
DISCUSSION PAPER SERIES

IZA DP No. 17796

Ailun Shui
Gerard J. van den Berg
Jochen O. Mierau
Laura Viluma

Lifetime Trajectories and Drivers of 
Socioeconomic Health Disparities: 
Evidence from Longitudinal Biomarkers in 
the Netherlands

MARCH 2025



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 17796

Lifetime Trajectories and Drivers of 
Socioeconomic Health Disparities: 
Evidence from Longitudinal Biomarkers in 
the Netherlands

MARCH 2025

Ailun Shui
University of Groningen

Gerard J. van den Berg
University of Groningen, University Medical 
Center Groningen, IFAU, IZA and ZEW

Jochen O. Mierau
University of Groningen, University Medical 
Center Groningen and Lifelines

Laura Viluma
University of Groningen



ABSTRACT

IZA DP No. 17796 MARCH 2025

Lifetime Trajectories and Drivers of 
Socioeconomic Health Disparities: 
Evidence from Longitudinal Biomarkers in 
the Netherlands*

This study investigates lifetime socioeconomic health disparities through longitudinal 

biomarkers from the Dutch Lifelines cohort study and biobank. We construct an allostatic 

load index from 12 biomarkers and analyze the dynamics of health and its association with 

socioeconomic status (SES) over the life cycle. Our findings reveal that health risks linked to 

lower SES emerge early and precede chronic disease onset. Further analysis investigates the 

drivers of allostatic load and emphasizes health behaviors. The results highlight the need 

for early interventions targeting SES-related health disparities and provide new insights into 

the physiological pathways linking SES to long-term health outcomes.
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1     Introduction 
Narrowing health disparities has become a consensus goal for many governments and 

international organizations; see for instance the EU4 Health Programme 2021-2027 and the 

Netherlands Global Strategy 2023-2030. These programs argue that reducing the health gap is a 

major way to improve population health. To design effective preventive interventions, we need to 

know when and how associations between health and socioeconomic status (SES) arise.  

One of the main challenges in this endeavor concerns the lack of consensus on how to 

measure health. Much of the prior literature on health disparities across socioeconomic groups 

has employed morbidity, mortality or self-rated health as outcome measures (see, e.g., Van 

Kippersluis et al., 2010; Van Ooijen et al., 2015; Hosseini et al., 2022; Danesh et al., 2024). This 

has provided valuable insights, but self-rated health (SRH) is inherently subjective and 

nonspecific, while morbidity measures often capture outcomes realized later in life, after much 

of the cumulative wear and tear has already occurred. In this study, we contribute to the existing 

evidence by focusing on biomarkers which are objective indicators that can be observed prior to 

disease onset.  

Specifically, we study the evolution of health and the dynamics of socioeconomic health 

disparities over the life cycle by using longitudinal data on biomarkers derived from blood, urine, 

electrocardiograms (ECG), anthropometric measurements, and blood pressure within a 

large-scale, population-based, prospective cohort and biobank. Biomarkers are normally defined 

as objective, quantifiable indicators of biological processes (Strimbu & Tavel, 2010). The 

dynamics of biomarkers are often linked to the aging process, the onset of diseases, and mortality 

(Arbeev et al., 2016). Consequently, biomarkers not only reflect an individual’s current health 
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status but also serve as predictive indicators of morbidity or mortality. Complementing clinical 

health assessments, the longitudinally observed biomarkers from prospective cohort studies offer 

an opportunity to investigate socioeconomic health gradients before the emergence of diseases. 

Moreover, by tracking the accumulation of physiological health deficits, these biomarkers 

provide deeper insights into the interplay between SES, biological processes, and clinical 

outcomes, over the life cycle (Arbeev et al., 2016).  

An emerging literature in economics and epidemiology has started to employ biomarkers to 

investigate health disparities. Prior studies have identified significant SES-related disparities in 

biomarkers associated with diabetes and cardiovascular disease (Kavanagh et al., 2010; ), as well 

as body mass index (Baum & Ruhm, 2009). Furthermore, systematic combinations of 

biomarkers that indicate cumulative health risks reveal considerable disparities in biological 

health across SES groups (e.g., Seeman et al., 2004; Carrieri et al., 2020; Davillas & Jones, 

2020).  

Building on this, we examine the dynamics of health disparities using dynamic biomarkers 

from the Dutch Lifelines cohort study and biobank, which includes data from over 167,000 

individuals at baseline. By linking the longitudinally observed biomarkers with information on 

chronic diseases, health-related behaviors, and socio-demographic factors, we are in the unique 

position to study the evolution of socioeconomic health disparities across the life cycle and the 

role of biomarkers in the relationship between SES and health outcomes. 

Following the approach of Seeman et al. (1997, 2004), we adopt the concept of allostatic load 

and construct an allostatic load index (ALI) based on 12 biomarkers from cardiovascular, 

metabolic, and kidney systems, representing cumulative physiological dysregulation due to stress 
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and aging. To assess the validity of the ALI in predicting health outcomes, we examine its 

relationship with aging-related chronic disease, with a particular focus on how early biological 

risks predict chronic disease prevalence. To engage with the literature focusing on mortality 

outcomes, we also conduct analyses that investigate whether biomarker-related risks can predict 

mortality.  

Our analysis suggests that biomarker-related risks emerge earlier in adulthood and increase 

with age. In contrast, aging-related chronic diseases become prominent only in middle age, 

which indicates that biomarker-related risks precede the onset of these diseases. Then, we 

conduct age-group specific regressions to examine the role of the ALI in chronic disease 

development and 3-year mortality. The results demonstrate that both higher ALI and lagged ALI 

are significantly associated with an increased risk of chronic diseases and 3-year mortality. 

Second, we examine how educational disparities in biomarkers and allostatic load evolve 

across the life cycle through graphical analysis. Our findings show that allostatic load disparities 

emerge in early adulthood, widen with age, and peak in late middle age, stabilizing thereafter. 

Gender differences are significant, with males consistently exhibiting higher ALI levels than 

females throughout the life course. Additionally, we analyze the prevalence gap for individual 

biomarkers and biomarker-related risks. The results reveal that disparities in biomarker-related 

risks emerge early, often before age 30, and exhibit pronounced educational and gender 

differences, with males generally showing higher risk levels for most biomarkers. While these 

patterns may be influenced by factors such as cohort effects, health-based attrition, and 

medication use, the findings highlight the early onset and cumulative nature of socioeconomic 

health disparities. 
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Finally, we investigate factors driving allostatic load levels and the growth of allostatic load 

over the life cycle, highlighting health behaviors as possible determinants. We employ age-group 

specific regression by gender and decompose the total R-squared using Shapley and Owen 

decomposition method. The decomposition reveals that alcohol consumption and physical 

activity are important contributors to the ALI across genders and age groups. In addition, 

educational attainment and employment also play notable roles, with education having a 

consistent impact and employment being more influential during working years. The results 

differ by gender. For females, alcohol consumption and education have stronger effects, while 

for males, physical activity and smoking are more important contributors, particularly before age 

55. When examining the growth of the ALI, health behaviors remain key drivers, but their 

importance shifts, where smoking plays a more substantial role for males. While these findings 

provide valuable insights into the relative importance of these factors, they reflect correlations 

rather than causation and are driven  by the biomarkers included in the study. 

We contribute to the literature in a number of ways. First, we contribute to the existing 

literature on socioeconomic health gradients by investigating these gradients before the onset of 

clinical diagnoses. Typically, individuals with higher SES enjoy longer and healthier lives. 

SES-related health differences have been found in mortality (e.g., see, Deaton, 2003; Cutler & 

Lleras-Muney, 2006; Van Kippersluis et al., 2010; Chetty et al., 2016) and in most diseases and 

conditions (Kivimäki et al., 2020; Pallesen et al., 2024; Danesh et al., 2024). However, morbidity 

and mortality differences are often only prominent at middle and higher ages, which leaves the 

question of how the differences in health develop across SES before reaching the clinical 

endpoints. Evidence suggests that the socioeconomic health gap may begin to widen before 
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clinical endpoints like morbidity or mortality (Danesh et al., 2024). Biomarkers allow us to 

objectively assess health risks and understand how socioeconomic health gradients develop 

before adverse health outcomes manifest themselves (Arbeev et al., 2016). 

