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ABSTRACT
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Using Distributional Random Forests for 
the Analysis of the Income Distribution
This paper utilises distributional random forests as a flexible machine learning method for 

analysing income distributions. Distributional random forests avoid parametric assumptions, 

capture complex interactions among covariates, and, once trained, provide full estimates 

of conditional income distributions. From these, any type of distributional index such 

as measures of location, inequality and poverty risk can be readily computed. They can 

also efficiently process grouped income data and be used as inputs for distributional 

decomposition methods. We consider four types of applications: (i) estimating income 

distributions for granular population subgroups, (ii) analysing distributional change over 

time, (iii) spatial smoothing of income distributions, and (iv) purging spatial income 

distributions of differences in spatial characteristics. Our application based on the German 

Microcensus provides new results on the socio-economic and spatial structure of the 

German income distribution.
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1. Introduction

Measuring distributions of income and wealth is a central concern of both statistics

and the social sciences. A large number of statistical techniques have been develo-

ped to measure such distributions and to investigate their structure (e.g., Jenkins and

Van Kerm, 2009; Fortin et al., 2011; Chernozhukov et al., 2013; Cowell and Flachaire,

2015; Chotikapanich et al., 2018; Molina et al., 2022). In many cases, these techniques

involve strong parametric assumptions on distributional shapes or the structure of

regression models representing the dependence of distributions on covariates. A key

advantage of modern machine learning methods such as random forests (Breiman,

2001; Athey et al., 2019) is their ability to avoid such assumptions. As a recursive

partitioning algorithm, the random forest is based on sequentially splitting the cova-

riate space into cells of observations that are similar with respect to a target criterion,

and by overlaying independent repetitions of this procedure. It has a non-parametric

structure, allows for complex interactions and potentially non-smooth relationships,

and implicitly solves model-selection problems. Random forests have demonstrated

remarkable success across a wide range of applications (Biau and Scornet, 2016).

Breiman (2001)’s original random forest was designed for non-parametric mean

estimation. Subsequent extensions included survival analysis (Hothorn et al., 2004),

conditional quantile estimation (Meinshausen, 2006) and estimators defined by local

moment conditions (Athey et al., 2019). More recently, Cevid et al. (2022) and Näf et

al. (2023) proposed a highly general variant of the random forest aimed at estimating

full distributions conditional on covariates (distributional random forest, DRF).

As pointed out by Cevid et al. (2022), building random forests for full distributions

– rather than for individual target objects such as means, quantiles or other distribu-

tional indices – has a number of advantages. These advantages particularly apply to

analyses of the income distribution. First, forest building has to be carried out only

once to obtain estimates for arbitrarily many targets. For example, if one is interested

in distributional indices such as median income, the at-risk-of-poverty rate, quantile

ratios, the Gini index etc. for small population subgroups, one has to fit the random

forest only once and then obtain estimates of these targets from the conditional distri-

bution. Second, since the estimates for di!erent targets are obtained from the same

forest, they have the advantage of being mutually compatible. This is not necessarily

the case if a new forest is fit for each target. For example, it is well-known that condi-

tional quantiles may cross if they are estimated separately. Similarly, fitting separate

forests may produce values of the at-risk-of-poverty rate and the Gini coe”cient for

individual subgroups that are di”cult to reconcile. Third, fitting separate forests for

di!erent target objects requires suitable target-specific splitting criteria. For many

targets these are unknown or could be hard to derive. By contrast, the DRF directly

uses a powerful distributional criterion for splitting, the maximum mean discrepancy

statistic (MMD) (Gretton et al., 2007).

As a statistical method, the distributional random forest follows the same estima-

tion goal as a number of other estimators of conditional distributions. These typically

have a parametric or semi-parametric structure, see, e.g., Donald et al. (2000), Bie-

wen and Jenkins (2005), Rigby and Stasinopoulos (2005), Hothorn et al. (2013).

Conditional quantile models (Koenker, 2005) and binary models for distributional
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thresholds (Chernozhukov et al., 2013) can also be used to construct conditional

distribution functions, but they require fitting a large number of quantiles or distri-

butional thresholds. However, in all of these models, it is not easy to deal with issues

such as non-smooth dependencies, complex interaction e!ects and automatic vari-

able selection, which are automatically handled by the random forest. Before the

development of the fully non-parametric distributional random forest, Schlosser et al.

(2019) and Hothorn and Zeileis (2021) proposed parametric variants based on fitting

predefined distributional forms. This can be an attractive option if the number of

training observations is limited. By contrast, this paper uses Cevid et al. (2022)’s

non-parametric version of the distributional random forest as a fully flexible device

to estimate the relationship between outcome distributions and covariates based on

a large data set.

