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The Impact of Labour Demand Shocks 
When Occupational Labour Supplies Are 
Heterogeneous*

As technological advances accelerate and labour demands shift, the ability of workers 

to reallocate across occupations will be crucial for shaping labour market dynamics, 

inequality, and effective policy design. In this paper, we develop a tractable equilibrium 

model of the labour market that incorporates heterogeneous labour supply elasticities 

to different occupations and across different occupation pairs. Using worker flows from 

German administrative data, we estimate these elasticities and validate them through 

external measures such as  occupational licensing and task distance. Our model quantifies 

the heterogeneous impacts of recent labour demand shifts on occupational wages and 

employment, highlighting the role of cross-occupation effects in shaping market responses 

to shocks. Finally, we leverage this framework to project employment flows and wage 

adjustments under future occupational demand shifts that are implied by the latest 

automation technologies.
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1 Introduction

Over the past few decades, the labour market has undergone significant transformations,
driven by technological advancements and other structural changes. These shifts are par-
ticularly evident in the evolving occupational structure, where some occupations have
experienced large declines while others have expanded strongly (Acemoglu & Autor,
2011; Goos et al., 2014). With rapid advancements in automation, digitalisation, and the
wider use of artificial intelligence technologies, the pace of these changes is expected to
accelerate even further (Agarwal et al., 2024; Brynjolfsson et al., 2025; Cui et al., 2025).

The contribution of this paper is to specify elasticities of labour supply which charac-
terise how labour demand shocks translate into such occupational employment and wage
changes in equilibrium. Using the German labour market as a laboratory, we employ
these elasticities to study the effects of past occupational supply and demand shifts,
and to project the impact of currently predicted shocks on occupational changes and
employment flows. Given our model’s tractability, we can transparently characterise and
quantify the rich pathways.

Our approach takes seriously the idea that labour supplies to different occupations
and across different occupation pairs are differentially elastic.1 This heterogeneity leads
to a fuller interpretation of occupational changes in equilibrium than was previously
available, and it has several novel implications for labour market policy. We estimate our
model by using workers’ observed flows across occupations, which identify the relative
sizes of the elasticities, and by instrumenting demand shocks with occupations’ initial
task contents.

A key conceptual contribution of this paper is how we specify the heterogeneous
elasticities of occupational labour supply. We generalise a standard static random util-
ity theory of workers’ occupational choice by allowing for pairwise occupational tran-
sition costs. This setup leads to sufficient statistics for the labour supply elasticities in
terms of pairwise switching probabilities. Since empirical transition probabilities vary
substantially, the model predicts that supply elasticities are also heterogeneous across
occupations. As comes naturally out of the model, we distinguish between ‘cross-price’
elasticities, which capture the impact on employment of wage changes in a different
occupation, and ‘own-price’ elasticities, which capture the impact of wage changes in
the occupation itself.

1Among canonical models of occupational labour markets, Acemoglu & Autor (2011) and Acemoglu &
Restrepo (2022) specify the labour supply to tasks as perfectly elastic. Autor et al. (2003), Autor et al. (2006)
and Cortes (2016) allow for imperfectly elastic market supply but in a restricted manner and without direct
quantitative interpretation. See also, as examples of models in the same broad classes, Autor & Dorn (2013);
Jung & Mercenier (2014); Goos et al. (2014); Burstein et al. (2019); Gregory et al. (2022).
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Our sufficient statistics approach allows the heterogeneity of supply elasticities to be
directly estimated from gross worker flows between occupations in steady state. While
these baseline flows and the implied elasticities are in principle endogenous, we show
that they need not be affected by shifts in occupational wages and find empirically that
they remain stable over time. We further discuss extensions to our occupational choice
model, including a dynamic version with occupation-specific human capital accumula-
tion and forward-looking decisions under uncertainty, as well as a version with different
non-employment states including unemployment. We demonstrate that, in all considered
cases, differential worker flow rates remain informative about occupational substitutabil-
ities on the labour supply side, and elasticities can be constructed from similar moments
to those in the basic model.

Another key conceptual contribution is to embed heterogeneous labour supply elas-
ticities into an equilibrium model.2 Specifically, we show how endogenous price changes
are determined in terms of fundamental shocks and spillovers from these shocks across
occupations. These spillovers exhibit both own- and cross-occupation effects, which we
again identify using worker flows and estimate to be substantially heterogeneous. This
framework enables a theory-consistent IV estimation of the labour supply side, where
demand shock proxies are interacted with their corresponding spillovers to instrument
wages. More broadly, our model’s full system of simultaneous equations allows for an
analysis of standard demand and supply shocks, as well as the novel role of heterogeneity
in shaping occupational changes in equilibrium over time.

We apply our model using the German Sample of Integrated Employment Biographies
(SIAB), a comprehensive panel dataset tracking workers’ careers over time. The SIAB
provides a detailed and consistent occupational classification from 1975 to 2010, which
we leverage for historical analysis, and an updated classification with greater granular-
ity in emerging occupations, used for predictions from 2022 onward. In our historical
sample, we estimate supply elasticities and spillovers using worker transition flows from
1975–1984, conducting our primary analysis over 1985–2010. Own-price elasticities vary
significantly across occupations, and while cross-price elasticities are often near zero,
they exhibit substantial variation – some occupation pairs show strong substitutability,
where wage changes in one lead to significant employment shifts in another. Own-price
elasticities tend to be lower in occupations with greater licensing and job restrictions,
whereas cross-price elasticities correlate with task distance between occupations. Our
empirical elasticities improve on prior measures by providing a cardinal, quantitative

2We keep occupational demand relatively standard CES in order to focus on the role of heterogeneity
on the labour supply side. We calibrate the elasticity of substitution in production following the literature
and our key results are robust to a whole range of values for that demand side parameter.
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interpretation. In the prediction sample, we estimate supply elasticities using worker
flows in the decade leading up to 2022 and incorporate expert assessments on how re-
cent technologies may replace occupational tasks. Using these elasticities and predicted
demand shocks, we compute the model’s equilibrium projections of employment, wages,
and net flows between occupation pairs.

Our analyses yield three main findings. First, occupational wages and employment
changed significantly during the period 1985–2010. We show that heterogeneous labour
supply elasticities play a key role in these changes, explaining why some occupations
primarily experienced employment shifts in response to shocks, while others saw wage
adjustments. This elasticity heterogeneity accounts for more than 20% of the variation
in occupational employment growth, while 60% is driven by demand shocks and the
remaining 20% by shifts in labour supply across occupations.

Second, cross-price elasticities of labour supply play a particularly important role.
We find that labour demand shocks are correlated among relatively cross-price elastic
occupations. This reduces opportunities for workers in declining jobs to transition into
rising substitutable occupations, lowers overall labour supply elasticities compared to a
scenario where shocks and elasticities were randomly distributed, and slows employment
adjustment to structural changes. We also see greater dispersion in occupational wage
changes and larger increases in wage inequality as a result of correlated shocks.

The third set of results comes from our prediction sample and focuses on the period
after 2022. The model projects that occupational demand shocks driven by technological
replacement will increase employment in IT and construction-related occupations, raise
wages in the health and education sectors, and lead to declining wages in manufacturing-
related jobs as well as certain high-skilled occupations, such as accountants and audi-
tors.3 Cross-elasticities of labour supply again play a crucial role in these dynamics. For
instance, manufacturing workers have limited attractive substitute occupations to transi-
tion into, whereas IT occupations can draw workers from a broad range of technical and
business-related jobs. But the equilibrium determination of wage changes themselves is
another key factor, as these changes ultimately set the viable pathways for adjusting to
shocks given the occupational cross-elasticities.4

3To be precise, we scale the technological replacement potentials so that the relatively less affected
health (except laboratory medicine), education, and IT occupational fields experience relatively positive
demand shocks. The discussed wage or employment changes are also interpreted in relative terms.

4Laboratory occupations in medicine, which are highly automatable but closely substitutable with
human medicine, provide a striking example. The latter experiences a large positive demand shock, leading
laboratory occupations to shrink as workers transition into human medicine. However, equilibrium wage
adjustments prevent significant flows into other closely related health occupations.
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Our study relates to a large literature on changes in the occupational structure. In
particular, our work complements a long line of research examining demand shocks and
their impacts on tasks and occupations in the labour market (e.g., Autor et al., 2003; Autor
& Dorn, 2013; Goos et al., 2014; Graetz & Michaels, 2018; Dauth et al., 2021; Gregory et al.,
2022). We show that a key determinant of these impacts is the heterogeneous capacity of
labour supplies to adjust, which leads to the large variations in employment and wage
changes that have been observed during periods of structural change. Recent work by
Acemoglu & Restrepo (2022) relates wage changes of different demographic groups to
their own realised task displacement as well as the ripple effects of task displacement
from other groups.5 Our work is complementary to Acemoglu & Restrepo as it also takes
the differential equilibrium effects of shocks to one occupation on others into account
but measures the effect heterogeneity from worker flows ex ante, providing a forward-
looking perspective on market adjustments.6

This ex ante approach complements recent research identifying labour demand shocks
driven by rapid technological advancements (e.g., Webb, 2020; Eloundou et al., 2023; Fel-
ten et al., 2023; Brynjolfsson et al., 2025). Studies tracking mentions of such technologies
in job postings, including Alekseeva et al. (2021), Acemoglu et al. (2022), and Hampole
et al. (2025), provide useful insights into how automation and AI reshape labour demand.
By incorporating these predicted demand shifts, our model generates forward-looking
projections of their effects on wages, employment, and worker flows. Another key advan-
tage of integrating occupational heterogeneity within a market equilibrium framework
is its ability to inform more targeted policy interventions. For instance, it complements
research on job search guidance and retraining programs (Belot et al., 2019; Altmann
et al., 2023) by identifying occupational transitions that align with workers’ previous
experience and are in high demand under equilibrium conditions. Moreover, our model
pinpoints occupational areas with the lowest elasticities – those least adaptable – where
active human capital policies are most needed when shocks arise.7

5See also Böhm (2020) who infers labour demand shocks from the interaction of ex post task
reallocations and wage changes across different skill groups. Bhalotra et al. (2023) use women and men’s
realised employment and wages across task groups for equilibrium identification of labour supplies.

6Several studies use job flows to predict workers’ outside options or wage spillovers across employers,
including Carlsson et al. (2016); Arnold (2021); Bassier (2024); Schubert et al. (2024); Green et al. (2024).
Our approach focuses on occupational structural changes and embeds them within an explicit supply-
and-demand framework to jointly analyse employment outcomes and wage adjustments to shocks over
time. Research on equilibrium sectoral effects of shocks, primarily from the trade literature, includes
Caliendo et al. (2019); Traiberman (2019); Humlum (2021); Adão et al. (2024). While these studies examine
the dynamics of adjustment to shocks, they typically impose relatively restrictive assumptions on labour
supply elasticities. Here our work is most closely aligned with Bocquet (2024), who develops an explicit
network model of occupational job search.

7This aspect also relates to studies designing or evaluating policies targeted at specific worker groups,
such as wage support programs or trade adjustment assistance (Hyman et al., 2024).

5



This paper continues as follows. Section 2 presents a partial equilibrium model with
perfect information that provides a tractable framework for labour mobility decisions
under frictions. In Section 3, we add the demand side to the model to characterise labour
market equilibrium. Section 4 discusses the data and describes the components of the
estimated own- and cross-price elasticities of occupations’ labour supply. In Section 5, we
estimate the full equilibrium model using instrumental variables, and discuss robustness
of our estimate of the aggregate supply parameter. Section 6 uses the equilibrium model
to extract the effects of supply heterogeneity from demand and supply shocks in decom-
position and performs counterfactual analyses. Section 7 contains details of our prediction
exercises. Section 8 concludes.

2 The Model of Labour Supply

We adopt a random utility model of worker preferences that characterises occupation-
specific labour supply functions. This builds on Cortes & Gallipoli (2018) and Hsieh et al.
(2019), who adapt the environment in Eaton & Kortum (2002) to occupational choices,
and Card et al. (2018) who study the selection of workers into firms. We first present our
baseline static model with perfect information, which provides a tractable framework
for labour mobility decisions under frictions. We then discuss how this model can be
extended to include further features affecting occupational choice. Labour demand and
market equilibrium are modelled in the next section.

2.1 Environment and Occupational Choice

There is a continuum of workers ω ∈ Ω and a finite set of N occupations. The number
of employers in each occupation is large, such that labour demand is competitive and
there is no strategic wage setting. Every worker is initially and predeterminedly assigned
to an occupation i. Workers subsequently choose occupations to maximise their utility,
which can be interpreted as a total lifetime payoff and is occupation-combination as well
as individual specific. It includes wages as pecuniary benefits, a specific cost of switching
between occupations i and j, and an idiosyncratic preference for working in occupation j.

The indirect utility of worker ω with initial occupation i choosing occupation j is given
by:

uij (ω) = θpj + aij + ε j (ω) (1)

where θpj is the general pecuniary payoff to occupation j. The component pj can be inter-
preted as the log occupational price or wage rate offered to all workers per unit of their
skill and θ as their pecuniary preference or ‘wage elasticity’ parameter. The occupation–
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combination-specific term aij summarises potential pecuniary and non-pecuniary costs of
selecting occupation j for individuals initially assigned to occupation i. These can include
lower payoffs as switchers may need to learn new tasks in j or institutional barriers. We
will return to these costs further below. The final summand ε j (ω) is an idiosyncratic
preference shock for working in occupation j, which may, for example, include non-
pecuniary match components with occupation-specific amenities or types of coworkers.
We assume ε j (ω) is independently drawn from a type I extreme value (i.e. Gumbel)
distribution.8 Draws, including for the current occupation, occur at the beginning of the
period. Based on realised shocks, switching costs, and log occupational prices, workers
decide whether to stay in their occupation or switch to a different one.

By standard arguments (McFadden, 1973), the assumptions on eq. (1) imply that work-
ers’ occupational choice probabilities take the form:

πij (p) =
exp(θpj + aij)

∑N
k=1 exp(θpk + aik)

, (2)

where p is the vector of N log occupational prices. We follow the convention that, by
the law of large numbers, πij is the fraction of workers switching from occupation i to j.
Choice probabilities are occupation–combination-specific and they may involve staying
in the current occupation (i = j). Intuitively, eq. (2) says the more attractive occupation j is
relative to all other occupations, and the lower the cost of switching to it from i, the higher
is the fraction of workers who will move to that occupation. Since they are aggregated
over idiosyncratic shocks, the probabilities are not individual-specific and we therefore
omit the index ω from now on.

2.2 Price Elasticities of Occupational Employment

Let τi denote the share of the working population originating in occupation i, such that

∑i τi = 1. One can think of {τi} as the stationary distribution of employment in a baseline
period. Further, let Ej (p) be the fraction ending up working in occupation j as a function
of log occupational prices. This implies

Ej (p) = ∑
i

τiπij (p) (3)

= τj if p = p∗

8Gumbel location µ and scale δ are general because equation (1) can always be recast as uij (ω) =

θ
δ pj +

aij
δ +

ε j(ω)−µ

δ , yielding the same choice probabilities (see Card et al., 2018). In that sense, θ can be
thought of as scaling the importance of wages relative to idiosyncratic shocks.
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with p∗ the vector of baseline log occupational prices. From now, we simplify our lan-
guage by using ‘prices’ to mean log occupational prices as described in eq. (1).

2.2.1 Own- and Cross-Price Elasticities

Our interest centres on (own- and cross-occupation) price elasticities, that is, the elasticity
of occupation j’s employment with respect to any occupation k’s price (including k = j).
Writing ej ≡ ln Ej(p), and differentiating eq. (3), we obtain:

Remark 1 (Elasticities and Job Flows) The short-term partial derivative of occupation j’s log
employment share with respect to k’s log price is equal to:

∂ej (p)
∂pk

= θdjk (4)

with

djk =


∑i τi(πij(1−πij))

τj
if j = k

−∑i τi(πijπik)
τj

otherwise
(5)

Appendix A.1 contains the derivation.

The remark shows how these price elasticities can be computed using transition prob-
abilities (job flows under the law of large numbers), baseline employment shares (which
can also be estimated from the job flows), and an unobserved pecuniary parameter θ. We
return to the estimation of θ in Section 5 and now focus our attention on eq. (5).

Element djk in eq. (5) can be thought of as a constituent of an N × N matrix capturing
the heterogeneity of price elasticities, D, which we also refer to as the ‘elasticity matrix’
throughout the paper. With a slight abuse of notation, we thus refer to elements djj and
djk as own- and cross-price elasticities, respectively. One immediate property of these
elasticities is that djj = −∑k 6=j djk and that D is of rank N − 1. This feature does not
preclude separate effects in the empirical analysis below, however, as own- and cross-
elasticities are weighted by differing price changes across occupations.

We obtain djk from differentiating the choice probabilities (2) with respect to occupa-
tional prices. The economic intuition in (5) is that more observed switches between i and
j (high πij) also indicate more workers at the margin of indifference between choosing
the two occupations. In terms of the cross-elasticities, djk are high when occupations i
(including j and k themselves) tend to send many workers to both occupations at the
same time. Therefore, employment in j can be thought of as strongly reacting to price
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changes in k when many workers across the set of occupations {i} (i.e. weighted by the
size τi) are indifferent between j and k. This intuition that more switches indicate a larger
share of workers that can be redirected via a price change also holds for other models
of occupational choice. In fact, in Section 2.3 we study extensions of our baseline model
to show that they yield substantively similar elasticity specifications as in eq. (5).9 The
intuition also naturally extends to own-elasticities, which constitute an aggregation of an
occupation’s cross-elasticities as we shall see again next.

We gauge the content of eq. (5) further by deriving an alternative formulation in terms
of moments of job flows. First, and as standard, let Eτx ≡ ∑ τixi be the average of vector
elements xi weighted by the stationary employment distribution {τi}. Then define π̃iq ≡
πiq
τq

, such that π̃iq gives normalised job flows, with Eτπ̃iq = 1. Normalising the transition
probabilities in this way yields moments that are invariant to occupation size. In parallel,
let Covτ (x, y) ≡ ∑ τi (xi − Eτx) (yi − Eτy). This leads us to the following result:

Remark 2 (Occupational Substitutabilities) For all j 6= k, the off-diagonal elements of D can
be expressed as:

− djk = τk︸︷︷︸
occupational
importance

× Covτ

(
π̃.,j, π̃.,k

)︸ ︷︷ ︸
occupational

substitutability

+ τk︸︷︷︸
price
index

(6)

where we examine the negative of djk, rather than djk itself, so that we can interpret higher
elasticities by larger positive numbers. For all j = k, the on-diagonal elements of D can be
expressed as:

djj = ∑
k 6=j

τkCovτ

(
π̃.,j, π̃.,k

)
︸ ︷︷ ︸

aggregate
substitutability

+ 1︸︷︷︸
direct

− τj︸︷︷︸
price
index

(7)

Appendix A.2 contains the derivation.

We start by analysing expression (6). The key difference to a more standard labour
supply specification is the heterogeneous occupational substitutability term. In particular,
if Covτ

(
π̃.,j, π̃.,k

)
> 0 then the occupation pair j and k are ‘competing’ for workers,

and the larger is this covariance of normalised job flows, the higher is the cross-price
elasticity (i.e. the responsiveness of employment in occupation j to changes in the price of
occupation k). The substitutability term is weighted by an ‘occupational importance’ term
τk that depends on the size of the occupation of the price change and which reflects that
price increases in a smaller competing occupation will have smaller percentage ripple

9The elasticities in Remark 1 are short-term in the sense that, on top of πij, next period occupation sizes
would also change. Section 2.3 discusses a dynamic generalisation of the model that allows for longer-run
elasticities. We also show the robustness of our empirical results at different frequencies in Appendix G.1.
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effects than price increases in a larger occupation. The last term in expression (6) is an
occupation-specific intercept which captures occupation k’s contribution to an overall
price index. As will be seen further below, the price index effect is already a feature of
the more standard homogenous model and quantitatively unimportant in terms of the
variability of elasticities across occupations.

Analogous to the cross-elasticities, the key term in expression (7) for j’s own-elasticity
is its ‘aggregate substitutability’, which constitutes a size-weighted average of the oc-
cupation’s pairwise substitutabilities with all other occupations. This captures the fact
that a unit increase in the price of occupation j is equivalent to an equal and opposite
price decline in all other occupations. Expression (7) also contains ‘direct’ and price-
index effects. These terms contribute to the average level of the elasticities but little to
the observed variability.10

Before returning to questions of measurement, we note that the occupational substi-
tutabilities highlighted in Remark 2 have two more attractive properties. First, the pair-
wise substitutabilities are naturally symmetric between j and k, in contrast to the cross-
elasticities which depend on the size of the occupation of the price change. It is worth
emphasising, however, that these symmetries are entirely consistent with occupational hi-
erarchies.11 Second, we have formulated Covτ

(
π̃.,j, π̃.,k

)
and ∑k 6=j τkCovτ

(
π̃.,j, π̃.,k

)
using

normalised job flows such that they are also invariant to the fineness of the occupational
classification (see Appendix A.2 for details).

Equation (5) gives rise to a direct measurement of occupational elasticities via the
observed moments of job flows. One can in principle use the transition probabilities

10Appendix A.2 derives an alternative version of eq. (7) as

djj = −τjVarτ

(
π̃.,j
)︸ ︷︷ ︸

job-flow
dispersion

+ 1︸︷︷︸
direct

− τj︸︷︷︸
price
index

Here, the aggregate substitutability is reformulated as a ‘job-flow dispersion’ term, reflecting how dispersed
or concentrated the inflows to occupation j are: Sectors hiring from a diversity of sources (in this case, a
small Varτ

(
π̃.,j
)
) are more elastic. To see why, note that inflows are typically concentrated if the diagonal

element of the transition matrix is close to 1 (meaning everyone remains in the current occupation) and the
off-diagonal elements are close to 0. In this case, Varτ

(
π̃.,j
)

is large, the job-flow dispersion component is
more negative, and djj is lower, indicating a lower own-price elasticity.

11To provide an example to illustrate this point, suppose that doctors can become plumbers, but that
plumbers can never become doctors. If the wage of plumbers increases then the flow out of medicine
increases. If the wage of doctors increases, then the flow into plumbing declines. When these occupations
are of equal size, the model predicts that these flow changes will be identical.
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to identify features of the occupational transition costs.12 This approach is developed
in studies employing job flows in combination with worker and employer fixed effect
wage estimations (Sorkin, 2018; Morchio & Moser, 2024). Since disentangling amenities,
or occupational access and transition costs, from wages is not the focus of this paper,
we stick with the sufficient statistics approach in our analysis. We do, however, show
empirical correlates of the cross-price and own-price elasticities in Section 4, which may
be interpreted as capturing aspects of the underlying occupational transition costs.

Finally, one can relax the measurement requirement for using the job flows in steady
state equilibrium. In case we do not start out in equilibrium, short-run elasticities at the
beginning of our analysis period would still depend on the same measured switching
probabilities πij, but departing from initial employment shares. While τi are attractive
as they are a function only of steady state flows, the empirical results below do not
substantively change when we use those Ei instead (Corr(Ei, τi) ≈ 0.85) in calculation (5).

2.2.2 Occupational Employment Changes

With these properties of the occupational price elasticities in hand, we now generalise
the formulation given in eq. (4). In particular, the response of the vector of employment
shares to a change in the vector of prices can be approximated by:

∆e ≈ ∇e
∇p

∆p = θD∆p (8)

where ∆e represents the change of the N × 1 vector of log employment shares, {ej}, and
∇e
∇p the N × N matrix of partial derivatives

∂ej(p)
∂pk
∀ j, k. Given some demand-side shock

and ensuing shock to prices, which we discuss below, the change to employment shares
can be approximated by eq. (8). This is exact for marginal changes in prices.

Equation (8) shows how the model traces out a supply curve vector, e(p), of log em-
ployment shares. With a view to our empirical analysis, we rewrite the product of elastic-
ity matrix D with the vector of price changes as follows:

∆ej ≈ θdj∆p

12Cross-occupational switching costs can be identified relative to amenities of staying from ln
(

πij
πjj

)
=

aij − ajj. One can then identify all the aij terms up to scale, θ, by normalising a11 = 0 and using information

on wages via the relationship ln
(

πjj
π11

)
= ajj + θ

(
pj − p1

)
.
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= θ

(
djj∆pj︸ ︷︷ ︸

own-occupation
effect

+ ∑
k 6=j

djk∆pk︸ ︷︷ ︸
total cross-

-occupation effect

)
, (9)

where dj is the jth row of matrix D, and, in the bottom line, we separate the effects of on-
diagonal elements in D from those of all off-diagonal elements. To summarise the intu-
ition, the own-occupation effect in eq. (9) represents the part of occupations’ employment
changes that is due to their own price changing. The total cross-occupation effect captures
the effect of heterogeneity in price changes across all other occupations: Intuitively, large
price changes in occupations that are very substitutable with j (i.e. djk � 0) will have
potentially important spillovers on j’s employment share. We provide additional formal
details in Appendix A.3.

2.3 Generalisations

We conclude this section by discussing key extensions of our baseline labour supply
model. In all of these, the moments that characterise the heterogeneity of occupational
elasticities are substantively similar to those in eq. (5). We intuitively describe the exten-
sions here and provide formal details in Appendix B.

Dynamic overlapping generations model – In Appendix B.1, we develop a life-cycle ex-
tension of our main model. This generalisation includes occupational choice at two career
stages (labour market entry of young workers and switching at middle-age) and the
associated varying human capital accumulation across occupations. Uncertainty about
the next period prevails at the individual (preference shock) as well as aggregate (price
changes, which we allow to be persistent) level and young workers make forward-looking
decisions accordingly. We derive heterogeneous supply elasticities in early and late career
again as a function of young and middle-aged workers’ occupational choices.

The dynamic model illustrates how occupational elasticities in response to a price
change at time t are composed of the reactions at multiple career stages (relatedly, see the
elasticities by skill group discussed in the next paragraph). It also clarifies how longer-run
elasticities – at t + 1 when previously young workers become middle-aged and middle-
aged workers retire – would look like. Finally, the dynamic model shows how, given
rich data on pre-labour market training or skills, one would estimate the labour supply
elasticities also at the beginning of the career.13 Our main takeaway from this analysis,

13In the current paper, we instead focus on supporting our model’s mechanisms during the career. In
particular, Section 5 reports that θ estimated from changing choice probabilities during the career is similar
to that estimated from the changes of total employment overall.
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however, is that, under reasonable conditions, the occupational elasticities generated by
the dynamic framework are similar to those derived from our benchmark model.

Varying elasticities by skill group – Consistent with the notion of different elasticities
between younger and older workers, one can extend the framework to allow for varying
mobility rates during the career across population subgroups. We show that in this case,
the respective aggregate elasticity (overall employment change in j for a price change
in k) is the average of each subgroup’s elasticity weighted by the subgroup’s prevalence
in occupation j. In our empirics, splitting by subgroup yields near identical aggregate
elasticities to those computed in the main text because (1) in the case of age, relative
elasticities are highly correlated across groups and (2) in the case of educational groups,
occupations are fairly segmented such that aggregate elasticities mainly reflect either
high- or low-skilled workers’ mobility in each occupation. See Appendix B.2 for details.

Non-employment sector(s) – One can also extend the analysis to allow for transitions
into and out of different non-employment states during the career. In Appendix B.3, we
compute the respective occupational elasticities with non-employment and conceptually
show how these can be used in estimation even if price (or utility more generally) changes
for non-employment sectors are unavailable. Using our panel data, we find that account-
ing for unemployment transitions does not change the empirical results of the paper.

Further extensions and interpretations – The model allows for data-driven grouping of
occupations that are close to one another in terms of elasticities or job flows. In another
unreported extension, we further include location choice and explicitly nest it on top
of occupation choice in the model. The resulting augmented regional and occupational
labour supply elasticities are again expressible solely as functions of job flows within
and across nests. Finally, the baseline choice model, eq. (1)–(2), could be interpreted in a
more general manner: We already discussed that θ trades off wages with the dispersion
of idiosyncratic shocks in destination occupation j; in fact, this dispersion could be made
option–j-specific (derivations in Appendix A.1 go through allowing for θj). In terms of
parameters aij, one could recast the model so that they reflect the level of idiosyncratic
draws rather than transition costs or, alternatively, search frictions affecting the probabil-
ity of receiving an offer from potential occupation j when starting in i.

