable and ground

where the corresponding results reside. However, it may be difficult
to judge exactly what metadata is important to collect; oftentimes, it
is only visible in hindsight that certain metadata is relevant for the
simulation performance. Therefore, recording as much metadata as
possible would be ideal, allowing for retrospective investigations if
certain metadata becomes relevant after run time. However, a balance
needs to be attained between recording large amounts of metadata
and keeping the volume of annotations manageable. In our imple-
mentation, this issue is resolved by recording detailed metadata about
the system, software, and benchmarks. On the other hand, data from
simulations is handled more parsimoniously: we only attach what
we currently deem relevant to assess the performance. The remaining
metadata is archived and stored alongside the data, thereby sacrificing
ease of availability for a compact format. This way, if future studies
discover that a certain hardware feature or software parameter is in-
deed relevant for performance, the information remains accessible
also for previously simulated benchmarks while staying relatively
hidden otherwise. This ensures accessibility of information if future
studies discover that a certain hardware feature or software param-
eter is indeed relevant for performance—especially for previously
conducted benchmarks. Furthermore, using git as a base technology
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allows to collect data sets provided by different researchers in a cu-
rated fashion by using well established mechanisms like branches and
merge-request reviews. This use of git-annex thereby implements the
“metadata based filtering and sorting” module of Figure 11.4.

11.3.2.8 beNNch-plot

The comparison of plots of displaying benchmarking results along the
dimensions illustrated in Figure 11.1 requires a unified plotting style.
For this, an independent plotting package named beNNch-plot11) was
developed using matplotlib (Hunter, 2007) as an backend. In this
package we define a set of tools to create individual plot styles that
can be combined by the user in a flexible manner. The standardized
definitions of performance measures employed by beNNch directly
plug into this package. In addition, beNNch-plot includes default
plot styles that can be readily used, and provides a platform for
creating and sharing new ones. beNNch utilizes the default plot styles
of beNNch-plot for both initial validation—a preliminary plot offering
a quick glance at the results, thereby enabling a swift judgement
whether any problems occurred during simulation—and visualization
of the final results.

11.3.2.9 flip-book

When devising a method of presenting benchmark results we found
the following aspects to be of crucial relevance for our purposes. First,
it should be possible to navigate the results such that plots are always
at the same screen position and have the same dimensions, thereby
minimizing the effort to visually compare results. To achieve such a
format, we decided to create a flip-book in which each slide presents
the results of one experiment. Second, relevant metadata should be
displayed right next to the plots. This can include similarities across
the runs, but more importantly should highlight the differences. As
each user might be interested in different comparisons, we let the user
decide which kind of metadata should be shown. Third, it should
be easy to select only the benchmarks of interest in order to keep
the number of plots small. This is already handled by the filtering
provided by git-annex views as described in Section 11.3.2.7. As an
underlying technology for programmatically creating HTML slides we
use jupyter notebooks12 in conjunction with the open source HTML

presentation framework reveal.js13. An exemplary flip-book contain-
ing the NEST performance results described in this work is published
alongside the beNNch repository14. By respecting these considerations,

11 https://github.com/INM-6/beNNch-plot

12 https://jupyter.org

13 https://github.com/hakimel/reveal.js

14 https://inm-6.github.io/beNNch

https://github.com/INM-6/beNNch-plot
https://jupyter.org
https://github.com/hakimel/reveal.js
https://inm-6.github.io/beNNch
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our proposed solution offers a way of sharing benchmarking insights
between researchers that is both scalable and flexible.

11.3.2.10 Exchanging external modules

By its constructions, beNNch is inherently modular. This means that it
is possible to exchange certain modules without compromising the
functionality of the framework. In particular, the “external modules”
(see Figure 11.4) are implemented such that an exchange is straight-
forward to implement. In the following we briefly present a step-by-
step guide to exchange the “job execution” module, i.e., the simulator,
along with necessary changes in “data generation” and “model” that
follow:
First, the simulator the performance of which one wants to assess
must be deployed. Builder—our implementation of the “software
deployment” module—offers the flexibility to install any software
as well as make it loadable via a module system. Consequently, a
plan file specifying dependencies as well as source code location and
installation flags needs to be created for the new simulator.
Second, appropriate models that allow for the performance assessment
of the simulator need to be added. Regarding the framework one needs
to adapt the execute commands. Required additions to the models are
the same as for PyNEST models and are described in Section 11.3.2.4.
Third, the instrumentation recording the performance metrics needs
to be added. As already noted above, the NEST simulator offers already
built-in instrumentation, so that only some timing measurements must
be conducted on the model level. The extent to which alterations have
to be introduced depends on the existing ability of the new simulator.
If different measurements than implemented are of interest, a simple
addition to an existing list in beNNch suffices to add the recorded data
to the csv-format result file.

