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But in this dark forest,
there’s a stupid child called humanity,
who has built a bonfire and is standing beside it shouting,
"Here I am! Here I am!"

— The Three-Body Problem: Dark Forest





Abstract

Quantum technology is at the forefront of revolutionizing information processing
by exploiting the principles of quantum mechanics to perform operations infeasible
for its classical counterparts. As this field shifts from pure scientific exploration to
practical application, developing advanced quantum control techniques becomes
critical for precise and reliable quantum system manipulation. This thesis focuses
on analytical quantum control techniques to enhance the performance of supercon-
ducting qubits, a leading architecture in quantum information processing. Due to
their simplicity and efficiency, the model-based analytical methods discussed are
particularly advantageous for experimental integration.

The thesis covers three aspects of quantum control: system modelling, control
scheme design, and performance benchmarking. It starts by discussing the efficient
modelling of quantum systems, aiming to reduce the dimension of the model while
keeping the essential features of the dynamics. Here, to build more accurate and
efficient models, the traditional perturbative approach is generalized by adopting
the recursive structure and the exact diagonalization of a two-by-two matrix via
Givens rotation. Building upon these modelling methods, the thesis addresses the
dynamic control errors in quantum operations, including leakage, crosstalk, and
other control errors in superconducting qubits. Based on the Derivative Removal by
Adiabatic Gate (DRAG) framework, several applications are studied for two-qubit
gates, multi-level qudit, and inter-qubit crosstalk. The key insight is to use the
recursive formulation, which allows the integration of multiple DRAG corrections to
address different errors simultaneously while maintaining simplicity and practicality
for experimental calibration. Lastly, to validate the performance of control methods,
the thesis introduces a new simulation tool for quantum circuits at the pulse level,
based on the widely used software package Quantum Toolbox in Python (QuTiP).
This tool incorporates realistic control errors and dissipation, aiding in the design,
testing, and practical implementation of quantum control strategies in real-world
settings.
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1
Introduction

Quantum technology, harnessing the peculiar principles of quantum mechanics,
stands as a frontier in modern scientific and engineering fields, promising revo-
lutionary advancements across various domains, from secure communication [1]
and high-precision sensing [2] to quantum computing [3]. The late 20th century
witnessed foundational experiments that demonstrated quantum entanglement and
teleportation, underscoring the counterintuitive nature of quantum information
processing. In those studies, the information is encoded in the quantum degrees
of freedom of well-isolated systems, which exhibit unique properties governed by
quantum theory. These early quantum processors, though primitive, revealed
potential capabilities beyond the reach of classical physics.

Over the past decades, significant progress has been made in transitioning
quantum technology from theoretical constructs and experimental curiosity to
practical applications. This evolution is marked by profound developments in
material science, experimental quantum engineering, and theoretical physics, paving
the way for the exploitation of quantum phenomena in real-world applications.

The quantum bit, or qubit, is the most commonly used quantum information
element. Unlike a classical bit, a qubit can exist in a superposition of multiple
states. Among the various physical systems suitable for implementing qubits, the
superconducting architecture has emerged as one of the leading technologies [4–6].
The key element is non-linear superconducting circuits operating at cryogenic
temperatures, where resistance vanishes and quantum effects dominate. Supercon-
ducting qubits are promising due to their flexibility, manufacturability, and the
advanced state of associated technologies derived from the semiconductor industry.
However, this architecture also faces significant challenges concerning decoherence,
which arise from their interaction with the environment and material defects. These
interactions can disrupt the delicate state of qubits, leading to information loss and
computation errors.
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As the demand for higher-quality information processing increases, precise
control over qubits’ dynamics becomes increasingly crucial. This is particularly
challenging due to the existence of ancillary levels in real quantum systems. The
development of quantum control methods in this subfield focuses on the high-
quality and fast manipulation of quantum states. For synthetic qubits, such as
superconducting qubits, the need for precise control is further heightened by system
parameter drift [7], which can alter the behaviour of a quantum system over time,
requiring more frequent recalibration.

These challenges underscore the importance of developing advanced analytical
control methods. In this context, "analytical" does not imply a mere focus on
elegant expressions or refined mathematical models. Instead, the goal is to identify
the most efficient strategies for engineering and calibrating systems in practice,
ultimately enhancing the quality of quantum processors. This involves exploiting
knowledge of the system model to understand and dissect the dynamics of quantum
systems. As a result, control schemes are provided as a compact set of analytical
expressions, such as control pulse shapes, with minimal free parameters to be
determined in experiments. These methods are often adaptable and are easily
fine-tuned for practical experimental setups.

In this thesis, we explore analytical quantum control methods, advancing
the state-of-the-art by developing new strategies to efficiently model the system
and counteract control errors in system dynamics. While the methods presented
are general, we discuss specific applications tailored for superconducting qubits,
demonstrating their practical relevance and potential to push the boundaries of
current quantum technologies.

Organization of the Thesis The thesis starts with a general overview of
quantum control theories and methods in Chapter 2, with an emphasis on those
applicable to superconducting qubits. This includes a discussion on both numerical
and analytical control strategies. Although we mainly investigate the application
to superconducting Transmon qubits in this thesis, the control schemes are general.
As such, we do not include an exhaustive review of superconducting qubits but
provide the simplified physical model in each chapter when necessary.. For a more
comprehensive background on superconducting qubits, readers are referred to the
many review articles that have been continually updated over the past decade [4–6].

We then discuss in Chapter 3 the modelling of the quantum system and intro-
duce Nonperturbative Analytical Diagonalization (NPAD) for deriving effective
Hamiltonians. This chapter includes a detailed examination of diagonalization
and block-diagonalization methods and their application to typical problems in
superconducting qubits. By providing nonperturbative, closed-form solutions for
effective Hamiltonians, NPAD allows for efficient control over quantum state ma-
nipulations, drastically reducing the size of the Hilbert space and the number of
free parameters in the model. This method proves particularly useful in modelling
and simulating the behaviour of superconducting qubits, where the Hamiltonian
describing those non-linear oscillators is often sparse.
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Building upon the modelling techniques, the following chapters focus on suppress-
ing various control errors via the Derivative Removal by Adiabatic Gate (DRAG)
method. Chapter 4 revisits its well-developed application on single-Transmon
gates. It introduces the fundamental tools for analyzing leakage errors and deriving
effective DRAG frames. In Chapter 5, we extend the applicability of DRAG to
the Cross-Resonance gate, which is a widely used two-qubit gate on fix-frequency
superconducting qubits. Due to the off-resonant microwave drives, DRAG is applied
to eliminate multiple transition error sources and errors in the multi-qubit dynam-
ics. In addition to analytical and numerical investigations, we also experimentally
implement the drive scheme on IBM cloud hardware, demonstrating its efficacy in
real-world quantum computing scenarios. The next chapter, Chapter 6, exploits the
higher levels of the non-linear oscillators, using multiple levels as information units,
i.e., qudits. The involvement of multiple levels also introduces new leakage channels,
posing challenges for analytical control methods. Finally, in Chapter 7, we study
the error across multiple quantum elements, i.e., crosstalk among qubits. This
chapter presents methods for suppressing unwanted excitations of neighbouring
qubits during single-qubit operations.

The last contribution of this thesis is presented in Chapter 8, which introduces a
tool for characterizing and benchmarking quantum control schemes by simulating the
most widely used quantum computing model, quantum circuit, at the level of time
evolution using the Lindblad master equation. By compiling the quantum circuit
into time-dependent Hamiltonian models, this framework incorporates realistic
control and dissipation errors that closely reflect the experimental setup. The
software package is open-sourced and is continually being updated and developed.



4 Chapter 1. Introduction



2
Quantum control

2.1 Introduction to quantum control
Quantum control theory represents a dynamic and expanding field of research. Since
the establishment of quantum mechanics, the manipulation of quantum phenomena
has been a driving force behind many groundbreaking discoveries. One of the main
goals of quantum control theory is to establish a theoretical framework and develop
a series of systematic methods for the active manipulation and control of quantum
systems [8]. Achieving this objective is far from straightforward, due to the unique
and complex properties of quantum dynamics, such as entanglement, which have
no counterparts in classical physics [9].

Historically, the earliest aims of quantum control were centred on manipulating
the quantum phenomena at the atomic and molecular scales. The goal was to
break and form chemical bonds in polyatomic molecules, with the goal of creating
a chemical product unattainable by conventional means [10, 11]. Quantum control
strategies exploited the delicate interplay of constructive and destructive interference
among the microscopic quantum degrees of freedom.

As the field matured, the focus of quantum control expanded to include a deeper
understanding of the internal degrees of freedom of atoms and molecules. This
broader perspective was significantly advanced by developments in Nuclear Magnetic
Resonance (NMR) techniques that emerged from the need for precise spectroscopic
analysis of complex molecular structures [12]. Here, the development and refinement
of laser technology provided a significant boost to quantum control efforts. These
advancements enabled the coherent control of quantum states through precise
temporal and spatial modulation of laser fields, leading to innovative experiments
that have continually pushed the boundaries of achievability [13].

The emergence of quantum information science as a distinct field opened new
objectives for quantum control. Theoretical proposals for quantum computing [3],
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quantum cryptography [14], and quantum teleportation [15] during the 1990s and
the progress in experimental demonstration in the following decades highlighted the
need for precise and scalable control of quantum systems. This period witnessed
the convergence of quantum control with quantum information processing, focusing
on developing techniques for high-fidelity quantum gate operations, measurement
and state preparation on various physical architectures.

In quantum information processing, the focus is often on a relatively small
physical system characterized by a few active dynamical degrees of freedom, well
isolated from environmental perturbations and dissipative couplings. One common
approach to achieving this isolation is to operate the experimental apparatus at
very low temperatures and close to a vacuum environment. Quantum control in
this field becomes a subset of quantum engineering with the aim of meeting the
stringent requirements for implementing quantum information registers [16]. In
this context, quantum control tasks involve not only optimizing control functions
that drive the desired dynamics but also building accurate models that capture the
essential behaviours of the system.

For solid-state systems studied in this thesis, one generally finds an intriguing
combination of characterization and control issues. Whereas accurate models can
often be constructed for atomic systems, modelling solid-state systems typically
requires a more phenomenological approach [9]. In particular, it is seldom possible
to derive comprehensive models for the many-body dynamics and the residual
environmental couplings for syntactic superconducting quantum circuits. Here,
simplified models are crucial for analysing dynamics and devising effective control
strategies, especially in complex systems like superconducting quantum circuits.

While this thesis touches on many aspects of quantum control, there is one
subfield that we do not cover: the controllability of quantum systems. Controllability
describes the capability to steer a quantum system towards a specific target state [17].
In this thesis, our attention is directed towards the more practical aspect of quantum
control, particularly for well-understood quantum systems where controllability
is already established. For those systems, however, identifying the most efficient
way to direct the system evolution and outpace decoherence presents a separate
challenge that we aim to address.

2.1.1 Formulation of the quantum control problem
Throughout this thesis, we use the finite-dimensional linear models of quantum
control systems [8]. The state |ψ(t)⟩ of a closed quantum system evolves according
to the Schrodinger equation

iℏ d
dt |ψ(t)⟩ = Ĥ |ψ(t)⟩ (2.1)

where Ĥ is the time-independent Hamiltonian. We set ℏ = 1 for the ease of
notation. For simplicity, we consider here only finite-dimensional quantum systems,
which is a valid approximation in many practical situations. The control of the
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quantum system is realized by a set of control functions ck(t) ∈ R, which is a set of
time-dependent functions that drive the system to undergo controlled evolution

Ĥ = Ĥ0 +
∑

k

ck(t)Ĥk. (2.2)

Following the quantum control terminology, Ĥ0 is referred to as the drift Hamil-
tonian and Ĥk the control Hamiltonians. The time-dependent function ck(t)
represents the control functions, which are often also referred to as the control
pulses in this thesis.

The task for quantum control is to find a set of control functions that drives the
initial state |ψ0⟩ into a predefined target state |ψf ⟩. More generally, especially in
the context of quantum computing, the desired evolution is predefined on a set of
basic states. Therefore, the target is a unitary governed by the control Hamiltonian

i
d
dt Û = ĤÛ (2.3)

with Û(t = 0) = Î the identity. The solution is given by Û = T̂ exp
(
−
∫ T

0 iĤ(t)dt
)

,

where T̂ is the time-ordering operator.

2.1.2 Open- and closed-loop quantum control
One of the most significant differences between classical and quantum control
lies in the measurement postulate. In quantum systems, any attempt to acquire
information from a quantum system inevitably affects or even destroys the quantum
state. Therefore, many practical control techniques are classified as open-loop
quantum control, where predefined control functions are applied to the quantum
system without using any real-time feedback of the quantum state. In this approach,
control functions are typically determined by either analytically studying the model
of the system or numerically simulating the time evolution. Hence, open-loop
control can encounter difficulties in large quantum systems due to the exponential
growth of the Hilbert space and may be sensitive to the accuracy of the model
parameters.

A natural solution to this problem is to explore closed-loop control strategies.
Two forms of closed-loop control are proposed for quantum systems [8]: closed-loop
learning control and quantum feedback control. In closed-loop learning control,
each cycle adopts a control strategy and applies it to the quantum system. The
result is observed and a new control is proposed based on a learning algorithm. In
quantum feedback control, however, information is continuously extracted from the
target system during the whole process of control [18–20].

In this thesis, we do not discuss quantum feedback control as the real-time
feedback is still limited by the current state of experimental technology. Instead,
we focus primarily on the open-loop control strategy but put significant emphasis
on the practical application of closed-loop control, often referred to in quantum
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engineering as calibration. This is achieved by designing effective models of the
system and building analytical pulse shapes parameterized by a small number of
free parameters. These pulse Ansatzes capture the dominant dynamics while the
additional parameters can be fine-tuned to optimize performance against specific
types of errors. This control strategy motivated by the underlying physical model
is particularly relevant for practical implementation as experimental sampling and
characterization are often expensive and subject to noise. In fact, in practice, each
parameter is often calibrated individually by measuring the corresponding error
and the learning algorithm, in this case, is simply a one-dimensional optimization.

2.2 Numerical quantum control algorithms
For many practical quantum control problems, obtaining an analytical solution
proves to be impractical. As a result, various numerical quantum control algorithms
have been proposed over the last few decades to solve the control problem. Given the
challenging nature of time-evolving quantum systems governed by the Schrödinger
equation, the primary objective is often to efficiently extract valuable information
from the dynamics. This may involve computing gradients or simplifying the
parameterization of control pulses. Below, we provide a concise overview of some
well-known quantum control algorithms. For a more comprehensive review of
numerical control algorithms, readers are referred to dedicated literature [21–23].

2.2.1 GRadient Ascent Pulse Engineering algorithm
The GRAPE algorithm is one of the earliest-proposed and widest-used algorithms,
originally designed for the NMR system [24]. The advantage, as the name suggested,
is to make use of the analytical gradient information of the time evolution at each
discretized time step to update the pulse function.

For simplicity, we use the problem of state preparation, which can be naturally
generalized to unitary operation by providing the identity as an initial state.
We consider preparing the state |ψf ⟩ from the initial state |ψ0⟩ under the control
Hamiltonian equation (2.2). Usually |ψ0⟩ is the ground state of the drift Hamiltonian
Ĥ0 and the target |ψf ⟩ has some useful quantum properties such as a Bell state or
a GHZ state. The task is to find a set of time-dependent control functions ck(t)
defined for t ∈ [0, T ] such that the state reaches the target |ψf ⟩ by the end of the
evolution. With a loss function defined by the quality of the final state, such as the
overlap fidelity F = | ⟨ψf |ψ(T )⟩ |2.

One important strategy of the GRAPE algorithm is to break down evolution
into small time steps and consider a piecewise constant pulse. The total time is
chopped into N intervals of length T/N

ck(t) = ck(j) for (j − 1) δt < t < j δt. (2.4)

The total evolution can then be broken down similarly into N time steps:

Û(T ) = ÛN ÛN−1 · · · Û2Û1 (2.5)
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with Ûj defined by the time evolution under the constant Hamiltonian Ĥ(j) =
Ĥ0 +

∑
k
ck(j)Ĥk for the j-th time interval δt. This means that, in total, we have

N ·K parameters, i.e., the product of the total number of the time steps and the
number of control functions.

To obtain the gradient information, we need to isolate the step that involves
only one parameter. We rewrite the fidelity as the overlap of the forward and
backwards propagated states:

F =
∣∣〈ψf

∣∣Û(T )ψ0
〉∣∣2 =

∣∣〈Û†
m+1 · · · Û

†
Nψf

∣∣Ûm · · · Û1ψ0
〉∣∣2 . (2.6)

This allows us to focus on one specific time step m and compute the gradient with
respect to ck(m). Since Ûm is the only one that depends on ck(m), this simplifies
to the derivative of an exponential

∂

∂ck(m) Ûm = ∂

∂ck(m) exp

[
−iδt

(
Ĥ0 +

∑
k

ck(m)Ĥk

)]
≈ −iδtĤkÛm. (2.7)

The last approximation is valid if the time step δt is sufficiently small. The
intuition is that for small time steps, the sum can be tailored into products of many
exponential functions independent on ck(m) and exp

[
−iδtck(m)Ĥk

]
, neglecting all

the high order commutators. The rigorous derivation requires Lie group and Lie
algebra theory, which is covered in more specific literatures [21, 25].

Following the above derivation, with a given set of discretized control functions
ck(j), the gradient-based update is given as

ck(j)→ ck(j) + iϵδt

〈
Û†

m+1 · · · Û
†
Nψf

∣∣ Ĥk

∣∣Ûm · · · Û1ψ0
〉
, (2.8)

where ϵ is the updating step size. Compared to gradient-independent optimizations,
this analytical form of the gradient provides a much more stable and fast convergence
and allows for optimization in a much larger parameter space.

Numerical implementation of the GRAPE algorithm is available in several
software packages such as in QuOCS [26], QuTiP [27], and QuantumControl.jl [28].
A similar algorithm, the Krotov algorithm, has also been implemented [28, 29],
which follows the same idea of discretization and analytical gradient calculation
but performs the updates in a different way.

2.2.2 Chopped RAndom Basis algorithm
Due to discrepancies between the model and quantum system, in reality, closed-loop
optimization is often unavoidable. Although the piecewise constant pulse used in
the GRAPE algorithm enables the calculation of the analytical gradient at each
time step for the optimization, the number of parameters grows significantly as the
increase of time steps and the number of controls. In addition, a real experimental
pulse generator often prefers smooth pulses rather than larger jumps in amplitude.
Those practical reasons make GRAPE less suited for closed-loop optimization with
fine time steps.
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The CRAB algorithm, on the other hand, uses a different Ansatz to represent
the control functions to reduce the parameter space [30–32]. Instead of piecewise
constant Ansatz, the CRAB algorithm makes use of the trigonometric bases

ck(t) = I0

[
1 +

∑
j

Ak,j sin(ωjt) +Bk,j cos(ωjt)

]
(2.9)

with I0 a normalization constant to keep the initial and final control pulse value
fixed. In some formulation, I0 is replaced by a time-dependent shape function
to ensure the boundary condition of the pulse. The frequencies ωk are chosen
uniformly from [0, ωmax]. Based on the Ansatz, the two sets of parameters, {Ak}
and {Bk} are optimized for the best fidelity. In this case, the gradient can no
longer be calculated analytically since the time-dependent Hamiltonian is often
nonintegrable. One either needs to estimate the gradient from finite sampling or
refer to gradient-independent optimization such as the Nelder-Mead algorithm [33].

Extending on the CRAB methods, in particular to expanding the search space
while maintaining the number of parameters, dressed CRAB (dCRAB) was pro-
posed [34]. It introduces super iterations, which add new base functions with
different ωk and optimizes those new amplitude parameters on top of the existing
solution. This adaptive method allows the algorithm to explore new directions while
keeping the number of free parameters under control. The CRAB algorithms have
also been implemented in several packages such as QuOCS [26] and QuTiP [27].

2.2.3 Gradient Optimization of Analytic conTrols algorithm
The development of the two algorithms above highlights two general considerations
for control algorithms: convergence speed and efficient parameterization. The GOAT
algorithm tries to combine those two aspects by ensuring the precise computation
of gradients while maintaining an efficient parameterization of the drive pulse [35].

Achieving a stable and efficient gradient computation for dynamics with continu-
ous pulse representations is challenging because of the non-integrability of quantum
dynamics. Often, an analytical solution of the unitary evolution is unattainable
and numerical solutions of ordinary differential equations (ODEs) are required.
The GOAT algorithm addresses this challenge by employing a methodology similar
to the automatic differentiation techniques seen in Neural-ODE [36]. Analogous
to solving a Schrödinger evolution problem via numerical ODEs, the derivative
of a state or unitary with respect to control parameters can also be "evolved"
concurrently with the system dynamics [37]

∂t

(
Û

∂αÛ

)
= −i

(
Ĥ 0
∂αĤ Ĥ

)(
Û

∂αÛ

)
(2.10)

where α represents the parameters to be optimized. The computational cost of
the numerical evolution scales linearly with the number of parameters. At each
optimization step, an ODE solver is called to compute the evolution Û and the
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gradient ∂αÛ , which is then used by a gradient-based optimizer to update the
parameter α.

2.3 Analytical quantum control for diabatic error
In the last section, we introduced various numerical algorithms, which are often
required for very complicated quantum dynamics. Instead of studying the prepa-
ration of the ground state of some large many-body Hamiltonians, in this thesis,
we aim to push a relatively simple physical system to its best performance, for
quantum information processing. Therefore, the emphasis of this thesis is on the
analytical methods for designing quantum control schemes.

These model-based solutions are favoured for their compactness and convenience
in experimental calibration. The main physical system investigated in this thesis
is the superconducting qubits architecture, which benefits from well-established
fabrication and engineering techniques for the microelectronics industry [4–6].
Nonetheless, this system is not without its challenges. Significant issues such as
fabrication inhomogeneity [38, 39] and parameter drift [7] may affect its performance.
Fabrication inhomogeneity implies that each qubit may differ slightly and the drive
scheme for each of them needs to be calibrated separately. Parameter drift refers to
the tendency of system parameters to deviate over time from their last measured
values due to the change of environment such as magnetic field. To bring the best
performance, the machine usually needs to be calibrated on a daily basis. Here, an
analytical approach proves particularly advantageous because it offers a concise
Ansatz with a limited number of parameters to be calibrated. These parameters
typically correspond to directly measurable physical quantities, making them ideal
for frequent adjustment and fine-tuning.

In the rest of this chapter, we briefly introduce the control error studied in
this thesis and the analytical methods previously devised to compensate for those
errors.

2.3.1 Coherent error and decoherence
The error in quantum control can be broadly divided into two main categories:
coherent error (unitary error) and decoherence (dissipative) error. Coherent error
describes errors in the unitary evolution Û that deviate from the ideal dynamics
ÛI in the target subspace. Unlike stochastic errors induced by environmental
interactions, coherent errors are deterministic and reproducible. This means they
can be replicated by repeating the same drive scheme and are less susceptible
to statistical effects from the random environment. However, they can still pose
significant challenges for error correction codes, as they introduce non-Markovian
errors and errors beyond the qubit model [40]. As such, coherent errors are often
targets for open-loop quantum control techniques.

Among the most well-known examples of coherent error in the superconducting
qubits architecture is the leakage error. In the commonly used Transmon qubits [41],
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the lowest two levels of a nonlinear oscillator are used as a qubit. However, due to
the finite energy separation between the computational subspace and higher-energy
ancillary levels, there exists a probability of the system transitioning into these
non-computational states during the operation. This type of leakage, along with
associated phase errors, substantially limits the fidelity of quantum operations.
Such errors are prominently addressed using analytical control techniques like the
DRAG method, which is detailed later in this chapter. This thesis aims to extend
and generalize these methods to tackle more complex and practically relevant
scenarios.

On the other hand, decoherence error, another critical challenge in quantum
computing, arises from disturbances induced by the random, uncontrollable envi-
ronment surrounding the quantum system. It is characterized by the non-unitary
dynamics and the loss of quantum information, resulting in the deterioration of the
quantum state towards a classical state. This process is typically described using
statistical terms, such as spectral density and Lindblad operators with associated
jump rates, considering the environment often has infinite degrees of freedom.
Common assumptions include that the interaction between the quantum system
and its environment is small compared to the system’s own dynamics, known as
the Born approximation. And that the environment is so large that its statistical
properties are not changed by the weak coupling, known as the Markov approxima-
tion [42]. Under these approximations, the environment’s memory effects on the
system dynamics are negligible, allowing for a simplification in the mathematical
treatment.

Within this framework, the quantum state is represented by a density matrix
ρ̂, which includes the statistical properties in its definition. The evolution of
ρ̂ over time can be effectively described by various forms of master equations,
which govern the open-system dynamics [43]. From the perspective of quantum
information, the evolution operator is no longer described by a simple unitary
propagator, but by quantum channels. The description of quantum channels
inherently includes the loss of information, a process generally irreversible under
natural system dynamics, unless additional quantum resources are used, such as
quantum state purification [44] or error correction [45].

In this thesis, with the exception of Chapter 8, our primary focus is on modelling
and control methods aimed at suppressing coherent errors in quantum systems.
This involves providing precise and clear Hamiltonian descriptions of the system
and designing drive schemes for high-fidelity unitary time evolution. However,
it is worth noting that the methods proposed in this work also extend their
utility to overcoming the challenges presented by decoherence. For instance, the
simplest characterization of decoherence, in quantum engineering terminology, is
represented by the coherence time T1 and T2 of qubits. With finite coherence time,
a prolonged quantum operation will inevitably lead to a degradation of the quality.
By introducing an advanced drive scheme that reduces operation time, quantum
control based on the schrödinger dynamics can also contribute to surpassing the
limitations imposed by qubits’ coherence.
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2.3.2 Adiabatic theorem
The adiabatic theorem is a cornerstone of quantum simulation [46] and adiabatic
quantum computing [47]. Although it may not be the central element in contem-
porary quantum information processing techniques with superconducting qubits,
the adiabatic theorem still plays a crucial role, particularly in understanding the
effects of ancillary energy levels on qubits. According to the theorem, a quantum
system that starts in an eigenstate of its Hamiltonian will remain in a corresponding
eigenstate of the evolving Hamiltonian if the Hamiltonian changes sufficiently slowly.
This implies that the system can evolve from one state to another without inducing
transitions between different energy levels, maintaining its quantum coherence
throughout the process.

The simplest example is an interpolation between two constant Hamiltonians
Ĥ0 and Ĥ1,

Ĥ(t) = (1− λ(t))Ĥ0 + λ(t)Ĥ1, (2.11)
where λ(0) = 0 and λ(tf) = 1. The system initialized in the ground state of Ĥ0, will
end up in the ground state of Ĥ1 at the end of the time evolution if the adiabatic
condition is satisfied. Typically, the initial state is easy to prepare (e.g., the all-zero
state), while the final ground state of Ĥ1 is hard. This forms the essence of adiabatic
quantum computing [47].

We define the eigenstates of the Hamiltonian Ĥ(t) at time step t as |ψj(t)⟩ and
|ψ0(t)⟩ as the ground state. They are referred to as the instantaneous eigenstates.
The adiabatic condition can be mathematically expressed as [47]

max
t∈[0,tf ]

〈
ψj(t)

∣∣ψ̇k(t)
〉

|Ej − Ek|
≪ 1 (2.12)

for j ̸= k and Ej(t) the eigenvalue of |ψj(t)⟩. The overdot
∣∣ψ̇k(t)

〉
denotes the time

derivative of the eigenstates. This condition implies that the rate of change in
the excited instantaneous states, particularly for non-ground states, must be small
relative to the energy gaps to the ground state, ensuring minimal overlap.

2.3.3 Shortcuts to adiabaticity
Achieving true adiabatic evolution in quantum systems typically requires the
process to be conducted slowly to satisfy the adiabatic condition. However, this
slow evolution is often impractical in realistic quantum systems, where decoherence
and other imperfections limit the operational timescales. The concept of Shortcuts
to Adiabaticity (STA) offers a solution to accelerate adiabatic processes without
sacrificing the fidelity of maintaining the ground state population. The name STA
was first coined by Chen et al. in Ref. [48, 49] but the fundamental principle traces
back to much earlier works [50, 51].

The general approach is to find a particular effective frame, where the diabatic
errors, i.e., errors that cause transitions between different quantum states, can be
compensated for by additional control Hamiltonians. This effective frame is often
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chosen as the instantaneous eigenstates of the system, although other frames might
be used depending on which configuration allows for more effective cancellation of
diabatic errors [52]. In the lab frame, the quantum state still evolves out of the
ground state but carefully designed STA ensures that it returns to the ground state
by the end of the evolution. Often the boundary conditions of the pulse shapes
need to be satisfied to guarantee that by the end of the evolution, the lab frame
and the effective frame are equivalent.

Though collectively termed as STA, it involves several distinct methodologies,
including Counter-Diabatic (CD) driving, invariant-based inverse engineering and
the fast-forward approach [53]. In the following, we give a brief introduction to the
CD approach, which is closely related to the control method used in this thesis.

The initial formulation of the CD approach was introduced by Demirplak and
Rice in Ref. [50] and Berry in Ref. [51]. In the effective frame formed by the
instantaneous eigenstates |ψj(t)⟩, a solution is constructed as [51]

ĤCD = i
∑

j

(
|ψ̇j(t)⟩ ⟨ψj(t)| − ⟨ψj(t)|ψ̇j(t)⟩ |ψj(t)⟩ ⟨ψj(t)|

)
(2.13)

While this formulation might seem straightforward, its application is not trivial due
to several challenges. First, the control Hamiltonian must be available in the lab
frame. As the portion of Ĥ1 increases, the instantaneous eigenstates ψj(t) could be
highly entangled states, making the practical realization of ĤCD challenging. Partial
implementation of ĤCD does not always improve the result due to the complexity
in quantum dynamics. Second, the full-time-dependent spectrum information is
needed to design the CD Hamiltonian, which is impractical in many problems.

An alternative way to derive the CD Hamiltonian is to diagonalize the time-
dependent Hamiltonian.

Ĥeff = V̂ (t)Ĥ0(t)V̂ †(t) + i
˙̂
V (t)V̂ †(t), (2.14)

where V̂ (t) diagonalize the Hamiltonian Ĥ0(t) for each time t. It is then straight-
forward to see that in the lab frame, a correction Hamiltonian can be derived

ĤCD = −iV̂ †(t) ˙̂
V (t). (2.15)

This solution is overkill as it ensures that all the eigenstates stay intact, not just the
ground state, but it will become handy when we go beyond the adiabatic evolution
of the ground state.

Despite its elegance, the CD approach typically finds applications only in simpler
quantum systems, where analytical solutions are feasible. Common applications are
two-level systems [48] or three-level Λ systems with certain symmetry [48, 54, 55],
where a simple analytical diagonalization can be found. Going beyond a three-level
system involving exploring additional properties of the system, such as a special Lie
algebra subspace [56] or the Quantum Rabi model with harmonic oscillators [57]. A
few attempts have been made to generalize it to many-body dynamics by variational
optimization [58, 59] or special symmetry consideration [60–62].
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Figure 2.1: Illustration of the DRAG method concept. The left side shows a basic
use case discussed in the proposal [64], where the lowest two levels are treated
as a qubit and are controlled resonantly. In this scenario, the two-level subspace
remains adiabatic relative to the auxiliary higher levels. The right side depicts the
block diagonalization of the Hamiltonian, illustrating the mathematical approach
underlying the method.

Another challenge with STA is the vast number of possible choices for the
effective frame, each imposing different requirements on the control Hamiltonians.
The time-dependent Hamiltonian can encode complex dynamics, the imperfect
dynamics in one frame may appear clean and simple in another. Consequently,
different but equivalent solutions can exist [52]. This diversity offers considerable
flexibility in designing STA protocols, but it also makes it difficult to identify the
optimal configuration [63].

2.3.4 Derivative Removal by Adiabatic Gate
In contrast to STA methods, which mostly address state preparation challenges,
the Derivative Removal by Adiabatic Gate (DRAG) method is particularly tailored
for reducing leakage to ancillary levels during quantum operations. Introduced
independently from STA by Motzoi et al. in 2009, DRAG was designed to manage
single-qubit operations in nonlinear harmonic oscillators like Transmon qubits [64].
It addresses the challenges of leakage errors introduced by transitions to higher
non-computational levels, which are only finitely detuned from the qubit frequency.

In this setup, the lowest two (qubit) levels take the role of a (degenerated)
ground state in an STA problem. When driving the desired transition between the
qubit levels, the drive should be adiabatic enough with respect to the ancillary
levels to prevent leakage, as shown in Figure 2.1. Similar to the adiabatic theorem,
if the operation time is infinitely long, the population should stay fully in the
qubit subspace. The DRAG method is then adopted to speed up the operation by
compensating for the leakage couplings and the effects of Stark shifts. While the
principles of DRAG bear resemblances to CD driving, DRAG specifically addresses
the challenges posed by degenerated subspaces and inherently on-resonant dynamics
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typical in practical quantum systems . In addition to suppressing leakage errors,
the phase also needs to be corrected to implement the desired quantum operation.

The essence of the DRAG method is to replace the diagonalization operator
V̂ (t) in equation (2.14) by a block diagonalization (see also Chapter 3), which
preserves the desired on-resonant dynamics, while treats the leakage to the non-
computational levels as non-adiabatic errors, as illustrated in Figure 2.1. Often, the
available amount of control terms (with fixed pulse shapes) is limited, compared
to the number of leakage couplings. The DRAG method opens new degrees of
freedom in the time domain by introducing derivatives of the original pulse shape,
following equation (2.15).

Unlike many scenarios where CD driving is applicable, the Hamiltonian for a
system with mixed diabatic and adiabatic dynamics does not readily yield integrable
solutions. However, when the leakage coupling is relatively small compared to
the separation of the ancillary energy level, a perturbative approach can be used
to derive an effective Hamiltonian. By targeting the dominant error source, very
efficient DRAG pulse Ansatzes can be designed with only a few free parameters to
be calibrated in experiments.

Although the DRAG methods have been theoretically studied under many
different models [64–69], here we focus on its application on more realistic prob-
lems, where multiple errors often present at the same time. We will revisit the
mathematical details of DRAG in Chapter 4, and then expand its application to
two-qubit gates (Chapter 5), multi-level qudit systems (Chapter 6) and quantum
crosstalk (Chapter 7). These DRAG formulations provide efficient pulse Ansatz
for practical implementation, which can also be combined with classical frequency
engineering [70] and optimal control algorithm [71] to gain further improvement.

2.4 The concept of recursion
Apart from the quantum control techniques introduced in the sections above, we
provide a brief description of recursion. While recursion is a general method rather
than a quantum-control-specific technique, it plays a central role in several methods
introduced in this thesis.

Recursion is a fundamental concept in mathematics and computer science,
characterized by defining a function or process in terms of itself. Typically, recursion
involves solving a problem by breaking it down into smaller, more manageable
sub-problems of the same type, until reaching a base case that can be solved
directly. Each recursive step consists of only simple processes, which do not solve
the problem but transform it into a simpler problem of the same type. It is widely
used in programming and algorithm design, often providing elegant solutions for
complex problems that might otherwise be challenging to solve directly. Although
recursion and iteration are often equivalent to each other, recursion sometimes
provides a particularly elegant perspective to the problem.

The simplest teaching example is the factorial function: factorial(n) =
∏n

k=1 k
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Figure 2.2: Illustration of recursively suppressing leakage errors. The plot shows
abstract representations of unitary propagator matrices, focusing on the off-diagonal
elements while omitting the diagonal ones. The size of each block corresponds to
the absolute square of the matrix element. The two largest blocks represent the
desired transitions, while the smaller blocks indicate leakage. In each recursive
step, a specific leakage coupling is targeted (circled) and a DRAG correction is
applied, effectively suppressing the targeted leakage.

with factorial(0) = 1. The recursion step simplifies the question by the relation

factorial(n) = n× factorial(n− 1),

with the recursion terminating when n = 0 at factorial(0) = 1. Another example is
the Fibonacci sequence, where the analysis of the recursive relation can even reveal
an analytical expression.

Instead of trying to tackle the big problem, recursion only aims at making a small
step. This way of thinking is also ubiquitous in the field of quantum physics, usually
for defining efficient algorithms for a structured problem, such as renormalization
group theory [72], quantum Fourier transform [3] and quantum error correction [45].
In each case, recursion enables the transformation of a complex problem into a
series of simpler problems within the same category, leading to the final solution.

In this thesis, recursion emerges as a central concept, particularly within the
frameworks of recursive diagonalization methods and applying DRAG correction
against multiple error terms. The elementary step here is the simplest scenario in
quantum physics, a two-level system, for which an analytical solution often exists.
Thus, we build recursion by isolating and addressing a single two-level subsystem
at each step. This targeted approach allows for systematic iteration through all
dominant terms, gradually refining the system until the desired solution is achieved.
This is illustrated in Figure 2.2.
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For time-independent problems (see Chapter 3), it involves addressing one off-
diagonal term via a Givens rotation at each step. Following the Jacobi iteration, the
matrix progressively converges to the desired form. Moreover, in the perturbative
limit, it is equivalent to a recursive version of the well-known Schrieffer Wolff
diagonalization. In this case, one recursion step removes the leading order off-
diagonal coupling. The remaining coupling is quadratically smaller at every iteration,
much faster than the linear suppression by solving the BCH expansion for the
generator at each order.

The problem becomes more complex with time-dependent dynamics (see Chap-
ters 5 and 6), where finding a converging recursive solution can be challenging
or sometimes infeasible. Nonetheless, the sparse and structured nature of many
quantum Hamiltonians studied allows for the derivation of analytical solutions
through approximations, with very few recursion steps. The recursive formula
can sometimes provide a surprisingly compact and efficient solution, avoiding
unnecessary expansions.



3
Nonperturbative analytical diagonalization

Deriving effective Hamiltonian models plays an essential role in quan-
tum theory, with particular emphasis in recent years on control and
engineering problems. In this chapter, we present two symbolic meth-
ods for computing effective Hamiltonian models: the Non-perturbative
Analytical Diagonalization (NPAD) and the Recursive Schrieffer-Wolff
Transformation (RSWT). NPAD makes use of the Jacobi iteration and
works without the assumptions of perturbation theory while retaining
convergence, allowing it to treat a very wide range of models. In the
perturbation regime, it reduces to RSWT, which takes advantage of
an in-built recursive structure where remarkably the number of terms
increases only linearly with perturbation order, exponentially decreasing
the number of terms compared to the ubiquitous Schrieffer-Wolff method.
In this regime, NPAD further gives an exponential reduction in terms,
i.e. superexponential compared to Schrieffer-Wolff, relevant to high
precision expansions. Both methods consist of algebraic expressions
and can be easily automated for symbolic computation. To demonstrate
the application of the methods, we study the ZZ and cross-resonance
interactions of superconducting qubits systems. We investigate both
suppressing and engineering the coupling in near-resonant and quasi-
dispersive regimes. With the proposed methods, the coupling strength
in the effective Hamiltonians can be estimated with high precision
comparable to numerical results.

This chapter has been published, with minor changes, as Boxi Li, Tommaso Calarco, and
Felix Motzoi, Nonperturbative Analytical Diagonalization of Hamiltonians with Application to
Circuit QED, PRX Quantum 3.3 (2022): 030313. [73]. The thesis author conducted most of the
analysis, composed all the figures and wrote the manuscript with input from the advisors.
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3.1 Introduction
Deriving effective models is of fundamental importance in the study of complex
quantum systems. Often, in an effective model, one decouples the system of interest
from the ancillary space, as shown in Figure 3.1. The dynamics are then studied
within the effective subspace, which is usually much easier than in the original
Hilbert space, and provides fundamental information such as conserved symme-
tries, entanglement formation, orbital hybridization, computational eigenstates,
spectroscopic transitions, effective lattice models, etc. In terms of the Hamilto-
nian operator, an effective compression of the Hilbert space can be achieved by
diagonalization or block diagonalization.

When the coupling between the system and ancillary space is small compared
to the dynamics within the subspace, the effective model is often derived by a
perturbative expansion. In the field of quantum mechanics, a ubiquitous expansion
method that enables reduced state space dimension is the Schrieffer-Wolff Transfor-
mation (SWT) [74, 75], also known in various sub-fields as adiabatic elimination [76],
Thomas-Fermi or Born-Oppenheimer approximation [77, 78], and quasi-degenerate
perturbation theory [79]. Finding uses throughout quantum physics, SWT can be
found in atomic physics [76], superconducting qubits [80, 81], condensed matter [75],
semiconductor physics [82], to name a few.

The SWT method is however limited to regimes where a clear energy hierarchy
can be found and therefore fails to converge for a wide variety of physical examples.
In particular, for infinite-dimensional systems such as coupled harmonic and an-
harmonic systems (e.g., in superconducting quantum processors), the abundance
of both engineered and spurious resonances motivates the use of other techniques.
Moreover, even when perturbation theory is applicable, the number of terms in
the expansions grows exponentially as the perturbation level and therefore is not
practically usable in many instances.

In this article, we introduce a new symbolic algorithm, Non-Perturbative An-
alytical Diagonalization (NPAD), that allows the computation of closed-from,
parametric effective Hamiltonians in a finite-dimensional Hilbert space with a guar-
antee for convergence. The method makes use of the Jacobi iteration and recursively
applies Givens rotations to remove all unwanted couplings. In the perturbative
limit, it reduces via BCH expansion to a variant of SWT, which we refer to as the
Recursive Schrieffer-Wolff Transformation (RSWT). For this method, the number
of commutators grows only linearly with respect to the perturbation order, in
contrast to the exponential growth in the traditional approach. Both methods
can be used in low-order expansions to provide compact analytical expressions of
effective Hamiltonians; or, alternatively, higher-order expansions that allow for fast
parametric design [83] and tuning [84] of effective Hamiltonian models (and, e.g.,
subsequent automatic differentiation). As illustrated in Figure 3.1, with the two
methods, one can tune the system for engineered decoupling or enhanced controlled
coupling.

The key insight of our work is that the iteration step in forming the effective
model can be applied recursively, i.e. after each step the transformed Hamiltonian



3.1. Introduction 21

NPAD
/

RSWT

(Block-) 
diagonalization

|1⟩
|0⟩

|𝑒⟩

Physical systemQubit

Spin system

Oscillator
⋯

Ancillary leakage levels

⊕

Computational space

⊗ ⊗

Suppression of  coupling

Physical coupling

Engineered coupling

Ancillary leakage levels

⊕

Computational space

⊗

A

B

External drive

Figure 3.1: Illustration of generating an effective Hamiltonian model from a given
physical model. The left-hand side shows the physical system composed of several
different quantum subsystems and possible coupling among them. External controls
may also exist and drive the system dynamics. The methods introduced in this
article (NPAD and RSWT) can be used to compute the effective model (right-
hand side) where undesired interactions are effectively removed (block A) and
engineered couplings are enhanced (block B). The dynamics can then be studied in
the computational subspace.

is viewed as a new starting point and determines the next step. Moreover, each
step can act on a chosen single state-to-state coupling at a time, thereby providing
an exact elimination of the term. In this regard, this can be understood as a
generalization of the well-known numerical Jacobi iteration used for diagonalization
of real symmetric matrices [85], which has also found use for Hermitian operators
[86, 87]. Similar ideas have also been widely used in the orbital localization
problem [88].

As demonstrations of the practical utility of the methods, we study supercon-
ducting qubits, which are especially relevant for robust parametric design methods,
not only because they are prone to spurious resonances [89–91], but because they
can be readily fabricated across a very wide range of energy scales [92, 93].

We investigate both the near-resonant regime and in the quasi-dispersive regime,
focusing on the ZZ and cross-resonance interaction. In the near-resonant regime,
we consider the two-excitation manifold and compute accurate approximations
of the ZZ interaction strength applicable to the full parameter regime for gate
implementation [94–97]. In the second scenario, we study the suppression of ZZ
interactions [83, 98–113] in the traditional setup of resonator mediated coupling
without direct qubit-qubit interaction. The result shows that the ZZ interaction
can be suppressed without resorting to additional coupling in a regime where the
qubit-resonator detuning is comparable to the qubit anharmonicity, described by an
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equation of a circle. Extending the applications to block diagonalization, we then
compute the coupling strength of a microwave-activated cross-resonant interaction.
We show that, with only 4 Givens rotations, we can diagonalize the drive and
achieve accurate estimation in the regime where the perturbation method fails.

This chapter is organized as follows: In Section 3.2, we present the mathe-
matical methods, NPAD and RSWT, for diagonalization and obtaining effective
Hamiltonian models. We also briefly discuss generalizing the two methods to
block diagonalization in Section 3.2.3. Next, in Section 3.3, we demonstrate the
applications to superconducting systems. We study the ZZ interaction for generat-
ing entanglement in the near-resonant regime (Section 3.3.1), and in the (quasi-)
dispersive regime for suppressing cross-talk noise (Section 3.3.2). The computation
of the cross-resonance coupling strength is presented in Section 3.3.3. We conclude
and give an outlook of other possible applications in Section 3.4.

3.2 Mathematical methods
3.2.1 Non-perturbative Analytical Diagonalization
In this subsection, we introduce the NPAD for symbolic diagonalization of Hermitian
matrices and discuss how it can be applied to obtain effective models.

In this algorithm, a Givens rotation is defined in each iteration to remove one
specifically targeted off-diagonal term. By iteratively applying the rotations, the
transformed matrix converges to the diagonal form. The rotation keeps the energy
structure when the off-diagonal coupling is small while always exactly removing the
coupling even when it is comparable to or larger than the energy gap. Compared
to the Jacobi method used in numerical diagonalization [85–87], we truncate the
iteration at a much earlier stage. As each iteration consists only of a few algebraic
expressions, the algorithm produces a closed-form, parametric expression of the
transformed matrix.

