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Abstract 

Distributed solar rooftop photovoltaic generation continues to be the most viable and 
sustainable electricity generation for reducing greenhouse gas emissions in the power sector. 
As the potential to leverage distributed generation, energy-efficient distributed demands such 
as battery electric vehicles and heat pumps are gaining traction for their optimal use of the 
energy generated by distributed generators. With the integration of decentralized technologies 
rising substantially, the design and operation of distribution grids will be impacted in the future. 
Consequently, the future role of distributed demand and generation in distribution grids 
remains ambiguous. Hence, evaluating the readiness of current distribution networks for the 
imminent energy transition requires examining the impact of future distributed demand and 
generation on distribution grids. Because of the lack of access to real-world networks, 
evaluating the integration of demand and generation units into distribution grids is a pertinent 
obstacle to overcome. Thus, the purpose of this work is to develop geo-referenced synthetic 
networks to investigate the impacts of future distributed demand and generation on distribution 
grids. Moreover, this study also provides potential solutions for the identified issues, within the 
context of reducing the German energy system’s carbon dioxide (CO2) emissions by 95% by 
2050. 

This study examines how distributed demand, and generation might affect distribution system 
components and network vulnerability in German low-voltage distribution grids for the year 
2050. This process led to the development of a classification model for classifying building 
types. The classification model, when applied to buildings in Germany which are retrieved from 
OpenStreetMap, revealed that 19,747,802 buildings out of 29,497,992 were classified as 
residential buildings with a percent error of 3.4%. In addition, 500,000 geo-referenced synthetic 
electrical low-voltage networks for Germany were synthesized using the classified residential 
buildings. Further, various operational limiting factor violations were recognized through the 
deployment of future distributed demand and generation with a base case scenario and 
scenario variations. 

In terms of thermal overloading of the transformers, 75% of the networks operate within their 
design limits, while 25% of the low-voltage networks require additional attention. More than 
75% of the networks experience reverse power flows, while 25% of 500,000 networks were 
identified as critical. Additionally, 11% of the power lines of 500,000 low-voltage networks are 
thermally overloaded. Undervoltage violations were identified in 34% of the networks’ nodes. 
Nonetheless, these results are associated with the base case scenario. According to the 
sensitivity analysis, it is concluded that transformer overloading is a result of high heat pump 
penetration, particularly during the winter. Reverse power flows are primarily caused by high 
rooftop PV penetration, regardless of distributed demand, most notably in the spring and 
summer. These findings indicate that some of the 500,000 low-voltage networks will record 
certain violations with respect to future distributed demand and generation. However, a 
potential solution involves employing grid reinforcement measures for transformers and power 
lines, such as installing voltage regulating transformers in the networks with a high rate of 
undervoltage violations and reinforcing the affected 11% of power lines with new lines. 
Nevertheless, demand-side management options such as controlled battery electric vehicle 
charging, controlled heat pump utilization, and battery storage can help mitigate the need for 
these grid reinforcement measures. 
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Kurzfassung 

Die dezentrale Stromerzeugung durch Dachflächenphotovoltaik ist eine der praktikabelsten 
und nachhaltigsten Arten der Stromerzeugung zur Verringerung der Treibhausgasemissionen 
im Energiesektor. Um die Nutzung von dezentralen Erzeugungspotenzialen zu ermöglichen, 
gewinnen energieeffiziente, dezentrale Nachfragen zum Beispiel durch batteriebetriebene 
Elektrofahrzeuge oder Wärmepumpen zunehmend an Bedeutung, da sie die dezentral 
erzeugte Energie optimal nutzen können. Die zunehmende Integration dezentraler 
Technologien wird sich in Zukunft auch auf die Auslegung und den Betrieb von Verteilnetzen 
auswirken. Um zu beurteilen, ob die derzeitigen Verteilnetze für die bevorstehende 
Energiewende gerüstet sind, müssen die Auswirkungen der künftigen verteilten Nachfrage und 
Erzeugung auf die Verteilnetze untersucht werden. Die Bewertung der Integration von 
dezentralen Nachfragern und Erzeugern wird allerdings durch den fehlenden Zugang zu realen 
Netzdaten erschwert. Gegenstand dieser Arbeit ist deshalb die Entwicklung georeferenzierter 
synthetischer Netze zur Untersuchung des Einflusses dezentraler Erzeugung und Nachfrage 
auf Verteilnetze. Darüber hinaus bietet diese Arbeit auch Lösungsansätze für die identifizierten 
Probleme im Zusammenhang mit der Reduzierung der Treibhausgasemissionen im deutschen 
Energiesystem um 95 % bis 2050. 

Diese Arbeit untersucht, wie sich die dezentrale Nachfrage und Erzeugung auf die 
Komponenten des Verteilsystems und die Netzanfälligkeit in deutschen 
Niederspannungsnetzen im Jahr 2050 auswirken könnten. Dafür wurde ein 
Klassifizierungsmodells für die Einteilung von Gebäudetypen entwickelt. Die Anwendung 
dieses Modells auf die Gebäude in Deutschland basierend auf OpenStreetMap-Daten ergab, 
dass 19.747.802 von 29.497.992 Gebäuden als Wohngebäude klassifiziert wurden. Der 
prozentuale Fehler lag bei 3,4 %. Darüber hinaus wurden 500.000 georeferenzierte, 
elektrische Niederspannungsnetze für Deutschland anhand der klassifizierten Wohngebäude 
synthetisiert. Basierend auf einem Basisszenario und mehreren Sensitivitätsanalysen wurden 
verschiedene betriebliche Grenzwertverletzungen durch den zukünftigen Einsatz verteilter 
Nachfrage und Erzeugung festgestellt. 

In Bezug auf die thermische Überlastung von Transformatoren zeigt es sich, dass 75% der 
Netze innerhalb ihrer Auslegungsgrenzen arbeiten, während 25% der Niederspannungsnetze 
zusätzliche Aufmerksamkeit erfordern. Bei mehr als 75% aller Netze kommt es zu einer 
Umkehr des Lastflusses und ein Viertel der 500.000 Netze wird als kritisch eingestuft. Darüber 
hinaus werden 11% der Leitungen thermisch überlastet. Bei 34 % der Netzknoten werden 
Störungen aufgrund von Unterspannung festgestellt. Die Sensitivitätsanalysen zeigen, dass 
die Überlastung der Transformatoren eine Folge des hohen Wärmepumpenanteils ist, der sich 
insbesondere in den Wintermonaten bemerkbar macht. Die Lastflussumkehr ergibt sich primär 
durch einen hohen PV-Anteil und ist unabhängig von der verteilten Nachfrage im Frühling und 
im Sommer zu beobachten. Die Ergebnisse zeigen, dass im Kontext der zukünftigen 
Nachfrage- und Erzeugungssituation in einigen der 500.000 Niederspannungsnetze 
technische Störungen zu erwarten sind. Potenzielle Lösungsansätze beinhalten 
Netzverstärkungsmaßnahmen für Transformatoren und Leitungen, beispielsweise die 
Installation von spannungsregulierenden Transformatoren und die Verstärkung der 
betroffenen 11% der Leitungen. Andererseits können Ansätze des Demand-Side-
Managements wie das kontrollierte Laden von Elektrofahrzeugen, die kontrollierte Nutzung 
von Wärmepumpen und der Einsatz von Batteriespeichern dabei helfen, den Bedarf an 
Netzverstärkungsmaßnahmen zu verringern. 
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1 Introduction 

Increased greenhouse gas emissions (GHG) from the electricity system, transportation, and 

buildings are a few primary challenges that will further deteriorate global warming, climate 

change, and general well-being in the coming decades. The three major sectors mentioned 

above account for approximately 50% of the global GHG emissions. Therefore, to ensure that 

future generations are not adversely affected by climate change, 184 nations jointly agreed to 

cut down 89% of global emissions, as outlined in the Paris Agreement [2]. To accomplish the 

objectives drawn in the Paris Agreement, each nation established its own aims and objectives. 

In this context, the European Union (EU) drafted its objective of reducing GHG emissions by 

80% to 95% relative to 1990 levels by 2050 [3]. 

To facilitate the reduction of GHG emissions, particularly in the electricity system, various 

energy transition policies that emphasize the integration of energy-efficient and climate-neutral 

technologies into power systems have been adopted. Consequently, electrical power networks 

are attracting more climate-friendly and carbon-neutral energy generation and demand 

technologies. Electricity generation by renewable sources entails a focus on solar photovoltaic 

(PV), wind, and biomass to generate clean energy, progressively decentralizing the power grid. 

To leverage clean electricity generation, which has been increasingly gaining traction, battery 

electric vehicles (BEVs) are being integrated into the power system to maximize clean energy 

usage while minimizing greenhouse gas emissions that are associated with combustion engine 

vehicles in the transportation sector. Similar to the battery electric vehicles in the transportation 

sector, heat pumps (HPs) seem to be a favorable solution to utilize clean electricity and 

minimize greenhouse gas emissions from typical heating systems in the building sector. 

However, these distributed demand and generation (DDG) technologies are specifically 

introduced into the distribution networks, which enables distribution networks to play a 

significant role in modern power systems. Therefore, there is a need to address the challenges 

associated with DDG in the distribution networks. The next sections will elaborate upon the 

underlying motivation for this thesis, along with the main research question and contributions. 

1.1 Motivation 

The electrical power grid has been evolving and improving over the decades while supplying 

electricity to end-users from spatially distributed generation stations via underground cables 

and overhead lines by establishing networks. When constructing these networks, grid 

operators consider the circumstances in which operational fuels, such as coal, oil, and natural 

gas, are abundant and dominating for generation stations. Thus, Figure 1-1 depicts the 

standard structured electrical power grid stacking from generation stations to end-users with 

varying voltage levels such as extra-high voltage (EHV) of 380-220 kV, high-voltage (HV) of 

110 kV, medium-voltage (MV) of 10/15/30 kV, and low-voltage (LV) of 0.4 kV. However, it is 

important to note that voltage levels differ by country. For instance, in Germany, extra high 

voltage refers to the transmission grid, whereas high voltage, medium voltage, and low voltage 

belong to the distribution grid. However, some other countries regard high and extra high 



 

voltage to be transmission networks, which will be explained in more detail in the following 

sections. It is necessary to note that multiple networks operate at varying voltage levels within 

a power grid and each such network has its own unique set of properties. Consequently, limited 

networks were constructed in consideration of the current circumstances as well as future 

perspectives. 

 

Figure 1-1 Standard power grid structure from generation to demand  

In addition to the network structure, integrating Renewable Energy Sources (RES), such as 

solar photovoltaic, wind, biomass, and hydro into existing grids becomes necessary due to the 

political decisions to reduce greenhouse gas emissions, the depletion of fossil fuel resources, 

and technological advancements. Additionally, battery electric vehicles and heat pumps are 

rapidly gaining traction due to their ability to reduce emissions in the transportation and building 

sector, respectively. The rapid integration of renewable energy sources, battery electric 

vehicles, and heat pumps introduce significant changes in demand and generation, resulting 

in positive and negative peaks in power. Therefore, the introduction of the new distributed 

generation and demand impairs the existing network’s power quality and operating conditions 

since these networks are not designed for large-scale distributed demand and generation 

deployment. Moreover, the increased integration of distributed demand and generation also 

increases the network's size leading to additional technical obstacles. Thus, models and 

methods that introduce complex problem-solving strategies are necessary to analyze the 

problems.  

However, the ability to explore the impacts of distributed demand and generation in distribution 

networks is hampered by a scarcity of data on real-world networks for testing and validating 

established models. Therefore, limited available real-world network topologies were used to 

test and validate the various algorithms and models that were developed. Currently, security 

concerns prevent public research from accessing real-world networks. Nevertheless, a 

possible approach is to employ tests and typical network topologies to navigate the situation. 

However, the small network sizes of these test networks do not accurately represent the 

behavior of large networks covering a national supply system. As a result, it becomes 

necessary to integrate synthetic distribution networks that can reproduce the entire distribution 

network. Moreover, synthetic network topologies should be generated with geo-referenced 

Generation 380-220 kV Transmission 220/110 kV 10/0.4 kV Distribution Consumption 

Future Distributed Demand and Generation  

Traditional Power Grid Structure 
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characteristics to replicate real-world networks precisely, which is an important solution. 

However, geo-referenced synthetic distribution networks are not real but can emulate the 

attributes of real-world networks. Hence, this work is motivated by the impact analysis of 

distributed demand and generation in the distribution networks using geo-referenced synthetic 

distribution networks. The research questions and objectives are listed in the following section: 

1.2 Research Question and Objectives 

This research focuses on the development of synthetic distribution networks utilizing geo-

referenced open data to investigate future distributed demand and generation. This work 

contributes to solving two major challenges faced by the distribution networks: a lack of real 

network topologies for planning and research, and the estimation of future distribution demand 

and generation in distribution networks. More specifically, the research problems that are 

addressed in this work are as follows: 

Are the distribution networks adequate for the anticipated increase in distributed 

demand and generation in the future? 

In the future, which technical violations in distribution grids will emerge through large-

scale integration of distributed demand and generation, and how could they be 

addressed? 

How can the impacts of distributed demand and generation on distribution networks be 

studied despite insufficient public information about real-world networks? 

To address these overarching questions, the existing models that can generate synthetic 

distribution network topologies are first examined. However, the models for establishing 

synthetic topologies are limited and lack certain features, with only a few models considering 

geographical locations, while others are limited to a specific place or require external data from 

system operators. Therefore, this thesis proposes new methods for estimating geo-referenced 

synthetic distribution network topologies based entirely on publicly available data. Apart from 

developing geo-referenced synthetic distribution network topologies, addressing problems 

associated with the integration of future distributed demand and generation is discussed by 

implementing a distribution grid model.  

To summarize, the study’s primary objectives to solve the above-mentioned overarching 

research problems are as follows: 

 A complete examination of distribution network parameters, including graphical and 

electrical characteristics, is essential. This analysis will help understand the topological 

and electrical characteristics of complex networks and determine whether a generic 

algorithm may help estimate geo-referenced synthetic distribution networks for 

European countries. 

 An analysis of the open data such as OpenStreetMap (OSM), census, and CORINE 

land cover data and the development of a model to classify building types is necessary. 



 

The classification model should classify buildings into residential buildings and non-

residential buildings. Moreover, in order to associate appropriate load profiles with the 

buildings, the residential buildings must be classified as single-family houses, multi-

family houses, and apartments. 

 The development of novel algorithms for estimating geo-referenced synthetic network 

topologies based on publicly available data. In particular, the methods should be 

accommodated for constructing low- and medium-voltage network topologies. 

Furthermore, the estimated geo-referenced synthetic network topologies should be 

evaluated statistically using complex network analysis. 

 The model for predicting future distributed demand and generation in the distribution 

networks should be developed, incorporating estimated geo-referenced synthetic 

network topologies and a comprehensive examination of the challenges associated 

with future distributed demand and generation. Additionally, solutions to issues that 

may underlie future DDG integration into the distribution networks should be presented. 

1.3 Structure 

Following the discussion of the objectives, this work is organized to address the research 

question and to achieve the objectives in the manner depicted in Figure 1-2. 

 

Figure 1-2 Overview of thesis  
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This thesis is divided into 9 chapters including the introduction. Following the introduction, 

Chapter 2 of this thesis will introduces the challenges and opportunities surrounding the 

distribution network. The chapter begins with a discussion on how distributed demand and 

generation will play a decisive role in the distribution networks. Following that, the primary 

operational constraint affecting the power system's supply will be examined. In addition to 

operational limiting factors, the methodologies and tools necessary for computing and 

analyzing the operational limiting factors will be addressed in the context of future demand and 

generation integration. Subsequently, available network topologies and their limitations will be 

presented along with the shift towards geo-referenced synthetic network topologies. Further, 

the synthetic power network models are addressed in detail, emphasizing transmission and 

distribution grids. Finally, the literature necessary for estimating geo-referenced synthetic 

network topologies will be introduced elaborately.  

In Chapter 3, the characteristics of the distribution networks are discussed, while emphasizing 

their graphical and electrical characteristics. In this context, various graphical aspects will be 

explored in detail, including graph structures, node-specific features such as network size, 

node degree, betweenness centrality, and clustering coefficient, as well as edge-specific 

characteristics, including the number of edges, total length, average shortest path, and so 

forth. Besides the graphical characteristics, electrical characteristics essential for estimating 

geo-referenced synthetic distribution networks will be covered, including power demand, 

power supply, line utilization, and transformer utilization. Furthermore, several network and 

system reliability indicators for European countries derived from distribution system operator 

observatory data, such as total network length, the share of low-voltage and medium-voltage 

network length, and the total number of low-voltage transformers are analyzed. Finally, this 

assignment is then utilized to accurately determine whether developing a generic algorithm 

can estimate geo-referenced synthetic distribution networks across Europe. 

Chapter 4 discusses the open data available for predicting geo-referenced synthetic network 

topologies in detail. Its quality will be explored using the best-fitting data set, OpenStreetMap 

(OSM). In this context, the building tags are examined as they are crucial for estimating geo-

referenced synthetic distribution networks. Through this analysis, building types are 

categorized through classification tasks by using various machine learning techniques before 

settling on a suitable approach for predicting building types. Additionally, missing value 

imputation and class imbalance will be included while modeling due to the characteristics of 

the OSM data. The model predictions will be validated using publicly available data. During 

model development, the classification of building tags by machine learning algorithms is 

published as: 

Bandam, Abhilash, et al. "Classification of building types in Germany: A data-driven modeling 

approach." Data 7.4 (2022): 45.  

Further, synthetic load and generation profiles for households, battery electric vehicles, heat 

pumps, and rooftop solar PVs will be provided along with the open data.  



 

Chapter 5 describes a novel technique for estimating geo-referenced synthetic distribution 

networks. As a starting point, required inputs for predicting network topologies are examined. 

Following that, detailed algorithms for graphical and electrical low-voltage networks are 

developed and discussed in detail. Apart from the low-voltage network algorithms, algorithms 

developed for geo-referenced synthetic low-voltage networks are used to describe additional 

algorithms employed to develop geo-referenced synthetic medium-voltage networks. 

Accordingly, Figure 1-3 illustrates the modeling approach used to construct the entire 

distribution network. The process begins with the collection of OSM data for buildings and road 

infrastructure. The established algorithms are then used to generate geo-referenced synthetic 

low-voltage networks. Next, medium-voltage networks are constructed using low-voltage 

networks and OSM data associated with the locations of medium-voltage transformers and 

non-residential buildings excluding garages and attachments. High-voltage and extra-high 

voltage networks are provided with medium-voltage transformer placements and OSM data, 

high-voltage transformer locations, and high- and extra-high-voltage power lines. During the 

process of model development, a data-driven methodological approach for estimating geo-

referenced synthetic low-voltage networks is included in the publication: 

Abhilash, Bandam, et al. "Geo-referenced synthetic low-voltage distribution networks: A data-driven 

approach." 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). IEEE, 2021. 

Finally, to validate the predicted networks, a complex network analysis approach is employed. 

This helps compare them to some of the indicators discussed in Chapter 3. 

 

Figure 1-3 Schema for estimating geo-referenced synthetic distribution network topologies  

Apartment/House 

Low-voltage Transformer 

Low-voltage Network 

Medium-voltage Network 

Medium-voltage Transformer 

High-voltage Network 
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Chapter 6 demonstrates how future distributed demand and generation might be 

accommodated through estimated geo-referenced synthetic network topologies. This chapter 

also introduces several scenario-based simulations in line with the published scenario for 

Germany with 95% carbon dioxide (CO2) emission reduction. Further, a sensitivity analysis is 

conducted through varying penetration levels of these distributed demands and generation. 

Finally, Chapter 7 discusses the evaluation of future distributed demand and generation within 

low-voltage distribution networks using geo-referenced synthetic low-voltage networks. In this 

chapter, various operation limiting factors, and their violations will be examined in detail. 

Further, measures for reducing future demand and generation related violations are also 

analyzed. 

Chapter 8 summarizes the conclusion and contributions, with a particular emphasis on 

achieving the thesis objectives. 

Finally, Chapter 9 will include a summary of each chapter, with a focus on the accomplishment 

of the objectives so that the reader can quickly acquire the gist of each chapter. 

Each chapter, however, is structured in a manner wherein a set of questions are posed at the 

beginning and the answers or solutions are provided in the summary. Additionally, each 

chapter will conclude with a set of key messages.  
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2 Challenges and Opportunities in Distribution Networks 

What are the challenges involved in distribution networks? 

Why is it necessary to estimate geo-referenced synthetic distribution network topologies? 

 

Introducing modern distributed power generation and demand technologies into the distribution 

networks will lead to significant challenges, including technical constraint violations, which 

must be addressed. Therefore, fundamental information concerning operational limiting 

factors, assessment methods, tools, and available electrical network topologies is considered. 

In this chapter, information is disbursed sequentially, beginning with the challenges that may 

plague distribution networks due to distributed technologies, and gradually progressing to 

study the opportunities using geo-referenced synthetic networks. Distributed demand and 

generation in the distribution networks are first introduced before providing a comprehensive 

overview of the various operational limiting factors in the distribution networks and their 

associated performance indicators. Further, various combinations of distributed demand and 

generation in the distribution grids at both low- and medium-voltage levels are presented, as 

explored in the literature, particularly emphasizing limiting factors, techniques to study the 

limiting factors, and tools utilized for the analysis. A summary of the network topologies 

considered in the literature is also provided in addition to the tools and techniques. Considering 

the limitations of the existing network topologies, this chapter subsequently covers the existing 

models for generating synthetic electrical network topologies. Finally, after identifying the 

limitations of the existing models, the chapter provides the literature, models, algorithms, and 

data sources required for estimating geo-referenced synthetic distribution network topologies. 

In this way, the information and knowledge required for answering the main research questions 

will be established.  

2.1 Distributed Demand and Generation in Distribution Networks 

Energy-related challenges associated with greenhouse gas emissions are being conquered 

through the adoption of new ecologically friendly solutions, including the extensive use of 

renewable energy sources, such as solar photovoltaics, wind, and biomass, to generate 

electricity. Besides renewable energy sources, end-consumers should adopt heat pumps and 

Topics covered: 

 Operational limiting factors associated with the integration of distributed demand 

and generation in the distribution networks 

 Methods and tools required to assess the operational limiting factors 

 Limitations of real, test, IEEE, and typical network topologies 

 Limitations of available synthetic network models 

 Literature for estimating synthetic network topologies 



 

battery electric vehicles to make use of the electricity provided by renewable energy. By 

adopting such measures, emissions from electrical, buildings, and transportation sectors will 

decrease significantly. Thus, distributed demand and generation units are being integrated at 

a high rate in the distribution networks, which include low-voltage, medium-voltage, and high-

voltage networks. However, the introduction of distributed demand and generation units 

presents new obstacles to system operation. These challenges only emerge if the incoming 

capacities surpass the capacity of the current network infrastructure. Therefore, it is equally 

vital to analyze operational limiting factors and gain a deeper understanding of the issues in 

order to establish a realistic plan to avoid technical violations in the future. 

The most typical operational limiting factors in the distribution networks, such as voltage 

limitations, grid component thermal loading, and power flow constraints will also be discussed. 

Once the limiting factors have been thoroughly analyzed, the measures that can be undertaken 

to assess them, such as deterministic, probabilistic, and optimization techniques, will be 

reviewed. However, the emphasis of this study is primarily on existing approaches in the 

literature in order to determine the effects of distributed demand and generation in the 

distribution networks. After the techniques are established, the benefits and drawbacks of each 

technique will be discussed in detail, following which a suitable method can be selected to fulfill 

the purpose of this work. The tools for modeling electrical networks and for computing limiting 

factors are also covered in this chapter. In addition to the methods of analysis and knowledge 

about technical factors, network topologies play an essential role in accommodating the 

demand and generation in the distribution networks. Depending on the network properties, 

different network topologies may function independently, and the effects of demand and 

generation may differ from one network topology to another. Thus, network topologies are 

extremely important to the overall process, right from integrating distributed technologies to 

understanding the operational limitations of the distribution networks. Thus, the discussion 

delves into the electrical network topologies that were considered when assessing the limiting 

factors, including test, typical, Institute of Electrical and Electronics Engineers (IEEE), and real-

world network topologies. Nevertheless, to present the distributed demand and generation in 

the distribution networks, this section is organized according to the diagram depicted in Figure 

2-1. 
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Figure 2-1 Overview of distributed demand and generation in distribution networks 

2.1.1 Operational Limiting Factors  

Operational limiting factors describe the distribution network properties that are influenced by 

the integration of distributed demand and generation  [4]. In fact, the operational uncertainty of 

distributed demand and generation affects the standard system operation. The limiting factors 

include voltage stability, voltage deviation, grid component loadings, and reverse power flows, 

all of which are the key limiting factors that distribution system operators (DSOs) consider 

before introducing distributed demand and generation units into the distribution networks. 

Within this context, many researchers have been examining these limiting factors to address 

network vulnerabilities and hosting capacity assessments. Therefore, it is worthwhile to 

present these factors elaborately prior to analyzing the future impacts of distributed demand 

and generation on distribution networks. As already mentioned, Table 2-1 summarizes the 

significant limiting variables that have been identified and investigated by the researchers in 

the literature.  

  

Distributed 
Demand and 
Generation  

Assessment 
Methods 

Tools for Modeling 
and Analysis 

Operational Limiting 
Factors  

Network 
Topologies 



 

Table 2-1 Summary of operational limiting factors accompanied by performance indicators 

However, the key operational limiting factors studied in this thesis are classified as voltage 

limiting factors, grid component loads, and power flow constraints. Voltage stability and voltage 

deviations are two categories under voltage limiting factors. Additionally, the transformer and 

line loading are the major grid component loadings, and power flow constraints detail reverse 

power flow and power losses. 

  

Operational 

limiting factors 

Description Indicators 

Voltage stability Voltage stability refers to the ability of an 

electric power network to maintain an 

acceptable voltage on each bus in the 

network under all circumstances [5]. 

Voltage stability index 

Voltage deviation Voltage deviation is defined as the 

deviation of a bus’s voltage magnitude from 

its nominal value [6]. 

Voltage deviation index 

Voltage violation limits 

Voltage 

unbalance 

Voltage unbalance is the phenomenon that 

occurs when there is a difference in the 

magnitudes of phase and line [7]. 

Voltage unbalance factor 

Voltage violation limits 

Voltage dips Voltage dip is the phenomenon that occurs 

due to a sudden reduction of nominal 

voltage between the ranges of 10% to 90% 

followed by a voltage recovery after a tiny 

duration [8]. 

Frequency of voltage 

dips 

Cost of voltage dips 

Harmonics A voltage or current harmonics is a multiple 

of the fundamental frequency of a system 

produced by non-linear loads [9]. 

Total harmonic distortion 

index  

Grid component 

thermal loadings 

Grid components, when operated beyond 

their limits, cause thermal overloading [10]. 

Percentage loading 

Reverse power 

flow 

Reverse power flow (RPF) occurs when 

power flows in the direction opposite to its 

normal course. In fact, power flows from a 

lower voltage level to a higher voltage level 

[11]. 

Reverse power flow 

factor 

Power losses Losses in electric power networks are 

technical losses due to heat and corona 

losses [12]. 

Power losses 
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Figure 2-2 depicts the classification of relevant operational limiting factors to address the 

research question of this thesis. 

 

Figure 2-2 Classification of operational limiting factors in the distribution networks 

Voltage limiting factors, such as voltage stability and voltage deviations, occur more frequently 

in distribution networks [13]. As stated in Chapter 1, the power system modernization leads to 

the disruption of the traditional transmission of active and reactive power from higher to lower 

voltage levels by distributed generation at lower voltage levels, converting the network from 

passive to active. However, it is the network's generation and load that governs changes in 

power flows and voltages. In principle, in any network, the voltage at the transformer node 

should be greater than the voltage at the consumer node to transmit power from the 

transformer to the consumer. In addition to the operating principle, when the reactance of the 

distribution overhead power lines/underground cables toward the resistance ratio is lower than 

the transmission lines, it leads to a voltage drop from the transformer to the customer. 

Therefore, the voltage drop at the consumer node rises with the increase in the load or the 

distance between the nodes (transformer to consumer node).  

Adding distributed generators to the network will also influence voltage at the nodes. According 

to the working principle, the voltage at the generator node must be greater than the transformer 

node in order to facilitate the transfer of the power generated by the distributed generator [14]. 

Consequently, the voltage at the generator nodes is higher than the transformer node, resulting 

in a voltage rise. Due to the radial structure of distribution networks, particularly low voltage 

and medium voltage, voltage drops and rise change along the feeder. The rise and drop of the 

voltage along the feeder are depicted in Figure 2-3, where 𝑉௡, 𝑉௠௔௫, and 𝑉௠௜௡ denote the 

nominal voltage, maximum permitted voltage, and minimum allowable voltage, respectively. 

As a result of these ambiguities in the voltage magnitude, violations concerning voltage stability 

and voltage deviation emerge.  

Operational Limiting Factors  

Voltage Limiting Factors Power Flow Constraints Grid Component Loading 

Voltage Stability 

Voltage Deviations 

• Overvoltage 
• Undervoltage 

Transformer Loading 

Line Loading 

Reverse Power Flows 

Power Losses 



 

 

 

Figure 2-3 Voltage magnitude along the feeder in case of generation and load (left), and only 

load (right). Adapted from [15] 

When it comes to the operation of the electric power system, it is necessary to maintain voltage 

stability at each node of the network. Voltage stability refers to the power network's capacity 

to maintain an acceptable voltage on each bus regardless of the circumstances [5, 16]. In fact, 

for any distribution network, the voltage stability depends on the time of operation. There are 

two types of instabilities: transient and steady state. Voltage instability may result from 

undesired voltage levels in any of these states. The most noticeable circumstance is a high 

network load combined with a lack of reactive power assistance in the steady state. In this 

circumstance, the voltage drops abruptly, resulting in voltage collapse, which subsequently 

causes a sudden grid collapse. An outage in the electrical network can lead to network 

malfunctions, resulting in failures in devices, overheating, and significant power losses. 

Additionally, it may cause blackouts in a power network. When studying network stability, 

Modarresi et al. [16] categorized different types of voltage stability indices, including line 

voltage stability indices, bus voltage stability indices, and overall voltage stability indices. 

However, the voltage stability index (VSI) [13] is one of the indicators that is typically used to 

identify a node that is on the verge of a voltage collapse. 

Another operational limiting factor under voltage limiting factors is voltage deviation, which is 

the deviation of a node/bus voltage magnitude in the distribution network from the nominal 

voltage [6]. The voltage deviation is mainly influenced by loads, generators, and distance from 

the primary or secondary transformers [13]. As mentioned earlier, the distribution networks are 

nearly radial in structure, which is uniform across nations, and the drop or rise of the voltage 

magnitude in a feeder, as shown in Figure 2-3, depends on the load and generation in the 

network. As a result, it is challenging to ensure consistent voltage magnitude at the nodes. To 

estimate and address voltage deviations, the voltage deviation index will be utilized. The 

voltage deviation index provides the deviation in the voltage magnitude at each node. Equation 

2-1 is used to calculate the voltage deviation index for each node in the system. To ensure 

that the system remains under control, the voltage deviation index at each node must be kept 

to a minimum. If the voltage deviation index is higher than anticipated, the node voltage should 

be treated with techniques that enable it to maintain normal operating condition. 

𝑉௠௔௫ 

𝑉௠௜௡ V
o

lta
g

e 

V
o

lta
g

e 

𝑉௡ 

𝑉௡ 



 

15 
 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑉௡௢௠௜௡௔௟ −  𝑉௠௘௔௦௨௥௘ௗ

𝑉௡௢௠௜௡௔௟
 

2-1 

As discussed above, a rise and drop in the voltage depend on the network's load and 

generation. In this context, significantly stronger integration of decentralized power generation 

through solar PV, wind, and biomass will increase the voltage at the nodes [17]. However, the 

increase in voltage corresponds to voltage rise should fall within the permitted limits. 

Overvoltage violations occur if the voltage exceeds the upper limit, while the bus voltage will 

drop along the feeder if the load requirements are higher than the rated load capacity in the 

network. In fact, the higher integration of battery electric vehicles [18-20] and heat pumps is 

the apparent cause of voltage drop. Additionally, this also happens in the presence of 

distributed generators, in instances where the demand for battery electric vehicles or heat 

pumps is high, and generators such as PV generate power at the lowest capacity. On the other 

hand, the decrease in voltage corresponds to a voltage drop causing Undervoltage violations 

when striking the lower limit.  

The overvoltage and undervoltage instances that occur over a short period are compensated 

by voltage regulators deployed on the network. However, the continuous operation of voltage 

regulators reduces their lifetime and impairs their efficiency [21]. Therefore, the system should 

work within the predefined upper and lower voltage limitations to avoid disruptions. In Europe, 

the voltage standards must adhere to the European standards EN 50160 norms [22, 23]. 

According to Reference [23], the end consumer voltage should not deviate over ±10% of the 

nominal voltage for 95% of data measured in one week and +10%, and −15% of the nominal 

voltage for the total time. Thus, if the system node encounters a voltage rise that exceeds the 

specified limits, then the system node is said to be under overvoltage violation. Similarly, if the 

system node encounters a voltage drop that exceeds specified limits, then it is said to be under 

Undervoltage violation. The voltage limits specified in EN 50160 [22, 23] are listed in Table 

2-2. 

Table 2-2 Voltage limits according to European standards EN 50160 [22, 23] 

Voltage constraint Limits 

Voltage magnitude ±10% of the 𝑉௡ for 95% of data measured in 

a week and +10% and −15% of 𝑉௡ for total 

time. 

Voltage unbalance +2% for 95% of the week 

However, the limits defined in Table 2-2 are shared between medium- and low-voltage 

networks. Figure 2-4 illustrates the division of voltage range between medium-and low-voltage 

networks when using standard distribution transformers in a low-voltage network. Thus, each 

network will obtain a share of ±10% depending on the transformer regulating the bandwidth. 

However, to utilize the entire voltage band in both medium- and low-voltage, it would be optimal 

to use a Voltage Regulating Distribution Transformer (VRDT) in all low-voltage networks [24]. 

Voltage regulating distribution transformer essentially operates by decoupling medium- and 

low-voltage networks. In addition, the introduction of a voltage regulating distribution 



 

transformer redistributes the voltage band to medium- and low-voltage networks in accordance 

with the EN 50160 standards. As a result, both medium- and low-voltage networks have access 

to the full ±10% of available bandwidth. In all parts of the grid in medium-voltage, the 

distribution of the voltage band between medium-voltage and low-voltage networks with 

voltage regulating distribution transformer is illustrated in Figure 2-5. Here, each voltage level 

that is medium voltage and low voltage will have full voltage bandwidth of ±10%  

 

Figure 2-4 Distribution of voltage band between medium-voltage and low-voltage networks 

with a standard distribution transformer, Adapted from [24] 

 

Figure 2-5 Distribution of voltage band between medium-voltage and low-voltage with a 

voltage regulated distribution transformer (VRDT), Adapted from [24] 

Apart from the overvoltage and undervoltage violations, an unsymmetric system exhibits 

voltage unbalance. In a system, voltage unbalances lead to power losses on the network, 

degradation, and malfunctioning of the protection equipment. The voltage unbalance is 

quantified using the voltage unbalance factor, which is the measure of deviation from balanced 

conditions of voltage magnitudes and phase angles [25]. More precisely, it is the measure of 

the ratio between negative and positive sequence voltages [7]. Equation 2-2 defines the 

voltage unbalance factor expressed as a percentage [7]. Similar to the overvoltage and 

undervoltage limits, according to EN 50160, this constraint's violation limit is +2% for 95% of 

data measured over a week (see, Table 2-2). 
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𝑉𝑈𝐹 =
𝑉ଶ

𝑉ଵ
× 100   

2-2 

𝑉ଶ is the negative sequence component shown in Equation 2-4, and 𝑉ଵ is the positive sequence 

voltage component shown in Equation 2-3. 

𝑉ଵ =
𝑉௔௕ + 𝑎 𝑉௕௖ + 𝑎ଶ 𝑉௖௔

3
 

2-3 

𝑉ଶ =
𝑉௔௕ + 𝑎ଶ 𝑉௕௖ + 𝑎  𝑉௖௔

3
 

2-4 

Where 𝑎 = ∠120, 𝑎ଶ = ∠240 and 𝑉௔௕, 𝑉௕௖,  𝑉௖௔ (line voltages) [7]. 

The next important operating limiting factor to study is grid component loading. Transformers, 

overhead lines, underground cables, and switchgear are all examples of components in a 

network. However, transformers, power cables, and power lines are the main components of 

interest in this thesis, because switch gears are not modeled as part of synthetic networks. 

Each power network component includes specifications that regulate how much load it can 

support. Moreover, each component also varies in terms of its current-carrying capacity, with 

each designed to handle specific current ratings. If these components are utilized/operated 

beyond their operational limits, violations are triggered, and the components will be 

overloaded. In theory, overloading of the components results in their failure, eventually leading 

to operational failures [26]. According to this thesis, if a component's loading/utilization 

exceeds 100% of its rated capacity, the component is subject to grid component loading 

violation [27]. The limits for the grid components considered in this thesis are listed in Table 

2-3. 

Table 2-3 Operational limits for considered grid component 

Grid component Limits 

Transformer > 100% of rated capacity 

Overhead line > 100% of rated capacity 

Underground cable > 100% of rated capacity 

Another significant operating limiting factor on the power networks is power flow constraints, 

which include reverse power flows and power losses. As previously stated, distributed 

generation can reach a high penetration rate in distribution networks. Thus, the introduction of 

distributed generators influences the voltage and power flows. By increasing generation at the 

secondary/low-voltage side of the transformer, the power flow is reversed by facilitating the 

flow of power from the generator to the distribution transformer. For example, whenever the 

overall network generation exceeds local demand, power flows from lower voltage level 

networks to higher voltage level networks, resulting in Reverse Power Flows (RPFs) [28, 29]. 

Reverse power flow increases the voltage at the generator node, which is associated with the 

overvoltage violations that occur when the voltage surpasses the upper limit. The reverse 



 

power flow can be controlled or regulated by lowering the voltage on the transformer's 

secondary side using an on-load tap changing transformer, which eventually decreases the 

voltage below the upper limit. During high reverse power flows, the minimum tap changing 

position can be reached, which may lead to a loss of control over the voltage [30]. When the 

network undergoes such repercussions, protective equipment will sustain damage and 

negatively impact power quality [11]. Therefore, reverse power flow reduction strategies, such 

as distributed renewable energy generation curtailment, should be implemented to reduce the 

amount of reverse power flowing backward to the higher voltage side network [31]. However, 

before implementing such strategies, it is necessary to comprehend and analyze the 

implications of the future integration of distributed generation into the distribution networks. In 

this context, it is unquestionably crucial to investigate the instances in which the power flow is 

reversed. 

Increased distributed demand and generation penetration into distribution networks may also 

jeopardize network resilience and lead to increased power losses. However, the majority of 

network power losses are attributed to transformer and line/cable 𝐼ଶ𝑅 losses [32], where 𝐼 is 

the current and 𝑅 is the resistance of the line which is defined as the measure of the opposition 

of the flow of current through the power line. Here, the current quantity and the length of the 

lines/cables are directly proportional to these network losses. Therefore, It may also be claimed 

that more the number of feeders on a network, the greater the power losses [33]. Additionally, 

it may be asserted that an increase in load demand will increase net power network losses. 

The total power losses in the network are calculated as depicted in Equation 2-5. 

𝑃௟ =  ෍ 𝐼ଶ𝑅௜

ே

௜ୀଵ

 
2-5 

Where, 𝐼 = current, 𝑅௜ = Resistance of feeder 𝑖, 𝑁 = number of distribution feeders. 

In brief, the operational limiting factors include voltage limiting factors, grid component loading, 

and power flow constraints, which are the most significant operational constraints associated 

with the integration of distributed demand and generation into the distribution networks. 

Therefore, several researchers conducted experiments with various combinations of demand 

and generation to investigate how the integration of distributed demand and generation in 

distribution networks impacts the limiting factors. In this regard, a comprehensive review of the 

literature from the last decade is conducted. The details of the publications are listed in Table 

2-4 along with the technologies, including distributed generation such as PV, distributed 

demand such as battery electric vehicles and heat pumps, and Energy Storage Systems 

(ESS). Table 2-4 also includes factors, such as voltage limiting factors, grid component 

loading, and power flow constraints, which are evaluated in the literature. 
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Table 2-4 Literature study on the impact of considered distributed demand and generation over 

operational limiting factors (OLFs) in the distribution networks 
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It is evident in Table 2-4 that researchers attempted to integrate individual technologies into 

distribution networks to ascertain their effects. For example, 38% of the literature reviewed in 

this study relates to integrating electrical vehicles in distribution networks. Additionally, 20% 

and 8% of the literature evaluated the impacts of PV and renewables in the distribution 

networks, respectively. The integration of electric vehicles, however, leads to significant 

challenges in the distribution networks. To overcome the problems associated with integrating 

electric vehicles into the distribution networks, renewable energy sources and PV are also 

being integrated into the networks. In this regard, 15% of the literature reviewed examines the 

renewables & electric vehicle combination. However, there are further challenges that emerge 

with this combination. Therefore, to address the impacts of demand and generation that 

includes electric vehicles and renewables in the distribution networks, the use of energy 

storage is also introduced. Accordingly, 8%, 3%, and 1% of the evaluated literature studied PV 

& energy storage systems, electric vehicles & energy storage systems, and renewables & 

energy storage system combinations, respectively. As mentioned previously, heat pump 

technology is also gaining traction in modern power systems. But there are relatively modest 

publications concerning the integration of heat pumps in distribution networks. According to 

the reviewed literature, only 4% of the articles considered heat pumps with renewables in the 

distribution networks. Figure 2-6. displays the percentage of publications considered for 

individual and combined technologies in the distribution networks. 

 

Figure 2-6 Percentage publications for a different combination of technologies integrated into 

the distribution networks; the combination of technologies include Electric Vehicles (EV), 

Photovoltaics (PV), Renewable Energy Sources (RES), Energy Storage Systems (ESS), and 

Heat Pumps (HP)  
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These studies combinedly indicate that the two technologies that greatly influence distribution 

networks are electric vehicles and solar photovoltaics. However, given the recent surge in 

interest in the usage of heat pumps in the building sector, this technology should be evaluated 

in conjunction with electric vehicles and PVs in the distribution networks. Yet, according to the 

investigation undertaken for this thesis, there is relatively less literature available pertaining to 

the combination of these three technologies, namely PV, electric vehicles, and heat pumps in 

the distribution networks. Consequently, to fill the gap in research, this thesis will analyze the 

integration of PVs, battery electric vehicles, and heat pumps in the distribution networks and 

calculate the operational limits that arise. 

When analyzing the operational limiting factors, the literature reviewed also entailed an 

assessment of several limiting factors for individuals and different combinations of 

technologies pertaining to distributed demand and generation in the distribution networks. The 

heatmap in Figure 2-7 illustrates the number of publications associated with the limiting factors 

analyzed in conjunction with distributed demand and generation in the distribution networks. 

 

Figure 2-7 Total number of publications referring to Operational Limiting Factors (OLFs) with 

Distributed Demand and Generation (DDG) which include Electric Vehicles (EV), Photovoltaics 

(PV), Renewable Energy Sources (RES), Energy Storage Systems (ESS), and Heat Pumps 

(HP) 



 

Through the literature review in this thesis, one pertinent conclusion is the pertaining role of 

overvoltage when introducing distributed generation into the distribution networks. 

Unsurprisingly, when generation increases with low demand, the voltage on the node/bus 

increases, resulting in overvoltage violations. Together, these studies further indicate that 

when integrating distributed demand in the distribution networks, the undervoltage limiting 

factor was given prominence. It is understandable that when load demand is high, the 

likelihood of a voltage drop is also high. Furthermore, significance is also attributed to 

transformer loading, line/cable loadings, and power loss occurrences when distributed demand 

is introduced into the distribution networks. Considering the factors discussed above, 

overvoltage, undervoltage, transformer loading, line/cable loading, reverse power flows, and 

power losses are the most relevant evaluation criteria when incorporating combined demand 

and generation in the distribution networks. Thus, to address the research question associated 

with the future integration of PV, electric vehicles, and heat pumps into the distribution 

networks, this thesis will focus on operational limiting factors related to voltage limiting factors, 

grid component loadings, and power flow constraints, such as overvoltage, undervoltage, 

transformer loading, line loading, and reverse power flows. 

2.1.2 Methods and Tools for Assessing Limiting Factors 

Since the adequate Operational Limiting Factors (OLFs), which will be the primary emphasis 

of this thesis have been defined, this subsection will explore the methodologies for assessing 

operational limiting factors in the distribution networks. Limiting factors can be evaluated from 

both the consumer's and the network operator's perspective [115]. From the consumer 

perspective, network operators have minimal control over consumer-side demand and 

generation [4]. Thus, users are free to install generation units and consume electricity at their 

discretion. The owners of distributed generators, however, should adhere to a set of guidelines. 

When customers have a disproportionate influence over the integration of distributed demand 

and generation units in the distribution networks, no predictable patterns can be discerned in 

the location of distributed demand and generation units and the time of demand in the 

networks. Thus, to address limiting factors violations in the distribution networks, it is optimal 

to employ deterministic and probabilistic methods. In contrast, from the network operator’s 

perspective, an optimization method can be employed for the integration of demand and 

generation to minimize 𝑥, where 𝑥 could be the investment cost, limiting factor violations [4].  

However, numerous studies have investigated the limiting factors by attempting to utilize 

different methodologies, including deterministic, probabilistic, and optimization methods. 