Second, our study contributes to the literature on health evolutions. While socioeconomic 

health gradients have been widely explored in prior studies, data limitations make it challenging 

to achieve a consensus on how to define and measure these gradients over the life cycle 

(Hosseini et al., 2022; Danesh et al., 2024). Previous work examined health evolutions across the 

life cycle using indicators such as SRH, morbidity, and mortality. Among these, SRH is often 

employed as a health measure in studies on socioeconomic health disparities and is generally 

regarded as a reliable predictor of other health outcomes. For instance, Van Kippersluis et al. 

(2010) use SRH to analyze the life cycle profile of adverse health by income in the Netherlands. 

Similarly, Van Ooijen et al. (2015) develop a health model that combines SRH with 

administrative health data to capture the evolution of health as individuals age. However, SRH 

has inherent limitations: it is subjective, lacks specificity, and does not provide a cardinal metric 

(Hosseini et al., 2022). Recent studies have attempted to overcome these issues by using more 

objective health indicators. For example, Danesh et al. (2024) introduced a chronic disease index 

based on pharmaceutical dispensation data to track health evolution before death. Hosseini et al. 

(2022) developed a frailty index incorporating factors such as medical diagnoses, mental health 

conditions, and cognitive impairments to predict health dynamics over the life cycle. We  expand 

on this by relying on biomarkers to examine the progression of socioeconomic health disparities 

over the life cycle. 

 
 
 
 

7 

https://www.zotero.org/google-docs/?AOVGaE
https://www.zotero.org/google-docs/?M7VwG1
https://www.zotero.org/google-docs/?mfVSME
https://www.zotero.org/google-docs/?B7hHLD
https://www.zotero.org/google-docs/?B7hHLD
https://www.zotero.org/google-docs/?g0YmW1
https://www.zotero.org/google-docs/?anEZ4U
https://www.zotero.org/google-docs/?nKGDgN
https://www.zotero.org/google-docs/?PnMkDR
https://www.zotero.org/google-docs/?PnMkDR


Third, our study offers insight into the drivers of health disparities in biomarkers. Economic 

and epidemiological research underscores the important role of health-risk behaviors — such as 

smoking, alcohol consumption, physical inactivity, and poor dietary habits — particularly among 

adults. These behaviors serve as critical pathways linking SES to health outcomes (Adler & 

Stewart, 2010). Previous studies have estimated that health behaviors account for approximately 

40% of premature mortality (McGinnis et al., 2002) and significantly influence the prevalence 

and incidence of chronic diseases (Danesh et al., 2024). Among these behaviors, smoking has 

been identified as having a particularly detrimental impact on both physical and mental health. 

Furthermore, health-risk behaviors are closely associated with allostatic load. For instance, 

Suvarna et al. (2020) review 26 studies examining the relationship between health behaviors and 

allostatic load and find robust evidence of significant associations. Specifically, 65% of studies 

on obesity and substance abuse, 75% of studies on sleep, and 62.5% of studies on combined 

lifestyle factors report significant correlations with allostatic load. In this research, we contribute 

to understanding how these factors contribute to the allostatic load and the growth of allostatic 

load and how they differ across age and gender.  

The remainder of the paper is organized as follows: Section 2 describes the data. Section 3 

outlines the methodology for constructing the ALI and explores its role of allostatic load to the 

aging-related chronic disease and mortality. Section 4 provides graphical evidence of the 

evolution of socioeconomic allostatic load disparities over the life cycle. Section 5 presents the 

decomposition results and discusses their interpretation. Section 6 concludes. 
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2. Data 

 
2.1 Lifelines 

We utilize data from the Dutch Lifelines cohort study and biobank. Lifelines is a 

multi-disciplinary prospective population-based cohort study examining in a unique 

three-generation design the health and health-related behaviours of 167,729 persons living in the 

North of the Netherlands. It employs a broad range of investigative procedures in assessing the 

biomedical, socio-demographic, behavioural, physical and psychological factors which 

contribute to the health and disease of the general population, with a special focus on 

multi-morbidity and complex genetics. This prospective cohort study is designed to explore the 

complex relationships among various factors in the development of chronic diseases and healthy 

aging (Scholtens et al., 2015). The Lifelines study began in 2006, and by 2023, three main waves 

(including the baseline) and three follow-up questionnaires have been completed.1 

Every five years, participants are invited to Lifelines facilities for physical examinations, 

during which biomaterials are collected (Scholtens et al., 2015). These samples are promptly 

processed for analysis and preserved for long-term biobanking. Additionally, every 1.5 years, 

participants complete questionnaires that gather information on demographics, health status, 

lifestyle, environmental exposures, and psychosocial factors. All examinations are conducted by 

trained nurses following medical standards, and all assessments take place at the University 

1 Specifically, two follow-up (wave 1b and wave 1c) questionnaires were conducted after the wave 1a, and one 
follow-up (wave 2b) took place after the wave 2a. Since 2024, the fourth wave of assessment is underway, with 
plans to include new participants, particularly from younger generations, in the Lifelines cohort. We do not include 
the data from wave 4a because it is still in the process. For more information about Lifelines, please visit 
https://www.lifelines-biobank.com. 
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Medical Center Groningen laboratory center, which is certified according to international, 

European, and Dutch standards. 

2.2 Variables 

Biomarkers Biomarker data were obtained during physical examinations and biomaterial 

collection as part of the Lifelines cohort study. As of the end of 2023, three waves of biomarker 

data have been made available, encompassing a wide range of measurements, including 

anthropometric data, blood and urine analyses, blood pressure, and ECG, among others. 

Specifically, the first wave was collected between 2006 and 2013, the second wave between 

2014 and 2018, and the third wave between 2019 and 2023. This longitudinal data enables us to 

follow individuals’ health over a relatively long period.  

For our analysis, we selected twelve biomarkers and they are related to cardiovascular, 

metabolic, and kidney functions. Table 1 summarizes the selected biomarkers, along with brief 

descriptions and clinically defined high-risk thresholds. To capture the cumulative dysregulation 

of physiological systems, we employ the concept of allostatic load and construct an index to be 

the indicator of biological health status. A detailed description of the allostatic load and the 

construction of the index is provided in Section 3. 

Chronic Disease In the Lifelines self-reported questionnaires, administered every 1.5 years, 

participants were asked whether they had been diagnosed with specific diseases.2 These diseases 

are categorized into groups such as cancer, cardiovascular diseases, diabetes, kidney and bladder 

diseases, mental illnesses, and neurological disorders. Within each category, specific conditions 

2 In wave 1a, participants were asked, “Have you ever had a certain disease?” For all subsequent waves, participants 
were asked, “Did any of the health problems listed below begin since the last time you completed the Lifelines 
questionnaire?”. 
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are further detailed. For example, cardiovascular diseases include stroke, heart failure, and heart 

attacks. To evaluate the overall burden of aging-related chronic diseases among Lifelines 

participants, we use a composite score as a proxy measure. The selection of chronic diseases is 

guided by the design of the Lifelines questionnaires, their definitions, and the availability of 

corresponding data.3 We include most of the chronic conditions from Lifelines list, while 

considering the timing of disease onset and the data availability in Lifelines.4 The complete list 

of 19 aging-related chronic diseases is provided in Table A.1 (in Appendix).5 

Mortality Lifelines continuously receives death updates for participants from the Personal 

Records Database (BRP), which contains personal data of individuals residing in the Netherlands 

as recorded by municipalities. Participants' mortality information is updated even if they 

withdraw from Lifelines, and the cutoff date for death records in our current dataset is September 

2024. 

Health Behavior Health behavior data is collected from the Lifelines questionnaire. 

Participants were queried about various health-related behaviors, including alcohol consumption, 

tobacco use, smoking habits, sleeping disorder,  and overall physical activity levels. To measure 

drinking behavior, we use self-reported data on both the frequency of alcohol consumption over 

a month and the number of glasses consumed over a day. These variables capture both the 

frequency and intensity of drinking. Smoking behavior is represented by a dummy variable based 

5 While self-reported data on chronic diseases offer valuable health insights, they are subject to limitations, including 
non-classical measurement errors and underdiagnosis. These issues are particularly prevalent among lower-income 
or less-educated groups, potentially introducing bias into health assessments.  

4 Since our focus is on lifetime trajectories, we limit our analysis to "aging-related" chronic conditions. Specifically, 
we include only diseases with prevalence that increase with age, excluding chronic conditions primarily observed in 
childhood and predominantly caused by genetic factors. Additionally, we do not consider chronic diseases that are 
only available in limited waves of Lifelines.  