We start from a two-by-two Hermitian matrix and define a complex Givens
rotation that diagonalizes it. Then, we generalize the rotation to higher-dimensional
matrices, discuss the convergence of the iteration, and how to use it as a symbolic
algorithm. In Section 3.3.1, we show a concrete application where we apply NPAD
with only two rotations to approximate the energy spectrum of a near-resonant
quantum system which can not be studied perturbatively.

Givens rotations

We consider a two-by-two Hermitian matrix

Ĥ =
(
ε+ δ ge−iϕ

geiϕ ε− δ

)
, (3.1)

where g, ϕ, ε and δ are real numbers. The matrix can be decomposed in the Pauli
basis as

Ĥ = ϵÎ + δσ̂z + g (cos(ϕ)σ̂x + sin(ϕ)σ̂y) (3.2)
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Figure 3.2: (a): The Givens rotation illustrated on a Bloch sphere. A Hermitian
matrix defined in equation (3.1) is denoted as a point on the surface of a Bloch sphere
with the radius

√
δ2 + g2. This is different from the Bloch sphere representation

of a quantum state, where the radius is always smaller than or equal to 1. The
coordinates correspond to the coefficients in the representation in the Pauli basis.
The Givens rotation Û that diagonalizes the matrix can be viewed as a rotation
denoted by the blue arrow (for δ ≥ 0). (b): The computational graph of the Givens
rotation Û , defining the main mathematical steps in the symbolic algorithm 1. The
inputs g, δ and ϕ can be directly extracted from the Hamiltonian.

which can be illustrated in a Bloch sphere with the radius
√
δ2 + g2 (omitting the

identity) as shown in Figure 3.2a. Without loss of generality, we assume that g ≥ 0
and absorb the sign into the complex phase.

The diagonalization can be understood as a rotation on the Bloch sphere to
the North or South pole. In particular, if δ ≥ 0, it is rotated to the North
pole, and otherwise to the South pole, avoiding unnecessarily flipping the energy
level during the diagonalization. This rotation is performed around the axis
n̂ = cos(ϕ)σ̂y − sin(ϕ)σ̂x with the angle θ = arctan ( g

δ
). As an illustration, for

δ ≥ 0, the rotation is denoted by a blue arrow in Figure 3.2a.
The unitary transformation that diagonalizes the matrix is given by

Û = exp
[
Ŝ
]

= exp
[
i

2θn̂
]

=
(

cos
(

θ
2

)
e−iϕ sin

(
θ
2

)
−eiϕ sin

(
θ
2

)
cos
(

θ
2

) )
, (3.3)

where Ŝ = i
2θn̂ is referred to as the generator of the rotation. The transformation

satisfies Λ = ÛĤÛ† with Λ the diagonalized matrix. We refer to Û as a Givens
rotation [114]. Notice that in most literature, the Givens rotation is defined with
ϕ = 0. Here we use this more general (Hermitian) definition as it shares many
common properties.

The computation of the unitary consists only of elementary mathematical
functions, as illustrated in Figure 3.2b. This is critical for it to be used as a building
block for a symbolic algorithm. As we will see later, by concatenating this building
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block, a parameterized expression can be generated for an arbitrary Hermitian
matrix.

Simplified formulation

In practice, the inverse trigonometric function in the expression of θ is often avoided
by using the trigonometric identities

tan(θ) = 2t
1− t2 (3.4)

with t = tan
(

θ
2

)
. We then rewrite equation (3.4) as

t2 + 2t/κ− 1 = 0 (3.5)

with κ = g/δ. We choose the root with smaller norm for the convenience that the
rotation will not flip the two energy levels 1:

t =
√
κ2 + 1− 1

κ
. (3.6)

In this way, the parameters cos
(

θ
2

)
and sin

(
θ
2

)
in the Givens rotation can be

calculated directly from g and δ using algebraic expressions. It is also evident in
equation (3.6) that the rotation angle is bounded by |θ| ≤ π/2.

The iterative method

We now apply the Givens rotation to remove the (j, k)-th entry of a general
Hermitian matrix Ĥ. The parameters are chosen to be consistent with equation (3.1),
i.e., δjk = (Hj,j−Hk,k)/2 and gjke−iϕjk = Hj,k. For simplicity, we use the notation
cjk = cos

(
θjk

2

)
, sjk = sin

(
θjk

2

)
, and tjk = sjk/cjk. We write the Givens rotation

Ûjk as

Ûjk =



1
. . .

cjk · · · e−iϕjksjk

...
. . .

...
−eiϕjksjk · · · cjk

. . .
1


(3.7)

1In numerical implementation, it is often written as t = sgn(κ)
|1/κ|+

√
1/κ2+1

for numerical stability
when κ → 0.
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where the diagonal elements are all 1 except for two entries (j, j) and (k, k). All
other entries not explicitly defined are 0.

Applying this unitary transformation with Ĥ ′ = ÛjkĤÛ
†
jk eliminates the off-

diagonal entry Hj,k, i.e., |H ′
j,k| = |H ′

k,j | = g′
jk = 0. It renormalizes the energies

such that

δ′
jk = δjk + tjkgjk (3.8)

However, this will also mix other entries on the j, k-th rows and columns, given by

H ′
h,j = cjkHh,j + eiϕjksjkHh,k (3.9)

H ′
h,k = cjkHh,k − e−iϕjksjkHh,j (3.10)

with h ̸= j, k.
One can diagonalize the matrix by applying the rotation Ûjk with the corre-

sponding parameters iteratively on the largest remaining non-zero off-diagonal
entry, which is referred to as the Jacobi iteration [85]. That is, we can iteratively
solve for the eigenenergies by picking the next largest off-diagonal element, e.g.,
H ′

j′,k′ = g′
j′k′ e−iϕ′

j′k′ , and applying another Givens rotation, as summarized in
Algorithm 1.

Algorithm 1: Non-Perturbative Analytical Diagonalization (NPAD)
input : a Hermitian matrix Ĥ0
output : an effective model Ĥ ′

Ĥ ← Ĥ0;
while ∥Ĥ − diag(Ĥ)∥ > tolerance do

1. find the target coupling Hj,k;

2. define δjk, gjk and ϕjk such that
δjk = (Hj,j −Hk,k)/2 and gjke−iϕjk = Hj,k;

3. θjk ← arctan ( gjk

δjk
);

4. cjk ← cos
(

θjk

2

)
, sjk ← sin

(
θjk

2

)
;

5. define Û according to equation (3.7);

6. Ĥ ← ÛĤÛ†;

end
Ĥ ′ ← Ĥ

In practice, the above definition of the Jacobi iteration can be relaxed. For
instance, the next target does not always have to be the largest element. In fact,
the order of the rotations does not affect the convergence, as long as all terms are
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covered in the iteration rules (e.g., cyclic iterations on all off-diagonal entries) [86].
However, performing the rotation first on large elements usually increases the
convergence rate. This can be seen by studying the norm of all off-diagonal terms
∥Ĥ∥F =

∑
m̸=n

|Hm,n|2. Since we have |H ′
h,j |2 + |H ′

h,k|2 = |Hh,j |2 + |Hh,k|2 for
h ≠ j, k and Ĥ ′

j,k = 0, each Givens rotation reduces the norm of all off-diagonal
terms:

∥Ĥ ′∥F = ∥Ĥ∥F − 2|Hj,k|2. (3.11)
If (j, k) is chosen so that |Hj,k|2 is larger than the average norm among the
off-diagonal terms, one obtains [86]

∥Ĥ ′∥F = (1− 2
N(N − 1) )∥Ĥ∥F (3.12)

where N(N − 1) is the total number of off-diagonal terms. Therefore, the algorithm
converges exponentially. Moreover, if the off-diagonal terms are much smaller
than the energy gap, the convergence becomes even faster, i.e., exponentially fast
with a quadratic convergence rate [87]. This leads to an efficient variant of the
Schrieffer-Wolff-like methods, as described in Section 3.2.2.

From the above analysis, we also see that the Givens rotation does not have
to exactly zero the target coupling. Instead, it only needs to reduce the total
norm. Therefore, if the structure of the Hamiltonian is known, rotations can be
grouped such that all rotations within one group are constructed from the same
Hamiltonian and then applied recursively. We will also explore this possibility in
concrete examples later in the article.

As a machine-precision, numerical diagonalization algorithm, the Jacobi iteration
is slower than the QR method for dense matrices. However, in many problems in
quantum engineering, the Hamiltonian is often sparse and it is known in advance
which interaction needs to be removed. It is not always necessary to compute the
fully diagonalized matrix but only to transform it into a frame where the target
subspace is sufficiently decoupled from the leakage levels. Therefore, an iterative
method where each step is targeted at one off-diagonal entry is of particular interest.

As a symbolic method, we can truncate the Jacobi iteration at a very early stage
to obtain closed-formed parametric expressions. It will also correctly calculate the
renormalized energy and other couplings while keeping the energy structure in the
perturbative limit, as will be discussed in Section 3.2.2.

3.2.2 Recursive Schrieffer-Wolff perturbation method
In the previous subsection, we introduced NPAD which produces a closed-form,
parametric expression of an approximately diagonalized matrix. Here, we show that
in the perturbative limit, where the coupling is much smaller than the bare energy
difference, the Jacobi iteration reduces to a Schrieffer-Wolff-like transformation.
Interestingly, the recursive nature of the Jacobi iteration is preserved in this limit.
Instead of looking for one generator that diagonalizes the full matrix as in the
traditional Schrieffer-Wolff transformation (SWT), an iteration is constructed
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such that every time only the leading-order coupling is removed. We refer to
it as recursive Schrieffer-Wolff transformation (RSWT) because of the recursive
expression it produces. We also show that RSWT demonstrates an exponential
improvement in complexity compared to SWT for perturbation beyond the leading
order. In Section 3.3.2, we demonstrate an application of RSWT in estimating the
ZZ interaction between two Transmon qubits in a dispersive regime.

Givens rotation in the perturbative limit

In the perturbative limit, compared to Ûjk in equation (3.7), it is more convenient
to specify the generator defined in equation (3.3). For the Givens rotation Ûjk the
corresponding generator Ŝ′ has two non-zero entries

S′
j,k = −S′

k,j
∗ = Hj,k/(Hj,j −Hk,k), (3.13)

all other entries being 0. In addition, assuming that we only aim at removing the
leading-order off-diagonal terms, we define a generator

Ŝ =
∑
p∈P

Ŝ′
p (3.14)

where the sum over P denotes all pairs of non-zero off-diagonal entries in Ĥ. The
assumption of perturbation indicates that ∥Ŝ∥F ≪ 1. In this case, the unitary
generated by Ŝ still eliminates all the leading-order coupling because

exp
(
Ŝ
)

= exp

(∑
p∈P

Ŝ′
p

)
=
∏
p∈P

eŜ′
p +O

(
∥Ŝ∥2

F

)
. (3.15)

This generator Ŝ is identical to the generator of the leading-order SWT. One
can verify that [Ŝ, D̂] = −V̂ where D̂ and V̂ are the diagonal and off-diagonal parts
of Ĥ. By expanding the transformation eŜĤe−Ŝ using the BCH formula

Ĥ ′ = eŜĤe−Ŝ = Ĥ + [Ŝ, Ĥ] + 1
2! [Ŝ, [Ŝ, Ĥ]] + · · · (3.16)

and truncating the series at O(∥Ŝ∥2
F ), one obtains the leading-order SWT.

The difference between RSWT and SWT appears when one considers higher-
order perturbation. In SWT, one expands the transformed Hamiltonian Ĥ ′ and the
generator Ŝ perturbatively as a function of a small parameter and collects terms of
the same order on both sides of equation (3.16). However, here, the generator is
predefined and it only eliminates the leading-order coupling. Similar to the Jacobi
iteration, we treat the transformed Hamiltonian Ĥ ′ as a new Hermitian matrix and
perform another round of leading-order transformation as the next iteration. This
results in a recursive expression for Ĥ ′, which is still a closed-form expression. The
remaining off-diagonal terms can always be removed by the next iteration if the
truncation level of the BCH formula is high enough to guarantee sufficient accuracy.
We present the iteration of RSWT in detail in the next subsection and show that
it simplifies the calculation for perturbation beyond the leading order.
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The RSWT iterations

In the following, we outline the iterative procedure of the RSWT. We denote
the initial matrix Ĥ as step zero, with the notation D̂0 = D̂, V̂0 = λV̂ and
Ĥ0 = Ĥ = D̂0 + V̂0. The parameter λ is the dimensionless small parameter used to
track the perturbation order. Assume that we want to compute the perturbation
to the eigenenergy up to the order λK . We refer to this as the λK-perturbation.
Given the Hamiltonian of iteration n, Ĥn, we can compute the next iteration Ĥn+1
as follows.

We first define a generator Ŝn+1 according to equation (3.14) such that

[Ŝn+1, D̂n] = −V̂n,

where D̂n and V̂n are the diagonal and the off-diagonal part of Ĥn. As the energy
gap D̂n always stays at O(λ0) under the assumption of small perturbation, Ŝn+1 is
of the same order as V̂n. Notice that Ŝn+1 is generated from the perturbed matrix
in the previous iteration, Ĥn, in contrast to the unperturbed matrix as in SWT.

Then, the next level of perturbation is computed with

Ĥn+1 =
m∑

t=0

1
t!Ct(Ŝn+1, D̂n) +

m−1∑
t=0

1
t!Ct(Ŝn+1, V̂n) (3.17)

where C is the nested commutator defined by

Ct+1(Â, B̂) = [Â, Ct(Â, B̂)] (3.18)

and C0(Â, B̂) = B̂. The truncation level m of the BCH expansion will be defined
explicitly later. Because [Ŝn+1, D̂n] = −V̂n by construction, we have for all n and t

Ct+1(Ŝn+1, D̂n) = −Ct(Ŝn+1, V̂n). (3.19)

Therefore, plugging in equation (3.19) into equation (3.17) simplifies it to

Ĥn+1 = D̂n +
m−1∑
t=1

t

(t+ 1)!Ct(Ŝn+1, V̂n). (3.20)

Notice that t starts from 1 in the sum, which means that all coupling terms at the
same order of V̂n are removed and the order of the remaining coupling, V̂n+1, is
squared. This iteration is applied until the desired order is reached, as summarized
in Algorithm 2.

To ensure that the truncation of the BCH is accurate up to the order O(λK),
for the nth iteration, we need to choose the truncation m = ⌊ K

2n ⌋, which ensures
that Ĥn+1 = e(Ŝn+1)Ĥne(−Ŝn+1) +O(λK+1). This maximal level m is halved every
time the iteration step increases because the remaining coupling is quadratically
smaller. This means that, in contrast to SWT, the first iteration has the largest
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Algorithm 2: Recursive Schrieffer-Wolff Transformation (RSWT)
input : a Hermitian matrix Ĥ0
output : Ĥ ′ including correction to the eigenenergy up to λK

nmax ← ⌊log2(K)⌋;
for n← 0; n < nmax; n← n+ 1 do

1. D̂n ← diag(Ĥn); V̂n ← Ĥn − D̂n;

2. initialize a zero matrix Ŝn+1;
for j, k with Vn,j,k ̸= 0 do

Sn+1,j,k ← Vn,j,k/(Dn,j,j −Dn,k,k);
end

3. m← ⌊ K
2n ⌋;

Ĥn+1 ← D̂n +
∑m−1

t=1
t

(t+1)!Ct(Ŝn+1, V̂n);

end
Ĥ ′ ← Ĥnmax

number of terms in RSWT. In Section 3.5.1, we show that, if ∥Ŝn+1∥ < 1
2 , the error

of the truncation in equation (3.20) is bounded by∥∥Ĥn+1 − Ĥ∞
n+1
∥∥ ≤ 2m

m!
∥∥Ŝn+1

∥∥m∥∥V̂n

∥∥ (3.21)

where the Ĥ∞
n+1 is equation (3.20) in the limit m→∞.

3.2.3 Block diagonalization
Both the NPAD and the RSWT methods introduced in the previous sections can
be designed to only target a selected set of off-diagonal terms and, hence, used for
block-diagonalization. This is especially useful to engineer transversal coupling in
a subsystem and leave the remaining levels as intact as possible. Here, we briefly
discuss these generalizations. Notice that it is always possible to first diagonalize
the matrix and then reconstruct the block diagonalized form that satisfies certain
conditions, for instance as in Ref. [115]. In the following, we discuss only methods
that do not diagonalize the matrix first.

In NPAD, by construction, each rotation removes one off-diagonal element.
With Givens rotations only applied to the inter-block elements, an iteration for
block diagonalization can be defined. The norm of all off-diagonal entries, ∥Ĥ∥F ,
is still monotonously decreasing according to equation (3.11). Hence, a limit exists
and its convergence is also the convergence of the block diagonalization. However,
the convergence is not always monotonous with respect to the norm of all inter-block
terms. This is because a Givens rotation may rotate a large intra-block term into
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an inter-block entry. Therefore, the algorithm may not always converge faster than
the full diagonalization would. Nevertheless, if the dominant coupling terms in the
Hamiltonian are known, the Jacobi iteration can be designed to target those to
realize an efficient block-diagonalization. In Section 3.3.3, we show an example of
this in computing the cross-resonance coupling strength through NPAD.

For perturbation, RSWT can be applied as a block diagonalization method
under the constraint that both the inter-block and the intra-block coupling are
much smaller than the inter-block energy gap. This can be achieved by slightly
modifying the RSWT iterations: We first separate the diagonal, the intra-block
and the inter-block terms: Ĥn = D̂n + V̂ intra

n + V̂ inter
n . Next, in Algorithm 2 we

only define Ŝ for those non-zero entries in V̂ inter
n , i.e. the couplings we wish to

remove. And in the last step, we replace equation (3.20) with

Ĥn+1 = D̂n +
m−1∑
t=1

t

(t+ 1)!Ct(Ŝn+1, V̂
inter

n )

+
m∑

t=0

1
t!Ct(Ŝn+1, V̂

intra
n ). (3.22)

In this definition, the leading interblock coupling is of the order O([Ŝn+1, V̂
intra

n ]).
As we do not remove the intra-block coupling, we still get V̂ intra

n = O(λ). Therefore,
the remaining coupling is O(λV̂ intra

n ), i.e. the perturbation order is increased by
one, instead of being squared as in the case of full diagonalization. Therefore, the
exponential reduction of the number of commutators does not always apply in the
case of block diagonalization. However, notice that the small parameter λ here is
defined as the (largest) ratio between the inter-block couplings and gaps, which is
usually much smaller than those within the block. Hence, if carefully designed, the
convergence can still surpass the full diagonalization in the first few perturbative
orders.

3.2.4 Comparison between different methods
To help understand the proposed methods, we here discuss the difference between
them and the traditional methods. We first compare RSWT with traditional SWT
and then NPAD with the perturbation methods.

For RSWT, with the same target accuracy, e.g., O(λK), it should provide the
same expression as from SWT, up to the error O(λK+1). However, compared to
the SWT, RSWT requires a much smaller number of iterations and commutators.
To reach O(λK), SWT needs K − 1 iterations, while RSWT only needs ⌊log2(K)⌋
because of the quadratic convergence rate. More importantly, the total number of
commutators grows only linearly for RSWT, compared to the exponentially fast
growth for SWT [80].

Intuitively, this is because RSWT uses the recursive structure and avoids
unnecessary expansions of the intermediate results. Mathematically, this can be
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seen from the following two aspects: First, in RSWT, each iteration improves the
perturbation level from λk to λ2k, instead of λk+1. Hence, the number of iterations
increases only logarithmically with respect to the perturbation order, as seen in the
definition of nmax in Algorithm 2. This is because we always treat the transformed
matrix as a new one and remove the leading-order coupling. It is consistent with
the quadratic convergence rate of the Jacobi iteration with small off-diagonal terms.
Second, in RSWT, the generator Ŝn is only used at the current iteration. Hence,
there are no mixed terms such as [Ŝ2, [Ŝ1, V̂0]], in contrast to SWT.

The total number of commutators required to reach level λK is shown in
Table 3.1, where we have taken into consideration that if Ct(Â, B̂) is known,
computing Ct+1(Â, B̂) only requires one additional commutator. The detailed
calculation is presented in Section 3.5.2.

The NPAD method, on the other hand, uses non-linear rotations to replace the
linear perturbative expansion. More concretely, in the Jacobi iteration, by targeting
only one coupling in each recursive iteration, the unitary transformation can be
analytically expressed as a Givens rotation, thus avoiding the BCH expansion
in equation (3.16). Therefore, it efficiently and accurately captures the non-
perturbative interactions in the system.

To compare it with the perturbation methods, we estimate the number of
operations required for NPAD in the perturbative regime. Assume we construct
the Jacobi iteration from the G coupling terms used in generating an Ŝ in RSWT.
Applying those unitaries is, to the leading order, the same as applying one RSWT
iteration. A single Givens rotation on a Hamiltonian takes O(N) operations, where
N is the matrix size. Thus, the cost for computing the effective Hamiltonian after
G rotations is the same as computing one commutator [Ŝ, ·], up to a constant
factor. Because the Givens rotation avoids the BCH expansion, there are no
nested commutators and the total number of operations is O(nmaxNG) with nmax
the number of iterations in Algorithm 2. Hence the number of terms scales
logarithmically with respect to K instead of linearly as for RSWT, i.e., a super-
exponential reduction compared to SWT (Table 3.1). However, the non-linear
expressions provided by NPAD are usually harder to simplify and evaluate by hand
compared to the rational expressions obtained from perturbation.

From the above discussion, one can see that it is also straightforward to combine
NPAD with perturbation. Instead of fully diagonalizing the matrix, the Jacobi
iteration can be designed to remove only the dominant couplings and combined
with perturbation methods to obtain simplified analytical expressions. In fact, this
is often used implicitly in the analysis when, e.g., a strongly coupled two-level
system is perturbatively interacting with another quantum system. The Jacobi
iteration suggests that this can be generalized systematically to more complicated
scenarios.
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K 2 3 4 5 6 7 8
SWT 1 4 11 26 57 120 247
RSWT 1 2 4 5 7 8 11
NPAD 1 1 2 2 2 2 3

Table 3.1: The number of terms in the evaluation for different methods to reach
the λK-perturbation. The number denotes the total number of commutators in
SWT and RSWT, or the total number of sweeps over all couplings for NPAD. This
describes both the "algebraic complexity" (i.e. complexity of the output algebraic
expressions) and the computational (time-cost) complexity. The complexity is
reduced from exponential to linear and eventually to logarithmic. However, notice
that although the computational complexity for one commutator and for one Jacobi
sweep scales the same in terms of the number of couplings to be removed (see the
main text), the Givens rotation in NPAD consists of non-linear algebraic expressions
which are individually more expensive to compute.

3.3 Physical applications
In this section, we use the methods introduced in Section 3.2 to study the ZZ
interaction in two different parameter regimes. In a two-qubit system, the ZZ
interaction strength is defined by

ζ = E11 − E10 − E01 + E00 (3.23)

where Ejk denotes the eigenenergy of the two-qubit states |jk⟩. The Hamiltonian
interaction term is written as ζσz1σz2 , acting on the two qubits. Typically, in
superconducting systems, it arises from the interaction of the |11⟩ state with
the non-computational state in the physical qubits, and can both be used as a
resource for entangling gates [94–97] or viewed as cross-talk noise that needs to be
suppressed [98–113] .

3.3.1 Effective ZZ entanglement from non-dispersive interac-
tions

In this first application, we apply the NPAD method described in Section 3.2.1
to study a model consisting of two directly coupled qubits in the near-resonant
regime, where the ZZ interaction can be used to construct a control-Z (CZ) gate
(see Figure 3.1 block B) [94–97]. We show that, with two rotations, NPAD provides
an improvement on the estimation of the interaction strength for at least one order
of magnitude, compared to approximating the system as only a single avoided
crossing between the strongly interacting levels, as is standard in the literature. In
addition, if one of the non-computational bases is comparably further detuned than
the other, the correction takes the form of a Kerr nonlinearity, with a renormalized
coupling strength accounting for the near-resonant dynamics.
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We consider the Hamiltonian of two superconducting qubits that are directly
coupled under the rotating-wave [67, 116] and Duffing [117] approximations:

Ĥ =
∑

q∈{1,2}

ωq b̂
†
q b̂q + αq

2 b̂†
q b̂

†
q b̂q b̂q + g(b̂1b̂

†
2 + b̂†

1b̂2) (3.24)

where b̂q, ωq, αq are the annihilation operator, the qubit bare frequency and the
anharmonicity, respectively. The parameter g denotes the coupling strength. In
this Hamiltonian, the sum of the eigenenergies is always a constant E10 + E01 =
ω1 + ω2 because of the symmetry. Hence, the ZZ interaction comes solely from the
interaction between the state |11⟩ and the non-computational basis |20⟩ and |02⟩. If
the frequency is tuned so that the state |11⟩ is close to one of the non-computational
states, the coupling will shift the eigenenergy, leading to a large ZZ interaction
(Figure 3.3a).

For simplicity, we consider the Hilbert subspace consisting of |20⟩, |11⟩, |02⟩
and write the following Hamiltonian

Ĥ =

(
δ g1 0
g1 −δ g2
0 g2 −∆

)
. (3.25)

The parameters in the diagonal elements are given by δ = (ω1 − ω2 + α1)/2 and
∆ = 3(ω1 − ω2)/2 − α2 + α1/2. To keep the result general, we use two different
coupling strengths g1 and g2, although according to equation (3.24) they both equal√

2g. Without loss of generality, we assume the state |02⟩ is comparably further
detuned from the other two, i.e. ∆ > gj , δ. If in contrast |20⟩ is further detuned,
one can exchange the |02⟩ and |20⟩ in the matrix and redefine δ and ∆ accordingly.
Notice that this Hamiltonian is different from a Λ system [76], where coupling
exists only between far-detuned levels.

To implement the CZ gate, one tunes the qubit frequency ω1 so that the states
|11⟩ and |20⟩ are swept from a far-detuned to a near-resonant regime. Hence, the
perturbative expansion diverges and cannot be used. A naive approach is to neglect
the far-detuned state |02⟩ and approximate the interaction as a single avoided
crossing. In this case, ζ is approximated by

ζ2-level ≈ δ − δ

√
1 + g2

1
δ2 . (3.26)

However, the interaction g2 results in an error that, in the experimentally studied
parameter regimes, can be as large as 10%, as shown in Figure 3.3b.

In the following, we show that with only two Givens rotations, one can obtain an
analytical approximation, with the error reduced by one order of magnitude. The
correction can be understood as a Kerr non-linearity with a renormalized coupling
strength.

To get an accurate estimation of the ZZ interaction ζ, we need to calculate the
eigenenergy of |11⟩ by eliminating its coupling with the other two states. Therefore,
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we will make two rotations sequentially on the entry (0, 1) and (1, 2), given by

Ĥ(2) = Û2Ĥ
(1)Û†

2 = Û2Û1ĤÛ
†
1 Û

†
2 , (3.27)

where Û1 and Û2 are Givens rotations (equation (3.3)) constructed for eliminating
the entries (0, 1) and (1, 2). Because the matrix is real symmetric, the phase ϕ in
equation (3.3) is 0.

The first transformed Hamiltonian, Ĥ(1) = Û1ĤÛ
†
1 , takes the form

Ĥ(1) =

(
E2 0 g2s01
0 −E2 c01g2

g2s01 c01g2 −∆

)
(3.28)

where E2 = δ

√
1 + g2

1
δ2 is the eigenenergy for diagonalizing the two-level system of

|20⟩ and |11⟩, consistent with equation (3.26). The notations used are the same as
in Section 3.2.1. In this frame, the coupling between |11⟩ and |02⟩ is reduced to
c01g2, where c01 is given by the non-linear expression

c01 = 1√(
E2−δ

g1

)2 + 1
. (3.29)

This non-linearity is crucial for the accurate estimation of the eigenenergy.
The second rotation further removes this renormalized coupling c01g2, giving

Ĥ(2) =

(
E2 g2s01s12 c12g2s01

g2s01s12 −E2 + g2c01t12 0
c12g2s01 0 −∆− g2c01t12

)
. (3.30)

Including the new correction, g2c01t12, the eigenenergy of state |11⟩ reads

H
(2)
1,1 = −E2 + ∆− E2

2

(√
1 +

( 2c01g2

∆− E2

)2
− 1

)
. (3.31)

In Figure 3.3b, we plot the error of the estimated interaction strength ζ = H ′
1,1 + δ

using typical parameters of superconducting hardware, compared to the numerical
diagonalization ζ̃. An improvement of at least one order of magnitude is observed
compared to traditional methods.

Following the assumptions that ∆≫ δ, gj , equation (3.31) simplifies to

H
(2)
1,1 ≈ −E2 + c2

01g
2
2

∆− E2
. (3.32)

We see that the correction takes the form of a Kerr non-linearity [118], but with
a renormalized coupling strength c01g2. This non-linear factor c01 accounts for
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the dynamics between |20⟩ and |11⟩ in the near-resonant regime. The same effect
can be observed in higher levels where similar three-level subspaces exist. This
approximation is plotted as a dashed curve in Figure 3.3b.

The error of this estimation comes both from the expansion of the square root
in equation (3.31) as well as from the remaining coupling in Ĥ(2). The former can
be approximated by the next order expansion

ϵ1 ≈
c4

01g
4
2

(∆− E2)3 . (3.33)

For the latter, we consider the remaining coupling in Ĥ(2) between |20⟩ and |11⟩,
which reads g2s01s12. In the limit ∆ ≫ δ, gj , we have s12 ≤ θ12

2 ≤ g2
∆−E2

≪ 1,
indicating that this coupling is much smaller than the energy difference. Hence,
further correction can be estimated by

ϵ2 ≈

(
H

(2)
0,1

)2

|H(2)
0,0 −H

(2)
1,1 |
≤ (g2s01s12)2

g1
≤ g4

2s
2
01

g1(∆− E2)2 . (3.34)

The contribution of the other remaining coupling between |20⟩ and |02⟩ is much
smaller due to the large energy gap. Since ϵ2 is one order smaller than the ϵ1, ϵ1
will be the dominant error. We plot the region below this error in Figure 3.3b as a
shaded background.

For the more general cases without assuming ∆≫ δ, gj , it is hard to provide
an error estimation due to the non-linearity. However, the result in Figure 3.3b
indicates that equation (3.31) still shows a good performance in other parameter
regimes commonly used in superconducting hardware, with an error smaller than
3%. We also observe that an improvement for another order of magnitude can be
achieved by introducing a third rotation again on the entry (0, 1).

3.3.2 ZZ coupling suppression in the quasi-dispersive regime
In this second example, we use the two methods to investigate the suppression of ZZ
cross-talk with the qubit-resonator-qubit setup in the dispersive cQED regime, which
corresponds to Figure 3.1 block A. We demonstrate that in the traditional setup
without direct inter-qubit coupling, the ZZ interaction defined in equation (3.23)
can still be zeroed in a quasi-dispersive regime by engineering the two parameters
of qubit-resonator detuning. The zero points are described by an equation of a
circle in the λ4-perturbation. To accurately capture the interaction strength in
the quasi-dispersive regime, we also compute with RSWT the λ6-perturbation and
show that the NPAD method with only 8 Givens rotations provides an expression
with similar accuracy.

We consider a Hamiltonian of two superconducting qubits connected by a
resonator:

Ĥ =
∑

q∈{1,2}

ωq b̂
†
q b̂q + αq

2 b̂†
q b̂

†
q b̂q b̂q + gq(b̂qâ

† + b̂†
qâ) + ωrâ

†â. (3.35)
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Figure 3.3: (a): Interaction and energy level diagram of the two-excitation
manifold in the unperturbed Hamiltonian given by equation (3.25). The solid lines
represent the bare qubit states, while the arrow and the dashed purple line denote
the Stark shift and the eigenenergy of the perturbed |11⟩ state. (b): Performance of
ZZ interaction estimation using NPAD. We plot the relative difference between the
estimated ζ and the value obtained by numerical diagonalization ζ̃. The estimations
are computed with 2 rotations (solid, equation (3.31)), hybrid method with the
additional assumption ∆ ≫ δ, gj (dashed, equation (3.32)), by assuming only a
2-level system (dash-dot, equation (3.26)), and with a leading-order perturbation
(dotted). The shaded area covers the region below the error estimation given by
equation (3.33). The grey arrow denotes a typical path to generate a CZ gate
through ZZ interaction by changing the qubit-qubit detuning. The two jumps are
located at ω1 = ω2 + α2 and ω1 + α1 = ω2, i.e., the points where the bare energy
level swaps. This changes the direction of the Givens rotation. The parameters
used are g1 = g2 =

√
2 · 0.1 GHz and α1 = α2 = −0.3 GHz.
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Due to the finite detuning between the resonator and the qubits, a static ZZ
interaction exists even if there is no additional control operation on the system. In
order to implement high-quality quantum operations, this interaction needs to be
sufficiently suppressed.

Several approaches have been developed to suppress the ZZ interaction. One
way is to add a direct capacitive coupling channel in parallel with the resonator [100–
108, 119]. By engineering the parameters, the two interaction channels cancel each
other. The interaction can either be turned on through a tunable coupler or through
the cross-resonant control scheme. The second approach is to choose a hybrid
qubit system with opposite anharmonicity, which allows parameter engineering
to suppress the ZZ interaction. One implementation is using a transmon and
a capacitively shunt flux qubit (CSFQ) [98, 99]. Other methods include using
additional off-resonant drive [111–113] and different types of qubits have also been
proposed [110].

Most of the above works are based on the strong dispersive regime, where
the resonator is only weakly coupled with the qubits. In this regime, the ZZ
interaction strength ζ is only determined by the effective interaction with the two
non-computational qubit states, |20⟩ and |02⟩ [80]

ζdisp = −
2J2

20,11

∆1 −∆2 + α1
+

2J2
02,11

∆1 −∆2 − α2
(3.36)

where ∆q = ωq−ωc is the qubit-resonator frequency detuning, αq the anharmonicity
and Jjk,j′k′ the effective coupling strength between the physical qubit state |jk⟩
and |j′k′⟩. They are obtained by performing a leading order SWT and effectively
decoupling the resonator from the two qubits. In this regime, it is impossible to
achieve zero ZZ interaction unless the two anharmonicities αq adopt different signs.

However, equation (3.36) is only valid when ignoring the higher level of the
resonator. If we reduce the qubit detuning ∆q so that it becomes comparable
with the anharmonicity αq, the second excited state of the resonator comes into
the picture and can be used to suppress the ZZ interaction, also known as the
quasidisq regime [83]. We identify this regime as the quasi-dispersive regime
because g/∆q is manufactured larger than 0.1, e.g. in superconducting qubits with
weak anharmonicity such as Transmons, though we show the same analysis can
also hold for stronger anharmonicities. As a result, the calculation of ζdisp cannot
be treated by only the leading-order SWT. In particular, we will see that, in the
straddling regime, where |∆1 −∆2| < α, the interaction with the second excited
resonator state leads to a λ4-perturbative correction that can be used to suppress
the ZZ interaction.

In the following, we first use the λ4-perturbation to qualitatively understand
the energy landscape and then investigate the higher-order corrections. For the
λ4-perturbation, using RWST, we only need 2 iterations and evaluate 4 commu-
tators instead of 3 iterations and 11 commutators, as for traditional perturbation
(Table 3.1).

In fact, the traditional approach that first approximates the system as an
effective qubit-qubit direct interaction and then applies another perturbation to



38 Chapter 3. Nonperturbative analytical diagonalization

−0.75−0.50−0.25 0.00 0.25

∆+ [GHz]

−0.4

−0.2

0.0

0.2

0.4

∆
−

[G
H

z]

−0.75−0.50−0.25 0.00 0.25

∆+ [GHz]

10−3

10−2

10−1

100

101

102

|ζ
|[

M
H

z]

(a)

−0.4 −0.2 0.0

∆1 [GHz]

10−3

10−1

101

103

|ζ
|[

M
H

z]

numeric

8 Givens rotations

λ4-perturbation

λ6-perturbation

(b)

Figure 3.4: (a): The landscape of the ZZ interaction strength |ζ| as a function
of ∆+ = ∆1 + ∆2 and ∆− = ∆1 −∆2. Left: numerical diagonalization of the
so-called quasidisq regime [83]; Right: The λ4-perturbative approximation. In the
perturbative approximation, the zero points are described by a circle with a diameter
of 2|α|. The particularly interesting regime is the left part of the circle and away
from the resonant line, where the perturbation theory can still be applied, which is
marked by the grey rectangle. In the numerical result, the circle is distorted due to
the resonant lines and the left half of the circle shrinks because of the higher-order
perturbative correction. (b): The numerical result compared to the perturbative
correction up to λ6 = (g/∆)6 and the Jacobi iteration with 8 two-by-two Givens
rotations. Parameters used: g1 = g2 = 0.05 GHz, α1 = α2 = α = −0.33 GHz and
∆− = 0.4|α|.

obtain the ZZ strength is also a two-step recursion [80]. However, for simplicity, it
neglects the resonator states in the second perturbation. As detailed in Section 3.5.3,
adding the resonator states, we obtain a better estimation for the quasi-dispersive
regime. The result is consistent with the diagrammatic techniques used in [98, 120].

To illustrate the energy landscape, we write the interaction strength as

ζ(4) = g2
1g

2
2

(
1

∆2
1(∆− − α2) −

1
∆2

2(∆− + α1) + ∆1 + ∆2

∆2
2∆2

1

)
(3.37)

with ∆− = ∆1 − ∆2. The first two terms coincide with equation (3.36) in the
strong dispersive regime, up to O( g4

∆3 ).
Assuming α = α1 = α2 and set ζ(4) = 0 in equation (3.37), we obtain an

equation of a circle that describes the location of the zero points

(∆+ − α)2 + ∆2
− − α2 = 0 (3.38)

where ∆+ = ∆1 + ∆2 and ∆− = ∆1 − ∆2. In this λ4-perturbation, the zero-
points depend only on the anharmonicity α but not on the coupling strength gq.
Equation (3.38) indicates that the ZZ interaction can be suppressed by varying the
sum and difference of the two qubit-resonator detunings, as illustrated in Figure 3.4a.
Because the perturbative approximation is only valid away from the resonant lines,



3.3. Physical applications 39

the useful part of the parameter regime is the half-circle with ∆+ < α, in particular,
the region marked by the grey box in Figure 3.4a.

In addition, we also studied different contributions to the ZZ interaction. In
Figure 3.5a, we plot the strong dispersive approximation, the λ4-perturbation as
well as the contribution of second excited qubit and resonator state to ζ(4) (see
Section 3.5.3 for analytical expressions). One observes from the plot that, in the
quasi-dispersive regime, the increasing virtual interaction with the second excited
resonator state acts against the interaction with the second excited qubit states.
Notice that all contributions to ζ(4) are virtual interactions of the second excited
state, i.e., ζ(4) = ζt + ζr, as illustrated in Figure 3.5b.

Although the λ4-perturbation gives insight into the different contributions
to the energy shift, perturbation beyond the order λ4 also has a non-negligible
contribution in the quasi-dispersive regime. Since RSWT requires considerably
fewer commutators, we are able to compute the λ6-perturbation, with only two
iterations and 7 commutators (see Table 3.1). The λ6-perturbation captures the
location of the minimum more accurately, but still shows a false minimum close to
the resonant regime, as shown in Figure 3.4b.

Apart from perturbation, we also apply NPAD to compute the interaction
strength. We first define 4 Givens rotations with respect to the direct qubit-
resonator coupling terms from the original Hamiltonian. The rotations are then
applied sequentially to obtain the first effective Hamiltonian. Next, we apply
another 4 rotations targeted at the two-photon couplings, such as the effective
qubit-qubit coupling. The indices of those 8 rotations are listed in the first two
columns of Table 3.2. These two steps are equivalent to the two iterations in RSWT.
However, the recursive Givens rotations replace the BCH expansion, resulting in a
much simpler calculation. Illustrated in Figure 3.4b, the approximation with those
8 rotations is as good as the λ6-perturbation, but without the false minimum. Both
capture the zero points very well compared to the numerical diagonalization, where
the 4 lowest levels are included for each qubit and the resonator.

With those calculations, we can then investigate the effect of the high-order
corrections. We find that, for instance, gq shifts the zero point to the regime
of smaller frequency detuning, corresponding to shrinking the half-circle in the
numerical calculation in Figure 3.4a. In addition, for stronger coupling strength,
the dip becomes narrower, which indicates a trade-off between the interaction
strength and feasibility of qubit fabrication [121]. A detailed description of the
effect of higher-order perturbation in the quasi-dispersive regime is presented in
Section 3.5.4.

Overall, our investigation reveals different contributions to the ZZ interaction
and provides tools to study the energy landscape in this quasi-dispersive regime.
Because of the comparably smaller detuning, operations on this regime provide
stronger interactions for entangling gates, and hence may achieve a better quantum
speed limit for universal gate sets, i.e. without sacrificing local gates [83].
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Figure 3.5: (a): Different contributions to the ZZ interaction in the quasi-dispersive
regime. The symbols ζt and ζr represent the contribution of virtual interaction with
the second excited qubit (t) and resonator (r) states in the λ4-perturbation. The
former is the typical cause of ZZ cross-talk in the strong dispersive regime, while
the latter is used to counteract the energy shift. The notation ζ(4) refers to the λ4-
perturbation [equation (3.37)] that goes pass zero in the quasi-dispersive regime. In
addition, ζdisp denotes the strong dispersive approximation [equation (3.36)], which
also underestimates the ZZ interaction induced by the non-qubit states. Parameters
used are the same as in Figure 3.4. (b): Illustration of the two contributions to
the ZZ interaction strength in the quasi-dispersive regime. The solid lines and
the curved arrows represent the bare states and the interaction among them. The
second excited resonator and transmon states push the qubit |11⟩ state into different
directions.
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static Ĥ
Step 1 Step2

010-100 011-200
001-100 001-010
011-101 011-002
011-110 011-020

driving Ĥd

00-10
01-11
10-20
11-21

Table 3.2: Leading coupling terms in (block-) diagonalizing the static and the
driving Hamiltonians of the cross-resonance gate, upon which the Jacobi iteration
is constructed. For the static Hamiltonian (Section 3.3.2), the three numbers refer
to the state of the resonator, qubit 1 and qubit 2, respectively. E.g. 010-001
denotes the effective coupling between the two qubits. For the driving Hamiltonian
(Section 3.3.3), we use the effective qubit-qubit model. Hence only the qubit states
are listed.

3.3.3 The cross-resonance coupling strength
Following the previous examples, we here study superconducting qubits under an
external cross-resonance drive. The cross-resonance interaction is activated by
driving the control qubit with the frequency of the target qubit, which has been
studied intensively and demonstrated in various experiments [106, 122–126]. In the
two-qubit subspace, the dominant Hamiltonian term is written as a Pauli matrix
ZX, which generates a CNOT gate up to single-qubit corrections. Therefore,
ideally, only the population of the target qubit will change after the gate operation.
The effective model is usually derived by block diagonalizing the non-qubit leakage
levels as well as the population flip of the control qubit [80, 81, 89]. The coupling
strength is then characterized by the coefficient of the ZX Hamiltonian term.

The analytical block diagonalization of the Hamiltonian is only possible when
neglecting all the non-qubit levels. Hence, perturbative expansion is often used,
where the small parameter is defined as Ω/∆−, i.e., the ratio between the drive
amplitude and the qubit-qubit detuning. However, to achieve fast gates, the qubit-
qubit detuning is often designed to be small, ranging from 50 MHz to 200 MHz.
Therefore, the perturbative diagonalization only works well for a weak drive.

In the rest of this subsection, we show that with only 4 two-by-two Givens
rotations on the single-photon couplings, we can block-diagonalize the drive term
and obtain an estimation of the coupling strength as good as the numerical result
and far above the perturbative regime.

We start from the static Hamiltonian Ĥ in equation (3.24) and define a driving
Hamiltonian in the rotating frame

Ĥd = Ω
2 (b̂1 + b̂†

1). (3.39)

The full Hamiltonian is then written as Ĥ + Ĥd − ĤR where ĤR = ωd(b̂†
1b̂1 + b̂†

2b̂2)
with ωd the driving frequency [80]. To compute the interaction strength, both the
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qubit-qubit effective interaction g and the drive on the control qubit Ω need to
be diagonalized. In particular, the second one can be as large as the energy gap
and dominant in the unwanted couplings [81]. For simplicity, we assume g is small
and diagonalize it with a leading-order perturbation, discarding all terms smaller
than O(g2). In this frame, one obtains a ZX interaction that increases linearly
with the drive strength [80]. This is equivalent to moving to the eigenbases of the
idling qubits and allows us to focus on applying NPAD to the drive Ĥd. The same
method used in Section 3.3.2 can be applied here to improve this approximation.

Targeting the dominant drive terms listed in the right column of Table 3.2, we
construct 4 Givens rotations. The rotations are constructed with respect to the
same Hamiltonians and then applied iteratively as separate unitaries. The obtained
ZX interaction strength reads

ωZX =gΩ
(
s2

1c
2
2 − c2

1
2∆−

− s2
2

(∆− + α1) (3.40)

+ (s2
1 − c2

1c
2
2)(α1 −∆−)−

√
2α1s1s2c2

2∆−(∆− + α1)

)
with cj = cos(θj/2), sj = sin(θj/2) and ∆− = ω1 − ω2. The rotation angles are
defined by the drive strength θ1 = arctan

(
Ω

∆−

)
and θ2 = arctan

( √
2Ω

2∆−+α1

)
.