11.3.3 Using beNNch for Simulator Development

The continuous improvement of the performance of simulation soft-
ware requires the identification of those parts of the simulation loop
that take up the most time. Benchmarking the performance can aid
the detection of performance bottleneck. Additionally, it can highlight
changes in performance after algorithmic alterations. The dimensions
of benchmarking described Figure 11.1, however, highlight the dif-
ficulty: to guarantee that observed differences in performance are
caused by changes in the simulator code, many variables need to be
controlled for, such as hardware and software configurations as well
as simulator versions. General-purpose simulators also need to be
tested with respect to different settings and applications to ensure that
a performance improvement in one case does not lead to a crucial
decline in another case. Neuronal network simulators are one such
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example as they should exhibit reasonable performance for a variety
of different models with different resource demands. A systematic as-
sessment of the scaling performance covering the relevant scenarios is
therefore a substantial component of the iterative process of simulator
development.
beNNch, as an implementation of the workflow outlined in Section 11.3.1,
provides a platform to handle the complexity of benchmarking while
staying configurable on a low level. In the following we suggest how
beNNch can support the process of detecting and tackling performance
issues of a simulator. First, the behavior of the simulator needs to
be explored in various situations to identify performance bottleneck
the current version. Here, the shared location of configuration pa-
rameters used by beNNch allows for keeping an overview over the
performed experiment. Neuronal network simulations can usually be
decomposed into separate stages, such as neuronal update and spike
communication. For this beNNch stresses the importance of appropri-
ate instrumentation and visualization pointing the researcher to the
respective sections in the code. If a potential bottleneck for a certain
model is identified, tests with other models provide the basis for decid-
ing whether these are model- and scale-specific or are present across
models, hinting at long-reaching issues of the simulator. beNNch’s
native support for handling the benchmarking of multiple models
relieves the researchers of operating a different code base for every
model. While improving the simulation engine, continuously per-
formed benchmarks allow for a direct comparison between the current
version and the putative improvements. The standardized visualiza-
tion tools of beNNch support spotting differences in performance plots.
In this way, adaptions that bear fruit can be swiftly identified. Finally,
an ongoing development of a neuronal network simulator should
respect the value of insights gained by resource-intensive benchmarks.
The decentralized storage of standardized results employed by beNNch

addresses this issue. In addition to preserving information for the long
term, this also helps in communicating between researchers working
on the simulator’s development.

11.3.3.1 Use case: NEST development

This section illustrates the relevance of performance benchmarks for
the development of neuronal network simulators with the example
of recent changes to the NEST code base; for historical context see Sec-
tion 11.2.1.1. We use beNNch to outline crucial steps of the development
from the release candidate NEST 3.0rc to the final NEST 3.0 and also
discuss improvements compared to the latest NEST 2 version (Fardet
et al., 2021). Table 11.1 summarizes the NEST versions employed in
this study. Regarding the dimensions of HPC benchmarking in Fig-
ure 11.1, this use case primarily addresses the “Simulators” dimension
by testing different NEST versions and the “Models and parameters”
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Shorthand notation of NEST version Description

2.20.2 Official 2.20.2 re-
lease (Fardet et
al., 2021)

3.0rc Release candi-
date for 3.0

3.0rc+ShrinkBuff 3.0rc plus
shrinking MPI
buffers

3.0rc+ShrinkBuff+SpikeComp 3.0rc+ShrinkBuff

plus spike com-
pression

3.0 Official 3.0 re-
lease (Hahne
et al., 2021) =

all of the above
plus neuronal
input buffers
with multiple
channels

Table 11.1: Shorthand notation and description of NEST versions used in this
work.

dimension by testing different network models; the approach can be
extended similarly to the other dimensions. Our starting point is the
weak-scaling experiments of the HPC-benchmark model (Jordan et al.,
2018); the times for network construction and state propagation as
well as the memory usage remain almost constant with the newly
introduced 5g kernel (see their Figures 7 and 8). Figure 11.5 shows sim-
ilar benchmarks of the same network model conducted with beNNch

using the release candidate in Figure 11.5A and the final release in
Figure 11.5B. The graph design used here corresponds to the one used
in the flip-book format by the framework. For the realises candidate
the state-propagation time increases with the number of nodes while
the network construction times remain constant Figure 11.5A. In com-
parison to the with the former, the latter makes up less than 10% of
the total simulation time for Tmodel = 1 s. We additionally note that
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Figure 11.5: Weak-scaling performance of the HPC-benchmark model on
JURECA-DC. A NEST 3.0rc. The left graph shows the absolute
wall-clock time Twall measured with Python-level timers for both
network construction and state propagation (legend in panel B);
the model time is Tmodel = 1 s. Error bars indicate variability
across three simulation repeats with different random seeds. The
top right graph displays the real-time factor defined as wall-
clock time normalized by the model time. Built-in timers resolve
four different phases of the state propagation (legend in panel
B): update, collocation, communication, and delivery. Pink error
bars show the same variability of state propagation as the left
graph. The lower right graph shows the relative contribution of
these phases to the state-propagation time. B NEST 3.0. Same
display as panel A.

the phases delivery and communication both contribute significantly
to the state-propagation time. Jordan et al. (2018) report real-time
factors of about 500 (e.g., their Figure 7C) in contrast to values smaller
than 40 shown here and their simulations are by far dominated by
the delivery phase (see their Figure 12). A comparison of our data
and the data of Jordan et al., 2018 is not straightforward due to the
inherent complexity of benchmarking and we here emphasize a few
concurring aspects: First, Jordan et al., 2018 run their benchmarks
on the dedicated supercomputers JUQUEEN (Jülich Supercomputing
Centre, 2015) and K Computer (Miyazaki et al., 2012) while our bench-
marks use the recent cluster JURECA-DC (Thörnig and von St. Vieth,
2021). Our data are, however, not directly comparable to the results of
Jordan et al. (2018). This stems directly the aforementioned complexity
of benchmarking, here, for example, differences in the used super-
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computers: JUQUEEN (Jülich Supercomputing Centre, 2015) and K
Computer (Miyazaki et al., 2012) in the case of Jordan et al. (2018), the
recent cluster JURECA-DC (Thörnig and von St. Vieth, 2021) used here.
Each compute node of the BlueGene/Q system JUQUEEN is equipped
with a 16-core IBM PowerPC A2 processor running at 1.6 GHz and
each node of the K Computer has an 8-core SPARC64 VIIIfx processor
operating at 2 GHz; both systems provide 16 GB RAM per node. In
contrast, the JURECA-DC cluster employs compute nodes consisting
of two sockets, each housing a 64-core AMD EPYC Rome 7742 pro-
cessors clocked at 2.2 GHz, that are equipped with 512 GB of DDR4