3 Labour Demand and Equilibrium

We proceed to close the model by specifying an explicit theory of occupational labour
demand. We characterise the resulting system of equations for prices and quantities and
study its reaction to shocks. We provide a discussion of the main issues here leaving math-
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ematical details to Appendix C. The model we present features perfect competition but
the results remain unchanged if we specify monopsonistic behaviour with time-constant
markdowns. More generally, keeping the demand side relatively standard allows us to
focus on the effects that arise solely from heterogeneous labour supplies.

We consider an economy-wide constant elasticity of substitution (CES) production
function

Y = A

(
∑

j
β jE

σ−1
σ

j

) σ
σ−1

s.t. ∑ β j = 1 (10)

where β j are the factor intensities of different occupation inputs and σ > 0 is the elasticity
of substitution between occupations in production. Parallel to Remark 2, which focused
on supply, under competitive markets, labour demand elasticities take the form:

∂ed
j

∂pk
= σ

−(1− τj) if j = k

τk otherwise
(11)

In equation (11), own-elasticities of labour demand are negative but attenuated by an
occupation’s size. The latter is a standard result of producer theory, since substitutability
declines with an occupation’s market share, and can be interpreted as the demand for
occupation k’s contribution to an overall price index.14 The cross-price elasticities are
positive and, after occupation size adjustment, constant. These constant elasticities are
a key feature of CES aggregation, which could be relaxed, for example, by nesting the
production function in line with the nested extension of the labour supply.15

The full supply and demand model allows us to characterise the equilibrium as a
system of N simultaneous equations:

ej (b, s) = es
j (〈p (b, s)〉 , s) = ed

j (〈p (b, s)〉 , b) (12)

14As discussed in Remark 2, price index terms are part of the elasticities on the labour supply side,
too. Anticipating the counterfactual analyses of Section 6, when we impose homogenous occupational
substitutabilities this leads to Covτ

(
π̃.,j, π̃.,k

)
= 0 ∀j, k and then:

∂es
j

∂pk
= θ

{
1− τj if j = k
−τk otherwise

That is, what remains in the homogenous labour supply model are also only the price index terms due to
potentially varying occupation sizes.

15Berger et al. (2022) and Lamadon et al. (2022) also nest their models into labour markets defined by
combinations of industry and region. Within market, they then impose perfect substitutability of firms’
outputs. The equivalent σ → ∞ here would lead to β j-shocks fully compensated by commensurate wage
increases (see eq. (13) below) and supply shocks fully feeding through to employment (eq. (14)). Our
estimates of the supply-side parameter θ are not much affected even by very large σ.
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where b is the vector of relative productivities (i.e. demand shifters
(

ln βi
1−βi

)
), s is a vector

of supply shifters, that, intuitively-speaking, move supply curves vertically in parallel.
The occupations are indexed by j as before, and both supply (s) and demand (d) curves
depend on the full set of prices.

Our focus is on how this system responds to shocks to the structural parameters, given
by changes to

(
ln

β j
1−β j

)
and s.16 We obtain:

Remark 3 (Equilibrium Response to Shocks) The response of the vectors of prices and em-
ployment shares to a change in the vectors of supply and demand shocks can be approximated
by:

∆p ≈ V∆b− 1
σ

V∆s (13)

and

∆e ≈ θDV∆b + V∆s (14)

where V =
(

θ
σ D + I

)−1
(I −W) and W is the matrix of stacked occupation sizes with j, kth

element τk. Appendix C.1 contains the derivation.

Equations (13) and (14) mirror expressions from a standard model with homogeneous
supply elasticities: given the structure of D and V, positive demand shocks increase both
prices and employment, while supply shocks increase employment but reduce prices.

Given matrix V’s central role in the solution of the equilibrium model, it is worth
discussing some of its properties here. In terms of its mathematical features, it has rank
N − 1, just like matrix D, and each row sums to 0 across columns. Additionally, just like
matrix D, it has non-negative eigenvalues, which ensure, roughly speaking, that shocks
move prices and employment in the expected direction.

In terms of economic properties, first note that both V and D govern the dissipation of
shocks across the economy. In our model of the labour supply curve, V can be interpreted
as an upstream, and closely related, matrix to D which specifies the initial spillovers from
demand shocks to prices. One way to summarise V’s effect is to examine its diagonal
elements: The next section will report that in the data these are almost perfectly negatively
correlated with those of D, such that the diagonal elements of V tend to be lower for more

16Potential underlying sources of shocks to supply, ∆sj, could be level shifts in the attractiveness of the
occupation (aj component of aij changing) or exogenous shocks to employment sizes in eq. (3) directly. In
the data, the first would lead to higher switching rates toward j from all occupations within the labour
market, while the latter may, for example, be an exogenous migration shock that affects j differentially. We
keep this reduced-form and allow for both interpretations of supply shocks in the following discussion.
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elastic occupations. As implied by eq. (13), for these elastic occupations, ceteris paribus,
demand shocks induce relatively muted changes to prices.17

The matrix product DV then governs the effect of demand shocks on employment. This
similarly has rank N− 1 with all non-negative eigenvalues. Importantly, and as expected,
its diagonal elements are positively correlated with those of D and negatively with those
of V. Accordingly, while ceteris paribus demand shocks cause a smaller change in prices
for more elastic occupations, they induce a larger increase in employment implied by
eq. (14).18 Parallel effects to those just discussed can be traced through shocks to supply.

Finally, we generalise eq. (8) to obtain our equilibrium regression equation for the
labour supply side:

Remark 4 (Second-Stage Labour Supply Equation) The equilibrium relationship between the
vectors of price and employment changes on the labour supply side can be approximated by:

∆e ≈ θD∆p + ∆s (15)

where the N × 1 vector of labour supply shocks ∆s represents the regression error. The result
follows directly from combining eq. (13) and eq. (14), see also Appendix E.3.

Remarks 3 and 4 characterise equilibrium outcomes when own- and cross-occupational
labour supplies are heterogeneous. As discussed, these relationships are tractable and in-
tuitive.19 The remarks further indicate how the model can be used to empirically analyse
the role of heterogeneity on the labour supply side. For estimation, we will instrument
∆p in eq. (15) by proxies for demand shocks that are interacted, model-consistently, with
their impact on prices according to spillover matrix V. In the absence of supply shocks (i.e.
∆s = 0), OLS is sufficient. The logic of requiring the IV is that supply shocks contribute
to, and so are correlated with, ∆p. For counterfactuals, we will insert different, more
homogenous, versions of D (and accordingly, V) into eq. (13)–(14).

17We also study the off-diagonal elements of V, which govern the spillovers of demand shocks to prices
in other occupations. In contrast to D, many of these off-diagonal elements are positive. Intuitively, a
positive shock to demand can create a relative scarcity in labour not only in the given sector but also in close
substitute (cross-elastic) occupations. As indicated by eq. (13), this scarcity can then lead to an increase in
prices in both occupations.

18In terms of off-diagonal elements of matrix DV, which govern the spillovers of demand shocks to
quantities in other occupations, these are all negative in the data. Following through the example just given
in footnote 17, a positive demand shock has two opposing effects on close substitute occupations: First,
as discussed above, a possible increase in prices draws workers in from the rest of the labour market;
second, however, is the direct effect of the shock which pulls workers in from these close occupations to the
occupation of the positive shock itself. Overall, the second effect dominates and, as given by eq. (14), this
cross-effect always reduces employment.

19They are also modular, in the sense that different elasticity matrices D (with according upstream V)
can be inserted, following the discussion in Section 2.3.
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4 Data and Descriptives

This section first presents our data sources for the historical analysis. We then describe
the estimated own- and cross-price elasticities as well as show their correlations with
occupational outcomes during 1985–2010.

4.1 Main Data Sources and Historical Sample

We use the Sample of Integrated Labour Market Biographies (SIAB, Frodermann et al.,
2021), a 2% sample of social security records in Germany dating back to 1975. The SIAB
contains workers’ complete employment histories and daily wages. It is representative
of all individuals covered by the social security system, roughly 80% of the German
workforce. The SIAB’s panel structure allows us to compute careers and job flows over
long periods, while its administrative nature ensures the high quality of all variables.

Occupations in the SIAB are consistently coded, with no removals or additions, during
1975–2010. After this, a structural break occurs and a new occupational classification is
introduced, which is fully consistent again from 2012 onward. We now use the historical
data until 2010 for our analysis of occupational outcomes over the past decades. In Sec-
tion 7, we will employ the data from 2012 onward to make predictions about the potential
impacts of labour demand shocks moving forward.

We condition the historical analysis on men aged 25–59 who are working full-time in
West Germany. The first restriction is primarily due to the old occupation classification,
which was devised with male employment in mind (Paulus et al., 2013). The restriction
to full-time work allows us to use consistent wage and employment samples. In the
later analysis, post-2012, we will relax all these restrictions. We transform the daily spell
structure of the SIAB into a yearly panel by using the longest spell in a given year. Our
historical sample consists of approximately 600,000 unique individuals and 9 million
individual × year observations for the whole period 1975–2010.20

We use the SIAB to compute worker flows (sufficient statistics for the elements of D),
changes in occupational employment (∆e), and changes in occupational prices (∆p). For
the latter, we follow the literature on this, which emphasises that raw wages need to
be corrected for changing composition of workers’ skills (Cavaglia & Etheridge, 2020;
Böhm et al., 2024), and use occupation stayers’ (i.e. workers who do not switch occupation
from one year to the next) wage growth as the main estimate of changes in occupational

20We further drop spells of workers with missing information on occupation or wage, and wages below
the limit for which social security contributions have to be paid. In preparing the data, we impute censored
wages above the upper earnings threshold for social security contributions (Dustmann et al., 2009; Card
et al., 2013) and correct for the wage break in 1983–1984 (Fitzenberger, 1999; Dustmann et al., 2009).
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prices.21 The SIAB also allows computing further occupational characteristics – e.g. work-
ers’ mean age or share of workers with university degrees by occupation – which we
relate to our elasticity measures.

To obtain task information in occupations, we use the Qualifications and Career Sur-
veys (QCS, Hall et al., 2012). The QCS consist of cross-sectional surveys with 20,000–
35,000 individuals in each wave. Respondents report on the tasks performed in their
occupations, which we categorise into analytical, routine, and manual tasks. Averag-
ing responses from pooled QCS data in 1979 and 1985/1986, we compute initial task
intensities among those three categories by occupation. Finally, to obtain measures of
occupational licensing, we use the indicators for standardised certification and degree of
regulation developed by Vicari (2014). More details on the data, variable construction,
and descriptive statistics are presented in Appendix D.

4.2 Estimated Elasticities and Spillovers

Our occupational own- and cross-price elasticities are computed from baseline worker
flows according to eq. (5). Specifically, we use the transition rates across all occupation
pairs at the endpoints of five-year periods within 1975–1984. The flow of switchers from
origin occupation i to destination occupation j (which includes staying in occupation i)
is defined as the number of individuals who are employed in occupation i in year t and
employed in occupation j in year t + 5. Dividing each element by total flows from origin
occupation i we obtain the transition probability matrix Π, which is of size 120 × 120,
with element πij representing the empirical probability that a worker employed in origin
occupation i switches to j in five years’ time. The transition probability matrix also implies
a steady state vector τ of size 120 × 1, with element τi representing occupation i’s size
as a share of total employment. Using these objects, we compute the matrices D and V
following Remarks 1 and 3, respectively.22

Table 1 lists occupations at different quantiles of the elasticity distribution. Panel A
shows own-price elasticities, which range from 0.07 among Physicians and pharmacists
to 0.80 among personnel in various social, medical, and hospitality service occupations.
While own-price elasticities (djj) are more or less symmetrically distributed over their
range, cross-price elasticities (−djk) between occupation pairs are strongly skewed and
highest among closely related occupations. Panel B of Table 1 shows such relative spill-

21In Appendix G.2, we show the robustness of our results using an alternative price estimation that
corrects for worker–occupation–spell fixed effects (Cortes, 2016).

22For V, we calibrate θ
σ = 2.3, which is justified in Section 5. Even large perturbations in θ

σ have little
effect on results. Our findings also remain consistent whether we use two-year or ten-year period lengths
for the flows. The resulting analysis period 1985–2010 is similar to Card et al. (2013) and Böhm et al. (2024).
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overs of wage on employment changes. These are around 0.18–0.46 for Home wardens
and social work teachers on Nursery teachers and child nurses, Non-medical practitioners
on Medical receptionists, and Office specialists on Stenographers and data typists. Cross-
price elasticities fall off quickly from the top and become an order of magnitude smaller
than any own-price elasticities even at the 90th percentile.

Figure 1 shows important correlates of the elasticities. In fact, we plot substitutabilities,
which are the key varying components of djj and djk,23 against observable occupational
characteristics. Panel a reports that occupations with a higher degree share, more analyti-
cal tasks, and higher certification and regulation requirements are less substitutable with
other occupations and, by extension, less own-price elastic. Aggregate substitutability
can thus be directly related to other proxies for occupational flexibility (also in contrast to
transition costs, which are defined among occupation pairs and not naturally aggregated).

Panel b of Figure 1 plots individual substitutabilities against occupational task dis-
tance, which we constructed as in Gathmann & Schönberg (2010); Cortes & Gallipoli
(2018). Pairwise substitutabilities are a natural counterpart to the equally symmetric task
distances, again in contrast to aij or djk. The relationship is significantly negative, such
that the higher is the distance in task content between two occupations, the lower the sub-
stitutability. While this clear relationship is reassuring, there are a couple of advantages
of working with our elasticity components: task distance is essentially an ordinal concept
derived from the subset of tasks that are reported in surveys. In contrast, substitutabilities,
or cross-price elasticities, capture all information implied by realised worker flows and
they have a natural quantitative interpretation. This can be seen in the noted skewness
of Figure 1b, and accordingly by the better fit of Spearman’s rank coefficient with task
distance than that of standard linear correlation.

We show further summary statistics for matrices Π, D, and V in Appendix Table E.3.
As discussed in Section 3, the main diagonal elements of upstream matrix V are nega-
tively correlated with those of D as, for own-price elastic occupations, stronger employ-
ment changes go in hand with more muted price changes.24 Also in contrast to D, the
off-diagonal elements of V (spillovers from demand shocks to other occupations’ prices)
are not particularly skewed, and a subset of elements are positive because demand shocks
for a given sector can create scarcity of labour in close substitute occupations.

23Appendix Table E.4 reports that (aggregate) substitutabilities are the main factors driving the
heterogeneity in own- and cross-price elasticities. As such, both panels of Figure 1 look substantively similar
using elasticities instead (see Appendix Figure E.1).

24Diagonals of the product DV are still related positively with D (negatively with V), since fundamental
demand shocks overall have a larger employment impact in more elastic occupations (see eq. (14)).
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Table 1: Summary Statistics: Own- and Cross-Price Elasticities

Panel A Own-price elasticity (djj) Occupation

Minimum 0.074 Physicians, dentists, veterinary surgeons, pharmacists
10th percentile 0.294 Health or property insurance specialist
25th percentile 0.358 Members of parliament, association leaders, officials
50th percentile 0.430 Stucco workers, plasterers, rough casters, proofers
75th percentile 0.517 Sheet metal pressers, drawers, stampers, metal moulders
90th percentile 0.604 Salespersons
Third highest 0.740 Ancillary hospitality workers
Second highest 0.797 Medical receptionists
Maximum 0.798 Nursery teachers, child nurses

Panel B Cross-price elasticity (−djk) Occupation of price change (k)→ Occupation of employment change (j)

50th percentile 0.001 Paviours, road makers→ Sheet metal workers
90th percentile 0.009 Miners, shaped brick/concrete block makers→ Engine fitters
Fifth highest 0.144 Bricklayers, concrete workers→ Carpenters, scaffolders
Fourth highest 0.182 Restaurant, inn, bar keepers, hotel and catering personnel→ Ancillary hospitality workers
Third highest 0.185 Office specialists→ Stenographers, shorthand typists, data typists
Second highest 0.253 Non-medical practitioners, masseurs, physiotherapists→Medical receptionists
Maximum 0.464 Home wardens, social work teachers→ Nursery teachers, child nurses

Notes: Panel A shows statistics from a ranking of the 120 occupations of the 1988 Klassifikation der Berufe according to their own-price elasticity (djj). Panel B comes from
a ranking of the 14280 occupation pairs according to their cross-price elasticity. See text for more details.
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Figure 1: Elasticity Components: Comparison with External Metrics

(a) Own-Price Component and Occupational Characteristics (b) Cross-Price Component and Task Distance

Notes: Panel (a) reports how the aggregate substitutability component of the own-price elasticity, namely ∑k 6=j τkCovτ

(
π̃.,j, π̃.,k

)
, correlates with skill requirements across 120 occupations. Occupational certification

and regulations come from Vicari (2014). Task content (analytical, manual, and routine) are measured using BiBB, see Appendix D.2. Correlations weighted by initial employment in each occupation. Panel (b) shows
the relationship (with a quadratic fit) between the occupational substitutability component of the cross-price elasticity, namely Covτ

(
π̃.,j, π̃.,k

)
, and occupational task distance measured as in Cortes & Gallipoli (2018).

Appendix Figure E.1 does the same plots for djj and −djk instead.
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Finally, Table E.3 reports a high autocorrelation of matrix D (and accordingly V) when
computed at different points in time during 1975–2010. This stability is empirically in line
with findings of Gathmann & Schönberg (2010) on the autocorrelation of occupational
task distance over time, and it supports our treatment of the elements djj and djk essen-
tially as fixed.25 In fact, we checked that recomputing elasticities based on flows in the
final ten years of the period (2000–2010), and redoing all our analyses with this, does not
change the empirical results of the paper.

5 Estimation in the Historical Sample

In this section, we first discuss occupational wage and employment trends during 1985–
2010 through the lens of our model. We then use two alternative and complementary
approaches to estimate its remaining aggregate parameter on the labour supply side.

5.1 Occupational Changes over 1985–2010

Figure 2a plots annualised occupational changes in employment against changes in oc-
cupational prices based on stayers’ wage growth. The latter clearly lines up with em-
ployment growth, consistent with earlier work (Cavaglia & Etheridge, 2020; Böhm et al.,
2024). Yet, there is a significant amount of variation in the movements of employment and
wages across occupations. For example, the explicitly labelled occupation of Physicians
and pharmacists has high occupational wage growth (over five log points per year) but
rather small employment growth, while Assistants exhibit high employment but hardly
any wage growth. Data processors have both substantial employment and wage growth.

An implication of our model is that such heterogeneity can be due to differences in
labour supply curves across occupations. To graphically assess this possibility, we first
consider individual price changes in isolation and split occupations at the median of
own-price elasticities in Figure 2b. That is, we concentrate on the first summand (own-
occupation effect) in equation (9). The blue circles, including Physicians and pharmacists,
are the occupations for which employment is ex ante predicted to be relatively unrespon-
sive to own-price changes, while the red circles, including Assistants, are predicted to

25In Section 5, we provide evidence for the mechanism underlying eq. (5), by showing that a price
increase in occupation j raises πij, ceteris paribus. The intuition for why this effect need not substantively
change the according elements of matrix D is that elasticities depend on overall bilateral (gross) flows
among occupations. These do not unambiguously rise or fall in response to price changes and in contrast to
net flows. For example, from eq. (5) we can write djj = πjj(1−πjj) +∑i 6=j

τi
τj

πij(1−πij). The first summand
decreases when pj rises, since πjj > 0.5 in all occupations while the second set of summands increases,
since πij � 0.5 if i 6= j. Therefore the impact on overall bilateral flows for j, and thereby djj, is ambiguous
although net flows into the occupation clearly increase.
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Figure 2: Occupational Price and Employment Changes (1985–2010)

(a) All 120 Occupations
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(b) By Own-Price Elasticity (Median Split Illustration)
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Notes: Panel (a) shows the line from an occupation-size weighted regression of price change on employment change. Panel (b) shows a split by occupations below (blue, inelastic) and above (red, elastic) the median
own-price elasticity (djj). β refers to the slope coefficient, CI stands for the 95% confidence interval, se refers to standard error, and R-sq stands for the R-squared of the regression. Marker size indicates the baseline
employment (in 1985) in each occupation.
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be relatively elastic. It turns out that, indeed, the relationship between occupational em-
ployment and price changes is significantly flatter among the red than among the blue
circles. As shown in the plot labels, a 1% increase in wages is on average associated with
a 1

0.270 ≈ 3.7% increase of employment for the group with high predicted elasticities, but
only a 1

0.605 ≈ 1.7% employment increase for the low-elasticity occupations.26

The labour supply side relationship described in equation (9) includes additional ef-
fects arising from the cross-price elasticities. In order to assess these, we extend the de-
composition as follows:

∆ej = α + θ1ddiag∆pj︸ ︷︷ ︸
fixed relationship of

price with employment

+ θ2(djj − ddiag)∆pj︸ ︷︷ ︸
heterogeneity of

own-occupation effect

+ θ3 ∑
k 6=j

djk∆pk︸ ︷︷ ︸
total cross-

-occupation effect

+ ε j (16)

Equation (16) includes own- and cross-occupation effects but, parallel in spirit to Figure 2,
it further splits the own-occupation effect into a fixed relationship that one would obtain
when regressing employment onto price changes and the additional effect of the pure
heterogeneity in elasticities. This is done by subtracting the mean of matrix D’s main
diagonal elements in the middle summand, such that the heterogeneity is captured by
djj − ddiag. Using (16) as a regression equation, we also allow for generic coefficients on
these effects in order to assess the theoretical prediction that θ1 = θ2 = θ3 = θ. Finally,
while the theory analysed a model of employment shares (employment levels in a static
population), intercept α now accounts for overall changes in log employment, and the
approximation error from eq. (9) is represented by ε j.

Table 2 reports results from estimating different versions of equation (16). Column (1)
shows the regression of ∆ej onto ddiag∆pj only. As seen in Figure 2a, this fixed relation-
ship of employment with price changes results in a significant positive slope with an R-
squared of 0.29. Column (2), which allows for heterogeneity in own-price elasticities djj,
yields an additional positive and significant effect, consistent with Figure 2b. Column (3)
then adds the cross effects of price changes in other occupations that may be more or
less substitutable. The coefficient on this term is also positive and significant. This is as
expected because djk < 0 for k 6= j, such that a positive regression coefficient implies
that rising prices in other occupations k lead to a decline of employment in occupation
j. As noted above, a stronger implication of the model is that coefficients θ1–θ3 should
all capture the same pecuniary preference parameter. Although econometrically they are
allowed to differ, the estimated coefficients turn out to be almost identical. We examine

26Appendix Figure E.2 alternatively splits occupations into djj quartiles. The resulting four regression
lines are visibly ranked by predicted labour supply elasticity.
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the equality of coefficients more formally in columns (4) and (5). Consistent with θ1 =

θ2 = θ3 being fulfilled, results hardly change when we run accordingly restricted models.

Table 2: Determinants of Employment Changes: Own- and Cross-Effects (OLS)

Dependent Variable: ∆ej

Unrestricted Model Restricted Model

(1) (2) (3) (4) (5)

fixed relationship: ddiag∆pj
1.59 1.79 4.09
(0.30) (0.31) (0.89) 1.81

heterogeneous
(djj − ddiag)∆pj

1.25 4.07 (0.32) 4.15
own effect: (0.36) (1.00) (0.70)

total cross effect: ∑k 6=j djk∆pk
4.02
(1.33)

R-squared 0.295 0.314 0.394 0.310 0.394
Number of occupations 120 120 120 120 120

Notes: The table presents the estimates from different versions of eq. (16). Regressor in column (4) is
djj∆pj. In column (5), the regressor is ∑k djk∆pk, i.e. including both own- and cross-occupation effects.
All regressions include a constant. Observations weighted by occupation j’s initial employment size.
Period 1985–2010. Standard errors in parentheses; all coefficients shown are significant at the 1% level.

The estimated coefficients in columns (3) and (5) are all substantially larger than those
in the other columns (Wald test p-value < 0.01). The reason for this is that, at least over
this period, highly cross-elastic occupations tend to experience similar price changes: for
−djk large, ∆pj and ∆pk tend to move together, implying that Cov(∆pj, djk∆pk) < 0.
Adding this up for all k 6= j, the own-occupation and total cross effects are negatively
correlated, and including the latter raises the coefficient on the former in our estimation.27

Borusyak et al. (2023) find a related result in migration regressions across Brazilian region-
industries. They highlight that pecuniary parameters are underestimated when not taking
into account that shocks are often correlated between workers’ current and potentially
substitutable migration options. We will find below that fundamental demand shocks
also tend to be correlated among more cross-elastic occupations, which lead to a lower
effective labour supply elasticity and subdued adjustment to structural changes.28

27For clarity, we are here taking the elasticities in D as given and considering the covariance over random
draws of price changes. See Appendix E.2 for further discussion on this omitted variable bias.

28The large increase of R-squared in Table 2 when adding cross-occupation effects (8 compared to 2
percentage points when adding heterogeneous own effects) already indicates the eventual importance of
spillovers between occupations in the full model.
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5.2 Identification of the Labour Supply Parameter θ

Recall the model’s equilibrium relationships captured in Remarks 3 and 4. Now suppose
we have access to a variable, which we denote by rj, that proxies demand shifters ∆ ln

β j
1−β j

but is uncorrelated with supply shifters ∆sj. Eq. (13) implies proportionality of the form

D∆p ∼ DVr = D
(

θ

σ
D + I

)−1

ř (17)

where vector ř ≡ (I −W) r is the weighted-demeaned version of r. Equation (17) rep-
resents an IV first-stage relationship for the relevant regressor, the product of elasticities
with price changes. We discuss setting the value of θ

σ when this is used further below and
first focus our attention on the key shock vector r.

Our instrument for relative productivity shocks is based on initial task content. As
discussed in Section 4, we employ survey information that asks workers which tasks
they carry out in their jobs to construct measures of analytical, routine, and manual task
intensity across occupations in the late 1970s and early 1980s. Following the literature
on routine-biased technical change (RBTC, Autor et al., 2003), research has consistently
found that occupations intensive in analytical tasks grew quite strongly, whereas em-
ployment in routine-intensive occupations declined in the late 1980s and the 1990s (e.g.
Autor et al., 2008; Acemoglu & Autor, 2011). For Germany, Böhm et al. (2024) additionally
show that the overall demand shift was negative for manual-intensive occupations; with
employment, average wages, and skill prices declining after 1985.29 We thus approximate
occupation j’s (negative) demand shocks during 1985–2010 as

rj = (routinej + manualj)− analyticalj (18)

The idea is that occupations initially scoring high on routine and manual relative to
analytical tasks will tend to experience negative demand shocks during the sample period
compared to occupations that score low on our measure rj.

5.2.1 Estimate from the Model Equilibrium Relationship

Following the exposition in the previous section, we illustrate the IV estimation by first
implementing the model abstracting from cross-occupation effects. As in Figure 2b, we
capture the heterogeneity of own-occupation effects by splitting estimation at the median
of djj. In this case, the instrument DVr within each sub-sample of 60 occupations reduces

29Böhm et al. (2024) also caution that the QCS questionnaires have some difficulty distinguishing
between routine and manual job tasks. See Rohrbach-Schmidt & Tiemann (2013) for further details about
classifying tasks in the German context.
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to a scalar multiple of the pure proxy vector r. Figure 3a displays the relationship between
rj and ∆pj. Overall, it is clearly negative given the negative demand shocks that we proxy.
We would also expect the regression line to be flatter among more elastic occupations,
which should react to a demand shock relatively less in terms of wages and more in
terms of employment. Although not significant at conventional levels, this difference is
apparent. Similarly, Appendix Figure E.3 displays the relationship between rj and ∆ej,
and consistently shows that the more elastic occupations present a slightly steeper slope.

Figure 3b then depicts the second stage in this simplified model. Again to parallel
the prior figure, and to keep prices on the vertical axis as standard, we display the inverse
supply curve, with price changes as a function of changes to employment. In this case, the
slopes are steeper than those in Figure 2b. This reflects that, in this case, removing shocks
to supply also eliminates attenuation of the estimated regression line. What remains the
same is that the relationship of wages with employment is substantially steeper among
occupations ex ante classified as inelastic compared to elastic occupations. These are the
relative reactions in terms of employment for a given price change among more versus
less elastic occupations. Figure 3 is therefore illustrative of the type of variation employed
in our instrumental variables approach.