However, all these methods have one thing in common: they all use power flow calculations 

to determine the voltage at all nodes, the current in all lines, and the power at the transformer. 

Table 2-5 showcases the literature that utilized deterministic, probabilistic, and optimization 

approaches. 
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Table 2-5 Overview of methods used for assessing Operational Limiting Factors (OLFs) in the 

literature 

Method References 

Deterministic 

method 

[21, 31, 32, 37, 41, 42, 46, 61-63, 66, 67, 69, 73, 83, 84, 86, 91, 

106, 108, 116, 117] 

Probabilistic method 

/ Stochastic method 

[26, 33, 35, 36, 48, 49, 51, 64, 71, 74, 77, 78, 82, 88, 94, 96, 97, 

101, 102, 105-113, 116-122] 

Optimization 

methods 

[5, 10, 12, 19, 25, 28, 35, 38-40, 42-45, 47, 49, 50, 53, 55-59, 63, 

68, 70, 72, 79, 80, 89, 93, 97, 102, 114, 118, 123-126] 

The deterministic method does not focus on randomness when evaluating the limiting factors. 

Instead, all variables are considered beforehand and assigned to distinct network nodes prior 

to performing power flow calculations [4]. These variables may be any aspect associated with 

the network and distributed demand and generation parameters, which include the placement 

of DDGs, their size, the number of residents in dwellings, and the overall number of dwellings 

in a building, among other things. Deterministic methods can be of two types. On the one hand, 

when performing power flow simulations, constant input is used without considering variations 

in the input profiles. In other words, the value of distributed demand and generation output 

does not vary. This type of method is referred to as the constant generation method. In this 

instance, the maximum/peak value or the average value is typically considered when 

assessing the limiting factors violations. On the other hand, power flow simulations can be 

performed with time series input wherein the distributed demand and generations value varies 

with each timestep of the simulation. This is referred to as the time series method. However, 

limiting factor violations in these methodologies are detected using scenario-based or 

sensitivity-based analysis. Figure 2-8 illustrates the main flow diagram of the deterministic 

approach for assessing operational limiting factor violations. 

  



 

 

Figure 2-8 Flow diagram for assessing Operational Limiting Factors (OLFs) violations using a 

deterministic method 

The deterministic method for analyzing limiting factors and hosting capabilities has been 

applied by several researchers in literature and is detailed in Table 2-5. All these studies 

focused on various limiting factors, depending on the technology used in the distribution 

networks. When distributed demands, which include electric vehicles and heat pumps, are 

integrated into the distribution networks, undervoltage, transformer loading, and line loading 

are typically examined [66, 67, 73]. Similarly, when distributed generation, such as solar PV, 

is introduced into the distribution networks, overvoltage and reverse power flows are 

investigated [21, 83, 106, 108]. 

As mentioned previously, there is substantial uncertainty surrounding the integration of 

distributed demand and generation in the distribution networks [17]. The number of distributed 

demand and generation users, the location of distributed demand and generation units, and 

the capacity of distributed demand and generation units are only a few of the uncertainties. 

These uncertainties substantially impact the number of violations associated with operational 

limiting factors. All these variables are fixed in the deterministic method before performing 

power flow simulations. Uncertainties, however, are not deemed to be a part of the 

deterministic method. Therefore, a probabilistic method is an optimal choice in terms of 

expressing the uncertainties associated with the integration of distributed demand and 

generation in the distribution networks. In the probabilistic method, numerous power flow 

simulations are performed with the aforementioned probability distribution of the parameters 

such as distributed demand and generation units installed, the capacity of distributed demand 

and generation, and location of distributed demand and generation [26, 110, 116]. The 

probability distributions of these parameters help gauge the various possible combinations 
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when using distributed demand and generation units in the distribution networks. Monte Carlo 

simulations are typically employed to generate this randomness in the simulations [33]. The 

flow diagram of the probabilistic approach for assessing operational limiting factor violations is 

depicted in Figure 2-9. The literature that used the probabilistic method for analyzing 

operational limiting factors and hosting capabilities is detailed in Table 2-5.  

 

Figure 2-9 Flow diagram for assessing Operational Limiting Factors (OLFs) violations using a 

probabilistic method 

In addition to the deterministic and probabilistic methods, an optimization approach method is 

utilized if a system integration is planned from the distribution network operator perspective. 

This method identifies operational limiting factors violations and attempts to mitigate those 

problems [4]. An optimization problem is introduced in the optimization method to minimize 

operational limiting factors violations [19, 42, 93, 114], investment costs [19], or to maximize 

distributed demand and generation utilization [59] in the distribution networks. However, the 

objective function is subject to several different network constraints [19], such as positioning 

distributed demand and generation units only in specific places, charging electric vehicles only 

at night, voltage band limit, and feed-in electricity only while electric vehicles in the network 

are charging. The standard form of optimization is depicted in Equation 2-6 [127]. 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑔௜ (𝑥) ≤ 0, 𝑖 = 1, … 𝑚, 

                      ℎ௝ (𝑥) = 0, 𝑗 = 1, … , 𝑛  

2-6 

Where 𝑓 is the objective function to be minimized, 𝑔௜ (𝑥) ≤ 0 are called inequality 

constraints, ℎ௝ (𝑥) = 0 are called equality constraints 

 

In the context of the use of an optimization method to optimally integrate distributed demand 

and generation, most of the literature reviewed in this thesis used a single-objective function. 

In most of the studies, when integrating distributed demand and generation units in the 

distribution networks, the single-objective function is frequently constructed to minimize 

operating costs [19, 104], investment cost [50], CO2 emissions [25], energy losses [27, 42, 45, 

47], and load fluctuations [19]. Moreover, optimization problems are formulated for optimal 

power flows, with particular emphasis on the optimal siting of solar PV generation units [12, 

53, 93, 97], optimal siting of electric vehicle charging stations [38, 89, 94], and battery 

placements of large PV generators [49]. A single-objective function is also utilized to address 

issues such as smart charging for electric vehicles [10, 124] and battery management [42]. A 

multi-objective function was also developed in certain literature to optimize the position and 

the size of electric vehicle charging stations [37, 39, 68, 118], optimal positioning of PV units 

in addition to battery management [35], and combined optimal placement and sizing of electric 

vehicles and Distributed Generators (DGs) [59]. To solve these optimization problems and 

formulate an optimal solution, several techniques were employed in the literature. Genetic 

Algorithms (GA) [44, 93], Particle Swarm Optimization (PSO) [43, 89, 94], Evolution Algorithm 

[123], Artificial Bee Colony [56], Grey Wolf Optimization [56], global improved binomial 

mutations for Butterfly Optimization (BO) [19] are the most common strategies employed in the 

studies that were reviewed.  

In all the literature reviewed here, 26% of the research took the deterministic method into 

consideration, 36% of the studies considered the probabilistic method, and 41% considered 

the optimization method, as illustrated in Figure 2-10. The evidence presented here indicates 

that the optimization method was employed in most of the published studies. However, each 

of these methods presents distinct advantages and disadvantages. The deterministic 

approach, for instance, does not include uncertainties regarding PV generation and its location, 

electric vehicle charging locations, and usage. Nevertheless, it is an adequate method if a 

known network with predefined distributed demand and generation sites, consumption, and 

generation patterns exists. However, a deterministic approach is inadequate when the 

consumption pattern and distribution of distributed demand and generation units’ placements 

in distribution networks are unknown. Consequently, any uncertainty in generation and 

consumption is addressed by employing the probabilistic method through multiple iterations of 

power flow simulations by modifying parameters relating to distributed demand and generation 

in the distribution networks. In this case, several random inputs are provided that are 

dependent on the chosen probability distribution. However, this method is highly sophisticated 

due to the size of the input parameters, the number of iterations, and the number of scenarios 

used in the calculations. This is because the time required to run these simulations is 
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significantly higher than the time required when using the deterministic method. This method, 

however, is appropriate when there are fewer networks to evaluate. Conversely, this method 

is infeasible when dealing with a high number of networks. The optimization approach requires 

numerous iterations to obtain an optimal solution and is unsuitable for a high number of 

networks. In addition, when it comes to integrating distributed demand and generation in the 

distribution network from the consumer perspective, this strategy is inadequate.  

 

Figure 2-10 Assessment methods addressed in the literature 

Considering the information provided until now, this thesis aims to delve into the integration of 

future distributed demand and generation into the distribution networks with an emphasis on 

the entire country. Therefore, the analysis of thousands of networks is involved. A deterministic 

method is, hence, an optimal choice for identifying the most vulnerable networks by studying 

all the operational limiting factors discussed.  

So far, we have covered the operational limiting factors as well as the methods of analysis. 

Now, the tools required for the analysis must be investigated. Upon deciding to implement the 

deterministic method to study the operational limiting factors, specific tools are required to 

conduct analysis and execute power flow simulations. As demonstrated in [128], various 

commercial and open-source tools are available for energy and power system simulations. 

Each of these tools possesses distinct technical and economical capabilities. Each tool 

focuses on a single or a combination of capabilities, such as power flows, dynamic analysis, 

fault current analysis, energy dispatch optimization, investment cost optimization, and long-

term scenarios. 



 

This thesis, however, is concerned with the analysis of integrating future distributed de demand 

and generation in the distribution networks in the context of operational limiting factors 

violations. Hence, tools that are capable of simulating power flows are sufficient. Power flow 

simulations can be performed with a wide variety of tools, such as CYME [69, 129], NEPLAN 

[130, 131], pandapower [132], PyPSA [133], DIgSILENT/PowerFactory [31, 86, 134], Synergi 

Electric [135], DER-CAM [136], GridLAB-D [137], HYPERSIM [138], IPSA 2 [139], 

MATPOWER [140], OpenDSS [141], RAPSim [142], ReEDS [143], and SIMPOW [144]. These 

tools are distributed under a combination of commercial and open-source licenses. As 

indicated above, the thesis is focused on analyzing distribution networks across the country, 

which necessitates modeling several thousand networks; thus, programming-based tools can 

simplify their operations. The Scripting language modules pandapower [132] and PyPSA [133], 

for example, could be among those that are capable of performing power flow simulations and 

are purely based on Python programming language. These are open-source scripting 

languages and are free to use. Among these tools, PyPSA [133] is used by Europower [145], 

which is an in-house transmission grid model. This information coupled with the capabilities of 

each tool has led to the adoption of PyPSA for power flow simulations in this thesis. PyPSA 

[133] or Python for Power System Analysis tool was developed by Tom Brown et al.,[133] 

which is entirely based on python and is an open source tool. In addition to performing power 

flow simulations, PyPSA also provides investment and decision support. 

Until now, this section discussed the operational limiting factors, their effects, and violation 

limits in the distribution networks. Additionally, methods and tools are explored, and the 

deterministic method was chosen to analyze the impacts of distributed demand and generation 

in the distribution networks with PyPSA as a tool for power flow simulations. However, to 

accomplish the goal of this thesis, network topologies – the most critical and central component 

of the analysis – are necessary. Therefore, the following section will discuss the various 

network topologies available and their associated limitations. 

2.1.3 Network Topologies for Operational Limiting Factors Assessment  

To evaluate the possible consequences of future distributed demand and generation in the 

distribution networks, the network topologies are essential as they play an important role in 

accommodating anticipated demand and generation. Therefore, this section will examine the 

proposed network topologies in the literature and their limitations. The literature studied as a 

part of operational limiting factors violations in the distribution networks due to distributed 

demand and generation utilizes real, test, IEEE, and typical/benchmark network topologies to 

perform the analysis, detect the violations associated with the operational limiting factors, and 

mitigate the consequences. Table 2-6 highlights the literature that employed various network 

topologies. 
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Table 2-6 Literature overview with different network topologies 

Network Type References 

Real [10, 15, 21, 27, 28, 31, 35-37, 43, 46, 48, 51, 60, 61, 64-67, 69, 70, 

74, 76, 77, 80-84, 88, 89, 91, 92, 100, 102, 108-110, 112-114, 116, 

120-123, 125, 146, 147] 

Test [25, 26, 50, 58, 103, 118, 119, 148-150] 

IEEE [5, 12, 18-20, 32, 34, 38-42, 44, 45, 53-57, 68, 72, 75, 85, 86, 93-

95, 97, 99, 106, 107, 111, 124] 

Typical / Benchmark [33, 47, 52, 71, 96, 98, 117, 151] 

The literature listed in Table 2-6 under the category of “real” employ real-world network 

topologies, which are basically retrieved from distribution system operators to conduct 

analysis. For instance, Barbosa et al. [27] investigated the hosting capacity of electric vehicles 

on 75,550 real-world low-voltage networks, which were obtained from Brazilian utility 

operators. Similarly, Unahalekhaka et al. [31] leveraged the network of the provincial electricity 

authority in Thailand to develop and test an algorithm that can be employed to reduce the 

reverse power flow when installing photovoltaic power plants by situating and identifying the 

right size of batteries. In this manner, the authors in the reviewed literature utilized different 

real-world networks to determine the hosting capacities of distributed demand and generation, 

violations underlying the operational limiting factors, and the development of algorithms to 

alleviate these violations. However, real-world network topologies are helpful in examining the 

effects of distributed demand and generation on a particular network with known demand and 

generation. It is far-fetched to utilize a real-world network from one specific area to investigate 

another. Additionally, only a small percentage of real-world networks are accessible online and 

security-based concerns make it particularly challenging to access real-world networks from 

distribution system operators. Therefore, several authors have employed test networks to 

determine the wide-ranging issues of network vulnerabilities and implications of distributed 

demand and generation. 

The test networks are essentially replicas of real-world networks and are derived by analyzing 

and adapting various real-world networks. However, they are generated using a variety of 

approaches, such as eliminating outliers from the real-world networks with regard to sensitivity 

data, clustering network parameters, and designing manually [152]. For instance, Yiju et al. 

[26] constructed a test network by converting a UK-based low-voltage network to an Australian-

based low-voltage network with the objective of studying the impacts of PV and battery storage 

systems in the distribution networks. Similarly, various other test networks have been 

established to address the challenges posed by the unavailability of real-world networks. In 

this context, networks such as a semi-urban low-voltage network [25], a 21-node sample 

distribution network [118], a residential test grid [148], Roy Billinton test system [149], a 33 

[103], and 69 bus microgrid [46] are developed. Thus, the test networks are created to 

generalize the results from these networks to other networks by replicating the real-world 

networks. 



 

In this context, the Institute of Electrical and Electronics Engineers (IEEE) created IEEE 

networks ranging in size from 13 to approximately 342 nodes for each network. Although there 

is a wide range of networks, the researchers in the majority of the literature utilized IEEE 13, 

33, and 34 bus networks to conduct various experiments. Similar to the test networks, these 

IEEE networks are based on real-world network topologies. For research purposes, power 

networks designed by IEEE are publicly available and accessible online. Table 2-7 

summarizes some of the IEEE networks that are publicly accessible online. Since these 

networks are freely available, they can be modified to meet specific requirements. For 

example, the transformer’s capacity, the lines/cables, or the network's total length may be 

modified. Adjusting the component parameters such as transformer capacity or line 

specifications creates a minimal shift in the network structure. However, adding a new node or 

removing a node can completely alter the network’s topology. Therefore, there is less flexibility 

in modifying the specified network topologies to meet the predefined requirements. 

Table 2-7 Institute of Electrical and Electronics Engineers (IEEE) test networks, Adapted from 

[152] 

It is important to note that these networks are less flexible. Moreover, network characteristics 

such as frequency, voltage, network circuit length, and the number of nodes in a network vary 

by location. For instance, the network from Europe differs from that of Asia and North America 

[153]. This can be attributed to the fact that the total number of consumers connected to a 

network in Europe is higher than the total number of consumers connected to North America 

because of the spatial distribution. Therefore, the network's length in Europe is significantly 

greater than the network's length in North America. Additionally, the cabling level in Europe is 

higher than in North America [152].  

For these reasons, to differentiate networks between regions, researchers created 

benchmarks, representatives, and typical networks that combine typical features for a specific 

country. Specifically, Kerber in [151] developed Germany's typical low-voltage networks. 

These network topologies were developed with the aim of estimating the capacity of 

photovoltaic systems to be hosted in low-voltage grids. These typical grids can be applied to 

a variety of situations. Similarly, Meinecke et al. [154] created benchmark datasets for 

Network  Nodes Length (km) Loads Reference 

IEEE13 Bus 13 2.5 9 [18, 20, 95, 152] 

IEEE 33 Bus 33  27 [12, 32, 34, 39, 41, 42, 53-55, 68, 

85, 97, 106, 107, 124] 

IEEE 34 Bus 34 94 24 [75, 86, 94, 111, 152] 

IEEE 37 Bus 37 5.5 25 [99, 152] 

IEEE 38 Bus 38   [19] 

IEEE 69 Bus 69   [34, 39, 53, 56] 

IEEE 123 Bus 123 12 114 [152] 

IEEE 342 Bus 342 15.2 624 [152] 
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Germany using publicly available data under Simbench [154], and Dickert et al. [155] used 

principal component analysis and clustering to construct Dickert’s LVDNs benchmark grids 

expressly for Germany. In the same way, Kiaee et al. [156] created UKGDS, which mimics 

typical United Kingdom (UK) distribution grids. In North America, there are systems such as 

Cinvalar’s System [157], Baran’s System [158], Salama’s System [159], and CIGRE Systems 

[160] designed to reflect the specific features of the region. The CIGRE system, however, 

combines the characteristics of both Europe and North America. 

In all the studies reviewed concerning the impacts of distributed demand and generation on 

distribution grids, the authors utilized various network types that were recently explored. 

Together, these studies indicate that IEEE, Real, Test, and Typical networks account for 33%, 

49%, 10%, and 8% of the total literature analyzed, respectively. Surprisingly, real networks 

provided by the distribution system operators are employed in half of the cases. The rest of 

the studies, however, seem to be distributed across test, IEEE, and typical networks. Figure 

2-11 illustrates the distribution of various network topologies utilized in the literature reviewed. 

 

Figure 2-11 Network topologies considered in the publications 

Based on the information provided up to this point, a clear picture of network types and their 

limitations becomes evident. As illustrated in Figure 2-11, most of the literature employed real-

world networks to conduct research. However, real-world networks from distribution system 

operators are challenging to obtain. Even if real networks are acquired, they are typically 

protected by non-disclosure agreements for security reasons. This may prove to be 

disadvantageous for researchers looking to develop new algorithms and methodologies. To 

circumvent this, researchers explored openly available network topologies, such as Test and 

IEEE networks. However, their limited number precludes the incorporation of distinct structural 

properties. Additionally, the features vary by location, rendering the test and IEEE networks 

ineffective when focusing on a particular region. Certain researchers are concerned with typical 

networks that are developed in response to a region’s unique characteristics. These networks, 



 

however, are insufficient for large-scale investigations in which geographic location is 

essential. In most cases, typical networks/benchmark networks can only provide general 

conclusions at the country level, and they are not effective in conducting in-depth analyses for 

specific locations.  

These limitations imposed by real, test, IEEE, and typical networks led to the emergence of 

the concept of synthetic network topologies with an emphasis on geographical coordinates. In 

the following section, a literature review will be presented, which focuses on existing 

approaches for constructing synthetic network topologies. 

2.2 Synthetic Electrical Power Network Models 

Various tools capable of generating synthetic network topologies are being developed due to 

the limitations of current network topologies. This section discusses models that can generate 

synthetic electrical grids irrespective of geographical location. Electrical power networks are 

primarily represented mathematically as graph networks and analyzed using complex network 

analysis [161]. Nodes and edges are the standard components of graph networks. When the 

graph networks are defined by physical constraints and principles, they evolve into power 

networks, with nodes representing transformers, substations, generators, and loads, and 

edges representing power lines and cables. 

Research activities on synthetic networks were initiated with graph networks and complex 

network analysis and progressed from there. Erdos and Rényi [162] were the first to discuss 

random graphs, which are constructed by selecting pairs of nodes at random and linking them 

with the edges. The only requirements for this method are the network's order and size. Later, 

Watts and Steven [163] compared power networks to small-world networks. In small-world 

networks, the majority of the nodes are not neighbors and instead, are only reachable via a 

few edges from other nodes [164]. In this work, random graphs are generated using small-

world characteristics. Barabási and Albert [165] created a method for generating networks with 

a power-law degree distribution. This study employs a preferential attachment paradigm, 

wherein the node with the highest degree has a greater probability of acquiring new edges 

forming a network. The requirement, in this case, is the number of connections per node, which 

is referred to as the node degree. However, graph networks built on random graphs and small-

world qualities may not adhere to the topological aspects of real-world power networks. This 

is corroborated by Pagani and Aiello [166], who reviewed the literature and observed variations 

between real-world and small-world networks. Nevertheless, synthetic networks based solely 

on topological considerations may not be suitable for power networks due to the limits imposed 

by the power flow. Therefore, electrical characteristics, in addition to topological properties, 

are required to depict power networks. 

Wang et al.[167] presented an upgraded version of small-world networks called RT-nested-

Small world algorithms for generating synthetic power grids and subsequently representing 

these limitations. This model takes into consideration both statistical information about network 

topologies as well as electrical characteristics. Similar considerations were also made in [168, 

169] to generate synthetic power grids by modifying small-world algorithms. A different 
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methodology was presented in [170] that introduces cluster and connect algorithms, 

generating synthetic networks. The models, however, construct a partial power grid. 

Nevertheless, these models lack the ability to depict the power grid through the spatial use of 

geographical coordinates. Due to the models' limitations, they are only partially suitable for 

conducting in-depth research on power grid vulnerabilities. To circumvent the limitations 

surrounding geospatial considerations, location-based comprehensive modeling tools 

emerged as a promising area of research. 

In the field of location-based synthetic power grid research, Birchfield et al. [171, 172] 

described a greenfield strategy, which helps construct synthetic power grids using a 

combination of complex network approaches, electrical characteristics, and publicly available 

data. In this model, the grid topology was determined by picking edges from the Delaunay 

triangulation of geographically distributed loads and generators. However, the data obtained 

from publicly available sources are postal zip codes and population, which were used to assign 

loads to post-office zip codes, and the population helped determine the load size. Nonetheless, 

real generator sites were utilized, which were obtained from the energy infrastructure 

administration. In [173], a similar approach was employed to create synthetic power flow 

models with geographic locations. Furthermore, [174] developed a random growth model that 

takes into account geographical nodes and links. In this case, the algorithm produces a 

minimum spanning tree and adds additional links to the neighboring nodes. This strategy, 

however, bears some resemblance to the historical development of electrical systems. In this 

context, a complex network technique was employed in [175], which utilizes the historical 

evolution of power grids to construct synthetic power grids by replicating the influence of 

various economic and technical elements on their growth. 

All these models reviewed here produce synthetic power grids, although not every model 

resembles an actual power grid. Some models employ complex network analysis to generate 

topologies, while others improve them based on electrical characteristics. Additional features, 

such as geographic coordinates for loads and locations of existing generators taken from 

system operators were also implemented. In any case, these models were derived from an 

entirely automated process to transform them into a semi-automated one with additional 

information. However, power lines are automatically synthesized within the network according 

to various methodologies. To construct realistically similar network topologies, [176] developed 

the network imitation method based on learning (NIMBLE) by examining the structural features 

of the western interconnection grid of the United States (WI). NIMBLE develops synthetically 

spatial power networks with features that are akin to a given network without disclosing the 

precise locations of power lines and substations. This methodology, however, requires the 

locations of power lines and substations from system operators. Additionally, [164, 175] 

coupled complex network analysis with electrical parameters to create a synthetic transmission 

network and compare the results to those of Spain, Portugal, and France. 

The models presented thus far utilize complex network analysis and require additional 

information from system operators to synthesize power networks. Therefore, to address the 

shortcomings of these models, new models using publicly accessible map data are under 



 

development. OpenStreetMap (OSM) [177] data is one of the most widely used map data that 

can be accessed freely and is a collaborative initiative that began in 2004, intending to create 

an editable global geographic database. Using the OSM data, models such as SciGRID [178], 

osmTGmod [179], GridKit [180], and the Common Information Model (CIM) [181] are capable 

of constructing extra-high voltage transmission grids. These models use data retrieved from 

OSM regarding extra-high voltage power lines, substations, and other power-related properties 

to build the network topology. Although the data is identical, the approach employed to build 

the transmission grid varies between models. Heitkoetter et al. [182] conducted a 

mathematical, visual, and electrical study of these free-source models. In this context, 

AutoGridComp [182] was developed to compare models based on a variety of variables, 

including graphs, Geographical Information Systems (GIS), and power. The eGo grid model 

[183] also developed a synthetic extra-high voltage transmission grid and a high-voltage grid 

for Germany by supplementing the osmTGmod [179] model with additional information. 

However, all these models are intrinsically focused on the generation of synthetic transmission 

grids; only a limited number of models have been developed to generate synthetic distribution 

networks. Figure 2-12 depicts the map illustrating synthetic transmission models that have 

been built for various countries. 

 

Figure 2-12 Countries with synthetic transmission grid models 

In the context of georeferenced synthetic distribution grid models, Domingo et al. [184] 

developed a Reference Network Model (RNM). This work produced two distinct forms of 

reference network models. The first is a greenfield model, which can construct distribution 

networks from scratch while considering substations and distributed generators, among other 

things. Under the brownfield model, on the other hand, the existing distribution networks are 
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reinforced. Moreover, the reference network model has the capability to generate simultaneous 

high-, medium-, and low-voltage networks. With it as a foundation, Mirna et al. [185] built the 

Distribution Network Model Platform called DiNeMo in order to construct synthetic European 

representative networks. This platform, however, collects additional data from a wide range of 

distribution system operators. Similarly, Meinecke et al. [154] developed a model named 

SimBench to generate representative datasets for high-, medium-, and low-voltage networks. 

In this model, several data points pertaining to distribution networks are gathered from 

distribution system operators. Nevertheless, only benchmark and representative networks are 

made available through the DiNeMo and SimBench platforms. Besides these models, Pisano 

et al. [186] presented a synthetic distribution network model based on open data and 

geographical information. However, substation locations, high-voltage nodes, population, land 

use statistics, and administrative boundaries were all considered from external sources. Based 

on the topological distinctions between European and North American electrical distribution 

networks, Carlos et al. [187] developed the RNM-US model for building synthetic distribution 

grids in the United States of America, which is also capable of modeling high-, medium-, and 

low-voltage networks. A study that is not included in the cluster of studies listed above is [188] 

as it uses OSM data to model high-, medium-, and low-voltage networks. Overall, these models 

are location-specific and require considerable external data. 

To utilize more publicly available data instead of less accessible data, the eGo grid model was 

developed, which generated medium-voltage synthetic distribution networks [189]. This model 

identifies load areas and medium-voltage grid districts before generating network topology. 

However, the network topology was generated using a Capacitated Vehicle Routing Problem 

(CVRP) and a local search metaheuristic. This model developed 3608 synthetic medium-

voltage networks for Germany. However, low-voltage networks remained undeveloped. 

Additionally, [190, 191] created a cluster-based low-voltage synthetic network in which a large 

planning zone was divided into mini-zones while implementing a greenfield methodology for 

network and transformer optimization. However, countries where synthetic distribution 

networks have been established, are depicted in Figure 2-13. 

  



 

 

Figure 2-13 Countries with synthetic distribution grid models 

To summarize, there are numerous approaches that are currently being employed for the 

development of synthetic transmission grids utilizing publicly available OSM data. However, 

only a few models can generate geo-referenced synthetic distribution networks, and they have 

various shortcomings, including the fact that they generate synthetic networks that are 

restricted to specific locations, require a high degree of heuristics and a lot of external input in 

addition to open data. Therefore, this thesis focuses on the development of geo-referenced 

synthetic distribution network topologies for impact analysis of future distributed demand and 

generation on distribution networks. The following section discusses the supporting literature 

that contributes to model development. 

2.3 Supplementary Literature for Future Demand and Generation 

Deployments in Synthetic Networks 

To estimate geo-referenced synthetic distribution network topologies, validate them, and 

analyze them, it is essential to analyze the literature for certain data, modeling tools, and 

previously developed algorithms. In this context, several graph-related properties such as 

betweenness centrality [192] and clustering coefficient [193] were utilized. This section 

assesses graphical features as well as real-world electrical properties from the distribution 

system operator's observatory [1]. While choosing a nation to develop algorithms that can 

produce synthetic network topologies, the Pearson correlation coefficient [194, 195] is used to 

examine correlations between the indicators and European Union nations (in, Chapter 3). 

As discussed above, OpenStreetMap data [196] are considered for generating geo-referenced 

synthetic networks in the thesis. However, extremely high computational performance and 

storage are required to handle data from OSM for all countries at once. Therefore, data 
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pertaining to a specific country were selected and downloaded from the Geofabrik server [197]. 

The osmosis [198] and osm2pgsql [199] tools were used for data processing. OSM data alone 

is insufficient for the development of synthetic networks. Open power system data [200] is used 

to obtain data on the location of power generators. After extracting the essential components 

from OSM data, data related to electrical components were obtained from [201, 202] and 

compared to the extracted data to validate the retrieved components. To understand the OSM 

data deficiency and the incompleteness of OSM data, the retrieved buildings must be labeled 

to assign specific load profiles to perform power flow simulations. Therefore, a detailed 

literature review was conducted to achieve building-type classification [203-211]. But this 

thesis classified the building types extracted from OSM data after identifying the limitations of 

these investigations. Nevertheless, to increase the data quality of the OSM data prior to 

categorization, data from additional sources such as CORINE [212], building heights data 

[213], and census data [214] were also used. Moreover, several labels extracted from OSM 

data were streamlined into a few necessary labels considering [215] during the preprocessing 

stage. After preprocessing the data, various models were evaluated, and the best-performing 

model was chosen for classification [216-219]. However, to validate the classification model's 

output, the data set from the federal statistical office of Germany [220] was considered 

(Implementation and Validation, Chapter 4).  

In addition to the data for developing geo-referenced synthetic distribution network topologies, 

synthetic data describing distributed demand and generation were considered to include in the 

power flow simulations [221-223].  

Apart from the open and synthetic data, additional algorithms [224-231] were used while 

estimating synthetic network topologies. Overall, synthetic low-, medium-, high-, and extra-

high-voltage networks are estimated and validated [232] using these datasets and algorithms. 

Finally, to determine the influence of future distributed demand and generation in the 

distribution networks, a national energy systems scenario [233] was used as a baseline, and 

additional scenarios are generated. Using all this information, the following chapters 

demonstrate the evolution of geo-referenced synthetic network topologies and the assessment 

of future distributed demand and generation in the distribution networks. 

2.4 Summary 

This chapter began with the following question: “What are the challenges involved in 

distribution networks?”. First, the role of future distributed demand and generation to minimize 

CO2 emissions was discussed. Secondly, a literature study was conducted concerning the 

effects of distributed demand and generation in the distribution networks. This study includes 

operational limiting factors and their associated violation limits, methods of analysis, tools, and 

network topologies. Finally, it was concluded that, on the one hand, a significant penetration 

of distributed demand and generation will disrupt network operation by bringing voltage 

violations, thermal loadings, and power flow violations. On the other hand, there is insufficient 

infrastructure available to analyze and plan the effects of future demand and generation in the 

distribution networks. Based on this information, it also becomes possible to ask the following 



 

question “Why is it necessary to estimate geo-referenced synthetic distribution network 

topologies?”. The network infrastructure modeling required for analyzing the effects of future 

demand and generation is limited, as evidenced by the fact that most of the literature reviewed 

uses real, test/IEEE, and typical/benchmark network topologies. These network topologies are 

specific to a particular location and type and are typical to a nation. To find an alternative to 

these topologies, a literature study was carried out pertaining to synthetic power grid models. 

Based on the findings of this study, geo-referenced synthetic network models are published 

for transmission networks, while only a few models are offered for distribution networks. In 

addition, the available models are limited to specific locations, have a high degree of heuristics, 

and require significant external input data. Therefore, it is necessary to estimate geo-

referenced synthetic distribution network topologies to answer the overarching question of this 

thesis. 
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Key messages: 

 Voltage limiting factors, grid component loadings, and power flow 

constraints are key operational limiting factors that must be considered 

when making decisions to integrate future distributed demand and 

generation in the distribution networks. 

 Only 4% of the literature reviewed considered the combination of heat 

pumps and distributed generation combination. 

 Only limited literature has explored the combination of PV, heat pumps, 

and battery electric vehicles. 

 When integrating distributed demand and generation into the distribution 

networks, overvoltage, undervoltage, transformer loading, line loading, 

and reverse power flows are all significant factors. 

 According to consumer perspective, a deterministic and probabilistic 

method is preferred when estimating the operational limiting factors. While 

optimization is desired from the operators’ standpoint. 

 If numerous input parameters and networks are considered for simulation, 

a probabilistic technique is more computationally intensive. 

 Because the purpose of this thesis is to analyze the integration of future 

distributed demand and generation for an entire nation, only a deterministic 

method is feasible. 

 For power flow simulations, the open source PyPSA is chosen. 

 Synthetic networks are essential because of the challenges associated 

with obtaining real-world networks and the inaccuracy associated with the 

performance on the test, IEEE, and typical networks and their reflection of 

the state of the entire country. 

 Numerous synthetic transmission grid models have been developed using 

OpenStreetMap data; however, only limited models are available for 

generating synthetic distribution networks using open data. Moreover, 

these models use external data and heuristics. 

 Considering these challenges and opportunities, this thesis will develop 

geo-referenced synthetic network topologies to evaluate future distributed 

demand and generation in the distribution networks. 
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3 Distribution Networks Characteristics  

Which graphical and electrical parameters are necessary for the generation and validation of 

geo-referenced synthetic distribution networks? 

Is it possible to estimate geo-referenced synthetic distribution networks for any country in 

Europe using algorithms developed for a specific country? 

 

In the previous chapter, the estimation of geo-referenced synthetic distribution network 

topologies is suggested as a solution to address the thesis’s main research question. With this 

background, this chapter will provide more contextual information surrounding the estimation 

of the geo-referenced synthetic distribution network topologies. First, the graphical and 

electrical characteristics of the distribution networks are discussed. Then, real-world 

distribution network indicators are analyzed to answer whether developing generic algorithms 

utilizing data from a specific country can be used to estimate synthetic distribution networks 

for other European countries. 

The information provided in this chapter will be used in the subsequent chapters, either in 

estimating the synthetic network topologies or in validating developed networks. For instance, 

the total length of low-voltage networks in Germany is employed to validate geo-referenced 

synthetic low-voltage networks by comparing their total lengths.  

3.1 Graphical Characteristics 

Graphical metrics are particularly important when evaluating the network robustness of 

electrical network topologies. In the case of synthetic network topologies, graphical properties 

may be incorporated into the development process or serve as validating indicators for 

estimated synthetic network topologies. The graphical features characterize the network's 

interconnectivity, linkages, and integration of various components. These characteristics, 

Topics covered: 

 Graphical parameters necessary for the development of synthetic distribution 

network topologies 

 Electrical parameters essential for the development of synthetic distribution 

network topologies 

 Examining real-world network parameters and the reliability of supply indicators 

for European countries 

 Analysing the structural and performance-based characteristics of real-world 

networks to determine whether a generic algorithm is capable of generating 

synthetic network topologies for European countries 



 

however, help estimate synthetic distribution network topologies through an additional 

dimension of precision and accuracy. 

In principle, all networks – not just electric networks – are fundamentally depicted as graphs. 

A graph, (𝐺), is better represented as a collection of nodes (𝑛௜  ∈  𝑁) and edges (𝑒௜,௝  =

 ൫𝑛௜, 𝑛௝൯ ∈  𝐸) and the graph networks' nodes, when specifically referred to as electrical 

networks, can be loads, generators, transformers, and substations. Furthermore, the edges 

(𝐸) are typically reserved for overhead power lines and underground power cables and are 

created by connecting nodes across the network. 

At this point, it is necessary to point out that electrical network graphs are undirected and 

weighted. At any edge, the weight represents the maximum power flow or current that a line 

can carry, depending on the line type or length. Additionally, weights such as those on the 

edges are also included in the power network graph nodes. In this context, the weights 

assigned to the nodes represent the quantity of injected or withdrawn active and reactive 

power. Moreover, as mentioned earlier, power network graphs are undirected, because power 

can flow in any direction. In general, power flows from a higher voltage to a lower voltage level. 

Occasionally, however, due to increased generation on the low-voltage side, power flows in 

the opposite direction. This phenomenon is attributed to the increase in voltage at the 

generation. 

The power network graph, on the other hand, is mathematically expressed as an adjacent 

matrix (𝐴). This is a two-dimensional symmetric matrix with 𝑛 rows and 𝑛 columns (𝑛 𝑥 𝑛), 

where 𝑛 is the total number of nodes in a graph. Figure 3-1 illustrates an adjacent matrix 

representation for a simple graph. If there is an edge between the nodes 𝑛௜ and 𝑛௝ in this graph, 

the entries in this adjacent matrix 𝐴௜,௝  is equal to one; otherwise, 𝐴௜,௝  is equal to zero. For 

example, in the given sample graph, there are five nodes and four edges. Therefore, it creates 

an adjacent matrix of (5 𝑥 5). The entities in the matrix are, however, determined by the edges. 

In this case, there is an edge between the nodes 𝑛ଵ and 𝑛ଶ. So, 𝐴ଵ,ଶ and 𝐴ଶ,ଵ is equal to 1. In 

contrast, there is no edge between 𝑛ଷ and 𝑛ସ. So, 𝐴ଷ,ସ and 𝐴ସ,ଷ is equal to 0. This adjacent 

matrix is used in power flow analysis.  

 

Figure 3-1 Sample graph with its adjacent matrix 
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With the graph of the power network defined, it is essential to consider its properties associated 

to estimate and validate geo-referenced synthetic distribution networks. From the sample 

graph in Figure 3-1, it is evident that the graph structure, nodes, and edges are indeed the 

three primary components of the graph. The characteristics of these individual components 

are, however, listed in Table 3-1. Several of these characteristics, including graph structure, 

number of nodes, number of edges, clustering coefficient, total length are crucial when 

generating synthetic distribution networks and perhaps validating estimated networks. 

Therefore, this section details each of these characteristics. 

Table 3-1 Graphical characteristics corresponding to nodes, edges, and graph structure 

Graph 𝑮(𝑵, 𝑬) Nodes (𝒏𝒊  ∈  𝑵) Edges (𝒆𝒊,𝒋  ∈  𝑬) 

Radial structure Network size Number of edges 

Ring structure Node degree Mean edge length 

Mesh structure Node degree distribution Average shortest path length 

 Betweenness centrality Total network length 

 Clustering coefficient  

 

3.1.1 Graph Structure 

The graph structures of power networks vary according to the voltage level. The three most 

common distribution network structures are radial, ring, and mesh. In a radial network, there 

does not exist a closed path that connects the nodes. Nevertheless, several feeders connect 

the nodes with the transformer. For instance, in Figure 3-1, consider 𝑛ଵ as a transformer node. 

Then, there will be three feeders with an edge 𝑒ଵ, 𝑒ଶ, and (𝑒ଷ, 𝑒ସ). In this type of configuration, 

there exists only one way. The power will travel from the transformer node to reach the feeder's 

end node. For instance, in Figure 3-1, the power to the node 𝑛ହ is only accessible via 𝑛ସ from 

𝑛ଵ. When these graph structures (i.e., radial) are used when designing power networks, it leads 

to low operating costs and simplified operations. It is one of the primary reasons why radial 

networks are frequently encountered in low-voltage networks. However, these network types 

come with certain disadvantages such as supply failure due to line breakdown. Figure 3-2 

depicts radial, ring, and mesh structures in the power grid. 

The ring configuration is another prevalent network form usually seen in low- and medium-

voltage networks. Figure 3-2 illustrates the ring topology of the power grid and it is evident that 

this network setup always contains closed paths with a circuit breaker. In this setup, the feeder 

begins at the transformer node and terminates at the transformer node, thereby linking all the 

other nodes along the course of the feeder. In this type of network topology, there are some 

instances where they are connected with two or more transformers to continue maintaining 

supply in the event of a transformer failure. Additionally, during line overloading and breaking, 

a circuit breaker disconnects the fault line, providing an uninterrupted power supply. This type 

of network structure is common in medium-voltage networks and some low-voltage networks, 



 

where a frequent failure of a line or transformer occurs. When ring networks are operated as 

an open ring by opening the circuit breaker, it results in the formation of a radial network. 

 

Figure 3-2 Power network graph structures  

Finally, the mesh structure in the power grid is frequently utilized in high-voltage distribution 

networks and extra-high-voltage transmission networks. This arrangement, as represented in 

Figure 3-2, contains multiple transformers and substations. This configuration enables the 

transfer of power from one location to another through several routes. In addition, this network 

configuration always adheres to (𝑛 − 1) security. In other words, in the case of a line or 

transformer failure, the network will ensure the uninterrupted flow of supply. 

Apart from network structures, various other graph-based properties must be studied to 

estimate and validate geo-referenced synthetic distribution networks. Power networks are not 

usually simple structures; they can be quite complex. Occasionally, the connections between 

nodes and edges exhibit complex patterns. As such, ignoring patterns and focusing on nodes 

and edges using various indicators provides insight into the power network topologies. There 

are currently several statistical measures available to understand the topology through nodes 

and edges in a network. The most significant ones are already reported in Table 3-1. 

Nonetheless, the following subsections discuss the properties of nodes and edges in greater 

detail. 

3.1.2 Node Specific Characteristics 

Nodes are a fundamental component of a graph network, and the properties associated with 

nodes are vital when estimating and validating geo-referenced synthetic networks. Therefore, 

it is extremely crucial to gain a rudimentary understanding of these properties. 
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The total number of nodes in a graph is the fundamental attribute that can be used to describe 

a graph network. The total number of nodes (𝑇ே) determines the network size in terms of power 

networks. In a group, this metric equals the sum of all nodes. For instance, the basic graph 

seen in Figure 3-1 comprises five nodes. However, to describe the graph as a power network, 

all nodes are represented as demand or generation nodes, along with transformers. However, 

the total number of nodes helps determine the similarity of the networks. 

Node degree: 

It is possible to determine the connection to each node based on the total number of nodes by 

exclusively focusing on a single node and ignoring all other nodes. The connection to the nodes 

is formed by the edges in a graph. By observing the connections to each node, the node degree 

of each node can be determined in the graph. The average node degree of a network is defined 

as the average number of edges that connect each node in a graph. For example, if a graph 

has a total of 𝑁 nodes and 𝑁௞ is the degree of each node, and the average node degree is 

calculated by taking the mean of 𝑁௞. The average node degree is shown in Equation 3-1. This 

is a crucial indicator that provides information about the network topology. In other words, if 

the value of the indicator is more than two, the network is deemed to be mostly mesh 

structured. For instance, in Figure 3-1, the average node degree is 1.6, which is less than two. 

This indicates that the structure is not mesh. Hence, this indicator will be employed to validate 

the developed geo-referenced synthetic distribution networks. For instance, the distribution 

networks are almost always radial or ring structures. If the average node degree of a network 

exceeds two, then the developed networks will fail to meet the requirements of the considered 

network structure. 

𝑁஺ௗ௘௚ =  
1

𝑛
෍ 𝑛௞,௜ ∀ 𝑖 ∈ 𝑁
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Node degree probability distribution: 

The node degree distribution reveals how many nodes have a similar degree. For instance, 

imagine a network with (𝑁) number of nodes, wherein two have a degree (𝑋), three have a 

degree (𝑌), and so forth. Using this information, one could determine that most nodes in the 

network have the same degree. While this may gather a limited amount of information, it is still 

advantageous for the network structure. Therefore, we consider node degree probability 

distribution while generating geo-referenced synthetic networks. The degree distribution of 

nodes 𝑝ௗ(𝑘) is defined as the fraction of nodes in a network with degree (𝐾). If a network has 

(𝑛௞) nodes of degree (𝑘), the node degree probability distribution is represented 

mathematically in Equation 3-2. The node degree distribution specifies how many nodes have 

a similar node degree. Typically, the majority of nodes in an electrical network with a radial 

structure have a small degree. Nevertheless, if a node with a large node degree is observed 

within a radial structured electrical network, it is most likely the substation/transformer node. 



 

Therefore, when validating the geo-referenced synthetic networks that are produced, this 

indicator is used to ensure that the transformer is properly positioned within the network. 

𝑝ௗ(𝑘) =  
𝑛௞

𝑁
 3-2 

Betweenness centrality: 

To locate a node that is positioned on the shortest path between any other nodes, the 

betweenness centrality indicator is an optimal measure. The term "betweenness centrality" 

refers to the frequency at which nodes are on the shortest path between other nodes, 

normalized to 0 ≤ 𝐵௖  ≤  1. Thus, the greater the value of a node's betweenness centrality, the 

more frequently that node is located on the shortest path. The betweenness centrality is 

calculated as indicated in Equation 3-3 [192] and is significant when identifying the node that 

can hold transformers or substations in a geo-referenced synthetic distribution network. 

𝐵௖(௡) = ෎
𝜎(𝑠, 𝑝|𝑛)

𝜎(𝑠, 𝑝)
௦,௣ ∈ ே
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Here, 𝑁 is the set of nodes, 𝜎(𝑠, 𝑝) is the total number of shortest paths, and 𝜎(𝑠, 𝑝|𝑛) is the 

total number of those routes passing through some node (𝑛). 

Clustering coefficient: 

The clustering coefficient is a metric that is used to identify nodes that may cluster in a graph. 