3 For participants aged 18 years and older, the questionnaires assess whether they have experienced any of the 
specified chronic diseases since their last participation in the Lifelines survey and associated assessments. Our 
identification of chronic diseases primarily relies on the list provided in the questionnaires. 
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on responses to the question, "Do you smoke now, or have you smoked in the past month?". 

Finally, physical activity is proxied by the average number of days per week participants 

engaged in activities such as cycling, doing odd jobs, gardening, sports, or other strenuous tasks 

for at least 30 minutes. We calculate the average for these physical activities across winter and 

summer seasons. Finally, sleep disorder is captured by the question: "Do you have trouble 

sleeping nearly every night?" 

Socioeconomic Status Lifelines provides socioeconomic data on education, income, and 

occupation. For this study, we use the highest educational attainment as the primary measure of 

SES. Educational attainment is categorized into two groups based on the Dutch school system: 

low (no education, primary education, lower or preparatory secondary vocational education, 

junior general secondary education, secondary vocational education or work-based learning 

pathway, senior general secondary education, pre-university secondary education), and high ( 

higher vocational education and university education).6 For participants under the age of 25, we 

use their parent's highest educational attainment as a proxy, given that individuals typically 

complete their education in their mid-twenties.  

Covariates Demographic factors, such as age, gender, cohort, and province are available for 

all participants in Lifelines. In addition, we obtain the degree of urbanization information at 

Postal Code-4 level from Statistics Netherlands (Centraal Bureau voor de Statistiek). 

 

6 In the Netherlands, higher vocational education and university education correspond to levels 6, 7, and 8 of the 
International Standard Classification of Education (ISCED). Consequently, the low-education group in our dataset 
includes individuals with ISCED levels ranging from 0 to 5. The mandatory nature of most types of secondary 
education is the primary reason for dividing it into two categories. 
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2.3 Sample Selection and Summary Statistics  
 
We build an unbalanced panel based on the data from waves 1a, 2a, and 3a of the Lifelines study, 

covering the period from 2006 to 2023. Table 2 presents our sample selection process. The 

baseline sample includes 150,605 observations of participants aged from 18 to 80.7 Among these, 

99,608 participants from the baseline sample participated in wave 2a, and 60,794 participated in 

wave 3a. Observations with missing values for any of the 12 biomarkers of interest are also 

excluded, resulting in the removal of 21,215 observations. Further, we exclude observations with  

missing values for chronic diseases or demographic characteristics or who did not fast before 

blood sampling.8 

Our final sample consists of 137,110 individuals. Of these, 46,796 participated in only one 

wave, 50,906 participated in two waves, and 39,408 participated in all three waves. As shown in 

the Table 2, there is an attrition across the three waves. Approximately 3.1% of participants 

passed away during the study period, which extended until 2024. Other reasons for withdrawal 

include time-intensive participation requirements, loss of interest, relocation from the research 

area, or enrollment in a regular health care program (Sijtsma et al., 2022). 9 

Table 3 presents selected summary statistics on demographic and socioeconomic 

information, biomarkers, and chronic diseases across three waves in Lifelines.  

 

9 We currently do not observe data drop-out due to enrollment into a regular health care facility. However, Sijtsma et 
al. (2022) show that only a small proportion of participants withdraws in follow-ups.  

8  Many biomarkers are influenced by short-term dietary intake. To ensure reliable results, fasting is required before 
blood sample collection or measurement. It is therefore imperative to exclude individuals who did not fast before 
blood collection from our sample. 

7 We exclude individuals aged below 18, as most biomarkers in Lifelines are only available for participants aged 18 
and above. Additionally, we exclude individuals older than 80 years because they are underrepresented in Lifelines. 
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3.  Allostatic Load, Chronic Disease and Mortality 

 
3.1 Allostatic Load Index 

Aging is a complex process involving numerous biological changes and interactions that 

gradually result in physiological dysregulation, disease, and ultimately death (Arbeev et al., 

2016). Although individual biomarker changes may seem small, the cumulative effect of 

multiple dysregulated biomarkers can significantly deteriorate health, impacting various body 

systems over time. To measure this cumulative biological dysregulation, we aim to build an 

index that captures the overall burden of dysregulated biomarkers. To do so, we follow 

established research to construct an index by summing biomarkers for which individual values 

deviate from clinical thresholds (Seeman et al., 2004; Howard & Sparks, 2016; Davillas & Jones, 

2020). 

Allostatic load, often referred to as wear and tear, represents the cumulative dysregulation of 

physiological systems over time due to stress,10 including factors such as social, environmental, 

and life event exposures (Seeman et al., 2004; Beckie, 2012). The allostatic load has been widely 

used in health research, especially in studies on health measurements and inequalities, as it 

potentially provides insight into biological mechanisms underlying health disparities. The ALI is 

essential for understanding how sociodemographic factors and environmental stressors influence 

both physical and mental health, shaping individual aging trajectories (Beckie, 2012). 

Depending on the data availability, the number of biomarkers varies between studies. Most 

include at least one biomarker related to the metabolic and cardiovascular systems (Johnson et 

10 The concept of allostatic load was introduced by McEwen & Stellar (1993) and does not directly measure stress 
itself. 

 
 
 
 

14 

https://www.zotero.org/google-docs/?xlG69C
https://www.zotero.org/google-docs/?xlG69C
https://www.zotero.org/google-docs/?4rz9ng
https://www.zotero.org/google-docs/?4rz9ng
https://www.zotero.org/google-docs/?SVkBEV
https://www.zotero.org/google-docs/?6N3eOa
https://www.zotero.org/google-docs/?x7lvEb
https://www.zotero.org/google-docs/?broken=8L3wau


al., 2017). The initial study calculating the ALI used 10 biomarkers associated with the 

cardiovascular and metabolic systems and the hypothalamic-pituitary-adrenal (HPA) axis 

(Seeman et al., 1997). Subsequent studies expanded this scope as additional biomarker data 

became available, for example, follow-up research employed 16 biomarkers to assess allostatic 

load (Seeman et al., 2004). More recent studies, such as those by Howard and Sparks (2016), use 

10 biomarkers, while Karimi et al. (2019) include 16 biomarkers spanning four body systems and 

two organs. While this flexibility allows researchers to adapt the ALI to different datasets, it also 

complicates cross-study comparisons.11 Nonetheless, the ALI remains a valuable tool for 

understanding the biological pathways connecting SES to morbidity and mortality.  

In our study, we use 12 biomarkers (see Table 1) to construct the ALI,12 focusing on three 

physiological systems: cardiovascular (n=3), metabolic (n=8), and kidney function (n=1).13 The 

ALI is calculated by applying clinically established threshold cut points to each biomarker and 

we calculate the ALI by counting the number of biomarker-related risks that individual  have at 𝑖

age :  𝑎

   (1) 𝐴𝐿𝐼
𝑖, 𝑎

 =
𝑘=1

12

∑ 𝐼
𝑖, 𝑎
𝑘 .  

13 Some prior studies also employ biomarkers from other systems, including the immune system, the 
hypothalamic-pituitary-adrenal axis, the respiratory system, and the parasympathetic nervous system. However, 
biomarkers from the cardiovascular and metabolic systems are the most commonly used to construct the ALI 
(Johnson et al., 2017).  

12 The use of BMI for assessing clinical obesity has been a topic of ongoing discussion in the literature. Research 
suggests that BMI might misclassify or overestimate adiposity, potentially leading to inappropriate conclusions. In 
particular, as suggested by Rubino et al. (2025), BMI should be treated as a surrogate measure of health risk at the 
population level rather than a direct measure of individual health outcomes. Therefore, rather than treating BMI as a 
marker of chronic conditions, we use it as an indicator of health risks, aligning with previous research on the 
construction of allostatic load. To assess the role of BMI, we also constructe an alternative ALI excluding BMI. 
Additionally, in a regression of allostatic load on education, we include BMI as a control variable. The results show 
that the coefficient for education remains statistically significant, although its magnitude is reduced by 
approximately half when BMI is controlled for.  

11 A systematic review by Johnson et al. (2017) summarizes the most commonly used biomarkers for measuring 
allostatic load in previous research. 
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Where  denotes the biomarkers and  is a binary variable indicating whether the level of 𝑘 𝐼
𝑖,𝑎
𝑘

biomarker  in individual  at age a is above the threshold.14 The   is equal to 1 if individuals 𝑘 𝑖 𝐼
𝑖,𝑎
𝑘

are identified as “at-risk” based on a certain biomarker’s cut-point. The value of the ALI for 

individual  at age  represents the current number of biomarker-related risks based on 12 𝑖 𝑎

selected biomarkers.  