Implementing the full model requires having some information on the relative elas-
ticities θ

σ in the first stage eq. (17). We choose a calibration based on estimates from
the literature. Given a range of σ ∈ [1.81, 2.10] from Burstein et al. (2019) and initial
information on the potential value of θ from Table 2, we calibrate θ

σ = 2.3 (Appendix
Table E.7 shows robustness of results to a wide range of values for θ

σ ). Then, estimating
eq. (15) yields:

∆ej = 4.78
(1.30)

dj∆p + constant + errorj

dj∆p = −0.046
(0.0125)

djVr + constant + errorj
(19)

In contrast to the illustration of the IV shown in Figure 3b, the theoretical model here is
specified again in terms of the standard (rather than inverse) supply curve. The first stage
relationship of occupations’ task intensities on price changes, multiplied by elasticities dj

reflecting their implied impact on employment, is negative as expected and displays an
F-statistic of 13.5. In the second stage, the estimated pecuniary preference parameter is
θ = 4.78 and statistically significant.30 Before discussing how this number is consistent
with findings in the literature, we turn to an alternative approach for estimating θ.

30One may also note that it is larger than what would be implied from the OLS regressions in Table 2.
This should be so because, if price changes are correlated with supply shocks, OLS will be attenuated and
biased downwards. We discuss why the IV is still not too different from the OLS in Appendix E.3.2.
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Figure 3: Instrumental Variables Illustration: Median-Split by Own-Price Elasticity

(a) IV Reduced-Form for Wages
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(b) IV Second-Stage: Inverse Supply Curve
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Notes: Panel (a) shows reduced-form regressions of occupations’ price changes on their initial task contents rj. Panel (b) shows second-stage IV-2SLS regressions of occupations’ price changes on predicted employment
changes using initial task contents as the instrument. Colour codes and linear regression lines are split by occupations below (blue, inelastic) and above (red, elastic) the median own-price elasticity (djj). β and se refer
to the slope coefficient and standard error, respectively. Marker size indicates the baseline employment (in 1985) in each occupation.
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5.2.2 Alternative Estimate from Changing Choice Probabilities

As a second approach, we implement an identification strategy based on changing choice
probabilities over time. In particular, we can rewrite the switching probabilities from
equation (2) in logs and relative to the staying probabilities as log

(
πij
πii

)
= θpj + aij −

(θpi + aii). Differencing this over time yields:

4 log
(

πij

πii

)
= θ

(
4pj −4pi

)
+ εij, (20)

where 4pj is the change in occupation j’s log price from 1985 to 2010 that we have

used before and 4 log
(

πij
πii

)
the according change in the relative choice probabilities.

There are two interpretations of the error term in eq. (20): If this reflects measurement
errors in the choice probabilities (e.g. due to sampling), OLS regression is consistent. If
the εij partly also reflect changes in the underlying relative switching costs, and thereby
potential endogeneity, we need an instrument for the price changes.

Before continuing, note that eq. (20) is not only a tool to estimating θ but it also reflects
the mechanism underlying the labour supply elasticities in Remark 1. That is, occupations
whose prices increase, will see higher probabilities of workers switching into them com-
pared to other occupations. The effects will be proportional in relative terms, but stronger
in absolute terms in occupations where baseline πij are large. This is why in Section 2.2
we discussed the relevance of the share of workers who are at the margin of switching.

In order to estimate eq. (20), we again approximate occupation j’s demand shocks
using their initial task content according to eq. (18). We measure initial choice probabilities
during the early period 1975–1985, while eventual probabilities are constructed from the
period 2000–2010. Two-stage least squares estimation based on this yields:31

4 log
(

πij
πii

)
= 4.03

(2.54)
4(pj − pi) + constant + errorj

4(pj − pi) = −0.064
(0.003)

(rj − ri) + constant + errorj,
(21)

where the first stage is strong and the second-stage coefficient θ = 4.03 for the pecuniary
preference parameter turns out similar to our main estimate of 4.78. At the same time,
the results in eq. (21) support our model’s mechanism that workers’ relative choices will

31The regression has N × (N − 1) = 14, 280 observations and we cluster standard errors at the level
of 120 source occupations i. We replace zeros in πij with their minimum values following the literature on
estimating gravity equations (Head & Mayer, 2013; Cortes & Gallipoli, 2018). When constructing five-yearly
changes of transition probabilities and estimating eq. (21) in a panel, results are quantitatively similar and
statistically stronger. For details, including results on alternative OLS estimation or with different treatment
of zeros, see Appendix E.3.3.
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change in response to relative occupational price changes.

Finally, it is worth noting that our values of θ from either estimation approach are
also broadly comparable to estimates in the related literature. Cortes & Gallipoli (2018)
estimate θ using US wage dispersion and obtain values in the range of 2 to 8.87. As
another comparison, the literature on employer wage effects finds that the elasticity of
labour supply to the firm is around 2–7 (e.g. see Lamadon et al., 2022, and papers cited
therein). Given that switching occupations is likely more costly than switching firms, it
seems plausible that our implied own-elasticities fall into the lower end of this range
(average θdjj = 2.1 as ddiag = 0.43). The novelty of our approach, however, lies in the
heterogeneity around the average for own-price (from 0.07 · 4.78 = 0.3 to 0.80 · 4.78 = 3.8)
as well as cross-price elasticities (from essentially 0 to 2.2).

6 Model-Based Decomposition and Counterfactuals

The previous section determined the remaining aggregate paramaters of the full supply
and demand model. We now use this to decompose the historical changes in employment
and wages into contributions of different factors: shocks to occupational demand, supply,
and the heterogeneities in labour supply elasticities that we emphasise.

6.1 Construction of Counterfactuals

We use equations (13)–(14) to express the changes of prices and employment in terms of
parameters and exogenous shocks as follows:32

∆p =

(
θ

σ
D + I

)−1

∆b− 1
σ

(
θ

σ
D + I

)−1

∆s (22)

∆e = θD
(

θ

σ
D + I

)−1

∆b +

(
θ

σ
D + I

)−1

∆s (23)

The equilibrium solution treats equations (22) and (23) as equalities and – up to constants
representing general wage and employment growth – reproduces the actual changes of
∆p and ∆e from the data. We manipulate these reduced-form expressions to study the
role of labour supply heterogeneity versus occupation-specific shocks for the variation in
wages and employment. We provide a summary here leaving details to Appendix F.2.

32Equations (22) and (23) are obtained by inserting the solution for V into equations (13)–(14) and then
using the fact that demand and supply shocks are weighted mean zero by construction (see Appendix F.1).
We use our baseline parameter estimate θ = 4.8 and accordingly σ = 4.8/2.3 = 2.1. Appendix Table E.7
shows the robustness of θ and results reported below are also similar for the range of σ values in that table.
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To study this, we replace D with its matrix equivalents from counterfactual environ-
ments with more homogeneous elasticities. Our first counterfactual, matrix Down, con-
siders the case that occupations’ aggregate (own-price) elasticities vary but their sub-
stitutabilities with other occupations are homogeneous. For example, employment in
service occupations may be responsive to price but we suppose that flows of workers
into services come equally from any other occupation according to its size. This is con-
sistent with theoretical models often found in the literature on firms (e.g. Card et al.,
2018; Lamadon et al., 2022; Berger et al., 2022), where the costs of entering employer
j do not depend on the source employer i (that is, aij = aj in eq. (1)). Main diagonal
elements of Down continue to be the actual own-price elasticities, whereas cross-price
elasticities reduce to appropriate fractions of the on-diagonals. We term this the model
with ‘heterogeneous own-price supply’ or, alternatively depending on the context, ‘with
homogeneous spillovers’.

Another counterfactual imposes completely homogeneous labour supply elasticities.
The main diagonal elements of matrix Dhom become an average d̄diag and cross-price
elasticities a constant fraction of it. This counterfactual is consistent with specifications
in the empirical literature that regress occupations’ log employment changes on their
log wage changes (e.g. Autor et al., 2008; Dustmann et al., 2009; Cavaglia & Etheridge,
2020; Böhm et al., 2024, or column (1) of Table 2). From eq. (15), it leads to a relationship
of the form ∆ej = constant + slope · ∆pj, where the slope is proportional to pecuniary
preferences θ and the constant is proportional to the average wage growth in the economy.
We term this the ‘fully homogeneous’ model.

As an alternative to the counterfactual D-matrices, we turn off the classic simultaneous
equations component. We do this by shutting down supply shocks, using ∆so f f = 0 in
equations (22)–(23), which allows us to assess the variation in wages and employment
that these shocks account for.

6.2 Results

We begin with a decomposition to uncover the drivers of overall employment realloca-
tion. We do this by following eq. (23) and running regressions of observed employment
changes on various components of the right-hand side. The first row in Table 3 shows that
demand shocks in the fully homogeneous model (i.e. ∆s replaced by ∆so f f = 0 and D
replaced by Dhom) explain 64% of the variance of employment changes. This is consistent
with the literature on job polarisation (e.g. Acemoglu & Autor, 2011; Goos et al., 2014),
where demand shocks are the main drivers of occupational changes. But it still leaves
room for a substantial role of supply.
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Table 3: Decomposition of Overall Employment Changes

(1) (2)
R-sq. between Remainder
data & model explained

Base ∆e with ∆b 0.641
Adding supply shocks 0.858 60.4%
Adding supply heterogeneity 0.849 57.9%
Full model 1.000

Notes: This table decomposes the employment changes in our 120 occupations. The first row considers
only demand shocks in the fully homogeneous model. The second row adds supply shocks. The third
row alternatively adds supply heterogeneity. The final row considers the full model. Column (1) reports
the regression R-squared between the data and model. Column (2) gives the percent of remainder
explained by either the counterfactual with only supply shocks or with only heterogeneity.

The second row of Table 3 adds supply shocks, still under Dhom, to create a new
counterfactual employment change according to eq. (23) in the homogeneous model. This
explains 86% of the observed employment changes in an R-squared sense, or roughly
half of the remaining variance in ∆e. Similarly, adding heterogeneity of supply under
∆so f f = 0, and using full matrix D with the demand shocks in eq. (23), accounts for 85%
of employment changes and again roughly half of the remaining variance.33 Together,
supply shocks and heterogeneity, by construction, explain the full variation in actual
employment changes (last row of Table 3).34 They are thus both important, in addition
to demand shocks and equally so, to account for the overall occupational employment
changes observed over the past decades.

We provide further insights into this result by constructing proper counterfactuals.
Figure 4 displays results where, in keeping with the figures throughout the paper, we
relate implied counterfactual price changes ∆pc f , generated by eq. (22), to implied coun-
terfactual employment changes ∆ec f from eq. (23) across different scenarios. We start
again with demand shocks in the fully homogeneous model. In this case, all occupational
changes emanating from ∆b run perfectly along a single supply curve (panel a). We can
see from this plot that the explicitly labelled Physicians and pharmacists as well as Data
processors are among the occupations with the largest relative demand increases over

33It is worth noting why the R-squared is higher when we regress employment changes on demand
shocks than when we regress on observed price changes in Table 2. Intuitively, the error terms related to
supply shocks in eq. (23), given by V∆s, are substantially less dispersed than those in the OLS estimation
of eq. (15), ∆s. In the latter, they are also negatively correlated with the regressor, ∆p, due to simultaneity,
lowering the estimated contribution of prices.

34The two standalone contributions sum to 60.4% + 57.9% > 100%, which implies a −18% interaction
effect. This is because eq. (23) is not purely additive.
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time. Bricklayers are among the occupations with the largest negative demand shocks.35

Panel b shows how supply shocks affect this counterfactual. Here we facilitate inter-
pretation by retaining the regression line from panel a. Switching ∆s back on introduces
attenuating variation around the price-employment relationship such that the R-squared
in a regression of price on employment declines to 64%. The regression line moves clock-

Figure 4: Counterfactual Changes of Prices and Employment
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(b) ... with supply shocks
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(c) ... with supply shocks; Het. own-price supply
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(d) Both shocks; Fully heterogeneous supply
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Notes: The figure shows occupational price and employment changes for different manipulations of the elasticity matrix D and ∆s,
as described in Section 6.1. In Panel 4a, both supply shocks and heterogeneity in D are switched off (i.e. ∆s = ∆so f f = 0 and Dhom),
leaving only demand shocks. Panel 4b first introduces the supply shocks (i.e. ∆s 6= 0), then 4c adds own-elasticity heterogeneity (i.e.
Down). Finally, Panel 4d shows the full model (actual data) by including also heterogeneous cross-elasticities (i.e. full matrix D is used).
For the exact description of the counterfactuals see Section 6.1 and Appendix F.2. The OLS with slope coefficients, standard errors, and
R-squared is shown for each panel. For ease of comparison, the regression line in Panel 4a is repeated as green-dashed in all panels.
Marker size indicates the baseline employment (in 1985) in each occupation.

35It is worth noting here that the points in this plot include average real price and employment growth,
both of which are positive over the period. Accordingly, occupations with no relative demand shock are
located slightly above and to the right of the origin.
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wise and its slope reduces from 0.52 to 0.36, partly driven by positive demand and supply
shocks in occupations such as Assistants. Still, the regression slope remains strongly
positive, which is due to the larger dispersion of demand shocks than of shocks to supply.

The remaining two panels of Figure 4 show how the movements of occupational prices
and employment are affected by labour supply heterogeneity. Panel c first introduces
heterogeneity of occupations’ own-price supply, but retains homogeneous spillovers (i.e.
uses matrix Down as discussed above). A geometric interpretation of the transition from
panel b to c is that each occupational point is translated along its own demand curve and
according to its own aggregate labour supply elasticity. Inelastic occupations move coun-
terclockwise around the centre: in a Northwest direction for those with positive demand
shocks, Southeast for those with negative demand shocks, and with no effective change
for those with no shock to demand. Symmetrically, occupations that are more elastic than
average move around the centre clockwise.

Panel c shows that the effect of allowing for this heterogeneity is, for the most part,
small. This is consistent with the OLS regressions of Table 2. A strong exception is for
Physicians and pharmacists, which is very own-price inelastic (see again Table 1) and
experienced a large positive demand shock. This makes its implied price increase much
higher, and its employment increase lower, compared to panel b (or compared to, say,
Data processors, who exhibit an own-price elasticity of roughly average strength). Finally,
panel d also includes heterogeneity in cross-occupation elasticities, and so reproduces
the observed data. Compared to panel c, variation around the regression line increases
substantially, such that the R-squared from a regression of price on employment reduces
from 59% to 30%. As an illustration of this feature, displayed occupations such as Assis-
tants and Motor vehicle drivers both move away from the regression line but in different
directions. Motor vehicle drivers experienced a negative demand shift and, since demand
shocks were also negative in close substitute occupations,36 the impact was seen in strong
wage declines, while drivers’ employment share declined very little. On the other hand,
Assistants experienced a positive demand shift, but the negative demand shocks in close
substitute occupations made working in this occupation relatively even more attractive,
serving to amplify the employment response.

Overall, the locus of points moves on average counterclockwise and the slope of the
regression line increases from 0.37 to 0.45. These changes show the importance of allowing
for heterogeneous spillovers to explain the data. In effect, the realised employment re-
sponses to demand shocks captured by the full matrix D are smaller, and wage responses

36Highly cross-elastic occupations to Motor vehicle driver include, among others, Railway engine
drivers and Transportation equipment drivers as well as Stowers and furniture packers. For the latter, their
employment share actually increased over time.
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are larger, than those captured by matrix Down or the fully homogeneous model. This is
because shocks tend to be correlated among cross-elastic occupations: The experience
of Motor vehicle drivers was more typical than the experience of Assistants. As seen
in Figure 4d, the resulting lower effective labour supply responses also led to larger
between-occupation wage inequality than in a model without cross-occupation effects.37

We finish this discussion by starting again at panel a and, from there, providing an-
other assessment of the relative importance to dispersion in price and employment changes
of supply shocks versus supply heterogeneity. Using changes in R-squared again as a
metric, we see that the contributions are roughly equal. Panels a and b show that supply
shocks cause a decline in the R-squared of 36 percentage points, while b and d show
that supply heterogeneity accounts also for a decline of 35 points. Therefore, and consis-
tent with Table 3, the relative impacts of supply heterogeneity and shocks are similar in
explaining occupational changes. Moreover, we have discussed that, within this overall
important contribution, different aspects of heterogeneity were important for explaining
idiosyncratic outcomes of particular occupations.

7 Future Projections

An important question is how the labour market will be affected by technology shocks of
the future. While our model is silent on what exactly the shocks will be, it can help make
relevant predictions about their potential heterogeneous equilibrium impacts. We illus-
trate this by showing how projected enhanced automation shocks would affect employ-
ment, wages, and labour market flows from 2022 onward. We summarise the main anal-
yses here; details on the data construction and further results are found in Appendix H.

We use the prediction sample already introduced in Section 4.1. This dataset has an
updated and consistent occupation classification, which captures the trends toward more
employment and job differentiation in areas such as health, education, and information
technologies. Parallel to before, we construct the elasticity matrix for the new 126 oc-
cupations based on worker flows during 2012–2021.38 We then supplement these data
with expert assessments in 2022 about what share of tasks in each occupation could in

37The impact of heterogeneous spillovers is seen even more starkly in Appendix Figure F.1 where we
introduce heterogeneous elasticities before introducing supply shocks. Without the background dispersion
from these, the increase in the regression slope is highly obvious. We also display the impact of demand and
supply shocks along the occupational wage distribution in Appendix Figure F.3–F.4. Among other things,
these show that the lower effective labour supply responses led to even larger between-occupation wage
inequality. For Figure 4, although changing the sequence with which we re-introduce model features makes
them more or less salient graphically, it does not change their quantitative importance markedly.

38We now include Eastern Germans, women, and part-time workers in the sample. We keep our
aggregate parameters θ = 4.8 and σ = 2.1.
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principle be replaced with current frontier technologies. We scale that share to have mean
zero and the same standard deviation as the demand shocks backed-out over 1985–2010.
That is, our measure of an occupation’s predicted demand shock is based on its potential
automatability relative to other occupations, cardinally interpreted and scaled to reflect
the size of shocks in the past.

Parallel to before, panel a of Figure 5 shows these pure shocks to labour demand in
the counterfactual model with fully homogenous labour supplies.39 We see that Driving
and sports instructors or Human medicine are among the occupations experiencing the
most positive relative demand shocks while Industrial glass makers suffer the most neg-
ative shock. Some rather high-skilled occupations, including Accounting and Laboratory
occupations in medicine, are also projected to endure relatively strong automation in the
foreseeable future. Occupations such as IT consulting and sales or Machine building and
operating locate within this range, where the former experiences a modestly positive and
the latter a comparably negative demand shock.

Given the actual heterogeneity of labour supplies, the full model’s projection is that
equilibrium wage and employment changes will be substantially different from the pure
ranking of shocks, however. Panel b of Figure 5 shows that occupations which are quite
own-inelastic, such as Human medicine, experience relatively large wage changes whereas

Figure 5: Price and Employment Changes due to Predicted Automation Shocks
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(b) ... with fully heterogeneous supply
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Notes: The figure shows predicted occupational price and employment changes given the elasticity matrix D and projected demand
shocks in 2022. For details of how these objects were constructed, see the text. Panel a shows the (homogenous) impact of the shocks
when heterogeneity in D is switched off (i.e. Dhom, constructed parallel to Section 6.1). Panel b shows the full predicted impact with
heterogeneous occupational labour supplies (i.e. full matrix D is used).

39In terms of eq. (22)–(23), Figure 5a depicts outcomes when the elasticity matrix is set to Dhom and
∆s = 0. Of course, enhanced automation may constitute only a subset of all demand shocks ∆b after 2022.
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more own-elastic occupations, such as IT consulting and sales, see relatively strong em-
ployment but less wage growth. Importantly, and as before, cross-occupation spillovers
play a large role. For example, while both Building construction and Machine operating
are located around the average in terms of own-price elasticities, cross-occupation effects
on employment are positive for the former, making it effectively more elastic, while they
are negative for the latter. These cross effects can be most clearly seen in Laboratory
medicine, whose employment strongly declines as a substantial number of its employ-
ment shifts toward substitutable Human medicine, raising equilibrium wages for those
workers that remain in the occupation. Overall, the cross effects again steepen the slope
of the regression line, thereby raising the dispersion of occupational wage changes while
reducing the extent to which employment adjusts to automation demand shocks.

A key feature of these projected outcomes is the equilibrium price changes that result
from the demand shocks and supply heterogeneity. Equation (13) in Remark 3 charac-
terises these price changes as the interaction of elements of the spillover matrix V with
the vector of demand shocks in all occupations ∆b. Table H.2 in the Appendix reports
these pairwise ‘price pressures’ from nearby occupations on a selected set of occupations.
It shows, for example, that demand increases in Human medicine have strong (positive)
price pressures on Laboratory medicine while price pressures on IT consulting from its
nearby occupations are much smaller.

With the price changes in hand, another key and policy-relevant feature is the bilateral
flows of workers between occupation pairs that are projected in equilibrium. In particular,
equation (15) in Remark 4 allows characterising the predicted net employment flow from
any occupation k to any j as the product of their relative equilibrium price change with
the according cross-elasticity.40 Figure 6 illustrates this by displaying the main bilateral
flows for IT consulting and sales. As seen before, this occupation is forecast to experience
a moderately positive demand shock but projected to grow quite strongly in terms of
employment. The growth occurs because IT consulting is able to draw in workers from
a range of related substitutable occupations whose equilibrium price changes are smaller
than its own. In particular, the flow chart in Figure 6 shows that workers from more
management-oriented (e.g. Business organisation, Purchasing and sales) as well as more
technical (Electrical engineering, Computer science) occupations can be attracted toward
IT consulting once its relative wages rise. In contrast, occupations that experience even
larger wage increases, especially in the health and education fields, are not able to draw
many individuals away from IT consulting, since they are not sufficiently cross-elastic
with it from a worker perspective. As a result, IT consulting is projected to grow by over

40Appendix H details how to compute these flows in terms of levels of employment shares. It also shows
the formal decomposition of overall price changes into the underlying individual price pressures.
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twenty percent as a share of total employment over the next ten years.

Figure 6: Projected Net In and Out Flows of the Occupation IT Consulting & Sales (%)

a) Business organisation and strategy  (2.70%)

g) IT analysis, IT consulting, IT sales

b) Office clerks and secretaries (2.14%)

c) Electrical engineering (1.71%)

d) Computer science (1.25%)

e) Occupations in purchasing and sales (1.22%)

f) Remaining occupational inflows (9.36%)

g) IT analysis, IT consulting, IT sales

h) Education and social work (0.31%)

i) Teachers (0.37%)

j) Researchers at university (0.12%)

k) Remaining occupational outflows (0.61%)

 
Inflows & Outflows for: IT analysis, IT consulting, IT sales

Notes: The figure depicts the projected flows over 10 years of IT consulting and sales with its top net sending and receiving occupations.
The numbers shown are percentages of final (for inflows) and initial (for outflows) employment. IT consulting and sales makes up
0.95% of total employment initially and 1.15% after ten years, i.e. is projected to grow by over 20% as a share of its initial employment.

There exists a whole range of interesting occupations for flow analyses. In Appendix H,
we discuss the occupation Machine building and operating, which turns out effectively
low-elastic since highly substitutable occupations with it also endure negative shocks.
As a result, Machine operators experience a substantial wage decline, which is so strong
that it induces them to flow to a diverse set of more distant occupations (e.g., Business
organisation, Drivers, and Building construction). We also discuss the flows of Laboratory
occupations in medicine, which illustrate that the equilibrium pathways of employment
adjustment emerge from the interplay between elasticities and relative price changes. In
particular, Laboratory occupations in medicine have a substantially more negative de-
mand shock than closely substitute Doctors’ receptionists and assistants. Still, we observe
no detectable flows from the former to the latter, since equilibrium wage changes turn out
very similar. For further details and discussion on other occupations, such as Building
construction, see Appendix H.

Overall, the analysis presented in this section displayed a couple of novel strengths
for projecting the future of the labour market. First, by explicitly modelling the heteroge-
neous labour supplies, we show how varyingly occupational employment will adjust in
response to shocks. This feature is directly complementary to recent work which focuses
on predicting the demand shocks that will hit occupations in the context of rapid techno-
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logical changes (e.g., Webb, 2020; Eloundou et al., 2023; Felten et al., 2023).41 Second, we
calculate how market prices change given the shocks and the labour supply. This mod-
elling of price pressures is a fundamental departure from analyses that focus only on the
heterogeneity of past flows between occupations, which is for example done in the context
of job search advice (see also Belot et al., 2019; Altmann et al., 2023). As discussed in the
case of Laboratory occupations in medicine, these flows and pathways for alternative
employment opportunities may be substantially affected by equilibrium prices. Third,
using a model that combines demand shocks with heterogeneity and market equilibrium
can improve policy in a number of areas: It allows, for example, to better design job search
advice and re-training programmes that are aligned with workers’ existing employment
experiences as well as with the actual occupational opportunities that will arise from
demand and supply. It also allows for identifying precisely those occupational areas in
which there is most need for active human capital policy.42 Finally, any comprehensive
analysis of the inequality implications of occupational shocks will need to take into ac-
count both the resulting employment and wage changes in equilibrium.

8 Conclusion

Shifts in the demand for occupations have led to significant changes in employment and
wages across the developed world. However, a key aspect that remains relatively unex-
plored is how labour supply responses mediate these shifts. In this paper, we develop
a tractable equilibrium model of the labour market for occupations that incorporates
heterogeneous labour supply elasticities. We use this model to analyse the uneven ef-
fects of recent occupational demand and supply shifts, and to predict wage changes and
employment flows in response to future automation-driven demand shocks.

To quantify these effects, we introduce a measure of occupation-specific labour supply
elasticities, capturing how employment responds to wage changes across occupations.
This includes ‘own-price’ and ‘cross-price’ elasticities, which reflect variations in substi-
tutability across occupation pairs. We show how these elasticities can be derived from job
flow moments and how they relate to key occupational characteristics, such as licensing
requirements and task content. We embed this supply model into an equilibrium frame-
work and implement it using administrative panel data from Germany. Our findings

41So-called ‘employment projections’ of agencies like the U.S. Bureau of Labor Statistics (2024) predict
demand shocks more generally but typically do not model the labour supply side either.

42For example, and as seen above, the growth of dedicated IT occupations turns out not to be particularly
constrained by labour supply. In contrast, providing the necessary new workers to the rising health sector,
and facilitating the adjustments of workers in declining manufacturing jobs, may require special policy
attention.
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highlight two key insights: (i) occupational supply heterogeneity plays a crucial role in
shaping labour market adjustments, and (ii) spillovers from correlated shocks among
substitutable occupations are particularly important in determining whether occupations
primarily adjust through employment shifts or wage changes.

We also apply our model alongside data from ’Job Futuromat’ (2023), produced by the
German Federal Employment Agency, to predict the occupational labour market effects
of impending automation-driven demand shifts. Our analysis suggests that supply het-
erogeneities will likely amplify both skill shortages and demand declines. Specifically, we
project upward wage pressure in the health and education sectors accompanied by a con-
tinued decline in manufacturing. By forecasting job mobility flows, our model provides
detailed insights into occupational transitions, helping policymakers anticipate structural
changes and potential labour market inequalities.

These findings underscore the need for targeted policies addressing occupation-specific
frictions. Our model provides a quantitative tool for evaluating interventions that affect
labour supply elasticities, such as those related to occupational licensing (Kleiner & Xu,
2024), educational content (Eckardt, 2024), or broader labour market policies (Autor et al.,
2023). Future research could extend this framework to examine how occupational shifts
affect individual careers, where heterogeneous substitutabilities are an important factor
that is typically absent in the literature (e.g. Autor et al., 2014; Edin et al., 2023). Finally, our
approach can be adapted to analyse frictions across other dimensions, such as geography
or demographic disparities, helping to better understand inequalities and how they may
be impacted by projected changes to work.
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Alekseeva, L., J. Azar, M. Giné, S. Samila, & B. Taska (2021). The Demand for AI Skills in the Labor

Market. Labour Economics 71, 102002. doi: 10.1016/j.labeco.2021.102002.