RAM. Here, nodes are connected via an InfiniBand HDR100/HDR
network. Moreover, Jordan et al., 2018 use 1 MPI process per node
and 8 threads per process while for our simulations we use 8 MPI
processes per node and 16 threads per process. Third, Jordan et al.,
2018 simulate 18, 000 neurons per MPI process while we only simulate
11, 250 neurons per process. This list of differences is not complete
and only aims to illustrate that potential discrepancies in benchmark-
ing results may be explained by differences in hardware, software,
simulation and model configuration, and other aspects exemplified in
Figure 11.1. After having conducted weak-scaling experiments of the
HPC-benchmark model, next the performance of the simulator is as-
sessed in strong-scaling benchmarks of the multi-area model (Schmidt
et al., 2018b). At least three compute nodes of JURECA-DC are needed
to satisfy the memory requirements of the model; here, we choose
to demonstrate the scaling on four to 32 nodes. Initially, we compare
the latest NEST 2 version (Figure 11.6A) with the release candidate
for NEST 3.0 (Figure 11.6B). The improved parameter handling imple-
mented in NEST 3.0rc reduces the network-construction time. In both
NEST versions the communication phase by far dominates the state
propagation. Previous simulations of the HPC-benchmark model have
not identified the communication phase as a bottleneck Jordan et al.,
2018, Figure 12. Only when the smallest delay in the network is close
to the computation time step communication becomes an issue This is
due to NEST using the smallest delay as the communication interval
for MPI. In comparison to the HPC-benchmark model, using a 1.5 ms
delay for all connections (a good estimate for inter-area communica-
tion), the multi-area and microcircuit model use distributed delays
with a lower bound of 0.1 ms. This leads to a fifteen-fold increase in
the MPI communication steps in the latter two models.
Next we introduce the first putative performance improvement to be
applied to NEST 3.0rc. Cross-node communication, handled in NEST

by MPI, needs to strike a balance between the amount of messages
to transfer and the size of each message. The size of the MPI buffer
limits the amount of data that fits into a single message, and is there-
fore the main parameter controlling this balance. In an ideal scenario,
each buffer fits exactly the right amount of information by storing
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Figure 11.6: Strong-scaling performance of the multi-area model on
JURECA-DC. Same display as in Figure 11.5. The multi-area
model is simulated in its meta-stable state leading to a high
amount of spikes that are communicated. The model time is
Tmodel = 10 s. Simulations are repeated for ten different random
seeds. A NEST 2.20.2 (latest NEST 2 release). B NEST 3.0 release
candidate. C NEST 3.0 release candidate with shrinking MPI
buffers.

all spikes of the process relevant for the respective communication
step. However, a scheme in which the buffer size adapts precisely for
each MPI process for each communication step can be highly inef-
ficient due to overhead attached to operating on additional vectors.
In NEST 3.0rc it is assumed that in the usual case communications
relatively homogeneous. In such a scenario, it is advantageous to
fix the size of the exchanged buffers between all processes. While
buffer sizes are constant across processes, NEST does adapt them over
time to minimize the number of MPI communications. Concretely,
whenever the spike information that a process needs to send exceeds
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what fits into one buffer, the buffer size for the next communication
step is increased. However, the original 5g kernel of NEST does not
shrink buffer sizes. In networks such as the multi-area model, the
firing is not stationary over time; transients of high activity propa-
gate through the network (Schmidt et al., 2018b). In general, startup
transients may cause high spike rates only in the beginning of a
simulation unless the network is carefully initialized (Rhodes et al.,
2019). If the rates decrease, the spiking information becomes much
smaller than the available space in the MPI buffer. Consequently, the
original 5g kernel preserves unnecessarily large buffer sizes which
results in the communication of useless data. To address this issue, a
mechanism for automatically shrinking the buffer sizes has been intro-
duced. For details see Section 11.2.1.2. The release candidate with the
implementation of shrinking MPI buffers (NEST 3.0rc+ShrinkBuff)
approximately halves the time spent in the communication phase
compared to the original implementation (compare Figure 11.6C, Fig-
ure 11.6B). Next, we employ the microcircuit model (Potjans and
Diesmann, 2014) to asses the strong-scaling performance of the NEST

simulator (c.f. Chapter 10). The model size is similar to the size of one
of the 32 areas of the multi-area model, and thus simulation of this
model require less resources. Using NEST 3.0rc, the microcircuit is
simulated faster than the HPC-benchmark and the multi-area models
and achieves approximately real time (Twall/Tmodel ≈ 1, Figure 11.7A).
In contrast, the sub-real time performance on a single node presented
in Chapter 10 was achieved with NEST 2.14.1 (hardware-wise the
compute nodes are comparable). The finer resolution of the vertical
axis of the top-right graph reveals a small gap between the state prop-
agation measured with Python timers and the sum of the phases
timed on the C++ level which is not visible for the other models. The
state-propagation time of the microcircuit is also dominated by the
communication phase similarly to the respective benchmarks with the
multi-area model (Figure 11.6B) and even increases with the number
of nodes used. However, shrinking MPI buffers does not reduce com-
munication significantly (data not shown), indicating that we face a
different bottleneck with the microcircuit model. With on the order of
103 outgoing connections per neuron, a single-neuron of this model
has multiple targets on each MPI process and, in particular, on multi-
ple threads of a given process. Since the 5g kernel is designed to send
out a separate copy of a neuron’s spiking information to each target
thread, multiple copies of identical information about the activity
of a presynaptic neuron may be sent to the same process, causing
unnecessary communication load. To tackle this, we devise a spike
compression algorithm which only requires transmitting the spiking
information once to each MPI process where it is locally routed to the
receiving threads. For details see Section 11.2.1.3. This algorithm leads
to a significant reduction in communication time for the microcircuit
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Figure 11.7: Strong-scaling performance of the microcircuit model on
JURECA-DC. Same display as in Figure 11.5. The model time
is Tmodel = 10 s. Simulations are repeated for ten different ran-
dom seeds. A NEST 3.0 release candidate. B NEST 3.0 release
candidate with spike compression and shrinking MPI buffers.
C NEST 3.0.