This analytical coupling strength is plotted in Figure 3.6, compared with the
perturbative expansions in Ref. [80] and numerical block-diagonalization. The result
matches well with the numerical calculation, even when the ratio Ω

∆−
is approaching

one. On the contrary, the perturbative expansion shows a large deviation as the
driving power increases. The numerical block-diagonalization is implemented using
the least action method [80, 102, 115]. To our surprise, although no least action
condition is imposed on the Jacobi iteration, the method automatically follows this
track and avoids unnecessary rotations. This suggests that the Jacobi iteration
chooses an efficient path of block-diagonalization.

Notice that in the above example, no rotations are performed for levels beyond
the second excited state because they are not directly coupled to the qubit subspace.
In other parameter regimes, more coupling terms may become significant and
need to be added to the diagonalization. For instance, the two-photon interaction
between |0⟩ and |2⟩ of the control qubit will be dominant in the regime where
∆− ≈ −α2/2 [81]. The fact that high precision can be achieved with only rotations
on the single-photon couplings in this example also indicates that the dominant
error of perturbation lies in the BCH expansion used in diagonalizing the strong
single-photon couplings, rather than in higher levels or high-order interactions.

3.4 Conclusion and outlook
We introduced the symbolic algorithm NPAD, based on the Jacobi iteration, for
computing closed-form, parametric expressions of effective Hamiltonians. The
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Figure 3.6: Cross-resonance coupling strength as a function of the drive strength.
The analytical coupling strength is computed with 4 two-by-two Givens rotations
on the single-photon coupling terms [equation (3.40)] and compared to perturbative
expansion and the numerical calculation. The parameters used are inspired by the
device in Ref. [106], with the qubit-qubit detuning approximately 60 MHz, the
effective qubit-qubit coupling −3 MHz and the anharmonicity -0.3 GHz for both
qubits.

method applies rotation unitaries iteratively onto a Hamiltonian, with each rotation
recursively defined upon the previous result and removing a chosen coupling between
two states. Compared to perturbation, it uses two-by-two rotations to avoid the
exponentially increasing commutators in the BCH expansion. In the perturbative
limit, the method reduces to a modified form of the Schrieffer-Wolff transformation,
RSWT, that inherits the recursive structure of the Jacobi iteration. The recursive
structure avoids unnecessary expansion and results in an exponential reduction in
the number of commutators compared to the traditional perturbative expansion.
The two methods can also be combined as a hybrid method, where NPAD is used to
remove strong couplings while RSWT is applied afterwards to effectively eliminate
the remaining weak coupling.

Applying these methods to superconducting qubit systems, we showed that
high precision estimation can be achieved beyond the perturbation regime, either
as explicit short analytical expressions, or closed-form parametric expressions for
computer-aided calculation. Although in the study we used the Kerr model, more
detailed models such as in Ref. [81] can also be incorporated with little additional
effort.

Despite the fact that using the Jacobi iteration for machine-precision diagonal-
ization is less efficient than other methods such as QR diagonalization, the iteration
can be truncated for symbolic approximation. For many questions in quantum
engineering, the largest part of the energy structure and dominant couplings are
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known in advance. Therefore, the iterative method can be designed for removing
dominant couplings and decoupling a subspace from non-relevant Hilbert spaces,
which is often used in modelling dynamics in large quantum systems [91, 127].
The result is, however, always a closed-form, parametric expression, which, though
usually harder for humans to read, shows its own advantage in computer-aided
calculations.

We expect our method to have significant application in quantum technologies,
where the elimination of auxiliary or unwanted spaces (e.g. for block-diagonalization)
needs to be done to significant precision to enable practically useful models. In
particular, relevant applications include experiment and architecture design, reser-
voir engineering, cross-talk suppression, few- and many-body interaction engineer-
ing, effective qubit models, and more generally improved approximations where
Schrieffer-Wolff methods are typically used. We also expect that the methods
presented here will find extensions for simplifying other equations of motion, such
as in open-quantum systems [128, 129], non-linear systems [130], or for uncertainty
propagation [131]. Last but not least, accurate, parametric diagonalization should
be especially useful for time-dependent diagonalization where adiabatic following
can be enforced by DRAG [64, 132] or other counter-diabatic [49, 133] approaches.

3.5 Appendix

3.5.1 The error bound for truncating the BCH expansion
In the main text, we presented equation (3.20) as the expression to compute the
transformed matrix Ĥ ′, which is a function of the off-diagonal part of the original
matrix V̂ and the generator Ŝ. The expression is derived from a truncated BCH
formula. In the following, we derive the error bound of the truncation.

Without truncation, equation (3.20) is written as

Ĥ ′
ideal = D̂ +

∞∑
t=1

t

(t+ 1)!Ct(Ŝ, V̂ ) (3.41)

where we neglected the index n for the iteration step. If the expansion is truncated
at t = m− 1, one obtains

ϵ =
∥∥Ĥ ′

ideal − Ĥ ′
trunc

∥∥ =

∥∥∥∥∥
∞∑

t=m

t

(t+ 1)!Ct(Ŝ, V̂ )

∥∥∥∥∥ (3.42)

≤
∞∑

t=m

t2t

(t+ 1)!∥Ŝ∥
t∥V̂ ∥ ≤ 2m

m!
∥Ŝ∥m

1− ∥Ŝ∥
∥V̂ ∥

where we assume in the last inequality that ∥Ŝ∥ < 1/2.
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3.5.2 Efficiency comparison between RSWT and SWT
We show here that, given a finite-dimensional Hamiltonian Ĥ, RSWT is more
efficient than SWT for perturbation beyond level λ2 with an exponential decrease
in the number of commutators. We measure the complexity by the number of
commutators that need to be evaluated to compute all eigenenergy corrections up
to λK , denoted by N . The general formula is presented below while the numbers
for K ≤ 8 are given in Table 3.1 in the main text.

For SWT, one can find the general expression as well as explicit formulas up to
λ5 in Ref. [80]. The number of iterations required to reach order λK is K − 1. In
addition, at each iteration n, one needs to include also mixed terms composed of
generator Ŝl with l ≤ n. The number N is given by

NSWT =
K−1∑
n=1

n∑
l=1

2l−1 = 2K −K − 1 (3.43)

where 2l−1 is the number of distinct tuples (Ŝi1 , Ŝi2 , Ŝi3 , · · · ) with
∑

j
ij = l. We

have taken into consideration that [Ŝ1, diag(Ĥ)] = −V̂ and [Ŝn+1, diag(Ĥ)] is known
by the construction of Ŝn+1.

For RSWT, the calculation of commutators in each iteration is given in equa-
tion (3.20). Because Ct+1(Â, B̂) can be calculated from Ct+1(Â, B̂) with only
one additional commutators, the number commutators to be evaluated in equa-
tion (3.20) is exactly m− 1 = ⌊ K

2n ⌋− 1. The total number of iteration nmax is given
by ⌊log2(K)⌋. Therefore, we obtain

NRSWT =
⌊log2(K)⌋−1∑

n=0

⌊K2n
⌋ − 1 < 2K. (3.44)

The reduction compared to SWT comes from the fact that the energy difference
in Ĥn is used in the definition of Ŝn+1, rather than the bare energy difference in
Ĥ. The recursive expressions avoid unnecessary expansions. One obtains the same
final expressions as from SWT up to λK , if one expands the energy difference into
a polynomial series

1
∆Ebare + ∆Ecorrection

= 1
∆Ebare

poly
(

∆Ecorrection

∆Ebare

)
(3.45)

and substitutes in expressions so that it depends only on the bare energy and
couplings.

3.5.3 RSWT results for the ZZ interaction strength
Using RSWT described in Section 3.2.2, we compute the effective Hamiltonian up
to λ6, where λ is defined as the ratio between the largest coupling and energy gap.
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Figure 3.7: The network illustration of the clossed-form expression of ζ(4) parame-
terized by ∆1, ∆2, α1, α2, g1, and g2, obtained from the two-step RSWT. Each
node in the 1st and 2nd layers is a matrix entry in the Hamiltonian Ĥ1 and Ĥ2. A
node in layer n+ 1 is expressed as a function of the nodes in layer n, represented
by an edge. In particular, symbols E(n,k)

lpq represent the λk diagonal entries of
⟨lpq| Ĥn |lpq⟩ and V

(n,k)
lpq,l′p′q′ the effective coupling. The upper index k denotes the

level of perturbation, e.g., k = 4 means that it is a λ4-perturbative correction.
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To compute the λ4- and λ6-perturbation, RWST only takes 2 iterations with 4 and
7 commutators respectively, which is significantly smaller than those required for
SWT as shown in Table 3.1. A third iteration only adds an improvement of O(λ8)
to the eigenenergy because the off-diagonal terms of Ĥ2 are at most O(λ4).

Because of the recursive structure of RSWT, each matrix element in Ĥn+1 is
given as a function of matrix elements in Ĥn. Hence, the final result is a closed-form
expression parameterized by the matrix elements of the original Hamiltonian Ĥ,
i.e. the hardware parameters. The parametric expression consists only of algebraic
expressions and the dependence can be illustrated as a network. For instance, we
show the network representation of the λ4-perturbation ζ(4) in Figure 3.7. Each
symbol in layer n+ 1 is analytically expressed as a function of symbols in layer n,
represented by arrows. The arrows between the first and the second layer represent
the definition ζ(4) = E

(4)
011 − E

(4)
001 − E

(4)
010. Given all the six hardware parameters

(layer 0), one can evaluate ζ(4) by recursively evaluating all the nodes it depends
on.

In the following, we present the analysis of λ4- and λ6-perturbation.

λ4-perturbation

The λ4-perturbative correction for ζ is given as

ζ(4) = E
(2,4)
011 − E

(2,4)
010 − E

(2,4)
001 . (3.46)

The notation E
(n,k)
lpq represents the λk-perturbation obtained from Ĥn. The sub-

indices lpq denotes the resonator state |l⟩ and two qubit states |p⟩, |q⟩.
We first calculate E(2,4)

011 . Substituting the expression for Ĥ2 as a function of
entries in Ĥ1, we obtain

E
(2,4)
011 =

V
(1,2)

002,011V
(1,2)

011,002

E
(1,0)
011 − E

(1,0)
002

+
V

(1,2)
011,020V

(1,2)
020,011

E
(1,0)
011 − E

(1,0)
020

(3.47)

+
V

(1,2)
011,200V

(1,2)
200,011

E
(1,0)
011 − E

(1,0)
200

+ E
(1,4)
011

where V (n,k)
lpq,l′p′q′ denotes the interaction between state |lpq⟩ and |l′p′q′⟩.

The physical meaning of each term in equation (3.47) can be interpreted as
follows: The first two terms are identical to the dispersive approximation given in
equation (3.36), which is the consequence of the effective qubit-qubit interaction.
The third term, depending on the effective interaction between |200⟩ and |011⟩,
is 0 at this order. This is because the destructive interference between the path
|011⟩ → |110⟩ → |200⟩ and |011⟩ → |101⟩ → |200⟩ results in V (1,2)

011,200 = V
(1,2)

200,011 = 0.
The last term, E(1,4)

011 , is what the approximation of a strong dispersive regime fails
to characterize. It was generated by the commutator [Ŝ1, [Ŝ1, [Ŝ1, V̂0]]] and the
energy gaps in the denominator of entries in Ŝ1 are always the qubit-resonator
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detuning (plus the anharmonicity), which, in the strong dispersive regime, is much
larger than the qubit-qubit detuning in equation (3.36). Hence the last term is
much smaller in the strong dispersive regime. However, in the quasi-dispersive
regime, it plays a key role in suppressing the ZZ interaction as shown in Figure 3.5b.

After including the single-excitation terms E(2,4)
010 and E(2,4)

001 using the same two-
step RSWT, we separate the contributions of virtual interaction into 2 categories:
those including the second excited qubit state (denoted by t) and those including
the second excited resonator state (denoted by r):

ζ
(4)
t =ζdisp −

g2
1g

2
2

2∆2 (∆1 + α1)2 −
3g2

1g
2
2

2∆2
2 (∆1 + α1)

− g2
1g

2
2

2∆1 (∆2 + α2)2 −
3g2

1g
2
2

2∆2
1 (∆2 + α2) (3.48)

ζ(4)
r = 2g2

1g
2
2

∆1∆2
2

+ 2g2
1g

2
2

∆2
1∆2

(3.49)

where ζdisp is given by equation (3.36). Summing all the contributions gives the
λ4-perturbation ζ(4) in equation (3.37). Notice that virtual interactions that only
involve the first excited state have no contribution to the ZZ interaction at this
perturbation level, i.e., ζ(4) = ζt + ζt. This is because the energy shift of |011⟩
induced by |101⟩ and |110⟩ cancels that of |010⟩ and |001⟩ induced by |100⟩.

λ6-perturbation

Using the two-step RSWT, we also computed the λ6-perturbative correction to the
ZZ interaction strength:

ζ(6) = ζ
(6)
disp + ζ

(6)
rest (3.50)

The first contribution corresponds to the effective qubit-qubit interaction and
dominants in the strong dispersive regime. It turns out that it only includes the
next order of effective interaction and energy difference. Hence, for simplicity, we
present it together with ζ

(4)
disp:

ζ
(4)
disp + ζ

(6)
disp =

(
V

(1,2)
011,020 + V

(1,4)
011,020

)(
V

(1,2)
020,011 + V

(1,4)
020,011

)
∆E(2,0)

011,020 + ∆E(2,2)
011,020

+

(
V

(1,2)
002,011 + V

(1,4)
002,011

)(
V

(1,2)
011,002 + V

(1,4)
011,002

)
∆E(2,0)

011,002 + ∆E(2,2)
011,002

(3.51)

with terms regarding to the virtual interactions between states |011⟩ and |020⟩
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given by

V
(1,2)

011,020 = V
(1,2)

020,011 =
√

2g1g2

2 (α1 + ∆1) +
√

2g1g2

2∆2
, (3.52)

V
(1,4)

011,002 = V
(1,4)

002,011 =−
√

2g1g
3
2

4 (α2 + ∆2)3 +
√

2g1g
3
2

8∆2
2 (α2 + ∆2) −

7
√

2g1g
3
2

4∆1 (α2 + ∆2)2

+ 3
√

2g1g
3
2

2∆1∆2 (α2 + ∆2) −
5
√

2g1g
3
2

8∆1∆2
2
− 7

√
2g3

1g2

8∆2
1 (α2 + ∆2)

−
√

2g3
1g2

8∆3
1
, (3.53)

∆E(2,0)
011,020 + ∆E(2,2)

011,020 =− α1 −∆1 + ∆2 −
2g2

1
α1 + ∆1

+ g2
2

∆2
+ g2

1
∆1

. (3.54)

Terms corresponding to states |011⟩ and |002⟩ are obtained by interchanging
the sub-index 1 and 2 in each expression above.

The rest of the contribution can be summed up as

ζ
(6)
rest = ζ

(6)
rest,g2

1g4
2

+ ζ
(6)
rest,g4

1g2
2

(3.55)

with

ζ
(6)
rest,g2

1g4
2

= 9g2
1g

4
2

4∆3
2 (∆1 + α1)2 + 23g2

1g
4
2

4∆4
2 (∆1 + α1)

+ g2
1g

4
2

2∆1 (∆2 + α2)4 −
g2

1g
4
2

4∆1∆2
2 (∆2 + α2)2 −

4g2
1g

4
2

∆3
1∆2 (∆2 + α2)

+ 7g2
1g

4
2

2∆2
1 (∆2 + α2)3 −

5g2
1g

4
2

2∆2
1∆2 (∆2 + α2)2 + 3g2

1g
4
2

4∆2
1∆2

2 (∆2 + α2)

+ 4g2
1g

4
2

∆2
1∆3

2
+ 4g2

1g
4
2

∆3
1 (∆2 + α2)2 −

6g2
1g

4
2

∆1∆4
2
. (3.56)

The second contribution, ζ(6)
rest,g4

1g2
2
, is obtained again by interchanging the sub-index

1 and 2.

3.5.4 Effect of higher-order perturbation on the zero points
of ZZ interaction

The λ4-perturbation described by equation (3.37) predicts the zero points as a
circle with a radius of 2|α|, independent of g. However, as they are located in
the quasi-dispersive regime for systems with weak anharmonicity, the higher-order
perturbation is not always negligible. Here, we qualitatively describe how the
higher-order (> 4) affects the zero points of ζ.
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Figure 3.8: The dependency of ζ on the resonator-qubit interaction strength g
and the qubit anharmonicity α. Computed with RSWT to the λ6-perturbation.
Left: Dependency on g. The vertical line denotes the zero point predicted by
the 4th-order perturbation, which is independent on g. Both the numerical result
and the λ6-perturbation indicate that the zero points are shifted to the regime
with smaller qubit-resonator detuning. Right: Dependency on α. The default
parameters used, if not specified in the plots, are ∆− = 0.4|α|, g = 50 MHz,
α1 = α2 = α = −330 MHz.

We observe that, in contrast to the λ4-perturbation, when including the higher
orders, the zero points depend on the coupling strength g. As shown in Figure 3.8,
the higher-order perturbation shifts the zero points to the regime of smaller detuning.
The larger the coupling, the stronger the shift is.

One can estimate the accuracy of perturbation around the zero points by
the ratio g/|α|. At the zero points of ζ, the larger the anharmonicity and the
smaller the coupling, the better the perturbative approximation. This is because
the perturbation is characterized by the small parameter λ = g/∆ and near the
zero-points ∆ depends linearly on α [see equation (3.37)], hence the ratio g/|α|.
This is also illustrated in Figure 3.8, where we compare the deviation between
the numerical result and the perturbation. The minimum even vanishes in the
analytical result when it is close to the resonant lines. This behaviour also indicates
that for superconducting qubits with a relatively large anharmonicity, the ZZ
interaction can also be completely suppressed in the strong dispersive regime in
this qubit-resonator-qubit model.
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Revisiting the single-Transmon DRAG pulse

4.1 Introduction to DRAG
A Transmon qubit is typically modelled as a non-linear oscillator, with its lowest
two energy levels serving as the qubit states [5]. Ideally, population to higher energy
levels should be prevented. However, the anhamonicity, i.e., the energy difference
between states |0⟩, |1⟩ and states |1⟩, |2⟩ is often kept weak in practice to mitigate
other error sources such as charge noise [41]. With the small non-linearity, state
|2⟩ may get populated during qubit operation, which can reach 50 MHz for a 20 ns
single-qubit gate, while the anharmonicity ranges from 200 to 300 MHz. To address
leakage to non-computational states, the Derivative Removal by Adiabatic Gate
(DRAG) technique was introduced by Motzoi et al. in 2009 [64]. Nowadays, DRAG
finds widespread application in single-qubit gate operations in superconducting
qubits. In this chapter, we revisit the derivation of DRAG, from a pedagogical
perspective and highlight details that are potentially overlooked or omitted in the
literature over the past decade.

In this chapter, we adopt the simplest model that captures the essence of
the problem, a three-level system. In the rotating frame, the first two levels are
degenerate, with a small free parameter, δ, reserved for fine-tuning the phase. The
second excited level, |2⟩, is separated from the others by the anharmonicity ∆. The
microwave drive couples both |0⟩, |1⟩ and |1⟩, |2⟩, with the ratio between them
denoted by λ. Under the above definition, we write the rotating frame Hamiltonian
as

Ĥ0,0 =

( 0 ϵΩ
2 0

ϵΩ
2 δϵ2 ϵλΩ

2
0 ϵλΩ

2 ∆ + 2δϵ2

)
, (4.1)

where ϵ is used to denote the perturbation order. We assume the detuning is a
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second-order correction, which will be verified later in this chapter.
The overall goal of the DRAG method is to determine an appropriate effective

frame and the corresponding control function Ω(t). They are constructed such
that the dynamics are confined in the qubit subspace, and the effective coupling is
real and implements a predefined rotation angle θ. One can consider this frame as
an adiabatic frame where any leakage out of the qubit subspace is adiabatically
eliminated. It is crucial to note that this holds true only in the effective frame.
In the lab frame, the non-computational levels are slightly populated. It is only
through the DRAG pulse design that the population is guaranteed to go back to
the qubit subspace at the end of the operation.

Various approaches exist for deriving the DRAG pulses, all revolving around
a common framework of time-dependent frame transformation. Typically, this
transformation is realized through an operator V̂ = exp(Ŝ), Since V̂ is time-
dependent, the effective Hamiltonian also has a derivative term,

Ĥeff = V̂ ĤV̂ † + i
˙̂
V V̂ †. (4.2)

Typically, if the error coupling is small, i ˙̂
V V̂ † usually has a smaller amplitude than

the original coupling. If Ŝ (t1) and Ŝ (t2) commute for all t1 and t2, we also have
˙̂
V V̂ † = ˙̂

S. Often, the coupling is smaller than the anharmonicity, in which case the
perturbative form is given by

Ĥeff = i
˙̂
S + Ĥ + [Ŝ, Ĥ] + 1

2 [Ŝ, [Ŝ, Ĥ]] + · · · , (4.3)

where the expansion is referred to as the BCH expansion.
In this thesis, we explore two different strategies to construct DRAG solutions.

The first approach aligns with the strategy of the counterdiabatic drive method [48–
50, 133], which is discussed in the review Ref. [132]. Here, the generator Ŝ is
constructed such that V̂ ĤV̂ † has no coupling between the qubit subspace and
the ancillary levels. The DRAG correction is then chosen to cancel the remaining
coupling in the derivative terms i ˙̂

V V̂ †. Different choices of V̂ and priorities in
removing the leakage terms result in distinct DRAG corrections. One example
will be the block diagonalization introduced in Chapter 3. In cases where multiple
error couplings are present, this leads to a system of equations. However, if all the
leakage couplings are proportional to the drive Ω, this simplifies to a linear system
of equations, which can be readily solved [67, 132]

It is important to point out that, in this approach, the drive Hamiltonian must be
also transformed into this effective frame when defining the corrections. This makes
the system of equations hard to solve in general since adding a correction pulse to
suppress one transition may add more error to another. In particular, for high-order
multiphoton processes, we develop a second formulation, a recursive formulation,
that will be briefly mentioned in Section 4.7 and extensively investigated in Chapter 5
and Chapter 6.
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4.2 Notations
Throughout this chapter, we use two indices to denote different effective Hamiltoni-
ans and generators. With the symbol Ĥk,l, the first index k denotes Hamiltonians
with different time evolution, e.g., the original Hamiltonian or Hamiltonians with
different correction terms. If two Hamiltonians have the same k, it means that they
are equivalent Hamiltonians (up to the truncated expansion terms), i.e., they have
the same time-evolution Û = T̂ exp

[
−
∫
iĤk(t)dt

]
. The second index l denotes

the effective frame, e.g. l = 0 represents the lab frame. Hamiltonians with the same
k but different l represent the equivalent Hamiltonians in different effective frames.
For a Schrieffer Wolff generator Ŝ, we use the subscript Ŝl1→l2 to denote the frame
transformation from frame l1 to frame l2. In this chapter, we discard all the terms
smaller or equal to ϵ3, except for the amplitude correction in Section 4.7.

4.3 First-order DRAG correction
In this section, we derive the first-order DRAG proposed in the original proposal [64].
We deviate slightly from the approach outlined in Ref. [64] to offer more physical
motivations for the transformations chosen. The results are equivalent in the first
two orders.

To begin with, for Transmon Hamiltonian, the leakage term is the coupling
between |1⟩ and |2⟩, hence we start from the transformation

Ŝ0→1 =

( 0 0 0
0 0 − ϵλΩ

2∆
0 ϵλΩ

2∆ 0

)
. (4.4)

This generator is designed such that the first-order coupling between |1⟩ and |2⟩
will be completely diagonalized. The resulting effective Hamiltonian reads

Ĥ0,1 = Ĥ0,0 +
[
Ŝ0→1, Ĥ0,0

]
+ 1

2
[
Ŝ0→1,

[
Ŝ0→1, Ĥ0,0

]]
+ i

˙̂
S0→1 +O(ϵ3) (4.5)

=

 0 ϵΩ
2

ϵ2λΩ2

4∆
ϵΩ
2 δϵ2 − ϵ2λ2Ω2

4∆ − iϵλΩ̇
2∆

ϵ2λΩ2

4∆
iϵλΩ̇
2∆ ∆ + 2δϵ2 + ϵ2λ2Ω2

4∆

 (4.6)

In the above effective Hamiltonian (kept up to the second-order perturbation),
the following are observed

• The leading coupling error shows up now as a derivative term coupling |1⟩
and |2⟩;

• The qubit level separation is slightly renormalized by the Stark shift. The
drive is not perfectly resonant with the qubit frequency. Thus there exists a
phase error;
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• There is a new two-photon ϵ2 leakage between |0⟩ and |2⟩. In this section,
we do not deal with the ϵ2-leakage as we only have one degree of freedom in
the single-derivative DRAG.

It is important to point out that Ĥ0,1 is equivalent to Ĥ0,0, i.e., they generate the
same dynamics. We have to introduce a correction terms to really suppress the
error.

Similarly, we can compute the new drive Hamiltonians in this effective frame

Ĥy,1 =

 0 − 1
2 iϵΩy − iϵ2λΩΩy

4∆1
2 iϵΩy 0 − 1

2 iϵλΩy

iϵ2λΩΩy

4∆
1
2 iϵλΩy 0

 . (4.7)

To compensate for the leakage error from |1⟩ to |2⟩, we introduce the correction
Ωy = − iΩ̇

∆ to remove the leading order leakage

Ĥ1,1 = Ĥ0,1 + Ĥy,1 =

 0 ϵΩ
2 + iϵΩ̇

2∆
ϵ2λΩ2

4∆ + iϵ2λΩΩ̇
4∆2

ϵΩ
2 −

iϵΩ̇
2∆ δϵ2 − ϵ2λ2Ω2

4∆ 0
ϵ2λΩ2

4∆ − iϵ2λΩΩ̇
4∆2 0 ∆ + 2δϵ2 + ϵ2λ2Ω2

4∆

 .

(4.8)
The resulting Hamiltonian becomes decoupled from |2⟩ in the first order. The
correction also introduces a Y component to the target coupling. This slightly
alters the rotation axis in a time-dependent manner and needs to be corrected to
generate a perfect π rotation.

This imaginary Y component, together with the Stark shift, contributes to
what is known as the phase error. Although the rotation is restricted in the qubit
subspace, it does not implement a perfect rotation around the desired axis. In the
following, we show that the Y error can be transformed into the Stark shift Z error,
which will then be corrected with a time-dependent detuning δ. This technique is
referred to as the interaction picture transformation in Ref. [67].

The idea is to use the Lie algebra structure to design a frame transformation
that transforms time-dependent Y control to Z control. The strategy is to construct
a generator Ŝ such that the derivative i ˙̂

S cancels the Y term. The generator Ŝ is
given by

Ŝ1→2 =

( 0 − ϵΩ
2∆ 0

ϵΩ
2∆ 0 0
0 0 0

)
(4.9)

which results in a new effective Hamiltonian

Ĥ1,2 =

 − ϵ2Ω2

2∆
ϵΩ
2

ϵ2λΩ2

4∆ + iϵ2λΩΩ̇
4∆2

ϵΩ
2 δϵ2 + ϵ2Ω2

2∆ − ϵ2λ2Ω2

4∆ 0
ϵ2λΩ2

4∆ − iϵ2λΩΩ̇
4∆2 0 ∆ + 2δϵ2 + ϵ2λ2Ω2

4∆

 (4.10)

Notably, the Y error is transformed to a Stark shift between |0⟩ and |1⟩. The
remaining error is a phase error that can be corrected using a time-dependent
detuning or through phase ramping introduced in the next section.



4.4. Detuning and phase ramping 55

In general, the error in the qubit subspace contributes significantly more to the
gate error than the leakage, even if they are of the same or higher order. Simulation
shows that it is necessary to include the ϵ2 phase correction and the ϵ3 correction to
the pulse amplitude (Fig. 4 in [66]). In practice, the total rotation angle is usually
simply calibrated by adjusting the total pulse amplitude. Since we only kept the ϵ2

terms in the above calculation, we leave this to Section 4.7.

4.4 Detuning and phase ramping
As seen from Ĥ1,2 in equation (4.10), the phase error can be corrected by a time-
dependent detuning δ, proportional to Ω2. Although some superconducting qubit
architecture has a tunable qubit frequency, it is often desired to implement it solely
through microwave drive. In this context, the detuning is implemented via phase
ramping [65].

The phase frame unitary for a truncated Transmon oscillator is defined as

V̂PR = exp
(
ŜPR

)
=

( 1 0 0
0 e−iθPR 0
0 0 e−2iθPR

)
. (4.11)

The phase ramped Hamiltonian is given by ĤPR = V̂ †
PRĤ0,0V̂PR − i ˙̂

SPR. Notice
that the order of V̂ †

PR and V̂PR is exchanged and the sign of the derivative term is
flipped. This is because it is the inverse transformation and ĤPR is the Hamiltonian
that is implemented in the experiment, which should have no detuning

ĤPR =

 0 1
2 e−iθPRϵΩ 0

1
2 eiθPRϵΩ δ − θ̇PR

1
2 e−iθPRϵλΩ

0 1
2 eiθPRϵλΩ ∆ϵ2 + 2δ − 2θ̇PR

 . (4.12)

By choosing the time-dependent phase θPR(t) =
∫ t

0 δ(τ)dτ for the drive, we imple-
ment an equivalent detuning δ(t).

For the DRAG pulse derived above, the correction drive is given as

ΩPR =
(

Ω(t)− i Ω̇(t)
∆

)
exp
(
i

∫ t

0

Ω(τ)2

4∆
(
λ2 − 4

)
dτ
)
. (4.13)

If Ω
∆ is small, this time-dependent detuning can be replaced by a constant one

as in Ref. [134]. An important distinction between the previously defined frame
transformation and the phase ramping lies in the fact that V̂PR(t) is not an
identity at the end of the gate t = T . The implemented unitary is actually
Û = V̂PR(t = T )ÛPRV̂

†
PR(t = 0). It is evident that V̂PR(t) is simply the accumulated

detuning phase. To recover the target unitary ÛPR, a virtual phase gate V̂ †
PR(t)

must be added after the gate, effectively undoing the accumulated detuning.
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4.5 The Y-only DRAG correction
Here, we introduce another variant of the first-derivative DRAG, considering the
scenario where only Y control is available in the system and no phase ramping is
implemented [135]. This is the earliest use of DRAG pulse in experiments. The
difference lies mainly in the choice of the (0, 1) element of the generator Ŝ [66].

Since the phase error plays an important role in the fidelity measure, the DRAG
correction here is designed to remove the phase error (or Y error) rather than the
leakage. We chose the generator such that there is no phase mismatch between
state |0⟩ and |1⟩ after the transformation:

Ŝ0→3 =

 0 − ϵλ2Ω
8∆ 0

ϵλ2Ω
8∆ 0 − ϵλΩ

2∆
0 ϵλΩ

2∆ 0

 , (4.14)

which gives the effective Hamiltonian

Ĥ0,3 =

 − ϵ2λ2Ω2

8∆
ϵΩ
2 −

iϵλ2Ω̇
8∆

ϵ2λΩ2

4∆ − ϵ2λ3Ω2

32∆
ϵΩ
2 + iϵλ2Ω̇

8∆ − ϵ2λ2Ω2

8∆ − iϵλΩ̇
2∆

ϵ2λΩ2

4∆ − ϵ2λ3Ω2

32∆
iϵλΩ̇
2∆ ∆ + ϵ2λ2Ω2

4∆

 . (4.15)

The Y drive Hamiltonian reads in this effective frame

Ĥy,3 =

 0 − 1
2 iϵΩy − iϵ2λΩΩy

4∆ + iϵ2λ3ΩΩy

16∆1
2 iϵΩy 0 − 1

2 iϵλΩy

iϵ2λΩΩy

4∆ − iϵ2λ3ΩΩy

16∆
1
2 iϵλΩy 0

 . (4.16)

Applying the Y -DRAG correction Ωy → −λ2Ω̇
4∆ removes the Y error and also

partially suppresses the leakage. In particular, if the Duffing model is used, with
λ =
√

2, the DRAG coefficient is exactly 1/2 and half of the leakage coupling is
removed. Hence, it is often referred to as the half-DRAG correction.

4.6 An alternative derivation of the first-derivative
DRAG

In this section, we provide an alternative derivation of the first-derivative DRAG,
highlighting the equivalence to Section 4.3 and also some physical intuition behind
the DRAG design. We start again from the Ĥ0,0. Instead of apply two transfor-
mations Ŝ0→1 and Ŝ1→2 sequentially, we combine them into a single generator
Ŝ0→4

Ŝ0→4 =

( 0 − ϵΩ
2∆ 0

ϵΩ
2∆ 0 − ϵλΩ

2∆
0 ϵλΩ

2∆ 0

)
. (4.17)
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Notice that the transformation is equivalent in the leading order, i.e., Ŝ0→4 also
diagonalizes the leakage coupling and removes the Y term. And Ŝ0→4 commute
with itself at any time t. The mathematical argument behind it is that Ŝ0→4
commutes with the Ĥy drive. Therefore, we can use Ĥy to completely remove the
derivative ˙̂

S0→4, without leaving any residual terms in the Hamiltonian after the
correction.

This becomes obvious after calculating the effective Hamiltonian

Ĥ0,4 =

 − ϵ2Ω2

2∆
ϵΩ
2 −

iϵΩ̇
2∆

ϵ2λΩ2

8∆
ϵΩ
2 + iϵΩ̇

2∆
ϵ2Ω2

2∆ − ϵ2λ2Ω2

4∆ − iϵλΩ̇
2∆

ϵ2λΩ2

8∆
iϵλΩ̇
2∆ ∆ + ϵ2λ2Ω2

4∆

 , (4.18)

where the derivative terms align with the Y drive of the Hamiltonian. In addition,
we have Ĥy,4 = Ĥy,0 for the same reason. Notice that Ĥ0,4 is equivalent to Ĥ0,1,
up to the second order.

To correctly calculate the ϵ3 correction to the amplitude later in the next section,
we also compute the Z drive in this effective frame

Ĥz,4 = ϵ2

( 0 − δϵΩ
2∆ 0

− δϵΩ
2∆ δ − δϵλΩ

2∆
0 − δϵλΩ

2∆ 2δ

)
. (4.19)

Applying the Y-DRAG correction and the time-dependent detuning, we obtain

Ĥ2,4 =

 − ϵ2Ω2

2∆
ϵΩ
2

ϵ2λΩ2

8∆
ϵΩ
2 − ϵ2Ω2

2∆ 0
ϵ2λΩ2

8∆ 0 ∆− 2ϵ2Ω2

∆ + 3ϵ2λ2Ω2

4∆

 . (4.20)

We adopt this as the complete first-derivative DRAG solution. The next order
error is clearly the ϵ2-leakage between |0⟩ and |2⟩, which is the same as the one in
equation (4.10), up to an integral by part [67]. We will address this in Section 4.7.

4.7 High-order DRAG correction
The first-derivative DRAG has been widely adopted for Transmon qubits in the
last decades, with the gate time pushed to 10 ns for a π-rotation [134]. However,
the observed optimal DRAG correction strength deviates from the analytical value
and needs to be calibrated experimentally. Albeit from hardware derivation such
as pulse distortion and cable attenuation, the shift of the DRAG parameter is also
observed in simulation under a strong drive. This is mainly because the derived
first-derivative DRAG solution does not consider the higher order corrections, and,
thus, the DRAG coefficient needs to be optimized to balance between the two
leakage transitions from |1⟩ and |0⟩.

Here, we go beyond the first-derivative DRAG and search for higher-order
solutions, in particular, we derive the correction to the |0⟩ ↔ |2⟩ leakage error.
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The derivation is based on Section VI of Ref. [67]. Note that to be consistent with
the notation in this chapter, we add a factor of 1/2 to the drive Hamiltonian in
Ref. [67].

We start from equation (4.20), with the two-photon transition |0⟩ ↔ |2⟩. Ef-
fectively, we need to engineer the frequency property of Ω2. For these kinds of
multi-photon transitions, it is easier to use the recursive formulation. In the re-
cursive formulation, instead of deriving corrections as an expression of the original
drive pulse Ω, we derive recursive expressions of the pulse Ω = f1(Ω1),Ω1 =
f2(Ω2), · · · ,Ωk−1 = fk(Ωk)) where the Ωk is the initial pulse shape. In general,
the substitution fk is not always expressed as a linear combination of Ωk and
corrections.

For the |0⟩ ↔ |2⟩ error, we choose a generator Ŝ4→5 that is defined by a different
drive profile Ω1. With this definition, we can construct an expression Ω such that
the |0⟩ ↔ |2⟩ coupling is zero in the effective frame:

Ŝ4→5 =

 0 0 − ϵ2λΩ2
1

8∆2

0 0 0
ϵ2λΩ2

1
8∆2 0 0

 , (4.21)

and

Ĥ2,5 =

 − ϵ2Ω2

2∆
ϵΩ
2

ϵ2λΩ2

8∆ − ϵ2λΩ2
1

8∆ − iϵ2λΩ1Ω̇1
4∆2

ϵΩ
2 − ϵ2Ω2

2∆ 0
ϵ2λΩ2

8∆ − ϵ2λΩ2
1

8∆ + iϵ2λΩ1Ω̇1
4∆2 0 ∆− 2ϵ2Ω2

∆ + 3ϵ2λ2Ω2

4∆


(4.22)

Notice that since Ŝ4→5 is already a ϵ2 term, the transformation does not change
the other matrix elements up to our truncation order ϵ3.

From the above Hamiltonian, we see that we can remove this |0⟩ ↔ |2⟩ leakage,
if we find an expression Ω (Ω1) such that the matrix element is zero. However, Ĥ1,5
has an imaginary term, which cannot be incorporated because we have assumed
that Ω is real. In Chapter 5, we will stop here and use the imaginary term directly,
but the derivation needs to be changed to keep the Hamiltonian hermitian. Here,
for single-qubit gates, assuming Ω to be real simplifies the handling of the Y error.
To address this, we perform again a transformation targeted at that imaginary
term only, which would then give back a real term with an additional derivative.

Ŝ5→6 =

 0 0 iϵ2λΩ1Ω̇1
4∆3

0 0 0
iϵ2λΩ1Ω̇1

4∆3 0 0

 , (4.23)
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which results in

Ĥ2,6 = − ϵ2Ω2

2∆
ϵΩ
2 + ϵ3Ω3

4∆2
ϵ2λΩ2

8∆ − ϵ2λΩ2
1

8∆ − ϵ2λ(Ω̇2
1+Ω1Ω̈1)
4∆3

ϵΩ
2 + ϵ3Ω3

4∆2 − ϵ2Ω2

2∆ 0
ϵ2λΩ2

8∆ − ϵ2λΩ2
1

8∆ − ϵ2λ(Ω̇2
1+Ω1Ω̈1)
4∆3 0 ∆− 2ϵ2Ω2

∆ + 3ϵ2λ2Ω2

4∆


(4.24)

In the above expression, we kept the ϵ3-correction to the drive amplitude− Ω3

2∆2 .
This is obtained by performing all the above calculations while always keeping the
third-order corrections to the |0⟩ ↔ |1⟩ coupling.

The solution for the |0⟩ ↔ |2⟩ leakage can be derived as Ω2 = Ω2
1 +2(Ω̇1)2+Ω1Ω̈1

∆2 .
A real solution for Ω exist for large enough ∆ compared to Ω1Ω̈1. Altogether, we
have the final recursive solution1 :

ΩPR =
(

Ω− i Ω̇
∆ −

Ω3

2∆2

)
exp
(
i

∫ t

0

Ω2

4∆
(
λ2 − 4

)
dτ
)
, (4.25)

Ω =

√
Ω2

1 + 2Ω̇2
1 + Ω1Ω̈1

∆2 . (4.26)

The initial pulse shape Ω1 needs to be chosen such that all the derivatives up to
the third order must start and end in zero.

1There is a factor of 2 missing in Ref. [67]. If ∆ → ∞, all the corrections should converge to
zero and one gets the original pulse shape Ω, while in the paper it actually converges to Ω/

√
2.
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5
Experimental error suppression in Cross-Resonance

gates via DRAG

While quantum circuits are reaching impressive widths in the hundreds
of qubits, their depths have not been able to keep pace. In particular,
cloud computing gates on multi-qubit, fixed-frequency superconducting
chips continue to hover around the 1% error range, contrasting with
the progress seen on carefully designed two-qubit chips, where error
rates have been pushed towards 0.1%. Despite the strong impetus and a
plethora of research, experimental demonstration of error suppression
on these multi-qubit devices remains challenging, primarily due to the
wide distribution of qubit parameters and the demanding calibration
process required for advanced control methods. Here, we achieve this
goal, using a simple control method based on multi-derivative, multi-
constraint pulse shaping, which acts simultaneously against multiple
error sources. Our approach establishes a two to fourfold improvement
on the default calibration scheme, demonstrated on four qubits on the
IBM Quantum Platform with limited and intermittent access, enabling
these large-scale fixed-frequency systems to fully take advantage of their
superior coherence times. The achieved CNOT fidelities of 99.7(1)%
on those publically available qubits come from both coherent control
error suppression and accelerated gate time.

This chapter has been published, with minor changes, as Boxi Li, Tommaso Calarco, and
Felix Motzoi, Experimental error suppression in Cross-Resonance gates via multi-derivative
pulse shaping, npj Quantum Information 10.1 (2024): 66. [136]. It has been accepted by npj
Quantum Information. The thesis author conducted most of the analysis and all the experiments,
composed all the figures and wrote the manuscript with input from the advisors.
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5.1 Introduction
Superconducting qubits have experienced significant improvement in the last decade,
reaching the error correction threshold [137, 138] and been used to study nontrivial
quantum phenomena [139, 140]. Additionally, quantum devices have become more
accessible outside research labs, with cloud-based platforms like the IBM Quantum
platform [141] providing access to multi-qubit devices, on which near-term quan-
tum computing applications with error mitigation have been demonstrated [142].
Although very high gate fidelity has been achieved on isolated chips [106, 143], gate
performance on scalable, publicly available multi-qubit devices is still bottlenecked,
especially for two-qubit operations [144]. These control imperfections not only limit
the fidelity and depth of quantum circuits, but also give rise to correlated errors
that propagate across the qubit lattice, sabotaging quantum error correction [40],
making error mitigation and benchmarking more challenging [145–148].

The Cross-Resonance (CR) gate is one of the most widely used two-qubit
entangling gates for superconducting qubits, using microwave controls and avoiding
noisy flux lines [122, 123, 149–151]. It is the default gate on most devices provided
by IBM and has found applications in high-quality circuit implementation, parity
measurement, and state preparation [106, 152, 153]. While the absence of flux
control lines extends qubit coherence time, it limits qubit tunability and necessitates
weak coupling between qubits. Consequently, achieving fast two-qubit gates requires
a strong drive, which often leads to coherent errors due to non-adiabatic dynamics.
In practice, limiting the drive amplitude and a long pulse ramping time are used
to prevent undesired dynamics, including off-resonant transitions introduced by
the drive [89, 154, 155] and unwanted dynamics in the effective qubits’ subspace
[80, 81, 154] (see Figure 5.1a and Figure 5.1b).

To circumvent control errors while maintaining substantial coupling strength, a
combination of careful qubit parameter engineering and advanced control schemes
has been employed. With these techniques, the best CR gate infidelity reported
lies between 0.1% and 0.3% [106, 143]. However, extending these advancements to
scalable multi-qubit devices proves challenging. For instance, on the 127-qubit chip
ibm_brisbane, the best echoed CR gate has an error of 0.35%, while the median is
only around 0.8%, considerably higher than their coherence limit (median T1≈200µs
and T2≈135µs) [141]. An important factor contributing to the challenge lies in the
intentional distribution of qubit parameters over a wide range, a design choice aimed
at mitigating cross-talk [39, 121, 156]. This uncertainty in the qubit parameters
also stems unavoidably from the inhomogeneity in the fabrication process [121, 157].
Therefore, designing an efficient control scheme that operates seamlessly across
diverse parameter regimes is essential for achieving optimal performance across
hundreds of qubits.

In this chapter, we devise and test a simple and scalable control scheme for CR
gates that counteracts all the aforementioned control errors, following the ideal of the
well-known Derivative Removal by Adiabatic Gate (DRAG) method [64, 66, 67, 132].
For the transition error, we demonstrate that previously suggested single-derivative
DRAG correction [89] is insufficient for typical parameters in multi-qubit devices,
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Figure 5.1: Illustration of the dominant coherent errors in the Cross-Resonance
gate and the proposed pulse schemes to correct them. a. Transition errors
in the rotating frame for a Transmon qubit driven off-resonantly, with ∆ct the
detuning and α the anharmonicity. b. Two-qubit errors of the CR gate. The
three axes {σ̂1, σ̂2, σ̂3} represent either {σ̂ZX , σ̂ZY , σ̂ZZ} or {σ̂IX , σ̂IY , σ̂IZ}. The
Hamiltonians ZX and IX (brown) commute and are defined as the ideal dynamics,
while the others are considered errors (blue). c. Schematic illustration of the
recursive DRAG pulse that suppresses different error transitions on the control
Transmon. d. Schematic illustration of different multi-qubit errors in the effective
frame during the CR operation, and the transformations of the error terms. The
remaining IY and IZ errors are compensated for by an IY -DRAG pulse on the
target qubit and the detuning of the CR drive.

where multiple transition errors are present. We introduce a novel recursive multi-
derivative DRAG pulse, considering all three possible error transitions, capable of
experimentally suppressing the error to high precision without the need for any
calibration, or additional free parameters. For the two-qubit rotation operator
error such as the ZZ error in the effective two qubits’ subspace, we present a
new approach. While other schemes typically involve hardware modifications or
additional detuned microwave drive terms [107, 143, 158], we show that a simple,
DRAG-like correction tone applied on the target qubit, along with a detuning
on the drive frequency, is sufficient to eliminate dominant entangling error terms
while avoiding additional hardware engineering. An overview of the derived pulse
schemes is shown in Figure 5.1c and Figure 5.1d.