Altmann, S., A. Glenny, R. Mahlstedt, & A. Sebald (2023). The Direct and Indirect Ef-

fects of Online Job Search Advice. Available from: https://drive.google.com/file/d/

19llOMYp49-VrXatLftRx1g5MILujEbAj/view.

Antonczyk, D., B. Fitzenberger, & U. Leuschner (2009). Can a Task-Based Approach Explain the

Recent Changes in the German Wage Structure? Jahrbücher für Nationalökonomie und Statistik 229(2-
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zur Arbeitsmarkt- und Berufsforschung 197 (Nuremberg, Germany: IAB).

Berger, D., K. Herkenhoff, & S. Mongey (2022). Labor Market Power. American Economic
Review 112(4), 1147–1193. doi: 10.1257/aer.20191521.

Bhalotra, S., M. Fernández Sierra, & F. Wang (2023). The Distribution of the Gender

Wage Gap: An Equilibrium Model. Available from: https://fanwangecon.github.io/assets/

BhalotraFernandezWangMexicoFLFP.pdf.

Bocquet, L. (2024). The Network Origin of Slow Labor Reallocation. Available from: https:

//drive.google.com/file/d/1IDP_mC3uTv7lRNWijWmfkrvvp477N0S3/view.
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A Formal Results on the Elasticity Matrix

This section further develops the model introduced in Section 2 of the paper, integrating
additional aspects for a more comprehensive analysis. We begin by presenting formal
derivations of the main remarks and a deeper exploration of their underlying intuition.
We then derive another formal result on the full vector of price changes.

A.1 Derivation of Remark 1 (Elasticities and Job Flows)

We start by formally deriving key Remark 1. To simplify notation in the following, we
define ‘choice index’ λ (p) ≡ 1

∑N
k=1 exp(θpk+aik)

, where p represents the vector of log prices.
The fraction of individuals working in sector j as a function of log prices, denoted by
Ej(p), can then be expressed as:

Ej (p) = ∑
i

τiλ (p) exp
(
θpj + aij

)

Recall that our interest centres on (own- and cross-occupation) price elasticities, the
response of employment in occupation j to occupation k’s log price change. Using the
accounting identity presented in equation (3), we formally write this as:

∂Ej (p)
∂pk

= ∑
i

τi

(
λ (p)

∂ exp
(
θpj + aij

)
∂pk

+
∂λ (p)

∂pk
exp

(
θpj + aij

))

Computing the second element in the brackets, ∂λ(p)
∂pk

, gives:

∂λ (p)
∂pk

= − θ exp (θpk + aik)

(∑s exp (θps + ais))
2

= −θ
1

∑s exp (θps + ais)

exp (θpk + aik)

∑s exp (θps + ais)

= −θλ (p)πik (p)

By combining these results, we derive the following expression:

∂Ej (p)
∂pk

=

∑i τiθ
(
πij (p)

(
1− πij (p)

))
if j = k

−∑i τiθ
(
πij (p)πik (p)

)
otherwise

(24)
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Finally, writing ej ≡ ln Ej(p), we obtain:

∂ej (p)
∂pk

=
1

Ej (p)
∂Ej (p)

∂pk

= θ


∑i τi(πij(p)(1−πij(p)))

∑i τiπij(p)
if j = k

−∑i τi(πij(p)πik(p))
∑i τiπij(p)

otherwise

These are equations (4)–(5) in Section 2. It shows that the short-term partial derivative
of occupation j’s log employment share with respect to k’s log price can be computed
using (baseline) transition probabilities, and a pecuniary parameter θ. We next discuss
alternative formulations of the elasticities in terms of moments of job flows.

A.2 Discussion of Remark 2 (Occupational Substitutabilities)

A.2.1 Derivation

We have described the off-diagonal elements of the elasticity matrix D as:

djk = −
1
τj

∑
i

τiπijπik

where πij, πik are elements of the transition matrix and τi is the ith element of the associ-
ated stationary vector. To interpret this further, consider the weighted covariance between
columns of the normalised transition matrix:

Covτ

(
π̃.,j, π̃.,k

)
≡∑

i
τi
(
π̃ij −Eτπ̃.,j

)
(π̃ik −Eτπ̃.,k)

= ∑
i

τi
(
π̃ij − 1

)
(π̃ik − 1)

where
π̃iq ≡

πiq

τq

and the second line follows from the first because ∑i τiπ̃iq =
1
τq

∑i τiπiq =
τq
τq

= 1.

Expanding this further:

Covτ

(
π̃.,j, π̃.,k

)
= ∑

i
τi
(
π̃ij − 1

)
(π̃ik − 1)

= ∑
i

τiπ̃ijπ̃ik −∑
i

τiπ̃ij −∑
i

τiπ̃ik + ∑
i

τi
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=
1

τjτk
∑

i
τiπijπik − 1− 1 + 1

= − 1
τk

djk − 1

Rearranging gives equation (6). Then summing over k 6= j, and remembering that 1− τj =

∑k 6=j τk and djj = −∑k 6=j djk, gives equation (7).

Finally, we derive an alternative version of (7) in terms of occupations’ job-flow dis-
persion. Start with the on-diagonal elements of the elasticity matrix D:

djj =
1
τj

∑
i

τiπij
(
1− πij

)
Similar to the above, we can express this in terms of the weighted variance of normalised
transition probabilities:

djj =
1
τj

∑
i

τiπij −
1
τj

∑
i

τiπ
2
ij

= 1 − 1
τj

∑
i

τiπ
2
ij

= 1− 1
τj

(
Varτ

(
π.,j
)
+
(
Eτπ.j

)2
)

= 1− 1
τj

(
Varτ

(
π.,j
)
+ τ2

j

)
= 1− τj

(
1 +

1
τ2

j
Varτ

(
π.,j
))

= 1− τj
(
1 + Varτ

(
π̃.,j
))

(25)

Rearranging gives djj = −τjVarτ

(
π̃.,j
)
+ 1− τj.

A.2.2 Choice of Normalisation and Invariance to the Occupation Classification

Now we turn to a discussion of our choices of normalisations.

We first consider Covτ

(
π̃.,j, π̃.,k

)
= ∑i τi

(
π̃ij −Eτπ̃.,j

)
(π̃ik −Eτπ̃.,k). Because Eτπ̃.,j =

Eτπ̃.,k = 1, we argue this term is invariant to occupation size. To show this empirically,
we examine the distribution of this term for occupational classifications at various levels
of coarseness. In particular, Table A.1 reports the median across occupations for three
levels of aggregation: 4 main groups as described below in Appendix D, 10 occupation
groups corresponding to one-digit categories of the 1988 Klassifikation der Berufe, and the
120 occupations considered in the analysis (see Table E.5 for the full list).
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We now consider the variance terms. We can also write djj as follows

djj = −∑
k 6=j

djk

= ∑
k 6=j

τk
(
1 + Covτ

(
π̃.,j, π̃.,k

))
= ∑

k 6=j
τk + ∑

k 6=j
τkCovτ

(
π̃.,j, π̃.,k

)
= 1− τj + ∑

k 6=j
τkCovτ

(
π̃.,j, π̃.,k

)
(26)

Equating equations (25) and (26), we see that

Varτ

(
π̃.,j
)
= − 1

τj
∑
k 6=j

τkCovτ

(
π̃.,j, π̃.,k

)
=⇒ τjVarτ

(
π̃.,j
)
= −∑

k 6=j
τkCovτ

(
π̃.,j, π̃.,k

)
These expressions show two things. First, because Varτ

(
π̃.,j
)

is necessarily greater than
zero, then Covτ

(
π̃.,j, π̃.,k

)
is below zero on average.43 Second, if Covτ

(
π̃.,j, π̃.,k

)
is of

order O (1), then 1
τj

∑k 6=j τkCovτ

(
π̃.,j, π̃.,k

)
is of order O (N). In contrast, τjVarτ

(
π̃.,j
)
=

−∑k 6=j τkCovτ

(
π̃.,j, π̃.,k

)
is a weighted average of the covariance terms, and so is of or-

der O (1). To show this empirically, Table A.1 also reports the median value across oc-
cupations for both measures of the variance, again for the three levels of occupational
aggregation.

Table A.1: Median Values of Model Components Across Occupation Pairs

# Occs Cov(π̃.,j, π̃.,k) Var(π̃.,j) τjVar(π̃.,j)

4 -0.76 2.20 0.54
10 -0.75 5.48 0.58
120 -0.78 126.91 0.57

Notes: Variances and covariance computed across sending occupations,
given destination occupations j and k. Table then shows median values
across these destination occupations. The occupations in the aggregation
to four broad groups are (1) managers, professionals, and technicians,
(2) sales and office workers, (3) production workers, operators, and
craftsmen, and (4) workers in services and care occupations. In the ten
broad groups, they are 1-digit level occupations as in, e.g, Acemoglu &
Autor (2011); Böhm et al. (2024). For further details on occupations and
their aggregations see Section D.1.

43This also shows that ∑k τkCovτ

(
π̃.,j, π̃.,k

)
= 0.
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A.3 Remark 5: Vector of Price Changes

This section develops a further result on the aggregation of Remark 2 for individual own-
and cross-price elasticities. This formalises the effects of the full vector of price changes
and provides a rigorous interpretation of overall employment changes studied in eq. (8)
in terms of distributions of worker flows.

Remark 5 (Vector of Price Changes) Matrix D can be expressed as follows

D = I −W −W ◦ C (27)

where I is the identity matrix, W is the matrix of stationary employment shares with j, k-th element
τk, ◦ is the element-by-element product, and C is the symmetric matrix with j, k-th element cjk =

Covτ

(
π̃.,j, π̃.,k

)
, which captures the ‘occupational substitutability’ between occupations j and k.

Accordingly, following a vector of price changes ∆p, then the change in the employment share
in occupation j is given by

∆ej ≈ θdj∆p

= θ

∆pj − ∆Eτp︸ ︷︷ ︸
real price
change

+Covτ

(
c.,j, ∆pj − ∆p

)︸ ︷︷ ︸
occupational

substitutability

 (28)

= θ


(
1− τj − τjcjj

)
∆pj︸ ︷︷ ︸

own-occupation
effect

+ ∑
k 6=j

(
−τk − τkcjk

)
∆pk︸ ︷︷ ︸

total cross-
occupation effect


(29)

where Eτp is the (weighted) average of prices across occupations and we drop a time subscript for
ease of notation. Similarly, Covτ

(
c.,j, ∆pj − ∆p

)
captures the (weighted) covariance between the

j-th column of C, c.,j, and the vector of relative price changes ∆pj − ∆p.

Remark 5 complements the interpretations contained in Remark 2. In the formulation
in equation (28), the effect of a vector of price changes on a given occupation consists of
two components. First is the direct effect of real price changes in that occupation itself, net
of the change in the economy-wide price (wage) index. This term aggregates the ‘direct’
and ‘price index’ terms contained in equations (6) and (7). Second is the total effect of
occupational substitutabilities: Employment growth is larger if price growth is higher
relative to more similar occupations. In fact, empirically, price changes are positively

6



correlated across similar occupations, and so this last component tends to attenuate the
direct effect of price changes. To see this, consider, for example, wage growth in occupa-
tions high in analytical tasks. Price growth in these occupations has been highest relative
to routine and manual occupations, which saw the largest declines, but which are also
dissimilar in terms of occupational flows. Therefore, for these analytical occupations, this
last term is likely negative, offsetting the positive effect from the first two terms.

Equation (29) then builds on this formulation by relating it back to equation (9), which
forms the basis of our empirical application. Equation (29) therefore expresses the effect
of a vector of price changes in terms of two components which we can easily take to data,
and which can be interpreted in terms of the joint distribution of these price changes with
steady-state job flows.

Derivation: The expression
D = I −W −W ◦ C

follows directly from Remark 2. The diagonal element cjj of C is Varτ

(
π̃.,j
)
.

We therefore have that

∆ej = θdj∆p

= θ ∑
k

(
ijk − τk − τkcjk

)
∆pk

= θ

(
∑
k

ijk∆pk −∑
k

τk∆pk −∑
k

τkcjk∆pk

)

= θ

(
∆pj − ∆Eτ p−∑

k
τkcjk

(
∆pk − ∆pj

))
= θ

(
∆pj − ∆Eτ p + Covτ

(
c.,j, ∆pj − ∆p.

))
as given in the text. The fourth line follows from the third because ∑k τjcjk = 0 =⇒
∑k τjcjk∆pj = 0. The final line follows from the fourth because similarly Eτc.,j = 0 and
column vector c.,j = cj,. because C is symmetric.
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B Generalisations of the Labour Supply Model

B.1 Overlapping Generations Model

This section extends our theoretical framework to incorporate an overlapping-generations
(OLG) structure, building upon the static model developed in Sections 2 and 3. The ex-
tended framework introduces three key elements: time-varying idiosyncratic occupation-
amenity draws, aggregate risk in occupational wages, and endogenous human capital
accumulation. The final addition generates within-occupation wage heterogeneity. While
we present a two-period model for analytical tractability, the framework can be readily
generalised to higher-frequency time intervals. The main insight of the analysis is that,
even with this richer structure, the effect of wage shocks on occupational employment
can still be characterised as interpretable functions of base occupational flows.

The model relates to that in, for example, Artuç et al. (2010) and Caliendo et al. (2019).
A key difference is that, rather than focusing on transition dynamics following discrete
policy changes (such as trade liberalisation), we incorporate persistent uncertainty in
the wage process. This modification makes our framework more suitable for analysing
longer-term trends in occupational demand. Compared to the benchmark model, the OLG
structure yields three distinct advantages: 1) A detailed accounting framework that de-
composes employment changes into early-career and late-career components; 2) A precise
characterisation of labour market entry elasticities, capturing how new cohorts respond
to changing occupational returns; and 3) An analysis of both short-run and longer-run
elasticities.

B.1.1 Model Set-Up

OLG Structure

There are two working periods, early and late career, indexed by g = 1 and g = 2 (age is
denoted by g because ‘a’ is used in earlier notation). There are N occupations. The decision
problem at g = 1 is one of labour-market entry and captures early-career occupational
choices given fixed education. The decision at g = 2 captures career choice from, say, age
40 onwards.

Let Et, a vector of length N, capture employment observed at time t, such that

Et = Ẽt,1 + Ẽt,2

where Ẽt,g is employment at time t for those aged g.

8



Wage Process

We model wages as following a persistent process. Let pt+1 be a vector of length N of
occupational wages at time t. As is empirically plausible, we model pt+1 as following a
random walk:

pt+1 = pt + ηt+1

where pt is the vector of log wages at time t and ηt is a multivariate Gaussian following
a N (κ1N, Ψ) distribution, where κ is a scalar, 1N a vector of ones, and we henceforth
denote κ1N by η̄. We do not model the production side here but imagine that wages
arise from a production function similar to that specified in Section 3, together with
some underlying process for demand shocks. Even so, some structure on the production
function is imposed by our wage process. For example, that wage shocks affect each
cohort identically implies that younger and older workers are perfect substitutes within
occupations.

Life-cycle Model

We now consider the life-cycle problem. As in the benchmark model, we allow for a
continuum of workers, indexed by ω ∈ Ω. Each worker receives an occupation-specific
match preference draw at age g, ε

j
g (ω), which follows a standardised extreme value I

(Gumbel) distribution. It is important to note that here we adapt the notation from the
main body of the text by denoting occupations with superscripts. To be specific about
distributions, ε

j
g (ω) is i.i.d distributed with location parameter −γ and scale 1, where γ

is the Euler-Mascheroni constant. This ensures that ε
j
g (ω) has mean 0 and variance π2

6 .

Problem at Career stage 2

We consider generic time t and first consider those in late career. If originating in occu-
pation j at the beginning of age g = 2, then utility from choosing occupation k is given
by

ujk
t,2 (ω) = θ

pk
t + s1 (ω) + hjk

2︸ ︷︷ ︸
age-2

human capital

+ bk
2 + εk

2 (ω) (30)

where pk
t is the log price (wage) per unit of real output for working in occupation k at

time t. Next, s1 (ω) reflects individual-specific skills, which may be inherited from the
previous period (period 1), hjk

2 are real switching cost terms, which here we allow to differ
over career stage for generality, and we interpret as changes to, or destruction of, human
capital. For ease of interpretation with the wage data, we assume that hii = c, a constant,

9



for all i, which reflects constant skill accumulation across occupations.44 bk
2 then captures

differential amenities across all occupations.45 As in the benchmark model, θ gives the
wage elasticity. It can also be thought of as scaling the importance of the idiosyncratic
shocks. This formulation also implies that utility is measured in amenity units.

Define the maximised value for individual ω at career-stage 2 as follows:

ν
j
t,2 (pt, ω) = max

k

(
θ
(

pk
t + s1 (ω) + hjk

2

)
+ bk

2 + εk
2 (ω)

)
Then ν

j
t,2 (pt, ω) itself follows a Gumbel distribution with scale 1, location parameter

ln ∑k exp
(

θ
(

pk
t + s1 (ω) + hjk

2

)
+ bk

2

)
− γ, and pt is the vector of period-2 wages.

Average utility, given wages, can therefore be defined as

Ṽ j
t,2 (pt, s) ≡ Eε

[
ν

j
t,2 (pt, ω)

]
= θs + ln ∑

k
exp

(
θ
(

pk
t + hjk

2

)
+ bk

2

)

which is a function of all the prices. Useful for later will be defining V j
t,2 (pt) by

V j
t,2 (pt) ≡ Ṽ j

t,2 (pt, s)− θs

which is the expected value at normalised/‘zero’ skill level s = 0.

Note that the marginal effect of a change in wages on expected utility is given by:

∂Ṽ j
t,2

∂pk
t

=
∂V j

t,2

∂pk
t

=
∂

∂pk
t

ln ∑
l

exp
(

θ
(

pl
t + hjl

2

)
+ bl

2

)
= θπ

jk
t,2 (31)

where π
jk
t,2 (pt), depends on wages but not human capital, and captures the probability

that k is the most attractive occupation when beginning period-t and age-2 in occupation
j. Alternatively, in our application, π

jk
t,2 is the period-t gross flow (or transition probability)

from j to k among late-career individuals. Pursuing this discussion further, expression (31)

44Our approach to identifying underlying price movements separately from human capital accumula-
tion, discussed in Section 4, allows for heterogeneous skill development across occupations. In the current
appendix, we prefer to keep the exposition deliberately more straightforward.

45Including the bk
2 term is important because it allows the combined switching cost θhjk

2 + bk
2 to be

unrestricted. It is worth remarking we could define the switching cost relative to the counterfactual of
staying, by θ

(
hjk

2 − hjj
2

)
+ bk

2 − bj
2. Similarly, this is unrestricted.

10



is natural given that V j
2 can also be defined as:

V j
t,2 (pt) = ∑

l
π

jl
2

(
θ
(

pl
t + hjl

2

)
+ bl

2 + E
(

εl
2|l is chosen

))
and, it turns out, marginal changes in the selection terms at the end of this expression
cancel.

Problem at Career stage 1

The first career stage captures those entering the labour market from schooling, split by
schooling-track or skill group ς. Expected utility from choosing occupation j is given by

uς,j
t,1 (ω) = φ

(
pj

t + s0 (ω) + hς,j
1

)
+ bj

1 + ε
j
1 (ω) + β Ept+1Ṽ j

2,t+1 (pt+1, s1)︸ ︷︷ ︸
Continuation
utility from

occ j

(32)

s1 = s0 + hς,j
1

where β is a discount factor such that 0 < β < 1, and φ captures the elasticity of labour
entry, which may differ from the elasticity of labour switches in later career. This structure
allows for substitutabilities on the supply side for closely related occupations, through
the hς,j

1 terms. These reflect differential human capital accumulation effects of entering
occupations across different underlying skill groups.

Utility can be more simply written as

uς,j
t,1 (ω) = φ

(
pj

t +
(
1 + β̃

) (
s0 (ω) + hς,j

1

))
+ bj

1 + ε
j
1 (ω) + βEpt+1V j

2,t+1 (pt+1)

where β̃ = β θ
φ . We therefore write the age-1, period-t problem as

ν
ς
t,1 (pt, s) ≡max

j
uς,j

t,1 (ω)

=max
j

(
φ
(

pj
t +
(
1 + β̃

) (
s + hς,j

1

))
+ bj

1 + ε
j
1 (ω) + βU j

t+1,2 (pt)
)

where U j
t+1,2 () is given by:

U j
t+1,2 (pt) ≡ Eηt+1

(
V j

t+1,2 (pt + ηt+1)
)

(33)

ν
ς
t,1 () again follows a Gumbel distribution, here with location parameter

11



φ
(
1 + β̃

)
s + ln ∑k exp

(
φpk

t +
(
1 + β̃

)
hς,k

1 + bk
1 + βUk

t+1,2 (pt)
)
− γ.

B.1.2 Summarising the Decision Problem and Aggregating Employment

Define aς,j
1 ≡ φ

(
1 + β̃

)
hς,j

1 + bj
1 and ajk

2 ≡ θhj,k
2 + bk

2, merging human capital and amenity
effects of occupational choice. Given equations (30), (32) and (33), we can characterise the
decision problem through the choice probabilities as follows:

π
ς,j
t,1 (pt) =

exp
(

φpj
t + aςj

1 + βU j
t+1,2 (pt)

)
∑l exp

(
φpl

t + aςl
1 + βUl

t+1,2 (pt)
) (34)

π
ij
t,2 (pt) =

exp
(

θpj
t + aij

2

)
∑l exp

(
θpl

t + ail
2
)

where pt is the only relevant (exogenous) state variable. Aggregate employment can then
be characterised as:

Ẽj
t,1 (pt) = ∑

ς

τςπ
ς,j
t,1 (pt)

Ẽj
t,2 (pt, pt−1) = ∑

i
Ẽi

t−1,1 (pt−1)π
ij
t,2 (pt) (35)

where Ẽi
t−1,1 is given/fixed at time t but is a function of t − 1 prices. τς is the share of

skill group ς which here we assume is fixed always. Finally, note that (35) implies that, in
general, aggregate employment is a function of a full history of prices.

B.1.3 Model Timing

In the coarse modelling of this appendix, we consider time period t− 1 as corresponding
approximately to the years 1975 − 85, t corresponding to 1985 − 1995/2000 and t + 1
corresponding to 1995/2000 − 2010. Similarly, g = 1 corresponds to ages 25 − 40 and
g = 2 corresponds to ages 40− 59. This way the evolution of careers corresponds roughly
with the evolution of calendar time. We leave a more precise alignment of model periods
with data for future work.

We focus attention on a shock revealed at the beginning of time t and consider both
one-period elasticities and two-period elasticities. Being more detailed, we imagine that
the new wages for year 2000 are revealed to workers from 1985. Ẽj

t,1 (pt) for example, then
captures early-career employment in year 2000, at wages observed by the econometrician
in 2000 but revealed to workers from year 1985, with e.g. π

ς,j
t,1 (pt) capturing the choice

probabilities for labour-market entrants in this period, and, by analogy, the job flows.
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B.1.4 The Effect of Period-t Shocks on end-of Period t Allocations

We now turn to our first main focus, the short-run effect of wage shocks. As in the
benchmark model, our approach focuses on calculating gradients and elasticities of em-
ployment shares.

Effect on Late Career

Using (35) and abbreviating notation somewhat we have:

∂Ẽj
t,2

∂pk
t
= ∑

i
Ẽt−1,1

∂π
ij
t,2

∂pk
t

=

−θ ∑i Ẽt−1,1π
ij
t,2πik

t,2 if j 6= k

θ ∑i Ẽt−1,1π
ij
t,2

(
1− π

ij
t,2

)
if j = k

(36)

Effect on Early Career

Now consider early career, and first consider gradients of flows:
∂π

ς,j
t,1

∂pk
t

. For convenience,
we drop the subscript on wages. Using (34) for j = k, this then implies

∂π
ς,j
t,1

∂pj = π
ς,j
t,1

φ
(

1− π
ς,j
t,1

)
+ β

∂U j
t+1,2 (p)

∂pj −∑
l

π
ς,l
t,1

∂Ul
t+1,2 (p)

∂pj

 (37)

where β

(
∂U j

t+1,2(p)
∂pj −∑l π

ς,l
t,1

∂Ul
t+1,2(p)
∂pj

)
is the extra term coming from the life-cycle model.

For j 6= k, we have

∂π
ς,j
t,1

∂pk = π
ς,j
t,1

−φπ
ς,k
t,1 + β

∂U j
t+1,2 (p)

∂pk −∑
l

π
ς,l
t,1

∂Ul
t+1,2 (p)

∂pk

 (38)

Using a second-order Taylor-series expansion around the mean of η, we obtain:

∂U j
t+1,2 (p)

∂pk ≈ θ

π
jk
t+1,2 + Eηη′

∂2
(

π
jk
2 (p + η)

)
∂η2

η=η̄

η

 (39)

For now, and for convenience, we consider shocks to wages as ‘MIT’ shocks and impose

Eηη′
∂2
(

π
jk
2 (p+η)

)
∂η2

η=η̄
η = 0, which implies that

∂U j
t+1,2(p)
∂pk ≈ θπ

jk
t+1,2. We provide a fuller

characterisation of the effect of wage risk at the end of this Section.
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Putting this together we have, for j = j:

∂π
ς,j
t,1

∂pj = π
ς,j
t,1

(
φ
(

1− π
ς,j
t,1

)
+ βθ

(
π

jj
t+1,2 −∑

l
π

ς,l
t,1π

l j
t+1,2

))

and for j 6= k:

∂π
ς,j
t,1

∂pk = π
ς,j
t,1

(
−φπ

ς,k
t,1 + βθ

(
π

jk
t+1,2 −∑

l
π

ς,l
t,1πlk

t+1,2

))

Under the continued assumption of MIT shocks, this implies that

∂Ẽj
t,1

∂pk
t
= ∑

ς

τς
∂π

ς,j
t,1

∂pk
t

=

∑ς τςπ
ς,j
t,1

(
−φπ

ς,k
t,1 + βθ

(
π

jk
t+1,2 −∑l π

ς,l
t,1πlk

t+1,2

))
if j 6= k

∑ς τςπ
ς,j
t,1

(
φ
(

1− π
ς,j
t,1

)
+ βθ

(
π

jj
t+1,2 −∑l π

ς,l
t,1π

l j
t+1,2

))
if j = k

(40)

Elasticities and the Effect on Aggregate Employment Shares

The gradient of aggregate employment is given by:

∂Ej
t

∂pk
t
=

∂Ẽt,1

∂pk
t
+

∂Ẽt,2

∂pk
t

and in terms of elasticities

∂ ln Ej
t

∂pk
t

=
Ẽj

t,1

Ej
t

∂ ln Ẽj
t,1

∂pk
t

+
Ẽj

t,2

Ej
t

∂ ln Ẽj
t,2

∂pk
t

(41)

B.1.5 Empirical Implementation and Relationship to Benchmark Results

We can use the results derived so far to provide an empirical implementation analogous
to our main empirical exercises. For example, the right hand side of equation (41) can
ultimately be expressed in terms of employment shares, estimable transition probabilities
and parameters φ, θ and β. One could implement a two-stage estimation strategy for these
aggregate supply elasticities. The first stage would be to identify θ using the discretised
version of equation (36), employing historical task intensities as instruments for price
changes. The second stage would involve estimating φ and β by incorporating our first-
stage estimate θ̂ into equation (40), utilising the same instrumental variables approach.
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An important theoretical consideration is the relationship between this extended model’s
parameters and those in our benchmark specification. A key insight emerges: when β = 0
(no forward-looking behavior) and φ = θ (identical elasticities across career stages),
then (40) collapses to our benchmark gradient. Intuitively, therefore, our benchmark es-
timates are limited to the extent that we miss long-term forward-looking behaviour and
the supply elasticities differ for labour-market entrants and for mature workers. On the
second point, again we refer to empirical results in Section 5 showing that the within-
career aggregate elasticity is estimated to be similar to the aggregate elasticity of total
employment.