However, the clustering coefficient of a node is defined as the ratio of possible edges between 

nodes' neighbors. Accordingly, the clustering coefficient [193] of a graph is equal to the 

average clustering coefficient of its nodes. Equation 3-4 indicates the mathematical equation 

for the same. The indicator of the clustering coefficient is used to validate the estimated geo-

referenced synthetic distribution networks. In fact, to validate the low- and medium-voltage 

networks, the clustering coefficient of the networks should be equal to zero. 

𝐶 =
1

𝑁
෎

𝑒ீ(𝑖)

𝜆ீ(𝑖)

ே

௜ୀଵ
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Here, 𝑒ீ(𝑖) is the number of edges between the neighbors of node 𝑖, 𝜆ீ(𝑖) is the total number 

of edges that can exist among neighbors of 𝑖. 

In conclusion, this section ascertained that the above-mentioned indicators, such as network 

size, average node degree, node degree probability distribution, betweenness centrality, and 

clustering coefficient are helpful in generating and validating geo-referenced synthetic 

distribution networks.  
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It is also important to identify the edge-specific indicators which are crucial in the process of 

developing geo-referenced synthetic distribution networks. In the following section, an 

overview of the parameters pertaining to the edges is provided. 

3.1.3 Edge Specific Characteristics 

Edges, along with Nodes, form the core components of graph networks, and the edge-specific 

indicators are crucial to estimate, analyze, and validate the geo-referenced synthetic 

distribution networks. Therefore, it is essential to hold a firm grasp on the edge-specific 

indicators. 

Number of edges: 

The behavior of a network is influenced by the total number of edges in a graph. The sum of 

all edges in a graph, wherein at least one node with a degree one exists, provides the total 

number of edges. In the context of power system networks, the edges indicate overhead and 

underground power lines and cables. The total number of edges helps identify the networks' 

resemblance with real-world networks when performing validation with other networks. 

Total network length: 

Total network length, on the other hand, is primarily used to validate the generated geo-

referenced synthetic networks by comparing the total network length of real-world networks to 

the total network length of the predicted networks. The total length of a network is defined as 

the sum of the length of all its edges. In Equation 3-5, the formula for computing the network's 

total length is provided. The total length of the network varies amongst networks. For example, 

the network length of a low-voltage network located in a suburban area is greater than that of 

a network located in a rural area. 

𝑇௟௘௡ = ෍ 𝐿௠ 

௠

௝ୀଵ

 ∀  𝑗 ∈ 𝐸 
3-5 

Mean edge length: 

Mean edge length takes all edges in a graph network into consideration and is extremely 

important when examining nodes that are spread apart. The mean edge length is an effective 

comparative measure when considering other graphs and is determined by dividing the 

network's total length by the total number of edges. Additionally, the mean edge length, like 

the total length, aids in determining the network's type. For instance, the network type can be 

distinguished as rural, semi-urban, or urban networks by comparing the mean edge length of 

the network to that of real-world networks. 

Average shortest path length: 



 

The average shortest path length is another significant edge-related property. For a network, 

it is defined as the mean length along the shortest path for all possible path of network nodes. 

Average shortest path length can be calculated by Equation 3-6 and is employed to validate 

networks and locate the placement of the transformer in the development of geo-referenced 

synthetic low-voltage networks. This parameter aids in the generation of radial graph networks 

in the medium-voltage network and its application is detailed in Chapter 5. 

𝑎𝑠𝑝𝑙 =
1

2𝑛(𝑛 − 1)
෍ 𝑙൫𝑛௜, 𝑛௝൯

௜ஷ௝
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Here, 𝑙൫𝑛௜, 𝑛௝൯ is the shortest path between the nodes 𝑛௜ and 𝑛௝ and 𝑛 is the number of nodes 

in the network. 

In conclusion, the above-mentioned indicators, such as the number of edges, total network 

length, mean edge length, and average shortest path length are seen to be useful in generating 

and validating geo-referenced synthetic distribution networks, especially for validating the 

developed networks. 

In this section, several indicators related to graphical network are explored in detail, including 

graph structures, node-specific properties, and edge-specific properties. Among these, certain 

indicators can be used directly to estimate geo-referenced synthetic distribution networks, 

while others can be used to validate the estimated synthetic networks. However, to validate 

the generated geo-referenced synthetic networks, these parameters that are related to nodes 

and edges were retrieved from the developed networks data and compared to real-world 

networks. Chapter 5 will examine various approaches for validating generated geo-referenced 

synthetic networks. 

3.2 Electrical Characteristics 

Till this point, complex network parameters were analyzed in terms of graph features. However, 

several requisite electrical properties should be studied and analyzed before the graph network 

can be transformed into an electrical network. Unlike the graphical properties, some electrical 

characteristics are time-dependent and might vary with time. Therefore, all the electrical 

characteristics necessary for estimating and validating synthetic networks, whether time-

dependent or not, will be introduced. In this section, two distinct types of characteristics are 

explored in detail namely, power-specific, and electric network component characteristics. 

3.2.1 Power Specific Characteristics 

In a network, power demand and supply are essential parameters that must be carefully 

considered while estimating geo-referenced synthetic distribution networks. It is necessary to 

ensure that supply always meets demand, failing which, the network will exhibit certain 

violations. Therefore, these critical power characteristics should be balanced in a network. 

Additionally, to calculate power demand and supply in the network, the graph nodes should be 

configured as electrical nodes with substations, consumers, and power plants. In this context, 
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power is imported when a node is configured as load while if the node is configured as a 

generator, power will be exported to that node. 

Power demand: 

In any network, the total active power demand (𝑃஽,௧௢௧௔௟) is defined as the sum of the individual 

power demands at each node specified as load. However, if a node in the graphical network 

is identified as a load node, the time series active power associated with that load is integrated 

at that node. To calculate the total power demand in the network, the summation of all the 

active power at load nodes must be computed. However, Equation 3-7 corresponds to the total 

active power demand in the network. 

𝑃஽,௧௢௧௔௟ =  ෍ 𝑃஽,௡௜ ∀ 𝑛𝑖 ∈ 𝑁

௡

௜ୀଵ

, 𝑖 ∈ 𝐿 
3-7 

In this equation, 𝐿 is the set that contains load nodes. 

Power supply: 

In addition to power demand, there exists power supply. In any network, the total active power 

supply is defined as the sum of the active power supplied by each generator. However, if a 

node in the graphical network is identified as a generator node, the time series active power 

associated with that generation is integrated at that node. Equating the sum of all the active 

power at generation nodes provides the total power generation in the network. Equation 3-8 

corresponds to the total active power supply in the network. 

𝑃ௌ,௧௢௧௔௟ =  ෍ 𝑃ௌ,௡௝ ∀ 𝑛𝑗 ∈ 𝑁

௡

௝ୀଵ

, 𝑗 ∈ 𝐺 
3-8 

Where, 𝐺 is the set that contains generator nodes. 

Additionally, if a node has both demand and generator units, the difference between demand 

and supply will be demanded or supplied from that node.  

In this section, it is clear that the power supply and demand are two parameters that must be 

assigned to each node based on its state to convert a graphical network to an electrical 

network. The following section will explain the characteristics of the components of the 

electrical network. 

3.2.2 Electrical Network Component Characteristics 

Substations, power lines, and electrical nodes are the three primary components of a network. 

Thus, they must be properly utilized to ensure network stability. The utilization metrics of these 

components will determine the network's stability, in both synthetic and real-world networks. 



 

In fact, the network component metrics are introduced in this section because they are 

essential during the validation phase and when evaluating the network's performance. 

Substation/transformer utilization: 

The transformer is the first component in the electrical network that is of a high level of 

significance. The transformer’s utilization factor is the feature that characterizes the state of 

the transformer. Transformer or substation utilization is defined as the average ratio of each 

substation's or transformer's apparent power supply to its maximum supply. Equation 3-9 

illustrates the formula corresponding to transformer utilization. This parameter is significant for 

monitoring network operating limit violations, which were covered in Chapter 0. It is necessary 

to ensure that transformer or substation utilization is always at a minimum to ensure continuous 

functioning and the maintenance of the component's life. In reality, numerous types of 

transformers with varying capacities are available today. Chapter 5 discusses various types of 

transformers that are available for each network level. For instance, in low-voltage networks, 

the capacities of the available transformer types range from 100 kVA to 630 kVA [232]. In rare 

cases, a transformer type with 1000 kVA capacity will be included in the low-voltage networks. 

For the geo-referenced synthetic network, a transformer type will be selected based on the 

network's load. 

𝑈௧ =  
1

𝑛௜
෍

ห𝑆௦,௜ห

ห𝑆௦,௠௔௫ห
 

௡

௜ୀଵ

 
3-9 

Here, 𝑛௜ is the number of substations, 𝑆௦,௜ is apparent power at the 𝑖௧௛ substation, and 𝑆௦,௠௔௫ 

maximum capacity of the substation. 

Power line utilization: 

Like transformer utilization, power line utilization is an essential factor of the electrical network 

that must be addressed. In real-world power networks, the two types of power lines include 

overhead lines and underground cables. Each type of power line has a unique size and current 

carrying capacity. The most popular overhead lines and underground cables utilized in the 

real-world networks will be discussed in Chapter 5. As mentioned previously, it is necessary 

to learn about power lines utilization to study the stability of the network. Equation 3-10 

illustrates network's power line utilization. It is the value of the average apparent power flow 

through the lines at their maximum capacity. When the utilization of power lines is known, the 

line that violates the limits can be reinforced before a breakdown occurs. However, the graph 

network edges are configured with electrical line parameters to represent as an electrical 

network. 

𝑈௣௟ =  
1

𝑚
෍

ห𝑆௠,௜ห

ห𝑆௦,௠௔௫ห
 

௠

௜ୀଵ

  ∀ 𝑚௝  ∈ 𝐸 
3-10 
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Here, 𝑆௠,௜ is the apparent power flow in 𝑖௧௛ line, m is the total number of electrical lines in the 

network, and 𝑆௦,௠௔௫ is the maximum apparent power that a line can carry. 

To summarize, electrical loads, generators, transformers, and power lines are configured on 

graphical nodes and edges to depict a graphical network as an electrical network. For the 

network to remain stable, the power-specific and network component characteristics should 

be satisfied and within acceptable limits. These factors will be considered in chapter 5 when 

estimating geo-referenced synthetic network topologies. The following section will provide the 

real-world networks graphical and electrical characteristics.  

3.3 Real-world Graphical and Electrical Network Characteristics 

Apart from the graphical and electrical parameters that an electrical network is supposed to 

hold, real-world parameters are necessary to validate and estimate geo-referenced synthetic 

distribution network topologies. As stated above, it is challenging to obtain data from the 

distribution system operator. Similarly, estimating geo-referenced synthetic networks without 

any data for validation is naive. However, the distribution system operator observatory  [1] 

contains various parameters from several distribution system operators across Europe, which 

are categorized for different countries. Therefore, all these metrics or indicators are evaluated 

to gather knowledge necessary for estimating geo-referenced synthetic networks and 

validating developed networks. 

In this context, the characteristics collected from the distribution system operator’s observatory 

[1] must be analyzed comprehensively to determine whether a general algorithm for producing 

geo-referenced synthetic distribution network topologies can scale to any European country. 

To do this, network indicators and system reliability indicators are examined using data from 

the distribution system operator observatory (2020). Table 3-2 provides a list of the indicators 

that are available for analysis. 

Table 3-2 List of real-work networks indicators and system reliability indicators taken from 

distribution system operators observatory [1] 

Network indicators Reliability indicators 

Total network length SAIDI 

Low-voltage network length SAIFI 

Low-voltage underground cable length  

Low-voltage overhead line length  

Medium-voltage network length  

Medium-voltage underground cable length  

Medium-voltage overhead line length  

Low-voltage transformers  

The observatory of the distribution system operators gathered network statistics from different 

distribution system operators in 27 European nations. According to the study [1], the 



 

distribution system operators in each country range from 1 to 883 , for a total of 2400 

Distribution System Operators (DSOs). Among them, Germany has more distribution system 

operators of any country studied (i.e., 883 as per [1] for year 2020). Among these 883 

distribution system operators, 80 serve a consumer base of more than 100,000.  

The data for real-world networks, which were collected from the distribution system operators, 

were classified into two categories: network indicators and reliability of supply indicators (see 

Table 3-2). In this section, the statistics for each indicator in each category will be discussed. 

These indicators combinedly help determine if generic algorithms built on a specific country 

can be used to generate geo-referenced synthetic network topologies for all other European 

countries. 

3.3.1 Network Indicators 

This section elaborately discusses the network indicators for the electrical networks. The 

indicators relating to lines, cables, and substations considered in network structural indicators 

[1] will play a significant role in both estimating and validating the geo-referenced synthetic 

distribution network topologies.  

As previously stated, an electrical network's primary components are edges, nodes, and 

transformers. However, collecting information related to edges, such as the length of each 

network from distribution system operators, is extremely difficult and unrealistic. Therefore, the 

study [1] only examines the overall circuit length for each voltage level in the distribution level 

and the proportion of overhead and underground power lines. Secondly, nodes essentially 

correspond to the end-consumers, and, for a variety of reasons, they are not documented in 

the study and therefore not considered in this section's analysis. Finally, from this study [1], 

the total number of transformers in each European nation is considered.  

Since all the required indicators are collected, this section first analyzes the overall circuit 

length, including low-, medium-, and high-voltage networks for all European nations that are 

considered in this study. 

Total circuit length: 

The total network length at all voltage levels at the distribution level – low-voltage, medium-

voltage, and high-voltage – is presented in Figure 3-3 for each of the 27 European nations 

reviewed in the study [1]. The total network length expressed here is in kilometers (km). Figure 

3-3 demonstrates that when all voltage levels in the distribution level are considered together, 

Lithuania (LU) has the shortest total circuit length of 8,477 km. Germany (DE), on the other 

hand, has the longest route at 1.7 million kilometers. It is interesting to note that in Figure 3-3, 

only 30% of the nations have a total electrical power network length exceeding 250,000 km. 

Interestingly, except France (FR), the total network length of all other nations is less than the 

low-voltage network length of Germany (DE). The number of distribution system operators (i.e., 

883) operating distribution networks in Germany clearly indicates the existence of several 

networks within the distribution system. Thus, the longer overall circuit length when all 
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networks are included can then be justified. The total circuit length for each nation that is 

specified in this study will be used to validate the geo-referenced synthetic distribution 

networks. 

 

Figure 3-3 Total network length (km) considering low-, medium-, and high-voltage levels for 

European nations [1] 

However, to validate geo-referenced synthetic networks at each voltage level precisely, the 

total lengths associated with low-, medium-, and high- voltage levels are evaluated separately. 

The length of high- voltage network for a few nations is illustrated here because low- and 

medium-voltage networks are operated at the distribution level in all the countries. In some 

nations, high-voltage is also operated at distribution level in addition to low- and medium-

voltage. On the other hand, some nations refer to high-voltage networks as a transmission 

network. For example, EU member states such as Cyprus (CY), Estonia (EE), France (FR), 

Italy (IT), Lithuania (LT), and Latvia (LV) run low- and medium-voltage as distribution grids and 

high-voltage as transmission grids (See Appendix A, Figure 9-1). This may explain why 

Lithuania (LT) has the shortest distribution network length, as previously discussed. Due to the 

fact that different nations operate distribution networks at varying voltage levels, low-, medium-

, and high-voltage networks are examined independently.  

With this background, the length of the low-voltage network is analyzed first in each of the 

countries examined in this thesis. 

Low-voltage network length: 

Figure 3-4 illustrates the total length of low-voltage networks in all European nations 

considered in this study. As mentioned earlier, the power lines can either be overhead lines or 

underground cables depending on the location of the operation. Moreover, the parameters 

associated with each line type vary due to the operational characteristics. Thus, in generating 



 

geo-referenced synthetic networks, the proportion of overvoltage power lines and underground 

cables for each voltage is crucial. In Figure 3-4, separate underground and overhead line is 

also mentioned in addition to the total circuit length. From the data in Figure 3-4, it is apparent 

that the proportion of overhead lines and underground cables for the Netherlands (NL), 

Slovakia (SK), and Norway (NO) could not be accessed due to a lack of data. Nevertheless, 

for the other nations, there appears to be a distinct ratio of different line types. 

Comprehensively observing this data reveals that Germany has the longest low-voltage 

network length of approximately 1.2 million kilometers. Unsurprisingly, Germany is an outlier 

with regard to the operation of low-voltage networks. Another interesting fact is that there are 

three countries - Germany (DE), Denmark (DK), and the United Kingdom (UK) – with an 

underground cabling percentage of greater than 80%. Out of these three countries, Denmark 

controls a whopping 95% of underground cable, surpassing Germany by 8%. From these 

observations, it is apparent that Denmark is moving away from traditional distribution networks. 

Nonetheless, Germany's low-voltage network is the longest in comparison to other nations, 

and 87% of it is situated underground, indicating that Germany is ahead of the curve in terms 

of network modernization. In contrast, Greece (GR) and Hungary (HU) continue to have more 

than 90% of their network covered by overhead lines. Despite of these differences, the data 

pertaining to the share of underground cable and overhead line will still be used in generating 

geo-referenced synthetic distribution networks and data regarding the total low-voltage length 

while validating the synthetic networks in chapter 5. 

 

Figure 3-4 Total low-voltage network length (km) representing underground cable and 

overhead line length [1] 

Medium-voltage network length: 

In this study, the medium-voltage circuit length, and the proportion of underground cable and 

overhead line length were considered in this regard. The statistics corresponding to them are 

presented in Figure 3-5 for the European countries considered in this study. Surprisingly, 
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France (FR) possesses the longest medium-voltage network, surpassing Germany by nearly 

0.1 million kilometers. Nonetheless, Germany's medium-voltage circuit length is around 0.5 

million kilometers. In terms of the underground cable length and overhead line length, the 

underground length of Belgium (BE) and Denmark (DK) exceeds 80%. On the other hand, 

Germany ranks third with a slightly lower underground cable percentage of 75%. This dataset 

will be used in the study to generate synthetic networks. Moreover, these data will also help 

choose the nation when developing generic algorithms. 

 

Figure 3-5 Total medium-voltage circuit length (km) representing underground cable and 

overhead line length [1] 

In addition to low- and medium-voltage, high-voltage voltage network lengths are examined for 

some countries. Only 80% of the nations examined in the study [1] operate high-voltage 

networks at distribution level. Among these countries, only 60% or 75% of reviewed EU nations 

operating high-voltage network at the distribution level provided data pertaining to the high-

voltage network length. Unsurprisingly, similar to the low-voltage network, the longest high-

voltage electrical network is installed in Germany, approximately spreading across 0.1 million 

km. However, the overall high-voltage network level length for the considered EU nations in 

the study [1] is depicted in Figure 3-6. It is evident in the chart that Germany (DE) is still an 

outlier in terms of the total high-voltage network length installed. To conclude, by reviewing the 

data for all the voltage networks at distribution level, it is evident that Germany (DE) has 

substantial data in terms of network lengths.  



 

 

Figure 3-6 Total high-voltage network length represented in kilometers (km) [1] 

The final network indicator required to develop geo-referenced synthetic distribution networks 

is the total number of low-voltage transformers. Figure 3-7 illustrates the total number of low-

voltage transformers installed in the EU nations considered in this study. There seems to be a 

directly proportional relationship between the total length of the low-voltage networks 

combined and the number of transformers. Conversely, France (FR) and the United Kingdom 

(UK) have a shorter circuit length than Germany but have more transformers. For instance, the 

number of transformers in France (FR) exceed those in Germany by 289,100. However, the 

total low-voltage circuit length is 40% shorter than Germany. Thus, external sources will be 

able to determine the network structure independently of internal components and 

characteristics. Due to this limited information, it is not possible to present a precise 

explanation about more transformers with a shorter network length. Nevertheless, in the case 

of the shortest length, there are instances where more transformers are required owing to the 

loading condition and spatial distribution. However, the primary objective here is to collect data 

that will aid in the development of geo-referenced synthetic distribution network topologies. 

The data are utilized in chapter 5 to develop synthetic networks. Furthermore, this information 

is also used to choose the nation for the purpose of developing algorithms by determining the 

correlation between the nations.  

In summary, the total network length indicator is utilized to validate the geo-referenced 

synthetic network topologies that have been developed. The share of underground and 

overhead lengths in each voltage level will be used to construct the final electrical network. 

Finally, the total number of low-voltage networks serves as the foundation for the entire 

developmental process of synthetic networks.  
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Figure 3-7 Total number of low-voltage transformers [1] 

In addition to network indicators, this thesis considers reliability indicators for EU nations to 

investigate the quality of service provided by the distribution system operators. It is also crucial 

because a supply loss in the network indicates that the network is configured ineffectively in 

terms of integrated demand and supply conditions. Therefore, it is necessary to investigate the 

reliability of supply indicators prior to building synthetic distribution networks. 

3.3.2 Reliability of Supply Indicators 

In this analysis, two forms of reliability indicators are considered: SAIDI and SAIFI, which are 

also referred to as reliability of supply indicators. These indicators vary for each unsupplied 

load according to the network's topology and location within the network. 

SAIDI: 

SAIDI (System Average Interruption Duration Index) is defined as the average interruption 

duration for each consumer served [32]. In other words, SAIDI indicates the system condition 

in terms of the duration of interruptions wherein the interruptions may be planned or unplanned. 

Unplanned interruption in a system highlights the system’s ineffective configuration and 

uncertainties in the system. Therefore, it is crucial to investigate such interruptions. Equation 

3-11 corresponds to SAIDI. SAIDI is measured in units of time, mostly in minutes or in hours. 

𝑆𝐴𝐼𝐷𝐼 =  
∑ 𝑈௜𝑁௜

𝑁௜
 

3-11 

Here, 𝑈௜ is the annual interruption time for 𝑖௧௛ location and 𝑁௜ is the number of consumers at 

𝑖௧௛ location. 

Data from the distribution system operators' observatory [1] was used to study SAIDI in 

minutes, ranging from 2002 to 2014 for the EU nations that were studied. For this analysis, the 



 

most recent statistics from the year 2014 are further analyzed. Figure 3-8 illustrates the amount 

of time lost in 2014. Note that both Cyprus (CY) and Slovak Republic (SR) did not contribute 

any data pertaining to the SAIDI for the year 2014. Nevertheless, as illustrated in Figure 3-8, 

Slovenia (SI) has observed the longest time of system disruption. However, 80% of the 

countries considered have recorded less than three hours of unplanned interruption per year 

(i.e., 2014). This means the existing networks are out of order for a substantial amount of time 

and require further maintenance to function properly. However, it is also necessary to 

determine the frequency with which the interruptions occurred in the networks to ascertain the 

status of the network in each country. Therefore, SAIFI is considered further. 

 

Figure 3-8 SAIDI (Minutes lost in 2014) [1] 

SAIFI: 

SAIFI (System Average Interruption Frequency Index) is defined as the number of times a 

system customer experiences interruption during a particular period of time [32]. This indicates 

the system's condition. SAIFI calculations can be performed using the Equation 3-12 and it is 

measured in units of interruptions per consumer.  

𝑆𝐴𝐼𝐹𝐼 =  
∑ 𝛾௜𝑁௜

𝑁௜
 

3-12 

Here, 𝛾௜ is the failure rate for 𝑖௧௛ location, 𝑁௜ is the number of consumers at 𝑖௧௛  location. 

Figure 3-9 shows the SAIFI recorded for the year 2014. Cyprus (CY), Latvia (LV), and Lithuania 

(LU) have not provided any information regarding SAIFI for the year 2014. Among countries 

that provided this information, Slovak Republic (SR) and Romania (RO) have recorded the 

highest number of interruptions per consumers. On the other hand, Denmark (DK), Germany 

(DE), the Netherlands (NL), and Sweden (SE) have reported the lowest unit of interruptions.  



 

59 
 

 

Figure 3-9 SAIFI (Average interruptions per consumer in 2014) [1] 

Since the important network and reliability of supply indicators have been analyzed in detail, 

the following section examines the conditions for selecting a nation and determining if the 

generic algorithms developed for a nation is sufficient to construct geo-referenced synthetic 

network topologies for other EU nations. This study is conducted by analyzing network 

indicators and reliability indicators together. 

3.3.3 Analysis on Network and Reliability Indicators 

Data pertaining to real network indicators and reliability indicators that are received from the 

distribution system operator observatory [1] and described in the previous section were further 

evaluated to answer the following question: 

"Is it possible to estimate geo-referenced synthetic distribution networks for any country in 

Europe using algorithms developed for a specific country?" 

This question is addressed by studying the correlation between the characteristics and the 

considered EU nations by using a correlation coefficient measure. A correlation measure helps 

determine the relationship between specific features of data that has been provided. Indeed, 

correlation is a well-known measure of similarity between two features. For the given data, the 

correlation coefficient of the features lies between −1 and 1. For instance, if two features are 

linearly dependent on one another, the correlation coefficient between them is +1 or −1. If no 

relationship exists between the features, the correlation coefficient is 0. A value closer to one 

indicates a high positive relationship, whereas a value closer to −1 indicates a strong negative 

correlation. On the other hand, a value closer to zero indicates a lower association, whereas a 

value equal to zero indicates no correlation between the features. 

In this study, the first step entailed the evaluation of correlations between network and reliability 

indicators for all evaluated EU nations using the Pearson correlation coefficient [194, 195]. 



 

Pearson correlation coefficient is the ratio of a variable's covariance to the product of its 

standard deviations. Equation 3-13 denotes the formula for calculating the Pearson correlation 

coefficient. Applying Equation 3-13 on network and reliability indicators provides the correlation 

between the features. Figure 3-10 illustrates the correlation coefficient between network 

indicators and reliability indicators. 

𝜌௑,௒ =  
𝑐𝑜𝑣 (𝑋, 𝑌)

𝜎௑𝜎௒ 
 

3-13 

Where, 𝑐𝑜𝑣 (𝑋, 𝑌) is the covariance of two variables and 𝜎௑𝜎௒ is the product of variables’ 

standard deviations. 

 

Figure 3-10 Correlation between network indicators and reliability indicators1 

Considering the total network length as a target variable, all other network indicators are 

closely related to each other with a correlation coefficient that exceeds 0.7. Since the total 

network length is the primary parameter associated with the network, it is deemed as the target 

variable. The correlation analysis further reveals that the reliability indicators are weakly related 

to the network indicators. Because reliability indicators are highly dependent on the load 

conditions in each country and engage in a lower level of interaction with network indicators, it 

can also be concluded that reliability indicators have minimal influence while generating geo-

 
1 LV: Low-voltage; MV: Medium-voltage; HV: High-voltage; UG: Underground cable; OHL: Overhead line 
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referenced synthetic network topologies. Nevertheless, since the network metrics seem to be 

highly correlated across all considered EU nations, this study further examines the correlations 

between the EU nations on these indicators. 

Similar to the correlation of indicators, the correlation between considered EU nations were 

calculated using the Pearson correlation coefficient without excluding any of the network 

indicators. Here, Germany was chosen as the target variable because it has the longest 

network covering all voltage levels. Additionally, its total network length for an individual voltage 

level is the longest when compared to other EU nations. Furthermore, the reliability indicator 

values are significantly lower than those in other nations considered. Therefore, Germany was 

considered as the target variable, while Figure 3-11 illustrates the correlation coefficients for 

all other nations. 

 

Figure 3-11 Correlation between considered EU nations  



 

It is evident from the correlation results that 75% of the nations considered are correlated with 

Germany (DE). At the same time, Germany is also in correlation with 75% of the considered 

EU nations. Data from the study reveals that Germany has the longest total distribution network 

length and the lowest rate of SAIDI and SAIFI. Interestingly, if another country data is chosen 

to develop geo-referenced synthetic distribution networks, the challenges associated with 

higher node counts, longest power line lengths, and, most importantly, hundreds of thousands 

synthetic networks, will remain unresolved. However, the obstacles associated with these 

variables are described in Chapter 5, when discussing the geo-referenced synthetic network 

development process. 

Therefore, the data retrieved from Germany would be the optimal choice for developing and 

training the algorithms. However, it can be argued that the algorithm developed using the data 

retrieved from Germany can be utilized to generate geo-referenced synthetic networks for 

other nations as well, since the algorithms will be trained on the most extreme data available 

when compared to data from other EU nations.  

In this chapter, data from Germany was chosen to develop the algorithms to estimate geo-

referenced synthetic network topologies. In the following chapter, the open and synthetic data 

required for developing algorithms and distribution network topologies for Germany will be 

discussed. 

3.4 Summary 

In Chapter 0, the development of geo-referenced synthetic distribution network topologies was 

emphasized as the next step. This chapter begins to answer the question “Which graphical 

and electrical parameters are necessary for the generation and validation of geo-referenced 

synthetic distribution networks?” To answer this question, several electrical power networks' 

graphical characteristics, such as graph structures, node specific, and edge specific properties 

as well as electrical characteristics, such as power specific, and component specific 

characteristics, are described. By examining these characteristics, several parameters 

required for the generation and validation of the geo-referenced synthetic networks are 

uncovered. To generate geo-referenced synthetic networks, first graph structures are 

necessary. In this case, radial networks are identified as a suitable choice for low-voltage 

networks, whereas ring structure operated as open-ring is suitable for medium-voltage 

networks. Second, in order to locate the placement of the transformers, the betweenness 

centrality and the average shortest path length characteristics will be used. Finally, the process 

of selecting a transformer type must not overlook the transformer utilization factor. 

Furthermore, to validate the developed geo-referenced synthetic distribution networks, several 

indicators that were studied will be utilized. First, clustering coefficient is used to identify the 

radial networks. Second, the number of nodes, number of edges, and the total network length 

will be compared with the real-world network characteristics. Third, node degree probability 

distribution is employed to validate the transformer node. Finally, transformers and line 

utilization are used to monitor network violations. Following the outcome of the preceding 

question, several real-work network and reliability indictors are analyzed for 27 EU nations to 
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answer the question “Is it possible to estimate geo-referenced synthetic distribution networks 

for any country in Europe using algorithms developed for a specific country?” The analysis 

concludes that using data from Germany facilitates the development of generic algorithms 

capable of generating geo-referenced synthetic distribution networks for other nation. The 

conclusion was attributed to the fact that 75% of the nations considered in this study are in 

correlation with Germany, and the extreme data qualities may effectively incorporate the 

uncertainties. 

 

 

Key messages: 

 The average node degree of a network reveals its structure. If the average 

degree of a network is greater than two, the structure is most likely mesh. 

 Radial networks have zero clustering coefficient. 

 Germany has a total circuit length of 1,772,696 km, which includes low-, 

medium-, and high-voltage networks [1]. 

 Germany's total low-voltage circuit length is 1,152,138 km [1]. 

 In Germany, 87% of low-voltage power lines are underground cables. 

 75% of Germany's medium-voltage power lines are underground cables. 

 Germany has 461,000 low-voltage transformers [1]. 

 Considering the network and the reliability of supply indicators for all 

European countries, data from Germany were chosen to develop algorithms 

to create geo-referenced synthetic networks. 
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4 Open and Synthetic Data for Modeling 

What data are required for estimating geo-referenced synthetic network topologies? 

What are their limitations? 

How can these issues be addressed? 

 

The foundation of this thesis entails furnishing the demand for the geo-referenced synthetic 

distribution network topologies and studying the graphical and electrical characteristics of 

distribution networks that are useful in generating synthetic networks, which were identified in 

the preceding chapters. However, this chapter provides an in-depth background of various 

open and synthetic data, with an emphasis on estimating geo-referenced synthetic distribution 

network topologies and a distribution grid model. It is worth noting that developing a model 

using open data will impose minimal restrictions on its use and keep it open for public research. 

All of the data required for model development are publicly available. For instance, consider 

OpenStreetMap data, which is populated with nearly all the components required for the 

development of geo-referenced synthetic networks, such as buildings, power lines, 

transformers, etc. These data are openly available. Nevertheless, the quality of the data should 

be analyzed before it is used for model development. Therefore, this chapter focuses on the 

assessment of OpenStreetMap (OSM) [196] dataset, as it is the most essential dataset for this 

thesis. In this context, this chapter describes the acquisition of OSM data, its analysis, as well 

as its limitations. Furthermore, buildings retrieved from OSM data are classified using state-of-

the-art machine learning techniques in order to improve data quality and circumvent the 

limitations. Herein, several explicit and implicit algorithms are studied, and performance indices 

are used to analyze each model’s performance in order to choose the optimal performance 

model. Furthermore, with the help of public statistics, the validation of the classification model 

is demonstrated. Following the assessment of building types, this chapter will provide synthetic 

load profiles for each building type, residential rooftop Solar Photovoltaic (PV) profiles, Battery 

Electric Vehicle (BEV) profiles, and Heat Pump (HP) profiles. In order to address the 

overarching question of this thesis, it is necessary to curate adequate load and generation 

profiles for the buildings. 

Topics covered: 

 OpenStreetMap data acquisition and analysis 

 Development of classification model to classify buildings extracted from 

OpenStreetMap data 

 Statistical validation of the predicted buildings 

 Synthetic load and generation profiles 



 

4.1 OpenStreetMap Data Acquisition 

In this thesis, the objective is to develop geo-referenced synthetic distribution network 

topologies using publicly available data. Thus, data pertaining to the location and type of 

buildings, the position and type of electrical transformers, the location and voltage level of 

electrical substations, power lines, and roads are all required. Therefore, this thesis relies 

heavily on OpenStreetMap [196] to obtain the necessary data. 

The OSM is an open-source initiative that aims to develop a freely modifiable and publicly 

available world map. The OSM platform is established through crowdsourcing activities and 

enables users to freely contribute to its data by incorporating any missing information. A 

registered user can access its interface online to edit any of the information on the OSM 

platform. Simultaneously, any user may freely access and use this geographical data. Due to 

its growing volunteers as well as the high usage, the OSM's Geographical Information System 

(GIS) data is undergoing constant improvements. Therefore, the latest studies that rely on the 

GIS feature use OSM data due to the free availability of these geographic features. The OSM 

platform provides information about objects with a variety of properties, including buildings, 

roads, railroads, waterways, natural, aerial ways, boundaries, highways, military, public 

transportation, route, and power and all of this data are categorized according to their tags.  

As previously stated, the OSM raw data are freely available and can be downloaded in either 

Extensible Markup Language (XML) or Protocol Buffer Binary File (PBF) format. To extract 

relevant information, understanding the structure of this data is essential. As illustrated in 

Figure 4-1, data in OSM are organized by three objects: node, way, and relation. For each of 

these objects, two distinct elements are employed to define them: <attribute> and <tag>. The 

data attributes, on the other hand, are represented as key-value pairs. Each object is assigned 

to an identification number (id), which is unique to each object and is one of the most significant 

attributes for distinguishing one object from another in a collection.  
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Figure 4-1 OSM data example for representation in XML format 

As previously stated, these objects are modified by individual users; each of these objects is 

further characterized by security-related attributes such as timestamp, user, and user ID. In 

addition to these essential attributes, each node is also defined by geographical details such 

as latitudes and longitudes. As a result of these geometrical attributes, the node object is 

represented as point geometry. Furthermore, each node encompasses a set of tags, which 

are expressed as key-value pairs. Similarly, the way object has a collection of nodes that 

represent an open or closed object. Thus, for the way object, the geometry would include a 

line for the open object and a multi-polygon for the closed object. Finally, the relation object 

contains data pertaining to the node and way relationships. The relation object stores a logical 

or graphical relationship between the nodes and ways. Figure 4-2 illustrates the general 

attributes and tags associated with these three objects. 

 

Figure 4-2 Fundamental attributes for node, way, and relation objects in the OSM data 

<osm version="0.6"> 

<node id="260734600" uid="13281" user="Francois" lat="23.81" lon="90.43" > 

   <tag k=" amenity" v="school"/> 

   <tag k="name" v="International School"/> 

</node> 

<way id="2492201729"> 

   <nd id="260734600" /> 

   <nd id=" 260734603" /> 

   <tag k=“Building" v=“yes" /> 

   <tag k=“Building" v=“school" /> 

</way> 
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The OSM dataset is of high variety and contains a high volume of data because this dataset 

contains all-encompassing geographical information about roads, buildings, etc., which fall 

under the high-volume category, and offers detailed information about various variables such 

as address, type, etc., which are high variety. For the planet, the raw dataset from the OSM is 

available as planet OSM data. However, the OSM server offers the planet's OSM data that 

provides information on the entire planet. But it will take up a large amount of space because 

the OSM file for planet is of high volume and variety. Additionally, the dataset is stored in 

XML/PBF format, making the process of retrieving the information highly complex. 

Consequently, Geofabrik server [197] was utilized to retrieve regional data. Geofabrik server 

stores data extracts from the OSM project, which is updated regularly. Therefore, the most 

recent data for Germany at the time of model development was downloaded from this server 

for modeling purposes [197]. 

However, the data include redundant information that is futile for estimating geo-referenced 

synthetic distribution networks. Therefore, an additional tool is required to extract the essential 

information from the regional file. Osmosis [198], a Java command-line tool was used to 

process the OSM data. This tool was used to filter nodes, ways, and relations objects. Power, 

buildings, and road objects are required to generate geo-referenced synthetic distribution 

networks. Thus, the key-value pairs in Table 4-1 are utilized to filter the tags in the three 

aforementioned objects. A command line shown below is inputted in the Osmosis tool to extract 

all objects related to power, buildings, and roads. That is why for each power, building, and 

highway key, a value of * was assigned.  

Table 4-1 Key-value pairs for filtering the OSM data 

Data Key Value Output 

Power power * Substations, Transformers, Power 

lines, Power pylons, and Generators  

Buildings building * All type of buildings 

Road highway * Streets, highways, and footpaths 

 

In this case, the process should accept all nodes that correspond to the keys for power, 

building, and highway, as well as all associated values. Additionally, similar key-value pairs 

are accepted for way objects, ensuring that all components are gathered during the filtering 

process. However, despite filtering, the filtered file is still in PBF file format, which is unsuitable 

for data analysis and modeling purposes, particularly in this case, when the data is inputted 

into machine learning algorithms. As a result, the data were sent to the PostgreSQL server via 

the osm2pgsql tool [199]. 

osmosis –read-pbf file=/germany-latest.osm.pbf --tf accept-nodes power=* highway=* building=* 

--tf reject-ways --tf reject-relations --read-pbf file=/germany-latest.osm.pbf --tf accept-ways 

building=* highway=* power=* --tf reject-relations --used-node --merge --write-pbf 

file=/germany_bph.osm.pbf 
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Executing the preceding query creates three tables in the PostgreSQL server, each of which 

contains points, lines, and polygons. The point table is composed of several point elements 

with varying characteristics. Here, the most prominent feature is 'geometry,' which contains 

geometrical details. The points table geometry is comprised of 'POINT' geometries. In addition, 

the database also contains all the data essential to denote the point object type. The second 

table is a line table, which contains the geometry 'LINE'. The lines mainly symbolize all streets, 

highways, and roads, as well as power lines. In addition, each element is represented by its 

appropriate tag. Lastly, the polygon table contains the geometry 'MULTIPOLYGON'. Most of 

the items held here are residential buildings, non-residential buildings, and other enclosed 

structures, with each object including multiple tags to indicate the building's type and certain 

additional attributes. However, Figure 4-3 depicts a geographical representation of points, 

lines, and polygons in the form of a map for Germany. The World Geodetic System 1984 (WGS 

84) is the Coordinate Reference System (CRS) (EPSG:3857) used for these datasets. 

 

Figure 4-3 Geographical representation of points, lines, and polygons for Germany 

Figure 4-3 illustrates the high volume of data represented in the form of points, lines, and 

polygons. The zoomed region in Figure 4-3 shows all the roads, footpaths, power pylons, 

osm2pgsql -r pbf -c -d DE_Building -U postgres -H localhost –S /bph.style --hstore –s -C 1200 

germany_bph.osm.pbf 



 

railway stations, railroads, etc., This information is still irrelevant for generating geo-referenced 

synthetic distribution network topologies. Therefore, further analysis of the extracted data is 

followed in the next section. 

4.2 OpenStreetMap Data Analysis 

After acquiring data from OpenStreetMap using a series of methods, the data were further 

evaluated to address data-related challenges. As previously stated, the data necessary to 

estimate geo-referenced synthetic distribution networks include buildings, roads, and power 

related components such as transformers, substations, and power lines. So, these data should 

be retrieved from the point, line, and polygon datasets and analyzed for the purpose of model 

estimation. The first step is to collect the power-related components from the given datasets.  

To do so, the point dataset is evaluated first. For Germany, the point dataset has 4,484,462 

data points in total. Additionally, each point object is composed of 71 attributes, which aid in 

distinguishing the various point types. Figure 4-4 depicts the major attributes of the points 

dataset.  

 

Figure 4-4 Count of attributes in point dataset for Germany 

As illustrated in Figure 4-4, 1,015,806 points are associated with power. All other attributes, 

however, are not mandatory to extract transformers and substations. Hence, data points with 

only the power attribute are filtered out before being used for further analysis. Additionally, 

each point associated with the power attribute contains a tag denoting the power components. 

Pole, tower, generator, substation, transformer, portal, and terminal are the primary tags that 

contain the most amount of data compared to other labels (see, Figure 4-5).  
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Figure 4-5 Distribution of power attribute tags 

It is important to note that pole and tower tags are used to identify pylons, particularly those 

operating at high and extra-high voltage levels. The generator indicates the location of the 

power plant. Open Power System Data [200] contains publicly available data on the specific 

sites of power generators . During the data filtering process, generator stations accessible via 

OSM data are omitted. Regardless, the tags representing substation, transformer, and 

sub_station are used to filter out transformer locations, since a substation resembles a closed 

facility and frequently contains a common wall or fence which is not a point object. Additionally, 

extra tags pertaining to the voltage are evaluated to differentiate the transformers at various 

voltage levels, particularly using voltage-specific labels. However, because of user inactivity, 

not all points associated with transformers have these tags. Voltage-specific tags are present 

on 13.3% of the points with substation, transformer, and sub_station tags. Figure 4-6 illustrates 

the voltage-specific labels affixed to the points filtered using substation, transformer, and 

sub_station labels. For instance, 20000 label is assigned to 1500 points.  

 



 

Figure 4-6 Voltage tags for point objects 

However, a few points from each voltage-specific label are visualized spatially to review the 

labels and verify their consistency across voltage levels. This analysis indicates that the tags 

20000, 10000, 10000;400, medium;400, 15000;5100, and 400 denote MV/LV transformers. 

Likewise, 110000;medium, 110000;15000, 110000;20000, 110000, 110000;6300, and 

110000;10000 denote HV/MV transformers. Finally, 220000;110000 and 380000;110000 are 

EHV/HV transformers, respectively (see, Table 4-2). Using these tags assigned to each point, 

a total of 2,317 MV/LV transformer locations, 653 HV/MV transformer locations, and 129 

EHV/HV transformer locations are recognized. 

Table 4-2 Transformer point labels in OSM data 

Point label Assumption 

20000, 10000, 10000;400, medium;400, 15000;5100, and 

400 

MV/LV transformers2 

110000;medium, 110000;15000, 110000;20000, 110000, 

110000;6300, and 110000;10000 

HV/MV transformers 

220000;110000 and 380000;110000 EHV/HV transformers 

However, as previously stated, medium and high-voltage substations are closed facilities and 

are commonly portrayed as polygons. The polygon dataset is further processed to identify the 

locations of low-voltage transformer and medium- and high-voltage substation. The polygon 

dataset contains 29,702,788 polygon objects with a total of 71 attributes, which are used to 

identify the type of the object. Figure 4-7 illustrates the attributes with a higher proportion of 

polygons. 

 
2 LV: Low-voltage; MV: Medium-voltage; HV: High-voltage 
 



 

73 
 

 

Figure 4-7 Count of polygons according to various attributes 

As illustrated in Figure 2, there are 82,913 polygons associated with power and 29,619,992 

polygons related to buildings in Germany. The buildings will be processed subsequently, 

followed by the extraction of power-related components. The retrieved polygons using power 

attribute are further divided into substations, generators, sub_stations, plants, transformers, 

and switchgear. As in the previous step, the generator and plants objects are omitted due to 

the availability of open data from open power system data [200]. Polygons, including 

substations, transformers, and sub_stations are of particular interest, and their voltage-specific 

tags are evaluated to determine power component locations at specific voltage levels. 

Approximately, 13.5% of power components are labeled with voltage-specific information. 

Figure 4-8 illustrates the distribution of several voltage-specific tags on power-related polygon 

objects. 

 



 

Figure 4-8 Distribution of voltage tags on polygon objects of power components 

These tags are further analyzed and interpreted to extract the locations of substations at 

various voltage levels. After analyzing the tags via spatial plotting of the polygons and based 

on technical understanding, it was determined that tags 20000, 20000;400, 10000, 15000, 

10000;400, and 30000;750 represent MV/LV transformer3, 110000, 110000;15000, 

110000;20000, 110000;10000, 110000;30000, and 110000;medium represent HV/MV 

substation, and 220000, 220000;110000, 380000;110000, 380000, and 220000 represent 

EHV/HV substation (see Table 4-3). This information enables the identification of a total of 

2,728 MV/LV transformers, 2,595 HV/MV substations, and 473 EHV/HV substations with their 

locations. 

