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ABSTRACT
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Comparing Human-Only, AI-Assisted, and 
AI-Led Teams on Assessing Research 
Reproducibility in Quantitative Social Science
This study evaluates the effectiveness of varying levels of human and artificial intelligence 

(AI) integration in reproducibility assessments. We computationally reproduced quantitative 

results from published articles in the social sciences with 288 researchers, randomly assigned 

to 103 teams across three groups — human-only teams, AI-assisted teams and teams 

whose task was to minimally guide an AI to conduct reproducibility checks (the “AI-led’ 

approach). Findings reveal that when working independently, human teams matched the 

reproducibility success rates of teams using AI assistance, while both groups substantially 

outperformed AI-led approaches (with human teams achieving 57 pp higher success rates 

than AI-led teams). Human teams found significantly more major errors compared to both 

AI-assisted teams and AI-led teams. AI-assisted teams demonstrated an advantage over 

more automated approaches, detecting 0.4 more major errors per team than AI-led teams, 

though still significantly fewer than human-only teams. Finally, both human and AI-assisted 

teams significantly outperformed AI-led approaches in both proposing and implementing 

comprehensive robustness checks.
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1 Introduction

Reproducibility is a cornerstone of robust empirical research. This is particularly so in empirical

work where complex methodologies and data handling techniques are common. (1–10) Despite

advancements in reproducibility protocols, (11) concerns persist regarding the accuracy and reli-

ability of published findings. (12–19) While the current reproducibility and replicability crisis in

the behavioral and social sciences is a complex problem, challenges with peer review, the method-

ological expertise required to design and then assess quantitative studies, as well as transparency

of reporting have been identified as key causes. This study investigates the role AI tools, that is

large language models (LLMs) (20, 21), could play in supporting human researchers, data editors

and scientific journals to computationally reproduce social science findings. Our focus is on three

modes of AI and human interaction: human-only teams (the “human” approach), human teams

with AI assistance (the “AI-assisted” approach) and teams whose task was to minimally guide an

AI to conduct reproducibility checks (the “AI-led” approach). We focus on ChatGPT, powered by

GPT-4/4o.

This study tests how effectively AI can reproduce studies and handle the nuances of quantitative

social science research, particularly in complex cases where coding errors or methodological incon-

sistencies arise. We employ a randomized controlled trial design involving three treatment arms to

assess the effectiveness of AI in evaluating reproducibility. By examining three approaches, we

aim to understand and contribute to a large literature documenting the benefits and limitations of

human-AI teams, as well as full automation. (22–37) This is crucial for science as current methods

for performing computational reproducibility and robustness checks are expensive, time consum-

ing (38, 39) and require advanced technical skills, and a growing body of literature documents the

potential pitfalls of integrating human and artificial intelligence such as overreliance and expertise

erosion. (40,41)

We examine three primary outcomes across the treatment groups: (1) computational repro-

ducibility success rates, (2) error detection capabilities, and (3) robustness check quality. By un-

derstanding these facets, this study contributes to broader discussions on AI, offering insights into

the optimal balance of human and AI involvement in research reproduction tasks.
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2 Procedures

2.1 Events

The first ten coauthors organized seven AI replication games between February and November

2024. All remaining coauthors (graduate students, postdoctoral fellows, professors or researchers

from non-academic organizations with a PhD; see Table S3) and a few organizers participated in

one of those games. Randomization was carried out in two steps for each of the seven events. In

step one, coauthors were randomly assigned to a team of three to evaluate the reproducibility of a

quantitative social science article. The randomization in step one was conditional on the software

abilities and preferences reported by participants (Stata or R) and the mode of participation (in

person or virtual). In step two, each team was randomly assigned to one of three treatment arms:

AI-led, AI-assisted, or human.

Each team was assigned a study from a leading behavioral, economics, political science, or

psychology journal and tasked to computationally reproduce a few pre-defined numerical results,

detect coding errors and data irregularities, and suggest two robustness checks (see Supplementary

Materials Study Selection for list of studies). Each event had two studies with known coding errors

identified by the lead authors in a previous study, but not publicly released when included in the

AI replication game: one whose reproduction package was written in Stata and another that was

written in R. Each team was assigned the study that matched their software abilities and preferences

in attendance mode. Teams had no information about the study they would be reproducing until the

day of the event. In total, 12 studies were used.

Teams were revealed the materials for the event at about 09:00 local-time the day of the event.

We did this via email, where we shared with them an online Open Science Framework webpage

which contained: the journal article and online appendix as PDFs, the original authors’ replication

package (R or Stata), and screenshots of the exhibit to reproduce from the article (see Supplementary

Materials). Of note, the screenshots were implemented after the pilot event as they could be useful

to AI-led teams as they encode the information in different way than the PDF files. Teams had seven

hours to complete three tasks: (i) computationally reproduce a few pre-determined results, (ii) detect

coding errors, and (iii) suggest and implement up to two robustness checks. Teams could leave

before the end of the event if they believed they had completed their tasks. Upon completion, teams
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were asked to email us a (templated) time log that documents whether they completed computational

reproducibility and includes all coding errors uncovered and two robustness checks. AI-assisted and

AI-led teams also had to provide their AI conversation history.

Access to a paid subscription of ChatGPT, powered by GPT-4, and later also GPT-4o models,

was provided to all coauthors in the AI-assisted and AI-led teams. While other models were avail-

able during later events, like the chain of thought using o1-preview, this model was not capable of

processing files and therefore was of little use to the AI-led teams. AI-assisted and AI-led teams

took part in a mandatory 1-hour long training on the usage of ChatGPT (42). The training could

be viewed live or as a recording. Human teams were allowed to take part in the training at their

discretion. Additional details on our AI training and models available and their capabilities can be

found in Supplementary Materials section 3.

Human teams were not allowed to use ChatGPT or any other AI tool. The AI-assisted groups

were allowed to use ChatGPT without limitation (but no other AI tool). This group could have

chosen not to use ChatGPT at all if they preferred to. Those in the AI-led teams were not allowed

to read the article, look at the data or go through the analysis code. AI-led teams had to conduct

their analysis only through ChatGPT. They were asked to first attempt to use ChatGPT’s Python

interpreter module to conduct the analysis. However, they were allowed to run analysis code locally

(in R or Stata) when ChatGPT failed to run the analysis itself. When running code locally, the teams

were not allowed to use any other code except code provided by ChatGPT, with the exception that

the teams could adjust file paths and their environment without the assistance of ChatGPT. We

relied on the good nature of AI-led teams to not look at the studies, codes, or files. That is, we

asked them to pass everything into ChatGPT. Last, we did not give specific guidance on how teams

should operate. Teams could do the work independently or jointly throughout the event.

We have 103 teams; 33 human teams (92 researchers), 35 AI-assisted teams (93 researchers)

and 35 AI-led teams (103 researchers). We show in Table S3 that the treatment arms are balanced

across a large number of observables.
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2.2 Three Tasks

We focus on three objective tasks. (43) First, teams were asked to computationally reproduce a few

selected numerical results in the study assigned to them. Computational reproducibility involves

using the same data as the original authors and running their codes. Teams had to fill out the time

it took to computationally reproduce the numerical result. Of note, AB, JA and DM successfully

computationally reproduced all results with minimal changes (e.g., changing paths) prior to the

event.

Second, we asked teams to report any coding errors and data irregularities they found. One

type of coding error would be discrepancies between the study and the code. We label the coding

errors found as major or minor. We define coding errors as minor or major depending on whether

the coding error could, in theory, have an impact on the claims tested. For instance, a coding error

or data irregularity that impacts the dependent or independent variables could potentially have an

impact on the estimation results. In contrast, a coding error for missing packages/paths or versioning

issues is considered a minor error. Those coding errors are typically easily fixed by the reproducers

and do not impact the validity of the claims made by the original authors. AB, JA and DM discussed

all errors uncovered and classified coding errors as major or minor based on the general principles

established above.