B.1.6 Extension 1: Longer-Term Elasticities

We also want to consider medium/long-run elasticities. Here we provide a sketch. In
terms of modelling, we therefore assess the effect of period-t shocks on end-of period
t + 1 allocations. For simplicity, assume no shock in t + 1, i.e. ηt+1 = 0. (We could also
imagine that the same shocks occur twice, i.e. we have ηt+1 = ηt.) We can now use the
following aggregation:

Ẽj
t+1,1 (pt + ηt+1) = ∑

ς

τςπ
ς,j
t+1,1 (pt + ηt+1)

=⇒ Ẽj
t+1,1 (pt) = ∑

ς

τςπ
ς,j
t+1,1 (pt)

Ẽj
t+1,2 (pt + ηt+1, pt) = ∑

i
Ẽi

t,1 (pt)π
ij
t+1,2 (pt + ηt+1)

=⇒ Ẽj
t+1,2 (pt, pt) = ∑

i
Ẽi

t,1 (pt)π
ij
t+1,2 (pt)

Very briefly, as before, gradients for the young are characterised by

∂Ẽj
t+1,1

∂pk
t

= ∑
ς

τς
∂π

ς,j
t+1,1

∂pk
t

with little change. But now we have

∂Ẽj
t+1,2

∂pk
t

=
∂

∂pk
t
∑

i
Ẽi

t,1 (pt)π
ij
t+1,2 (pt)

= ∑
i

∂

∂pk
t

Ẽi
t,1π

ij
t+1,2 + ∑

i
Ẽi

t,1
∂

∂pk
t

π
ij
t+1,2

i.e. the long-run elasticity for the older workers also includes follow-on effects from chang-
ing early-career employment. This is now a general function of flows, plus both φ and θ.
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We leave an exploration of these longer-term elasticities for future work.

B.1.7 Extension 2: Characterising the Ex-ante Effect of Aggregate Risk

Equations (37), (38), and (39) show that the effect of wage risk on entry flows is captured

by the term Eηη′
∂2
(

π
jk
2 (p+η)

)
∂η2

η=η̄
η where

∂2
(

π
jk
2 (p+η)

)
∂η2

η=η̄
is the Hessian of π

jk
2 (p + η) with

respect to the vector η, evaluated at its mean. We can improve on the modelling above by
computing this matrix as follows. As is familiar, the first-derivatives of π

jk
2 (p + η) can be

written in vector format as:

∂
(

π
jk
2 (p + η)

)
∂η η=η̄

= π
jk
2



−π
j1
2

...

1− π
jk
2

−π
jN
2


The matrix of second derivatives is then:

∂2
(

π
jk
2 (p + η)

)
∂η2

η=η̄

= π
jk
2



π
j1
2

(
2π

j1
2 − 1

)
... ... 2π

j1
2 π

jl
2 ...

... (
π

jk
2 − 1

) (
2π

jk
2 − 1

)
...



We can allow for a general structure on the covariance matrix of η, but for illustrative
purposes assume it follows a distribution N

(
0, σ2 IN

)
where IN is the identity matrix of

size N. Then

Eηη′
∂2
(

π
jk
2 (p + η)

)
∂η2

η=η̄

η = σ2π
jk
2

[
∑

l
π

jl
2

(
2π

jl
2 − 1

)
+ 1− 2π

jk
2

]

=⇒
∂U j

2 (p)
∂pk ≈ θπ

jk
2

(
1 + σ2

[
∑

l
π

jl
2

(
2π

jl
2 − 1

)
+ 1− 2π

jk
2

])
(42)

Absent income risk (σ2 = 0), the interpretation of equation (42) is straightforward and
follows that of equation (31). The gradient of expected utility in occupation j w.r.t a change
in wages in occupation k is measured by the expected flows from j to k. This captures the
probability that the transition from j to k is expected to be chosen.
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The effect of risk on the gradient with respect to wages, given by equation (42), de-
pends on whether risk makes the future transition more or less attractive. This effect is
non-linear and rich, even with the simple structure on the covariance matrix of η. At the
extremes, when π

jk
2 = 1 (π jk

2 = 0), then workers always (never) choose to transition to k,
and wage risk has no first-order effect on its attractiveness. For values of π

jk
2 that are high,

but less than 1, then wage risk reduces the chance that the transition from j to k will be

the most attractive and so unambiguously attenuates the gradient ∂U j
2(p)

∂pk . However, when

π
jk
2 is low but above 0 then, for some configurations of moving costs, wage fluctuations

can increase the probability of this transition and so increase the gradient ∂U j
2(p)

∂pk . An inter-
esting knife-edge case is when flows from j are split evenly between k and a single other
occupation l, (e.g. π

jl
2 = π

jk
2 = 1

2 when only two occupations attract positive flows). Then,
when wage risk is equal across k and l, its introduction does not change which occupation

is expected to be the most attractive and so again its effect on the gradient ∂U j
2(p)

∂pk is zero.

Although not shown, wage risk itself typically raises the level of expected utility. This
is because of the linearity of the within-period felicity function and because of the option
value of choosing between multiple occupations.

B.2 Aggregation of Subgroups

In this section, we consider the accuracy of our elasticity estimates when we imagine
distinct subgroups with different preferences and flows. We thus extend the framework
to allow for varying mobility rates during the career across population subgroups.

B.2.1 Model Set-Up

As standard, preferences are given by

uij (ω) = θs pj + as
ij + εj (ω)

where now importantly we allow for switching costs, as
ij, to differ by subgroup s. This

includes amenities but might also include constant group-specific occupational wage
premia (i.e., wage premia unaffected by shocks).

B.2.2 Elasticities

If end-of-period employment Ej = ∑s Es
j , then an accounting identity is

∂ ln Ej (p)
∂pk

= ∑
s

Es
j

Ej

∂ ln Es
j (p)

∂pk
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Let λs
j =

Es
j

Ej
, so that, when evaluated at p, we can write

∂ ln Ej (p)
∂pk

= ∑
s

λs
j

∂ ln Es
j (p)

∂pk

where λs
j captures the fraction of occupation j coming from group s and

∑
s

λs
j = 1

To proceed, we will impose that θs = θ is common across subgroups.46 With this in
hand, we can write

∂ ln Ej (p)
∂pk

= ∑
s

λs
j θds

jk

= θ ∑
s

λs
j d

s
jk

= θ


−∑s λs

j ∑i
τs

i πs
ijπ

s
ik

∑i τs
i πs

ij
if k 6= j

∑s λs
j ∑i

τs
i πs

ij

(
1−πs

ij

)
∑i τs

i πs
ij

if k = j

= θ


−∑s λs

j ∑i
τs

i πs
ijπ

s
ik

τs
j

if k 6= j

∑s λs
j ∑i

τs
i πs

ij

(
1−πs

ij

)
τs

j
if k = j

We calculate ds
jk as standard using steady-state baseline shares τs

j which here are group-
specific. This allows us to progress to the final line and replace ∑i τs

i πs
ij with τs

j .

Now denote our benchmark calculation of the elasticity as θd̃jk, as given in Remark 1
and eq (5). In what follows, and in the most relevant cases of subgroups defined either
by age or skill-level (education), we show that d̃jk and ∑s λs

j d
s
jk yield very similar aggre-

gate elasticities. For age, this is because relative elasticities are highly correlated across
subgroups. For skill groups, occupations are quite segmented by education such that
aggregate elasticities mostly reflect either high- or low-skilled workers’ mobility in each
occupation.

46Mobility rates can still vary between subgroups due to variation in transition costs (e.g. larger
difference between as

ij and as
ii among s = older).
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B.2.3 When elasticities are highly correlated among subgroups

We start by considering different subgroups by age. We categorise people into younger
(i.e. those aged 25–39, denoted by s = y) and older (i.e. those aged 40–59, denoted by s =
o). In the computation of ∑s λs

j d
s
jk, we use the average employment during the baseline

period 1975–1984 for λs
j =

Es
j

Ej
.

We find that ds
jk are highly correlated between age groups (correlation of around 0.8

for both diagonal and non-diagonal elements) and with d̃jk (around 0.9) in the data. As
Figure B.1a shows, levels are lower among older workers, i.e. do

jk < dy
jk, consistent with

lower mobility and flexibility as well as higher switching costs (i.e. less time to get the
benefits of changing occupations) for older workers.47 For the sake of argument, we make
this extreme and suppose do

jkη = dy
jk ∀j, k where η > 1. We get

∑
s

λs
j d

s
jk = dy

jk

[
λ

y
j + (1− λ

y
j )η
]

which would only deviate from a common elasticity, corr(dy
jk, ∑s λs

j d
s
jk) << 1, if age

composition varies a lot between occupations j.

We illustrate that d̃jk ≈ ∑s λs
j d

s
jk for s = (y, o) in Figure B.1b. Here, we report this

relationship for the diagonal elements of matrix D, since these provide the clearest in-
terpretation. Displaying the off-diagonal elements would yield a similar picture. Off-
diagonals’ skewness, however, would lead to a denser clustering of many points around
zero, making the visualisation somewhat cluttered and harder to interpret.

B.2.4 When subgroups work in different occupations

We next consider different subgroups by education. We classify those without an Abitur
(i.e. German qualification that certifies a person has completed the highest track of sec-
ondary school and is ready for university) to be low-skilled (s = l), and those with an
Abitur to be high-skilled (s = h). In our data, ds

jk are not too correlated between educa-
tion levels (correlation is 0.45 for the diagonal elements and 0.35 for the non-diagonal
elements). It may be natural, almost mechanical, that workers with different skills and
training populate different occupations.

47The positive relationship between own-price elasticities for younger and older workers, shown with
a quadratic fit in Figure B.1a, would appear even stronger if analysed using rank correlation, emphasising
the consistent ordering of elasticities across age groups.
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Figure B.1: Elasticities by Age Groups

(a) Younger (aged 25-39) vs Older (aged 40-59)
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(b) d̃jk vs ∑s λs
j d

s
jk by Age
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Notes: Figure B.1a shows the relationship (with a quadratic fit) between own-price elasticities for younger (i.e. those aged 25-39) and
older (i.e. those aged 40-59) workers. Figure B.1b shows the relationship between d̃jk and ∑s λs

j d
s
jk for s = (y, o) also for the diagonal

elements of Matrix D (i.e. own-price elasticities). Marker size indicates the baseline employment share (in 1985) in each occupation.

For the sake of argument, suppose that there are two education groups (s ∈ {l, h}) and
the market is completely segmented:

πs
ij =

πij if s(i) = s(j)

0 if s(i) 6= s(j)
τs

i =

τi/λs if s(i) = s

0 if s(i) 6= s
λs

j =

1 if s(j) = s

0 if s(j) 6= s

where λs is the overall population share of skill group s. We get for k 6= j

−
∂ ln Ej (p)

∂pk
= θ ∑

s∈{l,h}
λs

j ∑
i

τs
i πs

ijπ
s
ik

τs
j

= θ1{s(j) = s(k) = l} ∑
i,s(i)=l

τl
i πijπik

τl
j

+ θ1{s(j) = s(k) = h} ∑
i,s(i)=h

τh
i πijπik

τh
j

= θ ∑
i,s(i)=l

τiπijπik

τj
+ θ ∑

i,s(i)=h

τiπijπik

τj

= θ ∑
i

τiπijπik

τj
= θd̃jk (43)

where 1{s(j) = s(k) = l} is an indicator variable for flows between low-skilled occupa-
tions and we used the fact that with segmented occupations τs

i
τs

j
= τi

τj
if s(i) = s(j).

Equation (43) illustrates the fact that with different relative flow rates among sub-
groups, and accordingly potentially quite differing ds

jk across s (as Figure B.2a depicts),
we may still have that d̃jk are close to the correct ∑s λs

j d
s
jk. In fact, with fully segmented
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markets, exactly d̃jk = ∑s λs
j d

s
jk.

We illustrate that d̃jk ≈ ∑s λs
j d

s
jk for s = (l, h) in Figure B.2b. This is consistent with the

fact that occupations are quite segmented by education group. As before, we report the
relationship for the diagonal elements of the elasticity matrix D.

Figure B.2: Elasticities by Education Groups
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Notes: Figure B.2a shows the relationship between own-price elasticities for low-skill (i.e. those without an Abitur) and high-skill (i.e.
those with an Abitur). Figure B.2b shows the relationship between d̃jk and ∑s λs

j d
s
jk for s = (l, h) also for the diagonal elements of

Matrix D (i.e. own-price elasticities). Marker size indicates the baseline employment share (in 1985) in each occupation.

B.3 Accounting for Non-Employment Transitions

A driver of heterogeneity in occupational growth that we omit in the main analysis is the
extensive margin of employment. This may be important, for instance, in the context of
the secular decline of German unemployment in the 2000s.

In line with eq. (1), we interpret indirect utility in M different non-employment states
m ∈ {N + 1, . . . , N + M} as containing pecuniary payoffs, transition costs, and idiosyn-
cratic components. While pecuniary payoffs pm are unobserved, the empirical framework
can be extended to control switches to and from different non-employment states.

We start by computing a new elasticity matrix that includes all transitions to and
from non-employment states. We can then extend eq. (16) to N + M occupations, with
M referring to different non-employment sectors:

∆ej ≈ θ
N+M

∑
k=1

djk∆pk = θ
N

∑
k=1

djk∆pk +
N+M

∑
m=N+1

(θ∆pm)djm (44)

The first summation on the right-hand side represents our standard (own- and cross-
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occupation) effects, while in the second summation, we explicitly group factors θ∆pm

together. This is to indicate that here we treat djm as control variables for occupation j’s
elasticity with respect to non-employment state m. The θ∆pm coefficient on the respec-
tive control represents the combination of pecuniary preferences and changes in non-
employment ‘prices’.

In what follows, we show the results from these estimations accounting for unem-
ployment transitions (i.e. M = 1 non-employment sectors). The source of data regarding
unemployment is the Benefit Recipient History (Leistungsempfängerhistorik - LeH) of the
IAB. The LeH, with data available from 1975, covers periods during which individuals re-
ceive earnings replacement benefits from the Federal Employment Agency. This includes
unemployment benefits, unemployment assistance as well as maintenance allowances.
Column (2) of Table E.5 reports the resulting own-price elasticities accounting for un-
employment transitions. Overall, these tend to be slightly larger than djk in our baseline
matrix D, reflecting a relevant amount of transitions in many occupations with unemploy-
ment, but they are also clearly correlated (with a correlation bigger than 0.9). As a result,
the figure which splits occupations by own-price elasticity accounting for unemployment
(not reported) is almost identical to Figure 2b in the main text. Table B.1 then reports the
estimation results for eq. (44). The R-squared is higher than in the main text as more of the
heterogeneity in employment growth can be explained when allowing for occupations’
different elasticities with respect to unemployment. Importantly, the estimated role of
own- and cross-occupation effects turn out similar to the main results.

Table B.1: Accounting for Unemployment Transitions.
Determinants of Employment Changes: Own- and Cross-Effects (OLS–IV)

Dependent Variable: ∆ej

Unrestricted Model Restricted Model

(1) (2) (3)

fixed relationship: ddiag∆pj
3.77
(0.75)

heterogeneous
(djj − ddiag)∆pj

3.04 4.26 6.03
own effect: (0.81) (0.69) (1.74)

total cross effect: ∑k 6=j djk∆pk
2.73
(1.12)

R-squared 0.467 0.451 -
Number of occupations 120 120 120
Estimation method OLS OLS IV
Non-employment controls Yes Yes Yes
F-statistic 1st Stage - - 23

Notes: Specifications as in the main text Section 5 other than that regressions now control for occupations’
elasticities with unemployment (djm). The regressors in column (2) are the full ∑k djk∆pk = dj∆p together
with dj,N+1 where k = N + 1 is the unemployment sector. In column (3), these are instrumented by djVr
while controlling for dj,N+1 (see eq. (19)).
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C Labour Demand and Equilibrium

This section provides detailed derivations behind the discussion in Section 3. In what
follows, we present the main features of the demand and supply sides, characterise equi-
librium, and show an extension with monopsonistic employers.

C.1 Baseline Competitive Model

We consider an economy-wide constant elasticity of substitution (CES) production tech-
nology

Y = A

(
∑

i
βiE

σ−1
σ

i

) σ
σ−1

s.t. ∑ βi = 1

where i is for occupation, E for employment, βi are the factor intensities of different
occupation inputs and σ > 0 is the elasticity of substitution across occupations.

The first order conditions yield, for all i,

βiE
−1
σ

i A

(
∑

i
βiE

σ−1
σ

i

) σ
σ−1−1

= pi

where pi is the wage (the price of labour) level for occupation i and the price of the output
good is normalised to 1.

To begin, consider demands relative to occupation N:

Ẽi ≡ ln Ei
EN

= ln
(

βi

βN

pN

pi

)σ

= ln
(

β−i
βi

1− βi

1
p̃i

)σ

where p̃i ≡ pi
pN

and β−i ≡ 1−βi
βN

=
∑j 6=i β j

βN
. In what follows, we will consider incremental

changes to ln
β j

1−β j
with proportionate off-setting changes to βk for k 6= j.

It is worth noting that
d ln βi

βN

d ln βi
1−βi

=
d ln β−i

βi
1−βi

d ln βi
1−βi

= 1. On the other hand,
d ln βi

βN

d ln
βj

1−βj

= 0 because

proportional changes to βi and βN are equal and offsetting. In more compact notation, we
can therefore write

Ẽd
i
(

p̃i (b, s) , β̃i
)
= ln

(
β̃i

1
p̃i

)σ

(45)

where p̃i is the log of p̃i, b is the (N − 1) vector of relative productivities (i.e. demand
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shifters
(

ln
β j

1−β j

)
), s is a vector of supply shifters that do not directly affect demand,

and β̃i =
βi
βN

. Note that relative demand for employment in occupation i depends on the
relative price in that occupation only.

In fact, we are interested in log employment shares ei = ln Ei
∑j Ej

= ln Ei
Ē . In this case,

demands depend on productivities and prices of other occupations. We are interested in
perturbations around the steady state, so in keeping with the rest of the paper, we denote
steady-state share of occupation i by τi. This gives a demand curve ed

i (〈 p̃ (b, s)〉 , b), which
is a function of all prices and demand shifters.

To calculate derivatives, first note that, around the steady state:

∂ed
j

∂pi
|pk 6=i = −

τi

1− τi

∂ed
i

∂pi
|pk 6=i

i.e. given a change to pi, and holding fixed all other prices (made explicit by the notation
|pk 6=i ), then adding up ensures this identity, because all other occupations are equally
proportionately offset.48 Therefore, we have that:

∂ed
i

∂pi
=

∂ ln Ei
EN

∂pi
+

∂ ln EN
Ē

∂pi

=
∂ ln Ei

EN

∂pi
+

∂ed
N

∂pi

= −σ− τi

1− τi

∂ed
i

∂pi

=⇒
∂ed

i
∂pi

= − (1− τi) σ

This also implies that for j 6= i:

∂ed
i

∂pj
= −

τj

1− τj

∂ed
j

∂pj

= τjσ

Together, these are result (11) in the main text. A similar logic implies that ∂ed
i

∂ ln
βj

1−βj

follows

a similar structure.

48Note that adding up requires ∑k
∂ed

k
∂pi

Ek = 0, which implies ∂ed
i

∂pi
Ei + ∑k 6=i

∂ed
k

∂pi
Ek = 0. Noting that a

property of CES demands given by eq. (45) are that ∂ed
k

∂pi
=

∂ed
l

∂pi
≡ ∂ed

−i
∂pi

for k, l 6= i , then we have that
∂ed

i
∂pi

Ei +
∂ed
−i

∂pi
∑k 6=i Ek = 0 =⇒ ∂ed

i
∂pi

ei +
∂ed
−i

∂pi
∑k 6=i ek = 0. Rearranging and using τi give the result.
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We therefore have a demand function ed
i (〈p (b, s)〉 , b) with partial derivatives for

prices given by elements of the matrix σ (W − I), with rank N− 1, where I is the identity
matrix, and W is the matrix of employment shares, as defined in Appendix A.3. The
matrix of derivatives with respect to demand shifters is given by σ (I −W), equally of
rank N − 1.

C.1.1 Labour Supply

As extensively discussed in the main text, we have that
∂es

j
∂pk

= θdjk. The matrix of supply
derivatives is therefore given by θD, similarly of rank N − 1.

We have some flexibility in defining the effect of supply shifters, as long as they satisfy
adding up, i.e. that ∑i

∂es
i

∂sj
τi = 0. We can satisfy this by letting ∂es

i
∂sj
≡ −τj for i 6= j and

∂es
j

∂sj
≡ 1− τj . Then ∑i

∂es
i

∂sj
τi =

(
1− τj

)
τj−∑i 6=j τjτi = τj

(
1− τj −∑i 6=j τi

)
= 0. The matrix

of derivatives with respect to supply shifters is therefore given by I −W.

C.1.2 Equilibrium Characterisation

Similarly to before, we can write

ei (b, s) = es
i (〈p (b, s)〉 , s) = ed

i (〈p (b, s)〉 , b) (46)

where both supply and demand curves depend on the full system of prices.

In what follows, for ease of exposition, it is useful to define the following matrices for
gradients of equilibrium quantities {Ej} and prices {pj}.

Notation Typical element

Ξ dei

d
(

ln
βj

1−βj

)
Γ dei

dsj

V dpi

d
(

ln
βj

1−βj

)
S dpi

dsj

Solving for Price Gradients using es
i () = ed

i ()

Differentiating es
i () = ed

i () from eq. (46) with respect to ln
β j

1−β j
we obtain:

∑
k

∂es
i

∂pk

∂pk

∂
(

ln
β j

1−β j

) = ∑
k

∂ed
i

∂pk

∂pk

∂
(

ln
β j

1−β j

) +
∂ed

i

∂ ln
β j

1−β j

(47)
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Expressing this in matrix notation gives

θDV = σ (W − I)V + σ (I −W)

=⇒ (θD + σ (I −W))V = σ (I −W) (48)

where V is a matrix with i, jth element ∂pi

∂

(
ln

βj
1−βj

) that we wish to solve.

At this point, we notice that (θD + σ (I −W)) has rank N − 1. However, we can also
notice that (I −W) is the de-meaning operator, such that for vector x, then (I −W) x =

x − 1N ∑i τixi, where 1N is a column vector of ones. Therefore, we can solve eq. (48) as
long as we make the appropriate normalisation. Specifically, we define price gradients
such that ∑i τi

∂pi

∂

(
ln

βj
1−βj

) = 0, i.e. the weighted price gradient is 0.

Recall that this normalisation is without loss of generality because the model is invari-
ant to additive shifts in prices. In this case, we can solve for V as

V =

(
θ

σ
D + I

)−1

(I −W) (49)

which in fact guarantees the normalisation by construction.

Next, we consider gradients with respect to supply shifters. Differentiating with re-
spect to sj we obtain:

∑
k

∂es
i

∂pk

∂pk
∂sj

+
∂es

i
∂sj

= ∑
k

∂ed
i

∂pk

∂pk
∂sj

=⇒ θDS + I −W = σ (W − I) S

=⇒ (θD + σ (I −W)) S = − (I −W)

Similarly to above, we can solve for S using a normalisation of price gradients with
respect to a supply shock. That is, setting ∑i τi

∂pi
∂sj

= 0 and again without loss of generality,
we obtain:

S =− (θD + σI)−1 (I −W) (50)

=− 1
σ

V
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Solving for Quantity Gradients using ei () = ed
i () and ei () = es

i ()

Differentiating the identity ei (b, s) = ed
i (〈p (b, s)〉 , b) w.r.t. sj we get

∂ei

∂sj
= ∑

k

∂ed
i

∂pk

∂pk
∂sj

=⇒ Γ = −σ (I −W) S = −σS = V

and then differentiating the identity ei (b, s) = es
i (〈p (b, s)〉 , b) w.r.t. ln

β j
1−β j

we get

dei

d
(

ln
β j

1−β j

) = ∑
k

∂es
i

∂pk

∂pk

∂
(

ln
β j

1−β j

)
which provides the matrix equation

Ξ = θDV

C.1.3 Observed Changes

Let ∆e be the vector of observed changes in labour shares, with ith element, ∆ei. Similarly,
let ∆b be the vector of productivity (or demand) shifts, ∆s the vector of supply shifts, and
∆p be the change in prices. Then we have that

∆p ≈ V∆b + S∆s (51)

= V∆b− 1
σ

V∆s

and

∆e ≈ Ξ∆b + Γ∆s

= θDV∆b− σS∆s (52)

= θDV∆b + V∆s

These expressions, corresponding to eq. (13) and eq. (14) in the main text, describe changes
to labour shares and prices in terms of demand and supply shocks, price elasticities, and
model parameters θ and σ.

Finally, expressions (51) and (52) also inform the regression framework. From eq. (51),
note that θD∆p = θDV∆b + θDS∆s. Using this to substitute ∆b out of eq. (52) yields:

=⇒ ∆e ≈ θD∆p− θDS∆s− σS∆s
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= θD∆p− (θD + σ) S∆s

= θD∆p− (−(I −W))∆s

= θD∆p + ∆s (53)

where the last line follows from the penultimate line because the vector of supply shocks
is defined to be suitably normalised.

C.2 Alternative: Equilibrium with Monopsonistic Employers

The benchmark model presented above is characterised by competitive behaviour of
labour supply and demand, which seems plausible when studying occupations. In this
section, we show that our main results do not change in versions of the model where em-
ployers behave imperfectly competitively. The underlying intuition is that time-constant
markdowns (or markups), though differing across occupations, do not appear in relative
log (percentage) changes of demand or supply over time.

C.2.1 Setting

Aggregate production continues to be according to a CES function under perfect compe-
tition and where the price of the final good is normalised to 1.

Y = A

(
∑

j
β jY

σ−1
σ

j

) σ
σ−1

s.t. ∑ β j = 1, σ > 1 (54)

This leads to the price of occupation j’s output being equal to its marginal product:

χj = β jY
− 1

σ
j A

(
∑

j
β jY

σ−1
σ

j

) σ
σ−1−1

(55)

At the level of the intermediaries, we can impose more structure on the model to allow
for different market structures. Suppose there is a unit measure of atomistic employers
indexed by l that are homogenous, from a labour supply and demand perspective, within
each occupation j. In the benchmark competitive model, we assume that workers receive
identical amenity draws from each of the firms, who therefore have no market power.

To introduce market power, suppose instead that workers obtain job offers from a
single firm within each occupation. For concreteness, we might imagine that the economy
is regionally segregated, such that there is a single firm for each of the N occupations
within each worker’s district, and workers must work in their own district. In this case,
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employers know that they face an upward-sloping supply curve, as workers’ only outside
options are to choose an alternative occupation. As is standard, we assume employers
cannot discriminate between workers (here according to their origin occupation). Then
labour supply elasticities within occupations remain the same as in the main text. That
is, the labour supply elasticity to each employer in j is a constant εS

lj = εS
j = θdjj, which

can also be interpreted as the weighted average cross-elasticity facing occupation j (see
discussion in Appendix A.2).

We also continue to assume a linear production function in each occupation such that
occupational output is equal to occupational employment i.e. Yj = Ej =

∫
El j dF(l).

Labour demand elasticities also become homogeneous as εD
lj = εD

j .49 In this case, analysing
individual firm behaviour is equivalent to analysing behaviour at the occupation level,
which we do for convenience from now on.

C.2.2 Equilibria

Profits for each occupation’s representative employer become

πj = χjEj − pjEj (56)

which are maximised with respect to Ej and where pj are wages in levels. Before examin-
ing monopsony, it is useful to return to the case of perfectly competitive markets.

Competitive behaviour in product and factor markets

With their decision, the employer influences neither prices and we get as first-order con-
dition (FOC):

χj = pj = β jE
− 1

σ
j A

(
∑

j
β jE

σ−1
σ

j

) σ
σ−1−1

which is exactly the case of the main text and Appendix C.1.

We now consider the setting of interest.

49If occupation j is sufficiently small, approximately εD
j ≈ −σ; otherwise, there will be an attenuating

size-adjustment term. In Appendix C.1, we have shown that the elasticity of occupation j’s employment
share with respect to its (relative) price is exactly −(1− τj)σ. What matters in the following is simply that
εD

j , and for that matter εS
j , are not affected by (marginal) changes to occupational productivities or prices.
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Monopsony in the labour market

The employer takes into account how its demand affects wages, such that the FOC to the
profit function (56) becomes:

χj = pj +
∂pj

∂Ej
Ej = pj

(
εS

j + 1

εS
j

)
=

pj

µS
j

,

where µS
j < 1 is the wage markdown, relative to labour’s value marginal product, in

occupation j. Other than that, we can still take condition (55) to get log labour demand
demand relative to occupation N:

Ẽd
j = ln

(
β̃ j

µ̃S
j

p̃j

)σ

(57)

which is equation (32) in Appendix C.1 with just an additional term reflecting relative

markdowns µ̃S
j =

µS
j

µS
N

.