The purpose of this paper is to apply distributional random forests to various

estimation problems in the analysis of the income distribution. We consider the

following applications: (i) estimating income distributions for granular population

subgroups, (ii) analysing distributional change over time, (iii) spatial smoothing of

income distributions, and (iv) purging spatial income distributions of di!erences in

spatial characteristics. Application (i) is commonly used by governments and statisti-

cal agencies to monitor the well-being of population subgroups and to inform policy

measures (e.g., poverty alleviation). Task (ii) decomposes changes in the aggregate

distribution over time, separating changes in the distribution that stem from changes

in the composition of the population from those caused by income changes in popula-

tion subgroups. Application (iii) is also a common task of governments and statistical

agencies aimed at constructing maps of statistical information on quantities such

as median income, at-risk-of-poverty indices or income inequality across geographic

areas with potentially sparse observations. This question has been addressed by a

large literature on small area estimation, see Tzavidis et al. (2018) and Molina et

al. (2022) for overviews. Given the inherent smoothing properties of random forests

(Lin and Jeon, 2006), this method is well-suited for small area estimation. Indeed,

Krenmair and Schmid (2022) have recently incorporated a random forest component

into a small-area mixed e!ects model for estimating area-level means. In this paper,

we use the DRF to estimate area-level distributions with the goal of constructing

area-level statistical indices (means, at-risk-of-poverty rates, inequality indices etc.).

In a final application (iv), we consider the problem of purging spatial income distribu-

tions of di!erences in spatial characteristics. This isolates the ‘pure’ spatial structure

of income levels and inequality, independent of variations in age, employment, educa-

tion, etc., across spatial units. To the best of our knowledge, this application is novel

in the literature.

Our empirical analysis is based on the German Microcensus, an annual survey

conducted by the Federal Statistical O”ce of Germany. (Federal Statistical O”ce,

2024). The Microcensus is the largest sample survey in Germany and Europe. Despite

its large sample size and exceptional representativeness, it has rarely been used for

income distribution analysis due to its grouped income data. While grouped income

information always represents a limitation of information content, we demonstrate in

this paper how the distributional random forest can e!ectively deal with this issue.
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In addition to demonstrating the usefulness of the distributional random forest

approach for analysing the income distribution, this paper contributes a number of

substantive results on the German income distribution based on the Microcensus for

the years 2005 and 2019. Specifically, we provide new evidence on the incomes and

poverty risk of granular population subgroups and analyse distributional change over

time. We show that inequality and poverty risk increased between 2005 and 2019,

but that this was the result of changes in the composition of the population rather

than of income changes. Finally, we provide distributional maps of household income

and inequality for Germany at a much higher geographical resolution than previous

analyses (Immel and Peichl, 2020; Walter et al., 2022).

The remainder of this paper is structured as follows. Section 2 outlines the method

of distributional random forests due to Cevid et al. (2022). In section 3, we provide

basic information about the data used by us. Section 4 presents our random forests

estimates and the analyses derived from them. Section 5 concludes.

2. Distributional random forest

We outline the main properties of the distributional random forest (DRF) as intro-

duced by Cevid et al. (2022) and Näf et al. (2023). Let Y = (Y1, . . . , Yd) → Rd be a

potentially multivariate outcome vector and X = (X1, . . . , Xp) → Rp a vector of cova-

riates. The goal of the DRF is to estimate the conditional distribution P(Y|X = x)

based on a random sample (yi,xi), i = 1, . . . n.

The DRF produces an estimate P̂(Y|X = x) of the conditional distribution by

repeating a recursive partitioning algorithm (= tree building) k = 1, . . . N times on

random variations of the data and by averaging the results (= random forest). For

each tree k, the sample is successively partitioned into groups of observations (=

leaves). The partitioning proceeds greedily by splitting a parent node P into two

children nodes CL = {Xj ↑ l} and CR = {Xj > l} based on candidate splitting

variables Xj that are chosen randomly (see below). The split is chosen such that the

resulting nodes CL and CR are as di!erent as possible with respect to an objective

function.

In Breiman (2001)’s original random forest for mean outcomes, splits were perfor-

med so that (in the case of an univariate outcome), the resulting mean outcomes in

CL and CR di!ered the most, i.e.,

max
nLnR

n2
P



 1

nL

∑

i→CL

yi ↓
1

nR

∑

i→CR

yi




2

, (1)

where nL, nR and nP are the number of observations in the children and parent

nodes, respectively.

In the DRF, splits are performed to maximize distributional di!erences between

the resulting children nodes CL and CR. Distributional di!erences are measured by

the Maximum Mean Discrepancy (MMD) statistic (Gretton et al., 2007). The MMD

statistic is based on the theory of distributional embeddings in Reproducing Kernel

Hilbert Spaces (RKHS) (Muandet et al., 2017).
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Let (H, ↔·, ·↗H) denote a RKHS of real valued functions on Rd induced by a

positive-definite kernel k(·, ·) with inner product ↔·, ·↗H, norm ↘ · ↘H, and implicit

feature map ω : Rd
≃ H satisfying k(y,y↑) = ↔ω(y),ω(y↑)↗H. The feature map ω(y)

can be interpreted as a (possibly infinite-dimensional) collection of aspects of y. The

term k(y,y↑) is then a measure of similarity between points y and y↑ in terms of all

their aspects described by the feature map. This similarity measure is linear in the

feature space, but may be very nonlinear in the original space Rd, depending on the

richness of the feature map (‘kernel trick’).