In comparison to alternative pulse shaping techniques [126, 159, 160], this
multi-derivative pulse Ansatz stands out for its simplicity. It provides an efficient
parameterization of the control pulse as a simple expression of the qubits’ frequency
and anharmonicity. This simplicity is essential for scalable quantum devices as all
the qubits need to be calibrated quickly and repeatedly to ensure high fidelity. With
the qiskit-pulse [161] interface, we implemented our drive scheme on multi-qubit
devices provided by IBM Quantum. Despite the limited calibration time due to
sporadic access to busy, public machines, our experimental results validate the
efficient suppression of coherent errors. We observe a two- to fourfold reduction in
infidelity, achieving beyond state-of-the-art fidelities in the 99.6-99.8% range on
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multiple qubit pairs publicly available on the IBM platform.
The rest of the chapter is organised as follows: We start by presenting the

theoretical framework of the derivative-based pulse shaping methods. Next, we
derive the pulse schemes for the CR gate and experimentally validate the error
suppression for both the transition errors on the control qubit and the multi-qubit
errors. Finally, we demonstrate the performance and scalability of the proposed
control scheme by benchmarking the custom-implemented CR gate on multi-qubit
quantum hardware, accompanied by numerical simulations across a wide range of
experimentally relevant regimes.

5.2 Multi-derivative pulse shaping
We start explaining the general theory for the systematic, iterative error suppression
with a generic two-level system

Ĥ = ∆Π̂j + g(t)
σ̂+

jk

2 + g∗(t)
σ̂+

kj

2 (5.1)

where Π̂j = |j⟩ ⟨j| and σ̂+
jk = |k⟩ ⟨j|, g(t) denotes the coupling strength between

the two levels. In the following, we omit the explicit time dependence on t for
ease of notation. In general, g could take the (perturbative) form of an n-photon
interaction, Ωn

∆n−1
eff

, where ∆eff is an effective energy gap and Ω the drive strength.
In particular, if Ω denotes the CR drive strength on the control qubit, with n = 1,
it describes the transition |0⟩ ↔ |1⟩ (or |1⟩ ↔ |2⟩) and with n = 2 the two-photon
transition |0⟩ ↔ |2⟩.

The goal is to suppress the undesired transition introduced by the coupling
g. If g ≪ ∆, we may perform a perturbative expansion with the antihermitian
generator Ŝ(g̃) = g̃

2∆ σ̂
+
jk − h.c. and obtain under the transformation Ĥ ′(g) =

V̂ (g̃)Ĥ(g)V̂ †(g̃) + i
˙̂
V (g̃)V̂ †(g̃) with V̂ (g̃) = eŜ(g̃),

Ĥ ′(g) =i ˙̂
S(g̃) + Ĥ(g) + [Ŝ(g̃), Ĥ(g)] + · · · (5.2)

=∆Π̂j +
(
g − g̃ + i

d
dt

g̃

∆

) σ̂+
jk

2 + h.c.+O(ϵ2),

where ϵ ∝ g/∆. We deliberately distinguish between g, the actual physical coupling,
and g̃, which is used to define the generator Ŝ that diagonalizes the Hamiltonian.
As a result, for a time-dependent coupling g, to suppress the transition, we require

g = g̃ − i d
dt

g̃

∆ . (5.3)

The above equation also provides an alternative interpretation: Transition-less
evolution is possible if we find a (counter-diabatic) control g(t) by choosing any
continuous function g̃(t) and making sure that Ŝ(g̃) is zero at the beginning and
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at the end of the time evolution [48–50, 133]. Thus, equation (5.3) provides a
substitution rule to derive a time-modulated coupling g(t) with the transition
between the two levels suppressed. If the coupling describes an n photon interaction
generated by a drive Ω, i.e., g = Ωn

∆n−1
eff

with a constant ∆eff , we obtain

Ω = F (n)
∆ (Ω̃) :=

(
Ω̃n − i d

dt
Ω̃n

∆

) 1
n

. (5.4)

Here, we choose g̃ = Ω̃n

∆n−1
eff

to keep the notation intuitive. The fractional exponent is
defined for complex numbers and needs to ensure the continuity of Ω as a function of
t. For n = 1 this gives the familiar result of the single-derivative DRAG expansion
[67]. If needed, a free parameter a can be added before the derivative term to
adjust the strength DRAG correction.

More generally, a two-level Hamiltonian (or subspace), in equation (5.1), is diag-
onalized exactly by the unitary transformation (referred to as Givens rotation) [73]

V̂ =
(

cos
(

θ
2

)
e−iϕ sin

(
θ
2

)
−eiϕ sin

(
θ
2

)
cos
(

θ
2

) )
, (5.5)

resulting in an exact substitution rule [c.f. equation (5.3)]:

g = eiϕ
(
−(∆ + ϕ̇) tan(θ) + iθ̇

)
, (5.6)

where θ and ϕ can in principle be chosen arbitrarily provided V̂ = 1 at the beginning
and the end of the drive.

This exact diagonalization becomes useful in scenarios involving strong drive
amplitudes or small detunings. In those cases, equation (5.6) provides a compact
expression for the DRAG pulse beyond the perturbation limit. To be consistent
with the perturbative solution, we set θ = arctan(−|g̃|/∆) and define ϕ as the
complex phase of the coupling, i.e., g̃ = eiϕ|g̃|. We note that, in general, ∆ could
also depend on g and equation (5.6) becomes an implicit equation for g instead of
a closed-form expression. To obtain an expression for the drive strength Ω, one
needs to invert the dependence of g = f(Ω). For instance, for a linear dependence,
g = κΩ (and g̃ = κΩ̃), with κ a constant factor, we get

Ω = F (1),G
∆ (Ω̃) := ∆ + ϕ̇Ω̃

∆ Ω̃ + ieiϕΩ̃

κ

d
dt arctan

(
−|κΩ̃|

∆

)
(5.7)

with eiϕΩ̃ = Ω̃/|Ω̃|. Equation (5.4) and equation (5.7) will be the building blocks
throughout the remaining of this article as we extend our analysis to multilevel
systems.

5.3 Application to control-qubit errors
The CR interaction is typically activated by driving the control qubit with the
frequency of the target [80, 81, 154], leading to a rotation in the target qubit
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Figure 5.2: Top: Simulated transition error among the 3 levels of the control
Transmon introduced by the CR drive using a flat-top Gaussian pulse with tr =
2σ = 10 ns. Middle: The total transition error for different pulse schemes. We plot
the envelope of the oscillation by taking the maximum over different pulse lengths
with the ramping time tr = 10 ns fixed. Parameters used are Ωmax/2π = 30 MHz,
(∆21−∆10)/2π = −300 MHz and λ =

√
2. Bottom: Distribution of the qubit-qubit

detunings in ibm_brisbane. A few outliers that are far away out of the studied
range are left out.

depending on the state of the control, equivalent to a CNOT gate up to single-qubit
operations. Ideally, the state of the control qubit should remain unaltered at the
end of the gate. However, despite the detuning, the drive may still excite the control
qubit, especially when operating in the straddling regime for fast entanglement
[81, 154], where the qubit-qubit detuning is smaller than their anharmonicities.
Depending on the parameter regimes, it manifests both as single-photon transitions
between |0⟩ ↔ |1⟩, |1⟩ ↔ |2⟩ as well as the two-photon transition between |0⟩ ↔
|2⟩ [89].

To counter these transition errors, the single-derivative DRAG pulse has been
employed which introduces a term proportional to the first derivative of the drive
pulse, i.e., Ω− ia Ω̇

∆ , with a constant factor a to be optimized [89]. This heuristic is
proven useful when the qubit-qubit detuning is very small, ranging from 50 MHz
to 70 MHz [106, 155], because in this range there is only one dominant transition.
In contrast, for the scalable, multi-qubit fixed-frequency architecture such as the
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Figure 5.3: Left. The circuit and measured transition after preparing the state
in |1⟩ and applying a CR pulse with different rising time tr. The data is obtained
with a detuning of 120 MHz and a drive strength of about 40 MHz. Right. The
amplification circuit and measured transition error. Deviations from the expected
population of one indicate the presence of error. The three plots correspond to a
default flat-top Gaussian, recursive DRAG pulse ΩP

CR in equation (5.8) and ΩG
CR in

equation (5.9), with no calibration of additional parameters. The data is obtained
from ibm_nairobi Q2 and Q1 with the drive amplitude 0.5 (≈ 60 MHz), tr = 10 ns
and N = 30. The qubit-qubit detuning is about 104 MHz.
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IBM Quantum plaform, the detuning between neighbouring qubits is distributed
over a much broader range (Figure 5.3c). An efficient drive scheme must be able
to suppress the error in all the operating parameter regimes. As shown later in
this section, in some prevalent parameter regimes, the single-derivative DRAG
pulse provides only minimal improvement. Even with a numerically optimized scale
factor, a compromise arises among different transitions [89].

Following the multi-derivative pulse described above, we propose the following
pulse shape derived by recursively applying the DRAG correction targeting at the
three dominant transitions

ΩP
CR = F (1)

∆21
◦ F (1)

∆10
◦ F (2)

∆20
(Ω) (5.8)

with the perturbative substitution equation (5.4) or

ΩG
CR = F (1),G

∆21
◦ F (1),G

∆10
◦ F (2)

∆20
(Ω) (5.9)

using the exact expression equation (5.7) for the two single-photon transitions. The
energy difference between state |j⟩ and |k⟩ in the rotating frame is denoted by
∆jk. The symbol ◦ denotes the composition of different substitutions F , applied
sequentially from right to left on the pulse shape. Recursively chaining the DRAG
correction as above suppresses all three dominant errors. While the two single-
photon corrections F (1) are interchangeable, the substitution for the two-photon
transitions needs to be applied first, as detailed in the Methods section. The explicit
formula for the perturbative DRAG pulse [equation (5.8)] is given by the following
recursive expressions:

ΩP
CR = Ω1 − i

Ω̇1

∆10
, (5.10)

Ω1 = Ω2 − i
Ω̇2

∆21
, (5.11)

Ω2 =
√

Ω2
3 − i

2Ω3Ω̇3

∆20
. (5.12)

Here, Ω3 needs to be chosen such that the obtained pulse is continuous and starts
and ends in zero. Without the last equation for the two-photon transition, the
derived pulse aligns with the multi-derivative DRAG solution proposed for multiple
linear couplings in [67]. Notably, if one of the DRAG correction strengths is fine-
tuned by an additional parameter, it will not affect the other correction significantly
because of the recursive design.

Typically, a CR pulse consists of a rising, a holding and a lowering period,
during which the pulse is turned on from zero to the maximum, held for a while
and then turned off. We choose the rising portion of the pulse to be

Ω(m)(t) = ΩmaxI0

∫ t

0
dt′ sinm(πt

′

2tr
), 0 ≤ t ≤ tr (5.13)
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with the normalization I0 fixed via Ω(m)(tr) = Ωmax. This definition ensures that
the pulse is m times differentiable and the derivatives are zero at t = 0 and t = tr,
which guarantees the validity of the frame transformation V̂ introduced above.
Other pulse shapes can also be used as long as this property is satisfied. After
the holding time, the lowering phase takes the time-reversed shape. An example
of the CR pulse is shown in Figure 5.1c. For m = 1 and with zero holding time,
the pulse is the same as the Hann window, very close to the flat-top Gaussian
pulse commonly adopted. It is important to note that, as m increases, more high-
frequency components become incorporated into the pulse shape, leading to higher
non-adiabatic transition error if not compensated for. Therefore, it is advisable to
keep m as small as possible. For our study, we use m = 3 as the initial shape for
the recursive DRAG pulse.

To verify the performance of the error suppression, we numerically simulate the
dynamics of the three-level Hamiltonian of the control Transmon (see Methods)
and the result is shown in Figure 5.3a and Figure 5.3b. First, we examine in
Figure 5.3a the contribution of the three transition errors for an uncorrected pulse,
across the typical experimentally relevant qubit-qubit detuning values. The error is
defined as the probability of unwanted population transfer among different states.
The plot indicates that all three transitions must be considered for sufficient error
suppression. Moreover, we observe that partial suppression of the errors (using only
one or two derivatives) may increase the unsuppressed ones, as demonstrated in
detail in Section 5.8.1, making them non-negligible even if they were initially small.

Next, we compare the total transition error introduced by different pulse schemes
in Figure 5.3b. To better illustrate the difference between the pulse schemes, we
take the sum of the three transition errors and the maximum over pulses with
various holding lengths. In this way, the oscillation caused by the pulse timing is
removed and only the upper envelope remains. As a baseline, we plot the error
for pulse shape Ω(1), which is similar to the flat-top Gaussian pulse used in qiskit-
pulse [161]. The recursive DRAG pulse shapes we derived, ΩP

CR and ΩG
CR, suppress

the error by several orders of magnitude, without any numerical optimization, as
long as the drive is not resonant with the two-photon transition. In comparison,
the single-derivative DRAG pulse, used in previous works [89, 106, 155], performs
well only when the error is dominated by one single-photon transition (very large
or very small detuning). Outside of these regimes, its performance is restricted due
to the compromise between different transitions, even if the DRAG coefficient a is
calibrated to minimize the total error.

This observation is further supported by experimental results shown in Fig-
ure 5.3d and Figure 5.3e. In Figure 5.3d, the state was initialized in state |1⟩, and
a CR pulse of 200 ns with varying rising times tr was applied. As the rising time
decreases, the error transition grows quadratically. Without any correction, the
error is dominated by the transition between |0⟩ ↔ |1⟩. Applying a DRAG pulse
designed to suppress this transition, i.e., Ω − iΩ̇/∆10, effectively suppresses this
error but introduces a new transition error between |1⟩ ↔ |2⟩. Calibrating the
DRAG coefficient only compromises between these errors. In contrast, with the
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recursive pulse shape defined in equation (5.8), all errors are suppressed below the
state preparation and measurement error.

Typically, achieving high-fidelity quantum operations requires the transition
errors to be suppressed to the order of 10−4. Resolving this population error
often needs a large number of sampling points. Therefore, we employ the error
amplification circuits outlined in [155], which add virtual Z gates RZ(ϕ) between
the repetitions with different phases ϕ (Figure 5.3). Different transition errors
will be selected by different choices of ϕ, as detailed in Section 5.8.3. To perform
the measurement, we calibrate an X gate between states |1⟩, |2⟩ and build a
measurement discriminator for qutrits [162].

In Figure 5.3e, the measured population of the state |0⟩(|1⟩) is plotted after the
initial preparation in |0⟩(|1⟩) and 30 repetition of the CR pulse. A population close
to one implies negligible errors, while any deviation indicates a transition to other
states. For instance, overlapping blue and orange curves indicate the |0⟩ ↔ |1⟩
transition, while a drop solely in the blue curve suggests the |0⟩ ↔ |2⟩ transition.
It is evident that for this short rising time (tr = 10 ns), there exists a significant
transition error between state |0⟩ and |1⟩, but also a non-negligible contribution
from other transitions between |0⟩ and |2⟩. After applying the perturbative DRAG
pulse, a substantial reduction in the error is observed, with some remaining small
transitions. Using the recursive DRAG pulse derived by Givens rotation proves
highly effective, suppressing all transition errors below the threshold. In both cases,
no calibration of DRAG coefficients is required, and the analytical formulas are
completely predictive. In general, free parameters can be added to each substitution
before the derivative terms to fine-tune the strength of DRAG corrections for each
individual transition error.

It is crucial to highlight that previous applications of a single-derivative DRAG [89,
106, 155] to CR gates primarily focus on the case of very small qubit-qubit detuning
(ranging from 50 MHz to 70 MHz), the errors of which is dominated only by the
|0⟩ ↔ |1⟩ transition. However, qubit pairs on IBM Quantum Platform have detun-
ing distributed in a much larger range from 40 to 260 MHz (Figure 5.3c), where
other transitions become nonnegligible (Figure 5.3a). In contrast, the recursive
DRAG solution showcased in this study exhibits remarkable universal performance
even in the presence of multiple types of errors, without any calibration necessary.
In Section 5.8.5, we show similar error suppression on qubit pairs with qubit-qubit
deutning of 143 MHz and 189 MHz, together with an example where the single-
derivative DRAG fails to suppress the error even with a full-sweep calibration of
the DRAG coefficient.

5.4 Application to multi-qubit operator errors

A second major part of the error in the CR operation comes from the remaining
dynamical operators in the two-qubit subspace that do not commute with the
ideal dynamics ZX. Assuming the transition errors on the control qubit are all
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Figure 5.4: Measurement of the ZZ error and calibration of the IY-DRAG schemes.
a. Circuit used for the CR Hamiltonian tomography [151]. b. Experimental data
for calibrating the IY -DRAG amplitude to minimize the ZZ coupling, obtained
from ibm_perth.

suppressed, the effective Hamiltonian in the two-qubit subspace is given by

H =νZX

2 ẐX̂ + νZY

2 ẐŶ + νZZ

2 ẐẐ + νIX

2 ÎX̂ + νIY

2 Î Ŷ + νIZ

2 ÎẐ. (5.14)

The coefficient ν(t) for each term can be derived by perturbative expansion, with
the explicit expressions given in appendix C of Ref. [80]. Experimentally, they can
be measured by Hamiltonian tomography [151]. An overview of the multi-qubit
errors and the frame transformations used below to remove them is shown in
Figure 5.1d.

When implementing a CR gate, the ZY term is removed by calibrating the
phase of the CR drive and the single-qubit rotations, IX and IY , compensated for
by a target drive [151]. To achieve high-fidelity operations, we iteratively fine-tune
the drive pulse until the error terms ZY , IY and IX are all below 0.015 MHz
(see Section 5.8.6). After this standard calibration procedure, one can describe the
dynamics with the following effective Hamiltonian

Ĥ = νZX

2 ẐX̂ + νZZ

2 ẐẐ + νIZ

2 ÎẐ, (5.15)

where the first term is the desired Hamiltonian dynamic while the other two are
multi-qubit errors to be suppressed.

We now show that an IY -DRAG correction and a detuning are sufficient to
suppress the remaining errors. Note that the two Hamiltonian terms ZX and ZZ
are connected by a rotation along the IY axis. Hence, we define the transformation

V̂ZZ = Î ⊗ exp
(
−iβ(t)Ŷ /2

)
(5.16)
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with β = arctan
(

νZZ
νZX

)
≈ νZZ

νZX
. In the perturbaitve expansion, the coefficients

are given as νZZ = J2|ΩCR|2

2∆eff (α1+∆)2 and νZX + iνZY = − JΩCRα1
∆(α1+∆) , where ∆eff is a

constant depending on the Transmons’ frequency and anharmonicity [80]. This
transformation results in an enhanced ZX strength

√
ν2

ZX + ν′2
ZZ and an additional

single-qubit term β̇ÎŶ /2 to be compensated by a Ŷ drive on the target qubit. It
is not difficult to verify that this corresponds to a DRAG-like correction which is
non-zero only during the pulse ramping time.

In general, to completely remove the error, one needs to match the shape of
the IY -DRAG pulse exactly with β̇/2. In typical CR gates, the holding period is
much longer than the ramping time. Therefore, we can neglect the coherent error
introduced by the time-dependent part 0 < t < tr and focus only on the holding
period tr < t < tf − tr. This simplified approach allows us to neglect the shape of
the IY -DRAG pulse and only calibrate the area (amplitude) such that the ZZ error
is removed during the holding period. We choose the IY -DRAG shape as the first
derivative of the target drive, i.e., cIY Ω̇IX . Given that the ZZ error is typically
small (<0.1 MHz), the IY -DRAG correction is also very weak. Thus, the correct
coefficient cIY can be obtained by measuring the ZZ coupling strength for a few
different cIY and conducting a linear fit, as illustrated in Figure 5.4. In practice,
we find that three sampling points are sufficient for the accurate calibration of the
IY -DRAG amplitude. It is worth noting that in the calibration, the removed ZZ
error consists of both the dynamic ones introduced by the drive and the static ZZ
terms caused by residual coupling [102].

Compared to the previous approach applied by IBM, the target rotatory
pulse [163], our proposed method require only three sampling points and a linear fit,
employing the same tomography circuit as used in the standard calibration [151],
which renders it more practical for implementation on the IBM platform with
limited calibration time. In contrast, the calibration of the target rotatory pulse
amplitude requires a sweep across various amplitudes and finding a minimum of
total measured errors. Furthermore, our method does not require the echoed CNOT
structure and thus can be used to construct a direct CNOT gate. The two methods
can also be combined, introducing new degrees of freedom to suppress more residual
errors at the same time, which are left for future study.

Finally, the only untreated error, the IZ term, is compensated for by detuning
the CR drive. In general, the exact cancellation of the IZ error requires time-
dependent detuning, i.e., a chirped pulse or phase ramping. Here, as the IZ term is
usually small, it is sufficient to compensate for it with a constant detuning. This is
implemented by adding an additional phase term to the pulse shape exp(−iνIZt/2),
where νIZ denotes the measured IZ coefficient from the tomography, similar to
the phase error in single qubit gates [134].
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FIG. 4. Example of the custom pulse shape used for the
direct (a) and echoed (b) CNOT gate on ibm_lagos qubit Q2
and Q1. The amplitudes for different drives are rescaled for vi-
sualization purposes. (c) Error per gate of the self-calibrated
CNOT and the default CNOT gate, estimated by interleaved
randomized benchmarking. The coherence limit is calculated
including relaxation (T1) and dephasing (T2) noise provided
by IBM Quantum. Data obtained from ibm_lagos (L) and
ibm_nairobi (N).

racy in the CR drive.
In consideration of these factors, we select pairs of

qubits from the available Transmon qubits on the IBM
Quantum Platform that exhibit sufficiently large cou-
pling and relatively long coherence time (>30µs). Due to
our limited access, a comprehensive search for the speed
limit at different drive strengths to determine the op-
timal gate time is not feasible. Therefore, we opt for
an empirical approach in choosing the CR drive ampli-
tude based on the qubit-qubit detuning and the effective
coupling strength. In addition to the commonly used
echoed CNOT gates [19], we also calibrate direct CNOT
gates, eliminating the two single-qubit gates and further
reducing the gate time. Examples of the applied pulse
shapes are shown in Fig. 4a and b, which include the
recursive-drag pulse correction on the CR drive (ramp-
ing up of the CR pulse), the IY -drag correction (green
pulse), and the frequency detuning (asymmetry between
the ramping up and off). The calibration procedure is
explained in detail in the Supplementary Information.

To accurately characterize the fidelity, we measure the
infidelity of the self-calibrated CR gates through inter-
leaved randomized benchmarking. For each pulse config-

uration, we repeat the experiment five times (each takes
about 5 to 10 minutes including the classical communica-
tion time) and compute the mean and standard deviation
of the measured gate error. Therefore, the presented gate
error should be interpreted as the average error over the
following hours after the calibration, including possible
detrimental drift in the prior system parameters over the
ensuing time period. As shown in Fig. 4, we obtain a
significant reduction of the error on several pairs of the
qubits, reaching the fidelity of 99.7(1)%, compared to the
default CNOT gate. We further compare it to the self-
calibrated CNOT gate with no corrections applied, us-
ing the default Gaussian shape, drive amplitude and tr.
This comparison verifies that the observed improvement
is not solely attributable to our more recent calibration.
Detailed information on the used qubits, measured effec-
tive coupling strength and drive parameters is presented
in the Supplementary Information.
Next, we characterize the possible improvement over

a wider range of typical and prospective parameter
regimes. In particular, we perform thorough numerical
simulations to demonstrate what is possible beyond cur-
rent bottlenecks given by present-day coherence times
and limited calibration access on high-demand systems.
To show the applicability of the derived pulse on a

large-scale quantum device, it is important to evaluate
its performance across various parameter regimes rep-
resentative of a real quantum system. The Hamilto-
nian model is chosen to have similar coupling strength
and ZZ error rate to those qubits on the IBM Quan-
tum Platform (see Methods). Since we focus on the CR
operation, we exclude the error that can be removed by
single-qubit corrections. We perform a sweep for different
Ωmax and tr while also varying the qubit-qubit detuning
∆/2π={70, 110, 200} MHz in the straddling regime.
In Fig. 5, we compare the infidelity between the pro-

posed pulse and the flat-top Gaussian pulse. It shows a
drastic reduction in the coherent error in all regimes via
our approach, with orders of magnitude suppression sim-
ilarly seen for the three detunings. The recursive drag
correction reduces the ramping time while keeping a low
transition error rate. Meanwhile, the IY -drag correc-
tion cancels the ZZ error and allows for stronger drive
amplitude. Both result in shorter gate time and less de-
coherence.

For commensurate qubit lifetimes in the range of mil-
liseconds, as already demonstrated in Refs. [50, 51], errors
as low as 10−4 are within reach using our proposed pulse,
while the standard pulse would be limited to an order
of magnitude larger error. Along with the shorter gate
times coming from larger amplitudes and shorter ramp-
ing times, the large coherent error suppression further
amplifies any expected gains coming from improvements
in qubit fabrication. This is already seen, for example, in
Fig. 4, where not only is the coherent error on the IBM
Quantum devices suppressed, but there is also a reduc-
tion in the total gate duration (with reduced coherence
limit). This is especially important looking forward, as

Figure 5.5: Calibrated pulses for the CNOT gate and randomized benchmarking.
Examples of the custom pulse shapes used are shown for the direct (a) and echoed
(b) CNOT gate on ibm_lagos qubit Q2 and Q1. The amplitudes for different
drives are rescaled for visualization purposes. (c) Error per gate of the self-
calibrated CNOT and the default CNOT gate, estimated by interleaved randomized
benchmarking. The coherence limit is calculated including relaxation (T1) and
dephasing (T2) noise provided by IBM Quantum. Data obtained from ibm_lagos
(L) and ibm_nairobi (N). The error bar represents the standard deviation of five
randomized benchmarking experiments.

5.5 Benchmarking the improved CR gate
The investigations outlined above underscore the performance of our proposed
methods in addressing both the transition errors on the control Transmon induced
by rapid driving and the multi-qubit operator errors arising from (static and
dynamic) residual coupling. The improved precision in control not only reduces
the coherent error but also facilitates the exploration of higher drive amplitudes
and faster tuning speeds, which usually introduces more coherent error if left
uncompensated [81, 154]. As a result, the attained reduction in gate time allows
us to exceed the impact of decoherence and achieve higher fidelities. For instance,
by reducing tr from 28 ns (default qiskit-pulse parameter) to 10 ns, one gains
about 35 ns for an echoed CR gate. Moreover, because of the simplified calibration
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procedure, a complete removal of multi-qubit errors is achieved only when the drive
is at its maximum. Therefore, the reduction in tr contributes not only to shorter
gate time but also to improved accuracy in the CR drive.

In consideration of these factors, we select pairs of qubits from the available
Transmon qubits on the IBM Quantum Platform that exhibit sufficiently large
coupling and relatively long coherence time (>30µs). Due to our limited access, a
comprehensive search for the speed limit at different drive strengths to determine
the optimal gate time is not feasible. Therefore, we opt for an empirical approach
in choosing the CR drive amplitude based on the qubit-qubit detuning and the
effective coupling strength. In addition to the commonly used echoed CNOT
gates [151], we also calibrate direct CNOT gates, eliminating the two single-qubit
gates and further reducing the gate time. Examples of the applied pulse shapes are
shown in Figure 5.5a and b, which include the recursive-DRAG pulse correction
on the CR drive (ramping up of the CR pulse), the IY -DRAG correction (green
pulse), and the frequency detuning (asymmetry between the ramping up and off).
The calibration procedure is explained in detail in Section 5.8.6.

To accurately characterize the fidelity, we measure the infidelity of the self-
calibrated CR gates through interleaved randomized benchmarking. For each pulse
configuration, we repeat the experiment five times (each takes about 5 to 10 minutes
including the classical communication time) and compute the mean and standard
deviation of the measured gate error. Therefore, the presented gate error should
be interpreted as the average error over the following hours after the calibration,
including possible detrimental drift in the prior system parameters over the ensuing
time period. As shown in Figure 5.5, we obtain a significant reduction of the error
on several pairs of the qubits compared to the default CNOT gate. Over the four
pairs of qubits studied, we obtain an average gate fidelity of 99.7(1)%. We further
compare it to the self-calibrated CNOT gate with no corrections applied, using
the default Gaussian shape, drive amplitude and tr. This comparison verifies that
the observed improvement is not solely attributable to our more recent calibration.
Detailed information on the used qubits, measured effective coupling strength and
drive parameters is presented in Section 5.8.4.

Next, we characterize the possible improvement over a wider range of typical
and prospective parameter regimes. In particular, we perform thorough numerical
simulations to demonstrate what is possible beyond current bottlenecks given by
present-day coherence times and limited calibration access on high-demand systems.

To show the applicability of the derived pulse on a large-scale quantum device,
it is important to evaluate its performance across various parameter regimes
representative of a real quantum system. The Hamiltonian model is chosen to have
similar coupling strength and ZZ error rate to those qubits on the IBM Quantum
Platform (see Methods). Since we focus on the CR operation, we exclude the error
that can be removed by single-qubit corrections. We perform a sweep for different
Ωmax and tr while also varying the qubit-qubit detuning ∆/2π={70, 110, 200} MHz
in the straddling regime.

In Figure 5.6, we compare the infidelity between the proposed pulse and the
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flat-top Gaussian pulse. It shows a drastic reduction in the coherent error in all
regimes via our approach, with orders of magnitude suppression similarly seen for
the three detunings. The recursive DRAG correction reduces the ramping time
while keeping a low transition error rate. Meanwhile, the IY -DRAG correction
cancels the ZZ error and allows for stronger drive amplitude. The observed optimal
selection of the pulse ramping time between 10 to 15 ns in the simulations results
from a compromise between the static ZZ error in IBM qubit parameters and the
transition error. In our simulation, we considered IBM hardware with fixed coupler
frequencies, resulting in a static ZZ error that cannot be fully corrected, especially
during the ramping period. Shorter ramping times lead to reduced accumulation of
this static ZZ error, at the expense of increased transition error.

For commensurate qubit lifetimes in the range of milliseconds, as already
demonstrated in Refs. [164, 165], errors as low as 10−4 are within reach using
our proposed pulse, while the standard pulse would be limited to an order of
magnitude larger error. Along with the shorter gate times coming from larger
amplitudes and shorter ramping times, the large coherent error suppression further
amplifies any expected gains coming from improvements in qubit fabrication. This
is already seen, for example, in Fig. 5.5, where not only is the coherent error on
the IBM Quantum devices suppressed, but there is also a reduction in the total
gate duration (with reduced coherence limit). This is especially important looking
forward, as advantages in coherence times for fixed-frequency architectures vs.
tunable-qubit architectures tilts the advantage towards the former with appropriate
pulse shaping. Note also that even if the parasitic ZZ error is engineered to be
very small [73, 83, 107, 158], as coherence times improve, the standard pulses must
choose a long ramping time to match the incoherent error, while our pulse shaping
approach can continue to use very short times, fully taking advantage of such
improvements.

Importantly, these pulses are constructed following the analytical expression
without additional optimization or fitting parameters. This means that compared to
all but the simplest approaches available, including Ref. [89], these high-performance
pulses are much faster and more straightforward to calibrate. Additionally, we
observe that the transition error is barely affected by the drift of the drive strength
and is also relatively robust against frequency drift (see Section 5.8.2).

5.6 Discussion
We introduced an analytical multi-derivative pulse shape tailored for driving the CR
interaction in superconducting qubits, adept at eliminating undesired transitions
on the control qubit and unwanted multi-qubit dynamics. Our approach extends
the DRAG formalism to a recursive structure capable of suppressing multiple
error transitions simultaneously. Additionally, we developed a novel technique to
eliminate multi-operator errors by dynamically transforming the errors into the
desired entangling form. This resulted in several orders of magnitude suppression
in the coherent error when simulating across the range of typical c-QED regimes,
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without extensive requirement on calibration. The simplicity and universality of the
proposed pulse shape make it well-suited for implementation on the IBM Quantum
Platform as an efficient high-quality calibration across hundreds of qubits. We
demonstrate this on several qubits, showing a significant suppression in the state-
of-the-art error using our customized pulse shape. The results are reproducible
over a wide range of qubit frequency spacings and with prescriptive pulse shapes
across the spectrum.

These analytical approaches are general and also applicable to other entangling
gates in c-QED and various quantum technologies [166–168]. The control error
addressed in this chapter extends beyond CR gates and is relevant to other off-
resonant drive schemes, such as microwave-activated gates [112, 143, 169, 170],
as well as the use of microwave drives for suppressing quantum cross-talk and
leakage [67, 156, 171, 172]. The coherent error suppression demonstrated here also
has implications for fixed-frequency architectures, allowing them to take advantage
of longer coherence times compared to tunable architectures. Moreover, errors
involving a spectator qubit [81, 156, 163, 171] can be addressed by incorporating the
ancillary level into the modeling and introducing new derivative-based corrections
accordingly.

Apart from the pursuit of improving multi-qubit gates, it is noteworthy that the
suppression of coherent errors also indirectly enhances the fabrication process’ yield.
For instance, the transition errors addressed in this chapter were also identified
as frequency collisions in Ref. [39, 121]. The proposed drive scheme effectively
increases the threshold for frequency collisions, thereby contributing to an increased
fabrication yield. Similar error models for frequency collision also apply to the
tunable-coupler architecture [173], extending the potential application domain.

5.7 Methods

5.7.1 Derivation of the recursive DRAG pulse
We use the following three-level Hamiltonian to model the control Transmon

Ĥ = ϵΩCR

2 (σ̂+
01 + λσ̂+

12) + h.c.+ ∆10Π̂1 + (∆10 + ∆21)Π̂2, (5.17)

where λ is the relative coupling strength of the second transition and ϵ is used to
denote the perturbation order. For detuning ∆10 = 0, the pulse is on resonance
and implements a single-qubit gate. When the drive is resonant with the frequency
of the target qubit, a CR operation is activated. In the rotating frame with respect
to the driving frequency, we have ∆10 equal to the qubit-qubit detuning and
∆21 = ∆10 + αc, with αc the anharmonicity. To the leading order perturbation,
the coupling strength is proportional to ΩCR [80]. An ideal CR pulse generates
rotations on the target qubit depending on the control qubit state while leaving the
latter intact. This approximation holds well as long as the dressing of the qubit is
perturbative. Therefore, we aim at finding a pulse ΩCR with non-zero real integral
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but introducing no population transfer among any of the three levels of the control
qubit. This model, equation (5.17), includes both the leakage error and population
flipping on the control qubit [154].

In the following, we show the derivation of the substitution rule of Ω in equa-
tion (5.8) via Schrieffer Wolff perturbation. We omit the perturbative corrections
to the diagonal part of the Hamiltonian as they have no effect on the leading-order
perturbative coupling strength. The derivation includes three steps, each targeting
one coupling. The perturbative transformation generated by an anti-hermitian
matrix Ŝ is defined as

Ĥ ′ = i
˙̂
S + Ĥ +

[
Ŝ, Ĥ

]
+ 1

2
[
Ŝ,
[
Ŝ, Ĥ

]]
+ · · · . (5.18)

First, we apply the perturbative diagonalization targeting the |0⟩ ↔ |1⟩ transi-
tion

Ŝ1 = ϵ

2

( Ω1

∆10
σ̂+

01 + λΩ1

∆10
σ̂+

12

)
− h.c. (5.19)

The first component in Ŝ1 is chosen to remove the |0⟩ ↔ |1⟩ coupling perturbatively.
According to the derivation in the main text, we define a substitution for ΩP

CR

ΩP
CR = Ω1 − i

Ω̇1

∆10
. (5.20)

The second term in equation (5.19) is chosen such that i ˙̂
S1 is proportional to the

Y control Hamiltonian. This ensures that in the derived effective Hamiltonian, no
Ω̇1 appears in the |1⟩ ↔ |2⟩ coupling, because it is absorbed in ΩCR. Note that it
does not diagonalize the |1⟩ ↔ |2⟩ coupling, which would need λΩ1

∆21
σ̂+

12 instead. As
a result, we obtain

Ĥ1 =
(

1− ∆21

∆10

)(
1
2λΩ1ϵσ̂

+
12 −

λΩ2
1ϵ

2

8∆10
σ̂+

02

)
+ h.c.

+ diag +O(ϵ3). (5.21)

In the second step, we perform another perturbative diagonalization that removes
the |1⟩ ↔ |2⟩ transition:

S2 =
(

1− ∆21

∆10

)
λΩ2ϵ

2∆21
σ̂+

12 − h.c. (5.22)

and substitute
Ω1 = Ω2 − i

Ω̇2

∆21
. (5.23)

This gives the effective Hamiltonian

Ĥ2 =
(

∆21

∆10
− 1
)(

Ω2 − i
Ω̇2

∆21

)2
λϵ2

8∆10
σ̂+

02 + h.c. (5.24)

+ diag +O(ϵ3)
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where both single-photon transitions are removed to the leading order. Notice that
the DRAG pulse shape is independent of the relative drive amplitude λ in this
first-order approximation.

It may seem strange that the remaining coupling for the |0⟩ ↔ |2⟩ transition is
not symmetric with respect to the order of the transformations of |0⟩ ↔ |1⟩ and
|1⟩ ↔ |2⟩, although the two substitutions commute. In fact, we can perform a
transformation Ŝ3

Ŝ3 = −
( 1

∆21
− 1

∆10

) (λΩ2
2ϵ

2)
8∆10

σ̂+
02 − h.c. (5.25)

which only removes the ΩΩ̇ term and gives

H3 = 1
8λϵ

2
( 1

∆21
− 1

∆10

)( Ω̇2
2

∆21∆10
+ Ω2

2

)
σ̂+

02 + h.c.+ diag +O(ϵ3). (5.26)

Lastly, we perform the third step to suppress the remaining |0⟩ ↔ |2⟩ coupling.
To fully remove this transition one needs to solve the differential equation

(
Ω̇2

2
∆21∆10

+ Ω2
2

)
=
(

Ω̇2
3

∆21∆10
+ Ω2

3

)
− i d

dt

(
Ω̇2

3
∆21∆10

+ Ω2
3

)
∆20

, (5.27)

which is difficult because of the non-linearity. Moreover, it may result in a pulse
that does not fulfil the boundary condition, unless Ω3 is carefully chosen to ensure
that. In practice, numerical solutions may be employed to solve the equation,
though it will pose challenges for fast calibration. For simplicity, we here assume
that the pulse ramping is quasi-adiabatic i.e. Ω2

2 ≫
Ω̇2

2
∆10∆21

. For the parameters
studied in this work, with Ω̇ ≈ Ω

tr
, this threshold lies around tr ≈ 6 ns. In this case,

we can ignore the term proportional to Ω̇2
2. We then define the last transformation

that diagonalizes the |0⟩ ↔ |2⟩ transition

Ŝ4 = 1
8λϵ

2
( 1

∆21
− 1

∆10

) Ω2
2

∆20
σ̂+

02 − h.c. (5.28)

and substitute

Ω2 =
√

Ω2
3 − i

2Ω3Ω̇3

∆20
. (5.29)

Here, Ω3 = Ω(3), defined in equation (5.13), which is a continuously three-times
differentiable function and ensures that the final expression starts and ends at zero.
As a result, we suppress all three transitions up to O(ϵ3) +O(Ω̇2/∆4).

Combining the three expressions, we obtain the explicit formula for the per-
turbative recursive DRAG pulse presented in the main text. As simple as the
perturbative DRAG expression is, it may not sufficiently suppress the error if the
qubits frequencies are very close to the one of |0⟩ ↔ |1⟩ or |1⟩ ↔ |2⟩ and the
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perturbative approximation no longer holds, as shown in Figure 5.3b. To address
this limitation, we replace the substitutions for the single-photon transitions with
the exact diagonalization based on Givens rotations defined in equation (5.7). It
is important to note that the substitution F (1),G is only exact concerning the
two-level subsystem; corrections to the energy gaps and other couplings are still
disregarded. Nevertheless, it still significantly improves the performance compared
to the perturbative expressions.

5.7.2 Numerical simulation of the CR gate
In the simulation, we use an effective Duffing model [117] truncated at 4 levels

Ĥ0 = ωaâ
†â+

∑
j=1,2

ωj b̂
†
j b̂j + αj

2 b̂†
j b̂

†
j b̂j b̂j + gj(b̂j â

† + b̂†
j â), (5.30)

where b̂j and â are the annihilation operators for qubit j and the resonator,
respectively, and gj is the coupling strength. The microwave drive on qubit j is
written as

Ĥc = Re(ΩCR) cos(ωdt)(b̂†
j + b̂j) + i Im(ΩCR) cos(ωdt)(b̂†

j − b̂j), (5.31)

where ωd is the driving frequency, initially chosen as the frequency of the target
qubit. For simplicity, we use the same drive frequency for both the control and the
target qubit.

We choose the anharmonicity α = −300 MHz and gj = 80 MHz. The detuning
of the coupler from the control qubit, i.e., ω1 − ωr, is about -1.4 GHz and adjusted
such that the effective qubit-qubit coupling strength is about 3 MHz, with ZZ
crosstalk around 0.06 MHz, similar to the Transmons on the IBM platform (see
Section 5.8.4). Based on the model above, we derive the CR pulse following the
analytical expressions derived in this chapter. The effective coupling strength of
ZX and ZZ are computed using the Non-Perturbative Analytical Diagonalization
(NPAD) method [73], from which the gate time, i.e., the holding duration of the
pulse, is calculated.

When computing the fidelity in the simulation, we ignore the contribution of
the (commuting) single-qubit corrections ẐÎ and IX, because they can be easily
calibrated in the experiment. Given an ideal unitary ÛI for a two-qubit gate, the
average gate fidelity is defined as [174]

F [ÛQ] =
Tr
[
ÛQÛ†

Q

]
d(d+ 1) +

∣∣Tr
[
ÛQÛ†

I

]∣∣2
d(d+ 1) , (5.32)

where ÛQ is the full unitary truncated to the two-qubit subspace and d = 4. Because
we ignore the possible single-qubit correction ẐÎ and IX, we compute the maximal
fidelity optimized over the possible single-qubit rotation angles

F̃ = max
{θ1,θ2}

F
[
e−i(θ1 ÎX̂+θ2ẐÎ)ÛQei(θ1 ÎX̂+θ2ẐÎ)

]
. (5.33)
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Figure 5.7: Transition probabilities using different perturbative pulse substitutions.

5.8 Appendix
5.8.1 Partial suppression of transition errors
In Figure 5.7 and Figure 5.8, we compare the impact of partial suppression of
certain errors on the overall performance. We plot the transition probabilities
among the three levels, using pulses designed to suppress none, one, two and all
three of the transitions. The plots illustrate the corresponding suppression of
different transitions through the prescribed pulse substitutions. Additionally, it is
evident that a solution targeting only partial suppression inadvertently increases
other transitions due to the newly introduced high-frequency components, which
underlines the importance of the simultaneous suppression of all transitions.

5.8.2 Robustness of the recursive pulse
Superconducting qubits often suffer from the drift of the qubit frequency and the
drive strength. In the following, we investigate the performance of the derived
analytical pulse shape against those drifts. For simplicity, we assume that the drift
is constant during the CR drive. We derive the pulse shape using Ωmax and the
control qubit frequency ∆1 and then perform the two-Transmon simulation with
parameter deviations: Ωmax + ϵΩ and ∆1 + ϵ∆.

The total error transition probability is computed from the unitary evolution
and depicted on Figure 5.9. Although the drift of the drive strength causes some
oscillations, it does not significantly increase the error. A qualitative explanation
can be found in the two-level derivation: since the X and Y amplitudes drift
simultaneously, the suppression remains the same in the first-order perturbation.
Only in the next order does it come into the picture through the correction to
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Figure 5.8: Transition probabilities using the substitutions derived from the exact
two-level diagonalization for the single-photon transitions.

the energy gap via Stark shift. The transition error is increased by one order
of magnitude if the frequency drifts about 10% with respect to the qubit-qubit
detuning. Note that in practice drifts are usually much smaller, in the kHz regime.
Not surprisingly, the analytical pulse shape is not located at the region with
the absolute lowest error. Therefore, the performance will benefit from further
calibration, both in simulation and experiment. In fact, in the experiment here, we
nonetheless do not calibrate these parameters, to demonstrate the remarkable in
situ precision of the out-of-the-box pulses.

5.8.3 Amplifying the transition error
Here we present a simplified derivation of the error amplification technique for
the off-resonant error, as discussed in [155]. In particular, we demonstrate its
applicability to multi-photon transitions, such as the |0⟩ ↔ |2⟩ transition.

For simplicity, we restrict our analysis to a two-level subsystem in which the tran-
sition occurs, assuming that other error transitions are not amplified simultaneously.
The Hamiltonian is given as

Ĥ =
(
−∆

2
g
2

g
2

∆
2

)
. (5.34)

The time evolution for a duration t, given by Û = exp
(
−iĤt

)
, yields:

Û =

 cos
(

t∆′

2

)
+

i∆ sin
(

t∆′
2

)
∆′ −

ig sin
(

t∆′
2

)
∆′

−
ig sin

(
t∆′

2

)
∆′ cos

(
t∆′

2

)
−

i∆ sin
(

t∆′
2

)
∆′

 (5.35)
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Figure 5.9: The total error transition probabilities for a precalculated pulse shape
under the effect of parameter drift. The red dot marks the data point that uses
the initial parameters: Ωmax/2π = 40 MHz, α/2π = −300 MHz, ∆/2π = 110 MHz
and tr = 10 ns.

where ∆′ =
√

(∆2 + Ω2). It clearly shows in the above equation that by prolonging

the evolution time t, the population error is upper-bounded by g2 sin2(t∆′/2)
∆′2 .