Table 4-3 Transformer polygon labels in OSM data 

Polygon label Assumption 

20000, 20000;400, 10000, 15000, 10000;400, and 

30000;750 

MV/LV transformers 

110000, 110000;15000, 110000;20000, 110000;10000, 

110000;30000, and 110000;medium 

HV/MV transformers 

220000, 220000;110000, 380000;110000, 380000, and 

220000 

EHV/HV transformers 

The geographical validation of extracted points and polygons revealed that two HV/MV 

transformers are contained within each medium voltage substation location. To determine the 

final HV/MV and EHV/HV substation locations, the points and polygons are merged and the 

HV/MV transformer points intersecting with the HV/MV substation polygons and the EHV/HV 

transformer points overlapping the EHV/HV substation polygons are removed. The point 

dataset supplied locations for several MV/LV transformers. Figure 4-9 illustrates the spatial 

distribution of MV/LV transformers, HV/MV substations, and EHV/HV substations and 

demonstrates that the number of MV/LV transformer locations that were identified were far 

fewer than expected. This may be attributed to the fact that the majority of MV/LV transformers 

are housed indoors within residential and commercial buildings. Although MV and HV 

substations are comparatively lower than existing LV transformers, the number of HV/MV and 

EHV/HV substation locations identified are more than the number of MV/LV transformers. The 

reason is that since these substations are large structures, they are obviously visible in satellite 

images. The validation of the substations and transformers identified follows. 

 
3 LV: Low-voltage; MV: Medium-voltage; HV: High-voltage; EHV: Extra-high-voltage 
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Figure 4-9 Spatial representation of extracted transformer and substation locations for low-, 

medium-, and high-voltage levels 

To evaluate the OSM-based data on transformers and substations, the data are compared to 

the existing information about low-voltage transformers, medium-voltage substations, and 

high-voltage substations as per the official records. There are 500,000 MV/LV4 transformers, 

4,500 HV/MV substations, and 800 EHV/HV transformers installed and currently operational 

in Germany [201]. Figure 4-10 compares the data extracted from OSM to existing data. It is 

evident from the comparison that there is a percent error of −98.99%, −42.33%, and −40.87% 

for MV/LV transformers, HV/MV substations, and EHV/HV substations, respectively. Due to 

the significant inaccuracy percentage for MV/LV transformers coupled with the small number 

of detected transformers, these extracted locations are ineffective in estimating geo-referenced 

synthetic low-voltage network topologies. In chapter 5, the process of synthetically estimating 

the locations of MV/LV transformers will be discussed. Interestingly, the percentage inaccuracy 

for HV/MV and EHV/HV substation locations is less than 50%, indicating that the extracted 

data helps develop geo-referenced synthetic medium- and high-voltage networks. Various 

approaches were developed to estimate geo-referenced synthetic distribution network 

topologies while preserving the information extracted from OSM data to include these data in 

the model. 

Apart from transformers and substations, another critical component of the model is power 

lines. Germany's power lines can be recognized using the previously extracted line dataset. 

The line dataset includes power lines, streets, highways, other roads, trains, and airways. As 

a result, it is necessary to filter the dataset to detect power lines and differentiate between 

different voltage levels. The line dataset is also examined as a part of this process. There are 

11,130,492 line-objects in the line dataset, of which 89,717 are associated with power 

 
4 LV: Low-voltage; MV: Medium-voltage; HV: High-voltage; EHV: Extra-high-voltage 
 



 

components. Each of these line objects has tags that correspond to voltage, frequency, wire, 

and circuits, among other things. Voltage-specific tags are essential in order to distinguish 

between power lines operating at different voltage levels. 

 

Figure 4-10 OSM identified data comparison with existing one for transformers and substations 

count5 [201] 

However, only 48% of retrieved power line objects include voltage-specific tags and the 

frequency attribute aids in differentiating between power lines used for electrical transmission 

and distribution and power lines used for railroad transportation. This is because the frequency 

for power transmission and distribution is 50 Hz, whereas the frequency for railroad transport 

is 16.6 Hz. A further point to note is that only 30% of the line objects have frequency tags, with 

7% corresponding to railway-based power lines. To identify transmission and distribution lines, 

power lines are filtered with a 50 Hz frequency and voltage specification. Figure 4-11 illustrates 

the total number of power lines according to the voltage specifications. 

 
5 LV: Low-voltage; MV: Medium-voltage; HV: High-voltage; EHV: Extra-high-voltage 
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Figure 4-11 Voltage-specific tags for power line objects 

By examining the voltage tags mentioned for line objects, we can ascertain that 380000, 

220000 indicates EHV6 lines, 110000, 220000;110000, 380000;110000 depicts HV lines, 

20000, 10000, 30000 represents MV lines, and 400 denotes LV lines (see Table 4-4). 

Additionally, 41.7%, 14.4%, 34.3%, and 9.5% of the total lines extracted were HV, EHV, MV, 

and LV power lines, respectively. For obvious reasons, they are referred to as power lines, as 

underground cables are not visible in satellite imagery and are not apparent in OSM data. 

Figure 4-12 illustrates power lines extracted from OSM data for HV and EHV, where green 

lines denote alternating current lines, and additional red lines denote direct current lines 

connecting borders. 

Table 4-4 Power line labels in OSM data 

Line label Assumption 

380000, 220000 EHV lines 

110000, 220000;110000, 380000;110000 HV lines 

20000, 10000, 30000 MV lines 

400 LV lines 

In order to assess the quality and effectiveness of the extracted power lines, they are compared 

to existing power lines in Germany. However, statistical comparisons of identified power lines 

were adapted due to the scarcity of accessible data and the difficulty of conducting spatial 

comparisons due to their vast number. The statistical parameter compared was the total circuit 

length for all voltage levels and each specific voltage level. In Germany, the total circuit length 

for all electrical power lines that include underground cables, irrespective of voltage level, is 

 
6 LV: Low-voltage; MV: Medium-voltage; HV: High-voltage; EHV: Extra-high-voltage 
 



 

1,816,857 km [202]. These power lines and cables are distributed as 1,173,065 km, 511,164 

km, 96,658 km, and 35,970 km for LV, MV, HV, and EHV levels7, respectively. Table 4-5 

illustrates the total circuit length for various voltage levels along with the nominal voltage and 

voltage regulation for each substation. 

 

Figure 4-12 OSM extracted HV and EHV power lines 

Table 4-5 Power grid characteristics in Germany that include, nominal voltage, total length, 

and voltage control according to voltage levels [Adapted from [202]] 

Voltage level Nominal voltage Total circuit length Voltage regulation 

Low voltage 0.4 kV 1,173,065 km Fixed voltage ratio 

Medium voltage 10, 20, and 30 kV 511,164 km Fixed/Automated control 

High voltage 110 kV 96,658 km Automated control 

Extra-high voltage 220 kV, 380 kV 35,970 km Automated control 

In the illustration, it is evident that the overall circuit lengths for low- and medium-voltage levels 

are significantly longer than those for other voltage levels. However, despite their extraordinary 

lengths, the OSM identified power lines at the LV and MV levels are modest and insignificant. 

The outcome is unsurprising because the majority of electrical power supply lines are 

underground cables. According to data [1], 85.9% and 75.2% of total circuit length for LV and 

MV, respectively, are underground cables. Due to the increased percentage of underground 

cables, it is evident that the power lines transporting electricity remain unidentified when using 

OSM data. On the other hand, HV and EHV power lines are overhead wires that are generally 

identifiable in the OSM data. Therefore, due to their identifiable nature, the extracted HV and 

EHV power lines are compared to Table 4-5 and depicted in Figure 4-13. 

 
7 LV: Low-voltage; MV: Medium-voltage; HV: High-voltage; EHV: Extra-high-voltage 
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Figure 4-13 OSM identified power line length comparison with existing data for HV and EHV 

levels 

According to Figure 4-13, the percentage inaccuracy for HV and EHV power lines8 is -39.9% 

and -3.2%, respectively. The negative percentage inaccuracy implies that the identified power 

lines are fewer in number than those already in place. According to the findings, all of the EHV 

power lines are visible in OpenStreetMap and are extracted without data loss. As a result, 

creating geo-referenced synthetic network topologies for EHV networks is a straightforward 

process. Consequently, SciGRID [178], osmTGmod [179], GridKit [180], and the Common 

Information Model (CIM) [181] used OSM data to develop the synthetic EHV network or the 

transmission network for Germany. Additionally, the percentage error is higher for extracted 

HV power lines than for EHV power lines. This necessitates the development of concrete 

approaches for generating HV networks from OSM data using extracted power lines. 

Compared to the HV and EHV power lines extracted from OSM data, the LV and MV power 

lines discovered are insignificant compared to the already installed LV and MV power lines. 

Consequently, advanced approaches were established to extract power lines from road 

networks and develop geo-referenced synthetic LV and MV networks, which will be explored 

in greater detail in Chapter 5. 

Following the extraction of the most significant power components, such as transformers, 

substations, and power lines, the data corresponding to network nodes are the final data 

necessary for developing geo-referenced synthetic network topologies. The nodes could be 

either load or generation nodes, depending on their configuration. The former is generally 

located in enclosed structures, except in use cases such as street lighting and some other 

commercial locations such as mines. Therefore, buildings are essential for determining 

network nodes, particularly load nodes and data extracted from the OSM aids in identifying the 

locations and attributes of buildings. As already mentioned, closed structures in the OSM data 

 
8 LV: Low-voltage; MV: Medium-voltage; HV: High-voltage; EHV: Extra-high-voltage 
 



 

are represented by polygons with specific tags representing a type of polygon. The polygons 

with the tag <building> were filtered in order to extract their locations and their attributes. 

The filtered polygon dataset contains 29,619,992 buildings and 71 associated attributes. All of 

these features, however, are redundant and contain multiple missing values. As a result, only 

a few critical features among the available options are examined. After a few redundant 

features are eliminated, the total comes down to twelve. Additionally, each building is labeled; 

the essential labels and the labels associated with the majority of buildings are illustrated in 

Figure 4-14. 

 

Figure 4-14 Building labels in filtered OSM data 

Figure 4-14 illustrates the significant number of buildings, which are denoted by the label 'yes' 

totaling to 23,570,792. That is, 79.5% of the structures with the 'yes' tag are of unknown type. 

Some of the other essential labels include house, garage, residential, apartment, detached, 

and industrial. Along with these labels, there are 'no' and 'power' labels as well. However, 

buildings labeled 'power' are already used to designate power-related components such as 

transformers and substations. As such, they are omitted from the list along with buildings 

labeled 'no,' so the rest can serve as load nodes. The resulting dataset contains approx. 29 

million buildings with twelve distinct characteristics. However, it is vital to define the type of a 

building before integrating it into electrical networks to ensure that appropriate load profiles are 

assigned for the power flow analysis. However, only 20.5% of buildings have specific tags. 

Therefore, it is vital to predict the building types prior to designing geo-referenced synthetic 

network topologies. Therefore, the following section discusses building type classification 

using state-of-the-art machine learning methods. 

4.3 Building Type Classification 

Buildings retrieved from OSM data merely provide their spatial positions along with certain 

limited information about their type. Several studies have been conducted regarding the 

classification of buildings using a variety of different methodologies. Classification of building 
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types can be accomplished manually or automatically. However, manual classification of 

buildings is a highly time-consuming process. As a result, automated classification is the most 

advanced solution available. According to the literature reviewed in this study, automated 

classification leveraged until now relies on several building attributes. Steiniger et al. [203] 

classified urban structures based on their perceptual qualities, which include built-up area, 

density, size, shape, and orientation. Similarly, Hecht et al. [204] pioneered the use of 

extensive data sources, such as 3D models to automate the classification of buildings. 

Additionally, Henn et al. [205] employed 3D building information to train Support Vector 

Machines (SVMs), a machine learning technique used in classification applications. In addition 

to three-dimensional information, Wurm et al. [206] considered one-dimensional variables such 

as length and two-dimensional variables such as the area. This method, however, is 

constrained by its emphasis on unidentified features. In the field of artificial intelligence, the 

use of data from Light Detection and Ranging (LIDAR) and image recognition is also highly 

popular. In this context, Lu et al. [207] and Zheng et al. [208] classified building types using 

spatial and landscape features extracted from LIDAR data. The characteristics of these image 

data function as the primary basis for classifying building types. However, the utilization of this 

data necessitates the use of a preset tag for each image during the training phase of any 

machine learning model. It is also extremely challenging to obtain images/data with 

predetermined tags. This is why many researchers are utilizing the OSM dataset, which 

contains essential information such as geometry, type, area, length, and address, all of which 

are essential for training a model. Forget et al. [209] conducted several tests using the OSM 

dataset to classify built-up areas using supervised learning. Fan et al. [210], on the other hand, 

analyzed rural structures using deep learning based on Convolutional Neural Networks 

(CNNs). A machine learning method was used by Bast et al. [211] to tag building types to 

improve the quality of building-level information in OSM.  

There is a gap in the literature in classifying the building types extracted from the OSM data 

with various missing values and inconsistencies in the predefined labels in the OSM data, 

which will be discussed in this section. Therefore, a methodology was developed to predict 

building types from buildings-based data extracted from OSM. This was accomplished by 

augmenting the model with additional features from external sources, which correspond to the 

buildings and accounting for missing values for the features to improve the prediction results. 

The approach used to generate building tags is depicted schematically in Figure 4-15. 

The methodology is initiated by collecting and combining features of the input data, which 

includes Coordination of Information on the Environment (CORINE) [212] dataset, building 

heights in Berlin [213] dataset, and the 2011 census data for Germany [214], in addition to the 

core OSM buildings dataset. The merged dataset is used to train a machine learning model 

that addresses the dataset's inherent problems. Finally, data post-processing as well as active 

validation of predicted data against publicly available statistics were performed. 

 



 

 

Figure 4-15 Methodology for predicting building types on building footprints of Germany 

When predicting building types, the OSM data was appended with additional information 

retrieved from the datasets mentioned above. The following section will discuss the process of 

appending and preparing the data for training the machine learning model. 

4.3.1 Data Pre-processing 

As previously stated, the extracted buildings add up to approx. 29 million buildings with 12 

distinct features such as way, way_area, building, osm_id, amenity, shop, leisure, office, 

construction, highway, foot, and place. However, these twelve features were reduced to five 

that include foot, height, area, road network, and building because the data for the rest of the 

features contain more than 90% missing values, which would negatively impact the model. 

However, these six features are insufficient to predict building tags accurately and as such, 

they are supplemented with data from other external data sources. 

First, buildings’ heights are a highly feature in direct relation to the buildings. However, 

retrieving the heights of individual buildings is impossible, as no such dataset exists so far. 

However, the Copernicus project's urban atlas [213] defines building heights for several large 
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cities, including Berlin’s, which was retrieved from the urban atlas database [213]. This dataset 

includes a raster layer with a resolution of ten meters that provides information about building 

heights. In order to integrate the dataset to OSM data, geographical coordinate reference 

systems are extremely important. Berlin’s buildings height dataset supports the ETR89 

Coordinate Reference System (CRS) (i.e., EPSG:3035). However, the coordinate reference 

system should be uniform for each dataset while appending the data. Figure 4-16 depicts the 

raster layers containing information about the height of buildings in Berlin, Germany [213]. As 

per the box plot in Figure 4-16, building heights range from 3 m to 30 m with a few outliers. 

However, the values of 50% of building heights are between 5 and 15 meters. 

 

Figure 4-16 10 m raster layer containing building height information on the left and box plot 

showing range of building heights on the right 

Apart from conventional building features such as area and height, predicting building tags 

becomes easier with the land-use property. The CORINE land cover databases, which were 

created as part of the Copernicus project [212], contain information on land use. However, the 

dataset is based on the classification of satellite images and holds a feature with 44 labels. 

The labels in the dataset correspond to the continuous urban fabric, discontinuous urban fabric, 

industrial or commercial units, and airports labeled as 111, 112, 121, and 124, respectively. 

Appendix B has extensive definitions of each label and its representation. The dataset was 

retrieved from the Copernicus land monitoring service due to the high-resolution land use 

offering and contains 167,119 geometries with a variety of labels, which are explained 

elaborately in Appendix B. However, the majority of polygon geometry were classified as 

pastures or non-irrigated arable land (20% and 14%, respectively). Additionally, 0.6%, 12.7%, 

and 4% of data reflect continuous urban fabric, discontinuous urban fabric, and industrial or 

commercial units, respectively. As stated above, the reference system of the geometry is vital 

for appending the data to OSM buildings. Therefore, this dataset was projected from ETR80 

(EPSG:3035) to the World Geodetic System 1984 (WGS 84). (EPSG:3857). This projection 



 

was necessary because the primary dataset, which is the OSM buildings, is in the WGS 84 

(EPSG:3857) coordinate system. Figure 4-17 illustrates the geometric representation of the 

CORINE land cover data for Germany and demonstrates that most of the continuous urban 

fabric and discontinuous urban fabric areas are concentrated in major cities such as Berlin, 

Bremen, Hamburg, and others. Furthermore, we can see that North Rhine-Westphalia has a 

high concentration of urban regions as well. 

 

Figure 4-17 CORINE land cover data for Germany 

Until now, only parameters pertaining to building types and their geographic locations have 

been examined. Further, the census 2011 dataset was used to incorporate certain statistical 

data regarding the total number of buildings in Germany and the total number of buildings by 

municipality. In 2011, the survey collected data on the overall number of buildings in Germany, 

including the number of apartments, single-family houses, multi-family houses, and residential 

buildings. This dataset contains the total number of buildings per 100 m x 100 m grid cell. The 

data is further sub-divided to provide information on single-family houses, two-family houses, 

multi-family houses, and apartment buildings. Grid cell locations for various types of buildings 

are depicted in Figure 4-18. Moreover, each grid cell provides the buildings count for those 

with living spaces. That is, quasi commercial, industrial, and public spaces are disregarded. 

Table 4-6 summarizes the various types of buildings, their abbreviations, and the total number 

of grid cells for each type. However, each grid cell has a varied number of buildings. Based on 

the data in each grid cell, the total number of buildings with living space is approx. 19 million. 

The buildings with living spaces are classified as single-, two-, and multi-family houses 

(detached and semi-detached), as well as apartment buildings. In this study, a detached house 

is described as a free-standing building regardless of its type, a semi-detached house is 

identified as a building constructed against another building, a terraced house is defined as a 
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structure built against two other buildings, and other building types are categorized as buildings 

that are not detached houses, semi-detached houses, or terraced houses. However, statistical 

data related to the aforementioned building types should be integrated into each building 

retrieved from OSM data as a feature.  

 

Figure 4-18 Number of buildings with living spaces for different building types per 100m X 

100m grid cell 

Table 4-6 Number of grid cells per building type in Germany 

Building type Abbreviation Number of grid cells 

DHFOF Detached house for one family 1,637,974 

SFHSDH Single-family house: semi-detached 411,851 

SFHTH Single-family house: terraced 292,062 

DTFH Detached two-family houses 552,705 



 

TFHSDH Two-family house: semi-detached 65,266 

TFHTH Two-family house: terraced 50,873 

MFH3T6A Multi-family house: 3–6 dwellings 437 990 

MFH7T12A Multi-family house: 7–12 dwellings 153 802 

AB13MA Apartment building: 13 or more units 36,214 

ABT Another building type 104,205 

Here, the procedure for extracting features from statistical data is described in detail. Before 

deriving this, features from building heights and CORINE land cover datasets are appended 

to the OSM buildings. In order to combine the data from these datasets, it is necessary for their 

coordinate reference systems to match. Therefore, EPSG:3857 was selected since it 

corresponds to OSM buildings. If the dataset is formatted in line with a different reference 

system, it must first be converted to the predefined system before proceeding.  

The CORINE land cover data is appended to the building dataset as a feature. This is 

accomplished by matching the CORINE data geometries (polygons) with the buildings that 

overlap these polygons. Thus, the intersection of building polygons with CORINE data 

geometries enables the use of CORINE data as a feature for intersected buildings. Similarly, 

the heights of berlin buildings were added to OSM buildings by intersecting them with the raster 

data from the building heights dataset. Finally, census data with the 10 characteristics listed in 

Table 4-6 and buildings with living spaces are assigned to the OSM data. Each OSM building 

will be assigned a value, and an ID based on the grid cell with which it intersects. These 

statistics indicate the number of buildings per building type in a grid cell. These features are 

used to provide eleven more features with a percentage probability. These additional features 

were developed by calculating the fraction of total buildings for different building types in a grid 

cell, which are derived from the census data, by the total number of OSM buildings in that grid 

cell. Equation 4-1 contains the mathematical expression used to calculate this. 

𝑍௜,௝ =
𝑇𝐵௜,௝

𝑇𝐵ைௌெ
× 100  

∀ 𝑖 = {𝐷𝐻𝐹𝑂𝐹, 𝑆𝐹𝐻𝑆𝐷𝐻, 𝑆𝐹𝐻𝑇𝐻, 𝐷𝑇𝐹𝐻, 𝑇𝐹𝐻𝑆𝐷𝐻, 

 𝑇𝐹𝐻𝑇𝐻, 𝑀𝐹𝐻3𝑇6𝐴, 𝐴𝐵13𝑀𝐴, 𝐴𝐵𝑇, 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑙𝑖𝑣𝑖𝑛𝑔}  

∀ 𝑗 = 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠 

4-1 

The left-hand side of Figure 4-19 depicts the total number of buildings with living space 

contained within a grid cell (i.e., three). However, when the grid cell is mapped using OSM 

buildings, a total of six buildings are found. Thus, based on Equation 4-1, 50% of the buildings 

in that grid are likely to be buildings with living space, which are also referred to as residential 

buildings, and all buildings in that grid receive 50% as an additional feature. Similarly, on the 

right side of Figure 4-19, an extra building type count is considered (i.e., DHFOF). In this case, 

the total number of DHFOF in the same grid is two. As a result, two of the six buildings are 

DHFOF. Thus, each building in that grid has a 33.3% probability of becoming a DHFOF 

building. When this technique is applied to other building types, each building receives a 

percentage probability for the building types, resulting in eleven additional features. 
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Figure 4-19 OSM buildings mapped with census 100 X 100 m2 grid cells 

Based on these data, the building with a greater than 100% likelihood of having living space is 

classified as a residential building and labeled as <residential> in the building type feature. In 

fact, this building type feature is considered the target class and stores essential building tags. 

Before any of the buildings are labelled in line with the aforementioned assumption, it is 

necessary to address the significant uncertainties in the labels indicated in Figure 4-14. 

Buildings retrieved from OSM data have over 1575 distinct labels. The reason for this ambiguity 

includes unclear representation of buildings, such as spelling errors and the use of different 

languages. Nevertheless, some of these ambiguities are summarized in Table 4-7. 

Table 4-7 Uncertainties in OSM building labels 

Building label Differing representation 

garage garages 

farm farm_auxiliary  

Terrace Terrasse 

House Haus | Hause |house 

Youth Centre Jugendzentrum 

Nursing home Plegeheim 

deconstructed deconstucted 

Through manual refinement, the number of unique labels was reduced to 895. However, there 

are still a huge number of unique values that are not required for the training model. Therefore, 

the target class labels were reduced to 25 using a Wiki model, where different building types 

are categorized [215] and renamed <building_class>, which now serves as the target class for 

classification and the 25 designations of the target class also include residential, garages, 

industrial, commercial, etc. Indeed, the label <yes> is a member of the target class, which must 

be predicted. There are also several buildings that are unfit for living and are labeled as <yes>. 

Total DHFOF = 2 

OpenStreetMap Buildings 

Total buildings with living space = 3 

OpenStreetMap Buildings 



 

For instance, garages are depicted on the map as distinct polygons, with some of them labeled 

<yes>. Hence, pre-labeling these buildings aids in the model's effective training. It is important 

to note that the individual's need determines the size of the garages, although some adhere to 

standard garage dimensions. Figure 4-20 illustrates the area of OSM buildings that are already 

designated as garages/attachments. It is clear from this figure that the areas of 75% of 

buildings are less than 35 m2 that are represented as garages/attachments in OSM data. 

Therefore, in addition to the typical garage sizes of 20 m2 to 40 m2, buildings with an area of 

less than or equal to 35 m2 are considered garages. However, not all buildings with a floor size 

of less than 35 m2 are garages. However, they are most likely not residential buildings. 

 

Figure 4-20 Box plot representing area of buildings labeled as garages 

Following all these stages, the dataset contains 29,497,772 buildings with 30 features and 

10,359,617 buildings with 25 unique labels. However, before preprocessing, the overall 

number of buildings with labels was 6,047,266, which is 20.4% of total OSM buildings. This 

number rises by 15% after preprocessing. The enhancement in labeled data enables large-

sample training of the model. Figure 4-21 illustrates the percentage improvement in the labeled 

data before and after preprocessing processes. Finally, the labeled data are used to train a 

machine learning model using the specified features to predict the unlabeled dataset. 
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Figure 4-21 Percentage labeled and unlabeled data before and after preprocessing 

However, before creating a classification model, a secondary examination of the dataset was 

conducted, revealing that the features in the dataset contain many missing values. Upon 

examination of all the features, it became apparent that there are at least 77% missing values. 

As such, the created model may have several inaccuracies. As a result, the developing model 

must account for these missing values. Thus, the missing values in all features are further 

examined along with the label distribution in the target class. The distribution of labels in the 

target class is depicted in Figure 4-22 and most of them are attachments accounting for 52.8% 

of total labeled data. Residential and commercial buildings are associated with 35.9% and 

9.02% of labelled data, respectively. The remaining classifications, such as agricultural, 

school, and hospital, are fairly insignificant. As a result, if a model is trained on these data, the 

predicted value will be biased toward the widely shared labels. Thus, the developing model 

should consider not only missing variables but also class imbalance issues. 

 



 

Figure 4-22 Distribution of labels in the target class 

The next section illustrates a classification model for predicting building types in response to 

the preprocessing of OSM data and identifying issues associated with class imbalance and 

missing values in the dataset. 

4.3.2 Classification Model 

After defining the datasets and identifying the underlying challenges, different machine 

learning classification models were employed to address the issues of missing values and 

class imbalance. In this context, experiments were conducted on the datasets to determine the 

model that fits the data optimally. However, a detailed discussion of the classification models 

that were employed follows. The classification of building types was performed undertaking a 

two-fold approach. The first stage is to classify buildings as residential or non-residential. The 

second stage is to subclassify all predicted residential buildings into single- and multi-family 

houses. The approach employed is represented in Figure 4-23.  

 

Figure 4-23 Methodology employed for building type classification 

However, the machine learning algorithm used to categorize buildings should consider missing 

values and class imbalance issues while training on OSM buildings with tags. The majority of 

the effort is directed towards processing the data; roughly 20% of the task entails training the 

model and making predictions on the unlabeled dataset. Herein, two distinct types of models 

were investigated: those that account for missing values and class imbalance. The first is the 

implicit method, which combines the solutions for missing values, class imbalance, and 

classification into a single architecture. The second method is the explicit method, in which 

each task is completed independently. 

The implicit approach employed HexaGAN [216] and a modified Artificial Neural Network 

(ANN) [217]. Since this thesis does not pertain significantly to algorithms. An explicit method 

was developed in tandem with the implicit method to address missing values and class 

imbalance problems. This method utilized Multiple Imputation by Chained Equations (MICE) 

Pre-processed Dataset 

Non-residential Buildings Residential Buildings 

Single-Family Multi-Family Apartment 

Single-Family House Multi-Family House 
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[218] for imputing missing values, Synthetic Minority Oversample Techniques (SMOTE) [219], 

and cost-sensitive learning for imbalance classification (Class-Weighting) (CS) that helps 

address class imbalances in the target class labels. Finally, a random forest classifier was 

used to classify the different types of buildings. 

The implicit techniques were evaluated on both baseline and preprocessed datasets 

containing labeled data since they are addressed and offered the precision score with baseline 

dataset. On the other hand, the explicit method was trained exclusively on preprocessed OSM 

dataset because this method contains separate algorithms in each step. Nevertheless, model 

comparison was carried out using the F1 score for all three models, wherein the scores range 

from 0 to 1. The experiments were repeated ten times with five-fold cross-validation using 

labeled data that was split 80:20 between training and testing data. The decision to limit the 

experiment to ten times is ascribed to the fact that increasing the number of experiments 

resulted in increased time due to the large volume of data involved in training the model. 

Nevertheless, classification performance demonstrates that when implicit approaches are 

deployed and trained on baseline data, they achieve results that are nearly identical to model 

specifications. However, when trained on the OSM dataset, a score of 0.81 was produced, 

which is 17% lower than the baseline dataset values. Furthermore, the F1 score obtained when 

the explicit method was used in conjunction with the OSM dataset was 0.995. The classification 

performance of all the implemented models is summarized in Table 4-8. 

Table 4-8 F1 scores for implementation models 

Model Model Results Implementation + Results OSM Data Results 

HexaGAN 0.97±0.02 0.97 0.81 

ANN 0.81 0.79 0.63 

MICE+CS+RF - - 0.99 

The F1 scores clearly demonstrate that the explicit method produced acceptable results. 

Therefore, model MICE combined with class weighting and a random forest classifier fit the 

OSM data better. So, this model was chosen to predict the types of buildings in the unlabeled 

OSM dataset. When the trained model was applied to predict the building types for the 

unlabeled buildings, it resulted in a label for each unlabeled building. The predicted building 

types yielded the results listed in Table 4-9. Residential, attachments, commercial, and 

industrial were the primary labels identified. However, the share of residential labels was 

significantly higher than the share of all other labels. Here, any buildings other than residential 

structures are classified as non-residential buildings.  

Table 4-9 Total buildings per building type predicted 

Building Type Predicted Count Percentage 

Residential 19,747,802 66.947 

Attachments 5,583,658 18.929 

Commercial 3,127,442 10.602 



 

Industrial 460,698 1.562 

Hospital 217,103 0.736 

Hotel 114,013 0.387 

Agricultural 105,888 0.359 

Government 15,198 0.052 

Event venues 35,935 0.122 

School 46,452 0.157 

Religious 33,645 0.114 

Transport 3,117 0.011 

University 2,927 0.010 

Military 1,048 0.004 

Others 2,866 0.010 

The residential buildings categorized in the first step of the two-fold approach provided 

19,747,802 as the result, which are further classified into different house types. The house 

type should be classified into single-family house, multi-family house, and apartment. To 

accurately predict the house type, the training and testing data sets should contain appropriate 

house type tags. However, merely 2% of the entire labeled dataset comprises labels of the 

appropriate type (i.e., single-family house, multi-family house, and apartment). The majority of 

the labeled house types are categorized as detached, semi-detached, and terrace. It is 

important to note that detached houses are buildings that do not share a wall with another 

building, semi-detached houses share at least one wall with another building, and a terraced 

house consists of several connected houses. But these labels are different from those 

expected. Therefore, the above labels are adapted to align with the expected labels as 

specified in Table 4-10.  

Table 4-10 Adaptation of OSM building labels to proposed labels 

OSM Building Type Proposed House Type 

Detached Single-Family House 

Semi-Detached Multi-Family House 

Terrace Multi-Family House 

Apartment Apartment 

House To be predicted 

Residential To be predicted 

Thus, detached houses are classified as single-family houses, whereas semi-detached and 

terrace houses are classified as multi-family houses. Furthermore, the terms house and 

residential continue to be used interchangeably. Thus, it was determined that buildings that 

were labelled as houses and residentials should be predicted for single-, multi-, and apartment 

buildings. These assumptions, however, were made in order to improve the dataset's quality. 

Additionally, to enhance the quantity of labeled data, the approach utilized in the preprocessing 

stage to pre-label residential buildings using percentage probability characteristics was 

employed here. If the probability of a building being of a particular kind is greater than or equal 
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to 100%, the appropriate house type label is attached to the building. Following these stages, 

single-family houses, multi-family houses, and apartments make up 60.0%, 21.8%, and 18.0%, 

respectively. However, a closer examination of the percentage distribution reveals that the 

dataset contains a class imbalance, with a disproportionate share of single-family houses. 

As stated above, there are 1,769,997 samples in the full training and test dataset. Using these 

samples, we constructed a model that accounts for missing values (i.e., MICE), an 

oversampled SMOTE with weighted data to account for class imbalance, and a random forest 

for classification. The fitted model was then used to predict house types of 17,977,805 

residential buildings, which included both those labeled as residential and houses. Finally, 

applying the model to predict the residential building types led to three categories: single-family 

homes, multi-family homes, and apartment buildings. Table 4-11 summarizes the number and 

percentage share of the various housing types predicted. Nevertheless, it is significant to verify 

the outcomes of the model prediction. Geographical validation of the predicted buildings is out 

of scope for this study due to the data volume. However, statistical validation on the predicted 

building types and house types is performed in the following subsection. 

Table 4-11 Predicted house types count and percentage 

House Type Count Percentage 

Single-family House 14,378,635 72.81 

Multi-Family House 4,350,183 22.03 

Apartment 1,018,984 5.16 

 

4.3.3 Statistical Validation 

The labeled OSM dataset following prediction comprises of 19,747,802 residential buildings, 

including 14,378,635 single-family houses, 4,350,183 multi-family houses, and 1,018,984 

apartment buildings. However, validating predicted results at the building level is rather difficult 

and detailed statistics must be used to evaluate the results. Therefore, the results were 

statistically validated using publicly available data. Germany has a total residential building 

count of 19,053,216 [220]. However, the machine learning model outlined previously, which 

considers not just classification but also missing values and class imbalance was employed to 

anticipate the total number of residential buildings as 19,747,802. That is, the total number of 

predicted residential buildings deviates by 3.4%. The comparison of the residential building 

count in Germany with official figures and predicted results is shown in Figure 4-24. The 

variation in the result is seemingly minor.  



 

 

Figure 4-24 Comparison of actual residential buildings count with predicted count 

Furthermore, it is hardly accurate that barring 3.4% of non-residential buildings predicted to be 

residential, rest are actually residential. As a result, additional validation spreading across the 

whole of Germany is required, which extends beyond the validation of the count. Therefore, 

additional validation was conducted for each German federal state to accomplish this task. 

Figure 4-25 illustrates the predicted residential building count by federal state and the 

associated data from the state's official data.  

The comparison demonstrates that the percentage inaccuracy spans between −18.6% and 

22.7%. That is, −18.6% indicates that approximately 19.0% of residential buildings are 

anticipated to be non-residential, while 22.7% indicates that some of the non-residential 

buildings are predicted to be residential. The data from Figure 4-25 clearly demonstrates that 

the two states of Baden-Württemberg and North Rhine-Westphalia is where it is over predicted. 

However, when all federal states are considered, the root mean square error is 12.7%. The 

relative error could be explained by the fact that certain states have a higher density of 

buildings than others. In addition, buildings used for training in some of the states are fewer, 

which could account for the percentage error. To further reduce error and predict appropriate 

labels, the training dataset could be enhanced. In other words, the training data should be free 

of missing values, and the distribution of the labels in the training data should be nearly equal. 
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Figure 4-25 Residential buildings count comparison for each federal state of Germany  

As previously indicated, residential buildings are further classified into single-family houses, 

multi-family houses, and apartment buildings, which are proven through comparison to official 

statistics. Germany has a total of 12,707,978 single-family houses [220]. However, the total 

number of single-family homes predicted is 14,378,638. When these predicted buildings were 

compared to Germany's single-family housing count, a relative error of 13.1% is observed. 

That is, around 13.5% of buildings are classified as single-family houses, despite their actual 

type being different. Additionally, data pertaining to the predicted multi-family houses and 

apartment buildings are combined and compared to multi-family houses in Germany. In 

Germany, there are a total of 6,345,238 of this type [220]. However, 5,369,167 multi-family 

houses and apartment buildings are predicted. The comparison of predicted results to the 

official figures presents an inaccuracy of −15.3%. This is because official data include the total 

number of multi-family houses, which comprise two-family houses, multi-family houses, and 

residential establishments or apartments. Figure 4-26 compares the values predicted by 



 

machine learning models for single- and multi-family houses in Germany compared with official 

statistics. 

 

Figure 4-26 Predicted single- and multi-family houses comparison with official statistics 

Since there was a substantial deviation of single-family house prediction over official statistical 

data, a detailed geographical validation on German federal states was conducted. Figure 4-27 

depicts the predicted single-family houses in each federal state in comparison to official 

recorded data. As seen in Figure 4-27, the percentage inaccuracy for predicted single-family 

houses ranged from −16 to 50%. That is, a negative percentage suggests that the number of 

predicted buildings are less than actual numbers. On the other hand, the positive value shows 

that the number of buildings anticipated as single-family houses are higher than real single-

family houses. However, there is a significant divergence between predicted and actual values 

for three states: Baden-Württemberg, North Rhine-Westphalia, and Sachsen, which have 

deviations of 37.6%, 38.3%, and 50.8%, respectively. The substantial difference between the 

single-family house prediction and the residential building prediction can be attributed to the 

several additional assumptions undertaken by the model for the single-family house prediction. 

That is, neither the training nor the testing datasets contain any labels that must be predicted. 

To close this gap, detached, semi-detached, and terrace residences are classified as single- 

and multi-family homes. However, not every detached house is a single-family house, and not 

every semi-detached house is a multi-family house. They can occasionally be two distinct 

houses in reality. Additionally, this task is entirely predicated on the assumption and specified 

labeling of the target class using census data. In the future, these issues can be overcome by 

improving the actual needed labeling in OSM data. 

Summing up, this is the first time that OSM data-extracted buildings have been tagged 

according to building and house types by using state-of-the-art machine learning methods.  
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Figure 4-27 Single-family houses count comparison for each federal state of Germany 

These buildings with spatial attributes and types are a prerequisite for developing geo-

referenced synthetic distribution network topologies (Chapter 5) and for the distribution grid 

model in Chapter 6. For the electrical network, the building types are valuable for allocating 

load profiles. Therefore, the following section will address the generation of synthetic load 

profiles. In addition, the section will include various other demand and generation profiles. 

4.4 Synthetic Load Profiles for the Classified Buildings 

After predicting the building types, the main research question can only be answered using 

load and generation profiles to examine the vulnerabilities of the developed geo-referenced 

synthetic distribution networks and the implications of their future integration into the 

distribution networks. Load profiles such as residential load profiles without heat pumps, 

individual heat pump profiles, and battery electric vehicle charging profiles are derived in this 

section. In addition, generation profiles such as residential solar rooftop photovoltaic are also 

presented. 



 

First and foremost, residential load profiles are generated using the framework Fine.Building 

[221]. The load profiles for a one-person household, a two-person household, a three-person 

household, a four-person household, and a five-person household are synthesized in this 

section. However, it is difficult to distribute these load profiles in residential buildings. 

Nevertheless, as noted previously, the number of predicted residential buildings are 

19,747,802, including 14,378,635 single-family houses, 4,350,183 multi-family houses, and 

1,018,984 apartment building types. Additionally, Germany has approximately 40,828,717 

available dwellings [220]. As a matter of fact, it is evident that a single-family residence 

contains a single dwelling, but an apartment complex contains an average of 13 dwellings. 

Using this information, multi-family houses are assigned an average of five dwellings. 

Each dwelling will have a load profile. According to official data [214], 42.3% of households 

are occupied by single people. Similarly, 33.2%, 11.9%, 9.1%, and 3.5% of households are 

occupied by two people, three people, four people, or five or more people, respectively. As a 

result, one-person, two-person, three-person, four-person, and five-person household profiles 

are generated using FINE.Building framework [221], as illustrated in Figure 4-28.  

 

Figure 4-28 Household load profiles for one, two, three, four, and five persons 
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These profiles have a 15-minute temporal resolution. Fine.Building [221] can generate 

synthetic profiles for any fiscal year. Based upon these data, load profiles for eight days 

(weekday (WD) and weekend (WE) for four seasons) are developed to reduce the complexity 

of the distribution grid model (see Chapter 6). These profiles are distributed randomly with a 

probability of 0.42, 0.33, 0.11, 0.1, and 0.04 for all dwellings in Germany (see, Figure 4-29). 

 

Figure 4-29 Households as a percentage of total dwellings in Germany. 

The residential load profiles presented above are generated when there are no heat pumps in 

the dwellings. In Chapter 1, the future implication of the increased integration of heat pumps 

into the residential sector is already discussed. Therefore, this section synthesizes additional 

heat-pump profiles for residential dwellings.  

In this context, using FINE.Building [221], individual heat pump profiles for one-person, two-

person, three-person, four-person, and five-person houses are gathered. These profiles, like 

the household profiles, are collected on weekdays and weekends for four seasons with a 15-

minute time resolution. Furthermore, these profiles are associated with each building in 

accordance with the residential load profile allocation. That is, if a home is a single-family 

house, a profile with the probability depicted in Figure 4-29 will be chosen at random. If the 

randomly picked profile is for a two-person home, the heat pump profile for that household will 

serve as the selection for that dwelling. When a building is designated as a single-family 

dwelling, just one profile is selected. Additionally, if a building is a multi-family house or an 

apartment, five and thirteen profiles are selected, respectively. However, the share of dwellings 

equipped with a heat pump will be decided based on future penetration scenarios in the 

residential sector. Figure 4-30 illustrates the synthetic heat pump profiles which will be 

assigned to the residential dwellings. Heat pumps are primarily used in the winter and only 

partially in the spring and autumn. 



 

 

Figure 4-30 Heat pump load profiles for one, two, three, four, and five-persons in a household 

We will now discuss the new distributed demand associated with Battery Electric Vehicles 

(BEVs). As mentioned in Chapter 1, a high penetration of battery electric vehicles will 

eventually integrate into distribution networks. To assess their impact in this context, it is 

necessary to understand the integration and electricity consumption pattern. These patterns 

are elaborately established by Linssen et al [222]. This study considers three distinct groups 

of battery electric vehicle users. Full-time employees were considered in the first group, 

pensioners, housewives/men were considered in the second group, and part-time employees 

are considered in the third group. The departure and arrival times and the distance traveled by 

each group of users are analyzed and the average value for each group is showcased in Table 

4-12. 
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Table 4-12 Average time and distance travelled by the battery electric vehicle users in different 

clusters 

 Parameter Weekday (Time) Weekend (Time) 

Cluster 1 Departure from home (HH:MM) 07:27 09:47 

 Arrival at home (HH:MM) 18:47 11:41 

 Driving distance (km) 46.81 17.04 

Cluster 2 Departure from home (HH:MM) 09:20 13:12 

 Arrival at home (HH:MM) 12:02 18:20 

 Driving distance (km) 18.88 38.84 

Cluster 3 Departure from home (HH:MM) 16:24 04:24 

 Arrival at home (HH:MM) 19:02 18:17 

 Driving distance (km) 20.89 42.06 

However, these values are used to generate load profiles for the weekday and weekend for 

three groups. These developed profiles are intended for cases of uncontrolled or unregulated 

charging. In other words, once the vehicle returns home from work or other routine activity, it 

connects to the electricity grid and charges until it is completely charged. These profiles are 

repeated for each season since the arrival and departure times, as well as the distance 

traveled, are not dependent on the season. Moreover, since household profiles have a 15-

minute time resolution, these battery electrical vehicle profiles are also scaled to a 15-minute 

time resolution. The profiles generated are illustrated in Figure 4-31. Here, the profiles 

evaluated are for vehicles connected to a 3.7 kW power source and the average energy usage 

of vehicles is assumed to be 17.5 kWh/100 km. 



 

 

Figure 4-31 Battery electrical vehicle load profiles for three different clusters  

As discussed in Chapter 1, there is a high probability of the heavy integration of rooftop PV 

into the distribution networks. In Chapter 6, the profiles corresponding to solar rooftop PV 

generation will be introduced to assess the influence of solar rooftop PV generation. However, 

it is worth mentioning here that residential rooftop PV profiles are generated for different 

locations in Germany.  

Residential rooftop PV profiles are generated to analyze future decentralized generation in the 

distribution networks. The consideration of solar rooftop PV on each building takes into account 

distinct solar rooftop PV profiles for each building and the variation of solar irradiation based 

on location and time. To reduce model complexity only four profiles are assumed in the thesis: 

east, west, north, and south locations of Germany. In addition, four seasons of Spring, 

Summer, Autumn, and Winter with 15-minute time resolution are addressed to account for the 

variation in time. The rooftop PV generation profiles are modeled using the Pvlib library [223]. 

However, the distribution grid model in Chapter 6 consider these generated profiles (see Figure 

4-32). 
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Figure 4-32 Residential PV profiles at a location of East, West, North, and South of Germany 

To conclude, this chapter discussed open and synthetic data that were necessary for 

generating geo-referenced synthetic network topologies and distribution grid modeling to 

answer the overarching question of the thesis. In the next chapter, the modeling of geo-

referenced synthetic distribution networks using open data is discussed. 

4.5 Summary 

To address the thesis's overarching question, the study conducted in Chapter 0 encourages 

the development of geo-referenced synthetic distribution networks. However, to assist in the 

development of geo-referenced synthetic networks, Chapter 3 covered the graphical and 

electrical characteristics, as well as numerous other real-world network and reliability 

indicators. As a result of the analysis in Chapter 3, it was determined that the data available 

from Germany should be used to develop algorithms for estimating geo-referenced synthetic 

distribution network topologies. Based on this context, this chapter addresses the question 

“What data are required for estimating geo-referenced synthetic network topologies?” Since 

the networks are being developed on a national scale, the model requires geographical data 

such as buildings, power lines, transformers, and substations. To retrieve this information, 

OpenStreetMap was selected due to the availability of required data and the comprehensive 

geographical data contained within this dataset. However, an elaborate analysis of the dataset 

reveals that the data required for estimating geo-referenced synthetic network topologies 

includes buildings to locate end-consumers, road infrastructure for power lines, medium-

voltage transformer locations, high-voltage substation locations, and high-voltage power lines. 

The dataset, however, has some limitations. The limitations include the absence of adequate 

tags for buildings, which are essential to assign end-consumer load profiles. Identifying this 



 

limitation introduces another question: "How can these issues be addressed?" This chapter 

addressed this issue by developing a classification model to categorize buildings into 

residential and non-residential buildings using state-of-the-art machine learning methods by 

supplementing the OSM data with additional data. Additionally, the model was used to further 

categorize residential buildings as single-family houses, multi-family houses, and apartment 

buildings. In this manner, this chapter successfully handled the limitations of the data. 