To gain a preliminary understanding of the ALI without considering any other factors, we 

visualize the dynamics of these biomarker-related risks across age. We pool the observations 

from three waves and group them by the number of risks. Figure 1 illustrates the proportion of 

individuals at different ages with differing numbers of biomarker-related risks, depicting the 

evolution of risk number throughout the life cycle. As shown, first, the number of 

biomarker-related risks increases with age, with a different speed by the categories in the number 

of risks. Notably, there is a significant rise in the development of risks after the age of 40. 

Additionally, biomarker-related risks are relatively prevalent even among young adults and over 

25 percent of participants under the age of 25 have at least one risk.  

Despite the insights gained from constructing ALI using clinical cutpoints, this approach may 

overlook health risks below the threshold. Therefore, following previous studies (e.g., see 

Seplaki et al. 2005 and Hawkley et al. 2011), we also adopt an alternative allostatic load scoring 

algorithm based on z-scores, which provides an index derived from continuous biological 

variables rather than categorical ones. Compared to ALI constructed using clinical cutpoints, 

14 One exception is HDL cholesterol, often called "good" cholesterol. A low HDL cholesterol level is considered 
high risk because HDL cholesterol helps remove excess cholesterol from the blood. 
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z-ALI accounts for risks both below and above the clinical threshold and reduces the influence of 

extreme values and outliers. 

To compute the z-ALI, we standardize each biomarker to have a mean of 0 and a standard 

deviation of 1 (e.g., a score of 1 indicates a value that is one standard deviation above the mean), 

then sum the standardized values. HDL cholesterol, often referred to as "good" cholesterol, is 

reversed so that higher values reflect a greater health risk. Additionally, we identify extreme 

values, those exceeding five standard deviations above or below the mean, for each biomarker. 

To mitigate the impact of outliers, we replace these values with 5 or -5, thereby reducing noise in 

the data. Figure B.1 (in Appendix) illustrates the trajectory of z-ALI across the life cycle, 

demonstrating a consistent pattern compared to ALI constructed using clinical cutpoints. 

3.2 Chronic Disease 

Chronic diseases are widely recognized as a substantial burden on healthcare systems, with many 

conditions becoming prominent in middle adulthood. These diseases significantly contribute to 

socioeconomic disparities in healthcare expenditures and mortality rates, further exacerbating 

health inequalities later in life (Danesh et al., 2024). To assess whether allostatic load precedes 

chronic disease development, we develop a chronic disease index (CDI) using self-reported 

disease data from the Lifelines study.15 

Our objective is to construct a CDI that aggregates self-reported information across a broad 

spectrum of aging-related chronic diseases, including cardiovascular conditions, diabetes, 

15 There is a clear distinction between the biomarkers we included and the aging-related chronic diseases we 
considered. While chronic disease indicates a diseased state in the body, biomarkers are biological measures that 
frequently but not perfectly correlate with an illness. For example, total cholesterol and triglyceride levels exceeding 
clinical thresholds do not immediately indicate a diagnosis of cardiovascular disease. However, high levels of these 
biomarkers increase the risk of stroke and heart attack, which offer insights into potential health risks. 
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neurological disorders, etc. One approach is to adapt the methodology used to create a frailty 

index (Hosseini et al., 2022). This method accounts for the cumulative number of adverse health 

events an individual has experienced. The resulting index can be treated as a continuous variable 

or normalized to a scale ranging from 0 to 1. For example, Hosseini et al. (2022) develop a 

frailty index using variables such as activities of daily living, medical diagnoses, and mental and 

cognitive functioning. 

We use a total of 19 aging-related chronic diseases in Lifelines to construct the CDI (see 

Table A.1 in Appendix). Each chronic disease is represented by a binary variable, taking a value 

of either 0 or 1 for each individual, indicating whether the individual currently has or has 

previously had the disease. The CDI is calculated as the total number of chronic diseases an 

individual has experienced by a given age.16  

Similar to the analysis of ALI, we employ a stacked area graph to examine the progression of 

chronic disease prevalence across age groups by pooling all observations. As illustrated in Figure 

2, the onset of aging-related chronic diseases typically occurs after early adulthood. Among 

young adults, the majority do not have any of the selected chronic diseases, while only a small 

proportion have one chronic condition. Furthermore, the prevalence of these chronic diseases 

becomes substantial after age 35, with a marked increase observed only after around age 45. 

Next, we compare the trajectories of ALI and CDI across the life cycle. Figure 3 illustrates 

these trajectories by age. To ensure comparability of scale, the indexes are rescaled using the 

mini-max scaling approach.17 The figure reveals that biomarker-related risks emerge significantly 

17 The mini-max scaling approach is a data normalization technique used to scale the values of a dataset to a specific 
range, often from 0 to 1.  

16 Notably, we do not assign different weights to the chronic diseases in this calculation, which may be considered 
arbitrary. In addition, the CDI is subject to potential non-classical measurement errors and underdiagnosis due to the 
limitations of the available data. 
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earlier than chronic diseases. This raises a critical question: to what extent can ALI predict the 

CDI? From an intervention perspective, understanding whether early intervention before the 

onset of diseases is necessary is essential. Additionally, it is important to acknowledge that these 

trajectories may be confounded by cohort effects, health-based attrition, and medication 

intervention. 

3.3 Mortality 

Mortality, as the final stage of the life cycle, typically becomes significant only later in life, 

occurring well after the onset of chronic diseases. To connect with previous research on 

mortality, we also aim to examine whether ALI can predict mortality. We determine 3-year 

mortality based on the survey date and the recorded date of death from Lifelines and BPR. 

However, due to data limitations, we are unable to identify the 3-year mortality of participants 

who took the survey after September 2021 and remained alive until the cutoff date for death 

records. As a result, our sample size for mortality analysis is smaller than that for biomarkers and 

chronic diseases.18 

Figure 3 also illustrates the trajectory of 3-year mortality among Lifelines participants. 

Compared to previous research, the absolute 3-year mortality rate is relatively low. This can be 

attributed to the fact that the Lifelines cohort consists of a relatively young, non-institutionalized 

population, with older individuals not being the primary focus. Additionally, mortality rates 

derived from survey data tend to be lower than those observed in the general population (Keyes 

et al., 2018). As we can see, the 3-year mortality remains relatively low before age 50 but rises 

sharply after age 60. In contrast, CDI increases steeply before age 50, while biomarker-related 

18 Specifically, the 3-year mortality for 35,240 observations in wave 3a are missing because these participants took 
part in the third wave of Lifelines after September 2021. 

 
 
 
 

19 

https://www.zotero.org/google-docs/?PW7uP8
https://www.zotero.org/google-docs/?PW7uP8


risks become significant and escalate already before age 30. This progression demonstrates a 

transition from biomarker-related risks to the onset of chronic diseases and, ultimately, to 

mortality. 

3.4 Allostatic Load and Disparity in Chronic Disease and Mortality 

As shown above, the number of aging-related chronic diseases increases later in life while 

biomarker-related risks have already emerged early in adulthood before chronic diseases happen. 

Previous research has highlighted the significant association between the ALI and mortality risk 

and shown it explains a significant portion of the SES-related mortality gap, with findings 

suggesting that the ALI accounts for a substantial portion of the differences in mortality risks 

across SES groups (e.g., Seeman et al., 2004; Howard & Sparks, 2016). Here, we build on prior 

work by investigating whether a cumulative index of biological risk, namely ALI, can predict the 

prevalence of chronic disease and 3-year mortality. 

We start with a linear regression of  on a set of controls , including age, age 𝐶𝐷𝐼
𝑖, 𝑎

𝑋
𝑖, 𝑎

squared, age group, gender, cohort, urban, province, and survey year. Then, we add the 𝐴𝐿𝐼
𝑖, 𝑎

 

and the lagged term of ALI into the regression. To do that, we restrict our sample to individuals 

who participated in at least two consecutive surveys and pool all the observations. Afterward, we 

do the regression by age groups with 10-year intervals.  

        (2) 𝐶𝐷𝐼
𝑖,𝑎

= α + β𝐴𝐿𝐼
𝑖,𝑎

+ 𝑋
𝑖,𝑎

γ + ϵ
𝑖

Table 4 examines the extent to which the ALI and its lagged term predict the CDI and 3-year 

mortality when sequentially added into the model. Two key points can be drawn from the 

regression analysis. First, both the ALI and its lagged term demonstrate a significant positive 

association with the CDI and 3-year mortality, indicating that higher ALI and the lagged term 
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correspond to increased CDI and mortality values. This finding supports the role of ALI as a 

pre-indicator of aging-related chronic disease prevalence and mortality. Additionally, in Table 

5-1, Table 5-2, Table 6-1, and Table 6-2, we present the regression results by 10-year age bins. 