Let P be a distribution and define

µ(P) = EY↓P [ω(Y)] (2)

as its mean embedding into the Hilbert space H (i.e., every distribution P is repre-

sented as an element of H). It turns out that, for certain choices of the kernel (i.e.,

characteristic kernels), this mapping is one-to-one, so that each distribution is uniqu-

ely represented by one element in the RKHS. Di!erences between two distributions

P and Q can thus be measured by the distance function in the corresponding Hil-

bert space, i.e., d(P,Q) = ↘µ(P) ↓ µ(Q)↘2
H

(i.e., the distance between their mean

embeddings in the Hilbert space).

The distributional random forest uses this distance measure between the distri-

butions of outcomes in two children nodes CL and CR to find splits that make

distributions in CL and CR as di!erent as possible. In this case, the MMD statistic

is defined as

DMMD(CL, CR) = ↘µ(PCL
)↓ µ(PCR

)↘2
H

=

∥∥∥∥∥∥
1

nL

∑

i→CL

ω(yi)↓
1

nR

∑

i→CR

ω(yi)

∥∥∥∥∥∥

2

H

. (3)

Note the similarity to Breiman (2001)’s original splitting criterion (1), which results

when the feature map only consists of the value y itself (i.e., ω(y) = y). In this

case, the statistic only measures average di!erences in the levels of y. By contrast,

if the feature map is richer, it measures average di!erences in all features described

by the feature map ω(·) (see (3)). For example, if ω(y) includes higher-order terms of

y, it will not only measure di!erences in means between CL and CR but in higher-

order moments. It can be shown that the implicit feature maps of characteristic

kernels is infinite-dimensional and powerful enough to detect any di!erences between

distributions (Gretton et al., 2007).1 The MMD statistic can be equivalently written

as

DMMD(CL, CR) =
1

n2
L

∑

i,j→CL

k(yi,yj) +
1

n2
R

∑

i,j→CR

k(yi,yj)

↓
2

nLnR

∑

i→CL

∑

j→CR

k(yi,yj). (4)

1 In our empirical application, we use the Gaussian kernel as in Cevid et al. (2022).
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This formulation provides an intuitive interpretation: the statistic measures how simi-

lar – as described by the kernel – observations are within each sample, as compared

to between the two samples.

As in Breiman (2001)’s original splitting criterion (1), the distributional random

forest uses a version of DMMD that is rescaled by the factor nLnR/n2
P . In order for

the forest to be consistent for the true conditional distribution P(Y|X = x), forest

construction has to comply with a number of rules (Athey et al., 2019; Cevid et al.,

2022):

1. Honesty: Splits are determined on one half of the data, distributional predictions

are computed on the other half of the data.

2. Random-split: The probability that the split occurs along feature Xj is bounded

from below by ε/p for some ε > 0 (p is the number of covariates).

3. Symmetry: The tree output does not depend on the ordering of the training

samples.

4. Regularity: Each child contains at least a fraction ϑ ↑ 0.2 of the parent node.

Trees are grown until each leaf contains between ϖ and 2ϖ↓ 1 observations.

5. Subsampling: Trees are grown on subsamples of size sn = nω out of the original n

sample observations, where ϱ has to be chosen within particular bounds depending

on p,ε and ϑ (Cevid et al., 2022).

The distributional random forest is based on N trees T1, . . . , TN that are grown

according to the rules above. Define Lk(x) as the set of training data observations

that end up in the same leaf as x in tree k = 1, . . . , N . The main output of the

distributional random forest is a set of observation and test-point-specific weights

ŵi(x) =
1

N

N∑

k=1

1(xi → Lk(x))

|Lk(x)|
, (5)

measuring the proportion with which training observation i = 1, . . . , n ended up in

the same leaf as a test point with X = x. The weights quantify the importance of each

training data point (yi,xi), i = 1, . . . , n for predicting the conditional distribution of

Y at test-point X = x. Formally, the resulting estimate is given by

P̂(Y|X = x) =
n∑

i=1

ŵi(x) · ςyi , (6)

where ςyi denotes the point mass at yi. The weights (5) characterize the distributi-

onal random forest as a locally-adaptive nearest-neighbour method which smoothes

observations across the covariate space (Lin and Jeon, 2006).

Cevid et al. (2022) have shown that (6) is consistent in the sense that its estimate of

the conditional distribution function converges in probability to the true conditional

distribution function. This implies that smooth functionals of this distribution also

converge to their population counterparts. In practice, this means that the random

forest weights ŵi(x) can be used to compute any statistic of interest based on the

plug-in principle.

Näf et al. (2023) have shown that, under suitable conditions, the mean embeddings

of the distributional random forest estimates are asymptotically normal, implying that
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su”ciently smooth functionals based the random forest weights are also asymptoti-

cally normal. Moreover, these sampling distributions can be practically simulated

by a bootstrap half-sampling procedure. To this end, b = 1, . . . , B half-samples Sb

are drawn from the original training observations. In each of these half-samples, L

trees are grown to build ‘mini forests’ Tb, b = 1, . . . , B. The weights ŵb
i (x) of these

mini forests then serve as bootstrap versions of the original weights ŵi(x) to com-

pute bootstrap versions of the statistics of interest. The procedure can be e”ciently

used to construct the overall forest consisting of N = L · B trees by combining the

L mini forests to form the total forest (‘bootstrap of little bags’, Athey et al., 2019).