Additionally, synthetic load and generation profiles are established to aid in the assignment of 

load and generation profiles to the residential buildings. 

 

 

Key messages: 

 Open data for estimating geo-referenced synthetic distribution network 

topologies are extracted from OSM data using a series of methods and 

tools include osmosis, osm2pgsql, and Python. 

 For high-voltage and extra-high voltage power lines extracted from OSM 

data, percentage errors of −39.9%, and −3.2% were observed. 

 29,494,772 buildings were extracted from OSM data, yet only 20.5% of 

these buildings holds tags. 

 To improve the quality of data, additional data from CORINE, building 

heights, and census data were incorporated into the data extracted from 

OSM. 

 The classification model categorizes 19,747,802 buildings as residential 

buildings. 

 Single-family houses, multi-family houses, and apartment buildings are 

predicted to account for 14,378,633, 4,350,183, and 1,018,984 of the 

residential buildings, respectively. 

 Residential building validation results in a percentage error of 3.4%, 

whereas the combined validation of single-family, and multi-family house 

and apartments results in a percentage error of 13.14% and −15.3%, 

respectively. 

 Residential load profiles and heat pump profiles will be assigned to 

residential dwellings with a probability of 0.42, 0.33, 0.11, 0.1, and 0.04 for 

one-, two-, three-, four-, and five-person households, respectively. 
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5 Estimation of Synthetic Distribution Network Topologies  

How are geo-referenced synthetic distribution network topologies estimated, what are the 

algorithms utilized, and how are they developed? 

 

As was concluded in the preceding chapters, the overarching question of this thesis “Are the 

distribution networks adequate for the anticipated increase in demand and generation in the 

future?” can only be answered through the estimation of the geo-referenced synthetic 

distribution network topologies. Therefore, this chapter will describe the general modeling 

approach for estimating geo-referenced synthetic distribution network topologies, explicitly 

emphasizing the German distribution networks. As noted in Chapter 3, the methods 

established here can also be utilized to construct synthetic networks for various other 

European nations. It is important to note that the distribution grid networks vary by country. For 

instance, low-voltage, medium-voltage, and high-voltage are all considered distribution 

networks in Germany. In contrast, only low-voltage and medium-voltage are considered 

distribution networks in the majority of countries, while high-voltage is regarded as a 

transmission grid. As a result, a novel methodology is introduced and discussed in Section 5.1 

and Section 5.2 that can assist with generating geo-referenced synthetic low-voltage and 

medium-voltage network topologies. Furthermore, using an open model for estimating high-

voltage and extra-high voltage will be briefly discussed in Section 5.3. When generating 

network topologies, each voltage level of the distribution network that is being constructed will 

begin with an introduction to its networks. Following the collection of data necessary for 

estimating specific voltage level networks, the relevant graphical and electrical networks will 

be built using these data. To be precise, the modeling procedure will be divided into two steps: 

graphical network estimation and electrical network estimation. Additionally, the process of 

validating the generated networks is discussed in Section 5.4. The validation of the generated 

synthetic low-voltage networks will be provided to determine the model efficiency and gain 

insights that can help enhance the developed model in the future. Figure 1-3 illustrates the 

overall scheme for building this network structure while Figure 5-1 illustrates the general 

structural overview of modeling each voltage level. 

Topics covered: 

 Estimation of geo-referenced synthetic low-voltage networks 

 Estimation of geo-referenced synthetic medium-voltage networks 

 Estimation of geo-referenced synthetic high- and extra-high voltage network as 

single network 



 

 

Figure 5-1 A block diagram representation of the modeling approach used to estimate geo-

referenced synthetic network topologies. 

5.1 Geo-referenced Synthetic Low-voltage Networks  

Since public research does not have access to proprietary information, this study has placed 

a strong emphasis on utilizing only publicly available data to develop geo-referenced synthetic 

distribution networks. To do so, a bottom-up approach will be utilized. Low-voltage networks 

are the primary networks that supply electricity to end-users and thus, they are first in line 

within the process. The low-voltage networks are fundamentally comprised of a secondary 

medium-voltage to low-voltage (MV/LV) transformer and end-consumers. These two aspects 

are connected by underground cables or overhead lines, as appropriate. Several protection 

components are also connected to low-voltage networks, which include switches, fuses, circuit 

breakers, etc. However, these protection components are not considered in the modeling since 

this thesis aims to perform steady-state analysis. As such, the suggested methodology utilizes 

available data to determine end-user locations, power lines, and low-voltage transformers. The 

following section will, however, discuss the user input data required for estimating geo-

referenced synthetic low-voltage networks. In addition, if the data for the model development 

are insufficient, heuristics will be assumed, which will be discussed in greater detail in the 

subsequent sections. 

5.1.1 User Input 

The first significant data input necessary for model development is information pertaining to 

the end-user location. Therefore, data regarding the locations of buildings are extracted from 

OpenStreetMap. However, in this case, only residential buildings are considered because most 

of the non-residential buildings, such as industrial, and commercial buildings, are connected 

to medium- and high-voltage networks. As discussed in the previous chapter, residential 

buildings are further categorized into single-family houses, multi-family houses, and apartment 

Step 1: User Inputs 

Step 2: Generation of Graphical Network 

Step 3: Generation of Electrical Network 

Step 4: Extract Statistical Information 

Step 5: Validate 
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buildings. As an initial step, residential building footprints along with the house type are 

considered for end-user locations. In this step, approx. 19.7 million residential buildings have 

been identified to establish synthetic low-voltage networks.  

To develop appropriate synthetic low-voltage networks, the low-voltage transformer locations 

are also necessary in addition to the end-user locations. In Chapter 3, it was determined that 

open data about the locations of low-voltage transformers are not properly covered in the OSM 

data. There is, however, information available regarding the total number of low-voltage 

transformers currently installed in each EU nation. In Germany, there are approx. 500,000 low-

voltage transformers in operation [201]. This information should be used when anticipating the 

identification of the transformer locations. In addition to the transformer location, knowledge 

about transformer type is also essential to build comprehensive low-voltage networks. 

Accordingly, four major transformer types with capacities ranging from 160 kVA to 630 kVA 

are utilized. Table 5-1 summarizes the most frequently used transformer capacities. 

Table 5-1 Frequently used MV/LV transformer capacities in Germany [Adapted from [154]] 

Low-voltage transformer types Capacity Voltage 

MV/LV transformer type I 160 kVA 20/04 kV and 10/0.4 kV 

MV/LV transformer type II 250 kVA 20/04 kV and 10/0.4 kV 

MV/LV transformer type III 400 kVA 20/04 kV and 10/0.4 kV 

MV/LV transformer type IV 630 KVA 20/04 kV and 10/0.4 kV 

In addition to transformers and end-user locations, power lines are another essential 

component of low-voltage networks that must be considered. Examining the location data 

discussed in Chapter 4 corresponding to power lines in the low-voltage network, minimal power 

lines were identified in the OSM dataset. Furthermore, according to the findings in Chapter 3, 

87% of the total power lines in low-voltage networks are underground cables. Typically, low-

voltage power lines run along the sides of most roads. Therefore, in this method, road 

infrastructure abstracted from OpenStreetMap data is utilized to model the low-voltage power 

lines. However, the modeling of power lines will be discussed in the following section. Each of 

the modeled power lines should include a line type that can be assigned. Therefore, due to the 

high percentage share of underground cables, conventional cables from the literature are 

employed, such as those listed in Table 5-2. Each of these cable types has a specific current 

rating in the range of 123 A to 364 A. The data in Table 5-2 reveals that increasing the diameter 

of the cable increases the line’s current carrying capacity. 

Table 5-2 Standard low-voltage cable types in Germany [Adapted from [155]] 

Cable 𝑰𝒓 (𝑨) 
𝑹 (

𝜴

𝒌𝒎
) 𝑿 (

𝜴

𝒌𝒎
) 

NAYY 4 X 35 𝑚𝑚ଶ 123 0.868 0.08 

NAYY 4 X 120 𝑚𝑚ଶ 245 0.253 0.08 



 

NAYY 4 X 150 𝑚𝑚ଶ 275 0.206 0.08 

NAYY 4 X 240 𝑚𝑚ଶ 364 0.125 0.08 

In addition to the basic network components discussed above, another vital piece of data 

pertains to the distributed generators installed in low-voltage networks. The information 

regarding the renewable energy systems installed in the low-voltage networks is available in 

Open Power System Data (OPSD) [200]. Open power system data contains detailed 

information about the locations as well as the capacities of various distributor generators 

installed in low-voltage networks (see, Appendix D). Amongst the generators that are available, 

solar PV accounts for most of the installed capacity in low-voltage distribution networks. Since 

the necessary information has been discussed in this section, the final user input used to create 

the model is listed in Table 5-3. 

Table 5-3 Final user input data for estimating synthetic low-voltage networks 

End-user Geographically represented residential building footprints 

Transformers Total low-voltage transformer count 

(Location by the developed model) 

Power lines Road infrastructure including streets, highways, footpaths, and bike 

paths 

Power plants Open power system data extracted low-voltage distributed generator 

locations and their capacities 

Structure Radial structure 

With the input data, the following section discusses the model for estimating synthetic low-

voltage networks. 

5.1.2 Modeling Methodology 

The previous section discussed the primary user input. In this section, the methods used for 

generating geo-referenced synthetic low-voltage networks will be delivered along with their 

implementation. Data pertaining to Germany is used by the developed algorithms to generate 

geo-referenced synthetic low-voltage networks for the country. However, as depicted in Figure 

5-2, the methodology used to generate geo-referenced synthetic low-voltage networks has 

been divided into two layers: the development of the graphical network and the development 

of the electrical network. 
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Figure 5-2 Schema for low-voltage network modeling 

The following subsections demonstrate low-voltage graphical and electrical networks. 

5.1.2.1 Graphical Network 

When developing geo-referenced synthetic low-voltage networks, the first layer is the graphical 

network. In the graphic layer, the buildings must first be clustered into 500,000 clusters. This 

step was necessary because there are 500,000 low-voltage networks in Germany and each 

low-voltage network contains different buildings. Additionally, low-voltage networks' primary 

users are located in residential buildings. As a result, the 19,747,802 residential buildings are 

clustered into 500,000 clusters. Numerous methods, such as unsupervised machine learning 

algorithms, are investigated to execute the clustering task, including K-means clustering [224], 

hierarchical clustering [225], and a density-based spatial clustering algorithm with noise 

(DBSCAN) [226]. However, neither of the two algorithms described here, hierarchical or 

DBSCAN, is suitable in this scenario because DBSCAN is based on the number of points with 

a given radius. This algorithm considers two hyperparameters. Therefore, when the building's 

dataset is clustered using the DBSCAN algorithm, some points are excluded to create outliers, 

as illustrated in Figure 5-3. Figure 5-3 also illustrates how, given some data points, the 

requirement is to cluster the data points into three clusters. However, the additional information 

this algorithm requires is a radius. Based on the radius, a centroid is generated to form a circle. 

Here, all the points inside the circle will be grouped, while the data points outside the circles 

that are represented as outliers are neglected and not considered in any cluster. This is the 

primary disadvantage of this algorithm.  

Graphical Network 

Electrical Network 

Clustering the buildings into 500,000 networks, 

Mapping the buildings with the street 

networks, connecting buildings to the streets, 

placement of the low-voltage transformer to 

the networks 

Assigning the electrical line parameters to 

the street lines, integrating loads to the 

buildings, linking transformer parameters to 

the transformer, performing power flow 

simulations  



 

 

Figure 5-3 An example showing the application of DBSCAN 

On the other hand, hierarchical clustering is unsuitable for this application due to the time 

complexity. 𝑂(𝑛ଶ), where 𝑛 is the input size, is quadratic and requires a significant amount of 

time. Subsequently, this technique is incapable of handling large amounts of data. Therefore, 

K-Means clustering was chosen as the final method for clustering the set of 19,747,802 

residential buildings. However, during implementation, this algorithm’s shortcoming became 

apparent. Since the data is of high volume and variety, is causes memory constraints. 

Basically, K-Means works with distances between the data points, and holding the Euclidean 

distance between each pair of nodes requires a significant amount of memory space. This 

issue was overcome by implementing a new approach using Joblib and DASK [228] on K-

Means (Scikit-learn) [229], which clusters data points using several CPUs in parallel. Yet, even 

with the parallel use of several computers, a memory outage occurs. This is because the K-

Means algorithm has a space complexity of 𝑂(𝑁(𝐷 +  𝐾))[227], where 𝑁 is number of points, 

𝐷 is number of dimensions, and 𝐾 is number of centers. Additionally, K-Means also has time 

complexity of 𝑂(𝑁𝐾𝐼) [227], where 𝐼 is the number of iterations. However, since there is still a 

potential to address the memory issue, scalable machine learning implementation using 

DASK-ML [228] is utilized further. When these two techniques were implemented on the 

residential building dataset to cluster up to 500,000 clusters, it was observed that only 100 

clusters can be achieved for K-Means (Scikit-learn + Joblib) [229]. In contrast, using DASK 

machine learning algorithms [228], a maximum of 10,000 clusters can be achieved. Figure 5-4 

illustrates the how K-Means (Scikit-learn + Joblib) [229] and K-Means are distinct by using 

scalable DASK machine learning algorithms [228]. However, a memory outage has occurred 

after the mentioned clusters that are 100 and 10,0000 for K-Means (Scikit-learn + Joblib) [229] 

and DASK-ML [228].  

Outliers 

Core point 

Radius 

Specified points=6 
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Figure 5-4 Time required to cluster data points using K-Means (Scikit-learn + Joblib [229]) and 

K-Means (DASK-ML [228]) 

Therefore, residential building data is separated by NUTS-3 level, and the total number of low-

voltage networks is distributed based on the density of the residential buildings. For example,  

Figure 5-5 depicts the low-voltage network distributed to the NUTS-3 level in the context of 

Germany. The figure also demonstrates that Berlin has the highest number of residential 

buildings and low-voltage networks are assigned accordingly. However, the total number of 

low-voltage networks in each administrative district varies between a few hundred and 

approximately 9000. Nevertheless, the majority of the districts have low-voltage networks 

ranging from 500 to 1500 networks. Therefore, when using DASK-ML, K-Means clustering can 

be achieved when each administrative district is clustered according to the low-voltage 

networks count.  

 

Figure 5-5 Distribution of low-voltage networks to administrative districts in Germany 

K-Means clustering was also accomplished using DASK-ML on residential buildings scattered 

across 401 NUTS-3 regions. Each administrative district's residential buildings were clustered 
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according to the district's low-voltage networks (refer, Figure 5-5). Thus, this process helped 

resolve the memory bottleneck, as the number of clusters required in each district is smaller 

than the number of clusters resulting in memory problems (refer to Figure 5-4). Overall, 

combining the individual clusters at each administrative district (i.e., 401) resulted in the 

outcome of 500,000 clusters, wherein each cluster will have a certain number of residential 

buildings. The approach that was developed to complete this task is depicted in Algorithm 1. 

Algorithm 1: Clustering the residential buildings to match low-voltage networks 

Algorithm 1: Clustering the residential buildings / Datapoints with latitude and longitudes 

Input Number of clusters (𝐾) 

Geo-referenced residential building footprints (𝐵 =  {𝐵ଵ, 𝐵ଶ, … , 𝐵௡}) 

Administrative district shapefiles (NUTS-3) 

Steps 1: Extract centroid coordinates for each building (𝐵௖ = {𝐵௖ଵ, 𝐵௖ଶ, … , 𝐵_𝑐𝑛). 

 2: Utilize NUTS-3 shapefiles to map residential building centroids to extract 

buildings from each administrative district 𝐵ே = {𝐵ேଵ, 𝐵ேଶ, 𝐵ேଷ, … … , 𝐵ேସ଴ଵ}. 

 3: Distribute clusters required/low-voltage networks required in proportion to 

the number of residential buildings within administrative districts 𝐾ே =

{𝐾ேଵ, 𝐾ேଶ, … . 𝐾ேସ଴ଵ}. 

 4: for 𝑖 = 1, … ,401 𝑑𝑜 

        Cluster 𝐾ே௜using scalable K-Means on 𝐵_𝑁𝑖 

        Each residential building is assigned a number between 0 and 𝐾ே௜ that 

corresponds to the cluster. 

 5: Collect 𝐾 clusters by combining the residential buildings in each 

administrative district 𝐵௄ = {𝐵௄ଵ, 𝐵௄ଶ, … . , 𝐵௄௄}. 

Return Residential buildings with an additional characteristic indicating the cluster 

number 𝐵௄ = {𝐵௄ଵ, 𝐵௄ଶ, … . , 𝐵௄௄} 

However, when Algorithm 1 is applied with the known total number of low-voltage networks in 

Germany (i.e., 500,000), the residential buildings are clustered into 500,000 clusters. The 

building density was used to determine the identified clusters. However, this would not be the 

case in real-world networks, as low-voltage networks are generally designed based on the load 

carried by each building. Therefore, an algorithm is developed by modifying the K-Means 

clustering technique to help limit the network's or cluster's peak load. Algorithm 2 illustrates 

the method for limiting the network's peak load so that the network remains feasible. 

Algorithm 2 Clustering the residential buildings by limiting the cumulative peak load 

Algorithm 2: Residential buildings /Data points clustered by weights  

Input Number of clusters (𝐾) 

Geo-referenced residential building footprints (𝐵 =  {𝐵ଵ, 𝐵ଶ, … , 𝐵௡}) 

Administrative district shapefiles (NUTS-3) 

Maximum low-voltage transformer capacity (𝑃) 

Steps 1: Create centroid coordinates for each building (𝐵௖ = {𝐵௖ଵ, 𝐵௖ଶ, … , 𝐵_𝑐𝑛). 
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 2: Utilize NUTS-3 shapefiles to map residential building centroids to extract 

buildings from each administrative district 𝐵ே = {𝐵ேଵ, 𝐵ேଶ, 𝐵ேଷ, … … , 𝐵ேସ଴ଵ}. 

 3: Distribute clusters / low-voltage networks in proportion to the number of 

buildings within administrative districts 𝐾ே = {𝐾ேଵ, 𝐾ேଶ, … . 𝐾ேସ଴ଵ}. 

 4: 𝑓𝑜𝑟 𝑖 = 1, … ,401 𝑑𝑜 

        Choose the number of clusters 𝐾ே௜ 

        Randomly select 𝐾ே௜ data points to start as a cluster centroid 

        Calculate the Euclidean distance (𝑑(𝑝, 𝑞) = ඥ(𝑞ଵ − 𝑝ଵ)ଶ + (𝑞ଶ − 𝑝ଶ)ଶ 

), between the data points to the centroids. Where, 𝑝, 𝑞 contains cartesian 

coordinates 

        Find 𝑎𝑟𝑔𝑚𝑖𝑛 (arg min
௫ ∈௦

 𝑓(𝑥) = {𝑥 ∈ 𝑠 ∶ 𝑓(𝑠) ≥ 𝑓(𝑥) ∀ 𝑠 ∈ 𝑆}) gives the 

closest centroid to each data point 

        Calculate the sum of weights of each data point that belongs to each 

centroid (i.e., the sum of peak loads corresponds to the building) 

        𝐼𝑓 cumulative weight exceeds the given constant(𝑃) (i.e, transformer 

capacity) 

            The farthest data point in the current cluster will be assigned to the 

next nearest centroid until the cumulative weight ≤ 𝑃 . 

        Repeat for all the clusters 

        The remaining residential buildings, after all the clusters satisfy will be 

grouped to form different clusters (i.e., exceeding 𝐾ே௜−→ 𝐾ே௜ + 𝑥௜). 

        Each residential building is then assigned a number between 0 and 𝐾ே௜ +

𝑥_𝑖 that corresponds to the cluster. 

 5: Collect 𝐾 + 𝑋 clusters by combining the residential buildings in each 

administrative district 𝐵௄௑ = {𝐵௄ଵ, 𝐵௄ଶ, … . , 𝐵௄௄ା௑}. 

Return Residential buildings with an additional characteristic indicating the cluster 

number 𝐵௄௑ = {𝐵௄ଵ, 𝐵௄ଶ, … . , 𝐵௄௄ା௑} 

When Algorithm 2 was implemented on the OSM dataset, it worked efficiently for a small set 

of data points. However, since this study employs a large volume of buildings data, this solution 

takes an inordinate amount of time. Therefore, clustering was performed without considering 

Algorithm 2, and weights were applied to each residential building using the load profiles 

mentioned in Chapter 4. Following the load profile assignment, the peak load for each building 

was selected, and the cumulative of each cluster was then calculated. If the cluster peak loads 

exceeded the highest transformer capacity by 1.5 times or more, the cluster was further 

clustered until the network's peak load fell under the limit.  

By implementing these methods, the residential buildings are clustered into 500,000 clusters 

(𝐾௝  ∀ 𝑗 = {0, 1, … ,499999), as illustrated in Figure 5-6, which showcases the 500,000 groups. 

Each group has a specific number of residential buildings. For example, for the cluster (i.e., 

𝑗 = 23988) there are 48 residential buildings grouped together. Likewise, each cluster is 

assigned to a certain number of residential buildings.  



 

 

Figure 5-6 Residential buildings in the clusters  

Once the residential buildings were assigned under each group, the next step involves 

producing a graphical low-voltage network for each group with a certain number of residential 

buildings. To illustrate this process, the cluster (𝐾ଶଷଽ଼଼) is selected as an example from the 

clusters shown in Figure 5-6. The methods for developing graphical and electrical low-voltage 

networks are explained herein. 

The next phase in the modeling process entails collecting information regarding the roads in 

each cluster. In this context, Algorithm 3 implements a process to extract the road infrastructure 

(line geometry) from each cluster. In fact, the road infrastructure is considered for modeling 

power lines due to limited low-voltage power line visibility in the OSM, since 87% of low-voltage 

power lines in Germany are underground cables. Since all underground cables align along 

roads, the roads from the OSM dataset are retrieved for each cluster. As we are developing 

geo-referenced networks, all the objects considered are geometrical entities. For instance, 

buildings have polygon geometries, while their centroids have point geometries, and roads 

have line geometries. Henceforth, buildings, building centroids, and roads will be referred to 

as polygons, nodes, and edges, respectively. 

Algorithm 3 Collecting road-infrastructure from OpenStreetMap spatially (line geometries) 

Algorithm 3: Collecting road-infrastructure from OpenStreetMap spatially 

Input Nodes (𝑁𝐵) 

Extracted line geometries from OpenStreetMap for Germany (𝐸𝐺) 

Buffer (𝑅) 

Steps 1: Collect the nodes 

 2: Select the center node from the set of nodes. 
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 3: Produce a bounding box (𝐵𝐵) (i.e., a polygon geometry) with a buffer (𝑅) 

from the selected center node 

 4: Map the geographical bounding box with the line geometries (𝐸𝐺) 

 5: Extract the line geometries that intersect the bounding box (𝐵𝐵). 

        The extracted lines (𝐸) conatin some nodes (N𝐸) 

Return Nodes (𝑁 = 𝑁𝐵 + 𝑁𝐸), Edges (𝐸) 

Given the residential buildings in the cluster (i.e., 𝐾ଶଷଽ଼଼) and a buffer of ten kilometers, 

Algorithm 3 extracts road infrastructure proximal to the residential buildings in the cluster. The 

buffer distance of ten kilometers was chosen to ensure that there is no possibility of missing 

lines near the buildings. Now that the nodes (i.e., residential building centroids, and road 

infrastructure end points) (𝑁) and edges (i.e., roads) (𝐸) have been retrieved in the given 

cluster, the nodes corresponding to the residential buildings are connected to the to the nearby 

edges. The nodes in the supplied cluster include the centroids of the residential building and 

the nodes on the edges. Therefore, nodes pertaining to residential building centroids are 

referred to as building nodes (𝑁𝐵), whereas nodes pertaining to edges are referred to as edge 

nodes (𝑁𝐸). The following stage entails the use of Algorithm 4 for connecting the building 

nodes to the nearest edge. 

Algorithm 4 Connecting nodes and edges 

Algorithm 4: Connecting nodes and edges 

Input Nodes (𝑁) 

Edges (𝐸) 

Steps 1: Collect the edges 

 2: Create a R-Tree from the edges (𝐸) 

 3: 𝑓𝑜𝑟 𝑖 = 1, … , 𝑐𝑜𝑢𝑛𝑡(𝑁𝐵) 𝑑𝑜 

    Project the building node (𝑁𝐵௜) perpendicular to the nearest line in the R-

Tree formed by the edges (𝐸) 

     Generated new node (𝑁𝐸𝐸௜) on the nearest line at the point where building 

node is projected 

      Generate a new line (𝐸𝑁_𝑖) joining building node (𝑁𝐵௜) and new node 

formed (𝑁𝐸𝐸௜) 

       Bisect the edge at the new node formed (𝑁𝐸𝐸௜), so that the new edges 

(𝐸𝐸௜) are formed from the old edge 

Return Nodes (𝑁 = 𝑁𝐵 + 𝑁𝐸 +  𝑁𝐸𝐸 ), Edges (𝐸 = 𝐸 + 𝐸𝑁 +  𝐸𝐸) 

Because there is always a service drop between the power line and the building, additional 

nodes are generated on the major edges by projecting the building node perpendicular to the 

nearest edge. The service drop results from the connecting of the residential building centroid 

with the newly formed node. This is achieved by using the Algorithm 4.  

When the discussed methods are implemented on the cluster (i.e., 𝐾ଶଷଽ଼଼), a graph structure 

is produced as represented in Figure 5-7. However, these methods do not lead to the 



 

establishment of a proper graphical network, since they form a graph consisting of primary 

edge nodes, newly produced nodes, building nodes, edges, and newly formed edges. But in 

most cases, there will be missing edges and closed edges. Furthermore, as stated above, a 

ten kilometers buffer was considered, which gives rise to several edges that are not adjacent 

to the given residential building. This fact is clearly evident in Figure 5-7.  

In order to properly generate a radial graph network, these uncertainties should be eliminated. 

Undesirable edges were eliminated by undertaking the following procedure. Each edge in the 

graph comprises of at least two nodes. However, if edges exist without a newly created node, 

those edges are removed from the graph. This enables the retention of just those edges 

containing building nodes, newly generated nodes, and some edge nodes, by eliminating 

undesirable edges from the network. 

 

Figure 5-7 Graph generated by implementing Algorithm 4 on the considered cluster 

Nevertheless, this process was not used to create a comprehensive graphical network due to 

the chances of producing subgraphs, as illustrated in Figure 5-7. There may be 𝑛 number of 

subgraphs depending on the size of the network. However, this example contains only two 

subgraphs. Hence, these subgraphs must be joined to form a complete graphical network. If 

there are more than two, combine them one at a time to reduce the number of subgraphs to 

one. Algorithm 5 helps achieve this goal by connecting each subgraph by constructing a new 

edge between the two shortest node pair one from each subgraph. This procedure is repeated 

until there is only one subgraph, resulting in a complete graphical network without any 

uncertainty in the graph. 

 

 

Subgraph: 1 

Subgraph: 2 
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Algorithm 5 Constructing a single graph from subgraphs 

Algorithm 5: Constructing a single graph from subgraphs 

Input Nodes (𝑁) 

Edges (𝐸) 

Steps 1: Collect the edges (𝐸) 

 2: Create a graph 𝐺(𝐸, 𝑁) 

 3: Check for the subgraphs (𝑆𝐺) 

 4: 𝑊ℎ𝑖𝑙𝑒 𝑆𝐺 > 1 𝑑𝑜 

    Calculate the distance between edge nodes (𝐸𝑁 + 𝐸𝐸) of one subgraph 

(𝑆𝐺௜) to another subgraph (𝑆𝐺௜ାଵ) 

    Collect the node pair with minimum distance 

    Generate a line geometry joining these node pairs (𝐸𝐺௜) 

    Update the edges with the new edge (𝐸 = 𝐸 + 𝐸𝐺௜) 

Return Nodes (𝑁 = 𝑁𝐵 + 𝑁𝐸 +  𝑁𝐸𝐸 ), Edges (𝐸 = 𝐸 + 𝐸𝑁 +  𝐸𝐸 + 𝐸𝐺) 

Implementing the Algorithm 5 on the graph structure shown in Figure 5-7 resulted in the 

graphical network shown in Figure 5-8. This graphical network contains edges, building nodes 

and edge nodes.  

However, before the generation of electrical networks, the final phase in the graphical network 

generation process is to identify a node suitable for transformer placement. 

Algorithm 6 is used to determine the transformer position in each graphical network with nodes 

and edges. Herein, a node is chosen for optimal transformer placement, which is enabled by 

positioning the transformers in the network's center, considering the weights on each edge. In 

fact, this approximation was considered to minimize the voltage drop on the farthest node. The 

identification of such a node is primarily determined by closeness centrality and the shortest 

path between the nodes. After obtaining the node suitable for transformer placement, a node 

must be named as <transformer>. This way, during the generation of an electrical network, 

transformer parameters can be associated with that node. 

Algorithm 6 Identifying transformer location 

Algorithm 6: Identifying transformer location 

Input Nodes (𝑁) 

Edges (𝐸) 

Steps 1: Collect the nodes (𝑁) 

 2: 𝑓𝑜𝑟 𝑖 = 1, … . 𝑁 𝑑𝑜 

    Calculate the closeness centrality 𝐶(𝑥) for each node (𝑁௜)  

    Where, 𝐶(𝑥) =
ே

∑ ௗ(௫,௬)ಿ
೔సభ

, 𝑤ℎ𝑒𝑟𝑒 𝑑(𝑥, 𝑦) shortest path calculated using 

Dijkstra algorithm [230] between two nodes 𝑥 𝑎𝑛𝑑 𝑦 

    Store the closeness centrality for each node in the network 



 

 3: Higher the closeness centrality closer the node to all other nodes 

 4: Rename the node with higher closeness centrality as <transformer> 

Return Nodes (𝑁 = 𝑁𝐵 + 𝑁𝐸 +  𝑁𝐸𝐸 ), Edges (𝐸 = 𝐸 + 𝐸𝑁 +  𝐸𝐸 + 𝐸𝐺) 

When Algorithm 6 is implemented on the graph generated above for the considered cluster 

(i.e., 𝐾ଶଷଽ଼଼), the location of placement of the transformer is provided, as depicted in Figure 

5-8. The blue color node in the network denotes the node that contains the transformer. 

Additionally, the red nodes within the polygons represent building nodes (𝑁𝐵). The red nodes 

along the edges represent edge nodes (𝑁𝐸 + 𝑁𝐸𝐸). The red color lines represent service 

drops (𝐸𝑁), and the green color edges represent power lines (𝐸 + 𝐸𝐸௜ + 𝐸𝐺௜). 

 

Figure 5-8 A graphical network generated for a cluster (𝐾ଶଷଽ଼଼)  

Additionally, an extension algorithm, labelled as Algorithm 7, was developed to facilitate the 

future integration of additional nodes or edges in the graphical network for network 

reinforcement. For instance, if a new building is constructed adjacent to an existing building, 

the load from the new building should be added to the existing network. Therefore, this 

reinforcement algorithm will be used to incorporate that building into the existing network.  

However, Algorithm 7 was also developed to integrate distributed generators that already exist 

at the location of the low-voltage networks. There is publicly available data on distributed 

generators at various voltage levels in open power system data [200]. Distributed low-voltage 

generators such as solar, wind, hydro, biomass, geothermal, and others are extracted from 

there and analyzed. Appendix D illustrates the location of renewable energy sources in low-

voltage networks, along with their capacities. Here, it is evident that around 23 GW of solar 

photovoltaic (PV) has been placed in low-voltage networks and is dominant over other 

technologies. The other technologies include bioenergy, wind onshore, and hydro accounts for 

0.54 GW, 0.22 GW, and 0.03 GW, respectively.  
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Algorithm 7 Reinforcement of graphical network 

Algorithm 7: Reinforcement of graphical network  

Input Nodes (𝑁) 

Edges (𝐸) 

New nodes (𝑁𝐺) 

Steps 1: Generate the graph network 𝐺(𝑁, 𝐸) 

 2: 𝑓𝑜𝑟 𝑖 = 1, … . 𝑁𝐺 𝑑𝑜 

    Calculate the distance from the new node (𝑁𝐺௜) to all other nodes (𝑁)  

    Collect the node from graph nodes (𝑁) which has the least distance to the 

new node (𝑁𝐺௜) 

    Generate new edge (𝐸𝐺𝑅௜) 

 3. Update the nodes (𝑁 = 𝑁 + 𝑁𝐺) 

 4: Update the edges (𝐸 = 𝐸 + 𝐸𝐺𝑅) 

Return Nodes (𝑁 = 𝑁𝐵 + 𝑁𝐸 +  𝑁𝐸𝐸 + 𝑁𝐺 ), Edges (𝐸 = 𝐸 + 𝐸𝑁 +  𝐸𝐸 + 𝐸𝐺 + 𝐸𝐺𝑅) 

When the data corresponding to the existing distributed generators is further analyzed, it 

reveals that the locations corresponding to them are not identical to the pinned locations of the 

power plants. Therefore, when the given location is integrated inside the low-voltage network 

graphical structure, additional challenges emerge. For instance, when the location inside a 

low-voltage network is given, the attributes corresponding to the location would include the 

total capacity of the generator units and the number of generators. In reality, the given number 

of generators are spatially distributed. Therefore, integrating the given capacity of all 

generators results in additional technical violation.  

However, as mentioned previously, Algorithm 7 can handle network reinforcement, by 

connecting the distributed generators to the existing network in the future when the exact 

generator locations are specified. Nonetheless, when the graphical network's nodes and edges 

and the locations of the new distributed generators are provided, Algorithm 7 constructs the 

graphical network. To demonstrate this, previously considered cluster (i.e., 𝐾ଶଷଽ଼଼) from 

500,000 clusters was chosen. A graphical network with nodes and edges is generated by 

applying the series of previously developed algorithms. However, when given the new 

generator location in addition to the nodes and edges of the graph generated, Algorithm 7 

constructs the new graphical network that is depicted in Figure 5-9. The black dot in Figure 5-9 

represents the location of distributed power plants, and the yellow edge represents the new 

edge connecting the power plants to the existing network. On the other hand, the blue color 

node in the network denotes the node containing the transformer. Furthermore, the red nodes 

within the polygons represent building nodes, the red nodes along the edges represent edge 

nodes, the red color lines represent service drops, and the green color edges represent power 

lines. 

Like the integration of power plants into the network, if a new node or building is constructed 

at the location of the given network, Algorithm 7 aids in constructing a new graphical network 

without disturbing the previous configuration.  



 

 

Figure 5-9 An illustration of the reinforcement on the graphical network (𝐾ଶଷଽ଼଼)) 

However, the scenario calculations of the thesis do not include the extension of the graphical 

network with renewable energy sources that are already installed. This is because the future 

penetration of photovoltaic is significantly combined with the installation on buildings’ rooftops. 

Therefore, each building will receive the rooftop PV depending on the scenario that is being 

considered. In a few cases and circumstances, the rooftop PV potential will be 100% utilized 

by 2050. In this case, a rooftop PV unit will be assumed for each building. Accordingly, rooftop 

PV generation will be integrated into the network. Chapter 6 will cover the integration of rooftop 

PV and other scenarios in the low-voltage networks. 

Summing up, by executing all of these algorithms (i.e., Algorithm 1 to Algorithm 6) sequentially 

on the 500,000 clusters, each containing a few buildings, 500,000 low-voltage graphical 

networks are generated. Additionally, each graphical network has a node location that acts as 

a low-voltage transformer. Appendix E showcases a few of the 500,000 geo-referenced 

synthetic low-voltage networks. Finally, with the aid of these 500,000 graphical networks, the 

final stage of geo-referenced synthetic low-voltage networks, which entails generating 

electrical network, is accomplished in the following section. 

5.1.2.2 Electrical Network 

To facilitate the complete conversion of the graphical network into an electrical low-voltage 

network, certain electrical parameters must be provided as features to the graphical network. 

Transformers, loads, generators, and power lines are all essential parameters of an electrical 

network. Firstly, the transformer type for each established network should be identified. To 

perform this, loads should be assigned to each building. Therefore, the nodes corresponding 

to the building nodes (𝑁𝐵) in the graphical network are assigned with load profiles. As 

discussed in Chapter 4, each building node associated with the building type will receive its 

respective load profiles. For example, take a single-family house. In that case, a single load 
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profile is randomly chosen from one-person, two-person, three-person, four-person, and five-

person households with probabilities of 0.42, 0.33, 0.11, 0.1, and 0.04, respectively. Similarly, 

multi-family houses receive five load profiles, and apartments get 13 load profiles, as per the 

assumption discussed in Chapter 4. 

After assigning load profiles to the network, each network’s transformer type at the transformer 

location is determined by calculating the network's peak load. The box plot in Figure 5-10 

illustrates the peak load for all 500,000 networks generated. Here, 50% of the network's peak 

load is between 200 and 600 kW. However, the maximum peak load considered across all 

networks is approximately 1300 kW, and the minimum is 3 kW. Consequently, since the 

network's peak load is known, the transformer types are allocated from those available and 

demonstrated Table 5-1. 

In this context, four basic types of transformers are frequently used in low-voltage networks, 

which are listed in Table 5-1. There are certain assumptions that are made when allocating a 

specific type of transformer to a network. In fact, the assumptions are made since data 

corresponding to the real-world networks are inaccessible. The assignment of transformer 

types is accomplished by considering the network's peak loads. For instance, if the network's 

peak load is less than 200 kW, a transformer with a capacity of 160 kVA is more appropriate 

and economical. Similarly, when the network's peak demand is greater than 200 but less than 

300, a 250 kVA capacity transformer is assigned to the network. Additional assumptions that 

are made are illustrated in Table 5-4.  

Furthermore, the transformers considered here have a maximum capacity of 630 kVA. 

Unfortunately, some networks are unable to meet the peak demand due to a lack of 

transformer capacity. As a result, it is evident that some networks will fail to converge for power 

flow analysis. There will be an opportunity to assess the networks' vulnerability to demand and 

the possibility of inserting transformers with a capacity of 1000 kVA or more. However, to 

conduct a preliminary study and estimate the electrical network, these four types of 

transformers are chosen. 

 



 

Figure 5-10 Peak power of the estimated 500,000 networks after assigning load profiles for 

each dwelling 

Table 5-4 Assumptions considered for allocation of transformer type to low-voltage network 

Peak load Transformer type Capacity 

≤200 kW MV/LV transformer type I 160 kVA 

>200≤300 kW MV/LV transformer type II 250 kVA 

>300≤550 kW MV/LV transformer type III 400 kVA 

>550 kW MV/LV transformer type IV 630 KVA 

Figure 5-11 illustrates the distribution of low-voltage transformers over the 500,000 low-voltage 

networks, under the considered assumptions. It is also clear from the figure that the majority 

of networks are equipped with 630 kVA and 160 kVA transformers. Moreover, 33%, 30%, 23%, 

and 14% of the 500,000 networks are allotted with 630 kVA, 160 kVA, 400 kVA, and 250 kVA 

transformers, respectively. Furthermore, it is obvious from this figure that 33% of networks with 

630 kVA transformations will have a high probability of demonstrating failure under power flow 

analysis. This is assumed because it is evident in Figure 5-10 that 25% of the networks have 

more than 600 kW peak.  

In addition to the transformer and loads assignment to the graphical nodes, the power lines 

are an essential component that must be incorporated in the graphical network. Therefore, all 

network edges, service drops, and main power lines are assigned with cable types. Cables are 

chosen because 87% of powerlines in Germany are underground cables; consequently, for 

the convenience of computation, 100% of lines are deemed as cables. Therefore, from the list 

of cables indicated in Table 5-2, the cable type NAYY 4x150 𝑚𝑚ଶwith a current carrying 

capacity of 275 A was chosen. 

 

Figure 5-11 Low-voltage transformer type distributed to the estimated 500,000 low-voltage 

networks 
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Finally, based on the proposed scenarios, all future distributed demand and generation will be 

assigned to buildings on low-voltage networks. Here, the low-voltage network's nominal 

voltage is assumed to be 0.4 kV. When these electrical components are integrated into the 

graphical networks, they are ultimately converted into an electrical network, which enables the 

network for power flow analysis. The example cluster (𝐾ଶଷଽ଼଼) used while generating the 

graphical network that is assigned all of these components is illustrated in Figure 5-12, along 

with line loading at a specific time instant as per the power flow analysis. 

 

Figure 5-12 A synthetic low-voltage network among 500,000 geo-referenced synthetic 

networks showing line-loading at a specific time 

Until now, the methods and implementation of the geo-referenced synthetic low-voltage 

networks were discussed. However, to synthesize entire distribution networks, medium-

voltage networks should be synthesized. Therefore, the following section looks at the 

development of geo-referenced synthetic medium-voltage networks.  

5.2 Geo-referenced Synthetic Medium-voltage Networks  

This section presents the development of synthetic medium-voltage networks for Germany. As 

discussed in Chapter 1, distribution networks are comprised of two or three voltage levels, 

depending on the nation. In Germany, it is necessary to develop low-, medium-, and high-

voltage levels, to generate synthetic distribution networks. Thus, this section models the 

medium-voltage level, which is immediately above the low-voltage level. 

In principle, medium-voltage networks, like low-voltage networks, consist of nodes and edges. 

However, the properties of each of these nodes and edges are distinct from low-voltage 

networks. Typically, medium-voltage networks operate between a range of 1 kV and 30 kV. In 

these networks, the primary connecting points or nodes are low-voltage network transformers, 

non-residential, and commercial buildings. In addition, in this voltage level, a high-voltage to 

medium-voltage transformer (HV/MV) (i.e., medium-voltage transformer) is also a node. In 

Buildings 

Line loading 

Transformer 



 

general, medium-voltage networks have a ring structure and are protected by circuit breakers 

that automatically disconnect in the event of a fault. In Germany, 85% of the medium-voltage 

networks operate as open rings [201]. The open ring topology is formed by opening a switch 

in the ring network. This operation represents the ring network as a radial network. In this 

thesis, algorithms are developed for generating geo-referenced synthetic medium-voltage 

networks as a radial topology since the medium-voltage networks operate in an open ring 

configuration. The following section discusses the data pertaining to the necessary 

components, such as MV-transformers, LV-networks, non-residential buildings, power lines, 

etc., in building these networks. 

5.2.1 User Input 

The connection points or nodes are necessary to estimate geo-referenced synthetic medium-

voltage network topologies. First, it is important to collect location information for connection 

points, such as low-voltage transformers and non-residential buildings. The locations of low-

voltage transformers are determined using the geo-referenced synthetic low-voltage network 

topologies generated in the preceding section. Each of the 500,000 geo-referenced synthetic 

low-voltage networks has a low-voltage transformer with location and power-specific attributes. 

Figure 5-13 depicts the locations of low-voltage transformers estimated synthetically in the 

process of generating low-voltage networks in Germany. It is evident from Figure 5-13 that 

major cities have a high number of low-voltage transformers installed. This can be attributed 

to the high density of consumers, which necessitates a higher number of transformers. 

However, due to their greater number, the exact locations of these transformers cannot be 

easily identified on the map.  

In addition to the low-voltage transformers’ locations, the other end-consumers connection 

points associated with medium-voltage networks are non-residential building locations, 

excluding garages. Although not all non-residential buildings are connected to medium-voltage 

networks, this assumption is made in the thesis to include all non-residential buildings in the 

medium-voltage networks since there is scarce information regarding the type of non-

residential building. There are 4,166,532 non-residential buildings (excluding garages) that are 

being investigated for their inclusion in the process of generating geo-referenced synthetic 

medium-voltage networks. Since the footprints of non-residential buildings are polygonal 

geometries, the centroids corresponding to each polygon are used as the connecting points in 

the algorithms developed. 
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Figure 5-13 Low-voltage transformer locations extracted from geo-referenced synthetic low-

voltage networks estimated in the previous section  

The location of medium-voltage transformer is the final node required for the estimation of geo-

referenced synthetic medium-voltage network topology. The medium-voltage transformers and 

their locations are significant components in medium-voltage networks as the primary goal of 

constructing geo-referenced synthetic network topologies is to utilize publicly available data. 

Therefore, in Chapters 3 and 4 many publicly available datasets are extracted and described. 

Based on the information from the preceding chapters, it was determined that approximately 

4,500 medium-voltage transformers are deployed in Germany. But the OpenStreetMap data 

analysis identified only 2,595 locations of medium-voltage transformers in OpenStreetMap 

data (see, Figure 5-14). Figure 5-14 also illustrates that medium-voltage transformers are 

primarily concentrated in large cities. Nevertheless, 1,905 medium-voltage transformers 

locations could not be identified in the OpenStreetMap data. These transformer locations are 

further estimated using a method described in the next section, which utilizes the identified 

medium-voltage transformer locations. 

After determining the locations of all medium-voltage transformers, it is necessary to assign a 

transformer type to each medium-voltage network. As a result, medium-voltage transformers 

are derived from the standard types available in Germany. Table 5-5 contains a list of available 

medium-voltage transformers. The standard medium-voltage transformer types have an 



 

apparent power of ranging from 25 MVA to 63 MVA and an operating voltage between 10 kV 

and 20 kV [133]. 