The coefficients for both ALI and its lagged term increase with age group, indicating that their 

association intensifies in later life.  

As a sensitivity analysis, we use z-ALI and its lagged term to predict CDI and 3-year 

mortality. The results, reported in Table A.2 (in Appendix), are consistent with those obtained 

using ALI. This finding aligns with previous studies (e.g., see McLoughlin et al. 2020) 

suggesting that the choice of allostatic load scoring algorithm has a relatively small impact on 

predicting general health outcomes.  

 

4.  The Socioeconomic Health Disparities over the Life Cycle 

 
In this section, we start by considering educational disparities in health by graphical analysis. 

Specifically, we aim to present the trajectory of educational disparities in allostatic load over the 

life cycle and exhibit disparities in each biomarker and related risks among young adults. This 

analysis provides insights into the timing through which socioeconomic health disparities emerge 

and evolve. 

The health gap between educational groups is defined as

, representing the difference in health outcomes △𝐻𝑒𝑎𝑙𝑡ℎ
𝑎

= 𝐻𝑒𝑎𝑙𝑡ℎ
𝑎, ℎ𝑖𝑔ℎ

− 𝐻𝑒𝑎𝑙𝑡ℎ
𝑎, 𝑙𝑜𝑤

between individuals with high and low levels of education at a given age. Simply tracking how 

this gap changes with age offers insight into when and how the educational disparities in 
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biomarkers and allostatic load open. This simple comparison is valuable because it provides 

information on the timing of education-related health disparities before endpoints.  

4.1 The Trajectory of the Allostatic Load Disparity over the Life Cycle 
 
At the outset, we examine how allostatic load disparity across education groups evolves over the 

life cycle, without considering other potential confounders. This analysis aims at understanding 

the onset of health disparities in allostatic load and the pattern over the life cycle. 

Figure 4 presents the trajectory of educational allostatic load disparity by age, pooling 

observations from three waves of data, separately for males and females. The figure highlights 

that educational disparity in allostatic load becomes evident in early adulthood and consistently 

increases with age, peaking in late middle age. To interpret the magnitude of these differences, 

consider the ALI for the low education group at age 30, which is comparable to that of the high 

education group at around age 44 for females and age 37 for males. This indicates a substantial 

biological health gap across socioeconomic groups. Additionally, the absolute gap in allostatic 

load reflects the cumulative burden of biological risks. For instance, at age 40, females in the low 

education group have, on average, 0.24 more biological risks than their high education 

counterparts. Given that the ALI for the high education group at this age is 0.52, this represents a 

relatively large disparity. 

Gender differences are also evident in both the levels and trajectories of allostatic load over 

the life course. For females, the ALI is consistently lower than that for males throughout the life 

cycle. The rate of increase in the ALI for females begins to accelerate slightly before age 40 and 

rises more sharply till age 60. The educational disparity in ALI for females continues to widen 

until around age 50, after which it stabilizes. For males, the average ALI is higher than that for 
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females across the entire lifespan. The increase in ALI and the corresponding educational 

disparity occur more rapidly for males compared to females and tend to stabilize around age 55. 

We also present the trajectory of educational ALI disparity for all samples in Figure B.2 in the 

Appendix.  

For both females and males, the increase in allostatic load tends to slow down around the 

ages of 50 to 60. This pattern aligns with the findings of Lleras-Muney & Moreau (2022), who 

demonstrate that SES gradients in mortality widen with age but eventually decline after a certain 

point. Our study complements their work by providing evidence of the evolution of SES-related 

gradients in biomarker-based health measures. Several factors may explain this decline. First, the 

prevalence of chronic diseases at late middle age often leads individuals to begin medication, 

which can reduce the levels of certain biomarkers, such as HbA1c.19 Second, as individuals 

experience health issues, they tend to place greater value on maintaining their health. This shift 

in priorities often leads to increased investment in healthier behaviors and lifestyles, such as 

engaging in more physical activity or adopting healthier lifestyle habits. Third, health-based 

attrition may contribute to this trend, as individuals with higher allostatic load may exit the 

Lifelines study due to transitioning to regular healthcare programs or, in some cases, mortality. 

The static comparisons of health gaps could be confounded by factors such as cohort effects, 

health-based sorting, and health-based attrition. These factors will shape our graphic analysis. 

For example, SES measures may be endogenous to individual health, as poor health may lead to 

lower SES, potentially shaping the pattern of SES-related health disparities over the life cycle. In 

19 In the Lifelines study, we have access to limited self-reported medication data. Unfortunately, the quality of this 
data is insufficient to test this assumption due to the categorization of medication information and the available 
sample size. 
 

 
 
 
 

23 

https://www.zotero.org/google-docs/?Rx0CIf


our study, we are mainly interested in the differences in the health evolution by educational 

attainment. Educational attainment often becomes stable after early adulthood, which reduces the 

issue of health-based sorting.  

Another concern is the cohort effects. While the longitudinal nature of the Lifelines study 

supports cohort analysis, the currently available biomarker data include only three waves, 

allowing us to track individuals for an average of 11.2 years and a maximum of 17 years. Ideally, 

we would construct a cohort specific to each birth year, but this results in too few observations 

for each cohort in each wave. Instead, to test for the significance of cohort effects, we create 

eight cohorts using 10-year birth intervals and then compare the average health outcomes of 

different cohorts at the same age across waves. Due to limited observations in the oldest cohort, 

we exclude individuals born before 1930 from the analysis. Although we do not aim to capture 

the cohort effect, this setting allows us to observe the extent of cohort effects by comparing the 

average ALI at the same age but in different cohorts. We present the graphical analysis in Figure 

5 by showing the extent of cohort effect. 

4.2 The Distribution of Biomarkers and the Prevalence of Biomarker-Related 

Risk 

In this section, we examine educational disparities in biomarkers and biomarker-related risks 

separately for females and males. Figure B.3.1, Figure B.3.2, and Figure B.3.3 in the Appendix 

present box-and-whisker plots of 12 biomarkers by 10-year age groups, constructed using pooled 

observations from 3 waves.20  

20 The bottom and top edges of each box represent the 25th and 75th percentiles, respectively, while the middle line 
within the box denotes the median. The lower whisker extends from the first quartile to 1.5 times the interquartile 
range below the first quartile, and the upper whisker extends from the third quartile to the largest data point within 
1.5 times the interquartile range above the third quartile. A red line indicating the clinical threshold for each 
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Several stylized facts emerge from these figures. First, for most biomarkers, such as systolic 

and diastolic blood pressure, BMI, and total cholesterol, values tend to increase with age and 

decrease with educational attainment. The rate of increase slows down with age, and some 

biomarker values begin to decline after middle age, likely due to factors such as medical 

treatment, changes in health behaviors, and mortality. Second, for biomarkers like systolic and 

diastolic blood pressure, glucose, and creatinine, the cross-sectional dispersion increases with 

age and is greater in the low-education group. Third, the percentage of individuals whose 

biomarker values exceed the clinical threshold for certain biomarkers begins to emerge before 

age 35, or even 25, with a noticeable gap in prevalence between different education groups. 

Finally, for some biomarkers (e.g., HDL cholesterol and creatinine), there is a clear gender 

difference in the value, but the pattern across age groups is generally similar for both males and 

females. 

Next we examine the prevalence gap in biomarker-related risks across education groups. 

Specifically, an individual  at age  is considered to have a risk for a specific biomarker if their 𝑖 𝑎

biomarker value exceeds the threshold. The prevalence gap is defined as , 𝐵𝑖𝑜
ℎ𝑖𝑔ℎ, 𝑎

− 𝐵𝑖𝑜
𝑙𝑜𝑤, 𝑎

where  represents the average value of individuals with high educational attainment at 𝐵𝑖𝑜
ℎ𝑖𝑔ℎ, 𝑎

age  and  represents those with low educational attainment.  𝑎 𝐵𝑖𝑜
𝑙𝑜𝑤, 𝑎

Figure 6 illustrates the difference in the percentage of samples with high-risk biomarker 

values between individuals with low and high educational attainment for ages under 30. Several 

key observations can be drawn from this. First, the figure reveals a noticeable biomarker-related 

biomarker is also included. Outliers, defined as values below the first quartile or above the third quartile by more 
than 1.5 times the interquartile range, are not shown in these figures. 
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risk for young adults, which contrasts with the more substantial morbidity and mortality typically 

observed in middle-aged and older individuals. For instance, the prevalence of BMI and WHR 

risks for males is 9.8% and 34.6%, respectively, indicating that 9.8% of males under age 30 have 

BMI values above 30 and 34.6% have WHR values above 0.94. Both BMI and WHR are 

commonly associated with diseases such as diabetes and metabolic syndrome, which generally 

manifest later in life.  