In our empirical analysis, we use Näf et al. (2023)’s bootstrap procedure to compute

confidence intervals for our statistics of interest.

3. Data

Our analysis is based on the German Microcensus for the years 2005 and 2019 (Federal

Statistical O”ce, 2024). The Microcensus is conducted annually and provides a 1 %

random sample of the German population, including information on income and socio-

economic characteristics of all persons in the households surveyed. It is the largest

sample survey in Germany and in Europe. Data quality is high, and non-response is

low due to mandatory participation. Most parts of our analysis rely on the Scientific

Use File (SUF) of the Microcensus (Federal Statistical O”ce, 2024). For analyses

requiring local identifiers at the municipality level, we use a restricted version of

the Microcensus, accessible only onsite at the Research Data Centers (RDC) of the

Federal Statistical O”ces.

Although the Microcensus is the largest and most representative sample survey

for Germany, it has rarely been used for income distribution analysis (Boehle, 2015;

Hochgürtel, 2019; Walter et al., 2022). One reason for this is its grouped income

information. In the two survey years analysed by us, respondents were asked to

provide information on monthly household net income in income brackets of increasing

width. The income brackets used for grouped income data are given in table 1. Note

that the last income group is open-ended.

Table 1. Income brackets household net income (euros)

(0; 150] (150; 300] (300; 500] (500; 700] (700; 900]

(900; 1, 100] (1, 100; 1, 300] (1, 300; 1, 500] (1, 500; 1, 700] (1, 700; 2000]

(2, 000; 2, 300] (2, 300; 2, 600] (2, 600; 2, 900] (2, 900; 3, 200] (3, 200; 3, 600]

(3, 600; 4, 000] (4, 000; 4, 500] (4, 500; 5, 000] (5, 000; 5, 500] (5, 500; 6, 000]

(6, 000; 7, 500] (7, 500; 10, 000] (10, 000; 18, 000] (18, 000;⇐)

Source: German Microcensus, 2005, 2019

Following standard practice, we adjust income data using the OECD equivale-

nce scale. This scale assigns a weight of one to the first person in the household,

and weights of 0.5 to each additional person aged over 14 years, as well as 0.3 to

each additional person aged up to 14 years. For example, if household’s net income

falls within the interval (4000; 4500], the equivalised income for a household with two
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adults and two children (equivalence weight = 1+0.5+0.3+0.3 = 2.1) is transformed

into the interval (1904; 2143]. As the distributional random forest can handle multi-

variate outcomes, we define as its dependent outcomes the upper and lower limits of

these intervals, i.e., Y = (ylower, yupper).

To ensure applicability across all income groups, we impose an upper limit on

the highest income bracket, which is open-ended in the data. Following Walter et

al. (2022), we define this limit as 3 · 18, 000 = 54, 000, resulting in a top interval

of (18, 000; 54, 000]. Walter et al. (2022) did not provide a formal justification for

their choice. However, a reasonable rationale is that household incomes in the Micro-

census follow an approximate Pareto tail with ϑ = 2, implying that the midpoint

of the interval (18, 000; 54, 000] aligns with the expected income of this group, i.e.,

E(household income|household income > 18, 000) = ϑ/(1 ↓ ϑ) · 18, 000 = 36, 000

(Blanchet and Piketty, 2022, p. 275). This approach is consistent with practices for

grouped data, where interval midpoints are commonly used as approximations for

group means. We found that our results are fairly robust to di!erent choices of the

upper limit, as only a small fraction of observations fall into the top income interval

(0.21% in 2005 and 0.45% in 2019).

The equivalisation procedure produces overlapping income intervals for our obser-

vations, which is not an issue for the distributional random forest. In order to calculate

a proper distribution function F r(y|X) for equivalised incomes y given charactersi-

stics X, we cumulate up probability masses across upper interval limits, i.e., we ask

what fraction of observations have equivalent income up to A1, up to A2, . . . , etc.,

where A1, A2, . . . represent the ordered upper interval limits for equivalised incomes

appearing in the data. This produces the conditional cumulative distribution function

for equivalised incomes representing all the available information in the data.

We use the resulting income groups (A1, A2], (A2, A3], . . . , along with their implied

frequencies for calculating statistics of interest (quantiles, means, Gini-coe”cients)

based on the formulae for grouped income data developed by Tille and Langel (2012).

When calculating and aggregating distributions, we take into account the sampling

weights of the Microcensus. By contrast, it is at present not possible to fully incorpo-

rate sampling weights into the training of the random forest. We do not expect this

to influence our estimation results in substantial ways as the variation of the Micro-

census weights is very limited. As a sensitivity check, we re-estimated some models

using a reweighted sample based on the original sample weights. This led to results

that were in most cases nearly identical to those from the original sample.

4. Empirical analysis

We now present our set of applications and elaborate on our implementation of

distributional random forests for the German income distribution.