 

Figure 5-14 Medium-voltage transformer locations retrieved from OpenStreetMap 

Table 5-5 Standard medium-voltage transformers available in Germany [Adapted from [133]] 

Transformer type Apparent 

power 

Nominal voltage 

(High voltage) 

Nominal 

voltage (Low 

voltage) 

Frequency 

25 MVA 110/10 kV 25 MVA 110 kV 10 kV 50 Hz 

25 MVA 110/20 kV 25 MVA 110 kV 20 kV 50 Hz 

40 MVA 110/10 kV 40 MVA 110 kV 10 kV 50 Hz 

40 MVA 110/20 kV 40 MVA 110 kV 20 kV 50 Hz 

63 MVA 110/10 kV 63 MVA 110 kV 10 kV 50 Hz 

63 MVA 110/10 kV 63 MVA 110 kV 20 kV 50 Hz 

The final essential component required in the modeling process is the power lines that connect 

end-consumers and medium-voltage transformers. As mentioned in Chapter 3, 75% of 

medium-voltage power lines are underground cables that are not visible in OpenStreetMap 

data. Since underground cables run parallel to the roads, road infrastructure is utilized to model 
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power lines in medium-voltage networks. However, to represent electrical networks, power line 

parameters must be assigned to each modeled line from the road infrastructure. During this 

process, we assumed that all power lines in medium-voltage networks are underground cables 

to reduce the model's complexity. As a result, commonly available cable types in Germany are 

included, as indicated in Appendix F. 

In addition to network components, power plants within the medium-voltage network are also 

recognized as connection points (refer to Appendix D). As per the available data, the highest 

renewable energy feed-in power is supplied at the medium-voltage level. In this context, wind 

power dominates other technologies at this voltage level, with a capacity of 22.2 GW already 

installed by end of 2019. Next, 15.1 GW of open filed PV power generation is installed at this 

voltage level. Therefore, due to the significant feed-in from renewable energy sources and the 

availability of suitable locations for these installations [200], power plants are also considered 

as connection points and are integrated into geo-referenced synthetic medium-voltage 

networks. 

In summary, the final user input is demonstrated in Table 5-6 to generate geo-referenced 

synthetic medium-voltage networks. 

Table 5-6 Final user input data for estimating geo-referenced synthetic medium-voltage 

networks 

Connection 

points 

Low-voltage transformer locations extracted from geo-referenced 

synthetic low-voltage networks (Section 5.1), non-residential buildings 

predicted in Chapter 4. 

Transformers 2595 medium-voltage transformer locations identified from the 

OpenStreetMap data (Chapter 4), Total medium-voltage substations 

count [201] 

Power lines Road infrastructure including streets, highways, footpaths, and bike 

paths 

Power plants Open power system data extracted medium-voltage distributed 

generator locations and their capacities [200] 

Considering input data, the following section discusses the model for estimating geo-

referenced synthetic medium-voltage networks. 

5.2.2 Modeling Methodology 

As with low-voltage network estimation, geo-referenced synthetic medium-voltage network 

estimation includes two major stages and employs user input. First, the graphical layer is 

developed by connecting various connection points and network components via road 

infrastructure. Second, in the electrical layer, several electrical properties are integrated within 

the graphical network, including transformer types, transformer loads, and line types. By 

presenting these steps sequentially, the network becomes suitable for performing power flow 

analysis. Figure 5-15 illustrates the schema relating to the modeling approach. 



 

 

Figure 5-15 Schema for medium-voltage network modeling 

5.2.2.1 Graphical Network 

Similar to low-voltage network estimation, the first step in establishing a graphical layer is to 

cluster the connection points by combining low-voltage transformers and non-residential 

buildings. The previous chapter has discussed numerous unsupervised machine learning 

techniques such as hierarchical clustering [225], DBSCAN [226], and K-Means[224]. However, 

K-Means was employed in the development of low-voltage networks due to its advantages 

over other algorithms. Therefore, the same technique was used to cluster the connection points 

into 4500 clusters to develop 4500 medium-voltage networks. However, clustering 4500 

clusters on connection points is not as complex as clustering approx. 19.7 million residential 

buildings into 500,000 clusters. Therefore, direct clustering is possible in this case without 

dividing the networks into administrative districts. As a result, the merged dataset of low-

voltage transformers and non-residential buildings is subjected to direct K-Means clustering. 

On each cluster, applying the series of developed methods produced medium-voltage 

networks and corresponding medium-voltage transformer. 

However, as stated in Chapter 4, 2595 medium-voltage transformer/substation locations have 

been already geo-referenced in OSM. Incidentally, this represents 58% of all transformers in 

existence. Thus, this information must be integrated in the clustering process and these 2595 

substation locations should help cluster the connection points to 2595 clusters, while the 

remaining 1905 clusters should be independent of those 2595 clusters. To accomplish this, a 

clustering technique that uses the identified medium-voltage substation locations as known 

centroids and the medium-voltage transformer locations that should be forecasted as unknown 

centroids is devised. However, the final 1905 medium-voltage transformer locations will be 

determined after creating the graphical network. Algorithm 8 helps cluster the data points with 

some known and unknown centroids. 

Algorithm 8 Clustering with known centroids and predicting unknown centroids 

Algorithm 8: Clustering with known centroids and predicting unknown centroids 

Graphical Network 

Electrical Network 

Clustering low-voltage transformers and non-

residential buildings excluding garages into 4500 

clusters, Mapping the connection points with the 

road infrastructure, connecting connection points 

to the roads, placement of the medium-voltage 

transformer in the networks 

Assigning the electrical line parameters to the 

edges, integrating power time-series to the low-

voltage transformer through power flow analysis 

on low-voltage network, linking transformer 

parameters to the medium-voltage transformer 
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Input Number of clusters (𝐾) 

Data points (𝐷 =  {𝐷ଵ, 𝐷ଶ, … , 𝐷௡}) 

Known centroids (𝐾𝐾 =  {𝐾𝐾ଵ, 𝐾𝐾ଶ, … , 𝐾𝐾௝}) 

Unknown centroids (𝐾𝑈𝐾 = 𝐾 − 𝐾𝐾) 

Steps 1: Choose number of clusters (𝐾) 

 2: Initialize random centroids (i.e., unknown centroids (𝐾𝑈𝐾 =

{𝐾𝑈𝐾ଵ, 𝐾𝑈𝐾ଶ, . . 𝐾𝑈𝐾_𝑢}))  

 3: Combine known centroids (𝐾𝐾) and unknown centroids (𝐾𝑈𝐾) 

 4: Calculate the Euclidean distance (𝑑(𝑝, 𝑞) = ඥ(𝑞ଵ − 𝑝ଵ)ଶ + (𝑞ଶ − 𝑝ଶ)ଶ 

) between the data points to the centroids. Where, 𝑝, 𝑞 contains cartesian 

coordinates 

 5: Find 𝑎𝑟𝑔𝑚𝑖𝑛 (arg min
௫ ∈௦

 𝑓(𝑥) = {𝑥 ∈ 𝑠 ∶ 𝑓(𝑠) ≥ 𝑓(𝑥) ∀ 𝑠 ∈ 𝑆}) gives the closest 

centroid to each data point 

 6: Update the unknown centroids (𝐾𝑈𝐾) by taking the average of the data 

points corresponding to the unknown centroids 

 7: Known centroids (𝐾𝐾) remain same 

 8: Repeat from step 3, until optimize 

 9: Finally, each data point will be assigned with the cluster number and 

corresponding cluster centroid 

Return Data points with an additional characteristic indicating the cluster number 𝐾 =

{𝐾ଵ, 𝐾ଶ, … . , 𝐾௞},  and centroids (𝐶𝐾), where, 𝐶𝐾 = {𝐶𝐾ଵ, 𝐶𝐾ଶ, … 𝐶𝐾௞} 

As stated before, Algorithm 8 was developed to cluster the data points around the existing 

medium-voltage substations and cluster the remaining data points to rest of the clusters. For 

a more streamlined understanding of the process see Figure 5-16, where the blue dots 

represent the data points that need to be clustered in this case. For our use case, some 

medium-voltage substation locations have been identified. Therefore, in this example, the 

known centroids, which are the identified medium-voltage substations, are depicted in yellow 

(X). Now, the data points must be clustered into four clusters with two known centroids (i.e., 

identified medium-voltage substation locations) and two unknown centroids (i.e., unknown 

medium-voltage substation locations). First, consider two data points from the existing data as 

centroids and use K-Means++ [231] strategy to finalize the initial centroids. This strategy 

ensures that the initial centroids are far away from each other. As a next step, merge the 

unknown centroids with the known centroids. Here, the initial centroids generated will be from 

both known and unknown centroids. It is important to note that the clusters are formed by 

applying pairwise distances and selecting the points with the shortest distance to the cluster 

centroids. By taking the average of the data points surrounding the unknown centroids, new 

centroids are yielded. The algorithm's objective is not to modify existing centroids; instead, it 

updates unknown centroids. Repeat this method until the optimal solution is established. 

Finally, combine two known centroids and two unknown centroids to produce four clusters from 

a given datapoint. In the Figure 5-16, four clusters are formed using the given data points 

without disturbing the original existing centroids.  



 

 

Figure 5-16 Sample implementation of the Algorithm 8 

By applying Algorithm 8 on low-voltage transformers and non-residential structures, which are 

connection points with 2596 known medium-voltage substation locations and 1905 unknown 

medium-voltage substation locations, 4500 clusters can be generated. Since there is a 

significant number of data points to cluster, this method is computationally intensive and 

requires more than two weeks. Furthermore, due to the limitations of the developed method, 

scalable coding is required. Nevertheless, there is always the option of using scalable K-Means 

clustering, which helps cluster data from buildings with up to 500,000 networks in the process 

of low-voltage development. As a result, 4500 clusters (i.e., 𝐾௝  ∀ 𝑗 = {0, 1, … ,4499}) emerged 

from the implementation of this clustering algorithm on the non-residential and low-voltage 

transformer locations, without utilizing existing medium-voltage substation locations.  

Henceforth, cluster (𝐾ସସଽ଴) is being explored for future model development to describe the 

process of generating geo-referenced synthetic medium-voltage networks. After collecting the 

datapoints in a cluster, several other methods are developed sequentially. However, the next 

phase in the modeling process is integrating the road infrastructure with the cluster's 

connection points. The method developed for low-voltage networks is utilized to collect data 

on the road infrastructure directly adjacent to the connection point. Therefore, Algorithm 3 is 

used for this purpose, with inputs such as cluster connection points, road infrastructure, and a 

buffer of 20 kilometers. The buffer of 20 km is considered because the distance between 

connection points is substantially greater than in low-voltage networks. However, connecting 

these road infrastructures to the connection points is not straightforward and cannot be 

accomplished using the algorithm devised for low-voltage networks. This is because the points 

are separated by kilometers with many lines going through the pair of data points. For instance, 

in Figure 5-17, multiple lines flow between the nodes once this road infrastructure is gathered 

near selected connection nodes or connection points. In Figure 5-17, the red dots represent 

connection points, while the lines represent the road infrastructure retrieved using Algorithm 

3. 

Known centroids 
Known centroids 

Unknown/predicted 

centroids 

1 2 

3 
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Figure 5-17 Road infrastructure in close proximity to the connection points, retrieved using 

Algorithm 3 

As a next step, the data points must first be connected to the road infrastructure by using  

Algorithm 4 that was developed for low-voltage networks. First, this algorithm is fed with an 

input of connection points and road infrastructure. Then, the algorithm generates additional 

nodes on the adjacent road infrastructure, establishing new edges between the connection 

points and the newly produced nodes. 

The next step is to tidy up the lines between each pair of nodes to create a radial network. 

While it is true that medium-voltage networks should be connected in a ring topology, the 

literature indicates that 85% of medium-voltage networks operate in an open ring configuration 

with the circuit breaker detached. As a result, our primary objective is to examine a network's 

functioning topology. Subsequently, in this thesis, medium-voltage networks are generated as 

radial networks. Thus, connect the end nodes of each two feeders if necessary and create a 

ring topology as illustrated in Figure 5-18. 

In the Figure 5-18, the open-ring network consists of two switches. Each of these two switches 

are opened to represent four feeders. On the other hand, if these switches are closed, there 

will be only two feeders with a closed path. Therefore, if there is a requirement to model a ring 

network, the end connection points of two adjacent feeders will be connected with the new line. 

This will eventually result in the formation of a ring network topology. 



 

 

Figure 5-18 Ring topology operating as radial network (open ring) by disconnecting a line using 

circuit breaker  

The next step is to eliminate the multiple unsuitable edges between the nodes, which are 

illustrated in Figure 5-17. A method was developed to remove the unnecessary edges and 

connect the nodes with the least possible weight. In this scenario, the length of the roads will 

be used to calculate the weights. By applying this method to all connection points and road 

infrastructure, a radial network is formed. Algorithm 9 demonstrates the creation of a radial 

medium-voltage network. 

Algorithm 9 Estimating radial medium-voltage network 

Algorithm 9: Estimating radial medium-voltage network 

Input Nodes (𝑁) 

Edges (𝐸) 

Steps 1: Create a graph with edges (𝐺(𝑁, 𝐾)) 

 2: Check for the graph properties 

 3: Number of subgraphs (𝑆𝐺) 

 4: 𝑤ℎ𝑖𝑙𝑒  𝑆𝐺 > 1 𝑑𝑜 

    Calculate the distance between nodes of one subgraph (𝑆𝐺௜) to another 

subgraph (𝑆𝐺௜ାଵ) nodes 

    Collect the node pair with minimum distance 

    Generate a line joining these node pairs  

     Update the edges with the new edge  

 5: Merge the edges with same end points into single edge 

 6: Perform shortest path calculations from one node to all other nodes  

 7: Apply minimum spanning tree on the shortest path graph to secure shortest 

path connecting all the nodes 

 8: This minimum spanning tree application removes unwanted nodes and 

edges 

 9: Update the graph with remaining nodes and edges 

Open Ring network Ring network 

Medium-voltage transformer 

Circuit breaker 

Bus bar 
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Return Nodes (𝑁) and Edges (𝐸) 

When Algorithm 9 is applied on the chosen cluster (𝐾ସସଽ଴), it yields the graphical network as 

depicted in Figure 5-19. The red dots in Figure 5-19 denote the connection points, while the 

black lines denote the edges connecting the nodes following the roads. Furthermore, Algorithm 

7 also incorporates power plants if they are located near the generated medium-voltage 

graphical network. 

The graphical network is missing the node that serves as the transformer, which is undeniably 

a major element of any electrical network. Therefore, two approaches are designed to integrate 

the transformer into the graphical network. First, if the network is constructed without 

considering the locations of existing medium-voltage substations, the algorithm designed for 

developing synthetic low-voltage networks is used. Thus, Algorithm 6 is employed, which takes 

the nodes and edges as input and provides additional information about the transformer's 

location as an output. However, in the second approach, if the networks are clustered based 

on the position of a known medium-voltage substation, the cluster with the known substation 

location will receive the exact location of the substation as the transformer location. Moreover, 

Algorithm 6 will be used for other networks clustered around an unknown transformer location 

to determine the position of medium-voltage transformers. Finally, Figure 5-19 illustrates the 

graphical network with the transformer position shown in blue. 

 

Figure 5-19 Final medium-voltage graphical network for considered cluster (𝐾ସସଽ଴) 

Power line 

Medium-voltage 

transformer location 

Connection points 

Joints 



 

In conclusion, by executing all of the aforementioned methods sequentially on the 4500 

clusters, each containing a few non-residential buildings and low-voltage network 

transformers, 4500 geo-referenced synthetic medium-voltage graphical networks are 

generated. Additionally, each graphical network has a node location that acts as a medium-

voltage transformer. With these 4500 graphical networks, the following section covers the final 

stage of geo-referenced synthetic medium-voltage networks, which entails generating 

electrical network. 

5.2.2.2 Electrical Network 

The graphical network cannot function as a medium-voltage electrical network without the 

addition of electrical features. Therefore, electrical characteristics for the graphical nodes and 

edges should be introduced to convert the graphical network into an electrical network. For the 

nodes, the electrical demand and generation nodes are the first components. Once the power 

flow analysis on low-voltage networks is completed, all low-voltage transformers nodes will 

receive the power profiles straight from the power output at the low-voltage transformer. The 

non-residential nodes are the next in line to receive the load profiles, wherein the load profiles 

for non-residential buildings must be assigned. Currently, this thesis does not perform any 

scenario simulations on medium-voltage networks. Moreover, an accurate non-residential 

profile for each non-residential building is also absent. As a result, common business load 

profiles are applied to non-residential buildings to understand and implement the model. 

Additionally, generator nodes such as solar, wind, biomass, and others are incorporated into 

the graphical network. Each of these nodes has information about the type of generation and 

its capacity. Therefore, based on the generation type and capacity, generation nodes can be 

allocated normalized profiles for each technology. However, in this example, the methodology 

is illustrated by solar PV profiles irrespective of the technology because the thesis's primary 

objective is to construct synthetic network topologies rather than analyze distributed demand's 

consequences in medium-voltage networks. Nonetheless, Chapters 6 and 7 will go into detail 

into future distributed generation and demand in low-voltage networks. 

A medium-voltage transformer node, which is the final node, must be equipped with the 

appropriate transformer type for the network. The transformer types can be selected from the 

standard transformers provided in the previous section (refer to Table 5-5). However, the 

transformer is selected based on the load and generation in the network. The overall load on 

a network, on the other hand, is determined by the network's demand and supply. With the 

peak load in consideration, a transformer will be selected from the list in Table 5-5 at a factor 

of 1.5 times the peak load. For instance, If the overall network load is 𝑥 kW, a transformer with 

a capacity of 𝑥 ∗ 1.5 is selected for the medium-voltage network. 

The final step is to assign electrical parameters to the graphical network's edges. As previously 

stated, 79% of medium-voltage power lines are underground cables. As a result, cable type 

from the standard cables that are available must be assigned. Appendix F lists the standard 

cable types that are available. For model representation purposes, each power line is assigned 

with a power cable of type "NA2XS2Y 3x1x185". After configuring the graphical network with 
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all the electrical characteristics, the network will be capable of performing power flow 

simulations. Figure 5-20 illustrates the line loading associated with each projected line 

segment using power flow analysis. 

 

Figure 5-20 A medium-voltage network among 4500 networks showing line-loading at a 

specific time 

Since the development of geo-referenced synthetic medium-voltage networks was discussed, 

the high-voltage network is the next step in developing electrical distribution grid. The following 

section will address the development of geo-referenced synthetic high- and extra-high-voltage 

networks as a single grid. 

5.3 Geo-referenced Synthetic High and Extra-high Voltage Networks  

In Germany, high-voltage networks form the highest level of a distribution grid. However, they 

are considered transmission grids in some European countries. In principle, high-voltage 

networks operate at a nominal voltage of 110 kV and require significant space for substation 

locations. Interestingly, overhead power lines are used to transport and distribute high-voltage 

power. As such, the substations and the power lines that maintain and transfer the power are 

visible in satellite images and are essentially stored in OpenStreetMap data. 

This also holds true for the extra-high-voltage level, where the nominal voltage value ranges 

between 220 kV and 380 kV. Thus, all high-voltage and extra-high-voltage power lines and 

substations are visible in satellite data. Since high-voltage is classified as distribution and 

transmission grids in different places, the tagging that corresponds to high-voltage and extra-

high-voltage in OpenStreetMap data is highly ambiguous. Therefore, this thesis models both 
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high-voltage and extra-high-voltage networks as a single grid, although the objective is to 

develop geo-referenced synthetic distribution networks.  

As previously stated, high-voltage and extra-high-voltage level components can be accessed 

in OpenStreetMap data due to their size and voltage level. This thesis employs models based 

on available geo-referenced data from OpenStreetMap to build synthetic high-voltage and 

extra-high-voltage grids. However, there are specific concerns surrounding the OSM data with 

regards to power tags and network routing information. The power tags are essential for 

extracting network information. These tags, however, are less accurate since contributors 

rarely adhere to the OSM provider’s recommendations. Additionally, there is no adequate 

mapping of the electrical properties of the transmission and distribution line. Besides, a 

substantial amount of data is either missing or incorrectly tagged. For instance, lines or 

substations corresponding to high voltage are occasionally represented with extra-high-voltage 

tags. Chapter 0 delved into the various available approaches for generating extra-high voltage 

grids that are devised to address these concerns. 

However, each model has several advantages and disadvantages. In [182], the existing 

transmission models were compared and the results were presented. After comparing 

numerous existing models, the GridKit model [180] was chosen for generating extra-high-

voltage levels due to its significant topological complexity. Additionally, GridKit [180] was 

proposed for integration of renewable energy sources into the European power system via 

EuroPower, which is an inhouse transmission grid model. This model can also generate both 

high voltage and extra-high voltage grids. Therefore, GridKit is utilized in this thesis to create 

synthetic high- and extra-high-voltage network topologies. This thesis generates synthetic 

high-voltage and extra-high-voltage levels, representing the entire power system, from low-

voltage distribution grid to extra-high-voltage transmission grid. The following section provides 

user inputs and the methodology for generating high- and extra-high-voltage networks. 

5.3.1 User Input and Methodology 

GridKit facilitates the entire process of generating extra-high-voltage and high-voltage in a 

consecutive manner. The procedure employed when implementing the GridKit model is 

depicted in Figure 5-21. 

 

Figure 5-21 Overview of the GridKit process [ Adapted from [180] ] 
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As illustrated in Figure 5-21, the procedure begins with the extraction of OpenStreetMap data 

into databases. This process has already been completed in order to create geo-referenced 

synthetic low- and medium-voltage networks. As a result, the extracted and filtered data were 

inputted directly into the GridKit tool with some adjustments in order to extract high-voltage 

and extra-high voltage power lines and nodes. This adjustment includes the supply of nodes 

with voltage tags more than or equal to 110 kV. Additionally, all power lines with a voltage tag 

greater than or equal to 110 kV are considered. Only electricity lines with a frequency of 50 Hz 

are extracted, leaving 16.7 Hz that corresponds to railway power lines. Feeding these data into 

the GridKit tool generates the high-voltage and extra-high-voltage network for Germany, as 

illustrated in Figure 5-22. 

 

Figure 5-22 Synthetic high- and extra-high voltage grid extracted using GridKit tool [180] 

As evident from the data, the complete high- and extra-high-voltage network topology has 9042 

node entries. These nodes include the internal nodes that connect two power lines. 

Additionally, the generated network also contains 12,330 lines that connect all the nodes. A 

grid topology is nothing more than a graphical network. To perform power flow analysis, more 

electrical parameters must be incorporated in the graphical network. Therefore, electrical 

attributes such as transformers and line types were provided with varying resistance, 

inductance, and capacitance and they are assigned to nodes and edges depending on their 

tags. The catalog of Germany’s various transformer and line types are provided in Table 5-7 

and Table 5-8. 

Table 5-7 Standard transformer types at high- and extra-high voltage level [183] [201] 
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Type Apparent power Nominal voltage  

(High voltage) 

Nominal voltage  

(Low voltage) 

HV Type-I 300 MVA 380 kV 110 kV 

HV Type -II 200 MVA 220 kV 110 kV 

EHV Type-I 1000 MVA 380 kV 220 kV 

 

Table 5-8 Standard power lines at high- and extra-high-voltage level [183] [201] 

Voltage R (
𝛀

𝒌𝒎
) X (

𝛀

𝒌𝒎
)) L (

𝒏𝑭

𝒌𝒎
) I (𝒌𝑨) 

110 kV 0.109 1.2 9.5  

220 kV 0.080 0.32 11.5 1.3 

330 kV 0.025 0.25 13.7 2.6 

Interestingly, the high- and extra-high-voltage networks provide multiple circuits between 

nodes. The number of circuits between nodes is calculated by dividing the tags corresponding 

to the lines (<cables>) traversing between them by three. This is because Germany uses a 

three-phase ac system [138]. Equation 5-1 illustrates the formula for calculating the number of 

circuits responsible for connecting two grid locations. 

𝑁௖௜௥௖௨௜௧ =
𝐶𝑎𝑏𝑙𝑒𝑠௢௦௠

3
 

5-1 

Finally, the development of grid topologies and the assignment of electrical parameters to high-

voltage and extra-high-voltage networks helps model a variety of topics, including the 

integration of future renewable energy sources into power systems, market simulations, and 

dispatch challenges. Developing high- and extra-high-voltage grid networks completes the 

synthetic generation of the entire power network.  

In conclusion, the synthesizing of the power system began from the low-voltage level. 

Gradually, the study moved upwards towards the extra-high-voltage level utilizing a bottom-up 

method as illustrated in Figure 1-3. Following the establishment of the synthetic power 

networks, the following section will cover the validation of the approach, which is pertinent. 

5.4 Validation of Geo-referenced Synthetic Low-voltage Networks  

The previous section discussed the process of generating synthetic distribution grids in 

conjunction with the extra-high-voltage transmission grid. In this section, a methodology and a 

set of validation criteria are provided for geo-referenced synthetic low-voltage networks. The 

decision to specifically consider geo-referenced synthetic low-voltage networks was influenced 

by the fact that the data required to validate them is relatively abundant, and this thesis 

analyzes future distributed demand and generation in low-voltage distribution grids. 
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It is important to point out here that geo-referenced synthetic networks are explicitly designed 

for research applications and are not actually related to any real grids. As such, they are not 

subject to any confidentiality obligations. However, synthetic networks that resemble and 

function like real networks are essential. It is necessary to validate geo-referenced networks 

before they can be used for various applications, they must be validated. Thus, this section 

focuses on the indices and results from the generated geo-referenced synthetic low-voltage 

networks for quantitative, operational, and visual validation. This is accomplished through an 

elaborate comparison against real-world datasets. Hence, three types of validation are 

conducted for this purpose: statistical validation, operational validation, and real-world geo-

graphical visualization. Figure 5-23 provides an overview of the proposed validation measures. 

 

 

Figure 5-23 An overview of proposed validation measures 

5.4.1 Statistical Validation 

The statistical validation method compares the data gathered from the generated geo-

referenced synthetic networks to the data collected from real-world networks. However, 

confidentiality obligations and limitations render real network data unavailable. Therefore, 

statistical validation was conducted using some representative data as well as real-world 

networks’ data acquired from the literature. Chapter 3 provides the validation metrics, which 

are included as part of the topological properties. In Section 5.1, various methods were applied 

to generate 500,000 geo-referenced synthetic low-voltage networks and retrieve statistical 

information about their topological and electrical properties. 

In this context, the first metric examined in statistical validation is the total number of nodes in 

a network. Figure 5-24 depicts a box plot identifying the number of nodes per network for 

500,000 synthetically generated networks. In these established networks, there are anywhere 

between two and approximately 200 nodes, with 50% of the networks including 40 to 110 

Geo-referenced Synthetic Low-
voltage Networks 

Statistical Validation Geo-graphical validation Operational Validation 

Node Related Properties 

Edge Related Properties 

Visual Comparison 

Real-world Vs Synthetic 

Power Flow Simulation 

Operational Limiting factors 



 

nodes. As previously stated, this thesis is entirely dependent on data from the literature due to 

the lack of access to real data. Džanan et al. [232] analyzed 180 real low-voltage networks in 

Germany and published the range of total loads for each network type - rural I, rural II, rural III, 

semi-urban I, semi-urban II, and urban. In Figure 5-25, the range of loads in each network is 

illustrated in relation to the various locations where the networks are situated. 

 

Figure 5-24 A box plot representing the total number of nodes in each network for 500,000 

geo-referenced synthetic low voltage networks 

Figure 5-25 illustrates that in real-world networks, the number of loads per network ranges 

from 2 to 200. They are, however, concentrated in specific geographic areas such as rural, 

semi-urban, and urban areas. Interestingly, the data collected from generated synthetic 

networks are relatively equivalent to published data [232]. For instance, the range of nodes 

determined in the geo-referenced synthetic low-voltage distribution networks ranges 

approximately from 2 to 220. Here, depending on the location, the range is not segregated for 

each type. Understandably, it is also challenging to segregate 500,000 geo-referenced 

synthetic networks to rural, semi-urban, and urban types. As illustrated in Figure 5-25, when 

all real-world network types are considered, the minimum and the maximum of total nodes is 

approximately 1 and 225, respectively. Therefore, it can be asserted that generated geo-

referenced synthetic networks nodes are in the range observed for real-world networks.  
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Figure 5-25 Range of total number of nodes of real low-voltage networks for various rural, 

semi-urban, and urban areas in Germany 

Next, the mean node degree is a significant topological parameter that corresponds to the 

nodes. As indicated in Figure 5-26, the mean node degree is for generated 500,000 geo-

referenced synthetic low-voltage networks. As stated in Chapter 3, if the average degree of 

the nodes exceeds two, the network is assumed to be a mesh network. Additionally, the 

literature indicates that low-voltage networks are radial in structure and thus, they are modeled 

accordingly. Thus, in a network, the mean degree of each node should be lower than two. 

However, as illustrated in Figure 5-26, almost all networks have a mean node degree of less 

than two. This could be attributed to the fact that some networks have only one node on each 

feeder, leading the transformer's node degree to dominate the average node degree of the 

network. Nevertheless, it is clear from Figure 5-26 that all networks are radial in structure, 

satisfying the average node degree less than two.  

Therefore, by comparing these two characteristics - number of nodes and mean node degree 

- with real networks and statistical details, respectively, it can be concluded that the estimated 

synthetic networks have node-specific graphical properties comparable to those of real-world 

networks. 



 

 

Figure 5-26 A box plot illustrating the mean node degree of 500,000 geo-referenced synthetic 

low voltage networks 

Furthermore, edges/lines are the later component characteristic that must be compared. The 

total number of edges in the 500,000 low-voltage networks generator is between one and 

approximately 200 (refer to Figure 5-27). This number is proportional to but one fewer than the 

number of nodes, which is accurate as per Kerber's typical low-voltage networks [151]. Figure 

5-27 depicts the length-related properties of the edges, such as the circuit length of each 

network, the average shortest path length, and the average length of the edges. Since there is 

a shortage of data in this context, the average lengths of the networks are compared to those 

of typical networks. The average edge length of synthetically built networks varies between 2 

and 60 meters with 50% of the networks reporting edge lengths ranging from 25 to 42 meters. 

However, in a typical network, the average line lengths range between 6 and 50 meters. 

Therefore, the average edge length of the estimated geo-referenced synthetic low-voltage 

networks is close to the average edge length of typical networks developed using real network 

parameters. However, due to a lack of topological data for the real-world networks, the average 

shortest path lengths were not compared.  By considering the circuit lengths of each developed 

network, the total circuit length of geo-referenced synthetic low-voltage networks is compared 

to statistical data. 
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Figure 5-27 Edge related characteristics extracted from 500,000 geo-referenced synthetic low 

voltage networks 

As stated above, when all low-voltage networks are considered, the most critical parameter 

associated with edge characteristics is the total network length. Benjamin et al. [202] provide 

the total length of Germany's low-voltage network, which is 1,173,065 km. However, when all 

500,000 geo-referenced synthetic low-voltage networks are considered, the final length of the 

low-voltage network is 1,183,367 km. Consequently, there is a small mismatch of 13,002 km 

between the officially recorded and estimated lengths. Since the deviation from the actual 

length is only 0.89%, the predicted networks from a statistical perspective are close to real-

world networks. The total length of existing low-voltage networks and estimated networks is 

depicted in Figure 5-28.  



 

 

Figure 5-28 Comparison of existing total low-voltage network length for Germany with the total 

network length of geo-referenced synthetic networks estimated 

The sext sub-section carries out the operational validation of the networks. 

5.4.2 Operational Validation 

Operational validation is also considered in this thesis. In this form of validation, an open-

source power flow analysis tool is used to determine the power flow convergence and identify 

the operational limiting factors satisfying grid code constraints. To conduct operational 

validation, 500,000 geo-referenced synthetic low-voltage networks are simulated using solely 

residential load profiles assigned to the residential buildings. Future distributed demand and 

generation, on the other hand, are not considered in this situation. To perform operational 

validation, networks were simulated using PyPSA (Python for power system analysis [133], an 

open-source power flow analysis tool). 

The simulation of synthetic networks is evaluated for the parameters that should be exhibited 

by the network. Table 5-9 details the parameters and their associated targets for each network. 

Once power flow analysis is conducted and the parameters indicated in Table 5-9 are 

assessed for all 500,000 geo-referenced synthetic networks, 499,608 synthetic networks are 

converged for power flow analysis. The networks converged under power flow simulation 

demonstrate satisfactory results for the target set specified in Table 5-9. In fact, only 0.08% of 

networks do not converge when power flow simulations are performed. A comprehensive 

analysis of non-converged networks reveals that these networks hold significantly more 

apartments and that the accumulated peak demand exceeds the capacity of the highest 

transformer capacity available in the catalog. Nonetheless, non-converged networks can be 

further clustered to ensure that peak loads remain below the transformer capacity limit as 

specified in the catalog. Thus, this resolves the non-converged network problem. Additionally, 

the transformer that is not frequently used in low-voltage networks (i.e., > 630 kVA) can also 

be incorporated to reduce non-converged networks. 
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Table 5-9 Power flow parameters and target set for operational validation  

Power flow parameter Target 

Convergence Yes 

Minimum voltage magnitude > 0.95 with out voltage regulated distributed 

transformer 

> 0.90 with voltage regulated distributed 

transformer 

Maximum voltage magnitude < 1.05 with out voltage regulated distributed 

transformer 

< 1.10 with voltage regulated distributed 

transformer 

Under voltage count 0 (Count at each time snapshot for total 

considered snapshots) 

Over voltage count 0 (Count at each time snapshot for total 

considered snapshots) 

Line loading < 100%  

Transformer loading < 100%  

Component loading time snapshots <  0  

Following the statistical and operational validation, comparing the real-world network 

geographically is the next essential validation. The following section dives into this aspect.  

5.4.3 Geographical Validation 

The final validation metric is a graphical comparison of the real-world network, and the geo-

referenced synthetic network generated using the model. In this case, an internal validation 

was performed on an existing network that was obtained from a distribution system operator 

(not shown due to the non-disclosure agreement). From the 500,000 geo-referenced low-

voltage network, the network synthetically generated at the same position as the existing 

network was selected when comparing the geo-referenced network to the real network 

visualizing geographically. Comparing the two networks geographically reveals that 91% of the 

buildings covered in the real networks correspond to the developed geo-referenced synthetic 

network. Additionally, the geo-referenced synthetic network's power lines are almost identical 

to those seen in the real-world network. However, further comparison reveals that the 

transformer placement is not identical.  

Nevertheless, with the algorithms proposed in this thesis, high-accurate low-voltage networks 

can be produced, given the buildings in the low-voltage networks by the distribution system 

operator. Based on the validation measures conducted, it can be concluded that the developed 

geo-referenced synthetic low-voltage networks can imitate real-world low-voltage networks. 



 

5.5 Summary 

After analyzing the data required for estimating geo-referenced synthetic distribution networks, 

this chapter addresses the following question: “How are geo-referenced synthetic distribution 

network topologies estimated, what are the algorithms utilized, and how are they developed?” 

The focus of this chapter was to develop methods for estimating geo-referenced synthetic 

network topologies. The entire process of creating geo-referenced synthetic distribution 

networks followed a bottom-up approach, beginning with low-voltage networks and 

progressing to high- and extra-high-voltage transmission grid. Low-voltage networks are 

developed first by clustering classified residential buildings into the specified number of low-

voltage networks (i.e., 500,000). Here, scalable K-Means clustering algorithm was used due 

to the high volume and variety of the dataset. After clustering the buildings, the road 

infrastructure was extracted near the clustered residential buildings. All the edges (i.e., road 

infrastructure) and nodes (i.e., residential buildings) were connected to form radial networks 

using several developed methods. Additionally, the transformer location that was identified 

through the developed method validated that the transformer is proximal to all nodes in the 

network. Finally, electrical parameters such as loads and generators are assigned to each 

node, and low-voltage transformer type to transformer node. In addition, power line parameters 

were assigned to all the edges in the networks. This way, graphical networks were transformed 

to geo-referenced synthetic low-voltage electrical networks. Following that, 4,500 geo-

referenced synthetic medium-voltage networks were estimated. To accomplish this, low-

voltage network transformers and non-residential buildings are clustered to 4,500 medium-

voltage networks. Then, using a series of developed methods, graphical networks were 

generated with a node indicating the location of the medium-voltage transformer. When all the 

electrical parameters corresponding to the nodes and edges were applied, the developed 

graphical networks were transformed into geo-referenced synthetic medium-voltage electrical 

networks. Finally, high- and extra-high-voltage were generated as single grid utilizing GridKit 

tool. This helped establish geo-referenced synthetic distribution networks and extra-high-

voltage transmission network representing the entire power grid. Finally, in order to validate 

the established geo-referenced synthetic low-voltage networks, several validation measures 

such as statistical, operational, and geo-graphical visualization validations were undertaken in 

this chapter. 
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Key messages: 

 A bottom-up approach is used to construct geo-referenced synthetic 

distribution networks. 

 Geo-referenced synthetic low-voltage networks were generated by 

developing several algorithms such as those clustering the buildings to 

match low-voltage networks, clustering the buildings by limiting the 

cumulative peak load, collecting road infrastructure from OSM data, 

connecting nodes and edges, constructing a single graph from subgraphs, 

and identifying transformer locations. 

 The development of geo-referenced synthetic medium-voltage networks 

employs algorithms developed for low-voltage networks, as well as 

clustering with known centroids and predicting unknown centroids, and 

estimating radial medium-voltage networks. 

 GridKit is used with additional assumptions to create a geo-referenced 

synthetic high- and extra-high-voltage network. 

 According to statistical validation, data generated from 500,000 geo-

referenced synthetic low-voltage networks are highly comparable to 

published data. Additionally, comparing the overall circuit length of 

developed synthetic networks to the length of existing networks reveals a 

percent inaccuracy of only 0.89%. 

 499,608 geo-referenced synthetic low-voltage networks are converged 

during operational validation, while only 0.08% of networks do not 

converge when subjected to power flow simulations. 

 Validation using geographical visualization demonstrates that the networks 

generated are nearly identical. 
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6 Distribution Grid Model and Scenario Simulations 

What are the scenarios defined for future distributed demand and generation integration into 

the distribution networks? 

How can the effects of distributed demand and generation in the distribution networks be 

quantified? 

 

The primary objective of the thesis is to analyze the effects of future distributed demand and 

generation in the distribution networks. In line with this goal, Chapter 0 suggests the 

development of geo-referenced synthetic distribution networks. Accordingly, Chapter 5 

estimated geo-referenced synthetic distribution networks using information derived from 

Chapters 3 and 4. In this chapter, a distribution grid model is introduced to holistically capture 

the effects of future distributed demand and generation in the distribution networks. In this 

context, several scenarios are proposed and developed with varying levels of rooftop solar PV, 

battery electrical vehicles, and heat pumps penetration into the low-voltage distribution 

networks. Here, low-voltage distribution networks are considered due to their ability to 

accommodate the majority of distributed demand and generation units. Subsequently, for each 

of these scenarios, the distribution grid model will be used to identify Operational Limiting 

Factors (OLFs) violations in the low-voltage networks. The block diagram representation of the 

distribution grid model is illustrated in Figure 6-1. 

The distribution grid model leverages data that were defined and retrieved in previous 

chapters. For instance, Chapter 4 provides the demand, which include residential, battery 

electric vehicles, and heat pumps, and generation, which is rooftop solar PV, time-series 

profiles with a 15-minute resolution. These time-series profiles will be provided as an input to 

the geo-referenced synthetic networks. In Chapter 5, the geo-referenced synthetic low-voltage 

networks considered are generated, which includes 500,000 geo-referenced synthetic low-

voltage networks. As discussed in Chapter 0, the deterministic method was chosen, to perform 

power flow analysis due to the large number of low-voltage networks, since performing power 

flow simulations on these networks is time consuming. In this chapter, significant information 

pertaining to the scenarios that define the future integration of distributed demand and 

Topics covered: 

 Distribution grid model development for integrating future distributed demand 

and generation in the distribution networks 

 Development of base case scenario in line with the objective of 95% CO2 

emission reduction by 2050 

 Development of additional scenarios for sensitivity analysis 

 Demonstration of developed power flow model on an exemplary network from 

500,000 geo-referenced synthetic networks developed 



 

generation in low-voltage distribution grids will be explored. The scenarios illustrate the various 

forecasts in installed capacity for distributed demand and generation.  

 

Figure 6-1 Block diagram representation of the distribution grid model 

When the given information is applied, the distribution grid model provides information 

regarding operational limiting factors such as transformer violations, line violations, and voltage 

violations. Additionally, it also aids in the decision-making process for improved demand and 

generation integration. Table 2-3 provides the limitations for transformer and line loading 

violations whereas Table 2-2 defines the limitations for voltage alleged violations. 

Having discussed the key parameters of the distribution grid model, the next section explores 

the suggested scenarios for future distributed demand and generation integration in distribution 

grids. 

6.1 Scenarios 

In this study, scenarios are developed to ascertain the trends of the influencing effects on 

network vulnerability through a period of time. This includes, in particular, the growth of 

installed renewable energy generation capacity and distributed demand over time. This thesis 

places an emphasis on distribution networks. The most relevant distributed generation 

technology is rooftop Photovoltaic (PV), while distributed demand technologies include Heat 

Pumps (HPs) and Battery Electric Vehicles (BEVs), which are all included in the development 

of scenarios. 

As mentioned in Chapter 1, by 2050, governments aim to reduce GHG emissions by 80% to 

95% relative to 1990 levels [3]. These targets presented here are as of 2019. In this context, 
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the energy system model named NESTOR [233] analyzes transition pathways for the German 

energy system to reduce CO2 emissions by 95% by 2050. When the model was subjected to 

an optimization process, it resulted in a diverse energy mix with renewable energy sources 

and demand. However, since this thesis primarily deals with the distributed demand and 

generation in the distribution networks, the installed capacities of rooftop PV, battery electric 

vehicles, and heat pumps will be analyzed in terms of their impact on the low-voltage 

distribution networks. 

According to Robinius et al., [233], by 2050, the energy system should include 62.7 GW of 

rooftop solar PV, 26% Battery Electric Vehicles, and 11% Plug-In Hybrid Electric Vehicles, with 

heat pumps heating 82.9% of total building area. While this mix corresponds to distributed 

demand and generation, other technologies are also included in addition to these technologies 

to facilitate a 95% reduction in carbon dioxide emissions. However, it is worth noting that 

operational challenges for the networks will emerge when this additional demand and 

generation are introduced into the distribution networks.  

To quantify the potential for operational limiting factor violations in low-voltage networks as per 

the national scenario of Robinius et al., [233] is considered as the base case scenario for 

integrating distributed demand and generation in distribution grids. Initially, the base case 

scenario is constructed using data regarding the distributed demand and generation 

technology that is acquired from [233] (refer, Table 6-1). 

Table 6-1 Distributed demand and generation mix in the energy systems by 2050 in Germany 

Technology 2050 

Solar rooftop PV 62.7 GW Installed capacity 

Battery electric vehicles 26% of total vehicles 

Plug-In Hybrid electric vehicles 11% of total vehicles 

Total vehicles 42.7 million 

Heat pump 82.9% of building living space 

Note that all the information pertaining to different technologies is in different units. As 

discussed in the preceding chapters, the geo-referenced synthetic low-voltage networks 

contain information covering the buildings and their tags. Therefore, metadata on the 

distributed demand and generation mix in the energy system in 2050 should be elucidated to 

buildings. This must then be used as a base case scenario for conducting simulations to 

ascertain the effects of distributed demand and generation in the low-voltage networks. 

In this context, Germany should have 62.7 GW of solar rooftop PV by 2050, according to 

Robinius et al., [233]. As per our research, Germany currently has a total of 19,747,802 

residential buildings. Thus, when residential buildings are considered, 62.7 GW of solar rooftop 

PV should be converted into the percentage penetration of solar PV on all residential buildings. 

By 2050, with 62.7 GW of solar rooftop photovoltaic (PV), 19,747,802 residential buildings, and 

a typical rooftop installation of 6 kW, solar rooftop PV should be deployed on 53% of buildings. 



 

Similarly, in terms of electrical vehicle types, there are varying levels of penetration that 

includes battery electric vehicles and plug-in hybrid electric vehicles. To simplify calculations, 

this thesis treats all electric vehicles as battery electric vehicles. Based on this assumption, 

battery electric vehicle penetration was estimated to make up 37% of total vehicles by 2050. 

However, low-voltage networks incorporate buildings, and the given percentage penetration 

can be converted to pertain to buildings by equating one vehicle to one building. Based on this 

assumption and the number of buildings, it is recommended that 80% of buildings be equipped 

with battery electric vehicles by 2050. 

As a next step, heat pump (HP) percentage penetration was converted to a percentage of 

dwellings. This calculation was made based on the assumption that the area of residential 

buildings is proportional to the number of households. However, based on the hypothesis, 83% 

of dwellings should be equipped with a heat pump by 2050. Therefore, by transforming the 

various combinations of distributed generation and demand in the energy system by 2050 to 

the percentage of buildings, a base case scenario is established for future distributed demand 

and generation. Figure 6-2 illustrates the percentage penetration of distributed demand and 

generation, which include battery electric vehicles and heat pumps, and PV in low-voltage 

networks as a percentage of total buildings. 

 

Figure 6-2 Percentage of future distributed demand and generation in distribution grids by 

2050; A base case scenario is represented as PBH; where P, B, H corresponds to PV, BEV, 

and HP respectively9 

Once the base case scenario was determined, six additional scenarios were established to 

account for any possible variation from the expected percentage penetration by 2050. In order 

to develop an additional six scenarios, initial considerations should first be made. Henceforth, 

rooftop PV base case penetration, battery electric vehicle base case penetration, and heat 

pump base case penetration are referred as P (53%), B (80%), and H (83%), respectively. 