From now on, the analysis of price and labour demand shocks gives exactly the same
results as in Appendix C.1. This is because equation (57) has the same structure as before,
markdowns are constant, and we showed that derivatives of resulting employment shares
ed

j with respect to pi or ln
(

βi
1−βi

)
take a simple form. In short, the changes in employment

shares do not depend on µ̃S
j .50 We therefore obtain the same derivates, especially the

spillover matrix V, and analysis of the equilibrium effects of shocks as before.

Concluding discussion – Imperfect competition in both markets

As a final point, we could alter the set-up up to allow for monopolist behaviour by
intermediate producers in the product market, such that occupational employers also take
into account the effect of their decisions on output prices. Again, the equilibrium response
to shocks remains unchanged. Now the FOC for the intermediate producer becomes

χj +
∂χj

∂Ej
Ej = χj

(
εD

j − 1

εD
j

)
=

pj

µS
j

or
χj

pj
=

µD
j

µS
j

,

where µD
j =

εD
j

εD
j −1

> 1 is j’s markup over marginal cost and we have the well-known

double-marginalisation of output- relative to input price of a monopolist-monopsonist.

50We could study effects on demanded employment shares, ed
j , of changes in markdowns (i.e. occupa-

tions’ labour supply elasticities). These derivatives would also have the form σ(W − I).
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Still, equation (57) retains the same structure, Ẽd
j = ln

(
β̃ j

1
p̃j

µ̃S
j

µ̃D
j

)σ

, and the equilibrium

effects of changes in demand or prices are unaffected by these markups/markdowns in
level terms.

D Data Appendix

This section presents a detailed presentation of the data. First, we discuss the SIAB data
and outline the procedures for sample selection and wage imputation. We then review
the data on tasks and occupational characteristics.

D.1 The SIAB Data

We use the Sample of Integrated Labour Market Biographies (Stichprobe der Integrierten
Arbeitsmarktbiographien, Frodermann et al., 2021) for our analyses.51 The SIAB is a 2% sam-
ple of the population of the Integrated Employment Biographies (IEB) provided by the
Institute for Employment Research (Institut für Arbeitsmarkt- und Berufsforschung – IAB).
It includes employees covered by social security, marginal part-time workers (after 1999),
unemployment benefit recipients, individuals who are officially registered as job-seeking,
and individuals who are participating in programs of active labour market policies. It is
possible to track the employment status of a person exact to the day. The source of data
regarding employment is the Employee History (Beschäftigtenhistorik - BeH) of the IAB.
The BeH covers all white- and blue-collar workers as well as apprentices as long as they
are not exempt from social security contributions. It excludes civil servants, self-employed
people, regular students, and individuals performing military service.

The SIAB data contains an individual’s full employment history, including a consistent-
over-time occupational classifier (between 1975-2010 and then again from 2012 onwards),
the corresponding nominal daily wage, and socio-demographic variables such as age,
gender, or level of education. Data are available in a spell structure, making it possible to
observe the same person at several employers within a year. In a few cases, these spells
overlap when workers have multiple employment contracts at a time. We transform the
spell structure into a yearly panel by identifying the longest spell within a given year and
deleting all the remaining spells (following Böhm et al., 2024).

51Access to the data is subject to signing a contract with the Research Data Centre (FDZ) of the German
Federal Employment Agency (BA) at the Institute for Employment Research (IAB).
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D.1.1 Sample Selection and Variable Description

We consider two different samples in this paper: the historical sample (1975-2010, Sec-
tions 4-6) and the prediction sample (from 2012 onwards, Section 7).52 To work with
a homogeneous sample throughout, the historical sample is restricted to Western Ger-
man full-time male workers aged 25–59. Since the level and structure of wages differ
substantially between former East and West Germany, we drop workers who were ever
employed in Eastern Germany. Our focus on full-time jobs is driven by the absence of
data on hours worked. The restriction on men is primarily due to the old occupation
classification, which was devised with male employment in mind (Paulus et al., 2013).
Excluding younger workers, we ensure the vast majority conclude their formal education
by the time they enter the sample. Besides, we stop relatively early (at age 59) because
early retirement programs were common in Germany, particularly in the late 1970s and
the 1980s. The prediction sample relaxes these restrictions and includes both men and
women, Eastern and Western Germans, as well as those working part-time and full-time.

We exclude workers with wages below the limit for which social security contributions
have to be paid, mainly workers in marginal jobs (also known as mini-jobs). These jobs
were not subject to social security taxation before 1999. After the first reform in 1999, the
tax-free wage threshold was fixed during the period 1999 to 2003 at 325 euros per month.
In 2003, the range of exempted earnings was expanded up to 400 euros, effective until
2012. The minimum threshold for mini-jobbers increased in 2013 from 400 to 450 euros
per month. Approximately 10% of observations are affected by this restriction. We drop
wage spells of workers whose last spell is in apprenticeship training as the first wage after
apprenticeship is often a mixture between new wage and apprenticeship wage (this only
affects 0.48% of the sample). We also drop all spells of workers who are always foreign
workers (less than 5% of observations).53 Finally, workers without information on their
occupation or wages are dropped from the analysis.

Occupation classification. For the historical sample analysis, we use the 120 three-digit
occupations from the SIAB’s Scientific Use File as our main units of analysis. These occu-
pations are consistently coded during the period 1975–2010 (from the KldB 1988 classifica-
tion system) and listed in Table E.5. In Appendix Table A.1, we also consider occupations
at the 1-digit level and aggregate them into four broad groups following the literature
(Acemoglu & Autor, 2011; Böhm et al., 2024). These are (1) managers, professionals, and
technicians (Mgr-Prof-Tech), (2) sales and office workers (Sales-Office), (3) production

52Recall that occupations in the SIAB are consistently coded, with no removals or additions, during the
period 1975-2010. After this, a structural break occurs and a new occupational classification is introduced,
which is fully consistent again from 2012 onwards.

53Workers who are classified as German at some point but foreign at another are not dropped.
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workers, operators, and craftsmen (Prod-Oper-Crafts), and (4) workers in services and
care occupations (Serv-Care). For the prediction exercise, we use the 126 three-digit occu-
pations based on the new classification of occupations introduced in 2010 (the KldB 2010
classification system). This classification captures the trends towards more employment
and job differentiation in areas such as health, education, and information technologies.

Wages. The available wage variable is the employee’s gross daily nominal wage in
euros. It is calculated from the fixed-period wages reported by the employer and the
duration of the original notification period in calendar days. Despite being accurately
measured as the employer can be punished for incorrect reporting, two major drawbacks
are of special relevance to our analysis. First, due to a cap on social security contributions,
wages are right-censored. As is common in administrative data sources, earnings above
the upper earnings limit for statutory pension insurance are only reported up to this limit.
The upper earnings limit for statutory pension insurance differs from year to year as well
as between Eastern and Western Germany, where the decisive factor is the location of the
establishment. Second, the income components being subject to social security tax were
extended in 1984. Before that, one-time payments such as bonuses were not included in
the daily wage benefit measure. We discuss how we deal with these two issues below.
Finally, to ensure comparability across years, wages are deflated by the Consumer Price
Index reported in the Federal Statistical Office of Germany, with 2010 as the base year.

D.1.2 Imputation of Right-Censored Wages

The SIAB data is based on process data used to calculate retirement pensions and un-
employment insurance benefits, implying the wage information is top-coded and only
relevant up to the Social Security contribution ceiling. While this feature only affects ap-
proximately 8.5% of observations on average across years in our historical sample (aged
25–59, full-time, excluding marginal workers), the proportion of censored observations
differs across subgroups. By gender, top-coded wages amount to roughly 11% for men
and 3.3% for women. Differences are also substantial by education groups. Whereas only
1.1% of the spells of individuals who enter the labour market without post-secondary
education are affected by top-coding, the share of right-censored wages increases to 5.2%,
9.4%, and 30.8% for those who completed vocational education and training, an Abitur,
and a university degree, respectively. The share of top-coded wages also increases over
the life cycle. While censoring only affects less than 2% of observations for those aged
25-29, the fraction of top-coded wages rises to more than 11% for those older than 40.
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To impute top-coded wages, we follow Dustmann et al. (2009) and Card et al. (2013).54

We first define age-education cells based on seven age groups (with 5-year intervals; 25–
29; 30–34; 35–39; 40–44; 45–49; 50–54; 55–59) and four education groups (as described
above). Within each of these cells (and thereby allowing a different variance for each
education and age group), we estimate Tobit wage equations separately by year, gender,
and East-West Germany. We predict the upper tail of the wage distribution including
controls for age (quadratic), tenure (quadratic), a part-time dummy, as well as interactions
between age (quadratic) and the different education groups. To control for worker fixed
effects, we construct the mean of an individual’s log wage in other years, the fraction of
censored wages in other years, and a dummy variable if the person was only observed
once in her life.55 We use the predicted values X′ β̂ from the Tobit regressions together
with the estimated standard deviation σ̂ to impute the censored log wages yc as follows:

yc = X′ β̂ + σ̂Φ−1[k + u(1− k)]

where Φ is the standard normal density function, u is a random draw from a uniform
distribution ranging between zero and one, k = Φ[(c − X′ β̂)/σ̂] and c is the censoring
point, which differs by year and East–West Germany. See Gartner (2005) for details.56 In a
very few cases (< 0.001%), imputed wages are exceedingly high. As a minor adjustment,
we limit imputed wages to ten times the 99th percentile of the latent wage distribution.

D.1.3 The Structural Wage Break 1983/1984

The income components being subject to the social security tax were extended in Ger-
many in 1984 (for further details, see Bender et al. (1996) and Steiner & Wagner (1998)).
Before 1984, one-time payments, such as bonuses, were not included in the daily wage
benefit measure. Starting in 1984, these variable parts of the wage were included. We
follow Fitzenberger (1999) and Dustmann et al. (2009) and deal with this structural break
by correcting wages prior to 1984 upwards. The correction is based on the idea that higher
quantiles appear to be more affected by the structural break than lower quantiles, as
higher percentiles are likely to receive higher bonuses. To this end, we estimate locally
weighted regressions, separately for men and women, of the wage ratio between 1982 and
1983 (i.e. before the break), and between 1983 and 1984 (i.e. after the break) on the wage

54To ensure that all censored wages are covered in the imputation procedure, we mark all observations
with wages four euro below the assessment ceiling as in Dauth & Eppelsheimer (2020).

55For those observed only once, the mean wage and mean censoring indicator are set to sample means.
56Dustmann et al. (2009) consider different imputation methods, such as restricting the variance to be

the same across all education and age groups, or assuming the upper tail of the wage distribution follows a
Pareto distribution. They conclude that the imputation method that assumes that the error term is normally
distributed with a different variance by age and education works better than the other imputation methods.
This method is also chosen in more recent papers such as Cortes et al. (2024) and Böhm et al. (2024).
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percentiles in 1983 and 1984, respectively. The correction factor is then computed as the
difference between the predicted, smoothed values from the two wage ratio regressions.
In a way similar to that of Dustmann et al. (2009), to account for differential overall wage
growth between the periods from 1982 to 1983 and from 1983 to 1984, we subtract from
the correction factor the smoothed value of the wage ratio in 1983, averaged between the
second and fortieth quantiles. Finally, wages prior to 1984 are corrected by multiplying
them by 1 plus the correction factor. After this, some wages are corrected above the
censoring limit. Dustmann et al. (2009) reset these wages back to the censoring limit and
impute them in the same way they imputed wages that were above the limit anyway.
Here we follow Böhm et al. (2024) and do not reset wages back to the censoring limit if
they were corrected above the limit but leave them at their break corrected values.

D.2 Data on Tasks and Occupational Characteristics

We use the Qualifications and Career Surveys (QCS, Hall et al., 2012), conducted by the
Federal Institute for Vocational Education and Training (BiBB), to obtain information on
tasks performed in occupations. The QCS, which have been previously used, e.g. by Spitz-
Oener (2006); Antonczyk et al. (2009); Gathmann & Schönberg (2010), are representative
cross-sectional surveys with 20,000–35,000 individuals in each wave who respond about
the tasks required in their occupations. These include, for example, how often they repair
objects, how often they perform fraction calculus, or how often they have to persuade
co-workers. We classify questions as representing either analytical, interactive, routine,
or manual tasks and assign a value of 0, 1/3, or 1, depending on whether the answer is
‘never’, ‘sometimes’, or ‘frequently’. We pool the QCS waves in 1979 and 1985/1986 to
compute task intensities across occupations by averaging over all the responses. We use
this information to study how task intensity relates to our price elasticity measures, and
instrument demand changes across occupations over the period 1985-2010.

Task distance. To measure the distance between occupations in the task space (reflecting
the degree of dissimilarity in the mix of tasks), we follow Cortes & Gallipoli (2018) and
use the angular separation (correlation) of the observable vectors xj and xk:57

AngSepjk =

A
∑

a=1

(
xaj · xak

)
[

A
∑

a=1

(
xaj
)2 ·

A
∑

a=1
(xak)

2
] 1

2
(58)

57The angular separation is the cosine angle between the occupations’ vectors in the task space.
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where xaj is the intensity of task dimension a in occupation j and A is the total number
of dimensions being considered (analytical, routine, and manual). We transform this to a
distance measure distjk that is increasing in dissimilarity:

distjk =
1
2
(1− AngSepjk)

The measure varies between zero and one; it will be closer to zero the more two occupa-
tions overlap in their skill requirements. The mean task distance between occupations in
our data is 0.5, with a standard deviation of 0.29 (see Table E.1). The most distant possible
move is between an economic and social scientist and a carpenter. Examples of pairs of
occupations with low distance measures are between a sheet metal worker and a tile
setter, or between a glass processor and a plastic processor.

Occupational licensing. To obtain measures of occupational licensing, we use the in-
dicators for standardised certification requirements and degree of regulation developed by
Vicari (2014). These indicators are based on BERUFENET, the online career information
portal provided by the German Federal Employment Agency – a rich job title database
similar to the US O*NET. They are calculated by categorising very narrow occupations
(8-digit) based on the presence or absence, under federal or state law, of standardised
training certificates required for professional activities. This is done in three steps. First,
each 8-digit occupation is assigned a value of 0 or 1 based on whether the access to the
occupational activity is linked to standardised credentials. Second, each occupation is
merged with the feature ‘regulation’, i.e. whether legal and administrative regulations
exist for an occupation and whether a specific qualification is necessary to practice it.
Finally, the indicator ‘standardised certification’ uses both pieces of information about the
standardisation of the credentials and regulation. These 0-1 values are finally aggregated
at the 3-digit occupational classification (i.e. the 120 occupations used in our historical
analysis), weighted by the number of individuals employed in each occupation. Intu-
itively, the degree of regulation indicates whether legal and administrative regulations
exist which bind the access to and practice of the occupation, including the necessity
of holding a specific title as proof of competence. The occupational certification further
includes whether access to exercising the professional activity is linked to a standardised
training credential. These indicators are constructed as a metric value between 0 and 1,
with the indicator increasing in the degree of certification and regulation.
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E Further Analysis in the Historical Period

This section presents further analysis to complement the one in Sections 4-5.

E.1 Descriptive Statistics in the Historical Sample

Table E.1 shows summary statistics for the 120 occupations. In the top panel, we see that
variation of employment growth in the cross-section of occupations is substantial, with
10th percentile occupations shrinking at 1.8 log points annually (averaged over the period
1985–2010) and 90th percentile occupations growing at 2.4 log points, respectively. When
weighting by initial size, the negative average employment growth partly stems from the
fact that formerly large manufacturing- and craft-related occupations have shrunk over
time.58 Second, annualised occupational price growth, as given by our preferred measure
(wage growth of stayers in the occupation), is positive at 0.59 log points, again with
considerable variation around this average (-0.96 and +2.17 log points for occupations
at the 10th and 90th percentile, respectively). Only slightly less variation is found for our
alternative measure of occupational prices à la Cortes (2016).

The middle panel of Table E.1 shows, among others, the distribution of occupational
certification and regulation (coded between 0 and 1) and the shares of workers with
university degrees. The bottom panel shows task intensities (analytical, routine, manual)
across the 120 occupations. Consistent with earlier work (Gathmann & Schönberg, 2010),
there exists substantial variation. For example, the median occupation is more than twice
as routine-intensive as the occupation at the lowest decile. Task distance is normalised
between zero and one, and best interpreted as a ranked ordinal variable (see its construc-
tion in the previous section). Still, the table reports e.g. distance at the 10th percentile
(i.e. occupations using relatively similar task sets) and at the 90th percentile (occupations
using rather different task sets).

Table E.2 displays summary statistics for annualised employment and occupational
price changes separately by each five-year sub-period from 1985 to 2010. We see substan-
tial variation over time: e.g. average wage and employment growth was substantially
faster in the pre-unification years 1985–1990 and turned negative in the economically
sluggish early 2000s.

Table E.3 presents summary statistics for the transition probability matrix, Π, and
the elasticity matrix, D. Diagonal elements (i.e. probabilities for staying and own-price
elasticities) are on average substantially larger than off-diagonal elements (for switching

58The results of our main analyses do not substantively differ whether we weight occupations by their
initial size or not.
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occupations and cross-price elasticities). However, dispersions of off-diagonal elements
are higher relative to their means and skewness is clearly substantial in these variables.
As discussed in the main text, cross-elasticities at the top of the distribution are as high
as some of the own-elasticities, but thereafter fall off very rapidly in size. For example,
the 99th percentile cross-elasticity (0.04 in Table E.3) is already somewhat lower than the
minimum own-elasticity (0.07 in Table 1).

The persistence of elasticity components across time is also shown in Table E.3. In
particular, the matrix of elasticities is constructed for different five-year periods (1975–
1980,. . . , 2000–2005, 2005–2010), and then the relation of the respective own-elasticities
and cross-elasticities (the matrix elements) is separately studied across those periods.
Autocorrelations turn out high, in the range of 0.75–0.90 even for the long time distances
between the early and late periods. This is consistent with the high autocorrelation of oc-
cupational task contents reported in Gathmann & Schönberg (2010) and with the findings
when estimating our model pooled in these five-year sub-periods.

The second column of Table E.3 shows that occupational cross-price elasticities are
strongly skewed and with high kurtosis. We decompose the log of the cross-price elastic-
ities using the expression in Remark 2 as follows:

ln
(
−djk

)
= ln (τk) + ln

(
Covτ(π̃.,j, π̃.,k) + 1

)
That is, the variance of log differences in cross-price elasticities can be decomposed into
variances of log differences in sector sizes and occupational substitutabilities (plus one,
to make them all positive). Panel B of Table E.4 shows that, in fact, most of the disper-
sion of ln

(
−djk

)
, and hence the skewness in levels of djk, is driven by the dispersion

of ln
(
Covτ(π̃.,j, π̃.,k) + 1

)
, while the dispersion in log occupational sizes contributes less

than 30%. Although not shown in Table E.4, but can be easily inferred, the covariance of
log occupational size with the substitutability term is negligible. Such covariance terms
are often important in models of matching between worker and employer types, gen-
erating skewed wage distributions (e.g. Sattinger, 1993). Here, this interaction does not
matter and cross-elasticities largely inherit their distribution from the occupational sub-
stitutabilities.

Own-elasticities are distributed approximately normally in levels. A formal test fails
to reject normality based on the skewness and kurtosis reported in Table E.3 above.59

Although we do not explore the reason for this feature rigorously here, we conjecture it
is because own-price elasticities comprise the sum of many apparently independently

59 p-value on the skewness test is 0.40, with a p-value on the kurtosis test of 0.13.
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distributed terms, as Remark 2 indicates. In line with this feature, and with the first
expression of Remark 2, we decompose this elasticity as:

djj = ∑
k 6=j

τkCovτ

(
π̃.,j, π̃.,k

)
︸ ︷︷ ︸

aggregate
substitutability

+ 1︸︷︷︸
direct

− τj︸︷︷︸
price
index

As Panel A of Table E.4 shows, and consistent with the discussion in the main text,
the variation in aggregate substitutabilities is by far the dominant component of the
variance of own-price elasticities. Compared to this, the variation in occupation sizes and
its covariance with aggregate substitutability are minuscule.

We show how own-price elasticities djj relate to several occupational characteristics
in panel (a) of Figure E.1. These include the share of workers with university degrees,
workers’ mean age, occupational certification and regulation as well as analytical, routine,
and manual task intensities. Panel (b) of Figure E.1 plots cross-price elasticities against
occupational task distance.

Finally, Table E.5 offers the full list of the 120 occupations ranked by their respective
own-price elasticities, together with their employment sizes in 1985 and 2010. The table
also reports own-price elasticities when the model includes transitions to and from un-
employment, as discussed earlier in Appendix B.3.
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Table E.1: Summary Statistics for the 120 Occupations.

Mean
Weighted

Std.Dev. p10 p50 p90 Observ.
Mean

Annualised Employment and
Occupational Price Changes (1985–2010)

Log Employment 0.107 −0.123 1.921 −1.843 −0.065 2.369 120
Prices: Stayers’ Wage Growth 0.586 0.516 1.354 −0.959 0.408 2.168 120
Prices: à la Cortes (2016) 1.102 1.065 0.953 −0.009 0.949 2.308 120

Other Occupational Characteristics

Initial Employment Size in 1985 (%) 0.833 1.763 0.883 0.213 0.543 1.639 120
Employment Size in 2010 (%) 0.833 1.789 1.030 0.193 0.501 1.738 120
Occupational Certification 0.712 0.751 0.258 0.290 0.810 0.970 120
Occupational Regulation 0.103 0.079 0.228 0 0 0.380 120
Share of University Degree (%) 13.51 11.69 23.23 0.57 1.83 46.32 120
Mean Workers’ Age 40.55 40.92 1.68 38.59 40.46 42.35 120

Task Intensity and Distance

Analytical 0.069 0.064 0.075 0.010 0.039 0.181 120
Manual 0.095 0.089 0.071 0.016 0.075 0.186 120
Routine 0.151 0.153 0.079 0.062 0.131 0.271 120
Task Distance 0.499 0.497 0.296 0.061 0.541 0.870 14280
Proxy for demand shocks r 0.177 0.178 0.149 −0.037 0.217 0.326 120

Notes: The table presents summary statistics for annualised employment and occupational price changes during 1985–2010,
occupational characteristics (e.g. the share of workers with university degrees by occupation), and task content information (i.e.
analytical, manual, routine, and task distance). The last row presents the summary statistics for our proxy of demand shocks r,
defined as Routine + Manual - Analytical (see Section 5.2, especially eq. (18)). The weighted mean is weighted by each occupation’s
employment share in 1985.
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Table E.2: Summary Statistics. Annualised Employment and
Occupational Price Changes by Sub-Periods

Mean
Weighted

Std.Dev. p10 p50 p90
Autocorr.

Mean with 5-yr lag

Panel A. 1985–1990

∆e (Log empl. change) 2.59 2.28 2.57 −0.15 2.32 5.72 -
∆p (Stayers’ Wages) 2.10 2.08 1.44 0.40 1.85 4.07 -
∆p (à la Cortes, 2016) 2.38 2.38 1.19 0.99 2.23 4.08 -

Panel B. 1990–1995

∆e 0.05 0.13 2.51 −3.13 −0.25 3.62 0.56
∆p (Stayers’ Wages) 0.17 0.11 1.36 −1.33 −0.04 1.97 0.84
∆p (à la Cortes, 2016) 0.58 0.50 1.09 −0.71 0.33 2.11 0.75

Panel C. 1995–2000

∆e −0.19 −0.24 2.67 −2.87 −0.46 2.71 0.46
∆p (Stayers’ Wages) 0.48 0.52 1.79 −1.57 0.25 2.56 0.83
∆p (à la Cortes, 2016) 0.75 0.82 1.51 −0.97 0.56 2.50 0.75

Panel D. 2000–2005

∆e −1.64 −1.43 2.27 −4.49 −1.46 1.35 0.71
∆p (Stayers’ Wages) −0.24 −0.17 1.32 −1.90 −0.24 1.51 0.84
∆p (à la Cortes, 2016) 0.09 0.12 1.07 −1.15 0.01 1.54 0.82

Panel E. 2005–2010

∆e −0.27 −0.04 2.18 −3.07 −0.31 2.07 0.59
∆p (Stayers’ Wages) 0.42 0.61 1.38 −1.14 0.12 2.17 0.77
∆p (à la Cortes, 2016) 0.57 0.76 1.25 −0.88 0.22 2.25 0.82

Notes: The table presents summary statistics for annualised employment (∆e) and occupational price changes (∆p)
for different 5-year periods (i.e. 1985-1990, 1990-1995, 1995-2000, 2000-2005, and 2005-2010). The last column refers
to the autocorrelation between that period and the preceding 5-year period, e.g. the autocorrelation of employment
changes between 1990-1995 relative to employment changes in 1985-1990.
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Table E.3: Summary Statistics. Elasticity Matrix and Transition Probability Matrix

Elasticity Matrix D Transition Probability Matrix Π Matrix V Matrix DV

Own-Price Cross-Price Diagonal Off-Diagonal Diagonal Off-Diagonal Diagonal Off-Diagonal

Elasticity (djj) Elasticity (−djk × 100) Elements (πjj) Elements (πjk × 100) Elements (vjj) Elements (vjk × 100) Elements (dvjj) Elements (dvjk × 100)

Mean 0.434 0.364 0.746 0.214 0.508 −0.427 0.210 −0.177
Std. Dev. 0.128 0.939 0.090 0.660 0.079 0.916 0.035 0.319
Variance 0.016 0.882 0.008 0.436 0.006 0.839 0.001 0.102
Skewness 0.177 14.672 −0.722 17.449 1.203 −1.482 −1.090 −7.490
Kurtosis 3.634 493.494 4.393 585.670 5.881 54.605 5.565 113.507
p10 0.294 0.007 0.627 0.000 0.418 −1.096 0.174 −0.397
p50 0.430 0.111 0.754 0.046 0.501 −0.226 0.215 −0.082
p90 0.604 0.867 0.839 0.516 0.587 0.016 0.249 −0.017
p99 0.796 4.021 0.931 2.585 0.746 1.109 0.279 −0.001
Average autocorr. 5-year 0.875 0.875 0.867 0.804 0.895 0.931 0.893 0.918
Autocorrelation 30-year 0.749 0.736 0.762 0.615 0.745 0.823 0.744 0.806
Correlation with matrix D - - −0.995 −0.944 −0.961 −0.224 0.968 0.946
Correlation with matrix V −0.961 −0.224 0.934 0.246 - - −0.989 0.015
Number of Observations 120 14,280 120 14,280 120 14,280 120 14,280

Notes: The table presents summary statistics for the elasticity matrix D (Remark 1), the transition probability matrix Π, matrix V as in equation (49) and DV, where we use the equilibrium solution for θ
σ . The

average (5-year period) autocorrelation is computed by averaging autocorrelations of reported variables between 1980-1985 and 1975-1980, 1985–1990 and 1980–1985, 1990–1995 and 1985–1990, 1995–2000 and
1990–1995, and so on. The 30-year autocorrelation refers to the autocorrelation between the latest period 2005–2010 and the earliest period 1975–1980.
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Table E.4: Summary Statistics: Elasticity Components

Mean Std. Dev. Variance Min p10 p50 p90 Max Skewness

Panel A. Elasticity components in Remark 2

Aggregate Substitutability, ∑k 6=j τkCovτ

(
π̃.,j, π̃.,k

)
−0.558 0.126 0.0161 −0.918 −0.692 −0.565 −0.389 −0.202 0.131

Stationary Employment Size, τ 0.008 0.012 0.0001 0.001 0.002 0.004 0.017 0.090 4.360

Occupational Substitutability, Covτ

(
π̃.,j, π̃.,k

)
−0.429 2.418 5.848 −0.999 −0.979 −0.779 0.203 129.849 36.912

Panel B. Log components of Cross-Price Elasticity (djk)

(a) Stationary Employment Size 1.072 1.150 −0.488
(b) Occupational Substitutability + 1 1.582 2.504 −0.259
Cross-Price Elasticity: (a) + (b) 1.917 3.676 −0.479