model (compare Figure 11.7A, Figure 11.7B). Yet, the real-time factor
0.52 measured on two nodes in Chapter 10 is still not achieved with
the suggested improvement.
The microcircuit model easily fits within the main memory of one
compute node of JURECA-DC. Due to the simplicity of the employed
model neurons and the absence of synaptic plasticity mechanisms, the
network model causes little workload during update and delivery in
a strong-scaling experiment—real-time simulation is already possible
with a single compute node. Consequently, communication naturally
starts to dominate the state-propagation time at a few compute nodes
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even with the spike-compression optimization described above. While
increasing the number of compute nodes from one to two still results in
a fair reduction of state-propagation time, scaling is already sublinear,
and increasing the number of compute nodes further hardly results
in further improvement. Therefore, simulation phases other than the
so far discussed communication become important if the objective of
the optimizations is, for example, achieving real-time performance
with even fewer resources. In the following we highlight an algorithm
adaptation that concentrates on the update phase. A redesign of the
neuronal input buffers prevents neurons from retrieving the input
values for different channels, for example, excitatory and inhibitory,
from separate locations in memory. Thereby, the cache can be better
utilized during neuronal updates. Instead of maintaining separate
buffers for the input channels as in the original 5g kernel, neurons
maintain a single buffer with all inputs for a particular simulation time
step stored contiguously in memory. For details see Section 11.2.1.4.
This adaptation is most effective for network models with short mini-
mum synaptic delays; both the microcircuit and the multi-area model
use 0.1 ms. Figure 11.7C shows the resulting decrease in update time
for few compute nodes.
Taken together, the analysis performed using beNNch reveals that for
the release candidate NEST 3.0rc the communication phase as a major
performance bottleneck in microcircuit and multi-area model simula-
tions. This similarity is, however, superficial, the underlying causes
and their mitigations are different: while the shrinking MPI buffers
(Section 11.2.1.2) increase the simulation speed of the multi-area model,
the spike compression mechanism (Section 11.2.1.3) improves the per-
formance of the microcircuit model. None of the adaptations introduce
a performance regressions for the respective other model. In addition,
the update phase is improved by introducing neuronal input buffers
with multiple channels (Section 11.2.1.4). Also for the HPC-benchmark
model, the kernel adaptations are not detrimental to the originally
tested model, see Figure 11.5B). Indeed, the overall state-propagation
time is preserved with the final NEST 3.0 release. Reducing communi-
cation and update times comes here, however, at the cost of increased
delivery periods. This is due to an additional indirection introduced
with spike compression. Ongoing work targets the delivery phase
(Pronold et al., 2021) and gives a perspective for performance improve-
ments in future NEST releases.

11.4 discussion

Benchmarking HPC simulation technologies is a surprisingly diffi-
cult endeavor. Here, we proposed unified and modular workflow
for defining, running and analyzing benchmark simulation based on
five distinct dimensions. The five dimensions were identified together
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with the causes of their corresponding difficulties, namely hardware
configuration, software configuration, simulators, models and param-
eters, as well as researcher communication. To mitigate the arising
problems we developed reference implementation of the workflow
named BeNNch. There, the issues stemming from the aforementioned
dimension are addressed in systematic way. To highlight the practi-
cal relevance of the developed framework, we employed it to assess
the performance of different versions and modifications of the NEST

simulator. The reference implementation goes beyond existing bench-
marking environment software such as JUBE: It adds an interface to
models, installs and deploys simulation software, automates data and
metadata annotation, and implements storage and presentation of
results. The framework is provided as a tool to the community not
only for the development of simulation technology, but can also be
used for finding optimal performance configurations in other models.
While the devised workflow is in principle generic, the reference im-
plementation is tailored to the NEST simulator and still faces limitations
and open problems:
A priori, it is unclear what parameters, configurations or external in-
fluences may possibly contribute to differences in the performance
of complex software systems such as simulation engines. beNNch ad-
dresses this problem by employing a metadata archive which—in addi-
tion to the selection of metadata directly attached to the performance
results—tracks further metadata that are seemingly insignificant at the
time of simulation but may become relevant in future investigations.
However, completeness of all possible metadata is not achieved.
The high-level language used for network model specification —Python
for NEST when the models are expressed in PyNEST —require modifi-
cations to seamlessly work with the benchmarking framework. At the
moment, this is a manual task requiring continuous efforts in keeping
the benchmarking models synchronized with the original models. We
use rigorous version control of the code, automatic checking for errors
(via exceptions), and continuous testing for correct simulation outcome
to reduce the risk of errors. This strategy could be automatized further
in the future by finding methods to automatically inject respective
instrumentation into the executable model descriptions. To mitigate
the additional overhead, we keep the necessary changes as minimal as
possible, thereby lowering the entry barrier for new models.
The reference implementation makes concrete choices on the employed
tools. Alternatives, however, may be viable. For example, the required
software for the simulations is installed with Builder which can be
integrated with other package management systems or replaced by
a different solution. Our strategy exploits the native software envi-
ronment available on a compute cluster which is typically specifically
configured for the underlying hardware. An alternative is to use con-
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tainerized systems such as Docker15 or Singularity16. Replacing NEST

by a different simulator requires adapting the model implementations.
Expressing the models in the simulator-independent language PyNN