According to Ref. [155], the transition error can be amplified by introducing a
virtual phase gate RZ(ϕ) between the two levels. The angle ϕ is selected to ensure
that RZ(ϕ)Û induces rotation solely around a fixed axis on the equator, with no
rotation around the Z-axis. Solving the equation under the approximation Ω≪ ∆
yields ϕ = ∆′t.

In practice, determining the required angle ϕ is not straightforward, requiring
a sweep over all possible angles to identify the resonant one. If the transition is
between states |0⟩ and |1⟩, the virtual phase is commonly implemented by shifting
the phase of the drive [175]. Here, we show that this approach remains valid when
the coupling g couples other states such as |1⟩ and |2⟩ or is a multi-photon process
like |0⟩ and |2⟩.

To this purpose, we replace g by einϕ Ωn

∆n−1
eff

and write the corresponding Hamil-
tonian

HΩ(θ) =

(
−∆

2
1
2 einθ Ωn

∆n−1
eff

1
2 e−inθ Ωn

∆n−1
eff

∆
2

)
(5.36)

where Ω is the drive amplitude with a phase θ. The corresponding unitary evo-
lution is denoted by ÛΩ(θ) = e−iHΩ(θ)t. It is then straight forward to show that
RZ(ϕ)ÛΩ(θ) = ÛΩ(θ − ϕ/n)RZ(ϕ). This shows that the virtual phase gate of angle
ϕ for this two-level subsystem can also be implemented by phase shifting the drive
Ω by −ϕ/n. Therefore, both the single photon transitions |0⟩ ↔ |1⟩, |1⟩ ↔ |2⟩ and
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Figure 5.10: The transition error under different pulse schemes for a pair of qubits
with ∆10 = 143 MHz. The data is obtained from ibm_nairobi Q1 and Q3 with the
drive amplitude is 0.3 (≈ 51 MHz), tr = 15 ns and N = 60.

the two-photon transition |0⟩ ↔ |2⟩ can be amplified by adding virtual phase gate
with different ϕ. Moreover, sweeping ϕ from 0 to 2π is expected to reveal two peaks
for the two-photon transition. Although Ref. [155] suggests preparing the target
qubit in the |+⟩ state for a better understanding of the amplification dynamics, we
omit it here as we focus solely on the dynamics of the control Transmon.

5.8.4 Data of the used Transmon qubits

In Table 5.1 and Table 5.2, we provide the data of qubits and the parameters
used for the CR drive. The coherence time, qubit frequency and the default drive
amplitude J were obtained from the IBM Quantum Platform [141] on 17th October
2023. The numbers vary from day to day but in a reasonable range. The effective
coupling strength J and the idling ZZ strength were also obtained from the default
calibration data.

For the default CR gate, the effective Hamiltonian terms and the default gate
time are measured during our calibration procedure. For the self-calibrated CR
gate, the drive amplitude is chosen empirically. Due to our limited access, we are
unable to sweep through different drive amplitudes and optimize for the optimal
gate time. Instead, the drive strength and tr are chosen empirically based on
our knowledge of the qubit-qubit detuning and the saturation of the effective ZX
coupling. Further improvements are expected through a more comprehensive and
in-depth calibration.
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Data of the self-calibrated CR gate
qubit pairs N (0, 1) L (2, 1) N (2, 1) L (5, 6)
drive amplitude (a.u.) 0.345 0.5 0.4 0.6
estimated amplitude (MHz) 70.2 56.5 59.8 59.1
tr (ns) 10 10 10 13
ZX strength (MHz) -1.89 -2.48 -2.43 -2.12
direct CNOT duration (ns) 146 114 121 135
echoed CNOT duration (ns) 227 199 206 220

Table 5.2: Data of the self-calibrated CR gate

5.8.5 Additional data on the transition error suppression
In the following, we show additional data on the validation of the recursive DRAG
pulse for suppressing the transition errors on the control qubit. We compare it to
the single-derivative DRAG pulse used in previous experiments and discuss the
calibration of multiple DRAG parameters.

In addition to the qubit pair with the qubit-qubit detuning 104 MHz shown in
Figure 5.3, we show two pairs of qubits with detuning 143 MHz and 189 MHz in
Figures 5.10 and 5.11. In both cases, the recursive drag demonstrates excellent
performance without any further calibration. Because the single-photon transition
error is not very large, there is little difference between the perturbative solution
and the Gives rotation in those two cases.

In Figure 5.3b, we compare the performance of the single-derivative drag and the
proposed recursive drag methods through simulation. In Figure 5.12, we show an
example where, despite the calibration of the drag coefficient, the single-derivative
drag fails to sufficiently suppress all errors, whereas the proposed methods exhibit
excellent performance. We plot the amplified error for different drag coefficients
with the single-derivative drag scheme with a free parameter a01. Evidently, while
the |0⟩ ↔ |1⟩ transition can be sufficiently suppressed with a properly chosen drag
coefficient, other errors, such as the |0⟩ ↔ |2⟩ transitions, remain largely unaffected.
In contrast, both recursive methods show substantial improvement, with the pulses
derived by Givens rotation achieving a perfect suppression up to the resolution of
our amplification circuits, consistent with the performance observed in the qubit
pairs illustrated in Figure 5.3e.

Although the recursive drag pulse needs little calibration for this problem, in
some scenarios, especially only perturbative drag is used, calibration of the drag
parameter may still prove useful. This can be achieved by adding a free parameter
before each correction term in the substitution formula. In Figure 5.11, we replace
the substitution for the |0⟩ ↔ |2⟩ transition in equation (5.12) to

Ω2 =
√

Ω2
3 − ia02

2Ω3Ω̇3

∆20
. (5.37)

By varying the free parameter a02, the |0⟩ ↔ |2⟩ transition can be fine-tuned.
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Figure 5.11: The transition error under different pulse schemes for a pair of qubits
with ∆10 = 189 MHz. The data is obtained from ibm_lagos Q5 and Q3 with the
drive amplitude is 0.5 (≈ 49 MHz), tr = 15 ns and N = 30.

Thanks to its recursive structure, the suppression of other transitions remains
unaffected.

This independence between different parameters is illustrated more clearly in
the simulation result in Figure 5.13. Here we also modify the perturbative drag
substitution for the |0⟩ ↔ |1⟩ transition to

ΩP
CR = Ω1 − ia01

Ω̇1

∆10
. (5.38)

We simulate the dynamics of the three-level Hamiltonian introduced in the main
text. By sweeping the drag parameters a01 and a02, we obtain the transition
error probabilities shown in Figure 5.13. The calibration of one of the drag
parameters has little effect on the other. Thus, the two parameters can be calibrated
independently with a few iterations without a full two-dimensional sweep.

5.8.6 Calibration of the CNOT gate
In the following, we detail the calibration of the CNOT gate using CR interaction.
Our calibration routine is based on the default calibration data of the Transmon
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Figure 5.12: Comparison between different DRAG schemes. Plotted are the
amplified transition errors of single-derivative DRAG pulses with varying DRAG
coefficients, alongside the two recursive DRAG pulses proposed in this chapter.
Data is obtained from ibm_lagos Q5 and Q6, with ∆ = 112 MHz, tr = 10 ns and a
drive amplitude about 40 MHz.

frequency, anharmonicity and single-qubit X gate on the IBM Quantum Platform.

Hamiltonian tomography

We present here the Hamiltonian tomography used in calibrating the CR pulse,
based on Ref. [151, 176] and the qiskit online tutorial. We start by the CR
Hamiltonian in the effective frame equation (5.14). Calibrating a CR gate involves
measuring the coefficients ν and eliminating undesired terms, achieved by selecting
an appropriate phase for the CR drive and applying a compensatory drive on the
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Figure 5.13: Transition error probability between |0⟩ ↔ |1⟩ (left) and |0⟩ ↔ |2⟩
(right) as a function of two different drag coefficients. The drag coefficient affects
the targeted error but has only little effect on the other one. The parameters
used in the simulation are α = −300 MHz, ∆10 = 110 MHz, Ωmax = 50 MHz and
tr = 12 ns.

target qubit. An example of the tomography data is shown in Figure 5.14.
To begin with, we observe that in equation (5.14), the CR dynamics involve

the rotation of the target qubit, depending on the state of the control qubit.
Therefore, characterization can be achieved by conducting single-qubit Hamiltonian
tomography on the target qubit while preparing the control qubit in states |0⟩ and
|1⟩.

In the following, we derive the equations that are used to fit the measured data
in Figure 5.14 and obtain the coefficients ν. In the Heisenberg picture, the time
evolution of an observable Ô is given by

dÔ
dt = i[Ĥ, Ô]. (5.39)

Measuring the target qubits on different bases yields the expectation values ⟨ÎX̂⟩,
⟨Î Ŷ ⟩ and ⟨ÎẐ⟩. Plugging these into equation (5.39) results in the following expres-
sions:

d
dt ÎX̂ =

(
νZY ẐẐ − νZZẐŶ + νIY ÎẐ − νIZ Î Ŷ

)
d
dt ÎŶ =

(
−νZX ẐẐ + νZZẐX̂ − νIX ÎẐ + νIZ ÎX̂

)
d
dt ÎẐ =

(
+νZX ẐŶ − νZY ẐX̂ + νIX Î Ŷ − νIY ÎX̂

)
. (5.40)

Assuming that the control qubit is prepared in a computational basis and remains
unchanged during the evolution, these equations can be further simplified with the
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Figure 5.14: Experimental Hamiltonian tomography data of the CR pulse, before
(top panel) and after (bottom panel) the calibration. The blue (red) colour corre-
sponds to the dynamics of the target qubits under the CR drive when the control
qubit is in |0⟩ (|1⟩).

expectation values on the target qubit:
d
dt ⟨X̂⟩ = (bνZY + νIY ) ⟨Ẑ⟩ − (bνZZ + νIZ) ⟨Ŷ ⟩

d
dt ⟨Ŷ ⟩ = − (bνZX + νIX) ⟨Ẑ⟩+ (bνZZ + νIZ) ⟨X̂⟩

d
dt ⟨Ẑ⟩ = (bνZX + νIX) ⟨Ŷ ⟩ − (bνZY + νIY ) ⟨X̂⟩, (5.41)

where b = 1 (b = −1) if the control qubit is in state |0⟩ (|1⟩). To further simplify
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the notation, we define ω(b)
X = bνZX + νIX and the same for Y and Z axis.

The differential equation can be solved by exponentiating the generator

G(b) =

( 0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

)
(5.42)

where we omit the upper script (b) of ω for simplicity. Providing that the target
qubit is always initialized in the ground state, the solution is as follows:

⟨X̂(t)⟩ = 1
ω2 (−ωXωZ cos(tω) + ωωY sin(tω) + ωXωZ)

⟨Ŷ (t)⟩ = 1
ω2 (−ωωX sin(tω)− ωY ωZ cos(tω) + ωY ωZ)

⟨Ẑ(t)⟩ = 1
ω2

(
(ω2

X + ω2
Y ) cos(tω) + ω2

Z

)
, (5.43)

where ω =
√
ω2

X + ω2
Y + ω2

Z . These equations are then used to fit the measured
data.

Although the above derivation is based on a constant drive pulse, it also applies
to our time-dependent pulses in this chapter. During a tomography experiment,
the time-dependent pulse ramping period is fixed while the holding time is adjusted
from zero to a maximal duration. The tuning-up (-off) period of the CR drive,
brings the system into (out of) the effective frame, while the tomography assesses
the dynamics of the holding period. Additionally, the variation in the constant
phase of the drive pulse merely affects the rotation axis of the target qubit without
changing the underlying dynamics.

In practical applications, fitting trigonometric functions with undetermined
oscillation frequencies can be challenging, depending heavily on the initial values.
Therefore, an iterative fitting procedure is employed. The dynamics of ⟨Ẑ(t)⟩ are
first fitted to obtain a good estimation of ω. Then, the other two equations are
included one by one, forming an iterative fitting process. In addition, it is helpful
to not force the renormalization ω2

X + ω2
Y + ω2

Z = ω2 at the beginning. Instead, it
is used to fine-tune the result in later stages, leveraging the previous values as an
initial guess.

Calibration of the echoed CNOT gate

The calibration process for the echoed CNOT gate involves three main steps:

1. Adjusting the phase of the CR drive and calibrating the target compensation
drive. This step ensures that the ZY , IX and IY terms are removed from
the effective Hamiltonian in equation (5.14).

2. Calibrating the IY -DRAG amplitude and determining the pulse detuning.
In this step, three different IY -DRAG amplitudes are sampled. The zero
points of the ZZ coupling strength are determined through a linear fit (see
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Figure 5.4). Simultaneously, the measured IZ coefficient provides information
about the detuning of the two drives.

3. Computing the pulse duration from the tomography data. In particular, for
an echoed CNOT gate, each CR pulse should be configured to last one-eighth
of the period (see Figure 5.14), since the target qubit rotates towards the
opposite direction depending on the state of the control. This ensures the
generation of a precise 90-degree ZX rotation.

While the second step requires only a linear fit, calibration of the CR and
target drive in step one cannot be completed in one round in many cases because
of the nonlinearity. Therefore, we iterate a few steps until the unwanted terms
are suppressed below a certain threshold. In the following, we derive the update
function of one calibration step.

We first define the following notation

ΩCR = |ΩCR|eiθ1 := ΩCRX + iΩCRY (5.44)
ΩT = |ΩT|eiθ2 := ΩIX + iΩIY . (5.45)

The notation introduced provides a clear separation of amplitude and phase in
the pulse design. It’s important to note that the time dependence (pulse shape) is
not included in this definition and is not changed during the calibration. Here, Ω
represents only the maximal amplitude and a constant phase of the pulse.

The iterative calibration process begins with a predefined |ΩCR|, with θ1, |ΩT|
and θ2 all set to zero, to be updated iteratively. At each iteration k, we perform two
tomography experiments. The first tomography is performed with the calibrated
parameters from the previous step and measures different coupling coefficients ν of
the Hamiltonian

Ĥ(ΩCR,ΩT) = νZX ẐX̂ + νZY ẐŶ + νIX ÎX̂ + νIY Î Ŷ . (5.46)

Here we omit the ZZ and IZ terms as they are not the target in this calibration.
If only the ZX term is significant and all other three terms small enough, the
calibration terminates.

Given the first tomography, the phase of the CR drive for the k + 1 iteration
can be easily adjusted by

θ
(k+1)
1 = θ1 − arctan νZY

νZX
(5.47)

where on the right-hand side we omit the upper index for step k.
To calibrate the compensation target drive, a second tomography experiment is

performed with a different Ω′
T and results in the following Hamiltonian

Ĥ(ΩCR,Ω′
T) = νZX ẐX̂ + νZY ẐŶ + ν′

ixÎX̂ + ν′
IY Î Ŷ (5.48)

with Ω′
T = |ΩT + ∆Ω|eiθ2 , introducing a change ∆Ω in the drive amplitude.

Note that the coefficients of the coupling terms do not change because we only
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changed the target drive amplitude. This step is crucial for precisely calibrating
the compensation target drive because in the qiskit user interface, the amplitude
ΩT is defined in a renormalized arbitrary unit from zero to one.

With the above two tomography experiments, the new amplitude Ω(k+1)
T and

phase θ(k+1)
2 of the target drive can be computed as follows. First, the difference

between the two measured Hamiltonian yields
νT − ν′

T =
(
ΩT − Ω′

T
)

eiθ2CTe−iϕT (5.49)

where νT = νIX + iνIY and ν′
T = ν′

IX + iν′
IY . This follows from the assumption

that locally the drive amplitude and the coefficients of the effective Hamiltonian
show a linear relation characterized by CTe−iϕT . Similarly, for the desired effective
Hamiltonian terms with the coefficients denoted by νT,ideal, we have

νT,ideal − νT =
(

Ω(k+1)
T eiθ

(k+1)
2 − ΩTeiθ2

)
CTe−iϕ2 . (5.50)

The solution is given by:

Ω(k+1)
T eiθ

(k+1)
2 = ΩTeiθ2 + νideal − ν

ν − ν′ (ΩT − Ω′
T)eiθ2 . (5.51)

This equation provides the updated parameters for the next iteration in the cali-
bration process. If θ(k+1)

1 is updated, the update θ(k+1)
1 − θ(k)

1 must also be added
to the target drive θ(k+1)

2 .

Calibration of the direct CNOT gate

The calibration process for the direct CNOT gate is based on the echoed CNOT
calibration and involves two additional steps.

First, we adjust the target drive such that νIX = νZX . Essentially, we aim for
the target qubit to rotate exclusively when the control is in the state |1⟩. This
can be easily implemented with the previously introduced iterative calibration
process by setting νideal = νZX in equation (5.51). It is noteworthy that, in this
case, the tomography experiment with the control qubit in state |0⟩ yields minimal
information and can be omitted.

Following the target drive calibration, the next step involves calibrating the
phase shift on the control qubit. This phase shift is caused by the Stark shift
induced by the CR drive. Unlike the echoed gate, where the phase accumulated is
automatically removed by the echoing configuration, the direct gate requires explicit
calibration of this phase shift. To accomplish this, we employ the circuits depicted
in Figure 5.15a and b. The first circuit in Figure 5.15a applies 2N uncalibrated
CR gate, each combined with a RZ(ϕ) rotation on the control. This gate sequence
is sandwiched by Hadamard gates to measure the accumulated phase. The qubits
return to the initial state only if the CR gate combined with the rotation gives a
CNOT or a CNOT with a 180-degree rotation. To select the correct result, we use
the verification circuit depicted in Figure 5.15b, which returns to the original state
only for the correct CNOT gate. An example of the calibration data is shown in
Figure 5.15c.
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Figure 5.15: Calibration of the Z phase on the control qubit. (a) Angle calibration
circuit for the Z phase. (b) Verification circuit for the Z phase. (c) Example of the
calibration data. The first 4 rows correspond to the circuit a while the last row is
the result of the circuit b.



6
Leakage suppression in transmon qudits with DRAG

Qudits, generalizations of qubits to multi-level quantum systems, offer
enhanced computational efficiency by encoding more information per
lattice cell, avoiding costly swap operations and providing even expo-
nential speedup in some cases. Utilizing the d-level manifold, however,
requires high-speed gate operations because of the stronger decoherence
at higher levels. While analytical control methods have proven effective
for qubits in achieving fast gates with minimal control errors, their
extension to qudits is nontrivial due to the increased complexity of
the energy level structure arising from additional ancillary states. In
this chapter, we present a universal pulse construction for generat-
ing rapid, high-fidelity unitary rotations between adjacent qudit levels.
Control errors in these operations are effectively analyzed within a four-
level subspace, including two leakage levels with approximately opposite
detuning. By identifying the optimal degrees of freedom, we derive
concise analytical pulse schemes that suppress multiple control errors
and outperform existing methods. Remarkably, our approach achieves
consistent coherent error scaling across all levels, approaching the quan-
tum speed limit independently of parameter variations between levels.
Validation on transmon circuits demonstrates significant improvements
in gate fidelity for various qudit sizes aiming for 10−4 error.

This chapter is part of a manuscript, coauthored with F. A. Càrdenas-López, Adrian Lupascu,
and Felix Motzoi, Universal pulses for superconducting qudit ladder gates. [177]. The thesis
author derived the DRAG expressions and the four-level effective Hamiltonians, composed most
of the figures, with the exceptions of Figures 6.1d, 6.7, and 6.8, and contributed significantly to
the writing of the manuscript.
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6.1 Introduction
Quantum computation and quantum information processing protocols often rely
on qubits, or two-level systems, as the fundamental units of computation due to
their simplicity and close analogy to classical computing. However, most quantum
systems comprise more than just two levels. These additional quantum levels can
also be used as an information register, which is known as a qudit, a generalization
of the qubit to a d-level system. Exploring the full Hilbert space of qudits enables
more efficient computation by increasing the amount of information stored per
quantum unit.

Qudit-based quantum computation offers several known advantages over qubit-
based approaches. For instance, a d-level system can encode log2(d) qubits [178].
This has been exploited for efficient compilation of arbitrary unitaries, requiring an
exponentially reduced number of circuit layers [179–183], to simulate bosonic modes
for studying light-matter processes [184, 185] and lattice gauge theories [186–188],
for enhancing the robustness in quantum cryptography [189, 190], and for simplified
implementation of quantum error correction protocols [191–193]. In general, the
larger density of registers means that the connectivity of qubit-based architectures
is increased, since neighbouring qudits can share up to d2 level couplings. Qudit
processors have been implemented across various physical platforms, including
trapped-ions [194–197], Rydberg atoms [198], ultracold atomic mixtures [199],
molecular spins [200, 201], photonic systems [202–206] and superconducting cir-
cuits [162, 207–213]; such implementations contribute to significant progress on
qudit-based quantum computation.

Despite these advancements, maintaining coherent control of all the qudit levels
poses complex challenges. In transmon superconducting circuits, where the quantum
system is represented by a non-linear oscillator [41], each qudit operation needs to
be addressed differently due to the varying surrounding level structure. Compared
to a qubit operation, the presence of additional leakage channels significantly, limits
the gate performance, as shown in Figure 6.1a-c. For instance, it has been reported
that the gate time of a single-qutrit gate is around 30 ns [162, 208, 211], which is
three times longer than that required for single-qubit gates with state-of-the-art
quantum control techniques [134]. Therefore, developing quantum control protocols
for qudits is crucial for making qudit computation practical. Of particular relevance
is the Derivative Removal by Adiabatic Gate (DRAG) method [64, 66, 67, 132],
successfully employed in superconducting qubit systems to reduce leakage and
phase errors. DRAG’s simplicity and flexibility allow engineering efficient pulses
with easy-to-calibrate parameters, making it ubiquitous in the superconducting
qubits platform [94, 134, 135, 143, 214]. The same advantages remain even with
the presence of multiple error sources, whereby multiple DRAG corrections can be
combined, offering efficient yet compact solutions [67, 136].

In this chapter, we extend the DRAG framework to engineer universally ap-
plicable and high-precision analytical control pulses for qudit systems within a
ladder structure. The ladder gateset that connects levels k and k + 1 is suffi-
cient for universal gates within the qubit. We show that porting the widely-used
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single-derivative DRAG method, as previously suggested in [66] and experimentally
implemented in [215], offers little benefit in the qudit case because it is overcon-
strained in removing multiple leakage channels. To address this, we introduce a
recursive DRAG approach that incorporates higher-order derivatives, providing new
degrees of freedom that are used to suppress both single- and multi-photon errors.
Our systematic study conducted on a transmon circuit across various qudit sizes
demonstrates that higher-level control can be designed within a variable four-level
subspace involving two nearest-neighbour interactions. Despite the presence of
multiple parameters in the circuit description, we find a universal behaviour in
the pulse-specific quantum speed limits. In particular, the speed limits collapse
to the same times irrespective of all but one system parameter, but are strongly
dependent on whether certain multi-photon transitions are suppressed. We observe
significant improvements in gate performance and successfully reduce gate times
to mitigate dephasing caused by voltage fluctuations during gate implementation.
These results are broadly applicable to any qudit platform with multiple connected
ancillary levels.

In the following, we start with the transmon model and derive the four-level
effective Hamiltonian in Section 6.2. Next, we introduce and explore the recursive
DRAG method in detail and perform a systematic study of its performance in
Section 6.3. Significant improvement in fidelity is observed across a wide range of
parameters, with a universal behaviour across all levels independent of parameter
variations between levels. In Section 6.4, we discuss other potential control errors
beyond the two-level transition and provide a summary of our findings in Section 6.5.

6.2 Qudit Model for universal quantum gates
6.2.1 Native gate set for superconducting qudit
Our objective is that, for a transmon system, each individual ladder transition
between adjacent states, |k⟩ and |k + 1⟩, can be selectively controlled. This allows
arbitrary unitaries on SU(d) to be implemented. Since a calibrated π/2 gate
combined with a virtual Z gate [175] is a complete native gate set, as we show
in appendix 6.6.1, our primary focus in the following study is on the π/2 gate.
In addition, we also present results for the π gate, which represents the most
challenging Givens rotation for a fixed gate duration due to its requirement for the
strongest drive. Overall, these methods can be extended to rotations of arbitrary
angles, which can be very helpful for reducing circuit compilation depths [216].

6.2.2 The transmon Hamiltonian
In this subsection, we derive the effective Hamiltonian for selectively driving the
|k⟩ ↔ |k + 1⟩ transition in a superconducting transmon. A transmon nonlinear
oscillator is described by the following Hamiltonian [41]

Ĥ = 4EC [n̂− ng(t)]2 − EJ cos(φ̂) (6.1)
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Figure 6.1: Energy structure of driving a two-level transition in a qudit system. (a)
A typical energy structure of a transmon system. Energy levels and error transitions
for (b) the ground and first excited states, and (c) general ladder transition between
higher levels in the rotating frame. (d) The number of levels that can be used as a
qudit quantum register as a function of the anharmonicity. The upper bound is set
by the decoherence introduced by charge fluctuations. The detailed discussion can
be found in appendix 6.6.2.

where EC and EJ represent the charge and Josephson energies, respectively, and
ng(t) is the dimensionless gate voltage. The operator n̂ is the charge operator,
indicating the number of Cooper pairs on the island, and φ̂ denotes the phase
operator. For implementing single-qudit operations, we capacitively drive the
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transmon using ng(t) = n0(t) cos(ωdt) resulting in the Hamiltonian

Ĥctrl = Ω(t) cos(ωdt)n̂ (6.2)

where Ω(t) = −8ECn0(t) is the drive envelope, and ωd is the drive frequency.
When only the lowest few energy levels are considered, the transmon can be

modelled as an approximate Duffing oscillator [6, 117]. In this model, the control
operator is expressed as n̂ ∝ (b̂† + b̂), where b̂ is the annihilation operator of a linear
oscillator. Consequently, the control Hamiltonian adopts a ladder configuration,
connecting states |k⟩ ↔ |k ± 1⟩. The transmon Hamiltonian without external drive
then simplifies to

Ĥduf
0 = ωq b̂

†b̂+ α

2 b̂
†b̂†b̂b̂, (6.3)

with ωq =
√

8EJEC −EC and α = −EC . As long as the states are in the potential
well, the dominant coupling is still this ladder coupling between the adjacent levels,
as will be shown later. However, the eigenenergies and coupling strengths deviate
from the Duffing model at higher levels due to the higher-order expansion of the
cosine term in equation (6.1) [117].

An accurate effective model requires exact diagonalization up to a truncation
level Nmax, which gives

H0 =
Nmax∑
k=0

ωk |k⟩ , (6.4)

and for the charge operator:

n̂ =
Nmax−1∑

k=0

[
nk,k+1 |k⟩⟨k + 1|

+
∑
j=1

nk,k+2j+1 |k⟩⟨k + 2j + 1|
]

+ h.c. (6.5)

Unlike the Duffing oscillator model, the n̂ operator in the effective frame exhibits
additional transitions, these non-zeros matrix elements are related to the under-
lying parity symmetry from the Mathieu functions, the formal solution of the
Hamiltonian in equation (6.1). Here, we distinguish between the ladder coupling
between |k⟩ ↔ |k + 1⟩ and high-order couplings. The latter are typically orders of
magnitude smaller and are suppressed by the rotating wave approximation, as we
will demonstrate later.

From this point, it is more convenient to express the Hamiltonian in the rotating
frame defined by the transformation R = exp

(
−iωdt

∑
k
k |k⟩⟨k|

)
, where ωd is the
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selected driving transition frequency. This leads to the following total Hamiltonian:

Ĥ =
Nmax∑
k=0

∆̃kΠ̂k + Ω(t) cos(ωdt)

[
Nmax−1∑

k=0

∑
j=1

nk,k+2j+1 |k⟩⟨k + 2j + 1| e(2j+1)iωdt

+
Nmax−1∑

k=0

nk,k+1 |k⟩⟨k + 1| eiωdt + h.c

]
, (6.6)

where ∆̃k = ωk − kωd is the detuning between the k-th level with the k-th driving
frequency harmonic. The maximal j is chosen such that k + 2j + 1 falls within the
truncated levels. In the rotating frame, the coupling terms oscillate rapidly except
for the ladder coupling between |k⟩ ↔ |k + 1⟩. Therefore, we can neglect these
rapidly oscillating terms within the rotating wave approximation (RWA), leading to

Ĥrwa =
Nmax∑
k=0

∆̃kΠ̂k + Ω(t)
2

Nmax−1∑
k=0

(nk,k+1 |k⟩⟨k + 1|+ h.c). (6.7)

In this Hamiltonian, we recover the desired ladder coupling, albeit with renormalized
eigenenergies and coupling strengths. To target a specific ladder transition (k, k+1),
the drive frequency is chosen such that ∆̃k = ∆̃k+1 for the desired k. The
nonlinearity, captured by the remaining ∆̃k − ∆̃j for j /∈ {k, k + 1}, permits
selective driving of any transition between neighbouring levels.

In addition to the Hamiltonian, we also consider the possible decoherence of
the higher levels. To use the quantum states as a qudit, we demand that they
are robust against charge fluctuations, which increase exponentially up the ladder.
This condition sets an upper bound on the maximal number of usable states Nstates,
which a priori depends on the ratio EJ/EC , and is graphed in Figure 6.1d as a
function of anharmonicity α ≈ −EC . A higher EJ corresponds to a deeper potential,
allowing for more confined states, while a lower EC reduces charge fluctuations.
However, in such a regime we also have decreases in the frequency difference between
transitions, making selective driving more challenging. Instead of using the EJ/EC

ratio, it is more natural to select the usable states in terms of their coherence
times T1 and Tϕ. In our case, as we consider fixed-frequency transmons, the main
source of error will correspond to capacitive losses and dephasing due to charge
fluctuations. As an optimistic forward-looking estimation, we set the upper bound
of Tϕ for the highest level Nstates to be around 100 µs such that we are able to
potentially achieve gate error below 10−4 for a 10 ns gate. For the parameters we
choose, this corresponds to a charge dispersion of about 10−3 GHz. The details
on the calculation of the charge fluctuation and coherence times are presented in
appendix 6.6.2. In principle, for certain quantum operations, decoherence could
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be partially mitigated by applying dynamical decoupling methods [217]. Here,
however, we consider more generally using quantum control shaping to speed up
the operation time and reduce the irreversible effect of decoherence.

a)

b)

Figure 6.2: Properties of transmon qudits. (a) Detuning between the target
subspace and the leakage levels in the rotating frame. The qubit frequency and
anharmonicity of the ground state are 5 GHz and −100 MHz, corresponding to
EJ/EC ≈ 355. For k = 0, ∆k = α. (b) The small energy gap between the two
leakage levels |k − 1⟩ and |k + 2⟩ for the first five transitions. This is much smaller
than ∆k, leading to the energy structure shown in Figure 6.1. The grey vertical
line marks the parameters used in (a).

6.2.3 Four-level effective model

Although the full qudit has many levels, to drive a |k⟩ ↔ |k + 1⟩ transition many
of the states are very far away detuned and thus play little role in the dynamics.
Therefore, we focus on nearest-neighbour transitions and further simplify the model
to a four-level system. This choice is validated by the numerical simulations that
follow. We define ωd = ωk+1 −ωk − δd, with δd denoting a designed small detuning
between the drive frequency and the energy separation. The special case for qubits,
k = 0, has been studied over the last decade [65]. The primary control error
arises from the coupling to the nearest neighbouring levels, |k − 1⟩ and |k + 2⟩, as
illustrated in Figure 6.1c. To simplify the analysis, we truncate the Hamiltonian to
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a four-level subsystem, described by

Ĥ
(4)
k =


∆k

λk−1Ω̄0
2 0 0

λk−1Ω0
2 δd

λkΩ̄0
2 0

0 λkΩ0
2 2δd

λk+1Ω̄0
2

0 0 λk+1Ω0
2 3δd + ∆k + δk−1,k+2

 , (6.8)

where Ω̄0 denotes the complex conjugate of the complex pulse envelope. For clarity,
a constant identity operator has been subtracted.

The two middle levels represent the targeted transition, separated by the small
drive detuning δd. The first and last levels correspond to the potential leakage levels
|k − 1⟩ and |k + 2⟩. An important observation is that, due to the weak nonlinearity,
the level separation between the two leakage levels, ∆k = ωk−1 − 2ωk + ωk+1, is
approximately equal to the anharmonicity |α| and only increases slightly as the
levels rise. This is illustrated in Figure 6.2a, with the base case ∆0 = α. The
difference between them is given by δk−1,k+2 = 3δd − ωk−1 + 3ωk − 3ωk+1 + ωk+2.
For a harmonic or Duffing oscillator, it is straightforward to verify that δk−1,k+2
is zero. However, for a transmon oscillator, δk−1,k+2 takes a small but nonzero
value, as illustrated in Figure 6.2b, which is plotted as a function of EJ/Ec and the
anharmonicity. The curve is truncated when the eigenstate’s dispersion noise reaches
10−3 GHz, where the qudit coherence time drops below a minimum threshold (see
appendix 6.6.2). Within this range, the δk−1,k+2 is much smaller than ∆k, as
depicted in Figure 6.1c.

The off-diagonal coupling term in equation (6.8) shows a similar structure as
the Duffing model. The term λk denotes the renormalized drive strength between
level k and k + 1, given by λk = nk,k+1/|n0,1|, which equals

√
k in the Duffing

approximation. Therefore, the corresponding four-level system has the structure
depicted in Figure 6.1c. This model holds as long as the state remains within the
potential well and the eigenenergy’s dispersion to charge noise is sufficiently small.

6.3 Recursive DRAG pulse for qudit gates
For the lowest two levels in a transmon, |0⟩ and |1⟩, the system reduces to the
well-studied single-qubit gate of the transmon qubit. The research on controlling
this simple model led to the development of the widely-used DRAG technique [64,
66, 67, 132], with a particular focus on minimizing leakage to state |2⟩, as illustrated
in Figure 6.1b. However, beyond the first two levels, higher-level transitions present
different level structure and control errors, as shown in Figure 6.1c.

Similar to the well-studied |0⟩ ↔ |1⟩ transition, residual couplings between the
target subspace |k⟩ and |k + 1⟩ and the ancillary levels inevitably lead to control
errors such as leakage and Stark shifting, especially when attempting to shorten
gate times to reduce decoherence. An overview of the error budget is provided in
Figure 6.3a, indicating the leading contributions. Moreover, to incorporate more
levels into the qudit, the nonlinearity ∆k ≈ α needs to be reduced to protect
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the state from charge noise (Figure 6.1d), which further complicates the control
scheme. To address these challenges, we introduce the recursive DRAG pulse, which
accelerates gate speeds while maintaining sufficiently low control errors. In the rest
of this chapter, we demonstrate how the DRAG method can be generalized for
higher-level transitions and examine its performance.

6.3.1 Single-derivative DRAG and its limitation
The most widely used pulse shape is the single-derivative DRAG pulse [64]

Ω− ia Ω̇
∆ , (6.9)

where a derivative term is introduced to suppress unwanted off-resonant transitions
between two levels separated by ∆. In a semiclassical approximation, this approach
can be interpreted as engineering a zero point in the spectrum corresponding to
∆ [67]. In practice, a free parameter a is often calibrated to account for imperfect
knowledge of the Hamiltonian model and higher level error contributions [64, 66].
In addition, a drive with a constant detuning parameter δd has been used to correct
phase errors, enabling high-fidelity single-qubit gates [67, 134].

However, when driving the |k⟩ ↔ |k + 1⟩ transition in a qudit as described in
equation (6.8), both leakage levels |k + 2⟩ and |k − 1⟩ must be considered. In this
case, the single-derivative DRAG as given in equation (6.9), lacks sufficient degrees
of freedom to address all sources of error [65]. For instance, if we choose a specific
parameter set where δk−1,k+2 = 0 and λk−1 = λk = λk+1 = 1, the first derivative
term provides no improvement at all, as shown in Figure 6.3b, with the leakage
population to state |j⟩ defined by

Lj = 1
4

∑
l∈{k,k+1}

(
|Ul,j |2 + |Uj,l|2

)
. (6.10)

This overconstraining occurs because the energy separations for the two leakage
levels have opposite signs, i.e., E|k⟩−E|k−1⟩ ≈ −(E|k+2⟩−E|k+1⟩). This limitation
applies to all ladder transitions with k ≥ 1 in the nonlinear oscillator because
δk−1,k+2 is typically small compared to the anharmonicity (see Figure 6.2b).

6.3.2 General DRAG correction for a n-photon transition
As shown in Figure 6.3, a single degree of freedom is insufficient to simultaneously
manage both leakage transitions. To address this limitation, an effective strategy
involves incorporating higher-order derivative terms [67, 136]. This approach can
be interpreted as a superadiabatic transformation [218], wherein a second adiabatic
frame is derived, enabling the introduction of new time-dependent control functions
proportional to the second derivative of the original drive shape. In the presence of
multiple leakage levels, DRAG corrections can be tailored for each leakage coupling
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a)

b)

Figure 6.3: Control error in driving ladder transitions in a transmon qudit. a)
Estimated error budget of driving a |1⟩ ↔ |2⟩ π rotation using a Hann pulse with
an anharmonicity of α/(2π) = −200 MHz. The phase and amplitude errors are
estimated by optimizing with constant detuning and maximal drive amplitude.
Note that the error is plotted on a logarithmic scale, e.g., the two leakage errors
are of the same order of magnitude. b) The leakage error calculated via Eq. 6.10
in a regime where the single-derivative DRAG [66] faces limitations and offers no
improvement, even with an optimized DRAG coefficient. Parameters used are
λk−1 = λk = λk+1 = 1, δk−1,k+2 = 0 and tf = 15ns. The pulse is a single-derivative
DRAG shape Ω− aΩ̇/∆k, with Ω the standard Hann pulse.
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and chained together. In the following, we first present the general formulation and
then derive the specific solution to this problem.

For an nth-order coupling Ωn/∆n−1
eff between two levels separated by ∆, the

Hamiltonian in the two-level subspace is given as

Ĥ = −∆
2 σ̂z +

(
Ωn

∆n−1
eff

σ̂+
jk

2 + h.c.
)
. (6.11)

Assuming Ωn/∆n−1
eff ≪ ∆, we perform a perturbative expansion with the antihermi-

tian generator Ŝ(Ω̃) = Ω̃n

2∆∆n−1
eff

σ̂+
jk−h.c. The time-dependent frame transformation

is given as
Ĥ ′(Ω) = V̂ (Ω̃)Ĥ(g)V̂ †(Ω̃) + i

˙̂
V (Ω̃)V̂ †(Ω̃) (6.12)

with V̂ (Ω̃) = eŜ(Ω̃). This transformation yields

Ĥ ′(Ω) =i ˙̂
S(Ω̃) + Ĥ(Ω) + [Ŝ(Ω̃), Ĥ(Ω)] + · · · (6.13)

≈− ∆
2 σ̂z + 1

∆n−1
eff

(
Ωn − Ω̃n + i

d
dt

Ω̃n

∆

)
σ̂+

jk

2
+ h.c.,

where we keep only the leading-order perturbation. Following from the equation
above, the DRAG pulse is given by

Ωn = Ω̃n − i d
dt

Ω̃n

∆ . (6.14)

Therefore, we can derive a drive pulse Ω resistant to this error based on the initial
shape Ω̃ and its derivative.

To ensure that the unitary evolution remains consistent under the frame trans-
formation in equation (6.12), it is crucial that the generator Ŝ vanishes at the
beginning and end of the evolution. To achieve this, we use the following initial
pulse shape:

ΩI(t) = Ωmax

[ 1
16 cos

[
6π t
tf

]
− 9

16 cos
[
π

2t
tf

]
+ 1

2

]
, (6.15)

with tf the gate time and Ωmax the drive amplitude. For comparison, we also define
the widely used Hann pulse:

ΩHann(t) = sin
[
πt

tf

]2
, (6.16)

which will be used as a baseline to benchmark the control schemes.
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6.3.3 First-order (linearized) solution for qudits

To manage the two different leakage channels with opposite energy gaps as shown in
Figure 6.1c and Figure 6.3b, two degrees of freedom are required. The leading-order
leakage error in equation (6.8) is associated with the ladder couplings between
|k − 1⟩ ↔ |k⟩ and |k + 1⟩ ↔ |k + 2⟩. Both of these are first-order transitions with
n = 1 in equation (6.11). To address the two errors, two DRAG corrections can be
introduced recursively [67, 136] as

Ω0 = Ω1 − i
Ω̇1

∆l
, (6.17)

Ω1 = Ω2 − i
Ω̇2

∆h
, (6.18)

where ∆h = E|k+2⟩ − E|k+1⟩ and ∆l = E|k⟩ − E|k−1⟩ are the upper and lower
adjacent levels, respectively. For Ω2 we use ΩI in equation (6.15). The detailed
derivation based on perturbation theory is provided in appendix 6.6.4. Each of
these expressions is designed to address one leakage pathway, and their order is
interchangeable due to the linearity of derivatives.

This is different from the high-order perturbative solution proposed in Ref. [66],
where no second derivatives were introduced and the result is only a compromise
between different errors. This recursive formulation suppresses both errors simulta-
neously to the leading order and can be extended with additional correction terms
if more ancillary levels are involved [67]. Semiclassically, it can be understood as
engineering two zero points on the classical spectrum of the pulse. We refer to this
DRAG pulse as the DRAG2 pulse. Notably, for a weakly nonlinear oscillator where
∆l ≈ −∆h, the imaginary part of the correction becomes small, and the real part
dominates:

Ω0 ≈ ΩI + Ω̈I

∆2
l

≈ ΩI + Ω̈I

∆2
h

. (6.19)

Apart from the leakage error, two other errors, the phase and amplitude errors,
must also be addressed to achieve the desired rotation. For a typical qubit operation
between |0⟩ ↔ |1⟩, the phase error comes from both the Stark shift caused by the
|2⟩ state and the non-commutativity of the imaginary DRAG correction term. For
transitions involving higher levels, the Stark shift is influenced by both the higher
and lower adjacent levels. Because the phase accumulation on the states |k⟩ and
|k + 1⟩ have the same sign, the overall accumulated phase error in this two-level
transition is smaller compared to driving |0⟩ ↔ |1⟩ [214]. Experimentally, this small
phase error is often mitigated by applying a constant detuning to the drive [134].
The correction of the drive shape also affects the rotation angle. To compensate
for this, a small correction term needs to be added, Ω2 ← Ω2 + Ωamp. Similar to
the phase correction, this amplitude error can also be approximately mitigated by
calibrating the maximal drive amplitude Ωmax.
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Figure 6.4: Gate infidelity as a function of duration for different drive schemes
driving the |1⟩ ↔ |2⟩ transition, with α/(2π) = −200 MHz and ω10/(2π) = 5 GHz.
The DRAG2 pulse is defined in equations (6.17) and (6.18) and the DRAG4 pulse
in equations (6.20) and (6.21).

6.3.4 Second-order solution for qudit

Although the two couplings between |k − 1⟩ ↔ |k⟩ and |k + 1⟩ ↔ |k + 2⟩ are
suppressed by the DRAG2 correction, under a strong drive the higher-order tran-
sitions between |k − 1⟩ ↔ |k + 1⟩ and |k⟩ ↔ |k + 2⟩ may also play a role. These
second-order transitions arise from diagonalizing the direct ladder couplings and are
proportional to Ω2 (see appendix 6.6.4). Following the general DRAG expression
in equation (6.14), this leads to the chained second-order correction:

Ω2 =
√

Ω2
3 − i

2Ω3Ω̇3

∆h
(6.20)

Ω3 =
√

Ω2
4 − i

2Ω4Ω̇4

∆l
(6.21)

where Ω4 is again taken from ΩI in equation (6.15). We refer to this pulse, combined
with the two corrections in equations (6.17) and (6.18) as the DRAG4 pulse.

The second-order corrections introduced above commute with each other but
do not commute with the first-derivative corrections. It is important to note that
in the recursive DRAG formulation, the second-order correction is applied first
to the initial pulse. This ensures that the dynamics in the final effective frame
are governed by the initial pulse. This ordering is the reverse of the order of
perturbation.
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6.3.5 Performance benchmarking
To demonstrate the performance of the recursive DRAG pulse, we simulate the
time evolution for various gate durations and compare different drive schemes. We
use the analytically derived DRAG pulse while numerically calibrating a constant
detuning δd and amplitude Ωmax. The simulation is performed using the full
Hamiltonian, truncated at Nmax, which is much larger than the qudit size. The
average gate fidelity is calculated as [174]

F [ÛQ] =
Tr
[
ÛQÛ†

Q

]
d(d+ 1) +

∣∣Tr
[
ÛQÛ†

I

]∣∣2
d(d+ 1) , (6.22)

with ÛQ representing the truncated unitary within the two-level subspace for the
targeted transition and ÛI the ideal π and π/2 rotation gates. Note that this
fidelity only includes deviations in the gate quality within the two-level subspace
and error leakages from the target states |k⟩ and |k + 1⟩. Error dynamics that may
occur on other levels are discussed in Section 6.4.

In Figure 6.4, we compare the gate fidelity between standard Hann pulse,
DRAG2 and DRAG4 pulses, for π and π/2 gates on |1⟩ ↔ |2⟩. For short gate
durations, below 25 ns, each successive correction improves fidelity by one to two
orders of magnitude. For longer gate times, the error is primarily dominated by
the phase and amplitude error, which are suppressed by the constant detuning
and amplitude recalibration. The DRAG4 corrections are effective until the gate
time is reduced to below 7 ns, where the ratio Ωmax/∆ approaches one and the
perturbative assumption breaks. This improvement can also be examined by fixing
a target fidelity and examining the minimum gate time required to achieve it. For
instance, with a target fidelity of 10−4, the DRAG pulse reduces the gate duration
to 10 ns from 30 ns for a π/2 gate, and from more than 40 ns to 15 ns for a π gate.