Third, we asked each team to report and perform two robustness checks. Qualifying and quan-

tifying what makes a robustness check “good” or “bad” is not straightforward. We propose four

different binary measures which we believe qualify a good robustness check: (i) clear (not vague)

regarding purpose and execution; (ii) feasibility, (iii) not previously done by the original author(s);

and (iv) focuses on the validity of the empirical strategy. Items (i) through (iii) are necessary condi-

tions to be considered “good” robustness checks. Item (iv) we believe to be the purpose of robustness

checks (especially): providing evidence which strengthens the credibility of the empirical strategy,

from which conclusions of the study are being made. (44–46) A “good” robustness check there-

fore contains all of these elements. If one of these elements is missing, we classify it as a “bad”

robustness check. In line with these considerations, we asked each team to propose two robustness

checks that were not previously conducted by the authors and mentioned in the study or its supple-

mentary materials. We further instructed participants that the robustness checks had to be feasible
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and that heterogeneity analysis (e.g., comparing female and male respondents) was not considered

a robustness check. AB, JA and DM classified robustness checks performed as being “good” or

“bad”.

3 Results

Our analyses were pre-registered after the pilot event in Toronto. We list deviations from our

pre-analysis plan in the supplementary materials and note throughout whether the analysis is ex-

ploratory.

Computational Reproducibility

For computational reproducibility we have two different dependent variables: one as a binary (com-

pleted computational reproducibility versus did not complete reproducibility) and one which is

continuous - time (in minutes) from the start of the event to when teams completed computational

reproducibility. A completed computational reproduction is defined as having successfully ran the

original authors’ codes and produced numerical results identical to those in the article.

Our main finding is that computational reproducibility rates varied substantially across the

groups. Most human (94%) and AI-assisted (91%) teams could computationally reproduce the re-

sults, while only 37% of AI-led teams could (Table 1). Table 2 shows our main regression estimates

using OLS. See Table S4 for logit and poisson regressions and Table S5 for the control variables

estimates. We find that human teams are about 59 percentage points more likely than AI-led teams

to successfully computationally reproduce the results (! < 0.01). In contrast, there is no significant

difference between human and AI-assisted teams (! = 0.70).

In Figure 1, we investigate whether the distribution of time to computational reproduction varies

across groups. Note that many teams did not complete computational reproducibility leading to an

important sample selection bias, especially for AI-led teams.We find that themedian time for AI-led

teams is 2 hours and 48 minutes. Most human teams, while faster than AI-led teams, take between

one and three hours to complete the task (median 1 hour and 18 minutes). Most of the AI-assisted

teams were done with the task in 1 hour and 45 minutes, with a few teams taking almost the entire

event (median 1 hour and 12 minutes).
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In an exploratory analysis, we investigate whether AI-led teams improved over time. In our set-

ting, improvements would be due to the use of new ChatGPT versions or increased researchers’

skills over time rather than learning between events. In Figure S1, we show the difference in com-

putational reproducibility rates for each event. Visually, we observe that, in comparison to human

teams, AI-led teams did not improve over time, with our first and last events both having a difference

in reproducibility rate between human and AI-led teams of about 50 percentage points.

Coding Errors or Data Irregularities

We have two dependent variables, both of which are counts, of major and minor coding errors.

We find that human teams identified on average 1.4 minor coding errors. In contrast, AI-assisted

and AI-led teams respectively uncovered on average 0.94 and 0.5 minor coding errors (Table 1).

We uncover a similar pattern for major errors, with human teams correctly identifying more errors.

Table 2 confirms that the human teams uncovered significantly more errors than AI-assisted and AI-

led teams. We also find that AI-assisted teams uncovered significantly more minor (! = 0.022) and

major (! = 0.018) coding errors than AI-led teams. See Supplementary Materials Coding Errors

and Data Irregularities for examples of coding errors and a discussion.

Figure 2 investigates whether the distribution of time to finding a first coding error varies across

groups. The figure illustrates both the time to detecting a first minor and a first major error. Caution

is required with this figure as human teams are more likely to detect coding errors than AI-assisted

and AI-led teams. We provide weak evidence that AI-assisted teams are faster at uncovering a first

coding error, and that AI-led teams are slower.

Our findings suggest that unaided human teams were more effective at detecting both major

and minor errors compared to AI-led teams, highlighting a challenge in AI-led teams’ ability to au-

tonomously navigate and interpret complex code and data irregularities. We also find that human-

only teams performed significantly better than AI-assisted teams on error detection, particularly

in identifying errors with potentially significant implications (i.e., major errors). In an exploratory

analysis, we show that this result is present only for teams working with Stata (Tables S6 and S7).

The difference between human and AI-assisted teams could be due to many explanations including

overreliance on AI – AI-assisted teams could be following ChatGPT’s suggestions without seek-
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ing and processing more information. (36) We also provide non-causal evidence in an exploratory

analysis that AI-assisted teams with more AI experience uncovered more coding errors in Table

S8, suggesting that AI training and practice may be critical for realizing the full benefits of AI

assistance.

We investigate in an exploratory analysis if AI-led teams improved over time at detecting coding

errors. In Figures S2 and S3, we provide weak evidence that AI-led teams are improving over time

in detecting coding errors in comparison to human groups, possibly due to the use of new ChatGPT

versions or increased researchers’ skills over time.

Robustness Checks

We have four dependent variables. The first two are whether the reproducers proposed one or two

“good” robustness checks. The third and fourth dependent variables are whether the reproducers

implemented one or two “good” robustness checks.

We find that human and AI-assisted teams performed much better than AI-led teams. We find

that all human and AI-assisted teams proposed at least one good robustness check, with 88% human

teams suggesting two robustness checks in comparison to 86% for AI-assisted teams. In contrast,

only 83% AI-led teams suggested one good and 63% suggested two good robustness checks. The

difference for these two variables betweenAI-led teams and the other treatment arms are statistically

significant (Tables 1 and 2).We find similar significant differences for the implementation of “good”

robustness checks, with AI-led teams being about 33–37 percentage points less likely to implement

“good” robustness checks. The main criterion leading AI-led teams to suggest “bad” robustness

checks is that they were already implemented by the original author(s). Further, six AI-led teams

did not provide any robustness check.

Our results indicate that AI-led teams, while able to produce checks with some level of quality,

faced more challenges in aligning with the criteria, potentially due to limited human guidance in

interpreting the empirical strategy and ensuring feasibility.
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Overreliance or Underreliance of AI for AI-Assisted

We investigate whether there is a relationship betweenAI use and performance for AI-assisted teams

in Table S9. Teamswere divided into two groups based on the median total number of prompts used.

This analysis is exploratory and should not be viewed as causal. We find that AI-assisted teams that

used less AI were less likely to computationally reproduce the results. However, they identified

more minor and major coding errors and took less time to computationally reproduce and find their

first (minor and major) coding error. These results suggest that some AI-assisted teams may have

overrelied on AI support. (40,41, 47–49)

Discussion

The findings of this study offer critical insights into the potential and limitations of AI-assisted and

AI-driven approaches in the reproducibility of empirical social science research. Computational

reproducibility, error detection, and robustness checks are essential components of empirical re-

search validation, and assessing these through the lenses of human-only, AI-assisted, and AI-led

teams sheds light on how AI may be integrated in the expensive reproduction process, accelerat-

ing it and improving its overall reliability. Although recent advancements in LLMs have opened

possibilities for AI integration in research (50,51), our results suggest that, while AI-driven repro-

duction has potential to save time and money for a subset of studies, a significant human component

remains crucial in ensuring successful computational reproduction for most studies. The optimal

role for AI in reproducibility may therefore still be as a collaborator for most studies rather than a

sole executor. LLM systems could be used as a first pass helping to identify coding errors (52) and

proposing possible solutions to them (53, 54), while on a subsequent step humans would still play

the pivotal role of performing a more in-depth evaluation.

Summary of Findings

AI-led teams have faced notable challenges compared to both AI-assisted and human-only teams.

Only 37% of AI-led teams were able to successfully complete computational reproducibility, high-

lighting a substantial gap in the current capacity of AI to autonomously navigate complex quanti-

tative analyses. Similarly, in error detection, AI-led teams detected significantly fewer major and
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minor errors than either AI-assisted or human teams. These errors, particularly major ones with im-

plications for research claims, often require nuanced understanding and critical thinking to identify,

a capability that AI tools in their current form lack (see Supplementary Materials Coding Errors

and Data Irregularities). These results suggest that AI’s role may be best suited for supporting tasks

where direct interpretative judgment is less critical, or where error detection can be supplemented

by human oversight.