4.1. Estimating income distributions for granular population subgroups

Our first goal is to estimate distributions of equivalised net incomes for narrowly

defined population subgroups. This is a relevant task for monitoring the well-being

of specific groups, especially those at risk of poverty or social exclusion. To define

population subgroups, we leverage the rich set of socio-economic characteristics at the
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Table 2. Covariates for distributional random forest

2005 2019

Variable Mean Std.dev. Mean Std.dev.

# adults in hh 2.032 0.802 1.981 0.792

# adults 18-29 years 0.380 0.668 0.340 0.645

# adults 30-49 years 0.866 0.869 0.717 0.842

# adults 50-64 years 0.434 0.717 0.536 0.766

# adults 65+ years 0.351 0.668 0.386 0.698

# children in hh 0.691 1.028 0.642 0.642

# children 0-3 years 0.123 0.382 0.136 0.403

# children 4-6 years 0.304 0.651 0.403 0.637

# children 7-17 years 0.262 0.581 0.217 0.217

# adults foreign nationality 0.159 0.556 0.239 0.652

Share foreign adults > 0.5 0.090 0.286 0.134 0.341

# adults male 0.996 0.601 0.975 0.587

# adults female 1.035 0.496 1.006 0.508

0 FT1, 0 PT, 0 MPT 0.294 0.454 0.253 0.408

0 FT, 0 PT, ⇒ 1 MPT 0.028 0.164 0.029 0.167

0 FT, ⇒ 1 PT, ⇒ 0 MPT 0.046 0.207 0.072 0.258

1 FT, 0 PT, 0 MPT 0,240 0.426 0.202 0.401

1 FT, 0 PT, ⇒ 1 MPT 0.059 0.235 0.049 0.215

1 FT, ⇒ 1 PT, ⇒ 0 MPT 0.117 0.320 0.171 0.376

⇒ 2 FT, ⇒ 0 PT, ⇒ 0 MPT 0.212 0.408 0.221 0.414

# registered unemployed in hh 0.153 0.426 0.059 0.280

# unemployment benefits in hh 0.136 0.404 0.106 0.528

# adults tertiary education2 0.253 0.559 0.511 0.728

# adults higher secondary 0.174 0.452 0.196 0.476

# adults vocational training 1.097 0.894 0.919 0.865

# adults low education 0.507 0.775 0.775 0.689

East Germany 0.218 0.413 0.194 0.395

Indicators for 16 federal states (details omitted)

# observations 440,268 506,615

Source: Microcensus, 2005, 2019.
1FT = Full-time, PT = Part-time, MPT = Marginal part-time.
2Highest educational qualification.

individual and household level provided in the Microcensus. Since equivalised income

is based on the assumption of income pooling within households, all covariates are

constructed at the household level (for the equivalised income of a given individual,
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it matters in what household she lives). A summary of the covariates X used in our

analysis is shown in table 2.

Table 3. Tuning parameters of distributional random forest

Tuning parameter Range Description

num.trees 100, 200, 500, 1000 Number of trees

sample.fraction 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1 Subsampling fraction (=ϱ)

mtry 2, 3, 8, 12, 15, 20, 30 # variables tried for each split

min.node.size 2, 5, 10,15, 20, 25 Targeted minimal leaf size

alpha 0, 0.01, 0.05, 0.1, 0.25 Maximum imbalance of split (=ϑ)

imbalance.penalty 0, 0.05, 0.1 Imbalance of splits

Note: See Cevid et al. (2022) for more details.

Our first step is to fit and tune the distributional random forest. Cevid et al. (2022)

did not discuss tuning of the distributional random forest. To arrive at a practically

feasible procedure, we carry out the following steps. These are based on a training

sample (40% of the original 2019 sample) and a test sample (30% of the original 2019

sample). The steps are as follows:

1. Random parameter selection: We randomly varied the tuning parameters within

the ranges given in table 3, generating 300 random combinations.

2. Training: For each parameter combination, we fit the distributional random forest

F r(y|x) on the training dataset.

3. Testing: We then computed the model’s predicted aggregate distribution of

equivalised incomes,

F r(y) =

∫

x
F r(y|x) dFx(x) (7)

in the test sample, and compared it with the observed distribution of equivalised

incomes F e(y) in the test sample.

4. Evaluation: We assessed goodness-of-fit using several statistical distance measu-

res between F r(y) and F e(y), including Anderson-Darling, Cramer–von Mises,

Kolmogorov-Smirnov, and Chi-square tests.

The results of this exercise are shown in figure 1. Minimizing discrepancy statistics

between predicted and observed outcome distributions within reasonable ranges, we

chose our final tuning parameters as num.trees=500, sample.fraction=0.1, mtry=12,

min.node.size=5, alpha=0.05, imbalance.panelty=0.1. With these, we fit our final

random forest based on the full sample. We found that our random forest results typi-

cally did not vary much across di!erent specifications of tuning parameters. This is

reflected in the small di!erences of goodness-of-fit between alternative choices (figure

1). Our final random forest model produced an aggregate income distribution function

that was practically indistinguishable from the empirical distribution in the test set.

This was generally true even for suboptimal tuning parameters.
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Fig. 1: Tuning of distributional random forest

Note: The figure shows the distribution of goodness-of-fit indicators across 300

specification variants for tuning parameters on a test sample (low value = good fit).