Generalizing the analysis to arbitrary |k⟩ ↔ |k + 1⟩ transitions, we apply the
same DRAG construction and repeat the benchmarking for different k values.
Figure 6.5a shows the fidelity improvement for three different anharmonicities α
and gate times. As the anharmonicity decreases, the system more closely resembles
a linear oscillator, allowing more levels to be used as quantum registers without
significant coupling to environmental noise. However, the energy difference between
each level, roughly proportional to the anharmonicity, also decreases. Therefore,
we increase the gate time proportionally, inversely to the reduced anharmonicity.
The results indicate that the improvements provided by the DRAG corrections for
general |k⟩ transitions with varying anharmonicity are analogous to those observed
for |1⟩ ↔ |2⟩ in Figure 6.4. This also verifies that the four-level effective model is
well suited for studying the transmon ladder transition across different levels. In
addition, we observe that control errors decrease as the level k increases, mainly
because the leakage coupling to upper and lower levels becomes more symmetric as
the level goes up. As the two leakage couplings |k − 1⟩ ↔ |k⟩ and |k + 1⟩ ↔ |k + 2⟩
become more symmetric, the phase error is reduced for higher levels, as also observed
in Ref. [214].
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a)

b)

Figure 6.5: Controlling the ladder transitions in a transmon qudit. a) The
π/2 gate error for different ladder transitions |k⟩ ↔ |k + 1⟩ for α/(2π) =
−200,−100,−50 MHz using a fixed gate duration of 8, 15 and 30 ns respec-
tively. These values of anharmonicity correspond to EC/EJ ≈100, 355 and 1331,
respectively. b) The minimum gate time required to achieve fidelity of 10−4 for
different drive schemes and different hardware parameters for a π/2 gate. The gate
duration is multiplied by the corresponding leakage level separation ∆k, resulting
in overlapping outcomes across different hardware parameters and qudit levels.



110 Chapter 6. Leakage suppression in transmon qudits with DRAG

To further characterize the control of different ladder transitions, we compute
the minimal gate duration achievable for a fidelity threshold of 10−4, as depicted
in Figure 6.5b. To capture the universality of the pulse solutions, we normalize
the time by the energy separation ∆k for each ladder transition. Remarkably, we
see that when comparing different transition indices k, and comparing different
values of the anharmonicity, all the values collapse horizontally on the same line
for the DRAG family of pulses. When we use DRAG4 pulses instead of DRAG2,
we remove two additional weak, 2-photon transitions, and these collapse to a yet
shorter minimum time line (related to a quantum speed limit for the particular
choice of pulse), with apparently even stronger overlap for different parameters.
However, this does not happen for the standard Hann pulse, where there is a strong
dependence both on the anharmonicity (or equivalently EJ/EC) and the chosen
level index. We interpret this as evidence that removing the leakage transitions
gives an effective qubit model with universal behaviour, independent of the nature
of the leakage transitions themselves.

6.4 Error beyond the targeted two-level subspace

In the previous analysis, we focused on the relevant two-level subspace and computed
the average gate fidelity of driving a π or π/2 rotation, using equation (6.22). For a
target transition between |k⟩ ↔ |k + 1⟩, this error model includes leakage from the
target subspace to |k − 1⟩ and |k + 2⟩ and the corresponding phase and amplitude
error. To use it as the building block for universal qudit computational gates, we
also need to study its effect on all the K qudit states.

6.4.1 Phase error beyond the two target levels.

As discussed above, the Stark shift accumulates phases on the affected subspace.
The optimized detuning fixes the difference between the phase on |k⟩ and |k + 1⟩.
However, a phase shift still exists between the subspace and other energy levels.
For the target ladder transition, this phase shift is merely a global phase, but for a
K-level qudit, it becomes relevant and must be accounted for.

Fortunately, this phase mismatch can be easily calibrated by applying virtual
phase gates to each untargeted level [162]. The accumulated phase is calibrated
by using a phase-amplification technique. For an operation RX(k,k+1)

π/2 , the state
(|k⟩+ |j⟩)/

√
2 is prepared, where |j⟩ is the state not addressed by the gate. The gate

is then applied 8n times, followed by a rotation of the system back using RY(k,k+1)
π/2 ,

similar to a Ramsey experiment. The accumulated phase is then measured on the
state |j⟩ and corrected for future use. Virtual phase gate construction is described
in Appendix 6.6.12.
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Figure 6.6: The three-photon transition error under different drive schemes. The
solid line represents the |0⟩ ↔ |3⟩ error as a function of the gate time for different
drive schemes for a π/2 gate. The dashed lines are the same as in Figure 6.4 as a
reference. The parameters used are also the same.

6.4.2 Leakage on |k + 2⟩ ↔ |k + 3⟩
The DRAG pulse we studied primarily targets leakage involving the target subspace,
i.e., leakage from the two target levels to the nearest neighbours, which are separated
by approximately ∆k in the rotating frame. Under a very strong drive, a small
population transfer may also appear between nearby states such as |k + 2⟩ ↔ |k + 3⟩,
which are not directly driven. The level separation between them is about 2|∆k|.
Due to this large separation, the unwanted transition is much smaller, however, it
might become non-negligible (> 10−4) if a DRAG4 pulse is used for a short gate
time. Since they are small and do not involve the target states, a weak off-resonant
drive can readily be added separately to cancel the small transition.

6.4.3 Three-photo leakage |k − 1⟩ ↔ |k + 2⟩
Another small error that we have not discussed is the three-photon transition
between |k − 1⟩ ↔ |k + 2⟩. As illustrated in Figure 6.1c, this third-order transition
is induced by off-resonant ladder couplings and is proportional to Ω3. Although
the absolute value of this error is accordingly small, due to the very small value of
δk−1,k+2 in a nonlinear oscillator, it may still introduce a non-negligible error after
DRAG corrections. This error probability, defined by

Lk−1,k+2 = 1
4
(
|Ûk−1,k+2|2 + |Ûk+2,k−1|2

)
(6.23)

is plotted in Figure 6.6 for k = 1. Targeting a gate error of 10−4, we see from the
plot that this error is generally lower than the two-level gate error calculated in
Section 6.3, and hence does not pose a significant obstacle.
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6.5 Conclusion and discussion

Using a universal pulse construction, we have shown how coherent error can be
drastically suppressed in qudit ladder systems. Moreover, they completely predict
a universal behaviour whereby the minimum gate time to achieve 10−4 error can be
very accurately calculated, irrespective of the details of the exact energy structure
of the nearby surrounding levels.

The method adopts a recursive structure to simultaneously suppress multiple
leakage errors. Despite the simple form, the performance benchmarking highlights
the substantial error reduction achieved, enabling faster gates and consequently
reducing decoherence. This method not only improves gate fidelity for the nonlinear
oscillator but also offers a framework that can be adapted to other qudit systems
beyond the specific model studied here.

Our results offer valuable insights into the relationship between the number of
qudit levels that can be utilized for universal computation, and the corresponding
gate time required to achieve a specific fidelity threshold using analytical DRAG
pulses. For practical implementation with specific parameters, further optimization
like frequency engineering can be performed on top of the DRAG correction [70],
leading to additional performance gain.

For advanced hardware with high bandwidth waveform generators, where multi-
plexed frequency is possible, it would be advantageous to implement non-overlapping
ladder transitions in parallel, further improving the efficiency and scalability of
qudit-based quantum computing.

6.6 Appendix

6.6.1 Universality of the ladder transition

In this section, we show that any K-dimentional qudit unitary Û can be decomposed
into π/2 gates between adjacent levels (ladder gates) |k⟩, |k + 1⟩ and virtual phase
gates.

Decomposition of arbitrary unitary to Givens rotation

In the following, we show that arbitrary qudit unitaries SU(d) can be decomposed
into a sequence of Givens rotations and a diagonal phase matrix. We follow the QR
decomposition similar to Ref. [219, 220] and decompose the unitary by progressively
eliminating the left bottom part of the unitary matrix. An upper triangular matrix
which is unitary is easily proved to be a diagonal matrix.
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A unitary Givens rotation between two levels j, l is defined as

Ĝ(γ, φ) =



. . .
cos γ

2 . . . −ieiφ sin γ
2

...
. . .

...
−ie−iφ sin γ

2 . . . cos γ
2

. . .

 . (6.24)

The entries not explicitly defined are filled with identities, i.e., one in the diagonal
entries and zero otherwise.

The QR decomposition eliminates each column from left to right and for each
row from bottom to the diagonal. This ensures that the eliminated entries will
remain zero in later steps. There are in total M = (K−1)K/2 Givens rotations. For
the m-th Givens rotation G(m) designed to eliminate the entry j, l, the parameters
are recursively defined by

tan γm = 2|U (m)
j,l /U

(m)
j−1,l|, (6.25)

φm = π/2 + arg(U (m)
j−1,l)− arg(U (m)

j,l ), (6.26)

where Û (m) is the remaining unitary after eliminating the first m entries, i.e.,
Û (m) = Ĝ(m−1)Ĝ(m−2) · · · Ĝ(1)Û .

Note that the Givens rotation applied above is always a rotation between two
adjacent levels j, j − 1, which can be directly implemented by ladder coupling. To
further simplify the native gate set, it is common to use the ZXZXZ decomposi-
tion [175] designed for a qubit, which decomposes an arbitrary Givens rotation into
three RZ gates and two π/2 gates

Ĝ(γ, φ) = RZ(−φ− π

2 )RX π
2

RZ(π − γ)RX π
2

RZ(φ− π

2 ), (6.27)

where the subscript denotes the rotation angle. The diagonal matrix after the QR
decomposition can also be easily written as a series of RZ gates. However note that
the DRAG2 and DRAG4 pulses derived in the main text can also be used with any
rotation and phase angle.

Virtual phase gate in a qudit

The above decomposition resolves arbitrary unitary to π/2 gates and RZ gates.
The former is the main focus of the main text. Here, we show that the RZ gate
between two arbitrary qudit levels, defined by

RZ(λ) =
(

e−iλ/2 0
0 eiλ/2

)
, (6.28)
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can be implemented by adjusting a constant phase of the drive [175]. This virtual
phase implementation will significantly reduce the duration of the circuit. In
contrast to the case of qubits, since there are K − 1 ladder transitions, we need to
track the accumulated phase for each drive, which we denote as θk.

A rotation between |k⟩ and |k + 1⟩ is implemented by a Hamiltonian

Ĥ
(k)
Ω (θ) =

(
0 1

2e
iθk Ω(t)

1
2e

−iθk Ω(t) 0

)
, (6.29)

where Ω(t) is the time dependent drive amplitude and θ a constant phase of the
drive. This angle θ adjusts the axis in the XY plane, around which the rotation is
performed. The corresponding unitary evolution is denoted by Û (k)

Ω (θ) = e−iĤ
(k)
Ω (θ)t.

It is then straightforward to show that

RZ(k,k+1)(ϕ)Û (k)
Ω (θ) = Û (k)

Ω (θ − ϕ)RZ(k,k+1)(ϕ). (6.30)

This relation indicates that by phase shifting the drive Ω by −ϕ, the RZ phase gate
can be effectively moved to the end of the gate operation. Since it appears at the
end, it can be neglected, as measurements only capture state populations.

The above is enough for qubit operation. For qudit operation, however, the
presence of other computational levels has to be taken into consideration. Therefore,
we need to consider an RZ gate between arbitrary two levels and obtain the following
expressions

RZ(j,k)(ϕ)Û (k)
Ω (θ) = Û (k)

Ω (θ + ϕ/2)RZ(j,k)(ϕ), (6.31)

RZ(k,l)(ϕ)Û (k)
Ω (θ) = Û (k)

Ω (θ − ϕ/2)RZ(k,l)(ϕ), (6.32)

RZ(j,k+1)(ϕ)Û (k)
Ω (θ) = Û (k)

Ω (θ − ϕ/2)RZ(j,k+1)(ϕ), (6.33)

RZ(k+1,l)(ϕ)Û (k)
Ω (θ) = Û (k)

Ω (θ + ϕ/2)RZ(k+1,l)(ϕ), (6.34)

with j < k and l > k+ 1. Notice that the adjusted phase is reduced by half because
only one of the levels overlaps between RZ and the transition gate.

6.6.2 Transmon circuit in the charge representation
In this appendix, we will discuss a more general description of the transmon circuit
that goes beyond the standard Duffing oscillator [6]. The fundamental aspect of this
modelling is the representation of both charge and phase operators in equation (6.1).
In the charge qubit description, the operator n̂ describes the excess of Cooper-Pair
on the superconducting islands, while the cosine operator cos(φ̂) describes the
tunnelling between them along the junction. Explicitly, we write:

n̂ :=
∑
n∈Z

n |n⟩⟨n| , (6.35)

exp
(
iϕ̂
)

:=
∑
n∈Z

|n⟩⟨n+ 1| . (6.36)
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Figure 6.7: Energy spectrum of the transmon circuit as a function of
the dimensionless gate voltage ng for four different values of α/(2π) =
{−50,−100,−200,−300} (MHz). For the numerical simulations, we have fixed EJ

for obtaining ω10/(2π) = 5 (GHz), and as expected, for increasing anharmonicity,
the energy spectrum becomes more sensitive to charge fluctuations.

In this representation, the eigenstates of the transmon are obtained by numerically
diagonalizing the Hamiltonian to a subspace spanned by a few charge states. This
modifies the control operator n̂ in such a basis so that it exhibits selection rules dif-
ferent from the bosonic oscillator defining the Duffing oscillator [see equation (6.6)].

The gate voltage ng(t) responsible for driving the transitions on the transmon
circuit is susceptible to fluctuations which could be thermal, due to wiring circuits
and quasiparticle tunnelling through the junction, or non-thermal, due to impedance
mismatching with the signal generator. Thus, we need to quantify the fluctuation of
the energy levels of the transmon by varying ng(t). Figure 6.7 shows the low-lying
energy spectrum as a function of the gate voltage ng. We have selected EC and EJ

such that the ω10/(2π) = (ω1 − ω0)/(2π) = 5 GHz, and we vary the anharmonicity
α = ω21 − 2ω10 to be in the range α/(2π) = (−50,−300) (MHz).

We observe increasing charge dispersion for larger values of α. The main reason
for the increase of charge dispersion with decreasing EJ relies on always the same
frequency; consequently, fewer states are confined in the cosine potential. This
feature is more appreciable when we see the variation of the energy spectrum
∂ωk+1,k/∂ng with respect to the gate voltage, where for smaller α the fluctuations
are on the order of KHz.

In this scenario, depending on our transmon parameters, we need to carefully
select the workable low-lying energy levels for our qudit gates. In our case, we follow
a different approach than Ref. [215]; rather than compute the ratio between the
deep potential with the energy spacing, we consider the average of the fluctuation
over ng. We set a truncation at ∂ωNmax/∂ng ≈ 10−3 (GHz) and consider any
eigenstates with lower dispersion suitable as a qudit level. This results in the
number of levels available in the nonlinear oscillator in Figure 6.1.

This constraint on dispersion also extends to the dephasing time where we
have used 1/f noise as the most detrimental source of decoherence which can be
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estimated by the relation [41, 221]

1
T

(k)
ϕ

= Ang

∣∣∣∣∂ωk+1,k

∂ng

∣∣∣∣√2| ln (ωlowtexp) |, (6.37)

where ωk+1,k = ωk+1 − ωk and Ang = 10−4e is the noise strength [222–224] with e
being the electron charge. Also, ωlow = 2π/texp corresponds to the infrared cutoff
due to the finite data acquisition time texp = 104 ns [41]

This is illustrated in Figure 6.8, where one point corresponds to one qudit
eigenstate with a specific hardware parameter. As the anharmonicity decreases,
more and more levels with a coherence time longer than 100 µs can be included as
quantum information registers.

For amplitude damping, we estimate T1 assuming that the main loss mechanism
corresponds to capacitive losses. In such a way, Fermi’s golden rules give the
relation [225]

1
T

(k)
1

= | ⟨k| n̂ |k + 1⟩ |2S(ωk+1,k), (6.38)

where the spectral density for the capacitive losses reads [221, 226]

S(ωk+1,k) = 4ℏEC

Qcap(ωk+1,k)

 coth
(

ℏ|ωk+1,k|
2kBT

)
1 + exp

(
− ℏωk+1,k

kBT

)
 . (6.39)

with Qcap(ωk+1,k) = 106(2π × 6 GHz/|ωk+1,k|)0.7 [227, 228] the capacitive quality
factor per ladder transition. Also, kB is the Boltzmann constant, and T = 15 mK
is the temperature. Since this value is not strongly dependent on the levels in our
system studied, we do not use it to truncate the qudit level.

For completeness, we plot the T1 for the different energy levels in Figure 6.8.
We should note that improvement of the coherent times could be possible by
implementing different fabrication techniques such as surface error mitigation [229,
230], changing the Niobium with Tantalum as the base superconductor [165, 231]
or mitigating the micromotion of the circuitry [232], among other techniques. Such
shielding on the transmon circuit leads to coherence times nearly in the millisecond
scale.

6.6.3 Derivation of the Leakage manifold
Here, we will show that the energy diagram for any qudit gate between the states
(k + 1, k) is represented as in Figure 6.1c. In other words, if we want to implement
this single qudit gate, there appears to be a nearly-resonant transition between the
states |k − 1⟩ ↔ |k + 2⟩. To do so, let us consider the explicit form of the energy
of the kth energy level after the frame transformation in equation (6.7)

∆̃k = ωk − k(ωk+1 − ωk − δd). (6.40)
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Figure 6.8: Coherence times of the transmon circuit as a function of α for different
transition frequency ωk+1,k. We set EJ and EC such that the transition frequency
equal to ω10/(2π) = 5 (GHz). For the amplitude damping, we assume capacitive
losses and dephasing correspond to charge fluctuations.

For the Dufing oscillator model, we know that ωk = ωk − αk(k − 1)/2, where
ω =
√

8ECEJ −EC is the transmon frequency, and α = −EC is the anharmonicity,
respectively. Thus, ∆k−1 = (k − 1)(α(k + 2) + 2δd)/2 while ∆k+2 = (k + 2)(α(k −
1) + 2δd)/2. Thus, the detuning between these energy levels is δk−1,k+2 = 3δd for
all values of k, which is zero if the drive is resonant.

However, such a description of the system Hamiltonian is only valid for larger
EJ/EC . Thus, for obtaining better estimation of the detuning, we consider the
eigenenergies of the transmon obtained by numerical diagonalizing equation (6.1).
Figure 6.2d shows δk−1,k+2 as a function of the anharmonicity α for several ladder
transitions at ng = 0; from the figure we appreciate an inverse relation between
the degeneracy of the leakage state with the anharmonicity, recovering the pre-
vious calculation result when α = −2π × 50 (MHz). Moreover, we also see an
increase of such discrepancy with the qudit manifold to be addressed, this effect is
mainly produced by the sensitivity of the energy spectrum to the charge noise (see
Figure 6.7).

6.6.4 Derivation of recursive DRAG pulse
Single-photon correction

In the following, we show the derivation of the recursive DRAG pulse shape
designed to suppress the two single-photon transitions |k − 1⟩ ↔ |k⟩ and |k + 1⟩ ↔
|k + 2⟩. Our general approach is to progressively derive the effective frame and
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the corresponding drive shapes to minimize the prevalent error. Throughout the
calculation, we keep the perturbative correction up to the second order for all the
terms with two exceptions: the matrix entry (0, 3), which characterizes a three-
photon leakage due to the small energy separation, and the entry (1, 2), which
describes the pulse amplitude correction. For those two, we keep the terms up to
the third order correction.

We start with the rotating frame Hamiltonian in equation (6.8)

Ĥ0 =


−∆l

λ1Ω̄0
2 0 0

λ1Ω0
2 δd

λ2Ω̄0
2 0

0 λ2Ω0
2 2δd

λ3Ω̄0
2

0 0 λ3Ω0
2 ∆h + 3δd

 , (6.41)

where ∆h = ∆k + δk−1,k+2 and ∆l = −∆k. For ease of notation, we use λ1, λ2,
λ3 for λk−1, λk and λk+1 in this section. We define the first transition targeting
the single-photon leakage error, |k + 1⟩ ↔ |k + 2⟩. For small δd, as is typical in the
transmon regime, this is the largest leakage source (see Figure 6.2). The frame
transformation generator is given by

Ŝ0→1 =


0 −λ1Ω̄1

2∆h
0 0

λ1Ω1
2∆h

0 −λ2Ω̄1
2∆h

0
0 λ2Ω1

2∆h
0 −λ3Ω̄1

2∆h

0 0 λ3Ω1
2∆h

0

 . (6.42)

The denominator ∆h is chosen such that in the effective frame, the matrix entry
(2, 3) is zero. In addition, S0→1 is chosen to be proportional to the control term
in Ĥ0; this is designed in particular such that there is no derivative term Ω̇1 in
Ĥ1 [136]. After substituting the expression Ω0 = Ω1 − i Ω̇1

∆h
, we get Ĥ1 with the

off-diagonal term

Ĥ1 − Ĥ1,diag =
0 1

2 ϵλr1Ω̄1
−∆lϵ2λ1λ2Ω̄2

1
8∆2

h

ϵ3Ω̄(1)
L03

1
2 ϵλr1Ω1 0

ϵλ2
(

Ω̄1+ϵ2Ω̄(1)
c

)
2

ϵ2λ2λ3Ω̄2
1

8∆h

−∆lϵ2λ1λ2Ω2
1

8∆2
h

ϵλ2
(

Ω1+ϵ2Ω(1)
c

)
2 0 0

ϵ3Ω(1)
L03

ϵ2λ2λ3Ω2
1

8∆h
0 0

 , (6.43)

where Ω(1)
c and Ω(1)

L03 denote the third order error to the drive amplitude in this
frame and the three-photon leakage transition, which we do not explicitly use in the
following calcualtion. Notice that in the effective frame, we obtain a renormalized
leakage rate λr1Ω1 between |k − 1⟩ and |k⟩, with λr1 = λ1(1 −∆l/∆h) ≈ 2λ1 in
the limit δk−1,k+2 → 0. This explains why the leakage increases with only one
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single derivative DRAG correction in Figure 6.2b. This prefactor also needs to be
taken into consideration when making the perturbative assumptions. The diagonal
energy terms are given by

E1,|k−1⟩ = −∆l −
λ2

1 Re
(
Ω0Ω̄1

)
2∆h

+ λ2
1∆l |Ω1|2

4∆2
h

, (6.44)

E1,|k⟩ = δd +
(
λ2

1 − λ2
2

2∆h

)
Re
(
Ω0Ω̄1

)
− λ2

1∆l |Ω1|2

4∆2
h

, (6.45)

E1,|k+1⟩ = 2δd +
(
λ2

2 − λ2
3

2∆h

)
Re
(
Ω0Ω̄1

)
+ λ2

3 |Ω1|2

4∆h
, (6.46)

E1,|k+2⟩ = 3δd + ∆h +
λ2

3 Re
(
Ω0Ω̄1

)
2∆h

− λ2
3 |Ω1|2

4∆h
. (6.47)

Secondly, we target the single photon leakage between state |k − 1⟩ and |k⟩,
with the frame transformation generator

Ŝ1→2 =


0 − ϵλr1Ω̄2

2∆l
0 0

ϵλr1Ω2
2∆l

0 − ϵλ2Ω̄2
2∆l

0
0 ϵλ2Ω2

2∆l
0 0

0 0 0 0

 . (6.48)

This, together with the substitution Ω1 = Ω2 − i Ω̇2
∆l

, results in the suppression of
the transition and gives Ĥ2

Ĥ2 − Ĥ2,diag =
0 0 −∆lϵ2λ2Ω̄2

1
8∆2

h

− ϵ2λ2λr1Ω̄2
2

8∆l
Ω̄(1)

L03

0 0
ϵλ2
(

Ω̄2+ϵ2Ω̄(2)
c

)
2

ϵ2λ2λ3Ω̄2
1

8∆h

−∆lϵ2λ2Ω2
1

8∆2
h

− ϵ2λ2λr1Ω2
2

8∆l

ϵλ2
(

Ω2+ϵ2Ω(2)
c

)
2 0 0

Ω(1)
L03

ϵ2λ2λ3Ω2
1

8∆h
0 0

 .

(6.49)
In addition to the leakage error, the phase error and the amplitude renormalization
also need to be considered to get the desired rotation. The time-dependent phase
correction is given by

δd = −Re
(
Ω1Ω̄2

)( λ2
2

∆l
− λ2

r1

2∆l

)
− Re

(
Ω0Ω̄1

)(
− λ2

1
2∆h

+ λ2
2

∆h
− λ2

3
2∆h

)
− |Ω1| 2

(
∆lλ

2
1

4∆2
h

+ λ2
3

4∆h

)
− |Ω2| 2λ2

r1

4∆l
, (6.50)
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where λr1 = λ1(1−∆l/∆h).
Apart from that, the correction on the drive shape also slightly affects the

rotation angle. A small correction term needs to be added Ω2 ← Ω2 + Ωamp. The
analytical formula of the amplitude correction is written as

Ωamp = Ω0 |Ω1| 2
(

λ2
1

8∆2
h

+ λ2
3

8∆2
h

− λ2
2

4∆2
h

)
+ Ω1 |Ω2| 2

(
λ2

r1

8∆2
l

− λ2
2

4∆2
l

)
+ Ω2 |Ω1| 2

(
− λ2

1
4∆2

h

− λ2
3

4∆l∆h

)
+ Ω2 Re

(
Ω0Ω̄1

)( λ2
1

2∆l∆h
+ λ2

3
2∆l∆h

− λ2
2

∆l∆h

)
+ Ω2

1Ω̄0

(
λ2

1
8∆2

h

+ λ2
3

8∆2
h

− λ2
2

4∆2
h

)
+ δd

(
− Ω1

∆h
− Ω2

∆l

)
+ Ω2

1Ω̄1

(
−∆lλ

2
1

8∆3
h

− λ2
3

8∆2
h

)
+ Ω2

2Ω̄1

(
λ2

r1

8∆2
l

− λ2
2

4∆2
l

)
− λ1Ω2

1Ω̄2λr1

8∆2
h

− Ω2
2Ω̄2λ

2
r1

8∆2
l

. (6.51)

In our investigation, we neglect the time-dependence and numerically optimize a
fixed correction of the detuning and the amplitude.

Two-photon correction

The first two transitions yield the effective Hamiltonian described in equation (6.49),
where the desired transition between |k⟩ ↔ |k + 1⟩ is preserved, with a renormalized
effective coupling strength. The diagonalization of the single-photon coupling
introduces new two-photon transitions, |k − 1⟩ ↔ |k + 1⟩ and |k⟩ ↔ |k + 2⟩, with
the coupling strength proportional to Ω2. This is also obtained for qubit driving in
a nonlinear oscillator, as discussed in [67]. For very strong drive amplitude, these
two-photon transitions become the dominant source of error once the single-photon
transitions are sufficiently suppressed.

For simplicity, we do not repeat the full calculation as in the last subsection
but note the following properties. We can treat Ω2 as the new coupling g, then
derive the same expression to suppress the two leakages as in equation (6.18) but
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with the coupling g. Moreover, any perturbative diagonalization of the two-photon
transitions will introduce corrections only in the order of ϵ3 or smaller, which is
negligible relative to the truncation order considered. By substituting g back into
Ω, we obtain the expression in equation (6.21).

Three-photon correction

In principle, based on the DRAG2 pulse, we can follow a similar strategy and use a
recursive DRAG design to suppress the transition error between state |0⟩ and |3⟩:

Ω4 = 3

√
Ω3

5 − i
3Ω2

5Ω̇5

δk−1,k+2
. (6.52)

However, due to the small gap between |k − 1⟩ and |k + 2⟩ in the transmon regime,
the imaginary DRAG correction term is much larger and a constant detuning
may not suffice to compensate for the phase error. Nevertheless, even with a not
perfectly aligned phase, a π/2 gate can be implemented with the help of virtual
phase gates.

Alternatively, one could explore the direct coupling between the states |k − 1⟩
and |k + 2⟩ instead of relying on the multi-photon process. However, this would
require microwave drive generators with a frequency approximately three times
that of the qubit frequency.
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7
Quantum crosstalk suppression with DRAG

7.1 Introduction

As quantum devices scale up, incorporating more qubits onto a single supercon-
ducting chip, new challenges arise beyond controlling individual or pairs of qubits.
Ideally, the qubits’ couplings are precisely engineered and controlled, with un-
wanted interactions fully eliminated. However, in practice, residual couplings
between qubits often persist due to fabrication imperfections, even between qubit
pairs that are not intentionally connected by couplers [233]. These unintended
couplings can lead to errors, and as the number of qubits increases, the likelihood
of defects and unexpected behaviours rises, affecting the yield in chip fabrication.
Thus, alongside improvements in fabrication processes and chip design, it is crucial
to develop quantum control techniques that mitigate these errors.

In this chapter, we examine a simple model of quantum crosstalk, in which
an unintended flipping interaction occurs between two qubits. Similar to classical
crosstalk, which can be mitigated through compensation in the control lines [234]
or pulse shaping [65], we treat the quantum crosstalk problem also as off-resonant
population error. We investigate the performance of DRAG pulses in suppressing
these errors during single-qubit gate operations, demonstrating their effectiveness
in mitigating quantum crosstalk.
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7.2 Model of quantum crosstalk
We first define a simplified model of quantum crosstalk mediated by a constant
coupling strength g. The drift Hamiltonian, Ĥd, is given by

Ĥd = ∆Π̂2 + ϵ1g
(
σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2
)

=

 0 0 0 0
0 ∆ gϵ1 0
0 gϵ1 0 0
0 0 0 ∆

 , (7.1)

which is written in the rotating frame with respect to the first qubit. The symbol
∆ = ω2 − ω1 denotes the frequency difference. The control Hamiltonian is given as

Ĥc = ϵ2

2
(
Re[Ωc]X̂Î + Im[Ωc]Ŷ Î

)
=

 0 0 1
2 Ω̄cϵ2 0

0 0 0 1
2 Ω̄cϵ2

Ωcϵ2
2 0 0 0
0 Ωcϵ2

2 0 0

 , (7.2)

where Ωc is the time-dependent complex control function.
In this chapter, we continue to use the notation as described in Section 4.2 for

the Hamiltonians and transformation generators (see Section 4.1 for an introduction
to the perturbative frame transformation). Different from the problems previously
studied, we introduce two small parameters. We use ϵ1 to denote the small parameter
with respect to g/∆ and ϵ2 for Ω/∆. Typically, ϵ1 is much smaller than ϵ2, i.e., the
crosstalk coupling is much smaller than the detuning ∆. Therefore, we restrict our
analysis to first-order errors of ϵ1, which scale linearly with g. The parameter ϵ2,
on the other hand, depends on the strength of the drive or, equivalently, the gate
duration.

Under this weak g coupling, the frequency of the qubits is renormalized, given
in a so-called dressed frame. The dressed frame transformation that diagonalizes
the g coupling between the two qubits is written as

Ŝ0→1 = ϵ1g
(
σ̂+

1 σ̂
−
2 − σ̂

−
1 σ̂

+
2
)
. (7.3)

With a pulse Ωc = Ω(t), this transformation gives the effective Hamiltonian

Ĥ0,1 = exp
(
Ŝ
)
Ĥd exp

(
−Ŝ
)

= Ωϵ2

2 X̂Î + ∆Π̂2 + gΩϵ1ϵ2

2∆ ẐX̂ + ĤS +O(ϵ2
1). (7.4)

Here we discard all the terms smaller or equal to ϵ2
1. Also, we remove the Stark

shift term ĤS = g2

∆ ẐÎ − g2

∆ IZ by adjusting the drive frequency ∆← ∆− g2

∆ and
rotating frame accordingly. The dressed Hamiltonian below is the starting point of
the crosstalk analysis

Ĥ1,1 = Ωϵ2

2 X̂Î + ∆Π̂2 + gΩϵ1ϵ2

2∆ ẐX̂

=

 0 gΩϵ1ϵ2
2∆

Ωϵ2
2 0

gΩϵ1ϵ2
2∆ ∆ 0 Ωϵ2

2
Ωϵ2

2 0 0 − gΩϵ1ϵ2
2∆

0 Ωϵ2
2 − gΩϵ1ϵ2

2∆ ∆

 . (7.5)
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In the dressed frame, we observe the crosstalk term in the form of gΩ
2∆ ẐX̂.

This Hamiltonian is very similar to the Cross-Resonance Hamiltonian studied
in Chapter 5. A key distinction in the current configuration is that the drive
is resonant with the first qubit, whereas the second qubit, though undriven, is
influenced by an entangling Hamiltonian ZX, renormalized by a factor g/∆. Notice
that this quantum crosstalk (entanglement) studied here is different from the
classical crosstalk which is in the form of ΩxÎX̂ + Ωy Î Ŷ . In the latter case, an
exact solution exists [65, 67].

7.3 First-derivative DRAG pulse
Similar to the derivation presented in Chapter 4, we define a generator that
perturbatively removes the crosstalk term

Ŝ1→2 = −i gΩϵ1ϵ2

2∆2 ẐŶ , (7.6)

which gives the effective Hamiltonian

Ĥ1,2 = Ω
2 X̂Î+∆Π̂2 + igΩ̇

2∆2 ẐŶ + gΩ2

2∆2 Ŷ Ŷ =


0 − igΩ̇

2∆2
Ω
2 − gΩ2

2∆2
igΩ̇
2∆2 ∆ gΩ2

2∆2
Ω
2

Ω
2

gΩ2

2∆2 0 igΩ̇
2∆2

− gΩ2

2∆2
Ω
2 − igΩ̇

2∆2 ∆

 .

(7.7)
In the above and subsequent calculations, we keep the terms up to ϵ2

2 and omit
the explicit symbols ϵ1 and ϵ2 in the Hamiltonians for clarity. It is worth noting
that the second-order Y Y error exists only in the quantum crosstalk. For classical
crosstalk, the perturbative DRAG pulse effectively suppresses all the errors up to
the third order.

To determine the DRAG correction, we also derive the control Hamiltonian in
this frame, with a free parameter Ωc to be determined

Ĥc,2(Ωc) =


0 gΩ̄c

2∆
Ω̄c
2 − gΩΩ̄c

2∆2
gΩc
2∆ 0 gΩΩ̄c

2∆2
Ω̄c
2

Ωc
2

gΩΩc
2∆2 0 − gΩ̄c

2∆
− gΩΩc

2∆2
Ωc
2 − gΩc

2∆ 0

 . (7.8)

By comparing the crosstalk elements, it is then clear that the DRAG correction is
given as Ωc = −iΩ̇/∆. The result reads

Ĥ2,2 = Ĥ1,2 + Ĥc,2(−i Ω̇
∆) = Ω

2 X̂Î + Ω̇
2∆ Ŷ Î + ∆Π̂2 + gΩ2

2∆2 Ŷ Ŷ + gΩΩ̇
2∆3 X̂Ŷ

=


0 0 Ω

2 + iΩ̇
2∆ − gΩ2

2∆2 − igΩΩ̇
2∆3

0 ∆ gΩ2

2∆2 + igΩΩ̇
2∆3

Ω
2 + iΩ̇

2∆
Ω
2 −

iΩ̇
2∆

gΩ2

2∆2 − igΩΩ̇
2∆3 0 0

− gΩ2

2∆2 + igΩΩ̇
2∆3

Ω
2 −

iΩ̇
2∆ 0 ∆

 . (7.9)
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Same as the single-Transmon DRAG in Section 4.3, a Y error is introduced by
the correction, which can be transformed into a Z error with

Ŝ2→3 = −iΩϵ2

2∆ Î Ŷ . (7.10)

The effective Hamiltonian is given by

Ĥ2,3 =
(

Ω
2 −

Ω3

4∆2

)
X̂Î + ∆Π̂2 + gΩ2

2∆2 Ŷ Ŷ + gΩΩ̇
2∆3 X̂Ŷ −

Ω2

2∆ ẐÎ. (7.11)

From the above formula, focusing on the subspace of the first qubit, we extract
the required detuning −Ω2

2∆ ẐÎ. By including third-order terms, we also obtain
a renormalization of the pulse shape Ω + Ω3

2∆2 . Notice that although it is also
proportional to Ω3

2∆ , the sign is different compared to the solution in Section 4.7
because the other one also has contributions from the |0⟩ ↔ |2⟩ coupling. Including
the phase ramping (see Section 4.4), the final pulse shape is given by

ΩDRAG-1 =
(

Ω + Ω3

2∆2 − i
Ω̇
∆

)
exp
(
i

∫ T

0

Ω2

∆ dt
)
. (7.12)

7.4 Second-derivative DRAG pulse
The first-derivative DRAG solution provides adequate suppression of crosstalk.
However, unlike leakage error, the frequency difference between two qubits can be
as small as a few tens of MHz due to fabrication inhomogeneity [121, 157]. This
proximity in frequency can result in a significant Y error, which is proportional to
iΩ̇/∆, as shown in equation (7.9), challenging the calibration procedure. In this
case, the second-derivative DRAG correction can prove useful, because it provides
a real correction and no detuning is required to correct the phase error.

This is motivated by classical frequency engineering. In the context of frequency
engineering, the derivation of perturbative linear DRAG correction is equivalent to
an integral by parts [67]. Under the assumption of weak coupling, an off-resonant
excitation error like crosstalk can be estimated as

E =
∣∣∣∣∫ T

0
ei∆tΩ(t)dt

∣∣∣∣2 =
∣∣∣∣∫ T

0
ei∆t dn

dnt

Ω(t)
∆n

dt
∣∣∣∣2 , (7.13)

where Ω represents the coupling and ∆ the energy separation. In addition, the
boundary condition dnΩ(t)

dnt
|t=0 = dnΩ(t)

dnt
|t=T = 0 needs to be satisfied for all n.

Therefore, for a pulse shape that is n times differentiable and the derivatives at
the boundaries are zero, there exist n different but equivalent (up to the first-order
perturbation) linear DRAG solutions. Specifically, the DRAG pulse takes the
form Ω− in dn

dnt
Ω

∆n , with corrections alternating between imaginary and real values
depending on whether n is odd or even.
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In the following, we formally derive the second-derivative DRAG solution for
the crosstalk. As shown later in the simulation, for this particular crosstalk
problem, the DRAG strength optimization of the second-order DRAG provides
significant improvement due to destructive interference. It is important to highlight
that this second-derivative solution is (perturbatively) equivalent to the first-
derivative solution. It still aims to suppress the first-order crosstalk coupling without
addressing higher-order effects. However, due to the increased frequency bandwidth
associated with the second-derivative DRAG, its performance in suppressing leakage
may not match that of the first-derivative DRAG, as will be demonstrated in the
simulation results in later sections.

We start from the effective Hamiltonian after the first perturbation, Ĥ1,2, in
equation (7.7) and define the generator

Ŝ2→4 = igϵ1ϵ2Ω̇
2∆3 ẐX̂, (7.14)

which results in the Hamiltonian

Ĥ1,4 = Ω
2 X̂Î + ∆Π̂2 −

gΩ̈
2∆3 ẐX̂ + gΩ2

2∆2 Ŷ Ŷ −
gΩΩ̇
2∆3 Ŷ X̂. (7.15)

The imaginary error term ẐŶ transforms into a real one, − gΩ̈
2∆3 ẐX̂. There is no

phase mismatch or imaginary part on the first qubit. The control Hamiltonian in
this frame reads similarly as

Ĥc,4 =


0 gΩ̄c

2∆
Ω̄c
2 − gΩΩ̄c

2∆2 + igΩ̄cΩ̇
2∆3

gΩc
2∆ 0 gΩΩ̄c

2∆2 + igΩ̄cΩ̇
2∆3

Ω̄c
2

Ωc
2

gΩΩc
2∆2 − igΩcΩ̇

2∆3 0 − gΩ̄c
2∆

− gΩΩc
2∆2 − igΩcΩ̇

2∆3
Ωc
2 − gΩc

2∆ 0

 .

(7.16)
With its DRAG correction Ωc = Ω̈

∆2 , the effective Hamiltonian reads as follows

Ĥ3,4 =
(

Ω
2 + Ω̈

∆2

)
X̂Î + ∆Π̂2 +

(
gΩ2

2∆2 + gΩΩ̈
2∆4

)
Ŷ Ŷ +

(
−gΩΩ̇

2∆3 −
gΩ̇Ω̈
2∆5

)
Ŷ X̂.

(7.17)

The resulting final expression for the second-derivative DRAG solution aligns
with that derived from semiclassical pulse engineering:

ΩDRAG-2 = Ω + Ω̈
∆2 . (7.18)

The amplitude of the drive Ω may need a recalibration to achieve the desired
rotation angle. The remaining dominant error manifests as the swap types of
coupling between the qubits.
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Figure 7.1: Examples of the analytical pulse shape for a π rotation with DRAG-1
and DRAG-2 corrections with the parameters ∆ = 40 MHz and gate time T = 30 ns,
based on the initial pulse given in equation (7.19). Orange and blue represent the
real and imaginary parts of the pulse. Due to the small detuning chosen, the change
of the DRAG corrections to the initial pulses is quite significant. The final shape
also varies with different choices of initial pulse, especially for DRAG-2.

7.5 Numerical simulation
To test the crosstalk suppression between two qubits, we perform simulations
involving an undesired small interaction, where two qubits are positioned closely in
frequency space due to either fabrication inhomogeneity or frequency collision in the
design. The parameters used are ∆ = 40 MHz (representing the energy separation
between qubit states) and g = 2 MHz (indicating the strength of the qubit-qubit
coupling). This emulates a situation where neighbouring qubits experience crosstalk
due to their proximity in frequency.

We use the initial pulse shape defined in equation (5.13) with m = 3, given by

Ωinitial(t) = Imax

( 1
16 cos

(
6π t
T

)
− 9

16 cos
(
π

2t
T

)
+ 1

2

)
. (7.19)

The normalization Imax ensures that the total area of the integral of Ωinitial(t)
from 0 to T is the desired rotation angle, which is a π rotation in the following
calculation.

In Figure 7.2, we show the measured leakage error as a function of different
gate time, with

∫ T

0 Ωinitial(t)dt = π and the analytical drive shape defined in
equations (7.12) and (7.18). The crosstalk error is defined as

L = 1
2
∑

k

∣∣⟨k, 0| Û |k, 1⟩∣∣2 +
∣∣⟨k, 1| Û |k, 0⟩∣∣2 , (7.20)

where Û denotes the unitary propagator. The performance is limited for gate
duration below 20 ns due to the small detuning ∆, which challenges the perturbative
assumptions underlying the analytical solutions. For instance, with a gate duration
set at 20 ns, the maximum drive amplitude needed is 50 MHz. As the gate time
increases, the perturbative DRAG solutions demonstrate improved performance.
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Figure 7.2: Leakage error for a π rotation as a function of gate time using the
analytical DRAG pulse.

In addition, one observes that the analytical second-derivative DRAG solution,
though expected to be equivalent to the first-derivative one in classical engineering,
performs less well because of the increased bandwidth. Nevertheless, subsequent
analyses reveal that with an optimized DRAG strength, the second-derivative DRAG
can significantly outperform its first-derivative counterpart in specific parameter
regimes.

To study the optimization of DRAG parameters, we define modified versions of
the two DRAG solutions parameterized by additional free parameters, which can
be optimized to improve performance. Specifically, for the DRAG-1 pulse, we write

Ω′
DRAG-1 = Ωmax

(
Ω− ia Ω̇

∆

)
exp
(
iaδ

∫ T

0

Ω2

∆ dt
)
, (7.21)

with a, aδ and Ωmax represent the DRAG strength, the detuning strength and the
drive strength. All three are constants and parameters that can be calibrated in
experiments. It is important to note that the detuning in this context must be
time-dependent. Due to the large Y error introduced by the DRAG correction, a
constant detuning, as typically used for single Transmon leakage suppression [134],
is insufficient for most parameter regimes in this study.

For each specified gate duration, we optimize the DRAG parameters to maximize
the gate fidelity defined as

F = max
θ

∣∣∣tr [eiθΠ̂2 Û Û†
ideal

]∣∣∣ . (7.22)

where the additional Z rotation on the second qubit is employed to counteract
phase accumulation during the gate operation. The ideal unitary is defined as
Ûideal = X̂Î, i.e., an X gate on the first qubit. The optimization results, illustrated
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Figure 7.3: Infidelity fora π rotation as a function of gate time using parameterized
DRAG pulses, with optimized DRAG parameters.

in Figure 7.3, reveal that for gate times up to approximately 50 ns, the performance
of the optimized pulse closely aligns with the analytical pulse shape.

For the second-derivative DRAG pulse, we define the parameterized pulse as
follows:

Ω′
DRAG-2 = Ωmax

(
Ω + a

Ω̈
∆2

)
. (7.23)

This DRAG solution does not include a phase correction and therefore has fewer
parameters compared to other DRAG pulse variants. Following the same optimiza-
tion procedure, we evaluated the gate fidelity depicted in Figure 7.3. Surprisingly,
around 37 ns, we observe a minimum in the gate error due to destructive interference
of the crosstalk dynamics. This presents a particularly favourable scenario for
experimental implementation. The existence and location of this minimum leakage
error depend on the properties of the initial pulse shape. Different choices of initial
pulse shapes can alter the characteristics of this minimum. Furthermore, it is
important to point out that in the Transmon regime, additional DRAG corrections
are necessary to address leakage to higher levels, where a small constant detuning
is still required.