Limitations

One limitation is our focus on solely OpenAI’s ChatGPT using GPT-4/4o models, meaning that

we cannot generalize to all current AI models. Furthermore, the limited timeframe of seven hours

for study teams to complete their reproductions may not adequately reflect the conditions under

which reproducibility efforts are typically conducted. Finally, we relied on a small number of re-

search papers illustrating a relatively narrow range of social science methodologies and techniques,

which makes it difficult to generalize our findings to work with AI systems across all social science

subfields.

Implications for Human-AI Collaboration in Research

Our findings support the notion that, while AI tools hold promise for aiding in reproducibility

tasks, the state of technology as of 2024 is not yet advanced enough for full autonomy in complex

empirical workflows. Human expertise remains critical to navigate challenges and provide inter-

pretative guidance for reproducibility and error detection. The AI-assisted model—where humans

work alongside AI tools— did not emerge as a winner over humans only teams.

In scenarios where computational reproducibility, error detection, and robustness checks require

in-depth understanding, domain knowledge, and flexible problem-solving, human involvement cur-

rently adds value. The ability to contextualize, interpret, and implement complex quantitative re-

search remains a human strength, underscoring the current limitations of AI in fully autonomous

reproduction efforts.
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Future Outlook

Looking ahead, future advancements in models optimized through reinforcement learning to solve

reasoning problems using a chain of thought could address the limitations we reported, possibly im-

proving the model’s ability to reproduce complex quantitative research through iterative, reasoning-

driven processes. As LLMs evolve to incorporate better contextual understanding and reasoning,

their role in reproducibility tasks could shift from support to a more central position, especially in

less complex, structured reproduction settings. Future iterations of AI tools may incorporate im-

provements in interpreting code and data irregularities, detecting nuanced errors, and generating

plausible robustness checks with minimal human input. Such advancements could enhance AI’s

ability to autonomously execute reproducibility tasks, reducing the reliance on human oversight for

routine or straightforward reproducibility challenges.

Future research should consider the potential for training models specifically on social sci-

ence and quantitative research contexts. Current LLMs are trained on vast datasets but may lack

specificity in understanding the unique demands of empirical social science research. AI systems

tailored for social science reproduction could potentially improve reproducibility outcomes, reduc-

ing the barriers AI currently faces in autonomously handling the nuances of quantitative research.

Additionally, incorporating continuous feedback and learning mechanisms could allow AI-assisted

and AI-led teams to improve performance over time, as AI learns from each reproduction task and

adapts based on human feedback.
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Table 1: Comparison of Human, AI-Assisted, and AI-Led Metrics

Variable Human-Only AI-Assisted AI-Led

Human-Only
vs

AI-Assisted

Human-Only
vs

AI-Led

AI-Assisted
vs

AI-Led

Reproduction
0.939
(0.242)

0.914
(0.284)

0.371
(0.490)

0.025
(0.697)

0.568
(<0.001)

0.543
(<0.001)

Minutes to reproduction
79.1
(43.6)

92.3
(88.3)

175.1
(65.6)

-13.3
(0.454)

-96.0
(<0.001)

-82.7
(0.004)

Number of minor errors
1.424
(1.696)

0.943
(1.454)

0.514
(0.919)

0.481
(0.213)

0.910
(0.007)

0.429
(0.145)

Minutes to first minor error
95.7
(77.5)

74.0
(46.5)

150.1
(107.5)

21.7
(0.318)

-54.4
(0.109)

-76.1
(0.016)

Number of major errors
1.364
(1.496)

0.629
(0.942)

0.229
(0.490)

0.735
(0.017)

1.135
(<0.001)

0.400
(0.029)

Minutes to first major error
147.2
(89.4)

128.8
(53.4)

191.7
(97.6)

18.4
(0.496)

-44.5
(0.278)

-62.9
(0.069)

At least one good robustness check
1.000
(0.000)

1.000
(0.000)

0.829
(0.382)

-
(-)

0.171
(0.012)

0.171
(0.010)

At least two good robustness checks
0.879
(0.331)

0.857
(0.355)

0.629
(0.490)

0.022
(0.796)

0.250
(0.017)

0.229
(0.029)

Ran at least one good robustness check
0.939
(0.242)

0.943
(0.236)

0.571
(0.502)

-0.003
(0.953)

0.368
(<0.001)

0.371
(<0.001)

Ran At least two good robustness checks
0.788
(0.415)

0.800
(0.406)

0.457
(0.505)

-0.012
(0.903)

0.331
(0.005)

0.343
(0.003)

Note: Standard errors in parentheses for individual branches (Human-only, AI-Assisted, and AI-Led); p-values in parentheses for

branch comparisons (Human-Only Vs AI-Assisted, Human-Only Vs AI-Led, and AI-Assisted Vs AI-Led).

Table 2: Results from OLS regressions predicting reproduction outcomes
(1) (2) (3) (4) (5) (6) (7)

Reproduction
Minor
errors

Major
errors

One good
robustness

Two good
robustness

Ran one
robustness

Ran two
robustness

AI-Assisted -0.018 -0.487* -0.646** -0.009 -0.014 -0.032 -0.009

(0.063) (0.270) (0.254) (0.027) (0.103) (0.061) (0.113)

[-0.144; 0.107] [-1.025; 0.051] [-1.153; -0.139] [-0.063; 0.046] [-0.220; 0.191] [-0.155; 0.090] [-0.233; 0.216]

AI-Led -0.593*** -1.050*** -1.136*** -0.167** -0.250** -0.323*** -0.290**

(0.090) (0.258) (0.235) (0.068) (0.107) (0.098) (0.126)

[-0.773; -0.413] [-1.565; -0.536] [-1.604; -0.667] [-0.302; -0.031] [-0.463; -0.037] [-0.518; -0.127] [-0.540; -0.040]

Controls ! ! ! ! ! ! !

Mean of dep. var 0.738 0.951 0.728 0.942 0.786 0.816 0.680

p-val (AI-Assisted vs. AI-Led) 0.000 0.022 0.018 0.023 0.036 0.004 0.019

Observations 103 103 103 103 103 103 103

Note: Standard errors in parentheses, confidence intervals in brackets; human-only branch omitted.
Controls include number of teammates; game-software, skill, and attendance fixed effects.
∗ ! < 0.1, ∗∗ ! < 0.05, ∗∗∗ ! < 0.01
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Figure 1: Cumulative density plot depicting the time (in minutes) taken by each treatment arm—

Human, AI-assisted, and AI-Led—to computationally reproduce the main findings in the assigned

study.
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Figure 2: Cumulative density plots showing the time (in minutes) taken by each treatment arm—

Human, AI-assisted, and AI-Led—to identify the first minor (left) and major (right) coding errors

in the assigned study.
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This PDF file includes:

Materials and Methods

Figures S1 to S3

Tables S1 to S8

S5



Materials and Methods

Pre-Registration

Our pre-analysis plan was pre-registered on OSF on May 2nd, 2024: https://osf.io/sz2g8/.

The pre-registration was done after our pilot event at the University of Toronto.

Of note, the pre-analysis plan refers to AI-assisted teams as cyborg teams and AI led teams as

machine teams.

Research Questions

Here are the primary research questions that were pre-registered:

1. Do AI-led teams computationally reproduce more results than AI-assisted and human teams?

2. Are AI-led teams faster to computationally reproduce results than AI-assisted and human teams?

3. DoAI-led teams detect moremajor andminor coding errors or data irregularities than AI-assisted

and human teams?

4. Are AI-led teams faster at detecting major and minor coding errors or data irregularities than

AI-assisted and human teams?

5. DoAI-led teams detect moremajor andminor coding errors or data irregularities than AI-assisted

and human teams?

6. Do AI-led teams propose better robustness checks than AI-assisted and human teams?

7. Are AI-led teams more capable of implementing robustness checks than AI-assisted and human

teams?

8. Do AI-assisted teams computationally reproduce more results than human teams?

9. Are AI-assisted teams faster to computationally reproduce results than human teams?

10. Do AI-assisted teams detect more major and minor coding errors or data irregularities than hu-

man teams?

11. Are AI-assisted teams faster at detecting major and minor coding errors or data irregularities

than human teams?

12. Do AI-assisted teams detect more major and minor coding errors or data irregularities than hu-

man teams?

13. Do AI-assisted teams propose better robustness checks than human teams? 14. Are AI-assisted
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teams more capable of implementing robustness checks than human teams?