Table 4 defines ten examples of narrowly defined population subgroups for which

we estimate equivalised net income distributions using DRFs for 2005 and 2019.

These subgroups consist of individuals in households with specific socio-economic
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characteristics, as listed in table 2. In most cases, the number of observations for the

particular type of individual would be much too low to estimate meaningful income

statistics for the given group. Like in regression analysis, the random forest estimates

group-specific outcomes by leveraging observations with similar characteristics (i.e.,

observations from other regions and households that are similar in terms of age,

education and employment behaviours of their members).

Fig. 2: Distribution of equivalised net incomes in narrow population subgropus

Notes: See table 4 for the definition of types. Blue = 2005, red = 2019. POV = at-risk-

of poverty rate (fraction of incomes below 60 % of population median). The figures

include a GB2 density fit for illustration. Bootstrap standard errors in parentheses.
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Figure 2 presents the results for di!erent subgroups. For illustration, the graphs

include a GB2 density fit. This is done purely for visualization purposes to highlight

distributional shapes. The generalised beta distribution of the second kind (GB2) has

been shown to provide a good fit to aggregate income distributions (Chotikapanich et

al., 2018), but appears to fit less favourably in some of our group-specific distributions.

For each subgroup, we compute key statistics such as mean equivalised income,

the at-risk-of-poverty rate, and the Gini coe”cient, using the formulas from Tille and

Langel (2012).2

The results shown in figure 2 exhibit highly plausible patterns. There is general

income growth from 2005 to 2019, but gains in mean income are heterogenous. They

range from 21.8% for individuals from the five-person family in BW to 37.9% for

individuals in the single-mother household with two children as defined in table 4.

As expected, the at-risk-of-poverty rate varies significantly across household types,

from zero percent in double-income-no-kids households to approximately 90% in the

single unemployed household (the characteristics of the latter were intentionally set to

unfavourable values to produce an extreme result). Finally, there a large di!erences in

within-group inequality across subgroups as measured by the Gini coe”cient. Some

groups are extremely homogenous (individuals in single unemployed households with

a Gini coe”cient of around 0.14), while others are highly heterogenous even within

the narrow type definitions considered by us (individuals in the double-income-no-

kids household with a Gini of around 0.28). Also note a general trend of decreasing

within-group inequality for most types between 2005 and 2019 (an exception are

elderly widows). In summary, once fitted, the distributional random forest enables

policy makers and statistical agencies to flexibly monitor multiple aspects of economic

welfare for finely defined population subgroups.

4.2. Analysis of distributional change over time

The distributional random forest captures information on income distributions for

finely defined population subgroups. It can, therefore, be used to decompose aggregate

distributional change into compositional and structural factors (Fortin et al., 2011).

To this end, consider the counterfactual distribution

F c
↔19,05↗(y) =

∫

x
F r
2019(y|x) dFx,2005(x), (8)

which is the distribution of equivalised incomes that would have prevailed in 2019,

if the distribution of household characteristics Fx(x) had still been as in 2005. This

gives rise to the decomposition

F↔19,19↗(y)↓ F↔05,05↗(y) = F↔19,19↗(y)↓ F c
↔19,05↗(y)︸ ︷︷ ︸

Composition effect

+F c
↔19,05↗(y)↓ F↔05,05↗(y)

︸ ︷︷ ︸
Structural effect

,

(9)

i.e., changes in the distribution of equivalised incomes between 2005 and 2019 are

decomposed into e!ects explained by changes in the population composition Fx, and

2 Following standard practice in European countries, the at-risk-of-poverty rate is defined
as the proportion of the population with equivalised income below 60% of population
median income.
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by changes in income structures F r(y|x) as described by the distributional random

forest.

Table 5. Decomposition of distributional change, 2005-2019

2005 Counterfactual1 Std.err. 2019

Mean 1,554.85 2,022.35 3.95 2,297.03

Gini 0.304 0.297 0.001 0.321

P10 707.74 915.97 8.76 986.13

P50 1,306.76 1,731.65 0.07 1,927.91

P90 2,396.28 3,034.72 15.70 3,616.29

P90/P10 3.386 3.313 0.038 3.667

P90/P50 1.834 1.753 0.009 1.876

P50/P10 1.846 1.891 0.018 1.955

At-risk-of-poverty rate 0.136 0.140 0.001 0.171

Source: Microcensus 2005, 2019. Own computations.
1Population composition from 2005, income structure from 2019.

Fig. 3: Aggregate decomposition, 2005-2019

Source: Microcensus 2005, 2019. Distribution functions. Own computations.

Results for this decomposition are presented in table 5 and figure 3. Between 2005

and 2019, we observe general income growth, but also an increase in inequality and

poverty risk: mean equivalised income increased from 1,555 to 2,292 euros, the median

rose from 1,307 to 1,927, while the Gini coe”cient increased from 0.304 to 0.321 and

the at-risk-of-poverty rate rose from 0.136 to 0.171. Inequality increased only in the

lower half of the distribution: the P90/P10-ratio rose from 3.386 to 3.667, but this

was entirely driven by an increase of the P50/P10-ratio from 1.846 to 1.955, while

the P90/P50-ratio only changed very little from 1.834 to 1.876.
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The counterfactual results in the middle column of table 5 suggests that holding

the population composition fixed at its 2005 level while updating income structures

to their 2019 levels accounts for most of the observed income growth between 2005

and 2019. However, this shift has little impact on inequality and poverty levels.