Notes: Panel A of the table presents summary statistics for the elasticity components of the own-price and cross-price elasticity (as discussed in Remark 2). Panel B of the table
decomposes the log of the cross-price elasticity into variances of log occupational size and log occupational substitutability (plus one, to make them all positive). The number of
observations is 120 for own-price elasticity (corresponding to each occupation) and 14280 for cross-price elasticity and its components (corresponding to each occupation-pair).
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Figure E.1: Own-Price and Cross-Price Elasticity: Comparison with External Metrics

(a) Own-Price Elasticity and Occupational Characteristics (b) Cross-Price Elasticity and Task Distance

Notes: Panel (a) reports how own-price elasticity, namely djj, correlates with skill requirements across 120 occupations. Occupational certification and regulations come from Vicari (2014). Task content (analytical,
manual, and routine) are measured using BiBB, see Appendix D.2. Correlations weighted by initial employment in each occupation. Panel (b) shows the relationship (with a quadratic fit) between cross-price elasticity,
namely −djk , and occupational task distance measured as in Cortes & Gallipoli (2018).
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Table E.5. All 120 Occupations Ranked by Diagonal Elements djj,
and their Employment Size

Own-Price % Share of
Elasticity Employment

Occupations (based on German KldB 1988 Classification) djj dNE
jj 1985 2010

Physicians up to Pharmacists 0.07 0.09 0.65 0.81
Bank specialists up to building society specialists 0.13 0.14 1.79 1.98
Nurses, midwives 0.16 0.19 0.37 0.67
Dental technicians up to doll makers, model makers, taxidermists 0.18 0.22 0.32 0.24
Non-medical practitioners up to masseurs, physiotherapists and related occupations 0.19 0.29 0.13 0.22
Journalists up to librarians, archivists, museum specialists 0.20 0.26 0.28 0.35
Hairdressers up to other body care occupations 0.23 0.40 0.06 0.06
Architects, civil engineers 0.23 0.26 0.83 0.69
Soldiers, border guards, police officers up to judicial enforcers 0.27 0.27 0.38 0.51
Musicians up to scenery/sign painters 0.28 0.42 0.29 0.31
Foremen, master mechanics 0.29 0.31 1.39 0.75
Health insurance specialists (not social security) up to life, property insurance specialists 0.29 0.33 0.85 0.89
Chemical laboratory assistants up to photo laboratory assistants 0.30 0.32 0.26 0.25
Doormen, caretakers up to domestic and non-domestic servants 0.30 0.34 0.97 0.97
Type setters, compositors up to printers (flat, gravure) 0.31 0.33 0.75 0.36
Gardeners, garden workers up to forest workers, forest cultivators 0.31 0.38 1.18 1.15
Social workers, care workers up to religious care helpers 0.31 0.34 0.42 0.68
Carpenters 0.32 0.36 1.57 1.17
Tile setters up to screed, terrazzo layers 0.33 0.43 0.42 0.30
Nursing assistants 0.33 0.42 0.20 0.33
Mechanical, motor engineers 0.33 0.35 1.07 1.21
Electrical fitters, mechanics 0.33 0.38 2.78 2.76
Chemists, chemical engineers up to physicists, physics engineers, mathematicians 0.33 0.36 0.35 0.34
Bricklayers up to concrete workers 0.34 0.43 2.95 1.20
Home wardens, social work teachers 0.34 0.45 0.28 0.46
Music teachers, n.e.c up to other teachers 0.34 0.38 0.27 0.32
Electrical engineers 0.34 0.35 1.00 1.18
Entrepreneurs, managing directors, divisional managers 0.34 0.37 2.63 2.11
Data processing specialists 0.35 0.39 1.18 3.46
Members of Parliament, Ministers, elected officials up to association leaders, officials 0.36 0.43 0.33 0.48
Measurement technicians up to remaining manufacturing technicians 0.36 0.39 0.81 0.48
Painters, lacquerers (construction) 0.36 0.41 1.11 0.91
Office specialists 0.36 0.38 6.10 8.15
Dietary assistants, pharmaceutical assistants up to medical laboratory assistants 0.36 0.56 0.03 0.05
Chemical plant operatives 0.36 0.39 1.25 0.97
Navigating ships officers up to air transport occupations 0.37 0.42 0.39 0.28
Paper, cellulose makers up to other paper products makers 0.37 0.42 0.53 0.50
Artistic and audio, video occupations up to performers, professional sportsmen, auxiliary artistic occup 0.37 0.47 0.27 0.25
Motor vehicle drivers 0.38 0.42 5.57 5.39
Toolmakers up to precious metal smiths 0.38 0.40 1.13 0.80
Cost accountants, valuers up to accountants 0.38 0.42 0.82 0.51
Railway engine drivers up to street attendants 0.39 0.41 0.77 0.61
Bakery goods makers up to confectioners (pastry) 0.39 0.42 0.41 0.41
Other technicians 0.39 0.41 1.96 2.43
Commercial agents, travellers up to mobile traders 0.39 0.43 1.58 1.10
Miners up to shaped brick/concrete block makers 0.40 0.46 1.33 0.47
Roofers 0.40 0.48 0.37 0.40
Survey engineers up to other engineers 0.40 0.44 0.75 1.82
Plumbers 0.40 0.42 1.35 1.23

45



Table E.5—continued

Own-Price % Share of
Elasticity Employment

Occupations (based on German KlDB 1988 Classification) djj dNE
jj 1985 2010

Technical draughtspersons 0.40 0.43 0.60 0.48
Biological specialists up to physical and mathematical specialists 0.40 0.45 0.30 0.20
Mechanical engineering technicians 0.41 0.41 0.91 0.82
Butchers up to fish processing operatives 0.41 0.45 0.65 0.47
Turners 0.41 0.41 0.97 0.73
Generator machinists up to construction machine attendants 0.42 0.45 1.42 0.73
Goods examiners, sorters, n.e.c 0.42 0.48 0.90 0.58
Ceramics workers up to glass processors, glass fishers 0.42 0.46 0.40 0.22
Agricultural machinery repairers up to precision mechanics 0.42 0.48 0.53 0.54
Machine attendants, machinists’ helpers up to machine setters (no further specification) 0.43 0.46 0.58 0.51
Stucco workers, plasterers, rough casters up to insulators, proofers 0.43 0.48 0.53 0.32
Metal grinders up to other metal-cutting occupations 0.43 0.47 0.50 0.35
Cooks up to ready-to-serve meals, fruit, vegetable preservers, preparers 0.43 0.53 0.62 1.05
Spinners, fibre preparers up to skin processing operatives 0.43 0.48 0.56 0.19
Motor vehicle repairers 0.43 0.45 1.63 1.65
Goods painters, lacquerers up to ceramics/glass painters 0.44 0.47 0.50 0.37
Chemical laboratory workers up to vulcanisers 0.44 0.49 0.41 0.30
Cutters up to textile finishers 0.44 0.47 0.24 0.08
Cashiers 0.44 0.40 0.10 0.07
Street cleaners, refuse disposers up to machinery, container cleaners and related occupations 0.44 0.48 0.63 0.72
Drillers up to borers 0.44 0.48 0.59 0.41
Iron, metal producers, melters up to semi-finished product fettlers and other mould casting occupations 0.45 0.52 0.96 0.60
Electrical engineering technicians up to building technicians 0.45 0.45 1.39 1.47
Wine coopers up to sugar, sweets, ice-cream makers 0.45 0.51 0.46 0.37
Room equippers up to other wood and sports equipment makers 0.45 0.47 0.39 0.27
Plant fitters, maintenance fitters up to steel structure fitters, metal shipbuilders 0.45 0.48 2.18 1.36
Carpenters up to scaffolders 0.46 0.58 0.63 0.49
Postmasters up to telephonists 0.46 0.54 0.30 0.36
Forwarding business dealers 0.46 0.51 0.42 0.47
Engine fitters 0.47 0.50 2.04 1.43
Farmers up to animal keepers and related occupations 0.47 0.48 0.49 0.42
Welders, oxy-acetylene cutters 0.47 0.50 0.72 0.51
Telecommunications mechanics, craftsmen up to radio, sound equipment mechanics 0.47 0.47 0.82 0.45
Steel smiths up to pipe, tubing fitters 0.47 0.54 0.58 0.34
Wood preparers up to basket and wicker products makers 0.48 0.52 0.48 0.26
Office auxiliary workers 0.49 0.52 0.34 0.31
Sheet metal workers 0.49 0.57 0.40 0.36
Wholesale and retail trade buyers, buyers 0.51 0.55 1.65 1.88
Factory guards, detectives up to watchmen, custodians 0.51 0.55 0.67 0.67
Special printers, screeners up to printer’s assistants 0.51 0.54 0.35 0.21
Sheet metal pressers, drawers, stampers up to other metal moulders (non-cutting deformation) 0.51 0.53 0.53 0.32
Paviours up to road makers 0.52 0.58 0.49 0.32
Tourism specialists up to cash collectors, cashiers, ticket sellers, inspectors 0.53 0.58 0.49 0.65
Tracklayers up to other civil engineering workers 0.53 0.58 0.78 0.32
Metal polishers up to metal bonders and other metal connectors 0.53 0.57 0.44 0.28
Management consultants, organisers up to chartered accountants, tax advisers 0.53 0.51 0.41 1.29
Transportation equipment drivers 0.53 0.57 0.52 0.45
Warehouse managers, warehousemen 0.54 0.57 2.21 1.58
Housekeeping managers up to employees by household cheque procedure 0.54 0.69 0.05 0.08
University teachers, lecturers at higher technical schools up to technical, vocational, factory instructors 0.54 0.61 0.38 0.50
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Table E.5—continued

Own-Price % Share of
Elasticity Employment

Occupations (based on German KlDB 1988 Classification) djj dNE
jj 1985 2010

Economic and social scientists, statisticians up to scientists 0.56 0.66 0.35 0.57
Stowers, furniture packers up to stores/transport workers 0.56 0.61 1.95 2.91
Stenographers, shorthand-typists, typists up to data typists 0.56 0.59 0.11 0.12
Other mechanics up to watch-, clockmakers 0.56 0.61 0.45 0.79
Electrical appliance fitters 0.57 0.59 0.43 0.60
Plastics processors 0.57 0.62 0.67 0.86
Packagers, goods receivers, despatchers 0.57 0.60 0.86 0.92
Locksmiths, not specified up to sheet metal, plastics fitters 0.59 0.61 1.32 1.54
Salespersons 0.60 0.64 1.57 2.06
Laundry workers, pressers up to textile cleaners, dyers, and dry cleaners 0.60 0.65 0.06 0.06
Building labourer, general up to other building labourers, building assistants 0.61 0.71 1.26 0.97
Electrical appliance, electrical parts assemblers 0.62 0.64 0.22 0.20
Other assemblers 0.63 0.65 0.31 0.81
Household cleaners up to glass, building cleaners 0.63 0.75 0.26 0.41
Publishing house dealers, booksellers up to service-station attendants 0.63 0.67 0.17 0.13
Restaurant, inn, bar keepers, hotel proprietors, catering trade dealers up to waiters, stewards 0.64 0.65 0.35 0.58
Metalworkers (no further specification) 0.67 0.69 1.07 1.38
Assistants (no further specification) 0.71 0.74 0.75 3.00
Ancillary hospitality workers 0.74 0.81 0.21 0.12
Medical receptionists 0.80 0.46 0.01 0.02
Nursery teachers, child nurses 0.80 0.75 0.02 0.09

Notes: The table provides diagonal elements of the elasticity matrix D, not accounting (column (1), our baseline specification) and accounting for
unemployment transitions (column (2), an extension of our model discussed in Appendix B.3). Columns (3)–(4) report the occupation’s percentage
share of employment in 1985 and 2010, respectively. The IAB translates Uebrige Gaestebetreuer as ‘Other attending on guests’. We instead translate
as ‘ancillary hospitality workers’.
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E.2 Occupational Changes over 1985–2010

Figure 2b in the main text splits occupations at the median of djj and draws two separate
regression lines. Figure E.2 below alternatively splits occupations into djj quartiles. The
resulting four regression lines are visibly ranked by predicted labour supply elasticity,
with the lowest djj quartile (in blue colour) exhibiting the steepest relation of employment
vs prices, the highest djj quartile (in red colour) exhibiting the flattest relationship, and
the middle quartiles (in green and orange) ranked in between.

Figure E.2: Occupational Price and Employment Changes
by Own-Price Elasticity djj Quartiles

β=0.680, CI=[0.437, 0.924]
β=0.503, CI=[0.222, 0.783]
β=0.395, CI=[0.122, 0.668]
β=0.307, CI=[0.045, 0.568]
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2nd quartile Own-Price Elasticity
3rd quartile Own-Price Elasticity
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Notes: The figure shows the lines from an occupation-size weighted regression of price change on
employment change, split by occupations in the lowest (blue), second (green), third (orange), and highest
(red) quartile of own-price elasticity djj. β refers to the slope coefficient, and CI stands for the 95%
confidence interval. Marker size indicates the baseline employment (in 1985) in each occupation.
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Table E.6 considers the case in which own-occupation effects are not further split into
a fixed relationship and the additional effect of the heterogeneity in elasticities djj. That
is, it directly implements an unrestricted and a restricted version of eq. (9). Note that the
coefficient in column (2) of the table is negative because of omitted variable bias (OVB).
In the short regression only on cross-effects of column (2), ∆ej = θ2 ∑k 6=j djk∆pk + ε j,

this leads to an OVB for θ2 of θ1
Cov(djj∆pj,∑k 6=j djk∆pk)

Var(∑k 6=j djk∆pk)
. Considering these covariances as

taken over random draws of price changes, for given j, k and djk, the numerator in this
expression can be rewritten as djj ∑k 6=j djkCov(∆pj, ∆pk). Since djk is large negative for
highly substitutable occupations, and close to zero for occupations that are further apart,
and because prices for substitutable occupations tended to move in the same direction,
then djj ∑k 6=j djkCov(∆pj, ∆pk)� 0, which signs the OVB.

Table E.6: Determinants of Employment Changes: Own- and Cross-Effects (OLS)

Dependent Variable: ∆ej

(1) (2) (3) (4)

own effect: djj∆pj 1.81 4.10
(0.32) (0.88) 4.15

total cross effect: ∑k 6=j djk∆pk −2.14 4.03 (0.70)
(0.59) (1.29)

R-squared 0.310 0.163 0.394 0.394
Number of occupations 120 120 120 120

Notes: The table presents the unweighted estimates from different versions of eq. (9). Regressor in
column (4) is ∑k djk∆pk, i.e. corresponding to the full model and as in the main text. All regressions
include a constant. Observations weighted by occupation j’s initial employment size. Period 1985–
2010. Standard errors in parentheses; all coefficients shown are significant at the 1% level.

E.3 Identification of the Labour Supply Parameter θ

E.3.1 Estimation Strategy from the Model Equilibrium

Equation (53) is our basic regression equation (eq. (15) in the main text), extending eq. (8)
to include supply shocks. The logic of requiring the IV is that, given that ∆s is not ob-
served, then an OLS regression of ∆ej on dj∆p will not work, because dj∆p is correlated
with these shocks.

Suppose we have a variable, which we denote rj, that is correlated with demand shifters

∆bj ≡ ln
β j

1−β j
but not with supply shifters ∆sj. In matrix notation:
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∆b = κ1N + λr + η̄

where κ and λ are scalars, 1N is a vector of ones and η̄ is a vector of shocks.

Then, from eq. (51):

∆p ≈ V∆b + S∆s

=⇒ ∆p ≈ λVr + ε̄ + S∆s

=⇒ D∆p ≈ λDVr + Dε̄ + DS∆s

= λD
(

θ

σ
D + I

)−1

(I −W) r + Dε̄ + DS∆s

= λD
(

θ

σ
D + I

)−1

r̃ + Dε̄ + DS∆s

where the second line follows from the first because, if vij is the i, jth element of V, then

∑j vij = 0. Vector r̃ is the employment-share-weighted-demeaned version of r and finally,
ε̄ ≡ Vη̄. This is relationship (17) in the main text.

In terms of regressing ∆ej on the vector of price changes, this implies that an appropri-
ate instrument for dj∆p is djVr.

Implementing this model requires having some information on the demand elasticity
σ. We choose a calibration based on estimates from the literature. Based on a range of
σ ∈ [1.81, 2.10] from Burstein et al. (2019) and initial information on the potential value
of θ from Table 2, we calibrate θ

σ = 2.3 as a benchmark throughout the paper. Table E.7
shows the robustness of our results to different values of θ

σ .

Similar to Figure 3a in the main text, we display the relationship between rj and ∆ej in
Figure E.3 below. As expected, the regression line is slightly steeper among more elastic
occupations, which react to a demand shock relatively more in terms of employment.

Table E.7: Robustness to Different Values of θ
σ

θ
σ = 0.001 θ

σ = 0.1 θ
σ = 1 θ

σ = 1.5 θ
σ = 2 θ

σ = 2.3 θ
σ = 2.5 θ

σ = 3 θ
σ = 4

IV estimate for θ 5.20 5.19 4.95 4.87 4.81 4.78 4.76 4.72 4.66
Implied σ 5200 519 4.95 3.25 2.41 2.08 1.90 1.57 1.17

Notes: The table shows the robustness of our IV estimate to different values of θ
σ . The second row reports the implied σ. The

case highlighted in blue ( θ
σ = 2.3) is the benchmark used throughout the paper.
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Figure E.3: IV Reduced-Form for Employment
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Initial task content: routine + manual - analytical
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Notes: The figure shows reduced-form regressions of occupations’ employment changes on their initial task
contents rj. Colour codes and linear regression lines are split by occupations below (blue, inelastic) and
above (red, elastic) the median own-price elasticity (djj). β and se refer to the slope coefficient and standard
error, respectively. Marker size indicates the baseline employment (in 1985) in each occupation.

E.3.2 OLS versus IV Estimates

We wish to estimate eq. (15), which is reproduced here for convenience:

∆e ≈ θD∆p + ∆s

Allowing for a regression constant, we stack parameters into vector β = [α θ]′ and
regressors into N × 2 matrix X = [1N D∆p], where 1N is a vector of ones. The OLS
estimate of β is then

β̂OLS = (X′X)−1X′∆e = β + (X′X)−1X′∆s.
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From (13) and (14), we note that

D∆p = DV(∆b− 1
σ

∆s)

and in the data the relevant covariances and variances are quite similar with Cov(∆bj, ∆sj) =

0.000101 and 1
σ Var(∆sj) = 0.000128, respectively. It turns out that also the weighting

matrix DV does not change this near-equivalence such that (D∆p)′∆s = ∆b′V′D′s −
1
σ ∆s′V′D′s is only slightly negative (close to zero). Since ∆s is size-weighted mean zero,
also 1′N∆s ≈ 0 such that

(X′X)−1X′∆s ≈ [0 0]′

That is, there happens to be little bias in the OLS estimate.

Therefore, we get from this that
θ̂OLS ≈ θ

where, by construction, true θ is identified in (19) from the instrumental variables strategy
under the relevant IV assumptions. Put differently, θ̂OLS− θ = 4.15− 4.78 = −0.63, which
is negative but small relative to the absolute value of θ.

E.3.3 Alternative Estimation from Changing Choice Probabilities

As a second approach, we implement an identification strategy based on changing choice
probabilities over time. Building on Cortes & Gallipoli (2018), we rewrite our main eq. (2)
to obtain relative switching probabilities as follows:

log
(

πij,t

πii,t

)
= θpj,t + aij,t − (θpi,t + aii,t)

where
πij,t
πii,t

are the relative switching probabilities, θpj,t is the general pecuniary payoff to
occupation j at time t, and aij,t captures potential pecuniary and non-pecuniary costs of
selecting occupation j at time t for individuals initially working in occupation i.

Assume that aij,t = aij,t−1 + uij,t evolve randomly over time with uij,t i.i.d. normally
distributed, then we can rewrite the previous equation as

4 log
(

πij,t

πii,t

)
= θ

(
4pj,t −4pi,t

)
+ εij,t (59)

where the regression error εij,t ≡ uij,t − uii,t is also i.i.d. normally distributed. There are
two interpretations of the error term: If this reflects measurement errors in the choice
probabilities (e.g. due to sampling), OLS regression is consistent. If the εij partly also
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reflect changes in the underlying relative switching costs, and thereby potential endo-
geneity, we will need an instrument for the price changes. Subtracting the main diagonal
elements (i.e. cases where i = j), we end up with N × (N − 1) observations. In our
application, this means 120x119=14280. Following our main analysis, the change over
time here refers to the 25 years between 1985 and 2010.60 To calculate πij, we use 5 yearly
flows during a period of 10 years. That is, the initial πij is based on 5-yearly flows during
1975–1985, whereas the end period πij is based on 5-yearly flows during 2000–2010.

Columns (1)–(2) of Table E.8 show the results (OLS and IV, respectively) from the
estimation of eq. (59), where we replace the zeros with the smallest value observed for
πij.61 We instrument for relative price changes using initial task content, i.e. rj,t0 − ri,t0

where rj,t0 = (routinej,t0 + manualj,t0)− analyticalj,t0 captures the net routineness of occu-
pation j at the baseline period t0 (measured in the late 1970s, early 1980s).62 Alternatively,
column (3) shows the IV estimate for a specification where observations with zero occupa-
tional flows are dropped from the sample. In all cases, standard errors are clustered at the
occupation level (i.e. 120 clusters). The table shows that occupational choice probabilities
react to changing prices. Also, the estimates for θ, which represents the wage preference,
are overall similar to the ones reported in the main analysis.

Table E.8: Results for Alternative Way of Estimating θ

Zeros replaced No Zeros
OLS IV IV

Wage preference θ 7.12 4.03 3.11
(1.84) (2.54) (2.23)

First-stage coeff (se) -0.064 (0.003) -0.056 (0.003)
Observations 14280 14280 7530

Note: The table presents the results from the estimation of equation (59)
over the period 1985-2010. Observations are at the occupation pair level.
Standard errors are clustered at the occupation level in all specifications.

60The results are similar (statistically more precise) if we consider five 5-year sub-periods instead (e.g.
1985–1990, 1990–1995, and so on).

61Here we follow the literature on estimating gravity equations (see, among others, Head & Mayer, 2013;
Cortes & Gallipoli, 2018).

62Instrumenting relative price changes using the model-based IV (i.e. Vr) leads to downward biases in
the estimates (the division bias) as πij appears on both sides of the equation (Borjas, 1980).
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F Model-Based Decomposition and Counterfactuals

This section develops the counterfactual elasticity matrices introduced in Section 6.1,
relating them to the theory and empirics used in prior literature. We then report additional
empirical results on the model solution and counterfactual analyses in Section 6.2.

F.1 Backing Out the Shocks

In Section 6, we use the model solution to construct counterfactuals. Here we show how
to obtain the supply and demand shocks for this.

From (53), we immediately see that

∆s ≈ ∆e− θD∆p (60)

Similarly, from (51)

∆p ≈ V∆b + S∆s

=⇒ σ (I −W)∆p ≈ σ (I −W)V∆b + σ (I −W) S∆s

Summing with (52) this implies that

∆e + σ (I −W)∆p ≈ (σ (I −W)V + θDV)∆b

= (σ (I −W) + θD)V∆b

= σ (I −W)∆b

where the last line follows from equation (48). Rearranging gives:

(I −W)∆b ≈ 1
σ

∆e + (I −W)∆p

Given the definition of the bj = ln
β j

1−β j
as logs of relative demands, their (marginal)

changes have mean of zero when weighted by employment shares. So we can write

∆b ≈ 1
σ

∆e + (I −W)∆p (61)

without loss of generality. Equations (60)–(61) can be used to construct the shock vec-
tors. Note that in (61) the term (I −W) is retained to de-mean any given vector of price
changes. This term is not required in (60) because the D matrix de-means the vector
automatically. Additionally, ∆e is (weighted) mean zero by construction.

54



F.2 Counterfactual Elasticities

F.2.1 Heterogeneous Own-Price Elasticities Only

The counterfactual matrix Down considers the case that occupations’ aggregate (own-
price) elasticities vary but their substitutabilities with other occupations are homoge-
neous. In particular, we have that Covτ

(
π̃.,j, π̃.,k

)
= c ∈ [−1, 0] in eq. (6) and Varτ

(
π̃.,j
)
=

−1−τj
τj

c in eq. (7). The main diagonal elements of Down are the actual own-price elastici-
ties, whereas cross-price elasticities reduce to size-weighted fractions of the on-diagonals
−τk
1−τj

djj.63

A specific version of this counterfactual with c = 0 can be derived from setups com-
monly used in the literature on firms, even if their focus is on studying heterogeneity of
(own-price) labour supply elasticities facing employers. Consistent with, among many
others, Card et al. (2018); Lamadon et al. (2022); Berger et al. (2022), one could take a
simpler version of individuals’ indirect utility eq. (1) as follows:64

uj(ω) = θpj + aj + ε j(ω), (62)

Note that, in this case, switching costs aj do not depend on the source employer i.

We derive the versions of Remarks 1–2, which result from eq. (62), by noting that the
choice probability πj =

exp(θpj+aj)

∑N
k=1 exp(θpk+ak)

also no longer depends on sending occupation i.
For occupation sizes, we obtain:

Ej (p) = ∑i τiπj = πj

= τj if p = p∗

since ∑i τi = 1 in the first line and then πj = τ j in baseline stationary equilibrium.

From this, we obtain π̃i,j =
πj
τj

= 1 for all i, j and Covτ

(
π̃.,j, π̃.,k

)
= Varτ

(
π̃.,j
)
= 0.

Without combination-specific access costs, occupations are just all equally substitutable
from a labour supply perspective. Remark 2 then lead to

djk =

1− τj if j = k

−τk otherwise

63Forcing fully homogeneous cross-elasticities (i.e.
−djj
N−1 ) yields very similar empirical results to those

shown below. In both cases, Down is still a valid elasticity matrix, since djj = −∑k 6=j dkj .
64In Berger et al. (2022) or Lamadon et al. (2022), the substitutability between employers within a market

is fixed by what corresponds to our parameter θ. Across predefined markets (region-industries) is an extra
substitutability parameter, which leads to a nested CES or logit structure. In contrast, we allow for flexibly
heterogeneous occupational substitutabilities as governed by job flows in the data.
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which is the result corresponding to Remark 1. The economic model with aij = aj thus
generates a version of our matrix with homogeneous occupational substitutabilities Down,
and with c = 0 as mentioned above.

F.2.2 Fully Homogeneous Labour Supplies

The second counterfactual imposes completely homogeneous labour supply elasticities.
The main diagonal elements of matrix Dhom become d̄diag = ∑j τjdjj and cross-price elas-

ticities a constant fraction of it
−d̄diag
N−1 .65 This counterfactual is consistent with specifications

in the empirical literature that regress occupations’ log employment changes on their log
wage changes (e.g. Autor et al., 2008; Dustmann et al., 2009; Cavaglia & Etheridge, 2020;
Böhm et al., 2024, or column (1) of Table 2). This is formalised in terms of counterfactuals
as follows:

∆ej = θ ∑N
k=1 djk∆pk

⇒ ∆ej,c f = θ̃∆pj − θ̃
(

1
N ∑N

k=1 ∆pk

)
where counterfactual employment changes in the second line are obtained by replacing

djk by
−d̄diag
N−1 . The first θ̃ ≡ N

N−1 d̄diagθ is a single slope parameter on the price change and
the second term becomes a regression constant that reflects average wage growth in the
economy. In the equilibrium model (15), there is additionally an error term ∆sj, which
reflects supply shocks. Alternatively, as in the main text, we can normalise ∆p to have a
mean of zero without loss of generality, in which case ∆ej,c f = θ̃∆pj.

The economic model would generate a specific version of Dhom with d̄diag = N−1
N and

θ̃ = θ if, in addition to substitutabilities, all occupation sizes are also the same. That is,
when θpj + aj = const. in eq. (62).

F.3 Further Results on Decomposition and Counterfactuals

This section complements the decomposition and counterfactual analyses in Section 6.