(Davison et al., 2009) instead of PyNEST would avoid this. However,
additional layers of complexity such as PyNN may have an impact
on performance, making it more challenging to pinpoint bottlenecks
in the simulator backend. JUBE as an environment to manage jobs
on compute clusters could be substituted by tools such as ecFlow17,
AiiDA18 Further, one could replace git-annex with, e.g., DataLad19

which is based on the same technology but extends its functionality
and provides slightly different metadata handling. The flip-book-style
presentation of results could also be replaced or supplemented with
other approaches, for example an automatically generated overview
figure showing results from multiple benchmarking runs together,
similar to Figures 11.5–11.7 in this paper.
In its current form, beNNch focuses on a single performance measure:
the time-to-solution. Different performance metrics potentially of in-
terest include energy-to-solution (see Chapter 10) as well as memory
consumption. Memory consumption determines for example the small-
est system that can simulate a given benchmarking model. Reducing
memory requirements was a major driving force behind the improve-
ments to the NEST kernel (Helias et al., 2012; Jordan et al., 2018; Kunkel
et al., 2012, 2014) in the past decade. The spike compression introduced
here reduces the time-to-solution (communication phase, Figures 11.5
and 11.7). However, this code also changes the memory consumption.
Assuming that the number of postsynaptic targets per neuron is fixed,
the memory overhead is negligible if the number of MPI processes is
small. But in the limit of a large number of MPI processes, i.e., when
each neuron has at most one target on each process, the effective size
of each synapse is increased by 8 byte. In this limit, users thus are
encouraged to actively deactivate the “spike compression” feature.
Continuous development is an integral part for long term sustainabil-
ity. To facilitate this, beNNch is developed as an open source software
project. This allows to make use of a public issue tracker, suggestions
via pull requests, public code reviews, and detailed documentation.
The chosen approach allows for constructive exchange between the
users and developers ultimately allowing for enhancements actually
needed by the users. While the concrete application of NEST bench-
marks of neuronal network models shaped our specific implementa-
tions, the modular structure allows for adaptation to other use cases.
In certain domains of software development, it is already common
practice to verify each code change on the basis of syntax, results, and

15 https://www.docker.com

16 https://sylabs.io

17 https://confluence.ecmwf.int/display/ECFLOW

18 https://www.aiida.net

19 https://www.datalad.org

https://www.docker.com
https://sylabs.io
https://confluence.ecmwf.int/display/ECFLOW
https://www.aiida.net
https://www.datalad.org
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other unit tests. The proposed automated approach to execute perfor-
mance benchmarks creates the opportunity to integrate an aspect of
validation directly into the development cycle. This way, performance
regressions of algorithm adaptations are immediately exposed, while
positive effects can readily be demonstrated. For high-performance
software, however, comprehensive checks for scaling performance are
particularly costly because they require compute time on state-of-the-
art clusters and supercomputers. Therefore, it is important to conduct
the performance benchmarks purposefully and with care. By orga-
nizing benchmarking results and keeping track of metadata, beNNch
helps to avoid redundant benchmark repeats and instead encourages
a direct comparison with previous results.
As already noted at the beginning of Part iv, reliable, efficient and
continuously development software is of great importance for sim-
ulation sciences. Albeit all the remaining difficulties, the proposed
framework enables HPC benchmarking of research software to evolve
from one-off tasks of individual researchers to a collaborative routine
effort, thereby increasing the benchmarking capacity and reducing
its susceptibility to errors. Thus, beNNch facilitates the continuous de-
velopment of HPC simulation technology and puts it onto a solid
foundation.





Part V

D I S C U S S I O N
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D I S C U S S I O N A N D O U T L O O K

In this thesis, digital twins were used as a tool for neuroscientific
research. As such, digital twins help integrating the large body of
neuroscientific findings into coherent platforms. Additionally, they
allow for investigating neural mechanism with in silico experiments
where all observables (given a certain level of description) can be
recorded and everything can be altered—the physiologist’s dream.
These platforms should be designed so that they can be extended in a
cumulative way leading to improvements and refinements of models
over time. In this way, digital twins can be used by different researchers
over multiple scientific projects. To fully harness their potential, the
construction and use of digital twins needs to be embedded into a
wider neuroscientific research program. Such a program needs to go
beyond the mere representation of the “physical twin” in a computer
model. As already stated in Chapter 2, we here suggest to at least com-
bine three perspectives: identification of neural phenomena that lack
quantitative explanation by an underlying mechanism implemented in
the nervous system, construction of appropriately designed computer
models that allow to investigate the phenomena under consideration,
and the continuous development and improvement of technologies
that enable efficient instantiations and simulations of the constructed
digital twins. In this thesis, all of these perspectives were treated.
This chapter summarizes the results, relates it to other work and
suggests potential future lines of research.