Similarly, the Up arrow (↑) represents a 10% increase, and the down arrow (↓) represents a 

10% decrease. Therefore, if there is a representation of (P↑), it indicates a 10% increase to 

 
9 P: Photovoltaics (PV); B: Battery Electric Vehicles (BEV); H: Heat Pumps (HP) 
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the base case PV penetration. For instance, if base case PV penetration is 53%, then (P↑) 

indicates a 10% increase in PV penetration, resulting in 58.3% PV.  

Based on this consideration, six scenarios have been developed. In the first three scenarios, 

one technology's percentage penetration is fixed as the base scenario, while the percentage 

penetration of the other two technologies is adjusted by ±10% interchangeably. For instance, 

in Scenario 1 (S1), solar PV is fixed at the base scenario percentage penetration (i.e., P= 53%), 

while the other two technologies are adjusted according to Table 6-2 to generate four unique 

cases. The four scenario cases for scenario 1 are named as PB↑H↑10, PB↑H↓11, PB↓H↑, and 

PB↓H↓. Here, the percentage penetration for each technology is indicated directly in the name. 

If the scenario case name is represented as PB↑H↑, it represents the base case PV penetration 

of 53%, battery electric vehicles penetration increased by 10% (i.e., 88%), and heat pump 

penetration increased by 10% (91.3%). Similarly, for scenario case with name as PB↑H↓ 

represent PV penetration of 53%, battery electric vehicles penetration increased by 10% (i.e., 

88%), and heat pump penetration decreased by 10% (74.7%).  

Similar to Scenario 1, Scenario 2 (S2) and Scenario 3 (S3) are considered, each with four 

scenario cases and distinct names for the scenario cases. Thus, S2 scenario cases are 

P↑BH↑12, P↑BH↓, P↓BH↑, and P↓BH↓. Likewise, S3 scenario cases are P↑B↑H13, P↑B↓H, 

P↓B↑H, and P↓B↓H. The scenario cases for the first three scenarios result in twelve scenario 

cases with varying percentage penetration for PV, battery electric vehicles, and heat pump 

technologies. Moreover, each of the scenario names represent the percentage penetration of 

each technology as mentioned previously. Table 6-2 illustrates the combinations for the first 

three scenarios. 

Table 6-2 Consideration of Scenario 1 (S1), 2 (S2), and 3 (S3) with four cases 

Scenario Scenario 1 (S1) Scenario Scenario 2 (S2) Scenario Scenario 3 (S3) 

Name PV  BEV  HP  Name PV  BEV  HP  Name PV  BEV  HP  

PB↑H↑ P B↑ H↑ P↑BH↑ P↑ B H↑ P↑B↑H P↑ B↑ H 

PB↑H↓ P B↑ H↓ P↑BH↓ P↑ B H↓ P↑B↓H P↑ B↓ H 

PB↓H↑ P B↓ H↑ P↓BH↑ P↓ B H↑ P↓B↑H P↓ B↑ H 

PB↓H↓ P B↓ H↓ P↓BH↓ P↓ B H↓ P↓B↓H P↓ B↓ H 

 

Figure 6-3 depicts each scenario for the percentage penetration of each technology by 

applying the combinations listed in Table 6-2. As represented in Figure 6-3, each scenario 

 
10 PB↑H↑: PV = 53%, BEV = 88%, HP = 91.3% 
11 PB↑H↓: PV = 53%, BEV = 88%, HP = 74.7% 
12 P↑BH↑: PV = 58.3%, BEV = 80%, HP = 91.3% 
13 P↑B↑H: PV = 58.3%, BEV = 88%, HP = 83% 



 

case has a unique name that corresponds to a different percentage penetration of each 

technology into the low-voltage distribution networks.  

 

Figure 6-3 Percentage penetration of PV, battery electric vehicles, and heat pumps for 

Scenarios 1 (S1), 2 (S2) and 3 (S3) 

In the first three scenarios, only one technology is fixed to the base case scenario, two 

technologies are fixed to the basic case scenario and only one technology changes ±10% in 

the other three scenarios. These variations are depicted in Table 6-3. That is, for Scenarios 4 

(S4), 5 (S5), and 6 (S6), two technologies are fixed to base case percentage penetration and 

one technology from PV, battery electric vehicles, and heat pumps are varied sequentially for 

three scenarios. For example, in Scenario 4 (S4), battery electric vehicles and heat pumps are 

fixed to base case percentage, and PV is varied by +10% in one scenario case and −10% in 

other scenario case creating two unique scenario names: P↑BH14, and P↓BH15, respectively. 

Similarly, for Scenario 5 (S5) and Scenario 6 (S6), two scenario cases are considered for each, 

which create PB↑H, PB↓H, PBH↑, and PBH↓, respectively. As mentioned previously, the 

scenario cases have a unique name and represent the percentage penetration for each 

technology.  

Table 6-3 illustrates the varying penetration of technologies derived for Scenarios 4 (S4), 5 

(S5), and 6 (S6).  

Table 6-3 Consideration of Scenario 4 (S4), 5 (S5), and 6 (S6) with two cases 

Scenario Scenario 4 (S4) Scenario Scenario 5 (S5) Scenario Scenario 6 (S6) 

Name PV  BEV  HP  Name PV  BEV  HP  Name PV  BEV  HP  

P↑BH P↑ B H PB↑H P B↑ H PBH↑ P B H↑ 

P↓BH P↓ B H PB↓H P B↓ H PBH↓ P B H↓ 

 
14 P↑BH: PV = 58.3%, BEV = 80%, HP = 83% 
15 P↓BH: PV = 47.7%, BEV = 80%, HP = 83% 
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Figure 6-4 illustrates the percentage penetration of PV, battery electric vehicles, and heat 

pumps for scenarios S4, S5, and S6, with two scenario cases.  

 

Figure 6-4 Percentage penetration of PV, battery electric vehicles, and heat pumps for 

Scenarios 4 (S4), 5 (S5) and 6 (S6) 

In conclusion, 19 scenario cases, including the base case, were developed to evaluate the 

future distributed demand and generation in the geo-referenced synthetic low-voltage 

distribution networks.  

After six scenarios were defined with four cases for scenarios S1, S2, and S3, and two cases 

were defined for scenarios S4, S5, and S6 along with the base scenario, a power flow analysis 

was performed on each geo-referenced synthetic low-voltage network. For each of the 500,000 

synthetic low-voltage networks, a total of 19 simulations each were executed with a scenario 

case to obtain information about operational limiting factor violations, including transformer 

loadings, line loadings, and node voltage limit violations. The following section will look at the 

simulation procedure and results for one of the estimated 500,000 geo-referenced synthetic 

low-voltage networks. 

6.2 Methodology Demonstration on an Exemplary Geo-referenced 

Synthetic Network 

As mentioned, each of the 500,000 geo-referenced synthetic low-voltage networks are 

simulated with 19 scenario cases with different percentage penetration for PV, battery electric 

vehicles, and heat pumps in terms of their integration into low-voltage networks. However, to 

better understand the simulation procedure and the results generated by each network, an 

elaborate case study is conducted on one of the 500,000 geo-referenced network topologies 

generated in the preceding chapter.  

The geo-referenced synthetic network topology of the network (𝑁ଶଷଽ଼଼) was examined. As 

previously stated, the distribution grid model is demonstrated here to guide the reader through 

the results. The distribution grid model is provided with certain inputs including load and 



 

generation profiles, synthetic networks, analysis method, and a tool for conducting power flow 

analysis. Table 6-4 contains the data used in the distribution grid model for an exemplary 

network. 

Table 6-4 Parameters used to apply the distribution grid model to an exemplary network 

Input parameter  Value 

Network (𝑵𝟐𝟑𝟗𝟖𝟖) 

 

Total nodes 96 

Total edges 95 

Load nodes 48 

Transformer 630 kVA, 20/0.4 kV 

Total circuit length 2.4 km 

Residential load Chapter 4 Single family houses (1 Household), multi-

family houses (five households), and 

apartments (13 households) 

Each household receive a load profile 

from 1person, 2-person, 3-person, 4-

person, and 5-person households as per 

the probability of 0.42, 0.33, 0.11, 0.1, and 

0.04, respectively 

Rooftop solar PV  Chapter 4 Generation profiles assigned to the 

randomly selected buildings according to 

the location and percentage penetration 

Battery electric vehicle Chapter 4 Battery electric vehicle randomly selected 

from given clusters and assigned to 

buildings according to the percentage 

penetration  

Heat pump Chapter 4 Heat pump profiles are assigned to the 

dwellings according to the percentage 

penetration 

Power factors  cos(𝜑) 0.93 for individual loads and 1.0 for 

distributed generation [154] 

Power flow analysis PyPSA Version 0.13.2 

Algorithm 10 was developed to extract information from all nodes and transformers and study 

the effects of distributed demand and generation in the geo-referenced synthetic low-voltage 

networks. The inputs used to employ Algorithm 10 are demonstrated in Table 6-4.  
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Algorithm 10 Flow algorithm for extracting information by performing power flow analysis 

Algorithm 10: Flow algorithm for extracting information by performing power flow analysis 

Input Table 6-4 

Steps 1: Select the network 

 2: 𝑓𝑜𝑟 𝑖 = 1, … , 19 𝑑𝑜 (19 scenarios developed in previous section) 

           Randomly assign the household profiles of one-person, two-person, 

three-person, four-person, and five-person households to each building 

according to the building type and with a probability of 0.42, 0.33, 0.11, 0.1, 

and 0.04, respectively. 

          According to the scenario, take the percentage of buildings that holds 

PV, BEV, and HP. 

          Assign the load and generation profiles as per the recommendation of 

the previous step 

          Perform sequential non-linear power flow analysis 

          Record the voltage magnitude at all the nodes, time-series power at the 

transformer, and lines. 

          Calculate the operational limiting factors that include transformer 

minimum power, transformer maximum power, transformer loading, reverse 

power flow, line loading, over voltage violations, and under voltage violations. 

Return Operational limiting factors for the network for all scenarios considered. 

Once the distribution grid model received inputs, non-linear power flow analysis was performed 

for each time step for all 768-time snapshots corresponding to weekdays (WD) and weekends 

(WE) during the Spring, Summer, Autumn, and Winter seasons. In the model, power flow 

analysis was performed using the Newton-Raphson method and after its convergence, power 

flow simulation results, time series of voltage magnitude at all nodes, active and reactive power 

at the low-voltage transformer and at each line were provided. 

However, using these time-series results obtained for the base case scenario (PBH), several 

operational limiting factors violations are studied for each network, such as transformer loading 

violations, line loadings, reverse power flow violations, under voltage violations, and over 

voltage violations. As discussed in Chapter 0, if the transformer’s load exceeds predefined 

limit, it is referred to as overloading. For the network (𝑵𝟐𝟑𝟗𝟖𝟖) considered in this exemplary 

simulation, Figure 6-5 illustrates the transformer loading. It is evident from the figure that the 

overloading occurred for a maximum of four-time instances during the operation of 768-time 

snapshots, wherein each time snapshot is of 15-minute. Furthermore, transformer overloading 

was observed during the winter, when heat pumps operate at high rate. Based on the number 

of times the transformer is overloaded, a decision will be made. Chapter 7 will derive 

conclusions based on the transformer loading by studying the 500,000 geo-referenced 

synthetic low-voltage networks.  

Figure 6-5 illustrates that certain time periods exhibit negative loading on the transformer, 

which is reverse power flows. Here, for at least 25 time instances the power is fed into the 



 

medium-voltage network, primarily in summer and autumn, when rooftop solar PV generates 

the most energy. However, the frequency with which reverse power flows occur will be 

considered in Chapter 7, and essential conclusions will be drawn.  

 

Figure 6-5 Transformer loading of the geo-referenced synthetic low-voltage network (𝑵𝟐𝟑𝟗𝟖𝟖) 

Furthermore, on each line, the line loading will be considered using active power at the line 

and its nominal power. Similar to transformer loading, the line is considered to be overloaded 

in case the line’s capacity limit exceeds. Figure 6-6 illustrates the line loading on each line for 

a specific time instance on the network that is considered. As illustrated in Figure 6-6, lines 

located near transformers are subjected to greater loading than lines located further away from 

the transformer. Chapter 7 will examine the time instances and number of lines that are 

overloaded for all 500,000 geo-referenced synthetic networks. 
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Figure 6-6 Line loading on each line for a specific time instance of simulated geo-referenced 

synthetic low-voltage network (𝑵𝟐𝟑𝟗𝟖𝟖) 

Finally, when the voltage magnitude at each bus in the network is analyzed, overvoltage and 

undervoltage violations will be identified on each node. For instance, Figure 6-7 illustrates the 

voltage magnitude of a random bus in the simulated network. As discussed in Chapter 0, if 

there is no decoupling between medium- and low-voltage networks, the node voltage should 

be between 1.05 and 0.95 per-unit. However, if low-voltage network contains a voltage 

regulating distribution transformer, the voltage at any node should fall between 1.1 and 0.9 

per-unit. As demonstrated in Figure 6-7, the node is under voltage violation in more than two-

time steps. However, these two instances are not considered as voltage violations if a voltage 

regulating distribution transformer is installed in the low-voltage network. Nevertheless, 

Chapter 7 will draw conclusions by identifying the nodes and the total time during which each 

node is under violations in a network for all 500,000 networks.  
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Figure 6-7 Voltage magnitude at a random bus in the simulated geo-referenced synthetic low-

voltage network (𝑵𝟐𝟑𝟗𝟖𝟖) 

To summarize, the results presented here are intended to demonstrate the model's 

performance; thus, the simulations are not detailed. Nonetheless, the distribution grid model is 

applied to all 500,000 geo-referenced synthetic low-voltage distribution networks, simulating 

19 different scenarios. Based on the outcomes of the simulations that are conducted, the 

following chapter will discuss the results, and the implications associated with future distributed 

demand and generation in low-voltage distribution networks. 

6.3 Summary 

Chapter 5 developed geo-referenced synthetic distribution network topologies in order to study 

the vulnerabilities of distribution networks by the integration of distributed demand and 

generation. In this process, several methods were employed along with data introduced in 

previous chapters. This chapter addresses the question “What are the scenarios defined for 

future distributed demand and generation integration into the distribution networks?” in order 

to address the thesis’s primary research question. This question was answered by considering 

a base case scenario using installed capacities from a national scenario that optimized the 

energy mix to achieve 95% reduction in CO2 emissions by 2050 (Disclaimer: Targets as of 

2019). The optimization process for this study considered a variety of energy technologies. For 

simplification, solar rooftop PV, battery electric vehicles, and heat pumps are considered in 

this thesis due to their substantial presence in distribution networks. Along with the base case 

scenario, six additional scenarios with 18 scenario cases were developed to determine the 

possibility of capacity deviations by 2050. After establishing the scenarios, this chapter 

attempted to address the following question: "How can the effects of distributed demand and 
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generation in the distribution networks be quantified?" This was addressed by developing and 

applying a distribution grid model to the defined scenarios and running power flow simulations 

on 500,000 geo-referenced synthetic distribution network topologies. The effects of the 

considered distribution demand and generation are quantified by the frequency of occurrences 

of operational limiting factor violations in the networks, such as transformer loading, line 

loading, reverse power flows, and voltage limiting violations. 

 

 

Key messages: 

 The distribution grid model developed in this chapter uses inputs from previous 

chapters and performs power flow simulations to ascertain the operational 

constraints of transformers, lines, and nodes. 

 Base case scenario is developed for 95% CO2 emission reduction in Germany, 

2050. 

 Under the base case scenario, the percentage penetration of PV, battery 

electric vehicles, and heat pumps are 53%, 80%, and 83%, respectively. 

 Six additional scenarios were developed to assess the sensitivity of the 

distributed demand and generation in the future. 

 Each scenario has a unique name, with an upward arrow (↑) indicating a 10% 

increase over the base case scenario and a downward arrow (↓) indicating a 

10% decrease over the base case scenario.  
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7 Results and Discussion 

Are the distribution networks adequate for significant increase in distributed demand and 

generation in the future? 

Which technical violations exist with regard to future distributed demand and generation, and 

how could they be addressed? 

 

The preceding chapters looked at the development of geo-referenced synthetic distribution 

networks and a distribution grid model to help answer this thesis's overarching research 

question. In this chapter, the main findings are leveraged to answer the research question. To 

accomplish this, the distribution grid model developed in Chapter 6 is applied to the 500,000 

geo-referenced synthetic low-voltage networks that were developed in Chapter 5. The 

objective is to examine the impacts of future distributed demand and generation under the 

scenarios presented in Chapter 6. Within this framework, all geo-referenced synthetic low-

voltage networks are initially assigned with electrical parameters pertaining to transformer 

types, line types, and household loads. Moreover, as stated in Chapter 4, residential load 

profiles are distributed in accordance with the probability of various households in Germany. 

Additionally, along with the active power required by residential loads, reactive power is 

evaluated using a power factor (cos (𝜑)) of 0.93. It is important to note that all the time-series 

corresponding to the load and generation are season-specific for weekdays (WD) and 

weekends (WD) across four seasons (i.e., Spring, Summer, Autumn, and Winter), with a 15-

minute time resolution totaling to 768-time-snapshots. 

The developed scenarios allocate distributed demand, which include battery electric vehicles 

and heat pumps, and distributed generation or residential rooftop PV to each network to 

conduct scenario simulations. For instance, under the base case scenario, 53% of buildings 

obtain rooftop PV profiles, 80% of buildings receive battery electric vehicle profiles, and 83% 

of dwellings in the network receive heat pump profiles. Reactive power as time-series was also 

considered along with active power, with a power factor (cos (𝜑)) of 0.93 for distributed demand 

and 1.0 for distributed generation. With this complete setup, the scenario simulations are 

performed using the distribution grid model. 

Topics covered: 

 Application of distribution grid model on 500,000 geo-referenced synthetic low-

voltage networks 

 Analyzing the Operational Limiting Factors (OLFs) corresponding to 

transformers, lines, and voltage at each node 

 Simple demand side management application 



 

However, simulating 19 scenario cases for 786-time snapshots on 500,000 geo-referenced 

synthetic networks requires a significant amount of computational power. Therefore, they are 

performed on an in-house high-performance cluster computer (CAESAR) that consists of 25 

compute nodes with a combined total of 1200 logical CPUs.  To solve large-scale optimization 

problems, each compute node includes 1TB of RAM and the simulations are performed using 

15 compute nodes. It took approximately 15 days to perform the simulations. Therefore, it can 

be concluded that even when approximately 800 CPUs are used, the computation time is 

significantly high. Therefore, the study ruled out the use of a probabilistic method to study the 

consequences of future distributed demand and generation in low-voltage networks. 

In the distribution grid model, a deterministic method is used to extract information about the 

time-series power at transformers, lines, and the voltage magnitudes at each bus depicted in 

Chapter 6. Additionally, in order to record the aforementioned information for all networks, a 

significant amount of storage space is required. Therefore, only the results necessary for 

analyzing the impacts of demand and generation on the networks are stored and analyzed, 

including minimum and maximum transformer utilization, time and percentage time snapshots 

of transformer loading, reverse power flow, line loading, under-voltage, and over-voltage 

limiting factor violations. The results pertaining to the operational limiting factors for each of 

500,000 synthetic networks will be discussed sequentially in the following section. This chapter 

will also address alternative strategies for mitigating operational limitation factor violations. 

7.1 Transformer Violations 

The transformer is the first critical component that is analyzed under various scenarios of 

distributed demand and generation in the low-voltage distribution networks. Here, the 

violations examined that involve transformers include thermal overloading and reverse power 

flow violations. In low-voltage networks, transformers must operate within certain specified 

limits. If the load on the transformer exceeds the limits, large currents flow, increasing copper 

losses and potentially causing irreversible damage to the transformer. However, the 

transformer load should not exceed the limits specified in Table 2-3. In other words, to ensure 

optimal operation, the transformer's rated capacity that is 100% of utilization should not be 

exceeded. In general, this limit is applicable for a specified period of time; for example, if the 

transformer operates for one hour at greater than 100% capacity, it is considered a violation 

of the limit. Nonetheless, this thesis considers it a violation when the transformer is loaded 

above 100% for each time snapshot simulated (15 minutes). 

In this setting, this section will investigate the time period during which the transformer violates 

the limitations and causes violations. As previously stated, there are two major violations that 

a transformer could cause: thermal overloading and reverse power flows. First, thermal 

overloading of the 500,000 low-voltage transformers will be investigated. Thermal overloading 

occurs when the transformer is utilized at a capacity greater than 100% of its rated capacity. 

Thus, in the context of a variety of scenario cases, the transformer loadings determined from 

the simulations performed on 500,000 geo-referenced synthetic low-voltage distribution 

networks will be investigated. For each transformer, the maximum transformer loading 
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recorded during an eight-day simulation period will be evaluated for all scenarios. Figure 7-1 

illustrates the maximum loading of the transformers observed in the base case scenario. 

 

Figure 7-1 Maximum transformer loading observed for 500,000 networks under base case 

scenario (PBH) 

Here, the analysis pertains to the maximum transformer loading that each transformer 

encountered during the simulated time snapshots. The loading at each time step is simulated 

using the power output time-series of the transformer in conjunction with its transformer rating. 

The maximum of the time-series will be taken into consideration to determine the maximum 

transformer loading for each transformer. Consequently, the maximum transformer loading 

value indicates the peak utilization of the transformer during the simulated time steps. Thus, it 

can be assumed that no additional loading occurred for each transformer beyond this 

utilization. 

In Figure 7-1, the map on the top left represents the maximum loading of all low-voltage 

transformers located geographically. Since there is a large number of transformers, it is 

impossible to properly view each transformer. The zoomed in level at a specific area is 

displayed on the right-hand side at the top, along with the maximum loading on each 

transformer at that position. It is evident from this that each transformer has a distinct maximum 

loading, and due to the large number of transformers, the discrepancies are not visible on the 



 

map. Nonetheless, the box plot depicts the maximum loading that occurred in each 

transformer. 

Figure 7-1 illustrates that the maximum loading of transformers ranges from 2% to nearly 

200%. The 2% value indicates that during the time snapshots studied, the transformer's 

maximum loading was 2% of its capacity. That is, less than 2% of the transformer capacity 

was utilized in all the time snapshots simulated. Similarly, 200% is the maximum loading that 

the transformer experienced for all time-snapshots that were simulated. However, from Figure 

7-1, it can be seen that the median is at 100%. This means that 50% of the transformers in the 

500,000 geo-referenced synthetic low-voltage networks demonstrated a maximum loading of 

less than 100%. Therefore, for these 50% of the networks, no other time instances lead to a 

transformer loading value that is greater than 100%. These 50% of the transformers will never 

subject to thermal overloading as per the limit for overloading violations (i.e., >100%). 

Nonetheless, during 786-time snapshots with a 15-minute time resolution, the remaining 50% 

of transformers utilized more than 100% of their capacity at least once. Additionally, the third 

quartile is at 125%, which means that 25% of transformers between the median and third 

quartile use an additional 25% of their capacity. However, 25% of the transformers utilized only 

25% of additional transformer capacity, which is significantly less than the capacity used by 

the transformers between the third quartile and the maximum value. Moreover, 25% of 

transformers with 25% excess transformer capacity usage can easily be compensated for in a 

variety of ways. However, there is a need to pay attention to the remaining 25% of transformers 

with a maximum transformer utilization exceeding 125%. However, it is important to remember 

that these are the results of the base case scenario (PBH) with 53% rooftop PV, 80% of battery 

electric vehicle, and 83% of heat pump penetration in the low-voltage distribution networks. 

Therefore, 18 additional scenario cases will be examined to determine the possibility of a 

deviation in installed capacities by 2050. The results of the simulation of 18 additional scenario 

cases are depicted in Figure 7-2. The 18 other scenario cases include PB↑H↑, PB↑H↓, PB↓H↑, 

PB↓H↓, P↑BH↑, P↑BH↓, P↓BH↑, P↓BH↓, P↑B↑H, P↑B↓H, P↓B↑H, P↓B↓H, P↑BH, P↓BH, PB↑H, 

PB↓H, PBH↑, PBH↓. Here, P, B, H represent the base case percentage penetration of 53%, 

80%, and 83%, respectively. The upward arrow (↑) represents the increase in percentage 

penetration by 10% over the base case scenario. Likewise, downward arrow (↓) represents the 

decrease in percentage penetration by 10% over the base case scenario. Considering all these 

scenario cases, the box plots in Figure 7-2 represent the maximum loading observed at each 

transformer for the simulated time-period for all 500,000 geo-referenced synthetic low-voltage 

networks.  
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Figure 7-2 Maximum transformers loading (%) observed for all the geo-referenced synthetic 

low-voltage networks for 18 various scenario cases 

As illustrated in Figure 7-2, for most of the scenario cases, the consequences of distributed 

demand and generation on transformer overloading are nearly identical to those of the base 

case scenario (i.e., PBH, Figure 7-1). However, the results for PB↓H↓, P↑BH↓, P↓BH↓, and 

PBH↓ indicate that around 40% of the low-voltage transformers exhibit transformer overloading 

violations. Furthermore, this is around 10% less than the base case scenario (PBH). In the 

base case scenario, 50% of the transformers experience violations at least once. From PB↓H↓, 

P↑BH↓, P↓BH↓, and PBH↓ scenario cases, it was observed that H↓ is the common 

denominator and denotes a 10% reduction in the percentage of base scenarios (i.e., 74.7%). 

Thus, heat pump utilization seems to be primarily responsible for the thermal loading of the 

transformers. It is also evident from the time-series of the transformer loading reported in 

Chapter 6 for an exemplary network (i.e., 𝑵𝟐𝟑𝟗𝟖𝟖). From Figure 7-3, it is clear that transformer 

overloading occurs only during the winter. Therefore, heat pumps which are primarily operated 

during winter season (refer, Figure 4-30 ) are primarily responsible for overloading of the 

transformers. 



 

 

Figure 7-3 Transformer loading seen in Winter when more heat pumps are operating for an 

exemplary network (𝑵𝟐𝟑𝟗𝟖𝟖) 

Based on the two results that were derived above - heat pumps with 10% less penetration than 

base scenario and the transformer overloading observed in winter - heat pumps are identified 

as the primary driving technology of thermal overloading violations in transformers. 

Additionally, one could argue that during the winter, rooftop photovoltaic generation is at a 

minimum, resulting in transformer overloading. However, rooftop PV generation (see Figure 

4-32) and demand for heat pumps (see Figure 4-30) are completely opposite. In other words, 

it entails minimal PV generation and maximum heat pump utilization. It may be for only a brief 

period during the day that rooftop PV generation reaches its peak. In comparison, heat pump 

demand is constantly at its peak during the winter. Thus, even when the rooftop PV is operating 

at maximum capacity during winter, it is the heat pump demand that overloads the transformer. 

Nonetheless, when compared to rooftop PV generation at its minimum, the instances of 

overloading will be reduced when rooftop PV generates in the winter. 

A comparison of these four scenario cases (viz., PB↓H↓, P↑BH↓, P↓BH↓, and PBH↓) 

demonstrates that PB↓H↓ results in slightly fewer violations with a maximum violation of less 

than 200%. This scenario case (i.e., PB↓H↓) has a 10% lower penetration rate for battery 

electric vehicles and heat pumps than the base case scenario. In this scenario case, 65% of 

low-voltage network transformers operate without thermal overloading. However, 35% of 

transformers experience at least one violation within the total time period of the simulation. 

Additionally, 10% of transformers have utilized more than 20% of their capacity at least once 

in the total time period of the simulation. This indicates that 10% of transformers consume 

around 120% of their capacity. However, the additional 20% can readily be offset by auxiliary 
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services. However, it is necessary to address the remaining 25% of transformers with a 

maximum load exceeding 120%. 

In conclusion, under the base case scenario (PBH), 50% of the low-voltage transformers are 

within the limits. The additional 50% of the transformers encounter overloading at least once 

in total time snapshots simulated. Furthermore, 25% of these 50% transformers operate at 

less than 125% of their rated capacities and thus, several steps can be undertaken to regulate 

them. It is crucial to address the remaining 25% of the transformers that are operating at higher 

than 125% of their rated capacities. During these simulations, it was concluded that heat 

pumps are the leading source of overvoltage violations irrespective of PV generation. 

Moreover, a decrease in the penetration of battery electric vehicles and heat pumps can reduce 

the number of transformers that need additional consideration in the future.  

Until now, we have observed the maximum loading on each transformer over all time instances 

that were simulated. This indicates the number of transformers that are expected to exhibit 

transformer overloading violations when demand and generation are integrated into the low-

voltage distribution networks in the future. However, experiencing violations for a short period 

of time may be insignificant, while persistent overloading causes critical damage to the 

transformer. Therefore, additional analysis is performed on the transformer loading time series 

to determine the total time period during which the transformers are overloaded. This is 

performed for all 19 scenario cases, including the base case scenario, on all the geo-

referenced synthetic network transformers.  

Figure 7-4 illustrates the time span during which each transformer is overloaded, as well as 

the percentage of total time the transformers are overloaded. Here, the time and percentages 

are provided for a year and derived from 768-time instances with 15-minute time snapshots 

each. This study will consider the total time during transformer overloading. For instance, if a 

transformer in a low-voltage network operates at more than 100% of its capacity once during 

a 15-minute time snapshot in the morning, twice in the afternoon, and once in the evening, this 

pattern will continue for 365 days. This means the transformer exceeds its capacity 1460 times 

(i.e., 365 hours) or 4% of the time over the year. These values were collected and assessed 

for all 500,000 geo-referenced synthetic low-voltage network transformers.  

The previous analysis revealed that only 50% of the 500,000 geo-referenced synthetic low-

voltage network transformers are subjected to transformer overloading violations. Figure 7-4, 

showcases that the minimum value, first quartile, and median are all equal to zero. This 

indicates that 50% of transformers are not subject to any violations, as seen in previous 

analyses. Therefore, 50% of the transformers from the 500,000 geo-referenced synthetic 

networks (i.e., 250,000 transformers) are experiencing transformer overloading violations.  



 

 

Figure 7-4 Transformers under violations (Hours) and percentage of total time (8760 hours) for 

500,000 geo-referenced synthetic low-voltage networks under base scenario (PBH) 

Furthermore, 25% of the transformers positioned between the median and third quartile exhibit 

thermal loading violations ranging from approx. 11 to 125 hours per year. The remaining 25% 

of transformers above the third quartile have more than 125 hours and fewer than 310 hours 

under overloading (i.e., 1.5 to 4% of time of a year). Thus, it is apparent that only 25% of the 

transformers in the 50% of transformers with violations require critical attention. 

As illustrated in Figure 7-3, the transformer for the considered network (𝑵𝟐𝟑𝟗𝟖𝟖) is overloaded 

approximately six times during the total simulated time instances, which is approx. 68 hours a 

year. As a result, this network falls between the median and third quartile of data. From this, it 

is clear that the transformer is frequently overloaded during the winter season. It can also be 

claimed that networks with similar characteristics will fall under this 25% of the networks. 

However, since the percentage of total time is less than 2%, these instances can be controlled 

through alternative means. 

However, as stated above, several additional scenarios are considered in addition to the base 

scenario. The results for these scenarios are depicted in Figure 7-5. 
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Figure 7-5 Transformers under overloading violations (Hours) observed for all the 500,000 

geo-referenced synthetic low-voltage network transformers for 18 various scenario cases 

According to Figure 7-5, 50% of the transformers do not exhibit any violations in all scenarios 

except P↑BH↑, P↓BH↑, and PBH↑. However, for these scenario cases, there are additional 

networks exhibiting overloading violations. In all of these scenarios, it is observed that there is 

an additional 10% of heat pump penetration (H↑) (i.e., 91.3%) over the base case scenario. 

On the other hand, PB↓H↓, P↑BH↓, P↓BH↓, and PBH↓ have transformers with a lower violation 

count. These scenarios feature a 10% reduction in heat pump penetration (H↓) compared to 

the base case scenario. Therefore, the thermal loading of the transformer is primarily affected 

by the heat pump penetration. 

This study also considers the average time in hours for which transformers are overloaded 

over a period of one year for all scenarios, including the base case scenario. Figure 7-6 

illustrates the average values for all scenarios. The results indicate that all scenario scenarios, 

except for PB↓H↓, have comparably similar average values. This scenario has a similar 

percentage penetration of residential solar PV as the base scenario, but the percentage 

penetration of distributed demand - battery electric vehicles and heat pumps - is 10% less than 

the base scenario (B↓H↓).  



 

 

Figure 7-6 Average time transformers overloaded (Hours) for 500,000 networks for 19 scenario 

cases 

Therefore, the PB↓H↓ scenario case is analyzed carefully to identify the proportion of 

transformers that require special attention and identify the technologies that are sensitive to 

transformer overloading. PB↓H↓ scenario case, similar to the base scenario, shows that 50% 

of transformers are in violation. However, 25% of these 50% of transformers experience 

violations ranging from 1 to 7 times over the 768-time snapshots simulated. This adds up to 

approx. 11 hours to 80 hours a year. However, these 25% of transformers are not critical and 

may be regulated by various techniques. Additionally, based on the previous analysis, the 

majority of violations were recorded in winter, which can be attributed to heat pumps. In such 

instances, reducing the use of heat pumps can help improve the situation. Furthermore, 

another 25% of transformers are in violation for more than 200 hours but less than approx. 300 

hours. Consequently, 25% of all transformers assessed require special attention. 

In conclusion, most of the overloading time instances occur during the winter season, as 

evidenced by the exemplary network (𝑵𝟐𝟑𝟗𝟖𝟖) time series. Furthermore, the networks that 

experiences overvoltage violations increase with an additional 10% heat pump penetration 

(H↑). In contrast, a decreased penetration (H↓) to base case scenario reduces the overloading 

time. Thus, fewer additional services will be required to mitigate the overloading violations by 

reducing the use of heat pumps during winter. Nevertheless, 25% of the transformers which 

are critical needs additional attention. 

However, transformer overloading is not the only violation that can affect the transformer. The 

reverse power flows at the transformer also negatively impacts them and the protection 
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equipment, if not properly maintained. Therefore, the effects of future distributed demand and 

generation on transformer’s reverse power flows are analyzed. First, the minimum transformer 

loading on each transformer should be observed because the power flow is in the opposite 

direction and minimum loading can provide the maximum power flow in reverse direction that 

is from low-voltage to medium-voltage. 

By simulating 500,000 geo-referenced synthetic low-voltage distribution networks under the 

base case scenario and 18 scenario cases, the minimum transformer loading was determined. 

Figure 7-7 illustrates the minimum transformer utilization observed under the base scenario for 

all geo-referenced synthetic low-voltage networks. 

 

Figure 7-7 Minimum transformer loading observed for 500,000 geo-referenced synthetic 

networks under base case scenario (PBH) 

The minimum transformer loading was determined here by applying minimum on the 

transformer loading time series. The minimum of all the time snapshots simulated for eight 

days is identified based on the analysis in previous sections. The minimum transformer loading 

determines the transformer's minimal utilization. This could be either positive or negative, 

depending on the network's circumstances. Negative implies reverse power flow. In other 

words, the transformer's capacity is being used to transmit power from the lower voltage side 

to the higher voltage side. This phenomenon occurs when there is a surplus of power 

generated by distributed generation and a deficiency of demand on the low-voltage side. When 



 

a transformer’s capacity is being used to transfer power from the higher voltage to the lower 

voltage side, it is known as forward power flow and is indicated as positive shows. The 

phenomenon occurs when there is a high demand requirement and a low level of generation 

on the low-voltage side (see, Figure 7-3). 

In Figure 7-7, the map on the top left represents the minimum loading of all geo-referenced 

synthetic low-voltage transformers located geographically. Due to the large number of 

transformers, it is impossible to clearly view each transformer. However, the zoomed in level 

at a specific area is displayed on the right-hand side at the top, along with the minimum loading 

on each transformer at that position. It is evident from the figure that each transformer has a 

distinct minimum loading, and the differences are not visible on the map due to the large 

number of transformers. Nonetheless, the box plot depicts the minimum loading experienced 

by each transformer. 

The box plot in Figure 7-7 represents the minimum loading observed for each transformer in 

the base case scenario (PBH). The results demonstrate that the minimum value for each 

transformer ranges from −37% to +5%. In a few 15-minute time snapshots, the minimum 

transformer utilization observed for a few/one transformers of 500,000 transformers is around 

−37%. This value signifies that 37% of the transformer's capacity is being used to transmit 

power toward the higher voltage. However, as illustrated in Figure 7-7, more than 75% of 

transformers have experienced negative transformer utilization at least once, indicating that 

there is a significant probability of them exhibiting reverse power flow violation. Reverse power 

flow violations are related to the transformer's negative utilization. According to the analysis, 

50% of transformers exhibit negative transformer violations, which are lesser than −11%. The 

remaining 50% of transformers exhibit a value greater than −11% for a specific time snapshot. 

However, the map demonstrates that the overall geographical distribution is blue, not mixed, 

because transformers a greater negative loading than 11% are essentially scattered and 

isolated from all other transformers with loading higher than −11%. That means there are 

diverse values ranging from −17% to −11%. Additionally, the proper distribution is obscured 

by the high density of transformers and the tiny size of the map. 

Nevertheless, it is significantly concerning that 50% of the 500,000 transformers experience 

reverse power flow by utilizing more than 11% of the transformer's capacity are of significant 

concern. The risk of permanent damage to the protection equipment is greater if the 

percentage of transformer utilization for reverse power flow use is higher. For instance, if an 

onload tap change transformer is installed to change the transformer taps and maintain the 

voltage limits at the low voltage side due to the reverse power flow, abrupt tap shifts occur 

resulting in an abrupt increase of the current. This causes the overheating of transformer 

windings.  

However, 25% of these 50% of transformers demonstrate less than 17% and greater than 11% 

reverse power flow utilization. Therefore, in addition to the 50% of transformers exhibiting 

reverse power flow by consuming less than 11% of transformer capacity, 25% of the 

transformers are in the median and third quartile. The violations exhibited by the latter can be 



 

175 
 

easily compensated for by employing ancillary services. Finally, low-voltage transformers that 

are inside the third quartile and exhibit the maximum value, which is 25% of 500,000 

transformers, are crucial for reverse power flows. 

However, this conclusion is drawn in the context of the base case scenario (PBH) with 53% 

PV, 80% battery electric vehicles, and 83% heat pumps. Subsequently, to determine the 

probability of deviations in the installed capacities, the previously developed scenario cases 

are examined. Figure 7-8 illustrates several additional scenario cases that were investigated 

for minimum transformer utilization. As depicted in Figure 7-8 the additional scenarios do not 

significantly differ from the base case scenario. Nonetheless, P↓BH↑, P↓BH↓, P↓B↑H, P↓B↓H, 

and P↓BH exhibit some variation and in all these scenario cases, P↓ is common. This 

represents a 10% reduction in PV penetration (i.e., 47.7%) relative to the base case (i.e., 53% 

of PV).  

 

Figure 7-8 Minimum transformer loading (%) observed for all the considered low-voltage 

networks for 18 various scenario cases 

In the base case scenario, 75% of the transformers exhibit reverse power flows utilizing less 

than 17% of the transformer capacity. However, in the aforementioned scenario cases, where 

P↓ is common, that denotes a 10% reduction in the percentage of base scenario (i.e., 47.7%). 

Here. 75% of the transformers have reverse power flow utilization that is less than 15% of the 



 

transformer capacity, which is 2% less than the base case scenario and other scenarios. 

Additionally, the minimum value observed for these scenario cases is significantly lower than 

the base case scenario and other scenario cases, where PV is fixed or P↑ (i.e., PV penetration 

increased by 10% over base scenario). Thus, it can be stated that PV generation accounts for 

the majority of reverse power flows at the transformers. Additionally, as demonstrated by the 

time series of transformer loading reported in Chapter 6 for an exemplary network (𝑵𝟐𝟑𝟗𝟖𝟖) 

and depicted in Figure 7-3, negative transformer loading occurs during the summer and spring. 

Moreover, as evidenced by the PV generation profiles in Chapter 4, rooftop PV generates more 

energy in the spring and summer than in the autumn and winter. 

According to these observations, a 10% reduction in PV penetration from the base case 

scenario and the minimum loading of the transformer during the summer and spring indicates 

that PV generation causes transformer reverse power flows. However, to determine whether 

changes in the distributed demand - battery electric vehicles and heat pumps -   impact reverse 

power flow, average values for all scenario cases were evaluated. When 500,000 geo-

referenced synthetic networks transformers were observed for 19 scenario cases, including 

the base scenario (PBH), the average value of the minimum transformer loading is depicted in 

Figure 7-9. 

 

Figure 7-9 Average minimum transformer loading for 500,000 networks for 19 scenario cases 

Considering the average results of all the transformers examined in all scenario cases, P↓BH↑, 

P↓BH↓, P↓B↑H, P↓B↓H, and P↓BH produce better results than the base scenario. The extreme 

points in Figure 7-9 correspond to the lowest average minimum loading observed and denotes 

P↓BH↑, P↓BH↓, P↓B↑H, P↓B↓H, and P↓BH. Here, the deviations are negligible, and the only 

pattern observed is that P↓ is common in all scenario cases. In other words, when PV 

penetration is decreased by 10% over the base case, the deviations are negligible. 
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Furthermore, it is also apparent that higher battery electric vehicles penetration with the same 

heat pump number can also help reduce reverse power flows.  

In conclusion, under the base case scenario, more than 75% of the transformers exhibited 

reverse power flow at the transformer at least once. This was determined by examining the 

minimum loading of the transformers. However, only 25% of the transformers were identified 

as utilizing more than 17% of their capacity to transfer power toward the high-voltage side and 

demonstrating greater influence on the protection equipment in that network. Additionally, it 

was determined that solar rooftop PV is the primary cause of the reverse power flow at the 

transformer. Furthermore, it may also be concluded that distributed demand has minimal 

influence on the reverse power flow. In any scenario case, regardless of the increase or 

decrease in the penetration, they are not reducing reverse power flows at the transformers. 

That is, there is a significant mismatch between generation and demand, resulting in these 

effects. 

The violation involving reverse power flow must be investigated further to determine whether 

the given penetration levels of distributed demand and generation are suitable for future 

integration. This is important because previous analysis demonstrates only the maximum 

utilization of the transformers as the reason for reverse power flow. In this analysis, the 

technology causing the violations is identified along with the number of networks that are 

impacted at least once as a result of distributed demand and generation. Therefore, it is crucial 

to determine how frequently these incidents occur during the simulated time in order to draw 

conclusive findings. Thus, a further evaluation is conducted to determine the time period over 

which the transformer experiences reverse power flow violations at each transformer. 

The analysis above identified the maximum transformer loading observed for reverse power 

flow for each network and concluded that the maximum observed is –37% in the base case 

and −29% percent in other scenarios where PV is 10% less than the base case scenario (P↓), 

regardless of any other demand technologies. However, within the simulated time, the loading 

was observed just once. To establish that the transformer is under violation, it is critical to 

examine the amount of time over which the transformer exceeds its limits. Thus, the number 

of time snapshots depicting reverse power flow for each transformer experiences is considered 

regardless of its capacity. However, Figure 7-10 illustrates the reverse power flow time for a 

time period of a year for 500,000 geo-referenced low-voltage network transformers in the base 

case scenario. 

Figure 7-10 illustrates the time indicated for reverse power flow instances for a year. It can be 

observed from the figure that the minimum value is zero and the maximum value is 

approximately 2000 hours. Here, the displayed reverse power flow time is estimated for a year 

from an 8-day simulation period with 15-minute time snapshots. Furthermore, the minimum 

time zero indicates that some of the transformers have been operating without reverse power 

flow violation, while 2000 hours indicates that some transformers are exhibiting reverse power 

violation for 2000 hours. In other words, for 24% of the total time, the transformers are feeding 

power back into the medium-voltage network, regardless of their capacity. As previously 



 

stated, the maximum percentage usage is −37%. Therefore, the rate at which it feeds back 

does not exceed the −37% limit. However, for some of the transformers, the maximum amount 

of time spent feeding is 24% of the overall time considered, which is a significant concern.  

 

Figure 7-10 Transformers under reverse power flow (Hours) for a year for 500,000 low-voltage 

transformers for base case scenario (PBH) 

However, from Figure 7-10, it can be seen that the interquartile range indicates that 50% of 

the transformers experience reverse power flows between 340 and 1000 hours. This equates 

to 4% to 12% of the total time considered. Additionally, the interquartile range is close to the 

minimum value, indicating that 75% of transformers exhibit violations lasting fewer than 1000 

hours. However, the remaining 25% of the transformers exhibit reverse power flows between 

1000 to 2000 hours, or about 12% to 24% of the total time for a year. Therefore, it can be 

concluded that 75% of the transformers are operating under reverse power flows for periods 

ranging from 340 to 2000 hours, and 50% for periods ranging from 340 to 1000 hours. These 

data demonstrate unequivocally that residential rooftop PV generation is not being properly 

utilized at the time of generation, leading to feeding such generation back to the medium-

voltage side, resulting in violations. 

However, Figure 7-11 illustrates the other sensitivity calculation scenarios that are considered. 

It is clear from the Figure 7-11 that for the majority of scenarios, the violations are the same as 

in the base scenario (PBH). However, the violations are less severe in P↑BH↓, P↓BH↓, P↓B↑H, 
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P↓B↓H, and P↓BH when compared to the base case (PBH). Based on the preceding analysis, 

the likelihood of violation decreases in these cases as the solar rooftop PV penetration 

decreases in low-voltage networks. 

 

Figure 7-11 Transformer reverse power flow (Hours) observed for all the considered low-

voltage network transformers for 18 various scenario cases 

By observing Figure 7-11, it may be argued that either an increase in the demand (H↑, B↑) or 

a decrease in the demand (B↓, H↓) has a minimal effect on the reverse power flows. But, when 

PV is decreased PV (P↓), a significant change can be observed in the reverse power flow. 