7.6 Analytical expression for the gate error
In the numerical simulation above we showed that optimization of the DRAG
coefficient reveals significant performance improvement at specific gate duration. In
this section, we aim to understand this by deriving an analytical error estimation
for the crosstalk error. We begin our analysis with the Hamiltonian provided
in equation (7.15), i.e., the effective Hamiltonian after a second diagonalization.
Instead of fully removing the ZX crosstalk term, we only partially compensate for
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the error, with a DRAG parameter a:

Ĥ4,4 =
(

Ω
2 + aΩ̈

2∆2

)
X̂Î + ∆Π̂2 + Ĥerror,4. (7.24)

We consider the first two terms as the desired dynamics (up to a recalibration of
gate time) and the rest of them as errors:

Ĥerror,4 = ΩZX ẐX̂ + ΩY Y Ŷ Ŷ + ΩY X Ŷ X̂. (7.25)

The amplitude of terms in Ĥerror,4 is assumed to be much smaller than the main
dynamics ΩXI and ∆

ΩZX =
(
− gΩ̈

2∆3 + a
gΩ̈

2∆3

)
, (7.26)

ΩY Y =
(
gΩ2

2∆2 + a
gΩΩ̈
2∆4

)
, (7.27)

ΩY X =
(
− igΩΩ̇

2∆3 − a
igΩ̇Ω̈
2∆5

)
. (7.28)

When analyzing unwanted transition errors relative to idling dynamics, it is often
sufficient to estimate the transition probability by integrating the coupling strength,
modulated with the eigenfrequency [65, 67, 89]. This approach corresponds to a
first-order Magnus expansion. However, applying the same method to study leakage
is challenging because the dominant dynamic implements a π rotation. Under
this assumption, the condition of Magnus expansion does not converge because∫
|Ĥ|dt ≈ π, i.e., desired dynamics flips the state of the first qubit. Therefore,

a simple integral of the leakage term does not accurately capture the leakage
dynamics.

To isolate the error term, we must first transform the Hamiltonian to the
interaction picture with respect to the desired dynamics. We define

ĤX1 =
(

Ω
2 + a

Ω̈
2∆2

)
X̂Î (7.29)

, (7.30)

and the corresponding frame transformation

V̂4→5 = exp
(
i

∫
ĤXIdt

)
= exp

(
i
θ(t)
S

2X̂Î
)
, (7.31)

with θ(t) =
∫ (

Ω + a Ω̈
∆2

)
dt.

The above transformation transforms the error into the interaction picture, the
remaining terms are all in the second order, considerably small compared to ∆ and
Ω. We have

Ĥ4,5 = ∆Π̂2 + Ĥerror,5, (7.32)
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with

Ĥerror,5 = (−ΩY X sin(θt) + ΩZX cos(θt)) ẐX̂ − ΩY Y sin(θt)ẐŶ
+ (ΩY X cos(θt) + ΩZX sin(θt)) Ŷ X̂ + ΩY Y cos(θt)Ŷ Ŷ . (7.33)

Because Ĥerror,5 is small, we can now use the first-order Magnus expansion and
obtain two types of errors: a Cross-Resonance type of coupling

C1 =
∫

eit∆ (− sin(θt)ΩY X − i sin(θt)ΩY Y + cos[tθ]ΩZX) dt, (7.34)

and a SWAP type

C2 =
∫
ieit∆ (cos(θt)ΩY X + i cos(θt)ΩY Y + sin[tθ]ΩZX) dt. (7.35)

The total error is given as

E = 1− 1
4

∣∣∣∣Tr
[

exp
(
−i
∫

ei∆Π̂2Ĥerror,5dt
)]∣∣∣∣ (7.36)

≈ 1
4

∣∣∣∣∣Tr

[
−1

2

(∫
ei∆Π̂2Ĥerror,5dt

)2
]∣∣∣∣∣ (7.37)

= 1
2
(
|C1|2 + |C2|2

)
, (7.38)

where in the approximation above we expand the exponential and use the fact that
Ĥerror,5 is traceless.

This error metric includes all the gate errors (captured up to the second-order
perturbation) except for the rotation angle error. Instead of optimizing using the
fidelity of the time evolution propagator, one can optimize this specific error metric.
The minimized gate error is shown in Figure 7.3 as green dots, which agrees very
well with the numerically optimized value.

7.7 Discussion
In this chapter, we derive two DRAG solutions to suppress quantum crosstalk for
single-qubit drives, demonstrating that even under conditions of relatively small
detuning, DRAG correction still provides adequate improvement in gate fidelity.
Additionally, we show that calibration of the DRAG strength reveals a zero point of
leakage error for the second-derivative DRAG correction and provide an analytical
formula for error estimation.

The quantum crosstalk model examined here is a simplified one, focusing
on achieving a perfect π rotation on one qubit while minimizing leakage to the
neighbouring qubit. Despite the simplicity of the model, similar principles apply to
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more complex quantum crosstalk scenarios, such as the spectator qubits problem
with Cross-Resonance gates [81]. Following the recursive DRAG formulation
introduced in Chapter 5, the solution here can also be combined with other DRAG
corrections, including those addressing leakage to higher energy levels.

One particular observation is that the DRAG correction under this quantum
crosstalk model is independent of crosstalk strength g and only relies on the drive
strength Ω and detuning ∆. This can also be explained from the perspective
of frequency engineering. The first perturbative explanation of DRAG involves
engineering the Fourier properties of the pulse such that the unwanted frequency
component is minimized, which is independent of the magnitude of the coupling
strength. This imposes a limit on the DRAG correction in cases of very small
detuning: Regardless of the leakage coupling strength, the same amount of DRAG
correction needs to be applied, complicating phase and rotation angle calibration.

Another challenge not addressed here is that the DRAG correction does not
affect the hybridization between the two qubits. In particular, if the second qubit
is subject to another drive, the calibration of this drive may depend on the DRAG
frame of the first qubit. For parallel execution of gates on both qubits, this
dependence needs to be analytically characterized to provide parameterized pulse
shapes for experimental calibration.
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8
Pulse-level quantum circuit simulation with QuTiP

The study of the impact of noise on quantum circuits is especially rele-
vant to guide the progress of Noisy Intermediate-Scale Quantum (NISQ)
computing. In this chapter, we address the pulse-level simulation of
noisy quantum circuits with the Quantum Toolbox in Python (QuTiP).
We introduce new tools in qutip-qip, QuTiP’s quantum information
processing package. These tools simulate quantum circuits at the pulse
level, leveraging QuTiP’s quantum dynamics solvers and control opti-
mization features. We show how quantum circuits can be compiled on
simulated processors, with control pulses acting on a target Hamiltonian
that describes the unitary evolution of the physical qubits. Various types
of noise can be introduced based on the physical model, e.g., by simu-
lating the Lindblad density-matrix dynamics or Monte Carlo quantum
trajectories. In particular, the user can define environment-induced
decoherence at the processor level and include noise simulation at the
level of control pulses. We illustrate how the Deutsch-Jozsa algorithm
is compiled and executed on a superconducting-qubit-based processor, on
a spin-chain-based processor and using control optimization algorithms.
We also show how to easily reproduce experimental results on cross-talk
noise in an ion-based processor, and how a Ramsey experiment can be
modeled with Lindblad dynamics. Finally, we illustrate how to integrate
these features with other software frameworks.

This chapter has been published, with minor changes, as B. Li, S. Ahmed, S. Saraogi, N.
Lambert, F. Nori, A. Pitchford, and N. Shammah, Pulse-level noisy quantum circuits with
QuTiP, Quantum 6, 630 (2022). [235]. The thesis author contributed significantly to the code
base, composed all the figures and made significant contributions in writing the manuscript.
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8.1 Introduction
Quantum computation and quantum algorithms are deemed to be able to complete
tasks that would be harder or impossible to achieve with classical resources. However,
noise on quantum hardware significantly influences its performance, limiting large-
scale applications. Currently, we are in the so-called noisy intermediate-scale
quantum (NISQ) computing era [236]. Before we reach the regime of quantum error
correction (QEC) [3], quantum algorithms will suffer from quantum and classical
noise, e.g., decoherence and noise in classical control signals. Both types of noise
lead to errors in the computation and therefore determine the performance of a
quantum algorithm. Hence, a realistic simulation of a quantum algorithm needs to
incorporate these different types of noise, which can depend strongly on the type
of qubit technology [237].

A modern quantum algorithm typically includes both classical and quantum
parts [238]. The former can include classical variational subroutines, while the
latter is usually represented by a quantum circuit, consisting of a number of gates
applied on a quantum state. Many software projects provide the simulation of
such circuits including PyQuil [239, 240], Qiskit [241], Cirq [242], ProjectQ [243],
and PennyLane [244], among others [245, 246]. However, within these approaches,
noise is usually modelled as an additional layer on top of ideal quantum gates,
e.g., probabilistically inserting random Pauli gates or a list of Kraus operators to
describe a noisy quantum channel.

To improve the performance of a quantum circuit on noisy hardware, it is
useful to also perform optimization at the level of control pulses based on the
quantum dynamics of the underlying hardware. For this purpose, open-source
software packages have been developed to map quantum circuits to control pulses
on hardware, allowing for fine-tuning and calibration of the control pulses, such as
qiskit.pulse [161], qctrl-open-controls [247] and Pulser [248]. Recently, Qiskit
also launched the project qiskit-dynamics to support solving time-dependent
quantum systems, connected with qiskit.pulse. The project is still in the early
stages of development.

In the realm of simulation, one of the earliest, and most widely used Python
packages to simulate quantum dynamics is the Quantum Toolbox in Python, QuTiP
[27, 249]. QuTiP provides useful tools for handling quantum operators and simplifies
the simulation of a quantum system under a noisy environment by providing a
number of solvers, such as the Lindblad master equation solver. An ecosystem of
software tools for quantum technology is growing around it [24, 29, 248, 250–255].
Hence, it is a natural base to start connecting the simulation of quantum circuits
and the time evolution of the quantum system representing the circuit registers.
At the cost of more computing resources, simulation at the level of time evolution
allows noise based on the physical model to be included in the realistic study of
quantum circuits.

In this chapter, we illustrate how the new tools in qutip-qip1 can be used
1https://github.com/qutip/qutip-qip

https://github.com/qutip/qutip-qip
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to bridge the gap between the gate-level circuit simulation and the simulation of
quantum dynamics following the master equation for various hardware models.
While a quantum circuit representation and a few specific Hamiltonian models have
been available in QuTiP for some time, in this chapter, we bridge them with QuTiP
solvers and build a pulse-level simulation framework, allowing the simulation of
noisy circuits.

Provided a Hamiltonian model and a map between the quantum gate and
control pulses, we show how these new tools in qutip-qip can be used to compile
the circuit into the native gates of a given hardware, how to generate the physical
model described by control pulses and how to use QuTiP’s dynamical solvers to
obtain the full-state time evolution, as shown in Figure 8.1.

A number of example hardware models are available in the software package
– a spin qubit processor, a cavity-QED device, a superconducting qubit model –
while in general the users are provided with the freedom to define their own devices
of choice. In addition to a predefined map between gates and pulses for each
model, optimal control algorithms in QuTiP can also be used to generate control
pulses. Moreover, we demonstrate how various types of noise, including decoherence
induced by the quantum environment and classical control noise, can be introduced
at different layers of the simulation. Thanks to a modular code design, one can
quickly extend the toolkit with customized hardware and noise models.

This chapter is organized as follows: In Section 8.2, information about the
software installation and specifics is given. In Section 8.3, we briefly present the
background concepts of quantum circuits at the gate level, the continuous-time
pulse-level description for circuits, open quantum systems theory and the tools
present in qutip and qutip-qip to represent and simulate open quantum systems.
Section 8.4 contains the main novel results and new software features: therein,
we illustrate in detail the novel architecture of the pulse-level quantum-circuit
simulation framework in qutip-qip and the available modelling of quantum devices
and noise. In Section 8.5, we show how these features can be integrated with other
software by importing external quantum circuits using the QASM format. We
conclude in Section 8.6.

The Appendices include self-contained code examples: Section 8.8.1 contains
the full code for the Deutsch-Jozsa algorithm simulation; Section 8.8.2 presents the
simulation of a 10-qubit quantum Fourier transform (QFT) algorithm using the
spin chain model; Section 8.8.3 shows how to customize the physical model of a
processor with noise. More examples can also be found in QuTiP tutorials2.

8.2 Software information
The tools described here are part of the QuTiP project [27, 249]. The qutip-qip
package builds upon what was once a module of QuTiP, qutip.qip. Usage and
installation has not significantly changed for the end user, who can easily install

2http://qutip.org/tutorials.html under the section Quantum Information Processing

http://qutip.org/tutorials.html
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Figure 8.1: Illustration of the workflow of the pulse-level noisy quantum circuit
simulation. It starts from a quantum circuit defined in QuTiP or imported from
other libraries through the QASM format. Based on the hardware of interest, the
circuit is then compiled to control pulse signals for each control Hamiltonian (blue for
single-qubit gates and red for two-qubit gates in the figure). Next, a representation
of the time evolution, including various types of noise, is generated under the
description of the master equation. In the last step, the QuTiP solver is employed
to solve the dynamics. The solver returns the final result as well as the intermediate
state information on demand. Both the final and the intermediate quantum states
can be recorded, as illustrated by the plot showing the population of the |00⟩ state,
with the third qubit traced out. This plot is the same as Section 8.8.1 and will
be explained later in detail. The control signals in the figure are for illustration
purposes only while the real compiled pulses on a few predefined hardware models
are shown in Figure 8.3.
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the package from the Python package index (PyPI) distribution with

Code Listing 8.1: Installing qutip-qip
pip i n s t a l l qutip−qip

The qutip-qip package has the core qutip package as its main dependency.
This means that it also builds upon the wider Python scientific open source software
stack, including NumPy [256] and SciPy [257], and optionally Matplotlib [258] and
Cython [259]. qutip-qip is a software developed by many contributors [260].

The qutip-qip package is developed with the best practices of open-source
software development and scientific software. The codebase is hosted on GitHub
and new code contributions are reviewed by the project maintainers. The license is
the BSD three-clause license (also known as BSD 2.0 or New BSD). The code is
thoroughly unit-tested, with tests for most objects also running on the cloud in
continuous integration, on multiple operating systems. The documentation, whose
code snippets and API documentation are also unit tested, is hosted online on Read
The Docs (https://qutip-qip.readthedocs.io/); the documentation can also be
generated locally by contributors with Sphinx by forking the QuTiP/qutip-qip
Github repository.

8.3 Quantum circuits and open quantum dynamics
In this section, we briefly review the theory of quantum circuits and their modelling
on actual devices that are subject to noise. We introduce the formalism for the gate-
level representation of quantum circuits, then describe the Hamiltonian description
at the pulse level, and finally the open-quantum dynamics of a realistic system.

8.3.1 Quantum circuits and gate-level simulation
A quantum circuit is a model for quantum computation, where the quantum
dynamics is abstracted and broken down into unitary matrices (quantum gates),
which can be applied to all or only a few circuit registers. Inherited from classical
computing, the circuit registers are most often two-level systems, referred to as
qubits. The execution of a circuit on a quantum state is then given by

|ψf ⟩ = ÛKÛK−1 · · · Û2Û1 |ψi⟩ , (8.1)

where |ψi⟩ and |ψf ⟩ are the initial and final state and Ûk with k ∈ {1, 2, · · · ,K}
the quantum gates.

Often, the simulation of quantum circuits is implemented by representing the
unitaries and quantum states as complex matrices and vectors. The execution
of a circuit is then described as matrix-vector multiplication. We refer to this as
gate-level quantum circuit simulation. The gate-level quantum circuit description is
a representation of a quantum algorithm at an abstract level before considering any

https://qutip-qip.readthedocs.io/
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physical realization to implement the algorithm [3]. More general representations
of hybrid quantum algorithms include the integration of classical and quantum
subroutines, as for variational quantum algorithms [238], their compilation and
execution [240, 244, 261–263]. In qutip-qip, this gate-level simulation can be
performed with the QubitCircuit class, which is the Python object used to represent
a quantum circuit.

In order to introduce the effects of noise, quantum states can be most generally
represented by a density matrix and the idea of a quantum channel is introduced,
where noise can be characterized by a set of non-unitary Kraus operators acting
on the quantum states. Many well-known channel representations of noise have
been implemented in circuit simulation, such as depolarising, dephasing, amplitude
damping and erasure channels. Although the channel description is very general,
noisy gate simulation based on it has two shortcomings.

First, in most implementations, noise is applied after the ideal gate unitaries,
while in reality they are not separated. Second, although quantum channels
describe the most general evolution that a quantum system can undergo, finding
the representation of realistic noise in this channel form is not a trivial task. Usually,
a noise channel implemented in simulators only describes single-qubit decoherence
and cannot accurately capture the complicated noisy evolution that the system
undergoes. Hence, to study the execution of circuits on noisy hardware in more
detail, one needs to turn to the quantum dynamics of the hardware platform.

8.3.2 Continuous time evolution and pulse-level description
Down to the physical level, quantum hardware, on which a circuit is executed, is
described by quantum theory. The dynamics of the system that realizes a unitary
gate in equation (8.1) is characterized by the time evolution of the quantum system.
For isolated or open quantum systems, we consider both unitary time evolution
and open quantum dynamics. The latter can be simulated either by solving the
master equation or sampling Monte Carlo trajectories. Here, we briefly describe
those methods as well as the corresponding solvers available in QuTiP.

Unitary time evolution

For a closed quantum system, the dynamics is determined by the Hamiltonian
and the initial state. From the perspective of controlling a quantum system,
the Hamiltonian is divided into the non-controllable drift Ĥd (which may be
time-dependent) and controllable terms combined as Ĥc to give the full system
Hamiltonian

Ĥ(t) = Ĥd(t) + Ĥc(t) = Ĥd(t) +
∑

j

cj(t)Ĥj , (8.2)

where the Ĥj describes the effects of available physical controls on the system that
can be modulated by the time-dependent control coefficients cj(t), by which one
drives the system to realize the desired unitary gates.
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The unitary Û that is applied to the quantum system driven by the Hamiltonian
Ĥ(t) is a solution to the Schrödinger operator equation

iℏ∂Û(t)
∂t

= Ĥ(t)Û(t). (8.3)

By choosing Ĥ(t) that implements the desired unitaries (the quantum circuit) we
obtain a pulse-level description of the circuit in the form of equation (8.2). The
choice of the solver depends on the parametrization of the control coefficients
cj(t). The parameters of cj(t) may be determined through theoretical models or
automated through control optimisation, as described later in Section 8.4.

Open quantum system dynamics

In reality, a quantum system is never perfectly isolated; hence, a unitary evolution is
often only an approximation. To consider possible interaction with the environment,
one can introduce a larger Hilbert space, or reduce the overhead by effectively
limiting the description to the system Hilbert space and using super-operators
inducing non-unitary dynamics (i.e., on an open system). One way to describe the
evolution of an open quantum system is by the Lindblad master equation. It can
be solved either by solving a differential equation (qutip.mesolve) or by Monte
Carlo sampling of quantum trajectories (qutip.mcsolve). Both can be chosen as a
simulation back-end for the pulse-level circuit simulator.

These solvers provide an efficient simulation of open-system quantum dynamics.
They can describe noise models derived under the Born-Markov Secular (BMS)
approximations [43, 264], and more general Lindbladians, including those with
time-dependent rates. For most hardware implementations these noise models
are powerful and flexible enough to capture the most salient environmental noise
effects.

Density-matrix master equation solver. The function qutip.mesolve can
solve general open dynamics that can be cast in the form

∂ρ̂(t)
∂t

=Lρ̂(t), (8.4)

where the dynamics of the “system” density matrix ρ̂(t) evolves under the action of
a superoperator L. The user can decide to provide directly the full superoperator
L, or divide the dynamics in the Hamiltonian part [(8.2)] and noise terms provided
by a set of collapse operators (c_ops) with related rates, and qutip.mesolve will
effectively solve Eq. (8.4) behind the scenes. The structure of Eq. (8.4) can be quite
generic, including the possibility for time-dependent rates and collapse operators,
beyond the Born-Markov and secular (BMS) approximation, however, one of the
most straightforward approaches is to simulate a Lindblad master equation. A
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common example of a quantum circuit consisting of N qubits experiencing relaxation
and dephasing would be the following Lindblad master equation,

∂ρ̂(t)
∂t

=− i
[
Ĥ(t), ρ̂(t)

]
+

N−1∑
j=0

γjD[σ̂−
j ]ρ̂(t)

+
N−1∑
j=0

γD
j

2 D[σ̂z
j ]ρ̂(t), (8.5)

where Ĥ is the system Hamiltonian, γj is the relaxation rate of qubit j, γD
j the

pure dephasing rate of qubit j, D[Γn]X = ΓnXΓ†
n − 1

2 Γ†
nΓnX − 1

2XΓ†
nΓn is the

Lindblad dissipator for a generic jump operator Γn acting on a density matrix X,
and σ̂α

j are Pauli operators, with α = x, y, z,+,−.
This approach allows us to model the coexistence of pulse-level control, in the

coherent Hamiltonian part, and the influence of noise. However, the density matrix
description of the system introduces a quadratic overhead in memory size. If this
becomes a limiting factor for a given simulation, progress can be made by employing
the Monte-Carlo quantum trajectory solver, qutip.mcsolve.

Monte-Carlo quantum trajectories. A popular method that is alternative
to the full master equation simulation is the Monte Carlo sampling with quantum
trajectories. Noise is included in an effective non-Hermitian Hamiltonian, and a
stochastic term is added by pseudo-random sampling. An effective Hamiltonian
is continuously applied to the system, integrating the part of equation (8.5) with
Lindblad dissipators,

Ĥeff = Ĥ(t)− i

2
∑

n

Γ̂†
nΓ̂n, (8.6)

while the second part is determined stochastically, checking if a random number is
greater than the norm of the unnormalized wave function. If that is the case, the
quantum jump is applied, ensuring the renormalization of the wavefunction,

|ψ(t+ δt)⟩ = Γ̂n|ψ(t+ δt)⟩√
⟨ψ(t)|Γ̂†

nΓ̂n|ψ(t)⟩
. (8.7)

The advantage of the quantum trajectory approach over the density-matrix master
equation solution is that one needs to handle a computational space of dimension
N equal to the Hilbert space, instead of its square. Additionally, the quantum-
trajectory approach allows simulating the dynamics of single executions instead of
the averaged dynamics from a density-matrix simulation using the master equation,
which can provide further insight in processes that may be washed out when looking
only at the statistical averages [265, 266]. A trade-off is present in the number of
trajectories that need to be run to evaluate a mean path with a small standard
deviation. However, the trajectories can be computed in parallel. QuTiP uses
Python’s multiprocessing module to benefit from multi-core computing platforms.
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Figure 8.2: The structure of the simulation framework. The main interface is
implemented in the class Processor. An instance of Processor emulates a quantum
processor that takes a circuit and an initial quantum state as input and outputs the
result as a qutip.Result object. From the result, one can inspect the final state
of the physical qubits, as well as intermediate results during the time evolution.
The Processor has a modular design that allows for arbitrary specifications of the
underlying hardware model, compilation, scheduling gates and noise models.

Other dynamical solvers. QuTiP also provides solvers for other noise models
and dynamics, such as the (secular and non-secular) Bloch-Redfield equation [43],
the (non-Markovian) hierarchical equation of motion (HEOM) [252, 267], and
stochastic master equations. These are not currently supported for the pulse-level
circuit simulation of qutip-qip.

8.4 Pulse-level quantum-circuit simulation frame-
work

In this section, we describe the architecture of the simulation framework. The
framework aims at simplifying the simulation of noisy quantum circuits through
the explicit time evolution of physical qubits using QuTiP solvers. As illustrated
in Figure 8.2, the simulation is designed around a Processor class, which consists
of several different components. An instance of Processor emulates the behaviour
of a quantum processor that takes a quantum circuit (QubitCircuit) as well as an
initial quantum state (qutip.Qobj) and produces the final state as a (qutip.Result)
object. As discussed further below in this section, the key improvements in the
new qutip-qip package are the Model, GateCompiler, Scheduler and the Noise
classes that allow a modular and flexible design of realistic quantum processors for
simulations.

We illustrate our new framework here with an example simulating a 3-qubit
Deutsch-Jozsa algorithm on a chain of spin qubits. We will work through this
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example and explain briefly the workflow and all the main modules. We then
describe each module in detail in the subsequent subsections. The simulation of a
more complicated circuit, a 10-qubit QFT algorithm, is presented in Section 8.8.2.

In qutip-qip, a quantum circuit is represented by an instance of the QubitCircuit
class. The following code defines a circuit of a 3-qubit Deutsch-Jozsa algorithm
(see Figure 8.3a)3:
qc = QubitCircuit (3)
qc. add_gate ("X", targets =2)
qc. add_gate ("SNOT", targets =0)
qc. add_gate ("SNOT", targets =1)
qc. add_gate ("SNOT", targets =2)

# Oracle function f(x)
qc. add_gate (

"CNOT", controls =0, targets =2)
qc. add_gate (

"CNOT", controls =1, targets =2)

qc. add_gate ("SNOT", targets =0)
qc. add_gate ("SNOT", targets =1)

The Deutsch-Jozsa algorithm consists of an oracle constructed using two CNOT
gates. The first two qubits in our circuit take a binary input and will be measured
at the end while the last qubit is an ancillary qubit that stores the result of the
oracle. The goal is to test if the oracle function is balanced or constant. A constant
function returns all 0 or 1 for any input, while a balanced function returns 0 for
half of the input combinations and 1 for the other half.

Among the four different classical inputs ({00, 01, 10, 11}), for half of them, the
oracle returns 0 while for the other half it returns 1. Hence it is a balanced function
and, without noise, the measurement of the first two qubits will never be both 0.
One can run the gate-level simulation in the following way:
init_state = basis ([2,2,2], [0,0,0])
final_state = qc.run( init_state )

where we first initialize the state as |000⟩ using qutip.basis and then run the
circuit simulation. By checking the final state, one will see that it has no overlap
with |000⟩ or |001⟩.

The above simulation is at the gate level and is computed by matrix-vector
products of the gate operators and the input quantum state. We now describe how
to simulate the circuit at the pulse level using Processor.

8.4.1 Processor
The Processor class handles the routine of a pulse-level simulation. It first compiles
the circuit into a pulse-level description and then simulates the time evolution of

3The code examples present in the main text and the Appendices are available at
github.com/boxili/qutip-qip-paper. The code is compatible with qutip-qip==0.2.

https://www.github.com/boxili/qutip-qip-paper
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the underlying physical system using QuTiP solvers. For different hardware models
and compiling methods, the same circuit can be compiled into different pulses, as
shown in Figures 8.3b to 8.3d. Because of different noise models, the final state
also differs from that of the ideal gate-level simulation.

In the following, we choose the spin chain model as an example of the un-
derlying physical system and give an overview of the simulation procedure. We
start by initializing a specific type of processor, a subclass of Processor called
LinearSpinChain:
processor = LinearSpinChain (

num_qubits =3, sx=0.25)

where we provide the number of qubits and the σ̂x drive strength 0.25MHz. The
other parameters, such as the interaction strength, are set to be the default value.
The decoherence noise can also be added by specifying the coherence times (T1 and
T2) which we discuss hereafter.

By initializing this processor with the hardware parameters, a Hamiltonian model
for a spin chain system is generated, including the drift and control Hamiltonians
(Ĥd, Ĥc). The Hamiltonian model is represented by the Model class and is saved
as an attribute of the initialized processor. We provide different predefined models
and discuss them more in Section 8.4.2. In addition, the Processor can also hold
simulation configurations such as whether to use a cubic spline interpolation for
the pulse coefficients. Such configurations are not directly part of the model but
nevertheless could be important for the pulse-level simulation.

Next, we provide the circuit to the processor through the method load_circuit:
processor . load_circuit (qc)

The processor will first decompose the gates in the circuit into native gates that can
be implemented directly on the specified hardware model. Each gate in the circuit
is then mapped to the control coefficients and driving Hamiltonians according to
the GateCompiler defined for a specific model. A Scheduler is used to explore
the possibility of executing several pulses in parallel. The compiler and scheduler
classes will be explained in detail in Sections 8.4.3 and 8.4.4.

In addition to the standard compiler, optimal control algorithms in QuTiP can
also be used to generate the pulses, which are implemented in OptPulseProcessor
(Section 8.4.5).

With a pulse-level description of the circuit generated and saved in the processor,
we can now run the simulation by
t_max = processor . get_full_tlist ()[-1]
tlist = np. linspace (0, t_max , 300)
result = processor . run_state (

init_state , tlist = tlist )

The run_state method first builds a Lindblad model including all the defined noise
models (none in this example, but options are discussed below) and then calls a
QuTiP solver to simulate the time evolution. One can pass solver parameters as
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keyword arguments to the method, e.g., tlist (time sequence for intermediate
results), e_ops (measurement observables) and options (solver options). In the
example above, we record the intermediate state at the time steps given by tlist.
The returned result is a qutip.Result object, which, depending on the solver
options, contains the final state, intermediate states and the expectation value.
This allows one to extract all information that the solvers in QuTiP provide.

As for the simulation of noise, simple decoherence noise can be included in the
Processor by specifying T1, T2, e.g.,

LinearSpinChain ( num_qubits =3, t2=30)

More advanced noise models can be represented by the Noise class and added with
the method Processor.add_noise. The following code is an equivalent way of
defining a T2 noise:

processor . add_noise (
RelaxationNoise (t2=30))

In general, the Noise class can be used to represent both decoherence and coherent
noise sources. The former is defined by time-dependent or independent collapse
operators and the latter by additional Hamiltonian terms in equation (8.2), with
which distortion in the control coefficients or cross-talk can be represented. In
particular, one can define noise that is correlated with the compiled ideal control
coefficients through the Pulse class. They are explained in detail with examples in
Sections 8.4.6 and 8.4.7.

Overall, the framework is designed in a modular way so that one can add custom
Hamiltonian models, compilers and noise models. We describe in Section 8.4.8 how
this can be done by defining new subclasses.

8.4.2 Model
The pulse-level simulation depends strongly on the modelling of the physical qubits.
In the framework, the physical model is saved as an instance of the Model class
in an initialized processor. A Model object contains the information regarding
the specific quantum hardware, including the drift Hamiltonian that cannot be
controlled, the available control Hamiltonians and possible noise in the system. A
concrete physical model such as SpinChainModel is defined as a subclass of Model.

For convenience of use, a Model object is automatically generated while initial-
izing a specific Processor, as in the example at the beginning of this section. To
offer more flexibility, qutip-qip provides an equivalent way for the user to define a
model and pass it to a Processor object, e.g.,

model = SpinChainModel (
num_qubits =3, setup =" circular ", g=1)

processor = Processor ( model = model )

One can inquire about the properties of a control Hamiltonian through
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Figure 8.3: (a). Control pulses generated for a three-qubit Deutsch-Jozsa al-
gorithm (a), where two CNOT gates implement the oracle, which is a balanced
function. The pulses are compiled using (b) the spin chain model [equation (8.8)],
(c) the superconducting qubits [equation (8.10)] and (d) the optimal control algo-
rithm (using GRAPE with the same control Hamiltonian as the spin chain model
in equation (8.8)). The symbols for pulse coefficients are defined in the correspond-
ing equations. The blue and orange colours denote the two single-qubit control
pulses, while green is used for the qubit-qubit interaction. For the spin chain and
superconducting qubits, the interaction exists only between neighbouring qubits,
hence SWAP gates are added to implement the CNOT between the first and third
qubits and decomposed into the native gates. The grey background marks the
pulse duration for the two CNOT gates, where the effect of ASAP scheduling is
evident. The strength of the compiled pulses, |cj(t)|, is normalized for plotting and
should not be compared between different control Hamiltonians. Code examples
generating these plots are shown in Section 8.8.1.
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model . get_control ( label ="sx0")

which returns a tuple consisting of the Hamiltonian as a qutip.Qobj and the indices
of the target qubits. For the predefined models, all available control Hamiltonians
can be obtained by
model . get_control_labels ()

The same interface is also provided in Processor (e.g., Processor.get_control)
for convenience.

In predefined models, these control Hamiltonian terms are simply defined in a
dictionary, equivalent to the following code:
controls = {}
for m in range ( num_qubits ):

op = 2 * np.pi * sigmax ()
controls ["sx"+str(m)] = (op , m)

which will be accessed by the model object. Notice that, in general, a model can
be correctly recognized by the processor if the method Model.get_control(label)
returns the results in the expected format, regardless of the internal implementation.
For instance, in Section 8.8.3, we define it in a different way. This will be helpful,
for instance, in an all-to-all connected system, e.g., using ions or neutral atoms, for
which listing all the available combinations of target qubits is tedious.

Models allow one to simulate the physical qubits and their interaction in a
more realistic way, e.g., using resonator-induced coupling and including leakage
levels. This is demonstrated by a few predefined models that are implemented as
subclasses of Model: the spin chain model, the qubits-resonator model and the
fixed-frequency superconducting qubit model. Custom Hamiltonian models can be
defined as subclasses as detailed in Sections 8.4.8 and 8.8.3. In the following, we
illustrate the characteristics of the predefined hardware models in detail.

Spin Chain model

The spin-exchange interaction exists in many quantum systems and is one of
the earliest types of interaction used in quantum information processing, e.g., in
Refs. [237, 268, 269]. Our predefined SpinChainModel implements a system of a
few spin qubits with the exchange interaction arranged in a one-dimensional chain
layout with either open ends or closed ends.

The interaction is only possible between adjacent qubits. For the spin model,
the single-qubit control Hamiltonians are σ̂x

j , σ̂z
j , while the interaction is realized

by the exchange Hamiltonian σ̂x
j σ̂

x
j+1 + σ̂y

j σ̂
y
j+1. The control Hamiltonian is given

by

Ĥ =
N−1∑
j=0

Ωx
j (t)σ̂x

j + Ωz
j (t)σ̂z

j +
N−2∑
j=0

gj(t)(σ̂x
j σ̂

x
j+1 + σ̂y

j σ̂
y
j+1), (8.8)
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where Ωx, Ωy and g are the time-dependent control coefficients and N is the number
of qubits.

Qubit-resonator model

In some experimental implementations, interactions are realized by a quantum bus
or a resonator connecting different qubits. The qubit-resonator model describes
a system composed of a single resonator and a few qubits connected to it. The
coupling is kept small so that the resonator is rarely excited but acts only as a
mediator for entanglement generation. The single-qubit control Hamiltonians used
are σ̂x and σ̂y. The dynamics between the resonator and the qubits is captured
by the Tavis-Cummings Hamiltonian, ∝

∑
j
â†σ̂−

j + âσ̂+
j , where â, â† are the

destruction and creation operators of the resonator, while σ̂−
j , σ̂+

j are those of
each qubit. The control of the qubit-resonator coupling depends on the physical
implementation, but in the most general case we have single and multi-qubit control
in the form,

Ĥ =
N−1∑
j=0

Ωx
j (t)σ̂x

j + Ωy
j (t)σ̂y

j + gj(t)(â†σ̂−
j + âσ̂+

j ) . (8.9)

In the numerical simulation, the resonator Hamiltonian is truncated to finite levels.
The user can find a predefined CavityQEDModel implementing equation (8.9).

Superconducting qubit model

Superconducting-circuit qubits have been harnessed to provide artificial atoms
for quantum simulation and quantum computing [4, 5, 237, 270, 271]. In our
model, defined by the SCQubitsModel class, each qubit is simulated by a multi-level
Duffing model, in which the qubit subspace is provided by the ground state and
the first excited state. By default, the creation and annihilation operators are
truncated at the third level, which can be adjusted, if desired, by the user. The
multi-level representation can capture the leakage of the population out of the qubit
subspace during single-qubit gates. The single-qubit control is generated by two
orthogonal quadratures (â†

j + âj) and i(â†
j − âj). Similar to the spin chain model,

the interaction is possible only between adjacent qubits. Although this interaction
is mediated by a resonator, for simplicity, we replace the complicated dynamics
among two superconducting qubits and the resonator with a two-qubit effective
Hamiltonian derived in [80].

As an example, we choose the cross resonance interaction in the form of σ̂z
j σ̂

x
j+1,

acting only on the two-qubit levels, which is widely used, e.g., in fixed-frequency
superconducting qubits. We can write the Hamiltonian as

Ĥ =Ĥd +
N−1∑
j=0

Ωx
j (â†

j + âj) + Ωy
j i(â

†
j − âj) +

N−2∑
j=0

Ωcr1
j σ̂z

j σ̂
x
j+1 + Ωcr2

j σ̂x
j σ̂

z
j+1,

(8.10)
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where the drift Hamiltonian Ĥd is defined by the anharmonicity αj of the second
excited state,

Ĥd =
N−1∑
j=0

αj

2 â†
j â

†
j âj âj . (8.11)

The coefficients Ωcr1 and Ωcr2 are computed from the qubit-resonator detuning
and coupling strength [80]. With additional single-qubit gates, a CNOT gate can
be realized using this type of interaction [123]. Using this effective Hamiltonian
significantly reduces the size of the Hilbert space in the simulation and allows us
to include more qubits. This flexibility in choosing different levels of detail in the
modelling is one of the biggest advantages of this framework, in particular for noise
simulation (as illustrated in more detail in Section 8.4.6).

8.4.3 Compiler
A compiler converts the quantum circuit to the corresponding pulse-level controls
cj(t)Ĥj on the quantum hardware. In the framework, it is defined as an instance
of the GateCompiler class. The compilation procedure is achieved through the
following steps.

First, each quantum gate is decomposed into the native gates (e.g., rotation
over x, y axes and the CNOT gate), using the existing decomposition scheme in
QuTiP. If a gate acts on two qubits that are not physically connected, like in the
chain model and superconducting qubit model, SWAP gates are added to match the
topology before the decomposition. Currently, only 1-dimensional chain structures
are supported.

Next, the compiler maps each quantum gate to a pulse-level control description.
It takes the hardware parameter defined in the Hamiltonian model and computes the
pulse duration and strength to implement the gate. For continuous pulses, the pulse
shape can also be specified using SciPy window functions (scipy.signal.windows).
A pulse scheduler is then used to explore the possibility of executing multiple
quantum gates in parallel, which is explained in detail in Section 8.4.4.

In the end, the compiler returns a time-dependent pulse coefficient cj(t) for
each control Hamiltonian Ĥj [see equation (8.2)]. They contain the full information
to implement the circuit and are saved in the processor. The coefficient cj(t) is
represented by two NumPy arrays, one for the control amplitude and the other for
the time sequence. For a continuous pulse, a cubic spline is used to approximate
the coefficient. This allows the use of compiled Cython code in QuTiP to achieve
better performance.

For the predefined physical models described in the previous subsection, the
corresponding compilers are also included and they will be used when calling the
method Processor.load_circuit. As an example, we compile the three-qubit
Deutsch-Jozsa algorithm, shown in Figure 8.3a, while the compiled pulses on three
different models are plotted in Figures 8.3b to 8.3d. From the plots, it is evident
that the same circuit is compiled to completely different pulse-level controls:
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• For the spin chain model (Figure 8.3b), SWAP gates are added between
and after the first CNOT gate, swapping the first two qubits (coefficient g0).
The SWAP gate is decomposed into three iSWAP gates, while the CNOT is
decomposed into two iSWAP gates plus additional single-qubit corrections.
Both the Hadamard gate and the two-qubit gates need to be decomposed
to native gates (iSWAP and rotation on the x and z axes). The compiled
coefficients are square pulses and the control coefficients on σ̂z and σ̂x are
also different, resulting in different gate times.

• For the superconducting-qubit processor (Figure 8.3c), the compiled pulses
have a Gaussian shape. This is crucial for superconducting qubits because
the second excited level is only slightly detuned from the qubit transition
energy. A smooth pulse usually prevents leakage to the non-computational
subspace. Similar to the spin chain, SWAP gates are added to switch the
zeroth and first qubit and one SWAP gate is compiled to three CNOT gates.
The control Ωcr2

1 [defined in equation (8.10)] is not used because there is no
CNOT gate that is controlled by the second qubit and acts on the first one.

• For the optimal control model (Figure 8.3d), we use the GRAPE algorithm,
where control pulses are piece-wise constant functions. We provide the
algorithm with the same control Hamiltonian model used for the spin chain
model, Eq. (8.8). In the compiled optimal signals, all controls are active
(non-zero pulse amplitude) during most of the execution time. We note
that for identical gates on different qubits (e.g., Hadamard), each optimized
pulse is different, demonstrating that the optimized solution is not unique,
and there are further constraints one could apply, such as adaptions for the
specific hardware.

As a demonstration of the capability of the simulator, we also compile a 10-qubit
QFT algorithm using LinearSpinChain, as shown in Section 8.8.2.

To end this subsection, we mention that the gate decomposition is not fully
optimized in QuTiP. Circuit optimization at the level of quantum gates, such as
for an optimal number of two-qubit gates, depends on the hardware of interest
and is still an open research topic [272–275]. The same holds for mapping the
circuit to the topology of the qubits’ connectivity [276–278]. Because the focus
of this simulator is the simulation of the circuit at the physics level, we leave
more advanced optimization and scheduling techniques at the gate level for future
work. Instead, we offer the possibility to import quantum circuits defined in other
libraries into QuTiP in the QASM format (see Section 8.5). This allows possible
optimizations elsewhere and then exporting the optimized circuits in QuTiP for a
pulse-level simulation.

8.4.4 Scheduler
The scheduling of a circuit consists of an important part of the compilation. Without
it, the gates will be executed one by one and many qubits will be idling during the
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circuit execution, which increases the execution time and reduces the fidelity. In
the framework, the scheduler is used after the control coefficient of each gate is
computed. It runs a scheduling algorithm to determine the starting time of each
gate while keeping the result correct.

The heuristic scheduling algorithm we provide offers two different modes: ASAP
(as soon as possible) and ALAP (as late as possible). In addition, one can choose
whether permutation among commuting gates is allowed to achieve a shorter
execution time. The scheduler implemented here does not take the hardware
architecture into consideration and assumes that the connectivity in the provided
circuit matches with the hardware at this step.

In predefined processors, the scheduler runs automatically when loading a circuit
and hence there is no action necessary from the side of the user. To help explain the
scheduling algorithm, we provide here two examples of directly using the Scheduler
class.

For gate scheduling, one can use
Scheduler ("ASAP"). schedule (qc)

which, for the 3-qubit Deutsch-Jozsa example (Figure 8.3a), returns a list
[0, 0, 0, 1, 2, 3, 3, 4]

This list denotes the gate cycle of each gate in the circuit. Here, all gates are
assumed to have the same duration. One can see that, e.g., the second CNOT and
the last Hadamard on the first qubit are grouped together in cycle 3.

For pulse scheduling, one needs to use the Instruction class, which includes
information about a specific implementation of a gate on the hardware, e.g., the
duration of a gate. If we assume that all single-qubit gates take a time duration of
1 unit while the CNOT takes a time duration of 2 units, we can rewrite it as
inst_list = []
for gate in qc. gates :

if gate.name in ("SNOT", "X"):
inst_list . append (

Instruction (gate , duration =1
)

)
else :

inst_list . append (
Instruction (gate , duration =2
)

)
Scheduler ("ALAP"). schedule ( inst_list )

Notice that now we use the ALAP scheduling. This returns a different list
[0, 3, 1, 1, 4, 2, 6, 6]

with the starting time of each gate. In this result, the two CNOT gates (starting
time 4 and 2) are exchanged, so that the first Hadamard on the zeroth qubit only
needs to start at time step 3.
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In the following, we describe our implementation of the pulse scheduler. The
implementation is similar to Ref. [279, 280]. However, we omit the hardware-
dependent part but allow gates to have different durations, generalizing it to a
pulse scheduler. We focus on the ASAP scheduling while for the ALAP mode, the
circuit is reversed before it is passed to the algorithm and then reversed back after
the scheduling.

We first represent the dependency among quantum gates in a quantum circuit
as a directed acyclic graph. Each gate is represented by a node and the dependency
by arrows. Gate A is considered dependent on gate B if A has to be executed after
B. This also means that A needs to be executed after all the gates that B depends
on. Hence, there is no loop in the graph. Next, all gates are divided into different
cycles (ignoring the gate duration) according to the dependency graph. A priority
is then assigned to each quantum gate, determined by the time required to execute
all the gates that depend on it. The more time it takes to execute the gates after
it, the higher priority is assigned to this gate. In the end, from the dependency
graph and the priority, a list-scheduling algorithm is used to determine the order of
the execution and the starting time of each operation.

Unlike scheduling classical gates, a scheduler of quantum gates needs to take the
commutation relation into account. For instance, if two CNOT gates are controlled
by the same qubit, but act on two different target qubits, they can be exchanged.
Exploring this flexibility may reduce the total execution time, as shown in the
example above. This is included in the process of building the dependency graph.
All commuting gates are added to the same cycle when computing the priority and
the one with the highest priority will be executed first. In general, more advanced
techniques need to be applied to optimize the commuting gates, for instance as
discussed in Ref. [280]. However, this becomes more complicated when gates have
different execution times. For simplicity, we omit these advanced techniques in this
implementation.

8.4.5 Optimal control
Apart from using compilers with predefined gate-to-pulse maps, one can also use the
optimal control algorithm in QuTiP to find optimized control pulses. The algorithm
can take arbitrary control Hamiltonians as input and uses quantum control function
optimisation, based on open-loop quantum control theory [281] to find the best
pulses. For a set of given control Hamiltonians Ĥj , the optimal control module
uses classical algorithms to optimize the control function cj(t) in equation (8.2).
Parameters of control pulses for realizing individual gates, sequences and hence
complete circuits, are generated automatically through multi-variable optimization
targeting maximum fidelity with the evolution described by the circuit.