analysis of neural data In Part ii, we turned to the first
perspective of the formulated program. There, the resting-state activity
of macaque primary visual cortex was investigated (Figure 4.1). We
observed two distinct high-dimensional clusters—also referred to as
neural manifolds—in the neural activity (Figure 4.2). These clusters
were found to be correlated with the eye-closure and were shown to
differ in their dimensionality (Figure 4.5). Our findings agree with
analysis of the dimensionality of visual cortical activity (Gao and
Ganguli, 2015; Stringer et al., 2019a). A spectral Granger causality
analysis of the local field potential revealed a top-down modulation
from V4 to V1 in the β-band during eyes-open periods (Figure 4.6).
This agrees with the findings of Bastos et al. (2015) and Vezoli et al.
(2021) who also associated top-down inputs with spectral Granger
causality in the β-band. Additionally, we confirmed previous work by
Semedo et al. (2022) regarding top-down modulation in the absence
of visual stimulation. So far, only theoretical studies investigated to
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what extent neural manifolds could be modulated by top-down inputs
(Naumann et al., 2022). Our findings suggest for the first time that this
also may happen in vivo (Figure 4.8). However, given the experimental
data at hand, this hypothesis could neither be confirmed nor disproved.
Future work could pay greater attention to the transition between
manifolds at high temporal resolution. This might help to further
investigate the role of the top-down pathway in the change in neural
manifold.

construction and simulation of spiking neural network

models In Part iii, we turned to the construction and simulation of
spiking neural network models of cortical tissue. First, we aimed at
validating the hypothesis proposed in Chapter 4, i.e. that top-down
modulations can induce a separation of neural manifolds. To this end,
in Chapter 6 we modified a standard model of local cortical circuits
(Brunel, 2000) and stimulated the network with inputs mimicking
top-down modulations. We found that such additional inputs could
indeed explain the emergence of two separate neural manifolds in the
spiking activity (Figure 6.1). This is in agreement with the experimen-
tal data, see Figure 4.4. A more detailed analysis revealed that the split
is due to a change in the most active neurons during the stimulated pe-
riods in comparison to the non-stimulated state. However, the change
in dimensionality also observed in the spiking neural activity cannot
be reproduced with the spiking network model employed here. This is
due to the uniform recurrent connectivity and synaptic weights in the
network studied here (Tetzlaff et al., 2012). Introducing an additional
structure in the connectivity akin to Rostami et al. (2022) might help to
overcome this problem. Other mechanisms that potentially contribute
to or even control decorrelation of the network activity (and thus an
increase in dimensionality) in the presence of top-down modulations
include N-methyl-D-aspartate (NMDA) spikes (Herrero et al., 2013;
Major et al., 2013; Schiller et al., 2000). This seems particularly likely
since NMDA receptors have been suggested to control the efficacy
of top-down interactions from V4 to V1 (Self et al., 2013; Van Loon
et al., 2016). However, to settle this question further experimental and
computational studies are needed.
The model presented in Chapter 6 is only plausible if the simulated
network represents rather local cortical circuits. While suitable to
address the separation of neural manifolds in the resting-state, it is
not a biologically plausible model of the primary visual cortex in a
more general sense. To construct digital twins more faithful to the fine
structural details of the recurrent connectivity in this area, the laminar
as well as horizontal organization of cortex needs to be taken into
account. In Chapter 7, we constructed such a biologically plausible,
large-scale spiking neural network model of macaque V1. For this, we
devised an analysis workflow that allowed for a systematic reconcilia-



discussion and outlook 169

tion of anatomical findings across multiple studies. We integrated a
large body of anatomical data (Binzegger et al., 2004; Vanni et al., 2020)
and combined connectivity across multiple length scales (Angelucci
et al., 2002; Perin et al., 2011; Sincich and Blasdel, 2001) (see Figure 7.2,
Figure 7.4, Figure 7.5). Instantiating and simulating the model resulted
in physiologically implausibly firing rates of the neurons in the form
of run-away activity (Figure 7.6). A closer examination revealed that
the derived connectivity exhibits excitatory feedback loop leading
to the observed diverging firing rates (Figure 7.7). The digital twin
constructed here, while integrating realistic number of neurons and
synapses with plausible connectivity data across multiple length scales,
does not allow for a reconciliation of cortical architecture and realistic
activity.
This observation motivated a more fundamental analysis of the lo-
cal cortical connectivity in Chapter 8. There, we analyzed two recent
large-scale reconstructions of the local cortical circuits obtained via
electron microscopy (MICrONS Consortium et al., 2021; Shapson-Coe
et al., 2021). The data are the most complete estimates of local con-
nectivity to date. From this, we derived new connectivity maps and
compared them with an identically constructed model based on the
older data by Binzegger et al. (2004), which were also the basis for
the derivations in Chapter 7. While general features are conserved
(see Figure 8.1), there are prominent differences in the target speci-
ficity of especially the excitatory neural populations (Figure 8.2). The
results suggest a fundamental bias in the older data, which is prone
to excitatory feedback loops. The more recent data suggests strong
innervation of inhibitory populations by excitatory neurons. Similar
innervations from inhibitory to excitatory populations have already
been introduced by Potjans and Diesmann (2014) on the grounds
of electrophysiological connectivity data. We here showed that the
modifications introduced in this study, which altered the recurrent
connectivity in order to obtain a dynamically more stable network,
are indeed consistent with the local anatomy of cortical circuits.
Embedding these new findings into the model of macaque primary
visual cortex is the next goal: the aforementioned workflow for pro-
cessing and combining anatomical data to derive a network model
allows for straightforward extensions integrating the new insights re-
garding the local cortical connectivity. After achieving physiologically
plausible spiking activity, the model can be used to investigate cortical
dynamics in macaque V1. For this, a suitable model for providing
visual input to the network has to be devised. Here, one can build on
the large body of modeling approaches for the retina and the lateral
geniculate nucleus (Li, 2014). Next, the model needs to be validated
against experimental findings. For the primary visual cortex, Antolík
et al. (2018) suggests a list of functional properties that can serve as a
start for such validations. Additionally, extracellular quantities that
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can be readily obtained in standard electrophysiological experiments
can be used as benchmarks for the model activity. Senk et al. (2023)
show this for a spatially organized spiking neural network model
using the local field potential. There, the prediction is generated with
a hybrid scheme separating the spiking activity and the generation
of the extracellular potentials (Hagen et al., 2016). This method is
computationally costly and cannot be scaled easily to larger models.
More recent approaches based on linear predictors, however, promise
a swifter and cheaper estimation (Hagen et al., 2022).
Ultimately, we aim for using the constructed digital twin to investigate
cortical dynamics in a precision currently not accessible by experimen-
tal methods. Restrictions are imposed by technological limitations and
ethical considerations in the treatment of laboratory animals. Here,
especially the role of patchy connections for cortical dynamics (Cha-
vane et al., 2011) or for contextual modulations comes to mind (Liang
et al., 2017). The presented model of macaque primary visual cortex
might help bridging complex functional phenomena as for example
described in the more abstract modeling work by Li (1999a,b) with
fundamental physiological and anatomical constraints.
Finally, the model can be extended to include multiple cortical areas
of the visual hierarchy. Here, canonical choices for future additions
would be the areas V2 and V4. V1, V2 and V4 are the first three
stages of the ventral stream classically associated with object identifi-
cation (Kandel et al., 2013). To incorporate the suggested multi-stage
functional integration of information in the visual cortex (Zeki and
Shipp, 1988), convergent and divergent connections between different
cortical areas must be integrated. This requires to model all areas as
large-scale, spatially organized networks. Such a model of the first
three stages of the ventral stream would combine the separated efforts
by Schmidt et al. (2018b) regarding multi-area and Senk et al. (2023)
regarding spatial modeling in a joint framework. With this, a finer in-
vestigation of contextual modulations in V1 and a distinction between
internal (i.e. withing V1) and top-down effects (Liang et al., 2017) is
possible. Additionally, the separation of neural manifolds as observed
in Chapter 4 can be studied in a more detailed way.