Indeed, when only income structures F r(y|x) are updated while keeping composition

constant, inequality as measured by the Gini coe”cient and the P90/P10 ratio even

slightly declines (from 0.304 to 0.297, and from 3.386 to 3.313, rows 2 and 6 of table 5).

Changing only income structures but holding composition fixed slightly increase the

at-risk-of-poverty rate and the P50/P10 ratio (from 0.136 to 0.140, and from 1.846

to 1.890, respectively). However, these e!ects are very small. On the other hand,

changing income structures mitigated inequality in the upper half of the distribution

as indicated by the counterfactual fall of the P90/P50-ratio from 1.834 to 1.753.

In contrast, adjusting the population composition to its 2019 level implies large

increases in inequality and poverty risk (middle vs. last column of table 5). These

largely account for the observed increase in inequality and poverty between 2005 and

2019, suggesting that the rise in inequality over this period can be fully explained by

compositional changes in the population.

How did the composition of the population change between 2005 and 2019? Table

2 presents these shifts. We observe significant population aging, an increasing share

of households with foreign nationals, greater heterogeneity in employment outcomes,

and a growing polarization in educational qualifications. All of these changes increased

population heterogeneity, which in turn amplified income inequality. In some cases,

the observed shifts also increased the proportion of low-income households, thereby

raising the aggregate at-risk-of-poverty rate.

Figure 3 provides a graphical summary of changes between 2005 and 2019.

Changing income structures significantly shifted the distribution upwards, with no

apparent impact on inequality. Adjusting in addition population composition to

its 2019 level provides further – much weaker – income growth but contributes to

stretching the distribution to the right, indicating higher inequality.

4.3. Spatial smoothing of income distributions

In this section, we leverage the smoothing property of the distributional random forest

to estimate local income distributions. To this end, we utilise detailed geographical

data from the Microcensus down to the municipality level. Germany has approxima-

tely 10,000 municipalities, including 2,000 towns and cities and around 8,000 smaller

administrative entities that combine multiple geographic units. Due to stricter data

protection rules, geographical data for Bavaria are only available at the county level,

which represents the next administrative tier above municipalities. Our analysis the-

refore uses county-level data for Bavaria, while retaining municipality-level data for

all other German regions.

In order to estimate local distributions of net equivalised income, we fit a distribu-

tional random forest based on the latitude and longitude of geographical units, i.e.,

we estimate

F r(y|(latitude, longitude)), (10)
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Fig. 4: Distributional indices and their change between 2005 and 2019

(a) Mean income

(b) Gini coe”cient

(c) At-risk-of-poverty rate

Source: Microcensus 2005, 2019. Computations are based on estimated distributions

of equivalised net incomes at the municipality level (county level for Bavaria).

where (latitude, longitude) refer to the center of a geographical unit. Our approach

produces estimates of local income distributions from which we compute measures

of location and inequality as in the previous sections. Our approach is conceptually
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similar to Sugasawa et al. (2020), who smooth local income distributions based on a

latent spatial correlation structure. Additionally, it relates to small-area estimation

methods, which share the same goal but typically rely on explicit area-level models

absent in our approach (Fabrizi et al., 2020; Gardini et al., 2022; Molina et al., 2022;

De Nicolo et al., 2024).

Figure 4 presents maps of distributional indices for Germany. To the best of our

knowledge, these are the first maps for Germany providing distributional indices

for net incomes at the municipality level. Net incomes are widely regarded as the

most informative indicators for personal financial well-being as they represent net

disposable incomes after government transfers, taxes and social security deductions.

Frieden et al. (2023) and Garbasevschi et al. (2023) have presented maps at the

municipality level but for pre-tax incomes. Immel and Peichl (2020) and Walter et

al. (2022) analysed regional di!erences in household net incomes, but at much higher

level than municipalities. Schluter and Trede (2024) present a spatial analysis of wage

incomes across regional labour markets, which are also defined at a higher level than

municipalities.

The local distributional indices presented in the maps have several important

applications. First, they allow statistical agencies and policy makers to monitor local

levels of well-being and to identify areas with high and low levels of income or inequ-

ality. Second, the high degree of spatial heterogeneity is interesting in its own right,

providing useful variation for studying relationships between di!erent aspects of the

distribution. For example, the left-hand graph in figure 5 plots the Gini coe”cient

and the at-risk-of-poverty rate against the mean income of geographical units. Mean

income and inequality as measured by the Gini coe”cient turn out to be positively

related, i.e., geographical units with high mean equivalised incomes also tend to exh-

ibit higher income inequality. In contrast, there is a weakly negative relationship

between mean income and the at-risk-of-poverty rate, which is a likely consequence

of the fact that the poverty threshold is defined at the national level (60 % of national

median income). The right-hand graph of figure 5 relates the relative change of mean

income in a geographical unit to the original relative position of the unit in the base

year 2005. The results indicate that units with relatively low mean income in 2005

experienced higher relative income growth than those with a higher initial income

level, suggesting convergence of mean incomes across regions. However, growth rates

exhibit considerable variation, suggesting that this relationship is only approximate.