We also explored the following exploratory (pre-registered) research questions:

15. Are AI-led teams improving their performance over time at computationally reproducing

results, detecting coding errors or data irregularities, and providing good robustness checks?”

16. Are AI-assisted teams improving their performance over time at computationally reproducing

results, detecting coding errors or data irregularities, and providing good robustness checks?

We also tackle an exploratory research question that was not pre-registered in the article:

17. Do AI-assisted teams overrely or underrely on AI?

AI Replication Games Advertisement

The Institute for Replication advertised the AI replication games through social media (Bluesky and

X) and emails. Events were also promoted on the Institute’s webpage (https://i4replication.

org/games.html) Only graduate students, postdoctoral fellows, professors and researchers from

non-academic organizations with a PhD could register. All participants were promised coauthorship

to this paper.

The typical social media posts included the following information:

“This is a one-day event that brings researchers together to collaborate on reproducing quan-

titative results published in high-ranking social science journals. You will have the opportunity to

network with fellow researchers and develop your coding and AI skills.

Open to all researchers: faculty, post-docs, and graduate students. Knowledge of Python or R

or Stata is essential. Participants will be randomly assigned to one of three teams: Machine with

restricted human assistance, Cyborg or Human.

All participants will get coauthorship on a meta-research journal paper which combines the

work of all teams.

Register here: Link to Registration Form.”
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Participants Exclusion

We did not accept registration from participants with no knowledge of Stata nor R.We also excluded

from participating a very small number of researchers with no knowledge of R and who did not have

a Stata license.

As noted in the main text, a few organizers participated in one of the games. They did not know

about the papers to be reproduced at their respective event.

Documents to be Filled During the Games

During the event, each team filled out an excel sheet documenting their outcomes. See the excel doc-

ument here: https://osf.io/sz2g8/. The document “Template Time Stamp” includes 3 sheets

to be filled by each team. The first sheet is for computational reproducibility. Teams need to fill

out the time that they have computationally reproduced the exhibit. The second sheet documents

coding errors detected. Teams need to add a row for each coding error and data irregularity and

enter the time they have detected them. In the last sheet, teams need to provide a description of

their two robustness checks and provide estimates if they could implement those. Researchers in

the AI-assisted and AI-led groups are also asked to share their prompts/conversations at the end of

the event.

Study Selection

For each event, two studies published in leading social science journals are selected by AB. The

studies are published in a journal with a data and code availability policy. One study is coded in

Stata; the other is coded in R. The studies have all been reproduced by the Institute for Replication

before the AI replication games. The Institute for Replication runs about two “regular” replication

games, in contrast to these events, each month. At every such event, teams of researchers try to re-

produce results from peer-reviewed publications. They then prepare reports of their findings which

are subsequently shared with the original authors and made public on average six months following

an event. Importantly, this means the Institute for Replication had over 20 published studies with

known reproduction results but have not yet been made publicly available to choose from at any

point in 2024. We could not take studies with publicly known coding issues since ChatGPT may be
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able to “know” coding errors or data discrepancies without ”finding” them. This is the corpus we

sampled from for each of the AI replication games.

The sampling cannot be random or blind for a few reasons. First, the variation in reproduction

packages (sometimes called replication packages in the social sciences) is too large. In both sce-

narios, where folders reproduce studies perfectly or folders that cannot be deciphered at all, would

yield no variation in at least one of our outcomes. (No coding errors exist in the former; we can’t

evaluate the correctness of the code in the latter.) Second, studies need to rely on publicly available

data and codes or the exercise is futile. Third, we need to match the software abilities of partici-

pants to each study. Within this corpus, we selected studies known to have coding errors or data

irregularities. All teams were told that they needed to uncover coding errors or data irregularities.

Some studies were used for two events. The following studies were selected:

Pilot: Toronto Replication Games (with virtual researchers in Europe):
1-X. Labandeira et al., “Major Reforms in Electricity Pricing: Evidence from aQuasi-Experiment”,

The Economic Journal, (2022), vol.132(May): 1517–1541, DOI: 10.1093/ej/ueab076.

2-P. Christensen and C. Timmins, “Sorting or Steering: The Effects of Housing Discrimination

on Neighborhood Choice”, Journal of Political Economy, (2022), vol.130(August): 2110–2163,

DOI: 10.1086/720140.

Materials: Documents shared on Dropbox with participants. We did not provide the screenshots

for this pilot event.

Ottawa Replication Games:
1-X. Labandeira et al., “Major Reforms in Electricity Pricing: Evidence from aQuasi-Experiment”,

The Economic Journal, (2022), vol.132(May): 1517–1541, DOI: 10.1093/ej/ueab076.

2-Wolfowicz et al., “Arrests and Convictions but Not Sentence Length Deter Terrorism in

28 European Union Member States” Nature Human Behaviour, vol.7: (2023), 1878–1889, DOI:

10.1038/s41562-023-01695-6.

Materials: https://osf.io/5v2km/

Sheffield Replication Games:
1-P. Atanasov et al., “Taste-Based Gender Favouritism In High-Stake Decisions: Evidence from

the Price is Right”, The Economic Journal, (2023), vol.134(February): 856-883, DOI: 10.1093/ej/uead087.

2-R. Bajo-Buenestado and M. A. Borrella-Mas, “The Heterogeneous Tax Pass-Through Under
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Different Vertical Relationships”, The Economic Journal, (2022), vol.132(July): 1684–1708, DOI:

10.1093/ej/ueac007.

Materials: https://osf.io/z48ax/

Cornell Replication Games:
1-S. Hill andM. E. Roberts, “Acquiescence Bias Inflates Estimates of Conspiratorial Beliefs and

Political Misperceptions”, Political Analysis, (2023) vol.31: 575–590, DOI: 10.1017/pan.2022.2.

2-R. Bajo-Buenestado and M. A. Borrella-Mas, “The Heterogeneous Tax Pass-Through Under

Different Vertical Relationships”, The Economic Journal, (2022), vol.132(July): 1684–1708, DOI:

10.1093/ej/ueac007.

Materials: https://osf.io/ncje7/

Bogota Replication Games:
1-S. Hill andM. E. Roberts, “Acquiescence Bias Inflates Estimates of Conspiratorial Beliefs and

Political Misperceptions”, Political Analysis, (2023) vol.31: 575–590, DOI: 10.1017/pan.2022.2.

2-M. Comola and S. Prina, “The Interplay Among Savings Accounts and Network-Based Finan-

cial Arrangements: Evidence from a Field Experiment ”, The Economic Journal, (2023), vol.133(January):

516–535, DOI: 10.1093/ej/ueac053.

Materials: https://osf.io/hx67q/

Tilburg Replication Games:
1-N. Lee, “Do Policy Makers Listen to Experts? Evidence from a National Survey of Local

and State Policy Makers”, American Political Science Review, (2022), vol.116(2): 677-688, DOI:

10.1017/S0003055421000800.

2-S. B. Holt and K. Vinopal, “Examining Inequality in the Time Cost of Waiting”, Nature Hu-

man Behaviour, (2023), vol.7: 545–555, DOI: 10.1038/s41562-023-01524-w.

Materials: https://osf.io/dqw5y/

Virtual Replication Games: Europe (Part I)
1-P. Ager et al., “How the Other Half Died: Immigration and Mortality in U.S. Cities”, The

Review of Economic Studies, (2024), vol.91(1): 1–44, DOI: 10.1093/restud/rdad035

2-S. Herskowitz, “Gambling, Saving, and Lumpy Liquidity Needs”, American Economic Jour-

nal: Applied Economics, (2021), vol.13(1): 72–104, DOI: 10.1257/app.20180177.

Materials: https://osf.io/tcn7k/
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Virtual Replication Games: North America (Part II)
3-S. Herskowitz, “Gambling, Saving, and Lumpy Liquidity Needs”, American Economic Jour-

nal: Applied Economics, (2021), vol.13(1): 72–104, DOI: 10.1257/app.20180177.

4-A. G. de Zavala et al., “Mindful-Gratitude Practice Reduces Prejudice at High Levels of Col-

lectiveNarcissism,” Psychological Science, (2024), vol.35(2): 137-149, DOI: 10.1177/09567976231220902.

Materials: https://osf.io/67925/

AI Training

Researchers took part in a 1-hour long training on the usage of ChatGPT. This training was manda-

tory for the researchers in AI-assisted and AI-led groups.