simulation technology In order to perform neuroscientific
research using digital twins, simulation technologies are needed that
allow for efficient instantiations and executions of the devised mod-
els. Such simulation technologies must to be improved continuously:
among others, features desired by users have to be added, correctness
has to be assured, the code has to be maintained and the performance
has to be monitored to identify bottlenecks as well as potential prob-
lems of added components. In Part iv, we focused on assessing the
performance of the NEST simulator (Gewaltig and Diesmann, 2007).
We first measured the performance (estimated by the simulation speed
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and consumed energy) of simulations of a full-density model of the
local cortical circuit in Chapter 10. The simulations ran faster than
real-time on a single compute node (Figure 10.4). In comparison with
other technologies, we showed that the NEST simulator can keep pace
in simulation speed as well as consumed energy with more special-
ized, neuromorphic approaches (Table 10.2).
As it turned out, benchmarking simulation technologies in itself poses
major difficulties, beyond the mere comparison of the results (Gutzen
et al., 2018): keeping track of metadata, the interplay between user-
as well as system-software and hardware, the choice of models repre-
senting a specific problem class, and a transparent way of displaying
and comparing benchmarking results is non-trivial. In Chapter 11

we addressed this issue by first classifying the different dimensions
of HPC benchmarking (Figure 11.1). We then devised a workflow
that met the requirements of the different dimensions with a view
to spiking neural network simulations and provided a reference im-
plementation (Figure 11.4). With this, we provide a framework to
reproducibly and systematically benchmark simulation technologies.
We subsequently applied the derived framework using NEST to assess
the performance of low-level adjustment to the communication in-
frastructure: the suggested changes indeed improve the performance
for large models (Figure 11.6) while keeping it identical for smaller
networks (Figure 11.7). The developed workflow and framework thus
was successfully employed in the development of the NEST simulator.
Future extensions of the framework might include additional bench-
marking models assessing the performance of other features of the
NEST simulator (as e.g. structural plasticity) and a graphical user inter-
face allowing for an easier usage.

Taking together, in this thesis a holistic view on the usage of digi-
tal twins in Neuroscience has been proposed, and work according to
this view has been conducted. As such, this thesis is—beyond the pre-
sented scientific results in themselves—an attempt towards a broader,
more systematic usage of digital twins in neuroscientific research.
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S U P P L E M E N TA RY F I G U R E S : N E U R A L M A N I F O L D S
I N V 1 C H A N G E W I T H . . .

13.1 additional data figures

Figure S1: Overview of the experimental data from session L_RS_090817. a
Time evolution of signals. b, c, d First three principal components
of the MUAe neural manifold.

Figure S2: Overview of the experimental data from session L_RS_100817. a
Time evolution of signals. b, c, d First three principal components
of the MUAe neural manifold.
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Figure S3: Overview of the experimental data from session A_RS_150819. a
Time evolution of signals. b, c, d First three principal components
of the MUAe neural manifold.

Figure S4: Overview of the experimental data from session A_RS_160819. a
Time evolution of signals. b, c, d First three principal components
of the MUAe neural manifold.
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Figure S5: Overview of the experimental data from session Y_RS_180122. a
Time evolution of signals. b, c, d First three principal components
of the MUAe neural manifold.

Figure S6: Overview of the experimental data from session Y_RS_180122. a
Time evolution of signals. b, c, d First three principal components
of the MUAe neural manifold.
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Figure S7: Heatmap of z-scored MUAe and log odds. Darker colour indi-
cates higher occurrence. If the cluster in the neural activity were
completely explained by the change (higher in eyes-open periods)
activity, the heatmap would reveal a diagonal structure. Instead, a
spread over multiple quadrants can be observed.

Figure S8: V4 activity from session L_RS_250717 does not show distinct
clusters in its neural manifold. a Time evolution of signals. b, c, d
Three dimensional PCA of the MUAe neural manifold.
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Figure S9: DP activity from session Y_RS_180201 does not show distinct
clusters in its neural manifold. a Time evolution of signals. b, c, d
Three dimensional PCA of the MUAe neural manifold.