Second, we observe a significant educational gradient in the prevalence of biomarker-related 

risks before age 30. For example, the prevalence gap for HDL cholesterol is 4.4% for females 

and 13.4% for males.21 HDL cholesterol helps to prevent the buildup of plaque in arteries. 

Additionally, gaps are also observed for LDL cholesterol, systolic blood pressure, creatinine, 

triglycerides, total cholesterol (for males), WHR, and BMI. One exception is creatinine, where 

the lower education group exhibits lower values than the higher education group for females. 

Third, we find a pronounced gender difference in the prevalence of biomarker-related risks. 

The risk tends to be higher in males for LDL cholesterol, systolic blood pressure, creatinine, 

triglycerides, total cholesterol, HDL cholesterol, and WHR. In contrast, females exhibit slightly 

higher prevalence rates for BMI and heart rate. Furthermore, the prevalence gap is generally 

larger for males across most biomarkers compared to females. Additionally, we also present the 

results for the whole sample, see Figure B.4 in the Appendix. 

 
 

21 HDL cholesterol is considered "good" cholesterol, so here we report the percentage of individuals with HDL 
cholesterol below the clinical threshold. 
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5. Drivers of Allostatic Load over the Lifecycle 

 
5.1 Framework  
 
Our prior graphical analysis demonstrates the educational disparities in biomarkers and allostatic 

load that begin to manifest in early adulthood and progressively widen until late middle age. In 

this section, we focus on the factors contributing to allostatic load and its growth, as well as how 

the contribution of these factors differs across gender and age groups. Although our analysis is 

primarily descriptive, it offers valuable insights into the relative importance of various 

determinants and highlights how targeted health interventions can mitigate biomarker-related 

risks. Specifically, our analysis emphasizes the role of health-related behaviors in driving the 

growth of allostatic load. 

To estimate the role of these factors in determining allostatic load, we use a linear regression 

approach across 10-year age bins to analyze the associations between the ALI  and its potential 

drivers: 

      (3) 𝐴𝐿𝐼
𝑖,𝑎

=
𝑗=1

𝐽

∑ 𝑋
𝑖,𝑎
𝑗 γ

𝑗,𝑎
+ ε

𝑖,𝑎

In these equations,    the ALI for individual  in age group.   is a vector of 𝐴𝐿𝐼
𝑖,𝑎

𝑖 𝑋
𝑖,𝑎
𝑗

explanatory variables that includes health behaviors (e.g., smoking, drinking, physical activity, 

and sleep disorders), educational attainment, employment status, and neighborhood SES. To 

assess the relative contribution of these variables, we decompose the total R-squared of these 

regressions using Shapley and Owen decomposition methods (Huettner & Sunder, 2012). This 
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approach enables us to evaluate the average contribution of each predictor to the explained 

variance across all possible sequences of regressors. 

5.2 Decomposition Results 
 

Figure 7 illustrates the relative importance of various drivers contributing to allostatic load, as 

derived from gender- and age-specific regression decompositions. The columns represent the 

total R-squared values from each regression. Health behaviors emerge as significant contributors 

to the current allostatic load across both gender and age groups. For females, alcohol 

consumption accounts for a relatively large contribution to the allostatic load. The contribution 

of physical activity shows a gradual increase after the age of 25. Educational attainment provides 

a relatively stable contribution to allostatic load, while employment plays a notable role 

primarily during the working years, particularly in middle age. Smoking exhibits a moderate 

contribution across age groups, whereas the impact of sleep disorders is more pronounced during 

middle age. For males, physical activity consistently contributes significantly to allostatic load 

across all age groups, with its influence becoming particularly pronounced after age 55. The 

contribution of alcohol consumption increases steadily with age, while smoking demonstrates a 

substantial impact only up to age 55. The role of education in allostatic load shows a declining 

trend as age progresses. 

Figure B.5 in Appendix illustrates the decomposition results, highlighting the relative 

importance of various factors driving the growth of allostatic load. Similar to Figure 7, health 

behaviors emerge as significant contributors to the growth of allostatic load for both females and 

males. Specifically, among females, drinking and education make relatively large contributions 

to this growth. For males, however, smoking shows a more substantial contribution compared to 
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drinking, marking a departure from the patterns observed in Figure 7. While both figures 

underscore the role of health behaviors, their implications differ slightly. 

It is important to emphasize that the decomposition results presented here reflect correlations 

rather than causal relationships. Furthermore, these results are influenced by the selection of 

biomarkers used in the study and should not be interpreted as evidence that, for example, 

smoking is less important than drinking in affecting the whole biological health. For instance, 

biomarkers related to lung function, the nervous system, the immune system, and the skeletal 

system are excluded due to data constraints. Consequently, the ALI constructed in this study may 

be more closely associated with some of the health behaviors under investigation than others. 

Nevertheless, the decomposition results provide valuable insights into the relative importance of 

these behaviors in influencing key physiological systems, including the cardiovascular system, 

metabolic system, and kidney function. 

 

6. Conclusion 

 
Using representative data from Dutch Lifelines, we investigate the life-cycle profile of 

biomarker-related health and its underlying determinants using objective biomarkers obtained 

from longitudinal biomaterial collection and measurements. We develop an allostatic load index 

to reflect physiological dysregulation in response to stress exposure, which also indicates the 

cumulative risks of chronic conditions. Complementing previous research, our study underscores 

the significant role of allostatic load as a predictor of chronic disease development and mortality. 
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In our life-cycle analysis, we observe that the biomarker-related health disparity in SES 

emerges early in adulthood for both males and females. For instance, the biomarkers exhibit 

notable gradients at the onset of adulthood. Educational differences in allostatic load continue to 

widen during adulthood for both males and females, while also showing a large difference in the 

pattern by gender. Furthermore, we decompose the total R-squared of regression to assess the 

average contribution of various factors to the allostatic load. We find health behaviors play an 

important role in allostatic load and the growth of allostatic load, with different behaviors 

demonstrating distinct relative importance across age groups and genders. Educational 

attainment emerges as a significant determinant for both males and females throughout the life 

cycle.  

The current analysis has several limitations that need to be acknowledged. Firstly, the 

construction of the ALI lacks a uniform approach across the literature, making comparisons with 

other studies challenging, and the results might be driven by the number and type of biomarkers 

we selected. Second, potential confounders, such as medication use and health-based attribution, 

have not been accounted for in the graphical analysis, which could affect the observed patterns of 

health disparity across the life cycle. Third, the decomposition method employed is relatively 

straightforward, and the findings are partially shaped by the selected biomarkers and 

health-related behaviors. The analysis does not account for the impact of, such as environmental 

exposure, early life conditions and parents’ SES, both of which are considered to have a 

significant influence on chronic health outcomes. Moving forward, addressing these limitations 

is essential. Future analyses may put effort into accounting for confounders of graphical analysis 

and capture the biological aging speed based on our dynamic biomarkers.  
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Tables and Figures 

A Tables 
Table 1: Clinical Cut-Off Points of Biomarkers 

System  Biomarker Description Threshold 

Cardiovascular system  
Systolic blood pressure 

(mmHg)  
The maximum pressure in arteries during the active phase of the 

heartbeat >= 140 

 
Diastolic blood pressure 

(mmHg)  
The heart refills with blood and the pressure in the arteries is at its 

lowest 
 

>= 90 

 Heart rate (per minute) The number of times the heart beats in one minute 
(electrocardiogram) >= 90 

Metabolic system Body mass index (BMI) A simple calculation used to assess whether a person has a healthy 
body weight for their height22 >= 30 

 Waist-to-hip ratio (WHR) A measurement used to assess body fat distribution >= 0.94 

 
Total cholesterol 

(mmol/l)  The sum of different types of cholesterol in the blood >=  6.2 

 
High-density lipoprotein 

(HDL) cholesterol 
(mmol/l) 

"Good" cholesterol that helps clear other forms of cholesterol 
 
 

<= 1 

 
Low-density lipoprotein 

(LDL) cholesterol 
(mmol/l) 

"Bad" cholesterol that high levels can lead to the buildup of 
cholesterol in the arteries 

 
>= 4.1 

 
Glycosylated hemoglobin 

(hba1c)(mmol/mol) 
A blood test that measures the average level of blood sugar 

(glucose) over the past 2-3 months 
> 48 

 

 Glucose (mmol/mol) A simple sugar and a primary energy source for the body’s cells >= 7 

 Triglycerides23 (mmol/l) A type of fat (lipid) found in blood >= 1.7 

Kidney function Creatinine (mmol/l) 
Creatinine is a waste product that forms when muscles break down 
creatine, a substance found in the muscles and consumed through 

meat and fish 
>= 90 

Note: For HbA1c, the variable measured in mmol/L contains 23,000 missing values in wave 1a, whereas the variable measured in 
percentages has only 764 missing values. To address this issue, we use the alternative variable for HbA1c and convert its unit 
accordingly. Consequently, there is a small transformation error in this variable due to rounding. 
 