Recordings and materials are publicly available here: https://osf.io/sz2g8/.

The training included the following topics:

1) Introduction, Overview of ChatGPT, and Access

• Introduction to the capabilities of ChatGPT and its applications in reproducing scientific

studies, coding, and data analysis.

• Instructions on accessing ChatGPT, creating an account, and accessing the Institute for Repli-

cation workspace/team subscription.

• Explanation of subscription tiers, model capabilities, limitations on message usage, and pri-

vacy settings.

2) Interaction with ChatGPT

• Techniques for optimizing prompts and ChatGPT’s responses, such as providing contextual

information.

• Strategies to manage randomness in outputs or when the model gets ”stuck,” such as opening

new chats and regenerating answers.

3) Sharing Chats

• Information on how to generate shareable links to sessions and manage privacy, including

restrictions on who can access shared chats.
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• Explanation on how to save chats as a webpage when the chat cannot be shared as a link (e.g.,

when the chat includes images).

4) Coding Assistance

• Explanation of how ChatGPT can assist with coding, including practical examples such as

writing code for converting data formats (e.g., R’s .rds to Stata’s .dta) and debugging code.

5) File and Image Upload

• Introduction to ChatGPT’s ability to process uploaded files.

• Overview of supported file types (e.g., PDFs, Word documents, CSVs, Excel files) and limi-

tations regarding file size.

• Example of uploading an academic article to inquire about research questions, identification

strategy, and robustness checks.

• Explanation of the potential benefits of uploading an image of a results table/figure instead

of only the PDF file.

• Example of uploading an image of a results table from a study and inquiring about it.

• The image upload was not mentioned or demonstrated during the Toronto event.

6) Conducting Data Analysis Using ChatGPT

• Introduction to using ChatGPT’s Data Analysis Module for executing Python code and per-

forming data analysis.

• Example of uploading a replication package of an article and replicating regression analyses

using the Python module.

• AI-led teams were instructed to first attempt to run the authors’ codes/scripts using the data

analysis capabilities of ChatGPT. If this analysis failed, teams were instructed to run the code

in their local environment by following instructions provided by ChatGPT, as introduced in

the Coding Assistance example.
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7) ChatGPT API

• Explanation of the ChatGPT API for automating repetitive tasks and integrating AI capabil-

ities into code.

• Example code shown for connecting to the ChatGPT API in R.

8) Customizing ChatGPT

• Information on setting up personalized models with custom instructions for specific needs.

• Mention of ChatGPT’s memory feature that retains information across sessions, and how

information that should not be retained can be deleted. The ChatGPT memory feature was

not mentioned during the Toronto training session.

9) Explanation of Differences Among ChatGPT Models

• Differences between ChatGPT 4 and 4o were first discussed during the Sheffield training

event.

• Introduction of GPT-o1-preview and GPT-o1-mini models was first provided during the Bo-

gota event.

• Capabilities of ChatGPT 4o with canvas were introduced during the last event.

ChatGPT Models
Researchers in the AI-assisted and AI-led groups were provided with access to ChatGPT Team.

Table S1 presents an overview of the ChatGPT models available to these researchers during each

event. Table S2 provides details about the capabilities of these models. Throughout all events, re-

searchers had access to themain flagshipmodel, GPT-4, and/or GPT-4o. Thesemodels were capable

of processing files, equipped with a Python environment for interpreting code and conducting data

analysis, and had internet access.

The file upload was limited to maximum 512MB per file, and further limited to 2 million tokens

for text files, approximately 50MB for CSV files and spreadsheets, 20MB per image for images. A

user file size is capped at 10GB and organization at 100GB (55). However, the practical limitations

based on the Python environment’s capabilities were likely lower.
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Games Date Training Date Image* ChatGPT versions available

3.5 4 4o 4o- o1-preview / 4o with

mini o1-mini canvas

Toronto Feb 20 Feb 14 No Yes Yes

Ottawa May 3 Apr 26 Yes Yes Yes

Sheffield Jun 17 Jun 12 Yes Yes Yes Yes

Cornell Aug 12 Jul 31 Yes Yes Yes Yes

Bogota Oct 4 Sep 23** Yes Yes Yes Yes Yes Yes***

Tilburg Oct 18 Sep 30 Yes Yes Yes Yes Yes Yes***

Virtual Nov 22 Nov 8 Yes Yes Yes Yes Yes Yes

Table S1: ChatGPT models available by training

* Image upload trained as part of the pre-games training and screenshots of relevant results from

the studies provided to researchers

** Training using recording of the Cornell training + o1-preview model slide added to

presentation

*** While GPT-4o with canvas was available for the Bogota and Tilburg events, it was not

mentioned during the training.

Only researchers in the Bogota, Tilburg, and the virtual only event had access to the GPT-

o1-preview and GPT-o1-mini models. These models were trained using reinforcement learning to

perform complex reasoning and, unlike the 4/4o models, can produce an internal chain of thought

before responding to users. (56)

Usage limits for certain models were applied by OpenAI. During the Toronto and Ottawa events,

these limits were explicitly stated, with the Team subscription limit set at 100 messages per three

hours per user. Researchers were instructed to collaborate with their teammates if the limit was

reached or use the unlimited GPT-3.5 model. For the remaining events, usage limits for the GPT-

4/4o models were no longer explicitly mentioned by OpenAI but were likely higher. The GPT-o1-

preview model was limited to 50 queries per week, while GPT-o1-mini was limited to 50 queries

per day.
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Model Date Introduced File Upload Python Code Web “Thinking”

Interpreter Browsing

GPT-3.5 Before 1st event No No No No

GPT-4 Before 1st event Yes Yes Yes No

GPT-4o May 13 [1] Yes Yes Yes No

GPT-4o-mini July 18 [2] Yes* Yes* Yes* No

GPT-o1-preview September 12 [3] No No No Yes

GPT-o1-mini September 12 [3] No No No Yes

GPT-4o with canvas October 3 [4] Yes Yes No No

Table S2: ChatGPT capabilities

* While 4o-mini supported these functions at the time of the last training it did not necessarily at

the time of introduction.

[1] https://openai.com/index/hello-gpt-4o/

[2]

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

[3] https://openai.com/index/introducing-openai-o1-preview/

[4] https://openai.com/index/introducing-canvas/
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Coding Errors and Data Irregularities

We define coding errors as minor or major depending on whether the coding error could, in theory,

have an impact on the claims tested. AB, JA and DM discussed all errors uncovered and classified

coding errors as major or minor. Coding errors uncovered range from minor errors such as missing

packages/paths or versioning issues tomajor coding errors such asmiscoding the dependent variable

or main independent variable and conducting a many-to-many merge instead of a many-to-one

merge.

In what follows, we provide concrete examples of major coding errors and data irregularities.

In the article entitled “Arrests and Convictions but Not Sentence Length Deter Terrorism in 28

European Union Member States”, one of the major coding errors is in the coding of the dependent

variable. The authors state in the article that the terrorism rate used as their dependent variable is

the inverse hyperbolic sine (IHS) of the per capita rate of terrorist attacks. But the code reveals

that the dependent variable takes impossible values and is thus not the IHS of the per capita rate

of terrorist attacks. For instance, countries with zero terror attacks are assigned strictly positive

values, which is not possible. Another major coding error is that some European countries were

imputed having zero terror attacks because of joining the European Union during the sample time

period. This coding error is due to the terrorism dataset only covering European Union countries

and the authors assigning zero values instead of missing information for these countries. There

is an editor’s note for this article at Nature Human Behaviour. The note was released as a result

of a Matters Arising submission by one of our reproducers. The Matters Arising is revised and

resubmitted.

In the article “Sorting or Steering: The Effects of Housing Discrimination on Neighborhood

Choice”, one of the major coding errors involved assigning a value of zero for the variable ”of color”

to both individuals identified as ’white’ and as ’other’ in the raw data. A major data irregularity is

the inclusion of fixed effects for the string variable ’city’. The raw variable is case sensitive and has

many spelling mistakes. A comment detailing these errors is revised and resubmitted at the Journal

of Political Economy.