Furthermore, this study also considers the average time of reverse power flow for the 

transformers for all scenarios. Accordingly, Figure 7-12 depicts the average time of reverse 

power flows at all transformers in each scenario, which includes the base scenario and the 

other 18 scenario cases. The average number of times the transformer is subjected to reverse 

power violations is between 621 and 810 hours for a year. 



 

 

Figure 7-12 Average time reverse power flows at 500,000 transformers for 19 scenario cases 

As illustrated in Figure 7-12, a lower count indicates fewer violations, while a higher value 

indicates that the transformers are exhibiting reverse power flows more frequently. The figure 

clearly showcases that the scenario cases such as P↑BH↓, P↑B↑H, P↑B↓H, and P↑BH 

experience around an average of approx. 800 hours of reverse power flow over the course of 

a year. In these scenarios P↑ is the common denominator, and irrespective of battery electric 

vehicles and heat pump demand, the violations are higher when compared to the base case 

scenario. In contrast, P↑BH↓, P↓BH↓, P↓B↑H, P↓B↓H, and P↓BH are the scenario cases where 

the reverse power flows are less than the base case scenario (PBH). In this case, P↓ is the 

common denominator and the violations decreased regardless of battery electric vehicles and 

heat pump penetration.  

In conclusion, most of the reverse power flows occurred during spring and summer, as evident 

from the minimum transformer loading at the transformer (see Figure 7-3). Furthermore, by 

analyzing various several scenarios, it is evident that the scenarios with P↓ decreases the 

violations and P↑ increase the violations, regardless of distributed demand in the network. It 

can be further concluded that the high reverse power flow is a result of a mismatch between 

the generation and demand in the network. Therefore, the generation should be effectively 

utilized to minimize violations involving reverse power flows. Finally, it can be concluded that 

more than 75% of the 500,000 transformers are exhibiting reverse power flows, but only 25% 

of the 500,000 networks are in critical need of attention.  

Since transformer violations such as transformer loading and reverse power flows have been 

discussed, it is now time to compare the reverse power flow violations with the transformer 
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thermal loadings to determine whether reverse power flows, when appropriately employed, 

can compensate for the transformer's thermal loading. 

In this context, Figure 7-13 compares the average reverse power flow duration over the course 

of a year for all of the examined geo-referenced synthetic low-voltage networks to the average 

thermal overloading during a simulated year for all scenarios. 

 

Figure 7-13 Comparison of transformer thermal overloading duration with reverse power flow 

duration 

According to the observed results, reverse power flow violations occur significantly more often 

due to the widespread use of distributed generating (i.e., residential solar rooftop PV). 

Additionally, this occurs when the network has a high generation rate and a low demand rate. 

On the other hand, the transformer is thermally loaded because of the significant penetration 

of distributed demand - battery electric vehicles and heat pumps – particularly the latter, from 

the scenarios analyzed. In contrast to reverse power flows, the thermal loading of the 

transformer occurs due to the network's high demand and low generation. Therefore, by 

utilizing distributed generation (i.e., rooftop PV) effectively, reverse power flows and thermal 

loading on the transformer is reduced. Meanwhile, it is also important to point out that the 

transformer loading duration is relatively minimal in proportion to the duration of reverse power 

flow. Thus, when the solar PV power is stored or used concurrently, most reverse power flow 

situations can efficiently minimize transformer loadings. But, according to the analysis 

conducted, the majority of the transformer thermal loading occurs during the winter, where 

heat pumps are utilized more and there is less generation by solar PV. In contrast, reverse 

power flows are observed in the spring and summer, where there is minimal operation of heat 



 

pumps. Therefore, transformer loading violations that occur during the winter cannot be easily 

compensated with the solar PV. Nevertheless, if the loading occurs during the spring or 

summer, additional battery integration can compensate for the mismatch between generation 

and demand, thereby reducing thermal loading and reverse power flows. 

After analyzing the results pertaining to transformer violations under various scenarios of 

distributed demand and generation integration in low-voltage distribution networks, the 

following section looks at the violations concerning power lines.  

7.2 Power Line Violations 

After examining transformer violations, the next significant component that might be impacted 

are power lines. When the current carried by a power line exceeds its current carrying capacity, 

the line is said to be in violation. In general, the power lines can operate beyond their limits for 

short duration of time without any interruption. However, this thesis considers a line to be in 

violation if more than 100% of its rated capacity is drawn through it. The term "power line" 

refers to the line that connects two nodes without connecting to the feeder. However, the feeder 

is made up of multiple line segments. 

When 500,000 geo-referenced synthetic low-voltage networks were simulated for the future 

integration of distributed demand and generation under 19 scenario cases, lines in the 

networks occasionally exhibited thermal loadings. As seen in Figure 5-27, each network has 

many lines, ranging from one to around 200 lines. Thus, Figure 7-14 illustrates the total number 

of lines that experienced a violation during at least one simulation over the complete duration 

of simulations conducted for all networks. The total count indicates that if a line is violated once 

or numerous times over the duration of the simulation, the line is deemed to be violated. 

Furthermore, just because a network’s total number of lines experiencing violations is a 

constant value (for example, 3 lines), it does not necessarily mean that all of those lines are 

experiencing violations simultaneously. 

As shown in the Figure 7-14, each network has between zero and 44 lines that are in violation 

at least once throughout the time snapshots studied. Additionally, it is shown that 50% of 

networks contain more than 10 lines subjected to thermal loading. However, 50% of total 

networks in the interquartile range had between five and 20 lines. Among these 50% of 

networks, between 6% and 19% of total lines are subjected to thermal loading. Nonetheless, 

practically all networks include at least some lines that are subject to thermal loading violations. 

As a result, a particular emphasis should be placed on decreasing the load on the network's 

lines while implementing future distributed demand and generation. 

However, various other scenario scenarios were examined to see whether the total number of 

lines in the network may be lowered. If the total number of lines subjected to thermal loading 

in each network is decreased, the reason is investigated further. For each network across all 

500,000 geo-referenced synthetic low-voltage networks, the lines experiencing thermal loading 

count are displayed in Figure 7-15 as a box plot for each scenario case. 



 

183 
 

 

Figure 7-14 Lines under thermal loading for each network for 500,000 geo-referenced synthetic 

low-voltage networks for base case scenario (PBH) 

In Figure 7-15, it is evident that nearly all the scenario cases produce comparable results, and 

the variances are negligible. Except in the cases of PB↑H↓, PB↓H↓, P↑BH↓, P↓BH↓, P↓B↓H, 

P↓BH, and PBH↓, the minimum value is zero, and the maximum value is 44. That is, the 

number of lines subject to violations varies between zero and 45, which is consistent with the 

base case. However, in other cases, the minimum value remains constant, and the maximum 

value is reduced to 40, with the third quartile lying at 18. That is, 75% of low-voltage networks 

contain less than 18 lines that are thermally loaded. In these scenarios, there is at least one 

distributed demand penetration that is less than 10% of the base scenario or distributed 

generation that is 10% greater than the base scenario. Furthermore, from these scenario 

cases, it was observed that H↓ is common for most scenario cases. H↓ denotes a 10% 

reduction over the percentage of base scenario (i.e., 74.7%). Therefore, it could also be 

claimed that heat pump has influence on the line loading. Furthermore, this is also evident from 

the time-series of line loading for a line taken from the exemplary network (𝑵𝟐𝟑𝟗𝟖𝟖) simulated 

in Chapter 6. In Figure 7-16, it is clear that line loading on a line occurs almost constantly in 

winter. However, heat pumps are the primary technology that consume power during the 

winter.  



 

 

Figure 7-15 Total lines under thermal loading observed for all the considered low-voltage 

networks for 18 various scenario cases 

In conclusion, under the base case scenario (PBH), almost all the networks have at least one 

line exhibiting thermal loading violation. Moreover, 50% of the networks have at least ten lines 

that are subjected to thermal loading violations. The remaining 50% of the networks have more 

than ten lines with thermal violations and fewer than 45 lines demonstrating thermal violations. 

Interestingly, in scenarios with less lines under violations than base case scenario, heat pumps 

seem to be the common technology in place. In those scenarios, a 10% reduction in its 

penetration level relative to the base case is observed. Furthermore, the majority of line 

overloading is seen in the winter season. Therefore, by using this information, line loading on 

the lines can be reduced by decreasing demand on the network during winter season or 

reinforcing the network with an additional line that is parallel to the line experiencing thermal 

loading violations.  
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Figure 7-16 Line loading seen on a line from exemplary network (𝑵𝟐𝟑𝟗𝟖𝟖) simulated in Chapter 

6 

However, this analysis does not provide a clear outline regarding the number of lines a network 

needs for reinforcement. Thus, the average number of lines under loading for each network is 

examined and depicted in Figure 7-17.  

 



 

Figure 7-17 Average lines under thermal loading for 500,000 networks for 19 scenario cases 

The average number of lines under thermal violations in 500,000 geo-referenced synthetic 

networks is between ten and eleven. This demonstrates unequivocally that all scenario cases, 

including the base scenario, showcase similar results. Therefore, an average of approximately 

11 lines must be reinforced to accommodate the future distributed demand and generation in 

the low-voltage networks without experiencing line loading on any low-voltage network. On 

average, this adds up to approx. 11% of lines in 500,000 geo-referenced synthetic low-voltage 

networks. 

It is important to note that the thermal stress on lines in a network is primarily concentrated on 

those proximal to the transformers. As illustrated in Figure 7-18, the lines highlighted in red are 

more stressed than the lines highlighted in blue. Clearly, these lines are located near the 

transformers. Furthermore, it is apparent that the lines adjacent to the transformers experience 

higher stress when the feeder has a larger number of loads. As illustrated in Figure 7-18, the 

lines adjacent to the transformer for feeder 1 are subjected to more stress than the lines 

adjacent to the transformer for feeders 2 and 3. This is because feeder 1 has 19 load 

connections, while feeders 2 and 3 have 16 and 13 load connections, respectively. 

 

Figure 7-18 Exemplary network (𝑵𝟐𝟑𝟗𝟖𝟖) from the 500,000 networks showing the line loading 

of each at a specific time snapshot 

To alleviate line loading, the load on the feeders should be minimized by compensating with 

distributed generators. The preceding analysis demonstrated that reverse power flows exist 

because of distributed generation (i.e., solar rooftop PV). Additionally, thermal loading occurs 

on the transformers as a result of a mismatch between supply and demand. Finally, it may be 

Feeder 1 

Feeder 2 

Feeder 3 
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stated that in order to minimize thermal loading on distribution lines and transformers, effective 

utilization of generation is necessary.  

In conclusion, almost all the networks have at least one line under thermal loading violation. 

The thermal loading on the lines can be alleviated by reinforcing the network. In this case, 

reinforcement is necessary for 11% of the average number of lines for 500,000 networks. On 

the other hand, additional methods like demand side management, controlled battery electric 

vehicles charging, etc., should be integrated into the network to reduce line loading.  

The following section focuses on the node voltage violations due to the integration of 

distributed demand and generation in the low-voltage distribution networks. 

7.3 Voltage Violations 

Following the transformer and line violations, the next critical parameter to evaluate are the 

node voltages. Voltages at the nodes should remain within a particular range in any network. 

In case of a voltage drop or rise at the node, undervoltage or overvoltage violations occur, 

respectively. As a result, two voltage violations will be addressed in this section. Table 2-2 

discusses and lists the limitations for overvoltage and undervoltage violations. 

Simulations performed on the 500,000 geo-referenced synthetic low-voltage networks under 

various future distribution and demand scenarios resulted in node undervoltage and 

overvoltage violations. Each network has several load nodes, depending on the predicted 

synthetic network configuration and the number ranges between two and 200, as seen in 

Figure 5-24. The voltage magnitude at each node fluctuates according to the circumstances 

as well as the node's placement relative to the transformer. If there is no distributed generation 

at the point of load, the voltage magnitude declines down the feeder. Therefore, the load farther 

away from the transformer encounters less voltage magnitude than the load proximal to the 

transformer. On the other hand, a voltage rise is experienced by a node with a generator if 

more power is generated than is required.  

The voltage magnitude should be kept within a specified range to avoid any violations at the 

nodes. According to grid codes, when a typical transformer is installed in the network, the 

voltage at each node shall vary by no more than ±5%. However, when a voltage regulating 

distribution transformer is included in the network, the allowable voltage range is between 

±10%. 

However, this section will first investigate undervoltage violations concerning future distributed 

demand and generation in each network. Thus, the nodes that are experiencing undervoltage 

violations are recorded for each network. Figure 7-19 illustrates the total number of nodes that 

experience undervoltage violations in networks with both typical and voltage regulating 

distributed transformers. 



 

 

Figure 7-19 Nodes under undervoltage violations for each network for all 500,000 networks 

with and without voltage regulating distributed transformer (VRDT) 

As illustrated in Figure 7-19, when networks are constructed using typical transformers, 25% 

of networks have zero nodes due to undervoltage violations. However, 50% of networks with 

nodes ranging from one to sixty-five that exhibited undervoltage violations. That is, 25% of 

networks have less than 20 nodes that experienced undervoltage violations, whereas the 

remaining 25% of networks have a range of 20 to 65 nodes that exhibited undervoltage 

violations. Additionally, the remaining 25% of networks have a wide range of total nodes 

ranging from 65 to 160, or around 65% to 100% of the network's nodes under undervoltage 

violations. 

These, however, are the outcomes when networks are configured using a typical transformer. 

Conversely, if the network contains a voltage regulating distribution transformer, the available 

bandwidth for voltage deviation increases, and the number of nodes experiencing 

undervoltage violations reduces. This phenomenon is depicted in Figure 7-19, which clearly 

shows that the number of nodes with undervoltage violations has decreased significantly. For 

75% of networks, the number of nodes experiencing undervoltage violations is less than 6. 

This number is further decreased by 90% when a voltage-regulated distributed transformer is 

used instead of a typical transformer. Additionally, 50% of networks implementing VRDT do 

not report any undervoltage violations for the nodes in those networks. That is, only 25% of 

networks have nodes with violations ranging from one to six or less than 7% of total nodes. 

Additionally, networks above the third quartile feature nodes with a count greater than six and 

a count less than 15, which is extremely diversified and contains more than 6% of the network's 

nodes but less than 17.5%. 

However, a variety of alternate scenarios are examined to see if a certain deviation in the 

distribution demand and generation results in lesser violations. For various scenarios 
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employing a typical transformer, the total number of nodes subjected to undervoltage violations 

is illustrated in Figure 7-20. 

 

Figure 7-20 Nodes under undervoltage violations in each network for 500,000 networks for 

various scenarios without voltage regulating distributed transformer 

Figure 7-20 showcases that practically all of the scenarios provide the same results, except 

for PB↓H↓, which uses fixed PV value of 53% in line with the base scenario, and battery electric 

vehicles and heat pumps with percentage penetration less than 10% of the base scenario, 

which is 72% battery electric vehicles and 74.7% heat pumps. However, the difference is 

negligible in comparison to other scenarios. The highest difference that was observed is 25% 

when the median value is used. 

Therefore, it can be concluded that the network with a voltage regulating distribution 

transformer produces promising results. Furthermore, in several other scenarios, simulations 

are carried out on 500,000 networks with voltage regulating distributed transformers installed 

in the networks. Figure 7-21 illustrates the total number of nodes experiencing undervoltage 

violations for each network in 500,000 networks under 18 additional scenario cases with a 

voltage regulating distribution transformer. 



 

 

Figure 7-21 Nodes under undervoltage violations in each network for 500,000 networks for 

various scenarios with voltage regulating distributed transformer 

As illustrated in Figure 7-21, PB↓H↓ is the most promising combination (i.e., Fixed PV (53%), 

−10% battery electric vehicles and heat pumps over base scenario values of 72% and 74.7%, 

respectively. Figure 7-21 is self-explanatory as scenario PB↓H↓ results in zero nodes violations 

across all 500,000 networks equipped with voltage regulating distribution transformers. This 

analysis helps draw a conclusion that that undervoltage violations are caused by distributed 

demand integration in the network. Reducing the base scenario by a small percentage results 

in unrestricted network operation, when battery electric vehicles and heat pumps were 

decreased by 10%.  

Not all existing networks, however, include voltage regulating distribution transformers. As a 

result, additional expenditure is required to install these transformers in the networks. 

Finally, the overvoltage violation is the other type of voltage violation that a node can 

experience in a network. Overvoltage violation occurs more frequently when there is a large 

amount of generation and little demand. Typically, the voltage magnitude on the feeder 

increases as it flows from the node proximal to the transformer to the node at the feeder's end. 

That is, the node at the feeder's end receives a higher voltage than the node near the 

transformer. This phenomenon is fundamentally opposite to the voltage drop. Overvoltage 



 

191 
 

violations are recorded by simulating 500,000 geo-referenced synthetic low-voltage networks 

for future distributed demand and generation. Surprisingly, none of the simulated networks 

designed with and without a voltage regulated distribution transformer exhibited any violations 

at any node. This is because the amount of generation exceeding the amount of demand in 

the network is insufficient to create a voltage rise of more than 5%. 

In conclusion, voltage violations in relation to undervoltage violations are mostly caused by 

distributed demand. Future distributed demand and generation are comparable under the base 

scenario and the other scenario instances. While 25% of networks contain zero nodes due to 

undervoltage violations, 75% of networks have an average of 31 nodes that are experiencing 

undervoltage violations. Nonetheless, these results apply to a network configuration with a 

typical transformer. However, when a voltage-regulated distributed transformer is used, the 

total number of nodes subject to violations is reduced by 90% in the base scenario. 

Additionally, when different scenarios are explored, the scenario with 10% less distributed 

demand led to 72% battery electric vehicles and heat pumps and 74.7% heat pump 

penetration, causing zero undervoltage violations. Finally, overvoltage violations are not 

exhibited in the network nodes for all networks in the base scenario and several other 

scenarios involving future demand and generation irrespective of whether a typical transformer 

or a voltage regulated distribution transformer is employed. 

After examining the violations associated with transformers, lines, and nodes in low-voltage 

networks, the following section discusses a sample demand side management strategy 

involving controlled battery electric vehicles charging at home. This attempt, when coupled 

with controlled battery electric vehicles charging, significantly reduced violations when 

compared to the absence of demand and generation management. 

7.4 Sample Demand Side Management using Controlled BEV Home 

Charging 

Using demand to balance generation is often suggested as an approach to minimize violations 

of reverse power flow and transformer loading. This can be accomplished through demand-

side management. To determine whether demand-side management is a viable solution, a 

simple demand-side management strategy is used to shift the load curve to the location of PV 

generation. Figure 7-22 illustrates the demand and generation profiles that were evaluated. 



 

 

Figure 7-22 Comparison of demand and generation profiles for mismatch identification in the 

absence of demand side management 

As illustrated in the Figure 7-22, the generation is not always utilized by demand. For instance, 

on an autumn weekday (WD) when PV is operating at full power, there is no usage recorded. 

During such periods, reverse power flow violations occur. Similarly, on the same day, battery 

electric vehicles 1 and 3 are charging at different times. However, if all users charged 

simultaneously, thermal loading of the transformers might occur. This phenomenon results in 

line loading. Therefore, to facilitate simple demand-side management, battery electric vehicles 

that are typically charged after work in the autumn should be charged before leaving for work. 

This implementation shifts the demand curve and matches that of the generation curve. Figure 

7-23 illustrates the profiles of a moved battery electric vehicle profile 1 and battery electric 

vehicle profile 3 in the autumn weekday (WD). 

Based on these implementations, a simulation is carried out on one of the geo-referenced 

synthetic networks (𝑵𝟐𝟑𝟗𝟖𝟖) illustrated in Section 6.2. When a power flow simulation is run 

under a base case scenario, it yields the results displayed in Figure 7-24. All violations 

associated with transformer loading, such as maximum transformer loading (TLMAX), 

minimum transformer loading (TLMIN), count of transformer loading instances (CTL), reverse 

power flow, such as count of reverse power flow instances (CRPF), and undervoltage, which 

includes count of under voltage violations with and without Voltage Regulating Distribution 

Transformer (VRDT) (CUVAN and CUVAN_VRT)) are presented. Figure 7-24 illustrates that 

the outcomes with simplified controlled charging are preferable to those without demand-side 

management. The use of the generation with the controlled charging of battery electric vehicles 

reduces the reverse power flow due to rooftop PV. At the same time, battery electric vehicles 

demand is satisfied by the rooftop PV, thereby reducing thermal loading of transformers and 

lines. Furthermore, since voltage regulating distribution transformer increased voltage 

bandwidth, no undervoltage violations were observed in case of the use of voltage regulating 

distributed transformer.  

However, if a complex demand-side management strategy is used, the results will be further 

improved. Moreover, combining PB↓H↓, which is essentially 53% PV, 72% battery electric 
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vehicles, and 74.7% heat pump, with simplified controlled battery electric vehicles charging 

also results in fewer violations than the base case scenario. 

 

Figure 7-23 Comparison of demand and generation profiles for mismatch identification with 

simple demand side management 

 

Figure 7-24 Technical violations with and without simplified controlled battery electric vehicles 

home charging 

To summarize, the base case scenario is achievable for most networks, although for a few 

networks, certain technical violations may emerge. There are, however, various options for 

reducing violations, including demand-side management using simplified battery electric 

vehicles charging, and grid reinforcements. 

7.5 Summary 

With the objective of addressing the thesis's primary research question, this chapter examined 

the effects of future distributed demand and generation on low-voltage distribution networks 

using geo-referenced synthetic low-voltage networks developed in Chapter 5. To address the 



 

question: “Are the distribution networks adequate for significant increase in distributed demand 

and generation in the future?” simulations were performed on the 500,000 geo-referenced 

synthetic low-voltage networks under a base case scenario with 53% PV, 80% battery electric 

vehicles, and 83% heat pump penetration that reduces 95% CO2 emissions by 2050. However, 

the additional 18 scenarios are considered to determine the sensitivity. Under this study, 

various parameters corresponding to transformers, lines, and nodes are analyzed. According 

to this analysis, 25% of the low-voltage networks are critical due to transformer overloading. 

Additionally, more than 75% of low-voltage networks experience reverse power flows, but only 

25% of the networks are critical and require additional attention. In addition, 11% of the lines 

should be reinforced on average when all 500,000 low-voltage networks are considered. 

Finally, on average 34% of nodes in networks should be handled for undervoltage violations. 

Nevertheless, these are the findings for a base case scenario in which CO2 emissions are 

reduced by 95% by 2050. However, it can be concluded that by addressing the aforementioned 

violations, the low-voltage distribution networks will be capable of handling significant future 

increases in distributed demand and generation. This conclusion, addresses the following 

question: “Which technical violations exist with regard to future distributed demand and 

generation, and how could they be addressed?” Based on the analysis of the 18 additional 

scenarios, it can be concluded that technical violations associated with transformer 

overloading are a result of the high heat pump penetration. Heat pump operation, particularly 

in the winter, results in transformer overloading. Similarly, reverse power flows are primarily a 

result of high rooftop PV penetration, regardless of distributed demand. Most of the reverse 

power flows occur during the spring and summer. Therefore, it can be concluded that reducing 

or managing consumers' heat pump utilization reduces transformer thermal overloading. 

Additionally, reverse power flows can be reduced by curtailing solar PV or by adding battery 

storage and managing energy consumption in the spring and summer. This implementation 

has the potential to reduce the number of lines and nodes that experience thermal overloading 

and undervoltage violations, respectively. Finally, by incorporating voltage regulating 

distributed transformers into the aforementioned implementations, undervoltage violations at 

low-voltage nodes are minimized. This way, technical violations associated with future 

distributed demand and generation can be addressed, thereby preparing distribution networks 

for future demand and generation integration. 
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Key messages: 

 The distribution grid model simulations are performed on 500,000 geo-

referenced synthetic low-voltage networks under the base case scenario 

and 18 other scenario cases. 

 Under reverse power flow violations, more than 75% of the networks 

exhibit violations, but only 25% of 500,000 transformers are considered 

critical. 

 The primary source responsible for reverse power flows at the 

transformers is distributed generation or solar rooftop PV, particularly in 

the spring and summer. 

 Under transformer thermal loading, the same 25% of 500,000 transformers 

are in critical condition. 

 Distributed demand, particularly heat pumps, is the primary source of 

transformer thermal loading, particularly, in the winter. 

 Under power line violations, 11% of lines need reinforcement.  

 Mismatch in the distributed demand and generation profiles is the major 

cause of power line violations.  

 Undervoltage violations affect an average of 34% and 31% of nodes for 

base case scenario and best-case scenario (PB↓H↓), respectively. Those, 

however, become null and void when a voltage regulating distributed 

transformer is included in the network for best-case scenario (PB↓H↓). 

 However, PB↓H↓ or more precisely, 53% PV, 72% battery electric vehicles, 

and 74.7 percent heat pump is a better fit than the base scenario, as it can 

reduce some technical violations. 

 Grid reinforcement measures for transformers and power lines are 

mandatory. Demand-side management options include controlled BEV 

charging, controlled HP utilization, and battery storage and consumption 
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8 Conclusions 

Residential rooftop solar photovoltaic (PV) integration into distribution networks can 

significantly reduce residential reliance on fossil-fuel-generated electricity. Additionally, its 

integration into the distribution networks lowers overall dependency on fossil fuel. Similarly, 

battery electric vehicles and heat pumps have the potential to minimize carbon dioxide 

emissions by reducing the need for fossil fuels utilizing residential rooftop PV. However, the 

power system implications of large-scale integration of these distributed demands and 

generation in the distribution networks are unclear on a national scale. Therefore, this thesis 

is driven by the following research questions: 

Are the distribution networks equipped to handle the significant increase in distributed 

demand and generation in the future? 

Generally, distribution networks have been constructed with the current state of the system in 

mind. Therefore, it is not economically viable to upgrade every network considering future 

integrations without proper study and analysis. Furthermore, if the distribution networks are 

viewed without regard for the future introduces several issues when it comes to integrating 

future distributed demand and generation. Therefore, this thesis addressed the following 

problem statement: 

Which technical violations exist with regard to future distributed demand and 

generation, and how could they be addressed? 

It is possible to evaluate the effects of future distributed demand and generation at a basic 

level, using test network topologies, real network topologies from any distribution system 

operator, or typical network topologies for the considered nation. However, evaluating future 

demand and generation on a broad scale is complicated, despite receiving some networks 

from system operators. For example, due to confidentiality and security considerations, 

distribution system operators are prohibited from providing geo-referenced real network 

topologies. As each nation has hundreds of distribution system operators, data from a single 

distribution system operator would prove to be insufficient. As a result, the problem statement 

for this thesis is as follows: 

How can the effects of future distributed demand and generation on distribution grids 

be studied when there are no real-world networks to investigate? 

Extrapolating the effects of future distributed demand and generation to the national level 

produces implausible findings when applied to a single network or typical networks. To address 

the primary impediment in studying the research question, a methodology using a data-driven 

approach is devised to generate geo-referenced synthetic distribution network topologies. The 

geo-graphical networks that have been built can be used to study the primary research 

question. 



 

A package is designed to generate geo-referenced synthetic networks ranging from 

low-voltage distribution grids to extra-high voltage transmission grids using open data. 

Several observations are made throughout the process of developing geo-referenced synthetic 

network topologies and determining the impact of future distributed demand and generation in 

the distribution networks. The derived conclusions are segmented into those related to model 

development and impact assessment. 

The following are the major conclusions drawn from the model developed to study future 

distributed demand and generation in the distribution networks: 

 The performed investigation revealed that most publications on distribution networks 

rely on real networks, test networks, and typical networks. Additionally, due to the 

limitations of these networks and the synthetic network models published in the 

literature, there is a need to study geo-referenced synthetic network topologies at the 

national level.  

 By gathering and analyzing the graphical and electrical features of real-world networks, 

a clear understanding regarding the construction of geo-referenced synthetic network 

topologies has emerged. 

 After examining real-world electrical network topologies and electrical parameters for 

European countries, including network indicators and reliability of supply indicators, it 

was determined that when data from a selected EU nation is used to develop methods, 

they be employed to generate geo-referenced synthetic network topologies for all 

European nations. 

 The geo-referenced networks generator (dgnetz) generates synthetic networks using 

open data. Statistical validation of the geo-referenced synthetic low-voltage networks 

reveals a +33% inaccuracy in the total network length when compared to the actual 

network length. This conclusion implies that it is implausible to consider all buildings 

retrieved from OpenStreetMap and only residential structures should be considered. 

 To address the reliability problem noted above, osmbuiltag model categorized the 

extracted buildings from OpenStreetMap data into residential and non-residential 

buildings using a state-of-the-art machine learning algorithm. Using actual data, it was 

validated, and the study reveals that the predicted residential buildings are 3.4% off 

from the actual residential buildings detected in Germany. The osmbuiltag model 

further classified residential buildings into single-family and multi-family dwellings, with 

a percentage error of +13.14% and −15.3%, respectively. Examining the results, it is 

concluded that with increased data quality, which includes fewer missing values and a 

large amount of training data, results in more accurate outcomes. 
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 dgnetz generates geo-referenced synthetic network topologies ranging from low-

voltage distribution networks to extra-high-voltage transmission grids using anticipated 

residential building data. Due to the lack of appropriate tags in the OpenStreetMap 

data, high-voltage and extra-high voltage are modeled as a single grid in this case. This 

modelling led to the conclusion that new algorithms with additional data for classifying 

power-related components in high-voltage and extra-high-voltage networks enable the 

generation of high-voltage geo-referenced distribution networks independent of extra-

high voltage networks. 

 The 500,000 geo-referenced synthetic low-voltage networks of Germany are 

statistically validated by comparing many topological metrics to real-world parameters 

from the literature. When residential buildings predicted using the osmbuildtag model 

are used, the overall circuit length obtained for synthetic low-voltage networks only 

deviates by 0.89% from the actual total low-voltage network length of Germany. 

Additionally, the validation of operational and geographical visualization demonstrates 

that dgnetz can produce nearly accurate synthetic networks. 

The most important conclusions that can be drawn about the future distributed demand and 

generation in distribution networks are listed below:  

 The analysis on 500,000 geo-referenced synthetic low-voltage networks demonstrates 

that future distributed demand generation with a base scenario of 53% solar rooftop 

PV, 80% battery electric vehicles, and 83% heat pump integration in distribution 

networks exhibit some violations related to transformers, lines, and electrical nodes. 

However, PB↓H↓ with constant PV and 10% less battery electric vehicles and heat 

pump, or more precisely, 53% PV, 72% battery electric vehicles, and 74.6% heat 

pumps, reduce the violations associated with transformer loadings, lines, and under-

voltage violations compared to the base scenario. 

 Additionally, the results indicate that increasing distributed generation in the distribution 

network results in over-voltage and reverse power flow violations. Rooftop PV, which 

operates at its peak in spring and summer, causes reverse power flows at the 

transformers. Additionally, increased distributed demand results in the thermal loading 

of transformers and power lines, in addition to under-voltage violations. On the other 

hand, heat pumps operate at their peak in Winter and cause thermal overloading. 

 Over 75% of networks are in violation of reverse power flow, although only 25% of 

500,000 transformers are considered critical. The same 25% of 500,000 transformers 

are in critical condition when subjected to thermal overloading of the transformers. 

 Additionally, 11% of power lines are impacted by the integration of demand and 

generation in the networks. As a result, these 11% of power lines must be reinforced 

to ensure continued operation in the considered low-voltage networks. The integration 



 

of demand and generation affects 34% of nodes. These, however, are reduced to 31% 

in the best-case scenario (PB↓H↓). Additionally, when a voltage-regulating distributed 

transformer is added to the network in the best-case scenario (PB↓H↓), these affected 

nodes become null and void. 

 Additionally, it can be inferred that efficient demand-side management, and the 

installation of battery units can help reduce reverse power flow violations and thermal 

loading without requiring subjecting existing grids to restructuring. This method is only 

viable if end-users apply demand-side management in conjunction with battery storage 

to store generated energy when it is not in use. Otherwise, then reinforcement of 

specific networks will be required, which would incur additional costs. 

Summing up, the models, geo-referenced synthetic networks, and results of thesis indicate 

that distribution system operators should prioritize enhancing the integration of distributed 

demand and generation. A feasible option would be to reinforce grids that are experiencing 

severe violations and foster demand side management options in distribution grids, including 

battery storages, controlled battery electric vehicles charging, and managing heat pump 

utilization. Additionally, the distribution grid model associated with the dgnetz and osmbuildtag 

tools can be used in the future to conduct further research on a variety of related topics, 

including the development of smart grids, examining the impact of new demand, such as 

battery-powered heavy-duty vehicles, on distribution grids, integrating high penetration of 

renewable energy sources in medium-voltage networks, and grid reinforcement studies. 
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9 Summary 

To determine the impacts of future distributed demand and generation in the distribution 

networks under the scenario of reducing 95% of CO2 emissions by 2050, this research 

develops geo-referenced synthetic distribution network for the entire nation. However, this 

thesis is divided into the following chapters to draw conclusions from the research that was 

conducted: 

In Chapter 1, distributed demand and generation are introduced as alternatives to fossil fuel 

usage and as a means of reducing greenhouse gas emissions. In addition, the research 

question of whether existing distribution networks are adequate for the integration of future 

demand and generation is introduced along with problem statements. Finally, the overall thesis 

structure is introduced by describing the primary contribution of each chapter. 

Chapter 0 discussed the challenges and opportunities involved in distribution grids. Distributed 

demand, which includes battery electric vehicles and heat pumps, and distributed generation 

or the residential rooftop solar PV are introduced in detail. Adopting such technologies typically 

alters the operation of power systems, resulting in network violations. In this context, various 

operational limiting factors and associated violation limits, methods of analysis, tools, and 

network topologies are studied. Based on the literature reviewed, it is concluded that a 

significant penetration of distributed demand and generation will interrupt network operation 

by causing thermal loadings, voltage violations, and power flow violations. Furthermore, it is 

identified that there is insufficient infrastructure available to analyze and plan the effects of 

future demand and generation in the distribution networks. Therefore, synthetic models are 

studied. This chapter identified the potential to develop geo-referenced synthetic distribution 

networks based on the identified limitations to answer the research question of this thesis. 

Following the decision in Chapter 0 to develop geo-referenced synthetic distribution network 

topologies, Chapter 3 explored several graphical and electrical parameters. By examining 

these parameters, several attributes required for the generation and validation of the geo-

referenced synthetic networks are uncovered. Firstly, radial networks and open-ring are 

identified as suitable for low-voltage and medium voltage networks, respectively. Secondly, 

betweenness centrality, and average shortest path length are utilized in generating the 

networks. Finally, clustering coefficient, number of nodes, number of edges, total network 

length, and node degree probability distribution are used to validate the developed geo-

referenced synthetic networks. An analysis on the real-world network indicators for EU nations 

revealed that open data of Germany allows the development of algorithms capable of 

generating geo-referenced synthetic networks that can be applied in any other EU nations. 

This chapter ends by choosing Germany as a test to develop algorithms for geo-referenced 

synthetic networks based on these findings. 

Since it was decided that algorithms must be developed to generate geo-referenced synthetic 

networks by utilizing data from Germany, Chapter 4 focuses on the open data of Germany for 

developing geo-referenced synthetic network topologies. Data regarding the geo-graphical 



 

locations such as buildings, power lines, transformers, substations, and installed renewable 

energy sources are extracted and analyzed. Analyzing the open data reveals that buildings 

which are necessary for the estimation of geo-referenced synthetic networks lack labels 

corresponding to the building types, such as residential, non-residential, single-family house, 

multi-family house, etc. Therefore, a classification model is developed to address this 

limitation, which classified approx. 19 million buildings as residential buildings out of approx. 

29 million buildings. These 19 million residential buildings are classified into 14 million single-

family houses, 4 million multi-family houses, and one million apartment buildings. However, 

statistical validation reveals a 3.4% variance of residential buildings from actual buildings in 

Germany. Additionally, a percentage error of 10.14% is observed for single-family houses and 

−15.3% percent for multi-family houses and apartments combined. In addition to these open 

data, synthetic data such as load profiles for buildings, battery electric vehicle profiles, heat 

pump profiles, and residential rooftop solar PV profiles are established. 

Analyzing the data required for estimating geo-referenced synthetic networks, Chapter 5 

demonstrates the methodology for implementing geo-referenced synthetic distribution 

networks. This chapter discussed strategies for progressively generating synthetic networks 

ranging from low-voltage distribution grids to extra-high-voltage transmission grids. Firstly, low-

voltage networks are modeled by developing algorithms that can assist with various tasks, 

such as clustering residential buildings to match low-voltage networks, clustering buildings by 

limiting cumulative peak load, collecting road infrastructure to generate power lines, combining 

nodes and edges, constructing multiple sub-graphs into a single graph, identifying transformer 

locations, and reinforcing graphical networks. These graphical networks are then transformed 

to electrical networks by allocating transformer types, and line types to nodes and edges in the 

networks. Secondly, similar to low-voltage network development, medium-voltage network 

development was driven by the introduction of graphical network and electrical network 

development. These steps made extensive use of the algorithm designed for low-voltage 

networks. Several new methods were also developed, including clustering with known 

centroids plus predicting unknown centroids, which helped with identifying medium-voltage 

transformer locations that are not already identified in OpenStreetMap data, and estimating 

radial medium-voltage network as some of the developed algorithms. Just like low-voltage 

networks, transformer and line types are assigned to the graphical network to convert it to 

medium-voltage electrical networks. Finally, high-voltage distribution networks and extra-high-

voltage transmission networks are constructed by combining them into a single network 

because some countries regard high-voltage to be a distribution network while others consider 

it to be a transmission network. In addition to the development of synthetic networks, three 

types of validation methodologies for geo-referenced low-voltage synthetic networks are 

presented, which are statistical, operational, and geographical network comparison validation. 

These validations demonstrated that the networks formed are extremely accurate. The 

comparisons of the overall network for the generated synthetic networks and the actual 

network length revealed a difference of only 0.89%. Finally, the chapter provides 500,000 geo-

referenced synthetic low-voltage networks throughout Germany, as well as a working 
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approach for synthesizing geo-referenced synthetic medium-voltage, high- and extra-high-

voltage networks as a single network. 

In Chapter 6, a distribution grid model is developed using geo-referenced synthetic network 

topologies to estimate the impact of future distributed demand and generation in the low-

voltage distribution networks. Here, scenarios for future integration of distributed demand and 

generation are included with the aim of reducing CO2 emissions by 95% by 2050. Additionally, 

technologies that play a significant role in distribution networks are identified, including 

residential rooftop solar PV, battery electric vehicles, and heat pumps and the percentage 

penetration of these technologies that can reduce CO2 emissions by 95% is used as a base 

case scenario. In this base case scenario, 53% PV, 80% battery electric vehicles, and 83% 

heat pumps are considered. However, to conduct sensitivity analysis, six additional scenarios 

are included, with four cases in the first three scenarios and two cases in the next three 

scenarios, totaling 18 scenarios. Finally, to demonstrate the distribution grid model's 

application, one network is chosen from generated 500,000 geo-referenced synthetic 

networks. 

Finally, Chapter 7 simulated the deployment of the distribution grid model to 500,000 geo-

referenced low-voltage networks using 19 scenario cases including base case scenario. Here, 

various operational limiting factors are analyzed for each network and violations are logged. 

Under the analysis, several conclusions are made. First, 75% of the networks are under 

violations, but 25% of 500,000 transformers are considered critical in case of reverse power 

flows. Second, the same 25% of 500,000 transformers are in critical condition for transformer 

loading as well. Thirdly, 11% of power lines and 34% of nodes are under thermal overloading, 

and under voltage violations, respectively. With these results, it can be concluded that the 

500,000 low-voltage networks undergo certain violations with respect to future distributed 

demand and generation. However, grid reinforcement measures for transformers and power 

lines are a potential solution. Furthermore, demand-side management options like controlled 

battery electric vehicles charging, controlled heat pump utilization, and battery storage and 

consumption can reduce grid reinforcement measures to some level. 

In this manner, a comprehensive answer in response to the research question was established 

by implementing state of the art artificial intelligence techniques to classify high volume and 

variety of data into residential and non-residential buildings, modeling geo-referenced synthetic 

networks by developing new algorithms, and analyzing the effects of future distributed demand 

and generation across the country.  
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Appendix 

 Distribution Grid Operating Voltage Levels for EU Nations 

Distribution system operators operate at different voltage levels for distributing power to end 

consumers. Most of the EU nations operate at low-. Medium-, and high-voltage. However, 

some countries include, Cyprus, Estonia, France, Italy, Lithuania, and Latvia operate only low- 

and medium-voltage lines. In those countries, high-voltage level is considered as the 

transmission grid. Figure 9-1 illustrates the distribution grid voltage level used in EU nations. 

 

Figure 9-1 Voltage levels used in EU nations 

  



 

  Corine Land Cover (CLC) Features 

Classes representing the land cover type in the CLC dataset is shown in Table 9-1. 

Table 9-1 Corine land cover classes 

Class Meaning 

111 Continuous urban fabric 

112 Discontinuous urban fabric 

121 Industrial or commercial units 

122 Road and rail networks and associated land 

123 Port areas 

124 Airports 

131 Mineral extraction sites 

132 Dump sites 

133 Construction sites 

141 Green urban areas 

142 Sport and leisure facilities 

211 Non-irrigated arable land 

212 Permanently irrigated land 

213 Rice fields 

221 Vineyards 

222 Fruit trees and berry plantations 

223 Olive groves 

231 Pastures 

241 Annual crops associated with permanent crops 

242 Complex cultivation patterns 

243 Land principally occupied by agriculture 

311 Broad-leaved forest 

312 Coniferous forest 

313 Mixed forest 

321 Natural grasslands 

322 Moors and heathland 

323 Sclerophyllous vegetation 

324 Transitional woodland-shrub 

331 Beaches, dunes, sands 

332 Bare rocks 

333 Sparsely vegetated areas 

334 Burnt areas 

335 Glaciers and perpetual snow 

411 Inland marshes 

412 Peat bogs 
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 Uncertainties in OSM Building Labels 

Due to the fact that OSM data is contributed by a large number of users worldwide, there are 

several uncertainties in the data's labeling. This is due to language differences and, in some 

cases, spelling errors. Table 2 summarizes some of the ambiguities found in OSM. 

Table 9-2 Uncertainties in OSM building labels 

Building label Differing representation 

garage garages 

farm farm_auxiliary  

Terrace Terrasse 

House Haus | Hause |house 

Youth Centre Jugendzentrum 

Nursing home Plegeheim 

deconstructed deconstucted 

 

  



 

  Renewable Energy Sources (Open Data) 

The renewable energy sources (RES) locations and their installed capacities in Germany are 

taken from OPSD [200]. Firstly, RES locations with their capacities installed in the low-voltage 

network for Germany is illustrated in Figure 9-2. 

 

Figure 9-2 Renewable energy sources in low-voltage networks 

Moreover, the installed capacities for each technology with maximum peak capacity for each 

technology is shown in Table 9-3. From the Figure 9-2, it is clear that solar PV is dominating 

in the low-voltage networks.  

Table 9-3 Total RES installed in low-voltage networks 

Technology MWp Total Installed capacity (GW) 

Wind Hydro Bioenergy Geothermal Storage Solar 
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Solar 6.90 23.07 

Bioenergy 6.02 0.54 

Wind 3.30 0.03 

Hydro 3.20 0.22 

Storage 0.07 *10-1 7.50 * 10-6 

RES locations with their capacities installed in medium-voltage networks for Germany is 

illustrated in Figure 9-3. 

 

Figure 9-3 Renewable energy sources in medium-voltage networks 

However, the installed capacities for each technology with maximum peak capacity for each 

technology in medium-voltage network is shown in Table 9-4. From the Figure 9-3 Figure 9-2, 

it is clear that wind is dominating in the medium-voltage networks 

Table 9-4 Total RES installed in medium-voltage networks 

Wind Hydro Bioenergy Geothermal Storage Solar 



 

Technology MWp Total Installed capacity (GW) 

Solar 24.71 15.11 

Bioenergy 135.00 5.96 

Wind 24.00 22.22 

Hydro 6.23 0.93 

Geothermal 7.00 0.04 
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  Geo-referenced Synthetic Low-voltage Networks 

A few of the 500,000 geo-referenced synthetic low-voltage networks generated are shown in 

Figure 9-4, Figure 9-5, and Figure 9-6. 

 

Figure 9-4 Few geo-referenced synthetic low-voltage distribution networks -I 



 

 

Figure 9-5 Few geo-referenced synthetic low-voltage distribution networks -II 
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Figure 9-6 Few geo-referenced synthetic low-voltage distribution networks -III 

  



 

  Standard Medium-voltage Cable Types 

Standard medium-voltage cable and overhead power line types available in Germany are 

shown in  

Type I (A) R (Ohm/km) L (mH/km) C (µF/km) 

NA2XS2Y 3x1x185 357 0.1664 0.38 0.41 

NA2XS2Y 3x1x240 417 0.125 0.36 0.47 

NA2XS2Y 3x1x300 466 0.1 0.35 0.495 

NA2XS2Y 3x1x400 535 0.078 0.34 0.57 

NA2XS2Y 3x1x500 609 0.061 0.32 0.63 

NA2XS2Y 3x1x150 319 0.206 0.4011 0.24 

NA2XS2Y 3x1x240 417 0.13 0.3597 0.304 

NA2XS2S(FL)2Y 3x1x300 476 0.1 0.37 0.25 

NA2XS2S(FL)2Y 3x1x400 525 0.078 0.36 0.27 

NA2XS2S(FL)2Y 3x1x500 598 0.06 0.34 0.3 
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