 

23 Compared to other cohort studies, the triglycerides seem to be lower in Lifelines in all percentiles. This is mainly 
because current criteria are largely based on the studies that were carried out in the 1970s (Balder et al., 2017).  

22 BMI is calculated by BMI = Weight (kg) / Height (m)^2. 
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Table 2: Sample Selection 

 

Selected in  Selected out: 
missing 

value in 12 
biomarkers 

Selected out: 
fasting 

Selected out: 
missing value 
in 19 chronic 

diseases 

Selected out: 
missing in 

demographic
s (including 
education) 

Selected 
sample 

Wave 1a 150,605 8,676 2,226 3,148 8,885 127,047 

Wave 2a  99,608 7,535 2,121 0 3,108 86,513 

Wave 3a 60,794 5,004 1,617 0 901 53,272 

Number of 
observations 311,007 21,215 6,918 3,148 12,894 266,832 
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Table 3-1: Summary Statistics 
  Wave 
  Wave 1a Wave 2a Wave 3a Total 

Number of observations 127,047 (47.6%) 86,513 (32.4%) 53,272 (20.0%) 
266,832 
(100.0%) 

A. Demographics      

Age 45.303 (11.839) 50.147 (12.013) 55.887 (11.158) 48.987 (12.441) 
Gender 0.421 (0.494) 0.416 (0.493) 0.415 (0.493) 0.418 (0.493) 
B. Education         

  Low 87,296 (68.7%) 57,493 (66.5%) 32,108 (60.3%) 176,897 (66.3%) 

  High 39,751 (31.3%) 29,020 (33.5%) 21,164 (39.7%) 89,935 (33.7%) 

C. Biomarkers     

Systolic blood pressure 
125.565 
(15.213) 

128.724 
(16.324) 

131.968 
(15.983) 

127.867 
(15.928) 

Diastolic blood pressure 73.999 (9.333) 74.209 (9.472) 82.435 (10.995) 75.751 (10.288) 

Heart rate (ECG)  67.311 (11.199) 66.887 (11.192) 65.001 (10.525) 66.712 (11.100) 

Body mass index (BMI) 26.135 (4.285) 26.137 (4.273) 26.841 (4.473) 26.276 (4.329) 
Waist-hip ratio (WHR) 0.907 (0.084) 0.903 (0.089) 0.931 (4.602) 0.911 (2.058) 
Total cholesterol  5.098 (0.999) 5.097 (0.984) 5.194 (1.008) 5.117 (0.997) 
High-density lipoprotein 
cholesterol 1.491 (0.397) 1.518 (0.423) 1.515 (0.421) 1.504 (0.411) 
Low-density lipoprotein 
cholesterol 3.248 (0.913) 3.328 (0.912) 3.334 (0.906) 3.291 (0.912) 
Glucose 5.016 (0.822) 5.074 (0.885) 5.366 (0.972) 5.105 (0.884) 
 
Hemoglobin A1C 37.243 (4.860) 36.726 (5.236) 38.085 (5.645) 37.243 (5.169) 
Triglycerides 1.184 (0.812) 1.213 (0.814) 1.285 (0.787) 1.213 (0.809) 

Creatinine 73.572 (13.397) 78.635 (14.647) 77.800 (14.853) 76.057 (14.309) 

D. Chronic disease     
Cancer 0.046 (0.209) 0.061 (0.238) 0.088 (0.284) 0.059 (0.236) 
Stroke 0.007 (0.084) 0.011 (0.102) 0.012 (0.109) 0.009 (0.096) 
Heart attack 0.010 (0.099) 0.014 (0.118) 0.017 (0.131) 0.013 (0.112) 
Heart failure 0.007 (0.083) 0.019 (0.136) 0.024 (0.154) 0.014 (0.119) 
Diabetes 0.024 (0.153) 0.036 (0.186) 0.042 (0.201) 0.031 (0.175) 
Ulcerative colitis 0.006 (0.076) 0.008 (0.091) 0.010 (0.098) 0.007 (0.086) 
Gallstones 0.037 (0.188) 0.046 (0.208) 0.046 (0.209) 0.041 (0.199) 
Hepatitis 0.010 (0.100) 0.011 (0.105) 0.012 (0.107) 0.011 (0.103) 
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Table 3-2: Summary Statistics 

  Wave 
  Wave 1a Wave 2a Wave 3a Total 
Chronic fatigue 0.013 (0.114) 0.016 (0.127) 0.015 (0.123) 0.015 (0.120) 
Kidney Stones 0.031 (0.173) 0.038 (0.191) 0.040 (0.195) 0.035 (0.184) 
Renal Failure 0.000 (0.000) 0.002 (0.040) 0.002 (0.046) 0.001 (0.030) 
Arthritis 0.021 (0.145) 0.033 (0.178) 0.037 (0.188) 0.028 (0.165) 
Fibromyalgia 0.033 (0.178) 0.042 (0.201) 0.046 (0.208) 0.038 (0.192) 
Osteoarthritis 0.077 (0.267) 0.159 (0.365) 0.198 (0.399) 0.128 (0.334) 
Osteoporosis 0.015 (0.122) 0.029 (0.168) 0.034 (0.180) 0.023 (0.151) 
Repetitive strain injury 0.022 (0.148) 0.035 (0.183) 0.044 (0.205) 0.031 (0.173) 
Chronic obstructive 
pulmonary disease  0.053 (0.224) 0.068 (0.252) 0.067 (0.249) 0.061 (0.239) 
Dementia 0.000 (0.011) 0.001 (0.030) 0.001 (0.032) 0.001 (0.024) 
Parkinson’s 0.001 (0.023) 0.001 (0.037) 0.002 (0.042) 0.001 (0.033) 

Note:  for biomarkers, we report the mean of the original values. For chronic diseases, we show the prevalence of 
specific conditions. 
 
 
 
 

Table 4: Regression Results of Chronic Disease and  3-Year Mortality on Allostatic Load 
  Panel A. Chronic disease Panel B. 3-Year mortality 
 (1) (2) (1) (2) 

 𝐴𝐿𝐼 0.065***  0.0005***  
 (0.002)  （0.0001）  

 𝐴𝐿𝐼
𝑎−𝑡

 0.074***  0.0005*** 

   (0.002)  (0.0001) 
Controls Yes  Yes  Yes Yes 
Observations 120,083 120,083 93,503 93,503 
R-squared 0.159 0.158 0.009 0.009 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Controls are age, age squared, age group, 
gender, cohort, urban, province, and survey year.  
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Table 5-1:Regression Results of Chronic Disease on Allostatic Load by Age Group 
 25-34 35-44 45-54 
 (1) (2) (1) (2) (1) (2) 

 𝐴𝐿𝐼  0.024***    0.048***    0.056***   
 (0.004)  (0.003)  (0.002)  

 𝐴𝐿𝐼
𝑎−𝑡

  0.033***   0.051***   0.070*** 

    (0.005)   (0.003)   (0.003) 
Controls Yes   Yes Yes  Yes   Yes  Yes 
Observations 8,287 8,287 20,789 20,789 40,046 40,046 
R-squared 0.019 0.025 0.027 0.037 0.027 0.041 

 
Table 5-2: Regression Results of Chronic Disease on Allostatic Load by Age Group 

 55-64 65-74 
 (1) (2) (1) (2) 

 𝐴𝐿𝐼  0.068***    0.075***   
 (0.004)  (0.005)  