An important additional application of the data in figure 4 is its potential as

explanatory variables in microeconomic or spatial analyses. Local measures of income,

inequality, or poverty can serve as covariates in studies of individual behaviour (e.g.,

the e!ect of local inequality on individual consumption behaviour), or local outcomes

(e.g., the impact of poverty rates on local election outcomes). In order to support

such applications, we will make our estimates of distributional indices for the around

9,000 geographical units considered by us available in the supplementary material to

this study.
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Fig. 5: Associations between distributional aspects across geographical units

Source: Microcensus 2005, 2019. The graph on the left plots Gini coe”cient and at-

risk-of-poverty rate against mean equivalised income for 2019. The graph on the right

plots growth rate of mean income 2005 to 2019 against percentile position of mean

income in distribution of geographical units of 2005.

4.4. Purging spatial income distributions of di!erences in spatial characteristics

As our final application, we address the problem of correcting spatial income distribu-

tions for di!erences in spatial characteristics to obtain a pure spatial income structure

- one that is independent of the fact that individuals in di!erent regions tend to

have di!erent characteristics. To achieve this, we fit a distributional random forest

conditional on location and characteristics, i.e.,

F r(y|(latitude, longitude),x). (11)

Here, (latitude, longitude) represent the coordinates of a geographical unit as before,

and x includes all household characteristics listed in table 2 (except the regional

indicators, whose information is now captured by latitude and longitude).

In order to construct local income distributions that do not depend on the local

composition of household characteristics, we consider

F c(y|(latitude, longitude)) =

∫

x
F r(y|(latitude, longitude),x) dFx,Germany(x),

(12)

i.e., the local income distribution that would prevail if the distribution of househ-

old characteristics in region (latitude, longitude) were the same as in the whole of

Germany.

This results in informative maps, as shown in figure 6. The results reveal a divide in

mean income, inequality and poverty risk between East and West Germany, as well

as between North and South. Assuming equal composition in all regions indicates

both lower mean income and lower inequality in the East than in the West, as well as

a higher degree of poverty risk in the East. To some extent, similar disparities persist

between northern and southern Germany.

However, these regional di!erences are much smaller than when regional characte-

ristics are allowed to vary. For example, under the assumption of equal composition
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Fig. 6: Purged spatial income distributions

(a) Mean income

(b) Gini coe”cient

(c) At-risk-of-poverty rate

Source: Microcensus 2005, 2019. The graphs on the right show di!erence between

counterfactual and factual maps.

across regions, the range of mean equivalised incomes is between 2,150 and 2,460 euros

(figure 6), compared to a much wider range of 1,700 to 2,600 euros when composition

is allowed to vary across regions (figure 4). Similarly, the range of Gini coe”cients
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across geographical units is 0.295 to 0.330 under the equal composition assumption

(figure 6), whereas it spans from 0.220 to 0.360 when allowing for variation in house-

hold characteristics (figure 4). A similar pattern is observed for the at-risk-of-poverty

rate. These findings suggest that variations in household characteristics across regions

significantly contribute to disparities in income, inequality, and poverty risk.

5. Conclusion

Our analysis demonstrates that distributional random forests are a powerful and ver-

satile tool for analysing income distributions with minimal parametric assumptions.

Once trained, they allow for the estimation of any distributional index – quantiles,

means, Gini coe”cients, poverty rates, etc. – without requiring separate model spe-

cifications. They also easily handle grouped income information as present in our

application. By applying this technique to the German Microcensus data, we illustra-

ted four key applications relevant to both researchers and policymakers: (i) estimating

granular subgroup distributions, (ii) analysing temporal changes in inequality and

poverty, (iii) spatial smoothing of local income distributions, and (iv) purging spatial

distributions of di!ering household characteristics.

From these analyses, we derived several insights about the German income distri-

bution. First, the shape and location of income distributions vary dramatically across

granular population subgroups, and income growth exhibits considerable heteroge-

neity. Second, while average incomes grew between 2005 and 2019, so did income

inequality and the at-risk-of-poverty rate. However, the rise in inequality and poverty

risk was almost entirely driven by compositional shifts (population aging, changes in

educational attainment, a rising share of immigrants) rather than by diverging income

trajectories for fixed population subgroups. Our geographical analysis provides new

insights into the spatial structure of the German income distribution. We characterise

regions with high or low income and inequality, showing that geographical units with

higher mean incomes also tend to exhibit higher inequality. We show that income

growth was uneven across regions, with poorer regions experiencing faster relative

growth than wealthier ones, suggesting a degree of income convergence across space.

Finally, we find that much of the observed regional variation in income and inequality

is attributable to di!erences in household characteristics. After accounting for these

compositional di!erences, residual ‘pure’ spatial disparities remain. These still follow

clear geographical patterns but are less pronounced than the raw disparities observed

in the raw data.
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