In the main article, we document that AI-led groups identified significantly less coding errors

and data irregularities. AI-led groups likely uncovered fewer major coding errors due to the nuanced
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and contextual nature of these errors. It is plausible that AI-led groups struggled to identify tech-

nically correct but conceptually flawed code errors. These errors, such as a many-to-many merge

instead of a many-to-one merge, produce duplicate entries without causing a runtime error. While

the code executes without issues, the underlying conceptual mistake leads to incorrect data han-

dling. This type of error is particularly challenging for AI to detect, as it requires an understanding

of the conceptual intent behind the code rather than just its syntactic correctness.

More generally, many coding mistakes involve subtle misapplications of statistical transforma-

tions, such as assigning incorrect values or mishandling missing data, which often require domain

expertise and a deep understanding of the data’s structure. AI tools, while efficient at automating

tasks, may struggle with interpreting complex logical relationships, ambiguous data definitions, or

recognizing implausible outcomeswithout explicit programming. In contrast, human-led groups are

better equipped to identify errors that hinge on contextual reasoning, such as the incorrect coding

of dependent variables or misassignments due to case-sensitive inconsistencies in datasets.

Robustness Checks

We propose four different binary measures which we believe qualify a good robustness check: (i)

clarity (not vague) regarding purpose and execution; (ii) feasible, (iii) not previously done by the

original author(s); and (iv) focuses on the validity of the empirical strategy. In addition, we classify

any corrections to coding errors and rerunning the script would be considered a “good” robustness

check, although not checking the above list. One of AB, JA and DM reviewed each robustness check

based on the above criteria. In the event that at least one of the above categories is hard to classify,

we discussed and classified together.

Clarity (not vague) regarding purpose and execution: It is possible that teams of replicators

will not adequately describe their robustness check. This could be due to ChatGPT not sufficiently

describing what they are doing, or, from their own explanation. An example of a vague robust-

ness check would be “adding control variables.” In contrast, a clear robustness check would be to

precisely document which variable should be added as a control.

Feasible: Feasibility both corresponds to what could be done. In the former, teams who are able

to perform robustness checks have performed a feasible robustness check. For those which cannot

execute a robustness check, the question we ask is whether or not, with more time but the same
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resources, if it could be done.

Not previously done by the original author(s): All teams of reproducers - independent of

which type of team they are - have access to the original study, online appendix and the replication

packages. All teams ought to be capable of verifying their recommended robustness check was not

previously done. AB, JA and DM verified with each study whether the proposed robustness check

were included in the article or appendix.

Validity: While robustness checks can serve multiple purposes, we view them as alternative

specifications which test the main conclusion(s) of a study. A valid robustness check tests the relia-

bility and stability of the results. Examples of invalid robustness checks include: using bad controls,

misspecified models (bad instrument), etc.
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Figure S1: Difference in computational reproducibility rate across groups for each event.
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Figure S2: Differences in the number of minor errors detected across groups for each event.
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Figure S3: Differences in the number of major errors detected across groups for each event.
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Table S3: Balance table of Human-Only, AI-Assisted, and AI-Led Metrics

Variable Human-Only AI-Assisted AI-Led

Human-Only
vs

AI-Assisted

Human-Only
vs

AI-Led

AI-Assisted
vs

AI-Led

Software: R
0.545
(0.506)

0.543
(0.505)

0.600
(0.497)

0.003
(0.983)

-0.055
(0.655)

-0.057
(0.635)

Number of teammates
2.606
(0.496)

2.429
(0.655)

2.829
(0.568)

0.177
(0.214)

-0.223
(0.091)

-0.400
(0.008)

Attendance: In-Person
0.333
(0.479)

0.343
(0.482)

0.257
(0.443)

-0.010
(0.935)

0.076
(0.498)

0.086
(0.441)

Minimum academic level: Professor
0.091
(0.292)

0.086
(0.284)

0.086
(0.284)

0.005
(0.941)

0.005
(0.941)

-0.000
(1.000)

Minimum academic level: Postdoc
0.030
(0.174)

0.114
(0.323)

0.057
(0.236)

-0.084
(0.190)

-0.027
(0.597)

0.057
(0.400)

Minimum academic level: Researcher
0.152
(0.364)

0.171
(0.382)

0.029
(0.169)

-0.020
(0.827)

0.123
(0.076)

0.143
(0.047)

Minimum academic level: Student
0.727
(0.452)

0.629
(0.490)

0.829
(0.382)

0.099
(0.392)

-0.101
(0.321)

-0.200
(0.061)

Maximum academic level: Professor
0.576
(0.502)

0.514
(0.507)

0.686
(0.471)

0.061
(0.617)

-0.110
(0.355)

-0.171
(0.147)

Maximum academic level: Postdoc
0.152
(0.364)

0.257
(0.443)

0.143
(0.355)

-0.106
(0.289)

0.009
(0.921)

0.114
(0.238)

Maximum academic level: Researcher
0.091
(0.292)

0.057
(0.236)

0.000
(0.000)

0.034
(0.600)

0.091
(0.070)

0.057
(0.156)

Maximum academic level: Student
0.182
(0.392)

0.171
(0.382)

0.171
(0.382)

0.010
(0.912)

0.010
(0.912)

-0.000
(1.000)

Average years of coding experience
9.444
(4.781)

7.967
(2.927)

9.712
(3.230)

1.478
(0.127)

-0.267
(0.787)

-1.745
(0.021)

Min ChatGPT level: Never
0.281
(0.457)

0.143
(0.355)

0.286
(0.458)

0.138
(0.169)

-0.004
(0.968)

-0.143
(0.150)

Min ChatGPT level: Beginner
0.594
(0.499)

0.543
(0.505)

0.600
(0.497)

0.051
(0.680)

-0.006
(0.959)

-0.057
(0.635)

Min ChatGPT level: Intermediate
0.094
(0.296)

0.314
(0.471)

0.086
(0.284)

-0.221
(0.027)

0.008
(0.910)

0.229
(0.017)

Min ChatGPT level: Advanced
0.031
(0.177)

0.000
(0.000)

0.029
(0.169)

0.031
(0.299)

0.003
(0.950)

-0.029
(0.321)

Max ChatGPT level: Never
0.000
(0.000)

0.029
(0.169)

0.029
(0.169)

-0.029
(0.343)

-0.029
(0.343)

-0.000
(1.000)

Max ChatGPT level: Beginner
0.188
(0.397)

0.114
(0.323)

0.086
(0.284)

0.073
(0.409)

0.102
(0.229)

0.029
(0.695)

Max ChatGPT level: Intermediate
0.469
(0.507)

0.514
(0.507)

0.714
(0.458)

-0.046
(0.715)

-0.246
(0.041)

-0.200
(0.088)

Max ChatGPT level: Advanced
0.344
(0.483)

0.343
(0.482)

0.171
(0.382)

0.001
(0.994)

0.172
(0.109)

0.171
(0.104)

Note: Standard errors in parentheses for individual branches (Human-only, AI-Assisted, and AI-Led); p-values in parentheses for
branch comparisons (Human-Only Vs AI-Assisted, Human-Only Vs AI-Led, and AI-Assisted Vs AI-Led).
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Table S4: Results from Logit & Poisson regressions predicting reproduction outcomes
(1) (2) (3) (4) (5) (6)

Reproduction
Minor
errors

Major
errors

Two good
robustness

Ran one
robustness

Ran two
robustness

main

AI-Assisted -0.609 -0.454** -0.667** -0.332 -0.725 -0.015

(1.258) (0.189) (0.261) (0.825) (1.458) (0.689)

[-3.075; 1.858] [-0.823; -0.084] [-1.179; -0.155] [-1.949; 1.284] [-3.582; 2.133] [-1.366; 1.335]

AI-Led -4.901*** -1.177*** -1.802*** -2.071** -2.750** -1.395**

(1.506) (0.200) (0.365) (0.865) (1.144) (0.637)

[-7.853; -1.949] [-1.568; -0.786] [-2.517; -1.087] [-3.767; -0.375] [-4.992; -0.507] [-2.643; -0.147]

Model Logit Poisson Poisson Logit Logit Logit

Controls ! ! ! ! ! !