 𝐴𝐿𝐼
𝑎−𝑡

  0.086***   0.072*** 

    (0.004)   (0.006) 
Controls  Yes Yes  Yes  Yes  
Observations 30,120 30,120 16,898 16,898 
R-squared 0.041 0.057 0.031 0.039 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Controls are age, age squared, gender, cohort, 
urban, province, and survey year. 
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Table 6-1: Regression Results of 3-Year Mortality on Allostatic Load by Age Group 

 25-34 35-44 45-54 
 (1) (2) (1) (2) (1) (2) 

 𝐴𝐿𝐼  0.0003*    0.0003**   0.0005***  
 (0.0002)  (0.0002)  (0.0002)  

 𝐴𝐿𝐼
𝑎−𝑡

  0.0001   0.0011***  0.0007*** 

    (0.0002)   (0.0002)  (0.0002) 
Controls Yes   Yes Yes  Yes   Yes  Yes 
Observations 7,451 7,451 17,680 17,680 33,164 33,164 
R-squared 0.001 0.001 0.001 0.002 0.001 0.001 

 
Table 6-2: Regression Results of 3-Year Mortality on Allostatic Load by Age Group 

 55-64 65-74 
 (1) (2) (1) (2) 

 𝐴𝐿𝐼 0.0005  0.0006  
 (0.0003)  (0.0007)  

 𝐴𝐿𝐼
𝑎−𝑡

 0.0003  0.0000 

   (0.0004)  (0.0006) 
Controls  Yes Yes  Yes  Yes  
Observations 20,634 20,634 11,962 11,962 
R-squared 0.001 0.001 0.003 0.003 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Controls are age, age squared, gender, cohort, 
urban, province, and survey year. 
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B Figures 
 

 

Figure 1: The Evolution of the Number of Biomarker-Related Risks Over the Life Cycle 
 
Note: The number of risks refers to the count of biomarkers exceeding the threshold for an individual at a given age. 
The figure illustrates the percentage of participants with varying numbers of risks across different ages. 
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Figure 2: The Evolution of the Number of Aging-Related Chronic Diseases Over the Life Cycle 
 

Note: The number of chronic diseases refers to the count of chronic dieases for an individual has or has previously 
had at a given age. The figure illustrates the percentage of participants with varying numbers of chronic diseases 
across different ages. 
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Figure 3: The Life Cycle Profile of Allostatic Load Index, Chronic Disease Index and 3-Year 
Mortality 

Note: To ensure comparability of scale, the indexes are rescaled using the min-max scaling approach. We apply the 
lpoly smoothing method to capture the relationship between age and the ALI, CDI, and 3-year mortality. The lpoly 
is a kernel-weighted local polynomial regression of yvar on xvar. Here, we use the Epanechnikov kernel function 
with a zero-degree polynomial, effectively minimizing noise while preserving the true pattern of the data. Due to 
limitations in death record availability, the number of observations for 3-year mortality is smaller than that for ALI 
and CDI, with 35,240 observations missing in wave 3a. 
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Figure 4: The Educational Allostatic Load Disparities by Age and Gender 

 
Note: We apply the lpoly smoothing method to capture the relationship between age and th ALI. The lpoly is a 
kernel-weighted local polynomial regression of yvar on xvar. Here, we use the Epanechnikov kernel function with a 
zero-degree polynomial. 
 
 
 

 
Figure 5: The Educational Allostatic Load Disparities by Age, Cohort, and Gender 

 
Note: We apply the lpoly smoothing method to capture the relationship between age and the ALI. The lpoly is a 
kernel-weighted local polynomial regression of yvar on xvar. Here, we use the Epanechnikov kernel function with a 
zero-degree polynomial.  
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Figure 6: The Prevalence Gap of Having High Risks in Biomarkers for Age Group Under 30 

 
Note: This figure illustrates the prevalence of high-risk biomarkers across education groups, segmented by gender. 
Observations from all three waves are pooled for this analysis. For example, a value of 0.027 for females' heart rate 
indicates that 2.7% of females have a heart rate above 90 beats per minute, exceeding the clinical threshold. For 
females, the differences in total cholesterol, HbA1c, glucose, and diagnostic blood pressure between low and high 
education groups are statistically insignificant at the 10% level. For males, the differences in heart rate and diastolic 
blood pressure between education groups are statistically insignificant at the 10% level. 
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Figure 7: The R-Squared Contribution of Modifiable Factors to Allostatic Load Index by Gender 

and Age Groups 
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Online Appendix (Supplementary Materials) 

A Tables 
 

Table A.1: Aging-Related Chronic Disease 

Category Specific Disorder 

Cancer  

Cardiovascular diseases heart attack, heart failure, stroke 

Diabetes  

Digestive system diseases ulcerative colitis, gallstones, hepatitis 

Chronic fatigue syndrome  

Kidney and bladder diseases kidney stones, renal failure 

Musculoskeletal conditions arthritis, fibromyalgia, osteoarthritis, osteoporosis, 
repetitive strain injury 

Neurological disorders dementia, parkinson’s disease 

Respiratory diseases emphysema, chronic bronchitis 

 
 
 

Table A.2: Regression Results of Chronic Disease and  3-Year Mortality on Allostatic Load 
(Z-Scores) 

  Panel A. Chronic disease Panel B. 3-Year mortality 
 (1) (2) (1) (2) 
z-  𝐴𝐿𝐼 0.0233***  0.0001***  
 (0.0005)  (0.0000)  
z-  𝐴𝐿𝐼

𝑎−𝑡
 0.0251***  0.0001** 

   (0.0005)  (0.0001) 
Controls Yes  Yes  Yes Yes 
Observations 120,083 120,083 93,503 93,503 
R-squared 0.158 0.160 0.009 0.009 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Controls are age, age squared, age group, 
gender, cohort, urban, province, and survey year.  
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B Figures 
 

 
Figure B.1: The Life Cycle Profile of Allostatic Load Index Using Z-Scores 

 
Note: We apply the lpoly smoothing method to capture the relationship between age and the z-ALI. The lpoly is a 
kernel-weighted local polynomial regression of yvar on xvar. Here, we use the Epanechnikov kernel function with a 
zero-degree polynomial. 
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Figure B.2: The Life Cycle Profile of Allostatic Load Index by Age, and Education for the 

Whole Sample 
 
Note: We apply the lpoly smoothing method to capture the relationship between age and the values of ALI. The 
lpoly is a kernel-weighted local polynomial regression of yvar on xvar. Here, we use the Epanechnikov kernel 
function with a zero-degree polynomial, effectively minimizing noise while preserving the true pattern of the data. 
 

 
Figure B.3.1: The Distribution of Biomarkers Across Education Levels, Gender, and Age Groups 
 
Note: The figure is based on a selected sample with no missing data for all 12 biomarkers of interest, pooling 
observations across three waves. The red line indicates the clinical thresholds: systolic blood pressure at 140, 
diastolic blood pressure at 90, heart rate at 90, and body mass index at 30. Outliers have been excluded. 
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Figure B.3.2: The Distribution of Biomarkers Across Education Levels, Gender, and Age Groups 
 
Note: The figure is based on a selected sample with no missing data for all 12 biomarkers of interest, pooling 
observations across three waves. The red line indicates the clinical thresholds: waist hip rate at 0.94, total cholesterol 
at 6.2, HDL cholesterol at 1, and LDL cholesterol at 4.1. Outliers have been excluded. 

 
Figure B.3.3: The Distribution of Biomarkers Across Education Levels, Gender, and Age Groups 
 
Note: The figure is based on a selected sample with no missing data for all 12 biomarkers of interest, pooling 
observations across three waves. The red line indicates the clinical thresholds: hemoglobin A1C at 48, glucose at 7, 
triglycerides at 1.7, and creatinine at 90. Outliers have been excluded. 
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Figure B.4  The prevalence gap of having high risks in biomarkers for whole sample  

 
Note: This figure illustrates the prevalence of high-risk biomarkers across education levels, segmented by gender. 
Observations from all three waves were pooled for this analysis. For example, a value of 0.027 for females' heart 
rate indicates that 2.7% of females have a heart rate above 90 beats per minute, which is above the clinical threshold. 
The difference between low and high education groups is statistically significant at the 1% level.  
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Figure B.5: The R-Squared Contribution of Modifiable Factors to the Growth of Allostatic Load 

Index by Gender and Age Groups 
 

Note: We do not include the age groups of 18-24 and 75-80 due to the very small number of observations we have.  
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