Figure F.1 shows the impact of including labour supply heterogeneity in a counterfac-
tual with no supply shocks (∆so f f = 0). Figure F.1a, same as Figure 4a, starts by consid-
ering the case with only demand shocks in the fully homogeneous model (i.e. Dhom). In
this case, all occupational changes induced by demand shocks ∆b run perfectly along a
single supply curve. Figure F.1b then introduces both own- and cross-occupation effects
keeping ∆so f f = 0. Relative to F.1a, variation around the regression line increases, such
that the R-squared reduces to 69%. The locus of points moves on average counterclockwise
and the slope of the regression line increases from 0.52 to 0.86. These changes show the

65Empirical results below do not change if we size-weight the cross-price elasticities as −τk
(1−τj)

d̄diag.
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importance of allowing for supply heterogeneity (and especially cross-occupation effects,
which effectively reduce elasticities) to explain the data.

Figure F.2 plots the distribution of demand and supply shocks by occupation, exhibit-
ing a generally positive correlation between the two (0.22). It shows that, e.g. occupations
such as Assistants or Data processors experienced positive demand and supply shocks,
while occupations like Bricklayers suffered negative demand and supply shocks. Another
interesting example is the occupation Physicians and pharmacists, which experienced a
(large) positive demand shock but no supply shock.

Figure F.3 and Figure F.4 display employment and wage changes along the occupa-
tional wage distribution (in the initial year 1985), for the full model and the fully homo-
geneous (counterfactual) model, respectively. We highlight some key points:

First, our period of analysis is characterised by an increase in wage inequality and
employment polarisation. This is represented in Figure F.3 by the dashed black line, which
reproduces estimates from the raw data. This evidence is consistent with Dustmann et al.
(2009), among others. Similar to them, we find that for occupations in the upper half of the
wage distribution, employment and wage changes are positively correlated, while they
are negatively correlated for occupations in the lower half.

Second, a key strength of our framework is that it allows us to decompose the contri-
bution of demand and supply shocks to the observed wage and employment changes.
This decomposition, which follows from equations (13) and (14) in Section 5, reveals the
distinct roles played by demand and supply shocks. Demand shocks, depicted in grey,
emerge as the primary drivers behind both wage and employment changes. They are,
however, more important in explaining wage changes than in explaining employment
changes. For the latter, as we extensively discuss in Section 6.2 and Table 3, supply shocks
and supply heterogeneity also play a role.

Finally, and related to the last point, switching off supply heterogeneity and consid-
ering counterfactual outcomes from the fully homogeneous model (i.e. comparing Fig-
ure F.4 to F.3) result in smaller wage changes and larger employment changes across
occupations. The intuition for this is, as we discuss in the main text, that heterogeneous
cross effects make occupations less price elastic. As such, realised labour supply elastici-
ties captured by the full model are lower than those captured in the homogeneous model.
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Figure F.1: Counterfactual Changes of Prices and Employment (II)

(a) Demand shocks only; Fully-homog. supply
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(b) ... Fully heterogeneous supply
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Notes: The figure shows occupational price and employment changes for different manipulations of ∆s and the elasticity matrix D. In
F.1a, both supply shocks and heterogeneity in D are switched off (i.e. ∆s = ∆so f f = 0 and Dhom), leaving only demand shocks. F.1b
introduces heterogeneous own- and cross-price elasticities (i.e. full matrix D is used). For the exact description of the counterfactuals,
see Section 6. The OLS with slope coefficients, standard errors, and R-squared is shown for each panel. The regression line in F.1a is
repeated as green-dashed in both panels. Marker size indicates the baseline employment (in 1985) in each occupation.

Figure F.2: Distribution of Demand and Supply Shocks by Occupation

Notes: The figure shows the distribution of demand and supply shocks by occupation. Marker size indicates the baseline employment
(in 1985) in each occupation. The standard deviations and correlation of demand and supply shocks are reported in the figure.

58



Figure F.3: Contribution of Demand and Supply Shocks (Full Model)

(a) ... to Wage Changes (b) ... to Employment Changes

Notes: The left panel F.3a shows the contributions to price changes of demand and supply shocks across the occupational wage
distribution for the full model. Each point represents the relevant decile of occupations ranked by mean wages in 1985. Changes
are given by V∆b and − 1

σ V∆s, as in eq. (13). The right panel F.3b shows the contributions to employment changes of demand and
supply shocks across the wage distribution for the full model. These are given by θDV∆b and V∆s, as in eq. (14). For supply, a
quadratic is used for the smoothed fit. For demand, a fractional cubic is used.

Figure F.4: Contribution of Demand and Supply Shocks (Fully Homogeneous Model)

(a) ... to Wage Changes (b) ... to Employment Changes

Notes: The left panel F.3a shows the contributions to price changes of demand and supply shocks across the wage distribution for the
fully homogeneous model. Each point represents the relevant decile of occupations ranked by mean wages in 1985. Changes are given

by Vhom∆b and− 1
σ Vhom∆s, parallel to eq. (13) and where Vhom =

(
θ
σ Dhom + I

)−1
(I −W). The right panel F.3b shows the contributions

to employment changes of demand and supply shocks. These are given by θDhomVhom∆b and Vhom∆s, parallel to eq. (14). For supply,
a quadratic is used for the smoothed fit. For demand, a fractional cubic is used.
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G Robustness: Supplementary Material

In this section, we present details on the robustness checks of the main findings. We first
study changes in occupational prices and employment by five-year sub-period. Second,
we introduce an alternative method for estimating changes in occupational prices.

G.1 Analysis in Five-Year Sub-Periods

In the main analysis, we study changes in occupational prices and employment over the
period 1985–2010. In this section, we split this longer interval into five-year sub-periods
(1985–1990, 1990–1995, 1995–2000, 2000–2005, and 2005–2010), to explore robustness and
potential temporal heterogeneity.

The pooled panel sample containing 600 observations (120 occupations× 5 sub-periods)
is used to estimate an extended version of eq. (16):

∆ejt = α + θdjj∆pjt + θ ∑
k 6=j

djk∆pkt + δt (+γj) + ε jt (63)

where t refers to a five-year period, and the matrix of elasticities D can be obtained
using the baseline period 1975–1984 as previously or using the lagged matrix from the
preceding five-year period (e.g. for the period 1995–2000, the matrix of elasticity is com-
puted using employment transitions over the period 1990–1995).66 The period fixed ef-
fects (δt) capture unobserved time-specific shocks or trends that affect all occupations
uniformly within each sub-period. A more demanding specification additionally includes
occupation fixed effects (γj), removing average occupational growth over 1985–2010 and
identifying only from accelerations/decelerations in the respective sub-period.

Figure G.1 plots prices against employment growth for the pooled sample of 600
occupation–sub-periods (G.1a) as well as separately for each sub-period (G.1b), analo-
gous to the main text Figure 2b. The previous finding is strengthened in the sense that
each regression slope for above-median own-price elastic occupations (in blue) is flatter
than any slope for below-median own-price inelastic occupations (in red). Similarly, Ta-
ble G.1 shows that linear OLS and IV estimation on the pooled data essentially reproduce
the results obtained in the main text. Even in estimations with occupation fixed effects
(γj), which only use deviations of price changes from their 1985–2010 averages interacted
with the price elasticities, results are broadly similar to before.67 In sum, estimation in a
series of shorter intervals shows that the role of occupational price elasticities persists,

66Consistent with the high autocorrelation of matrix D over time discussed in Table E.3, results are
similar whether we use the baseline or the lagged matrix.

67Note that we can only do the OLS for this as our instrument does not vary by period.
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with some evidence that even acceleration/deceleration of price growth in different sub-
periods is translated into employment growth according to these elasticities.

G.2 Alternative Occupational Price Estimation

The main results in Section 5 use wage changes of occupation stayers’ (i.e. workers who
do not switch occupations from one year to the next) as the main estimate of changes
in occupational prices. This accounts flexibly for the selection into occupations based
on observable and unobservable individual characteristics. In this section, we use an
alternative price estimation that also controls for the occupation-specific effect of time-
varying observable characteristics on wages.

In this approach, originally proposed by Cortes (2016), observed log wages for indi-
vidual ω in period t are modeled by

ln wt(ω) = ∑
j

Zjt(ω)ϕjt + ∑
j

Zjt(ω)Xt(ω)ζ j + ∑
j

Zjt(ω)κj(ω) + µt(ω) (64)

where Zjt(ω) is an occupation selection indicator that equals one if individual ω chooses
occupation j at time t, ϕjt are occupation-time fixed effects, and κj(ω) are occupation-spell
fixed effects for each individual. The model allows for time-varying observable skills (e.g.
due to general human capital evolving over the life cycle) by including in the control vari-
ables Xt a set of dummies for five-year age bins interacted with occupation dummies.68

Finally, µt(ω) reflects classical measurement error, which is orthogonal to Zjt(ω). It may
be interpreted as a temporary idiosyncratic shock that affects the wages of individual ω

in period t regardless of their occupational choice. The estimated occupation-year fixed
effects (ϕjt) are the parameters of interest, which allow studying changes over time in
occupation’s log prices (∆pj = ϕj,2010 − ϕj,1985).

The results using occupational prices à la Cortes (2016) turn out similar to our main re-
sults. The main figures of the paper using this alternative measure for changes in occupa-
tional prices are replicated in Figure G.2. The main regression results, shown in Table G.2,
including those when accounting for non-employment transitions, turn out very similar.
Our findings remain consistent and robust to this alternative price estimation.

68The bins are for ages 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, and 55–59.

61



Table G.1: Full Model Pooled Sub-Periods (OLS–IV)

Dependent Variable: ∆ej

Unrestricted Restricted
model model

(1) (2) (3) (4)

fixed relationship: ddiag∆pj
3.90
(0.67)

heterogeneous
(djj − ddiag)∆pj

4.04 4.01 3.18 4.17
own effect: (0.83) (0.56) (0.51) (1.32)

total cross effect: ∑k 6=j djk∆pk
3.69
(1.09)

R-squared 0.492 0.491 0.791 -
Number of occupations 600 600 600 600
Estimation method OLS OLS FE IV
F-statistic 1st Stage - - - 13

Notes: The table presents the estimates from different versions of eq. (63). Pooled panel sample containing
600 observations (120 occupations × 5 sub-periods). Sub-periods are: 1985–1990, 1990–1995, 1995–2000,
2000–2005, and 2005–2010. All regressions include dummies for the respective five-year estimation
period. The regressor in columns (2)–(4) is the full ∑k djk∆pk = dj∆p and in column (4) this is
instrumented by djVr (see eq. (19)). Column (3) uses occupation fixed effects. Observations weighted by
occupation j’s initial employment size (e.g. for the period 1985-1990, this is 1985; for the 2000-2005 period,
this is 2000, and so on). Standard errors clustered at the occupation level in parentheses; all coefficients
shown are significant at the 1% level.

62



Figure G.1: Occupational Price and Employment Changes (by Own-Price Elasticity Median Split)

(a) Pooled Sub-Periods. 600 Occupations × Sub-Periods

β=0.522, CI=[0.461, 0.584]
β=0.287, CI=[0.217, 0.356]

-.04

-.02

0

.02

.04

.06

Ch
an

ge
 in

 O
cc

. P
ric

es
 (a

nn
ua

lis
ed

)

-.1 -.06 -.02 .02 .06 .1 .14
 

Change in Log Employment (annualised)

Below Median Own-Price Elasticity
Above Median Own-Price Elasticity

(b) By Sub-Period
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Notes: The figure shows the lines from an occupation-size weighted regression of price change on employment change, split by occupations below (blue, inelastic) and above (red, elastic) the median own-price elasticity
(djj). Figure G.1a shows this for the pooled sample of 600 occupation–sub-periods. Figure G.1b shows this separately for each sub-period. Sub-periods are: 1985–1990, 1990–1995, 1995–2000, 2000–2005, and 2005–2010.
β refers to the slope coefficient and CI stands for the 95% confidence interval. Marker size indicates the baseline employment in each occupation.
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Figure G.2: Occupational Prices à la Cortes (2016) and Employment

(a) Overall Relationship
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(b) By djj Median Split
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(c) By djj Quartiles
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(d) IV Second-Stage: Inverse Supply Curve
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(e) Pooled Sub-Periods. By djj median split
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(f) Sub-Periods. By djj median split
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Notes: Panel (a) shows the line from an occupation-size weighted regression of price change on employment change. Panel (b) shows
a split by occupations below (blue, inelastic) and above (red, elastic) the median own-price elasticity djj. Panel (c) shows a split by
occupations in the lowest (blue), second (green), third (orange), and highest (red) quartile of djj. Panel (d) shows, by djj median
split, the IV-2SLS second-stage of occupations’ price on employment changes using initial task contents as the instrument. Panel (e)
shows the overall regression line for the pooled 600 occupations × sub-periods case. Finally, panel (f) splits by djj median the pooled
occupations × sub-periods sample. β refers to the slope coefficient, CI to the 95% confidence interval, se refers to standard error, and
R-sq stands for R-squared of the regression. Marker size indicates the baseline employment in each occupation.
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Table G.2: Occupational Prices à la Cortes (2016) and Changes in Employment. Main Results.

Dependent Variable: ∆ej

Unrestricted Model Restricted Full Model

(1) (2) (3) (4) (5) (6) (7)

fixed relationship: ddiag∆pj
4.46
(1.30)

heterogeneous
(djj − ddiag)∆pj

4.65 5.18 6.48 4.76 5.45 4.43 4.92
own effect: (1.73) (1.15) (2.12) (1.10) (1.78) (0.70) (1.56)

total cross effect: ∑k 6=j djk∆pk
3.23
(1.81)

R-squared 0.371 0.350 - 0.402 - 0.486 -
Number of occupations 120 120 120 120 120 600 600
Estimation method OLS OLS IV OLS IV OLS IV
F-stat 1st Stage - - 10 - 23 - 11
Accounting for non-employment transitions no no no yes yes no no
Analysis pooling five-year sub-periods no no no no no yes yes

Notes: Regressor in columns (2)–(7) is ∑k djk∆pk, i.e. corresponding to the full model. In columns (3), (5), and (7), regressor ∑k djk∆pk = dj∆p is
instrumented by djVr (see eq. (19)). In columns (4)–(5), we consider M = 3 different non-employment sectors: unemployment, out of the labour
force (during the career and including part-time as well as employment with benefit receipt), and entry or exit due to newly joining the labour
force at age 25–32 or retiring at age 52–59. In columns (6)–(7), we use the pooled panel sample containing 600 observations (120 occupations × 5
sub-periods). Sub-periods are: 1985–1990, 1990–1995, 1995–2000, 2000–2005, and 2005–2010. These regressions include dummies for the respective
five-year estimation period and cluster standard errors at the occupation level. Observations weighted by occupation j’s initial employment size.
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H Further Analysis on the Future Projections

This section presents further analysis to complement the one in Section 7.

H.1 Descriptive Statistics in the Prediction Sample

As discussed in the main text, we use our prediction sample during 2012–2021 as well as
the estimated aggregate parameters (θ = 4.8 and σ = 2.10) to construct new matrices D
(i.e. the elasticity matrix) and V (i.e. the spillover matrix). Parallel to the historical period,
we select workers aged 25–59 but now include females, Eastern Germans, and part-time
workers in the sample.69 The latter are weighted to one-half of a full-time worker in
the construction of all statistics. The prediction sample also features a new classification
system (KldB 2010) of 126 occupations with more recent job titles and finer detail in rising
occupational fields such as information technology, education, and health.

We supplement these data with estimates about what share of tasks in each occupa-
tion could in principle be replaced with current frontier technologies. The underlying
information is from a triennial survey of experts run by the IAB and we use the most
recent available wave in 2022. Based on it, the IAB also publishes ‘Job Futuromat’, an
online tool that advises graduates and job seekers about which occupations will face
rising (declining) demand in the future. We scale the share of tasks that may be replaced
by such enhanced automation to have mean zero and the same standard deviation as the
demand shocks backed-out over the period 1985–2010. That is, we analyse the impact of
a specific set of predicted, scaled, and cardinally interpreted relative automation shocks.
Although we thereby leave out other potential drivers of occupational labour demand or
supply, our model could be used to analyse such shocks, too, as long as data are available.

Table H.1 shows summary statistics on the 126 occupations. The top panel presents
the distribution of occupational employment sizes, mean age and fractions of females,
Eastern Germans, part-timers, and workers with a university degree. The middle panel
shows the distribution of the elements of the elasticity and spillover matrices D and V.
These do not look too different from the historical period in Table E.3. The bottom panel
summarises the demand shocks used that stem from predicted enhanced automatibility.
We also report the shocks scaled in terms of effects on employment and wages under a
homogenous labour supply elasticity (Dhom). Figure 5a in the main text displays these
changes of equilibrium outcomes in occupations resulting from the automation demand
shocks, which are computed using Dhom and parallel to those shown in Section 6.

69This sample consists of approximately 770,000 unique individuals and 5.5 million individual × year
observations for the period 2012–2021.
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Table H.1: Summary Statistics for the 126 Occupations.

Mean Std.Dev. Variance p10 p50 p90 Observ.

Occupational Characteristics

Stationary employment size 0.794 1.274 1.625 0.033 0.304 2.383 126
Employment size in 2021 0.794 1.133 1.285 0.042 0.393 2.096 126
Share of Females (%) 39.54 28.23 796.88 3.82 36.11 78.11 126
Share of Eastern Germans (%) 20.57 6.79 46.13 13.15 19.69 26.99 126
Share of Part-time workers (%) 18.66 15.25 232.53 3.26 14.80 40.16 126
Share of University Degree (%) 27.26 26.39 696.23 2.64 18.88 68.04 126
Mean Workers’ Age 42.42 2.25 5.06 39.54 42.74 45.14 126

Elasticity and Spillover Matrices

Diagonal elements of matrix D (djj) 0.448 0.138 0.019 0.252 0.460 0.612 126
Off-diagonal elements of matrix D (−djk × 100) 0.358 0.938 0.882 0.003 0.066 0.866 15,750
Diagonal elements of matrix V (vjj) 0.502 0.087 0.007 0.415 0.484 0.632 126
Off-diagonal elements of matrix V (vjk × 100) −0.401 0.866 0.750 −1.159 −0.136 0.007 15,750

Demand Shocks and Implied Annualised
Employment and Price Changes under Dhom

Demand shocks 0 0.019 0.004 −0.025 −0.0004 0.028 126
Log Employment 0 1.955 3.821 −2.480 −0.042 2.867 126
Log Prices 0.019 1.006 1.012 −1.257 −0.002 1.495 126

Notes: The top panel of the table presents summary statistics for occupational characteristics, such as the stationary employment size or
share of females. Recall that, when calculating the shares, part-timers are weighted to one-half of a full-time worker (this also reduces the
share of females here). The middle panel shows the distribution of the elements of the elasticity and spillover matrices D and V. The first
line of the final panel summarises the predicted enhanced automation demand shocks, scaled to mean zero and standard deviation of past
shocks as described in the text. The next two lines display the impact of the shocks on employment and wages when occupational labour
supplies are homogenous (i.e., under Dhom and de facto an alternative scaling of the shocks).

H.2 Employment Flows between Occupations

A new analysis in the predictions is the projected employment flows between occupa-
tions. First, we start with a formal representation of how the equilibrium price changes in
occupation j come about. From eq. (13), we have at the level of the occupation j that:

∆pj ≈ ∑k vjk∆bk

= vjj∆bj + ∑k 6=j vjk∆bk

= vjj∆bj︸ ︷︷ ︸
own occupation effect

+ ∑
k∈V+

j

vjk∆bk

︸ ︷︷ ︸
near occupations

+ ∑
k∈V−j

vjk∆bk

︸ ︷︷ ︸
distant occupations

(65)

where vjk are the individual elements of V which translate demand shocks in occupation k
into contributions to wage changes in j. The products vjk∆bk can thus interpreted as ’price
pressures’ of k on j. The second line of eq. (65) uses the fact that V is of rank N − 1 and
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each row sums to zero across columns. The third line splits the price pressures into those
coming from near (vjk > 0 for V+

j ) as opposed to distant (vjk < 0 for V−j ) occupations. In
the data, near occupations are often also with high substitutability and cross-elasticity of
occupation j with respect to occupation k.

Table H.2 shows the price pressures coming from the respective five closest occupa-
tions k (i.e. most positive vjk) for a selection of impacted occupations j. Positive price
pressures on IT consulting and sales arise from positive demand shocks on nearby Soft-
ware developers and IT network engineers, who compete with it for workers, whereas
Electrical engineers and Technical developers experience a somewhat negative demand
shock. In general, for most occupations, price pressures are quite spread over a range
of impacting occupations. One exception is Laboratory occupations in medicine, which
is close to Human medicine and dentistry (high vjk) and where the latter experiences a
very positive demand shock (as seen e.g. in Figure 5). As a result, the price pressure of
Human medicine on Laboratory medicine is large, compensating about two thirds of the
automation demand shock’s negative own effect on wages in Laboratory medicine.

Table H.2: Predicted Wage Change and Price Pressures from Five Nearest Occupations

Wage change
Five most positive vjk occupations Price pressure

Total
Own Cross
effect effect

IT analysis, 0.54 0.66 -0.11 Software development and programming 0.019
IT consulting, IT-network engineering, -coordination, -admin, -organisation 0.023
IT sales Computer science 0.000

Electrical engineering -0.008
Technical research and development -0.004

Machine -1.25 -0.87 -0.38 Metalworking -0.029
building & Metal constructing and welding -0.013
operating Tech occup in energy technologies -0.005

Tech occup in automotive, aeronautic, aerospace, shipbuilding -0.004
Plumbing, sanitation, heating, ventilating, air conditioning -0.003

Laboratory 0.03 -0.35 0.38 Human medicine and dentistry 0.244
occupations in Doctors’ receptionists and assistants 0.001
medicine Biology 0.008

Other occupations 0.003
Teachers and researchers at universities and colleges 0.002

Building 0.84 1.01 -0.17 Civil engineering 0.041
construction Construction scheduling and supervision, and architecture -0.012

Interior construction, dry walling, insulation, carpentry, glazing 0.016
Building services engineering -0.015
Painters and varnishers, plasterers, and related 0.013

Notes: The table displays the predicted equilibrium wage changes, as well as the constituting own and cross effect, due to enhanced
automation shocks of four selected occupations j. Each panel then shows, as contributors to the cross effects, the price pressures emanating
from the five nearest occupations k (i.e. those with the highest vjk). For details on how the price pressures are constructed, as well as
definitions of own and cross effects, see the text. All the numbers are shown in per cent changes per year.
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We use the projected price changes to compute the equilibrium employment flows
between occupations. From eq. (15) (even more directly, eq. (24)), we obtain a first-order
approximation for the change in occupation j’s share of total employment as: 70

∆Ej ≈ θEbase
j ∑k djk

(
∆pk − ∆pj

)
= θEbase

j ∑k 6=j djk
(
∆pk − ∆pj

)
= θEbase

j ∑
∆pk≥∆pj

djk
(
∆pk − ∆pj

)
︸ ︷︷ ︸

net flows out of occupation j

+ θEbase
j ∑

∆pk<∆pj

djk
(
∆pk − ∆pj

)
︸ ︷︷ ︸

net flows into occupation j

(66)

where θEbase
j djk

(
∆pk − ∆pj

)
captures the net flows from occupation k to j. The second line

then uses the fact that also in D each row sums to zero across columns, and the third line
splits the summation into net outflows versus inflows to occupation j. Finally, we scale
these annualised changes to obtain 10-year flows.71

Figure 6 in the main text displayed the main bilateral flows resulting from eq. (66)
for IT consulting and sales. Panel (a) of Figure H.1 displays the corresponding chart
for Machine building and operating, which turns out substantially less elastic. This is
because highly substitutable occupations with it, like Metal workers, Draftspersons, or
Welders experience at least as negative demand shocks. As a result, wages of Machine
operators will drop substantially and they are projected to move to somewhat more
distant occupations like Business organisation, Driving, and Construction.

Panel (b) of Figure H.1 shows Laboratory occupations in medicine which, as we saw
before, endures a substantially negative demand shock. While many health-related occu-
pations are relatively inelastic (see also Figure 5), this occupation differs because of work-
ers’ ability to move to Human medicine. Accordingly, wages of Laboratory occupations
in medicine remain broadly constant and all the other flows, even to quite substitutable
occupations such as Nurses or Doctors’ receptionists and assistants, are small.

70Alternatively, in matrix notation, the net flows from all k to occupation j can be expressed as

θ
(

Ebase ∗ 1T
N

)
◦ D ◦

(
1N ∗ ∆pT − ∆p ∗ 1T

N

)
where ◦ is the element by element Hadamard product, Ebase a column vector of employment (shares), and
xT the transpose of vector x. In more compact notation this can be written as

N ≡W ◦ θD ◦ P

whereN is the matrix of net flows, W ≡ Ebase ∗ 1T
N is the stacked matrix of shares, that we have used before,

and P ≡ 1N ∗ ∆pT − ∆p ∗ 1T
N is the skew-symmetric matrix of relative price changes. Then the matrix of net

flows, N , is also skew-symmetric. (The net flow from k to j is the negative of the net flow from j to k.) One
can look at just the positive net flows by examining only the positive entries of N .

71To be precise, eq. (66) constructs a counterfactual: how employment shares will shift between
occupations when prices change compared to if prices stayed the same as in the steady state.
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Figure H.1: Projected Net In and Out Flows by Top Senders and Receivers (%)

(a) Machine Building and Operating
a) Occupations in metalworking (0.87%)

g) Machine building and operating

b) Draftpersons, tech designers, model makers (0.27%)

c) Metal constructing and welding (0.19%)

d) Precision mechanics and tool making (0.19%)

e) Metal-making (0.17%)

f) Remaining occupational inflows (0.46%)

g) Machine building and operating

h) Business organisation and strategy (1.20%)

i) Driver of vehicles in road traffic (1.12%)

j) Tech occup in production planning (0.86%)

k) Building construction (0.68%)

l) Education and social work (0.54%)

m) Remaining occupational outflows (7.77%)

 
Inflows & Outflows for: Machine building and operating

(b) Laboratory Occupations in Medicine
a) Office clerks, secretaries (0.85%)

g) Laboratory occupations in medicine

b) Occupations in chemistry (0.50%)

c) Occupations in public administration (0.30%)

d) Machine building and operating (0.23%)

e) Warehousing and logistics (0.22%)

f) Remaining occupational inflows (1.50%)

g) Laboratory occupations in medicine

h) Human medicine and dentistry (11.21%)

i) Nursing, emergency services, obstetrics (0.88%)

j) Education and social work (0.83%)

k) Geriatric care (0.35%)

l) Occupations in biology (0.30%)

m) Remaining occupational outflows (1.55%)

 
Inflows & Outflows for: Laboratory Occupations in Medicine

(c) Building Construction
a) Machine building and operating (2.53%)

g) Building construction

b) Warehousing and logistics (2.48%)

c) Building services engineering (1.81%)

d) Construction scheduling, supervision, architecture (1.73%)

e) Metalworking (0.95%)

f) Remaining occupational inflows (11.99%)

g) Building construction

h) Education and social work (0.37%)

i) Civil engineering (0.36%)

j) Geriatric care (0.09%)

k) Nursing, emergency services, obstetrics (0.07%)

l) Driving, flying, sport instructor (0.06%)

m) Remaining occupational outflows (0.14%)

 
Inflows & Outflows for: Building construction

Notes: The figure depicts the projected flows over 10 years of the respective occupation with its top net sending and receiving occupations.
The numbers shown are percentages of final (for inflows) and initial (for outflows) employment. Panel (a) shows Machine building and
operating, which makes up 3.70% of total employment initially and 3.32% after ten years, i.e. is projected to shrink by around 10% as a
share of its initial employment. Panel (b) shows Laboratory occupations in medicine, which makes up 0.39% of total employment initially
and 0.35% after ten years, i.e. is projected to shrink by around 10%. Finally, Panel (c) shows Building construction, which makes up 0.79%
of total employment initially and 0.99% after ten years, i.e. is projected to grow by over 25%.
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Finally, Panel (c) of Figure H.1 shows the main bilateral flows of the Building con-
struction occupation. We see that this is able to draw in workers from close occupations
in construction as well as a range of other declining occupations including Metalwork-
ing, Machine operating, or Warehousing and logistics. Accordingly, Building construction
turns out effectively quite elastic (see also Figure 5) and is projected to grow by more than
a quarter over 10 years.
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