Figure S10: V4 and DP manifold log odds are not strongly correlated with
eye closure nor with MUAe. a, b Violin plots of V4 and DP
for eye closure (a) and MUAe activity (b). Neither show a clear
separation along different neural manifolds.
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Figure S11: Spatial distribution of Granger causality strength per electrode
for all relevant sessions. (Left column) Schematic representation of
the electrode locations overlaid with the mean top-down signal
strength B per electrode (see Section 4.2.3 for a description of B).
(Center column) Receptive field (RF) map overlaid with the mean
B per electrode. Stronger B is found around the foveal region of
V1. (Right column) Mean B displayed against the distance from
the fovea.
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L_RS_090817

L_RS_100817

A_RS_150819

Figure S12: Spectral power, coherence, and Granger causality for the elec-
trodes with high causality strength (B > 10) in sessions
L_RS_090817, L_RS_100817, and A_RS_150819. The data for each
behavioural condition (eyes-open/closed) were concatenated and
their metrics reported separately. Thick line shows median across
electrodes (or pairs of electrodes) and shading indicates the
25th to 75th percentile (top row for each session). The differ-
ence between eyes-open and eyes-closed was calculated for each
electrode or pair of electrodes (bottom row for each session).
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Figure S13: Top-down signals are not correlated with gaze direction. a Sam-
ple traces of the β-band Granger causality difference, gaze di-
rection (Eye X, Eye Y), and gaze direction derivative (∆X, ∆Y).
b Sample β-band causality difference over the gaze locations.
Higher top-down causality is not concentrated in particular re-
gions. c Histograms of Pearson correlation coefficients between
time-dependent causality difference and gaze signals, computed
for all electrode pairs in all sessions. Significant (p < 0.01 two-
tailed) part of histograms shown in orange. Gaze direction deriva-
tives show no significant correlations. Note that we did not cor-
rect for multiple testing, since reducing the p-value threshold
would simply reinforce our finding that no strong correlation was
present between the gaze and the top-down signals; i.e., no multi-
ple testing correction was the more conservative approach in this
case. d Scatter plot of the summed time-independent causality
difference against the correlation with gaze direction. There is
no clear relation between B(t)-gaze correlation and causality
strength.
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S U P P L E M E N TA RY M AT E R I A L : A S PAT I A L M O D E L
O F T H E P R I M A RY . . .

14.1 spatial structure of intra-areal connectivity

(a) Layer 2/3 interneurons. (b) Layer 5 pyramidal neurons.

Figure S1: Distance-dependent connection probability. Navy points are data
from Packer and Yuste (2011) (left, mouse) and Perin et al. (2011)
(right, rat), light blue curves are exponential fits to extract λvX .

Source layer Spatial spread [mm]

Supragranular site Granular sites Infragranular site

L2 0.6 0.3 0.25

L3 0.6 0.3 0.3

L4AB 0.5 0.3 0.5

L4C 0.25 0.3 0.5

L5 0.3 0.3 0.6

L6 0.25 0.3 0.6

Table S1: Estimated spread of lateral connectivity of inhibitory neurons. The
table was compiled by combining numeric values as well as in-
formation regarding the overall connectivity scheme provided by
Kritzer et al. (1992) Source layer indicates the layer of the projecting
neurons, Spatial spread is resolved by the respective injection sites.
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Target layer λv,L3E [mm]

L2 0.204

L3 0.282

L4B 0.241

L4Cα 0.171

L4Cβ 0.112

L5 0.226

Table S2: Target specific characteristic lengths for layer 3 excitatory neurons
derived from anterograde tracing data from Sincich and Blasdel
(2001).

Target Layer Injection Site

L2/3A L3B/L4A L4B L5A L5B L6

L2/3A long med. short short long short

L3B med. long med. med. med. med.

L4AB short long long short med. long

L4C N.A. N.A. N.A. short med. med.

L5 long med. long long long N.A.

L6 med. short long med. long long

Table S3: Qualitative assessment of lateral axonal spreading after injection
into different cortical layers (Blasdel et al., 1985). N.A. indicates
that no axonal processes are reported. “Med.” stands for medium.
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(a)

(b)

Figure S2: Instantiations of thalamic and cortical dummy neurons used in
orientation map generation a) Green: Thalamic neurons Orange:
Cortical dummy neurons (downsampled to 15% for better visibil-
ity). Blue Target cortical dummy neurons of one thalamic neuron.
b) Raw orientation map used to generated orientation map for
model of macaque V1.
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pE
ON,ON(x, y) = p(x, y, λ, 0, γ,

√
2 · σ)

pE
ON,OFF(x, y) = p(x, y, λ, π, γ,

√
2 · σ)

pI
ON,ON(x, y) = p(x, y, λ, π, γ,

√
2 · σ)

pI
ON,OFF(x, y) = p(x, y, λ, 0, γ,

√
2 · σ)

pE
OFF,OFF(x, y) = p(x, y, λ, 0, γ,

√
2 · σ)

pE
OFF,ON(x, y) = p(x, y, λ, π, γ,

√
2 · σ)

pI
OFF,OFF(x, y) = p(x, y, λ, π, γ,

√
2 · σ)

pI
OFF,ON(x, y) = p(x, y, λ, 0, γ,

√
2 · σ)

(14.1)

Radius R α(R)

λvX 3.78

2λvX 1.68

3λvX 1.25

4λvX 1.10

5λvX 1.04

Table S4: Radius dependent scaling factor for peak zero-distance connection
probability
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