The optimal control module in QuTiP supports both the GRAPE [282, 283] and
the CRAB algorithms [30, 284]. The interface to use these algorithms in qutip-qip
is implemented via the OptPulseProcessor class. One first provides the available
control Hamiltonians that characterize the physical controls on the system, which,
e.g., can be provided as an instance of the Model class, such as the SpinChainModel.
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Upon loading the quantum circuit, each quantum gate is expanded to a unitary
acting on the full Hilbert space and passed to the optimal control algorithm as the
desired target. The returned pulses that drive this are concatenated to complete a
full circuit simulation of the physical control sequences. An example of optimized
pulses is shown in Figure 8.3d and the code can be found in Section 8.8.1.

8.4.6 Noise
The noise module allows one to add control and decoherence noise following
the Lindblad description of open quantum systems [equation (8.5)]. Compared
to the gate-based simulator (Section 8.3.1), this provides a more practical and
straightforward way to describe the noise. In the current framework, noise can be
added at different layers of the simulation, allowing one to focus on the dynamics of
the dominant noise, while representing other noise, such as single-qubit relaxation,
as collapse operators for efficiency. Depending on the problem studied, one can
devote the computing resources to the most relevant type of noise.

Apart from imperfections in the Hamiltonian model and circuit compilation,
the Noise class in the current framework defines deviations of the real physical
dynamics from the compiled one. It takes the compiled pulse-level description
of the circuit (see also Section 8.4.7) and adds noise elements to it, which allows
defining noise that is correlated to the compiled pulses. In the following, we detail
the three different noise models already available in the current framework.

Noise in the hardware model. The Hamiltonian model defined in the Model
class may contain intrinsic imperfections of the system and hence the compiled ideal
pulse does not implement the ideal unitary gate. Therefore, building a realistic
Hamiltonian model usually already introduces noise to the simulation. An example
is the superconducting-qubit processor model (Section 8.4.2), where the physical
qubit is represented by a multi-level system. Since the second excitation level is
only weakly detuned from the qubit transition frequency, the population may leak
out of the qubit subspace. Another example is an always-on ZZ-type cross-talk
induced by interaction with higher levels of the physical qubits [107], which is also
implemented for the superconducting qubit model.

Control noise. The control noise, as the name suggests, arises from imperfect
control of the quantum system, such as distortion in the pulse amplitude or frequency
drift. The simplest example is the random amplitude noise on the control coefficient
cj(t) in equation (8.2).

As a demonstration of control noise, we simulate classical cross-talk-induced
decoherence between two neighbouring ion trap qubits described in [285]. We
build a two-qubit Processor, where the second qubit is detuned from the first one
by δ = 1.852 MHz. A sequence of π-pulses with Rabi frequency of Ω = 20 KHz
and random phases are applied to the first qubit. We define noise such that the
same pulse also applies to the second qubit. Because of the detuning, this pulse
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Figure 8.4: An example of simulated classical cross-talk-induced decoherence
between neighbouring qubits in an ion trap system. The randomized benchmarking
protocol is adopted from Piltz et al. [285] and the figure reproduces the measured
fidelity decay in Figure 3a of that work. We build a custom Processor and Noise
object to define classical cross-talk noise and perform our simulations. It shows
the average fidelity of the qubit when a sequence of single-qubit π rotations with
random phase is applied to its direct neighbour. The cross-talk is simulated by
adding control pulses to the neighbouring qubits with a strength proportional
to that of the target qubit and detuned by the difference of the qubit transition
frequency. Each point is sampled from 1600 repetitions. We set the detuning
δ = 1.852 MHz, the Rabi frequency Ω = 20 KHz and the cross-talk ratio λ = 1.

does not flip the second qubit but subjects it to a diffusive behaviour, so that the
average fidelity of the second qubit with respect to the initial state decreases. This
decreasing fidelity is shown experimentally in Figure 3a of Ref. [285].

Here, we reproduce these results with our two-qubit Processor in Figure 8.4.
We start with an initial state of fidelity 0.975 and simulate the Hamiltonian

Ĥ = Ω(t)(σ̂x
0 + λσ̂x

1 ) + δσ̂z
1 , (8.12)

where λ is the ratio between the cross-talk pulse’s amplitudes. The plot in Figure 8.4
shows a similar fidelity decay curve as the experimental result, but includes only the
contribution of cross-talk, while in the experimental result, other noise sources may
exist. This kind of simulation provides a way to identify noise contributions from
different sources. The code is described in detail in Section 8.8.3, as an example of
a custom noise model.

Lindblad noise. The Lindblad noise originates from the coupling of the quantum
system with the environment (e.g., a thermal bath) and leads to loss of information.
It is simulated by collapse operators and results in non-unitary dynamics [43, 264].

The most commonly used type of Lindblad noise is decoherence, characterized
by the coherence time T1 and T2 (dephasing). For the sake of convenience, one
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only needs to provide the parameter t1, t2 to the processor and the corresponding
operators will be generated automatically. Both can be either a number that
specifies one coherence time for all qubits or a list of numbers, each corresponding
to one qubit.

For T1, the operator is defined as a/
√
T1 with a as the destruction operator.

For T2, the operator is defined as a†a
√

2/T ∗
2 , where T ∗

2 is the pure dephasing time
given by 1/T ∗

2 = 1/T2 − 1/(2T1). In the case of qubits, i.e., a two-level system,
the destruction operator a is truncated to a two-level operator and is consistent
with equation (8.5). Constant T1 and T2 can be provided directly when initializing
the Processor. Custom collapse operators, including time-dependent ones, can
be defined through DecoherenceNoise. For instance, the following code defines a
collapse operator using qutip.sigmam() and increases linearly as time:

tlist = np. linspace (0, 30., 100)
coeff = tlist * 0.01
noise = DecoherenceNoise (

sigmam () , targets =0,
coeff =coeff , tlist = tlist )

proc. add_noise ( noise )

Similar to the control noise, the Lindblad noise can also depend on the control
coefficient.

In order to demonstrate the simulation of decoherence noise, we build an
example that simulates a Ramsey experiment as a quantum circuit run on a noisy
Processor. The Ramsey experiment consists of a qubit that is initialized in the
excited state, undergoes a π/2 rotation around the x axis, idles for a time t, and is
finally measured after another π/2 rotation:

amp = 0.1
f = 0.5
t2 = 10 / f

# Define a processor .
proc = LinearSpinChain (

num_qubits =1, sx=amp/2, t2=t2)
ham_idle = 2*pi * sigmaz ()/2 * f
resonant_sx = 2*pi * sigmax () - \

ham_idle / (amp/2)
proc. add_drift (ham_idle , targets =0)
proc. add_control (

resonant_sx , targets =0, label ="sx0")

# Define a Ramsey experiment .
def ramsey (t, proc):

qc = QubitCircuit (1)
qc. add_gate ("RX", 0, arg_value =pi/2)
qc. add_gate ("IDLE", 0, arg_value =t)
qc. add_gate ("RX", 0, arg_value =pi/2)
proc. load_circuit (qc)
result = proc. run_state (
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Figure 8.5: The Ramsey pulse and the simulated measurement results. The
quantum system is subjected to a rotation around the z axis and a T2 decoherence.
The Ramsey pulse consists of two π/2 rotations separated by an idling time t. The
expectation value of the measurement for different idling times is recorded. The
solid line represents the measured expectation value. The dashed line is the fitted
exponential decay. Due to the imperfect preparation of the superposed state, the
envelope does not start from one.

init_state = basis (2, 0),
e_ops = sigmaz ()

)
return result . expect [0][-1]

In the above block, we use the linear spin chain processor just for its compiler
and do not use any of its default Hamiltonians. Instead, we define an always-on
drift Hamiltonian σ̂z with frequency f = 0.5 MHz, an on-resonant σ̂x drive with
an amplitude of 0.1/2 MHz and the coherence time T2 = 10/f . For different
idling times t, we record the expectation value with respect to the observable σ̂z,
which is plotted in Figure 8.5 as the solid curve. As expected, the envelope follows
an exponential decay characterized by T2 (dashed curve). Notice that, because
π/2-pulses are simulated as a physical process, the fitted decay does not start from
1. This demonstrates a way to include state preparation errors in the simulation.

8.4.7 Pulse
As discussed before, in this simulation framework, we compile the circuit into
pulse-level controls cj(t)Ĥj [equation (8.2)] and simulate the time evolution of the
physical qubits. In this subsection, we describe how the dynamics is represented
internally in the workflow of qutip-qip, which is useful for understanding the
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simulation process as well as defining custom pulse-dependent noise.
A control pulse, together with the noise associated with it, is represented by

a class instance of Pulse. When an ideal control is compiled and returned to the
processor, it is saved as an initialized Pulse object, equivalent to the following
code:

coeff = np. array ([1.])
tlist = np. array ([0., np.pi])
pulse = Pulse (

sigmax ()/2, targets =0, tlist =tlist ,
coeff =coeff , label ="pi - pulse ")

This code defines a π-pulse implemented using the term σ̂x in the Hamiltonian that
flips the zeroth qubit specified by the argument targets. The pulse needs to be
applied for the duration π specified by the variable tlist. The parameters coeff
and tlist together describe the control coefficient c(t). Together with the provided
Hamiltonian and target qubits, an instance of Pulse determines the dynamics of
one control term.

With a Pulse initialized with the ideal control, one can define several types
of noise, including the Lindblad or control noise as described in Section 8.4.6.
An example of adding a noisy Hamiltonian as control noise through the method
add_control_noise is given below:

pulse . add_control_noise (
sigmaz () , targets =[0], tlist =tlist ,
coeff = coeff * 0.05)

The above code snippet adds a Hamiltonian term σ̂z, which can, for instance,
be interpreted as a frequency drift. Similarly, collapse operators depending on a
specific control pulse can be added by the method Pulse.add_lindblad_noise.

In addition to a constant pulse, the control pulse and noise can also be provided
as continuous functions. In this case, both tlist and coeff are given as NumPy
arrays and a cubic spline is used to interpolate the continuous pulse coefficient.
This allows using the compiled Cython version of the QuTiP solvers that have a
much better performance than using a Python function for the coefficient. The
option is provided as a keyword argument spline_kind="cubic" when initializing
Pulse. Similarly, the interpolation method can also be defined for Processor using
the same signature.

8.4.8 Adding custom hardware models
As it is impractical to include every physical platform, we provide an interface that
allows one to customize the simulators. In particular, the modular architecture
allows one to conveniently overwrite existing modules for customization.

To define a customized hardware model, the minimal requirements are a set
of available control Hamiltonians Ĥj , and a compiler, i.e., the mapping between
native gates and control coefficients cj . One can either modify an existing subclass
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or write one from scratch by creating a subclass of the two parent classes Model
and GateCompiler. Since different subclasses share the same interface, different
models and compilers can also be combined to build new processors.

Moreover, this customization is not limited to Hamiltonian models and compiler
routines. In principle, measurement can be defined as a customized quantum gate
and the measurement statistics can be extracted from the obtained density matrix.
A new type of noise can also be implemented by defining a new Noise subclass,
which takes the compiled ideal Pulse and adds noisy dynamics on top of it.

An example of building a customized Model and GateCompiler, with custom
types of noise, is provided in Section 8.8.3.

8.5 Importing and exporting circuits in QASM for-
mat

As pointed out in Section 8.4.3, it is impractical to include all the advanced
techniques for circuit optimization and scheduling. To allow integration with other
packages, we support the import and export of circuits in the intermediate Quantum
Assembly Language (QASM) format [261]. While there are different intermediate
representations for quantum programs, and more specifically quantum circuits,
including cQASM [286], qutip-qip provides support for OpenQASM. OpenQASM
is an imperative programming language that can be used to describe quantum
circuits in a back-end agnostic manner.

QuTiP includes a module to import and export quantum circuits compatible
with the OpenQASM 2.0 standard [261]. OpenQASM 2.0 allows concise quantum
circuit definitions including useful features like custom unitaries and defining
groups of qubits over which a common gate can be applied simultaneously. Due to
compatibility with multiple libraries such as Qiskit and Cirq, it is an easy way to
transfer quantum circuits between these libraries and qutip-qip.

As an example, we use again the 3-qubit Deutsch-Jozsa circuit (Figure 8.3a).
The following block defines the same circuit in the QASM format:
OPENQASM 2.0;
include " qelib1 .inc";

qreg q[3];
x q[2];
h q;
cx q[0], q[2];
cx q[1], q[2];
h q[0];
h q[1];

It can be saved as a .qasm file (such as “deutsch-jozsa.qasm” in our example
below).

Every QASM file imported to qutip-qip requires the two header statements at
the beginning of the file. The line OPENQASM 2.0 declares that the file adheres to
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the OpenQASM 2.0 standard. The keyword include processes a file that contains
definitions of some QASM gates. It is available in the OpenQASM repository (as
a standard file) and is included with the QASM file exported by qutip-qip (and
also by Qiskit/Cirq). This circuit can be easily imported into qutip-qip using the
read_qasm method in the following manner:

from qutip_qip .qasm import read_qasm
qc = read_qasm ("deutsch - jozsa .qasm")

Furthermore, using the strmode option for read_qasm function, we can import
the circuit described in a string object. Once a quantum circuit is defined, we
can also export it to the QASM format and save it as a file using the save_qasm
method:

from qutip_qip .qasm import save_qasm
save_qasm (qc ,"deutsch -jozsa - qutip .qasm")

The circuit can then be simulated with other packages. It is also possible to output
the circuit as a string using circuit_to_qasm_str or print it out using print_qasm.

8.6 Conclusion
In this work, we presented a framework for pulse-level quantum circuit simulation
that can be used to study noisy quantum devices simulated on classical computers.
This framework builds on existing solvers and the quantum circuit model offered
by QuTiP. We expanded the noise modelling capabilities with ad-hoc features for
the simulation of controls in noisy quantum circuits, such as providing the option
to inject coherent noise in pulses.

We provided a few predefined quantum hardware models, compiling and schedul-
ing routines, as well as noise models, which can be adjusted to devote limited
computing resources to the most relevant physical dynamics during the study of
noise. We showed the simulation capabilities by illustrating how results obtained
on cross-talk noise characterization for an ion-trap-based quantum processor can
be easily replicated with this toolbox. Moreover, we provided an example of the
simulation of Lindblad noise for a Ramsey experiment.

Due to the modular design, the framework introduced here can be integrated
with more hardware models, gate decomposition and optimization schemes. In
particular, the simulation of processors supporting bosonic models for quantum
information processing, including quantum error correction schemes, is especially
suitable within the current framework. Represented as customized gates, state
preparation and measurement can also be simulated as a noisy physical process.

Pulse-level simulation could be helpful in quick verification of experimen-
tal results, developing quantum algorithms, such as variational quantum algo-
rithms [238, 287–289], and testing compiling and scheduling schemes [290] with
realistic noise models [291]. Through hardware simulation and noise simulation,
quantum error correction code and quantum mitigation protocols can also be
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studied, for example, simulating pulse-level and digital zero-noise extrapolation
[292–294].

Moreover, the noise characterization in model devices [295] and the impact
of non-Markovian types of noise could be further evaluated [252, 296]. Future
development in QuTiP aims at providing a unified interface to the open system
solvers, which would enable a simpler integration with qutip-qip. This approach
also has the potential to be integrated with other quantum control software such
as qupulse [297] and C3 [298]. In particular, the features here introduced may
be a useful tool to investigate from a novel perspective many-body dynamical
properties of quantum circuits, such as for measurement-induced phase transitions
[299], chaotic dynamics and information scrambling [207].

Planned developments in qutip and qutip-qip will enable the use of alternative
quantum control optimization algorithms, that is options other than the GRAPE
and CRAB algorithms that are currently supported. Most immediately Krotov-type
algorithm support could be added through integration with qucontrol-krotov [29],
which is already closely aligned with QuTiP. Further opportunities for development
and integration with the main QuTiP package include the development of an
implementation of the GOAT algorithm [35], in which qutip’s solvers of various
kinds can be used effectively. This could then also be available for optimization of
circuit controls to simulate universal gate operations [300, 301].

Another direction of development is the integration with other software frame-
works, in the ecosystem of quantum open source software, where considerable
duplication exists. Even with respect to the quantum intermediate representation
of quantum circuits, standards are not yet solidified. For example, we have con-
nected qutip-qip with OpenQASM 2.0, thus providing an access point to any major
framework. More sophisticated features are expected in the upcoming OpenQASM
3.0 standard [262], including classical computation specifications and the option
for pulse-level definitions for gates. Extending QuTiP support to OpenQASM 3.0
will be an important step in cross-package compatibility with respect to pulse-level
quantum circuit simulation and their integration with real hardware.

The use of qutip-qip for open quantum hardware is an especially intriguing
direction of research and development. One could envision this framework as the
backbone for API interconnectivity between simulation and hardware control in
research labs with different technologies [297].

8.7 Data availability

The code examples present in the main text and the Appendices are available at
github.com/boxili/qutip-qip-paper. A version compatible with the latest distribu-
tion of qutip-qip can be found at github.com/qutip/qutip-qip.

https://www.github.com/boxili/qutip-qip-paper
https://www.github.com/qutip/qutip-qip
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8.8 Appendix

8.8.1 Simulating the Deutsch-Jozsa algorithm
In this section, we show the code example of simulating the 3-qubit Deutsch-
Jozsa algorithm on three different hardware models: the spin chain model, the
superconducting qubits, and the optimal control model:

from qutip_qip . device import (
OptPulseProcessor , LinearSpinChain , SCQubits , SpinChainModel )

from qutip_qip . circuit import QubitCircuit
from qutip import sigmaz , sigmax , identity , tensor , basis

# Deutsch - Josza algorithm
dj_circuit = QubitCircuit ( num_qubits )
dj_circuit . add_gate ("X", targets =2)
dj_circuit . add_gate ("SNOT", targets =0)
dj_circuit . add_gate ("SNOT", targets =1)
dj_circuit . add_gate ("SNOT", targets =2)

# Oracle function f(x)
dj_circuit . add_gate ("CNOT", controls =0, targets =2)
dj_circuit . add_gate ("CNOT", controls =1, targets =2)

dj_circuit . add_gate ("SNOT", targets =0)
dj_circuit . add_gate ("SNOT", targets =1)

# Spin chain model
spinchain_processor = LinearSpinChain ( num_qubits = num_qubits , t2=30)

# T2 = 30
spinchain_processor . load_circuit ( dj_circuit )
initial_state = basis ([2, 2, 2], [0, 0, 0]) # 3 qubits in the 000

state
t_record = np. linspace (0, 20 , 300)
result1 = spinchain_processor . run_state ( initial_state , tlist = t_record

)

# Superconducting qubits
scqubits_processor = SCQubits ( num_qubits = num_qubits )
scqubits_processor . load_circuit ( dj_circuit )
initial_state = basis ([3, 3, 3], [0, 0, 0]) # 3- level
result2 = scqubits_processor . run_state ( initial_state )

# Optimal control model
setting_args = {"SNOT": {" num_tslots ": 6, " evo_time ": 2},

"X": {" num_tslots ": 1, " evo_time ": 0.5},
"CNOT": {" num_tslots ": 12 , " evo_time ": 5}}

opt_processor = OptPulseProcessor (
num_qubits = num_qubits , model = SpinChainModel (3, setup =" linear "))

opt_processor . load_circuit ( # Provide parameters for the algorithm
dj_circuit , setting_args = setting_args , merge_gates =False ,
verbose =True , amp_ubound =5, amp_lbound =0)

initial_state = basis ([2, 2, 2], [0, 0, 0])
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result3 = opt_processor . run_state ( initial_state )

In the above code block, we first define the Deutsch-Jozsa algorithm, the same
as the circuit shown in Figure 8.3. We then run the circuit on various hardware
models. For the spin model and superconducting qubits, a Hamiltonian model and
a compiler are already predefined and one only needs to load the circuit and run the
simulation. Hardware parameters, such as the T1 and T2 times, qubit frequencies
and coupling strength, can be given as parameters to initialize the processor. For
optimal control, we use the control Hamiltonians of the spin chain model and provide
a few parameters for the optimization routine in QuTiP, such as the maximal pulse
amplitude and the number of time slots for each gate. For details, please refer to
the QuTiP documentation (http://qutip.org/docs/latest/index.html).

The generated control pulses are shown in Figure 8.3 and can be obtained by
the method:
processor . plot_pulses ()

Because we are doing a simulation, we have access both to the final states
as a density matrix and the information of the states during the evolution. We
demonstrate this in Figure 8.6. By construction, the measured result of the first
two qubits of a perfect Deutsch-Jozsa algorithm with a balanced oracle should
not overlap with the state |00⟩. This agrees with the small population of the
state |00⟩ in the Hinton diagram (Section 8.8.1). The population is not exactly
zero because we define a T2 decoherence noise. In addition, we can also extract
information during the circuit execution, e.g., the population as a function of time
(Section 8.8.1).

8.8.2 Compiling and simulating a 10-qubit Quantum Fourier
Transform (QFT)

In this section, we simulate a 10-qubit Quantum Fourier Transform (QFT) algorithm.
The QFT algorithm is one of the most important quantum algorithms in quantum
computing [3]. It is, for instance, part of the Shor algorithm for integer factorization.
The following code defines a 10-qubit QFT algorithm using CNOT and single-qubit
rotations and runs the simulation both at the gate level and at the pulse level.
import numpy as np
from qutip import basis , fidelity
from qutip_qip . device import LinearSpinChain
from qutip_qip . algorithms import qft_gate_sequence

num_qubits = 10
# The QFT circuit
qc = qft_gate_sequence ( num_qubits , swapping =False , to_cnot =True)
# Gate - level simulation
state1 = qc.run( basis ([2]* num_qubits , [0]* num_qubits ))
# Pulse - level simulation
processor = LinearSpinChain ( num_qubits )

http://qutip.org/docs/latest/index.html
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Figure 8.6: The Hinton diagram of the final density matrix (Section 8.8.1) and
the population of the |00⟩ state during the circuit execution (Section 8.8.1) for the
first two qubits in the circuit shown in Figure 8.3. The Hinton diagram is a visual
representation of the complex-valued density matrix. The shade and size of the
blocks are determined by the absolute value of the density matrix element and the
colour blue (red) denotes whether the real part of the density matrix is positive
(negative). For an ideal Deutsch-Jozsa algorithm with a balanced oracle. The first
two qubits should end up having no overlap with the ground state. This is not
exactly the case in the plot because we define a finite T2 time.

processor . load_circuit (qc)
state2 = processor . run_state ( basis ([2]* num_qubits , [0]* num_qubits )).

states [-1]

assert (abs(1 - fidelity (state1 , state2 )) < 1.e-4)

We plot the compiled pulses and perform a study of the simulation time in the
top and bottom panels of Figure 8.7, respectively. The top panel of Figure 8.7
shows the control pulses σ̂i

x (blue curves), σ̂i
y (orange curves) and gi (green curves)

for the spin chain model processor (Section 8.4.2), where i = 0, ..., 9 counts the
qubits. The pulses plotted implement the QFT algorithm represented in the native
gates of the spin chain model, with single-qubit gates marked by rotations over the
x- and z-axes and the iSWAP gate implemented through the spin-spin exchange
interaction, marked by gi. While the sign for single-qubit drive denotes the phase
of the control pulse, the negative sign in the coupling strengths gi is only a result
of the convention used in the definition of the interaction, defined in equation (8.8).

In the bottom panel of Figure 8.7, we study the time it takes to simulate
the dynamics for the QFT algorithm on the spin chain processor, from 1 to 10
qubits. We divide the simulation between compilation and solution of the dynamical
equation. The compilation of the algorithm (blue squares in the bottom panel
of Figure 8.7) includes native-gate gate decomposition, scheduling, and mapping
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Figure 8.7: Top: Compiled pulses for a 10-qubit QFT circuit using the linear spin
chain model (see Figure 8.3b and Section 8.4.2). The colours and notation used
are the same as in Figure 8.3. The blue and orange colours denote the single-qubit
control while the green colour the exchange interactions. Bottom: Simulation
time of the QFT algorithm using the spin chain model as a function of the number
of qubits, N = 1, 2, ..., 10, on a commercial CPU with a single thread. We plot
both the compilation time (Processor.load_circuit) and the time used to solve
the dynamics (Processor.run_state).
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to control pulses (as shown in the top panel). For 10 qubits, the compilation
takes about one second, whereas the overall simulation time takes about half a
minute on a commercial CPU (Intel i7 8700 with Max Turbo Frequency 4.60 GHz)
with a single thread. Indeed, the overall simulation time is dominated by the
task of solving the Schrödinger equation: this increases linearly with the circuit
depth and exponentially with the size of the Hilbert space (orange diamonds in the
bottom panel of Figure 8.7). The proportion of time used for the compilation with
respect to the total simulation time decreases as the number of qubits in the QFT
algorithm grows. As expected, we find that the bottleneck for the simulation of
larger processors lies in the solution of the dynamics.

Note that, because of the pulse-level nature of the simulation, the overall
simulation time also depends on the typical frequency characterizing the dynamics.
In the above simulation, the maximum frequency in the Hamiltonian is about
1 MHz while the time scale of the quantum circuit is about 2 ms. No collapse
operators are included. The simulation time may increase if decay or high-frequency
coherent noise are included.

8.8.3 Customizing the physical model and noise
In the following, we show a minimal example of constructing Hamiltonian models
and compilers:
import numpy as np
from qutip import sigmax , sigmay , sigmaz , basis , qeye , tensor , Qobj ,

fock_dm
from qutip_qip . circuit import QubitCircuit , Gate
from qutip_qip . device import ModelProcessor , Model
from qutip_qip . compiler import GateCompiler , Instruction
from qutip import Options
from qutip_qip . noise import Noise

class MyModel ( Model ):
"""A custom Hamiltonian model with sigmax and sigmay control . """
def get_control (self , label ):

"""
Get an available control Hamiltonian .
For instance , sigmax control on the zeroth qubits is labeled

" sx0 ".

Args :
label ( str ): The label of the Hamiltonian

Returns :
The Hamiltonian and target qubits as a tuple ( qutip .Qobj ,

list ).
"""
targets = int( label [2:])
if label [:2] == "sx":

return 2 * np.pi * sigmax () / 2, [ targets ]
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elif label [:2] == "sy":
return 2 * np.pi * sigmay () / 2, [ targets ]

else :
raise NotImplementError (" Unknown control .")

class MyCompiler ( GateCompiler ):
""" Custom compiler for generating pulses from gates using the

base class
GateCompiler .

Args :
num_qubits ( int ): The number of qubits in the processor
params ( dict ): A dictionary of parameters for gate pulses

such as
the pulse amplitude .

"""

def __init__ (self , num_qubits , params ):
super (). __init__ ( num_qubits , params = params )
self. params = params
self. gate_compiler = {

"ROT": self. rotation_with_phase_compiler ,
"RX": self. single_qubit_gate_compiler ,
"RY": self. single_qubit_gate_compiler ,

}

def generate_pulse (self , gate , tlist , coeff , phase =0.0):
""" Generates the pulses .

Args :
gate ( qutip_qip . circuit . Gate ): A qutip Gate object .
tlist ( array ): A list of times for the evolution .
coeff ( array ): An array of coefficients for the gate

pulses
phase ( float ): The value of the phase for the gate .

Returns :
Instruction ( qutip_qip . compiler . instruction . Instruction ):

An instruction
to implement a gate containing the control pulses .

"""
pulse_info = [

# ( control label , coeff )
("sx" + str(gate. targets [0]), np.cos( phase ) * coeff ),
("sy" + str(gate. targets [0]), np.sin( phase ) * coeff ),

]
return [ Instruction (gate , tlist =tlist , pulse_info = pulse_info )

]

def single_qubit_gate_compiler (self , gate , args):
""" Compiles single - qubit gates to pulses .

Args :
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gate ( qutip_qip . circuit . Gate ): A qutip Gate object .

Returns :
Instruction ( qutip_qip . compiler . instruction . Instruction ):

An instruction
to implement a gate containing the control pulses .

"""
# gate . arg_value is the rotation angle
tlist = np.abs(gate. arg_value ) / self. params [" pulse_amplitude

"]
coeff = self. params [" pulse_amplitude "] * np.sign(gate.

arg_value )
if gate.name == "RX":

return self. generate_pulse (gate , tlist , coeff , phase =0.0)
elif gate.name == "RY":

return self. generate_pulse (gate , tlist , coeff , phase =np.
pi / 2)

def rotation_with_phase_compiler (self , gate , args):
""" Compiles gates with a phase term .

Args :
gate ( qutip_qip . circuit . Gate ): A qutip Gate object .

Returns :
Instruction ( qutip_qip . compiler . instruction . Instruction ):

An instruction
to implement a gate containing the control pulses .

"""
# gate . arg_value is the pulse phase
tlist = self. params [" duration "]
coeff = self. params [" pulse_amplitude "]
return self. generate_pulse (gate , tlist , coeff , phase =gate.

arg_value )

# Define a circuit and run the simulation
num_qubits = 1

circuit = QubitCircuit (1)
circuit . add_gate ("RX", targets =0, arg_value =np.pi / 2)
circuit . add_gate ("Z", targets =0)

myprocessor = ModelProcessor ( model = MyModel ( num_qubits ))
myprocessor . native_gates = ["RX", "RY"]

mycompiler = MyCompiler ( num_qubits , {" pulse_amplitude ": 0.02})

myprocessor . load_circuit (circuit , compiler = mycompiler )
result = myprocessor . run_state ( basis (2, 0))

In this example, we first build a Hamiltonian model called MyModel. For
simplicity, we only include two single-qubit control Hamiltonians: σ̂x and σ̂y. We
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then define the compiling routines for the two types of rotation gates RX and
RY. In addition, we also define a rotation gate with mixed X and Y quadrature,
parameterized by a phase ϕ, cos(ϕ)σ̂x + sin(ϕ)σ̂y. This will be used later in the
example of custom noise.

We then initialize a ModelProcessor with this model. In the ModelProcessor,
the default simulation workflow is already defined, such as the load_circuit
method. Since rotations around the x and y axes are the native gates of our
hardware, we define them in the attribute native_gates. Providing this native
gates set, rotation around z axis will be automatically decomposed into rotations
around x and y axes. We define a circuit consisting of π/2 rotation followed by a Z
gate. The compiled pulses are shown in Figure 8.8, where the Z gate is decomposed
into rotations around x and y axes.

sx0

t

sy0

Figure 8.8: The compiled pulse of a π/2 pulse followed by a Z gate for the customized
processor defined in Section 8.8.3. The Z gate is decomposed into rotations over
the x and y axes.

Next, we show an example of defining customized noise and simulating classical
cross-talk:

class ClassicalCrossTalk ( Noise ):
def __init__ (self , ratio ):

self. ratio = ratio

def get_noisy_dynamics (self , dims =None , pulses =None ,
systematic_noise =None):

""" Adds noise to the control pulses .

Args :
dims : Dimension of the system , e.g., [2,2,2 ,...] for

qubits .
pulses : A list of Pulse objects , representing the

compiled pulses .
systematic_noise : A Pulse object with no ideal control ,

used to represent
pulse - independent noise such as decoherence ( not used in

this example ).
Returns :

pulses : The list of modified pulses according to the
noise model .
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systematic_noise : A Pulse object ( not used in this
example ).

"""
for i, pulse in enumerate ( pulses ):

if "sx" not in pulse . label and "sy" not in pulse . label :
continue # filter out other pulses , e.g. drift

target = pulse . targets [0]
if target != 0: # add pulse to the left neighbour

pulses [i]. add_control_noise (
self. ratio * pulse .qobj ,
targets =[ target - 1],
coeff = pulse .coeff ,
tlist = pulse .tlist ,

)
if target != len(dims) - 1: # add pulse to the right

neighbour
pulses [i]. add_control_noise (

self. ratio * pulse .qobj ,
targets =[ target + 1],
coeff = pulse .coeff ,
tlist = pulse .tlist ,

)
return pulses , systematic_noise

def single_crosstalk_simulation ( num_gates ):
""" A single simulation , with num_gates representing the number

of rotations .

Args :
num_gates ( int ): The number of random gates to add in the

simulation .

Returns :
result ( qutip . solver . Result ): A qutip Result object obtained

from any of the
solver methods such as mesolve .

"""
num_qubits = 2 # Qubit -0 is the target qubit . Qubit -1 suffers

from crosstalk .
myprocessor = ModelProcessor ( model = MyModel ( num_qubits ))
# Add qubit frequency detuning 1. 852MHz for the second qubit .
myprocessor . add_drift (2 * np.pi * ( sigmaz () + 1) / 2 * 1.852 ,

targets =1)
myprocessor . native_gates = None # Remove the native gates
mycompiler = MyCompiler ( num_qubits , {" pulse_amplitude ": 0.02 , "

duration ": 25})
myprocessor . add_noise ( ClassicalCrossTalk (1.0))
# Define a randome circuit .
gates_set = [

Gate("ROT", 0, arg_value =0),
Gate("ROT", 0, arg_value =np.pi / 2),
Gate("ROT", 0, arg_value =np.pi),
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Gate("ROT", 0, arg_value =np.pi / 2 * 3),
]
circuit = QubitCircuit ( num_qubits )
for ind in np. random . randint (0, 4, num_gates ):

circuit . add_gate ( gates_set [ind])
# Simulate the circuit .
myprocessor . load_circuit (circuit , compiler = mycompiler )
init_state = tensor (

[Qobj([[init_fid , 0], [0, 0.025]]), Qobj([[init_fid , 0], [0,
0.025]])]

)
options = Options ( nsteps = 10000 ) # increase the maximal allowed

steps
e_ops = [ tensor ([qeye(2), fock_dm (2)])] # observable

# compute results of the run using a solver of choice with custom
options

result = myprocessor . run_state ( init_state , solver =" mesolve ",
options =options , e_ops = e_ops )

result = result . expect [0][-1] # measured expectation value at
the end

return result

In the code block above, we first define a custom ClassicalCrossTalk noise
object that uses the Noise class as the base. The get_noisy_dynamics method will
be called during the simulation to generate the noisy Hamiltonian model. Here, we
define a noise model that adds the same driving Hamiltonian to its neighbouring
qubits, with a strength proportional to the control pulse strength applied to it.
The detuning of the qubit transition frequency is simulated by adding a σ̂z drift
Hamiltonian to the processor, with a frequency of 1.852 MHz.

Second, we define a random circuit consisting of a sequence of π rotation pulses
with random phases. The driving pulse is a π pulse with a duration of 25µs and
Rabi frequency 20 KHz. As described in [285], this randomized benchmarking
protocol allows one to study the classical cross-talk-induced decoherence on the
neighbouring qubits. The two qubits are initialized in the |00⟩ state with a fidelity
of 0.975. After the circuit, we measure the population of the second qubit. If
there is no cross-talk, it will remain perfectly in the ground state. However, cross-
talk induces a diffusive behaviour of the second qubit and the fidelity decreases.
This simulation is repeated 1600 times to obtain the average fidelity, as shown in
Figure 8.4 in the main text.
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9
Summary and Outlook

9.1 Summary and conclusions

In this thesis, we have developed and implemented analytical methods for the
efficient modelling and control of quantum systems. As a specific physical plat-
form, we focus on enhancing the precision and efficiency of quantum operations
for superconducting qubits. Through rigorous theoretical development, comprehen-
sive simulations, and experimental validation, this research has addressed several
challenges associated with control errors in quantum operation. The thesis focuses
on three primary areas: efficient system modelling, the design of robust control
schemes, and performance benchmarking through simulation.

Rather than working with a fully dense Hamiltonian and attempting to imple-
ment arbitrary desired unitary operations, our study focuses on well-established
physical systems that exhibit specific structures and symmetries. These distinctive
characteristics have already positioned these systems as prime platforms for quan-
tum information processing over the past two decades. Their Hamiltonian sparsity
and inherent structure enable significant simplification in modelling and allow for
the derivation of analytical methods.

The recursive diagonalization methods introduced in Chapter 3 are designed
with this sparsity and structure in mind. With only a limited number of error
sources relatively isolated from each other, the system’s dynamics can be effectively
addressed using perturbative techniques. This approach gives rise to the recur-
sive Schrieffer-Wolff method, where perturbative diagonalization is systematically
applied to eliminate unwanted Hamiltonian terms in layers: first removing direct
couplings, then treating the obtained Hamiltonian as a new problem and addressing
the cross terms resulting from higher-order commutators between the errors and
the ideal dynamics, as well as among the error terms themselves. Additionally,
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we also consider that some error sources, such as off-resonant leakage errors, may
be substantial enough to break the perturbative assumption. In these cases, the
Givens rotation method is employed. Although the Givens rotation DRAG is only
exactly derived for two-level systems, recursively applying them to dominant error
sources guides the system toward a diagonalized form.

By applying a recursive approach that simplifies complex problems step by step,
this method offers an efficient tool for deriving analytical, closed-form expressions
for effective Hamiltonians. Our results show that the NPAD method significantly
simplifies the modelling and simulation of superconducting qubits, providing a
reliable predictive framework for designing drive schemes and analyzing system
behaviour.

This recursive formulation also lays out the foundation of the analytical control
schemes presented in Chapters 5 to 7, where we study the dynamics of the quantum
system. While introducing time dependence into the analysis significantly increases
the complexity, this same time dependence can be leveraged to engineer more
effective quantum operations. Following the principle of the DRAG techniques,
pulse shapes can be carefully engineered to suppress specific transition errors. These
techniques have been continuously refined to minimize qubit operation errors and
leakage, which are common problems for superconducting qubits. We demonstrate
that integrating the recursive approach with DRAG provides a practical approach
for simultaneously addressing multiple errors.

In Chapter 5, the problem manifests itself as the population errors on a three-
level Transmon under off-resonant drive. Here, our method extends the traditional
application of DRAG in two aspects. First, while the native control term only
couples the adjacent levels, strong drives generate two-photon terms that must
also be addressed. The recursive application of DRAG frame transformations and
corrections leads to an intuitive and efficient expression. Moreover, combining
it with the nonperturbative diagonalization methods from Chapter 3 results in
DRAG pulses that offer another order magnitude improvement compared to the
perturbative version. Although this Givens rotation DRAG is derived exactly only
in a two-level system, in many practical scenarios, the impact of cross-terms is
small, making this method broadly applicable. This improvement remains robust
even with the recursive chain of DRAG corrections.

In Chapters 6 and 7, the application is extended beyond qubit gates to qudit
systems and crosstalk. The presence of multiple leakage levels in a qudit system
naturally leads to the use of recursive DRAG expressions. Our study also reveals
that the same model and control pulse Ansatz are universal and can be applied
to drive any ladder operation in a nonlinear oscillator. Interestingly, the crosstalk
problem, the unwanted excitation on the neighbouring qubits during a single-qubit
drive, is also described by a similar model. Although the energy separation could
be quite small in this case, the DRAG correction still demonstrates significant
suppression of neighbouring qubit excitation.

The above applications still adhere to the conventional use of DRAG: defining an
adiabatic frame and introducing DRAG correction to ensure that the adiabaticity is
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kept at the end of the operation. This concept is generalized to correct dynamical
errors that do not commute with the ideal dynamics in the same subspace when
studying the two-qubit ZZ error in Chapter 5. By transforming the Hamiltonian
into the eigenbasis of the ideal drive, we can design DRAG corrections within the
eigenframe. Through this approach, a DRAG pulse can be tailored to convert a
ZZ interaction term into the desired ZX interaction.

To further validate the practicality of these methods, we tested the proposed
control schemes in experimental settings. Using an online platform with remote
pulse-level access, we calibrate custom Cross-Resonance CNOT gates based on
the proposed DRAG pulse on fixed frequency Transmon qubits, demonstrating a
threefold reduction of the gate error in Chapter 5. Notably, in contrast to the most
common applications on single-qubit Transmon gates, if all the dominant errors are
considered in the model, the designed DRAG pulses only depend on the eigenstates
and do not require fine-detuning. As another proof of practicality, the calibration
and benchmarking are repeated on several qubit pairs with different frequencies,
showing uniform improvement across different pairs. This flexibility is crucial for
scaling up quantum chips, as each qubit pair may have different characteristics due
to inhomogeneity in both design and fabrication.

Finally, to smooth the testing and verification of new control and calibration
methods, a new software package, qutip-qip, was developed. Based on the QuTiP
package, these tools incorporate realistic control errors and simulate quantum
circuits at the level of time evolution. The package includes a full-stack workflow
from the definition of quantum operations, the compilation and scheduling of control
pulses and a framework for modelling quantum hardware under the Lindblad model.
It offers an efficient framework for the design, testing, and implementation of
quantum control techniques in realistic scenarios.

9.2 Future work
Scalable control methods for multi-qubit quantum chips In general,
analytical techniques such as DRAG provide a framework for parameterized pulse
shapes, taking advantage of a deep understanding of the dynamics of the quantum
system. In this sense, it is more efficient than traditional pulse Ansatz, such as those
based on Fourier or Sigmoid shapes, originating from classical signal engineering.

This thesis primarily focuses on DRAG methodologies and their application
in single and two-qubit systems. However, as quantum computing architectures
evolve towards larger scales, the complexities of interactions and the potential
for errors expand exponentially. The recursive structure presented in this thesis
offers a convenient way to integrate various corrections for leakage and crosstalk
within a unified framework. Future research could explore extending analytical
methods developed in this thesis to design and optimize error suppression techniques
specifically for multi-qubit operations and larger quantum circuits, such as spectator
qubits. Investigating the scalability of these methods could provide crucial insights
into their practicality for large-scale quantum chips.
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Control optimization on low-quality qubits In the pursuit of scalable quan-
tum computing architectures, a significant challenge remains in the variability of
qubits’ quality across a chip. Due to the fabrication inhomogeneity, the property of
each qubit cannot be precisely engineered. The variation can be tens to a hundred
MHz [38, 39], posing a challenge for uniform system performance. Although the
majority of the qubits fall within acceptable performance thresholds, the presence of
those outliers leads to performance bottlenecks and limits the fabrication yield [121].
While enhancing the performance of the best-performing qubits, targeted control
strategies should also be developed simultaneously for those weak nodes. By de-
veloping specialized control strategies aimed at compensating for the deficiencies
of these qubits, it is possible to enhance the overall reliability and uniformity of
solid-state quantum devices.

Automatic system characterization and control optimization In this
thesis, we extensively explored analytical control methods, which play an important
role in experimental calibration by directly linking control parameters to measurable
physical properties, such as the DRAG correction strength to the leakage rate.
These calibration routines are fundamentally model-based, relying on a priori
knowledge of the system’s characteristics and behaviour. Techniques such as error
amplification circuits are carefully designed based on this strategy to optimize
system performance [155, 302].

Recently, there has been significant interest in developing automatic system
characterization techniques, commonly referred to as Hamiltonian learning [298,
303]. These methods automate the process of system analysis by using probe
control pulses to interact with the system and analyzing the resultant measurement
outcomes to infer model characteristics. However, a limitation of these approaches
is their inefficiency. Often, the rate at which useful information is extracted from
experimental data is frustratingly slow.

The future may see the emergence of novel techniques that integrate traditional
analytical control methods with automatic system characterization. This hybrid
approach would aim to maintain the efficiency of information acquisition in care-
fully designed error amplification techniques while leveraging the adaptability and
automation offered by Hamiltonian learning. This approach could lead to more
robust quantum control where control strategies evolve based on empirical data,
reducing the reliance on initial system models and accommodating the inevitable
drifts in system parameters over time. A practical strategy in the short term
might involve establishing a calibration routine based on meticulously designed
algorithms that capture the essential dynamics and errors of the quantum system.
Then, machine-learning-based optimization methods could be used to iteratively
adjust and fine-tune the drive parameters. By integrating both manual expertise in
algorithm design and the adaptive capabilities of machine learning, future research
could unlock more efficient and adaptable control strategies for quantum systems.
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Multi-frequency control schemes The modelling and control methods detailed
in this thesis are built under the rotating wave approximation, where the pulse
is modulated by oscillations resonant with the qubit’s frequency, typically several
GHz. This frequency is significantly higher, more than tenfold, than the system’s
dynamic range, allowing for the simplification where counter-rotating terms, which
occur at twice the frequency of the base oscillation, are typically neglected. This
approximation may not hold for other superconducting qubits architectures such
as Fluxonium [304, 305]. Moreover, recent advancements have introduced multi-
frequency drive techniques that use multiple dominant frequencies to drive quantum
system dynamics [143, 306, 307]. This requires a generalization of the current
methods, in particular, accurately identifying and quantifying the contribution of
each frequency component within the system, together with their cross-effect on
each other.

Robust control against parameter drifts The practical deployment of quan-
tum control methods crucially depends on the long-term stability of system param-
eters, which can be significantly impacted by parameter drifts over time [308, 309].
While robust control techniques have been developed to mitigate these effects, they
often come at the cost of longer operation times to fulfil adiabatic conditions [310]
The control methodologies discussed in this thesis, however, are specifically designed
to accelerate quantum operations to outpace the effects of decoherence. This ap-
proach opens up the possibility of integrating these fast control methods with robust
control techniques to create hybrid strategies that not only counteract immediate
errors but also anticipate and compensate for slow environmental changes, which
could enhance the operational lifetime and stability of quantum computing devices.

Application in other quantum systems While the thesis successfully applies
NPAD and DRAG methodologies to superconducting qubits, their applicability
to other types of quantum systems, such as trapped ions and Rydberg atoms,
presents a vast area for further research. Some physical systems are distinct from
superconducting qubits in that they exhibit lower system inhomogeneity because
their intrinsic properties are defined by nature. Despite this advantage, similar
crosstalk and leakage errors may occur as the operation infidelity is pushed towards
0.1%. Exploring these applications could not only broaden the impact of the
developed methods but also contribute to the universal toolkit of quantum control
strategies across different platforms.
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