Mean of dep. var 0.713 1.000 0.893 0.699 0.779 0.660

p-val (AI-Assisted vs. AI-Led) 0.001 0.003 0.004 0.030 0.066 0.035

Observations 94 98 84 73 86 97

Note: Standard errors in parentheses, confidence intervals in brackets; human-only branch omitted; the model for One good robustness is not included due to
unsuficient observations, preventing it from converging. Marginal effects reported for Logit models.
Controls include number of teammates; game-software, skill, and attendance fixed effects.
∗ ! < 0.1, ∗∗ ! < 0.05, ∗∗∗ ! < 0.01
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Table S5: Results from OLS regressions predicting reproduction outcomes
(1) (2) (3) (4) (5) (6) (7)

Reproduction
Minor
errors

Major
errors

One good
robustness

Two good
robustness

Ran one
robustness

Ran two
robustness

Branch: AI-Assisted -0.018 -0.487* -0.646** -0.009 -0.014 -0.032 -0.009
(0.063) (0.270) (0.254) (0.027) (0.103) (0.061) (0.113)

[-0.144; 0.107] [-1.025; 0.051] [-1.153; -0.139] [-0.063; 0.046] [-0.220; 0.191] [-0.155; 0.090] [-0.233; 0.216]
Branch: AI-Led -0.593*** -1.050*** -1.136*** -0.167** -0.250** -0.323*** -0.290**

(0.090) (0.258) (0.235) (0.068) (0.107) (0.098) (0.126)
[-0.773; -0.413] [-1.565; -0.536] [-1.604; -0.667] [-0.302; -0.031] [-0.463; -0.037] [-0.518; -0.127] [-0.540; -0.040]

Number of teammates 0.052 0.344 0.224 -0.026 0.091 -0.038 0.059
(0.069) (0.208) (0.196) (0.050) (0.083) (0.077) (0.094)

[-0.085; 0.189] [-0.070; 0.758] [-0.168; 0.615] [-0.125; 0.073] [-0.073; 0.256] [-0.192; 0.116] [-0.128; 0.245]
Game: Ottawa -0.086 -1.248 -0.243 -0.049 0.098 -0.351* -0.069

(0.155) (0.755) (0.460) (0.172) (0.217) (0.177) (0.205)
[-0.394; 0.222] [-2.752; 0.256] [-1.159; 0.673] [-0.392; 0.293] [-0.333; 0.530] [-0.704; 0.002] [-0.478; 0.340]

Game: Sheffield -0.180 -1.604** -0.653 0.159 -0.006 -0.336 -0.010
(0.259) (0.644) (0.464) (0.136) (0.400) (0.310) (0.360)

[-0.696; 0.336] [-2.886; -0.322] [-1.577; 0.271] [-0.111; 0.430] [-0.803; 0.792] [-0.954; 0.281] [-0.727; 0.707]
Game: Cornell 0.276 -1.547*** -1.075** 0.061 0.317 0.055 0.285

(0.190) (0.540) (0.499) (0.120) (0.201) (0.180) (0.235)
[-0.103; 0.655] [-2.622; -0.471] [-2.069; -0.081] [-0.178; 0.299] [-0.083; 0.717] [-0.304; 0.415] [-0.183; 0.754]

Game: Bogota 0.014 -1.074 -1.465 0.016 0.071 -0.189 -0.170
(0.175) (1.000) (1.021) (0.136) (0.350) (0.178) (0.354)

[-0.334; 0.362] [-3.065; 0.917] [-3.498; 0.568] [-0.255; 0.287] [-0.626; 0.768] [-0.543; 0.165] [-0.875; 0.535]
Game: Tilburg 0.231 -2.185*** 0.532 0.067 0.398** -0.076 0.230

(0.173) (0.697) (0.720) (0.112) (0.168) (0.175) (0.184)
[-0.114; 0.575] [-3.573; -0.798] [-0.901; 1.965] [-0.155; 0.289] [0.063; 0.734] [-0.424; 0.272] [-0.136; 0.597]

Game: Virtual Europe 0.004 -1.976*** -0.818 0.098 0.351** 0.092 0.245
(0.161) (0.623) (0.587) (0.110) (0.174) (0.128) (0.250)

[-0.316; 0.324] [-3.216; -0.736] [-1.988; 0.351] [-0.120; 0.317] [0.005; 0.696] [-0.162; 0.347] [-0.254; 0.743]
Game: Virtual North America 0.123 -1.545*** -0.583 0.088 0.327** -0.130 0.092

(0.180) (0.469) (0.458) (0.112) (0.163) (0.179) (0.205)
[-0.235; 0.481] [-2.478; -0.612] [-1.495; 0.329] [-0.135; 0.311] [0.004; 0.651] [-0.487; 0.227] [-0.315; 0.500]

Software: R -0.169 0.915 0.249 0.006 0.118 -0.014 0.096
(0.154) (0.621) (0.513) (0.121) (0.183) (0.123) (0.184)

[-0.476; 0.138] [-0.322; 2.152] [-0.772; 1.271] [-0.236; 0.248] [-0.246; 0.481] [-0.260; 0.231] [-0.270; 0.463]
Game: Ottawa × Software: R -0.281 -1.622** -0.306 -0.094 -0.066 -0.216 -0.352

(0.285) (0.741) (0.647) (0.250) (0.307) (0.324) (0.353)
[-0.849; 0.287] [-3.098; -0.147] [-1.594; 0.982] [-0.592; 0.405] [-0.677; 0.545] [-0.861; 0.429] [-1.055; 0.352]

Game: Sheffield × Software: R 0.322 -1.355** -0.751 -0.276 -0.260 0.178 -0.321
(0.316) (0.632) (0.621) (0.200) (0.458) (0.341) (0.430)

[-0.307; 0.952] [-2.614; -0.096] [-1.987; 0.485] [-0.674; 0.122] [-1.172; 0.651] [-0.500; 0.856] [-1.178; 0.535]
Game: Cornell × Software: R -0.265 -1.309** 0.424 -0.012 -0.115 -0.449* -0.557*

(0.244) (0.614) (0.742) (0.151) (0.239) (0.227) (0.303)
[-0.750; 0.219] [-2.532; -0.086] [-1.054; 1.902] [-0.313; 0.289] [-0.592; 0.361] [-0.901; 0.002] [-1.160; 0.046]

Game: Bogota × Software: R 0.112 -1.867* 0.727 0.010 0.103 -0.054 0.044
(0.319) (1.100) (1.032) (0.165) (0.384) (0.259) (0.420)

[-0.524; 0.747] [-4.058; 0.324] [-1.329; 2.783] [-0.319; 0.339] [-0.661; 0.867] [-0.570; 0.462] [-0.791; 0.880]
Game: Tilburg × Software: R -0.364 -0.235 -1.553* -0.026 -0.697** -0.250 -0.915***

(0.252) (0.802) (0.898) (0.134) (0.294) (0.310) (0.270)
[-0.866; 0.137] [-1.832; 1.362] [-3.340; 0.235] [-0.294; 0.241] [-1.283; -0.110] [-0.867; 0.367] [-1.453; -0.377]

Game: Virtual Europe × Software: R 0.234 -0.837 -0.597 -0.024 -0.424 -0.111 -0.287
(0.222) (0.774) (0.745) (0.140) (0.287) (0.189) (0.341)

[-0.208; 0.676] [-2.379; 0.705] [-2.080; 0.887] [-0.303; 0.255] [-0.995; 0.147] [-0.486; 0.265] [-0.966; 0.392]
Game: Virtual North America × Software: R 0.076 -1.145 -0.216 0.002 -0.312 0.110 -0.210

(0.285) (0.723) (0.836) (0.138) (0.316) (0.275) (0.377)
[-0.491; 0.643] [-2.585; 0.294] [-1.881; 1.449] [-0.273; 0.277] [-0.941; 0.317] [-0.437; 0.658] [-0.961; 0.540]

Maximum academic level: Researcher 0.148 -1.548** 0.336 -0.015 -0.213 0.105 -0.053
(0.180) (0.628) (1.559) (0.091) (0.195) (0.159) (0.219)

[-0.211; 0.506] [-2.799; -0.298] [-2.769; 3.440] [-0.197; 0.168] [-0.601; 0.174] [-0.212; 0.421] [-0.490; 0.384]
Maximum academic level: Postdoc 0.110 0.078 0.275 0.032 -0.090 0.314** 0.196

(0.177) (0.337) (0.318) (0.082) (0.145) (0.146) (0.172)
[-0.243; 0.463] [-0.594; 0.750] [-0.357; 0.908] [-0.131; 0.195] [-0.379; 0.199] [0.022; 0.605] [-0.147; 0.538]

Maximum academic level: Professor 0.030 0.008 0.340 -0.043 -0.165 0.107 -0.008
(0.140) (0.245) (0.262) (0.090) (0.128) (0.145) (0.147)

[-0.248; 0.309] [-0.480; 0.495] [-0.183; 0.862] [-0.223; 0.136] [-0.419; 0.089] [-0.181; 0.395] [-0.300; 0.283]
Minimum academic level: Researcher -0.140 -0.126 0.285 -0.012 0.184 0.078 0.269*

(0.091) (0.345) (0.519) (0.066) (0.116) (0.108) (0.137)
[-0.322; 0.042] [-0.813; 0.560] [-0.748; 1.318] [-0.142; 0.119] [-0.047; 0.415] [-0.137; 0.292] [-0.004; 0.541]

Minimum academic level: Postdoc -0.080 0.089 -0.150 -0.127 -0.082 0.033 0.005
(0.214) (0.851) (0.435) (0.134) (0.183) (0.123) (0.195)

[-0.506; 0.346] [-1.604; 1.783] [-1.015; 0.715] [-0.394; 0.141] [-0.447; 0.284] [-0.213; 0.279] [-0.383; 0.394]
Minimum academic level: Professor -0.094 0.697 0.535 0.001 -0.081 0.006 -0.076

(0.150) (0.431) (0.414) (0.051) (0.187) (0.141) (0.223)
[-0.393; 0.204] [-0.161; 1.555] [-0.290; 1.359] [-0.101; 0.102] [-0.452; 0.291] [-0.274; 0.287] [-0.520; 0.369]

Attendance: In-Person -0.124 0.327 0.205 -0.012 -0.072 0.227* 0.196
(0.120) (0.369) (0.245) (0.085) (0.121) (0.120) (0.127)

[-0.362; 0.115] [-0.409; 1.062] [-0.282; 0.693] [-0.181; 0.156] [-0.312; 0.168] [-0.013; 0.467] [-0.057; 0.450]
Mean of dep. var 0.738 0.951 0.728 0.942 0.786 0.816 0.680
p-val (AI-Assisted vs. AI-Led) 0.000 0.022 0.018 0.023 0.036 0.004 0.019
Observations 103 103 103 103 103 103 103
Note: Standard errors in parentheses, confidence intervals in brackets; human-only branch omitted.
∗ ! < 0.1, ∗∗ ! < 0.05, ∗∗∗ ! < 0.01
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Table S6: Results from OLS regressions predicting reproduction outcomes for Stata teams
(1) (2) (3) (4) (5) (6) (7)

Reproduction
Minor
errors

Major
errors

One good
robustness

Two good
robustness

Ran one
robustness

Ran two
robustness

AI-Assisted 0.002 -0.886** -0.990*** 0.009 0.159 0.048 0.260*

(0.075) (0.375) (0.350) (0.047) (0.111) (0.068) (0.135)

[-0.153; 0.157] [-1.655; -0.116] [-1.708; -0.272] [-0.087; 0.105] [-0.069; 0.387] [-0.092; 0.188] [-0.016; 0.537]

AI-Led -0.577*** -1.227** -1.679*** -0.115 -0.233 -0.406** -0.231

(0.155) (0.503) (0.392) (0.102) (0.182) (0.154) (0.227)

[-0.894; -0.260] [-2.259; -0.195] [-2.483; -0.876] [-0.324; 0.094] [-0.607; 0.140] [-0.723; -0.090] [-0.696; 0.235]

Mean of dep. var 0.844 0.889 0.844 0.956 0.844 0.867 0.778

p-val (AI-Assisted vs. AI-Led) 0.001 0.289 0.052 0.195 0.024 0.006 0.014

observations 45 45 45 45 45 45 45

Note: Standard errors in parentheses, Confidence intervals in brackets; human-only branch omitted; sample restricted to papers for which the replication package is mainly in Stata
Controls include number of teammates; game, skill, and attendance fixed effects.
∗ ! < 0.1, ∗∗ ! < 0.05, ∗∗∗ ! < 0.01

Table S7: Results from OLS regressions predicting reproduction outcomes for R teams
(1) (2) (3) (4) (5) (6) (7)

Reproduction
Minor
errors

Major
errors

One good
robustness

Two good
robustness

Ran one
robustness

Ran two
robustness

AI-Assisted -0.002 -0.185 0.049 -0.040 -0.231 -0.101 -0.285

(0.144) (0.305) (0.321) (0.059) (0.189) (0.125) (0.203)

[-0.294; 0.289] [-0.802; 0.432] [-0.600; 0.698] [-0.159; 0.079] [-0.612; 0.150] [-0.353; 0.151] [-0.694; 0.125]

AI-Led -0.612*** -0.937*** -0.661*** -0.165* -0.266* -0.311** -0.362**

(0.124) (0.278) (0.241) (0.087) (0.152) (0.136) (0.177)

[-0.863; -0.361] [-1.498; -0.375] [-1.148; -0.175] [-0.340; 0.010] [-0.573; 0.040] [-0.587; -0.036] [-0.720; -0.003]

Mean of dep. var 0.655 1.000 0.638 0.931 0.741 0.776 0.603

p-val (AI-Assisted vs. AI-Led) 0.002 0.016 0.029 0.163 0.837 0.195 0.681

observations 58 58 58 58 58 58 58

Note: Standard errors in parentheses, Confidence intervals in brackets; human-only branch omitted; sample restricted to papers for which the replication package is mainly in R
Controls include number of teammates; game, skill, and attendance fixed effects.
∗ ! < 0.1, ∗∗ ! < 0.05, ∗∗∗ ! < 0.01
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Table S8: Comparison of AI-Assisted and AI-Led Metrics by Experience Level

Variable

AI-Assisted
high experience

(n=12)

AI-Assisted
low/medium experience

(n=23)

AI-Led
high experience

(n=6)

AI-Led
low/medium experience

(n=29)

Reproduction
0.833
(0.389)

0.957
(0.209)

0.167
(0.408)

0.414
(0.501)

Minutes to reproduction
104.8
(89.5)

86.7
(89.2)

116.0
(-)

180.0
(66.0)

Number of minor errors
1.250
(1.288)

0.783
(1.536)

0.500
(0.837)

0.517
(0.949)

Minutes to first minor error
87.6
(44.5)

61.9
(47.5)

245.0
(106.9)

114.5
(89.0)

Number of major errors
0.833
(0.937)

0.522
(0.947)

0.500
(0.837)

0.172
(0.384)

Minutes to first major error
105.7
(36.4)

146.1
(59.5)

362.0
(-)

163.3
(68.3)

At least one good robustness check
1.000
(0.000)

1.000
(0.000)

0.667
(0.516)

0.862
(0.351)

At least two good robustness checks
0.833
(0.389)

0.870
(0.344)

0.500
(0.548)

0.655
(0.484)

Ran at least one good robustness check
0.917
(0.289)

0.957
(0.209)

0.000
(0.000)

0.690
(0.471)

Ran At least two good robustness checks
0.750
(0.452)

0.826
(0.388)

0.000
(0.000)

0.552
(0.506)

Note: Standard errors in parentheses; experience is categorized based on the level of experience with ChatGPT of the most advanced
team member (prior to AI training). High Experience corresponds to Advanced, and Low/Intermediate Experience corresponds to Never,
Beginner, and Intermediate levels.

Table S9: Comparison of Key Metrics by Prompt Levels within AI-Assisted Branch

Variable
Above median

(n=17)
Below/equal to median

(n=18)

Reproduction
1.000
(0.000)

0.833
(0.383)

Minutes to reproduction
118.5
(111.8)

62.7
(34.5)

Number of minor errors
0.824
(1.131)

1.056
(1.731)

Minutes to first minor error
86.6
(47.2)

62.8
(45.6)

Number of major errors
0.529
(0.943)

0.722
(0.958)

Minutes to first major error
153.7
(64.1)

110.1
(37.8)

At least one good robustness check
1.000
(0.000)

1.000
(0.000)

At least two good robustness checks
0.824
(0.393)

0.889
(0.323)

Ran at least one good robustness check
0.941
(0.243)

0.944
(0.236)

Ran at least two good robustness checks
0.765
(0.437)

0.833
(0.383)

Note: Standard errors in parentheses; Groups are defined based on the median number of prompts (19)
in the AI-Assisted sample.
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